SelectionDAG.cpp revision 3ebd0eeaeb94b7f607409408e3c25024db671b66
15821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
25821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
35821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//                     The LLVM Compiler Infrastructure
45821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
55821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// This file is distributed under the University of Illinois Open Source
65821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// License. See LICENSE.TXT for details.
72a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//
82a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//===----------------------------------------------------------------------===//
95821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
102a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)// This implements the SelectionDAG class.
115821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
125821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
135821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/SelectionDAG.h"
145821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Constants.h"
155821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Analysis/ValueTracking.h"
165821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/GlobalAlias.h"
172a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "llvm/GlobalVariable.h"
182a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "llvm/Intrinsics.h"
195821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/DerivedTypes.h"
205821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Assembly/Writer.h"
215821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CallingConv.h"
225821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/MachineBasicBlock.h"
235821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/MachineConstantPool.h"
245821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/MachineFrameInfo.h"
255821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/MachineModuleInfo.h"
265821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/PseudoSourceValue.h"
272a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "llvm/Target/TargetRegisterInfo.h"
282a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "llvm/Target/TargetData.h"
295821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Target/TargetLowering.h"
302a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "llvm/Target/TargetInstrInfo.h"
315821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Target/TargetMachine.h"
325821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Support/CommandLine.h"
332a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "llvm/Support/MathExtras.h"
345821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Support/raw_ostream.h"
355821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/ADT/SetVector.h"
362a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "llvm/ADT/SmallPtrSet.h"
375821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/ADT/SmallSet.h"
385821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/ADT/SmallVector.h"
395821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/ADT/StringExtras.h"
402a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include <algorithm>
415821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include <cmath>
425821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)using namespace llvm;
435821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
445821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// makeVTList - Return an instance of the SDVTList struct initialized with the
455821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// specified members.
465821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
475821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  SDVTList Res = {VTs, NumVTs};
485821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  return Res;
492a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)}
505821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
515821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
525821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  switch (VT.getSimpleVT()) {
535821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  default: assert(0 && "Unknown FP format");
545821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MVT::f32:     return &APFloat::IEEEsingle;
555821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MVT::f64:     return &APFloat::IEEEdouble;
565821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MVT::f80:     return &APFloat::x87DoubleExtended;
575821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MVT::f128:    return &APFloat::IEEEquad;
585821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
595821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  }
605821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
615821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
625821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
635821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
645821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
655821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//                              ConstantFPSDNode Class
665821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
675821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
685821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// isExactlyValue - We don't rely on operator== working on double values, as
695821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
702a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// As such, this method can be used to do an exact bit-for-bit comparison of
715821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// two floating point values.
725821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
735821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  return getValueAPF().bitwiseIsEqual(V);
745821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
755821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
762a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)bool ConstantFPSDNode::isValueValidForType(MVT VT,
775821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                           const APFloat& Val) {
785821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  assert(VT.isFloatingPoint() && "Can only convert between FP types");
792a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
805821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // PPC long double cannot be converted to any other type.
812a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  if (VT == MVT::ppcf128 ||
825821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
835821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    return false;
845821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
855821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // convert modifies in place, so make a copy.
865821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  APFloat Val2 = APFloat(Val);
872a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  bool losesInfo;
885821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
895821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                      &losesInfo);
902a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  return !losesInfo;
915821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
925821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
935821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
942a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//                              ISD Namespace
952a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//===----------------------------------------------------------------------===//
965821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
972a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// isBuildVectorAllOnes - Return true if the specified node is a
985821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// BUILD_VECTOR where all of the elements are ~0 or undef.
995821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)bool ISD::isBuildVectorAllOnes(const SDNode *N) {
1005821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // Look through a bit convert.
1015821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  if (N->getOpcode() == ISD::BIT_CONVERT)
1025821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    N = N->getOperand(0).getNode();
1035821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
1045821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
1055821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
1065821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  unsigned i = 0, e = N->getNumOperands();
1075821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
1085821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // Skip over all of the undef values.
1095821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
1105821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    ++i;
1115821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
1122a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  // Do not accept an all-undef vector.
1135821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  if (i == e) return false;
1145821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
1152a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  // Do not accept build_vectors that aren't all constants or which have non-~0
1162a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  // elements.
1175821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  SDValue NotZero = N->getOperand(i);
1185821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  if (isa<ConstantSDNode>(NotZero)) {
1195821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
1205821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)      return false;
1215821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  } else if (isa<ConstantFPSDNode>(NotZero)) {
1225821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
1232a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)                bitcastToAPInt().isAllOnesValue())
1245821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)      return false;
1255821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  } else
1265821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    return false;
1275821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
1285821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // Okay, we have at least one ~0 value, check to see if the rest match or are
1295821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // undefs.
1305821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  for (++i; i != e; ++i)
1312a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    if (N->getOperand(i) != NotZero &&
1325821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)        N->getOperand(i).getOpcode() != ISD::UNDEF)
1335821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)      return false;
1345821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  return true;
1355821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
1365821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
1375821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
1385821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// isBuildVectorAllZeros - Return true if the specified node is a
1395821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// BUILD_VECTOR where all of the elements are 0 or undef.
1405821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)bool ISD::isBuildVectorAllZeros(const SDNode *N) {
1412a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  // Look through a bit convert.
1422a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  if (N->getOpcode() == ISD::BIT_CONVERT)
1432a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    N = N->getOperand(0).getNode();
1442a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1452a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
1462a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1475821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  unsigned i = 0, e = N->getNumOperands();
1485821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
1492a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  // Skip over all of the undef values.
1505821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
1515821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    ++i;
1525821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
1535821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // Do not accept an all-undef vector.
1545821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  if (i == e) return false;
1555821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
1565821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // Do not accept build_vectors that aren't all constants or which have non-~0
1575821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // elements.
1585821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  SDValue Zero = N->getOperand(i);
1592a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  if (isa<ConstantSDNode>(Zero)) {
1602a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    if (!cast<ConstantSDNode>(Zero)->isNullValue())
1612a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)      return false;
1622a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  } else if (isa<ConstantFPSDNode>(Zero)) {
1632a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
1642a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)      return false;
1652a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  } else
1665821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    return false;
1675821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
1685821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // Okay, we have at least one ~0 value, check to see if the rest match or are
1692a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  // undefs.
1702a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  for (++i; i != e; ++i)
1712a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    if (N->getOperand(i) != Zero &&
1722a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)        N->getOperand(i).getOpcode() != ISD::UNDEF)
1735821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)      return false;
1745821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  return true;
1752a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)}
1762a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1772a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// isScalarToVector - Return true if the specified node is a
1782a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
1795821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// element is not an undef.
1805821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)bool ISD::isScalarToVector(const SDNode *N) {
1815821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
1825821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    return true;
1832a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1842a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  if (N->getOpcode() != ISD::BUILD_VECTOR)
1852a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    return false;
1862a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
1872a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    return false;
1885821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  unsigned NumElems = N->getNumOperands();
1895821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  for (unsigned i = 1; i < NumElems; ++i) {
1905821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    SDValue V = N->getOperand(i);
1912a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    if (V.getOpcode() != ISD::UNDEF)
1922a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)      return false;
1935821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  }
1942a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  return true;
1955821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
1965821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
1972a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1985821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// isDebugLabel - Return true if the specified node represents a debug
1995821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
2005821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)bool ISD::isDebugLabel(const SDNode *N) {
2012a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  SDValue Zero;
2025821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  if (N->getOpcode() == ISD::DBG_LABEL)
2035821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    return true;
2045821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  if (N->isMachineOpcode() &&
2055821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
2065821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    return true;
2072a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  return false;
2085821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
2092a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
2105821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
2115821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// when given the operation for (X op Y).
2125821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
2132a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  // To perform this operation, we just need to swap the L and G bits of the
2145821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // operation.
2155821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  unsigned OldL = (Operation >> 2) & 1;
2165821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  unsigned OldG = (Operation >> 1) & 1;
2175821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
2185821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                       (OldL << 1) |       // New G bit
2195821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                       (OldG << 2));       // New L bit.
2205821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
2212a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
2225821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
2235821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// 'op' is a valid SetCC operation.
2245821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
2255821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  unsigned Operation = Op;
2265821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  if (isInteger)
2275821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    Operation ^= 7;   // Flip L, G, E bits, but not U.
2282a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  else
2295821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    Operation ^= 15;  // Flip all of the condition bits.
2305821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
2315821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  if (Operation > ISD::SETTRUE2)
2325821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    Operation &= ~8;  // Don't let N and U bits get set.
2335821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
2345821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  return ISD::CondCode(Operation);
2352a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)}
2362a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
2372a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
2382a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// isSignedOp - For an integer comparison, return 1 if the comparison is a
2395821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// signed operation and 2 if the result is an unsigned comparison.  Return zero
2405821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// if the operation does not depend on the sign of the input (setne and seteq).
2412a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)static int isSignedOp(ISD::CondCode Opcode) {
2425821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  switch (Opcode) {
2432a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  default: assert(0 && "Illegal integer setcc operation!");
2445821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case ISD::SETEQ:
2455821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case ISD::SETNE: return 0;
2465821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case ISD::SETLT:
2475821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case ISD::SETLE:
2485821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case ISD::SETGT:
2495821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case ISD::SETGE: return 1;
2505821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case ISD::SETULT:
2512a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  case ISD::SETULE:
2522a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  case ISD::SETUGT:
2532a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  case ISD::SETUGE: return 2;
2542a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  }
2552a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)}
2562a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
2572a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// getSetCCOrOperation - Return the result of a logical OR between different
2582a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
2592a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// returns SETCC_INVALID if it is not possible to represent the resultant
2605821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// comparison.
2615821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
2622a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)                                       bool isInteger) {
2632a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
2645821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    // Cannot fold a signed integer setcc with an unsigned integer setcc.
2655821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    return ISD::SETCC_INVALID;
2665821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
2675821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
2685821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
2695821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // If the N and U bits get set then the resultant comparison DOES suddenly
2705821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // care about orderedness, and is true when ordered.
2715821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  if (Op > ISD::SETTRUE2)
2725821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    Op &= ~16;     // Clear the U bit if the N bit is set.
2735821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
2745821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // Canonicalize illegal integer setcc's.
2755821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
2765821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    Op = ISD::SETNE;
2775821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
2785821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  return ISD::CondCode(Op);
2795821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
2805821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
2815821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// getSetCCAndOperation - Return the result of a logical AND between different
2825821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
2835821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// function returns zero if it is not possible to represent the resultant
2845821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// comparison.
2855821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
2865821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                        bool isInteger) {
2875821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
2885821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    // Cannot fold a signed setcc with an unsigned setcc.
2895821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    return ISD::SETCC_INVALID;
2905821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
2915821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // Combine all of the condition bits.
2925821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
2935821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
2945821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // Canonicalize illegal integer setcc's.
2955821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  if (isInteger) {
2965821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    switch (Result) {
2972a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    default: break;
2982a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
2995821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
3005821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
3015821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
3025821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
3035821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    }
3045821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  }
3055821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
3065821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  return Result;
3072a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)}
3082a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
3092a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)const TargetMachine &SelectionDAG::getTarget() const {
3102a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  return MF->getTarget();
3112a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)}
3122a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
3132a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//===----------------------------------------------------------------------===//
3142a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//                           SDNode Profile Support
3152a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//===----------------------------------------------------------------------===//
3162a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
3172a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
3182a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)///
3192a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
3202a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  ID.AddInteger(OpC);
3212a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)}
3222a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
3232a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
3242a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// solely with their pointer.
3252a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
3262a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  ID.AddPointer(VTList.VTs);
3272a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)}
3285821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
3295821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
3302a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)///
3312a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)static void AddNodeIDOperands(FoldingSetNodeID &ID,
3322a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)                              const SDValue *Ops, unsigned NumOps) {
3332a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  for (; NumOps; --NumOps, ++Ops) {
3342a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ID.AddPointer(Ops->getNode());
3352a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ID.AddInteger(Ops->getResNo());
3362a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  }
3372a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)}
3382a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
3392a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
3402a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)///
3412a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)static void AddNodeIDOperands(FoldingSetNodeID &ID,
3422a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)                              const SDUse *Ops, unsigned NumOps) {
3432a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  for (; NumOps; --NumOps, ++Ops) {
3442a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ID.AddPointer(Ops->getVal());
3452a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ID.AddInteger(Ops->getSDValue().getResNo());
3462a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  }
3472a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)}
3482a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
3492a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)static void AddNodeIDNode(FoldingSetNodeID &ID,
3502a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)                          unsigned short OpC, SDVTList VTList,
3512a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)                          const SDValue *OpList, unsigned N) {
3522a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  AddNodeIDOpcode(ID, OpC);
3532a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  AddNodeIDValueTypes(ID, VTList);
3542a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  AddNodeIDOperands(ID, OpList, N);
3552a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)}
3562a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
3572a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
3582a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// the NodeID data.
3592a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
3602a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  switch (N->getOpcode()) {
3615821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  default: break;  // Normal nodes don't need extra info.
3625821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case ISD::ARG_FLAGS:
3635821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
364    break;
365  case ISD::TargetConstant:
366  case ISD::Constant:
367    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
368    break;
369  case ISD::TargetConstantFP:
370  case ISD::ConstantFP: {
371    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
372    break;
373  }
374  case ISD::TargetGlobalAddress:
375  case ISD::GlobalAddress:
376  case ISD::TargetGlobalTLSAddress:
377  case ISD::GlobalTLSAddress: {
378    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
379    ID.AddPointer(GA->getGlobal());
380    ID.AddInteger(GA->getOffset());
381    break;
382  }
383  case ISD::BasicBlock:
384    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
385    break;
386  case ISD::Register:
387    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
388    break;
389  case ISD::DBG_STOPPOINT: {
390    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
391    ID.AddInteger(DSP->getLine());
392    ID.AddInteger(DSP->getColumn());
393    ID.AddPointer(DSP->getCompileUnit());
394    break;
395  }
396  case ISD::SRCVALUE:
397    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
398    break;
399  case ISD::MEMOPERAND: {
400    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
401    MO.Profile(ID);
402    break;
403  }
404  case ISD::FrameIndex:
405  case ISD::TargetFrameIndex:
406    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
407    break;
408  case ISD::JumpTable:
409  case ISD::TargetJumpTable:
410    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
411    break;
412  case ISD::ConstantPool:
413  case ISD::TargetConstantPool: {
414    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
415    ID.AddInteger(CP->getAlignment());
416    ID.AddInteger(CP->getOffset());
417    if (CP->isMachineConstantPoolEntry())
418      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
419    else
420      ID.AddPointer(CP->getConstVal());
421    break;
422  }
423  case ISD::CALL: {
424    const CallSDNode *Call = cast<CallSDNode>(N);
425    ID.AddInteger(Call->getCallingConv());
426    ID.AddInteger(Call->isVarArg());
427    break;
428  }
429  case ISD::LOAD: {
430    const LoadSDNode *LD = cast<LoadSDNode>(N);
431    ID.AddInteger(LD->getAddressingMode());
432    ID.AddInteger(LD->getExtensionType());
433    ID.AddInteger(LD->getMemoryVT().getRawBits());
434    ID.AddInteger(LD->getRawFlags());
435    break;
436  }
437  case ISD::STORE: {
438    const StoreSDNode *ST = cast<StoreSDNode>(N);
439    ID.AddInteger(ST->getAddressingMode());
440    ID.AddInteger(ST->isTruncatingStore());
441    ID.AddInteger(ST->getMemoryVT().getRawBits());
442    ID.AddInteger(ST->getRawFlags());
443    break;
444  }
445  case ISD::ATOMIC_CMP_SWAP_8:
446  case ISD::ATOMIC_SWAP_8:
447  case ISD::ATOMIC_LOAD_ADD_8:
448  case ISD::ATOMIC_LOAD_SUB_8:
449  case ISD::ATOMIC_LOAD_AND_8:
450  case ISD::ATOMIC_LOAD_OR_8:
451  case ISD::ATOMIC_LOAD_XOR_8:
452  case ISD::ATOMIC_LOAD_NAND_8:
453  case ISD::ATOMIC_LOAD_MIN_8:
454  case ISD::ATOMIC_LOAD_MAX_8:
455  case ISD::ATOMIC_LOAD_UMIN_8:
456  case ISD::ATOMIC_LOAD_UMAX_8:
457  case ISD::ATOMIC_CMP_SWAP_16:
458  case ISD::ATOMIC_SWAP_16:
459  case ISD::ATOMIC_LOAD_ADD_16:
460  case ISD::ATOMIC_LOAD_SUB_16:
461  case ISD::ATOMIC_LOAD_AND_16:
462  case ISD::ATOMIC_LOAD_OR_16:
463  case ISD::ATOMIC_LOAD_XOR_16:
464  case ISD::ATOMIC_LOAD_NAND_16:
465  case ISD::ATOMIC_LOAD_MIN_16:
466  case ISD::ATOMIC_LOAD_MAX_16:
467  case ISD::ATOMIC_LOAD_UMIN_16:
468  case ISD::ATOMIC_LOAD_UMAX_16:
469  case ISD::ATOMIC_CMP_SWAP_32:
470  case ISD::ATOMIC_SWAP_32:
471  case ISD::ATOMIC_LOAD_ADD_32:
472  case ISD::ATOMIC_LOAD_SUB_32:
473  case ISD::ATOMIC_LOAD_AND_32:
474  case ISD::ATOMIC_LOAD_OR_32:
475  case ISD::ATOMIC_LOAD_XOR_32:
476  case ISD::ATOMIC_LOAD_NAND_32:
477  case ISD::ATOMIC_LOAD_MIN_32:
478  case ISD::ATOMIC_LOAD_MAX_32:
479  case ISD::ATOMIC_LOAD_UMIN_32:
480  case ISD::ATOMIC_LOAD_UMAX_32:
481  case ISD::ATOMIC_CMP_SWAP_64:
482  case ISD::ATOMIC_SWAP_64:
483  case ISD::ATOMIC_LOAD_ADD_64:
484  case ISD::ATOMIC_LOAD_SUB_64:
485  case ISD::ATOMIC_LOAD_AND_64:
486  case ISD::ATOMIC_LOAD_OR_64:
487  case ISD::ATOMIC_LOAD_XOR_64:
488  case ISD::ATOMIC_LOAD_NAND_64:
489  case ISD::ATOMIC_LOAD_MIN_64:
490  case ISD::ATOMIC_LOAD_MAX_64:
491  case ISD::ATOMIC_LOAD_UMIN_64:
492  case ISD::ATOMIC_LOAD_UMAX_64: {
493    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
494    ID.AddInteger(AT->getRawFlags());
495    break;
496  }
497  } // end switch (N->getOpcode())
498}
499
500/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
501/// data.
502static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
503  AddNodeIDOpcode(ID, N->getOpcode());
504  // Add the return value info.
505  AddNodeIDValueTypes(ID, N->getVTList());
506  // Add the operand info.
507  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
508
509  // Handle SDNode leafs with special info.
510  AddNodeIDCustom(ID, N);
511}
512
513/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
514/// the CSE map that carries both alignment and volatility information.
515///
516static inline unsigned
517encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
518  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
519}
520
521//===----------------------------------------------------------------------===//
522//                              SelectionDAG Class
523//===----------------------------------------------------------------------===//
524
525/// doNotCSE - Return true if CSE should not be performed for this node.
526static bool doNotCSE(SDNode *N) {
527  if (N->getValueType(0) == MVT::Flag)
528    return true; // Never CSE anything that produces a flag.
529
530  switch (N->getOpcode()) {
531  default: break;
532  case ISD::HANDLENODE:
533  case ISD::DBG_LABEL:
534  case ISD::DBG_STOPPOINT:
535  case ISD::EH_LABEL:
536  case ISD::DECLARE:
537    return true;   // Never CSE these nodes.
538  }
539
540  // Check that remaining values produced are not flags.
541  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
542    if (N->getValueType(i) == MVT::Flag)
543      return true; // Never CSE anything that produces a flag.
544
545  return false;
546}
547
548/// RemoveDeadNodes - This method deletes all unreachable nodes in the
549/// SelectionDAG.
550void SelectionDAG::RemoveDeadNodes() {
551  // Create a dummy node (which is not added to allnodes), that adds a reference
552  // to the root node, preventing it from being deleted.
553  HandleSDNode Dummy(getRoot());
554
555  SmallVector<SDNode*, 128> DeadNodes;
556
557  // Add all obviously-dead nodes to the DeadNodes worklist.
558  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
559    if (I->use_empty())
560      DeadNodes.push_back(I);
561
562  RemoveDeadNodes(DeadNodes);
563
564  // If the root changed (e.g. it was a dead load, update the root).
565  setRoot(Dummy.getValue());
566}
567
568/// RemoveDeadNodes - This method deletes the unreachable nodes in the
569/// given list, and any nodes that become unreachable as a result.
570void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
571                                   DAGUpdateListener *UpdateListener) {
572
573  // Process the worklist, deleting the nodes and adding their uses to the
574  // worklist.
575  while (!DeadNodes.empty()) {
576    SDNode *N = DeadNodes.back();
577    DeadNodes.pop_back();
578
579    if (UpdateListener)
580      UpdateListener->NodeDeleted(N, 0);
581
582    // Take the node out of the appropriate CSE map.
583    RemoveNodeFromCSEMaps(N);
584
585    // Next, brutally remove the operand list.  This is safe to do, as there are
586    // no cycles in the graph.
587    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
588      SDNode *Operand = I->getVal();
589      Operand->removeUser(std::distance(N->op_begin(), I), N);
590
591      // Now that we removed this operand, see if there are no uses of it left.
592      if (Operand->use_empty())
593        DeadNodes.push_back(Operand);
594    }
595
596    if (N->OperandsNeedDelete)
597      delete[] N->OperandList;
598
599    N->OperandList = 0;
600    N->NumOperands = 0;
601
602    // Finally, remove N itself.
603    NodeAllocator.Deallocate(AllNodes.remove(N));
604  }
605}
606
607void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
608  SmallVector<SDNode*, 16> DeadNodes(1, N);
609  RemoveDeadNodes(DeadNodes, UpdateListener);
610}
611
612void SelectionDAG::DeleteNode(SDNode *N) {
613  assert(N->use_empty() && "Cannot delete a node that is not dead!");
614
615  // First take this out of the appropriate CSE map.
616  RemoveNodeFromCSEMaps(N);
617
618  // Finally, remove uses due to operands of this node, remove from the
619  // AllNodes list, and delete the node.
620  DeleteNodeNotInCSEMaps(N);
621}
622
623void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
624  // Drop all of the operands and decrement used node's use counts.
625  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
626    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
627
628  if (N->OperandsNeedDelete) {
629    delete[] N->OperandList;
630    N->OperandList = 0;
631  }
632
633  assert(N != AllNodes.begin());
634  NodeAllocator.Deallocate(AllNodes.remove(N));
635}
636
637/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
638/// correspond to it.  This is useful when we're about to delete or repurpose
639/// the node.  We don't want future request for structurally identical nodes
640/// to return N anymore.
641bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
642  bool Erased = false;
643  switch (N->getOpcode()) {
644  case ISD::EntryToken:
645    assert(0 && "EntryToken should not be in CSEMaps!");
646    return false;
647  case ISD::HANDLENODE: return false;  // noop.
648  case ISD::CONDCODE:
649    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
650           "Cond code doesn't exist!");
651    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
652    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
653    break;
654  case ISD::ExternalSymbol:
655    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
656    break;
657  case ISD::TargetExternalSymbol:
658    Erased =
659      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
660    break;
661  case ISD::VALUETYPE: {
662    MVT VT = cast<VTSDNode>(N)->getVT();
663    if (VT.isExtended()) {
664      Erased = ExtendedValueTypeNodes.erase(VT);
665    } else {
666      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
667      ValueTypeNodes[VT.getSimpleVT()] = 0;
668    }
669    break;
670  }
671  default:
672    // Remove it from the CSE Map.
673    Erased = CSEMap.RemoveNode(N);
674    break;
675  }
676#ifndef NDEBUG
677  // Verify that the node was actually in one of the CSE maps, unless it has a
678  // flag result (which cannot be CSE'd) or is one of the special cases that are
679  // not subject to CSE.
680  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
681      !N->isMachineOpcode() && !doNotCSE(N)) {
682    N->dump(this);
683    cerr << "\n";
684    assert(0 && "Node is not in map!");
685  }
686#endif
687  return Erased;
688}
689
690/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
691/// has been taken out and modified in some way.  If the specified node already
692/// exists in the CSE maps, do not modify the maps, but return the existing node
693/// instead.  If it doesn't exist, add it and return null.
694///
695SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
696  assert(N->getNumOperands() && "This is a leaf node!");
697
698  if (doNotCSE(N))
699    return 0;
700
701  SDNode *New = CSEMap.GetOrInsertNode(N);
702  if (New != N) return New;  // Node already existed.
703  return 0;
704}
705
706/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
707/// were replaced with those specified.  If this node is never memoized,
708/// return null, otherwise return a pointer to the slot it would take.  If a
709/// node already exists with these operands, the slot will be non-null.
710SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
711                                           void *&InsertPos) {
712  if (doNotCSE(N))
713    return 0;
714
715  SDValue Ops[] = { Op };
716  FoldingSetNodeID ID;
717  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
718  AddNodeIDCustom(ID, N);
719  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
720}
721
722/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
723/// were replaced with those specified.  If this node is never memoized,
724/// return null, otherwise return a pointer to the slot it would take.  If a
725/// node already exists with these operands, the slot will be non-null.
726SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
727                                           SDValue Op1, SDValue Op2,
728                                           void *&InsertPos) {
729  if (doNotCSE(N))
730    return 0;
731
732  SDValue Ops[] = { Op1, Op2 };
733  FoldingSetNodeID ID;
734  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
735  AddNodeIDCustom(ID, N);
736  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
737}
738
739
740/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
741/// were replaced with those specified.  If this node is never memoized,
742/// return null, otherwise return a pointer to the slot it would take.  If a
743/// node already exists with these operands, the slot will be non-null.
744SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
745                                           const SDValue *Ops,unsigned NumOps,
746                                           void *&InsertPos) {
747  if (doNotCSE(N))
748    return 0;
749
750  FoldingSetNodeID ID;
751  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
752  AddNodeIDCustom(ID, N);
753  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
754}
755
756/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
757void SelectionDAG::VerifyNode(SDNode *N) {
758  switch (N->getOpcode()) {
759  default:
760    break;
761  case ISD::BUILD_PAIR: {
762    MVT VT = N->getValueType(0);
763    assert(N->getNumValues() == 1 && "Too many results!");
764    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
765           "Wrong return type!");
766    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
767    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
768           "Mismatched operand types!");
769    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
770           "Wrong operand type!");
771    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
772           "Wrong return type size");
773    break;
774  }
775  case ISD::BUILD_VECTOR: {
776    assert(N->getNumValues() == 1 && "Too many results!");
777    assert(N->getValueType(0).isVector() && "Wrong return type!");
778    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
779           "Wrong number of operands!");
780    // FIXME: Change vector_shuffle to a variadic node with mask elements being
781    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
782    // operand, and it is not always possible to legalize it.  Turning off the
783    // following checks at least makes it possible to legalize most of the time.
784//    MVT EltVT = N->getValueType(0).getVectorElementType();
785//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
786//      assert(I->getSDValue().getValueType() == EltVT &&
787//             "Wrong operand type!");
788    break;
789  }
790  }
791}
792
793/// getMVTAlignment - Compute the default alignment value for the
794/// given type.
795///
796unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
797  const Type *Ty = VT == MVT::iPTR ?
798                   PointerType::get(Type::Int8Ty, 0) :
799                   VT.getTypeForMVT();
800
801  return TLI.getTargetData()->getABITypeAlignment(Ty);
802}
803
804SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
805  : TLI(tli), FLI(fli),
806    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
807    Root(getEntryNode()) {
808  AllNodes.push_back(&EntryNode);
809}
810
811void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
812  MF = &mf;
813  MMI = mmi;
814}
815
816SelectionDAG::~SelectionDAG() {
817  allnodes_clear();
818}
819
820void SelectionDAG::allnodes_clear() {
821  assert(&*AllNodes.begin() == &EntryNode);
822  AllNodes.remove(AllNodes.begin());
823  while (!AllNodes.empty()) {
824    SDNode *N = AllNodes.remove(AllNodes.begin());
825    N->SetNextInBucket(0);
826
827    if (N->OperandsNeedDelete) {
828      delete [] N->OperandList;
829      N->OperandList = 0;
830    }
831
832    NodeAllocator.Deallocate(N);
833  }
834}
835
836void SelectionDAG::clear() {
837  allnodes_clear();
838  OperandAllocator.Reset();
839  CSEMap.clear();
840
841  ExtendedValueTypeNodes.clear();
842  ExternalSymbols.clear();
843  TargetExternalSymbols.clear();
844  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
845            static_cast<CondCodeSDNode*>(0));
846  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
847            static_cast<SDNode*>(0));
848
849  EntryNode.Uses = 0;
850  AllNodes.push_back(&EntryNode);
851  Root = getEntryNode();
852}
853
854SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
855  if (Op.getValueType() == VT) return Op;
856  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
857                                   VT.getSizeInBits());
858  return getNode(ISD::AND, Op.getValueType(), Op,
859                 getConstant(Imm, Op.getValueType()));
860}
861
862SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
863  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
864  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
865}
866
867SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
868  return getConstant(*ConstantInt::get(Val), VT, isT);
869}
870
871SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
872  assert(VT.isInteger() && "Cannot create FP integer constant!");
873
874  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
875  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
876         "APInt size does not match type size!");
877
878  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
879  FoldingSetNodeID ID;
880  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
881  ID.AddPointer(&Val);
882  void *IP = 0;
883  SDNode *N = NULL;
884  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
885    if (!VT.isVector())
886      return SDValue(N, 0);
887  if (!N) {
888    N = NodeAllocator.Allocate<ConstantSDNode>();
889    new (N) ConstantSDNode(isT, &Val, EltVT);
890    CSEMap.InsertNode(N, IP);
891    AllNodes.push_back(N);
892  }
893
894  SDValue Result(N, 0);
895  if (VT.isVector()) {
896    SmallVector<SDValue, 8> Ops;
897    Ops.assign(VT.getVectorNumElements(), Result);
898    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
899  }
900  return Result;
901}
902
903SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
904  return getConstant(Val, TLI.getPointerTy(), isTarget);
905}
906
907
908SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
909  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
910}
911
912SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
913  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
914
915  MVT EltVT =
916    VT.isVector() ? VT.getVectorElementType() : VT;
917
918  // Do the map lookup using the actual bit pattern for the floating point
919  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
920  // we don't have issues with SNANs.
921  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
922  FoldingSetNodeID ID;
923  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
924  ID.AddPointer(&V);
925  void *IP = 0;
926  SDNode *N = NULL;
927  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
928    if (!VT.isVector())
929      return SDValue(N, 0);
930  if (!N) {
931    N = NodeAllocator.Allocate<ConstantFPSDNode>();
932    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
933    CSEMap.InsertNode(N, IP);
934    AllNodes.push_back(N);
935  }
936
937  SDValue Result(N, 0);
938  if (VT.isVector()) {
939    SmallVector<SDValue, 8> Ops;
940    Ops.assign(VT.getVectorNumElements(), Result);
941    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
942  }
943  return Result;
944}
945
946SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
947  MVT EltVT =
948    VT.isVector() ? VT.getVectorElementType() : VT;
949  if (EltVT==MVT::f32)
950    return getConstantFP(APFloat((float)Val), VT, isTarget);
951  else
952    return getConstantFP(APFloat(Val), VT, isTarget);
953}
954
955SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
956                                       MVT VT, int64_t Offset,
957                                       bool isTargetGA) {
958  unsigned Opc;
959
960  // Truncate (with sign-extension) the offset value to the pointer size.
961  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
962  if (BitWidth < 64)
963    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
964
965  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
966  if (!GVar) {
967    // If GV is an alias then use the aliasee for determining thread-localness.
968    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
969      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
970  }
971
972  if (GVar && GVar->isThreadLocal())
973    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
974  else
975    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
976
977  FoldingSetNodeID ID;
978  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
979  ID.AddPointer(GV);
980  ID.AddInteger(Offset);
981  void *IP = 0;
982  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
983   return SDValue(E, 0);
984  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
985  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
986  CSEMap.InsertNode(N, IP);
987  AllNodes.push_back(N);
988  return SDValue(N, 0);
989}
990
991SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
992  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
993  FoldingSetNodeID ID;
994  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
995  ID.AddInteger(FI);
996  void *IP = 0;
997  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
998    return SDValue(E, 0);
999  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1000  new (N) FrameIndexSDNode(FI, VT, isTarget);
1001  CSEMap.InsertNode(N, IP);
1002  AllNodes.push_back(N);
1003  return SDValue(N, 0);
1004}
1005
1006SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1007  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1008  FoldingSetNodeID ID;
1009  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1010  ID.AddInteger(JTI);
1011  void *IP = 0;
1012  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1013    return SDValue(E, 0);
1014  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1015  new (N) JumpTableSDNode(JTI, VT, isTarget);
1016  CSEMap.InsertNode(N, IP);
1017  AllNodes.push_back(N);
1018  return SDValue(N, 0);
1019}
1020
1021SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1022                                      unsigned Alignment, int Offset,
1023                                      bool isTarget) {
1024  if (Alignment == 0)
1025    Alignment =
1026      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1027  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1028  FoldingSetNodeID ID;
1029  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1030  ID.AddInteger(Alignment);
1031  ID.AddInteger(Offset);
1032  ID.AddPointer(C);
1033  void *IP = 0;
1034  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1035    return SDValue(E, 0);
1036  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1037  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1038  CSEMap.InsertNode(N, IP);
1039  AllNodes.push_back(N);
1040  return SDValue(N, 0);
1041}
1042
1043
1044SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1045                                      unsigned Alignment, int Offset,
1046                                      bool isTarget) {
1047  if (Alignment == 0)
1048    Alignment =
1049      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1050  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1051  FoldingSetNodeID ID;
1052  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1053  ID.AddInteger(Alignment);
1054  ID.AddInteger(Offset);
1055  C->AddSelectionDAGCSEId(ID);
1056  void *IP = 0;
1057  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1058    return SDValue(E, 0);
1059  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1060  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1061  CSEMap.InsertNode(N, IP);
1062  AllNodes.push_back(N);
1063  return SDValue(N, 0);
1064}
1065
1066
1067SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1068  FoldingSetNodeID ID;
1069  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1070  ID.AddPointer(MBB);
1071  void *IP = 0;
1072  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1073    return SDValue(E, 0);
1074  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1075  new (N) BasicBlockSDNode(MBB);
1076  CSEMap.InsertNode(N, IP);
1077  AllNodes.push_back(N);
1078  return SDValue(N, 0);
1079}
1080
1081SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1082  FoldingSetNodeID ID;
1083  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1084  ID.AddInteger(Flags.getRawBits());
1085  void *IP = 0;
1086  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1087    return SDValue(E, 0);
1088  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1089  new (N) ARG_FLAGSSDNode(Flags);
1090  CSEMap.InsertNode(N, IP);
1091  AllNodes.push_back(N);
1092  return SDValue(N, 0);
1093}
1094
1095SDValue SelectionDAG::getValueType(MVT VT) {
1096  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1097    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1098
1099  SDNode *&N = VT.isExtended() ?
1100    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1101
1102  if (N) return SDValue(N, 0);
1103  N = NodeAllocator.Allocate<VTSDNode>();
1104  new (N) VTSDNode(VT);
1105  AllNodes.push_back(N);
1106  return SDValue(N, 0);
1107}
1108
1109SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1110  SDNode *&N = ExternalSymbols[Sym];
1111  if (N) return SDValue(N, 0);
1112  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1113  new (N) ExternalSymbolSDNode(false, Sym, VT);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1119  SDNode *&N = TargetExternalSymbols[Sym];
1120  if (N) return SDValue(N, 0);
1121  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1122  new (N) ExternalSymbolSDNode(true, Sym, VT);
1123  AllNodes.push_back(N);
1124  return SDValue(N, 0);
1125}
1126
1127SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1128  if ((unsigned)Cond >= CondCodeNodes.size())
1129    CondCodeNodes.resize(Cond+1);
1130
1131  if (CondCodeNodes[Cond] == 0) {
1132    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1133    new (N) CondCodeSDNode(Cond);
1134    CondCodeNodes[Cond] = N;
1135    AllNodes.push_back(N);
1136  }
1137  return SDValue(CondCodeNodes[Cond], 0);
1138}
1139
1140SDValue SelectionDAG::getConvertRndSat(MVT VT, SDValue Val, SDValue DTy,
1141                                       SDValue STy, SDValue Rnd, SDValue Sat,
1142                                       ISD::CvtCode Code) {
1143  FoldingSetNodeID ID;
1144  void* IP = 0;
1145  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1146    return SDValue(E, 0);
1147  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1148  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1149  new (N) CvtRndSatSDNode(VT, Ops, 5, Code);
1150  CSEMap.InsertNode(N, IP);
1151  AllNodes.push_back(N);
1152  return SDValue(N, 0);
1153}
1154
1155SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1156  FoldingSetNodeID ID;
1157  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1158  ID.AddInteger(RegNo);
1159  void *IP = 0;
1160  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1161    return SDValue(E, 0);
1162  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1163  new (N) RegisterSDNode(RegNo, VT);
1164  CSEMap.InsertNode(N, IP);
1165  AllNodes.push_back(N);
1166  return SDValue(N, 0);
1167}
1168
1169SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1170                                        unsigned Line, unsigned Col,
1171                                        const CompileUnitDesc *CU) {
1172  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1173  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1174  AllNodes.push_back(N);
1175  return SDValue(N, 0);
1176}
1177
1178SDValue SelectionDAG::getLabel(unsigned Opcode,
1179                               SDValue Root,
1180                               unsigned LabelID) {
1181  FoldingSetNodeID ID;
1182  SDValue Ops[] = { Root };
1183  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1184  ID.AddInteger(LabelID);
1185  void *IP = 0;
1186  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1187    return SDValue(E, 0);
1188  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1189  new (N) LabelSDNode(Opcode, Root, LabelID);
1190  CSEMap.InsertNode(N, IP);
1191  AllNodes.push_back(N);
1192  return SDValue(N, 0);
1193}
1194
1195SDValue SelectionDAG::getSrcValue(const Value *V) {
1196  assert((!V || isa<PointerType>(V->getType())) &&
1197         "SrcValue is not a pointer?");
1198
1199  FoldingSetNodeID ID;
1200  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1201  ID.AddPointer(V);
1202
1203  void *IP = 0;
1204  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1205    return SDValue(E, 0);
1206
1207  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1208  new (N) SrcValueSDNode(V);
1209  CSEMap.InsertNode(N, IP);
1210  AllNodes.push_back(N);
1211  return SDValue(N, 0);
1212}
1213
1214SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1215  const Value *v = MO.getValue();
1216  assert((!v || isa<PointerType>(v->getType())) &&
1217         "SrcValue is not a pointer?");
1218
1219  FoldingSetNodeID ID;
1220  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1221  MO.Profile(ID);
1222
1223  void *IP = 0;
1224  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1225    return SDValue(E, 0);
1226
1227  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1228  new (N) MemOperandSDNode(MO);
1229  CSEMap.InsertNode(N, IP);
1230  AllNodes.push_back(N);
1231  return SDValue(N, 0);
1232}
1233
1234/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1235/// specified value type.
1236SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1237  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1238  unsigned ByteSize = VT.getSizeInBits()/8;
1239  const Type *Ty = VT.getTypeForMVT();
1240  unsigned StackAlign =
1241  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1242
1243  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1244  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1245}
1246
1247SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1248                                SDValue N2, ISD::CondCode Cond) {
1249  // These setcc operations always fold.
1250  switch (Cond) {
1251  default: break;
1252  case ISD::SETFALSE:
1253  case ISD::SETFALSE2: return getConstant(0, VT);
1254  case ISD::SETTRUE:
1255  case ISD::SETTRUE2:  return getConstant(1, VT);
1256
1257  case ISD::SETOEQ:
1258  case ISD::SETOGT:
1259  case ISD::SETOGE:
1260  case ISD::SETOLT:
1261  case ISD::SETOLE:
1262  case ISD::SETONE:
1263  case ISD::SETO:
1264  case ISD::SETUO:
1265  case ISD::SETUEQ:
1266  case ISD::SETUNE:
1267    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1268    break;
1269  }
1270
1271  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1272    const APInt &C2 = N2C->getAPIntValue();
1273    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1274      const APInt &C1 = N1C->getAPIntValue();
1275
1276      switch (Cond) {
1277      default: assert(0 && "Unknown integer setcc!");
1278      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1279      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1280      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1281      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1282      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1283      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1284      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1285      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1286      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1287      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1288      }
1289    }
1290  }
1291  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1292    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1293      // No compile time operations on this type yet.
1294      if (N1C->getValueType(0) == MVT::ppcf128)
1295        return SDValue();
1296
1297      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1298      switch (Cond) {
1299      default: break;
1300      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1301                          return getNode(ISD::UNDEF, VT);
1302                        // fall through
1303      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1304      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1305                          return getNode(ISD::UNDEF, VT);
1306                        // fall through
1307      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1308                                           R==APFloat::cmpLessThan, VT);
1309      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1310                          return getNode(ISD::UNDEF, VT);
1311                        // fall through
1312      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1313      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1314                          return getNode(ISD::UNDEF, VT);
1315                        // fall through
1316      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1317      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1318                          return getNode(ISD::UNDEF, VT);
1319                        // fall through
1320      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1321                                           R==APFloat::cmpEqual, VT);
1322      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1323                          return getNode(ISD::UNDEF, VT);
1324                        // fall through
1325      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1326                                           R==APFloat::cmpEqual, VT);
1327      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1328      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1329      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1330                                           R==APFloat::cmpEqual, VT);
1331      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1332      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1333                                           R==APFloat::cmpLessThan, VT);
1334      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1335                                           R==APFloat::cmpUnordered, VT);
1336      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1337      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1338      }
1339    } else {
1340      // Ensure that the constant occurs on the RHS.
1341      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1342    }
1343  }
1344
1345  // Could not fold it.
1346  return SDValue();
1347}
1348
1349/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1350/// use this predicate to simplify operations downstream.
1351bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1352  unsigned BitWidth = Op.getValueSizeInBits();
1353  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1354}
1355
1356/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1357/// this predicate to simplify operations downstream.  Mask is known to be zero
1358/// for bits that V cannot have.
1359bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1360                                     unsigned Depth) const {
1361  APInt KnownZero, KnownOne;
1362  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1363  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1364  return (KnownZero & Mask) == Mask;
1365}
1366
1367/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1368/// known to be either zero or one and return them in the KnownZero/KnownOne
1369/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1370/// processing.
1371void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1372                                     APInt &KnownZero, APInt &KnownOne,
1373                                     unsigned Depth) const {
1374  unsigned BitWidth = Mask.getBitWidth();
1375  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1376         "Mask size mismatches value type size!");
1377
1378  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1379  if (Depth == 6 || Mask == 0)
1380    return;  // Limit search depth.
1381
1382  APInt KnownZero2, KnownOne2;
1383
1384  switch (Op.getOpcode()) {
1385  case ISD::Constant:
1386    // We know all of the bits for a constant!
1387    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1388    KnownZero = ~KnownOne & Mask;
1389    return;
1390  case ISD::AND:
1391    // If either the LHS or the RHS are Zero, the result is zero.
1392    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1393    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1394                      KnownZero2, KnownOne2, Depth+1);
1395    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1396    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1397
1398    // Output known-1 bits are only known if set in both the LHS & RHS.
1399    KnownOne &= KnownOne2;
1400    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1401    KnownZero |= KnownZero2;
1402    return;
1403  case ISD::OR:
1404    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1405    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1406                      KnownZero2, KnownOne2, Depth+1);
1407    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1408    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1409
1410    // Output known-0 bits are only known if clear in both the LHS & RHS.
1411    KnownZero &= KnownZero2;
1412    // Output known-1 are known to be set if set in either the LHS | RHS.
1413    KnownOne |= KnownOne2;
1414    return;
1415  case ISD::XOR: {
1416    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1417    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1418    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1419    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1420
1421    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1422    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1423    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1424    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1425    KnownZero = KnownZeroOut;
1426    return;
1427  }
1428  case ISD::MUL: {
1429    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1430    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1431    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1432    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1433    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1434
1435    // If low bits are zero in either operand, output low known-0 bits.
1436    // Also compute a conserative estimate for high known-0 bits.
1437    // More trickiness is possible, but this is sufficient for the
1438    // interesting case of alignment computation.
1439    KnownOne.clear();
1440    unsigned TrailZ = KnownZero.countTrailingOnes() +
1441                      KnownZero2.countTrailingOnes();
1442    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1443                               KnownZero2.countLeadingOnes(),
1444                               BitWidth) - BitWidth;
1445
1446    TrailZ = std::min(TrailZ, BitWidth);
1447    LeadZ = std::min(LeadZ, BitWidth);
1448    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1449                APInt::getHighBitsSet(BitWidth, LeadZ);
1450    KnownZero &= Mask;
1451    return;
1452  }
1453  case ISD::UDIV: {
1454    // For the purposes of computing leading zeros we can conservatively
1455    // treat a udiv as a logical right shift by the power of 2 known to
1456    // be less than the denominator.
1457    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1458    ComputeMaskedBits(Op.getOperand(0),
1459                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1460    unsigned LeadZ = KnownZero2.countLeadingOnes();
1461
1462    KnownOne2.clear();
1463    KnownZero2.clear();
1464    ComputeMaskedBits(Op.getOperand(1),
1465                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1466    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1467    if (RHSUnknownLeadingOnes != BitWidth)
1468      LeadZ = std::min(BitWidth,
1469                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1470
1471    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1472    return;
1473  }
1474  case ISD::SELECT:
1475    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1476    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1477    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1478    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1479
1480    // Only known if known in both the LHS and RHS.
1481    KnownOne &= KnownOne2;
1482    KnownZero &= KnownZero2;
1483    return;
1484  case ISD::SELECT_CC:
1485    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1486    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1487    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1488    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1489
1490    // Only known if known in both the LHS and RHS.
1491    KnownOne &= KnownOne2;
1492    KnownZero &= KnownZero2;
1493    return;
1494  case ISD::SETCC:
1495    // If we know the result of a setcc has the top bits zero, use this info.
1496    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1497        BitWidth > 1)
1498      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1499    return;
1500  case ISD::SHL:
1501    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1502    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1503      unsigned ShAmt = SA->getZExtValue();
1504
1505      // If the shift count is an invalid immediate, don't do anything.
1506      if (ShAmt >= BitWidth)
1507        return;
1508
1509      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1510                        KnownZero, KnownOne, Depth+1);
1511      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1512      KnownZero <<= ShAmt;
1513      KnownOne  <<= ShAmt;
1514      // low bits known zero.
1515      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1516    }
1517    return;
1518  case ISD::SRL:
1519    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1520    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1521      unsigned ShAmt = SA->getZExtValue();
1522
1523      // If the shift count is an invalid immediate, don't do anything.
1524      if (ShAmt >= BitWidth)
1525        return;
1526
1527      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1528                        KnownZero, KnownOne, Depth+1);
1529      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1530      KnownZero = KnownZero.lshr(ShAmt);
1531      KnownOne  = KnownOne.lshr(ShAmt);
1532
1533      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1534      KnownZero |= HighBits;  // High bits known zero.
1535    }
1536    return;
1537  case ISD::SRA:
1538    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1539      unsigned ShAmt = SA->getZExtValue();
1540
1541      // If the shift count is an invalid immediate, don't do anything.
1542      if (ShAmt >= BitWidth)
1543        return;
1544
1545      APInt InDemandedMask = (Mask << ShAmt);
1546      // If any of the demanded bits are produced by the sign extension, we also
1547      // demand the input sign bit.
1548      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1549      if (HighBits.getBoolValue())
1550        InDemandedMask |= APInt::getSignBit(BitWidth);
1551
1552      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1553                        Depth+1);
1554      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1555      KnownZero = KnownZero.lshr(ShAmt);
1556      KnownOne  = KnownOne.lshr(ShAmt);
1557
1558      // Handle the sign bits.
1559      APInt SignBit = APInt::getSignBit(BitWidth);
1560      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1561
1562      if (KnownZero.intersects(SignBit)) {
1563        KnownZero |= HighBits;  // New bits are known zero.
1564      } else if (KnownOne.intersects(SignBit)) {
1565        KnownOne  |= HighBits;  // New bits are known one.
1566      }
1567    }
1568    return;
1569  case ISD::SIGN_EXTEND_INREG: {
1570    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1571    unsigned EBits = EVT.getSizeInBits();
1572
1573    // Sign extension.  Compute the demanded bits in the result that are not
1574    // present in the input.
1575    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1576
1577    APInt InSignBit = APInt::getSignBit(EBits);
1578    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1579
1580    // If the sign extended bits are demanded, we know that the sign
1581    // bit is demanded.
1582    InSignBit.zext(BitWidth);
1583    if (NewBits.getBoolValue())
1584      InputDemandedBits |= InSignBit;
1585
1586    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1587                      KnownZero, KnownOne, Depth+1);
1588    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1589
1590    // If the sign bit of the input is known set or clear, then we know the
1591    // top bits of the result.
1592    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1593      KnownZero |= NewBits;
1594      KnownOne  &= ~NewBits;
1595    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1596      KnownOne  |= NewBits;
1597      KnownZero &= ~NewBits;
1598    } else {                              // Input sign bit unknown
1599      KnownZero &= ~NewBits;
1600      KnownOne  &= ~NewBits;
1601    }
1602    return;
1603  }
1604  case ISD::CTTZ:
1605  case ISD::CTLZ:
1606  case ISD::CTPOP: {
1607    unsigned LowBits = Log2_32(BitWidth)+1;
1608    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1609    KnownOne.clear();
1610    return;
1611  }
1612  case ISD::LOAD: {
1613    if (ISD::isZEXTLoad(Op.getNode())) {
1614      LoadSDNode *LD = cast<LoadSDNode>(Op);
1615      MVT VT = LD->getMemoryVT();
1616      unsigned MemBits = VT.getSizeInBits();
1617      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1618    }
1619    return;
1620  }
1621  case ISD::ZERO_EXTEND: {
1622    MVT InVT = Op.getOperand(0).getValueType();
1623    unsigned InBits = InVT.getSizeInBits();
1624    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1625    APInt InMask    = Mask;
1626    InMask.trunc(InBits);
1627    KnownZero.trunc(InBits);
1628    KnownOne.trunc(InBits);
1629    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1630    KnownZero.zext(BitWidth);
1631    KnownOne.zext(BitWidth);
1632    KnownZero |= NewBits;
1633    return;
1634  }
1635  case ISD::SIGN_EXTEND: {
1636    MVT InVT = Op.getOperand(0).getValueType();
1637    unsigned InBits = InVT.getSizeInBits();
1638    APInt InSignBit = APInt::getSignBit(InBits);
1639    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1640    APInt InMask = Mask;
1641    InMask.trunc(InBits);
1642
1643    // If any of the sign extended bits are demanded, we know that the sign
1644    // bit is demanded. Temporarily set this bit in the mask for our callee.
1645    if (NewBits.getBoolValue())
1646      InMask |= InSignBit;
1647
1648    KnownZero.trunc(InBits);
1649    KnownOne.trunc(InBits);
1650    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1651
1652    // Note if the sign bit is known to be zero or one.
1653    bool SignBitKnownZero = KnownZero.isNegative();
1654    bool SignBitKnownOne  = KnownOne.isNegative();
1655    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1656           "Sign bit can't be known to be both zero and one!");
1657
1658    // If the sign bit wasn't actually demanded by our caller, we don't
1659    // want it set in the KnownZero and KnownOne result values. Reset the
1660    // mask and reapply it to the result values.
1661    InMask = Mask;
1662    InMask.trunc(InBits);
1663    KnownZero &= InMask;
1664    KnownOne  &= InMask;
1665
1666    KnownZero.zext(BitWidth);
1667    KnownOne.zext(BitWidth);
1668
1669    // If the sign bit is known zero or one, the top bits match.
1670    if (SignBitKnownZero)
1671      KnownZero |= NewBits;
1672    else if (SignBitKnownOne)
1673      KnownOne  |= NewBits;
1674    return;
1675  }
1676  case ISD::ANY_EXTEND: {
1677    MVT InVT = Op.getOperand(0).getValueType();
1678    unsigned InBits = InVT.getSizeInBits();
1679    APInt InMask = Mask;
1680    InMask.trunc(InBits);
1681    KnownZero.trunc(InBits);
1682    KnownOne.trunc(InBits);
1683    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1684    KnownZero.zext(BitWidth);
1685    KnownOne.zext(BitWidth);
1686    return;
1687  }
1688  case ISD::TRUNCATE: {
1689    MVT InVT = Op.getOperand(0).getValueType();
1690    unsigned InBits = InVT.getSizeInBits();
1691    APInt InMask = Mask;
1692    InMask.zext(InBits);
1693    KnownZero.zext(InBits);
1694    KnownOne.zext(InBits);
1695    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1696    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1697    KnownZero.trunc(BitWidth);
1698    KnownOne.trunc(BitWidth);
1699    break;
1700  }
1701  case ISD::AssertZext: {
1702    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1703    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1704    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1705                      KnownOne, Depth+1);
1706    KnownZero |= (~InMask) & Mask;
1707    return;
1708  }
1709  case ISD::FGETSIGN:
1710    // All bits are zero except the low bit.
1711    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1712    return;
1713
1714  case ISD::SUB: {
1715    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1716      // We know that the top bits of C-X are clear if X contains less bits
1717      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1718      // positive if we can prove that X is >= 0 and < 16.
1719      if (CLHS->getAPIntValue().isNonNegative()) {
1720        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1721        // NLZ can't be BitWidth with no sign bit
1722        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1723        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1724                          Depth+1);
1725
1726        // If all of the MaskV bits are known to be zero, then we know the
1727        // output top bits are zero, because we now know that the output is
1728        // from [0-C].
1729        if ((KnownZero2 & MaskV) == MaskV) {
1730          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1731          // Top bits known zero.
1732          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1733        }
1734      }
1735    }
1736  }
1737  // fall through
1738  case ISD::ADD: {
1739    // Output known-0 bits are known if clear or set in both the low clear bits
1740    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1741    // low 3 bits clear.
1742    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1743    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1744    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1745    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1746
1747    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1748    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1749    KnownZeroOut = std::min(KnownZeroOut,
1750                            KnownZero2.countTrailingOnes());
1751
1752    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1753    return;
1754  }
1755  case ISD::SREM:
1756    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1757      const APInt &RA = Rem->getAPIntValue();
1758      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1759        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1760        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1761        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1762
1763        // If the sign bit of the first operand is zero, the sign bit of
1764        // the result is zero. If the first operand has no one bits below
1765        // the second operand's single 1 bit, its sign will be zero.
1766        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1767          KnownZero2 |= ~LowBits;
1768
1769        KnownZero |= KnownZero2 & Mask;
1770
1771        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1772      }
1773    }
1774    return;
1775  case ISD::UREM: {
1776    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1777      const APInt &RA = Rem->getAPIntValue();
1778      if (RA.isPowerOf2()) {
1779        APInt LowBits = (RA - 1);
1780        APInt Mask2 = LowBits & Mask;
1781        KnownZero |= ~LowBits & Mask;
1782        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1783        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1784        break;
1785      }
1786    }
1787
1788    // Since the result is less than or equal to either operand, any leading
1789    // zero bits in either operand must also exist in the result.
1790    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1791    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1792                      Depth+1);
1793    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1794                      Depth+1);
1795
1796    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1797                                KnownZero2.countLeadingOnes());
1798    KnownOne.clear();
1799    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1800    return;
1801  }
1802  default:
1803    // Allow the target to implement this method for its nodes.
1804    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1805  case ISD::INTRINSIC_WO_CHAIN:
1806  case ISD::INTRINSIC_W_CHAIN:
1807  case ISD::INTRINSIC_VOID:
1808      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1809    }
1810    return;
1811  }
1812}
1813
1814/// ComputeNumSignBits - Return the number of times the sign bit of the
1815/// register is replicated into the other bits.  We know that at least 1 bit
1816/// is always equal to the sign bit (itself), but other cases can give us
1817/// information.  For example, immediately after an "SRA X, 2", we know that
1818/// the top 3 bits are all equal to each other, so we return 3.
1819unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1820  MVT VT = Op.getValueType();
1821  assert(VT.isInteger() && "Invalid VT!");
1822  unsigned VTBits = VT.getSizeInBits();
1823  unsigned Tmp, Tmp2;
1824  unsigned FirstAnswer = 1;
1825
1826  if (Depth == 6)
1827    return 1;  // Limit search depth.
1828
1829  switch (Op.getOpcode()) {
1830  default: break;
1831  case ISD::AssertSext:
1832    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1833    return VTBits-Tmp+1;
1834  case ISD::AssertZext:
1835    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1836    return VTBits-Tmp;
1837
1838  case ISD::Constant: {
1839    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1840    // If negative, return # leading ones.
1841    if (Val.isNegative())
1842      return Val.countLeadingOnes();
1843
1844    // Return # leading zeros.
1845    return Val.countLeadingZeros();
1846  }
1847
1848  case ISD::SIGN_EXTEND:
1849    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1850    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1851
1852  case ISD::SIGN_EXTEND_INREG:
1853    // Max of the input and what this extends.
1854    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1855    Tmp = VTBits-Tmp+1;
1856
1857    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1858    return std::max(Tmp, Tmp2);
1859
1860  case ISD::SRA:
1861    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1862    // SRA X, C   -> adds C sign bits.
1863    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1864      Tmp += C->getZExtValue();
1865      if (Tmp > VTBits) Tmp = VTBits;
1866    }
1867    return Tmp;
1868  case ISD::SHL:
1869    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1870      // shl destroys sign bits.
1871      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1872      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1873          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1874      return Tmp - C->getZExtValue();
1875    }
1876    break;
1877  case ISD::AND:
1878  case ISD::OR:
1879  case ISD::XOR:    // NOT is handled here.
1880    // Logical binary ops preserve the number of sign bits at the worst.
1881    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1882    if (Tmp != 1) {
1883      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1884      FirstAnswer = std::min(Tmp, Tmp2);
1885      // We computed what we know about the sign bits as our first
1886      // answer. Now proceed to the generic code that uses
1887      // ComputeMaskedBits, and pick whichever answer is better.
1888    }
1889    break;
1890
1891  case ISD::SELECT:
1892    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1893    if (Tmp == 1) return 1;  // Early out.
1894    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1895    return std::min(Tmp, Tmp2);
1896
1897  case ISD::SETCC:
1898    // If setcc returns 0/-1, all bits are sign bits.
1899    if (TLI.getSetCCResultContents() ==
1900        TargetLowering::ZeroOrNegativeOneSetCCResult)
1901      return VTBits;
1902    break;
1903  case ISD::ROTL:
1904  case ISD::ROTR:
1905    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1906      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1907
1908      // Handle rotate right by N like a rotate left by 32-N.
1909      if (Op.getOpcode() == ISD::ROTR)
1910        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1911
1912      // If we aren't rotating out all of the known-in sign bits, return the
1913      // number that are left.  This handles rotl(sext(x), 1) for example.
1914      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1915      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1916    }
1917    break;
1918  case ISD::ADD:
1919    // Add can have at most one carry bit.  Thus we know that the output
1920    // is, at worst, one more bit than the inputs.
1921    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1922    if (Tmp == 1) return 1;  // Early out.
1923
1924    // Special case decrementing a value (ADD X, -1):
1925    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1926      if (CRHS->isAllOnesValue()) {
1927        APInt KnownZero, KnownOne;
1928        APInt Mask = APInt::getAllOnesValue(VTBits);
1929        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1930
1931        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1932        // sign bits set.
1933        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1934          return VTBits;
1935
1936        // If we are subtracting one from a positive number, there is no carry
1937        // out of the result.
1938        if (KnownZero.isNegative())
1939          return Tmp;
1940      }
1941
1942    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1943    if (Tmp2 == 1) return 1;
1944      return std::min(Tmp, Tmp2)-1;
1945    break;
1946
1947  case ISD::SUB:
1948    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1949    if (Tmp2 == 1) return 1;
1950
1951    // Handle NEG.
1952    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1953      if (CLHS->isNullValue()) {
1954        APInt KnownZero, KnownOne;
1955        APInt Mask = APInt::getAllOnesValue(VTBits);
1956        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1957        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1958        // sign bits set.
1959        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1960          return VTBits;
1961
1962        // If the input is known to be positive (the sign bit is known clear),
1963        // the output of the NEG has the same number of sign bits as the input.
1964        if (KnownZero.isNegative())
1965          return Tmp2;
1966
1967        // Otherwise, we treat this like a SUB.
1968      }
1969
1970    // Sub can have at most one carry bit.  Thus we know that the output
1971    // is, at worst, one more bit than the inputs.
1972    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1973    if (Tmp == 1) return 1;  // Early out.
1974      return std::min(Tmp, Tmp2)-1;
1975    break;
1976  case ISD::TRUNCATE:
1977    // FIXME: it's tricky to do anything useful for this, but it is an important
1978    // case for targets like X86.
1979    break;
1980  }
1981
1982  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1983  if (Op.getOpcode() == ISD::LOAD) {
1984    LoadSDNode *LD = cast<LoadSDNode>(Op);
1985    unsigned ExtType = LD->getExtensionType();
1986    switch (ExtType) {
1987    default: break;
1988    case ISD::SEXTLOAD:    // '17' bits known
1989      Tmp = LD->getMemoryVT().getSizeInBits();
1990      return VTBits-Tmp+1;
1991    case ISD::ZEXTLOAD:    // '16' bits known
1992      Tmp = LD->getMemoryVT().getSizeInBits();
1993      return VTBits-Tmp;
1994    }
1995  }
1996
1997  // Allow the target to implement this method for its nodes.
1998  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1999      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2000      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2001      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2002    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2003    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2004  }
2005
2006  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2007  // use this information.
2008  APInt KnownZero, KnownOne;
2009  APInt Mask = APInt::getAllOnesValue(VTBits);
2010  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2011
2012  if (KnownZero.isNegative()) {        // sign bit is 0
2013    Mask = KnownZero;
2014  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2015    Mask = KnownOne;
2016  } else {
2017    // Nothing known.
2018    return FirstAnswer;
2019  }
2020
2021  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2022  // the number of identical bits in the top of the input value.
2023  Mask = ~Mask;
2024  Mask <<= Mask.getBitWidth()-VTBits;
2025  // Return # leading zeros.  We use 'min' here in case Val was zero before
2026  // shifting.  We don't want to return '64' as for an i32 "0".
2027  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2028}
2029
2030
2031bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2032  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2033  if (!GA) return false;
2034  if (GA->getOffset() != 0) return false;
2035  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2036  if (!GV) return false;
2037  MachineModuleInfo *MMI = getMachineModuleInfo();
2038  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2039}
2040
2041
2042/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2043/// element of the result of the vector shuffle.
2044SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2045  MVT VT = N->getValueType(0);
2046  SDValue PermMask = N->getOperand(2);
2047  SDValue Idx = PermMask.getOperand(i);
2048  if (Idx.getOpcode() == ISD::UNDEF)
2049    return getNode(ISD::UNDEF, VT.getVectorElementType());
2050  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2051  unsigned NumElems = PermMask.getNumOperands();
2052  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2053  Index %= NumElems;
2054
2055  if (V.getOpcode() == ISD::BIT_CONVERT) {
2056    V = V.getOperand(0);
2057    if (V.getValueType().getVectorNumElements() != NumElems)
2058      return SDValue();
2059  }
2060  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2061    return (Index == 0) ? V.getOperand(0)
2062                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2063  if (V.getOpcode() == ISD::BUILD_VECTOR)
2064    return V.getOperand(Index);
2065  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2066    return getShuffleScalarElt(V.getNode(), Index);
2067  return SDValue();
2068}
2069
2070
2071/// getNode - Gets or creates the specified node.
2072///
2073SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2074  FoldingSetNodeID ID;
2075  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2076  void *IP = 0;
2077  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2078    return SDValue(E, 0);
2079  SDNode *N = NodeAllocator.Allocate<SDNode>();
2080  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2081  CSEMap.InsertNode(N, IP);
2082
2083  AllNodes.push_back(N);
2084#ifndef NDEBUG
2085  VerifyNode(N);
2086#endif
2087  return SDValue(N, 0);
2088}
2089
2090SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2091  // Constant fold unary operations with an integer constant operand.
2092  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2093    const APInt &Val = C->getAPIntValue();
2094    unsigned BitWidth = VT.getSizeInBits();
2095    switch (Opcode) {
2096    default: break;
2097    case ISD::SIGN_EXTEND:
2098      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2099    case ISD::ANY_EXTEND:
2100    case ISD::ZERO_EXTEND:
2101    case ISD::TRUNCATE:
2102      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2103    case ISD::UINT_TO_FP:
2104    case ISD::SINT_TO_FP: {
2105      const uint64_t zero[] = {0, 0};
2106      // No compile time operations on this type.
2107      if (VT==MVT::ppcf128)
2108        break;
2109      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2110      (void)apf.convertFromAPInt(Val,
2111                                 Opcode==ISD::SINT_TO_FP,
2112                                 APFloat::rmNearestTiesToEven);
2113      return getConstantFP(apf, VT);
2114    }
2115    case ISD::BIT_CONVERT:
2116      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2117        return getConstantFP(Val.bitsToFloat(), VT);
2118      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2119        return getConstantFP(Val.bitsToDouble(), VT);
2120      break;
2121    case ISD::BSWAP:
2122      return getConstant(Val.byteSwap(), VT);
2123    case ISD::CTPOP:
2124      return getConstant(Val.countPopulation(), VT);
2125    case ISD::CTLZ:
2126      return getConstant(Val.countLeadingZeros(), VT);
2127    case ISD::CTTZ:
2128      return getConstant(Val.countTrailingZeros(), VT);
2129    }
2130  }
2131
2132  // Constant fold unary operations with a floating point constant operand.
2133  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2134    APFloat V = C->getValueAPF();    // make copy
2135    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2136      switch (Opcode) {
2137      case ISD::FNEG:
2138        V.changeSign();
2139        return getConstantFP(V, VT);
2140      case ISD::FABS:
2141        V.clearSign();
2142        return getConstantFP(V, VT);
2143      case ISD::FP_ROUND:
2144      case ISD::FP_EXTEND: {
2145        bool ignored;
2146        // This can return overflow, underflow, or inexact; we don't care.
2147        // FIXME need to be more flexible about rounding mode.
2148        (void)V.convert(*MVTToAPFloatSemantics(VT),
2149                        APFloat::rmNearestTiesToEven, &ignored);
2150        return getConstantFP(V, VT);
2151      }
2152      case ISD::FP_TO_SINT:
2153      case ISD::FP_TO_UINT: {
2154        integerPart x;
2155        bool ignored;
2156        assert(integerPartWidth >= 64);
2157        // FIXME need to be more flexible about rounding mode.
2158        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2159                              Opcode==ISD::FP_TO_SINT,
2160                              APFloat::rmTowardZero, &ignored);
2161        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2162          break;
2163        return getConstant(x, VT);
2164      }
2165      case ISD::BIT_CONVERT:
2166        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2167          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2168        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2169          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2170        break;
2171      }
2172    }
2173  }
2174
2175  unsigned OpOpcode = Operand.getNode()->getOpcode();
2176  switch (Opcode) {
2177  case ISD::TokenFactor:
2178  case ISD::CONCAT_VECTORS:
2179    return Operand;         // Factor or concat of one node?  No need.
2180  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2181  case ISD::FP_EXTEND:
2182    assert(VT.isFloatingPoint() &&
2183           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2184    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2185    if (Operand.getOpcode() == ISD::UNDEF)
2186      return getNode(ISD::UNDEF, VT);
2187    break;
2188  case ISD::SIGN_EXTEND:
2189    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2190           "Invalid SIGN_EXTEND!");
2191    if (Operand.getValueType() == VT) return Operand;   // noop extension
2192    assert(Operand.getValueType().bitsLT(VT)
2193           && "Invalid sext node, dst < src!");
2194    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2195      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2196    break;
2197  case ISD::ZERO_EXTEND:
2198    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2199           "Invalid ZERO_EXTEND!");
2200    if (Operand.getValueType() == VT) return Operand;   // noop extension
2201    assert(Operand.getValueType().bitsLT(VT)
2202           && "Invalid zext node, dst < src!");
2203    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2204      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2205    break;
2206  case ISD::ANY_EXTEND:
2207    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2208           "Invalid ANY_EXTEND!");
2209    if (Operand.getValueType() == VT) return Operand;   // noop extension
2210    assert(Operand.getValueType().bitsLT(VT)
2211           && "Invalid anyext node, dst < src!");
2212    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2213      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2214      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2215    break;
2216  case ISD::TRUNCATE:
2217    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2218           "Invalid TRUNCATE!");
2219    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2220    assert(Operand.getValueType().bitsGT(VT)
2221           && "Invalid truncate node, src < dst!");
2222    if (OpOpcode == ISD::TRUNCATE)
2223      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2224    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2225             OpOpcode == ISD::ANY_EXTEND) {
2226      // If the source is smaller than the dest, we still need an extend.
2227      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2228        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2229      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2230        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2231      else
2232        return Operand.getNode()->getOperand(0);
2233    }
2234    break;
2235  case ISD::BIT_CONVERT:
2236    // Basic sanity checking.
2237    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2238           && "Cannot BIT_CONVERT between types of different sizes!");
2239    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2240    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2241      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2242    if (OpOpcode == ISD::UNDEF)
2243      return getNode(ISD::UNDEF, VT);
2244    break;
2245  case ISD::SCALAR_TO_VECTOR:
2246    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2247           VT.getVectorElementType() == Operand.getValueType() &&
2248           "Illegal SCALAR_TO_VECTOR node!");
2249    if (OpOpcode == ISD::UNDEF)
2250      return getNode(ISD::UNDEF, VT);
2251    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2252    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2253        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2254        Operand.getConstantOperandVal(1) == 0 &&
2255        Operand.getOperand(0).getValueType() == VT)
2256      return Operand.getOperand(0);
2257    break;
2258  case ISD::FNEG:
2259    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2260      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2261                     Operand.getNode()->getOperand(0));
2262    if (OpOpcode == ISD::FNEG)  // --X -> X
2263      return Operand.getNode()->getOperand(0);
2264    break;
2265  case ISD::FABS:
2266    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2267      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2268    break;
2269  }
2270
2271  SDNode *N;
2272  SDVTList VTs = getVTList(VT);
2273  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2274    FoldingSetNodeID ID;
2275    SDValue Ops[1] = { Operand };
2276    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2277    void *IP = 0;
2278    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2279      return SDValue(E, 0);
2280    N = NodeAllocator.Allocate<UnarySDNode>();
2281    new (N) UnarySDNode(Opcode, VTs, Operand);
2282    CSEMap.InsertNode(N, IP);
2283  } else {
2284    N = NodeAllocator.Allocate<UnarySDNode>();
2285    new (N) UnarySDNode(Opcode, VTs, Operand);
2286  }
2287
2288  AllNodes.push_back(N);
2289#ifndef NDEBUG
2290  VerifyNode(N);
2291#endif
2292  return SDValue(N, 0);
2293}
2294
2295SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2296                                             MVT VT,
2297                                             ConstantSDNode *Cst1,
2298                                             ConstantSDNode *Cst2) {
2299  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2300
2301  switch (Opcode) {
2302  case ISD::ADD:  return getConstant(C1 + C2, VT);
2303  case ISD::SUB:  return getConstant(C1 - C2, VT);
2304  case ISD::MUL:  return getConstant(C1 * C2, VT);
2305  case ISD::UDIV:
2306    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2307    break;
2308  case ISD::UREM:
2309    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2310    break;
2311  case ISD::SDIV:
2312    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2313    break;
2314  case ISD::SREM:
2315    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2316    break;
2317  case ISD::AND:  return getConstant(C1 & C2, VT);
2318  case ISD::OR:   return getConstant(C1 | C2, VT);
2319  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2320  case ISD::SHL:  return getConstant(C1 << C2, VT);
2321  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2322  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2323  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2324  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2325  default: break;
2326  }
2327
2328  return SDValue();
2329}
2330
2331SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2332                              SDValue N1, SDValue N2) {
2333  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2334  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2335  switch (Opcode) {
2336  default: break;
2337  case ISD::TokenFactor:
2338    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2339           N2.getValueType() == MVT::Other && "Invalid token factor!");
2340    // Fold trivial token factors.
2341    if (N1.getOpcode() == ISD::EntryToken) return N2;
2342    if (N2.getOpcode() == ISD::EntryToken) return N1;
2343    if (N1 == N2) return N1;
2344    break;
2345  case ISD::CONCAT_VECTORS:
2346    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2347    // one big BUILD_VECTOR.
2348    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2349        N2.getOpcode() == ISD::BUILD_VECTOR) {
2350      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2351      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2352      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2353    }
2354    break;
2355  case ISD::AND:
2356    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2357           N1.getValueType() == VT && "Binary operator types must match!");
2358    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2359    // worth handling here.
2360    if (N2C && N2C->isNullValue())
2361      return N2;
2362    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2363      return N1;
2364    break;
2365  case ISD::OR:
2366  case ISD::XOR:
2367  case ISD::ADD:
2368  case ISD::SUB:
2369    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2370           N1.getValueType() == VT && "Binary operator types must match!");
2371    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2372    // it's worth handling here.
2373    if (N2C && N2C->isNullValue())
2374      return N1;
2375    break;
2376  case ISD::UDIV:
2377  case ISD::UREM:
2378  case ISD::MULHU:
2379  case ISD::MULHS:
2380    assert(VT.isInteger() && "This operator does not apply to FP types!");
2381    // fall through
2382  case ISD::MUL:
2383  case ISD::SDIV:
2384  case ISD::SREM:
2385  case ISD::FADD:
2386  case ISD::FSUB:
2387  case ISD::FMUL:
2388  case ISD::FDIV:
2389  case ISD::FREM:
2390    assert(N1.getValueType() == N2.getValueType() &&
2391           N1.getValueType() == VT && "Binary operator types must match!");
2392    break;
2393  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2394    assert(N1.getValueType() == VT &&
2395           N1.getValueType().isFloatingPoint() &&
2396           N2.getValueType().isFloatingPoint() &&
2397           "Invalid FCOPYSIGN!");
2398    break;
2399  case ISD::SHL:
2400  case ISD::SRA:
2401  case ISD::SRL:
2402  case ISD::ROTL:
2403  case ISD::ROTR:
2404    assert(VT == N1.getValueType() &&
2405           "Shift operators return type must be the same as their first arg");
2406    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2407           "Shifts only work on integers");
2408    assert(N2.getValueType() == TLI.getShiftAmountTy() &&
2409           "Wrong type for shift amount");
2410
2411    // Always fold shifts of i1 values so the code generator doesn't need to
2412    // handle them.  Since we know the size of the shift has to be less than the
2413    // size of the value, the shift/rotate count is guaranteed to be zero.
2414    if (VT == MVT::i1)
2415      return N1;
2416    break;
2417  case ISD::FP_ROUND_INREG: {
2418    MVT EVT = cast<VTSDNode>(N2)->getVT();
2419    assert(VT == N1.getValueType() && "Not an inreg round!");
2420    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2421           "Cannot FP_ROUND_INREG integer types");
2422    assert(EVT.bitsLE(VT) && "Not rounding down!");
2423    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2424    break;
2425  }
2426  case ISD::FP_ROUND:
2427    assert(VT.isFloatingPoint() &&
2428           N1.getValueType().isFloatingPoint() &&
2429           VT.bitsLE(N1.getValueType()) &&
2430           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2431    if (N1.getValueType() == VT) return N1;  // noop conversion.
2432    break;
2433  case ISD::AssertSext:
2434  case ISD::AssertZext: {
2435    MVT EVT = cast<VTSDNode>(N2)->getVT();
2436    assert(VT == N1.getValueType() && "Not an inreg extend!");
2437    assert(VT.isInteger() && EVT.isInteger() &&
2438           "Cannot *_EXTEND_INREG FP types");
2439    assert(EVT.bitsLE(VT) && "Not extending!");
2440    if (VT == EVT) return N1; // noop assertion.
2441    break;
2442  }
2443  case ISD::SIGN_EXTEND_INREG: {
2444    MVT EVT = cast<VTSDNode>(N2)->getVT();
2445    assert(VT == N1.getValueType() && "Not an inreg extend!");
2446    assert(VT.isInteger() && EVT.isInteger() &&
2447           "Cannot *_EXTEND_INREG FP types");
2448    assert(EVT.bitsLE(VT) && "Not extending!");
2449    if (EVT == VT) return N1;  // Not actually extending
2450
2451    if (N1C) {
2452      APInt Val = N1C->getAPIntValue();
2453      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2454      Val <<= Val.getBitWidth()-FromBits;
2455      Val = Val.ashr(Val.getBitWidth()-FromBits);
2456      return getConstant(Val, VT);
2457    }
2458    break;
2459  }
2460  case ISD::EXTRACT_VECTOR_ELT:
2461    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2462    if (N1.getOpcode() == ISD::UNDEF)
2463      return getNode(ISD::UNDEF, VT);
2464
2465    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2466    // expanding copies of large vectors from registers.
2467    if (N2C &&
2468        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2469        N1.getNumOperands() > 0) {
2470      unsigned Factor =
2471        N1.getOperand(0).getValueType().getVectorNumElements();
2472      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2473                     N1.getOperand(N2C->getZExtValue() / Factor),
2474                     getConstant(N2C->getZExtValue() % Factor,
2475                                 N2.getValueType()));
2476    }
2477
2478    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2479    // expanding large vector constants.
2480    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2481      return N1.getOperand(N2C->getZExtValue());
2482
2483    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2484    // operations are lowered to scalars.
2485    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2486      if (N1.getOperand(2) == N2)
2487        return N1.getOperand(1);
2488      else
2489        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2490    }
2491    break;
2492  case ISD::EXTRACT_ELEMENT:
2493    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2494    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2495           (N1.getValueType().isInteger() == VT.isInteger()) &&
2496           "Wrong types for EXTRACT_ELEMENT!");
2497
2498    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2499    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2500    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2501    if (N1.getOpcode() == ISD::BUILD_PAIR)
2502      return N1.getOperand(N2C->getZExtValue());
2503
2504    // EXTRACT_ELEMENT of a constant int is also very common.
2505    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2506      unsigned ElementSize = VT.getSizeInBits();
2507      unsigned Shift = ElementSize * N2C->getZExtValue();
2508      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2509      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2510    }
2511    break;
2512  case ISD::EXTRACT_SUBVECTOR:
2513    if (N1.getValueType() == VT) // Trivial extraction.
2514      return N1;
2515    break;
2516  }
2517
2518  if (N1C) {
2519    if (N2C) {
2520      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2521      if (SV.getNode()) return SV;
2522    } else {      // Cannonicalize constant to RHS if commutative
2523      if (isCommutativeBinOp(Opcode)) {
2524        std::swap(N1C, N2C);
2525        std::swap(N1, N2);
2526      }
2527    }
2528  }
2529
2530  // Constant fold FP operations.
2531  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2532  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2533  if (N1CFP) {
2534    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2535      // Cannonicalize constant to RHS if commutative
2536      std::swap(N1CFP, N2CFP);
2537      std::swap(N1, N2);
2538    } else if (N2CFP && VT != MVT::ppcf128) {
2539      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2540      APFloat::opStatus s;
2541      switch (Opcode) {
2542      case ISD::FADD:
2543        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2544        if (s != APFloat::opInvalidOp)
2545          return getConstantFP(V1, VT);
2546        break;
2547      case ISD::FSUB:
2548        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2549        if (s!=APFloat::opInvalidOp)
2550          return getConstantFP(V1, VT);
2551        break;
2552      case ISD::FMUL:
2553        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2554        if (s!=APFloat::opInvalidOp)
2555          return getConstantFP(V1, VT);
2556        break;
2557      case ISD::FDIV:
2558        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2559        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2560          return getConstantFP(V1, VT);
2561        break;
2562      case ISD::FREM :
2563        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2564        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2565          return getConstantFP(V1, VT);
2566        break;
2567      case ISD::FCOPYSIGN:
2568        V1.copySign(V2);
2569        return getConstantFP(V1, VT);
2570      default: break;
2571      }
2572    }
2573  }
2574
2575  // Canonicalize an UNDEF to the RHS, even over a constant.
2576  if (N1.getOpcode() == ISD::UNDEF) {
2577    if (isCommutativeBinOp(Opcode)) {
2578      std::swap(N1, N2);
2579    } else {
2580      switch (Opcode) {
2581      case ISD::FP_ROUND_INREG:
2582      case ISD::SIGN_EXTEND_INREG:
2583      case ISD::SUB:
2584      case ISD::FSUB:
2585      case ISD::FDIV:
2586      case ISD::FREM:
2587      case ISD::SRA:
2588        return N1;     // fold op(undef, arg2) -> undef
2589      case ISD::UDIV:
2590      case ISD::SDIV:
2591      case ISD::UREM:
2592      case ISD::SREM:
2593      case ISD::SRL:
2594      case ISD::SHL:
2595        if (!VT.isVector())
2596          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2597        // For vectors, we can't easily build an all zero vector, just return
2598        // the LHS.
2599        return N2;
2600      }
2601    }
2602  }
2603
2604  // Fold a bunch of operators when the RHS is undef.
2605  if (N2.getOpcode() == ISD::UNDEF) {
2606    switch (Opcode) {
2607    case ISD::XOR:
2608      if (N1.getOpcode() == ISD::UNDEF)
2609        // Handle undef ^ undef -> 0 special case. This is a common
2610        // idiom (misuse).
2611        return getConstant(0, VT);
2612      // fallthrough
2613    case ISD::ADD:
2614    case ISD::ADDC:
2615    case ISD::ADDE:
2616    case ISD::SUB:
2617    case ISD::FADD:
2618    case ISD::FSUB:
2619    case ISD::FMUL:
2620    case ISD::FDIV:
2621    case ISD::FREM:
2622    case ISD::UDIV:
2623    case ISD::SDIV:
2624    case ISD::UREM:
2625    case ISD::SREM:
2626      return N2;       // fold op(arg1, undef) -> undef
2627    case ISD::MUL:
2628    case ISD::AND:
2629    case ISD::SRL:
2630    case ISD::SHL:
2631      if (!VT.isVector())
2632        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2633      // For vectors, we can't easily build an all zero vector, just return
2634      // the LHS.
2635      return N1;
2636    case ISD::OR:
2637      if (!VT.isVector())
2638        return getConstant(VT.getIntegerVTBitMask(), VT);
2639      // For vectors, we can't easily build an all one vector, just return
2640      // the LHS.
2641      return N1;
2642    case ISD::SRA:
2643      return N1;
2644    }
2645  }
2646
2647  // Memoize this node if possible.
2648  SDNode *N;
2649  SDVTList VTs = getVTList(VT);
2650  if (VT != MVT::Flag) {
2651    SDValue Ops[] = { N1, N2 };
2652    FoldingSetNodeID ID;
2653    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2654    void *IP = 0;
2655    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2656      return SDValue(E, 0);
2657    N = NodeAllocator.Allocate<BinarySDNode>();
2658    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2659    CSEMap.InsertNode(N, IP);
2660  } else {
2661    N = NodeAllocator.Allocate<BinarySDNode>();
2662    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2663  }
2664
2665  AllNodes.push_back(N);
2666#ifndef NDEBUG
2667  VerifyNode(N);
2668#endif
2669  return SDValue(N, 0);
2670}
2671
2672SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2673                              SDValue N1, SDValue N2, SDValue N3) {
2674  // Perform various simplifications.
2675  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2676  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2677  switch (Opcode) {
2678  case ISD::CONCAT_VECTORS:
2679    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2680    // one big BUILD_VECTOR.
2681    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2682        N2.getOpcode() == ISD::BUILD_VECTOR &&
2683        N3.getOpcode() == ISD::BUILD_VECTOR) {
2684      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2685      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2686      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2687      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2688    }
2689    break;
2690  case ISD::SETCC: {
2691    // Use FoldSetCC to simplify SETCC's.
2692    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2693    if (Simp.getNode()) return Simp;
2694    break;
2695  }
2696  case ISD::SELECT:
2697    if (N1C) {
2698     if (N1C->getZExtValue())
2699        return N2;             // select true, X, Y -> X
2700      else
2701        return N3;             // select false, X, Y -> Y
2702    }
2703
2704    if (N2 == N3) return N2;   // select C, X, X -> X
2705    break;
2706  case ISD::BRCOND:
2707    if (N2C) {
2708      if (N2C->getZExtValue()) // Unconditional branch
2709        return getNode(ISD::BR, MVT::Other, N1, N3);
2710      else
2711        return N1;         // Never-taken branch
2712    }
2713    break;
2714  case ISD::VECTOR_SHUFFLE:
2715    assert(N1.getValueType() == N2.getValueType() &&
2716           N1.getValueType().isVector() &&
2717           VT.isVector() && N3.getValueType().isVector() &&
2718           N3.getOpcode() == ISD::BUILD_VECTOR &&
2719           VT.getVectorNumElements() == N3.getNumOperands() &&
2720           "Illegal VECTOR_SHUFFLE node!");
2721    break;
2722  case ISD::BIT_CONVERT:
2723    // Fold bit_convert nodes from a type to themselves.
2724    if (N1.getValueType() == VT)
2725      return N1;
2726    break;
2727  }
2728
2729  // Memoize node if it doesn't produce a flag.
2730  SDNode *N;
2731  SDVTList VTs = getVTList(VT);
2732  if (VT != MVT::Flag) {
2733    SDValue Ops[] = { N1, N2, N3 };
2734    FoldingSetNodeID ID;
2735    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2736    void *IP = 0;
2737    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2738      return SDValue(E, 0);
2739    N = NodeAllocator.Allocate<TernarySDNode>();
2740    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2741    CSEMap.InsertNode(N, IP);
2742  } else {
2743    N = NodeAllocator.Allocate<TernarySDNode>();
2744    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2745  }
2746  AllNodes.push_back(N);
2747#ifndef NDEBUG
2748  VerifyNode(N);
2749#endif
2750  return SDValue(N, 0);
2751}
2752
2753SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2754                              SDValue N1, SDValue N2, SDValue N3,
2755                              SDValue N4) {
2756  SDValue Ops[] = { N1, N2, N3, N4 };
2757  return getNode(Opcode, VT, Ops, 4);
2758}
2759
2760SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2761                              SDValue N1, SDValue N2, SDValue N3,
2762                              SDValue N4, SDValue N5) {
2763  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2764  return getNode(Opcode, VT, Ops, 5);
2765}
2766
2767/// getMemsetValue - Vectorized representation of the memset value
2768/// operand.
2769static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2770  unsigned NumBits = VT.isVector() ?
2771    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2772  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2773    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2774    unsigned Shift = 8;
2775    for (unsigned i = NumBits; i > 8; i >>= 1) {
2776      Val = (Val << Shift) | Val;
2777      Shift <<= 1;
2778    }
2779    if (VT.isInteger())
2780      return DAG.getConstant(Val, VT);
2781    return DAG.getConstantFP(APFloat(Val), VT);
2782  }
2783
2784  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2785  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2786  unsigned Shift = 8;
2787  for (unsigned i = NumBits; i > 8; i >>= 1) {
2788    Value = DAG.getNode(ISD::OR, VT,
2789                        DAG.getNode(ISD::SHL, VT, Value,
2790                                    DAG.getConstant(Shift,
2791                                                    TLI.getShiftAmountTy())),
2792                        Value);
2793    Shift <<= 1;
2794  }
2795
2796  return Value;
2797}
2798
2799/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2800/// used when a memcpy is turned into a memset when the source is a constant
2801/// string ptr.
2802static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2803                                    const TargetLowering &TLI,
2804                                    std::string &Str, unsigned Offset) {
2805  // Handle vector with all elements zero.
2806  if (Str.empty()) {
2807    if (VT.isInteger())
2808      return DAG.getConstant(0, VT);
2809    unsigned NumElts = VT.getVectorNumElements();
2810    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2811    return DAG.getNode(ISD::BIT_CONVERT, VT,
2812                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2813  }
2814
2815  assert(!VT.isVector() && "Can't handle vector type here!");
2816  unsigned NumBits = VT.getSizeInBits();
2817  unsigned MSB = NumBits / 8;
2818  uint64_t Val = 0;
2819  if (TLI.isLittleEndian())
2820    Offset = Offset + MSB - 1;
2821  for (unsigned i = 0; i != MSB; ++i) {
2822    Val = (Val << 8) | (unsigned char)Str[Offset];
2823    Offset += TLI.isLittleEndian() ? -1 : 1;
2824  }
2825  return DAG.getConstant(Val, VT);
2826}
2827
2828/// getMemBasePlusOffset - Returns base and offset node for the
2829///
2830static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2831                                      SelectionDAG &DAG) {
2832  MVT VT = Base.getValueType();
2833  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2834}
2835
2836/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2837///
2838static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2839  unsigned SrcDelta = 0;
2840  GlobalAddressSDNode *G = NULL;
2841  if (Src.getOpcode() == ISD::GlobalAddress)
2842    G = cast<GlobalAddressSDNode>(Src);
2843  else if (Src.getOpcode() == ISD::ADD &&
2844           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2845           Src.getOperand(1).getOpcode() == ISD::Constant) {
2846    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2847    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2848  }
2849  if (!G)
2850    return false;
2851
2852  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2853  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2854    return true;
2855
2856  return false;
2857}
2858
2859/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2860/// to replace the memset / memcpy is below the threshold. It also returns the
2861/// types of the sequence of memory ops to perform memset / memcpy.
2862static
2863bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2864                              SDValue Dst, SDValue Src,
2865                              unsigned Limit, uint64_t Size, unsigned &Align,
2866                              std::string &Str, bool &isSrcStr,
2867                              SelectionDAG &DAG,
2868                              const TargetLowering &TLI) {
2869  isSrcStr = isMemSrcFromString(Src, Str);
2870  bool isSrcConst = isa<ConstantSDNode>(Src);
2871  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2872  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2873  if (VT != MVT::iAny) {
2874    unsigned NewAlign = (unsigned)
2875      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2876    // If source is a string constant, this will require an unaligned load.
2877    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2878      if (Dst.getOpcode() != ISD::FrameIndex) {
2879        // Can't change destination alignment. It requires a unaligned store.
2880        if (AllowUnalign)
2881          VT = MVT::iAny;
2882      } else {
2883        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2884        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2885        if (MFI->isFixedObjectIndex(FI)) {
2886          // Can't change destination alignment. It requires a unaligned store.
2887          if (AllowUnalign)
2888            VT = MVT::iAny;
2889        } else {
2890          // Give the stack frame object a larger alignment if needed.
2891          if (MFI->getObjectAlignment(FI) < NewAlign)
2892            MFI->setObjectAlignment(FI, NewAlign);
2893          Align = NewAlign;
2894        }
2895      }
2896    }
2897  }
2898
2899  if (VT == MVT::iAny) {
2900    if (AllowUnalign) {
2901      VT = MVT::i64;
2902    } else {
2903      switch (Align & 7) {
2904      case 0:  VT = MVT::i64; break;
2905      case 4:  VT = MVT::i32; break;
2906      case 2:  VT = MVT::i16; break;
2907      default: VT = MVT::i8;  break;
2908      }
2909    }
2910
2911    MVT LVT = MVT::i64;
2912    while (!TLI.isTypeLegal(LVT))
2913      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2914    assert(LVT.isInteger());
2915
2916    if (VT.bitsGT(LVT))
2917      VT = LVT;
2918  }
2919
2920  unsigned NumMemOps = 0;
2921  while (Size != 0) {
2922    unsigned VTSize = VT.getSizeInBits() / 8;
2923    while (VTSize > Size) {
2924      // For now, only use non-vector load / store's for the left-over pieces.
2925      if (VT.isVector()) {
2926        VT = MVT::i64;
2927        while (!TLI.isTypeLegal(VT))
2928          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2929        VTSize = VT.getSizeInBits() / 8;
2930      } else {
2931        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2932        VTSize >>= 1;
2933      }
2934    }
2935
2936    if (++NumMemOps > Limit)
2937      return false;
2938    MemOps.push_back(VT);
2939    Size -= VTSize;
2940  }
2941
2942  return true;
2943}
2944
2945static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2946                                         SDValue Chain, SDValue Dst,
2947                                         SDValue Src, uint64_t Size,
2948                                         unsigned Align, bool AlwaysInline,
2949                                         const Value *DstSV, uint64_t DstSVOff,
2950                                         const Value *SrcSV, uint64_t SrcSVOff){
2951  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2952
2953  // Expand memcpy to a series of load and store ops if the size operand falls
2954  // below a certain threshold.
2955  std::vector<MVT> MemOps;
2956  uint64_t Limit = -1ULL;
2957  if (!AlwaysInline)
2958    Limit = TLI.getMaxStoresPerMemcpy();
2959  unsigned DstAlign = Align;  // Destination alignment can change.
2960  std::string Str;
2961  bool CopyFromStr;
2962  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2963                                Str, CopyFromStr, DAG, TLI))
2964    return SDValue();
2965
2966
2967  bool isZeroStr = CopyFromStr && Str.empty();
2968  SmallVector<SDValue, 8> OutChains;
2969  unsigned NumMemOps = MemOps.size();
2970  uint64_t SrcOff = 0, DstOff = 0;
2971  for (unsigned i = 0; i < NumMemOps; i++) {
2972    MVT VT = MemOps[i];
2973    unsigned VTSize = VT.getSizeInBits() / 8;
2974    SDValue Value, Store;
2975
2976    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2977      // It's unlikely a store of a vector immediate can be done in a single
2978      // instruction. It would require a load from a constantpool first.
2979      // We also handle store a vector with all zero's.
2980      // FIXME: Handle other cases where store of vector immediate is done in
2981      // a single instruction.
2982      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2983      Store = DAG.getStore(Chain, Value,
2984                           getMemBasePlusOffset(Dst, DstOff, DAG),
2985                           DstSV, DstSVOff + DstOff, false, DstAlign);
2986    } else {
2987      Value = DAG.getLoad(VT, Chain,
2988                          getMemBasePlusOffset(Src, SrcOff, DAG),
2989                          SrcSV, SrcSVOff + SrcOff, false, Align);
2990      Store = DAG.getStore(Chain, Value,
2991                           getMemBasePlusOffset(Dst, DstOff, DAG),
2992                           DstSV, DstSVOff + DstOff, false, DstAlign);
2993    }
2994    OutChains.push_back(Store);
2995    SrcOff += VTSize;
2996    DstOff += VTSize;
2997  }
2998
2999  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3000                     &OutChains[0], OutChains.size());
3001}
3002
3003static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
3004                                          SDValue Chain, SDValue Dst,
3005                                          SDValue Src, uint64_t Size,
3006                                          unsigned Align, bool AlwaysInline,
3007                                          const Value *DstSV, uint64_t DstSVOff,
3008                                          const Value *SrcSV, uint64_t SrcSVOff){
3009  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3010
3011  // Expand memmove to a series of load and store ops if the size operand falls
3012  // below a certain threshold.
3013  std::vector<MVT> MemOps;
3014  uint64_t Limit = -1ULL;
3015  if (!AlwaysInline)
3016    Limit = TLI.getMaxStoresPerMemmove();
3017  unsigned DstAlign = Align;  // Destination alignment can change.
3018  std::string Str;
3019  bool CopyFromStr;
3020  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3021                                Str, CopyFromStr, DAG, TLI))
3022    return SDValue();
3023
3024  uint64_t SrcOff = 0, DstOff = 0;
3025
3026  SmallVector<SDValue, 8> LoadValues;
3027  SmallVector<SDValue, 8> LoadChains;
3028  SmallVector<SDValue, 8> OutChains;
3029  unsigned NumMemOps = MemOps.size();
3030  for (unsigned i = 0; i < NumMemOps; i++) {
3031    MVT VT = MemOps[i];
3032    unsigned VTSize = VT.getSizeInBits() / 8;
3033    SDValue Value, Store;
3034
3035    Value = DAG.getLoad(VT, Chain,
3036                        getMemBasePlusOffset(Src, SrcOff, DAG),
3037                        SrcSV, SrcSVOff + SrcOff, false, Align);
3038    LoadValues.push_back(Value);
3039    LoadChains.push_back(Value.getValue(1));
3040    SrcOff += VTSize;
3041  }
3042  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3043                      &LoadChains[0], LoadChains.size());
3044  OutChains.clear();
3045  for (unsigned i = 0; i < NumMemOps; i++) {
3046    MVT VT = MemOps[i];
3047    unsigned VTSize = VT.getSizeInBits() / 8;
3048    SDValue Value, Store;
3049
3050    Store = DAG.getStore(Chain, LoadValues[i],
3051                         getMemBasePlusOffset(Dst, DstOff, DAG),
3052                         DstSV, DstSVOff + DstOff, false, DstAlign);
3053    OutChains.push_back(Store);
3054    DstOff += VTSize;
3055  }
3056
3057  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3058                     &OutChains[0], OutChains.size());
3059}
3060
3061static SDValue getMemsetStores(SelectionDAG &DAG,
3062                                 SDValue Chain, SDValue Dst,
3063                                 SDValue Src, uint64_t Size,
3064                                 unsigned Align,
3065                                 const Value *DstSV, uint64_t DstSVOff) {
3066  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3067
3068  // Expand memset to a series of load/store ops if the size operand
3069  // falls below a certain threshold.
3070  std::vector<MVT> MemOps;
3071  std::string Str;
3072  bool CopyFromStr;
3073  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3074                                Size, Align, Str, CopyFromStr, DAG, TLI))
3075    return SDValue();
3076
3077  SmallVector<SDValue, 8> OutChains;
3078  uint64_t DstOff = 0;
3079
3080  unsigned NumMemOps = MemOps.size();
3081  for (unsigned i = 0; i < NumMemOps; i++) {
3082    MVT VT = MemOps[i];
3083    unsigned VTSize = VT.getSizeInBits() / 8;
3084    SDValue Value = getMemsetValue(Src, VT, DAG);
3085    SDValue Store = DAG.getStore(Chain, Value,
3086                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3087                                 DstSV, DstSVOff + DstOff);
3088    OutChains.push_back(Store);
3089    DstOff += VTSize;
3090  }
3091
3092  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3093                     &OutChains[0], OutChains.size());
3094}
3095
3096SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3097                                SDValue Src, SDValue Size,
3098                                unsigned Align, bool AlwaysInline,
3099                                const Value *DstSV, uint64_t DstSVOff,
3100                                const Value *SrcSV, uint64_t SrcSVOff) {
3101
3102  // Check to see if we should lower the memcpy to loads and stores first.
3103  // For cases within the target-specified limits, this is the best choice.
3104  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3105  if (ConstantSize) {
3106    // Memcpy with size zero? Just return the original chain.
3107    if (ConstantSize->isNullValue())
3108      return Chain;
3109
3110    SDValue Result =
3111      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3112                              ConstantSize->getZExtValue(),
3113                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3114    if (Result.getNode())
3115      return Result;
3116  }
3117
3118  // Then check to see if we should lower the memcpy with target-specific
3119  // code. If the target chooses to do this, this is the next best.
3120  SDValue Result =
3121    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3122                                AlwaysInline,
3123                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3124  if (Result.getNode())
3125    return Result;
3126
3127  // If we really need inline code and the target declined to provide it,
3128  // use a (potentially long) sequence of loads and stores.
3129  if (AlwaysInline) {
3130    assert(ConstantSize && "AlwaysInline requires a constant size!");
3131    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3132                                   ConstantSize->getZExtValue(), Align, true,
3133                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3134  }
3135
3136  // Emit a library call.
3137  TargetLowering::ArgListTy Args;
3138  TargetLowering::ArgListEntry Entry;
3139  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3140  Entry.Node = Dst; Args.push_back(Entry);
3141  Entry.Node = Src; Args.push_back(Entry);
3142  Entry.Node = Size; Args.push_back(Entry);
3143  std::pair<SDValue,SDValue> CallResult =
3144    TLI.LowerCallTo(Chain, Type::VoidTy,
3145                    false, false, false, false, CallingConv::C, false,
3146                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3147                    Args, *this);
3148  return CallResult.second;
3149}
3150
3151SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3152                                 SDValue Src, SDValue Size,
3153                                 unsigned Align,
3154                                 const Value *DstSV, uint64_t DstSVOff,
3155                                 const Value *SrcSV, uint64_t SrcSVOff) {
3156
3157  // Check to see if we should lower the memmove to loads and stores first.
3158  // For cases within the target-specified limits, this is the best choice.
3159  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3160  if (ConstantSize) {
3161    // Memmove with size zero? Just return the original chain.
3162    if (ConstantSize->isNullValue())
3163      return Chain;
3164
3165    SDValue Result =
3166      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3167                               ConstantSize->getZExtValue(),
3168                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3169    if (Result.getNode())
3170      return Result;
3171  }
3172
3173  // Then check to see if we should lower the memmove with target-specific
3174  // code. If the target chooses to do this, this is the next best.
3175  SDValue Result =
3176    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3177                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3178  if (Result.getNode())
3179    return Result;
3180
3181  // Emit a library call.
3182  TargetLowering::ArgListTy Args;
3183  TargetLowering::ArgListEntry Entry;
3184  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3185  Entry.Node = Dst; Args.push_back(Entry);
3186  Entry.Node = Src; Args.push_back(Entry);
3187  Entry.Node = Size; Args.push_back(Entry);
3188  std::pair<SDValue,SDValue> CallResult =
3189    TLI.LowerCallTo(Chain, Type::VoidTy,
3190                    false, false, false, false, CallingConv::C, false,
3191                    getExternalSymbol("memmove", TLI.getPointerTy()),
3192                    Args, *this);
3193  return CallResult.second;
3194}
3195
3196SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3197                                SDValue Src, SDValue Size,
3198                                unsigned Align,
3199                                const Value *DstSV, uint64_t DstSVOff) {
3200
3201  // Check to see if we should lower the memset to stores first.
3202  // For cases within the target-specified limits, this is the best choice.
3203  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3204  if (ConstantSize) {
3205    // Memset with size zero? Just return the original chain.
3206    if (ConstantSize->isNullValue())
3207      return Chain;
3208
3209    SDValue Result =
3210      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3211                      Align, DstSV, DstSVOff);
3212    if (Result.getNode())
3213      return Result;
3214  }
3215
3216  // Then check to see if we should lower the memset with target-specific
3217  // code. If the target chooses to do this, this is the next best.
3218  SDValue Result =
3219    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3220                                DstSV, DstSVOff);
3221  if (Result.getNode())
3222    return Result;
3223
3224  // Emit a library call.
3225  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3226  TargetLowering::ArgListTy Args;
3227  TargetLowering::ArgListEntry Entry;
3228  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3229  Args.push_back(Entry);
3230  // Extend or truncate the argument to be an i32 value for the call.
3231  if (Src.getValueType().bitsGT(MVT::i32))
3232    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3233  else
3234    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3235  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3236  Args.push_back(Entry);
3237  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3238  Args.push_back(Entry);
3239  std::pair<SDValue,SDValue> CallResult =
3240    TLI.LowerCallTo(Chain, Type::VoidTy,
3241                    false, false, false, false, CallingConv::C, false,
3242                    getExternalSymbol("memset", TLI.getPointerTy()),
3243                    Args, *this);
3244  return CallResult.second;
3245}
3246
3247SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3248                                SDValue Ptr, SDValue Cmp,
3249                                SDValue Swp, const Value* PtrVal,
3250                                unsigned Alignment) {
3251  assert((Opcode == ISD::ATOMIC_CMP_SWAP_8  ||
3252          Opcode == ISD::ATOMIC_CMP_SWAP_16 ||
3253          Opcode == ISD::ATOMIC_CMP_SWAP_32 ||
3254          Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op");
3255  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3256
3257  MVT VT = Cmp.getValueType();
3258
3259  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3260    Alignment = getMVTAlignment(VT);
3261
3262  SDVTList VTs = getVTList(VT, MVT::Other);
3263  FoldingSetNodeID ID;
3264  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3265  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3266  void* IP = 0;
3267  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3268    return SDValue(E, 0);
3269  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3270  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3271  CSEMap.InsertNode(N, IP);
3272  AllNodes.push_back(N);
3273  return SDValue(N, 0);
3274}
3275
3276SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3277                                SDValue Ptr, SDValue Val,
3278                                const Value* PtrVal,
3279                                unsigned Alignment) {
3280  assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 ||
3281          Opcode == ISD::ATOMIC_LOAD_SUB_8 ||
3282          Opcode == ISD::ATOMIC_LOAD_AND_8 ||
3283          Opcode == ISD::ATOMIC_LOAD_OR_8 ||
3284          Opcode == ISD::ATOMIC_LOAD_XOR_8 ||
3285          Opcode == ISD::ATOMIC_LOAD_NAND_8 ||
3286          Opcode == ISD::ATOMIC_LOAD_MIN_8 ||
3287          Opcode == ISD::ATOMIC_LOAD_MAX_8 ||
3288          Opcode == ISD::ATOMIC_LOAD_UMIN_8 ||
3289          Opcode == ISD::ATOMIC_LOAD_UMAX_8 ||
3290          Opcode == ISD::ATOMIC_SWAP_8 ||
3291          Opcode == ISD::ATOMIC_LOAD_ADD_16 ||
3292          Opcode == ISD::ATOMIC_LOAD_SUB_16 ||
3293          Opcode == ISD::ATOMIC_LOAD_AND_16 ||
3294          Opcode == ISD::ATOMIC_LOAD_OR_16 ||
3295          Opcode == ISD::ATOMIC_LOAD_XOR_16 ||
3296          Opcode == ISD::ATOMIC_LOAD_NAND_16 ||
3297          Opcode == ISD::ATOMIC_LOAD_MIN_16 ||
3298          Opcode == ISD::ATOMIC_LOAD_MAX_16 ||
3299          Opcode == ISD::ATOMIC_LOAD_UMIN_16 ||
3300          Opcode == ISD::ATOMIC_LOAD_UMAX_16 ||
3301          Opcode == ISD::ATOMIC_SWAP_16 ||
3302          Opcode == ISD::ATOMIC_LOAD_ADD_32 ||
3303          Opcode == ISD::ATOMIC_LOAD_SUB_32 ||
3304          Opcode == ISD::ATOMIC_LOAD_AND_32 ||
3305          Opcode == ISD::ATOMIC_LOAD_OR_32 ||
3306          Opcode == ISD::ATOMIC_LOAD_XOR_32 ||
3307          Opcode == ISD::ATOMIC_LOAD_NAND_32 ||
3308          Opcode == ISD::ATOMIC_LOAD_MIN_32 ||
3309          Opcode == ISD::ATOMIC_LOAD_MAX_32 ||
3310          Opcode == ISD::ATOMIC_LOAD_UMIN_32 ||
3311          Opcode == ISD::ATOMIC_LOAD_UMAX_32 ||
3312          Opcode == ISD::ATOMIC_SWAP_32 ||
3313          Opcode == ISD::ATOMIC_LOAD_ADD_64 ||
3314          Opcode == ISD::ATOMIC_LOAD_SUB_64 ||
3315          Opcode == ISD::ATOMIC_LOAD_AND_64 ||
3316          Opcode == ISD::ATOMIC_LOAD_OR_64 ||
3317          Opcode == ISD::ATOMIC_LOAD_XOR_64 ||
3318          Opcode == ISD::ATOMIC_LOAD_NAND_64 ||
3319          Opcode == ISD::ATOMIC_LOAD_MIN_64 ||
3320          Opcode == ISD::ATOMIC_LOAD_MAX_64 ||
3321          Opcode == ISD::ATOMIC_LOAD_UMIN_64 ||
3322          Opcode == ISD::ATOMIC_LOAD_UMAX_64 ||
3323          Opcode == ISD::ATOMIC_SWAP_64)        && "Invalid Atomic Op");
3324
3325  MVT VT = Val.getValueType();
3326
3327  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3328    Alignment = getMVTAlignment(VT);
3329
3330  SDVTList VTs = getVTList(VT, MVT::Other);
3331  FoldingSetNodeID ID;
3332  SDValue Ops[] = {Chain, Ptr, Val};
3333  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3334  void* IP = 0;
3335  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3336    return SDValue(E, 0);
3337  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3338  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3339  CSEMap.InsertNode(N, IP);
3340  AllNodes.push_back(N);
3341  return SDValue(N, 0);
3342}
3343
3344/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3345/// Allowed to return something different (and simpler) if Simplify is true.
3346SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3347                                     bool Simplify) {
3348  if (Simplify && NumOps == 1)
3349    return Ops[0];
3350
3351  SmallVector<MVT, 4> VTs;
3352  VTs.reserve(NumOps);
3353  for (unsigned i = 0; i < NumOps; ++i)
3354    VTs.push_back(Ops[i].getValueType());
3355  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3356}
3357
3358SDValue
3359SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3360                                  const MVT *VTs, unsigned NumVTs,
3361                                  const SDValue *Ops, unsigned NumOps,
3362                                  MVT MemVT, const Value *srcValue, int SVOff,
3363                                  unsigned Align, bool Vol,
3364                                  bool ReadMem, bool WriteMem) {
3365  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3366                             MemVT, srcValue, SVOff, Align, Vol,
3367                             ReadMem, WriteMem);
3368}
3369
3370SDValue
3371SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3372                                  const SDValue *Ops, unsigned NumOps,
3373                                  MVT MemVT, const Value *srcValue, int SVOff,
3374                                  unsigned Align, bool Vol,
3375                                  bool ReadMem, bool WriteMem) {
3376  // Memoize the node unless it returns a flag.
3377  MemIntrinsicSDNode *N;
3378  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3379    FoldingSetNodeID ID;
3380    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3381    void *IP = 0;
3382    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3383      return SDValue(E, 0);
3384
3385    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3386    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3387                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3388    CSEMap.InsertNode(N, IP);
3389  } else {
3390    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3391    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3392                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3393  }
3394  AllNodes.push_back(N);
3395  return SDValue(N, 0);
3396}
3397
3398SDValue
3399SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3400                      bool IsInreg, SDVTList VTs,
3401                      const SDValue *Operands, unsigned NumOperands) {
3402  // Do not include isTailCall in the folding set profile.
3403  FoldingSetNodeID ID;
3404  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3405  ID.AddInteger(CallingConv);
3406  ID.AddInteger(IsVarArgs);
3407  void *IP = 0;
3408  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3409    // Instead of including isTailCall in the folding set, we just
3410    // set the flag of the existing node.
3411    if (!IsTailCall)
3412      cast<CallSDNode>(E)->setNotTailCall();
3413    return SDValue(E, 0);
3414  }
3415  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3416  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3417                     VTs, Operands, NumOperands);
3418  CSEMap.InsertNode(N, IP);
3419  AllNodes.push_back(N);
3420  return SDValue(N, 0);
3421}
3422
3423SDValue
3424SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3425                      MVT VT, SDValue Chain,
3426                      SDValue Ptr, SDValue Offset,
3427                      const Value *SV, int SVOffset, MVT EVT,
3428                      bool isVolatile, unsigned Alignment) {
3429  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3430    Alignment = getMVTAlignment(VT);
3431
3432  if (VT == EVT) {
3433    ExtType = ISD::NON_EXTLOAD;
3434  } else if (ExtType == ISD::NON_EXTLOAD) {
3435    assert(VT == EVT && "Non-extending load from different memory type!");
3436  } else {
3437    // Extending load.
3438    if (VT.isVector())
3439      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3440             "Invalid vector extload!");
3441    else
3442      assert(EVT.bitsLT(VT) &&
3443             "Should only be an extending load, not truncating!");
3444    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3445           "Cannot sign/zero extend a FP/Vector load!");
3446    assert(VT.isInteger() == EVT.isInteger() &&
3447           "Cannot convert from FP to Int or Int -> FP!");
3448  }
3449
3450  bool Indexed = AM != ISD::UNINDEXED;
3451  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3452         "Unindexed load with an offset!");
3453
3454  SDVTList VTs = Indexed ?
3455    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3456  SDValue Ops[] = { Chain, Ptr, Offset };
3457  FoldingSetNodeID ID;
3458  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3459  ID.AddInteger(AM);
3460  ID.AddInteger(ExtType);
3461  ID.AddInteger(EVT.getRawBits());
3462  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3463  void *IP = 0;
3464  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3465    return SDValue(E, 0);
3466  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3467  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3468                     Alignment, isVolatile);
3469  CSEMap.InsertNode(N, IP);
3470  AllNodes.push_back(N);
3471  return SDValue(N, 0);
3472}
3473
3474SDValue SelectionDAG::getLoad(MVT VT,
3475                              SDValue Chain, SDValue Ptr,
3476                              const Value *SV, int SVOffset,
3477                              bool isVolatile, unsigned Alignment) {
3478  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3479  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3480                 SV, SVOffset, VT, isVolatile, Alignment);
3481}
3482
3483SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3484                                 SDValue Chain, SDValue Ptr,
3485                                 const Value *SV,
3486                                 int SVOffset, MVT EVT,
3487                                 bool isVolatile, unsigned Alignment) {
3488  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3489  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3490                 SV, SVOffset, EVT, isVolatile, Alignment);
3491}
3492
3493SDValue
3494SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3495                             SDValue Offset, ISD::MemIndexedMode AM) {
3496  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3497  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3498         "Load is already a indexed load!");
3499  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3500                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3501                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3502                 LD->isVolatile(), LD->getAlignment());
3503}
3504
3505SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3506                               SDValue Ptr, const Value *SV, int SVOffset,
3507                               bool isVolatile, unsigned Alignment) {
3508  MVT VT = Val.getValueType();
3509
3510  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3511    Alignment = getMVTAlignment(VT);
3512
3513  SDVTList VTs = getVTList(MVT::Other);
3514  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3515  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3516  FoldingSetNodeID ID;
3517  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3518  ID.AddInteger(ISD::UNINDEXED);
3519  ID.AddInteger(false);
3520  ID.AddInteger(VT.getRawBits());
3521  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3522  void *IP = 0;
3523  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3524    return SDValue(E, 0);
3525  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3526  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3527                      VT, SV, SVOffset, Alignment, isVolatile);
3528  CSEMap.InsertNode(N, IP);
3529  AllNodes.push_back(N);
3530  return SDValue(N, 0);
3531}
3532
3533SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3534                                    SDValue Ptr, const Value *SV,
3535                                    int SVOffset, MVT SVT,
3536                                    bool isVolatile, unsigned Alignment) {
3537  MVT VT = Val.getValueType();
3538
3539  if (VT == SVT)
3540    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3541
3542  assert(VT.bitsGT(SVT) && "Not a truncation?");
3543  assert(VT.isInteger() == SVT.isInteger() &&
3544         "Can't do FP-INT conversion!");
3545
3546  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3547    Alignment = getMVTAlignment(VT);
3548
3549  SDVTList VTs = getVTList(MVT::Other);
3550  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3551  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3552  FoldingSetNodeID ID;
3553  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3554  ID.AddInteger(ISD::UNINDEXED);
3555  ID.AddInteger(1);
3556  ID.AddInteger(SVT.getRawBits());
3557  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3558  void *IP = 0;
3559  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3560    return SDValue(E, 0);
3561  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3562  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3563                      SVT, SV, SVOffset, Alignment, isVolatile);
3564  CSEMap.InsertNode(N, IP);
3565  AllNodes.push_back(N);
3566  return SDValue(N, 0);
3567}
3568
3569SDValue
3570SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3571                              SDValue Offset, ISD::MemIndexedMode AM) {
3572  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3573  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3574         "Store is already a indexed store!");
3575  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3576  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3577  FoldingSetNodeID ID;
3578  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3579  ID.AddInteger(AM);
3580  ID.AddInteger(ST->isTruncatingStore());
3581  ID.AddInteger(ST->getMemoryVT().getRawBits());
3582  ID.AddInteger(ST->getRawFlags());
3583  void *IP = 0;
3584  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3585    return SDValue(E, 0);
3586  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3587  new (N) StoreSDNode(Ops, VTs, AM,
3588                      ST->isTruncatingStore(), ST->getMemoryVT(),
3589                      ST->getSrcValue(), ST->getSrcValueOffset(),
3590                      ST->getAlignment(), ST->isVolatile());
3591  CSEMap.InsertNode(N, IP);
3592  AllNodes.push_back(N);
3593  return SDValue(N, 0);
3594}
3595
3596SDValue SelectionDAG::getVAArg(MVT VT,
3597                               SDValue Chain, SDValue Ptr,
3598                               SDValue SV) {
3599  SDValue Ops[] = { Chain, Ptr, SV };
3600  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3601}
3602
3603SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3604                              const SDUse *Ops, unsigned NumOps) {
3605  switch (NumOps) {
3606  case 0: return getNode(Opcode, VT);
3607  case 1: return getNode(Opcode, VT, Ops[0]);
3608  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3609  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3610  default: break;
3611  }
3612
3613  // Copy from an SDUse array into an SDValue array for use with
3614  // the regular getNode logic.
3615  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3616  return getNode(Opcode, VT, &NewOps[0], NumOps);
3617}
3618
3619SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3620                              const SDValue *Ops, unsigned NumOps) {
3621  switch (NumOps) {
3622  case 0: return getNode(Opcode, VT);
3623  case 1: return getNode(Opcode, VT, Ops[0]);
3624  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3625  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3626  default: break;
3627  }
3628
3629  switch (Opcode) {
3630  default: break;
3631  case ISD::SELECT_CC: {
3632    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3633    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3634           "LHS and RHS of condition must have same type!");
3635    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3636           "True and False arms of SelectCC must have same type!");
3637    assert(Ops[2].getValueType() == VT &&
3638           "select_cc node must be of same type as true and false value!");
3639    break;
3640  }
3641  case ISD::BR_CC: {
3642    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3643    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3644           "LHS/RHS of comparison should match types!");
3645    break;
3646  }
3647  }
3648
3649  // Memoize nodes.
3650  SDNode *N;
3651  SDVTList VTs = getVTList(VT);
3652  if (VT != MVT::Flag) {
3653    FoldingSetNodeID ID;
3654    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3655    void *IP = 0;
3656    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3657      return SDValue(E, 0);
3658    N = NodeAllocator.Allocate<SDNode>();
3659    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3660    CSEMap.InsertNode(N, IP);
3661  } else {
3662    N = NodeAllocator.Allocate<SDNode>();
3663    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3664  }
3665  AllNodes.push_back(N);
3666#ifndef NDEBUG
3667  VerifyNode(N);
3668#endif
3669  return SDValue(N, 0);
3670}
3671
3672SDValue SelectionDAG::getNode(unsigned Opcode,
3673                              const std::vector<MVT> &ResultTys,
3674                              const SDValue *Ops, unsigned NumOps) {
3675  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3676                 Ops, NumOps);
3677}
3678
3679SDValue SelectionDAG::getNode(unsigned Opcode,
3680                              const MVT *VTs, unsigned NumVTs,
3681                              const SDValue *Ops, unsigned NumOps) {
3682  if (NumVTs == 1)
3683    return getNode(Opcode, VTs[0], Ops, NumOps);
3684  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3685}
3686
3687SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3688                              const SDValue *Ops, unsigned NumOps) {
3689  if (VTList.NumVTs == 1)
3690    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3691
3692  switch (Opcode) {
3693  // FIXME: figure out how to safely handle things like
3694  // int foo(int x) { return 1 << (x & 255); }
3695  // int bar() { return foo(256); }
3696#if 0
3697  case ISD::SRA_PARTS:
3698  case ISD::SRL_PARTS:
3699  case ISD::SHL_PARTS:
3700    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3701        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3702      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3703    else if (N3.getOpcode() == ISD::AND)
3704      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3705        // If the and is only masking out bits that cannot effect the shift,
3706        // eliminate the and.
3707        unsigned NumBits = VT.getSizeInBits()*2;
3708        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3709          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3710      }
3711    break;
3712#endif
3713  }
3714
3715  // Memoize the node unless it returns a flag.
3716  SDNode *N;
3717  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3718    FoldingSetNodeID ID;
3719    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3720    void *IP = 0;
3721    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3722      return SDValue(E, 0);
3723    if (NumOps == 1) {
3724      N = NodeAllocator.Allocate<UnarySDNode>();
3725      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3726    } else if (NumOps == 2) {
3727      N = NodeAllocator.Allocate<BinarySDNode>();
3728      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3729    } else if (NumOps == 3) {
3730      N = NodeAllocator.Allocate<TernarySDNode>();
3731      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3732    } else {
3733      N = NodeAllocator.Allocate<SDNode>();
3734      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3735    }
3736    CSEMap.InsertNode(N, IP);
3737  } else {
3738    if (NumOps == 1) {
3739      N = NodeAllocator.Allocate<UnarySDNode>();
3740      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3741    } else if (NumOps == 2) {
3742      N = NodeAllocator.Allocate<BinarySDNode>();
3743      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3744    } else if (NumOps == 3) {
3745      N = NodeAllocator.Allocate<TernarySDNode>();
3746      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3747    } else {
3748      N = NodeAllocator.Allocate<SDNode>();
3749      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3750    }
3751  }
3752  AllNodes.push_back(N);
3753#ifndef NDEBUG
3754  VerifyNode(N);
3755#endif
3756  return SDValue(N, 0);
3757}
3758
3759SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3760  return getNode(Opcode, VTList, 0, 0);
3761}
3762
3763SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3764                                SDValue N1) {
3765  SDValue Ops[] = { N1 };
3766  return getNode(Opcode, VTList, Ops, 1);
3767}
3768
3769SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3770                              SDValue N1, SDValue N2) {
3771  SDValue Ops[] = { N1, N2 };
3772  return getNode(Opcode, VTList, Ops, 2);
3773}
3774
3775SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3776                              SDValue N1, SDValue N2, SDValue N3) {
3777  SDValue Ops[] = { N1, N2, N3 };
3778  return getNode(Opcode, VTList, Ops, 3);
3779}
3780
3781SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3782                              SDValue N1, SDValue N2, SDValue N3,
3783                              SDValue N4) {
3784  SDValue Ops[] = { N1, N2, N3, N4 };
3785  return getNode(Opcode, VTList, Ops, 4);
3786}
3787
3788SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3789                              SDValue N1, SDValue N2, SDValue N3,
3790                              SDValue N4, SDValue N5) {
3791  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3792  return getNode(Opcode, VTList, Ops, 5);
3793}
3794
3795SDVTList SelectionDAG::getVTList(MVT VT) {
3796  return makeVTList(SDNode::getValueTypeList(VT), 1);
3797}
3798
3799SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3800  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3801       E = VTList.rend(); I != E; ++I)
3802    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3803      return *I;
3804
3805  MVT *Array = Allocator.Allocate<MVT>(2);
3806  Array[0] = VT1;
3807  Array[1] = VT2;
3808  SDVTList Result = makeVTList(Array, 2);
3809  VTList.push_back(Result);
3810  return Result;
3811}
3812
3813SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3814  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3815       E = VTList.rend(); I != E; ++I)
3816    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3817                          I->VTs[2] == VT3)
3818      return *I;
3819
3820  MVT *Array = Allocator.Allocate<MVT>(3);
3821  Array[0] = VT1;
3822  Array[1] = VT2;
3823  Array[2] = VT3;
3824  SDVTList Result = makeVTList(Array, 3);
3825  VTList.push_back(Result);
3826  return Result;
3827}
3828
3829SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3830  switch (NumVTs) {
3831    case 0: assert(0 && "Cannot have nodes without results!");
3832    case 1: return getVTList(VTs[0]);
3833    case 2: return getVTList(VTs[0], VTs[1]);
3834    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3835    default: break;
3836  }
3837
3838  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3839       E = VTList.rend(); I != E; ++I) {
3840    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3841      continue;
3842
3843    bool NoMatch = false;
3844    for (unsigned i = 2; i != NumVTs; ++i)
3845      if (VTs[i] != I->VTs[i]) {
3846        NoMatch = true;
3847        break;
3848      }
3849    if (!NoMatch)
3850      return *I;
3851  }
3852
3853  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3854  std::copy(VTs, VTs+NumVTs, Array);
3855  SDVTList Result = makeVTList(Array, NumVTs);
3856  VTList.push_back(Result);
3857  return Result;
3858}
3859
3860
3861/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3862/// specified operands.  If the resultant node already exists in the DAG,
3863/// this does not modify the specified node, instead it returns the node that
3864/// already exists.  If the resultant node does not exist in the DAG, the
3865/// input node is returned.  As a degenerate case, if you specify the same
3866/// input operands as the node already has, the input node is returned.
3867SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3868  SDNode *N = InN.getNode();
3869  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3870
3871  // Check to see if there is no change.
3872  if (Op == N->getOperand(0)) return InN;
3873
3874  // See if the modified node already exists.
3875  void *InsertPos = 0;
3876  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3877    return SDValue(Existing, InN.getResNo());
3878
3879  // Nope it doesn't.  Remove the node from its current place in the maps.
3880  if (InsertPos)
3881    if (!RemoveNodeFromCSEMaps(N))
3882      InsertPos = 0;
3883
3884  // Now we update the operands.
3885  N->OperandList[0].getVal()->removeUser(0, N);
3886  N->OperandList[0] = Op;
3887  N->OperandList[0].setUser(N);
3888  Op.getNode()->addUser(0, N);
3889
3890  // If this gets put into a CSE map, add it.
3891  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3892  return InN;
3893}
3894
3895SDValue SelectionDAG::
3896UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3897  SDNode *N = InN.getNode();
3898  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3899
3900  // Check to see if there is no change.
3901  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3902    return InN;   // No operands changed, just return the input node.
3903
3904  // See if the modified node already exists.
3905  void *InsertPos = 0;
3906  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3907    return SDValue(Existing, InN.getResNo());
3908
3909  // Nope it doesn't.  Remove the node from its current place in the maps.
3910  if (InsertPos)
3911    if (!RemoveNodeFromCSEMaps(N))
3912      InsertPos = 0;
3913
3914  // Now we update the operands.
3915  if (N->OperandList[0] != Op1) {
3916    N->OperandList[0].getVal()->removeUser(0, N);
3917    N->OperandList[0] = Op1;
3918    N->OperandList[0].setUser(N);
3919    Op1.getNode()->addUser(0, N);
3920  }
3921  if (N->OperandList[1] != Op2) {
3922    N->OperandList[1].getVal()->removeUser(1, N);
3923    N->OperandList[1] = Op2;
3924    N->OperandList[1].setUser(N);
3925    Op2.getNode()->addUser(1, N);
3926  }
3927
3928  // If this gets put into a CSE map, add it.
3929  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3930  return InN;
3931}
3932
3933SDValue SelectionDAG::
3934UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3935  SDValue Ops[] = { Op1, Op2, Op3 };
3936  return UpdateNodeOperands(N, Ops, 3);
3937}
3938
3939SDValue SelectionDAG::
3940UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3941                   SDValue Op3, SDValue Op4) {
3942  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3943  return UpdateNodeOperands(N, Ops, 4);
3944}
3945
3946SDValue SelectionDAG::
3947UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3948                   SDValue Op3, SDValue Op4, SDValue Op5) {
3949  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3950  return UpdateNodeOperands(N, Ops, 5);
3951}
3952
3953SDValue SelectionDAG::
3954UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3955  SDNode *N = InN.getNode();
3956  assert(N->getNumOperands() == NumOps &&
3957         "Update with wrong number of operands");
3958
3959  // Check to see if there is no change.
3960  bool AnyChange = false;
3961  for (unsigned i = 0; i != NumOps; ++i) {
3962    if (Ops[i] != N->getOperand(i)) {
3963      AnyChange = true;
3964      break;
3965    }
3966  }
3967
3968  // No operands changed, just return the input node.
3969  if (!AnyChange) return InN;
3970
3971  // See if the modified node already exists.
3972  void *InsertPos = 0;
3973  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3974    return SDValue(Existing, InN.getResNo());
3975
3976  // Nope it doesn't.  Remove the node from its current place in the maps.
3977  if (InsertPos)
3978    if (!RemoveNodeFromCSEMaps(N))
3979      InsertPos = 0;
3980
3981  // Now we update the operands.
3982  for (unsigned i = 0; i != NumOps; ++i) {
3983    if (N->OperandList[i] != Ops[i]) {
3984      N->OperandList[i].getVal()->removeUser(i, N);
3985      N->OperandList[i] = Ops[i];
3986      N->OperandList[i].setUser(N);
3987      Ops[i].getNode()->addUser(i, N);
3988    }
3989  }
3990
3991  // If this gets put into a CSE map, add it.
3992  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3993  return InN;
3994}
3995
3996/// DropOperands - Release the operands and set this node to have
3997/// zero operands.
3998void SDNode::DropOperands() {
3999  // Unlike the code in MorphNodeTo that does this, we don't need to
4000  // watch for dead nodes here.
4001  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
4002    I->getVal()->removeUser(std::distance(op_begin(), I), this);
4003
4004  NumOperands = 0;
4005}
4006
4007/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4008/// machine opcode.
4009///
4010SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4011                                   MVT VT) {
4012  SDVTList VTs = getVTList(VT);
4013  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4014}
4015
4016SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4017                                   MVT VT, SDValue Op1) {
4018  SDVTList VTs = getVTList(VT);
4019  SDValue Ops[] = { Op1 };
4020  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4021}
4022
4023SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4024                                   MVT VT, SDValue Op1,
4025                                   SDValue Op2) {
4026  SDVTList VTs = getVTList(VT);
4027  SDValue Ops[] = { Op1, Op2 };
4028  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4029}
4030
4031SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4032                                   MVT VT, SDValue Op1,
4033                                   SDValue Op2, SDValue Op3) {
4034  SDVTList VTs = getVTList(VT);
4035  SDValue Ops[] = { Op1, Op2, Op3 };
4036  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4037}
4038
4039SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4040                                   MVT VT, const SDValue *Ops,
4041                                   unsigned NumOps) {
4042  SDVTList VTs = getVTList(VT);
4043  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4044}
4045
4046SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4047                                   MVT VT1, MVT VT2, const SDValue *Ops,
4048                                   unsigned NumOps) {
4049  SDVTList VTs = getVTList(VT1, VT2);
4050  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4051}
4052
4053SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4054                                   MVT VT1, MVT VT2) {
4055  SDVTList VTs = getVTList(VT1, VT2);
4056  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4057}
4058
4059SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4060                                   MVT VT1, MVT VT2, MVT VT3,
4061                                   const SDValue *Ops, unsigned NumOps) {
4062  SDVTList VTs = getVTList(VT1, VT2, VT3);
4063  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4064}
4065
4066SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4067                                   MVT VT1, MVT VT2,
4068                                   SDValue Op1) {
4069  SDVTList VTs = getVTList(VT1, VT2);
4070  SDValue Ops[] = { Op1 };
4071  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4072}
4073
4074SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4075                                   MVT VT1, MVT VT2,
4076                                   SDValue Op1, SDValue Op2) {
4077  SDVTList VTs = getVTList(VT1, VT2);
4078  SDValue Ops[] = { Op1, Op2 };
4079  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4080}
4081
4082SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4083                                   MVT VT1, MVT VT2,
4084                                   SDValue Op1, SDValue Op2,
4085                                   SDValue Op3) {
4086  SDVTList VTs = getVTList(VT1, VT2);
4087  SDValue Ops[] = { Op1, Op2, Op3 };
4088  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4089}
4090
4091SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4092                                   SDVTList VTs, const SDValue *Ops,
4093                                   unsigned NumOps) {
4094  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4095}
4096
4097SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4098                                  MVT VT) {
4099  SDVTList VTs = getVTList(VT);
4100  return MorphNodeTo(N, Opc, VTs, 0, 0);
4101}
4102
4103SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4104                                  MVT VT, SDValue Op1) {
4105  SDVTList VTs = getVTList(VT);
4106  SDValue Ops[] = { Op1 };
4107  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4108}
4109
4110SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4111                                  MVT VT, SDValue Op1,
4112                                  SDValue Op2) {
4113  SDVTList VTs = getVTList(VT);
4114  SDValue Ops[] = { Op1, Op2 };
4115  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4116}
4117
4118SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4119                                  MVT VT, SDValue Op1,
4120                                  SDValue Op2, SDValue Op3) {
4121  SDVTList VTs = getVTList(VT);
4122  SDValue Ops[] = { Op1, Op2, Op3 };
4123  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4124}
4125
4126SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4127                                  MVT VT, const SDValue *Ops,
4128                                  unsigned NumOps) {
4129  SDVTList VTs = getVTList(VT);
4130  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4131}
4132
4133SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4134                                  MVT VT1, MVT VT2, const SDValue *Ops,
4135                                  unsigned NumOps) {
4136  SDVTList VTs = getVTList(VT1, VT2);
4137  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4138}
4139
4140SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4141                                  MVT VT1, MVT VT2) {
4142  SDVTList VTs = getVTList(VT1, VT2);
4143  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4144}
4145
4146SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4147                                  MVT VT1, MVT VT2, MVT VT3,
4148                                  const SDValue *Ops, unsigned NumOps) {
4149  SDVTList VTs = getVTList(VT1, VT2, VT3);
4150  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4151}
4152
4153SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4154                                  MVT VT1, MVT VT2,
4155                                  SDValue Op1) {
4156  SDVTList VTs = getVTList(VT1, VT2);
4157  SDValue Ops[] = { Op1 };
4158  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4159}
4160
4161SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4162                                  MVT VT1, MVT VT2,
4163                                  SDValue Op1, SDValue Op2) {
4164  SDVTList VTs = getVTList(VT1, VT2);
4165  SDValue Ops[] = { Op1, Op2 };
4166  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4167}
4168
4169SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4170                                  MVT VT1, MVT VT2,
4171                                  SDValue Op1, SDValue Op2,
4172                                  SDValue Op3) {
4173  SDVTList VTs = getVTList(VT1, VT2);
4174  SDValue Ops[] = { Op1, Op2, Op3 };
4175  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4176}
4177
4178/// MorphNodeTo - These *mutate* the specified node to have the specified
4179/// return type, opcode, and operands.
4180///
4181/// Note that MorphNodeTo returns the resultant node.  If there is already a
4182/// node of the specified opcode and operands, it returns that node instead of
4183/// the current one.
4184///
4185/// Using MorphNodeTo is faster than creating a new node and swapping it in
4186/// with ReplaceAllUsesWith both because it often avoids allocating a new
4187/// node, and because it doesn't require CSE recalculation for any of
4188/// the node's users.
4189///
4190SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4191                                  SDVTList VTs, const SDValue *Ops,
4192                                  unsigned NumOps) {
4193  // If an identical node already exists, use it.
4194  void *IP = 0;
4195  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4196    FoldingSetNodeID ID;
4197    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4198    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4199      return ON;
4200  }
4201
4202  if (!RemoveNodeFromCSEMaps(N))
4203    IP = 0;
4204
4205  // Start the morphing.
4206  N->NodeType = Opc;
4207  N->ValueList = VTs.VTs;
4208  N->NumValues = VTs.NumVTs;
4209
4210  // Clear the operands list, updating used nodes to remove this from their
4211  // use list.  Keep track of any operands that become dead as a result.
4212  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4213  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4214       I != E; ++I) {
4215    SDNode *Used = I->getVal();
4216    Used->removeUser(std::distance(B, I), N);
4217    if (Used->use_empty())
4218      DeadNodeSet.insert(Used);
4219  }
4220
4221  // If NumOps is larger than the # of operands we currently have, reallocate
4222  // the operand list.
4223  if (NumOps > N->NumOperands) {
4224    if (N->OperandsNeedDelete)
4225      delete[] N->OperandList;
4226
4227    if (N->isMachineOpcode()) {
4228      // We're creating a final node that will live unmorphed for the
4229      // remainder of the current SelectionDAG iteration, so we can allocate
4230      // the operands directly out of a pool with no recycling metadata.
4231      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4232      N->OperandsNeedDelete = false;
4233    } else {
4234      N->OperandList = new SDUse[NumOps];
4235      N->OperandsNeedDelete = true;
4236    }
4237  }
4238
4239  // Assign the new operands.
4240  N->NumOperands = NumOps;
4241  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4242    N->OperandList[i] = Ops[i];
4243    N->OperandList[i].setUser(N);
4244    SDNode *ToUse = N->OperandList[i].getVal();
4245    ToUse->addUser(i, N);
4246  }
4247
4248  // Delete any nodes that are still dead after adding the uses for the
4249  // new operands.
4250  SmallVector<SDNode *, 16> DeadNodes;
4251  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4252       E = DeadNodeSet.end(); I != E; ++I)
4253    if ((*I)->use_empty())
4254      DeadNodes.push_back(*I);
4255  RemoveDeadNodes(DeadNodes);
4256
4257  if (IP)
4258    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4259  return N;
4260}
4261
4262
4263/// getTargetNode - These are used for target selectors to create a new node
4264/// with specified return type(s), target opcode, and operands.
4265///
4266/// Note that getTargetNode returns the resultant node.  If there is already a
4267/// node of the specified opcode and operands, it returns that node instead of
4268/// the current one.
4269SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4270  return getNode(~Opcode, VT).getNode();
4271}
4272SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4273  return getNode(~Opcode, VT, Op1).getNode();
4274}
4275SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4276                                    SDValue Op1, SDValue Op2) {
4277  return getNode(~Opcode, VT, Op1, Op2).getNode();
4278}
4279SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4280                                    SDValue Op1, SDValue Op2,
4281                                    SDValue Op3) {
4282  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4283}
4284SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4285                                    const SDValue *Ops, unsigned NumOps) {
4286  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4287}
4288SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4289  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4290  SDValue Op;
4291  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4292}
4293SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4294                                    MVT VT2, SDValue Op1) {
4295  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4296  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4297}
4298SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4299                                    MVT VT2, SDValue Op1,
4300                                    SDValue Op2) {
4301  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4302  SDValue Ops[] = { Op1, Op2 };
4303  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4304}
4305SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4306                                    MVT VT2, SDValue Op1,
4307                                    SDValue Op2, SDValue Op3) {
4308  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4309  SDValue Ops[] = { Op1, Op2, Op3 };
4310  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4311}
4312SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4313                                    const SDValue *Ops, unsigned NumOps) {
4314  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4315  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4316}
4317SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4318                                    SDValue Op1, SDValue Op2) {
4319  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4320  SDValue Ops[] = { Op1, Op2 };
4321  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4322}
4323SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4324                                    SDValue Op1, SDValue Op2,
4325                                    SDValue Op3) {
4326  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4327  SDValue Ops[] = { Op1, Op2, Op3 };
4328  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4329}
4330SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4331                                    const SDValue *Ops, unsigned NumOps) {
4332  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4333  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4334}
4335SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4336                                    MVT VT2, MVT VT3, MVT VT4,
4337                                    const SDValue *Ops, unsigned NumOps) {
4338  std::vector<MVT> VTList;
4339  VTList.push_back(VT1);
4340  VTList.push_back(VT2);
4341  VTList.push_back(VT3);
4342  VTList.push_back(VT4);
4343  const MVT *VTs = getNodeValueTypes(VTList);
4344  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4345}
4346SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4347                                    const std::vector<MVT> &ResultTys,
4348                                    const SDValue *Ops, unsigned NumOps) {
4349  const MVT *VTs = getNodeValueTypes(ResultTys);
4350  return getNode(~Opcode, VTs, ResultTys.size(),
4351                 Ops, NumOps).getNode();
4352}
4353
4354/// getNodeIfExists - Get the specified node if it's already available, or
4355/// else return NULL.
4356SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4357                                      const SDValue *Ops, unsigned NumOps) {
4358  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4359    FoldingSetNodeID ID;
4360    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4361    void *IP = 0;
4362    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4363      return E;
4364  }
4365  return NULL;
4366}
4367
4368
4369/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4370/// This can cause recursive merging of nodes in the DAG.
4371///
4372/// This version assumes From has a single result value.
4373///
4374void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4375                                      DAGUpdateListener *UpdateListener) {
4376  SDNode *From = FromN.getNode();
4377  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4378         "Cannot replace with this method!");
4379  assert(From != To.getNode() && "Cannot replace uses of with self");
4380
4381  while (!From->use_empty()) {
4382    SDNode::use_iterator UI = From->use_begin();
4383    SDNode *U = *UI;
4384
4385    // This node is about to morph, remove its old self from the CSE maps.
4386    RemoveNodeFromCSEMaps(U);
4387    int operandNum = 0;
4388    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4389         I != E; ++I, ++operandNum)
4390      if (I->getVal() == From) {
4391        From->removeUser(operandNum, U);
4392        *I = To;
4393        I->setUser(U);
4394        To.getNode()->addUser(operandNum, U);
4395      }
4396
4397    // Now that we have modified U, add it back to the CSE maps.  If it already
4398    // exists there, recursively merge the results together.
4399    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4400      ReplaceAllUsesWith(U, Existing, UpdateListener);
4401      // U is now dead.  Inform the listener if it exists and delete it.
4402      if (UpdateListener)
4403        UpdateListener->NodeDeleted(U, Existing);
4404      DeleteNodeNotInCSEMaps(U);
4405    } else {
4406      // If the node doesn't already exist, we updated it.  Inform a listener if
4407      // it exists.
4408      if (UpdateListener)
4409        UpdateListener->NodeUpdated(U);
4410    }
4411  }
4412}
4413
4414/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4415/// This can cause recursive merging of nodes in the DAG.
4416///
4417/// This version assumes From/To have matching types and numbers of result
4418/// values.
4419///
4420void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4421                                      DAGUpdateListener *UpdateListener) {
4422  assert(From->getVTList().VTs == To->getVTList().VTs &&
4423         From->getNumValues() == To->getNumValues() &&
4424         "Cannot use this version of ReplaceAllUsesWith!");
4425
4426  // Handle the trivial case.
4427  if (From == To)
4428    return;
4429
4430  while (!From->use_empty()) {
4431    SDNode::use_iterator UI = From->use_begin();
4432    SDNode *U = *UI;
4433
4434    // This node is about to morph, remove its old self from the CSE maps.
4435    RemoveNodeFromCSEMaps(U);
4436    int operandNum = 0;
4437    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4438         I != E; ++I, ++operandNum)
4439      if (I->getVal() == From) {
4440        From->removeUser(operandNum, U);
4441        I->getSDValue().setNode(To);
4442        To->addUser(operandNum, U);
4443      }
4444
4445    // Now that we have modified U, add it back to the CSE maps.  If it already
4446    // exists there, recursively merge the results together.
4447    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4448      ReplaceAllUsesWith(U, Existing, UpdateListener);
4449      // U is now dead.  Inform the listener if it exists and delete it.
4450      if (UpdateListener)
4451        UpdateListener->NodeDeleted(U, Existing);
4452      DeleteNodeNotInCSEMaps(U);
4453    } else {
4454      // If the node doesn't already exist, we updated it.  Inform a listener if
4455      // it exists.
4456      if (UpdateListener)
4457        UpdateListener->NodeUpdated(U);
4458    }
4459  }
4460}
4461
4462/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4463/// This can cause recursive merging of nodes in the DAG.
4464///
4465/// This version can replace From with any result values.  To must match the
4466/// number and types of values returned by From.
4467void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4468                                      const SDValue *To,
4469                                      DAGUpdateListener *UpdateListener) {
4470  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4471    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4472
4473  while (!From->use_empty()) {
4474    SDNode::use_iterator UI = From->use_begin();
4475    SDNode *U = *UI;
4476
4477    // This node is about to morph, remove its old self from the CSE maps.
4478    RemoveNodeFromCSEMaps(U);
4479    int operandNum = 0;
4480    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4481         I != E; ++I, ++operandNum)
4482      if (I->getVal() == From) {
4483        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4484        From->removeUser(operandNum, U);
4485        *I = ToOp;
4486        I->setUser(U);
4487        ToOp.getNode()->addUser(operandNum, U);
4488      }
4489
4490    // Now that we have modified U, add it back to the CSE maps.  If it already
4491    // exists there, recursively merge the results together.
4492    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4493      ReplaceAllUsesWith(U, Existing, UpdateListener);
4494      // U is now dead.  Inform the listener if it exists and delete it.
4495      if (UpdateListener)
4496        UpdateListener->NodeDeleted(U, Existing);
4497      DeleteNodeNotInCSEMaps(U);
4498    } else {
4499      // If the node doesn't already exist, we updated it.  Inform a listener if
4500      // it exists.
4501      if (UpdateListener)
4502        UpdateListener->NodeUpdated(U);
4503    }
4504  }
4505}
4506
4507/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4508/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4509/// handled the same way as for ReplaceAllUsesWith.
4510void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4511                                             DAGUpdateListener *UpdateListener){
4512  // Handle the really simple, really trivial case efficiently.
4513  if (From == To) return;
4514
4515  // Handle the simple, trivial, case efficiently.
4516  if (From.getNode()->getNumValues() == 1) {
4517    ReplaceAllUsesWith(From, To, UpdateListener);
4518    return;
4519  }
4520
4521  // Get all of the users of From.getNode().  We want these in a nice,
4522  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4523  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4524
4525  while (!Users.empty()) {
4526    // We know that this user uses some value of From.  If it is the right
4527    // value, update it.
4528    SDNode *User = Users.back();
4529    Users.pop_back();
4530
4531    // Scan for an operand that matches From.
4532    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4533    for (; Op != E; ++Op)
4534      if (*Op == From) break;
4535
4536    // If there are no matches, the user must use some other result of From.
4537    if (Op == E) continue;
4538
4539    // Okay, we know this user needs to be updated.  Remove its old self
4540    // from the CSE maps.
4541    RemoveNodeFromCSEMaps(User);
4542
4543    // Update all operands that match "From" in case there are multiple uses.
4544    for (; Op != E; ++Op) {
4545      if (*Op == From) {
4546        From.getNode()->removeUser(Op-User->op_begin(), User);
4547        *Op = To;
4548        Op->setUser(User);
4549        To.getNode()->addUser(Op-User->op_begin(), User);
4550      }
4551    }
4552
4553    // Now that we have modified User, add it back to the CSE maps.  If it
4554    // already exists there, recursively merge the results together.
4555    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4556    if (!Existing) {
4557      if (UpdateListener) UpdateListener->NodeUpdated(User);
4558      continue;  // Continue on to next user.
4559    }
4560
4561    // If there was already an existing matching node, use ReplaceAllUsesWith
4562    // to replace the dead one with the existing one.  This can cause
4563    // recursive merging of other unrelated nodes down the line.
4564    ReplaceAllUsesWith(User, Existing, UpdateListener);
4565
4566    // User is now dead.  Notify a listener if present.
4567    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4568    DeleteNodeNotInCSEMaps(User);
4569  }
4570}
4571
4572/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4573/// uses of other values produced by From.getVal() alone.  The same value may
4574/// appear in both the From and To list.  The Deleted vector is
4575/// handled the same way as for ReplaceAllUsesWith.
4576void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4577                                              const SDValue *To,
4578                                              unsigned Num,
4579                                              DAGUpdateListener *UpdateListener){
4580  // Handle the simple, trivial case efficiently.
4581  if (Num == 1)
4582    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4583
4584  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4585  for (unsigned i = 0; i != Num; ++i)
4586    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4587         E = From[i].getNode()->use_end(); UI != E; ++UI)
4588      Users.push_back(std::make_pair(*UI, i));
4589
4590  while (!Users.empty()) {
4591    // We know that this user uses some value of From.  If it is the right
4592    // value, update it.
4593    SDNode *User = Users.back().first;
4594    unsigned i = Users.back().second;
4595    Users.pop_back();
4596
4597    // Scan for an operand that matches From.
4598    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4599    for (; Op != E; ++Op)
4600      if (*Op == From[i]) break;
4601
4602    // If there are no matches, the user must use some other result of From.
4603    if (Op == E) continue;
4604
4605    // Okay, we know this user needs to be updated.  Remove its old self
4606    // from the CSE maps.
4607    RemoveNodeFromCSEMaps(User);
4608
4609    // Update all operands that match "From" in case there are multiple uses.
4610    for (; Op != E; ++Op) {
4611      if (*Op == From[i]) {
4612        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4613        *Op = To[i];
4614        Op->setUser(User);
4615        To[i].getNode()->addUser(Op-User->op_begin(), User);
4616      }
4617    }
4618
4619    // Now that we have modified User, add it back to the CSE maps.  If it
4620    // already exists there, recursively merge the results together.
4621    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4622    if (!Existing) {
4623      if (UpdateListener) UpdateListener->NodeUpdated(User);
4624      continue;  // Continue on to next user.
4625    }
4626
4627    // If there was already an existing matching node, use ReplaceAllUsesWith
4628    // to replace the dead one with the existing one.  This can cause
4629    // recursive merging of other unrelated nodes down the line.
4630    ReplaceAllUsesWith(User, Existing, UpdateListener);
4631
4632    // User is now dead.  Notify a listener if present.
4633    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4634    DeleteNodeNotInCSEMaps(User);
4635  }
4636}
4637
4638/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4639/// based on their topological order. It returns the maximum id and a vector
4640/// of the SDNodes* in assigned order by reference.
4641unsigned SelectionDAG::AssignTopologicalOrder() {
4642
4643  unsigned DAGSize = 0;
4644
4645  // SortedPos tracks the progress of the algorithm. Nodes before it are
4646  // sorted, nodes after it are unsorted. When the algorithm completes
4647  // it is at the end of the list.
4648  allnodes_iterator SortedPos = allnodes_begin();
4649
4650  // Visit all the nodes. Move nodes with no operands to the front of
4651  // the list immediately. Annotate nodes that do have operands with their
4652  // operand count. Before we do this, the Node Id fields of the nodes
4653  // may contain arbitrary values. After, the Node Id fields for nodes
4654  // before SortedPos will contain the topological sort index, and the
4655  // Node Id fields for nodes At SortedPos and after will contain the
4656  // count of outstanding operands.
4657  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4658    SDNode *N = I++;
4659    unsigned Degree = N->getNumOperands();
4660    if (Degree == 0) {
4661      // A node with no uses, add it to the result array immediately.
4662      N->setNodeId(DAGSize++);
4663      allnodes_iterator Q = N;
4664      if (Q != SortedPos)
4665        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4666      ++SortedPos;
4667    } else {
4668      // Temporarily use the Node Id as scratch space for the degree count.
4669      N->setNodeId(Degree);
4670    }
4671  }
4672
4673  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4674  // such that by the time the end is reached all nodes will be sorted.
4675  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4676    SDNode *N = I;
4677    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4678         UI != UE; ++UI) {
4679      SDNode *P = *UI;
4680      unsigned Degree = P->getNodeId();
4681      --Degree;
4682      if (Degree == 0) {
4683        // All of P's operands are sorted, so P may sorted now.
4684        P->setNodeId(DAGSize++);
4685        if (P != SortedPos)
4686          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4687        ++SortedPos;
4688      } else {
4689        // Update P's outstanding operand count.
4690        P->setNodeId(Degree);
4691      }
4692    }
4693  }
4694
4695  assert(SortedPos == AllNodes.end() &&
4696         "Topological sort incomplete!");
4697  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4698         "First node in topological sort is not the entry token!");
4699  assert(AllNodes.front().getNodeId() == 0 &&
4700         "First node in topological sort has non-zero id!");
4701  assert(AllNodes.front().getNumOperands() == 0 &&
4702         "First node in topological sort has operands!");
4703  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4704         "Last node in topologic sort has unexpected id!");
4705  assert(AllNodes.back().use_empty() &&
4706         "Last node in topologic sort has users!");
4707  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4708  return DAGSize;
4709}
4710
4711
4712
4713//===----------------------------------------------------------------------===//
4714//                              SDNode Class
4715//===----------------------------------------------------------------------===//
4716
4717// Out-of-line virtual method to give class a home.
4718void SDNode::ANCHOR() {}
4719void UnarySDNode::ANCHOR() {}
4720void BinarySDNode::ANCHOR() {}
4721void TernarySDNode::ANCHOR() {}
4722void HandleSDNode::ANCHOR() {}
4723void ConstantSDNode::ANCHOR() {}
4724void ConstantFPSDNode::ANCHOR() {}
4725void GlobalAddressSDNode::ANCHOR() {}
4726void FrameIndexSDNode::ANCHOR() {}
4727void JumpTableSDNode::ANCHOR() {}
4728void ConstantPoolSDNode::ANCHOR() {}
4729void BasicBlockSDNode::ANCHOR() {}
4730void SrcValueSDNode::ANCHOR() {}
4731void MemOperandSDNode::ANCHOR() {}
4732void RegisterSDNode::ANCHOR() {}
4733void DbgStopPointSDNode::ANCHOR() {}
4734void LabelSDNode::ANCHOR() {}
4735void ExternalSymbolSDNode::ANCHOR() {}
4736void CondCodeSDNode::ANCHOR() {}
4737void ARG_FLAGSSDNode::ANCHOR() {}
4738void VTSDNode::ANCHOR() {}
4739void MemSDNode::ANCHOR() {}
4740void LoadSDNode::ANCHOR() {}
4741void StoreSDNode::ANCHOR() {}
4742void AtomicSDNode::ANCHOR() {}
4743void MemIntrinsicSDNode::ANCHOR() {}
4744void CallSDNode::ANCHOR() {}
4745void CvtRndSatSDNode::ANCHOR() {}
4746
4747HandleSDNode::~HandleSDNode() {
4748  DropOperands();
4749}
4750
4751GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4752                                         MVT VT, int64_t o)
4753  : SDNode(isa<GlobalVariable>(GA) &&
4754           cast<GlobalVariable>(GA)->isThreadLocal() ?
4755           // Thread Local
4756           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4757           // Non Thread Local
4758           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4759           getSDVTList(VT)), Offset(o) {
4760  TheGlobal = const_cast<GlobalValue*>(GA);
4761}
4762
4763MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4764                     const Value *srcValue, int SVO,
4765                     unsigned alignment, bool vol)
4766 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4767   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4768
4769  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4770  assert(getAlignment() == alignment && "Alignment representation error!");
4771  assert(isVolatile() == vol && "Volatile representation error!");
4772}
4773
4774MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4775                     unsigned NumOps, MVT memvt, const Value *srcValue,
4776                     int SVO, unsigned alignment, bool vol)
4777   : SDNode(Opc, VTs, Ops, NumOps),
4778     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4779     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
4780  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4781  assert(getAlignment() == alignment && "Alignment representation error!");
4782  assert(isVolatile() == vol && "Volatile representation error!");
4783}
4784
4785/// getMemOperand - Return a MachineMemOperand object describing the memory
4786/// reference performed by this memory reference.
4787MachineMemOperand MemSDNode::getMemOperand() const {
4788  int Flags = 0;
4789  if (isa<LoadSDNode>(this))
4790    Flags = MachineMemOperand::MOLoad;
4791  else if (isa<StoreSDNode>(this))
4792    Flags = MachineMemOperand::MOStore;
4793  else if (isa<AtomicSDNode>(this)) {
4794    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4795  }
4796  else {
4797    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4798    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4799    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4800    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4801  }
4802
4803  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4804  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4805
4806  // Check if the memory reference references a frame index
4807  const FrameIndexSDNode *FI =
4808  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4809  if (!getSrcValue() && FI)
4810    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4811                             Flags, 0, Size, getAlignment());
4812  else
4813    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4814                             Size, getAlignment());
4815}
4816
4817/// Profile - Gather unique data for the node.
4818///
4819void SDNode::Profile(FoldingSetNodeID &ID) const {
4820  AddNodeIDNode(ID, this);
4821}
4822
4823/// getValueTypeList - Return a pointer to the specified value type.
4824///
4825const MVT *SDNode::getValueTypeList(MVT VT) {
4826  if (VT.isExtended()) {
4827    static std::set<MVT, MVT::compareRawBits> EVTs;
4828    return &(*EVTs.insert(VT).first);
4829  } else {
4830    static MVT VTs[MVT::LAST_VALUETYPE];
4831    VTs[VT.getSimpleVT()] = VT;
4832    return &VTs[VT.getSimpleVT()];
4833  }
4834}
4835
4836/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4837/// indicated value.  This method ignores uses of other values defined by this
4838/// operation.
4839bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4840  assert(Value < getNumValues() && "Bad value!");
4841
4842  // TODO: Only iterate over uses of a given value of the node
4843  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4844    if (UI.getUse().getSDValue().getResNo() == Value) {
4845      if (NUses == 0)
4846        return false;
4847      --NUses;
4848    }
4849  }
4850
4851  // Found exactly the right number of uses?
4852  return NUses == 0;
4853}
4854
4855
4856/// hasAnyUseOfValue - Return true if there are any use of the indicated
4857/// value. This method ignores uses of other values defined by this operation.
4858bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4859  assert(Value < getNumValues() && "Bad value!");
4860
4861  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4862    if (UI.getUse().getSDValue().getResNo() == Value)
4863      return true;
4864
4865  return false;
4866}
4867
4868
4869/// isOnlyUserOf - Return true if this node is the only use of N.
4870///
4871bool SDNode::isOnlyUserOf(SDNode *N) const {
4872  bool Seen = false;
4873  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4874    SDNode *User = *I;
4875    if (User == this)
4876      Seen = true;
4877    else
4878      return false;
4879  }
4880
4881  return Seen;
4882}
4883
4884/// isOperand - Return true if this node is an operand of N.
4885///
4886bool SDValue::isOperandOf(SDNode *N) const {
4887  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4888    if (*this == N->getOperand(i))
4889      return true;
4890  return false;
4891}
4892
4893bool SDNode::isOperandOf(SDNode *N) const {
4894  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4895    if (this == N->OperandList[i].getVal())
4896      return true;
4897  return false;
4898}
4899
4900/// reachesChainWithoutSideEffects - Return true if this operand (which must
4901/// be a chain) reaches the specified operand without crossing any
4902/// side-effecting instructions.  In practice, this looks through token
4903/// factors and non-volatile loads.  In order to remain efficient, this only
4904/// looks a couple of nodes in, it does not do an exhaustive search.
4905bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4906                                               unsigned Depth) const {
4907  if (*this == Dest) return true;
4908
4909  // Don't search too deeply, we just want to be able to see through
4910  // TokenFactor's etc.
4911  if (Depth == 0) return false;
4912
4913  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4914  // of the operands of the TF reach dest, then we can do the xform.
4915  if (getOpcode() == ISD::TokenFactor) {
4916    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4917      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4918        return true;
4919    return false;
4920  }
4921
4922  // Loads don't have side effects, look through them.
4923  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4924    if (!Ld->isVolatile())
4925      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4926  }
4927  return false;
4928}
4929
4930
4931static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4932                            SmallPtrSet<SDNode *, 32> &Visited) {
4933  if (found || !Visited.insert(N))
4934    return;
4935
4936  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4937    SDNode *Op = N->getOperand(i).getNode();
4938    if (Op == P) {
4939      found = true;
4940      return;
4941    }
4942    findPredecessor(Op, P, found, Visited);
4943  }
4944}
4945
4946/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4947/// is either an operand of N or it can be reached by recursively traversing
4948/// up the operands.
4949/// NOTE: this is an expensive method. Use it carefully.
4950bool SDNode::isPredecessorOf(SDNode *N) const {
4951  SmallPtrSet<SDNode *, 32> Visited;
4952  bool found = false;
4953  findPredecessor(N, this, found, Visited);
4954  return found;
4955}
4956
4957uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4958  assert(Num < NumOperands && "Invalid child # of SDNode!");
4959  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4960}
4961
4962std::string SDNode::getOperationName(const SelectionDAG *G) const {
4963  switch (getOpcode()) {
4964  default:
4965    if (getOpcode() < ISD::BUILTIN_OP_END)
4966      return "<<Unknown DAG Node>>";
4967    if (isMachineOpcode()) {
4968      if (G)
4969        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4970          if (getMachineOpcode() < TII->getNumOpcodes())
4971            return TII->get(getMachineOpcode()).getName();
4972      return "<<Unknown Machine Node>>";
4973    }
4974    if (G) {
4975      TargetLowering &TLI = G->getTargetLoweringInfo();
4976      const char *Name = TLI.getTargetNodeName(getOpcode());
4977      if (Name) return Name;
4978      return "<<Unknown Target Node>>";
4979    }
4980    return "<<Unknown Node>>";
4981
4982#ifndef NDEBUG
4983  case ISD::DELETED_NODE:
4984    return "<<Deleted Node!>>";
4985#endif
4986  case ISD::PREFETCH:      return "Prefetch";
4987  case ISD::MEMBARRIER:    return "MemBarrier";
4988  case ISD::ATOMIC_CMP_SWAP_8:  return "AtomicCmpSwap8";
4989  case ISD::ATOMIC_SWAP_8:      return "AtomicSwap8";
4990  case ISD::ATOMIC_LOAD_ADD_8:  return "AtomicLoadAdd8";
4991  case ISD::ATOMIC_LOAD_SUB_8:  return "AtomicLoadSub8";
4992  case ISD::ATOMIC_LOAD_AND_8:  return "AtomicLoadAnd8";
4993  case ISD::ATOMIC_LOAD_OR_8:   return "AtomicLoadOr8";
4994  case ISD::ATOMIC_LOAD_XOR_8:  return "AtomicLoadXor8";
4995  case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8";
4996  case ISD::ATOMIC_LOAD_MIN_8:  return "AtomicLoadMin8";
4997  case ISD::ATOMIC_LOAD_MAX_8:  return "AtomicLoadMax8";
4998  case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8";
4999  case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8";
5000  case ISD::ATOMIC_CMP_SWAP_16:  return "AtomicCmpSwap16";
5001  case ISD::ATOMIC_SWAP_16:      return "AtomicSwap16";
5002  case ISD::ATOMIC_LOAD_ADD_16:  return "AtomicLoadAdd16";
5003  case ISD::ATOMIC_LOAD_SUB_16:  return "AtomicLoadSub16";
5004  case ISD::ATOMIC_LOAD_AND_16:  return "AtomicLoadAnd16";
5005  case ISD::ATOMIC_LOAD_OR_16:   return "AtomicLoadOr16";
5006  case ISD::ATOMIC_LOAD_XOR_16:  return "AtomicLoadXor16";
5007  case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16";
5008  case ISD::ATOMIC_LOAD_MIN_16:  return "AtomicLoadMin16";
5009  case ISD::ATOMIC_LOAD_MAX_16:  return "AtomicLoadMax16";
5010  case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16";
5011  case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16";
5012  case ISD::ATOMIC_CMP_SWAP_32:  return "AtomicCmpSwap32";
5013  case ISD::ATOMIC_SWAP_32:      return "AtomicSwap32";
5014  case ISD::ATOMIC_LOAD_ADD_32:  return "AtomicLoadAdd32";
5015  case ISD::ATOMIC_LOAD_SUB_32:  return "AtomicLoadSub32";
5016  case ISD::ATOMIC_LOAD_AND_32:  return "AtomicLoadAnd32";
5017  case ISD::ATOMIC_LOAD_OR_32:   return "AtomicLoadOr32";
5018  case ISD::ATOMIC_LOAD_XOR_32:  return "AtomicLoadXor32";
5019  case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32";
5020  case ISD::ATOMIC_LOAD_MIN_32:  return "AtomicLoadMin32";
5021  case ISD::ATOMIC_LOAD_MAX_32:  return "AtomicLoadMax32";
5022  case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32";
5023  case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32";
5024  case ISD::ATOMIC_CMP_SWAP_64:  return "AtomicCmpSwap64";
5025  case ISD::ATOMIC_SWAP_64:      return "AtomicSwap64";
5026  case ISD::ATOMIC_LOAD_ADD_64:  return "AtomicLoadAdd64";
5027  case ISD::ATOMIC_LOAD_SUB_64:  return "AtomicLoadSub64";
5028  case ISD::ATOMIC_LOAD_AND_64:  return "AtomicLoadAnd64";
5029  case ISD::ATOMIC_LOAD_OR_64:   return "AtomicLoadOr64";
5030  case ISD::ATOMIC_LOAD_XOR_64:  return "AtomicLoadXor64";
5031  case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64";
5032  case ISD::ATOMIC_LOAD_MIN_64:  return "AtomicLoadMin64";
5033  case ISD::ATOMIC_LOAD_MAX_64:  return "AtomicLoadMax64";
5034  case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64";
5035  case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64";
5036  case ISD::PCMARKER:      return "PCMarker";
5037  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5038  case ISD::SRCVALUE:      return "SrcValue";
5039  case ISD::MEMOPERAND:    return "MemOperand";
5040  case ISD::EntryToken:    return "EntryToken";
5041  case ISD::TokenFactor:   return "TokenFactor";
5042  case ISD::AssertSext:    return "AssertSext";
5043  case ISD::AssertZext:    return "AssertZext";
5044
5045  case ISD::BasicBlock:    return "BasicBlock";
5046  case ISD::ARG_FLAGS:     return "ArgFlags";
5047  case ISD::VALUETYPE:     return "ValueType";
5048  case ISD::Register:      return "Register";
5049
5050  case ISD::Constant:      return "Constant";
5051  case ISD::ConstantFP:    return "ConstantFP";
5052  case ISD::GlobalAddress: return "GlobalAddress";
5053  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5054  case ISD::FrameIndex:    return "FrameIndex";
5055  case ISD::JumpTable:     return "JumpTable";
5056  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5057  case ISD::RETURNADDR: return "RETURNADDR";
5058  case ISD::FRAMEADDR: return "FRAMEADDR";
5059  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5060  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5061  case ISD::EHSELECTION: return "EHSELECTION";
5062  case ISD::EH_RETURN: return "EH_RETURN";
5063  case ISD::ConstantPool:  return "ConstantPool";
5064  case ISD::ExternalSymbol: return "ExternalSymbol";
5065  case ISD::INTRINSIC_WO_CHAIN: {
5066    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5067    return Intrinsic::getName((Intrinsic::ID)IID);
5068  }
5069  case ISD::INTRINSIC_VOID:
5070  case ISD::INTRINSIC_W_CHAIN: {
5071    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5072    return Intrinsic::getName((Intrinsic::ID)IID);
5073  }
5074
5075  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5076  case ISD::TargetConstant: return "TargetConstant";
5077  case ISD::TargetConstantFP:return "TargetConstantFP";
5078  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5079  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5080  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5081  case ISD::TargetJumpTable:  return "TargetJumpTable";
5082  case ISD::TargetConstantPool:  return "TargetConstantPool";
5083  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5084
5085  case ISD::CopyToReg:     return "CopyToReg";
5086  case ISD::CopyFromReg:   return "CopyFromReg";
5087  case ISD::UNDEF:         return "undef";
5088  case ISD::MERGE_VALUES:  return "merge_values";
5089  case ISD::INLINEASM:     return "inlineasm";
5090  case ISD::DBG_LABEL:     return "dbg_label";
5091  case ISD::EH_LABEL:      return "eh_label";
5092  case ISD::DECLARE:       return "declare";
5093  case ISD::HANDLENODE:    return "handlenode";
5094  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5095  case ISD::CALL:          return "call";
5096
5097  // Unary operators
5098  case ISD::FABS:   return "fabs";
5099  case ISD::FNEG:   return "fneg";
5100  case ISD::FSQRT:  return "fsqrt";
5101  case ISD::FSIN:   return "fsin";
5102  case ISD::FCOS:   return "fcos";
5103  case ISD::FPOWI:  return "fpowi";
5104  case ISD::FPOW:   return "fpow";
5105  case ISD::FTRUNC: return "ftrunc";
5106  case ISD::FFLOOR: return "ffloor";
5107  case ISD::FCEIL:  return "fceil";
5108  case ISD::FRINT:  return "frint";
5109  case ISD::FNEARBYINT: return "fnearbyint";
5110
5111  // Binary operators
5112  case ISD::ADD:    return "add";
5113  case ISD::SUB:    return "sub";
5114  case ISD::MUL:    return "mul";
5115  case ISD::MULHU:  return "mulhu";
5116  case ISD::MULHS:  return "mulhs";
5117  case ISD::SDIV:   return "sdiv";
5118  case ISD::UDIV:   return "udiv";
5119  case ISD::SREM:   return "srem";
5120  case ISD::UREM:   return "urem";
5121  case ISD::SMUL_LOHI:  return "smul_lohi";
5122  case ISD::UMUL_LOHI:  return "umul_lohi";
5123  case ISD::SDIVREM:    return "sdivrem";
5124  case ISD::UDIVREM:    return "udivrem";
5125  case ISD::AND:    return "and";
5126  case ISD::OR:     return "or";
5127  case ISD::XOR:    return "xor";
5128  case ISD::SHL:    return "shl";
5129  case ISD::SRA:    return "sra";
5130  case ISD::SRL:    return "srl";
5131  case ISD::ROTL:   return "rotl";
5132  case ISD::ROTR:   return "rotr";
5133  case ISD::FADD:   return "fadd";
5134  case ISD::FSUB:   return "fsub";
5135  case ISD::FMUL:   return "fmul";
5136  case ISD::FDIV:   return "fdiv";
5137  case ISD::FREM:   return "frem";
5138  case ISD::FCOPYSIGN: return "fcopysign";
5139  case ISD::FGETSIGN:  return "fgetsign";
5140
5141  case ISD::SETCC:       return "setcc";
5142  case ISD::VSETCC:      return "vsetcc";
5143  case ISD::SELECT:      return "select";
5144  case ISD::SELECT_CC:   return "select_cc";
5145  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5146  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5147  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5148  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5149  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5150  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5151  case ISD::CARRY_FALSE:         return "carry_false";
5152  case ISD::ADDC:        return "addc";
5153  case ISD::ADDE:        return "adde";
5154  case ISD::SADDO:       return "saddo";
5155  case ISD::UADDO:       return "uaddo";
5156  case ISD::SUBC:        return "subc";
5157  case ISD::SUBE:        return "sube";
5158  case ISD::SHL_PARTS:   return "shl_parts";
5159  case ISD::SRA_PARTS:   return "sra_parts";
5160  case ISD::SRL_PARTS:   return "srl_parts";
5161
5162  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5163  case ISD::INSERT_SUBREG:      return "insert_subreg";
5164
5165  // Conversion operators.
5166  case ISD::SIGN_EXTEND: return "sign_extend";
5167  case ISD::ZERO_EXTEND: return "zero_extend";
5168  case ISD::ANY_EXTEND:  return "any_extend";
5169  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5170  case ISD::TRUNCATE:    return "truncate";
5171  case ISD::FP_ROUND:    return "fp_round";
5172  case ISD::FLT_ROUNDS_: return "flt_rounds";
5173  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5174  case ISD::FP_EXTEND:   return "fp_extend";
5175
5176  case ISD::SINT_TO_FP:  return "sint_to_fp";
5177  case ISD::UINT_TO_FP:  return "uint_to_fp";
5178  case ISD::FP_TO_SINT:  return "fp_to_sint";
5179  case ISD::FP_TO_UINT:  return "fp_to_uint";
5180  case ISD::BIT_CONVERT: return "bit_convert";
5181
5182  case ISD::CONVERT_RNDSAT: {
5183    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5184    default: assert(0 && "Unknown cvt code!");
5185    case ISD::CVT_FF:  return "cvt_ff";
5186    case ISD::CVT_FS:  return "cvt_fs";
5187    case ISD::CVT_FU:  return "cvt_fu";
5188    case ISD::CVT_SF:  return "cvt_sf";
5189    case ISD::CVT_UF:  return "cvt_uf";
5190    case ISD::CVT_SS:  return "cvt_ss";
5191    case ISD::CVT_SU:  return "cvt_su";
5192    case ISD::CVT_US:  return "cvt_us";
5193    case ISD::CVT_UU:  return "cvt_uu";
5194    }
5195  }
5196
5197    // Control flow instructions
5198  case ISD::BR:      return "br";
5199  case ISD::BRIND:   return "brind";
5200  case ISD::BR_JT:   return "br_jt";
5201  case ISD::BRCOND:  return "brcond";
5202  case ISD::BR_CC:   return "br_cc";
5203  case ISD::RET:     return "ret";
5204  case ISD::CALLSEQ_START:  return "callseq_start";
5205  case ISD::CALLSEQ_END:    return "callseq_end";
5206
5207    // Other operators
5208  case ISD::LOAD:               return "load";
5209  case ISD::STORE:              return "store";
5210  case ISD::VAARG:              return "vaarg";
5211  case ISD::VACOPY:             return "vacopy";
5212  case ISD::VAEND:              return "vaend";
5213  case ISD::VASTART:            return "vastart";
5214  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5215  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5216  case ISD::BUILD_PAIR:         return "build_pair";
5217  case ISD::STACKSAVE:          return "stacksave";
5218  case ISD::STACKRESTORE:       return "stackrestore";
5219  case ISD::TRAP:               return "trap";
5220
5221  // Bit manipulation
5222  case ISD::BSWAP:   return "bswap";
5223  case ISD::CTPOP:   return "ctpop";
5224  case ISD::CTTZ:    return "cttz";
5225  case ISD::CTLZ:    return "ctlz";
5226
5227  // Debug info
5228  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5229  case ISD::DEBUG_LOC: return "debug_loc";
5230
5231  // Trampolines
5232  case ISD::TRAMPOLINE: return "trampoline";
5233
5234  case ISD::CONDCODE:
5235    switch (cast<CondCodeSDNode>(this)->get()) {
5236    default: assert(0 && "Unknown setcc condition!");
5237    case ISD::SETOEQ:  return "setoeq";
5238    case ISD::SETOGT:  return "setogt";
5239    case ISD::SETOGE:  return "setoge";
5240    case ISD::SETOLT:  return "setolt";
5241    case ISD::SETOLE:  return "setole";
5242    case ISD::SETONE:  return "setone";
5243
5244    case ISD::SETO:    return "seto";
5245    case ISD::SETUO:   return "setuo";
5246    case ISD::SETUEQ:  return "setue";
5247    case ISD::SETUGT:  return "setugt";
5248    case ISD::SETUGE:  return "setuge";
5249    case ISD::SETULT:  return "setult";
5250    case ISD::SETULE:  return "setule";
5251    case ISD::SETUNE:  return "setune";
5252
5253    case ISD::SETEQ:   return "seteq";
5254    case ISD::SETGT:   return "setgt";
5255    case ISD::SETGE:   return "setge";
5256    case ISD::SETLT:   return "setlt";
5257    case ISD::SETLE:   return "setle";
5258    case ISD::SETNE:   return "setne";
5259    }
5260  }
5261}
5262
5263const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5264  switch (AM) {
5265  default:
5266    return "";
5267  case ISD::PRE_INC:
5268    return "<pre-inc>";
5269  case ISD::PRE_DEC:
5270    return "<pre-dec>";
5271  case ISD::POST_INC:
5272    return "<post-inc>";
5273  case ISD::POST_DEC:
5274    return "<post-dec>";
5275  }
5276}
5277
5278std::string ISD::ArgFlagsTy::getArgFlagsString() {
5279  std::string S = "< ";
5280
5281  if (isZExt())
5282    S += "zext ";
5283  if (isSExt())
5284    S += "sext ";
5285  if (isInReg())
5286    S += "inreg ";
5287  if (isSRet())
5288    S += "sret ";
5289  if (isByVal())
5290    S += "byval ";
5291  if (isNest())
5292    S += "nest ";
5293  if (getByValAlign())
5294    S += "byval-align:" + utostr(getByValAlign()) + " ";
5295  if (getOrigAlign())
5296    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5297  if (getByValSize())
5298    S += "byval-size:" + utostr(getByValSize()) + " ";
5299  return S + ">";
5300}
5301
5302void SDNode::dump() const { dump(0); }
5303void SDNode::dump(const SelectionDAG *G) const {
5304  print(errs(), G);
5305  errs().flush();
5306}
5307
5308void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5309  OS << (void*)this << ": ";
5310
5311  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5312    if (i) OS << ",";
5313    if (getValueType(i) == MVT::Other)
5314      OS << "ch";
5315    else
5316      OS << getValueType(i).getMVTString();
5317  }
5318  OS << " = " << getOperationName(G);
5319
5320  OS << " ";
5321  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5322    if (i) OS << ", ";
5323    OS << (void*)getOperand(i).getNode();
5324    if (unsigned RN = getOperand(i).getResNo())
5325      OS << ":" << RN;
5326  }
5327
5328  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5329    SDNode *Mask = getOperand(2).getNode();
5330    OS << "<";
5331    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5332      if (i) OS << ",";
5333      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5334        OS << "u";
5335      else
5336        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5337    }
5338    OS << ">";
5339  }
5340
5341  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5342    OS << '<' << CSDN->getAPIntValue() << '>';
5343  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5344    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5345      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5346    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5347      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5348    else {
5349      OS << "<APFloat(";
5350      CSDN->getValueAPF().bitcastToAPInt().dump();
5351      OS << ")>";
5352    }
5353  } else if (const GlobalAddressSDNode *GADN =
5354             dyn_cast<GlobalAddressSDNode>(this)) {
5355    int64_t offset = GADN->getOffset();
5356    OS << '<';
5357    WriteAsOperand(OS, GADN->getGlobal());
5358    OS << '>';
5359    if (offset > 0)
5360      OS << " + " << offset;
5361    else
5362      OS << " " << offset;
5363  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5364    OS << "<" << FIDN->getIndex() << ">";
5365  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5366    OS << "<" << JTDN->getIndex() << ">";
5367  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5368    int offset = CP->getOffset();
5369    if (CP->isMachineConstantPoolEntry())
5370      OS << "<" << *CP->getMachineCPVal() << ">";
5371    else
5372      OS << "<" << *CP->getConstVal() << ">";
5373    if (offset > 0)
5374      OS << " + " << offset;
5375    else
5376      OS << " " << offset;
5377  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5378    OS << "<";
5379    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5380    if (LBB)
5381      OS << LBB->getName() << " ";
5382    OS << (const void*)BBDN->getBasicBlock() << ">";
5383  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5384    if (G && R->getReg() &&
5385        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5386      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5387    } else {
5388      OS << " #" << R->getReg();
5389    }
5390  } else if (const ExternalSymbolSDNode *ES =
5391             dyn_cast<ExternalSymbolSDNode>(this)) {
5392    OS << "'" << ES->getSymbol() << "'";
5393  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5394    if (M->getValue())
5395      OS << "<" << M->getValue() << ">";
5396    else
5397      OS << "<null>";
5398  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5399    if (M->MO.getValue())
5400      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5401    else
5402      OS << "<null:" << M->MO.getOffset() << ">";
5403  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5404    OS << N->getArgFlags().getArgFlagsString();
5405  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5406    OS << ":" << N->getVT().getMVTString();
5407  }
5408  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5409    const Value *SrcValue = LD->getSrcValue();
5410    int SrcOffset = LD->getSrcValueOffset();
5411    OS << " <";
5412    if (SrcValue)
5413      OS << SrcValue;
5414    else
5415      OS << "null";
5416    OS << ":" << SrcOffset << ">";
5417
5418    bool doExt = true;
5419    switch (LD->getExtensionType()) {
5420    default: doExt = false; break;
5421    case ISD::EXTLOAD: OS << " <anyext "; break;
5422    case ISD::SEXTLOAD: OS << " <sext "; break;
5423    case ISD::ZEXTLOAD: OS << " <zext "; break;
5424    }
5425    if (doExt)
5426      OS << LD->getMemoryVT().getMVTString() << ">";
5427
5428    const char *AM = getIndexedModeName(LD->getAddressingMode());
5429    if (*AM)
5430      OS << " " << AM;
5431    if (LD->isVolatile())
5432      OS << " <volatile>";
5433    OS << " alignment=" << LD->getAlignment();
5434  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5435    const Value *SrcValue = ST->getSrcValue();
5436    int SrcOffset = ST->getSrcValueOffset();
5437    OS << " <";
5438    if (SrcValue)
5439      OS << SrcValue;
5440    else
5441      OS << "null";
5442    OS << ":" << SrcOffset << ">";
5443
5444    if (ST->isTruncatingStore())
5445      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5446
5447    const char *AM = getIndexedModeName(ST->getAddressingMode());
5448    if (*AM)
5449      OS << " " << AM;
5450    if (ST->isVolatile())
5451      OS << " <volatile>";
5452    OS << " alignment=" << ST->getAlignment();
5453  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5454    const Value *SrcValue = AT->getSrcValue();
5455    int SrcOffset = AT->getSrcValueOffset();
5456    OS << " <";
5457    if (SrcValue)
5458      OS << SrcValue;
5459    else
5460      OS << "null";
5461    OS << ":" << SrcOffset << ">";
5462    if (AT->isVolatile())
5463      OS << " <volatile>";
5464    OS << " alignment=" << AT->getAlignment();
5465  }
5466}
5467
5468static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5469  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5470    if (N->getOperand(i).getNode()->hasOneUse())
5471      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5472    else
5473      cerr << "\n" << std::string(indent+2, ' ')
5474           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5475
5476
5477  cerr << "\n" << std::string(indent, ' ');
5478  N->dump(G);
5479}
5480
5481void SelectionDAG::dump() const {
5482  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5483
5484  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5485       I != E; ++I) {
5486    const SDNode *N = I;
5487    if (!N->hasOneUse() && N != getRoot().getNode())
5488      DumpNodes(N, 2, this);
5489  }
5490
5491  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5492
5493  cerr << "\n\n";
5494}
5495
5496const Type *ConstantPoolSDNode::getType() const {
5497  if (isMachineConstantPoolEntry())
5498    return Val.MachineCPVal->getType();
5499  return Val.ConstVal->getType();
5500}
5501