SelectionDAG.cpp revision 401ec7f6a9fb339f752ec424efe13431a556cc6d
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/Support/MathExtras.h"
21#include "llvm/Target/MRegisterInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetInstrInfo.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/ADT/SetVector.h"
26#include "llvm/ADT/StringExtras.h"
27#include <iostream>
28#include <set>
29#include <cmath>
30#include <algorithm>
31using namespace llvm;
32
33static bool isCommutativeBinOp(unsigned Opcode) {
34  switch (Opcode) {
35  case ISD::ADD:
36  case ISD::MUL:
37  case ISD::MULHU:
38  case ISD::MULHS:
39  case ISD::FADD:
40  case ISD::FMUL:
41  case ISD::AND:
42  case ISD::OR:
43  case ISD::XOR: return true;
44  default: return false; // FIXME: Need commutative info for user ops!
45  }
46}
47
48// isInvertibleForFree - Return true if there is no cost to emitting the logical
49// inverse of this node.
50static bool isInvertibleForFree(SDOperand N) {
51  if (isa<ConstantSDNode>(N.Val)) return true;
52  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
53    return true;
54  return false;
55}
56
57//===----------------------------------------------------------------------===//
58//                              ConstantFPSDNode Class
59//===----------------------------------------------------------------------===//
60
61/// isExactlyValue - We don't rely on operator== working on double values, as
62/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
63/// As such, this method can be used to do an exact bit-for-bit comparison of
64/// two floating point values.
65bool ConstantFPSDNode::isExactlyValue(double V) const {
66  return DoubleToBits(V) == DoubleToBits(Value);
67}
68
69//===----------------------------------------------------------------------===//
70//                              ISD Namespace
71//===----------------------------------------------------------------------===//
72
73/// isBuildVectorAllOnes - Return true if the specified node is a
74/// BUILD_VECTOR where all of the elements are ~0 or undef.
75bool ISD::isBuildVectorAllOnes(const SDNode *N) {
76  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
77
78  unsigned i = 0, e = N->getNumOperands();
79
80  // Skip over all of the undef values.
81  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
82    ++i;
83
84  // Do not accept an all-undef vector.
85  if (i == e) return false;
86
87  // Do not accept build_vectors that aren't all constants or which have non-~0
88  // elements.
89  SDOperand NotZero = N->getOperand(i);
90  if (isa<ConstantSDNode>(NotZero)) {
91    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
92      return false;
93  } else if (isa<ConstantFPSDNode>(NotZero)) {
94    MVT::ValueType VT = NotZero.getValueType();
95    if (VT== MVT::f64) {
96      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
97          (uint64_t)-1)
98        return false;
99    } else {
100      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
101          (uint32_t)-1)
102        return false;
103    }
104  } else
105    return false;
106
107  // Okay, we have at least one ~0 value, check to see if the rest match or are
108  // undefs.
109  for (++i; i != e; ++i)
110    if (N->getOperand(i) != NotZero &&
111        N->getOperand(i).getOpcode() != ISD::UNDEF)
112      return false;
113  return true;
114}
115
116
117/// isBuildVectorAllZeros - Return true if the specified node is a
118/// BUILD_VECTOR where all of the elements are 0 or undef.
119bool ISD::isBuildVectorAllZeros(const SDNode *N) {
120  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
121
122  unsigned i = 0, e = N->getNumOperands();
123
124  // Skip over all of the undef values.
125  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
126    ++i;
127
128  // Do not accept an all-undef vector.
129  if (i == e) return false;
130
131  // Do not accept build_vectors that aren't all constants or which have non-~0
132  // elements.
133  SDOperand Zero = N->getOperand(i);
134  if (isa<ConstantSDNode>(Zero)) {
135    if (!cast<ConstantSDNode>(Zero)->isNullValue())
136      return false;
137  } else if (isa<ConstantFPSDNode>(Zero)) {
138    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
139      return false;
140  } else
141    return false;
142
143  // Okay, we have at least one ~0 value, check to see if the rest match or are
144  // undefs.
145  for (++i; i != e; ++i)
146    if (N->getOperand(i) != Zero &&
147        N->getOperand(i).getOpcode() != ISD::UNDEF)
148      return false;
149  return true;
150}
151
152/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
153/// when given the operation for (X op Y).
154ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
155  // To perform this operation, we just need to swap the L and G bits of the
156  // operation.
157  unsigned OldL = (Operation >> 2) & 1;
158  unsigned OldG = (Operation >> 1) & 1;
159  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
160                       (OldL << 1) |       // New G bit
161                       (OldG << 2));        // New L bit.
162}
163
164/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
165/// 'op' is a valid SetCC operation.
166ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
167  unsigned Operation = Op;
168  if (isInteger)
169    Operation ^= 7;   // Flip L, G, E bits, but not U.
170  else
171    Operation ^= 15;  // Flip all of the condition bits.
172  if (Operation > ISD::SETTRUE2)
173    Operation &= ~8;     // Don't let N and U bits get set.
174  return ISD::CondCode(Operation);
175}
176
177
178/// isSignedOp - For an integer comparison, return 1 if the comparison is a
179/// signed operation and 2 if the result is an unsigned comparison.  Return zero
180/// if the operation does not depend on the sign of the input (setne and seteq).
181static int isSignedOp(ISD::CondCode Opcode) {
182  switch (Opcode) {
183  default: assert(0 && "Illegal integer setcc operation!");
184  case ISD::SETEQ:
185  case ISD::SETNE: return 0;
186  case ISD::SETLT:
187  case ISD::SETLE:
188  case ISD::SETGT:
189  case ISD::SETGE: return 1;
190  case ISD::SETULT:
191  case ISD::SETULE:
192  case ISD::SETUGT:
193  case ISD::SETUGE: return 2;
194  }
195}
196
197/// getSetCCOrOperation - Return the result of a logical OR between different
198/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
199/// returns SETCC_INVALID if it is not possible to represent the resultant
200/// comparison.
201ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
202                                       bool isInteger) {
203  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
204    // Cannot fold a signed integer setcc with an unsigned integer setcc.
205    return ISD::SETCC_INVALID;
206
207  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
208
209  // If the N and U bits get set then the resultant comparison DOES suddenly
210  // care about orderedness, and is true when ordered.
211  if (Op > ISD::SETTRUE2)
212    Op &= ~16;     // Clear the N bit.
213  return ISD::CondCode(Op);
214}
215
216/// getSetCCAndOperation - Return the result of a logical AND between different
217/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
218/// function returns zero if it is not possible to represent the resultant
219/// comparison.
220ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
221                                        bool isInteger) {
222  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
223    // Cannot fold a signed setcc with an unsigned setcc.
224    return ISD::SETCC_INVALID;
225
226  // Combine all of the condition bits.
227  return ISD::CondCode(Op1 & Op2);
228}
229
230const TargetMachine &SelectionDAG::getTarget() const {
231  return TLI.getTargetMachine();
232}
233
234//===----------------------------------------------------------------------===//
235//                              SelectionDAG Class
236//===----------------------------------------------------------------------===//
237
238/// RemoveDeadNodes - This method deletes all unreachable nodes in the
239/// SelectionDAG, including nodes (like loads) that have uses of their token
240/// chain but no other uses and no side effect.  If a node is passed in as an
241/// argument, it is used as the seed for node deletion.
242void SelectionDAG::RemoveDeadNodes(SDNode *N) {
243  // Create a dummy node (which is not added to allnodes), that adds a reference
244  // to the root node, preventing it from being deleted.
245  HandleSDNode Dummy(getRoot());
246
247  bool MadeChange = false;
248
249  // If we have a hint to start from, use it.
250  if (N && N->use_empty()) {
251    DestroyDeadNode(N);
252    MadeChange = true;
253  }
254
255  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
256    if (I->use_empty() && I->getOpcode() != 65535) {
257      // Node is dead, recursively delete newly dead uses.
258      DestroyDeadNode(I);
259      MadeChange = true;
260    }
261
262  // Walk the nodes list, removing the nodes we've marked as dead.
263  if (MadeChange) {
264    for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ) {
265      SDNode *N = I++;
266      if (N->use_empty())
267        AllNodes.erase(N);
268    }
269  }
270
271  // If the root changed (e.g. it was a dead load, update the root).
272  setRoot(Dummy.getValue());
273}
274
275/// DestroyDeadNode - We know that N is dead.  Nuke it from the CSE maps for the
276/// graph.  If it is the last user of any of its operands, recursively process
277/// them the same way.
278///
279void SelectionDAG::DestroyDeadNode(SDNode *N) {
280  // Okay, we really are going to delete this node.  First take this out of the
281  // appropriate CSE map.
282  RemoveNodeFromCSEMaps(N);
283
284  // Next, brutally remove the operand list.  This is safe to do, as there are
285  // no cycles in the graph.
286  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
287    SDNode *O = I->Val;
288    O->removeUser(N);
289
290    // Now that we removed this operand, see if there are no uses of it left.
291    if (O->use_empty())
292      DestroyDeadNode(O);
293  }
294  delete[] N->OperandList;
295  N->OperandList = 0;
296  N->NumOperands = 0;
297
298  // Mark the node as dead.
299  N->MorphNodeTo(65535);
300}
301
302void SelectionDAG::DeleteNode(SDNode *N) {
303  assert(N->use_empty() && "Cannot delete a node that is not dead!");
304
305  // First take this out of the appropriate CSE map.
306  RemoveNodeFromCSEMaps(N);
307
308  // Finally, remove uses due to operands of this node, remove from the
309  // AllNodes list, and delete the node.
310  DeleteNodeNotInCSEMaps(N);
311}
312
313void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
314
315  // Remove it from the AllNodes list.
316  AllNodes.remove(N);
317
318  // Drop all of the operands and decrement used nodes use counts.
319  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
320    I->Val->removeUser(N);
321  delete[] N->OperandList;
322  N->OperandList = 0;
323  N->NumOperands = 0;
324
325  delete N;
326}
327
328/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
329/// correspond to it.  This is useful when we're about to delete or repurpose
330/// the node.  We don't want future request for structurally identical nodes
331/// to return N anymore.
332void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
333  bool Erased = false;
334  switch (N->getOpcode()) {
335  case ISD::HANDLENODE: return;  // noop.
336  case ISD::Constant:
337    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
338                                            N->getValueType(0)));
339    break;
340  case ISD::TargetConstant:
341    Erased = TargetConstants.erase(std::make_pair(
342                                    cast<ConstantSDNode>(N)->getValue(),
343                                                  N->getValueType(0)));
344    break;
345  case ISD::ConstantFP: {
346    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
347    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
348    break;
349  }
350  case ISD::TargetConstantFP: {
351    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
352    Erased = TargetConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
353    break;
354  }
355  case ISD::STRING:
356    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
357    break;
358  case ISD::CONDCODE:
359    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
360           "Cond code doesn't exist!");
361    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
362    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
363    break;
364  case ISD::GlobalAddress: {
365    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
366    Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(),
367                                               GN->getOffset()));
368    break;
369  }
370  case ISD::TargetGlobalAddress: {
371    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
372    Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(),
373                                                    GN->getOffset()));
374    break;
375  }
376  case ISD::FrameIndex:
377    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
378    break;
379  case ISD::TargetFrameIndex:
380    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
381    break;
382  case ISD::ConstantPool:
383    Erased = ConstantPoolIndices.
384      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
385                        std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
386                                 cast<ConstantPoolSDNode>(N)->getAlignment())));
387    break;
388  case ISD::TargetConstantPool:
389    Erased = TargetConstantPoolIndices.
390      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
391                        std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
392                                 cast<ConstantPoolSDNode>(N)->getAlignment())));
393    break;
394  case ISD::BasicBlock:
395    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
396    break;
397  case ISD::ExternalSymbol:
398    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
399    break;
400  case ISD::TargetExternalSymbol:
401    Erased =
402      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
403    break;
404  case ISD::VALUETYPE:
405    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
406    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
407    break;
408  case ISD::Register:
409    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
410                                           N->getValueType(0)));
411    break;
412  case ISD::SRCVALUE: {
413    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
414    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
415    break;
416  }
417  case ISD::LOAD:
418    Erased = Loads.erase(std::make_pair(N->getOperand(1),
419                                        std::make_pair(N->getOperand(0),
420                                                       N->getValueType(0))));
421    break;
422  default:
423    if (N->getNumValues() == 1) {
424      if (N->getNumOperands() == 0) {
425        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
426                                                 N->getValueType(0)));
427      } else if (N->getNumOperands() == 1) {
428        Erased =
429          UnaryOps.erase(std::make_pair(N->getOpcode(),
430                                        std::make_pair(N->getOperand(0),
431                                                       N->getValueType(0))));
432      } else if (N->getNumOperands() == 2) {
433        Erased =
434          BinaryOps.erase(std::make_pair(N->getOpcode(),
435                                         std::make_pair(N->getOperand(0),
436                                                        N->getOperand(1))));
437      } else {
438        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
439        Erased =
440          OneResultNodes.erase(std::make_pair(N->getOpcode(),
441                                              std::make_pair(N->getValueType(0),
442                                                             Ops)));
443      }
444    } else {
445      // Remove the node from the ArbitraryNodes map.
446      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
447      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
448      Erased =
449        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
450                                            std::make_pair(RV, Ops)));
451    }
452    break;
453  }
454#ifndef NDEBUG
455  // Verify that the node was actually in one of the CSE maps, unless it has a
456  // flag result (which cannot be CSE'd) or is one of the special cases that are
457  // not subject to CSE.
458  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
459      !N->isTargetOpcode()) {
460    N->dump();
461    assert(0 && "Node is not in map!");
462  }
463#endif
464}
465
466/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
467/// has been taken out and modified in some way.  If the specified node already
468/// exists in the CSE maps, do not modify the maps, but return the existing node
469/// instead.  If it doesn't exist, add it and return null.
470///
471SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
472  assert(N->getNumOperands() && "This is a leaf node!");
473  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
474    return 0;    // Never add these nodes.
475
476  // Check that remaining values produced are not flags.
477  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
478    if (N->getValueType(i) == MVT::Flag)
479      return 0;   // Never CSE anything that produces a flag.
480
481  if (N->getNumValues() == 1) {
482    if (N->getNumOperands() == 1) {
483      SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
484                                           std::make_pair(N->getOperand(0),
485                                                          N->getValueType(0)))];
486      if (U) return U;
487      U = N;
488    } else if (N->getNumOperands() == 2) {
489      SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
490                                            std::make_pair(N->getOperand(0),
491                                                           N->getOperand(1)))];
492      if (B) return B;
493      B = N;
494    } else {
495      std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
496      SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
497                                      std::make_pair(N->getValueType(0), Ops))];
498      if (ORN) return ORN;
499      ORN = N;
500    }
501  } else {
502    if (N->getOpcode() == ISD::LOAD) {
503      SDNode *&L = Loads[std::make_pair(N->getOperand(1),
504                                        std::make_pair(N->getOperand(0),
505                                                       N->getValueType(0)))];
506      if (L) return L;
507      L = N;
508    } else {
509      // Remove the node from the ArbitraryNodes map.
510      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
511      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
512      SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
513                                                  std::make_pair(RV, Ops))];
514      if (AN) return AN;
515      AN = N;
516    }
517  }
518  return 0;
519}
520
521/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
522/// were replaced with those specified.  If this node is never memoized,
523/// return null, otherwise return a pointer to the slot it would take.  If a
524/// node already exists with these operands, the slot will be non-null.
525SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op) {
526  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
527    return 0;    // Never add these nodes.
528
529  // Check that remaining values produced are not flags.
530  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
531    if (N->getValueType(i) == MVT::Flag)
532      return 0;   // Never CSE anything that produces a flag.
533
534  if (N->getNumValues() == 1) {
535    return &UnaryOps[std::make_pair(N->getOpcode(),
536                                    std::make_pair(Op, N->getValueType(0)))];
537  } else {
538    // Remove the node from the ArbitraryNodes map.
539    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
540    std::vector<SDOperand> Ops;
541    Ops.push_back(Op);
542    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
543                                          std::make_pair(RV, Ops))];
544  }
545  return 0;
546}
547
548/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
549/// were replaced with those specified.  If this node is never memoized,
550/// return null, otherwise return a pointer to the slot it would take.  If a
551/// node already exists with these operands, the slot will be non-null.
552SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
553                                            SDOperand Op1, SDOperand Op2) {
554  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
555    return 0;    // Never add these nodes.
556
557  // Check that remaining values produced are not flags.
558  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
559    if (N->getValueType(i) == MVT::Flag)
560      return 0;   // Never CSE anything that produces a flag.
561
562  if (N->getNumValues() == 1) {
563    return &BinaryOps[std::make_pair(N->getOpcode(),
564                                     std::make_pair(Op1, Op2))];
565  } else {
566    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
567    std::vector<SDOperand> Ops;
568    Ops.push_back(Op1);
569    Ops.push_back(Op2);
570    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
571                                          std::make_pair(RV, Ops))];
572  }
573  return 0;
574}
575
576
577/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
578/// were replaced with those specified.  If this node is never memoized,
579/// return null, otherwise return a pointer to the slot it would take.  If a
580/// node already exists with these operands, the slot will be non-null.
581SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
582                                            const std::vector<SDOperand> &Ops) {
583  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
584    return 0;    // Never add these nodes.
585
586  // Check that remaining values produced are not flags.
587  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
588    if (N->getValueType(i) == MVT::Flag)
589      return 0;   // Never CSE anything that produces a flag.
590
591  if (N->getNumValues() == 1) {
592    if (N->getNumOperands() == 1) {
593      return &UnaryOps[std::make_pair(N->getOpcode(),
594                                      std::make_pair(Ops[0],
595                                                     N->getValueType(0)))];
596    } else if (N->getNumOperands() == 2) {
597      return &BinaryOps[std::make_pair(N->getOpcode(),
598                                       std::make_pair(Ops[0], Ops[1]))];
599    } else {
600      return &OneResultNodes[std::make_pair(N->getOpcode(),
601                                            std::make_pair(N->getValueType(0),
602                                                           Ops))];
603    }
604  } else {
605    if (N->getOpcode() == ISD::LOAD) {
606      return &Loads[std::make_pair(Ops[1],
607                                   std::make_pair(Ops[0], N->getValueType(0)))];
608    } else {
609      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
610      return &ArbitraryNodes[std::make_pair(N->getOpcode(),
611                                            std::make_pair(RV, Ops))];
612    }
613  }
614  return 0;
615}
616
617
618SelectionDAG::~SelectionDAG() {
619  while (!AllNodes.empty()) {
620    SDNode *N = AllNodes.begin();
621    delete [] N->OperandList;
622    N->OperandList = 0;
623    N->NumOperands = 0;
624    AllNodes.pop_front();
625  }
626}
627
628SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
629  if (Op.getValueType() == VT) return Op;
630  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
631  return getNode(ISD::AND, Op.getValueType(), Op,
632                 getConstant(Imm, Op.getValueType()));
633}
634
635SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
636  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
637  // Mask out any bits that are not valid for this constant.
638  if (VT != MVT::i64)
639    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
640
641  SDNode *&N = Constants[std::make_pair(Val, VT)];
642  if (N) return SDOperand(N, 0);
643  N = new ConstantSDNode(false, Val, VT);
644  AllNodes.push_back(N);
645  return SDOperand(N, 0);
646}
647
648SDOperand SelectionDAG::getString(const std::string &Val) {
649  StringSDNode *&N = StringNodes[Val];
650  if (!N) {
651    N = new StringSDNode(Val);
652    AllNodes.push_back(N);
653  }
654  return SDOperand(N, 0);
655}
656
657SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
658  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
659  // Mask out any bits that are not valid for this constant.
660  if (VT != MVT::i64)
661    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
662
663  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
664  if (N) return SDOperand(N, 0);
665  N = new ConstantSDNode(true, Val, VT);
666  AllNodes.push_back(N);
667  return SDOperand(N, 0);
668}
669
670SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
671  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
672  if (VT == MVT::f32)
673    Val = (float)Val;  // Mask out extra precision.
674
675  // Do the map lookup using the actual bit pattern for the floating point
676  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
677  // we don't have issues with SNANs.
678  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
679  if (N) return SDOperand(N, 0);
680  N = new ConstantFPSDNode(false, Val, VT);
681  AllNodes.push_back(N);
682  return SDOperand(N, 0);
683}
684
685SDOperand SelectionDAG::getTargetConstantFP(double Val, MVT::ValueType VT) {
686  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
687  if (VT == MVT::f32)
688    Val = (float)Val;  // Mask out extra precision.
689
690  // Do the map lookup using the actual bit pattern for the floating point
691  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
692  // we don't have issues with SNANs.
693  SDNode *&N = TargetConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
694  if (N) return SDOperand(N, 0);
695  N = new ConstantFPSDNode(true, Val, VT);
696  AllNodes.push_back(N);
697  return SDOperand(N, 0);
698}
699
700SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
701                                         MVT::ValueType VT, int offset) {
702  SDNode *&N = GlobalValues[std::make_pair(GV, offset)];
703  if (N) return SDOperand(N, 0);
704  N = new GlobalAddressSDNode(false, GV, VT, offset);
705  AllNodes.push_back(N);
706  return SDOperand(N, 0);
707}
708
709SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
710                                               MVT::ValueType VT, int offset) {
711  SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)];
712  if (N) return SDOperand(N, 0);
713  N = new GlobalAddressSDNode(true, GV, VT, offset);
714  AllNodes.push_back(N);
715  return SDOperand(N, 0);
716}
717
718SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
719  SDNode *&N = FrameIndices[FI];
720  if (N) return SDOperand(N, 0);
721  N = new FrameIndexSDNode(FI, VT, false);
722  AllNodes.push_back(N);
723  return SDOperand(N, 0);
724}
725
726SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
727  SDNode *&N = TargetFrameIndices[FI];
728  if (N) return SDOperand(N, 0);
729  N = new FrameIndexSDNode(FI, VT, true);
730  AllNodes.push_back(N);
731  return SDOperand(N, 0);
732}
733
734SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
735                                        unsigned Alignment,  int Offset) {
736  SDNode *&N = ConstantPoolIndices[std::make_pair(C,
737                                            std::make_pair(Offset, Alignment))];
738  if (N) return SDOperand(N, 0);
739  N = new ConstantPoolSDNode(false, C, VT, Offset, Alignment);
740  AllNodes.push_back(N);
741  return SDOperand(N, 0);
742}
743
744SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT,
745                                             unsigned Alignment,  int Offset) {
746  SDNode *&N = TargetConstantPoolIndices[std::make_pair(C,
747                                            std::make_pair(Offset, Alignment))];
748  if (N) return SDOperand(N, 0);
749  N = new ConstantPoolSDNode(true, C, VT, Offset, Alignment);
750  AllNodes.push_back(N);
751  return SDOperand(N, 0);
752}
753
754SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
755  SDNode *&N = BBNodes[MBB];
756  if (N) return SDOperand(N, 0);
757  N = new BasicBlockSDNode(MBB);
758  AllNodes.push_back(N);
759  return SDOperand(N, 0);
760}
761
762SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
763  if ((unsigned)VT >= ValueTypeNodes.size())
764    ValueTypeNodes.resize(VT+1);
765  if (ValueTypeNodes[VT] == 0) {
766    ValueTypeNodes[VT] = new VTSDNode(VT);
767    AllNodes.push_back(ValueTypeNodes[VT]);
768  }
769
770  return SDOperand(ValueTypeNodes[VT], 0);
771}
772
773SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
774  SDNode *&N = ExternalSymbols[Sym];
775  if (N) return SDOperand(N, 0);
776  N = new ExternalSymbolSDNode(false, Sym, VT);
777  AllNodes.push_back(N);
778  return SDOperand(N, 0);
779}
780
781SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
782                                                MVT::ValueType VT) {
783  SDNode *&N = TargetExternalSymbols[Sym];
784  if (N) return SDOperand(N, 0);
785  N = new ExternalSymbolSDNode(true, Sym, VT);
786  AllNodes.push_back(N);
787  return SDOperand(N, 0);
788}
789
790SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
791  if ((unsigned)Cond >= CondCodeNodes.size())
792    CondCodeNodes.resize(Cond+1);
793
794  if (CondCodeNodes[Cond] == 0) {
795    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
796    AllNodes.push_back(CondCodeNodes[Cond]);
797  }
798  return SDOperand(CondCodeNodes[Cond], 0);
799}
800
801SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
802  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
803  if (!Reg) {
804    Reg = new RegisterSDNode(RegNo, VT);
805    AllNodes.push_back(Reg);
806  }
807  return SDOperand(Reg, 0);
808}
809
810SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
811                                      SDOperand N2, ISD::CondCode Cond) {
812  // These setcc operations always fold.
813  switch (Cond) {
814  default: break;
815  case ISD::SETFALSE:
816  case ISD::SETFALSE2: return getConstant(0, VT);
817  case ISD::SETTRUE:
818  case ISD::SETTRUE2:  return getConstant(1, VT);
819  }
820
821  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
822    uint64_t C2 = N2C->getValue();
823    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
824      uint64_t C1 = N1C->getValue();
825
826      // Sign extend the operands if required
827      if (ISD::isSignedIntSetCC(Cond)) {
828        C1 = N1C->getSignExtended();
829        C2 = N2C->getSignExtended();
830      }
831
832      switch (Cond) {
833      default: assert(0 && "Unknown integer setcc!");
834      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
835      case ISD::SETNE:  return getConstant(C1 != C2, VT);
836      case ISD::SETULT: return getConstant(C1 <  C2, VT);
837      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
838      case ISD::SETULE: return getConstant(C1 <= C2, VT);
839      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
840      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
841      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
842      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
843      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
844      }
845    } else {
846      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
847      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
848        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
849
850        // If the comparison constant has bits in the upper part, the
851        // zero-extended value could never match.
852        if (C2 & (~0ULL << InSize)) {
853          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
854          switch (Cond) {
855          case ISD::SETUGT:
856          case ISD::SETUGE:
857          case ISD::SETEQ: return getConstant(0, VT);
858          case ISD::SETULT:
859          case ISD::SETULE:
860          case ISD::SETNE: return getConstant(1, VT);
861          case ISD::SETGT:
862          case ISD::SETGE:
863            // True if the sign bit of C2 is set.
864            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
865          case ISD::SETLT:
866          case ISD::SETLE:
867            // True if the sign bit of C2 isn't set.
868            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
869          default:
870            break;
871          }
872        }
873
874        // Otherwise, we can perform the comparison with the low bits.
875        switch (Cond) {
876        case ISD::SETEQ:
877        case ISD::SETNE:
878        case ISD::SETUGT:
879        case ISD::SETUGE:
880        case ISD::SETULT:
881        case ISD::SETULE:
882          return getSetCC(VT, N1.getOperand(0),
883                          getConstant(C2, N1.getOperand(0).getValueType()),
884                          Cond);
885        default:
886          break;   // todo, be more careful with signed comparisons
887        }
888      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
889                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
890        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
891        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
892        MVT::ValueType ExtDstTy = N1.getValueType();
893        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
894
895        // If the extended part has any inconsistent bits, it cannot ever
896        // compare equal.  In other words, they have to be all ones or all
897        // zeros.
898        uint64_t ExtBits =
899          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
900        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
901          return getConstant(Cond == ISD::SETNE, VT);
902
903        // Otherwise, make this a use of a zext.
904        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
905                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
906                        Cond);
907      }
908
909      uint64_t MinVal, MaxVal;
910      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
911      if (ISD::isSignedIntSetCC(Cond)) {
912        MinVal = 1ULL << (OperandBitSize-1);
913        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
914          MaxVal = ~0ULL >> (65-OperandBitSize);
915        else
916          MaxVal = 0;
917      } else {
918        MinVal = 0;
919        MaxVal = ~0ULL >> (64-OperandBitSize);
920      }
921
922      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
923      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
924        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
925        --C2;                                          // X >= C1 --> X > (C1-1)
926        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
927                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
928      }
929
930      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
931        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
932        ++C2;                                          // X <= C1 --> X < (C1+1)
933        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
934                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
935      }
936
937      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
938        return getConstant(0, VT);      // X < MIN --> false
939
940      // Canonicalize setgt X, Min --> setne X, Min
941      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
942        return getSetCC(VT, N1, N2, ISD::SETNE);
943
944      // If we have setult X, 1, turn it into seteq X, 0
945      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
946        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
947                        ISD::SETEQ);
948      // If we have setugt X, Max-1, turn it into seteq X, Max
949      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
950        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
951                        ISD::SETEQ);
952
953      // If we have "setcc X, C1", check to see if we can shrink the immediate
954      // by changing cc.
955
956      // SETUGT X, SINTMAX  -> SETLT X, 0
957      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
958          C2 == (~0ULL >> (65-OperandBitSize)))
959        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
960
961      // FIXME: Implement the rest of these.
962
963
964      // Fold bit comparisons when we can.
965      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
966          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
967        if (ConstantSDNode *AndRHS =
968                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
969          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
970            // Perform the xform if the AND RHS is a single bit.
971            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
972              return getNode(ISD::SRL, VT, N1,
973                             getConstant(Log2_64(AndRHS->getValue()),
974                                                   TLI.getShiftAmountTy()));
975            }
976          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
977            // (X & 8) == 8  -->  (X & 8) >> 3
978            // Perform the xform if C2 is a single bit.
979            if ((C2 & (C2-1)) == 0) {
980              return getNode(ISD::SRL, VT, N1,
981                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
982            }
983          }
984        }
985    }
986  } else if (isa<ConstantSDNode>(N1.Val)) {
987      // Ensure that the constant occurs on the RHS.
988    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
989  }
990
991  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
992    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
993      double C1 = N1C->getValue(), C2 = N2C->getValue();
994
995      switch (Cond) {
996      default: break; // FIXME: Implement the rest of these!
997      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
998      case ISD::SETNE:  return getConstant(C1 != C2, VT);
999      case ISD::SETLT:  return getConstant(C1 < C2, VT);
1000      case ISD::SETGT:  return getConstant(C1 > C2, VT);
1001      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
1002      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
1003      }
1004    } else {
1005      // Ensure that the constant occurs on the RHS.
1006      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1007    }
1008
1009  // Could not fold it.
1010  return SDOperand();
1011}
1012
1013/// getNode - Gets or creates the specified node.
1014///
1015SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1016  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
1017  if (!N) {
1018    N = new SDNode(Opcode, VT);
1019    AllNodes.push_back(N);
1020  }
1021  return SDOperand(N, 0);
1022}
1023
1024SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1025                                SDOperand Operand) {
1026  unsigned Tmp1;
1027  // Constant fold unary operations with an integer constant operand.
1028  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1029    uint64_t Val = C->getValue();
1030    switch (Opcode) {
1031    default: break;
1032    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1033    case ISD::ANY_EXTEND:
1034    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1035    case ISD::TRUNCATE:    return getConstant(Val, VT);
1036    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
1037    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
1038    case ISD::BIT_CONVERT:
1039      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1040        return getConstantFP(BitsToFloat(Val), VT);
1041      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1042        return getConstantFP(BitsToDouble(Val), VT);
1043      break;
1044    case ISD::BSWAP:
1045      switch(VT) {
1046      default: assert(0 && "Invalid bswap!"); break;
1047      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1048      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1049      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1050      }
1051      break;
1052    case ISD::CTPOP:
1053      switch(VT) {
1054      default: assert(0 && "Invalid ctpop!"); break;
1055      case MVT::i1: return getConstant(Val != 0, VT);
1056      case MVT::i8:
1057        Tmp1 = (unsigned)Val & 0xFF;
1058        return getConstant(CountPopulation_32(Tmp1), VT);
1059      case MVT::i16:
1060        Tmp1 = (unsigned)Val & 0xFFFF;
1061        return getConstant(CountPopulation_32(Tmp1), VT);
1062      case MVT::i32:
1063        return getConstant(CountPopulation_32((unsigned)Val), VT);
1064      case MVT::i64:
1065        return getConstant(CountPopulation_64(Val), VT);
1066      }
1067    case ISD::CTLZ:
1068      switch(VT) {
1069      default: assert(0 && "Invalid ctlz!"); break;
1070      case MVT::i1: return getConstant(Val == 0, VT);
1071      case MVT::i8:
1072        Tmp1 = (unsigned)Val & 0xFF;
1073        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1074      case MVT::i16:
1075        Tmp1 = (unsigned)Val & 0xFFFF;
1076        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1077      case MVT::i32:
1078        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1079      case MVT::i64:
1080        return getConstant(CountLeadingZeros_64(Val), VT);
1081      }
1082    case ISD::CTTZ:
1083      switch(VT) {
1084      default: assert(0 && "Invalid cttz!"); break;
1085      case MVT::i1: return getConstant(Val == 0, VT);
1086      case MVT::i8:
1087        Tmp1 = (unsigned)Val | 0x100;
1088        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1089      case MVT::i16:
1090        Tmp1 = (unsigned)Val | 0x10000;
1091        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1092      case MVT::i32:
1093        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1094      case MVT::i64:
1095        return getConstant(CountTrailingZeros_64(Val), VT);
1096      }
1097    }
1098  }
1099
1100  // Constant fold unary operations with an floating point constant operand.
1101  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1102    switch (Opcode) {
1103    case ISD::FNEG:
1104      return getConstantFP(-C->getValue(), VT);
1105    case ISD::FABS:
1106      return getConstantFP(fabs(C->getValue()), VT);
1107    case ISD::FP_ROUND:
1108    case ISD::FP_EXTEND:
1109      return getConstantFP(C->getValue(), VT);
1110    case ISD::FP_TO_SINT:
1111      return getConstant((int64_t)C->getValue(), VT);
1112    case ISD::FP_TO_UINT:
1113      return getConstant((uint64_t)C->getValue(), VT);
1114    case ISD::BIT_CONVERT:
1115      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1116        return getConstant(FloatToBits(C->getValue()), VT);
1117      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1118        return getConstant(DoubleToBits(C->getValue()), VT);
1119      break;
1120    }
1121
1122  unsigned OpOpcode = Operand.Val->getOpcode();
1123  switch (Opcode) {
1124  case ISD::TokenFactor:
1125    return Operand;         // Factor of one node?  No factor.
1126  case ISD::SIGN_EXTEND:
1127    if (Operand.getValueType() == VT) return Operand;   // noop extension
1128    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1129    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1130      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1131    break;
1132  case ISD::ZERO_EXTEND:
1133    if (Operand.getValueType() == VT) return Operand;   // noop extension
1134    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1135    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1136      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1137    break;
1138  case ISD::ANY_EXTEND:
1139    if (Operand.getValueType() == VT) return Operand;   // noop extension
1140    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1141    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1142      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1143      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1144    break;
1145  case ISD::TRUNCATE:
1146    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1147    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1148    if (OpOpcode == ISD::TRUNCATE)
1149      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1150    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1151             OpOpcode == ISD::ANY_EXTEND) {
1152      // If the source is smaller than the dest, we still need an extend.
1153      if (Operand.Val->getOperand(0).getValueType() < VT)
1154        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1155      else if (Operand.Val->getOperand(0).getValueType() > VT)
1156        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1157      else
1158        return Operand.Val->getOperand(0);
1159    }
1160    break;
1161  case ISD::BIT_CONVERT:
1162    // Basic sanity checking.
1163    assert((Operand.getValueType() == MVT::Vector ||   // FIXME: This is a hack.
1164           MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType()))
1165           && "Cannot BIT_CONVERT between two different types!");
1166    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1167    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1168      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1169    break;
1170  case ISD::SCALAR_TO_VECTOR:
1171    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1172           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1173           "Illegal SCALAR_TO_VECTOR node!");
1174    break;
1175  case ISD::FNEG:
1176    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1177      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1178                     Operand.Val->getOperand(0));
1179    if (OpOpcode == ISD::FNEG)  // --X -> X
1180      return Operand.Val->getOperand(0);
1181    break;
1182  case ISD::FABS:
1183    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1184      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1185    break;
1186  }
1187
1188  SDNode *N;
1189  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1190    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1191    if (E) return SDOperand(E, 0);
1192    E = N = new SDNode(Opcode, Operand);
1193  } else {
1194    N = new SDNode(Opcode, Operand);
1195  }
1196  N->setValueTypes(VT);
1197  AllNodes.push_back(N);
1198  return SDOperand(N, 0);
1199}
1200
1201
1202
1203SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1204                                SDOperand N1, SDOperand N2) {
1205#ifndef NDEBUG
1206  switch (Opcode) {
1207  case ISD::TokenFactor:
1208    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1209           N2.getValueType() == MVT::Other && "Invalid token factor!");
1210    break;
1211  case ISD::AND:
1212  case ISD::OR:
1213  case ISD::XOR:
1214  case ISD::UDIV:
1215  case ISD::UREM:
1216  case ISD::MULHU:
1217  case ISD::MULHS:
1218    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1219    // fall through
1220  case ISD::ADD:
1221  case ISD::SUB:
1222  case ISD::MUL:
1223  case ISD::SDIV:
1224  case ISD::SREM:
1225    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1226    // fall through.
1227  case ISD::FADD:
1228  case ISD::FSUB:
1229  case ISD::FMUL:
1230  case ISD::FDIV:
1231  case ISD::FREM:
1232    assert(N1.getValueType() == N2.getValueType() &&
1233           N1.getValueType() == VT && "Binary operator types must match!");
1234    break;
1235  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1236    assert(N1.getValueType() == VT &&
1237           MVT::isFloatingPoint(N1.getValueType()) &&
1238           MVT::isFloatingPoint(N2.getValueType()) &&
1239           "Invalid FCOPYSIGN!");
1240    break;
1241  case ISD::SHL:
1242  case ISD::SRA:
1243  case ISD::SRL:
1244  case ISD::ROTL:
1245  case ISD::ROTR:
1246    assert(VT == N1.getValueType() &&
1247           "Shift operators return type must be the same as their first arg");
1248    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1249           VT != MVT::i1 && "Shifts only work on integers");
1250    break;
1251  case ISD::FP_ROUND_INREG: {
1252    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1253    assert(VT == N1.getValueType() && "Not an inreg round!");
1254    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1255           "Cannot FP_ROUND_INREG integer types");
1256    assert(EVT <= VT && "Not rounding down!");
1257    break;
1258  }
1259  case ISD::AssertSext:
1260  case ISD::AssertZext:
1261  case ISD::SIGN_EXTEND_INREG: {
1262    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1263    assert(VT == N1.getValueType() && "Not an inreg extend!");
1264    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1265           "Cannot *_EXTEND_INREG FP types");
1266    assert(EVT <= VT && "Not extending!");
1267  }
1268
1269  default: break;
1270  }
1271#endif
1272
1273  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1274  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1275  if (N1C) {
1276    if (N2C) {
1277      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1278      switch (Opcode) {
1279      case ISD::ADD: return getConstant(C1 + C2, VT);
1280      case ISD::SUB: return getConstant(C1 - C2, VT);
1281      case ISD::MUL: return getConstant(C1 * C2, VT);
1282      case ISD::UDIV:
1283        if (C2) return getConstant(C1 / C2, VT);
1284        break;
1285      case ISD::UREM :
1286        if (C2) return getConstant(C1 % C2, VT);
1287        break;
1288      case ISD::SDIV :
1289        if (C2) return getConstant(N1C->getSignExtended() /
1290                                   N2C->getSignExtended(), VT);
1291        break;
1292      case ISD::SREM :
1293        if (C2) return getConstant(N1C->getSignExtended() %
1294                                   N2C->getSignExtended(), VT);
1295        break;
1296      case ISD::AND  : return getConstant(C1 & C2, VT);
1297      case ISD::OR   : return getConstant(C1 | C2, VT);
1298      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1299      case ISD::SHL  : return getConstant(C1 << C2, VT);
1300      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1301      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1302      case ISD::ROTL :
1303        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1304                           VT);
1305      case ISD::ROTR :
1306        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1307                           VT);
1308      default: break;
1309      }
1310    } else {      // Cannonicalize constant to RHS if commutative
1311      if (isCommutativeBinOp(Opcode)) {
1312        std::swap(N1C, N2C);
1313        std::swap(N1, N2);
1314      }
1315    }
1316  }
1317
1318  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1319  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1320  if (N1CFP) {
1321    if (N2CFP) {
1322      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1323      switch (Opcode) {
1324      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1325      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1326      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1327      case ISD::FDIV:
1328        if (C2) return getConstantFP(C1 / C2, VT);
1329        break;
1330      case ISD::FREM :
1331        if (C2) return getConstantFP(fmod(C1, C2), VT);
1332        break;
1333      case ISD::FCOPYSIGN: {
1334        union {
1335          double   F;
1336          uint64_t I;
1337        } u1;
1338        union {
1339          double  F;
1340          int64_t I;
1341        } u2;
1342        u1.F = C1;
1343        u2.F = C2;
1344        if (u2.I < 0)  // Sign bit of RHS set?
1345          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1346        else
1347          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1348        return getConstantFP(u1.F, VT);
1349      }
1350      default: break;
1351      }
1352    } else {      // Cannonicalize constant to RHS if commutative
1353      if (isCommutativeBinOp(Opcode)) {
1354        std::swap(N1CFP, N2CFP);
1355        std::swap(N1, N2);
1356      }
1357    }
1358  }
1359
1360  // Finally, fold operations that do not require constants.
1361  switch (Opcode) {
1362  case ISD::FP_ROUND_INREG:
1363    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1364    break;
1365  case ISD::SIGN_EXTEND_INREG: {
1366    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1367    if (EVT == VT) return N1;  // Not actually extending
1368    break;
1369  }
1370
1371  // FIXME: figure out how to safely handle things like
1372  // int foo(int x) { return 1 << (x & 255); }
1373  // int bar() { return foo(256); }
1374#if 0
1375  case ISD::SHL:
1376  case ISD::SRL:
1377  case ISD::SRA:
1378    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1379        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1380      return getNode(Opcode, VT, N1, N2.getOperand(0));
1381    else if (N2.getOpcode() == ISD::AND)
1382      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1383        // If the and is only masking out bits that cannot effect the shift,
1384        // eliminate the and.
1385        unsigned NumBits = MVT::getSizeInBits(VT);
1386        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1387          return getNode(Opcode, VT, N1, N2.getOperand(0));
1388      }
1389    break;
1390#endif
1391  }
1392
1393  // Memoize this node if possible.
1394  SDNode *N;
1395  if (VT != MVT::Flag) {
1396    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1397    if (BON) return SDOperand(BON, 0);
1398
1399    BON = N = new SDNode(Opcode, N1, N2);
1400  } else {
1401    N = new SDNode(Opcode, N1, N2);
1402  }
1403
1404  N->setValueTypes(VT);
1405  AllNodes.push_back(N);
1406  return SDOperand(N, 0);
1407}
1408
1409SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1410                                SDOperand N1, SDOperand N2, SDOperand N3) {
1411  // Perform various simplifications.
1412  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1413  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1414  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1415  switch (Opcode) {
1416  case ISD::SETCC: {
1417    // Use SimplifySetCC  to simplify SETCC's.
1418    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1419    if (Simp.Val) return Simp;
1420    break;
1421  }
1422  case ISD::SELECT:
1423    if (N1C)
1424      if (N1C->getValue())
1425        return N2;             // select true, X, Y -> X
1426      else
1427        return N3;             // select false, X, Y -> Y
1428
1429    if (N2 == N3) return N2;   // select C, X, X -> X
1430    break;
1431  case ISD::BRCOND:
1432    if (N2C)
1433      if (N2C->getValue()) // Unconditional branch
1434        return getNode(ISD::BR, MVT::Other, N1, N3);
1435      else
1436        return N1;         // Never-taken branch
1437    break;
1438  case ISD::VECTOR_SHUFFLE:
1439    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1440           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1441           N3.getOpcode() == ISD::BUILD_VECTOR &&
1442           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1443           "Illegal VECTOR_SHUFFLE node!");
1444    break;
1445  }
1446
1447  std::vector<SDOperand> Ops;
1448  Ops.reserve(3);
1449  Ops.push_back(N1);
1450  Ops.push_back(N2);
1451  Ops.push_back(N3);
1452
1453  // Memoize node if it doesn't produce a flag.
1454  SDNode *N;
1455  if (VT != MVT::Flag) {
1456    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1457    if (E) return SDOperand(E, 0);
1458    E = N = new SDNode(Opcode, N1, N2, N3);
1459  } else {
1460    N = new SDNode(Opcode, N1, N2, N3);
1461  }
1462  N->setValueTypes(VT);
1463  AllNodes.push_back(N);
1464  return SDOperand(N, 0);
1465}
1466
1467SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1468                                SDOperand N1, SDOperand N2, SDOperand N3,
1469                                SDOperand N4) {
1470  std::vector<SDOperand> Ops;
1471  Ops.reserve(4);
1472  Ops.push_back(N1);
1473  Ops.push_back(N2);
1474  Ops.push_back(N3);
1475  Ops.push_back(N4);
1476  return getNode(Opcode, VT, Ops);
1477}
1478
1479SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1480                                SDOperand N1, SDOperand N2, SDOperand N3,
1481                                SDOperand N4, SDOperand N5) {
1482  std::vector<SDOperand> Ops;
1483  Ops.reserve(5);
1484  Ops.push_back(N1);
1485  Ops.push_back(N2);
1486  Ops.push_back(N3);
1487  Ops.push_back(N4);
1488  Ops.push_back(N5);
1489  return getNode(Opcode, VT, Ops);
1490}
1491
1492SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1493                                SDOperand Chain, SDOperand Ptr,
1494                                SDOperand SV) {
1495  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1496  if (N) return SDOperand(N, 0);
1497  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1498
1499  // Loads have a token chain.
1500  setNodeValueTypes(N, VT, MVT::Other);
1501  AllNodes.push_back(N);
1502  return SDOperand(N, 0);
1503}
1504
1505SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1506                                   SDOperand Chain, SDOperand Ptr,
1507                                   SDOperand SV) {
1508  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, EVT))];
1509  if (N) return SDOperand(N, 0);
1510  std::vector<SDOperand> Ops;
1511  Ops.reserve(5);
1512  Ops.push_back(Chain);
1513  Ops.push_back(Ptr);
1514  Ops.push_back(SV);
1515  Ops.push_back(getConstant(Count, MVT::i32));
1516  Ops.push_back(getValueType(EVT));
1517  std::vector<MVT::ValueType> VTs;
1518  VTs.reserve(2);
1519  VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other);  // Add token chain.
1520  return getNode(ISD::VLOAD, VTs, Ops);
1521}
1522
1523SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1524                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1525                                   MVT::ValueType EVT) {
1526  std::vector<SDOperand> Ops;
1527  Ops.reserve(4);
1528  Ops.push_back(Chain);
1529  Ops.push_back(Ptr);
1530  Ops.push_back(SV);
1531  Ops.push_back(getValueType(EVT));
1532  std::vector<MVT::ValueType> VTs;
1533  VTs.reserve(2);
1534  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1535  return getNode(Opcode, VTs, Ops);
1536}
1537
1538SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1539  assert((!V || isa<PointerType>(V->getType())) &&
1540         "SrcValue is not a pointer?");
1541  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1542  if (N) return SDOperand(N, 0);
1543
1544  N = new SrcValueSDNode(V, Offset);
1545  AllNodes.push_back(N);
1546  return SDOperand(N, 0);
1547}
1548
1549SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1550                                 SDOperand Chain, SDOperand Ptr,
1551                                 SDOperand SV) {
1552  std::vector<SDOperand> Ops;
1553  Ops.reserve(3);
1554  Ops.push_back(Chain);
1555  Ops.push_back(Ptr);
1556  Ops.push_back(SV);
1557  std::vector<MVT::ValueType> VTs;
1558  VTs.reserve(2);
1559  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1560  return getNode(ISD::VAARG, VTs, Ops);
1561}
1562
1563SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1564                                std::vector<SDOperand> &Ops) {
1565  switch (Ops.size()) {
1566  case 0: return getNode(Opcode, VT);
1567  case 1: return getNode(Opcode, VT, Ops[0]);
1568  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1569  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1570  default: break;
1571  }
1572
1573  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1574  switch (Opcode) {
1575  default: break;
1576  case ISD::TRUNCSTORE: {
1577    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1578    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1579#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1580    // If this is a truncating store of a constant, convert to the desired type
1581    // and store it instead.
1582    if (isa<Constant>(Ops[0])) {
1583      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1584      if (isa<Constant>(Op))
1585        N1 = Op;
1586    }
1587    // Also for ConstantFP?
1588#endif
1589    if (Ops[0].getValueType() == EVT)       // Normal store?
1590      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1591    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1592    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1593           "Can't do FP-INT conversion!");
1594    break;
1595  }
1596  case ISD::SELECT_CC: {
1597    assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
1598    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1599           "LHS and RHS of condition must have same type!");
1600    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1601           "True and False arms of SelectCC must have same type!");
1602    assert(Ops[2].getValueType() == VT &&
1603           "select_cc node must be of same type as true and false value!");
1604    break;
1605  }
1606  case ISD::BR_CC: {
1607    assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
1608    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1609           "LHS/RHS of comparison should match types!");
1610    break;
1611  }
1612  }
1613
1614  // Memoize nodes.
1615  SDNode *N;
1616  if (VT != MVT::Flag) {
1617    SDNode *&E =
1618      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1619    if (E) return SDOperand(E, 0);
1620    E = N = new SDNode(Opcode, Ops);
1621  } else {
1622    N = new SDNode(Opcode, Ops);
1623  }
1624  N->setValueTypes(VT);
1625  AllNodes.push_back(N);
1626  return SDOperand(N, 0);
1627}
1628
1629SDOperand SelectionDAG::getNode(unsigned Opcode,
1630                                std::vector<MVT::ValueType> &ResultTys,
1631                                std::vector<SDOperand> &Ops) {
1632  if (ResultTys.size() == 1)
1633    return getNode(Opcode, ResultTys[0], Ops);
1634
1635  switch (Opcode) {
1636  case ISD::EXTLOAD:
1637  case ISD::SEXTLOAD:
1638  case ISD::ZEXTLOAD: {
1639    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1640    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1641    // If they are asking for an extending load from/to the same thing, return a
1642    // normal load.
1643    if (ResultTys[0] == EVT)
1644      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1645    if (MVT::isVector(ResultTys[0])) {
1646      assert(EVT == MVT::getVectorBaseType(ResultTys[0]) &&
1647             "Invalid vector extload!");
1648    } else {
1649      assert(EVT < ResultTys[0] &&
1650             "Should only be an extending load, not truncating!");
1651    }
1652    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1653           "Cannot sign/zero extend a FP/Vector load!");
1654    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1655           "Cannot convert from FP to Int or Int -> FP!");
1656    break;
1657  }
1658
1659  // FIXME: figure out how to safely handle things like
1660  // int foo(int x) { return 1 << (x & 255); }
1661  // int bar() { return foo(256); }
1662#if 0
1663  case ISD::SRA_PARTS:
1664  case ISD::SRL_PARTS:
1665  case ISD::SHL_PARTS:
1666    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1667        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1668      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1669    else if (N3.getOpcode() == ISD::AND)
1670      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1671        // If the and is only masking out bits that cannot effect the shift,
1672        // eliminate the and.
1673        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1674        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1675          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1676      }
1677    break;
1678#endif
1679  }
1680
1681  // Memoize the node unless it returns a flag.
1682  SDNode *N;
1683  if (ResultTys.back() != MVT::Flag) {
1684    SDNode *&E =
1685      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
1686    if (E) return SDOperand(E, 0);
1687    E = N = new SDNode(Opcode, Ops);
1688  } else {
1689    N = new SDNode(Opcode, Ops);
1690  }
1691  setNodeValueTypes(N, ResultTys);
1692  AllNodes.push_back(N);
1693  return SDOperand(N, 0);
1694}
1695
1696void SelectionDAG::setNodeValueTypes(SDNode *N,
1697                                     std::vector<MVT::ValueType> &RetVals) {
1698  switch (RetVals.size()) {
1699  case 0: return;
1700  case 1: N->setValueTypes(RetVals[0]); return;
1701  case 2: setNodeValueTypes(N, RetVals[0], RetVals[1]); return;
1702  default: break;
1703  }
1704
1705  std::list<std::vector<MVT::ValueType> >::iterator I =
1706    std::find(VTList.begin(), VTList.end(), RetVals);
1707  if (I == VTList.end()) {
1708    VTList.push_front(RetVals);
1709    I = VTList.begin();
1710  }
1711
1712  N->setValueTypes(&(*I)[0], I->size());
1713}
1714
1715void SelectionDAG::setNodeValueTypes(SDNode *N, MVT::ValueType VT1,
1716                                     MVT::ValueType VT2) {
1717  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1718       E = VTList.end(); I != E; ++I) {
1719    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) {
1720      N->setValueTypes(&(*I)[0], 2);
1721      return;
1722    }
1723  }
1724  std::vector<MVT::ValueType> V;
1725  V.push_back(VT1);
1726  V.push_back(VT2);
1727  VTList.push_front(V);
1728  N->setValueTypes(&(*VTList.begin())[0], 2);
1729}
1730
1731/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1732/// specified operands.  If the resultant node already exists in the DAG,
1733/// this does not modify the specified node, instead it returns the node that
1734/// already exists.  If the resultant node does not exist in the DAG, the
1735/// input node is returned.  As a degenerate case, if you specify the same
1736/// input operands as the node already has, the input node is returned.
1737SDOperand SelectionDAG::
1738UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1739  SDNode *N = InN.Val;
1740  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1741
1742  // Check to see if there is no change.
1743  if (Op == N->getOperand(0)) return InN;
1744
1745  // See if the modified node already exists.
1746  SDNode **NewSlot = FindModifiedNodeSlot(N, Op);
1747  if (NewSlot && *NewSlot)
1748    return SDOperand(*NewSlot, InN.ResNo);
1749
1750  // Nope it doesn't.  Remove the node from it's current place in the maps.
1751  if (NewSlot)
1752    RemoveNodeFromCSEMaps(N);
1753
1754  // Now we update the operands.
1755  N->OperandList[0].Val->removeUser(N);
1756  Op.Val->addUser(N);
1757  N->OperandList[0] = Op;
1758
1759  // If this gets put into a CSE map, add it.
1760  if (NewSlot) *NewSlot = N;
1761  return InN;
1762}
1763
1764SDOperand SelectionDAG::
1765UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1766  SDNode *N = InN.Val;
1767  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1768
1769  // Check to see if there is no change.
1770  bool AnyChange = false;
1771  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1772    return InN;   // No operands changed, just return the input node.
1773
1774  // See if the modified node already exists.
1775  SDNode **NewSlot = FindModifiedNodeSlot(N, Op1, Op2);
1776  if (NewSlot && *NewSlot)
1777    return SDOperand(*NewSlot, InN.ResNo);
1778
1779  // Nope it doesn't.  Remove the node from it's current place in the maps.
1780  if (NewSlot)
1781    RemoveNodeFromCSEMaps(N);
1782
1783  // Now we update the operands.
1784  if (N->OperandList[0] != Op1) {
1785    N->OperandList[0].Val->removeUser(N);
1786    Op1.Val->addUser(N);
1787    N->OperandList[0] = Op1;
1788  }
1789  if (N->OperandList[1] != Op2) {
1790    N->OperandList[1].Val->removeUser(N);
1791    Op2.Val->addUser(N);
1792    N->OperandList[1] = Op2;
1793  }
1794
1795  // If this gets put into a CSE map, add it.
1796  if (NewSlot) *NewSlot = N;
1797  return InN;
1798}
1799
1800SDOperand SelectionDAG::
1801UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1802  std::vector<SDOperand> Ops;
1803  Ops.push_back(Op1);
1804  Ops.push_back(Op2);
1805  Ops.push_back(Op3);
1806  return UpdateNodeOperands(N, Ops);
1807}
1808
1809SDOperand SelectionDAG::
1810UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1811                   SDOperand Op3, SDOperand Op4) {
1812  std::vector<SDOperand> Ops;
1813  Ops.push_back(Op1);
1814  Ops.push_back(Op2);
1815  Ops.push_back(Op3);
1816  Ops.push_back(Op4);
1817  return UpdateNodeOperands(N, Ops);
1818}
1819
1820SDOperand SelectionDAG::
1821UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1822                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1823  std::vector<SDOperand> Ops;
1824  Ops.push_back(Op1);
1825  Ops.push_back(Op2);
1826  Ops.push_back(Op3);
1827  Ops.push_back(Op4);
1828  Ops.push_back(Op5);
1829  return UpdateNodeOperands(N, Ops);
1830}
1831
1832
1833SDOperand SelectionDAG::
1834UpdateNodeOperands(SDOperand InN, const std::vector<SDOperand> &Ops) {
1835  SDNode *N = InN.Val;
1836  assert(N->getNumOperands() == Ops.size() &&
1837         "Update with wrong number of operands");
1838
1839  // Check to see if there is no change.
1840  unsigned NumOps = Ops.size();
1841  bool AnyChange = false;
1842  for (unsigned i = 0; i != NumOps; ++i) {
1843    if (Ops[i] != N->getOperand(i)) {
1844      AnyChange = true;
1845      break;
1846    }
1847  }
1848
1849  // No operands changed, just return the input node.
1850  if (!AnyChange) return InN;
1851
1852  // See if the modified node already exists.
1853  SDNode **NewSlot = FindModifiedNodeSlot(N, Ops);
1854  if (NewSlot && *NewSlot)
1855    return SDOperand(*NewSlot, InN.ResNo);
1856
1857  // Nope it doesn't.  Remove the node from it's current place in the maps.
1858  if (NewSlot)
1859    RemoveNodeFromCSEMaps(N);
1860
1861  // Now we update the operands.
1862  for (unsigned i = 0; i != NumOps; ++i) {
1863    if (N->OperandList[i] != Ops[i]) {
1864      N->OperandList[i].Val->removeUser(N);
1865      Ops[i].Val->addUser(N);
1866      N->OperandList[i] = Ops[i];
1867    }
1868  }
1869
1870  // If this gets put into a CSE map, add it.
1871  if (NewSlot) *NewSlot = N;
1872  return InN;
1873}
1874
1875
1876
1877
1878/// SelectNodeTo - These are used for target selectors to *mutate* the
1879/// specified node to have the specified return type, Target opcode, and
1880/// operands.  Note that target opcodes are stored as
1881/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1882///
1883/// Note that SelectNodeTo returns the resultant node.  If there is already a
1884/// node of the specified opcode and operands, it returns that node instead of
1885/// the current one.
1886SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1887                                     MVT::ValueType VT) {
1888  // If an identical node already exists, use it.
1889  SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)];
1890  if (ON) return SDOperand(ON, 0);
1891
1892  RemoveNodeFromCSEMaps(N);
1893
1894  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1895  N->setValueTypes(VT);
1896
1897  ON = N;   // Memoize the new node.
1898  return SDOperand(N, 0);
1899}
1900
1901SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1902                                     MVT::ValueType VT, SDOperand Op1) {
1903  // If an identical node already exists, use it.
1904  SDNode *&ON = UnaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1905                                        std::make_pair(Op1, VT))];
1906  if (ON) return SDOperand(ON, 0);
1907
1908  RemoveNodeFromCSEMaps(N);
1909  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1910  N->setValueTypes(VT);
1911  N->setOperands(Op1);
1912
1913  ON = N;   // Memoize the new node.
1914  return SDOperand(N, 0);
1915}
1916
1917SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1918                                     MVT::ValueType VT, SDOperand Op1,
1919                                     SDOperand Op2) {
1920  // If an identical node already exists, use it.
1921  SDNode *&ON = BinaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1922                                         std::make_pair(Op1, Op2))];
1923  if (ON) return SDOperand(ON, 0);
1924
1925  RemoveNodeFromCSEMaps(N);
1926  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1927  N->setValueTypes(VT);
1928  N->setOperands(Op1, Op2);
1929
1930  ON = N;   // Memoize the new node.
1931  return SDOperand(N, 0);
1932}
1933
1934SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1935                                     MVT::ValueType VT, SDOperand Op1,
1936                                     SDOperand Op2, SDOperand Op3) {
1937  // If an identical node already exists, use it.
1938  std::vector<SDOperand> OpList;
1939  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1940  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1941                                              std::make_pair(VT, OpList))];
1942  if (ON) return SDOperand(ON, 0);
1943
1944  RemoveNodeFromCSEMaps(N);
1945  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1946  N->setValueTypes(VT);
1947  N->setOperands(Op1, Op2, Op3);
1948
1949  ON = N;   // Memoize the new node.
1950  return SDOperand(N, 0);
1951}
1952
1953SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1954                                     MVT::ValueType VT, SDOperand Op1,
1955                                     SDOperand Op2, SDOperand Op3,
1956                                     SDOperand Op4) {
1957  // If an identical node already exists, use it.
1958  std::vector<SDOperand> OpList;
1959  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1960  OpList.push_back(Op4);
1961  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1962                                              std::make_pair(VT, OpList))];
1963  if (ON) return SDOperand(ON, 0);
1964
1965  RemoveNodeFromCSEMaps(N);
1966  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1967  N->setValueTypes(VT);
1968  N->setOperands(Op1, Op2, Op3, Op4);
1969
1970  ON = N;   // Memoize the new node.
1971  return SDOperand(N, 0);
1972}
1973
1974SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1975                                     MVT::ValueType VT, SDOperand Op1,
1976                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1977                                     SDOperand Op5) {
1978  // If an identical node already exists, use it.
1979  std::vector<SDOperand> OpList;
1980  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1981  OpList.push_back(Op4); OpList.push_back(Op5);
1982  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1983                                              std::make_pair(VT, OpList))];
1984  if (ON) return SDOperand(ON, 0);
1985
1986  RemoveNodeFromCSEMaps(N);
1987  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1988  N->setValueTypes(VT);
1989  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1990
1991  ON = N;   // Memoize the new node.
1992  return SDOperand(N, 0);
1993}
1994
1995SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1996                                     MVT::ValueType VT, SDOperand Op1,
1997                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1998                                     SDOperand Op5, SDOperand Op6) {
1999  // If an identical node already exists, use it.
2000  std::vector<SDOperand> OpList;
2001  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2002  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
2003  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2004                                              std::make_pair(VT, OpList))];
2005  if (ON) return SDOperand(ON, 0);
2006
2007  RemoveNodeFromCSEMaps(N);
2008  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2009  N->setValueTypes(VT);
2010  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
2011
2012  ON = N;   // Memoize the new node.
2013  return SDOperand(N, 0);
2014}
2015
2016SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2017                                     MVT::ValueType VT, SDOperand Op1,
2018                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2019                                     SDOperand Op5, SDOperand Op6,
2020				     SDOperand Op7) {
2021  // If an identical node already exists, use it.
2022  std::vector<SDOperand> OpList;
2023  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2024  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
2025  OpList.push_back(Op7);
2026  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2027                                              std::make_pair(VT, OpList))];
2028  if (ON) return SDOperand(ON, 0);
2029
2030  RemoveNodeFromCSEMaps(N);
2031  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2032  N->setValueTypes(VT);
2033  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7);
2034
2035  ON = N;   // Memoize the new node.
2036  return SDOperand(N, 0);
2037}
2038SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2039                                     MVT::ValueType VT, SDOperand Op1,
2040                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2041                                     SDOperand Op5, SDOperand Op6,
2042				     SDOperand Op7, SDOperand Op8) {
2043  // If an identical node already exists, use it.
2044  std::vector<SDOperand> OpList;
2045  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2046  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
2047  OpList.push_back(Op7); OpList.push_back(Op8);
2048  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2049                                              std::make_pair(VT, OpList))];
2050  if (ON) return SDOperand(ON, 0);
2051
2052  RemoveNodeFromCSEMaps(N);
2053  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2054  N->setValueTypes(VT);
2055  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8);
2056
2057  ON = N;   // Memoize the new node.
2058  return SDOperand(N, 0);
2059}
2060
2061SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2062                                     MVT::ValueType VT1, MVT::ValueType VT2,
2063                                     SDOperand Op1, SDOperand Op2) {
2064  // If an identical node already exists, use it.
2065  std::vector<SDOperand> OpList;
2066  OpList.push_back(Op1); OpList.push_back(Op2);
2067  std::vector<MVT::ValueType> VTList;
2068  VTList.push_back(VT1); VTList.push_back(VT2);
2069  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2070                                              std::make_pair(VTList, OpList))];
2071  if (ON) return SDOperand(ON, 0);
2072
2073  RemoveNodeFromCSEMaps(N);
2074  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2075  setNodeValueTypes(N, VT1, VT2);
2076  N->setOperands(Op1, Op2);
2077
2078  ON = N;   // Memoize the new node.
2079  return SDOperand(N, 0);
2080}
2081
2082SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2083                                     MVT::ValueType VT1, MVT::ValueType VT2,
2084                                     SDOperand Op1, SDOperand Op2,
2085                                     SDOperand Op3) {
2086  // If an identical node already exists, use it.
2087  std::vector<SDOperand> OpList;
2088  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2089  std::vector<MVT::ValueType> VTList;
2090  VTList.push_back(VT1); VTList.push_back(VT2);
2091  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2092                                              std::make_pair(VTList, OpList))];
2093  if (ON) return SDOperand(ON, 0);
2094
2095  RemoveNodeFromCSEMaps(N);
2096  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2097  setNodeValueTypes(N, VT1, VT2);
2098  N->setOperands(Op1, Op2, Op3);
2099
2100  ON = N;   // Memoize the new node.
2101  return SDOperand(N, 0);
2102}
2103
2104SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2105                                     MVT::ValueType VT1, MVT::ValueType VT2,
2106                                     SDOperand Op1, SDOperand Op2,
2107                                     SDOperand Op3, SDOperand Op4) {
2108  // If an identical node already exists, use it.
2109  std::vector<SDOperand> OpList;
2110  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2111  OpList.push_back(Op4);
2112  std::vector<MVT::ValueType> VTList;
2113  VTList.push_back(VT1); VTList.push_back(VT2);
2114  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2115                                              std::make_pair(VTList, OpList))];
2116  if (ON) return SDOperand(ON, 0);
2117
2118  RemoveNodeFromCSEMaps(N);
2119  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2120  setNodeValueTypes(N, VT1, VT2);
2121  N->setOperands(Op1, Op2, Op3, Op4);
2122
2123  ON = N;   // Memoize the new node.
2124  return SDOperand(N, 0);
2125}
2126
2127SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2128                                     MVT::ValueType VT1, MVT::ValueType VT2,
2129                                     SDOperand Op1, SDOperand Op2,
2130                                     SDOperand Op3, SDOperand Op4,
2131                                     SDOperand Op5) {
2132  // If an identical node already exists, use it.
2133  std::vector<SDOperand> OpList;
2134  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2135  OpList.push_back(Op4); OpList.push_back(Op5);
2136  std::vector<MVT::ValueType> VTList;
2137  VTList.push_back(VT1); VTList.push_back(VT2);
2138  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2139                                              std::make_pair(VTList, OpList))];
2140  if (ON) return SDOperand(ON, 0);
2141
2142  RemoveNodeFromCSEMaps(N);
2143  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2144  setNodeValueTypes(N, VT1, VT2);
2145  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2146
2147  ON = N;   // Memoize the new node.
2148  return SDOperand(N, 0);
2149}
2150
2151/// getTargetNode - These are used for target selectors to create a new node
2152/// with specified return type(s), target opcode, and operands.
2153///
2154/// Note that getTargetNode returns the resultant node.  If there is already a
2155/// node of the specified opcode and operands, it returns that node instead of
2156/// the current one.
2157SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2158  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2159}
2160SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2161                                    SDOperand Op1) {
2162  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2163}
2164SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2165                                    SDOperand Op1, SDOperand Op2) {
2166  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2167}
2168SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2169                                    SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2170  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2171}
2172SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2173                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2174                                    SDOperand Op4) {
2175  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4).Val;
2176}
2177SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2178                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2179                                    SDOperand Op4, SDOperand Op5) {
2180  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4, Op5).Val;
2181}
2182SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2183                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2184                                    SDOperand Op4, SDOperand Op5, SDOperand Op6) {
2185  std::vector<SDOperand> Ops;
2186  Ops.reserve(6);
2187  Ops.push_back(Op1);
2188  Ops.push_back(Op2);
2189  Ops.push_back(Op3);
2190  Ops.push_back(Op4);
2191  Ops.push_back(Op5);
2192  Ops.push_back(Op6);
2193  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2194}
2195SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2196                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2197                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2198                                    SDOperand Op7) {
2199  std::vector<SDOperand> Ops;
2200  Ops.reserve(7);
2201  Ops.push_back(Op1);
2202  Ops.push_back(Op2);
2203  Ops.push_back(Op3);
2204  Ops.push_back(Op4);
2205  Ops.push_back(Op5);
2206  Ops.push_back(Op6);
2207  Ops.push_back(Op7);
2208  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2209}
2210SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2211                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2212                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2213                                    SDOperand Op7, SDOperand Op8) {
2214  std::vector<SDOperand> Ops;
2215  Ops.reserve(8);
2216  Ops.push_back(Op1);
2217  Ops.push_back(Op2);
2218  Ops.push_back(Op3);
2219  Ops.push_back(Op4);
2220  Ops.push_back(Op5);
2221  Ops.push_back(Op6);
2222  Ops.push_back(Op7);
2223  Ops.push_back(Op8);
2224  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2225}
2226SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2227                                    std::vector<SDOperand> &Ops) {
2228  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2229}
2230SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2231                                    MVT::ValueType VT2, SDOperand Op1) {
2232  std::vector<MVT::ValueType> ResultTys;
2233  ResultTys.push_back(VT1);
2234  ResultTys.push_back(VT2);
2235  std::vector<SDOperand> Ops;
2236  Ops.push_back(Op1);
2237  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2238}
2239SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2240                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2) {
2241  std::vector<MVT::ValueType> ResultTys;
2242  ResultTys.push_back(VT1);
2243  ResultTys.push_back(VT2);
2244  std::vector<SDOperand> Ops;
2245  Ops.push_back(Op1);
2246  Ops.push_back(Op2);
2247  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2248}
2249SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2250                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2251                                    SDOperand Op3) {
2252  std::vector<MVT::ValueType> ResultTys;
2253  ResultTys.push_back(VT1);
2254  ResultTys.push_back(VT2);
2255  std::vector<SDOperand> Ops;
2256  Ops.push_back(Op1);
2257  Ops.push_back(Op2);
2258  Ops.push_back(Op3);
2259  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2260}
2261SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2262                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2263                                    SDOperand Op3, SDOperand Op4) {
2264  std::vector<MVT::ValueType> ResultTys;
2265  ResultTys.push_back(VT1);
2266  ResultTys.push_back(VT2);
2267  std::vector<SDOperand> Ops;
2268  Ops.push_back(Op1);
2269  Ops.push_back(Op2);
2270  Ops.push_back(Op3);
2271  Ops.push_back(Op4);
2272  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2273}
2274SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2275                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2276                                    SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2277  std::vector<MVT::ValueType> ResultTys;
2278  ResultTys.push_back(VT1);
2279  ResultTys.push_back(VT2);
2280  std::vector<SDOperand> Ops;
2281  Ops.push_back(Op1);
2282  Ops.push_back(Op2);
2283  Ops.push_back(Op3);
2284  Ops.push_back(Op4);
2285  Ops.push_back(Op5);
2286  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2287}
2288SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2289                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2290                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2291                                    SDOperand Op6) {
2292  std::vector<MVT::ValueType> ResultTys;
2293  ResultTys.push_back(VT1);
2294  ResultTys.push_back(VT2);
2295  std::vector<SDOperand> Ops;
2296  Ops.push_back(Op1);
2297  Ops.push_back(Op2);
2298  Ops.push_back(Op3);
2299  Ops.push_back(Op4);
2300  Ops.push_back(Op5);
2301  Ops.push_back(Op6);
2302  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2303}
2304SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2305                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2306                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2307                                    SDOperand Op6, SDOperand Op7) {
2308  std::vector<MVT::ValueType> ResultTys;
2309  ResultTys.push_back(VT1);
2310  ResultTys.push_back(VT2);
2311  std::vector<SDOperand> Ops;
2312  Ops.push_back(Op1);
2313  Ops.push_back(Op2);
2314  Ops.push_back(Op3);
2315  Ops.push_back(Op4);
2316  Ops.push_back(Op5);
2317  Ops.push_back(Op6);
2318  Ops.push_back(Op7);
2319  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2320}
2321SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2322                                    MVT::ValueType VT2, MVT::ValueType VT3,
2323                                    SDOperand Op1, SDOperand Op2) {
2324  std::vector<MVT::ValueType> ResultTys;
2325  ResultTys.push_back(VT1);
2326  ResultTys.push_back(VT2);
2327  ResultTys.push_back(VT3);
2328  std::vector<SDOperand> Ops;
2329  Ops.push_back(Op1);
2330  Ops.push_back(Op2);
2331  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2332}
2333SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2334                                    MVT::ValueType VT2, MVT::ValueType VT3,
2335                                    SDOperand Op1, SDOperand Op2,
2336                                    SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2337  std::vector<MVT::ValueType> ResultTys;
2338  ResultTys.push_back(VT1);
2339  ResultTys.push_back(VT2);
2340  ResultTys.push_back(VT3);
2341  std::vector<SDOperand> Ops;
2342  Ops.push_back(Op1);
2343  Ops.push_back(Op2);
2344  Ops.push_back(Op3);
2345  Ops.push_back(Op4);
2346  Ops.push_back(Op5);
2347  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2348}
2349SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2350                                    MVT::ValueType VT2, MVT::ValueType VT3,
2351                                    SDOperand Op1, SDOperand Op2,
2352                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2353                                    SDOperand Op6) {
2354  std::vector<MVT::ValueType> ResultTys;
2355  ResultTys.push_back(VT1);
2356  ResultTys.push_back(VT2);
2357  ResultTys.push_back(VT3);
2358  std::vector<SDOperand> Ops;
2359  Ops.push_back(Op1);
2360  Ops.push_back(Op2);
2361  Ops.push_back(Op3);
2362  Ops.push_back(Op4);
2363  Ops.push_back(Op5);
2364  Ops.push_back(Op6);
2365  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2366}
2367SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2368                                    MVT::ValueType VT2, MVT::ValueType VT3,
2369                                    SDOperand Op1, SDOperand Op2,
2370                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2371                                    SDOperand Op6, SDOperand Op7) {
2372  std::vector<MVT::ValueType> ResultTys;
2373  ResultTys.push_back(VT1);
2374  ResultTys.push_back(VT2);
2375  ResultTys.push_back(VT3);
2376  std::vector<SDOperand> Ops;
2377  Ops.push_back(Op1);
2378  Ops.push_back(Op2);
2379  Ops.push_back(Op3);
2380  Ops.push_back(Op4);
2381  Ops.push_back(Op5);
2382  Ops.push_back(Op6);
2383  Ops.push_back(Op7);
2384  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2385}
2386SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2387                                    MVT::ValueType VT2, std::vector<SDOperand> &Ops) {
2388  std::vector<MVT::ValueType> ResultTys;
2389  ResultTys.push_back(VT1);
2390  ResultTys.push_back(VT2);
2391  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2392}
2393
2394// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2395/// This can cause recursive merging of nodes in the DAG.
2396///
2397/// This version assumes From/To have a single result value.
2398///
2399void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2400                                      std::vector<SDNode*> *Deleted) {
2401  SDNode *From = FromN.Val, *To = ToN.Val;
2402  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2403         "Cannot replace with this method!");
2404  assert(From != To && "Cannot replace uses of with self");
2405
2406  while (!From->use_empty()) {
2407    // Process users until they are all gone.
2408    SDNode *U = *From->use_begin();
2409
2410    // This node is about to morph, remove its old self from the CSE maps.
2411    RemoveNodeFromCSEMaps(U);
2412
2413    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2414         I != E; ++I)
2415      if (I->Val == From) {
2416        From->removeUser(U);
2417        I->Val = To;
2418        To->addUser(U);
2419      }
2420
2421    // Now that we have modified U, add it back to the CSE maps.  If it already
2422    // exists there, recursively merge the results together.
2423    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2424      ReplaceAllUsesWith(U, Existing, Deleted);
2425      // U is now dead.
2426      if (Deleted) Deleted->push_back(U);
2427      DeleteNodeNotInCSEMaps(U);
2428    }
2429  }
2430}
2431
2432/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2433/// This can cause recursive merging of nodes in the DAG.
2434///
2435/// This version assumes From/To have matching types and numbers of result
2436/// values.
2437///
2438void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2439                                      std::vector<SDNode*> *Deleted) {
2440  assert(From != To && "Cannot replace uses of with self");
2441  assert(From->getNumValues() == To->getNumValues() &&
2442         "Cannot use this version of ReplaceAllUsesWith!");
2443  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2444    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2445    return;
2446  }
2447
2448  while (!From->use_empty()) {
2449    // Process users until they are all gone.
2450    SDNode *U = *From->use_begin();
2451
2452    // This node is about to morph, remove its old self from the CSE maps.
2453    RemoveNodeFromCSEMaps(U);
2454
2455    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2456         I != E; ++I)
2457      if (I->Val == From) {
2458        From->removeUser(U);
2459        I->Val = To;
2460        To->addUser(U);
2461      }
2462
2463    // Now that we have modified U, add it back to the CSE maps.  If it already
2464    // exists there, recursively merge the results together.
2465    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2466      ReplaceAllUsesWith(U, Existing, Deleted);
2467      // U is now dead.
2468      if (Deleted) Deleted->push_back(U);
2469      DeleteNodeNotInCSEMaps(U);
2470    }
2471  }
2472}
2473
2474/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2475/// This can cause recursive merging of nodes in the DAG.
2476///
2477/// This version can replace From with any result values.  To must match the
2478/// number and types of values returned by From.
2479void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2480                                      const std::vector<SDOperand> &To,
2481                                      std::vector<SDNode*> *Deleted) {
2482  assert(From->getNumValues() == To.size() &&
2483         "Incorrect number of values to replace with!");
2484  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
2485    // Degenerate case handled above.
2486    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2487    return;
2488  }
2489
2490  while (!From->use_empty()) {
2491    // Process users until they are all gone.
2492    SDNode *U = *From->use_begin();
2493
2494    // This node is about to morph, remove its old self from the CSE maps.
2495    RemoveNodeFromCSEMaps(U);
2496
2497    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2498         I != E; ++I)
2499      if (I->Val == From) {
2500        const SDOperand &ToOp = To[I->ResNo];
2501        From->removeUser(U);
2502        *I = ToOp;
2503        ToOp.Val->addUser(U);
2504      }
2505
2506    // Now that we have modified U, add it back to the CSE maps.  If it already
2507    // exists there, recursively merge the results together.
2508    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2509      ReplaceAllUsesWith(U, Existing, Deleted);
2510      // U is now dead.
2511      if (Deleted) Deleted->push_back(U);
2512      DeleteNodeNotInCSEMaps(U);
2513    }
2514  }
2515}
2516
2517/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2518/// uses of other values produced by From.Val alone.  The Deleted vector is
2519/// handled the same was as for ReplaceAllUsesWith.
2520void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2521                                             std::vector<SDNode*> &Deleted) {
2522  assert(From != To && "Cannot replace a value with itself");
2523  // Handle the simple, trivial, case efficiently.
2524  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2525    ReplaceAllUsesWith(From, To, &Deleted);
2526    return;
2527  }
2528
2529  // Get all of the users in a nice, deterministically ordered, uniqued set.
2530  SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end());
2531
2532  while (!Users.empty()) {
2533    // We know that this user uses some value of From.  If it is the right
2534    // value, update it.
2535    SDNode *User = Users.back();
2536    Users.pop_back();
2537
2538    for (SDOperand *Op = User->OperandList,
2539         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2540      if (*Op == From) {
2541        // Okay, we know this user needs to be updated.  Remove its old self
2542        // from the CSE maps.
2543        RemoveNodeFromCSEMaps(User);
2544
2545        // Update all operands that match "From".
2546        for (; Op != E; ++Op) {
2547          if (*Op == From) {
2548            From.Val->removeUser(User);
2549            *Op = To;
2550            To.Val->addUser(User);
2551          }
2552        }
2553
2554        // Now that we have modified User, add it back to the CSE maps.  If it
2555        // already exists there, recursively merge the results together.
2556        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2557          unsigned NumDeleted = Deleted.size();
2558          ReplaceAllUsesWith(User, Existing, &Deleted);
2559
2560          // User is now dead.
2561          Deleted.push_back(User);
2562          DeleteNodeNotInCSEMaps(User);
2563
2564          // We have to be careful here, because ReplaceAllUsesWith could have
2565          // deleted a user of From, which means there may be dangling pointers
2566          // in the "Users" setvector.  Scan over the deleted node pointers and
2567          // remove them from the setvector.
2568          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2569            Users.remove(Deleted[i]);
2570        }
2571        break;   // Exit the operand scanning loop.
2572      }
2573    }
2574  }
2575}
2576
2577
2578//===----------------------------------------------------------------------===//
2579//                              SDNode Class
2580//===----------------------------------------------------------------------===//
2581
2582
2583/// getValueTypeList - Return a pointer to the specified value type.
2584///
2585MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2586  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2587  VTs[VT] = VT;
2588  return &VTs[VT];
2589}
2590
2591/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2592/// indicated value.  This method ignores uses of other values defined by this
2593/// operation.
2594bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2595  assert(Value < getNumValues() && "Bad value!");
2596
2597  // If there is only one value, this is easy.
2598  if (getNumValues() == 1)
2599    return use_size() == NUses;
2600  if (Uses.size() < NUses) return false;
2601
2602  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2603
2604  std::set<SDNode*> UsersHandled;
2605
2606  for (std::vector<SDNode*>::const_iterator UI = Uses.begin(), E = Uses.end();
2607       UI != E; ++UI) {
2608    SDNode *User = *UI;
2609    if (User->getNumOperands() == 1 ||
2610        UsersHandled.insert(User).second)     // First time we've seen this?
2611      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2612        if (User->getOperand(i) == TheValue) {
2613          if (NUses == 0)
2614            return false;   // too many uses
2615          --NUses;
2616        }
2617  }
2618
2619  // Found exactly the right number of uses?
2620  return NUses == 0;
2621}
2622
2623
2624// isOnlyUse - Return true if this node is the only use of N.
2625bool SDNode::isOnlyUse(SDNode *N) const {
2626  bool Seen = false;
2627  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2628    SDNode *User = *I;
2629    if (User == this)
2630      Seen = true;
2631    else
2632      return false;
2633  }
2634
2635  return Seen;
2636}
2637
2638// isOperand - Return true if this node is an operand of N.
2639bool SDOperand::isOperand(SDNode *N) const {
2640  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2641    if (*this == N->getOperand(i))
2642      return true;
2643  return false;
2644}
2645
2646bool SDNode::isOperand(SDNode *N) const {
2647  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2648    if (this == N->OperandList[i].Val)
2649      return true;
2650  return false;
2651}
2652
2653const char *SDNode::getOperationName(const SelectionDAG *G) const {
2654  switch (getOpcode()) {
2655  default:
2656    if (getOpcode() < ISD::BUILTIN_OP_END)
2657      return "<<Unknown DAG Node>>";
2658    else {
2659      if (G) {
2660        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2661          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2662            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2663
2664        TargetLowering &TLI = G->getTargetLoweringInfo();
2665        const char *Name =
2666          TLI.getTargetNodeName(getOpcode());
2667        if (Name) return Name;
2668      }
2669
2670      return "<<Unknown Target Node>>";
2671    }
2672
2673  case ISD::PCMARKER:      return "PCMarker";
2674  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2675  case ISD::SRCVALUE:      return "SrcValue";
2676  case ISD::EntryToken:    return "EntryToken";
2677  case ISD::TokenFactor:   return "TokenFactor";
2678  case ISD::AssertSext:    return "AssertSext";
2679  case ISD::AssertZext:    return "AssertZext";
2680
2681  case ISD::STRING:        return "String";
2682  case ISD::BasicBlock:    return "BasicBlock";
2683  case ISD::VALUETYPE:     return "ValueType";
2684  case ISD::Register:      return "Register";
2685
2686  case ISD::Constant:      return "Constant";
2687  case ISD::ConstantFP:    return "ConstantFP";
2688  case ISD::GlobalAddress: return "GlobalAddress";
2689  case ISD::FrameIndex:    return "FrameIndex";
2690  case ISD::ConstantPool:  return "ConstantPool";
2691  case ISD::ExternalSymbol: return "ExternalSymbol";
2692  case ISD::INTRINSIC: {
2693    bool hasChain = getOperand(0).getValueType() == MVT::Other;
2694    unsigned IID = cast<ConstantSDNode>(getOperand(hasChain))->getValue();
2695    return Intrinsic::getName((Intrinsic::ID)IID);
2696  }
2697
2698  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2699  case ISD::TargetConstant: return "TargetConstant";
2700  case ISD::TargetConstantFP:return "TargetConstantFP";
2701  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2702  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2703  case ISD::TargetConstantPool:  return "TargetConstantPool";
2704  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2705
2706  case ISD::CopyToReg:     return "CopyToReg";
2707  case ISD::CopyFromReg:   return "CopyFromReg";
2708  case ISD::UNDEF:         return "undef";
2709  case ISD::MERGE_VALUES:  return "mergevalues";
2710  case ISD::INLINEASM:     return "inlineasm";
2711  case ISD::HANDLENODE:    return "handlenode";
2712
2713  // Unary operators
2714  case ISD::FABS:   return "fabs";
2715  case ISD::FNEG:   return "fneg";
2716  case ISD::FSQRT:  return "fsqrt";
2717  case ISD::FSIN:   return "fsin";
2718  case ISD::FCOS:   return "fcos";
2719
2720  // Binary operators
2721  case ISD::ADD:    return "add";
2722  case ISD::SUB:    return "sub";
2723  case ISD::MUL:    return "mul";
2724  case ISD::MULHU:  return "mulhu";
2725  case ISD::MULHS:  return "mulhs";
2726  case ISD::SDIV:   return "sdiv";
2727  case ISD::UDIV:   return "udiv";
2728  case ISD::SREM:   return "srem";
2729  case ISD::UREM:   return "urem";
2730  case ISD::AND:    return "and";
2731  case ISD::OR:     return "or";
2732  case ISD::XOR:    return "xor";
2733  case ISD::SHL:    return "shl";
2734  case ISD::SRA:    return "sra";
2735  case ISD::SRL:    return "srl";
2736  case ISD::ROTL:   return "rotl";
2737  case ISD::ROTR:   return "rotr";
2738  case ISD::FADD:   return "fadd";
2739  case ISD::FSUB:   return "fsub";
2740  case ISD::FMUL:   return "fmul";
2741  case ISD::FDIV:   return "fdiv";
2742  case ISD::FREM:   return "frem";
2743  case ISD::FCOPYSIGN: return "fcopysign";
2744  case ISD::VADD:   return "vadd";
2745  case ISD::VSUB:   return "vsub";
2746  case ISD::VMUL:   return "vmul";
2747
2748  case ISD::SETCC:       return "setcc";
2749  case ISD::SELECT:      return "select";
2750  case ISD::SELECT_CC:   return "select_cc";
2751  case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
2752  case ISD::VINSERT_VECTOR_ELT: return "vinsert_vector_elt";
2753  case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
2754  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2755  case ISD::SCALAR_TO_VECTOR:   return "scalar_to_vector";
2756  case ISD::VBUILD_VECTOR: return "vbuild_vector";
2757  case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
2758  case ISD::VBIT_CONVERT: return "vbit_convert";
2759  case ISD::ADDC:        return "addc";
2760  case ISD::ADDE:        return "adde";
2761  case ISD::SUBC:        return "subc";
2762  case ISD::SUBE:        return "sube";
2763  case ISD::SHL_PARTS:   return "shl_parts";
2764  case ISD::SRA_PARTS:   return "sra_parts";
2765  case ISD::SRL_PARTS:   return "srl_parts";
2766
2767  // Conversion operators.
2768  case ISD::SIGN_EXTEND: return "sign_extend";
2769  case ISD::ZERO_EXTEND: return "zero_extend";
2770  case ISD::ANY_EXTEND:  return "any_extend";
2771  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2772  case ISD::TRUNCATE:    return "truncate";
2773  case ISD::FP_ROUND:    return "fp_round";
2774  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2775  case ISD::FP_EXTEND:   return "fp_extend";
2776
2777  case ISD::SINT_TO_FP:  return "sint_to_fp";
2778  case ISD::UINT_TO_FP:  return "uint_to_fp";
2779  case ISD::FP_TO_SINT:  return "fp_to_sint";
2780  case ISD::FP_TO_UINT:  return "fp_to_uint";
2781  case ISD::BIT_CONVERT: return "bit_convert";
2782
2783    // Control flow instructions
2784  case ISD::BR:      return "br";
2785  case ISD::BRCOND:  return "brcond";
2786  case ISD::BR_CC:   return "br_cc";
2787  case ISD::RET:     return "ret";
2788  case ISD::CALLSEQ_START:  return "callseq_start";
2789  case ISD::CALLSEQ_END:    return "callseq_end";
2790
2791    // Other operators
2792  case ISD::LOAD:               return "load";
2793  case ISD::STORE:              return "store";
2794  case ISD::VLOAD:              return "vload";
2795  case ISD::EXTLOAD:            return "extload";
2796  case ISD::SEXTLOAD:           return "sextload";
2797  case ISD::ZEXTLOAD:           return "zextload";
2798  case ISD::TRUNCSTORE:         return "truncstore";
2799  case ISD::VAARG:              return "vaarg";
2800  case ISD::VACOPY:             return "vacopy";
2801  case ISD::VAEND:              return "vaend";
2802  case ISD::VASTART:            return "vastart";
2803  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2804  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2805  case ISD::BUILD_PAIR:         return "build_pair";
2806  case ISD::STACKSAVE:          return "stacksave";
2807  case ISD::STACKRESTORE:       return "stackrestore";
2808
2809  // Block memory operations.
2810  case ISD::MEMSET:  return "memset";
2811  case ISD::MEMCPY:  return "memcpy";
2812  case ISD::MEMMOVE: return "memmove";
2813
2814  // Bit manipulation
2815  case ISD::BSWAP:   return "bswap";
2816  case ISD::CTPOP:   return "ctpop";
2817  case ISD::CTTZ:    return "cttz";
2818  case ISD::CTLZ:    return "ctlz";
2819
2820  // Debug info
2821  case ISD::LOCATION: return "location";
2822  case ISD::DEBUG_LOC: return "debug_loc";
2823  case ISD::DEBUG_LABEL: return "debug_label";
2824
2825  case ISD::CONDCODE:
2826    switch (cast<CondCodeSDNode>(this)->get()) {
2827    default: assert(0 && "Unknown setcc condition!");
2828    case ISD::SETOEQ:  return "setoeq";
2829    case ISD::SETOGT:  return "setogt";
2830    case ISD::SETOGE:  return "setoge";
2831    case ISD::SETOLT:  return "setolt";
2832    case ISD::SETOLE:  return "setole";
2833    case ISD::SETONE:  return "setone";
2834
2835    case ISD::SETO:    return "seto";
2836    case ISD::SETUO:   return "setuo";
2837    case ISD::SETUEQ:  return "setue";
2838    case ISD::SETUGT:  return "setugt";
2839    case ISD::SETUGE:  return "setuge";
2840    case ISD::SETULT:  return "setult";
2841    case ISD::SETULE:  return "setule";
2842    case ISD::SETUNE:  return "setune";
2843
2844    case ISD::SETEQ:   return "seteq";
2845    case ISD::SETGT:   return "setgt";
2846    case ISD::SETGE:   return "setge";
2847    case ISD::SETLT:   return "setlt";
2848    case ISD::SETLE:   return "setle";
2849    case ISD::SETNE:   return "setne";
2850    }
2851  }
2852}
2853
2854void SDNode::dump() const { dump(0); }
2855void SDNode::dump(const SelectionDAG *G) const {
2856  std::cerr << (void*)this << ": ";
2857
2858  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2859    if (i) std::cerr << ",";
2860    if (getValueType(i) == MVT::Other)
2861      std::cerr << "ch";
2862    else
2863      std::cerr << MVT::getValueTypeString(getValueType(i));
2864  }
2865  std::cerr << " = " << getOperationName(G);
2866
2867  std::cerr << " ";
2868  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2869    if (i) std::cerr << ", ";
2870    std::cerr << (void*)getOperand(i).Val;
2871    if (unsigned RN = getOperand(i).ResNo)
2872      std::cerr << ":" << RN;
2873  }
2874
2875  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2876    std::cerr << "<" << CSDN->getValue() << ">";
2877  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2878    std::cerr << "<" << CSDN->getValue() << ">";
2879  } else if (const GlobalAddressSDNode *GADN =
2880             dyn_cast<GlobalAddressSDNode>(this)) {
2881    int offset = GADN->getOffset();
2882    std::cerr << "<";
2883    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2884    if (offset > 0)
2885      std::cerr << " + " << offset;
2886    else
2887      std::cerr << " " << offset;
2888  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2889    std::cerr << "<" << FIDN->getIndex() << ">";
2890  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2891    int offset = CP->getOffset();
2892    std::cerr << "<" << *CP->get() << ">";
2893    if (offset > 0)
2894      std::cerr << " + " << offset;
2895    else
2896      std::cerr << " " << offset;
2897  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2898    std::cerr << "<";
2899    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2900    if (LBB)
2901      std::cerr << LBB->getName() << " ";
2902    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2903  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2904    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2905      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2906    } else {
2907      std::cerr << " #" << R->getReg();
2908    }
2909  } else if (const ExternalSymbolSDNode *ES =
2910             dyn_cast<ExternalSymbolSDNode>(this)) {
2911    std::cerr << "'" << ES->getSymbol() << "'";
2912  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2913    if (M->getValue())
2914      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2915    else
2916      std::cerr << "<null:" << M->getOffset() << ">";
2917  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2918    std::cerr << ":" << getValueTypeString(N->getVT());
2919  }
2920}
2921
2922static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2923  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2924    if (N->getOperand(i).Val->hasOneUse())
2925      DumpNodes(N->getOperand(i).Val, indent+2, G);
2926    else
2927      std::cerr << "\n" << std::string(indent+2, ' ')
2928                << (void*)N->getOperand(i).Val << ": <multiple use>";
2929
2930
2931  std::cerr << "\n" << std::string(indent, ' ');
2932  N->dump(G);
2933}
2934
2935void SelectionDAG::dump() const {
2936  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2937  std::vector<const SDNode*> Nodes;
2938  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2939       I != E; ++I)
2940    Nodes.push_back(I);
2941
2942  std::sort(Nodes.begin(), Nodes.end());
2943
2944  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2945    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2946      DumpNodes(Nodes[i], 2, this);
2947  }
2948
2949  DumpNodes(getRoot().Val, 2, this);
2950
2951  std::cerr << "\n\n";
2952}
2953
2954/// InsertISelMapEntry - A helper function to insert a key / element pair
2955/// into a SDOperand to SDOperand map. This is added to avoid the map
2956/// insertion operator from being inlined.
2957void SelectionDAG::InsertISelMapEntry(std::map<SDOperand, SDOperand> &Map,
2958                                      SDNode *Key, unsigned KeyResNo,
2959                                      SDNode *Element, unsigned ElementResNo) {
2960  Map.insert(std::make_pair(SDOperand(Key, KeyResNo),
2961                            SDOperand(Element, ElementResNo)));
2962}
2963