SelectionDAG.cpp revision 423be627e6a108b72770426e16cb988b6167c3cb
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineModuleInfo.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Target/TargetRegisterInfo.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/StringExtras.h"
36#include <algorithm>
37#include <cmath>
38using namespace llvm;
39
40/// makeVTList - Return an instance of the SDVTList struct initialized with the
41/// specified members.
42static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
43  SDVTList Res = {VTs, NumVTs};
44  return Res;
45}
46
47SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
48
49//===----------------------------------------------------------------------===//
50//                              ConstantFPSDNode Class
51//===----------------------------------------------------------------------===//
52
53/// isExactlyValue - We don't rely on operator== working on double values, as
54/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
55/// As such, this method can be used to do an exact bit-for-bit comparison of
56/// two floating point values.
57bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
58  return Value.bitwiseIsEqual(V);
59}
60
61bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
62                                           const APFloat& Val) {
63  // convert modifies in place, so make a copy.
64  APFloat Val2 = APFloat(Val);
65  switch (VT) {
66  default:
67    return false;         // These can't be represented as floating point!
68
69  // FIXME rounding mode needs to be more flexible
70  case MVT::f32:
71    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
72           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
73              APFloat::opOK;
74  case MVT::f64:
75    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
76           &Val2.getSemantics() == &APFloat::IEEEdouble ||
77           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
78             APFloat::opOK;
79  // TODO: Figure out how to test if we can use a shorter type instead!
80  case MVT::f80:
81  case MVT::f128:
82  case MVT::ppcf128:
83    return true;
84  }
85}
86
87//===----------------------------------------------------------------------===//
88//                              ISD Namespace
89//===----------------------------------------------------------------------===//
90
91/// isBuildVectorAllOnes - Return true if the specified node is a
92/// BUILD_VECTOR where all of the elements are ~0 or undef.
93bool ISD::isBuildVectorAllOnes(const SDNode *N) {
94  // Look through a bit convert.
95  if (N->getOpcode() == ISD::BIT_CONVERT)
96    N = N->getOperand(0).Val;
97
98  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
99
100  unsigned i = 0, e = N->getNumOperands();
101
102  // Skip over all of the undef values.
103  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
104    ++i;
105
106  // Do not accept an all-undef vector.
107  if (i == e) return false;
108
109  // Do not accept build_vectors that aren't all constants or which have non-~0
110  // elements.
111  SDOperand NotZero = N->getOperand(i);
112  if (isa<ConstantSDNode>(NotZero)) {
113    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
114      return false;
115  } else if (isa<ConstantFPSDNode>(NotZero)) {
116    MVT::ValueType VT = NotZero.getValueType();
117    if (VT== MVT::f64) {
118      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
119                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
120        return false;
121    } else {
122      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
123                      getValueAPF().convertToAPInt().getZExtValue() !=
124          (uint32_t)-1)
125        return false;
126    }
127  } else
128    return false;
129
130  // Okay, we have at least one ~0 value, check to see if the rest match or are
131  // undefs.
132  for (++i; i != e; ++i)
133    if (N->getOperand(i) != NotZero &&
134        N->getOperand(i).getOpcode() != ISD::UNDEF)
135      return false;
136  return true;
137}
138
139
140/// isBuildVectorAllZeros - Return true if the specified node is a
141/// BUILD_VECTOR where all of the elements are 0 or undef.
142bool ISD::isBuildVectorAllZeros(const SDNode *N) {
143  // Look through a bit convert.
144  if (N->getOpcode() == ISD::BIT_CONVERT)
145    N = N->getOperand(0).Val;
146
147  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
148
149  unsigned i = 0, e = N->getNumOperands();
150
151  // Skip over all of the undef values.
152  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
153    ++i;
154
155  // Do not accept an all-undef vector.
156  if (i == e) return false;
157
158  // Do not accept build_vectors that aren't all constants or which have non-~0
159  // elements.
160  SDOperand Zero = N->getOperand(i);
161  if (isa<ConstantSDNode>(Zero)) {
162    if (!cast<ConstantSDNode>(Zero)->isNullValue())
163      return false;
164  } else if (isa<ConstantFPSDNode>(Zero)) {
165    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
166      return false;
167  } else
168    return false;
169
170  // Okay, we have at least one ~0 value, check to see if the rest match or are
171  // undefs.
172  for (++i; i != e; ++i)
173    if (N->getOperand(i) != Zero &&
174        N->getOperand(i).getOpcode() != ISD::UNDEF)
175      return false;
176  return true;
177}
178
179/// isDebugLabel - Return true if the specified node represents a debug
180/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
181/// is 0).
182bool ISD::isDebugLabel(const SDNode *N) {
183  SDOperand Zero;
184  if (N->getOpcode() == ISD::LABEL)
185    Zero = N->getOperand(2);
186  else if (N->isTargetOpcode() &&
187           N->getTargetOpcode() == TargetInstrInfo::LABEL)
188    // Chain moved to last operand.
189    Zero = N->getOperand(1);
190  else
191    return false;
192  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
193}
194
195/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
196/// when given the operation for (X op Y).
197ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
198  // To perform this operation, we just need to swap the L and G bits of the
199  // operation.
200  unsigned OldL = (Operation >> 2) & 1;
201  unsigned OldG = (Operation >> 1) & 1;
202  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
203                       (OldL << 1) |       // New G bit
204                       (OldG << 2));        // New L bit.
205}
206
207/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
208/// 'op' is a valid SetCC operation.
209ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
210  unsigned Operation = Op;
211  if (isInteger)
212    Operation ^= 7;   // Flip L, G, E bits, but not U.
213  else
214    Operation ^= 15;  // Flip all of the condition bits.
215  if (Operation > ISD::SETTRUE2)
216    Operation &= ~8;     // Don't let N and U bits get set.
217  return ISD::CondCode(Operation);
218}
219
220
221/// isSignedOp - For an integer comparison, return 1 if the comparison is a
222/// signed operation and 2 if the result is an unsigned comparison.  Return zero
223/// if the operation does not depend on the sign of the input (setne and seteq).
224static int isSignedOp(ISD::CondCode Opcode) {
225  switch (Opcode) {
226  default: assert(0 && "Illegal integer setcc operation!");
227  case ISD::SETEQ:
228  case ISD::SETNE: return 0;
229  case ISD::SETLT:
230  case ISD::SETLE:
231  case ISD::SETGT:
232  case ISD::SETGE: return 1;
233  case ISD::SETULT:
234  case ISD::SETULE:
235  case ISD::SETUGT:
236  case ISD::SETUGE: return 2;
237  }
238}
239
240/// getSetCCOrOperation - Return the result of a logical OR between different
241/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
242/// returns SETCC_INVALID if it is not possible to represent the resultant
243/// comparison.
244ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
245                                       bool isInteger) {
246  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
247    // Cannot fold a signed integer setcc with an unsigned integer setcc.
248    return ISD::SETCC_INVALID;
249
250  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
251
252  // If the N and U bits get set then the resultant comparison DOES suddenly
253  // care about orderedness, and is true when ordered.
254  if (Op > ISD::SETTRUE2)
255    Op &= ~16;     // Clear the U bit if the N bit is set.
256
257  // Canonicalize illegal integer setcc's.
258  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
259    Op = ISD::SETNE;
260
261  return ISD::CondCode(Op);
262}
263
264/// getSetCCAndOperation - Return the result of a logical AND between different
265/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
266/// function returns zero if it is not possible to represent the resultant
267/// comparison.
268ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
269                                        bool isInteger) {
270  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
271    // Cannot fold a signed setcc with an unsigned setcc.
272    return ISD::SETCC_INVALID;
273
274  // Combine all of the condition bits.
275  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
276
277  // Canonicalize illegal integer setcc's.
278  if (isInteger) {
279    switch (Result) {
280    default: break;
281    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
282    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
283    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
284    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
285    }
286  }
287
288  return Result;
289}
290
291const TargetMachine &SelectionDAG::getTarget() const {
292  return TLI.getTargetMachine();
293}
294
295//===----------------------------------------------------------------------===//
296//                           SDNode Profile Support
297//===----------------------------------------------------------------------===//
298
299/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
300///
301static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
302  ID.AddInteger(OpC);
303}
304
305/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
306/// solely with their pointer.
307void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
308  ID.AddPointer(VTList.VTs);
309}
310
311/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
312///
313static void AddNodeIDOperands(FoldingSetNodeID &ID,
314                              const SDOperand *Ops, unsigned NumOps) {
315  for (; NumOps; --NumOps, ++Ops) {
316    ID.AddPointer(Ops->Val);
317    ID.AddInteger(Ops->ResNo);
318  }
319}
320
321static void AddNodeIDNode(FoldingSetNodeID &ID,
322                          unsigned short OpC, SDVTList VTList,
323                          const SDOperand *OpList, unsigned N) {
324  AddNodeIDOpcode(ID, OpC);
325  AddNodeIDValueTypes(ID, VTList);
326  AddNodeIDOperands(ID, OpList, N);
327}
328
329/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
330/// data.
331static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
332  AddNodeIDOpcode(ID, N->getOpcode());
333  // Add the return value info.
334  AddNodeIDValueTypes(ID, N->getVTList());
335  // Add the operand info.
336  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
337
338  // Handle SDNode leafs with special info.
339  switch (N->getOpcode()) {
340  default: break;  // Normal nodes don't need extra info.
341  case ISD::TargetConstant:
342  case ISD::Constant:
343    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
344    break;
345  case ISD::TargetConstantFP:
346  case ISD::ConstantFP: {
347    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
348    break;
349  }
350  case ISD::TargetGlobalAddress:
351  case ISD::GlobalAddress:
352  case ISD::TargetGlobalTLSAddress:
353  case ISD::GlobalTLSAddress: {
354    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
355    ID.AddPointer(GA->getGlobal());
356    ID.AddInteger(GA->getOffset());
357    break;
358  }
359  case ISD::BasicBlock:
360    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
361    break;
362  case ISD::Register:
363    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
364    break;
365  case ISD::SRCVALUE:
366    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
367    break;
368  case ISD::MEMOPERAND: {
369    const MemOperand &MO = cast<MemOperandSDNode>(N)->MO;
370    ID.AddPointer(MO.getValue());
371    ID.AddInteger(MO.getFlags());
372    ID.AddInteger(MO.getOffset());
373    ID.AddInteger(MO.getSize());
374    ID.AddInteger(MO.getAlignment());
375    break;
376  }
377  case ISD::FrameIndex:
378  case ISD::TargetFrameIndex:
379    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
380    break;
381  case ISD::JumpTable:
382  case ISD::TargetJumpTable:
383    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
384    break;
385  case ISD::ConstantPool:
386  case ISD::TargetConstantPool: {
387    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
388    ID.AddInteger(CP->getAlignment());
389    ID.AddInteger(CP->getOffset());
390    if (CP->isMachineConstantPoolEntry())
391      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
392    else
393      ID.AddPointer(CP->getConstVal());
394    break;
395  }
396  case ISD::LOAD: {
397    LoadSDNode *LD = cast<LoadSDNode>(N);
398    ID.AddInteger(LD->getAddressingMode());
399    ID.AddInteger(LD->getExtensionType());
400    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
401    ID.AddInteger(LD->getAlignment());
402    ID.AddInteger(LD->isVolatile());
403    break;
404  }
405  case ISD::STORE: {
406    StoreSDNode *ST = cast<StoreSDNode>(N);
407    ID.AddInteger(ST->getAddressingMode());
408    ID.AddInteger(ST->isTruncatingStore());
409    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
410    ID.AddInteger(ST->getAlignment());
411    ID.AddInteger(ST->isVolatile());
412    break;
413  }
414  }
415}
416
417//===----------------------------------------------------------------------===//
418//                              SelectionDAG Class
419//===----------------------------------------------------------------------===//
420
421/// RemoveDeadNodes - This method deletes all unreachable nodes in the
422/// SelectionDAG.
423void SelectionDAG::RemoveDeadNodes() {
424  // Create a dummy node (which is not added to allnodes), that adds a reference
425  // to the root node, preventing it from being deleted.
426  HandleSDNode Dummy(getRoot());
427
428  SmallVector<SDNode*, 128> DeadNodes;
429
430  // Add all obviously-dead nodes to the DeadNodes worklist.
431  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
432    if (I->use_empty())
433      DeadNodes.push_back(I);
434
435  // Process the worklist, deleting the nodes and adding their uses to the
436  // worklist.
437  while (!DeadNodes.empty()) {
438    SDNode *N = DeadNodes.back();
439    DeadNodes.pop_back();
440
441    // Take the node out of the appropriate CSE map.
442    RemoveNodeFromCSEMaps(N);
443
444    // Next, brutally remove the operand list.  This is safe to do, as there are
445    // no cycles in the graph.
446    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
447      SDNode *Operand = I->Val;
448      Operand->removeUser(N);
449
450      // Now that we removed this operand, see if there are no uses of it left.
451      if (Operand->use_empty())
452        DeadNodes.push_back(Operand);
453    }
454    if (N->OperandsNeedDelete)
455      delete[] N->OperandList;
456    N->OperandList = 0;
457    N->NumOperands = 0;
458
459    // Finally, remove N itself.
460    AllNodes.erase(N);
461  }
462
463  // If the root changed (e.g. it was a dead load, update the root).
464  setRoot(Dummy.getValue());
465}
466
467void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
468  SmallVector<SDNode*, 16> DeadNodes;
469  DeadNodes.push_back(N);
470
471  // Process the worklist, deleting the nodes and adding their uses to the
472  // worklist.
473  while (!DeadNodes.empty()) {
474    SDNode *N = DeadNodes.back();
475    DeadNodes.pop_back();
476
477    if (UpdateListener)
478      UpdateListener->NodeDeleted(N);
479
480    // Take the node out of the appropriate CSE map.
481    RemoveNodeFromCSEMaps(N);
482
483    // Next, brutally remove the operand list.  This is safe to do, as there are
484    // no cycles in the graph.
485    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
486      SDNode *Operand = I->Val;
487      Operand->removeUser(N);
488
489      // Now that we removed this operand, see if there are no uses of it left.
490      if (Operand->use_empty())
491        DeadNodes.push_back(Operand);
492    }
493    if (N->OperandsNeedDelete)
494      delete[] N->OperandList;
495    N->OperandList = 0;
496    N->NumOperands = 0;
497
498    // Finally, remove N itself.
499    AllNodes.erase(N);
500  }
501}
502
503void SelectionDAG::DeleteNode(SDNode *N) {
504  assert(N->use_empty() && "Cannot delete a node that is not dead!");
505
506  // First take this out of the appropriate CSE map.
507  RemoveNodeFromCSEMaps(N);
508
509  // Finally, remove uses due to operands of this node, remove from the
510  // AllNodes list, and delete the node.
511  DeleteNodeNotInCSEMaps(N);
512}
513
514void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
515
516  // Remove it from the AllNodes list.
517  AllNodes.remove(N);
518
519  // Drop all of the operands and decrement used nodes use counts.
520  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
521    I->Val->removeUser(N);
522  if (N->OperandsNeedDelete)
523    delete[] N->OperandList;
524  N->OperandList = 0;
525  N->NumOperands = 0;
526
527  delete N;
528}
529
530/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
531/// correspond to it.  This is useful when we're about to delete or repurpose
532/// the node.  We don't want future request for structurally identical nodes
533/// to return N anymore.
534void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
535  bool Erased = false;
536  switch (N->getOpcode()) {
537  case ISD::HANDLENODE: return;  // noop.
538  case ISD::STRING:
539    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
540    break;
541  case ISD::CONDCODE:
542    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
543           "Cond code doesn't exist!");
544    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
545    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
546    break;
547  case ISD::ExternalSymbol:
548    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
549    break;
550  case ISD::TargetExternalSymbol:
551    Erased =
552      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
553    break;
554  case ISD::VALUETYPE: {
555    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
556    if (MVT::isExtendedVT(VT)) {
557      Erased = ExtendedValueTypeNodes.erase(VT);
558    } else {
559      Erased = ValueTypeNodes[VT] != 0;
560      ValueTypeNodes[VT] = 0;
561    }
562    break;
563  }
564  default:
565    // Remove it from the CSE Map.
566    Erased = CSEMap.RemoveNode(N);
567    break;
568  }
569#ifndef NDEBUG
570  // Verify that the node was actually in one of the CSE maps, unless it has a
571  // flag result (which cannot be CSE'd) or is one of the special cases that are
572  // not subject to CSE.
573  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
574      !N->isTargetOpcode()) {
575    N->dump(this);
576    cerr << "\n";
577    assert(0 && "Node is not in map!");
578  }
579#endif
580}
581
582/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
583/// has been taken out and modified in some way.  If the specified node already
584/// exists in the CSE maps, do not modify the maps, but return the existing node
585/// instead.  If it doesn't exist, add it and return null.
586///
587SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
588  assert(N->getNumOperands() && "This is a leaf node!");
589  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
590    return 0;    // Never add these nodes.
591
592  // Check that remaining values produced are not flags.
593  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
594    if (N->getValueType(i) == MVT::Flag)
595      return 0;   // Never CSE anything that produces a flag.
596
597  SDNode *New = CSEMap.GetOrInsertNode(N);
598  if (New != N) return New;  // Node already existed.
599  return 0;
600}
601
602/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
603/// were replaced with those specified.  If this node is never memoized,
604/// return null, otherwise return a pointer to the slot it would take.  If a
605/// node already exists with these operands, the slot will be non-null.
606SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
607                                           void *&InsertPos) {
608  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
609    return 0;    // Never add these nodes.
610
611  // Check that remaining values produced are not flags.
612  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
613    if (N->getValueType(i) == MVT::Flag)
614      return 0;   // Never CSE anything that produces a flag.
615
616  SDOperand Ops[] = { Op };
617  FoldingSetNodeID ID;
618  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
619  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
620}
621
622/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
623/// were replaced with those specified.  If this node is never memoized,
624/// return null, otherwise return a pointer to the slot it would take.  If a
625/// node already exists with these operands, the slot will be non-null.
626SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
627                                           SDOperand Op1, SDOperand Op2,
628                                           void *&InsertPos) {
629  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
630    return 0;    // Never add these nodes.
631
632  // Check that remaining values produced are not flags.
633  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
634    if (N->getValueType(i) == MVT::Flag)
635      return 0;   // Never CSE anything that produces a flag.
636
637  SDOperand Ops[] = { Op1, Op2 };
638  FoldingSetNodeID ID;
639  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
640  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
641}
642
643
644/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
645/// were replaced with those specified.  If this node is never memoized,
646/// return null, otherwise return a pointer to the slot it would take.  If a
647/// node already exists with these operands, the slot will be non-null.
648SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
649                                           const SDOperand *Ops,unsigned NumOps,
650                                           void *&InsertPos) {
651  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
652    return 0;    // Never add these nodes.
653
654  // Check that remaining values produced are not flags.
655  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
656    if (N->getValueType(i) == MVT::Flag)
657      return 0;   // Never CSE anything that produces a flag.
658
659  FoldingSetNodeID ID;
660  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
661
662  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
663    ID.AddInteger(LD->getAddressingMode());
664    ID.AddInteger(LD->getExtensionType());
665    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
666    ID.AddInteger(LD->getAlignment());
667    ID.AddInteger(LD->isVolatile());
668  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
669    ID.AddInteger(ST->getAddressingMode());
670    ID.AddInteger(ST->isTruncatingStore());
671    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
672    ID.AddInteger(ST->getAlignment());
673    ID.AddInteger(ST->isVolatile());
674  }
675
676  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
677}
678
679
680SelectionDAG::~SelectionDAG() {
681  while (!AllNodes.empty()) {
682    SDNode *N = AllNodes.begin();
683    N->SetNextInBucket(0);
684    if (N->OperandsNeedDelete)
685      delete [] N->OperandList;
686    N->OperandList = 0;
687    N->NumOperands = 0;
688    AllNodes.pop_front();
689  }
690}
691
692SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
693  if (Op.getValueType() == VT) return Op;
694  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
695  return getNode(ISD::AND, Op.getValueType(), Op,
696                 getConstant(Imm, Op.getValueType()));
697}
698
699SDOperand SelectionDAG::getString(const std::string &Val) {
700  StringSDNode *&N = StringNodes[Val];
701  if (!N) {
702    N = new StringSDNode(Val);
703    AllNodes.push_back(N);
704  }
705  return SDOperand(N, 0);
706}
707
708SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
709  MVT::ValueType EltVT =
710    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
711
712  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
713}
714
715SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
716  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
717
718  MVT::ValueType EltVT =
719    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
720
721  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
722         "APInt size does not match type size!");
723
724  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
725  FoldingSetNodeID ID;
726  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
727  ID.Add(Val);
728  void *IP = 0;
729  SDNode *N = NULL;
730  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
731    if (!MVT::isVector(VT))
732      return SDOperand(N, 0);
733  if (!N) {
734    N = new ConstantSDNode(isT, Val, EltVT);
735    CSEMap.InsertNode(N, IP);
736    AllNodes.push_back(N);
737  }
738
739  SDOperand Result(N, 0);
740  if (MVT::isVector(VT)) {
741    SmallVector<SDOperand, 8> Ops;
742    Ops.assign(MVT::getVectorNumElements(VT), Result);
743    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
744  }
745  return Result;
746}
747
748SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
749  return getConstant(Val, TLI.getPointerTy(), isTarget);
750}
751
752
753SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
754                                      bool isTarget) {
755  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
756
757  MVT::ValueType EltVT =
758    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
759
760  // Do the map lookup using the actual bit pattern for the floating point
761  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
762  // we don't have issues with SNANs.
763  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
764  FoldingSetNodeID ID;
765  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
766  ID.Add(V);
767  void *IP = 0;
768  SDNode *N = NULL;
769  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
770    if (!MVT::isVector(VT))
771      return SDOperand(N, 0);
772  if (!N) {
773    N = new ConstantFPSDNode(isTarget, V, EltVT);
774    CSEMap.InsertNode(N, IP);
775    AllNodes.push_back(N);
776  }
777
778  SDOperand Result(N, 0);
779  if (MVT::isVector(VT)) {
780    SmallVector<SDOperand, 8> Ops;
781    Ops.assign(MVT::getVectorNumElements(VT), Result);
782    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
783  }
784  return Result;
785}
786
787SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
788                                      bool isTarget) {
789  MVT::ValueType EltVT =
790    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
791  if (EltVT==MVT::f32)
792    return getConstantFP(APFloat((float)Val), VT, isTarget);
793  else
794    return getConstantFP(APFloat(Val), VT, isTarget);
795}
796
797SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
798                                         MVT::ValueType VT, int Offset,
799                                         bool isTargetGA) {
800  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
801  unsigned Opc;
802  if (GVar && GVar->isThreadLocal())
803    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
804  else
805    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
806  FoldingSetNodeID ID;
807  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
808  ID.AddPointer(GV);
809  ID.AddInteger(Offset);
810  void *IP = 0;
811  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
812   return SDOperand(E, 0);
813  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
814  CSEMap.InsertNode(N, IP);
815  AllNodes.push_back(N);
816  return SDOperand(N, 0);
817}
818
819SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
820                                      bool isTarget) {
821  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
822  FoldingSetNodeID ID;
823  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
824  ID.AddInteger(FI);
825  void *IP = 0;
826  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
827    return SDOperand(E, 0);
828  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
829  CSEMap.InsertNode(N, IP);
830  AllNodes.push_back(N);
831  return SDOperand(N, 0);
832}
833
834SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
835  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
836  FoldingSetNodeID ID;
837  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
838  ID.AddInteger(JTI);
839  void *IP = 0;
840  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
841    return SDOperand(E, 0);
842  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
843  CSEMap.InsertNode(N, IP);
844  AllNodes.push_back(N);
845  return SDOperand(N, 0);
846}
847
848SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
849                                        unsigned Alignment, int Offset,
850                                        bool isTarget) {
851  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
852  FoldingSetNodeID ID;
853  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
854  ID.AddInteger(Alignment);
855  ID.AddInteger(Offset);
856  ID.AddPointer(C);
857  void *IP = 0;
858  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
859    return SDOperand(E, 0);
860  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
861  CSEMap.InsertNode(N, IP);
862  AllNodes.push_back(N);
863  return SDOperand(N, 0);
864}
865
866
867SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
868                                        MVT::ValueType VT,
869                                        unsigned Alignment, int Offset,
870                                        bool isTarget) {
871  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
872  FoldingSetNodeID ID;
873  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
874  ID.AddInteger(Alignment);
875  ID.AddInteger(Offset);
876  C->AddSelectionDAGCSEId(ID);
877  void *IP = 0;
878  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
879    return SDOperand(E, 0);
880  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
881  CSEMap.InsertNode(N, IP);
882  AllNodes.push_back(N);
883  return SDOperand(N, 0);
884}
885
886
887SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
888  FoldingSetNodeID ID;
889  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
890  ID.AddPointer(MBB);
891  void *IP = 0;
892  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
893    return SDOperand(E, 0);
894  SDNode *N = new BasicBlockSDNode(MBB);
895  CSEMap.InsertNode(N, IP);
896  AllNodes.push_back(N);
897  return SDOperand(N, 0);
898}
899
900SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
901  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
902    ValueTypeNodes.resize(VT+1);
903
904  SDNode *&N = MVT::isExtendedVT(VT) ?
905    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
906
907  if (N) return SDOperand(N, 0);
908  N = new VTSDNode(VT);
909  AllNodes.push_back(N);
910  return SDOperand(N, 0);
911}
912
913SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
914  SDNode *&N = ExternalSymbols[Sym];
915  if (N) return SDOperand(N, 0);
916  N = new ExternalSymbolSDNode(false, Sym, VT);
917  AllNodes.push_back(N);
918  return SDOperand(N, 0);
919}
920
921SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
922                                                MVT::ValueType VT) {
923  SDNode *&N = TargetExternalSymbols[Sym];
924  if (N) return SDOperand(N, 0);
925  N = new ExternalSymbolSDNode(true, Sym, VT);
926  AllNodes.push_back(N);
927  return SDOperand(N, 0);
928}
929
930SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
931  if ((unsigned)Cond >= CondCodeNodes.size())
932    CondCodeNodes.resize(Cond+1);
933
934  if (CondCodeNodes[Cond] == 0) {
935    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
936    AllNodes.push_back(CondCodeNodes[Cond]);
937  }
938  return SDOperand(CondCodeNodes[Cond], 0);
939}
940
941SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
942  FoldingSetNodeID ID;
943  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
944  ID.AddInteger(RegNo);
945  void *IP = 0;
946  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
947    return SDOperand(E, 0);
948  SDNode *N = new RegisterSDNode(RegNo, VT);
949  CSEMap.InsertNode(N, IP);
950  AllNodes.push_back(N);
951  return SDOperand(N, 0);
952}
953
954SDOperand SelectionDAG::getSrcValue(const Value *V) {
955  assert((!V || isa<PointerType>(V->getType())) &&
956         "SrcValue is not a pointer?");
957
958  FoldingSetNodeID ID;
959  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
960  ID.AddPointer(V);
961
962  void *IP = 0;
963  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
964    return SDOperand(E, 0);
965
966  SDNode *N = new SrcValueSDNode(V);
967  CSEMap.InsertNode(N, IP);
968  AllNodes.push_back(N);
969  return SDOperand(N, 0);
970}
971
972SDOperand SelectionDAG::getMemOperand(const MemOperand &MO) {
973  const Value *v = MO.getValue();
974  assert((!v || isa<PointerType>(v->getType())) &&
975         "SrcValue is not a pointer?");
976
977  FoldingSetNodeID ID;
978  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
979  ID.AddPointer(v);
980  ID.AddInteger(MO.getFlags());
981  ID.AddInteger(MO.getOffset());
982  ID.AddInteger(MO.getSize());
983  ID.AddInteger(MO.getAlignment());
984
985  void *IP = 0;
986  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
987    return SDOperand(E, 0);
988
989  SDNode *N = new MemOperandSDNode(MO);
990  CSEMap.InsertNode(N, IP);
991  AllNodes.push_back(N);
992  return SDOperand(N, 0);
993}
994
995/// CreateStackTemporary - Create a stack temporary, suitable for holding the
996/// specified value type.
997SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
998  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
999  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1000  const Type *Ty = MVT::getTypeForValueType(VT);
1001  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1002  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1003  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1004}
1005
1006
1007SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1008                                  SDOperand N2, ISD::CondCode Cond) {
1009  // These setcc operations always fold.
1010  switch (Cond) {
1011  default: break;
1012  case ISD::SETFALSE:
1013  case ISD::SETFALSE2: return getConstant(0, VT);
1014  case ISD::SETTRUE:
1015  case ISD::SETTRUE2:  return getConstant(1, VT);
1016
1017  case ISD::SETOEQ:
1018  case ISD::SETOGT:
1019  case ISD::SETOGE:
1020  case ISD::SETOLT:
1021  case ISD::SETOLE:
1022  case ISD::SETONE:
1023  case ISD::SETO:
1024  case ISD::SETUO:
1025  case ISD::SETUEQ:
1026  case ISD::SETUNE:
1027    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1028    break;
1029  }
1030
1031  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1032    uint64_t C2 = N2C->getValue();
1033    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1034      uint64_t C1 = N1C->getValue();
1035
1036      // Sign extend the operands if required
1037      if (ISD::isSignedIntSetCC(Cond)) {
1038        C1 = N1C->getSignExtended();
1039        C2 = N2C->getSignExtended();
1040      }
1041
1042      switch (Cond) {
1043      default: assert(0 && "Unknown integer setcc!");
1044      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1045      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1046      case ISD::SETULT: return getConstant(C1 <  C2, VT);
1047      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
1048      case ISD::SETULE: return getConstant(C1 <= C2, VT);
1049      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
1050      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
1051      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
1052      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
1053      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
1054      }
1055    }
1056  }
1057  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
1058    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1059      // No compile time operations on this type yet.
1060      if (N1C->getValueType(0) == MVT::ppcf128)
1061        return SDOperand();
1062
1063      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1064      switch (Cond) {
1065      default: break;
1066      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1067                          return getNode(ISD::UNDEF, VT);
1068                        // fall through
1069      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1070      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1071                          return getNode(ISD::UNDEF, VT);
1072                        // fall through
1073      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1074                                           R==APFloat::cmpLessThan, VT);
1075      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1076                          return getNode(ISD::UNDEF, VT);
1077                        // fall through
1078      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1079      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1080                          return getNode(ISD::UNDEF, VT);
1081                        // fall through
1082      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1083      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1084                          return getNode(ISD::UNDEF, VT);
1085                        // fall through
1086      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1087                                           R==APFloat::cmpEqual, VT);
1088      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1089                          return getNode(ISD::UNDEF, VT);
1090                        // fall through
1091      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1092                                           R==APFloat::cmpEqual, VT);
1093      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1094      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1095      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1096                                           R==APFloat::cmpEqual, VT);
1097      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1098      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1099                                           R==APFloat::cmpLessThan, VT);
1100      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1101                                           R==APFloat::cmpUnordered, VT);
1102      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1103      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1104      }
1105    } else {
1106      // Ensure that the constant occurs on the RHS.
1107      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1108    }
1109
1110  // Could not fold it.
1111  return SDOperand();
1112}
1113
1114/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1115/// this predicate to simplify operations downstream.  Mask is known to be zero
1116/// for bits that V cannot have.
1117bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1118                                     unsigned Depth) const {
1119  // The masks are not wide enough to represent this type!  Should use APInt.
1120  if (Op.getValueType() == MVT::i128)
1121    return false;
1122
1123  uint64_t KnownZero, KnownOne;
1124  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1125  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1126  return (KnownZero & Mask) == Mask;
1127}
1128
1129/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1130/// known to be either zero or one and return them in the KnownZero/KnownOne
1131/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1132/// processing.
1133void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1134                                     APInt &KnownZero, APInt &KnownOne,
1135                                     unsigned Depth) const {
1136  unsigned BitWidth = Mask.getBitWidth();
1137  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1138         "Mask size mismatches value type size!");
1139
1140  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1141  if (Depth == 6 || Mask == 0)
1142    return;  // Limit search depth.
1143
1144  APInt KnownZero2, KnownOne2;
1145
1146  switch (Op.getOpcode()) {
1147  case ISD::Constant:
1148    // We know all of the bits for a constant!
1149    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1150    KnownZero = ~KnownOne & Mask;
1151    return;
1152  case ISD::AND:
1153    // If either the LHS or the RHS are Zero, the result is zero.
1154    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1155    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1156                      KnownZero2, KnownOne2, Depth+1);
1157    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1158    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1159
1160    // Output known-1 bits are only known if set in both the LHS & RHS.
1161    KnownOne &= KnownOne2;
1162    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1163    KnownZero |= KnownZero2;
1164    return;
1165  case ISD::OR:
1166    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1167    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1168                      KnownZero2, KnownOne2, Depth+1);
1169    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1170    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1171
1172    // Output known-0 bits are only known if clear in both the LHS & RHS.
1173    KnownZero &= KnownZero2;
1174    // Output known-1 are known to be set if set in either the LHS | RHS.
1175    KnownOne |= KnownOne2;
1176    return;
1177  case ISD::XOR: {
1178    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1179    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1180    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1181    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1182
1183    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1184    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1185    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1186    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1187    KnownZero = KnownZeroOut;
1188    return;
1189  }
1190  case ISD::SELECT:
1191    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1192    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1193    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1194    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1195
1196    // Only known if known in both the LHS and RHS.
1197    KnownOne &= KnownOne2;
1198    KnownZero &= KnownZero2;
1199    return;
1200  case ISD::SELECT_CC:
1201    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1202    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1203    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1204    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1205
1206    // Only known if known in both the LHS and RHS.
1207    KnownOne &= KnownOne2;
1208    KnownZero &= KnownZero2;
1209    return;
1210  case ISD::SETCC:
1211    // If we know the result of a setcc has the top bits zero, use this info.
1212    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1213        BitWidth > 1)
1214      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1215    return;
1216  case ISD::SHL:
1217    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1218    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1219      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(SA->getValue()),
1220                        KnownZero, KnownOne, Depth+1);
1221      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1222      KnownZero <<= SA->getValue();
1223      KnownOne  <<= SA->getValue();
1224      // low bits known zero.
1225      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getValue());
1226    }
1227    return;
1228  case ISD::SRL:
1229    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1230    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1231      unsigned ShAmt = SA->getValue();
1232
1233      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1234                        KnownZero, KnownOne, Depth+1);
1235      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1236      KnownZero = KnownZero.lshr(ShAmt);
1237      KnownOne  = KnownOne.lshr(ShAmt);
1238
1239      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1240      KnownZero |= HighBits;  // High bits known zero.
1241    }
1242    return;
1243  case ISD::SRA:
1244    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1245      unsigned ShAmt = SA->getValue();
1246
1247      APInt InDemandedMask = (Mask << ShAmt);
1248      // If any of the demanded bits are produced by the sign extension, we also
1249      // demand the input sign bit.
1250      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1251      if (HighBits.getBoolValue())
1252        InDemandedMask |= APInt::getSignBit(BitWidth);
1253
1254      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1255                        Depth+1);
1256      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1257      KnownZero = KnownZero.lshr(ShAmt);
1258      KnownOne  = KnownOne.lshr(ShAmt);
1259
1260      // Handle the sign bits.
1261      APInt SignBit = APInt::getSignBit(BitWidth);
1262      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1263
1264      if (!!(KnownZero & SignBit)) {
1265        KnownZero |= HighBits;  // New bits are known zero.
1266      } else if (!!(KnownOne & SignBit)) {
1267        KnownOne  |= HighBits;  // New bits are known one.
1268      }
1269    }
1270    return;
1271  case ISD::SIGN_EXTEND_INREG: {
1272    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1273    unsigned EBits = MVT::getSizeInBits(EVT);
1274
1275    // Sign extension.  Compute the demanded bits in the result that are not
1276    // present in the input.
1277    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1278
1279    APInt InSignBit = APInt::getSignBit(EBits);
1280    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1281
1282    // If the sign extended bits are demanded, we know that the sign
1283    // bit is demanded.
1284    InSignBit.zext(BitWidth);
1285    if (NewBits.getBoolValue())
1286      InputDemandedBits |= InSignBit;
1287
1288    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1289                      KnownZero, KnownOne, Depth+1);
1290    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1291
1292    // If the sign bit of the input is known set or clear, then we know the
1293    // top bits of the result.
1294    if (!!(KnownZero & InSignBit)) {          // Input sign bit known clear
1295      KnownZero |= NewBits;
1296      KnownOne  &= ~NewBits;
1297    } else if (!!(KnownOne & InSignBit)) {    // Input sign bit known set
1298      KnownOne  |= NewBits;
1299      KnownZero &= ~NewBits;
1300    } else {                              // Input sign bit unknown
1301      KnownZero &= ~NewBits;
1302      KnownOne  &= ~NewBits;
1303    }
1304    return;
1305  }
1306  case ISD::CTTZ:
1307  case ISD::CTLZ:
1308  case ISD::CTPOP: {
1309    unsigned LowBits = Log2_32(BitWidth)+1;
1310    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1311    KnownOne  = APInt(BitWidth, 0);
1312    return;
1313  }
1314  case ISD::LOAD: {
1315    if (ISD::isZEXTLoad(Op.Val)) {
1316      LoadSDNode *LD = cast<LoadSDNode>(Op);
1317      MVT::ValueType VT = LD->getMemoryVT();
1318      unsigned MemBits = MVT::getSizeInBits(VT);
1319      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1320    }
1321    return;
1322  }
1323  case ISD::ZERO_EXTEND: {
1324    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1325    unsigned InBits = MVT::getSizeInBits(InVT);
1326    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1327    APInt InMask    = Mask;
1328    InMask.trunc(InBits);
1329    KnownZero.trunc(InBits);
1330    KnownOne.trunc(InBits);
1331    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1332    KnownZero.zext(BitWidth);
1333    KnownOne.zext(BitWidth);
1334    KnownZero |= NewBits;
1335    return;
1336  }
1337  case ISD::SIGN_EXTEND: {
1338    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1339    unsigned InBits = MVT::getSizeInBits(InVT);
1340    APInt InSignBit = APInt::getSignBit(InBits);
1341    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1342    APInt InMask = Mask;
1343    InMask.trunc(InBits);
1344
1345    // If any of the sign extended bits are demanded, we know that the sign
1346    // bit is demanded. Temporarily set this bit in the mask for our callee.
1347    if (NewBits.getBoolValue())
1348      InMask |= InSignBit;
1349
1350    KnownZero.trunc(InBits);
1351    KnownOne.trunc(InBits);
1352    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1353
1354    // Note if the sign bit is known to be zero or one.
1355    bool SignBitKnownZero = KnownZero.isNegative();
1356    bool SignBitKnownOne  = KnownOne.isNegative();
1357    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1358           "Sign bit can't be known to be both zero and one!");
1359
1360    // If the sign bit wasn't actually demanded by our caller, we don't
1361    // want it set in the KnownZero and KnownOne result values. Reset the
1362    // mask and reapply it to the result values.
1363    InMask = Mask;
1364    InMask.trunc(InBits);
1365    KnownZero &= InMask;
1366    KnownOne  &= InMask;
1367
1368    KnownZero.zext(BitWidth);
1369    KnownOne.zext(BitWidth);
1370
1371    // If the sign bit is known zero or one, the top bits match.
1372    if (SignBitKnownZero)
1373      KnownZero |= NewBits;
1374    else if (SignBitKnownOne)
1375      KnownOne  |= NewBits;
1376    return;
1377  }
1378  case ISD::ANY_EXTEND: {
1379    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1380    unsigned InBits = MVT::getSizeInBits(InVT);
1381    APInt InMask = Mask;
1382    InMask.trunc(InBits);
1383    KnownZero.trunc(InBits);
1384    KnownOne.trunc(InBits);
1385    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1386    KnownZero.zext(BitWidth);
1387    KnownOne.zext(BitWidth);
1388    return;
1389  }
1390  case ISD::TRUNCATE: {
1391    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1392    unsigned InBits = MVT::getSizeInBits(InVT);
1393    APInt InMask = Mask;
1394    InMask.zext(InBits);
1395    KnownZero.zext(InBits);
1396    KnownOne.zext(InBits);
1397    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1398    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1399    KnownZero.trunc(BitWidth);
1400    KnownOne.trunc(BitWidth);
1401    break;
1402  }
1403  case ISD::AssertZext: {
1404    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1405    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1406    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1407                      KnownOne, Depth+1);
1408    KnownZero |= (~InMask) & Mask;
1409    return;
1410  }
1411  case ISD::FGETSIGN:
1412    // All bits are zero except the low bit.
1413    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1414    return;
1415
1416  case ISD::ADD: {
1417    // If either the LHS or the RHS are Zero, the result is zero.
1418    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1419    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1420    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1421    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1422
1423    // Output known-0 bits are known if clear or set in both the low clear bits
1424    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1425    // low 3 bits clear.
1426    unsigned KnownZeroOut = std::min(KnownZero.countTrailingOnes(),
1427                                     KnownZero2.countTrailingOnes());
1428
1429    KnownZero = APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1430    KnownOne = APInt(BitWidth, 0);
1431    return;
1432  }
1433  case ISD::SUB: {
1434    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1435    if (!CLHS) return;
1436
1437    // We know that the top bits of C-X are clear if X contains less bits
1438    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1439    // positive if we can prove that X is >= 0 and < 16.
1440    if (CLHS->getAPIntValue().isNonNegative()) {
1441      unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1442      // NLZ can't be BitWidth with no sign bit
1443      APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1444      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1445
1446      // If all of the MaskV bits are known to be zero, then we know the output
1447      // top bits are zero, because we now know that the output is from [0-C].
1448      if ((KnownZero & MaskV) == MaskV) {
1449        unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1450        // Top bits known zero.
1451        KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1452        KnownOne = APInt(BitWidth, 0);   // No one bits known.
1453      } else {
1454        KnownZero = KnownOne = APInt(BitWidth, 0);  // Otherwise, nothing known.
1455      }
1456    }
1457    return;
1458  }
1459  default:
1460    // Allow the target to implement this method for its nodes.
1461    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1462  case ISD::INTRINSIC_WO_CHAIN:
1463  case ISD::INTRINSIC_W_CHAIN:
1464  case ISD::INTRINSIC_VOID:
1465      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1466    }
1467    return;
1468  }
1469}
1470
1471/// ComputeMaskedBits - This is a wrapper around the APInt-using
1472/// form of ComputeMaskedBits for use by clients that haven't been converted
1473/// to APInt yet.
1474void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1475                                     uint64_t &KnownZero, uint64_t &KnownOne,
1476                                     unsigned Depth) const {
1477  // The masks are not wide enough to represent this type!  Should use APInt.
1478  if (Op.getValueType() == MVT::i128)
1479    return;
1480
1481  unsigned NumBits = MVT::getSizeInBits(Op.getValueType());
1482  APInt APIntMask(NumBits, Mask);
1483  APInt APIntKnownZero(NumBits, 0);
1484  APInt APIntKnownOne(NumBits, 0);
1485  ComputeMaskedBits(Op, APIntMask, APIntKnownZero, APIntKnownOne, Depth);
1486  KnownZero = APIntKnownZero.getZExtValue();
1487  KnownOne = APIntKnownOne.getZExtValue();
1488}
1489
1490/// ComputeNumSignBits - Return the number of times the sign bit of the
1491/// register is replicated into the other bits.  We know that at least 1 bit
1492/// is always equal to the sign bit (itself), but other cases can give us
1493/// information.  For example, immediately after an "SRA X, 2", we know that
1494/// the top 3 bits are all equal to each other, so we return 3.
1495unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1496  MVT::ValueType VT = Op.getValueType();
1497  assert(MVT::isInteger(VT) && "Invalid VT!");
1498  unsigned VTBits = MVT::getSizeInBits(VT);
1499  unsigned Tmp, Tmp2;
1500
1501  if (Depth == 6)
1502    return 1;  // Limit search depth.
1503
1504  switch (Op.getOpcode()) {
1505  default: break;
1506  case ISD::AssertSext:
1507    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1508    return VTBits-Tmp+1;
1509  case ISD::AssertZext:
1510    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1511    return VTBits-Tmp;
1512
1513  case ISD::Constant: {
1514    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1515    // If negative, invert the bits, then look at it.
1516    if (Val & MVT::getIntVTSignBit(VT))
1517      Val = ~Val;
1518
1519    // Shift the bits so they are the leading bits in the int64_t.
1520    Val <<= 64-VTBits;
1521
1522    // Return # leading zeros.  We use 'min' here in case Val was zero before
1523    // shifting.  We don't want to return '64' as for an i32 "0".
1524    return std::min(VTBits, CountLeadingZeros_64(Val));
1525  }
1526
1527  case ISD::SIGN_EXTEND:
1528    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1529    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1530
1531  case ISD::SIGN_EXTEND_INREG:
1532    // Max of the input and what this extends.
1533    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1534    Tmp = VTBits-Tmp+1;
1535
1536    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1537    return std::max(Tmp, Tmp2);
1538
1539  case ISD::SRA:
1540    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1541    // SRA X, C   -> adds C sign bits.
1542    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1543      Tmp += C->getValue();
1544      if (Tmp > VTBits) Tmp = VTBits;
1545    }
1546    return Tmp;
1547  case ISD::SHL:
1548    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1549      // shl destroys sign bits.
1550      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1551      if (C->getValue() >= VTBits ||      // Bad shift.
1552          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1553      return Tmp - C->getValue();
1554    }
1555    break;
1556  case ISD::AND:
1557  case ISD::OR:
1558  case ISD::XOR:    // NOT is handled here.
1559    // Logical binary ops preserve the number of sign bits.
1560    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1561    if (Tmp == 1) return 1;  // Early out.
1562    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1563    return std::min(Tmp, Tmp2);
1564
1565  case ISD::SELECT:
1566    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1567    if (Tmp == 1) return 1;  // Early out.
1568    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1569    return std::min(Tmp, Tmp2);
1570
1571  case ISD::SETCC:
1572    // If setcc returns 0/-1, all bits are sign bits.
1573    if (TLI.getSetCCResultContents() ==
1574        TargetLowering::ZeroOrNegativeOneSetCCResult)
1575      return VTBits;
1576    break;
1577  case ISD::ROTL:
1578  case ISD::ROTR:
1579    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1580      unsigned RotAmt = C->getValue() & (VTBits-1);
1581
1582      // Handle rotate right by N like a rotate left by 32-N.
1583      if (Op.getOpcode() == ISD::ROTR)
1584        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1585
1586      // If we aren't rotating out all of the known-in sign bits, return the
1587      // number that are left.  This handles rotl(sext(x), 1) for example.
1588      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1589      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1590    }
1591    break;
1592  case ISD::ADD:
1593    // Add can have at most one carry bit.  Thus we know that the output
1594    // is, at worst, one more bit than the inputs.
1595    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1596    if (Tmp == 1) return 1;  // Early out.
1597
1598    // Special case decrementing a value (ADD X, -1):
1599    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1600      if (CRHS->isAllOnesValue()) {
1601        uint64_t KnownZero, KnownOne;
1602        uint64_t Mask = MVT::getIntVTBitMask(VT);
1603        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1604
1605        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1606        // sign bits set.
1607        if ((KnownZero|1) == Mask)
1608          return VTBits;
1609
1610        // If we are subtracting one from a positive number, there is no carry
1611        // out of the result.
1612        if (KnownZero & MVT::getIntVTSignBit(VT))
1613          return Tmp;
1614      }
1615
1616    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1617    if (Tmp2 == 1) return 1;
1618      return std::min(Tmp, Tmp2)-1;
1619    break;
1620
1621  case ISD::SUB:
1622    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1623    if (Tmp2 == 1) return 1;
1624
1625    // Handle NEG.
1626    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1627      if (CLHS->getValue() == 0) {
1628        uint64_t KnownZero, KnownOne;
1629        uint64_t Mask = MVT::getIntVTBitMask(VT);
1630        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1631        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1632        // sign bits set.
1633        if ((KnownZero|1) == Mask)
1634          return VTBits;
1635
1636        // If the input is known to be positive (the sign bit is known clear),
1637        // the output of the NEG has the same number of sign bits as the input.
1638        if (KnownZero & MVT::getIntVTSignBit(VT))
1639          return Tmp2;
1640
1641        // Otherwise, we treat this like a SUB.
1642      }
1643
1644    // Sub can have at most one carry bit.  Thus we know that the output
1645    // is, at worst, one more bit than the inputs.
1646    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1647    if (Tmp == 1) return 1;  // Early out.
1648      return std::min(Tmp, Tmp2)-1;
1649    break;
1650  case ISD::TRUNCATE:
1651    // FIXME: it's tricky to do anything useful for this, but it is an important
1652    // case for targets like X86.
1653    break;
1654  }
1655
1656  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1657  if (Op.getOpcode() == ISD::LOAD) {
1658    LoadSDNode *LD = cast<LoadSDNode>(Op);
1659    unsigned ExtType = LD->getExtensionType();
1660    switch (ExtType) {
1661    default: break;
1662    case ISD::SEXTLOAD:    // '17' bits known
1663      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1664      return VTBits-Tmp+1;
1665    case ISD::ZEXTLOAD:    // '16' bits known
1666      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1667      return VTBits-Tmp;
1668    }
1669  }
1670
1671  // Allow the target to implement this method for its nodes.
1672  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1673      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1674      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1675      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1676    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1677    if (NumBits > 1) return NumBits;
1678  }
1679
1680  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1681  // use this information.
1682  uint64_t KnownZero, KnownOne;
1683  uint64_t Mask = MVT::getIntVTBitMask(VT);
1684  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1685
1686  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1687  if (KnownZero & SignBit) {        // SignBit is 0
1688    Mask = KnownZero;
1689  } else if (KnownOne & SignBit) {  // SignBit is 1;
1690    Mask = KnownOne;
1691  } else {
1692    // Nothing known.
1693    return 1;
1694  }
1695
1696  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1697  // the number of identical bits in the top of the input value.
1698  Mask ^= ~0ULL;
1699  Mask <<= 64-VTBits;
1700  // Return # leading zeros.  We use 'min' here in case Val was zero before
1701  // shifting.  We don't want to return '64' as for an i32 "0".
1702  return std::min(VTBits, CountLeadingZeros_64(Mask));
1703}
1704
1705
1706bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1707  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1708  if (!GA) return false;
1709  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1710  if (!GV) return false;
1711  MachineModuleInfo *MMI = getMachineModuleInfo();
1712  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1713}
1714
1715
1716/// getNode - Gets or creates the specified node.
1717///
1718SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1719  FoldingSetNodeID ID;
1720  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1721  void *IP = 0;
1722  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1723    return SDOperand(E, 0);
1724  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1725  CSEMap.InsertNode(N, IP);
1726
1727  AllNodes.push_back(N);
1728  return SDOperand(N, 0);
1729}
1730
1731SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1732                                SDOperand Operand) {
1733  unsigned Tmp1;
1734  // Constant fold unary operations with an integer constant operand.
1735  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1736    uint64_t Val = C->getValue();
1737    switch (Opcode) {
1738    default: break;
1739    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1740    case ISD::ANY_EXTEND:
1741    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1742    case ISD::TRUNCATE:    return getConstant(Val, VT);
1743    case ISD::UINT_TO_FP:
1744    case ISD::SINT_TO_FP: {
1745      const uint64_t zero[] = {0, 0};
1746      // No compile time operations on this type.
1747      if (VT==MVT::ppcf128)
1748        break;
1749      APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
1750      (void)apf.convertFromZeroExtendedInteger(&Val,
1751                               MVT::getSizeInBits(Operand.getValueType()),
1752                               Opcode==ISD::SINT_TO_FP,
1753                               APFloat::rmNearestTiesToEven);
1754      return getConstantFP(apf, VT);
1755    }
1756    case ISD::BIT_CONVERT:
1757      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1758        return getConstantFP(BitsToFloat(Val), VT);
1759      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1760        return getConstantFP(BitsToDouble(Val), VT);
1761      break;
1762    case ISD::BSWAP:
1763      switch(VT) {
1764      default: assert(0 && "Invalid bswap!"); break;
1765      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1766      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1767      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1768      }
1769      break;
1770    case ISD::CTPOP:
1771      switch(VT) {
1772      default: assert(0 && "Invalid ctpop!"); break;
1773      case MVT::i1: return getConstant(Val != 0, VT);
1774      case MVT::i8:
1775        Tmp1 = (unsigned)Val & 0xFF;
1776        return getConstant(CountPopulation_32(Tmp1), VT);
1777      case MVT::i16:
1778        Tmp1 = (unsigned)Val & 0xFFFF;
1779        return getConstant(CountPopulation_32(Tmp1), VT);
1780      case MVT::i32:
1781        return getConstant(CountPopulation_32((unsigned)Val), VT);
1782      case MVT::i64:
1783        return getConstant(CountPopulation_64(Val), VT);
1784      }
1785    case ISD::CTLZ:
1786      switch(VT) {
1787      default: assert(0 && "Invalid ctlz!"); break;
1788      case MVT::i1: return getConstant(Val == 0, VT);
1789      case MVT::i8:
1790        Tmp1 = (unsigned)Val & 0xFF;
1791        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1792      case MVT::i16:
1793        Tmp1 = (unsigned)Val & 0xFFFF;
1794        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1795      case MVT::i32:
1796        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1797      case MVT::i64:
1798        return getConstant(CountLeadingZeros_64(Val), VT);
1799      }
1800    case ISD::CTTZ:
1801      switch(VT) {
1802      default: assert(0 && "Invalid cttz!"); break;
1803      case MVT::i1: return getConstant(Val == 0, VT);
1804      case MVT::i8:
1805        Tmp1 = (unsigned)Val | 0x100;
1806        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1807      case MVT::i16:
1808        Tmp1 = (unsigned)Val | 0x10000;
1809        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1810      case MVT::i32:
1811        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1812      case MVT::i64:
1813        return getConstant(CountTrailingZeros_64(Val), VT);
1814      }
1815    }
1816  }
1817
1818  // Constant fold unary operations with a floating point constant operand.
1819  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1820    APFloat V = C->getValueAPF();    // make copy
1821    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1822      switch (Opcode) {
1823      case ISD::FNEG:
1824        V.changeSign();
1825        return getConstantFP(V, VT);
1826      case ISD::FABS:
1827        V.clearSign();
1828        return getConstantFP(V, VT);
1829      case ISD::FP_ROUND:
1830      case ISD::FP_EXTEND:
1831        // This can return overflow, underflow, or inexact; we don't care.
1832        // FIXME need to be more flexible about rounding mode.
1833        (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1834                         VT==MVT::f64 ? APFloat::IEEEdouble :
1835                         VT==MVT::f80 ? APFloat::x87DoubleExtended :
1836                         VT==MVT::f128 ? APFloat::IEEEquad :
1837                         APFloat::Bogus,
1838                         APFloat::rmNearestTiesToEven);
1839        return getConstantFP(V, VT);
1840      case ISD::FP_TO_SINT:
1841      case ISD::FP_TO_UINT: {
1842        integerPart x;
1843        assert(integerPartWidth >= 64);
1844        // FIXME need to be more flexible about rounding mode.
1845        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1846                              Opcode==ISD::FP_TO_SINT,
1847                              APFloat::rmTowardZero);
1848        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1849          break;
1850        return getConstant(x, VT);
1851      }
1852      case ISD::BIT_CONVERT:
1853        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1854          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1855        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1856          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1857        break;
1858      }
1859    }
1860  }
1861
1862  unsigned OpOpcode = Operand.Val->getOpcode();
1863  switch (Opcode) {
1864  case ISD::TokenFactor:
1865    return Operand;         // Factor of one node?  No factor.
1866  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1867  case ISD::FP_EXTEND:
1868    assert(MVT::isFloatingPoint(VT) &&
1869           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1870    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1871    break;
1872    case ISD::SIGN_EXTEND:
1873    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1874           "Invalid SIGN_EXTEND!");
1875    if (Operand.getValueType() == VT) return Operand;   // noop extension
1876    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1877           && "Invalid sext node, dst < src!");
1878    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1879      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1880    break;
1881  case ISD::ZERO_EXTEND:
1882    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1883           "Invalid ZERO_EXTEND!");
1884    if (Operand.getValueType() == VT) return Operand;   // noop extension
1885    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1886           && "Invalid zext node, dst < src!");
1887    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1888      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1889    break;
1890  case ISD::ANY_EXTEND:
1891    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1892           "Invalid ANY_EXTEND!");
1893    if (Operand.getValueType() == VT) return Operand;   // noop extension
1894    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1895           && "Invalid anyext node, dst < src!");
1896    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1897      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1898      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1899    break;
1900  case ISD::TRUNCATE:
1901    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1902           "Invalid TRUNCATE!");
1903    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1904    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1905           && "Invalid truncate node, src < dst!");
1906    if (OpOpcode == ISD::TRUNCATE)
1907      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1908    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1909             OpOpcode == ISD::ANY_EXTEND) {
1910      // If the source is smaller than the dest, we still need an extend.
1911      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1912          < MVT::getSizeInBits(VT))
1913        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1914      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1915               > MVT::getSizeInBits(VT))
1916        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1917      else
1918        return Operand.Val->getOperand(0);
1919    }
1920    break;
1921  case ISD::BIT_CONVERT:
1922    // Basic sanity checking.
1923    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1924           && "Cannot BIT_CONVERT between types of different sizes!");
1925    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1926    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1927      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1928    if (OpOpcode == ISD::UNDEF)
1929      return getNode(ISD::UNDEF, VT);
1930    break;
1931  case ISD::SCALAR_TO_VECTOR:
1932    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1933           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1934           "Illegal SCALAR_TO_VECTOR node!");
1935    break;
1936  case ISD::FNEG:
1937    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1938      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1939                     Operand.Val->getOperand(0));
1940    if (OpOpcode == ISD::FNEG)  // --X -> X
1941      return Operand.Val->getOperand(0);
1942    break;
1943  case ISD::FABS:
1944    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1945      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1946    break;
1947  }
1948
1949  SDNode *N;
1950  SDVTList VTs = getVTList(VT);
1951  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1952    FoldingSetNodeID ID;
1953    SDOperand Ops[1] = { Operand };
1954    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1955    void *IP = 0;
1956    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1957      return SDOperand(E, 0);
1958    N = new UnarySDNode(Opcode, VTs, Operand);
1959    CSEMap.InsertNode(N, IP);
1960  } else {
1961    N = new UnarySDNode(Opcode, VTs, Operand);
1962  }
1963  AllNodes.push_back(N);
1964  return SDOperand(N, 0);
1965}
1966
1967
1968
1969SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1970                                SDOperand N1, SDOperand N2) {
1971  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1972  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1973  switch (Opcode) {
1974  default: break;
1975  case ISD::TokenFactor:
1976    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1977           N2.getValueType() == MVT::Other && "Invalid token factor!");
1978    // Fold trivial token factors.
1979    if (N1.getOpcode() == ISD::EntryToken) return N2;
1980    if (N2.getOpcode() == ISD::EntryToken) return N1;
1981    break;
1982  case ISD::AND:
1983    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1984           N1.getValueType() == VT && "Binary operator types must match!");
1985    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1986    // worth handling here.
1987    if (N2C && N2C->getValue() == 0)
1988      return N2;
1989    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
1990      return N1;
1991    break;
1992  case ISD::OR:
1993  case ISD::XOR:
1994    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1995           N1.getValueType() == VT && "Binary operator types must match!");
1996    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1997    // worth handling here.
1998    if (N2C && N2C->getValue() == 0)
1999      return N1;
2000    break;
2001  case ISD::UDIV:
2002  case ISD::UREM:
2003  case ISD::MULHU:
2004  case ISD::MULHS:
2005    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
2006    // fall through
2007  case ISD::ADD:
2008  case ISD::SUB:
2009  case ISD::MUL:
2010  case ISD::SDIV:
2011  case ISD::SREM:
2012  case ISD::FADD:
2013  case ISD::FSUB:
2014  case ISD::FMUL:
2015  case ISD::FDIV:
2016  case ISD::FREM:
2017    assert(N1.getValueType() == N2.getValueType() &&
2018           N1.getValueType() == VT && "Binary operator types must match!");
2019    break;
2020  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2021    assert(N1.getValueType() == VT &&
2022           MVT::isFloatingPoint(N1.getValueType()) &&
2023           MVT::isFloatingPoint(N2.getValueType()) &&
2024           "Invalid FCOPYSIGN!");
2025    break;
2026  case ISD::SHL:
2027  case ISD::SRA:
2028  case ISD::SRL:
2029  case ISD::ROTL:
2030  case ISD::ROTR:
2031    assert(VT == N1.getValueType() &&
2032           "Shift operators return type must be the same as their first arg");
2033    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
2034           VT != MVT::i1 && "Shifts only work on integers");
2035    break;
2036  case ISD::FP_ROUND_INREG: {
2037    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2038    assert(VT == N1.getValueType() && "Not an inreg round!");
2039    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2040           "Cannot FP_ROUND_INREG integer types");
2041    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2042           "Not rounding down!");
2043    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2044    break;
2045  }
2046  case ISD::FP_ROUND:
2047    assert(MVT::isFloatingPoint(VT) &&
2048           MVT::isFloatingPoint(N1.getValueType()) &&
2049           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2050           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2051    if (N1.getValueType() == VT) return N1;  // noop conversion.
2052    break;
2053  case ISD::AssertSext:
2054  case ISD::AssertZext: {
2055    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2056    assert(VT == N1.getValueType() && "Not an inreg extend!");
2057    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2058           "Cannot *_EXTEND_INREG FP types");
2059    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2060           "Not extending!");
2061    if (VT == EVT) return N1; // noop assertion.
2062    break;
2063  }
2064  case ISD::SIGN_EXTEND_INREG: {
2065    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2066    assert(VT == N1.getValueType() && "Not an inreg extend!");
2067    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2068           "Cannot *_EXTEND_INREG FP types");
2069    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2070           "Not extending!");
2071    if (EVT == VT) return N1;  // Not actually extending
2072
2073    if (N1C) {
2074      int64_t Val = N1C->getValue();
2075      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2076      Val <<= 64-FromBits;
2077      Val >>= 64-FromBits;
2078      return getConstant(Val, VT);
2079    }
2080    break;
2081  }
2082  case ISD::EXTRACT_VECTOR_ELT:
2083    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2084
2085    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2086    // expanding copies of large vectors from registers.
2087    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2088        N1.getNumOperands() > 0) {
2089      unsigned Factor =
2090        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2091      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2092                     N1.getOperand(N2C->getValue() / Factor),
2093                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2094    }
2095
2096    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2097    // expanding large vector constants.
2098    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2099      return N1.getOperand(N2C->getValue());
2100
2101    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2102    // operations are lowered to scalars.
2103    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2104      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2105        if (IEC == N2C)
2106          return N1.getOperand(1);
2107        else
2108          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2109      }
2110    break;
2111  case ISD::EXTRACT_ELEMENT:
2112    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2113
2114    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2115    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2116    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2117    if (N1.getOpcode() == ISD::BUILD_PAIR)
2118      return N1.getOperand(N2C->getValue());
2119
2120    // EXTRACT_ELEMENT of a constant int is also very common.
2121    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2122      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2123      return getConstant(C->getValue() >> Shift, VT);
2124    }
2125    break;
2126  }
2127
2128  if (N1C) {
2129    if (N2C) {
2130      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
2131      switch (Opcode) {
2132      case ISD::ADD: return getConstant(C1 + C2, VT);
2133      case ISD::SUB: return getConstant(C1 - C2, VT);
2134      case ISD::MUL: return getConstant(C1 * C2, VT);
2135      case ISD::UDIV:
2136        if (C2) return getConstant(C1 / C2, VT);
2137        break;
2138      case ISD::UREM :
2139        if (C2) return getConstant(C1 % C2, VT);
2140        break;
2141      case ISD::SDIV :
2142        if (C2) return getConstant(N1C->getSignExtended() /
2143                                   N2C->getSignExtended(), VT);
2144        break;
2145      case ISD::SREM :
2146        if (C2) return getConstant(N1C->getSignExtended() %
2147                                   N2C->getSignExtended(), VT);
2148        break;
2149      case ISD::AND  : return getConstant(C1 & C2, VT);
2150      case ISD::OR   : return getConstant(C1 | C2, VT);
2151      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2152      case ISD::SHL  : return getConstant(C1 << C2, VT);
2153      case ISD::SRL  : return getConstant(C1 >> C2, VT);
2154      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
2155      case ISD::ROTL :
2156        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
2157                           VT);
2158      case ISD::ROTR :
2159        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
2160                           VT);
2161      default: break;
2162      }
2163    } else {      // Cannonicalize constant to RHS if commutative
2164      if (isCommutativeBinOp(Opcode)) {
2165        std::swap(N1C, N2C);
2166        std::swap(N1, N2);
2167      }
2168    }
2169  }
2170
2171  // Constant fold FP operations.
2172  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2173  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2174  if (N1CFP) {
2175    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2176      // Cannonicalize constant to RHS if commutative
2177      std::swap(N1CFP, N2CFP);
2178      std::swap(N1, N2);
2179    } else if (N2CFP && VT != MVT::ppcf128) {
2180      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2181      APFloat::opStatus s;
2182      switch (Opcode) {
2183      case ISD::FADD:
2184        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2185        if (s != APFloat::opInvalidOp)
2186          return getConstantFP(V1, VT);
2187        break;
2188      case ISD::FSUB:
2189        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2190        if (s!=APFloat::opInvalidOp)
2191          return getConstantFP(V1, VT);
2192        break;
2193      case ISD::FMUL:
2194        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2195        if (s!=APFloat::opInvalidOp)
2196          return getConstantFP(V1, VT);
2197        break;
2198      case ISD::FDIV:
2199        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2200        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2201          return getConstantFP(V1, VT);
2202        break;
2203      case ISD::FREM :
2204        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2205        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2206          return getConstantFP(V1, VT);
2207        break;
2208      case ISD::FCOPYSIGN:
2209        V1.copySign(V2);
2210        return getConstantFP(V1, VT);
2211      default: break;
2212      }
2213    }
2214  }
2215
2216  // Canonicalize an UNDEF to the RHS, even over a constant.
2217  if (N1.getOpcode() == ISD::UNDEF) {
2218    if (isCommutativeBinOp(Opcode)) {
2219      std::swap(N1, N2);
2220    } else {
2221      switch (Opcode) {
2222      case ISD::FP_ROUND_INREG:
2223      case ISD::SIGN_EXTEND_INREG:
2224      case ISD::SUB:
2225      case ISD::FSUB:
2226      case ISD::FDIV:
2227      case ISD::FREM:
2228      case ISD::SRA:
2229        return N1;     // fold op(undef, arg2) -> undef
2230      case ISD::UDIV:
2231      case ISD::SDIV:
2232      case ISD::UREM:
2233      case ISD::SREM:
2234      case ISD::SRL:
2235      case ISD::SHL:
2236        if (!MVT::isVector(VT))
2237          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2238        // For vectors, we can't easily build an all zero vector, just return
2239        // the LHS.
2240        return N2;
2241      }
2242    }
2243  }
2244
2245  // Fold a bunch of operators when the RHS is undef.
2246  if (N2.getOpcode() == ISD::UNDEF) {
2247    switch (Opcode) {
2248    case ISD::ADD:
2249    case ISD::ADDC:
2250    case ISD::ADDE:
2251    case ISD::SUB:
2252    case ISD::FADD:
2253    case ISD::FSUB:
2254    case ISD::FMUL:
2255    case ISD::FDIV:
2256    case ISD::FREM:
2257    case ISD::UDIV:
2258    case ISD::SDIV:
2259    case ISD::UREM:
2260    case ISD::SREM:
2261    case ISD::XOR:
2262      return N2;       // fold op(arg1, undef) -> undef
2263    case ISD::MUL:
2264    case ISD::AND:
2265    case ISD::SRL:
2266    case ISD::SHL:
2267      if (!MVT::isVector(VT))
2268        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2269      // For vectors, we can't easily build an all zero vector, just return
2270      // the LHS.
2271      return N1;
2272    case ISD::OR:
2273      if (!MVT::isVector(VT))
2274        return getConstant(MVT::getIntVTBitMask(VT), VT);
2275      // For vectors, we can't easily build an all one vector, just return
2276      // the LHS.
2277      return N1;
2278    case ISD::SRA:
2279      return N1;
2280    }
2281  }
2282
2283  // Memoize this node if possible.
2284  SDNode *N;
2285  SDVTList VTs = getVTList(VT);
2286  if (VT != MVT::Flag) {
2287    SDOperand Ops[] = { N1, N2 };
2288    FoldingSetNodeID ID;
2289    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2290    void *IP = 0;
2291    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2292      return SDOperand(E, 0);
2293    N = new BinarySDNode(Opcode, VTs, N1, N2);
2294    CSEMap.InsertNode(N, IP);
2295  } else {
2296    N = new BinarySDNode(Opcode, VTs, N1, N2);
2297  }
2298
2299  AllNodes.push_back(N);
2300  return SDOperand(N, 0);
2301}
2302
2303SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2304                                SDOperand N1, SDOperand N2, SDOperand N3) {
2305  // Perform various simplifications.
2306  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2307  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2308  switch (Opcode) {
2309  case ISD::SETCC: {
2310    // Use FoldSetCC to simplify SETCC's.
2311    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2312    if (Simp.Val) return Simp;
2313    break;
2314  }
2315  case ISD::SELECT:
2316    if (N1C)
2317      if (N1C->getValue())
2318        return N2;             // select true, X, Y -> X
2319      else
2320        return N3;             // select false, X, Y -> Y
2321
2322    if (N2 == N3) return N2;   // select C, X, X -> X
2323    break;
2324  case ISD::BRCOND:
2325    if (N2C)
2326      if (N2C->getValue()) // Unconditional branch
2327        return getNode(ISD::BR, MVT::Other, N1, N3);
2328      else
2329        return N1;         // Never-taken branch
2330    break;
2331  case ISD::VECTOR_SHUFFLE:
2332    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2333           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2334           N3.getOpcode() == ISD::BUILD_VECTOR &&
2335           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2336           "Illegal VECTOR_SHUFFLE node!");
2337    break;
2338  case ISD::BIT_CONVERT:
2339    // Fold bit_convert nodes from a type to themselves.
2340    if (N1.getValueType() == VT)
2341      return N1;
2342    break;
2343  }
2344
2345  // Memoize node if it doesn't produce a flag.
2346  SDNode *N;
2347  SDVTList VTs = getVTList(VT);
2348  if (VT != MVT::Flag) {
2349    SDOperand Ops[] = { N1, N2, N3 };
2350    FoldingSetNodeID ID;
2351    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2352    void *IP = 0;
2353    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2354      return SDOperand(E, 0);
2355    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2356    CSEMap.InsertNode(N, IP);
2357  } else {
2358    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2359  }
2360  AllNodes.push_back(N);
2361  return SDOperand(N, 0);
2362}
2363
2364SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2365                                SDOperand N1, SDOperand N2, SDOperand N3,
2366                                SDOperand N4) {
2367  SDOperand Ops[] = { N1, N2, N3, N4 };
2368  return getNode(Opcode, VT, Ops, 4);
2369}
2370
2371SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2372                                SDOperand N1, SDOperand N2, SDOperand N3,
2373                                SDOperand N4, SDOperand N5) {
2374  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2375  return getNode(Opcode, VT, Ops, 5);
2376}
2377
2378SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2379                                  SDOperand Src, SDOperand Size,
2380                                  SDOperand Align,
2381                                  SDOperand AlwaysInline) {
2382  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2383  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2384}
2385
2386SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2387                                  SDOperand Src, SDOperand Size,
2388                                  SDOperand Align,
2389                                  SDOperand AlwaysInline) {
2390  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2391  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2392}
2393
2394SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2395                                  SDOperand Src, SDOperand Size,
2396                                  SDOperand Align,
2397                                  SDOperand AlwaysInline) {
2398  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2399  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2400}
2401
2402SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2403                                SDOperand Chain, SDOperand Ptr,
2404                                const Value *SV, int SVOffset,
2405                                bool isVolatile, unsigned Alignment) {
2406  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2407    const Type *Ty = 0;
2408    if (VT != MVT::iPTR) {
2409      Ty = MVT::getTypeForValueType(VT);
2410    } else if (SV) {
2411      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2412      assert(PT && "Value for load must be a pointer");
2413      Ty = PT->getElementType();
2414    }
2415    assert(Ty && "Could not get type information for load");
2416    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2417  }
2418  SDVTList VTs = getVTList(VT, MVT::Other);
2419  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2420  SDOperand Ops[] = { Chain, Ptr, Undef };
2421  FoldingSetNodeID ID;
2422  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2423  ID.AddInteger(ISD::UNINDEXED);
2424  ID.AddInteger(ISD::NON_EXTLOAD);
2425  ID.AddInteger((unsigned int)VT);
2426  ID.AddInteger(Alignment);
2427  ID.AddInteger(isVolatile);
2428  void *IP = 0;
2429  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2430    return SDOperand(E, 0);
2431  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2432                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2433                             isVolatile);
2434  CSEMap.InsertNode(N, IP);
2435  AllNodes.push_back(N);
2436  return SDOperand(N, 0);
2437}
2438
2439SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2440                                   SDOperand Chain, SDOperand Ptr,
2441                                   const Value *SV,
2442                                   int SVOffset, MVT::ValueType EVT,
2443                                   bool isVolatile, unsigned Alignment) {
2444  // If they are asking for an extending load from/to the same thing, return a
2445  // normal load.
2446  if (VT == EVT)
2447    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2448
2449  if (MVT::isVector(VT))
2450    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2451  else
2452    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2453           "Should only be an extending load, not truncating!");
2454  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2455         "Cannot sign/zero extend a FP/Vector load!");
2456  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2457         "Cannot convert from FP to Int or Int -> FP!");
2458
2459  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2460    const Type *Ty = 0;
2461    if (VT != MVT::iPTR) {
2462      Ty = MVT::getTypeForValueType(VT);
2463    } else if (SV) {
2464      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2465      assert(PT && "Value for load must be a pointer");
2466      Ty = PT->getElementType();
2467    }
2468    assert(Ty && "Could not get type information for load");
2469    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2470  }
2471  SDVTList VTs = getVTList(VT, MVT::Other);
2472  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2473  SDOperand Ops[] = { Chain, Ptr, Undef };
2474  FoldingSetNodeID ID;
2475  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2476  ID.AddInteger(ISD::UNINDEXED);
2477  ID.AddInteger(ExtType);
2478  ID.AddInteger((unsigned int)EVT);
2479  ID.AddInteger(Alignment);
2480  ID.AddInteger(isVolatile);
2481  void *IP = 0;
2482  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2483    return SDOperand(E, 0);
2484  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2485                             SV, SVOffset, Alignment, isVolatile);
2486  CSEMap.InsertNode(N, IP);
2487  AllNodes.push_back(N);
2488  return SDOperand(N, 0);
2489}
2490
2491SDOperand
2492SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2493                             SDOperand Offset, ISD::MemIndexedMode AM) {
2494  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2495  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2496         "Load is already a indexed load!");
2497  MVT::ValueType VT = OrigLoad.getValueType();
2498  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2499  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2500  FoldingSetNodeID ID;
2501  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2502  ID.AddInteger(AM);
2503  ID.AddInteger(LD->getExtensionType());
2504  ID.AddInteger((unsigned int)(LD->getMemoryVT()));
2505  ID.AddInteger(LD->getAlignment());
2506  ID.AddInteger(LD->isVolatile());
2507  void *IP = 0;
2508  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2509    return SDOperand(E, 0);
2510  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2511                             LD->getExtensionType(), LD->getMemoryVT(),
2512                             LD->getSrcValue(), LD->getSrcValueOffset(),
2513                             LD->getAlignment(), LD->isVolatile());
2514  CSEMap.InsertNode(N, IP);
2515  AllNodes.push_back(N);
2516  return SDOperand(N, 0);
2517}
2518
2519SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2520                                 SDOperand Ptr, const Value *SV, int SVOffset,
2521                                 bool isVolatile, unsigned Alignment) {
2522  MVT::ValueType VT = Val.getValueType();
2523
2524  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2525    const Type *Ty = 0;
2526    if (VT != MVT::iPTR) {
2527      Ty = MVT::getTypeForValueType(VT);
2528    } else if (SV) {
2529      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2530      assert(PT && "Value for store must be a pointer");
2531      Ty = PT->getElementType();
2532    }
2533    assert(Ty && "Could not get type information for store");
2534    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2535  }
2536  SDVTList VTs = getVTList(MVT::Other);
2537  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2538  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2539  FoldingSetNodeID ID;
2540  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2541  ID.AddInteger(ISD::UNINDEXED);
2542  ID.AddInteger(false);
2543  ID.AddInteger((unsigned int)VT);
2544  ID.AddInteger(Alignment);
2545  ID.AddInteger(isVolatile);
2546  void *IP = 0;
2547  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2548    return SDOperand(E, 0);
2549  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2550                              VT, SV, SVOffset, Alignment, isVolatile);
2551  CSEMap.InsertNode(N, IP);
2552  AllNodes.push_back(N);
2553  return SDOperand(N, 0);
2554}
2555
2556SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2557                                      SDOperand Ptr, const Value *SV,
2558                                      int SVOffset, MVT::ValueType SVT,
2559                                      bool isVolatile, unsigned Alignment) {
2560  MVT::ValueType VT = Val.getValueType();
2561
2562  if (VT == SVT)
2563    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2564
2565  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2566         "Not a truncation?");
2567  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2568         "Can't do FP-INT conversion!");
2569
2570  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2571    const Type *Ty = 0;
2572    if (VT != MVT::iPTR) {
2573      Ty = MVT::getTypeForValueType(VT);
2574    } else if (SV) {
2575      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2576      assert(PT && "Value for store must be a pointer");
2577      Ty = PT->getElementType();
2578    }
2579    assert(Ty && "Could not get type information for store");
2580    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2581  }
2582  SDVTList VTs = getVTList(MVT::Other);
2583  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2584  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2585  FoldingSetNodeID ID;
2586  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2587  ID.AddInteger(ISD::UNINDEXED);
2588  ID.AddInteger(1);
2589  ID.AddInteger((unsigned int)SVT);
2590  ID.AddInteger(Alignment);
2591  ID.AddInteger(isVolatile);
2592  void *IP = 0;
2593  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2594    return SDOperand(E, 0);
2595  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2596                              SVT, SV, SVOffset, Alignment, isVolatile);
2597  CSEMap.InsertNode(N, IP);
2598  AllNodes.push_back(N);
2599  return SDOperand(N, 0);
2600}
2601
2602SDOperand
2603SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2604                              SDOperand Offset, ISD::MemIndexedMode AM) {
2605  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2606  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2607         "Store is already a indexed store!");
2608  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2609  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2610  FoldingSetNodeID ID;
2611  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2612  ID.AddInteger(AM);
2613  ID.AddInteger(ST->isTruncatingStore());
2614  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
2615  ID.AddInteger(ST->getAlignment());
2616  ID.AddInteger(ST->isVolatile());
2617  void *IP = 0;
2618  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2619    return SDOperand(E, 0);
2620  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2621                              ST->isTruncatingStore(), ST->getMemoryVT(),
2622                              ST->getSrcValue(), ST->getSrcValueOffset(),
2623                              ST->getAlignment(), ST->isVolatile());
2624  CSEMap.InsertNode(N, IP);
2625  AllNodes.push_back(N);
2626  return SDOperand(N, 0);
2627}
2628
2629SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2630                                 SDOperand Chain, SDOperand Ptr,
2631                                 SDOperand SV) {
2632  SDOperand Ops[] = { Chain, Ptr, SV };
2633  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2634}
2635
2636SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2637                                const SDOperand *Ops, unsigned NumOps) {
2638  switch (NumOps) {
2639  case 0: return getNode(Opcode, VT);
2640  case 1: return getNode(Opcode, VT, Ops[0]);
2641  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2642  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2643  default: break;
2644  }
2645
2646  switch (Opcode) {
2647  default: break;
2648  case ISD::SELECT_CC: {
2649    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2650    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2651           "LHS and RHS of condition must have same type!");
2652    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2653           "True and False arms of SelectCC must have same type!");
2654    assert(Ops[2].getValueType() == VT &&
2655           "select_cc node must be of same type as true and false value!");
2656    break;
2657  }
2658  case ISD::BR_CC: {
2659    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2660    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2661           "LHS/RHS of comparison should match types!");
2662    break;
2663  }
2664  }
2665
2666  // Memoize nodes.
2667  SDNode *N;
2668  SDVTList VTs = getVTList(VT);
2669  if (VT != MVT::Flag) {
2670    FoldingSetNodeID ID;
2671    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2672    void *IP = 0;
2673    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2674      return SDOperand(E, 0);
2675    N = new SDNode(Opcode, VTs, Ops, NumOps);
2676    CSEMap.InsertNode(N, IP);
2677  } else {
2678    N = new SDNode(Opcode, VTs, Ops, NumOps);
2679  }
2680  AllNodes.push_back(N);
2681  return SDOperand(N, 0);
2682}
2683
2684SDOperand SelectionDAG::getNode(unsigned Opcode,
2685                                std::vector<MVT::ValueType> &ResultTys,
2686                                const SDOperand *Ops, unsigned NumOps) {
2687  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2688                 Ops, NumOps);
2689}
2690
2691SDOperand SelectionDAG::getNode(unsigned Opcode,
2692                                const MVT::ValueType *VTs, unsigned NumVTs,
2693                                const SDOperand *Ops, unsigned NumOps) {
2694  if (NumVTs == 1)
2695    return getNode(Opcode, VTs[0], Ops, NumOps);
2696  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2697}
2698
2699SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2700                                const SDOperand *Ops, unsigned NumOps) {
2701  if (VTList.NumVTs == 1)
2702    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2703
2704  switch (Opcode) {
2705  // FIXME: figure out how to safely handle things like
2706  // int foo(int x) { return 1 << (x & 255); }
2707  // int bar() { return foo(256); }
2708#if 0
2709  case ISD::SRA_PARTS:
2710  case ISD::SRL_PARTS:
2711  case ISD::SHL_PARTS:
2712    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2713        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2714      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2715    else if (N3.getOpcode() == ISD::AND)
2716      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2717        // If the and is only masking out bits that cannot effect the shift,
2718        // eliminate the and.
2719        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2720        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2721          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2722      }
2723    break;
2724#endif
2725  }
2726
2727  // Memoize the node unless it returns a flag.
2728  SDNode *N;
2729  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2730    FoldingSetNodeID ID;
2731    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2732    void *IP = 0;
2733    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2734      return SDOperand(E, 0);
2735    if (NumOps == 1)
2736      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2737    else if (NumOps == 2)
2738      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2739    else if (NumOps == 3)
2740      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2741    else
2742      N = new SDNode(Opcode, VTList, Ops, NumOps);
2743    CSEMap.InsertNode(N, IP);
2744  } else {
2745    if (NumOps == 1)
2746      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2747    else if (NumOps == 2)
2748      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2749    else if (NumOps == 3)
2750      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2751    else
2752      N = new SDNode(Opcode, VTList, Ops, NumOps);
2753  }
2754  AllNodes.push_back(N);
2755  return SDOperand(N, 0);
2756}
2757
2758SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2759  return getNode(Opcode, VTList, 0, 0);
2760}
2761
2762SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2763                                SDOperand N1) {
2764  SDOperand Ops[] = { N1 };
2765  return getNode(Opcode, VTList, Ops, 1);
2766}
2767
2768SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2769                                SDOperand N1, SDOperand N2) {
2770  SDOperand Ops[] = { N1, N2 };
2771  return getNode(Opcode, VTList, Ops, 2);
2772}
2773
2774SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2775                                SDOperand N1, SDOperand N2, SDOperand N3) {
2776  SDOperand Ops[] = { N1, N2, N3 };
2777  return getNode(Opcode, VTList, Ops, 3);
2778}
2779
2780SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2781                                SDOperand N1, SDOperand N2, SDOperand N3,
2782                                SDOperand N4) {
2783  SDOperand Ops[] = { N1, N2, N3, N4 };
2784  return getNode(Opcode, VTList, Ops, 4);
2785}
2786
2787SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2788                                SDOperand N1, SDOperand N2, SDOperand N3,
2789                                SDOperand N4, SDOperand N5) {
2790  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2791  return getNode(Opcode, VTList, Ops, 5);
2792}
2793
2794SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2795  return makeVTList(SDNode::getValueTypeList(VT), 1);
2796}
2797
2798SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2799  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2800       E = VTList.end(); I != E; ++I) {
2801    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2802      return makeVTList(&(*I)[0], 2);
2803  }
2804  std::vector<MVT::ValueType> V;
2805  V.push_back(VT1);
2806  V.push_back(VT2);
2807  VTList.push_front(V);
2808  return makeVTList(&(*VTList.begin())[0], 2);
2809}
2810SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2811                                 MVT::ValueType VT3) {
2812  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2813       E = VTList.end(); I != E; ++I) {
2814    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2815        (*I)[2] == VT3)
2816      return makeVTList(&(*I)[0], 3);
2817  }
2818  std::vector<MVT::ValueType> V;
2819  V.push_back(VT1);
2820  V.push_back(VT2);
2821  V.push_back(VT3);
2822  VTList.push_front(V);
2823  return makeVTList(&(*VTList.begin())[0], 3);
2824}
2825
2826SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2827  switch (NumVTs) {
2828    case 0: assert(0 && "Cannot have nodes without results!");
2829    case 1: return getVTList(VTs[0]);
2830    case 2: return getVTList(VTs[0], VTs[1]);
2831    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2832    default: break;
2833  }
2834
2835  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2836       E = VTList.end(); I != E; ++I) {
2837    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2838
2839    bool NoMatch = false;
2840    for (unsigned i = 2; i != NumVTs; ++i)
2841      if (VTs[i] != (*I)[i]) {
2842        NoMatch = true;
2843        break;
2844      }
2845    if (!NoMatch)
2846      return makeVTList(&*I->begin(), NumVTs);
2847  }
2848
2849  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2850  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2851}
2852
2853
2854/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2855/// specified operands.  If the resultant node already exists in the DAG,
2856/// this does not modify the specified node, instead it returns the node that
2857/// already exists.  If the resultant node does not exist in the DAG, the
2858/// input node is returned.  As a degenerate case, if you specify the same
2859/// input operands as the node already has, the input node is returned.
2860SDOperand SelectionDAG::
2861UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2862  SDNode *N = InN.Val;
2863  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2864
2865  // Check to see if there is no change.
2866  if (Op == N->getOperand(0)) return InN;
2867
2868  // See if the modified node already exists.
2869  void *InsertPos = 0;
2870  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2871    return SDOperand(Existing, InN.ResNo);
2872
2873  // Nope it doesn't.  Remove the node from it's current place in the maps.
2874  if (InsertPos)
2875    RemoveNodeFromCSEMaps(N);
2876
2877  // Now we update the operands.
2878  N->OperandList[0].Val->removeUser(N);
2879  Op.Val->addUser(N);
2880  N->OperandList[0] = Op;
2881
2882  // If this gets put into a CSE map, add it.
2883  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2884  return InN;
2885}
2886
2887SDOperand SelectionDAG::
2888UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2889  SDNode *N = InN.Val;
2890  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2891
2892  // Check to see if there is no change.
2893  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2894    return InN;   // No operands changed, just return the input node.
2895
2896  // See if the modified node already exists.
2897  void *InsertPos = 0;
2898  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2899    return SDOperand(Existing, InN.ResNo);
2900
2901  // Nope it doesn't.  Remove the node from it's current place in the maps.
2902  if (InsertPos)
2903    RemoveNodeFromCSEMaps(N);
2904
2905  // Now we update the operands.
2906  if (N->OperandList[0] != Op1) {
2907    N->OperandList[0].Val->removeUser(N);
2908    Op1.Val->addUser(N);
2909    N->OperandList[0] = Op1;
2910  }
2911  if (N->OperandList[1] != Op2) {
2912    N->OperandList[1].Val->removeUser(N);
2913    Op2.Val->addUser(N);
2914    N->OperandList[1] = Op2;
2915  }
2916
2917  // If this gets put into a CSE map, add it.
2918  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2919  return InN;
2920}
2921
2922SDOperand SelectionDAG::
2923UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2924  SDOperand Ops[] = { Op1, Op2, Op3 };
2925  return UpdateNodeOperands(N, Ops, 3);
2926}
2927
2928SDOperand SelectionDAG::
2929UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2930                   SDOperand Op3, SDOperand Op4) {
2931  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2932  return UpdateNodeOperands(N, Ops, 4);
2933}
2934
2935SDOperand SelectionDAG::
2936UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2937                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2938  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2939  return UpdateNodeOperands(N, Ops, 5);
2940}
2941
2942
2943SDOperand SelectionDAG::
2944UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2945  SDNode *N = InN.Val;
2946  assert(N->getNumOperands() == NumOps &&
2947         "Update with wrong number of operands");
2948
2949  // Check to see if there is no change.
2950  bool AnyChange = false;
2951  for (unsigned i = 0; i != NumOps; ++i) {
2952    if (Ops[i] != N->getOperand(i)) {
2953      AnyChange = true;
2954      break;
2955    }
2956  }
2957
2958  // No operands changed, just return the input node.
2959  if (!AnyChange) return InN;
2960
2961  // See if the modified node already exists.
2962  void *InsertPos = 0;
2963  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2964    return SDOperand(Existing, InN.ResNo);
2965
2966  // Nope it doesn't.  Remove the node from it's current place in the maps.
2967  if (InsertPos)
2968    RemoveNodeFromCSEMaps(N);
2969
2970  // Now we update the operands.
2971  for (unsigned i = 0; i != NumOps; ++i) {
2972    if (N->OperandList[i] != Ops[i]) {
2973      N->OperandList[i].Val->removeUser(N);
2974      Ops[i].Val->addUser(N);
2975      N->OperandList[i] = Ops[i];
2976    }
2977  }
2978
2979  // If this gets put into a CSE map, add it.
2980  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2981  return InN;
2982}
2983
2984
2985/// MorphNodeTo - This frees the operands of the current node, resets the
2986/// opcode, types, and operands to the specified value.  This should only be
2987/// used by the SelectionDAG class.
2988void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2989                         const SDOperand *Ops, unsigned NumOps) {
2990  NodeType = Opc;
2991  ValueList = L.VTs;
2992  NumValues = L.NumVTs;
2993
2994  // Clear the operands list, updating used nodes to remove this from their
2995  // use list.
2996  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2997    I->Val->removeUser(this);
2998
2999  // If NumOps is larger than the # of operands we currently have, reallocate
3000  // the operand list.
3001  if (NumOps > NumOperands) {
3002    if (OperandsNeedDelete)
3003      delete [] OperandList;
3004    OperandList = new SDOperand[NumOps];
3005    OperandsNeedDelete = true;
3006  }
3007
3008  // Assign the new operands.
3009  NumOperands = NumOps;
3010
3011  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3012    OperandList[i] = Ops[i];
3013    SDNode *N = OperandList[i].Val;
3014    N->Uses.push_back(this);
3015  }
3016}
3017
3018/// SelectNodeTo - These are used for target selectors to *mutate* the
3019/// specified node to have the specified return type, Target opcode, and
3020/// operands.  Note that target opcodes are stored as
3021/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3022///
3023/// Note that SelectNodeTo returns the resultant node.  If there is already a
3024/// node of the specified opcode and operands, it returns that node instead of
3025/// the current one.
3026SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3027                                   MVT::ValueType VT) {
3028  SDVTList VTs = getVTList(VT);
3029  FoldingSetNodeID ID;
3030  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3031  void *IP = 0;
3032  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3033    return ON;
3034
3035  RemoveNodeFromCSEMaps(N);
3036
3037  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3038
3039  CSEMap.InsertNode(N, IP);
3040  return N;
3041}
3042
3043SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3044                                   MVT::ValueType VT, SDOperand Op1) {
3045  // If an identical node already exists, use it.
3046  SDVTList VTs = getVTList(VT);
3047  SDOperand Ops[] = { Op1 };
3048
3049  FoldingSetNodeID ID;
3050  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3051  void *IP = 0;
3052  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3053    return ON;
3054
3055  RemoveNodeFromCSEMaps(N);
3056  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3057  CSEMap.InsertNode(N, IP);
3058  return N;
3059}
3060
3061SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3062                                   MVT::ValueType VT, SDOperand Op1,
3063                                   SDOperand Op2) {
3064  // If an identical node already exists, use it.
3065  SDVTList VTs = getVTList(VT);
3066  SDOperand Ops[] = { Op1, Op2 };
3067
3068  FoldingSetNodeID ID;
3069  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3070  void *IP = 0;
3071  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3072    return ON;
3073
3074  RemoveNodeFromCSEMaps(N);
3075
3076  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3077
3078  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3079  return N;
3080}
3081
3082SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3083                                   MVT::ValueType VT, SDOperand Op1,
3084                                   SDOperand Op2, SDOperand Op3) {
3085  // If an identical node already exists, use it.
3086  SDVTList VTs = getVTList(VT);
3087  SDOperand Ops[] = { Op1, Op2, Op3 };
3088  FoldingSetNodeID ID;
3089  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3090  void *IP = 0;
3091  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3092    return ON;
3093
3094  RemoveNodeFromCSEMaps(N);
3095
3096  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3097
3098  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3099  return N;
3100}
3101
3102SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3103                                   MVT::ValueType VT, const SDOperand *Ops,
3104                                   unsigned NumOps) {
3105  // If an identical node already exists, use it.
3106  SDVTList VTs = getVTList(VT);
3107  FoldingSetNodeID ID;
3108  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3109  void *IP = 0;
3110  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3111    return ON;
3112
3113  RemoveNodeFromCSEMaps(N);
3114  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3115
3116  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3117  return N;
3118}
3119
3120SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3121                                   MVT::ValueType VT1, MVT::ValueType VT2,
3122                                   SDOperand Op1, SDOperand Op2) {
3123  SDVTList VTs = getVTList(VT1, VT2);
3124  FoldingSetNodeID ID;
3125  SDOperand Ops[] = { Op1, Op2 };
3126  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3127  void *IP = 0;
3128  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3129    return ON;
3130
3131  RemoveNodeFromCSEMaps(N);
3132  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3133  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3134  return N;
3135}
3136
3137SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3138                                   MVT::ValueType VT1, MVT::ValueType VT2,
3139                                   SDOperand Op1, SDOperand Op2,
3140                                   SDOperand Op3) {
3141  // If an identical node already exists, use it.
3142  SDVTList VTs = getVTList(VT1, VT2);
3143  SDOperand Ops[] = { Op1, Op2, Op3 };
3144  FoldingSetNodeID ID;
3145  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3146  void *IP = 0;
3147  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3148    return ON;
3149
3150  RemoveNodeFromCSEMaps(N);
3151
3152  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3153  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3154  return N;
3155}
3156
3157
3158/// getTargetNode - These are used for target selectors to create a new node
3159/// with specified return type(s), target opcode, and operands.
3160///
3161/// Note that getTargetNode returns the resultant node.  If there is already a
3162/// node of the specified opcode and operands, it returns that node instead of
3163/// the current one.
3164SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3165  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3166}
3167SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3168                                    SDOperand Op1) {
3169  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3170}
3171SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3172                                    SDOperand Op1, SDOperand Op2) {
3173  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3174}
3175SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3176                                    SDOperand Op1, SDOperand Op2,
3177                                    SDOperand Op3) {
3178  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3179}
3180SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3181                                    const SDOperand *Ops, unsigned NumOps) {
3182  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3183}
3184SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3185                                    MVT::ValueType VT2) {
3186  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3187  SDOperand Op;
3188  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3189}
3190SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3191                                    MVT::ValueType VT2, SDOperand Op1) {
3192  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3193  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3194}
3195SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3196                                    MVT::ValueType VT2, SDOperand Op1,
3197                                    SDOperand Op2) {
3198  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3199  SDOperand Ops[] = { Op1, Op2 };
3200  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3201}
3202SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3203                                    MVT::ValueType VT2, SDOperand Op1,
3204                                    SDOperand Op2, SDOperand Op3) {
3205  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3206  SDOperand Ops[] = { Op1, Op2, Op3 };
3207  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3208}
3209SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3210                                    MVT::ValueType VT2,
3211                                    const SDOperand *Ops, unsigned NumOps) {
3212  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3213  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3214}
3215SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3216                                    MVT::ValueType VT2, MVT::ValueType VT3,
3217                                    SDOperand Op1, SDOperand Op2) {
3218  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3219  SDOperand Ops[] = { Op1, Op2 };
3220  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3221}
3222SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3223                                    MVT::ValueType VT2, MVT::ValueType VT3,
3224                                    SDOperand Op1, SDOperand Op2,
3225                                    SDOperand Op3) {
3226  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3227  SDOperand Ops[] = { Op1, Op2, Op3 };
3228  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3229}
3230SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3231                                    MVT::ValueType VT2, MVT::ValueType VT3,
3232                                    const SDOperand *Ops, unsigned NumOps) {
3233  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3234  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3235}
3236SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3237                                    MVT::ValueType VT2, MVT::ValueType VT3,
3238                                    MVT::ValueType VT4,
3239                                    const SDOperand *Ops, unsigned NumOps) {
3240  std::vector<MVT::ValueType> VTList;
3241  VTList.push_back(VT1);
3242  VTList.push_back(VT2);
3243  VTList.push_back(VT3);
3244  VTList.push_back(VT4);
3245  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3246  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3247}
3248SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3249                                    std::vector<MVT::ValueType> &ResultTys,
3250                                    const SDOperand *Ops, unsigned NumOps) {
3251  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3252  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3253                 Ops, NumOps).Val;
3254}
3255
3256
3257/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3258/// This can cause recursive merging of nodes in the DAG.
3259///
3260/// This version assumes From has a single result value.
3261///
3262void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3263                                      DAGUpdateListener *UpdateListener) {
3264  SDNode *From = FromN.Val;
3265  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3266         "Cannot replace with this method!");
3267  assert(From != To.Val && "Cannot replace uses of with self");
3268
3269  while (!From->use_empty()) {
3270    // Process users until they are all gone.
3271    SDNode *U = *From->use_begin();
3272
3273    // This node is about to morph, remove its old self from the CSE maps.
3274    RemoveNodeFromCSEMaps(U);
3275
3276    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3277         I != E; ++I)
3278      if (I->Val == From) {
3279        From->removeUser(U);
3280        *I = To;
3281        To.Val->addUser(U);
3282      }
3283
3284    // Now that we have modified U, add it back to the CSE maps.  If it already
3285    // exists there, recursively merge the results together.
3286    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3287      ReplaceAllUsesWith(U, Existing, UpdateListener);
3288      // U is now dead.  Inform the listener if it exists and delete it.
3289      if (UpdateListener)
3290        UpdateListener->NodeDeleted(U);
3291      DeleteNodeNotInCSEMaps(U);
3292    } else {
3293      // If the node doesn't already exist, we updated it.  Inform a listener if
3294      // it exists.
3295      if (UpdateListener)
3296        UpdateListener->NodeUpdated(U);
3297    }
3298  }
3299}
3300
3301/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3302/// This can cause recursive merging of nodes in the DAG.
3303///
3304/// This version assumes From/To have matching types and numbers of result
3305/// values.
3306///
3307void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3308                                      DAGUpdateListener *UpdateListener) {
3309  assert(From != To && "Cannot replace uses of with self");
3310  assert(From->getNumValues() == To->getNumValues() &&
3311         "Cannot use this version of ReplaceAllUsesWith!");
3312  if (From->getNumValues() == 1)   // If possible, use the faster version.
3313    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3314                              UpdateListener);
3315
3316  while (!From->use_empty()) {
3317    // Process users until they are all gone.
3318    SDNode *U = *From->use_begin();
3319
3320    // This node is about to morph, remove its old self from the CSE maps.
3321    RemoveNodeFromCSEMaps(U);
3322
3323    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3324         I != E; ++I)
3325      if (I->Val == From) {
3326        From->removeUser(U);
3327        I->Val = To;
3328        To->addUser(U);
3329      }
3330
3331    // Now that we have modified U, add it back to the CSE maps.  If it already
3332    // exists there, recursively merge the results together.
3333    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3334      ReplaceAllUsesWith(U, Existing, UpdateListener);
3335      // U is now dead.  Inform the listener if it exists and delete it.
3336      if (UpdateListener)
3337        UpdateListener->NodeDeleted(U);
3338      DeleteNodeNotInCSEMaps(U);
3339    } else {
3340      // If the node doesn't already exist, we updated it.  Inform a listener if
3341      // it exists.
3342      if (UpdateListener)
3343        UpdateListener->NodeUpdated(U);
3344    }
3345  }
3346}
3347
3348/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3349/// This can cause recursive merging of nodes in the DAG.
3350///
3351/// This version can replace From with any result values.  To must match the
3352/// number and types of values returned by From.
3353void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3354                                      const SDOperand *To,
3355                                      DAGUpdateListener *UpdateListener) {
3356  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3357    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3358
3359  while (!From->use_empty()) {
3360    // Process users until they are all gone.
3361    SDNode *U = *From->use_begin();
3362
3363    // This node is about to morph, remove its old self from the CSE maps.
3364    RemoveNodeFromCSEMaps(U);
3365
3366    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3367         I != E; ++I)
3368      if (I->Val == From) {
3369        const SDOperand &ToOp = To[I->ResNo];
3370        From->removeUser(U);
3371        *I = ToOp;
3372        ToOp.Val->addUser(U);
3373      }
3374
3375    // Now that we have modified U, add it back to the CSE maps.  If it already
3376    // exists there, recursively merge the results together.
3377    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3378      ReplaceAllUsesWith(U, Existing, UpdateListener);
3379      // U is now dead.  Inform the listener if it exists and delete it.
3380      if (UpdateListener)
3381        UpdateListener->NodeDeleted(U);
3382      DeleteNodeNotInCSEMaps(U);
3383    } else {
3384      // If the node doesn't already exist, we updated it.  Inform a listener if
3385      // it exists.
3386      if (UpdateListener)
3387        UpdateListener->NodeUpdated(U);
3388    }
3389  }
3390}
3391
3392namespace {
3393  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3394  /// any deleted nodes from the set passed into its constructor and recursively
3395  /// notifies another update listener if specified.
3396  class ChainedSetUpdaterListener :
3397  public SelectionDAG::DAGUpdateListener {
3398    SmallSetVector<SDNode*, 16> &Set;
3399    SelectionDAG::DAGUpdateListener *Chain;
3400  public:
3401    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3402                              SelectionDAG::DAGUpdateListener *chain)
3403      : Set(set), Chain(chain) {}
3404
3405    virtual void NodeDeleted(SDNode *N) {
3406      Set.remove(N);
3407      if (Chain) Chain->NodeDeleted(N);
3408    }
3409    virtual void NodeUpdated(SDNode *N) {
3410      if (Chain) Chain->NodeUpdated(N);
3411    }
3412  };
3413}
3414
3415/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3416/// uses of other values produced by From.Val alone.  The Deleted vector is
3417/// handled the same way as for ReplaceAllUsesWith.
3418void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3419                                             DAGUpdateListener *UpdateListener){
3420  assert(From != To && "Cannot replace a value with itself");
3421
3422  // Handle the simple, trivial, case efficiently.
3423  if (From.Val->getNumValues() == 1) {
3424    ReplaceAllUsesWith(From, To, UpdateListener);
3425    return;
3426  }
3427
3428  if (From.use_empty()) return;
3429
3430  // Get all of the users of From.Val.  We want these in a nice,
3431  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3432  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3433
3434  // When one of the recursive merges deletes nodes from the graph, we need to
3435  // make sure that UpdateListener is notified *and* that the node is removed
3436  // from Users if present.  CSUL does this.
3437  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3438
3439  while (!Users.empty()) {
3440    // We know that this user uses some value of From.  If it is the right
3441    // value, update it.
3442    SDNode *User = Users.back();
3443    Users.pop_back();
3444
3445    // Scan for an operand that matches From.
3446    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3447    for (; Op != E; ++Op)
3448      if (*Op == From) break;
3449
3450    // If there are no matches, the user must use some other result of From.
3451    if (Op == E) continue;
3452
3453    // Okay, we know this user needs to be updated.  Remove its old self
3454    // from the CSE maps.
3455    RemoveNodeFromCSEMaps(User);
3456
3457    // Update all operands that match "From" in case there are multiple uses.
3458    for (; Op != E; ++Op) {
3459      if (*Op == From) {
3460        From.Val->removeUser(User);
3461        *Op = To;
3462        To.Val->addUser(User);
3463      }
3464    }
3465
3466    // Now that we have modified User, add it back to the CSE maps.  If it
3467    // already exists there, recursively merge the results together.
3468    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3469    if (!Existing) {
3470      if (UpdateListener) UpdateListener->NodeUpdated(User);
3471      continue;  // Continue on to next user.
3472    }
3473
3474    // If there was already an existing matching node, use ReplaceAllUsesWith
3475    // to replace the dead one with the existing one.  This can cause
3476    // recursive merging of other unrelated nodes down the line.  The merging
3477    // can cause deletion of nodes that used the old value.  To handle this, we
3478    // use CSUL to remove them from the Users set.
3479    ReplaceAllUsesWith(User, Existing, &CSUL);
3480
3481    // User is now dead.  Notify a listener if present.
3482    if (UpdateListener) UpdateListener->NodeDeleted(User);
3483    DeleteNodeNotInCSEMaps(User);
3484  }
3485}
3486
3487
3488/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3489/// their allnodes order. It returns the maximum id.
3490unsigned SelectionDAG::AssignNodeIds() {
3491  unsigned Id = 0;
3492  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3493    SDNode *N = I;
3494    N->setNodeId(Id++);
3495  }
3496  return Id;
3497}
3498
3499/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3500/// based on their topological order. It returns the maximum id and a vector
3501/// of the SDNodes* in assigned order by reference.
3502unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3503  unsigned DAGSize = AllNodes.size();
3504  std::vector<unsigned> InDegree(DAGSize);
3505  std::vector<SDNode*> Sources;
3506
3507  // Use a two pass approach to avoid using a std::map which is slow.
3508  unsigned Id = 0;
3509  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3510    SDNode *N = I;
3511    N->setNodeId(Id++);
3512    unsigned Degree = N->use_size();
3513    InDegree[N->getNodeId()] = Degree;
3514    if (Degree == 0)
3515      Sources.push_back(N);
3516  }
3517
3518  TopOrder.clear();
3519  while (!Sources.empty()) {
3520    SDNode *N = Sources.back();
3521    Sources.pop_back();
3522    TopOrder.push_back(N);
3523    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3524      SDNode *P = I->Val;
3525      unsigned Degree = --InDegree[P->getNodeId()];
3526      if (Degree == 0)
3527        Sources.push_back(P);
3528    }
3529  }
3530
3531  // Second pass, assign the actual topological order as node ids.
3532  Id = 0;
3533  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3534       TI != TE; ++TI)
3535    (*TI)->setNodeId(Id++);
3536
3537  return Id;
3538}
3539
3540
3541
3542//===----------------------------------------------------------------------===//
3543//                              SDNode Class
3544//===----------------------------------------------------------------------===//
3545
3546// Out-of-line virtual method to give class a home.
3547void SDNode::ANCHOR() {}
3548void UnarySDNode::ANCHOR() {}
3549void BinarySDNode::ANCHOR() {}
3550void TernarySDNode::ANCHOR() {}
3551void HandleSDNode::ANCHOR() {}
3552void StringSDNode::ANCHOR() {}
3553void ConstantSDNode::ANCHOR() {}
3554void ConstantFPSDNode::ANCHOR() {}
3555void GlobalAddressSDNode::ANCHOR() {}
3556void FrameIndexSDNode::ANCHOR() {}
3557void JumpTableSDNode::ANCHOR() {}
3558void ConstantPoolSDNode::ANCHOR() {}
3559void BasicBlockSDNode::ANCHOR() {}
3560void SrcValueSDNode::ANCHOR() {}
3561void MemOperandSDNode::ANCHOR() {}
3562void RegisterSDNode::ANCHOR() {}
3563void ExternalSymbolSDNode::ANCHOR() {}
3564void CondCodeSDNode::ANCHOR() {}
3565void VTSDNode::ANCHOR() {}
3566void LoadSDNode::ANCHOR() {}
3567void StoreSDNode::ANCHOR() {}
3568
3569HandleSDNode::~HandleSDNode() {
3570  SDVTList VTs = { 0, 0 };
3571  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3572}
3573
3574GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3575                                         MVT::ValueType VT, int o)
3576  : SDNode(isa<GlobalVariable>(GA) &&
3577           cast<GlobalVariable>(GA)->isThreadLocal() ?
3578           // Thread Local
3579           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3580           // Non Thread Local
3581           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3582           getSDVTList(VT)), Offset(o) {
3583  TheGlobal = const_cast<GlobalValue*>(GA);
3584}
3585
3586/// getMemOperand - Return a MemOperand object describing the memory
3587/// reference performed by this load or store.
3588MemOperand LSBaseSDNode::getMemOperand() const {
3589  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
3590  int Flags =
3591    getOpcode() == ISD::LOAD ? MemOperand::MOLoad : MemOperand::MOStore;
3592  if (IsVolatile) Flags |= MemOperand::MOVolatile;
3593
3594  // Check if the load references a frame index, and does not have
3595  // an SV attached.
3596  const FrameIndexSDNode *FI =
3597    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
3598  if (!getSrcValue() && FI)
3599    return MemOperand(PseudoSourceValue::getFixedStack(), Flags,
3600                      FI->getIndex(), Size, Alignment);
3601  else
3602    return MemOperand(getSrcValue(), Flags,
3603                      getSrcValueOffset(), Size, Alignment);
3604}
3605
3606/// Profile - Gather unique data for the node.
3607///
3608void SDNode::Profile(FoldingSetNodeID &ID) {
3609  AddNodeIDNode(ID, this);
3610}
3611
3612/// getValueTypeList - Return a pointer to the specified value type.
3613///
3614const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3615  if (MVT::isExtendedVT(VT)) {
3616    static std::set<MVT::ValueType> EVTs;
3617    return &(*EVTs.insert(VT).first);
3618  } else {
3619    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3620    VTs[VT] = VT;
3621    return &VTs[VT];
3622  }
3623}
3624
3625/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3626/// indicated value.  This method ignores uses of other values defined by this
3627/// operation.
3628bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3629  assert(Value < getNumValues() && "Bad value!");
3630
3631  // If there is only one value, this is easy.
3632  if (getNumValues() == 1)
3633    return use_size() == NUses;
3634  if (use_size() < NUses) return false;
3635
3636  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3637
3638  SmallPtrSet<SDNode*, 32> UsersHandled;
3639
3640  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3641    SDNode *User = *UI;
3642    if (User->getNumOperands() == 1 ||
3643        UsersHandled.insert(User))     // First time we've seen this?
3644      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3645        if (User->getOperand(i) == TheValue) {
3646          if (NUses == 0)
3647            return false;   // too many uses
3648          --NUses;
3649        }
3650  }
3651
3652  // Found exactly the right number of uses?
3653  return NUses == 0;
3654}
3655
3656
3657/// hasAnyUseOfValue - Return true if there are any use of the indicated
3658/// value. This method ignores uses of other values defined by this operation.
3659bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3660  assert(Value < getNumValues() && "Bad value!");
3661
3662  if (use_empty()) return false;
3663
3664  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3665
3666  SmallPtrSet<SDNode*, 32> UsersHandled;
3667
3668  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3669    SDNode *User = *UI;
3670    if (User->getNumOperands() == 1 ||
3671        UsersHandled.insert(User))     // First time we've seen this?
3672      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3673        if (User->getOperand(i) == TheValue) {
3674          return true;
3675        }
3676  }
3677
3678  return false;
3679}
3680
3681
3682/// isOnlyUse - Return true if this node is the only use of N.
3683///
3684bool SDNode::isOnlyUse(SDNode *N) const {
3685  bool Seen = false;
3686  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3687    SDNode *User = *I;
3688    if (User == this)
3689      Seen = true;
3690    else
3691      return false;
3692  }
3693
3694  return Seen;
3695}
3696
3697/// isOperand - Return true if this node is an operand of N.
3698///
3699bool SDOperand::isOperand(SDNode *N) const {
3700  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3701    if (*this == N->getOperand(i))
3702      return true;
3703  return false;
3704}
3705
3706bool SDNode::isOperand(SDNode *N) const {
3707  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3708    if (this == N->OperandList[i].Val)
3709      return true;
3710  return false;
3711}
3712
3713/// reachesChainWithoutSideEffects - Return true if this operand (which must
3714/// be a chain) reaches the specified operand without crossing any
3715/// side-effecting instructions.  In practice, this looks through token
3716/// factors and non-volatile loads.  In order to remain efficient, this only
3717/// looks a couple of nodes in, it does not do an exhaustive search.
3718bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3719                                               unsigned Depth) const {
3720  if (*this == Dest) return true;
3721
3722  // Don't search too deeply, we just want to be able to see through
3723  // TokenFactor's etc.
3724  if (Depth == 0) return false;
3725
3726  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3727  // of the operands of the TF reach dest, then we can do the xform.
3728  if (getOpcode() == ISD::TokenFactor) {
3729    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3730      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3731        return true;
3732    return false;
3733  }
3734
3735  // Loads don't have side effects, look through them.
3736  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3737    if (!Ld->isVolatile())
3738      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3739  }
3740  return false;
3741}
3742
3743
3744static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3745                            SmallPtrSet<SDNode *, 32> &Visited) {
3746  if (found || !Visited.insert(N))
3747    return;
3748
3749  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3750    SDNode *Op = N->getOperand(i).Val;
3751    if (Op == P) {
3752      found = true;
3753      return;
3754    }
3755    findPredecessor(Op, P, found, Visited);
3756  }
3757}
3758
3759/// isPredecessor - Return true if this node is a predecessor of N. This node
3760/// is either an operand of N or it can be reached by recursively traversing
3761/// up the operands.
3762/// NOTE: this is an expensive method. Use it carefully.
3763bool SDNode::isPredecessor(SDNode *N) const {
3764  SmallPtrSet<SDNode *, 32> Visited;
3765  bool found = false;
3766  findPredecessor(N, this, found, Visited);
3767  return found;
3768}
3769
3770uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3771  assert(Num < NumOperands && "Invalid child # of SDNode!");
3772  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3773}
3774
3775std::string SDNode::getOperationName(const SelectionDAG *G) const {
3776  switch (getOpcode()) {
3777  default:
3778    if (getOpcode() < ISD::BUILTIN_OP_END)
3779      return "<<Unknown DAG Node>>";
3780    else {
3781      if (G) {
3782        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3783          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3784            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3785
3786        TargetLowering &TLI = G->getTargetLoweringInfo();
3787        const char *Name =
3788          TLI.getTargetNodeName(getOpcode());
3789        if (Name) return Name;
3790      }
3791
3792      return "<<Unknown Target Node>>";
3793    }
3794
3795  case ISD::PCMARKER:      return "PCMarker";
3796  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3797  case ISD::SRCVALUE:      return "SrcValue";
3798  case ISD::MEMOPERAND:    return "MemOperand";
3799  case ISD::EntryToken:    return "EntryToken";
3800  case ISD::TokenFactor:   return "TokenFactor";
3801  case ISD::AssertSext:    return "AssertSext";
3802  case ISD::AssertZext:    return "AssertZext";
3803
3804  case ISD::STRING:        return "String";
3805  case ISD::BasicBlock:    return "BasicBlock";
3806  case ISD::VALUETYPE:     return "ValueType";
3807  case ISD::Register:      return "Register";
3808
3809  case ISD::Constant:      return "Constant";
3810  case ISD::ConstantFP:    return "ConstantFP";
3811  case ISD::GlobalAddress: return "GlobalAddress";
3812  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3813  case ISD::FrameIndex:    return "FrameIndex";
3814  case ISD::JumpTable:     return "JumpTable";
3815  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3816  case ISD::RETURNADDR: return "RETURNADDR";
3817  case ISD::FRAMEADDR: return "FRAMEADDR";
3818  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3819  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3820  case ISD::EHSELECTION: return "EHSELECTION";
3821  case ISD::EH_RETURN: return "EH_RETURN";
3822  case ISD::ConstantPool:  return "ConstantPool";
3823  case ISD::ExternalSymbol: return "ExternalSymbol";
3824  case ISD::INTRINSIC_WO_CHAIN: {
3825    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3826    return Intrinsic::getName((Intrinsic::ID)IID);
3827  }
3828  case ISD::INTRINSIC_VOID:
3829  case ISD::INTRINSIC_W_CHAIN: {
3830    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3831    return Intrinsic::getName((Intrinsic::ID)IID);
3832  }
3833
3834  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3835  case ISD::TargetConstant: return "TargetConstant";
3836  case ISD::TargetConstantFP:return "TargetConstantFP";
3837  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3838  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3839  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3840  case ISD::TargetJumpTable:  return "TargetJumpTable";
3841  case ISD::TargetConstantPool:  return "TargetConstantPool";
3842  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3843
3844  case ISD::CopyToReg:     return "CopyToReg";
3845  case ISD::CopyFromReg:   return "CopyFromReg";
3846  case ISD::UNDEF:         return "undef";
3847  case ISD::MERGE_VALUES:  return "merge_values";
3848  case ISD::INLINEASM:     return "inlineasm";
3849  case ISD::LABEL:         return "label";
3850  case ISD::DECLARE:       return "declare";
3851  case ISD::HANDLENODE:    return "handlenode";
3852  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3853  case ISD::CALL:          return "call";
3854
3855  // Unary operators
3856  case ISD::FABS:   return "fabs";
3857  case ISD::FNEG:   return "fneg";
3858  case ISD::FSQRT:  return "fsqrt";
3859  case ISD::FSIN:   return "fsin";
3860  case ISD::FCOS:   return "fcos";
3861  case ISD::FPOWI:  return "fpowi";
3862  case ISD::FPOW:   return "fpow";
3863
3864  // Binary operators
3865  case ISD::ADD:    return "add";
3866  case ISD::SUB:    return "sub";
3867  case ISD::MUL:    return "mul";
3868  case ISD::MULHU:  return "mulhu";
3869  case ISD::MULHS:  return "mulhs";
3870  case ISD::SDIV:   return "sdiv";
3871  case ISD::UDIV:   return "udiv";
3872  case ISD::SREM:   return "srem";
3873  case ISD::UREM:   return "urem";
3874  case ISD::SMUL_LOHI:  return "smul_lohi";
3875  case ISD::UMUL_LOHI:  return "umul_lohi";
3876  case ISD::SDIVREM:    return "sdivrem";
3877  case ISD::UDIVREM:    return "divrem";
3878  case ISD::AND:    return "and";
3879  case ISD::OR:     return "or";
3880  case ISD::XOR:    return "xor";
3881  case ISD::SHL:    return "shl";
3882  case ISD::SRA:    return "sra";
3883  case ISD::SRL:    return "srl";
3884  case ISD::ROTL:   return "rotl";
3885  case ISD::ROTR:   return "rotr";
3886  case ISD::FADD:   return "fadd";
3887  case ISD::FSUB:   return "fsub";
3888  case ISD::FMUL:   return "fmul";
3889  case ISD::FDIV:   return "fdiv";
3890  case ISD::FREM:   return "frem";
3891  case ISD::FCOPYSIGN: return "fcopysign";
3892  case ISD::FGETSIGN:  return "fgetsign";
3893
3894  case ISD::SETCC:       return "setcc";
3895  case ISD::SELECT:      return "select";
3896  case ISD::SELECT_CC:   return "select_cc";
3897  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3898  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3899  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3900  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3901  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3902  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3903  case ISD::CARRY_FALSE:         return "carry_false";
3904  case ISD::ADDC:        return "addc";
3905  case ISD::ADDE:        return "adde";
3906  case ISD::SUBC:        return "subc";
3907  case ISD::SUBE:        return "sube";
3908  case ISD::SHL_PARTS:   return "shl_parts";
3909  case ISD::SRA_PARTS:   return "sra_parts";
3910  case ISD::SRL_PARTS:   return "srl_parts";
3911
3912  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3913  case ISD::INSERT_SUBREG:      return "insert_subreg";
3914
3915  // Conversion operators.
3916  case ISD::SIGN_EXTEND: return "sign_extend";
3917  case ISD::ZERO_EXTEND: return "zero_extend";
3918  case ISD::ANY_EXTEND:  return "any_extend";
3919  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3920  case ISD::TRUNCATE:    return "truncate";
3921  case ISD::FP_ROUND:    return "fp_round";
3922  case ISD::FLT_ROUNDS_: return "flt_rounds";
3923  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3924  case ISD::FP_EXTEND:   return "fp_extend";
3925
3926  case ISD::SINT_TO_FP:  return "sint_to_fp";
3927  case ISD::UINT_TO_FP:  return "uint_to_fp";
3928  case ISD::FP_TO_SINT:  return "fp_to_sint";
3929  case ISD::FP_TO_UINT:  return "fp_to_uint";
3930  case ISD::BIT_CONVERT: return "bit_convert";
3931
3932    // Control flow instructions
3933  case ISD::BR:      return "br";
3934  case ISD::BRIND:   return "brind";
3935  case ISD::BR_JT:   return "br_jt";
3936  case ISD::BRCOND:  return "brcond";
3937  case ISD::BR_CC:   return "br_cc";
3938  case ISD::RET:     return "ret";
3939  case ISD::CALLSEQ_START:  return "callseq_start";
3940  case ISD::CALLSEQ_END:    return "callseq_end";
3941
3942    // Other operators
3943  case ISD::LOAD:               return "load";
3944  case ISD::STORE:              return "store";
3945  case ISD::VAARG:              return "vaarg";
3946  case ISD::VACOPY:             return "vacopy";
3947  case ISD::VAEND:              return "vaend";
3948  case ISD::VASTART:            return "vastart";
3949  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3950  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3951  case ISD::BUILD_PAIR:         return "build_pair";
3952  case ISD::STACKSAVE:          return "stacksave";
3953  case ISD::STACKRESTORE:       return "stackrestore";
3954  case ISD::TRAP:               return "trap";
3955
3956  // Block memory operations.
3957  case ISD::MEMSET:  return "memset";
3958  case ISD::MEMCPY:  return "memcpy";
3959  case ISD::MEMMOVE: return "memmove";
3960
3961  // Bit manipulation
3962  case ISD::BSWAP:   return "bswap";
3963  case ISD::CTPOP:   return "ctpop";
3964  case ISD::CTTZ:    return "cttz";
3965  case ISD::CTLZ:    return "ctlz";
3966
3967  // Debug info
3968  case ISD::LOCATION: return "location";
3969  case ISD::DEBUG_LOC: return "debug_loc";
3970
3971  // Trampolines
3972  case ISD::TRAMPOLINE: return "trampoline";
3973
3974  case ISD::CONDCODE:
3975    switch (cast<CondCodeSDNode>(this)->get()) {
3976    default: assert(0 && "Unknown setcc condition!");
3977    case ISD::SETOEQ:  return "setoeq";
3978    case ISD::SETOGT:  return "setogt";
3979    case ISD::SETOGE:  return "setoge";
3980    case ISD::SETOLT:  return "setolt";
3981    case ISD::SETOLE:  return "setole";
3982    case ISD::SETONE:  return "setone";
3983
3984    case ISD::SETO:    return "seto";
3985    case ISD::SETUO:   return "setuo";
3986    case ISD::SETUEQ:  return "setue";
3987    case ISD::SETUGT:  return "setugt";
3988    case ISD::SETUGE:  return "setuge";
3989    case ISD::SETULT:  return "setult";
3990    case ISD::SETULE:  return "setule";
3991    case ISD::SETUNE:  return "setune";
3992
3993    case ISD::SETEQ:   return "seteq";
3994    case ISD::SETGT:   return "setgt";
3995    case ISD::SETGE:   return "setge";
3996    case ISD::SETLT:   return "setlt";
3997    case ISD::SETLE:   return "setle";
3998    case ISD::SETNE:   return "setne";
3999    }
4000  }
4001}
4002
4003const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4004  switch (AM) {
4005  default:
4006    return "";
4007  case ISD::PRE_INC:
4008    return "<pre-inc>";
4009  case ISD::PRE_DEC:
4010    return "<pre-dec>";
4011  case ISD::POST_INC:
4012    return "<post-inc>";
4013  case ISD::POST_DEC:
4014    return "<post-dec>";
4015  }
4016}
4017
4018void SDNode::dump() const { dump(0); }
4019void SDNode::dump(const SelectionDAG *G) const {
4020  cerr << (void*)this << ": ";
4021
4022  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4023    if (i) cerr << ",";
4024    if (getValueType(i) == MVT::Other)
4025      cerr << "ch";
4026    else
4027      cerr << MVT::getValueTypeString(getValueType(i));
4028  }
4029  cerr << " = " << getOperationName(G);
4030
4031  cerr << " ";
4032  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4033    if (i) cerr << ", ";
4034    cerr << (void*)getOperand(i).Val;
4035    if (unsigned RN = getOperand(i).ResNo)
4036      cerr << ":" << RN;
4037  }
4038
4039  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4040    SDNode *Mask = getOperand(2).Val;
4041    cerr << "<";
4042    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4043      if (i) cerr << ",";
4044      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4045        cerr << "u";
4046      else
4047        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4048    }
4049    cerr << ">";
4050  }
4051
4052  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4053    cerr << "<" << CSDN->getValue() << ">";
4054  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4055    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4056      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4057    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4058      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4059    else {
4060      cerr << "<APFloat(";
4061      CSDN->getValueAPF().convertToAPInt().dump();
4062      cerr << ")>";
4063    }
4064  } else if (const GlobalAddressSDNode *GADN =
4065             dyn_cast<GlobalAddressSDNode>(this)) {
4066    int offset = GADN->getOffset();
4067    cerr << "<";
4068    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4069    if (offset > 0)
4070      cerr << " + " << offset;
4071    else
4072      cerr << " " << offset;
4073  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4074    cerr << "<" << FIDN->getIndex() << ">";
4075  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4076    cerr << "<" << JTDN->getIndex() << ">";
4077  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4078    int offset = CP->getOffset();
4079    if (CP->isMachineConstantPoolEntry())
4080      cerr << "<" << *CP->getMachineCPVal() << ">";
4081    else
4082      cerr << "<" << *CP->getConstVal() << ">";
4083    if (offset > 0)
4084      cerr << " + " << offset;
4085    else
4086      cerr << " " << offset;
4087  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4088    cerr << "<";
4089    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4090    if (LBB)
4091      cerr << LBB->getName() << " ";
4092    cerr << (const void*)BBDN->getBasicBlock() << ">";
4093  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4094    if (G && R->getReg() &&
4095        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4096      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
4097    } else {
4098      cerr << " #" << R->getReg();
4099    }
4100  } else if (const ExternalSymbolSDNode *ES =
4101             dyn_cast<ExternalSymbolSDNode>(this)) {
4102    cerr << "'" << ES->getSymbol() << "'";
4103  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4104    if (M->getValue())
4105      cerr << "<" << M->getValue() << ">";
4106    else
4107      cerr << "<null>";
4108  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4109    if (M->MO.getValue())
4110      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4111    else
4112      cerr << "<null:" << M->MO.getOffset() << ">";
4113  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4114    cerr << ":" << MVT::getValueTypeString(N->getVT());
4115  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4116    const Value *SrcValue = LD->getSrcValue();
4117    int SrcOffset = LD->getSrcValueOffset();
4118    cerr << " <";
4119    if (SrcValue)
4120      cerr << SrcValue;
4121    else
4122      cerr << "null";
4123    cerr << ":" << SrcOffset << ">";
4124
4125    bool doExt = true;
4126    switch (LD->getExtensionType()) {
4127    default: doExt = false; break;
4128    case ISD::EXTLOAD:
4129      cerr << " <anyext ";
4130      break;
4131    case ISD::SEXTLOAD:
4132      cerr << " <sext ";
4133      break;
4134    case ISD::ZEXTLOAD:
4135      cerr << " <zext ";
4136      break;
4137    }
4138    if (doExt)
4139      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4140
4141    const char *AM = getIndexedModeName(LD->getAddressingMode());
4142    if (*AM)
4143      cerr << " " << AM;
4144    if (LD->isVolatile())
4145      cerr << " <volatile>";
4146    cerr << " alignment=" << LD->getAlignment();
4147  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4148    const Value *SrcValue = ST->getSrcValue();
4149    int SrcOffset = ST->getSrcValueOffset();
4150    cerr << " <";
4151    if (SrcValue)
4152      cerr << SrcValue;
4153    else
4154      cerr << "null";
4155    cerr << ":" << SrcOffset << ">";
4156
4157    if (ST->isTruncatingStore())
4158      cerr << " <trunc "
4159           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4160
4161    const char *AM = getIndexedModeName(ST->getAddressingMode());
4162    if (*AM)
4163      cerr << " " << AM;
4164    if (ST->isVolatile())
4165      cerr << " <volatile>";
4166    cerr << " alignment=" << ST->getAlignment();
4167  }
4168}
4169
4170static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4171  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4172    if (N->getOperand(i).Val->hasOneUse())
4173      DumpNodes(N->getOperand(i).Val, indent+2, G);
4174    else
4175      cerr << "\n" << std::string(indent+2, ' ')
4176           << (void*)N->getOperand(i).Val << ": <multiple use>";
4177
4178
4179  cerr << "\n" << std::string(indent, ' ');
4180  N->dump(G);
4181}
4182
4183void SelectionDAG::dump() const {
4184  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4185  std::vector<const SDNode*> Nodes;
4186  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4187       I != E; ++I)
4188    Nodes.push_back(I);
4189
4190  std::sort(Nodes.begin(), Nodes.end());
4191
4192  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4193    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4194      DumpNodes(Nodes[i], 2, this);
4195  }
4196
4197  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4198
4199  cerr << "\n\n";
4200}
4201
4202const Type *ConstantPoolSDNode::getType() const {
4203  if (isMachineConstantPoolEntry())
4204    return Val.MachineCPVal->getType();
4205  return Val.ConstVal->getType();
4206}
4207