SelectionDAG.cpp revision 3f6eb7419de437436265831fce92f62498556e08
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Target/MRegisterInfo.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringExtras.h"
32#include <algorithm>
33#include <cmath>
34using namespace llvm;
35
36/// makeVTList - Return an instance of the SDVTList struct initialized with the
37/// specified members.
38static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
39  SDVTList Res = {VTs, NumVTs};
40  return Res;
41}
42
43//===----------------------------------------------------------------------===//
44//                              ConstantFPSDNode Class
45//===----------------------------------------------------------------------===//
46
47/// isExactlyValue - We don't rely on operator== working on double values, as
48/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
49/// As such, this method can be used to do an exact bit-for-bit comparison of
50/// two floating point values.
51bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
52  return Value.bitwiseIsEqual(V);
53}
54
55bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
56                                           const APFloat& Val) {
57  // convert modifies in place, so make a copy.
58  APFloat Val2 = APFloat(Val);
59  switch (VT) {
60  default:
61    return false;         // These can't be represented as floating point!
62
63  // FIXME rounding mode needs to be more flexible
64  case MVT::f32:
65    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
66           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
67              APFloat::opOK;
68  case MVT::f64:
69    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
70           &Val2.getSemantics() == &APFloat::IEEEdouble ||
71           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
72             APFloat::opOK;
73  // TODO: Figure out how to test if we can use a shorter type instead!
74  case MVT::f80:
75  case MVT::f128:
76  case MVT::ppcf128:
77    return true;
78  }
79}
80
81//===----------------------------------------------------------------------===//
82//                              ISD Namespace
83//===----------------------------------------------------------------------===//
84
85/// isBuildVectorAllOnes - Return true if the specified node is a
86/// BUILD_VECTOR where all of the elements are ~0 or undef.
87bool ISD::isBuildVectorAllOnes(const SDNode *N) {
88  // Look through a bit convert.
89  if (N->getOpcode() == ISD::BIT_CONVERT)
90    N = N->getOperand(0).Val;
91
92  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
93
94  unsigned i = 0, e = N->getNumOperands();
95
96  // Skip over all of the undef values.
97  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
98    ++i;
99
100  // Do not accept an all-undef vector.
101  if (i == e) return false;
102
103  // Do not accept build_vectors that aren't all constants or which have non-~0
104  // elements.
105  SDOperand NotZero = N->getOperand(i);
106  if (isa<ConstantSDNode>(NotZero)) {
107    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
108      return false;
109  } else if (isa<ConstantFPSDNode>(NotZero)) {
110    MVT::ValueType VT = NotZero.getValueType();
111    if (VT== MVT::f64) {
112      if (*((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
113                  convertToAPInt().getRawData())) != (uint64_t)-1)
114        return false;
115    } else {
116      if ((uint32_t)*cast<ConstantFPSDNode>(NotZero)->
117                      getValueAPF().convertToAPInt().getRawData() !=
118          (uint32_t)-1)
119        return false;
120    }
121  } else
122    return false;
123
124  // Okay, we have at least one ~0 value, check to see if the rest match or are
125  // undefs.
126  for (++i; i != e; ++i)
127    if (N->getOperand(i) != NotZero &&
128        N->getOperand(i).getOpcode() != ISD::UNDEF)
129      return false;
130  return true;
131}
132
133
134/// isBuildVectorAllZeros - Return true if the specified node is a
135/// BUILD_VECTOR where all of the elements are 0 or undef.
136bool ISD::isBuildVectorAllZeros(const SDNode *N) {
137  // Look through a bit convert.
138  if (N->getOpcode() == ISD::BIT_CONVERT)
139    N = N->getOperand(0).Val;
140
141  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
142
143  unsigned i = 0, e = N->getNumOperands();
144
145  // Skip over all of the undef values.
146  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
147    ++i;
148
149  // Do not accept an all-undef vector.
150  if (i == e) return false;
151
152  // Do not accept build_vectors that aren't all constants or which have non-~0
153  // elements.
154  SDOperand Zero = N->getOperand(i);
155  if (isa<ConstantSDNode>(Zero)) {
156    if (!cast<ConstantSDNode>(Zero)->isNullValue())
157      return false;
158  } else if (isa<ConstantFPSDNode>(Zero)) {
159    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
160      return false;
161  } else
162    return false;
163
164  // Okay, we have at least one ~0 value, check to see if the rest match or are
165  // undefs.
166  for (++i; i != e; ++i)
167    if (N->getOperand(i) != Zero &&
168        N->getOperand(i).getOpcode() != ISD::UNDEF)
169      return false;
170  return true;
171}
172
173/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
174/// when given the operation for (X op Y).
175ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
176  // To perform this operation, we just need to swap the L and G bits of the
177  // operation.
178  unsigned OldL = (Operation >> 2) & 1;
179  unsigned OldG = (Operation >> 1) & 1;
180  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
181                       (OldL << 1) |       // New G bit
182                       (OldG << 2));        // New L bit.
183}
184
185/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
186/// 'op' is a valid SetCC operation.
187ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
188  unsigned Operation = Op;
189  if (isInteger)
190    Operation ^= 7;   // Flip L, G, E bits, but not U.
191  else
192    Operation ^= 15;  // Flip all of the condition bits.
193  if (Operation > ISD::SETTRUE2)
194    Operation &= ~8;     // Don't let N and U bits get set.
195  return ISD::CondCode(Operation);
196}
197
198
199/// isSignedOp - For an integer comparison, return 1 if the comparison is a
200/// signed operation and 2 if the result is an unsigned comparison.  Return zero
201/// if the operation does not depend on the sign of the input (setne and seteq).
202static int isSignedOp(ISD::CondCode Opcode) {
203  switch (Opcode) {
204  default: assert(0 && "Illegal integer setcc operation!");
205  case ISD::SETEQ:
206  case ISD::SETNE: return 0;
207  case ISD::SETLT:
208  case ISD::SETLE:
209  case ISD::SETGT:
210  case ISD::SETGE: return 1;
211  case ISD::SETULT:
212  case ISD::SETULE:
213  case ISD::SETUGT:
214  case ISD::SETUGE: return 2;
215  }
216}
217
218/// getSetCCOrOperation - Return the result of a logical OR between different
219/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
220/// returns SETCC_INVALID if it is not possible to represent the resultant
221/// comparison.
222ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
223                                       bool isInteger) {
224  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
225    // Cannot fold a signed integer setcc with an unsigned integer setcc.
226    return ISD::SETCC_INVALID;
227
228  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
229
230  // If the N and U bits get set then the resultant comparison DOES suddenly
231  // care about orderedness, and is true when ordered.
232  if (Op > ISD::SETTRUE2)
233    Op &= ~16;     // Clear the U bit if the N bit is set.
234
235  // Canonicalize illegal integer setcc's.
236  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
237    Op = ISD::SETNE;
238
239  return ISD::CondCode(Op);
240}
241
242/// getSetCCAndOperation - Return the result of a logical AND between different
243/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
244/// function returns zero if it is not possible to represent the resultant
245/// comparison.
246ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
247                                        bool isInteger) {
248  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
249    // Cannot fold a signed setcc with an unsigned setcc.
250    return ISD::SETCC_INVALID;
251
252  // Combine all of the condition bits.
253  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
254
255  // Canonicalize illegal integer setcc's.
256  if (isInteger) {
257    switch (Result) {
258    default: break;
259    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
260    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
261    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
262    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
263    }
264  }
265
266  return Result;
267}
268
269const TargetMachine &SelectionDAG::getTarget() const {
270  return TLI.getTargetMachine();
271}
272
273//===----------------------------------------------------------------------===//
274//                           SDNode Profile Support
275//===----------------------------------------------------------------------===//
276
277/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
278///
279static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
280  ID.AddInteger(OpC);
281}
282
283/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
284/// solely with their pointer.
285void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
286  ID.AddPointer(VTList.VTs);
287}
288
289/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
290///
291static void AddNodeIDOperands(FoldingSetNodeID &ID,
292                              const SDOperand *Ops, unsigned NumOps) {
293  for (; NumOps; --NumOps, ++Ops) {
294    ID.AddPointer(Ops->Val);
295    ID.AddInteger(Ops->ResNo);
296  }
297}
298
299static void AddNodeIDNode(FoldingSetNodeID &ID,
300                          unsigned short OpC, SDVTList VTList,
301                          const SDOperand *OpList, unsigned N) {
302  AddNodeIDOpcode(ID, OpC);
303  AddNodeIDValueTypes(ID, VTList);
304  AddNodeIDOperands(ID, OpList, N);
305}
306
307/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
308/// data.
309static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
310  AddNodeIDOpcode(ID, N->getOpcode());
311  // Add the return value info.
312  AddNodeIDValueTypes(ID, N->getVTList());
313  // Add the operand info.
314  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
315
316  // Handle SDNode leafs with special info.
317  switch (N->getOpcode()) {
318  default: break;  // Normal nodes don't need extra info.
319  case ISD::TargetConstant:
320  case ISD::Constant:
321    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
322    break;
323  case ISD::TargetConstantFP:
324  case ISD::ConstantFP: {
325    APFloat V = cast<ConstantFPSDNode>(N)->getValueAPF();
326    if (&V.getSemantics() == &APFloat::IEEEdouble)
327      ID.AddDouble(V.convertToDouble());
328    else if (&V.getSemantics() == &APFloat::IEEEsingle)
329      ID.AddDouble((double)V.convertToFloat());
330    else
331      assert(0);
332    break;
333  }
334  case ISD::TargetGlobalAddress:
335  case ISD::GlobalAddress:
336  case ISD::TargetGlobalTLSAddress:
337  case ISD::GlobalTLSAddress: {
338    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
339    ID.AddPointer(GA->getGlobal());
340    ID.AddInteger(GA->getOffset());
341    break;
342  }
343  case ISD::BasicBlock:
344    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
345    break;
346  case ISD::Register:
347    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
348    break;
349  case ISD::SRCVALUE: {
350    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
351    ID.AddPointer(SV->getValue());
352    ID.AddInteger(SV->getOffset());
353    break;
354  }
355  case ISD::FrameIndex:
356  case ISD::TargetFrameIndex:
357    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
358    break;
359  case ISD::JumpTable:
360  case ISD::TargetJumpTable:
361    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
362    break;
363  case ISD::ConstantPool:
364  case ISD::TargetConstantPool: {
365    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
366    ID.AddInteger(CP->getAlignment());
367    ID.AddInteger(CP->getOffset());
368    if (CP->isMachineConstantPoolEntry())
369      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
370    else
371      ID.AddPointer(CP->getConstVal());
372    break;
373  }
374  case ISD::LOAD: {
375    LoadSDNode *LD = cast<LoadSDNode>(N);
376    ID.AddInteger(LD->getAddressingMode());
377    ID.AddInteger(LD->getExtensionType());
378    ID.AddInteger(LD->getLoadedVT());
379    ID.AddPointer(LD->getSrcValue());
380    ID.AddInteger(LD->getSrcValueOffset());
381    ID.AddInteger(LD->getAlignment());
382    ID.AddInteger(LD->isVolatile());
383    break;
384  }
385  case ISD::STORE: {
386    StoreSDNode *ST = cast<StoreSDNode>(N);
387    ID.AddInteger(ST->getAddressingMode());
388    ID.AddInteger(ST->isTruncatingStore());
389    ID.AddInteger(ST->getStoredVT());
390    ID.AddPointer(ST->getSrcValue());
391    ID.AddInteger(ST->getSrcValueOffset());
392    ID.AddInteger(ST->getAlignment());
393    ID.AddInteger(ST->isVolatile());
394    break;
395  }
396  }
397}
398
399//===----------------------------------------------------------------------===//
400//                              SelectionDAG Class
401//===----------------------------------------------------------------------===//
402
403/// RemoveDeadNodes - This method deletes all unreachable nodes in the
404/// SelectionDAG.
405void SelectionDAG::RemoveDeadNodes() {
406  // Create a dummy node (which is not added to allnodes), that adds a reference
407  // to the root node, preventing it from being deleted.
408  HandleSDNode Dummy(getRoot());
409
410  SmallVector<SDNode*, 128> DeadNodes;
411
412  // Add all obviously-dead nodes to the DeadNodes worklist.
413  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
414    if (I->use_empty())
415      DeadNodes.push_back(I);
416
417  // Process the worklist, deleting the nodes and adding their uses to the
418  // worklist.
419  while (!DeadNodes.empty()) {
420    SDNode *N = DeadNodes.back();
421    DeadNodes.pop_back();
422
423    // Take the node out of the appropriate CSE map.
424    RemoveNodeFromCSEMaps(N);
425
426    // Next, brutally remove the operand list.  This is safe to do, as there are
427    // no cycles in the graph.
428    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
429      SDNode *Operand = I->Val;
430      Operand->removeUser(N);
431
432      // Now that we removed this operand, see if there are no uses of it left.
433      if (Operand->use_empty())
434        DeadNodes.push_back(Operand);
435    }
436    if (N->OperandsNeedDelete)
437      delete[] N->OperandList;
438    N->OperandList = 0;
439    N->NumOperands = 0;
440
441    // Finally, remove N itself.
442    AllNodes.erase(N);
443  }
444
445  // If the root changed (e.g. it was a dead load, update the root).
446  setRoot(Dummy.getValue());
447}
448
449void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
450  SmallVector<SDNode*, 16> DeadNodes;
451  DeadNodes.push_back(N);
452
453  // Process the worklist, deleting the nodes and adding their uses to the
454  // worklist.
455  while (!DeadNodes.empty()) {
456    SDNode *N = DeadNodes.back();
457    DeadNodes.pop_back();
458
459    // Take the node out of the appropriate CSE map.
460    RemoveNodeFromCSEMaps(N);
461
462    // Next, brutally remove the operand list.  This is safe to do, as there are
463    // no cycles in the graph.
464    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
465      SDNode *Operand = I->Val;
466      Operand->removeUser(N);
467
468      // Now that we removed this operand, see if there are no uses of it left.
469      if (Operand->use_empty())
470        DeadNodes.push_back(Operand);
471    }
472    if (N->OperandsNeedDelete)
473      delete[] N->OperandList;
474    N->OperandList = 0;
475    N->NumOperands = 0;
476
477    // Finally, remove N itself.
478    Deleted.push_back(N);
479    AllNodes.erase(N);
480  }
481}
482
483void SelectionDAG::DeleteNode(SDNode *N) {
484  assert(N->use_empty() && "Cannot delete a node that is not dead!");
485
486  // First take this out of the appropriate CSE map.
487  RemoveNodeFromCSEMaps(N);
488
489  // Finally, remove uses due to operands of this node, remove from the
490  // AllNodes list, and delete the node.
491  DeleteNodeNotInCSEMaps(N);
492}
493
494void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
495
496  // Remove it from the AllNodes list.
497  AllNodes.remove(N);
498
499  // Drop all of the operands and decrement used nodes use counts.
500  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
501    I->Val->removeUser(N);
502  if (N->OperandsNeedDelete)
503    delete[] N->OperandList;
504  N->OperandList = 0;
505  N->NumOperands = 0;
506
507  delete N;
508}
509
510/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
511/// correspond to it.  This is useful when we're about to delete or repurpose
512/// the node.  We don't want future request for structurally identical nodes
513/// to return N anymore.
514void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
515  bool Erased = false;
516  switch (N->getOpcode()) {
517  case ISD::HANDLENODE: return;  // noop.
518  case ISD::STRING:
519    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
520    break;
521  case ISD::CONDCODE:
522    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
523           "Cond code doesn't exist!");
524    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
525    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
526    break;
527  case ISD::ExternalSymbol:
528    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
529    break;
530  case ISD::TargetExternalSymbol:
531    Erased =
532      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
533    break;
534  case ISD::VALUETYPE:
535    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
536    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
537    break;
538  default:
539    // Remove it from the CSE Map.
540    Erased = CSEMap.RemoveNode(N);
541    break;
542  }
543#ifndef NDEBUG
544  // Verify that the node was actually in one of the CSE maps, unless it has a
545  // flag result (which cannot be CSE'd) or is one of the special cases that are
546  // not subject to CSE.
547  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
548      !N->isTargetOpcode()) {
549    N->dump(this);
550    cerr << "\n";
551    assert(0 && "Node is not in map!");
552  }
553#endif
554}
555
556/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
557/// has been taken out and modified in some way.  If the specified node already
558/// exists in the CSE maps, do not modify the maps, but return the existing node
559/// instead.  If it doesn't exist, add it and return null.
560///
561SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
562  assert(N->getNumOperands() && "This is a leaf node!");
563  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
564    return 0;    // Never add these nodes.
565
566  // Check that remaining values produced are not flags.
567  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
568    if (N->getValueType(i) == MVT::Flag)
569      return 0;   // Never CSE anything that produces a flag.
570
571  SDNode *New = CSEMap.GetOrInsertNode(N);
572  if (New != N) return New;  // Node already existed.
573  return 0;
574}
575
576/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
577/// were replaced with those specified.  If this node is never memoized,
578/// return null, otherwise return a pointer to the slot it would take.  If a
579/// node already exists with these operands, the slot will be non-null.
580SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
581                                           void *&InsertPos) {
582  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
583    return 0;    // Never add these nodes.
584
585  // Check that remaining values produced are not flags.
586  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
587    if (N->getValueType(i) == MVT::Flag)
588      return 0;   // Never CSE anything that produces a flag.
589
590  SDOperand Ops[] = { Op };
591  FoldingSetNodeID ID;
592  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
593  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
594}
595
596/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
597/// were replaced with those specified.  If this node is never memoized,
598/// return null, otherwise return a pointer to the slot it would take.  If a
599/// node already exists with these operands, the slot will be non-null.
600SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
601                                           SDOperand Op1, SDOperand Op2,
602                                           void *&InsertPos) {
603  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
604    return 0;    // Never add these nodes.
605
606  // Check that remaining values produced are not flags.
607  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
608    if (N->getValueType(i) == MVT::Flag)
609      return 0;   // Never CSE anything that produces a flag.
610
611  SDOperand Ops[] = { Op1, Op2 };
612  FoldingSetNodeID ID;
613  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
614  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
615}
616
617
618/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
619/// were replaced with those specified.  If this node is never memoized,
620/// return null, otherwise return a pointer to the slot it would take.  If a
621/// node already exists with these operands, the slot will be non-null.
622SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
623                                           const SDOperand *Ops,unsigned NumOps,
624                                           void *&InsertPos) {
625  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
626    return 0;    // Never add these nodes.
627
628  // Check that remaining values produced are not flags.
629  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
630    if (N->getValueType(i) == MVT::Flag)
631      return 0;   // Never CSE anything that produces a flag.
632
633  FoldingSetNodeID ID;
634  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
635
636  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
637    ID.AddInteger(LD->getAddressingMode());
638    ID.AddInteger(LD->getExtensionType());
639    ID.AddInteger(LD->getLoadedVT());
640    ID.AddPointer(LD->getSrcValue());
641    ID.AddInteger(LD->getSrcValueOffset());
642    ID.AddInteger(LD->getAlignment());
643    ID.AddInteger(LD->isVolatile());
644  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
645    ID.AddInteger(ST->getAddressingMode());
646    ID.AddInteger(ST->isTruncatingStore());
647    ID.AddInteger(ST->getStoredVT());
648    ID.AddPointer(ST->getSrcValue());
649    ID.AddInteger(ST->getSrcValueOffset());
650    ID.AddInteger(ST->getAlignment());
651    ID.AddInteger(ST->isVolatile());
652  }
653
654  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
655}
656
657
658SelectionDAG::~SelectionDAG() {
659  while (!AllNodes.empty()) {
660    SDNode *N = AllNodes.begin();
661    N->SetNextInBucket(0);
662    if (N->OperandsNeedDelete)
663      delete [] N->OperandList;
664    N->OperandList = 0;
665    N->NumOperands = 0;
666    AllNodes.pop_front();
667  }
668}
669
670SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
671  if (Op.getValueType() == VT) return Op;
672  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
673  return getNode(ISD::AND, Op.getValueType(), Op,
674                 getConstant(Imm, Op.getValueType()));
675}
676
677SDOperand SelectionDAG::getString(const std::string &Val) {
678  StringSDNode *&N = StringNodes[Val];
679  if (!N) {
680    N = new StringSDNode(Val);
681    AllNodes.push_back(N);
682  }
683  return SDOperand(N, 0);
684}
685
686SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
687  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
688  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
689
690  // Mask out any bits that are not valid for this constant.
691  Val &= MVT::getIntVTBitMask(VT);
692
693  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
694  FoldingSetNodeID ID;
695  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
696  ID.AddInteger(Val);
697  void *IP = 0;
698  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
699    return SDOperand(E, 0);
700  SDNode *N = new ConstantSDNode(isT, Val, VT);
701  CSEMap.InsertNode(N, IP);
702  AllNodes.push_back(N);
703  return SDOperand(N, 0);
704}
705
706SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
707                                      bool isTarget) {
708  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
709
710  MVT::ValueType EltVT =
711    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
712  bool isDouble = (EltVT == MVT::f64);
713  double Val = isDouble ? V.convertToDouble() : (double)V.convertToFloat();
714
715  // Do the map lookup using the actual bit pattern for the floating point
716  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
717  // we don't have issues with SNANs.
718  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
719  // ?? Should we store float/double/longdouble separately in ID?
720  FoldingSetNodeID ID;
721  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
722  ID.AddDouble(Val);
723  void *IP = 0;
724  SDNode *N = NULL;
725  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
726    if (!MVT::isVector(VT))
727      return SDOperand(N, 0);
728  if (!N) {
729    N = new ConstantFPSDNode(isTarget,
730      isDouble ? APFloat(Val) : APFloat((float)Val), EltVT);
731    CSEMap.InsertNode(N, IP);
732    AllNodes.push_back(N);
733  }
734
735  SDOperand Result(N, 0);
736  if (MVT::isVector(VT)) {
737    SmallVector<SDOperand, 8> Ops;
738    Ops.assign(MVT::getVectorNumElements(VT), Result);
739    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
740  }
741  return Result;
742}
743
744SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
745                                      bool isTarget) {
746  MVT::ValueType EltVT =
747    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
748  if (EltVT==MVT::f32)
749    return getConstantFP(APFloat((float)Val), VT, isTarget);
750  else
751    return getConstantFP(APFloat(Val), VT, isTarget);
752}
753
754SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
755                                         MVT::ValueType VT, int Offset,
756                                         bool isTargetGA) {
757  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
758  unsigned Opc;
759  if (GVar && GVar->isThreadLocal())
760    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
761  else
762    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
763  FoldingSetNodeID ID;
764  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
765  ID.AddPointer(GV);
766  ID.AddInteger(Offset);
767  void *IP = 0;
768  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
769   return SDOperand(E, 0);
770  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
771  CSEMap.InsertNode(N, IP);
772  AllNodes.push_back(N);
773  return SDOperand(N, 0);
774}
775
776SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
777                                      bool isTarget) {
778  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
779  FoldingSetNodeID ID;
780  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
781  ID.AddInteger(FI);
782  void *IP = 0;
783  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
784    return SDOperand(E, 0);
785  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
786  CSEMap.InsertNode(N, IP);
787  AllNodes.push_back(N);
788  return SDOperand(N, 0);
789}
790
791SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
792  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
793  FoldingSetNodeID ID;
794  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
795  ID.AddInteger(JTI);
796  void *IP = 0;
797  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
798    return SDOperand(E, 0);
799  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
800  CSEMap.InsertNode(N, IP);
801  AllNodes.push_back(N);
802  return SDOperand(N, 0);
803}
804
805SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
806                                        unsigned Alignment, int Offset,
807                                        bool isTarget) {
808  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
809  FoldingSetNodeID ID;
810  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
811  ID.AddInteger(Alignment);
812  ID.AddInteger(Offset);
813  ID.AddPointer(C);
814  void *IP = 0;
815  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
816    return SDOperand(E, 0);
817  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
818  CSEMap.InsertNode(N, IP);
819  AllNodes.push_back(N);
820  return SDOperand(N, 0);
821}
822
823
824SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
825                                        MVT::ValueType VT,
826                                        unsigned Alignment, int Offset,
827                                        bool isTarget) {
828  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
829  FoldingSetNodeID ID;
830  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
831  ID.AddInteger(Alignment);
832  ID.AddInteger(Offset);
833  C->AddSelectionDAGCSEId(ID);
834  void *IP = 0;
835  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
836    return SDOperand(E, 0);
837  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
838  CSEMap.InsertNode(N, IP);
839  AllNodes.push_back(N);
840  return SDOperand(N, 0);
841}
842
843
844SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
845  FoldingSetNodeID ID;
846  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
847  ID.AddPointer(MBB);
848  void *IP = 0;
849  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
850    return SDOperand(E, 0);
851  SDNode *N = new BasicBlockSDNode(MBB);
852  CSEMap.InsertNode(N, IP);
853  AllNodes.push_back(N);
854  return SDOperand(N, 0);
855}
856
857SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
858  if ((unsigned)VT >= ValueTypeNodes.size())
859    ValueTypeNodes.resize(VT+1);
860  if (ValueTypeNodes[VT] == 0) {
861    ValueTypeNodes[VT] = new VTSDNode(VT);
862    AllNodes.push_back(ValueTypeNodes[VT]);
863  }
864
865  return SDOperand(ValueTypeNodes[VT], 0);
866}
867
868SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
869  SDNode *&N = ExternalSymbols[Sym];
870  if (N) return SDOperand(N, 0);
871  N = new ExternalSymbolSDNode(false, Sym, VT);
872  AllNodes.push_back(N);
873  return SDOperand(N, 0);
874}
875
876SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
877                                                MVT::ValueType VT) {
878  SDNode *&N = TargetExternalSymbols[Sym];
879  if (N) return SDOperand(N, 0);
880  N = new ExternalSymbolSDNode(true, Sym, VT);
881  AllNodes.push_back(N);
882  return SDOperand(N, 0);
883}
884
885SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
886  if ((unsigned)Cond >= CondCodeNodes.size())
887    CondCodeNodes.resize(Cond+1);
888
889  if (CondCodeNodes[Cond] == 0) {
890    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
891    AllNodes.push_back(CondCodeNodes[Cond]);
892  }
893  return SDOperand(CondCodeNodes[Cond], 0);
894}
895
896SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
897  FoldingSetNodeID ID;
898  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
899  ID.AddInteger(RegNo);
900  void *IP = 0;
901  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
902    return SDOperand(E, 0);
903  SDNode *N = new RegisterSDNode(RegNo, VT);
904  CSEMap.InsertNode(N, IP);
905  AllNodes.push_back(N);
906  return SDOperand(N, 0);
907}
908
909SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
910  assert((!V || isa<PointerType>(V->getType())) &&
911         "SrcValue is not a pointer?");
912
913  FoldingSetNodeID ID;
914  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
915  ID.AddPointer(V);
916  ID.AddInteger(Offset);
917  void *IP = 0;
918  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
919    return SDOperand(E, 0);
920  SDNode *N = new SrcValueSDNode(V, Offset);
921  CSEMap.InsertNode(N, IP);
922  AllNodes.push_back(N);
923  return SDOperand(N, 0);
924}
925
926SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
927                                  SDOperand N2, ISD::CondCode Cond) {
928  // These setcc operations always fold.
929  switch (Cond) {
930  default: break;
931  case ISD::SETFALSE:
932  case ISD::SETFALSE2: return getConstant(0, VT);
933  case ISD::SETTRUE:
934  case ISD::SETTRUE2:  return getConstant(1, VT);
935
936  case ISD::SETOEQ:
937  case ISD::SETOGT:
938  case ISD::SETOGE:
939  case ISD::SETOLT:
940  case ISD::SETOLE:
941  case ISD::SETONE:
942  case ISD::SETO:
943  case ISD::SETUO:
944  case ISD::SETUEQ:
945  case ISD::SETUNE:
946    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
947    break;
948  }
949
950  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
951    uint64_t C2 = N2C->getValue();
952    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
953      uint64_t C1 = N1C->getValue();
954
955      // Sign extend the operands if required
956      if (ISD::isSignedIntSetCC(Cond)) {
957        C1 = N1C->getSignExtended();
958        C2 = N2C->getSignExtended();
959      }
960
961      switch (Cond) {
962      default: assert(0 && "Unknown integer setcc!");
963      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
964      case ISD::SETNE:  return getConstant(C1 != C2, VT);
965      case ISD::SETULT: return getConstant(C1 <  C2, VT);
966      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
967      case ISD::SETULE: return getConstant(C1 <= C2, VT);
968      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
969      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
970      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
971      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
972      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
973      }
974    }
975  }
976  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
977    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
978
979      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
980      switch (Cond) {
981      default: break;
982      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
983                          return getNode(ISD::UNDEF, VT);
984                        // fall through
985      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
986      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
987                          return getNode(ISD::UNDEF, VT);
988                        // fall through
989      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
990                                           R==APFloat::cmpLessThan, VT);
991      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
992                          return getNode(ISD::UNDEF, VT);
993                        // fall through
994      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
995      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
996                          return getNode(ISD::UNDEF, VT);
997                        // fall through
998      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
999      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1000                          return getNode(ISD::UNDEF, VT);
1001                        // fall through
1002      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1003                                           R==APFloat::cmpEqual, VT);
1004      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1005                          return getNode(ISD::UNDEF, VT);
1006                        // fall through
1007      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1008                                           R==APFloat::cmpEqual, VT);
1009      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1010      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1011      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1012                                           R==APFloat::cmpEqual, VT);
1013      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1014      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1015                                           R==APFloat::cmpLessThan, VT);
1016      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1017                                           R==APFloat::cmpUnordered, VT);
1018      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1019      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1020      }
1021    } else {
1022      // Ensure that the constant occurs on the RHS.
1023      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1024    }
1025
1026  // Could not fold it.
1027  return SDOperand();
1028}
1029
1030/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1031/// this predicate to simplify operations downstream.  Mask is known to be zero
1032/// for bits that V cannot have.
1033bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1034                                     unsigned Depth) const {
1035  // The masks are not wide enough to represent this type!  Should use APInt.
1036  if (Op.getValueType() == MVT::i128)
1037    return false;
1038
1039  uint64_t KnownZero, KnownOne;
1040  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1041  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1042  return (KnownZero & Mask) == Mask;
1043}
1044
1045/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1046/// known to be either zero or one and return them in the KnownZero/KnownOne
1047/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1048/// processing.
1049void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1050                                     uint64_t &KnownZero, uint64_t &KnownOne,
1051                                     unsigned Depth) const {
1052  KnownZero = KnownOne = 0;   // Don't know anything.
1053  if (Depth == 6 || Mask == 0)
1054    return;  // Limit search depth.
1055
1056  // The masks are not wide enough to represent this type!  Should use APInt.
1057  if (Op.getValueType() == MVT::i128)
1058    return;
1059
1060  uint64_t KnownZero2, KnownOne2;
1061
1062  switch (Op.getOpcode()) {
1063  case ISD::Constant:
1064    // We know all of the bits for a constant!
1065    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1066    KnownZero = ~KnownOne & Mask;
1067    return;
1068  case ISD::AND:
1069    // If either the LHS or the RHS are Zero, the result is zero.
1070    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1071    Mask &= ~KnownZero;
1072    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1073    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1074    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1075
1076    // Output known-1 bits are only known if set in both the LHS & RHS.
1077    KnownOne &= KnownOne2;
1078    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1079    KnownZero |= KnownZero2;
1080    return;
1081  case ISD::OR:
1082    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1083    Mask &= ~KnownOne;
1084    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1085    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1086    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1087
1088    // Output known-0 bits are only known if clear in both the LHS & RHS.
1089    KnownZero &= KnownZero2;
1090    // Output known-1 are known to be set if set in either the LHS | RHS.
1091    KnownOne |= KnownOne2;
1092    return;
1093  case ISD::XOR: {
1094    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1095    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1096    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1097    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1098
1099    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1100    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1101    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1102    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1103    KnownZero = KnownZeroOut;
1104    return;
1105  }
1106  case ISD::SELECT:
1107    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1108    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1109    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1110    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1111
1112    // Only known if known in both the LHS and RHS.
1113    KnownOne &= KnownOne2;
1114    KnownZero &= KnownZero2;
1115    return;
1116  case ISD::SELECT_CC:
1117    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1118    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1119    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1120    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1121
1122    // Only known if known in both the LHS and RHS.
1123    KnownOne &= KnownOne2;
1124    KnownZero &= KnownZero2;
1125    return;
1126  case ISD::SETCC:
1127    // If we know the result of a setcc has the top bits zero, use this info.
1128    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1129      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1130    return;
1131  case ISD::SHL:
1132    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1133    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1134      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1135                        KnownZero, KnownOne, Depth+1);
1136      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1137      KnownZero <<= SA->getValue();
1138      KnownOne  <<= SA->getValue();
1139      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1140    }
1141    return;
1142  case ISD::SRL:
1143    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1144    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1145      MVT::ValueType VT = Op.getValueType();
1146      unsigned ShAmt = SA->getValue();
1147
1148      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1149      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1150                        KnownZero, KnownOne, Depth+1);
1151      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1152      KnownZero &= TypeMask;
1153      KnownOne  &= TypeMask;
1154      KnownZero >>= ShAmt;
1155      KnownOne  >>= ShAmt;
1156
1157      uint64_t HighBits = (1ULL << ShAmt)-1;
1158      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1159      KnownZero |= HighBits;  // High bits known zero.
1160    }
1161    return;
1162  case ISD::SRA:
1163    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1164      MVT::ValueType VT = Op.getValueType();
1165      unsigned ShAmt = SA->getValue();
1166
1167      // Compute the new bits that are at the top now.
1168      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1169
1170      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1171      // If any of the demanded bits are produced by the sign extension, we also
1172      // demand the input sign bit.
1173      uint64_t HighBits = (1ULL << ShAmt)-1;
1174      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1175      if (HighBits & Mask)
1176        InDemandedMask |= MVT::getIntVTSignBit(VT);
1177
1178      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1179                        Depth+1);
1180      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1181      KnownZero &= TypeMask;
1182      KnownOne  &= TypeMask;
1183      KnownZero >>= ShAmt;
1184      KnownOne  >>= ShAmt;
1185
1186      // Handle the sign bits.
1187      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1188      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1189
1190      if (KnownZero & SignBit) {
1191        KnownZero |= HighBits;  // New bits are known zero.
1192      } else if (KnownOne & SignBit) {
1193        KnownOne  |= HighBits;  // New bits are known one.
1194      }
1195    }
1196    return;
1197  case ISD::SIGN_EXTEND_INREG: {
1198    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1199
1200    // Sign extension.  Compute the demanded bits in the result that are not
1201    // present in the input.
1202    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1203
1204    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1205    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1206
1207    // If the sign extended bits are demanded, we know that the sign
1208    // bit is demanded.
1209    if (NewBits)
1210      InputDemandedBits |= InSignBit;
1211
1212    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1213                      KnownZero, KnownOne, Depth+1);
1214    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1215
1216    // If the sign bit of the input is known set or clear, then we know the
1217    // top bits of the result.
1218    if (KnownZero & InSignBit) {          // Input sign bit known clear
1219      KnownZero |= NewBits;
1220      KnownOne  &= ~NewBits;
1221    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1222      KnownOne  |= NewBits;
1223      KnownZero &= ~NewBits;
1224    } else {                              // Input sign bit unknown
1225      KnownZero &= ~NewBits;
1226      KnownOne  &= ~NewBits;
1227    }
1228    return;
1229  }
1230  case ISD::CTTZ:
1231  case ISD::CTLZ:
1232  case ISD::CTPOP: {
1233    MVT::ValueType VT = Op.getValueType();
1234    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1235    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1236    KnownOne  = 0;
1237    return;
1238  }
1239  case ISD::LOAD: {
1240    if (ISD::isZEXTLoad(Op.Val)) {
1241      LoadSDNode *LD = cast<LoadSDNode>(Op);
1242      MVT::ValueType VT = LD->getLoadedVT();
1243      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1244    }
1245    return;
1246  }
1247  case ISD::ZERO_EXTEND: {
1248    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1249    uint64_t NewBits = (~InMask) & Mask;
1250    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1251                      KnownOne, Depth+1);
1252    KnownZero |= NewBits & Mask;
1253    KnownOne  &= ~NewBits;
1254    return;
1255  }
1256  case ISD::SIGN_EXTEND: {
1257    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1258    unsigned InBits    = MVT::getSizeInBits(InVT);
1259    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1260    uint64_t InSignBit = 1ULL << (InBits-1);
1261    uint64_t NewBits   = (~InMask) & Mask;
1262    uint64_t InDemandedBits = Mask & InMask;
1263
1264    // If any of the sign extended bits are demanded, we know that the sign
1265    // bit is demanded.
1266    if (NewBits & Mask)
1267      InDemandedBits |= InSignBit;
1268
1269    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1270                      KnownOne, Depth+1);
1271    // If the sign bit is known zero or one, the  top bits match.
1272    if (KnownZero & InSignBit) {
1273      KnownZero |= NewBits;
1274      KnownOne  &= ~NewBits;
1275    } else if (KnownOne & InSignBit) {
1276      KnownOne  |= NewBits;
1277      KnownZero &= ~NewBits;
1278    } else {   // Otherwise, top bits aren't known.
1279      KnownOne  &= ~NewBits;
1280      KnownZero &= ~NewBits;
1281    }
1282    return;
1283  }
1284  case ISD::ANY_EXTEND: {
1285    MVT::ValueType VT = Op.getOperand(0).getValueType();
1286    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1287                      KnownZero, KnownOne, Depth+1);
1288    return;
1289  }
1290  case ISD::TRUNCATE: {
1291    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1292    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1293    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1294    KnownZero &= OutMask;
1295    KnownOne &= OutMask;
1296    break;
1297  }
1298  case ISD::AssertZext: {
1299    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1300    uint64_t InMask = MVT::getIntVTBitMask(VT);
1301    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1302                      KnownOne, Depth+1);
1303    KnownZero |= (~InMask) & Mask;
1304    return;
1305  }
1306  case ISD::ADD: {
1307    // If either the LHS or the RHS are Zero, the result is zero.
1308    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1309    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1310    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1311    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1312
1313    // Output known-0 bits are known if clear or set in both the low clear bits
1314    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1315    // low 3 bits clear.
1316    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1317                                     CountTrailingZeros_64(~KnownZero2));
1318
1319    KnownZero = (1ULL << KnownZeroOut) - 1;
1320    KnownOne = 0;
1321    return;
1322  }
1323  case ISD::SUB: {
1324    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1325    if (!CLHS) return;
1326
1327    // We know that the top bits of C-X are clear if X contains less bits
1328    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1329    // positive if we can prove that X is >= 0 and < 16.
1330    MVT::ValueType VT = CLHS->getValueType(0);
1331    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1332      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1333      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1334      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1335      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1336
1337      // If all of the MaskV bits are known to be zero, then we know the output
1338      // top bits are zero, because we now know that the output is from [0-C].
1339      if ((KnownZero & MaskV) == MaskV) {
1340        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1341        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1342        KnownOne = 0;   // No one bits known.
1343      } else {
1344        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1345      }
1346    }
1347    return;
1348  }
1349  default:
1350    // Allow the target to implement this method for its nodes.
1351    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1352  case ISD::INTRINSIC_WO_CHAIN:
1353  case ISD::INTRINSIC_W_CHAIN:
1354  case ISD::INTRINSIC_VOID:
1355      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1356    }
1357    return;
1358  }
1359}
1360
1361/// ComputeNumSignBits - Return the number of times the sign bit of the
1362/// register is replicated into the other bits.  We know that at least 1 bit
1363/// is always equal to the sign bit (itself), but other cases can give us
1364/// information.  For example, immediately after an "SRA X, 2", we know that
1365/// the top 3 bits are all equal to each other, so we return 3.
1366unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1367  MVT::ValueType VT = Op.getValueType();
1368  assert(MVT::isInteger(VT) && "Invalid VT!");
1369  unsigned VTBits = MVT::getSizeInBits(VT);
1370  unsigned Tmp, Tmp2;
1371
1372  if (Depth == 6)
1373    return 1;  // Limit search depth.
1374
1375  switch (Op.getOpcode()) {
1376  default: break;
1377  case ISD::AssertSext:
1378    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1379    return VTBits-Tmp+1;
1380  case ISD::AssertZext:
1381    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1382    return VTBits-Tmp;
1383
1384  case ISD::Constant: {
1385    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1386    // If negative, invert the bits, then look at it.
1387    if (Val & MVT::getIntVTSignBit(VT))
1388      Val = ~Val;
1389
1390    // Shift the bits so they are the leading bits in the int64_t.
1391    Val <<= 64-VTBits;
1392
1393    // Return # leading zeros.  We use 'min' here in case Val was zero before
1394    // shifting.  We don't want to return '64' as for an i32 "0".
1395    return std::min(VTBits, CountLeadingZeros_64(Val));
1396  }
1397
1398  case ISD::SIGN_EXTEND:
1399    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1400    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1401
1402  case ISD::SIGN_EXTEND_INREG:
1403    // Max of the input and what this extends.
1404    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1405    Tmp = VTBits-Tmp+1;
1406
1407    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1408    return std::max(Tmp, Tmp2);
1409
1410  case ISD::SRA:
1411    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1412    // SRA X, C   -> adds C sign bits.
1413    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1414      Tmp += C->getValue();
1415      if (Tmp > VTBits) Tmp = VTBits;
1416    }
1417    return Tmp;
1418  case ISD::SHL:
1419    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1420      // shl destroys sign bits.
1421      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1422      if (C->getValue() >= VTBits ||      // Bad shift.
1423          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1424      return Tmp - C->getValue();
1425    }
1426    break;
1427  case ISD::AND:
1428  case ISD::OR:
1429  case ISD::XOR:    // NOT is handled here.
1430    // Logical binary ops preserve the number of sign bits.
1431    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1432    if (Tmp == 1) return 1;  // Early out.
1433    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1434    return std::min(Tmp, Tmp2);
1435
1436  case ISD::SELECT:
1437    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1438    if (Tmp == 1) return 1;  // Early out.
1439    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1440    return std::min(Tmp, Tmp2);
1441
1442  case ISD::SETCC:
1443    // If setcc returns 0/-1, all bits are sign bits.
1444    if (TLI.getSetCCResultContents() ==
1445        TargetLowering::ZeroOrNegativeOneSetCCResult)
1446      return VTBits;
1447    break;
1448  case ISD::ROTL:
1449  case ISD::ROTR:
1450    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1451      unsigned RotAmt = C->getValue() & (VTBits-1);
1452
1453      // Handle rotate right by N like a rotate left by 32-N.
1454      if (Op.getOpcode() == ISD::ROTR)
1455        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1456
1457      // If we aren't rotating out all of the known-in sign bits, return the
1458      // number that are left.  This handles rotl(sext(x), 1) for example.
1459      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1460      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1461    }
1462    break;
1463  case ISD::ADD:
1464    // Add can have at most one carry bit.  Thus we know that the output
1465    // is, at worst, one more bit than the inputs.
1466    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1467    if (Tmp == 1) return 1;  // Early out.
1468
1469    // Special case decrementing a value (ADD X, -1):
1470    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1471      if (CRHS->isAllOnesValue()) {
1472        uint64_t KnownZero, KnownOne;
1473        uint64_t Mask = MVT::getIntVTBitMask(VT);
1474        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1475
1476        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1477        // sign bits set.
1478        if ((KnownZero|1) == Mask)
1479          return VTBits;
1480
1481        // If we are subtracting one from a positive number, there is no carry
1482        // out of the result.
1483        if (KnownZero & MVT::getIntVTSignBit(VT))
1484          return Tmp;
1485      }
1486
1487    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1488    if (Tmp2 == 1) return 1;
1489      return std::min(Tmp, Tmp2)-1;
1490    break;
1491
1492  case ISD::SUB:
1493    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1494    if (Tmp2 == 1) return 1;
1495
1496    // Handle NEG.
1497    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1498      if (CLHS->getValue() == 0) {
1499        uint64_t KnownZero, KnownOne;
1500        uint64_t Mask = MVT::getIntVTBitMask(VT);
1501        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1502        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1503        // sign bits set.
1504        if ((KnownZero|1) == Mask)
1505          return VTBits;
1506
1507        // If the input is known to be positive (the sign bit is known clear),
1508        // the output of the NEG has the same number of sign bits as the input.
1509        if (KnownZero & MVT::getIntVTSignBit(VT))
1510          return Tmp2;
1511
1512        // Otherwise, we treat this like a SUB.
1513      }
1514
1515    // Sub can have at most one carry bit.  Thus we know that the output
1516    // is, at worst, one more bit than the inputs.
1517    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1518    if (Tmp == 1) return 1;  // Early out.
1519      return std::min(Tmp, Tmp2)-1;
1520    break;
1521  case ISD::TRUNCATE:
1522    // FIXME: it's tricky to do anything useful for this, but it is an important
1523    // case for targets like X86.
1524    break;
1525  }
1526
1527  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1528  if (Op.getOpcode() == ISD::LOAD) {
1529    LoadSDNode *LD = cast<LoadSDNode>(Op);
1530    unsigned ExtType = LD->getExtensionType();
1531    switch (ExtType) {
1532    default: break;
1533    case ISD::SEXTLOAD:    // '17' bits known
1534      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1535      return VTBits-Tmp+1;
1536    case ISD::ZEXTLOAD:    // '16' bits known
1537      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1538      return VTBits-Tmp;
1539    }
1540  }
1541
1542  // Allow the target to implement this method for its nodes.
1543  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1544      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1545      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1546      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1547    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1548    if (NumBits > 1) return NumBits;
1549  }
1550
1551  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1552  // use this information.
1553  uint64_t KnownZero, KnownOne;
1554  uint64_t Mask = MVT::getIntVTBitMask(VT);
1555  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1556
1557  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1558  if (KnownZero & SignBit) {        // SignBit is 0
1559    Mask = KnownZero;
1560  } else if (KnownOne & SignBit) {  // SignBit is 1;
1561    Mask = KnownOne;
1562  } else {
1563    // Nothing known.
1564    return 1;
1565  }
1566
1567  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1568  // the number of identical bits in the top of the input value.
1569  Mask ^= ~0ULL;
1570  Mask <<= 64-VTBits;
1571  // Return # leading zeros.  We use 'min' here in case Val was zero before
1572  // shifting.  We don't want to return '64' as for an i32 "0".
1573  return std::min(VTBits, CountLeadingZeros_64(Mask));
1574}
1575
1576
1577/// getNode - Gets or creates the specified node.
1578///
1579SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1580  FoldingSetNodeID ID;
1581  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1582  void *IP = 0;
1583  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1584    return SDOperand(E, 0);
1585  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1586  CSEMap.InsertNode(N, IP);
1587
1588  AllNodes.push_back(N);
1589  return SDOperand(N, 0);
1590}
1591
1592SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1593                                SDOperand Operand) {
1594  unsigned Tmp1;
1595  // Constant fold unary operations with an integer constant operand.
1596  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1597    uint64_t Val = C->getValue();
1598    switch (Opcode) {
1599    default: break;
1600    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1601    case ISD::ANY_EXTEND:
1602    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1603    case ISD::TRUNCATE:    return getConstant(Val, VT);
1604    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
1605    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
1606    case ISD::BIT_CONVERT:
1607      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1608        return getConstantFP(BitsToFloat(Val), VT);
1609      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1610        return getConstantFP(BitsToDouble(Val), VT);
1611      break;
1612    case ISD::BSWAP:
1613      switch(VT) {
1614      default: assert(0 && "Invalid bswap!"); break;
1615      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1616      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1617      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1618      }
1619      break;
1620    case ISD::CTPOP:
1621      switch(VT) {
1622      default: assert(0 && "Invalid ctpop!"); break;
1623      case MVT::i1: return getConstant(Val != 0, VT);
1624      case MVT::i8:
1625        Tmp1 = (unsigned)Val & 0xFF;
1626        return getConstant(CountPopulation_32(Tmp1), VT);
1627      case MVT::i16:
1628        Tmp1 = (unsigned)Val & 0xFFFF;
1629        return getConstant(CountPopulation_32(Tmp1), VT);
1630      case MVT::i32:
1631        return getConstant(CountPopulation_32((unsigned)Val), VT);
1632      case MVT::i64:
1633        return getConstant(CountPopulation_64(Val), VT);
1634      }
1635    case ISD::CTLZ:
1636      switch(VT) {
1637      default: assert(0 && "Invalid ctlz!"); break;
1638      case MVT::i1: return getConstant(Val == 0, VT);
1639      case MVT::i8:
1640        Tmp1 = (unsigned)Val & 0xFF;
1641        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1642      case MVT::i16:
1643        Tmp1 = (unsigned)Val & 0xFFFF;
1644        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1645      case MVT::i32:
1646        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1647      case MVT::i64:
1648        return getConstant(CountLeadingZeros_64(Val), VT);
1649      }
1650    case ISD::CTTZ:
1651      switch(VT) {
1652      default: assert(0 && "Invalid cttz!"); break;
1653      case MVT::i1: return getConstant(Val == 0, VT);
1654      case MVT::i8:
1655        Tmp1 = (unsigned)Val | 0x100;
1656        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1657      case MVT::i16:
1658        Tmp1 = (unsigned)Val | 0x10000;
1659        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1660      case MVT::i32:
1661        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1662      case MVT::i64:
1663        return getConstant(CountTrailingZeros_64(Val), VT);
1664      }
1665    }
1666  }
1667
1668  // Constant fold unary operations with a floating point constant operand.
1669  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1670    APFloat V = C->getValueAPF();    // make copy
1671    switch (Opcode) {
1672    case ISD::FNEG:
1673      V.changeSign();
1674      return getConstantFP(V, VT);
1675    case ISD::FABS:
1676      V.clearSign();
1677      return getConstantFP(V, VT);
1678    case ISD::FP_ROUND:
1679    case ISD::FP_EXTEND:
1680      // This can return overflow, underflow, or inexact; we don't care.
1681      // FIXME need to be more flexible about rounding mode.
1682      (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1683                                      APFloat::IEEEdouble,
1684                       APFloat::rmNearestTiesToEven);
1685      return getConstantFP(V, VT);
1686    case ISD::FP_TO_SINT:
1687    case ISD::FP_TO_UINT: {
1688      integerPart x;
1689      assert(integerPartWidth >= 64);
1690      // FIXME need to be more flexible about rounding mode.
1691      APFloat::opStatus s = V.convertToInteger(&x, 64U,
1692                            Opcode==ISD::FP_TO_SINT,
1693                            APFloat::rmTowardZero);
1694      if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1695        break;
1696      return getConstant(x, VT);
1697    }
1698    case ISD::BIT_CONVERT:
1699      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1700        return getConstant((uint32_t)*V.convertToAPInt().getRawData(), VT);
1701      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1702        return getConstant(*V.convertToAPInt().getRawData(), VT);
1703      break;
1704    }
1705  }
1706
1707  unsigned OpOpcode = Operand.Val->getOpcode();
1708  switch (Opcode) {
1709  case ISD::TokenFactor:
1710    return Operand;         // Factor of one node?  No factor.
1711  case ISD::FP_ROUND:
1712  case ISD::FP_EXTEND:
1713    assert(MVT::isFloatingPoint(VT) &&
1714           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1715    break;
1716  case ISD::SIGN_EXTEND:
1717    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1718           "Invalid SIGN_EXTEND!");
1719    if (Operand.getValueType() == VT) return Operand;   // noop extension
1720    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1721    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1722      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1723    break;
1724  case ISD::ZERO_EXTEND:
1725    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1726           "Invalid ZERO_EXTEND!");
1727    if (Operand.getValueType() == VT) return Operand;   // noop extension
1728    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1729    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1730      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1731    break;
1732  case ISD::ANY_EXTEND:
1733    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1734           "Invalid ANY_EXTEND!");
1735    if (Operand.getValueType() == VT) return Operand;   // noop extension
1736    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1737    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1738      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1739      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1740    break;
1741  case ISD::TRUNCATE:
1742    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1743           "Invalid TRUNCATE!");
1744    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1745    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1746    if (OpOpcode == ISD::TRUNCATE)
1747      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1748    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1749             OpOpcode == ISD::ANY_EXTEND) {
1750      // If the source is smaller than the dest, we still need an extend.
1751      if (Operand.Val->getOperand(0).getValueType() < VT)
1752        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1753      else if (Operand.Val->getOperand(0).getValueType() > VT)
1754        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1755      else
1756        return Operand.Val->getOperand(0);
1757    }
1758    break;
1759  case ISD::BIT_CONVERT:
1760    // Basic sanity checking.
1761    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1762           && "Cannot BIT_CONVERT between types of different sizes!");
1763    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1764    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1765      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1766    if (OpOpcode == ISD::UNDEF)
1767      return getNode(ISD::UNDEF, VT);
1768    break;
1769  case ISD::SCALAR_TO_VECTOR:
1770    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1771           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1772           "Illegal SCALAR_TO_VECTOR node!");
1773    break;
1774  case ISD::FNEG:
1775    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1776      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1777                     Operand.Val->getOperand(0));
1778    if (OpOpcode == ISD::FNEG)  // --X -> X
1779      return Operand.Val->getOperand(0);
1780    break;
1781  case ISD::FABS:
1782    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1783      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1784    break;
1785  }
1786
1787  SDNode *N;
1788  SDVTList VTs = getVTList(VT);
1789  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1790    FoldingSetNodeID ID;
1791    SDOperand Ops[1] = { Operand };
1792    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1793    void *IP = 0;
1794    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1795      return SDOperand(E, 0);
1796    N = new UnarySDNode(Opcode, VTs, Operand);
1797    CSEMap.InsertNode(N, IP);
1798  } else {
1799    N = new UnarySDNode(Opcode, VTs, Operand);
1800  }
1801  AllNodes.push_back(N);
1802  return SDOperand(N, 0);
1803}
1804
1805
1806
1807SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1808                                SDOperand N1, SDOperand N2) {
1809#ifndef NDEBUG
1810  switch (Opcode) {
1811  case ISD::TokenFactor:
1812    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1813           N2.getValueType() == MVT::Other && "Invalid token factor!");
1814    break;
1815  case ISD::AND:
1816  case ISD::OR:
1817  case ISD::XOR:
1818  case ISD::UDIV:
1819  case ISD::UREM:
1820  case ISD::MULHU:
1821  case ISD::MULHS:
1822    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1823    // fall through
1824  case ISD::ADD:
1825  case ISD::SUB:
1826  case ISD::MUL:
1827  case ISD::SDIV:
1828  case ISD::SREM:
1829    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1830    // fall through.
1831  case ISD::FADD:
1832  case ISD::FSUB:
1833  case ISD::FMUL:
1834  case ISD::FDIV:
1835  case ISD::FREM:
1836    assert(N1.getValueType() == N2.getValueType() &&
1837           N1.getValueType() == VT && "Binary operator types must match!");
1838    break;
1839  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1840    assert(N1.getValueType() == VT &&
1841           MVT::isFloatingPoint(N1.getValueType()) &&
1842           MVT::isFloatingPoint(N2.getValueType()) &&
1843           "Invalid FCOPYSIGN!");
1844    break;
1845  case ISD::SHL:
1846  case ISD::SRA:
1847  case ISD::SRL:
1848  case ISD::ROTL:
1849  case ISD::ROTR:
1850    assert(VT == N1.getValueType() &&
1851           "Shift operators return type must be the same as their first arg");
1852    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1853           VT != MVT::i1 && "Shifts only work on integers");
1854    break;
1855  case ISD::FP_ROUND_INREG: {
1856    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1857    assert(VT == N1.getValueType() && "Not an inreg round!");
1858    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1859           "Cannot FP_ROUND_INREG integer types");
1860    assert(EVT <= VT && "Not rounding down!");
1861    break;
1862  }
1863  case ISD::AssertSext:
1864  case ISD::AssertZext:
1865  case ISD::SIGN_EXTEND_INREG: {
1866    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1867    assert(VT == N1.getValueType() && "Not an inreg extend!");
1868    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1869           "Cannot *_EXTEND_INREG FP types");
1870    assert(EVT <= VT && "Not extending!");
1871  }
1872
1873  default: break;
1874  }
1875#endif
1876
1877  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1878  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1879  if (N1C) {
1880    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1881      int64_t Val = N1C->getValue();
1882      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1883      Val <<= 64-FromBits;
1884      Val >>= 64-FromBits;
1885      return getConstant(Val, VT);
1886    }
1887
1888    if (N2C) {
1889      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1890      switch (Opcode) {
1891      case ISD::ADD: return getConstant(C1 + C2, VT);
1892      case ISD::SUB: return getConstant(C1 - C2, VT);
1893      case ISD::MUL: return getConstant(C1 * C2, VT);
1894      case ISD::UDIV:
1895        if (C2) return getConstant(C1 / C2, VT);
1896        break;
1897      case ISD::UREM :
1898        if (C2) return getConstant(C1 % C2, VT);
1899        break;
1900      case ISD::SDIV :
1901        if (C2) return getConstant(N1C->getSignExtended() /
1902                                   N2C->getSignExtended(), VT);
1903        break;
1904      case ISD::SREM :
1905        if (C2) return getConstant(N1C->getSignExtended() %
1906                                   N2C->getSignExtended(), VT);
1907        break;
1908      case ISD::AND  : return getConstant(C1 & C2, VT);
1909      case ISD::OR   : return getConstant(C1 | C2, VT);
1910      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1911      case ISD::SHL  : return getConstant(C1 << C2, VT);
1912      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1913      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1914      case ISD::ROTL :
1915        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1916                           VT);
1917      case ISD::ROTR :
1918        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1919                           VT);
1920      default: break;
1921      }
1922    } else {      // Cannonicalize constant to RHS if commutative
1923      if (isCommutativeBinOp(Opcode)) {
1924        std::swap(N1C, N2C);
1925        std::swap(N1, N2);
1926      }
1927    }
1928  }
1929
1930  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1931  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1932  if (N1CFP) {
1933    if (N2CFP) {
1934      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
1935      APFloat::opStatus s;
1936      switch (Opcode) {
1937      case ISD::FADD:
1938        s = V1.add(V2, APFloat::rmNearestTiesToEven);
1939        if (s!=APFloat::opInvalidOp)
1940          return getConstantFP(V1, VT);
1941        break;
1942      case ISD::FSUB:
1943        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
1944        if (s!=APFloat::opInvalidOp)
1945          return getConstantFP(V1, VT);
1946        break;
1947      case ISD::FMUL:
1948        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
1949        if (s!=APFloat::opInvalidOp)
1950          return getConstantFP(V1, VT);
1951        break;
1952      case ISD::FDIV:
1953        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
1954        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1955          return getConstantFP(V1, VT);
1956        break;
1957      case ISD::FREM :
1958        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
1959        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1960          return getConstantFP(V1, VT);
1961        break;
1962      case ISD::FCOPYSIGN:
1963        V1.copySign(V2);
1964        return getConstantFP(V1, VT);
1965      default: break;
1966      }
1967    } else {      // Cannonicalize constant to RHS if commutative
1968      if (isCommutativeBinOp(Opcode)) {
1969        std::swap(N1CFP, N2CFP);
1970        std::swap(N1, N2);
1971      }
1972    }
1973  }
1974
1975  // Canonicalize an UNDEF to the RHS, even over a constant.
1976  if (N1.getOpcode() == ISD::UNDEF) {
1977    if (isCommutativeBinOp(Opcode)) {
1978      std::swap(N1, N2);
1979    } else {
1980      switch (Opcode) {
1981      case ISD::FP_ROUND_INREG:
1982      case ISD::SIGN_EXTEND_INREG:
1983      case ISD::SUB:
1984      case ISD::FSUB:
1985      case ISD::FDIV:
1986      case ISD::FREM:
1987      case ISD::SRA:
1988        return N1;     // fold op(undef, arg2) -> undef
1989      case ISD::UDIV:
1990      case ISD::SDIV:
1991      case ISD::UREM:
1992      case ISD::SREM:
1993      case ISD::SRL:
1994      case ISD::SHL:
1995        if (!MVT::isVector(VT))
1996          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1997        // For vectors, we can't easily build an all zero vector, just return
1998        // the LHS.
1999        return N2;
2000      }
2001    }
2002  }
2003
2004  // Fold a bunch of operators when the RHS is undef.
2005  if (N2.getOpcode() == ISD::UNDEF) {
2006    switch (Opcode) {
2007    case ISD::ADD:
2008    case ISD::ADDC:
2009    case ISD::ADDE:
2010    case ISD::SUB:
2011    case ISD::FADD:
2012    case ISD::FSUB:
2013    case ISD::FMUL:
2014    case ISD::FDIV:
2015    case ISD::FREM:
2016    case ISD::UDIV:
2017    case ISD::SDIV:
2018    case ISD::UREM:
2019    case ISD::SREM:
2020    case ISD::XOR:
2021      return N2;       // fold op(arg1, undef) -> undef
2022    case ISD::MUL:
2023    case ISD::AND:
2024    case ISD::SRL:
2025    case ISD::SHL:
2026      if (!MVT::isVector(VT))
2027        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2028      // For vectors, we can't easily build an all zero vector, just return
2029      // the LHS.
2030      return N1;
2031    case ISD::OR:
2032      if (!MVT::isVector(VT))
2033        return getConstant(MVT::getIntVTBitMask(VT), VT);
2034      // For vectors, we can't easily build an all one vector, just return
2035      // the LHS.
2036      return N1;
2037    case ISD::SRA:
2038      return N1;
2039    }
2040  }
2041
2042  // Fold operations.
2043  switch (Opcode) {
2044  case ISD::TokenFactor:
2045    // Fold trivial token factors.
2046    if (N1.getOpcode() == ISD::EntryToken) return N2;
2047    if (N2.getOpcode() == ISD::EntryToken) return N1;
2048    break;
2049
2050  case ISD::AND:
2051    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2052    // worth handling here.
2053    if (N2C && N2C->getValue() == 0)
2054      return N2;
2055    break;
2056  case ISD::OR:
2057  case ISD::XOR:
2058    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
2059    // worth handling here.
2060    if (N2C && N2C->getValue() == 0)
2061      return N1;
2062    break;
2063  case ISD::FP_ROUND_INREG:
2064    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2065    break;
2066  case ISD::SIGN_EXTEND_INREG: {
2067    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2068    if (EVT == VT) return N1;  // Not actually extending
2069    break;
2070  }
2071  case ISD::EXTRACT_VECTOR_ELT:
2072    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2073
2074    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2075    // expanding copies of large vectors from registers.
2076    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2077        N1.getNumOperands() > 0) {
2078      unsigned Factor =
2079        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2080      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2081                     N1.getOperand(N2C->getValue() / Factor),
2082                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2083    }
2084
2085    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2086    // expanding large vector constants.
2087    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2088      return N1.getOperand(N2C->getValue());
2089
2090    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2091    // operations are lowered to scalars.
2092    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2093      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2094        if (IEC == N2C)
2095          return N1.getOperand(1);
2096        else
2097          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2098      }
2099    break;
2100  case ISD::EXTRACT_ELEMENT:
2101    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2102
2103    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2104    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2105    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2106    if (N1.getOpcode() == ISD::BUILD_PAIR)
2107      return N1.getOperand(N2C->getValue());
2108
2109    // EXTRACT_ELEMENT of a constant int is also very common.
2110    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2111      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2112      return getConstant(C->getValue() >> Shift, VT);
2113    }
2114    break;
2115
2116  // FIXME: figure out how to safely handle things like
2117  // int foo(int x) { return 1 << (x & 255); }
2118  // int bar() { return foo(256); }
2119#if 0
2120  case ISD::SHL:
2121  case ISD::SRL:
2122  case ISD::SRA:
2123    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2124        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2125      return getNode(Opcode, VT, N1, N2.getOperand(0));
2126    else if (N2.getOpcode() == ISD::AND)
2127      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2128        // If the and is only masking out bits that cannot effect the shift,
2129        // eliminate the and.
2130        unsigned NumBits = MVT::getSizeInBits(VT);
2131        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2132          return getNode(Opcode, VT, N1, N2.getOperand(0));
2133      }
2134    break;
2135#endif
2136  }
2137
2138  // Memoize this node if possible.
2139  SDNode *N;
2140  SDVTList VTs = getVTList(VT);
2141  if (VT != MVT::Flag) {
2142    SDOperand Ops[] = { N1, N2 };
2143    FoldingSetNodeID ID;
2144    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2145    void *IP = 0;
2146    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2147      return SDOperand(E, 0);
2148    N = new BinarySDNode(Opcode, VTs, N1, N2);
2149    CSEMap.InsertNode(N, IP);
2150  } else {
2151    N = new BinarySDNode(Opcode, VTs, N1, N2);
2152  }
2153
2154  AllNodes.push_back(N);
2155  return SDOperand(N, 0);
2156}
2157
2158SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2159                                SDOperand N1, SDOperand N2, SDOperand N3) {
2160  // Perform various simplifications.
2161  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2162  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2163  switch (Opcode) {
2164  case ISD::SETCC: {
2165    // Use FoldSetCC to simplify SETCC's.
2166    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2167    if (Simp.Val) return Simp;
2168    break;
2169  }
2170  case ISD::SELECT:
2171    if (N1C)
2172      if (N1C->getValue())
2173        return N2;             // select true, X, Y -> X
2174      else
2175        return N3;             // select false, X, Y -> Y
2176
2177    if (N2 == N3) return N2;   // select C, X, X -> X
2178    break;
2179  case ISD::BRCOND:
2180    if (N2C)
2181      if (N2C->getValue()) // Unconditional branch
2182        return getNode(ISD::BR, MVT::Other, N1, N3);
2183      else
2184        return N1;         // Never-taken branch
2185    break;
2186  case ISD::VECTOR_SHUFFLE:
2187    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2188           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2189           N3.getOpcode() == ISD::BUILD_VECTOR &&
2190           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2191           "Illegal VECTOR_SHUFFLE node!");
2192    break;
2193  case ISD::BIT_CONVERT:
2194    // Fold bit_convert nodes from a type to themselves.
2195    if (N1.getValueType() == VT)
2196      return N1;
2197    break;
2198  }
2199
2200  // Memoize node if it doesn't produce a flag.
2201  SDNode *N;
2202  SDVTList VTs = getVTList(VT);
2203  if (VT != MVT::Flag) {
2204    SDOperand Ops[] = { N1, N2, N3 };
2205    FoldingSetNodeID ID;
2206    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2207    void *IP = 0;
2208    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2209      return SDOperand(E, 0);
2210    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2211    CSEMap.InsertNode(N, IP);
2212  } else {
2213    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2214  }
2215  AllNodes.push_back(N);
2216  return SDOperand(N, 0);
2217}
2218
2219SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2220                                SDOperand N1, SDOperand N2, SDOperand N3,
2221                                SDOperand N4) {
2222  SDOperand Ops[] = { N1, N2, N3, N4 };
2223  return getNode(Opcode, VT, Ops, 4);
2224}
2225
2226SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2227                                SDOperand N1, SDOperand N2, SDOperand N3,
2228                                SDOperand N4, SDOperand N5) {
2229  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2230  return getNode(Opcode, VT, Ops, 5);
2231}
2232
2233SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2234                                SDOperand Chain, SDOperand Ptr,
2235                                const Value *SV, int SVOffset,
2236                                bool isVolatile, unsigned Alignment) {
2237  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2238    const Type *Ty = 0;
2239    if (VT != MVT::iPTR) {
2240      Ty = MVT::getTypeForValueType(VT);
2241    } else if (SV) {
2242      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2243      assert(PT && "Value for load must be a pointer");
2244      Ty = PT->getElementType();
2245    }
2246    assert(Ty && "Could not get type information for load");
2247    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2248  }
2249  SDVTList VTs = getVTList(VT, MVT::Other);
2250  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2251  SDOperand Ops[] = { Chain, Ptr, Undef };
2252  FoldingSetNodeID ID;
2253  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2254  ID.AddInteger(ISD::UNINDEXED);
2255  ID.AddInteger(ISD::NON_EXTLOAD);
2256  ID.AddInteger(VT);
2257  ID.AddPointer(SV);
2258  ID.AddInteger(SVOffset);
2259  ID.AddInteger(Alignment);
2260  ID.AddInteger(isVolatile);
2261  void *IP = 0;
2262  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2263    return SDOperand(E, 0);
2264  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2265                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2266                             isVolatile);
2267  CSEMap.InsertNode(N, IP);
2268  AllNodes.push_back(N);
2269  return SDOperand(N, 0);
2270}
2271
2272SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2273                                   SDOperand Chain, SDOperand Ptr,
2274                                   const Value *SV,
2275                                   int SVOffset, MVT::ValueType EVT,
2276                                   bool isVolatile, unsigned Alignment) {
2277  // If they are asking for an extending load from/to the same thing, return a
2278  // normal load.
2279  if (VT == EVT)
2280    ExtType = ISD::NON_EXTLOAD;
2281
2282  if (MVT::isVector(VT))
2283    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2284  else
2285    assert(EVT < VT && "Should only be an extending load, not truncating!");
2286  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2287         "Cannot sign/zero extend a FP/Vector load!");
2288  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2289         "Cannot convert from FP to Int or Int -> FP!");
2290
2291  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2292    const Type *Ty = 0;
2293    if (VT != MVT::iPTR) {
2294      Ty = MVT::getTypeForValueType(VT);
2295    } else if (SV) {
2296      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2297      assert(PT && "Value for load must be a pointer");
2298      Ty = PT->getElementType();
2299    }
2300    assert(Ty && "Could not get type information for load");
2301    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2302  }
2303  SDVTList VTs = getVTList(VT, MVT::Other);
2304  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2305  SDOperand Ops[] = { Chain, Ptr, Undef };
2306  FoldingSetNodeID ID;
2307  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2308  ID.AddInteger(ISD::UNINDEXED);
2309  ID.AddInteger(ExtType);
2310  ID.AddInteger(EVT);
2311  ID.AddPointer(SV);
2312  ID.AddInteger(SVOffset);
2313  ID.AddInteger(Alignment);
2314  ID.AddInteger(isVolatile);
2315  void *IP = 0;
2316  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2317    return SDOperand(E, 0);
2318  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2319                             SV, SVOffset, Alignment, isVolatile);
2320  CSEMap.InsertNode(N, IP);
2321  AllNodes.push_back(N);
2322  return SDOperand(N, 0);
2323}
2324
2325SDOperand
2326SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2327                             SDOperand Offset, ISD::MemIndexedMode AM) {
2328  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2329  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2330         "Load is already a indexed load!");
2331  MVT::ValueType VT = OrigLoad.getValueType();
2332  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2333  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2334  FoldingSetNodeID ID;
2335  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2336  ID.AddInteger(AM);
2337  ID.AddInteger(LD->getExtensionType());
2338  ID.AddInteger(LD->getLoadedVT());
2339  ID.AddPointer(LD->getSrcValue());
2340  ID.AddInteger(LD->getSrcValueOffset());
2341  ID.AddInteger(LD->getAlignment());
2342  ID.AddInteger(LD->isVolatile());
2343  void *IP = 0;
2344  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2345    return SDOperand(E, 0);
2346  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2347                             LD->getExtensionType(), LD->getLoadedVT(),
2348                             LD->getSrcValue(), LD->getSrcValueOffset(),
2349                             LD->getAlignment(), LD->isVolatile());
2350  CSEMap.InsertNode(N, IP);
2351  AllNodes.push_back(N);
2352  return SDOperand(N, 0);
2353}
2354
2355SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2356                                 SDOperand Ptr, const Value *SV, int SVOffset,
2357                                 bool isVolatile, unsigned Alignment) {
2358  MVT::ValueType VT = Val.getValueType();
2359
2360  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2361    const Type *Ty = 0;
2362    if (VT != MVT::iPTR) {
2363      Ty = MVT::getTypeForValueType(VT);
2364    } else if (SV) {
2365      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2366      assert(PT && "Value for store must be a pointer");
2367      Ty = PT->getElementType();
2368    }
2369    assert(Ty && "Could not get type information for store");
2370    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2371  }
2372  SDVTList VTs = getVTList(MVT::Other);
2373  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2374  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2375  FoldingSetNodeID ID;
2376  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2377  ID.AddInteger(ISD::UNINDEXED);
2378  ID.AddInteger(false);
2379  ID.AddInteger(VT);
2380  ID.AddPointer(SV);
2381  ID.AddInteger(SVOffset);
2382  ID.AddInteger(Alignment);
2383  ID.AddInteger(isVolatile);
2384  void *IP = 0;
2385  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2386    return SDOperand(E, 0);
2387  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2388                              VT, SV, SVOffset, Alignment, isVolatile);
2389  CSEMap.InsertNode(N, IP);
2390  AllNodes.push_back(N);
2391  return SDOperand(N, 0);
2392}
2393
2394SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2395                                      SDOperand Ptr, const Value *SV,
2396                                      int SVOffset, MVT::ValueType SVT,
2397                                      bool isVolatile, unsigned Alignment) {
2398  MVT::ValueType VT = Val.getValueType();
2399  bool isTrunc = VT != SVT;
2400
2401  assert(VT > SVT && "Not a truncation?");
2402  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2403         "Can't do FP-INT conversion!");
2404
2405  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2406    const Type *Ty = 0;
2407    if (VT != MVT::iPTR) {
2408      Ty = MVT::getTypeForValueType(VT);
2409    } else if (SV) {
2410      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2411      assert(PT && "Value for store must be a pointer");
2412      Ty = PT->getElementType();
2413    }
2414    assert(Ty && "Could not get type information for store");
2415    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2416  }
2417  SDVTList VTs = getVTList(MVT::Other);
2418  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2419  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2420  FoldingSetNodeID ID;
2421  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2422  ID.AddInteger(ISD::UNINDEXED);
2423  ID.AddInteger(isTrunc);
2424  ID.AddInteger(SVT);
2425  ID.AddPointer(SV);
2426  ID.AddInteger(SVOffset);
2427  ID.AddInteger(Alignment);
2428  ID.AddInteger(isVolatile);
2429  void *IP = 0;
2430  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2431    return SDOperand(E, 0);
2432  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
2433                              SVT, SV, SVOffset, Alignment, isVolatile);
2434  CSEMap.InsertNode(N, IP);
2435  AllNodes.push_back(N);
2436  return SDOperand(N, 0);
2437}
2438
2439SDOperand
2440SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2441                              SDOperand Offset, ISD::MemIndexedMode AM) {
2442  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2443  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2444         "Store is already a indexed store!");
2445  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2446  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2447  FoldingSetNodeID ID;
2448  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2449  ID.AddInteger(AM);
2450  ID.AddInteger(ST->isTruncatingStore());
2451  ID.AddInteger(ST->getStoredVT());
2452  ID.AddPointer(ST->getSrcValue());
2453  ID.AddInteger(ST->getSrcValueOffset());
2454  ID.AddInteger(ST->getAlignment());
2455  ID.AddInteger(ST->isVolatile());
2456  void *IP = 0;
2457  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2458    return SDOperand(E, 0);
2459  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2460                              ST->isTruncatingStore(), ST->getStoredVT(),
2461                              ST->getSrcValue(), ST->getSrcValueOffset(),
2462                              ST->getAlignment(), ST->isVolatile());
2463  CSEMap.InsertNode(N, IP);
2464  AllNodes.push_back(N);
2465  return SDOperand(N, 0);
2466}
2467
2468SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2469                                 SDOperand Chain, SDOperand Ptr,
2470                                 SDOperand SV) {
2471  SDOperand Ops[] = { Chain, Ptr, SV };
2472  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2473}
2474
2475SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2476                                const SDOperand *Ops, unsigned NumOps) {
2477  switch (NumOps) {
2478  case 0: return getNode(Opcode, VT);
2479  case 1: return getNode(Opcode, VT, Ops[0]);
2480  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2481  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2482  default: break;
2483  }
2484
2485  switch (Opcode) {
2486  default: break;
2487  case ISD::SELECT_CC: {
2488    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2489    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2490           "LHS and RHS of condition must have same type!");
2491    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2492           "True and False arms of SelectCC must have same type!");
2493    assert(Ops[2].getValueType() == VT &&
2494           "select_cc node must be of same type as true and false value!");
2495    break;
2496  }
2497  case ISD::BR_CC: {
2498    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2499    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2500           "LHS/RHS of comparison should match types!");
2501    break;
2502  }
2503  }
2504
2505  // Memoize nodes.
2506  SDNode *N;
2507  SDVTList VTs = getVTList(VT);
2508  if (VT != MVT::Flag) {
2509    FoldingSetNodeID ID;
2510    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2511    void *IP = 0;
2512    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2513      return SDOperand(E, 0);
2514    N = new SDNode(Opcode, VTs, Ops, NumOps);
2515    CSEMap.InsertNode(N, IP);
2516  } else {
2517    N = new SDNode(Opcode, VTs, Ops, NumOps);
2518  }
2519  AllNodes.push_back(N);
2520  return SDOperand(N, 0);
2521}
2522
2523SDOperand SelectionDAG::getNode(unsigned Opcode,
2524                                std::vector<MVT::ValueType> &ResultTys,
2525                                const SDOperand *Ops, unsigned NumOps) {
2526  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2527                 Ops, NumOps);
2528}
2529
2530SDOperand SelectionDAG::getNode(unsigned Opcode,
2531                                const MVT::ValueType *VTs, unsigned NumVTs,
2532                                const SDOperand *Ops, unsigned NumOps) {
2533  if (NumVTs == 1)
2534    return getNode(Opcode, VTs[0], Ops, NumOps);
2535  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2536}
2537
2538SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2539                                const SDOperand *Ops, unsigned NumOps) {
2540  if (VTList.NumVTs == 1)
2541    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2542
2543  switch (Opcode) {
2544  // FIXME: figure out how to safely handle things like
2545  // int foo(int x) { return 1 << (x & 255); }
2546  // int bar() { return foo(256); }
2547#if 0
2548  case ISD::SRA_PARTS:
2549  case ISD::SRL_PARTS:
2550  case ISD::SHL_PARTS:
2551    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2552        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2553      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2554    else if (N3.getOpcode() == ISD::AND)
2555      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2556        // If the and is only masking out bits that cannot effect the shift,
2557        // eliminate the and.
2558        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2559        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2560          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2561      }
2562    break;
2563#endif
2564  }
2565
2566  // Memoize the node unless it returns a flag.
2567  SDNode *N;
2568  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2569    FoldingSetNodeID ID;
2570    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2571    void *IP = 0;
2572    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2573      return SDOperand(E, 0);
2574    if (NumOps == 1)
2575      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2576    else if (NumOps == 2)
2577      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2578    else if (NumOps == 3)
2579      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2580    else
2581      N = new SDNode(Opcode, VTList, Ops, NumOps);
2582    CSEMap.InsertNode(N, IP);
2583  } else {
2584    if (NumOps == 1)
2585      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2586    else if (NumOps == 2)
2587      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2588    else if (NumOps == 3)
2589      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2590    else
2591      N = new SDNode(Opcode, VTList, Ops, NumOps);
2592  }
2593  AllNodes.push_back(N);
2594  return SDOperand(N, 0);
2595}
2596
2597SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2598  if (!MVT::isExtendedVT(VT))
2599    return makeVTList(SDNode::getValueTypeList(VT), 1);
2600
2601  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2602       E = VTList.end(); I != E; ++I) {
2603    if (I->size() == 1 && (*I)[0] == VT)
2604      return makeVTList(&(*I)[0], 1);
2605  }
2606  std::vector<MVT::ValueType> V;
2607  V.push_back(VT);
2608  VTList.push_front(V);
2609  return makeVTList(&(*VTList.begin())[0], 1);
2610}
2611
2612SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2613  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2614       E = VTList.end(); I != E; ++I) {
2615    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2616      return makeVTList(&(*I)[0], 2);
2617  }
2618  std::vector<MVT::ValueType> V;
2619  V.push_back(VT1);
2620  V.push_back(VT2);
2621  VTList.push_front(V);
2622  return makeVTList(&(*VTList.begin())[0], 2);
2623}
2624SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2625                                 MVT::ValueType VT3) {
2626  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2627       E = VTList.end(); I != E; ++I) {
2628    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2629        (*I)[2] == VT3)
2630      return makeVTList(&(*I)[0], 3);
2631  }
2632  std::vector<MVT::ValueType> V;
2633  V.push_back(VT1);
2634  V.push_back(VT2);
2635  V.push_back(VT3);
2636  VTList.push_front(V);
2637  return makeVTList(&(*VTList.begin())[0], 3);
2638}
2639
2640SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2641  switch (NumVTs) {
2642    case 0: assert(0 && "Cannot have nodes without results!");
2643    case 1: return getVTList(VTs[0]);
2644    case 2: return getVTList(VTs[0], VTs[1]);
2645    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2646    default: break;
2647  }
2648
2649  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2650       E = VTList.end(); I != E; ++I) {
2651    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2652
2653    bool NoMatch = false;
2654    for (unsigned i = 2; i != NumVTs; ++i)
2655      if (VTs[i] != (*I)[i]) {
2656        NoMatch = true;
2657        break;
2658      }
2659    if (!NoMatch)
2660      return makeVTList(&*I->begin(), NumVTs);
2661  }
2662
2663  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2664  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2665}
2666
2667
2668/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2669/// specified operands.  If the resultant node already exists in the DAG,
2670/// this does not modify the specified node, instead it returns the node that
2671/// already exists.  If the resultant node does not exist in the DAG, the
2672/// input node is returned.  As a degenerate case, if you specify the same
2673/// input operands as the node already has, the input node is returned.
2674SDOperand SelectionDAG::
2675UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2676  SDNode *N = InN.Val;
2677  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2678
2679  // Check to see if there is no change.
2680  if (Op == N->getOperand(0)) return InN;
2681
2682  // See if the modified node already exists.
2683  void *InsertPos = 0;
2684  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2685    return SDOperand(Existing, InN.ResNo);
2686
2687  // Nope it doesn't.  Remove the node from it's current place in the maps.
2688  if (InsertPos)
2689    RemoveNodeFromCSEMaps(N);
2690
2691  // Now we update the operands.
2692  N->OperandList[0].Val->removeUser(N);
2693  Op.Val->addUser(N);
2694  N->OperandList[0] = Op;
2695
2696  // If this gets put into a CSE map, add it.
2697  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2698  return InN;
2699}
2700
2701SDOperand SelectionDAG::
2702UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2703  SDNode *N = InN.Val;
2704  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2705
2706  // Check to see if there is no change.
2707  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2708    return InN;   // No operands changed, just return the input node.
2709
2710  // See if the modified node already exists.
2711  void *InsertPos = 0;
2712  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2713    return SDOperand(Existing, InN.ResNo);
2714
2715  // Nope it doesn't.  Remove the node from it's current place in the maps.
2716  if (InsertPos)
2717    RemoveNodeFromCSEMaps(N);
2718
2719  // Now we update the operands.
2720  if (N->OperandList[0] != Op1) {
2721    N->OperandList[0].Val->removeUser(N);
2722    Op1.Val->addUser(N);
2723    N->OperandList[0] = Op1;
2724  }
2725  if (N->OperandList[1] != Op2) {
2726    N->OperandList[1].Val->removeUser(N);
2727    Op2.Val->addUser(N);
2728    N->OperandList[1] = Op2;
2729  }
2730
2731  // If this gets put into a CSE map, add it.
2732  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2733  return InN;
2734}
2735
2736SDOperand SelectionDAG::
2737UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2738  SDOperand Ops[] = { Op1, Op2, Op3 };
2739  return UpdateNodeOperands(N, Ops, 3);
2740}
2741
2742SDOperand SelectionDAG::
2743UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2744                   SDOperand Op3, SDOperand Op4) {
2745  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2746  return UpdateNodeOperands(N, Ops, 4);
2747}
2748
2749SDOperand SelectionDAG::
2750UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2751                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2752  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2753  return UpdateNodeOperands(N, Ops, 5);
2754}
2755
2756
2757SDOperand SelectionDAG::
2758UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2759  SDNode *N = InN.Val;
2760  assert(N->getNumOperands() == NumOps &&
2761         "Update with wrong number of operands");
2762
2763  // Check to see if there is no change.
2764  bool AnyChange = false;
2765  for (unsigned i = 0; i != NumOps; ++i) {
2766    if (Ops[i] != N->getOperand(i)) {
2767      AnyChange = true;
2768      break;
2769    }
2770  }
2771
2772  // No operands changed, just return the input node.
2773  if (!AnyChange) return InN;
2774
2775  // See if the modified node already exists.
2776  void *InsertPos = 0;
2777  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2778    return SDOperand(Existing, InN.ResNo);
2779
2780  // Nope it doesn't.  Remove the node from it's current place in the maps.
2781  if (InsertPos)
2782    RemoveNodeFromCSEMaps(N);
2783
2784  // Now we update the operands.
2785  for (unsigned i = 0; i != NumOps; ++i) {
2786    if (N->OperandList[i] != Ops[i]) {
2787      N->OperandList[i].Val->removeUser(N);
2788      Ops[i].Val->addUser(N);
2789      N->OperandList[i] = Ops[i];
2790    }
2791  }
2792
2793  // If this gets put into a CSE map, add it.
2794  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2795  return InN;
2796}
2797
2798
2799/// MorphNodeTo - This frees the operands of the current node, resets the
2800/// opcode, types, and operands to the specified value.  This should only be
2801/// used by the SelectionDAG class.
2802void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2803                         const SDOperand *Ops, unsigned NumOps) {
2804  NodeType = Opc;
2805  ValueList = L.VTs;
2806  NumValues = L.NumVTs;
2807
2808  // Clear the operands list, updating used nodes to remove this from their
2809  // use list.
2810  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2811    I->Val->removeUser(this);
2812
2813  // If NumOps is larger than the # of operands we currently have, reallocate
2814  // the operand list.
2815  if (NumOps > NumOperands) {
2816    if (OperandsNeedDelete)
2817      delete [] OperandList;
2818    OperandList = new SDOperand[NumOps];
2819    OperandsNeedDelete = true;
2820  }
2821
2822  // Assign the new operands.
2823  NumOperands = NumOps;
2824
2825  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2826    OperandList[i] = Ops[i];
2827    SDNode *N = OperandList[i].Val;
2828    N->Uses.push_back(this);
2829  }
2830}
2831
2832/// SelectNodeTo - These are used for target selectors to *mutate* the
2833/// specified node to have the specified return type, Target opcode, and
2834/// operands.  Note that target opcodes are stored as
2835/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2836///
2837/// Note that SelectNodeTo returns the resultant node.  If there is already a
2838/// node of the specified opcode and operands, it returns that node instead of
2839/// the current one.
2840SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2841                                   MVT::ValueType VT) {
2842  SDVTList VTs = getVTList(VT);
2843  FoldingSetNodeID ID;
2844  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2845  void *IP = 0;
2846  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2847    return ON;
2848
2849  RemoveNodeFromCSEMaps(N);
2850
2851  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2852
2853  CSEMap.InsertNode(N, IP);
2854  return N;
2855}
2856
2857SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2858                                   MVT::ValueType VT, SDOperand Op1) {
2859  // If an identical node already exists, use it.
2860  SDVTList VTs = getVTList(VT);
2861  SDOperand Ops[] = { Op1 };
2862
2863  FoldingSetNodeID ID;
2864  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2865  void *IP = 0;
2866  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2867    return ON;
2868
2869  RemoveNodeFromCSEMaps(N);
2870  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2871  CSEMap.InsertNode(N, IP);
2872  return N;
2873}
2874
2875SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2876                                   MVT::ValueType VT, SDOperand Op1,
2877                                   SDOperand Op2) {
2878  // If an identical node already exists, use it.
2879  SDVTList VTs = getVTList(VT);
2880  SDOperand Ops[] = { Op1, Op2 };
2881
2882  FoldingSetNodeID ID;
2883  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2884  void *IP = 0;
2885  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2886    return ON;
2887
2888  RemoveNodeFromCSEMaps(N);
2889
2890  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2891
2892  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2893  return N;
2894}
2895
2896SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2897                                   MVT::ValueType VT, SDOperand Op1,
2898                                   SDOperand Op2, SDOperand Op3) {
2899  // If an identical node already exists, use it.
2900  SDVTList VTs = getVTList(VT);
2901  SDOperand Ops[] = { Op1, Op2, Op3 };
2902  FoldingSetNodeID ID;
2903  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2904  void *IP = 0;
2905  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2906    return ON;
2907
2908  RemoveNodeFromCSEMaps(N);
2909
2910  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2911
2912  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2913  return N;
2914}
2915
2916SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2917                                   MVT::ValueType VT, const SDOperand *Ops,
2918                                   unsigned NumOps) {
2919  // If an identical node already exists, use it.
2920  SDVTList VTs = getVTList(VT);
2921  FoldingSetNodeID ID;
2922  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2923  void *IP = 0;
2924  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2925    return ON;
2926
2927  RemoveNodeFromCSEMaps(N);
2928  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2929
2930  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2931  return N;
2932}
2933
2934SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2935                                   MVT::ValueType VT1, MVT::ValueType VT2,
2936                                   SDOperand Op1, SDOperand Op2) {
2937  SDVTList VTs = getVTList(VT1, VT2);
2938  FoldingSetNodeID ID;
2939  SDOperand Ops[] = { Op1, Op2 };
2940  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2941  void *IP = 0;
2942  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2943    return ON;
2944
2945  RemoveNodeFromCSEMaps(N);
2946  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2947  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2948  return N;
2949}
2950
2951SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2952                                   MVT::ValueType VT1, MVT::ValueType VT2,
2953                                   SDOperand Op1, SDOperand Op2,
2954                                   SDOperand Op3) {
2955  // If an identical node already exists, use it.
2956  SDVTList VTs = getVTList(VT1, VT2);
2957  SDOperand Ops[] = { Op1, Op2, Op3 };
2958  FoldingSetNodeID ID;
2959  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2960  void *IP = 0;
2961  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2962    return ON;
2963
2964  RemoveNodeFromCSEMaps(N);
2965
2966  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2967  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2968  return N;
2969}
2970
2971
2972/// getTargetNode - These are used for target selectors to create a new node
2973/// with specified return type(s), target opcode, and operands.
2974///
2975/// Note that getTargetNode returns the resultant node.  If there is already a
2976/// node of the specified opcode and operands, it returns that node instead of
2977/// the current one.
2978SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2979  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2980}
2981SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2982                                    SDOperand Op1) {
2983  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2984}
2985SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2986                                    SDOperand Op1, SDOperand Op2) {
2987  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2988}
2989SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2990                                    SDOperand Op1, SDOperand Op2,
2991                                    SDOperand Op3) {
2992  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2993}
2994SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2995                                    const SDOperand *Ops, unsigned NumOps) {
2996  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2997}
2998SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2999                                    MVT::ValueType VT2, SDOperand Op1) {
3000  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3001  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3002}
3003SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3004                                    MVT::ValueType VT2, SDOperand Op1,
3005                                    SDOperand Op2) {
3006  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3007  SDOperand Ops[] = { Op1, Op2 };
3008  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3009}
3010SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3011                                    MVT::ValueType VT2, SDOperand Op1,
3012                                    SDOperand Op2, SDOperand Op3) {
3013  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3014  SDOperand Ops[] = { Op1, Op2, Op3 };
3015  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3016}
3017SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3018                                    MVT::ValueType VT2,
3019                                    const SDOperand *Ops, unsigned NumOps) {
3020  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3021  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3022}
3023SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3024                                    MVT::ValueType VT2, MVT::ValueType VT3,
3025                                    SDOperand Op1, SDOperand Op2) {
3026  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3027  SDOperand Ops[] = { Op1, Op2 };
3028  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3029}
3030SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3031                                    MVT::ValueType VT2, MVT::ValueType VT3,
3032                                    SDOperand Op1, SDOperand Op2,
3033                                    SDOperand Op3) {
3034  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3035  SDOperand Ops[] = { Op1, Op2, Op3 };
3036  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3037}
3038SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3039                                    MVT::ValueType VT2, MVT::ValueType VT3,
3040                                    const SDOperand *Ops, unsigned NumOps) {
3041  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3042  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3043}
3044
3045/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3046/// This can cause recursive merging of nodes in the DAG.
3047///
3048/// This version assumes From/To have a single result value.
3049///
3050void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3051                                      std::vector<SDNode*> *Deleted) {
3052  SDNode *From = FromN.Val, *To = ToN.Val;
3053  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3054         "Cannot replace with this method!");
3055  assert(From != To && "Cannot replace uses of with self");
3056
3057  while (!From->use_empty()) {
3058    // Process users until they are all gone.
3059    SDNode *U = *From->use_begin();
3060
3061    // This node is about to morph, remove its old self from the CSE maps.
3062    RemoveNodeFromCSEMaps(U);
3063
3064    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3065         I != E; ++I)
3066      if (I->Val == From) {
3067        From->removeUser(U);
3068        I->Val = To;
3069        To->addUser(U);
3070      }
3071
3072    // Now that we have modified U, add it back to the CSE maps.  If it already
3073    // exists there, recursively merge the results together.
3074    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3075      ReplaceAllUsesWith(U, Existing, Deleted);
3076      // U is now dead.
3077      if (Deleted) Deleted->push_back(U);
3078      DeleteNodeNotInCSEMaps(U);
3079    }
3080  }
3081}
3082
3083/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3084/// This can cause recursive merging of nodes in the DAG.
3085///
3086/// This version assumes From/To have matching types and numbers of result
3087/// values.
3088///
3089void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3090                                      std::vector<SDNode*> *Deleted) {
3091  assert(From != To && "Cannot replace uses of with self");
3092  assert(From->getNumValues() == To->getNumValues() &&
3093         "Cannot use this version of ReplaceAllUsesWith!");
3094  if (From->getNumValues() == 1) {  // If possible, use the faster version.
3095    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3096    return;
3097  }
3098
3099  while (!From->use_empty()) {
3100    // Process users until they are all gone.
3101    SDNode *U = *From->use_begin();
3102
3103    // This node is about to morph, remove its old self from the CSE maps.
3104    RemoveNodeFromCSEMaps(U);
3105
3106    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3107         I != E; ++I)
3108      if (I->Val == From) {
3109        From->removeUser(U);
3110        I->Val = To;
3111        To->addUser(U);
3112      }
3113
3114    // Now that we have modified U, add it back to the CSE maps.  If it already
3115    // exists there, recursively merge the results together.
3116    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3117      ReplaceAllUsesWith(U, Existing, Deleted);
3118      // U is now dead.
3119      if (Deleted) Deleted->push_back(U);
3120      DeleteNodeNotInCSEMaps(U);
3121    }
3122  }
3123}
3124
3125/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3126/// This can cause recursive merging of nodes in the DAG.
3127///
3128/// This version can replace From with any result values.  To must match the
3129/// number and types of values returned by From.
3130void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3131                                      const SDOperand *To,
3132                                      std::vector<SDNode*> *Deleted) {
3133  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3134    // Degenerate case handled above.
3135    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3136    return;
3137  }
3138
3139  while (!From->use_empty()) {
3140    // Process users until they are all gone.
3141    SDNode *U = *From->use_begin();
3142
3143    // This node is about to morph, remove its old self from the CSE maps.
3144    RemoveNodeFromCSEMaps(U);
3145
3146    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3147         I != E; ++I)
3148      if (I->Val == From) {
3149        const SDOperand &ToOp = To[I->ResNo];
3150        From->removeUser(U);
3151        *I = ToOp;
3152        ToOp.Val->addUser(U);
3153      }
3154
3155    // Now that we have modified U, add it back to the CSE maps.  If it already
3156    // exists there, recursively merge the results together.
3157    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3158      ReplaceAllUsesWith(U, Existing, Deleted);
3159      // U is now dead.
3160      if (Deleted) Deleted->push_back(U);
3161      DeleteNodeNotInCSEMaps(U);
3162    }
3163  }
3164}
3165
3166/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3167/// uses of other values produced by From.Val alone.  The Deleted vector is
3168/// handled the same was as for ReplaceAllUsesWith.
3169void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3170                                             std::vector<SDNode*> &Deleted) {
3171  assert(From != To && "Cannot replace a value with itself");
3172  // Handle the simple, trivial, case efficiently.
3173  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3174    ReplaceAllUsesWith(From, To, &Deleted);
3175    return;
3176  }
3177
3178  // Get all of the users of From.Val.  We want these in a nice,
3179  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3180  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3181
3182  while (!Users.empty()) {
3183    // We know that this user uses some value of From.  If it is the right
3184    // value, update it.
3185    SDNode *User = Users.back();
3186    Users.pop_back();
3187
3188    for (SDOperand *Op = User->OperandList,
3189         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
3190      if (*Op == From) {
3191        // Okay, we know this user needs to be updated.  Remove its old self
3192        // from the CSE maps.
3193        RemoveNodeFromCSEMaps(User);
3194
3195        // Update all operands that match "From".
3196        for (; Op != E; ++Op) {
3197          if (*Op == From) {
3198            From.Val->removeUser(User);
3199            *Op = To;
3200            To.Val->addUser(User);
3201          }
3202        }
3203
3204        // Now that we have modified User, add it back to the CSE maps.  If it
3205        // already exists there, recursively merge the results together.
3206        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
3207          unsigned NumDeleted = Deleted.size();
3208          ReplaceAllUsesWith(User, Existing, &Deleted);
3209
3210          // User is now dead.
3211          Deleted.push_back(User);
3212          DeleteNodeNotInCSEMaps(User);
3213
3214          // We have to be careful here, because ReplaceAllUsesWith could have
3215          // deleted a user of From, which means there may be dangling pointers
3216          // in the "Users" setvector.  Scan over the deleted node pointers and
3217          // remove them from the setvector.
3218          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
3219            Users.remove(Deleted[i]);
3220        }
3221        break;   // Exit the operand scanning loop.
3222      }
3223    }
3224  }
3225}
3226
3227
3228/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3229/// their allnodes order. It returns the maximum id.
3230unsigned SelectionDAG::AssignNodeIds() {
3231  unsigned Id = 0;
3232  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3233    SDNode *N = I;
3234    N->setNodeId(Id++);
3235  }
3236  return Id;
3237}
3238
3239/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3240/// based on their topological order. It returns the maximum id and a vector
3241/// of the SDNodes* in assigned order by reference.
3242unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3243  unsigned DAGSize = AllNodes.size();
3244  std::vector<unsigned> InDegree(DAGSize);
3245  std::vector<SDNode*> Sources;
3246
3247  // Use a two pass approach to avoid using a std::map which is slow.
3248  unsigned Id = 0;
3249  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3250    SDNode *N = I;
3251    N->setNodeId(Id++);
3252    unsigned Degree = N->use_size();
3253    InDegree[N->getNodeId()] = Degree;
3254    if (Degree == 0)
3255      Sources.push_back(N);
3256  }
3257
3258  TopOrder.clear();
3259  while (!Sources.empty()) {
3260    SDNode *N = Sources.back();
3261    Sources.pop_back();
3262    TopOrder.push_back(N);
3263    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3264      SDNode *P = I->Val;
3265      unsigned Degree = --InDegree[P->getNodeId()];
3266      if (Degree == 0)
3267        Sources.push_back(P);
3268    }
3269  }
3270
3271  // Second pass, assign the actual topological order as node ids.
3272  Id = 0;
3273  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3274       TI != TE; ++TI)
3275    (*TI)->setNodeId(Id++);
3276
3277  return Id;
3278}
3279
3280
3281
3282//===----------------------------------------------------------------------===//
3283//                              SDNode Class
3284//===----------------------------------------------------------------------===//
3285
3286// Out-of-line virtual method to give class a home.
3287void SDNode::ANCHOR() {}
3288void UnarySDNode::ANCHOR() {}
3289void BinarySDNode::ANCHOR() {}
3290void TernarySDNode::ANCHOR() {}
3291void HandleSDNode::ANCHOR() {}
3292void StringSDNode::ANCHOR() {}
3293void ConstantSDNode::ANCHOR() {}
3294void ConstantFPSDNode::ANCHOR() {}
3295void GlobalAddressSDNode::ANCHOR() {}
3296void FrameIndexSDNode::ANCHOR() {}
3297void JumpTableSDNode::ANCHOR() {}
3298void ConstantPoolSDNode::ANCHOR() {}
3299void BasicBlockSDNode::ANCHOR() {}
3300void SrcValueSDNode::ANCHOR() {}
3301void RegisterSDNode::ANCHOR() {}
3302void ExternalSymbolSDNode::ANCHOR() {}
3303void CondCodeSDNode::ANCHOR() {}
3304void VTSDNode::ANCHOR() {}
3305void LoadSDNode::ANCHOR() {}
3306void StoreSDNode::ANCHOR() {}
3307
3308HandleSDNode::~HandleSDNode() {
3309  SDVTList VTs = { 0, 0 };
3310  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3311}
3312
3313GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3314                                         MVT::ValueType VT, int o)
3315  : SDNode(isa<GlobalVariable>(GA) &&
3316           cast<GlobalVariable>(GA)->isThreadLocal() ?
3317           // Thread Local
3318           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3319           // Non Thread Local
3320           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3321           getSDVTList(VT)), Offset(o) {
3322  TheGlobal = const_cast<GlobalValue*>(GA);
3323}
3324
3325/// Profile - Gather unique data for the node.
3326///
3327void SDNode::Profile(FoldingSetNodeID &ID) {
3328  AddNodeIDNode(ID, this);
3329}
3330
3331/// getValueTypeList - Return a pointer to the specified value type.
3332///
3333MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3334  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3335  VTs[VT] = VT;
3336  return &VTs[VT];
3337}
3338
3339/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3340/// indicated value.  This method ignores uses of other values defined by this
3341/// operation.
3342bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3343  assert(Value < getNumValues() && "Bad value!");
3344
3345  // If there is only one value, this is easy.
3346  if (getNumValues() == 1)
3347    return use_size() == NUses;
3348  if (use_size() < NUses) return false;
3349
3350  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3351
3352  SmallPtrSet<SDNode*, 32> UsersHandled;
3353
3354  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3355    SDNode *User = *UI;
3356    if (User->getNumOperands() == 1 ||
3357        UsersHandled.insert(User))     // First time we've seen this?
3358      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3359        if (User->getOperand(i) == TheValue) {
3360          if (NUses == 0)
3361            return false;   // too many uses
3362          --NUses;
3363        }
3364  }
3365
3366  // Found exactly the right number of uses?
3367  return NUses == 0;
3368}
3369
3370
3371/// hasAnyUseOfValue - Return true if there are any use of the indicated
3372/// value. This method ignores uses of other values defined by this operation.
3373bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3374  assert(Value < getNumValues() && "Bad value!");
3375
3376  if (use_size() == 0) return false;
3377
3378  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3379
3380  SmallPtrSet<SDNode*, 32> UsersHandled;
3381
3382  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3383    SDNode *User = *UI;
3384    if (User->getNumOperands() == 1 ||
3385        UsersHandled.insert(User))     // First time we've seen this?
3386      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3387        if (User->getOperand(i) == TheValue) {
3388          return true;
3389        }
3390  }
3391
3392  return false;
3393}
3394
3395
3396/// isOnlyUse - Return true if this node is the only use of N.
3397///
3398bool SDNode::isOnlyUse(SDNode *N) const {
3399  bool Seen = false;
3400  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3401    SDNode *User = *I;
3402    if (User == this)
3403      Seen = true;
3404    else
3405      return false;
3406  }
3407
3408  return Seen;
3409}
3410
3411/// isOperand - Return true if this node is an operand of N.
3412///
3413bool SDOperand::isOperand(SDNode *N) const {
3414  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3415    if (*this == N->getOperand(i))
3416      return true;
3417  return false;
3418}
3419
3420bool SDNode::isOperand(SDNode *N) const {
3421  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3422    if (this == N->OperandList[i].Val)
3423      return true;
3424  return false;
3425}
3426
3427static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3428                            SmallPtrSet<SDNode *, 32> &Visited) {
3429  if (found || !Visited.insert(N))
3430    return;
3431
3432  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3433    SDNode *Op = N->getOperand(i).Val;
3434    if (Op == P) {
3435      found = true;
3436      return;
3437    }
3438    findPredecessor(Op, P, found, Visited);
3439  }
3440}
3441
3442/// isPredecessor - Return true if this node is a predecessor of N. This node
3443/// is either an operand of N or it can be reached by recursively traversing
3444/// up the operands.
3445/// NOTE: this is an expensive method. Use it carefully.
3446bool SDNode::isPredecessor(SDNode *N) const {
3447  SmallPtrSet<SDNode *, 32> Visited;
3448  bool found = false;
3449  findPredecessor(N, this, found, Visited);
3450  return found;
3451}
3452
3453uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3454  assert(Num < NumOperands && "Invalid child # of SDNode!");
3455  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3456}
3457
3458std::string SDNode::getOperationName(const SelectionDAG *G) const {
3459  switch (getOpcode()) {
3460  default:
3461    if (getOpcode() < ISD::BUILTIN_OP_END)
3462      return "<<Unknown DAG Node>>";
3463    else {
3464      if (G) {
3465        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3466          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3467            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
3468
3469        TargetLowering &TLI = G->getTargetLoweringInfo();
3470        const char *Name =
3471          TLI.getTargetNodeName(getOpcode());
3472        if (Name) return Name;
3473      }
3474
3475      return "<<Unknown Target Node>>";
3476    }
3477
3478  case ISD::PCMARKER:      return "PCMarker";
3479  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3480  case ISD::SRCVALUE:      return "SrcValue";
3481  case ISD::EntryToken:    return "EntryToken";
3482  case ISD::TokenFactor:   return "TokenFactor";
3483  case ISD::AssertSext:    return "AssertSext";
3484  case ISD::AssertZext:    return "AssertZext";
3485
3486  case ISD::STRING:        return "String";
3487  case ISD::BasicBlock:    return "BasicBlock";
3488  case ISD::VALUETYPE:     return "ValueType";
3489  case ISD::Register:      return "Register";
3490
3491  case ISD::Constant:      return "Constant";
3492  case ISD::ConstantFP:    return "ConstantFP";
3493  case ISD::GlobalAddress: return "GlobalAddress";
3494  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3495  case ISD::FrameIndex:    return "FrameIndex";
3496  case ISD::JumpTable:     return "JumpTable";
3497  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3498  case ISD::RETURNADDR: return "RETURNADDR";
3499  case ISD::FRAMEADDR: return "FRAMEADDR";
3500  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3501  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3502  case ISD::EHSELECTION: return "EHSELECTION";
3503  case ISD::EH_RETURN: return "EH_RETURN";
3504  case ISD::ConstantPool:  return "ConstantPool";
3505  case ISD::ExternalSymbol: return "ExternalSymbol";
3506  case ISD::INTRINSIC_WO_CHAIN: {
3507    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3508    return Intrinsic::getName((Intrinsic::ID)IID);
3509  }
3510  case ISD::INTRINSIC_VOID:
3511  case ISD::INTRINSIC_W_CHAIN: {
3512    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3513    return Intrinsic::getName((Intrinsic::ID)IID);
3514  }
3515
3516  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3517  case ISD::TargetConstant: return "TargetConstant";
3518  case ISD::TargetConstantFP:return "TargetConstantFP";
3519  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3520  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3521  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3522  case ISD::TargetJumpTable:  return "TargetJumpTable";
3523  case ISD::TargetConstantPool:  return "TargetConstantPool";
3524  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3525
3526  case ISD::CopyToReg:     return "CopyToReg";
3527  case ISD::CopyFromReg:   return "CopyFromReg";
3528  case ISD::UNDEF:         return "undef";
3529  case ISD::MERGE_VALUES:  return "merge_values";
3530  case ISD::INLINEASM:     return "inlineasm";
3531  case ISD::LABEL:         return "label";
3532  case ISD::HANDLENODE:    return "handlenode";
3533  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3534  case ISD::CALL:          return "call";
3535
3536  // Unary operators
3537  case ISD::FABS:   return "fabs";
3538  case ISD::FNEG:   return "fneg";
3539  case ISD::FSQRT:  return "fsqrt";
3540  case ISD::FSIN:   return "fsin";
3541  case ISD::FCOS:   return "fcos";
3542  case ISD::FPOWI:  return "fpowi";
3543
3544  // Binary operators
3545  case ISD::ADD:    return "add";
3546  case ISD::SUB:    return "sub";
3547  case ISD::MUL:    return "mul";
3548  case ISD::MULHU:  return "mulhu";
3549  case ISD::MULHS:  return "mulhs";
3550  case ISD::SDIV:   return "sdiv";
3551  case ISD::UDIV:   return "udiv";
3552  case ISD::SREM:   return "srem";
3553  case ISD::UREM:   return "urem";
3554  case ISD::AND:    return "and";
3555  case ISD::OR:     return "or";
3556  case ISD::XOR:    return "xor";
3557  case ISD::SHL:    return "shl";
3558  case ISD::SRA:    return "sra";
3559  case ISD::SRL:    return "srl";
3560  case ISD::ROTL:   return "rotl";
3561  case ISD::ROTR:   return "rotr";
3562  case ISD::FADD:   return "fadd";
3563  case ISD::FSUB:   return "fsub";
3564  case ISD::FMUL:   return "fmul";
3565  case ISD::FDIV:   return "fdiv";
3566  case ISD::FREM:   return "frem";
3567  case ISD::FCOPYSIGN: return "fcopysign";
3568
3569  case ISD::SETCC:       return "setcc";
3570  case ISD::SELECT:      return "select";
3571  case ISD::SELECT_CC:   return "select_cc";
3572  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3573  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3574  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3575  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3576  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3577  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3578  case ISD::CARRY_FALSE:         return "carry_false";
3579  case ISD::ADDC:        return "addc";
3580  case ISD::ADDE:        return "adde";
3581  case ISD::SUBC:        return "subc";
3582  case ISD::SUBE:        return "sube";
3583  case ISD::SHL_PARTS:   return "shl_parts";
3584  case ISD::SRA_PARTS:   return "sra_parts";
3585  case ISD::SRL_PARTS:   return "srl_parts";
3586
3587  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3588  case ISD::INSERT_SUBREG:      return "insert_subreg";
3589
3590  // Conversion operators.
3591  case ISD::SIGN_EXTEND: return "sign_extend";
3592  case ISD::ZERO_EXTEND: return "zero_extend";
3593  case ISD::ANY_EXTEND:  return "any_extend";
3594  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3595  case ISD::TRUNCATE:    return "truncate";
3596  case ISD::FP_ROUND:    return "fp_round";
3597  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3598  case ISD::FP_EXTEND:   return "fp_extend";
3599
3600  case ISD::SINT_TO_FP:  return "sint_to_fp";
3601  case ISD::UINT_TO_FP:  return "uint_to_fp";
3602  case ISD::FP_TO_SINT:  return "fp_to_sint";
3603  case ISD::FP_TO_UINT:  return "fp_to_uint";
3604  case ISD::BIT_CONVERT: return "bit_convert";
3605
3606    // Control flow instructions
3607  case ISD::BR:      return "br";
3608  case ISD::BRIND:   return "brind";
3609  case ISD::BR_JT:   return "br_jt";
3610  case ISD::BRCOND:  return "brcond";
3611  case ISD::BR_CC:   return "br_cc";
3612  case ISD::RET:     return "ret";
3613  case ISD::CALLSEQ_START:  return "callseq_start";
3614  case ISD::CALLSEQ_END:    return "callseq_end";
3615
3616    // Other operators
3617  case ISD::LOAD:               return "load";
3618  case ISD::STORE:              return "store";
3619  case ISD::VAARG:              return "vaarg";
3620  case ISD::VACOPY:             return "vacopy";
3621  case ISD::VAEND:              return "vaend";
3622  case ISD::VASTART:            return "vastart";
3623  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3624  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3625  case ISD::BUILD_PAIR:         return "build_pair";
3626  case ISD::STACKSAVE:          return "stacksave";
3627  case ISD::STACKRESTORE:       return "stackrestore";
3628
3629  // Block memory operations.
3630  case ISD::MEMSET:  return "memset";
3631  case ISD::MEMCPY:  return "memcpy";
3632  case ISD::MEMMOVE: return "memmove";
3633
3634  // Bit manipulation
3635  case ISD::BSWAP:   return "bswap";
3636  case ISD::CTPOP:   return "ctpop";
3637  case ISD::CTTZ:    return "cttz";
3638  case ISD::CTLZ:    return "ctlz";
3639
3640  // Debug info
3641  case ISD::LOCATION: return "location";
3642  case ISD::DEBUG_LOC: return "debug_loc";
3643
3644  // Trampolines
3645  case ISD::TRAMPOLINE: return "trampoline";
3646
3647  case ISD::CONDCODE:
3648    switch (cast<CondCodeSDNode>(this)->get()) {
3649    default: assert(0 && "Unknown setcc condition!");
3650    case ISD::SETOEQ:  return "setoeq";
3651    case ISD::SETOGT:  return "setogt";
3652    case ISD::SETOGE:  return "setoge";
3653    case ISD::SETOLT:  return "setolt";
3654    case ISD::SETOLE:  return "setole";
3655    case ISD::SETONE:  return "setone";
3656
3657    case ISD::SETO:    return "seto";
3658    case ISD::SETUO:   return "setuo";
3659    case ISD::SETUEQ:  return "setue";
3660    case ISD::SETUGT:  return "setugt";
3661    case ISD::SETUGE:  return "setuge";
3662    case ISD::SETULT:  return "setult";
3663    case ISD::SETULE:  return "setule";
3664    case ISD::SETUNE:  return "setune";
3665
3666    case ISD::SETEQ:   return "seteq";
3667    case ISD::SETGT:   return "setgt";
3668    case ISD::SETGE:   return "setge";
3669    case ISD::SETLT:   return "setlt";
3670    case ISD::SETLE:   return "setle";
3671    case ISD::SETNE:   return "setne";
3672    }
3673  }
3674}
3675
3676const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3677  switch (AM) {
3678  default:
3679    return "";
3680  case ISD::PRE_INC:
3681    return "<pre-inc>";
3682  case ISD::PRE_DEC:
3683    return "<pre-dec>";
3684  case ISD::POST_INC:
3685    return "<post-inc>";
3686  case ISD::POST_DEC:
3687    return "<post-dec>";
3688  }
3689}
3690
3691void SDNode::dump() const { dump(0); }
3692void SDNode::dump(const SelectionDAG *G) const {
3693  cerr << (void*)this << ": ";
3694
3695  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3696    if (i) cerr << ",";
3697    if (getValueType(i) == MVT::Other)
3698      cerr << "ch";
3699    else
3700      cerr << MVT::getValueTypeString(getValueType(i));
3701  }
3702  cerr << " = " << getOperationName(G);
3703
3704  cerr << " ";
3705  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3706    if (i) cerr << ", ";
3707    cerr << (void*)getOperand(i).Val;
3708    if (unsigned RN = getOperand(i).ResNo)
3709      cerr << ":" << RN;
3710  }
3711
3712  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3713    cerr << "<" << CSDN->getValue() << ">";
3714  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3715    cerr << "<" << (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle ?
3716                    CSDN->getValueAPF().convertToFloat() :
3717                    CSDN->getValueAPF().convertToDouble()) << ">";
3718  } else if (const GlobalAddressSDNode *GADN =
3719             dyn_cast<GlobalAddressSDNode>(this)) {
3720    int offset = GADN->getOffset();
3721    cerr << "<";
3722    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3723    if (offset > 0)
3724      cerr << " + " << offset;
3725    else
3726      cerr << " " << offset;
3727  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3728    cerr << "<" << FIDN->getIndex() << ">";
3729  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3730    cerr << "<" << JTDN->getIndex() << ">";
3731  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3732    int offset = CP->getOffset();
3733    if (CP->isMachineConstantPoolEntry())
3734      cerr << "<" << *CP->getMachineCPVal() << ">";
3735    else
3736      cerr << "<" << *CP->getConstVal() << ">";
3737    if (offset > 0)
3738      cerr << " + " << offset;
3739    else
3740      cerr << " " << offset;
3741  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3742    cerr << "<";
3743    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3744    if (LBB)
3745      cerr << LBB->getName() << " ";
3746    cerr << (const void*)BBDN->getBasicBlock() << ">";
3747  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3748    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3749      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3750    } else {
3751      cerr << " #" << R->getReg();
3752    }
3753  } else if (const ExternalSymbolSDNode *ES =
3754             dyn_cast<ExternalSymbolSDNode>(this)) {
3755    cerr << "'" << ES->getSymbol() << "'";
3756  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3757    if (M->getValue())
3758      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3759    else
3760      cerr << "<null:" << M->getOffset() << ">";
3761  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3762    cerr << ":" << MVT::getValueTypeString(N->getVT());
3763  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3764    bool doExt = true;
3765    switch (LD->getExtensionType()) {
3766    default: doExt = false; break;
3767    case ISD::EXTLOAD:
3768      cerr << " <anyext ";
3769      break;
3770    case ISD::SEXTLOAD:
3771      cerr << " <sext ";
3772      break;
3773    case ISD::ZEXTLOAD:
3774      cerr << " <zext ";
3775      break;
3776    }
3777    if (doExt)
3778      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3779
3780    const char *AM = getIndexedModeName(LD->getAddressingMode());
3781    if (*AM)
3782      cerr << " " << AM;
3783  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3784    if (ST->isTruncatingStore())
3785      cerr << " <trunc "
3786           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3787
3788    const char *AM = getIndexedModeName(ST->getAddressingMode());
3789    if (*AM)
3790      cerr << " " << AM;
3791  }
3792}
3793
3794static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3795  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3796    if (N->getOperand(i).Val->hasOneUse())
3797      DumpNodes(N->getOperand(i).Val, indent+2, G);
3798    else
3799      cerr << "\n" << std::string(indent+2, ' ')
3800           << (void*)N->getOperand(i).Val << ": <multiple use>";
3801
3802
3803  cerr << "\n" << std::string(indent, ' ');
3804  N->dump(G);
3805}
3806
3807void SelectionDAG::dump() const {
3808  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3809  std::vector<const SDNode*> Nodes;
3810  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3811       I != E; ++I)
3812    Nodes.push_back(I);
3813
3814  std::sort(Nodes.begin(), Nodes.end());
3815
3816  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3817    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3818      DumpNodes(Nodes[i], 2, this);
3819  }
3820
3821  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3822
3823  cerr << "\n\n";
3824}
3825
3826const Type *ConstantPoolSDNode::getType() const {
3827  if (isMachineConstantPoolEntry())
3828    return Val.MachineCPVal->getType();
3829  return Val.ConstVal->getType();
3830}
3831