SelectionDAG.cpp revision 433f6f62ca858c20d5d3f561e63818c2fda06ebe
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineModuleInfo.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Target/TargetRegisterInfo.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/StringExtras.h"
36#include <algorithm>
37#include <cmath>
38using namespace llvm;
39
40/// makeVTList - Return an instance of the SDVTList struct initialized with the
41/// specified members.
42static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
43  SDVTList Res = {VTs, NumVTs};
44  return Res;
45}
46
47static const fltSemantics *MVTToAPFloatSemantics(MVT::ValueType VT) {
48  switch (VT) {
49  default: assert(0 && "Unknown FP format");
50  case MVT::f32:     return &APFloat::IEEEsingle;
51  case MVT::f64:     return &APFloat::IEEEdouble;
52  case MVT::f80:     return &APFloat::x87DoubleExtended;
53  case MVT::f128:    return &APFloat::IEEEquad;
54  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
55  }
56}
57
58SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
59
60//===----------------------------------------------------------------------===//
61//                              ConstantFPSDNode Class
62//===----------------------------------------------------------------------===//
63
64/// isExactlyValue - We don't rely on operator== working on double values, as
65/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
66/// As such, this method can be used to do an exact bit-for-bit comparison of
67/// two floating point values.
68bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
69  return Value.bitwiseIsEqual(V);
70}
71
72bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
73                                           const APFloat& Val) {
74  assert(MVT::isFloatingPoint(VT) && "Can only convert between FP types");
75
76  // Anything can be extended to ppc long double.
77  if (VT == MVT::ppcf128)
78    return true;
79
80  // PPC long double cannot be shrunk to anything though.
81  if (&Val.getSemantics() == &APFloat::PPCDoubleDouble)
82    return false;
83
84  // convert modifies in place, so make a copy.
85  APFloat Val2 = APFloat(Val);
86  return Val2.convert(*MVTToAPFloatSemantics(VT),
87                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
88}
89
90//===----------------------------------------------------------------------===//
91//                              ISD Namespace
92//===----------------------------------------------------------------------===//
93
94/// isBuildVectorAllOnes - Return true if the specified node is a
95/// BUILD_VECTOR where all of the elements are ~0 or undef.
96bool ISD::isBuildVectorAllOnes(const SDNode *N) {
97  // Look through a bit convert.
98  if (N->getOpcode() == ISD::BIT_CONVERT)
99    N = N->getOperand(0).Val;
100
101  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
102
103  unsigned i = 0, e = N->getNumOperands();
104
105  // Skip over all of the undef values.
106  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
107    ++i;
108
109  // Do not accept an all-undef vector.
110  if (i == e) return false;
111
112  // Do not accept build_vectors that aren't all constants or which have non-~0
113  // elements.
114  SDOperand NotZero = N->getOperand(i);
115  if (isa<ConstantSDNode>(NotZero)) {
116    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
117      return false;
118  } else if (isa<ConstantFPSDNode>(NotZero)) {
119    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
120                convertToAPInt().isAllOnesValue())
121      return false;
122  } else
123    return false;
124
125  // Okay, we have at least one ~0 value, check to see if the rest match or are
126  // undefs.
127  for (++i; i != e; ++i)
128    if (N->getOperand(i) != NotZero &&
129        N->getOperand(i).getOpcode() != ISD::UNDEF)
130      return false;
131  return true;
132}
133
134
135/// isBuildVectorAllZeros - Return true if the specified node is a
136/// BUILD_VECTOR where all of the elements are 0 or undef.
137bool ISD::isBuildVectorAllZeros(const SDNode *N) {
138  // Look through a bit convert.
139  if (N->getOpcode() == ISD::BIT_CONVERT)
140    N = N->getOperand(0).Val;
141
142  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
143
144  unsigned i = 0, e = N->getNumOperands();
145
146  // Skip over all of the undef values.
147  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
148    ++i;
149
150  // Do not accept an all-undef vector.
151  if (i == e) return false;
152
153  // Do not accept build_vectors that aren't all constants or which have non-~0
154  // elements.
155  SDOperand Zero = N->getOperand(i);
156  if (isa<ConstantSDNode>(Zero)) {
157    if (!cast<ConstantSDNode>(Zero)->isNullValue())
158      return false;
159  } else if (isa<ConstantFPSDNode>(Zero)) {
160    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
161      return false;
162  } else
163    return false;
164
165  // Okay, we have at least one ~0 value, check to see if the rest match or are
166  // undefs.
167  for (++i; i != e; ++i)
168    if (N->getOperand(i) != Zero &&
169        N->getOperand(i).getOpcode() != ISD::UNDEF)
170      return false;
171  return true;
172}
173
174/// isScalarToVector - Return true if the specified node is a
175/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
176/// element is not an undef.
177bool ISD::isScalarToVector(const SDNode *N) {
178  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
179    return true;
180
181  if (N->getOpcode() != ISD::BUILD_VECTOR)
182    return false;
183  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
184    return false;
185  unsigned NumElems = N->getNumOperands();
186  for (unsigned i = 1; i < NumElems; ++i) {
187    SDOperand V = N->getOperand(i);
188    if (V.getOpcode() != ISD::UNDEF)
189      return false;
190  }
191  return true;
192}
193
194
195/// isDebugLabel - Return true if the specified node represents a debug
196/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
197/// is 0).
198bool ISD::isDebugLabel(const SDNode *N) {
199  SDOperand Zero;
200  if (N->getOpcode() == ISD::LABEL)
201    Zero = N->getOperand(2);
202  else if (N->isTargetOpcode() &&
203           N->getTargetOpcode() == TargetInstrInfo::LABEL)
204    // Chain moved to last operand.
205    Zero = N->getOperand(1);
206  else
207    return false;
208  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));        // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;     // Don't let N and U bits get set.
233  return ISD::CondCode(Operation);
234}
235
236
237/// isSignedOp - For an integer comparison, return 1 if the comparison is a
238/// signed operation and 2 if the result is an unsigned comparison.  Return zero
239/// if the operation does not depend on the sign of the input (setne and seteq).
240static int isSignedOp(ISD::CondCode Opcode) {
241  switch (Opcode) {
242  default: assert(0 && "Illegal integer setcc operation!");
243  case ISD::SETEQ:
244  case ISD::SETNE: return 0;
245  case ISD::SETLT:
246  case ISD::SETLE:
247  case ISD::SETGT:
248  case ISD::SETGE: return 1;
249  case ISD::SETULT:
250  case ISD::SETULE:
251  case ISD::SETUGT:
252  case ISD::SETUGE: return 2;
253  }
254}
255
256/// getSetCCOrOperation - Return the result of a logical OR between different
257/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
258/// returns SETCC_INVALID if it is not possible to represent the resultant
259/// comparison.
260ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
261                                       bool isInteger) {
262  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
263    // Cannot fold a signed integer setcc with an unsigned integer setcc.
264    return ISD::SETCC_INVALID;
265
266  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
267
268  // If the N and U bits get set then the resultant comparison DOES suddenly
269  // care about orderedness, and is true when ordered.
270  if (Op > ISD::SETTRUE2)
271    Op &= ~16;     // Clear the U bit if the N bit is set.
272
273  // Canonicalize illegal integer setcc's.
274  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
275    Op = ISD::SETNE;
276
277  return ISD::CondCode(Op);
278}
279
280/// getSetCCAndOperation - Return the result of a logical AND between different
281/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
282/// function returns zero if it is not possible to represent the resultant
283/// comparison.
284ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
285                                        bool isInteger) {
286  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
287    // Cannot fold a signed setcc with an unsigned setcc.
288    return ISD::SETCC_INVALID;
289
290  // Combine all of the condition bits.
291  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
292
293  // Canonicalize illegal integer setcc's.
294  if (isInteger) {
295    switch (Result) {
296    default: break;
297    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307const TargetMachine &SelectionDAG::getTarget() const {
308  return TLI.getTargetMachine();
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              const SDOperand *Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->Val);
333    ID.AddInteger(Ops->ResNo);
334  }
335}
336
337static void AddNodeIDNode(FoldingSetNodeID &ID,
338                          unsigned short OpC, SDVTList VTList,
339                          const SDOperand *OpList, unsigned N) {
340  AddNodeIDOpcode(ID, OpC);
341  AddNodeIDValueTypes(ID, VTList);
342  AddNodeIDOperands(ID, OpList, N);
343}
344
345/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
346/// data.
347static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
348  AddNodeIDOpcode(ID, N->getOpcode());
349  // Add the return value info.
350  AddNodeIDValueTypes(ID, N->getVTList());
351  // Add the operand info.
352  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
353
354  // Handle SDNode leafs with special info.
355  switch (N->getOpcode()) {
356  default: break;  // Normal nodes don't need extra info.
357  case ISD::TargetConstant:
358  case ISD::Constant:
359    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
360    break;
361  case ISD::TargetConstantFP:
362  case ISD::ConstantFP: {
363    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
364    break;
365  }
366  case ISD::TargetGlobalAddress:
367  case ISD::GlobalAddress:
368  case ISD::TargetGlobalTLSAddress:
369  case ISD::GlobalTLSAddress: {
370    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
371    ID.AddPointer(GA->getGlobal());
372    ID.AddInteger(GA->getOffset());
373    break;
374  }
375  case ISD::BasicBlock:
376    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
377    break;
378  case ISD::Register:
379    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
380    break;
381  case ISD::SRCVALUE:
382    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
383    break;
384  case ISD::MEMOPERAND: {
385    const MemOperand &MO = cast<MemOperandSDNode>(N)->MO;
386    ID.AddPointer(MO.getValue());
387    ID.AddInteger(MO.getFlags());
388    ID.AddInteger(MO.getOffset());
389    ID.AddInteger(MO.getSize());
390    ID.AddInteger(MO.getAlignment());
391    break;
392  }
393  case ISD::FrameIndex:
394  case ISD::TargetFrameIndex:
395    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
396    break;
397  case ISD::JumpTable:
398  case ISD::TargetJumpTable:
399    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
400    break;
401  case ISD::ConstantPool:
402  case ISD::TargetConstantPool: {
403    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
404    ID.AddInteger(CP->getAlignment());
405    ID.AddInteger(CP->getOffset());
406    if (CP->isMachineConstantPoolEntry())
407      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
408    else
409      ID.AddPointer(CP->getConstVal());
410    break;
411  }
412  case ISD::LOAD: {
413    LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getAddressingMode());
415    ID.AddInteger(LD->getExtensionType());
416    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
417    ID.AddInteger(LD->getAlignment());
418    ID.AddInteger(LD->isVolatile());
419    break;
420  }
421  case ISD::STORE: {
422    StoreSDNode *ST = cast<StoreSDNode>(N);
423    ID.AddInteger(ST->getAddressingMode());
424    ID.AddInteger(ST->isTruncatingStore());
425    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
426    ID.AddInteger(ST->getAlignment());
427    ID.AddInteger(ST->isVolatile());
428    break;
429  }
430  }
431}
432
433//===----------------------------------------------------------------------===//
434//                              SelectionDAG Class
435//===----------------------------------------------------------------------===//
436
437/// RemoveDeadNodes - This method deletes all unreachable nodes in the
438/// SelectionDAG.
439void SelectionDAG::RemoveDeadNodes() {
440  // Create a dummy node (which is not added to allnodes), that adds a reference
441  // to the root node, preventing it from being deleted.
442  HandleSDNode Dummy(getRoot());
443
444  SmallVector<SDNode*, 128> DeadNodes;
445
446  // Add all obviously-dead nodes to the DeadNodes worklist.
447  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
448    if (I->use_empty())
449      DeadNodes.push_back(I);
450
451  // Process the worklist, deleting the nodes and adding their uses to the
452  // worklist.
453  while (!DeadNodes.empty()) {
454    SDNode *N = DeadNodes.back();
455    DeadNodes.pop_back();
456
457    // Take the node out of the appropriate CSE map.
458    RemoveNodeFromCSEMaps(N);
459
460    // Next, brutally remove the operand list.  This is safe to do, as there are
461    // no cycles in the graph.
462    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
463      SDNode *Operand = I->Val;
464      Operand->removeUser(N);
465
466      // Now that we removed this operand, see if there are no uses of it left.
467      if (Operand->use_empty())
468        DeadNodes.push_back(Operand);
469    }
470    if (N->OperandsNeedDelete)
471      delete[] N->OperandList;
472    N->OperandList = 0;
473    N->NumOperands = 0;
474
475    // Finally, remove N itself.
476    AllNodes.erase(N);
477  }
478
479  // If the root changed (e.g. it was a dead load, update the root).
480  setRoot(Dummy.getValue());
481}
482
483void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
484  SmallVector<SDNode*, 16> DeadNodes;
485  DeadNodes.push_back(N);
486
487  // Process the worklist, deleting the nodes and adding their uses to the
488  // worklist.
489  while (!DeadNodes.empty()) {
490    SDNode *N = DeadNodes.back();
491    DeadNodes.pop_back();
492
493    if (UpdateListener)
494      UpdateListener->NodeDeleted(N);
495
496    // Take the node out of the appropriate CSE map.
497    RemoveNodeFromCSEMaps(N);
498
499    // Next, brutally remove the operand list.  This is safe to do, as there are
500    // no cycles in the graph.
501    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
502      SDNode *Operand = I->Val;
503      Operand->removeUser(N);
504
505      // Now that we removed this operand, see if there are no uses of it left.
506      if (Operand->use_empty())
507        DeadNodes.push_back(Operand);
508    }
509    if (N->OperandsNeedDelete)
510      delete[] N->OperandList;
511    N->OperandList = 0;
512    N->NumOperands = 0;
513
514    // Finally, remove N itself.
515    AllNodes.erase(N);
516  }
517}
518
519void SelectionDAG::DeleteNode(SDNode *N) {
520  assert(N->use_empty() && "Cannot delete a node that is not dead!");
521
522  // First take this out of the appropriate CSE map.
523  RemoveNodeFromCSEMaps(N);
524
525  // Finally, remove uses due to operands of this node, remove from the
526  // AllNodes list, and delete the node.
527  DeleteNodeNotInCSEMaps(N);
528}
529
530void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
531
532  // Remove it from the AllNodes list.
533  AllNodes.remove(N);
534
535  // Drop all of the operands and decrement used nodes use counts.
536  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
537    I->Val->removeUser(N);
538  if (N->OperandsNeedDelete)
539    delete[] N->OperandList;
540  N->OperandList = 0;
541  N->NumOperands = 0;
542
543  delete N;
544}
545
546/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
547/// correspond to it.  This is useful when we're about to delete or repurpose
548/// the node.  We don't want future request for structurally identical nodes
549/// to return N anymore.
550void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
551  bool Erased = false;
552  switch (N->getOpcode()) {
553  case ISD::HANDLENODE: return;  // noop.
554  case ISD::STRING:
555    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
556    break;
557  case ISD::CONDCODE:
558    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
559           "Cond code doesn't exist!");
560    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
561    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
562    break;
563  case ISD::ExternalSymbol:
564    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
565    break;
566  case ISD::TargetExternalSymbol:
567    Erased =
568      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
569    break;
570  case ISD::VALUETYPE: {
571    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
572    if (MVT::isExtendedVT(VT)) {
573      Erased = ExtendedValueTypeNodes.erase(VT);
574    } else {
575      Erased = ValueTypeNodes[VT] != 0;
576      ValueTypeNodes[VT] = 0;
577    }
578    break;
579  }
580  default:
581    // Remove it from the CSE Map.
582    Erased = CSEMap.RemoveNode(N);
583    break;
584  }
585#ifndef NDEBUG
586  // Verify that the node was actually in one of the CSE maps, unless it has a
587  // flag result (which cannot be CSE'd) or is one of the special cases that are
588  // not subject to CSE.
589  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
590      !N->isTargetOpcode()) {
591    N->dump(this);
592    cerr << "\n";
593    assert(0 && "Node is not in map!");
594  }
595#endif
596}
597
598/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
599/// has been taken out and modified in some way.  If the specified node already
600/// exists in the CSE maps, do not modify the maps, but return the existing node
601/// instead.  If it doesn't exist, add it and return null.
602///
603SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
604  assert(N->getNumOperands() && "This is a leaf node!");
605  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
606    return 0;    // Never add these nodes.
607
608  // Check that remaining values produced are not flags.
609  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
610    if (N->getValueType(i) == MVT::Flag)
611      return 0;   // Never CSE anything that produces a flag.
612
613  SDNode *New = CSEMap.GetOrInsertNode(N);
614  if (New != N) return New;  // Node already existed.
615  return 0;
616}
617
618/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
619/// were replaced with those specified.  If this node is never memoized,
620/// return null, otherwise return a pointer to the slot it would take.  If a
621/// node already exists with these operands, the slot will be non-null.
622SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
623                                           void *&InsertPos) {
624  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
625    return 0;    // Never add these nodes.
626
627  // Check that remaining values produced are not flags.
628  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
629    if (N->getValueType(i) == MVT::Flag)
630      return 0;   // Never CSE anything that produces a flag.
631
632  SDOperand Ops[] = { Op };
633  FoldingSetNodeID ID;
634  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
635  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
636}
637
638/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
639/// were replaced with those specified.  If this node is never memoized,
640/// return null, otherwise return a pointer to the slot it would take.  If a
641/// node already exists with these operands, the slot will be non-null.
642SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
643                                           SDOperand Op1, SDOperand Op2,
644                                           void *&InsertPos) {
645  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
646    return 0;    // Never add these nodes.
647
648  // Check that remaining values produced are not flags.
649  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
650    if (N->getValueType(i) == MVT::Flag)
651      return 0;   // Never CSE anything that produces a flag.
652
653  SDOperand Ops[] = { Op1, Op2 };
654  FoldingSetNodeID ID;
655  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
656  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
657}
658
659
660/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
661/// were replaced with those specified.  If this node is never memoized,
662/// return null, otherwise return a pointer to the slot it would take.  If a
663/// node already exists with these operands, the slot will be non-null.
664SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
665                                           const SDOperand *Ops,unsigned NumOps,
666                                           void *&InsertPos) {
667  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
668    return 0;    // Never add these nodes.
669
670  // Check that remaining values produced are not flags.
671  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
672    if (N->getValueType(i) == MVT::Flag)
673      return 0;   // Never CSE anything that produces a flag.
674
675  FoldingSetNodeID ID;
676  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
677
678  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
679    ID.AddInteger(LD->getAddressingMode());
680    ID.AddInteger(LD->getExtensionType());
681    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
682    ID.AddInteger(LD->getAlignment());
683    ID.AddInteger(LD->isVolatile());
684  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
685    ID.AddInteger(ST->getAddressingMode());
686    ID.AddInteger(ST->isTruncatingStore());
687    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
688    ID.AddInteger(ST->getAlignment());
689    ID.AddInteger(ST->isVolatile());
690  }
691
692  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
693}
694
695
696SelectionDAG::~SelectionDAG() {
697  while (!AllNodes.empty()) {
698    SDNode *N = AllNodes.begin();
699    N->SetNextInBucket(0);
700    if (N->OperandsNeedDelete)
701      delete [] N->OperandList;
702    N->OperandList = 0;
703    N->NumOperands = 0;
704    AllNodes.pop_front();
705  }
706}
707
708SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
709  if (Op.getValueType() == VT) return Op;
710  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
711                                   MVT::getSizeInBits(VT));
712  return getNode(ISD::AND, Op.getValueType(), Op,
713                 getConstant(Imm, Op.getValueType()));
714}
715
716SDOperand SelectionDAG::getString(const std::string &Val) {
717  StringSDNode *&N = StringNodes[Val];
718  if (!N) {
719    N = new StringSDNode(Val);
720    AllNodes.push_back(N);
721  }
722  return SDOperand(N, 0);
723}
724
725SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
726  MVT::ValueType EltVT =
727    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
728
729  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
730}
731
732SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
733  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
734
735  MVT::ValueType EltVT =
736    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
737
738  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
739         "APInt size does not match type size!");
740
741  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
742  FoldingSetNodeID ID;
743  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
744  ID.Add(Val);
745  void *IP = 0;
746  SDNode *N = NULL;
747  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
748    if (!MVT::isVector(VT))
749      return SDOperand(N, 0);
750  if (!N) {
751    N = new ConstantSDNode(isT, Val, EltVT);
752    CSEMap.InsertNode(N, IP);
753    AllNodes.push_back(N);
754  }
755
756  SDOperand Result(N, 0);
757  if (MVT::isVector(VT)) {
758    SmallVector<SDOperand, 8> Ops;
759    Ops.assign(MVT::getVectorNumElements(VT), Result);
760    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
761  }
762  return Result;
763}
764
765SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
766  return getConstant(Val, TLI.getPointerTy(), isTarget);
767}
768
769
770SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
771                                      bool isTarget) {
772  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
773
774  MVT::ValueType EltVT =
775    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
776
777  // Do the map lookup using the actual bit pattern for the floating point
778  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
779  // we don't have issues with SNANs.
780  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
781  FoldingSetNodeID ID;
782  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
783  ID.Add(V);
784  void *IP = 0;
785  SDNode *N = NULL;
786  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
787    if (!MVT::isVector(VT))
788      return SDOperand(N, 0);
789  if (!N) {
790    N = new ConstantFPSDNode(isTarget, V, EltVT);
791    CSEMap.InsertNode(N, IP);
792    AllNodes.push_back(N);
793  }
794
795  SDOperand Result(N, 0);
796  if (MVT::isVector(VT)) {
797    SmallVector<SDOperand, 8> Ops;
798    Ops.assign(MVT::getVectorNumElements(VT), Result);
799    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
800  }
801  return Result;
802}
803
804SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
805                                      bool isTarget) {
806  MVT::ValueType EltVT =
807    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
808  if (EltVT==MVT::f32)
809    return getConstantFP(APFloat((float)Val), VT, isTarget);
810  else
811    return getConstantFP(APFloat(Val), VT, isTarget);
812}
813
814SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
815                                         MVT::ValueType VT, int Offset,
816                                         bool isTargetGA) {
817  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
818  unsigned Opc;
819  if (GVar && GVar->isThreadLocal())
820    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
821  else
822    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
823  FoldingSetNodeID ID;
824  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
825  ID.AddPointer(GV);
826  ID.AddInteger(Offset);
827  void *IP = 0;
828  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
829   return SDOperand(E, 0);
830  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
831  CSEMap.InsertNode(N, IP);
832  AllNodes.push_back(N);
833  return SDOperand(N, 0);
834}
835
836SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
837                                      bool isTarget) {
838  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
839  FoldingSetNodeID ID;
840  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
841  ID.AddInteger(FI);
842  void *IP = 0;
843  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
844    return SDOperand(E, 0);
845  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
846  CSEMap.InsertNode(N, IP);
847  AllNodes.push_back(N);
848  return SDOperand(N, 0);
849}
850
851SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
852  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
853  FoldingSetNodeID ID;
854  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
855  ID.AddInteger(JTI);
856  void *IP = 0;
857  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
858    return SDOperand(E, 0);
859  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
860  CSEMap.InsertNode(N, IP);
861  AllNodes.push_back(N);
862  return SDOperand(N, 0);
863}
864
865SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
866                                        unsigned Alignment, int Offset,
867                                        bool isTarget) {
868  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
869  FoldingSetNodeID ID;
870  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
871  ID.AddInteger(Alignment);
872  ID.AddInteger(Offset);
873  ID.AddPointer(C);
874  void *IP = 0;
875  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
876    return SDOperand(E, 0);
877  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
878  CSEMap.InsertNode(N, IP);
879  AllNodes.push_back(N);
880  return SDOperand(N, 0);
881}
882
883
884SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
885                                        MVT::ValueType VT,
886                                        unsigned Alignment, int Offset,
887                                        bool isTarget) {
888  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
889  FoldingSetNodeID ID;
890  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
891  ID.AddInteger(Alignment);
892  ID.AddInteger(Offset);
893  C->AddSelectionDAGCSEId(ID);
894  void *IP = 0;
895  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
896    return SDOperand(E, 0);
897  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
898  CSEMap.InsertNode(N, IP);
899  AllNodes.push_back(N);
900  return SDOperand(N, 0);
901}
902
903
904SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
905  FoldingSetNodeID ID;
906  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
907  ID.AddPointer(MBB);
908  void *IP = 0;
909  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
910    return SDOperand(E, 0);
911  SDNode *N = new BasicBlockSDNode(MBB);
912  CSEMap.InsertNode(N, IP);
913  AllNodes.push_back(N);
914  return SDOperand(N, 0);
915}
916
917SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
918  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
919    ValueTypeNodes.resize(VT+1);
920
921  SDNode *&N = MVT::isExtendedVT(VT) ?
922    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
923
924  if (N) return SDOperand(N, 0);
925  N = new VTSDNode(VT);
926  AllNodes.push_back(N);
927  return SDOperand(N, 0);
928}
929
930SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
931  SDNode *&N = ExternalSymbols[Sym];
932  if (N) return SDOperand(N, 0);
933  N = new ExternalSymbolSDNode(false, Sym, VT);
934  AllNodes.push_back(N);
935  return SDOperand(N, 0);
936}
937
938SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
939                                                MVT::ValueType VT) {
940  SDNode *&N = TargetExternalSymbols[Sym];
941  if (N) return SDOperand(N, 0);
942  N = new ExternalSymbolSDNode(true, Sym, VT);
943  AllNodes.push_back(N);
944  return SDOperand(N, 0);
945}
946
947SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
948  if ((unsigned)Cond >= CondCodeNodes.size())
949    CondCodeNodes.resize(Cond+1);
950
951  if (CondCodeNodes[Cond] == 0) {
952    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
953    AllNodes.push_back(CondCodeNodes[Cond]);
954  }
955  return SDOperand(CondCodeNodes[Cond], 0);
956}
957
958SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
959  FoldingSetNodeID ID;
960  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
961  ID.AddInteger(RegNo);
962  void *IP = 0;
963  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
964    return SDOperand(E, 0);
965  SDNode *N = new RegisterSDNode(RegNo, VT);
966  CSEMap.InsertNode(N, IP);
967  AllNodes.push_back(N);
968  return SDOperand(N, 0);
969}
970
971SDOperand SelectionDAG::getSrcValue(const Value *V) {
972  assert((!V || isa<PointerType>(V->getType())) &&
973         "SrcValue is not a pointer?");
974
975  FoldingSetNodeID ID;
976  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
977  ID.AddPointer(V);
978
979  void *IP = 0;
980  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
981    return SDOperand(E, 0);
982
983  SDNode *N = new SrcValueSDNode(V);
984  CSEMap.InsertNode(N, IP);
985  AllNodes.push_back(N);
986  return SDOperand(N, 0);
987}
988
989SDOperand SelectionDAG::getMemOperand(const MemOperand &MO) {
990  const Value *v = MO.getValue();
991  assert((!v || isa<PointerType>(v->getType())) &&
992         "SrcValue is not a pointer?");
993
994  FoldingSetNodeID ID;
995  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
996  ID.AddPointer(v);
997  ID.AddInteger(MO.getFlags());
998  ID.AddInteger(MO.getOffset());
999  ID.AddInteger(MO.getSize());
1000  ID.AddInteger(MO.getAlignment());
1001
1002  void *IP = 0;
1003  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1004    return SDOperand(E, 0);
1005
1006  SDNode *N = new MemOperandSDNode(MO);
1007  CSEMap.InsertNode(N, IP);
1008  AllNodes.push_back(N);
1009  return SDOperand(N, 0);
1010}
1011
1012/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1013/// specified value type.
1014SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
1015  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1016  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1017  const Type *Ty = MVT::getTypeForValueType(VT);
1018  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1019  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1020  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1021}
1022
1023
1024SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1025                                  SDOperand N2, ISD::CondCode Cond) {
1026  // These setcc operations always fold.
1027  switch (Cond) {
1028  default: break;
1029  case ISD::SETFALSE:
1030  case ISD::SETFALSE2: return getConstant(0, VT);
1031  case ISD::SETTRUE:
1032  case ISD::SETTRUE2:  return getConstant(1, VT);
1033
1034  case ISD::SETOEQ:
1035  case ISD::SETOGT:
1036  case ISD::SETOGE:
1037  case ISD::SETOLT:
1038  case ISD::SETOLE:
1039  case ISD::SETONE:
1040  case ISD::SETO:
1041  case ISD::SETUO:
1042  case ISD::SETUEQ:
1043  case ISD::SETUNE:
1044    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1045    break;
1046  }
1047
1048  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1049    const APInt &C2 = N2C->getAPIntValue();
1050    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1051      const APInt &C1 = N1C->getAPIntValue();
1052
1053      switch (Cond) {
1054      default: assert(0 && "Unknown integer setcc!");
1055      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1056      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1057      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1058      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1059      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1060      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1061      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1062      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1063      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1064      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1065      }
1066    }
1067  }
1068  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1069    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1070      // No compile time operations on this type yet.
1071      if (N1C->getValueType(0) == MVT::ppcf128)
1072        return SDOperand();
1073
1074      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1075      switch (Cond) {
1076      default: break;
1077      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1078                          return getNode(ISD::UNDEF, VT);
1079                        // fall through
1080      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1081      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1082                          return getNode(ISD::UNDEF, VT);
1083                        // fall through
1084      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1085                                           R==APFloat::cmpLessThan, VT);
1086      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1087                          return getNode(ISD::UNDEF, VT);
1088                        // fall through
1089      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1090      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1091                          return getNode(ISD::UNDEF, VT);
1092                        // fall through
1093      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1094      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1095                          return getNode(ISD::UNDEF, VT);
1096                        // fall through
1097      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1098                                           R==APFloat::cmpEqual, VT);
1099      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1100                          return getNode(ISD::UNDEF, VT);
1101                        // fall through
1102      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1103                                           R==APFloat::cmpEqual, VT);
1104      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1105      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1106      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1107                                           R==APFloat::cmpEqual, VT);
1108      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1109      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1110                                           R==APFloat::cmpLessThan, VT);
1111      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1112                                           R==APFloat::cmpUnordered, VT);
1113      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1114      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1115      }
1116    } else {
1117      // Ensure that the constant occurs on the RHS.
1118      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1119    }
1120  }
1121
1122  // Could not fold it.
1123  return SDOperand();
1124}
1125
1126/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1127/// use this predicate to simplify operations downstream.
1128bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1129  unsigned BitWidth = Op.getValueSizeInBits();
1130  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1131}
1132
1133/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1134/// this predicate to simplify operations downstream.  Mask is known to be zero
1135/// for bits that V cannot have.
1136bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1137                                     unsigned Depth) const {
1138  APInt KnownZero, KnownOne;
1139  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1140  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1141  return (KnownZero & Mask) == Mask;
1142}
1143
1144/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1145/// known to be either zero or one and return them in the KnownZero/KnownOne
1146/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1147/// processing.
1148void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1149                                     APInt &KnownZero, APInt &KnownOne,
1150                                     unsigned Depth) const {
1151  unsigned BitWidth = Mask.getBitWidth();
1152  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1153         "Mask size mismatches value type size!");
1154
1155  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1156  if (Depth == 6 || Mask == 0)
1157    return;  // Limit search depth.
1158
1159  APInt KnownZero2, KnownOne2;
1160
1161  switch (Op.getOpcode()) {
1162  case ISD::Constant:
1163    // We know all of the bits for a constant!
1164    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1165    KnownZero = ~KnownOne & Mask;
1166    return;
1167  case ISD::AND:
1168    // If either the LHS or the RHS are Zero, the result is zero.
1169    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1170    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1171                      KnownZero2, KnownOne2, Depth+1);
1172    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1173    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1174
1175    // Output known-1 bits are only known if set in both the LHS & RHS.
1176    KnownOne &= KnownOne2;
1177    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1178    KnownZero |= KnownZero2;
1179    return;
1180  case ISD::OR:
1181    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1182    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1183                      KnownZero2, KnownOne2, Depth+1);
1184    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1185    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1186
1187    // Output known-0 bits are only known if clear in both the LHS & RHS.
1188    KnownZero &= KnownZero2;
1189    // Output known-1 are known to be set if set in either the LHS | RHS.
1190    KnownOne |= KnownOne2;
1191    return;
1192  case ISD::XOR: {
1193    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1194    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1195    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1196    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1197
1198    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1199    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1200    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1201    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1202    KnownZero = KnownZeroOut;
1203    return;
1204  }
1205  case ISD::SELECT:
1206    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1207    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1208    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1209    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1210
1211    // Only known if known in both the LHS and RHS.
1212    KnownOne &= KnownOne2;
1213    KnownZero &= KnownZero2;
1214    return;
1215  case ISD::SELECT_CC:
1216    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1217    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1218    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1219    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1220
1221    // Only known if known in both the LHS and RHS.
1222    KnownOne &= KnownOne2;
1223    KnownZero &= KnownZero2;
1224    return;
1225  case ISD::SETCC:
1226    // If we know the result of a setcc has the top bits zero, use this info.
1227    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1228        BitWidth > 1)
1229      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1230    return;
1231  case ISD::SHL:
1232    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1233    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1234      unsigned ShAmt = SA->getValue();
1235
1236      // If the shift count is an invalid immediate, don't do anything.
1237      if (ShAmt >= BitWidth)
1238        return;
1239
1240      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1241                        KnownZero, KnownOne, Depth+1);
1242      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1243      KnownZero <<= ShAmt;
1244      KnownOne  <<= ShAmt;
1245      // low bits known zero.
1246      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1247    }
1248    return;
1249  case ISD::SRL:
1250    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1251    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1252      unsigned ShAmt = SA->getValue();
1253
1254      // If the shift count is an invalid immediate, don't do anything.
1255      if (ShAmt >= BitWidth)
1256        return;
1257
1258      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1259                        KnownZero, KnownOne, Depth+1);
1260      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1261      KnownZero = KnownZero.lshr(ShAmt);
1262      KnownOne  = KnownOne.lshr(ShAmt);
1263
1264      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1265      KnownZero |= HighBits;  // High bits known zero.
1266    }
1267    return;
1268  case ISD::SRA:
1269    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1270      unsigned ShAmt = SA->getValue();
1271
1272      // If the shift count is an invalid immediate, don't do anything.
1273      if (ShAmt >= BitWidth)
1274        return;
1275
1276      APInt InDemandedMask = (Mask << ShAmt);
1277      // If any of the demanded bits are produced by the sign extension, we also
1278      // demand the input sign bit.
1279      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1280      if (HighBits.getBoolValue())
1281        InDemandedMask |= APInt::getSignBit(BitWidth);
1282
1283      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1284                        Depth+1);
1285      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1286      KnownZero = KnownZero.lshr(ShAmt);
1287      KnownOne  = KnownOne.lshr(ShAmt);
1288
1289      // Handle the sign bits.
1290      APInt SignBit = APInt::getSignBit(BitWidth);
1291      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1292
1293      if (KnownZero.intersects(SignBit)) {
1294        KnownZero |= HighBits;  // New bits are known zero.
1295      } else if (KnownOne.intersects(SignBit)) {
1296        KnownOne  |= HighBits;  // New bits are known one.
1297      }
1298    }
1299    return;
1300  case ISD::SIGN_EXTEND_INREG: {
1301    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1302    unsigned EBits = MVT::getSizeInBits(EVT);
1303
1304    // Sign extension.  Compute the demanded bits in the result that are not
1305    // present in the input.
1306    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1307
1308    APInt InSignBit = APInt::getSignBit(EBits);
1309    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1310
1311    // If the sign extended bits are demanded, we know that the sign
1312    // bit is demanded.
1313    InSignBit.zext(BitWidth);
1314    if (NewBits.getBoolValue())
1315      InputDemandedBits |= InSignBit;
1316
1317    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1318                      KnownZero, KnownOne, Depth+1);
1319    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1320
1321    // If the sign bit of the input is known set or clear, then we know the
1322    // top bits of the result.
1323    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1324      KnownZero |= NewBits;
1325      KnownOne  &= ~NewBits;
1326    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1327      KnownOne  |= NewBits;
1328      KnownZero &= ~NewBits;
1329    } else {                              // Input sign bit unknown
1330      KnownZero &= ~NewBits;
1331      KnownOne  &= ~NewBits;
1332    }
1333    return;
1334  }
1335  case ISD::CTTZ:
1336  case ISD::CTLZ:
1337  case ISD::CTPOP: {
1338    unsigned LowBits = Log2_32(BitWidth)+1;
1339    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1340    KnownOne  = APInt(BitWidth, 0);
1341    return;
1342  }
1343  case ISD::LOAD: {
1344    if (ISD::isZEXTLoad(Op.Val)) {
1345      LoadSDNode *LD = cast<LoadSDNode>(Op);
1346      MVT::ValueType VT = LD->getMemoryVT();
1347      unsigned MemBits = MVT::getSizeInBits(VT);
1348      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1349    }
1350    return;
1351  }
1352  case ISD::ZERO_EXTEND: {
1353    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1354    unsigned InBits = MVT::getSizeInBits(InVT);
1355    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1356    APInt InMask    = Mask;
1357    InMask.trunc(InBits);
1358    KnownZero.trunc(InBits);
1359    KnownOne.trunc(InBits);
1360    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1361    KnownZero.zext(BitWidth);
1362    KnownOne.zext(BitWidth);
1363    KnownZero |= NewBits;
1364    return;
1365  }
1366  case ISD::SIGN_EXTEND: {
1367    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1368    unsigned InBits = MVT::getSizeInBits(InVT);
1369    APInt InSignBit = APInt::getSignBit(InBits);
1370    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1371    APInt InMask = Mask;
1372    InMask.trunc(InBits);
1373
1374    // If any of the sign extended bits are demanded, we know that the sign
1375    // bit is demanded. Temporarily set this bit in the mask for our callee.
1376    if (NewBits.getBoolValue())
1377      InMask |= InSignBit;
1378
1379    KnownZero.trunc(InBits);
1380    KnownOne.trunc(InBits);
1381    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1382
1383    // Note if the sign bit is known to be zero or one.
1384    bool SignBitKnownZero = KnownZero.isNegative();
1385    bool SignBitKnownOne  = KnownOne.isNegative();
1386    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1387           "Sign bit can't be known to be both zero and one!");
1388
1389    // If the sign bit wasn't actually demanded by our caller, we don't
1390    // want it set in the KnownZero and KnownOne result values. Reset the
1391    // mask and reapply it to the result values.
1392    InMask = Mask;
1393    InMask.trunc(InBits);
1394    KnownZero &= InMask;
1395    KnownOne  &= InMask;
1396
1397    KnownZero.zext(BitWidth);
1398    KnownOne.zext(BitWidth);
1399
1400    // If the sign bit is known zero or one, the top bits match.
1401    if (SignBitKnownZero)
1402      KnownZero |= NewBits;
1403    else if (SignBitKnownOne)
1404      KnownOne  |= NewBits;
1405    return;
1406  }
1407  case ISD::ANY_EXTEND: {
1408    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1409    unsigned InBits = MVT::getSizeInBits(InVT);
1410    APInt InMask = Mask;
1411    InMask.trunc(InBits);
1412    KnownZero.trunc(InBits);
1413    KnownOne.trunc(InBits);
1414    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1415    KnownZero.zext(BitWidth);
1416    KnownOne.zext(BitWidth);
1417    return;
1418  }
1419  case ISD::TRUNCATE: {
1420    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1421    unsigned InBits = MVT::getSizeInBits(InVT);
1422    APInt InMask = Mask;
1423    InMask.zext(InBits);
1424    KnownZero.zext(InBits);
1425    KnownOne.zext(InBits);
1426    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1427    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1428    KnownZero.trunc(BitWidth);
1429    KnownOne.trunc(BitWidth);
1430    break;
1431  }
1432  case ISD::AssertZext: {
1433    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1434    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1435    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1436                      KnownOne, Depth+1);
1437    KnownZero |= (~InMask) & Mask;
1438    return;
1439  }
1440  case ISD::FGETSIGN:
1441    // All bits are zero except the low bit.
1442    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1443    return;
1444
1445  case ISD::ADD: {
1446    // If either the LHS or the RHS are Zero, the result is zero.
1447    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1448    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1449    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1450    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1451
1452    // Output known-0 bits are known if clear or set in both the low clear bits
1453    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1454    // low 3 bits clear.
1455    unsigned KnownZeroOut = std::min(KnownZero.countTrailingOnes(),
1456                                     KnownZero2.countTrailingOnes());
1457
1458    KnownZero = APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1459    KnownOne = APInt(BitWidth, 0);
1460    return;
1461  }
1462  case ISD::SUB: {
1463    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1464    if (!CLHS) return;
1465
1466    // We know that the top bits of C-X are clear if X contains less bits
1467    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1468    // positive if we can prove that X is >= 0 and < 16.
1469    if (CLHS->getAPIntValue().isNonNegative()) {
1470      unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1471      // NLZ can't be BitWidth with no sign bit
1472      APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1473      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1474
1475      // If all of the MaskV bits are known to be zero, then we know the output
1476      // top bits are zero, because we now know that the output is from [0-C].
1477      if ((KnownZero & MaskV) == MaskV) {
1478        unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1479        // Top bits known zero.
1480        KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1481        KnownOne = APInt(BitWidth, 0);   // No one bits known.
1482      } else {
1483        KnownZero = KnownOne = APInt(BitWidth, 0);  // Otherwise, nothing known.
1484      }
1485    }
1486    return;
1487  }
1488  default:
1489    // Allow the target to implement this method for its nodes.
1490    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1491  case ISD::INTRINSIC_WO_CHAIN:
1492  case ISD::INTRINSIC_W_CHAIN:
1493  case ISD::INTRINSIC_VOID:
1494      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1495    }
1496    return;
1497  }
1498}
1499
1500/// ComputeNumSignBits - Return the number of times the sign bit of the
1501/// register is replicated into the other bits.  We know that at least 1 bit
1502/// is always equal to the sign bit (itself), but other cases can give us
1503/// information.  For example, immediately after an "SRA X, 2", we know that
1504/// the top 3 bits are all equal to each other, so we return 3.
1505unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1506  MVT::ValueType VT = Op.getValueType();
1507  assert(MVT::isInteger(VT) && "Invalid VT!");
1508  unsigned VTBits = MVT::getSizeInBits(VT);
1509  unsigned Tmp, Tmp2;
1510
1511  if (Depth == 6)
1512    return 1;  // Limit search depth.
1513
1514  switch (Op.getOpcode()) {
1515  default: break;
1516  case ISD::AssertSext:
1517    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1518    return VTBits-Tmp+1;
1519  case ISD::AssertZext:
1520    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1521    return VTBits-Tmp;
1522
1523  case ISD::Constant: {
1524    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1525    // If negative, return # leading ones.
1526    if (Val.isNegative())
1527      return Val.countLeadingOnes();
1528
1529    // Return # leading zeros.
1530    return Val.countLeadingZeros();
1531  }
1532
1533  case ISD::SIGN_EXTEND:
1534    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1535    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1536
1537  case ISD::SIGN_EXTEND_INREG:
1538    // Max of the input and what this extends.
1539    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1540    Tmp = VTBits-Tmp+1;
1541
1542    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1543    return std::max(Tmp, Tmp2);
1544
1545  case ISD::SRA:
1546    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1547    // SRA X, C   -> adds C sign bits.
1548    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1549      Tmp += C->getValue();
1550      if (Tmp > VTBits) Tmp = VTBits;
1551    }
1552    return Tmp;
1553  case ISD::SHL:
1554    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1555      // shl destroys sign bits.
1556      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1557      if (C->getValue() >= VTBits ||      // Bad shift.
1558          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1559      return Tmp - C->getValue();
1560    }
1561    break;
1562  case ISD::AND:
1563  case ISD::OR:
1564  case ISD::XOR:    // NOT is handled here.
1565    // Logical binary ops preserve the number of sign bits.
1566    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1567    if (Tmp == 1) return 1;  // Early out.
1568    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1569    return std::min(Tmp, Tmp2);
1570
1571  case ISD::SELECT:
1572    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1573    if (Tmp == 1) return 1;  // Early out.
1574    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1575    return std::min(Tmp, Tmp2);
1576
1577  case ISD::SETCC:
1578    // If setcc returns 0/-1, all bits are sign bits.
1579    if (TLI.getSetCCResultContents() ==
1580        TargetLowering::ZeroOrNegativeOneSetCCResult)
1581      return VTBits;
1582    break;
1583  case ISD::ROTL:
1584  case ISD::ROTR:
1585    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1586      unsigned RotAmt = C->getValue() & (VTBits-1);
1587
1588      // Handle rotate right by N like a rotate left by 32-N.
1589      if (Op.getOpcode() == ISD::ROTR)
1590        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1591
1592      // If we aren't rotating out all of the known-in sign bits, return the
1593      // number that are left.  This handles rotl(sext(x), 1) for example.
1594      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1595      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1596    }
1597    break;
1598  case ISD::ADD:
1599    // Add can have at most one carry bit.  Thus we know that the output
1600    // is, at worst, one more bit than the inputs.
1601    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1602    if (Tmp == 1) return 1;  // Early out.
1603
1604    // Special case decrementing a value (ADD X, -1):
1605    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1606      if (CRHS->isAllOnesValue()) {
1607        APInt KnownZero, KnownOne;
1608        APInt Mask = APInt::getAllOnesValue(VTBits);
1609        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1610
1611        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1612        // sign bits set.
1613        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1614          return VTBits;
1615
1616        // If we are subtracting one from a positive number, there is no carry
1617        // out of the result.
1618        if (KnownZero.isNegative())
1619          return Tmp;
1620      }
1621
1622    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1623    if (Tmp2 == 1) return 1;
1624      return std::min(Tmp, Tmp2)-1;
1625    break;
1626
1627  case ISD::SUB:
1628    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1629    if (Tmp2 == 1) return 1;
1630
1631    // Handle NEG.
1632    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1633      if (CLHS->getValue() == 0) {
1634        APInt KnownZero, KnownOne;
1635        APInt Mask = APInt::getAllOnesValue(VTBits);
1636        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1637        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1638        // sign bits set.
1639        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1640          return VTBits;
1641
1642        // If the input is known to be positive (the sign bit is known clear),
1643        // the output of the NEG has the same number of sign bits as the input.
1644        if (KnownZero.isNegative())
1645          return Tmp2;
1646
1647        // Otherwise, we treat this like a SUB.
1648      }
1649
1650    // Sub can have at most one carry bit.  Thus we know that the output
1651    // is, at worst, one more bit than the inputs.
1652    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1653    if (Tmp == 1) return 1;  // Early out.
1654      return std::min(Tmp, Tmp2)-1;
1655    break;
1656  case ISD::TRUNCATE:
1657    // FIXME: it's tricky to do anything useful for this, but it is an important
1658    // case for targets like X86.
1659    break;
1660  }
1661
1662  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1663  if (Op.getOpcode() == ISD::LOAD) {
1664    LoadSDNode *LD = cast<LoadSDNode>(Op);
1665    unsigned ExtType = LD->getExtensionType();
1666    switch (ExtType) {
1667    default: break;
1668    case ISD::SEXTLOAD:    // '17' bits known
1669      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1670      return VTBits-Tmp+1;
1671    case ISD::ZEXTLOAD:    // '16' bits known
1672      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1673      return VTBits-Tmp;
1674    }
1675  }
1676
1677  // Allow the target to implement this method for its nodes.
1678  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1679      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1680      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1681      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1682    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1683    if (NumBits > 1) return NumBits;
1684  }
1685
1686  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1687  // use this information.
1688  APInt KnownZero, KnownOne;
1689  APInt Mask = APInt::getAllOnesValue(VTBits);
1690  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1691
1692  if (KnownZero.isNegative()) {        // sign bit is 0
1693    Mask = KnownZero;
1694  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1695    Mask = KnownOne;
1696  } else {
1697    // Nothing known.
1698    return 1;
1699  }
1700
1701  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1702  // the number of identical bits in the top of the input value.
1703  Mask = ~Mask;
1704  Mask <<= Mask.getBitWidth()-VTBits;
1705  // Return # leading zeros.  We use 'min' here in case Val was zero before
1706  // shifting.  We don't want to return '64' as for an i32 "0".
1707  return std::min(VTBits, Mask.countLeadingZeros());
1708}
1709
1710
1711bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1712  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1713  if (!GA) return false;
1714  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1715  if (!GV) return false;
1716  MachineModuleInfo *MMI = getMachineModuleInfo();
1717  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1718}
1719
1720
1721/// getNode - Gets or creates the specified node.
1722///
1723SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1724  FoldingSetNodeID ID;
1725  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1726  void *IP = 0;
1727  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1728    return SDOperand(E, 0);
1729  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1730  CSEMap.InsertNode(N, IP);
1731
1732  AllNodes.push_back(N);
1733  return SDOperand(N, 0);
1734}
1735
1736SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1737                                SDOperand Operand) {
1738  // Constant fold unary operations with an integer constant operand.
1739  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1740    const APInt &Val = C->getAPIntValue();
1741    unsigned BitWidth = MVT::getSizeInBits(VT);
1742    switch (Opcode) {
1743    default: break;
1744    case ISD::SIGN_EXTEND: return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1745    case ISD::ANY_EXTEND:
1746    case ISD::ZERO_EXTEND:
1747    case ISD::TRUNCATE:    return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1748    case ISD::UINT_TO_FP:
1749    case ISD::SINT_TO_FP: {
1750      const uint64_t zero[] = {0, 0};
1751      // No compile time operations on this type.
1752      if (VT==MVT::ppcf128)
1753        break;
1754      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1755      (void)apf.convertFromAPInt(Val,
1756                                 Opcode==ISD::SINT_TO_FP,
1757                                 APFloat::rmNearestTiesToEven);
1758      return getConstantFP(apf, VT);
1759    }
1760    case ISD::BIT_CONVERT:
1761      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1762        return getConstantFP(Val.bitsToFloat(), VT);
1763      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1764        return getConstantFP(Val.bitsToDouble(), VT);
1765      break;
1766    case ISD::BSWAP:
1767      return getConstant(Val.byteSwap(), VT);
1768    case ISD::CTPOP:
1769      return getConstant(Val.countPopulation(), VT);
1770    case ISD::CTLZ:
1771      return getConstant(Val.countLeadingZeros(), VT);
1772    case ISD::CTTZ:
1773      return getConstant(Val.countTrailingZeros(), VT);
1774    }
1775  }
1776
1777  // Constant fold unary operations with a floating point constant operand.
1778  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1779    APFloat V = C->getValueAPF();    // make copy
1780    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1781      switch (Opcode) {
1782      case ISD::FNEG:
1783        V.changeSign();
1784        return getConstantFP(V, VT);
1785      case ISD::FABS:
1786        V.clearSign();
1787        return getConstantFP(V, VT);
1788      case ISD::FP_ROUND:
1789      case ISD::FP_EXTEND:
1790        // This can return overflow, underflow, or inexact; we don't care.
1791        // FIXME need to be more flexible about rounding mode.
1792        (void)V.convert(*MVTToAPFloatSemantics(VT),
1793                        APFloat::rmNearestTiesToEven);
1794        return getConstantFP(V, VT);
1795      case ISD::FP_TO_SINT:
1796      case ISD::FP_TO_UINT: {
1797        integerPart x;
1798        assert(integerPartWidth >= 64);
1799        // FIXME need to be more flexible about rounding mode.
1800        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1801                              Opcode==ISD::FP_TO_SINT,
1802                              APFloat::rmTowardZero);
1803        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1804          break;
1805        return getConstant(x, VT);
1806      }
1807      case ISD::BIT_CONVERT:
1808        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1809          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1810        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1811          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1812        break;
1813      }
1814    }
1815  }
1816
1817  unsigned OpOpcode = Operand.Val->getOpcode();
1818  switch (Opcode) {
1819  case ISD::TokenFactor:
1820    return Operand;         // Factor of one node?  No factor.
1821  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1822  case ISD::FP_EXTEND:
1823    assert(MVT::isFloatingPoint(VT) &&
1824           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1825    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1826    break;
1827    case ISD::SIGN_EXTEND:
1828    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1829           "Invalid SIGN_EXTEND!");
1830    if (Operand.getValueType() == VT) return Operand;   // noop extension
1831    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1832           && "Invalid sext node, dst < src!");
1833    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1834      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1835    break;
1836  case ISD::ZERO_EXTEND:
1837    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1838           "Invalid ZERO_EXTEND!");
1839    if (Operand.getValueType() == VT) return Operand;   // noop extension
1840    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1841           && "Invalid zext node, dst < src!");
1842    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1843      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1844    break;
1845  case ISD::ANY_EXTEND:
1846    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1847           "Invalid ANY_EXTEND!");
1848    if (Operand.getValueType() == VT) return Operand;   // noop extension
1849    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1850           && "Invalid anyext node, dst < src!");
1851    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1852      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1853      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1854    break;
1855  case ISD::TRUNCATE:
1856    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1857           "Invalid TRUNCATE!");
1858    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1859    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1860           && "Invalid truncate node, src < dst!");
1861    if (OpOpcode == ISD::TRUNCATE)
1862      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1863    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1864             OpOpcode == ISD::ANY_EXTEND) {
1865      // If the source is smaller than the dest, we still need an extend.
1866      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1867          < MVT::getSizeInBits(VT))
1868        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1869      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1870               > MVT::getSizeInBits(VT))
1871        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1872      else
1873        return Operand.Val->getOperand(0);
1874    }
1875    break;
1876  case ISD::BIT_CONVERT:
1877    // Basic sanity checking.
1878    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1879           && "Cannot BIT_CONVERT between types of different sizes!");
1880    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1881    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1882      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1883    if (OpOpcode == ISD::UNDEF)
1884      return getNode(ISD::UNDEF, VT);
1885    break;
1886  case ISD::SCALAR_TO_VECTOR:
1887    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1888           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1889           "Illegal SCALAR_TO_VECTOR node!");
1890    break;
1891  case ISD::FNEG:
1892    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1893      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1894                     Operand.Val->getOperand(0));
1895    if (OpOpcode == ISD::FNEG)  // --X -> X
1896      return Operand.Val->getOperand(0);
1897    break;
1898  case ISD::FABS:
1899    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1900      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1901    break;
1902  }
1903
1904  SDNode *N;
1905  SDVTList VTs = getVTList(VT);
1906  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1907    FoldingSetNodeID ID;
1908    SDOperand Ops[1] = { Operand };
1909    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1910    void *IP = 0;
1911    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1912      return SDOperand(E, 0);
1913    N = new UnarySDNode(Opcode, VTs, Operand);
1914    CSEMap.InsertNode(N, IP);
1915  } else {
1916    N = new UnarySDNode(Opcode, VTs, Operand);
1917  }
1918  AllNodes.push_back(N);
1919  return SDOperand(N, 0);
1920}
1921
1922
1923
1924SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1925                                SDOperand N1, SDOperand N2) {
1926  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1927  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1928  switch (Opcode) {
1929  default: break;
1930  case ISD::TokenFactor:
1931    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1932           N2.getValueType() == MVT::Other && "Invalid token factor!");
1933    // Fold trivial token factors.
1934    if (N1.getOpcode() == ISD::EntryToken) return N2;
1935    if (N2.getOpcode() == ISD::EntryToken) return N1;
1936    break;
1937  case ISD::AND:
1938    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1939           N1.getValueType() == VT && "Binary operator types must match!");
1940    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1941    // worth handling here.
1942    if (N2C && N2C->getValue() == 0)
1943      return N2;
1944    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
1945      return N1;
1946    break;
1947  case ISD::OR:
1948  case ISD::XOR:
1949    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1950           N1.getValueType() == VT && "Binary operator types must match!");
1951    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1952    // worth handling here.
1953    if (N2C && N2C->getValue() == 0)
1954      return N1;
1955    break;
1956  case ISD::UDIV:
1957  case ISD::UREM:
1958  case ISD::MULHU:
1959  case ISD::MULHS:
1960    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1961    // fall through
1962  case ISD::ADD:
1963  case ISD::SUB:
1964  case ISD::MUL:
1965  case ISD::SDIV:
1966  case ISD::SREM:
1967  case ISD::FADD:
1968  case ISD::FSUB:
1969  case ISD::FMUL:
1970  case ISD::FDIV:
1971  case ISD::FREM:
1972    assert(N1.getValueType() == N2.getValueType() &&
1973           N1.getValueType() == VT && "Binary operator types must match!");
1974    break;
1975  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1976    assert(N1.getValueType() == VT &&
1977           MVT::isFloatingPoint(N1.getValueType()) &&
1978           MVT::isFloatingPoint(N2.getValueType()) &&
1979           "Invalid FCOPYSIGN!");
1980    break;
1981  case ISD::SHL:
1982  case ISD::SRA:
1983  case ISD::SRL:
1984  case ISD::ROTL:
1985  case ISD::ROTR:
1986    assert(VT == N1.getValueType() &&
1987           "Shift operators return type must be the same as their first arg");
1988    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1989           VT != MVT::i1 && "Shifts only work on integers");
1990    break;
1991  case ISD::FP_ROUND_INREG: {
1992    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1993    assert(VT == N1.getValueType() && "Not an inreg round!");
1994    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1995           "Cannot FP_ROUND_INREG integer types");
1996    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1997           "Not rounding down!");
1998    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1999    break;
2000  }
2001  case ISD::FP_ROUND:
2002    assert(MVT::isFloatingPoint(VT) &&
2003           MVT::isFloatingPoint(N1.getValueType()) &&
2004           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2005           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2006    if (N1.getValueType() == VT) return N1;  // noop conversion.
2007    break;
2008  case ISD::AssertSext:
2009  case ISD::AssertZext: {
2010    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2011    assert(VT == N1.getValueType() && "Not an inreg extend!");
2012    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2013           "Cannot *_EXTEND_INREG FP types");
2014    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2015           "Not extending!");
2016    if (VT == EVT) return N1; // noop assertion.
2017    break;
2018  }
2019  case ISD::SIGN_EXTEND_INREG: {
2020    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2021    assert(VT == N1.getValueType() && "Not an inreg extend!");
2022    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2023           "Cannot *_EXTEND_INREG FP types");
2024    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2025           "Not extending!");
2026    if (EVT == VT) return N1;  // Not actually extending
2027
2028    if (N1C) {
2029      APInt Val = N1C->getAPIntValue();
2030      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2031      Val <<= Val.getBitWidth()-FromBits;
2032      Val = Val.ashr(Val.getBitWidth()-FromBits);
2033      return getConstant(Val, VT);
2034    }
2035    break;
2036  }
2037  case ISD::EXTRACT_VECTOR_ELT:
2038    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2039
2040    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2041    // expanding copies of large vectors from registers.
2042    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2043        N1.getNumOperands() > 0) {
2044      unsigned Factor =
2045        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2046      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2047                     N1.getOperand(N2C->getValue() / Factor),
2048                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2049    }
2050
2051    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2052    // expanding large vector constants.
2053    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2054      return N1.getOperand(N2C->getValue());
2055
2056    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2057    // operations are lowered to scalars.
2058    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2059      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2060        if (IEC == N2C)
2061          return N1.getOperand(1);
2062        else
2063          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2064      }
2065    break;
2066  case ISD::EXTRACT_ELEMENT:
2067    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2068
2069    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2070    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2071    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2072    if (N1.getOpcode() == ISD::BUILD_PAIR)
2073      return N1.getOperand(N2C->getValue());
2074
2075    // EXTRACT_ELEMENT of a constant int is also very common.
2076    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2077      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2078      return getConstant(C->getValue() >> Shift, VT);
2079    }
2080    break;
2081  case ISD::EXTRACT_SUBVECTOR:
2082    if (N1.getValueType() == VT) // Trivial extraction.
2083      return N1;
2084    break;
2085  }
2086
2087  if (N1C) {
2088    if (N2C) {
2089      APInt C1 = N1C->getAPIntValue(), C2 = N2C->getAPIntValue();
2090      switch (Opcode) {
2091      case ISD::ADD: return getConstant(C1 + C2, VT);
2092      case ISD::SUB: return getConstant(C1 - C2, VT);
2093      case ISD::MUL: return getConstant(C1 * C2, VT);
2094      case ISD::UDIV:
2095        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2096        break;
2097      case ISD::UREM :
2098        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2099        break;
2100      case ISD::SDIV :
2101        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2102        break;
2103      case ISD::SREM :
2104        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2105        break;
2106      case ISD::AND  : return getConstant(C1 & C2, VT);
2107      case ISD::OR   : return getConstant(C1 | C2, VT);
2108      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2109      case ISD::SHL  : return getConstant(C1 << C2, VT);
2110      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2111      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2112      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2113      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2114      default: break;
2115      }
2116    } else {      // Cannonicalize constant to RHS if commutative
2117      if (isCommutativeBinOp(Opcode)) {
2118        std::swap(N1C, N2C);
2119        std::swap(N1, N2);
2120      }
2121    }
2122  }
2123
2124  // Constant fold FP operations.
2125  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2126  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2127  if (N1CFP) {
2128    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2129      // Cannonicalize constant to RHS if commutative
2130      std::swap(N1CFP, N2CFP);
2131      std::swap(N1, N2);
2132    } else if (N2CFP && VT != MVT::ppcf128) {
2133      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2134      APFloat::opStatus s;
2135      switch (Opcode) {
2136      case ISD::FADD:
2137        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2138        if (s != APFloat::opInvalidOp)
2139          return getConstantFP(V1, VT);
2140        break;
2141      case ISD::FSUB:
2142        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2143        if (s!=APFloat::opInvalidOp)
2144          return getConstantFP(V1, VT);
2145        break;
2146      case ISD::FMUL:
2147        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2148        if (s!=APFloat::opInvalidOp)
2149          return getConstantFP(V1, VT);
2150        break;
2151      case ISD::FDIV:
2152        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2153        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2154          return getConstantFP(V1, VT);
2155        break;
2156      case ISD::FREM :
2157        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2158        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2159          return getConstantFP(V1, VT);
2160        break;
2161      case ISD::FCOPYSIGN:
2162        V1.copySign(V2);
2163        return getConstantFP(V1, VT);
2164      default: break;
2165      }
2166    }
2167  }
2168
2169  // Canonicalize an UNDEF to the RHS, even over a constant.
2170  if (N1.getOpcode() == ISD::UNDEF) {
2171    if (isCommutativeBinOp(Opcode)) {
2172      std::swap(N1, N2);
2173    } else {
2174      switch (Opcode) {
2175      case ISD::FP_ROUND_INREG:
2176      case ISD::SIGN_EXTEND_INREG:
2177      case ISD::SUB:
2178      case ISD::FSUB:
2179      case ISD::FDIV:
2180      case ISD::FREM:
2181      case ISD::SRA:
2182        return N1;     // fold op(undef, arg2) -> undef
2183      case ISD::UDIV:
2184      case ISD::SDIV:
2185      case ISD::UREM:
2186      case ISD::SREM:
2187      case ISD::SRL:
2188      case ISD::SHL:
2189        if (!MVT::isVector(VT))
2190          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2191        // For vectors, we can't easily build an all zero vector, just return
2192        // the LHS.
2193        return N2;
2194      }
2195    }
2196  }
2197
2198  // Fold a bunch of operators when the RHS is undef.
2199  if (N2.getOpcode() == ISD::UNDEF) {
2200    switch (Opcode) {
2201    case ISD::ADD:
2202    case ISD::ADDC:
2203    case ISD::ADDE:
2204    case ISD::SUB:
2205    case ISD::FADD:
2206    case ISD::FSUB:
2207    case ISD::FMUL:
2208    case ISD::FDIV:
2209    case ISD::FREM:
2210    case ISD::UDIV:
2211    case ISD::SDIV:
2212    case ISD::UREM:
2213    case ISD::SREM:
2214    case ISD::XOR:
2215      return N2;       // fold op(arg1, undef) -> undef
2216    case ISD::MUL:
2217    case ISD::AND:
2218    case ISD::SRL:
2219    case ISD::SHL:
2220      if (!MVT::isVector(VT))
2221        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2222      // For vectors, we can't easily build an all zero vector, just return
2223      // the LHS.
2224      return N1;
2225    case ISD::OR:
2226      if (!MVT::isVector(VT))
2227        return getConstant(MVT::getIntVTBitMask(VT), VT);
2228      // For vectors, we can't easily build an all one vector, just return
2229      // the LHS.
2230      return N1;
2231    case ISD::SRA:
2232      return N1;
2233    }
2234  }
2235
2236  // Memoize this node if possible.
2237  SDNode *N;
2238  SDVTList VTs = getVTList(VT);
2239  if (VT != MVT::Flag) {
2240    SDOperand Ops[] = { N1, N2 };
2241    FoldingSetNodeID ID;
2242    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2243    void *IP = 0;
2244    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2245      return SDOperand(E, 0);
2246    N = new BinarySDNode(Opcode, VTs, N1, N2);
2247    CSEMap.InsertNode(N, IP);
2248  } else {
2249    N = new BinarySDNode(Opcode, VTs, N1, N2);
2250  }
2251
2252  AllNodes.push_back(N);
2253  return SDOperand(N, 0);
2254}
2255
2256SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2257                                SDOperand N1, SDOperand N2, SDOperand N3) {
2258  // Perform various simplifications.
2259  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2260  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2261  switch (Opcode) {
2262  case ISD::SETCC: {
2263    // Use FoldSetCC to simplify SETCC's.
2264    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2265    if (Simp.Val) return Simp;
2266    break;
2267  }
2268  case ISD::SELECT:
2269    if (N1C) {
2270     if (N1C->getValue())
2271        return N2;             // select true, X, Y -> X
2272      else
2273        return N3;             // select false, X, Y -> Y
2274    }
2275
2276    if (N2 == N3) return N2;   // select C, X, X -> X
2277    break;
2278  case ISD::BRCOND:
2279    if (N2C) {
2280      if (N2C->getValue()) // Unconditional branch
2281        return getNode(ISD::BR, MVT::Other, N1, N3);
2282      else
2283        return N1;         // Never-taken branch
2284    }
2285    break;
2286  case ISD::VECTOR_SHUFFLE:
2287    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2288           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2289           N3.getOpcode() == ISD::BUILD_VECTOR &&
2290           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2291           "Illegal VECTOR_SHUFFLE node!");
2292    break;
2293  case ISD::BIT_CONVERT:
2294    // Fold bit_convert nodes from a type to themselves.
2295    if (N1.getValueType() == VT)
2296      return N1;
2297    break;
2298  }
2299
2300  // Memoize node if it doesn't produce a flag.
2301  SDNode *N;
2302  SDVTList VTs = getVTList(VT);
2303  if (VT != MVT::Flag) {
2304    SDOperand Ops[] = { N1, N2, N3 };
2305    FoldingSetNodeID ID;
2306    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2307    void *IP = 0;
2308    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2309      return SDOperand(E, 0);
2310    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2311    CSEMap.InsertNode(N, IP);
2312  } else {
2313    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2314  }
2315  AllNodes.push_back(N);
2316  return SDOperand(N, 0);
2317}
2318
2319SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2320                                SDOperand N1, SDOperand N2, SDOperand N3,
2321                                SDOperand N4) {
2322  SDOperand Ops[] = { N1, N2, N3, N4 };
2323  return getNode(Opcode, VT, Ops, 4);
2324}
2325
2326SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2327                                SDOperand N1, SDOperand N2, SDOperand N3,
2328                                SDOperand N4, SDOperand N5) {
2329  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2330  return getNode(Opcode, VT, Ops, 5);
2331}
2332
2333SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2334                                  SDOperand Src, SDOperand Size,
2335                                  SDOperand Align,
2336                                  SDOperand AlwaysInline) {
2337  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2338  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2339}
2340
2341SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2342                                  SDOperand Src, SDOperand Size,
2343                                  SDOperand Align,
2344                                  SDOperand AlwaysInline) {
2345  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2346  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2347}
2348
2349SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2350                                  SDOperand Src, SDOperand Size,
2351                                  SDOperand Align,
2352                                  SDOperand AlwaysInline) {
2353  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2354  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2355}
2356
2357SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2358                                  SDOperand Ptr, SDOperand Cmp,
2359                                  SDOperand Swp, MVT::ValueType VT) {
2360  assert(Opcode == ISD::ATOMIC_LCS && "Invalid Atomic Op");
2361  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
2362  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
2363  FoldingSetNodeID ID;
2364  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
2365  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
2366  ID.AddInteger((unsigned int)VT);
2367  void* IP = 0;
2368  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2369    return SDOperand(E, 0);
2370  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, VT);
2371  CSEMap.InsertNode(N, IP);
2372  AllNodes.push_back(N);
2373  return SDOperand(N, 0);
2374}
2375
2376SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2377                                  SDOperand Ptr, SDOperand Val,
2378                                  MVT::ValueType VT) {
2379  assert((Opcode == ISD::ATOMIC_LAS || Opcode == ISD::ATOMIC_SWAP)
2380         && "Invalid Atomic Op");
2381  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
2382  FoldingSetNodeID ID;
2383  SDOperand Ops[] = {Chain, Ptr, Val};
2384  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2385  ID.AddInteger((unsigned int)VT);
2386  void* IP = 0;
2387  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2388    return SDOperand(E, 0);
2389  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, VT);
2390  CSEMap.InsertNode(N, IP);
2391  AllNodes.push_back(N);
2392  return SDOperand(N, 0);
2393}
2394
2395SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2396                                SDOperand Chain, SDOperand Ptr,
2397                                const Value *SV, int SVOffset,
2398                                bool isVolatile, unsigned Alignment) {
2399  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2400    const Type *Ty = 0;
2401    if (VT != MVT::iPTR) {
2402      Ty = MVT::getTypeForValueType(VT);
2403    } else if (SV) {
2404      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2405      assert(PT && "Value for load must be a pointer");
2406      Ty = PT->getElementType();
2407    }
2408    assert(Ty && "Could not get type information for load");
2409    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2410  }
2411  SDVTList VTs = getVTList(VT, MVT::Other);
2412  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2413  SDOperand Ops[] = { Chain, Ptr, Undef };
2414  FoldingSetNodeID ID;
2415  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2416  ID.AddInteger(ISD::UNINDEXED);
2417  ID.AddInteger(ISD::NON_EXTLOAD);
2418  ID.AddInteger((unsigned int)VT);
2419  ID.AddInteger(Alignment);
2420  ID.AddInteger(isVolatile);
2421  void *IP = 0;
2422  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2423    return SDOperand(E, 0);
2424  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2425                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2426                             isVolatile);
2427  CSEMap.InsertNode(N, IP);
2428  AllNodes.push_back(N);
2429  return SDOperand(N, 0);
2430}
2431
2432SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2433                                   SDOperand Chain, SDOperand Ptr,
2434                                   const Value *SV,
2435                                   int SVOffset, MVT::ValueType EVT,
2436                                   bool isVolatile, unsigned Alignment) {
2437  // If they are asking for an extending load from/to the same thing, return a
2438  // normal load.
2439  if (VT == EVT)
2440    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2441
2442  if (MVT::isVector(VT))
2443    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2444  else
2445    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2446           "Should only be an extending load, not truncating!");
2447  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2448         "Cannot sign/zero extend a FP/Vector load!");
2449  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2450         "Cannot convert from FP to Int or Int -> FP!");
2451
2452  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2453    const Type *Ty = 0;
2454    if (VT != MVT::iPTR) {
2455      Ty = MVT::getTypeForValueType(VT);
2456    } else if (SV) {
2457      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2458      assert(PT && "Value for load must be a pointer");
2459      Ty = PT->getElementType();
2460    }
2461    assert(Ty && "Could not get type information for load");
2462    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2463  }
2464  SDVTList VTs = getVTList(VT, MVT::Other);
2465  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2466  SDOperand Ops[] = { Chain, Ptr, Undef };
2467  FoldingSetNodeID ID;
2468  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2469  ID.AddInteger(ISD::UNINDEXED);
2470  ID.AddInteger(ExtType);
2471  ID.AddInteger((unsigned int)EVT);
2472  ID.AddInteger(Alignment);
2473  ID.AddInteger(isVolatile);
2474  void *IP = 0;
2475  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2476    return SDOperand(E, 0);
2477  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2478                             SV, SVOffset, Alignment, isVolatile);
2479  CSEMap.InsertNode(N, IP);
2480  AllNodes.push_back(N);
2481  return SDOperand(N, 0);
2482}
2483
2484SDOperand
2485SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2486                             SDOperand Offset, ISD::MemIndexedMode AM) {
2487  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2488  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2489         "Load is already a indexed load!");
2490  MVT::ValueType VT = OrigLoad.getValueType();
2491  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2492  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2493  FoldingSetNodeID ID;
2494  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2495  ID.AddInteger(AM);
2496  ID.AddInteger(LD->getExtensionType());
2497  ID.AddInteger((unsigned int)(LD->getMemoryVT()));
2498  ID.AddInteger(LD->getAlignment());
2499  ID.AddInteger(LD->isVolatile());
2500  void *IP = 0;
2501  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2502    return SDOperand(E, 0);
2503  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2504                             LD->getExtensionType(), LD->getMemoryVT(),
2505                             LD->getSrcValue(), LD->getSrcValueOffset(),
2506                             LD->getAlignment(), LD->isVolatile());
2507  CSEMap.InsertNode(N, IP);
2508  AllNodes.push_back(N);
2509  return SDOperand(N, 0);
2510}
2511
2512SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2513                                 SDOperand Ptr, const Value *SV, int SVOffset,
2514                                 bool isVolatile, unsigned Alignment) {
2515  MVT::ValueType VT = Val.getValueType();
2516
2517  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2518    const Type *Ty = 0;
2519    if (VT != MVT::iPTR) {
2520      Ty = MVT::getTypeForValueType(VT);
2521    } else if (SV) {
2522      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2523      assert(PT && "Value for store must be a pointer");
2524      Ty = PT->getElementType();
2525    }
2526    assert(Ty && "Could not get type information for store");
2527    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2528  }
2529  SDVTList VTs = getVTList(MVT::Other);
2530  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2531  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2532  FoldingSetNodeID ID;
2533  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2534  ID.AddInteger(ISD::UNINDEXED);
2535  ID.AddInteger(false);
2536  ID.AddInteger((unsigned int)VT);
2537  ID.AddInteger(Alignment);
2538  ID.AddInteger(isVolatile);
2539  void *IP = 0;
2540  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2541    return SDOperand(E, 0);
2542  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2543                              VT, SV, SVOffset, Alignment, isVolatile);
2544  CSEMap.InsertNode(N, IP);
2545  AllNodes.push_back(N);
2546  return SDOperand(N, 0);
2547}
2548
2549SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2550                                      SDOperand Ptr, const Value *SV,
2551                                      int SVOffset, MVT::ValueType SVT,
2552                                      bool isVolatile, unsigned Alignment) {
2553  MVT::ValueType VT = Val.getValueType();
2554
2555  if (VT == SVT)
2556    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2557
2558  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2559         "Not a truncation?");
2560  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2561         "Can't do FP-INT conversion!");
2562
2563  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2564    const Type *Ty = 0;
2565    if (VT != MVT::iPTR) {
2566      Ty = MVT::getTypeForValueType(VT);
2567    } else if (SV) {
2568      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2569      assert(PT && "Value for store must be a pointer");
2570      Ty = PT->getElementType();
2571    }
2572    assert(Ty && "Could not get type information for store");
2573    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2574  }
2575  SDVTList VTs = getVTList(MVT::Other);
2576  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2577  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2578  FoldingSetNodeID ID;
2579  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2580  ID.AddInteger(ISD::UNINDEXED);
2581  ID.AddInteger(1);
2582  ID.AddInteger((unsigned int)SVT);
2583  ID.AddInteger(Alignment);
2584  ID.AddInteger(isVolatile);
2585  void *IP = 0;
2586  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2587    return SDOperand(E, 0);
2588  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2589                              SVT, SV, SVOffset, Alignment, isVolatile);
2590  CSEMap.InsertNode(N, IP);
2591  AllNodes.push_back(N);
2592  return SDOperand(N, 0);
2593}
2594
2595SDOperand
2596SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2597                              SDOperand Offset, ISD::MemIndexedMode AM) {
2598  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2599  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2600         "Store is already a indexed store!");
2601  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2602  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2603  FoldingSetNodeID ID;
2604  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2605  ID.AddInteger(AM);
2606  ID.AddInteger(ST->isTruncatingStore());
2607  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
2608  ID.AddInteger(ST->getAlignment());
2609  ID.AddInteger(ST->isVolatile());
2610  void *IP = 0;
2611  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2612    return SDOperand(E, 0);
2613  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2614                              ST->isTruncatingStore(), ST->getMemoryVT(),
2615                              ST->getSrcValue(), ST->getSrcValueOffset(),
2616                              ST->getAlignment(), ST->isVolatile());
2617  CSEMap.InsertNode(N, IP);
2618  AllNodes.push_back(N);
2619  return SDOperand(N, 0);
2620}
2621
2622SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2623                                 SDOperand Chain, SDOperand Ptr,
2624                                 SDOperand SV) {
2625  SDOperand Ops[] = { Chain, Ptr, SV };
2626  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2627}
2628
2629SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2630                                const SDOperand *Ops, unsigned NumOps) {
2631  switch (NumOps) {
2632  case 0: return getNode(Opcode, VT);
2633  case 1: return getNode(Opcode, VT, Ops[0]);
2634  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2635  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2636  default: break;
2637  }
2638
2639  switch (Opcode) {
2640  default: break;
2641  case ISD::SELECT_CC: {
2642    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2643    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2644           "LHS and RHS of condition must have same type!");
2645    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2646           "True and False arms of SelectCC must have same type!");
2647    assert(Ops[2].getValueType() == VT &&
2648           "select_cc node must be of same type as true and false value!");
2649    break;
2650  }
2651  case ISD::BR_CC: {
2652    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2653    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2654           "LHS/RHS of comparison should match types!");
2655    break;
2656  }
2657  }
2658
2659  // Memoize nodes.
2660  SDNode *N;
2661  SDVTList VTs = getVTList(VT);
2662  if (VT != MVT::Flag) {
2663    FoldingSetNodeID ID;
2664    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2665    void *IP = 0;
2666    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2667      return SDOperand(E, 0);
2668    N = new SDNode(Opcode, VTs, Ops, NumOps);
2669    CSEMap.InsertNode(N, IP);
2670  } else {
2671    N = new SDNode(Opcode, VTs, Ops, NumOps);
2672  }
2673  AllNodes.push_back(N);
2674  return SDOperand(N, 0);
2675}
2676
2677SDOperand SelectionDAG::getNode(unsigned Opcode,
2678                                std::vector<MVT::ValueType> &ResultTys,
2679                                const SDOperand *Ops, unsigned NumOps) {
2680  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2681                 Ops, NumOps);
2682}
2683
2684SDOperand SelectionDAG::getNode(unsigned Opcode,
2685                                const MVT::ValueType *VTs, unsigned NumVTs,
2686                                const SDOperand *Ops, unsigned NumOps) {
2687  if (NumVTs == 1)
2688    return getNode(Opcode, VTs[0], Ops, NumOps);
2689  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2690}
2691
2692SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2693                                const SDOperand *Ops, unsigned NumOps) {
2694  if (VTList.NumVTs == 1)
2695    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2696
2697  switch (Opcode) {
2698  // FIXME: figure out how to safely handle things like
2699  // int foo(int x) { return 1 << (x & 255); }
2700  // int bar() { return foo(256); }
2701#if 0
2702  case ISD::SRA_PARTS:
2703  case ISD::SRL_PARTS:
2704  case ISD::SHL_PARTS:
2705    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2706        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2707      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2708    else if (N3.getOpcode() == ISD::AND)
2709      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2710        // If the and is only masking out bits that cannot effect the shift,
2711        // eliminate the and.
2712        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2713        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2714          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2715      }
2716    break;
2717#endif
2718  }
2719
2720  // Memoize the node unless it returns a flag.
2721  SDNode *N;
2722  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2723    FoldingSetNodeID ID;
2724    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2725    void *IP = 0;
2726    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2727      return SDOperand(E, 0);
2728    if (NumOps == 1)
2729      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2730    else if (NumOps == 2)
2731      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2732    else if (NumOps == 3)
2733      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2734    else
2735      N = new SDNode(Opcode, VTList, Ops, NumOps);
2736    CSEMap.InsertNode(N, IP);
2737  } else {
2738    if (NumOps == 1)
2739      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2740    else if (NumOps == 2)
2741      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2742    else if (NumOps == 3)
2743      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2744    else
2745      N = new SDNode(Opcode, VTList, Ops, NumOps);
2746  }
2747  AllNodes.push_back(N);
2748  return SDOperand(N, 0);
2749}
2750
2751SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2752  return getNode(Opcode, VTList, 0, 0);
2753}
2754
2755SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2756                                SDOperand N1) {
2757  SDOperand Ops[] = { N1 };
2758  return getNode(Opcode, VTList, Ops, 1);
2759}
2760
2761SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2762                                SDOperand N1, SDOperand N2) {
2763  SDOperand Ops[] = { N1, N2 };
2764  return getNode(Opcode, VTList, Ops, 2);
2765}
2766
2767SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2768                                SDOperand N1, SDOperand N2, SDOperand N3) {
2769  SDOperand Ops[] = { N1, N2, N3 };
2770  return getNode(Opcode, VTList, Ops, 3);
2771}
2772
2773SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2774                                SDOperand N1, SDOperand N2, SDOperand N3,
2775                                SDOperand N4) {
2776  SDOperand Ops[] = { N1, N2, N3, N4 };
2777  return getNode(Opcode, VTList, Ops, 4);
2778}
2779
2780SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2781                                SDOperand N1, SDOperand N2, SDOperand N3,
2782                                SDOperand N4, SDOperand N5) {
2783  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2784  return getNode(Opcode, VTList, Ops, 5);
2785}
2786
2787SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2788  return makeVTList(SDNode::getValueTypeList(VT), 1);
2789}
2790
2791SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2792  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2793       E = VTList.end(); I != E; ++I) {
2794    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2795      return makeVTList(&(*I)[0], 2);
2796  }
2797  std::vector<MVT::ValueType> V;
2798  V.push_back(VT1);
2799  V.push_back(VT2);
2800  VTList.push_front(V);
2801  return makeVTList(&(*VTList.begin())[0], 2);
2802}
2803SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2804                                 MVT::ValueType VT3) {
2805  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2806       E = VTList.end(); I != E; ++I) {
2807    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2808        (*I)[2] == VT3)
2809      return makeVTList(&(*I)[0], 3);
2810  }
2811  std::vector<MVT::ValueType> V;
2812  V.push_back(VT1);
2813  V.push_back(VT2);
2814  V.push_back(VT3);
2815  VTList.push_front(V);
2816  return makeVTList(&(*VTList.begin())[0], 3);
2817}
2818
2819SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2820  switch (NumVTs) {
2821    case 0: assert(0 && "Cannot have nodes without results!");
2822    case 1: return getVTList(VTs[0]);
2823    case 2: return getVTList(VTs[0], VTs[1]);
2824    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2825    default: break;
2826  }
2827
2828  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2829       E = VTList.end(); I != E; ++I) {
2830    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2831
2832    bool NoMatch = false;
2833    for (unsigned i = 2; i != NumVTs; ++i)
2834      if (VTs[i] != (*I)[i]) {
2835        NoMatch = true;
2836        break;
2837      }
2838    if (!NoMatch)
2839      return makeVTList(&*I->begin(), NumVTs);
2840  }
2841
2842  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2843  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2844}
2845
2846
2847/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2848/// specified operands.  If the resultant node already exists in the DAG,
2849/// this does not modify the specified node, instead it returns the node that
2850/// already exists.  If the resultant node does not exist in the DAG, the
2851/// input node is returned.  As a degenerate case, if you specify the same
2852/// input operands as the node already has, the input node is returned.
2853SDOperand SelectionDAG::
2854UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2855  SDNode *N = InN.Val;
2856  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2857
2858  // Check to see if there is no change.
2859  if (Op == N->getOperand(0)) return InN;
2860
2861  // See if the modified node already exists.
2862  void *InsertPos = 0;
2863  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2864    return SDOperand(Existing, InN.ResNo);
2865
2866  // Nope it doesn't.  Remove the node from it's current place in the maps.
2867  if (InsertPos)
2868    RemoveNodeFromCSEMaps(N);
2869
2870  // Now we update the operands.
2871  N->OperandList[0].Val->removeUser(N);
2872  Op.Val->addUser(N);
2873  N->OperandList[0] = Op;
2874
2875  // If this gets put into a CSE map, add it.
2876  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2877  return InN;
2878}
2879
2880SDOperand SelectionDAG::
2881UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2882  SDNode *N = InN.Val;
2883  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2884
2885  // Check to see if there is no change.
2886  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2887    return InN;   // No operands changed, just return the input node.
2888
2889  // See if the modified node already exists.
2890  void *InsertPos = 0;
2891  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2892    return SDOperand(Existing, InN.ResNo);
2893
2894  // Nope it doesn't.  Remove the node from it's current place in the maps.
2895  if (InsertPos)
2896    RemoveNodeFromCSEMaps(N);
2897
2898  // Now we update the operands.
2899  if (N->OperandList[0] != Op1) {
2900    N->OperandList[0].Val->removeUser(N);
2901    Op1.Val->addUser(N);
2902    N->OperandList[0] = Op1;
2903  }
2904  if (N->OperandList[1] != Op2) {
2905    N->OperandList[1].Val->removeUser(N);
2906    Op2.Val->addUser(N);
2907    N->OperandList[1] = Op2;
2908  }
2909
2910  // If this gets put into a CSE map, add it.
2911  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2912  return InN;
2913}
2914
2915SDOperand SelectionDAG::
2916UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2917  SDOperand Ops[] = { Op1, Op2, Op3 };
2918  return UpdateNodeOperands(N, Ops, 3);
2919}
2920
2921SDOperand SelectionDAG::
2922UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2923                   SDOperand Op3, SDOperand Op4) {
2924  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2925  return UpdateNodeOperands(N, Ops, 4);
2926}
2927
2928SDOperand SelectionDAG::
2929UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2930                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2931  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2932  return UpdateNodeOperands(N, Ops, 5);
2933}
2934
2935
2936SDOperand SelectionDAG::
2937UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2938  SDNode *N = InN.Val;
2939  assert(N->getNumOperands() == NumOps &&
2940         "Update with wrong number of operands");
2941
2942  // Check to see if there is no change.
2943  bool AnyChange = false;
2944  for (unsigned i = 0; i != NumOps; ++i) {
2945    if (Ops[i] != N->getOperand(i)) {
2946      AnyChange = true;
2947      break;
2948    }
2949  }
2950
2951  // No operands changed, just return the input node.
2952  if (!AnyChange) return InN;
2953
2954  // See if the modified node already exists.
2955  void *InsertPos = 0;
2956  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2957    return SDOperand(Existing, InN.ResNo);
2958
2959  // Nope it doesn't.  Remove the node from it's current place in the maps.
2960  if (InsertPos)
2961    RemoveNodeFromCSEMaps(N);
2962
2963  // Now we update the operands.
2964  for (unsigned i = 0; i != NumOps; ++i) {
2965    if (N->OperandList[i] != Ops[i]) {
2966      N->OperandList[i].Val->removeUser(N);
2967      Ops[i].Val->addUser(N);
2968      N->OperandList[i] = Ops[i];
2969    }
2970  }
2971
2972  // If this gets put into a CSE map, add it.
2973  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2974  return InN;
2975}
2976
2977
2978/// MorphNodeTo - This frees the operands of the current node, resets the
2979/// opcode, types, and operands to the specified value.  This should only be
2980/// used by the SelectionDAG class.
2981void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2982                         const SDOperand *Ops, unsigned NumOps) {
2983  NodeType = Opc;
2984  ValueList = L.VTs;
2985  NumValues = L.NumVTs;
2986
2987  // Clear the operands list, updating used nodes to remove this from their
2988  // use list.
2989  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2990    I->Val->removeUser(this);
2991
2992  // If NumOps is larger than the # of operands we currently have, reallocate
2993  // the operand list.
2994  if (NumOps > NumOperands) {
2995    if (OperandsNeedDelete)
2996      delete [] OperandList;
2997    OperandList = new SDOperand[NumOps];
2998    OperandsNeedDelete = true;
2999  }
3000
3001  // Assign the new operands.
3002  NumOperands = NumOps;
3003
3004  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3005    OperandList[i] = Ops[i];
3006    SDNode *N = OperandList[i].Val;
3007    N->Uses.push_back(this);
3008  }
3009}
3010
3011/// SelectNodeTo - These are used for target selectors to *mutate* the
3012/// specified node to have the specified return type, Target opcode, and
3013/// operands.  Note that target opcodes are stored as
3014/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3015///
3016/// Note that SelectNodeTo returns the resultant node.  If there is already a
3017/// node of the specified opcode and operands, it returns that node instead of
3018/// the current one.
3019SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3020                                   MVT::ValueType VT) {
3021  SDVTList VTs = getVTList(VT);
3022  FoldingSetNodeID ID;
3023  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3024  void *IP = 0;
3025  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3026    return ON;
3027
3028  RemoveNodeFromCSEMaps(N);
3029
3030  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3031
3032  CSEMap.InsertNode(N, IP);
3033  return N;
3034}
3035
3036SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3037                                   MVT::ValueType VT, SDOperand Op1) {
3038  // If an identical node already exists, use it.
3039  SDVTList VTs = getVTList(VT);
3040  SDOperand Ops[] = { Op1 };
3041
3042  FoldingSetNodeID ID;
3043  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3044  void *IP = 0;
3045  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3046    return ON;
3047
3048  RemoveNodeFromCSEMaps(N);
3049  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3050  CSEMap.InsertNode(N, IP);
3051  return N;
3052}
3053
3054SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3055                                   MVT::ValueType VT, SDOperand Op1,
3056                                   SDOperand Op2) {
3057  // If an identical node already exists, use it.
3058  SDVTList VTs = getVTList(VT);
3059  SDOperand Ops[] = { Op1, Op2 };
3060
3061  FoldingSetNodeID ID;
3062  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3063  void *IP = 0;
3064  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3065    return ON;
3066
3067  RemoveNodeFromCSEMaps(N);
3068
3069  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3070
3071  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3072  return N;
3073}
3074
3075SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3076                                   MVT::ValueType VT, SDOperand Op1,
3077                                   SDOperand Op2, SDOperand Op3) {
3078  // If an identical node already exists, use it.
3079  SDVTList VTs = getVTList(VT);
3080  SDOperand Ops[] = { Op1, Op2, Op3 };
3081  FoldingSetNodeID ID;
3082  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3083  void *IP = 0;
3084  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3085    return ON;
3086
3087  RemoveNodeFromCSEMaps(N);
3088
3089  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3090
3091  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3092  return N;
3093}
3094
3095SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3096                                   MVT::ValueType VT, const SDOperand *Ops,
3097                                   unsigned NumOps) {
3098  // If an identical node already exists, use it.
3099  SDVTList VTs = getVTList(VT);
3100  FoldingSetNodeID ID;
3101  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3102  void *IP = 0;
3103  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3104    return ON;
3105
3106  RemoveNodeFromCSEMaps(N);
3107  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3108
3109  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3110  return N;
3111}
3112
3113SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3114                                   MVT::ValueType VT1, MVT::ValueType VT2,
3115                                   SDOperand Op1, SDOperand Op2) {
3116  SDVTList VTs = getVTList(VT1, VT2);
3117  FoldingSetNodeID ID;
3118  SDOperand Ops[] = { Op1, Op2 };
3119  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3120  void *IP = 0;
3121  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3122    return ON;
3123
3124  RemoveNodeFromCSEMaps(N);
3125  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3126  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3127  return N;
3128}
3129
3130SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3131                                   MVT::ValueType VT1, MVT::ValueType VT2,
3132                                   SDOperand Op1, SDOperand Op2,
3133                                   SDOperand Op3) {
3134  // If an identical node already exists, use it.
3135  SDVTList VTs = getVTList(VT1, VT2);
3136  SDOperand Ops[] = { Op1, Op2, Op3 };
3137  FoldingSetNodeID ID;
3138  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3139  void *IP = 0;
3140  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3141    return ON;
3142
3143  RemoveNodeFromCSEMaps(N);
3144
3145  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3146  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3147  return N;
3148}
3149
3150
3151/// getTargetNode - These are used for target selectors to create a new node
3152/// with specified return type(s), target opcode, and operands.
3153///
3154/// Note that getTargetNode returns the resultant node.  If there is already a
3155/// node of the specified opcode and operands, it returns that node instead of
3156/// the current one.
3157SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3158  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3159}
3160SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3161                                    SDOperand Op1) {
3162  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3163}
3164SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3165                                    SDOperand Op1, SDOperand Op2) {
3166  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3167}
3168SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3169                                    SDOperand Op1, SDOperand Op2,
3170                                    SDOperand Op3) {
3171  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3172}
3173SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3174                                    const SDOperand *Ops, unsigned NumOps) {
3175  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3176}
3177SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3178                                    MVT::ValueType VT2) {
3179  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3180  SDOperand Op;
3181  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3182}
3183SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3184                                    MVT::ValueType VT2, SDOperand Op1) {
3185  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3186  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3187}
3188SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3189                                    MVT::ValueType VT2, SDOperand Op1,
3190                                    SDOperand Op2) {
3191  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3192  SDOperand Ops[] = { Op1, Op2 };
3193  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3194}
3195SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3196                                    MVT::ValueType VT2, SDOperand Op1,
3197                                    SDOperand Op2, SDOperand Op3) {
3198  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3199  SDOperand Ops[] = { Op1, Op2, Op3 };
3200  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3201}
3202SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3203                                    MVT::ValueType VT2,
3204                                    const SDOperand *Ops, unsigned NumOps) {
3205  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3206  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3207}
3208SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3209                                    MVT::ValueType VT2, MVT::ValueType VT3,
3210                                    SDOperand Op1, SDOperand Op2) {
3211  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3212  SDOperand Ops[] = { Op1, Op2 };
3213  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3214}
3215SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3216                                    MVT::ValueType VT2, MVT::ValueType VT3,
3217                                    SDOperand Op1, SDOperand Op2,
3218                                    SDOperand Op3) {
3219  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3220  SDOperand Ops[] = { Op1, Op2, Op3 };
3221  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3222}
3223SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3224                                    MVT::ValueType VT2, MVT::ValueType VT3,
3225                                    const SDOperand *Ops, unsigned NumOps) {
3226  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3227  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3228}
3229SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3230                                    MVT::ValueType VT2, MVT::ValueType VT3,
3231                                    MVT::ValueType VT4,
3232                                    const SDOperand *Ops, unsigned NumOps) {
3233  std::vector<MVT::ValueType> VTList;
3234  VTList.push_back(VT1);
3235  VTList.push_back(VT2);
3236  VTList.push_back(VT3);
3237  VTList.push_back(VT4);
3238  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3239  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3240}
3241SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3242                                    std::vector<MVT::ValueType> &ResultTys,
3243                                    const SDOperand *Ops, unsigned NumOps) {
3244  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3245  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3246                 Ops, NumOps).Val;
3247}
3248
3249
3250/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3251/// This can cause recursive merging of nodes in the DAG.
3252///
3253/// This version assumes From has a single result value.
3254///
3255void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3256                                      DAGUpdateListener *UpdateListener) {
3257  SDNode *From = FromN.Val;
3258  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3259         "Cannot replace with this method!");
3260  assert(From != To.Val && "Cannot replace uses of with self");
3261
3262  while (!From->use_empty()) {
3263    // Process users until they are all gone.
3264    SDNode *U = *From->use_begin();
3265
3266    // This node is about to morph, remove its old self from the CSE maps.
3267    RemoveNodeFromCSEMaps(U);
3268
3269    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3270         I != E; ++I)
3271      if (I->Val == From) {
3272        From->removeUser(U);
3273        *I = To;
3274        To.Val->addUser(U);
3275      }
3276
3277    // Now that we have modified U, add it back to the CSE maps.  If it already
3278    // exists there, recursively merge the results together.
3279    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3280      ReplaceAllUsesWith(U, Existing, UpdateListener);
3281      // U is now dead.  Inform the listener if it exists and delete it.
3282      if (UpdateListener)
3283        UpdateListener->NodeDeleted(U);
3284      DeleteNodeNotInCSEMaps(U);
3285    } else {
3286      // If the node doesn't already exist, we updated it.  Inform a listener if
3287      // it exists.
3288      if (UpdateListener)
3289        UpdateListener->NodeUpdated(U);
3290    }
3291  }
3292}
3293
3294/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3295/// This can cause recursive merging of nodes in the DAG.
3296///
3297/// This version assumes From/To have matching types and numbers of result
3298/// values.
3299///
3300void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3301                                      DAGUpdateListener *UpdateListener) {
3302  assert(From != To && "Cannot replace uses of with self");
3303  assert(From->getNumValues() == To->getNumValues() &&
3304         "Cannot use this version of ReplaceAllUsesWith!");
3305  if (From->getNumValues() == 1)   // If possible, use the faster version.
3306    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3307                              UpdateListener);
3308
3309  while (!From->use_empty()) {
3310    // Process users until they are all gone.
3311    SDNode *U = *From->use_begin();
3312
3313    // This node is about to morph, remove its old self from the CSE maps.
3314    RemoveNodeFromCSEMaps(U);
3315
3316    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3317         I != E; ++I)
3318      if (I->Val == From) {
3319        From->removeUser(U);
3320        I->Val = To;
3321        To->addUser(U);
3322      }
3323
3324    // Now that we have modified U, add it back to the CSE maps.  If it already
3325    // exists there, recursively merge the results together.
3326    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3327      ReplaceAllUsesWith(U, Existing, UpdateListener);
3328      // U is now dead.  Inform the listener if it exists and delete it.
3329      if (UpdateListener)
3330        UpdateListener->NodeDeleted(U);
3331      DeleteNodeNotInCSEMaps(U);
3332    } else {
3333      // If the node doesn't already exist, we updated it.  Inform a listener if
3334      // it exists.
3335      if (UpdateListener)
3336        UpdateListener->NodeUpdated(U);
3337    }
3338  }
3339}
3340
3341/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3342/// This can cause recursive merging of nodes in the DAG.
3343///
3344/// This version can replace From with any result values.  To must match the
3345/// number and types of values returned by From.
3346void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3347                                      const SDOperand *To,
3348                                      DAGUpdateListener *UpdateListener) {
3349  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3350    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3351
3352  while (!From->use_empty()) {
3353    // Process users until they are all gone.
3354    SDNode *U = *From->use_begin();
3355
3356    // This node is about to morph, remove its old self from the CSE maps.
3357    RemoveNodeFromCSEMaps(U);
3358
3359    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3360         I != E; ++I)
3361      if (I->Val == From) {
3362        const SDOperand &ToOp = To[I->ResNo];
3363        From->removeUser(U);
3364        *I = ToOp;
3365        ToOp.Val->addUser(U);
3366      }
3367
3368    // Now that we have modified U, add it back to the CSE maps.  If it already
3369    // exists there, recursively merge the results together.
3370    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3371      ReplaceAllUsesWith(U, Existing, UpdateListener);
3372      // U is now dead.  Inform the listener if it exists and delete it.
3373      if (UpdateListener)
3374        UpdateListener->NodeDeleted(U);
3375      DeleteNodeNotInCSEMaps(U);
3376    } else {
3377      // If the node doesn't already exist, we updated it.  Inform a listener if
3378      // it exists.
3379      if (UpdateListener)
3380        UpdateListener->NodeUpdated(U);
3381    }
3382  }
3383}
3384
3385namespace {
3386  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3387  /// any deleted nodes from the set passed into its constructor and recursively
3388  /// notifies another update listener if specified.
3389  class ChainedSetUpdaterListener :
3390  public SelectionDAG::DAGUpdateListener {
3391    SmallSetVector<SDNode*, 16> &Set;
3392    SelectionDAG::DAGUpdateListener *Chain;
3393  public:
3394    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3395                              SelectionDAG::DAGUpdateListener *chain)
3396      : Set(set), Chain(chain) {}
3397
3398    virtual void NodeDeleted(SDNode *N) {
3399      Set.remove(N);
3400      if (Chain) Chain->NodeDeleted(N);
3401    }
3402    virtual void NodeUpdated(SDNode *N) {
3403      if (Chain) Chain->NodeUpdated(N);
3404    }
3405  };
3406}
3407
3408/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3409/// uses of other values produced by From.Val alone.  The Deleted vector is
3410/// handled the same way as for ReplaceAllUsesWith.
3411void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3412                                             DAGUpdateListener *UpdateListener){
3413  assert(From != To && "Cannot replace a value with itself");
3414
3415  // Handle the simple, trivial, case efficiently.
3416  if (From.Val->getNumValues() == 1) {
3417    ReplaceAllUsesWith(From, To, UpdateListener);
3418    return;
3419  }
3420
3421  if (From.use_empty()) return;
3422
3423  // Get all of the users of From.Val.  We want these in a nice,
3424  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3425  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3426
3427  // When one of the recursive merges deletes nodes from the graph, we need to
3428  // make sure that UpdateListener is notified *and* that the node is removed
3429  // from Users if present.  CSUL does this.
3430  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3431
3432  while (!Users.empty()) {
3433    // We know that this user uses some value of From.  If it is the right
3434    // value, update it.
3435    SDNode *User = Users.back();
3436    Users.pop_back();
3437
3438    // Scan for an operand that matches From.
3439    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3440    for (; Op != E; ++Op)
3441      if (*Op == From) break;
3442
3443    // If there are no matches, the user must use some other result of From.
3444    if (Op == E) continue;
3445
3446    // Okay, we know this user needs to be updated.  Remove its old self
3447    // from the CSE maps.
3448    RemoveNodeFromCSEMaps(User);
3449
3450    // Update all operands that match "From" in case there are multiple uses.
3451    for (; Op != E; ++Op) {
3452      if (*Op == From) {
3453        From.Val->removeUser(User);
3454        *Op = To;
3455        To.Val->addUser(User);
3456      }
3457    }
3458
3459    // Now that we have modified User, add it back to the CSE maps.  If it
3460    // already exists there, recursively merge the results together.
3461    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3462    if (!Existing) {
3463      if (UpdateListener) UpdateListener->NodeUpdated(User);
3464      continue;  // Continue on to next user.
3465    }
3466
3467    // If there was already an existing matching node, use ReplaceAllUsesWith
3468    // to replace the dead one with the existing one.  This can cause
3469    // recursive merging of other unrelated nodes down the line.  The merging
3470    // can cause deletion of nodes that used the old value.  To handle this, we
3471    // use CSUL to remove them from the Users set.
3472    ReplaceAllUsesWith(User, Existing, &CSUL);
3473
3474    // User is now dead.  Notify a listener if present.
3475    if (UpdateListener) UpdateListener->NodeDeleted(User);
3476    DeleteNodeNotInCSEMaps(User);
3477  }
3478}
3479
3480
3481/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3482/// their allnodes order. It returns the maximum id.
3483unsigned SelectionDAG::AssignNodeIds() {
3484  unsigned Id = 0;
3485  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3486    SDNode *N = I;
3487    N->setNodeId(Id++);
3488  }
3489  return Id;
3490}
3491
3492/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3493/// based on their topological order. It returns the maximum id and a vector
3494/// of the SDNodes* in assigned order by reference.
3495unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3496  unsigned DAGSize = AllNodes.size();
3497  std::vector<unsigned> InDegree(DAGSize);
3498  std::vector<SDNode*> Sources;
3499
3500  // Use a two pass approach to avoid using a std::map which is slow.
3501  unsigned Id = 0;
3502  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3503    SDNode *N = I;
3504    N->setNodeId(Id++);
3505    unsigned Degree = N->use_size();
3506    InDegree[N->getNodeId()] = Degree;
3507    if (Degree == 0)
3508      Sources.push_back(N);
3509  }
3510
3511  TopOrder.clear();
3512  while (!Sources.empty()) {
3513    SDNode *N = Sources.back();
3514    Sources.pop_back();
3515    TopOrder.push_back(N);
3516    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3517      SDNode *P = I->Val;
3518      unsigned Degree = --InDegree[P->getNodeId()];
3519      if (Degree == 0)
3520        Sources.push_back(P);
3521    }
3522  }
3523
3524  // Second pass, assign the actual topological order as node ids.
3525  Id = 0;
3526  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3527       TI != TE; ++TI)
3528    (*TI)->setNodeId(Id++);
3529
3530  return Id;
3531}
3532
3533
3534
3535//===----------------------------------------------------------------------===//
3536//                              SDNode Class
3537//===----------------------------------------------------------------------===//
3538
3539// Out-of-line virtual method to give class a home.
3540void SDNode::ANCHOR() {}
3541void UnarySDNode::ANCHOR() {}
3542void BinarySDNode::ANCHOR() {}
3543void TernarySDNode::ANCHOR() {}
3544void HandleSDNode::ANCHOR() {}
3545void StringSDNode::ANCHOR() {}
3546void ConstantSDNode::ANCHOR() {}
3547void ConstantFPSDNode::ANCHOR() {}
3548void GlobalAddressSDNode::ANCHOR() {}
3549void FrameIndexSDNode::ANCHOR() {}
3550void JumpTableSDNode::ANCHOR() {}
3551void ConstantPoolSDNode::ANCHOR() {}
3552void BasicBlockSDNode::ANCHOR() {}
3553void SrcValueSDNode::ANCHOR() {}
3554void MemOperandSDNode::ANCHOR() {}
3555void RegisterSDNode::ANCHOR() {}
3556void ExternalSymbolSDNode::ANCHOR() {}
3557void CondCodeSDNode::ANCHOR() {}
3558void VTSDNode::ANCHOR() {}
3559void LoadSDNode::ANCHOR() {}
3560void StoreSDNode::ANCHOR() {}
3561void AtomicSDNode::ANCHOR() {}
3562
3563HandleSDNode::~HandleSDNode() {
3564  SDVTList VTs = { 0, 0 };
3565  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3566}
3567
3568GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3569                                         MVT::ValueType VT, int o)
3570  : SDNode(isa<GlobalVariable>(GA) &&
3571           cast<GlobalVariable>(GA)->isThreadLocal() ?
3572           // Thread Local
3573           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3574           // Non Thread Local
3575           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3576           getSDVTList(VT)), Offset(o) {
3577  TheGlobal = const_cast<GlobalValue*>(GA);
3578}
3579
3580/// getMemOperand - Return a MemOperand object describing the memory
3581/// reference performed by this load or store.
3582MemOperand LSBaseSDNode::getMemOperand() const {
3583  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
3584  int Flags =
3585    getOpcode() == ISD::LOAD ? MemOperand::MOLoad : MemOperand::MOStore;
3586  if (IsVolatile) Flags |= MemOperand::MOVolatile;
3587
3588  // Check if the load references a frame index, and does not have
3589  // an SV attached.
3590  const FrameIndexSDNode *FI =
3591    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
3592  if (!getSrcValue() && FI)
3593    return MemOperand(PseudoSourceValue::getFixedStack(), Flags,
3594                      FI->getIndex(), Size, Alignment);
3595  else
3596    return MemOperand(getSrcValue(), Flags,
3597                      getSrcValueOffset(), Size, Alignment);
3598}
3599
3600/// Profile - Gather unique data for the node.
3601///
3602void SDNode::Profile(FoldingSetNodeID &ID) {
3603  AddNodeIDNode(ID, this);
3604}
3605
3606/// getValueTypeList - Return a pointer to the specified value type.
3607///
3608const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3609  if (MVT::isExtendedVT(VT)) {
3610    static std::set<MVT::ValueType> EVTs;
3611    return &(*EVTs.insert(VT).first);
3612  } else {
3613    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3614    VTs[VT] = VT;
3615    return &VTs[VT];
3616  }
3617}
3618
3619/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3620/// indicated value.  This method ignores uses of other values defined by this
3621/// operation.
3622bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3623  assert(Value < getNumValues() && "Bad value!");
3624
3625  // If there is only one value, this is easy.
3626  if (getNumValues() == 1)
3627    return use_size() == NUses;
3628  if (use_size() < NUses) return false;
3629
3630  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3631
3632  SmallPtrSet<SDNode*, 32> UsersHandled;
3633
3634  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3635    SDNode *User = *UI;
3636    if (User->getNumOperands() == 1 ||
3637        UsersHandled.insert(User))     // First time we've seen this?
3638      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3639        if (User->getOperand(i) == TheValue) {
3640          if (NUses == 0)
3641            return false;   // too many uses
3642          --NUses;
3643        }
3644  }
3645
3646  // Found exactly the right number of uses?
3647  return NUses == 0;
3648}
3649
3650
3651/// hasAnyUseOfValue - Return true if there are any use of the indicated
3652/// value. This method ignores uses of other values defined by this operation.
3653bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3654  assert(Value < getNumValues() && "Bad value!");
3655
3656  if (use_empty()) return false;
3657
3658  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3659
3660  SmallPtrSet<SDNode*, 32> UsersHandled;
3661
3662  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3663    SDNode *User = *UI;
3664    if (User->getNumOperands() == 1 ||
3665        UsersHandled.insert(User))     // First time we've seen this?
3666      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3667        if (User->getOperand(i) == TheValue) {
3668          return true;
3669        }
3670  }
3671
3672  return false;
3673}
3674
3675
3676/// isOnlyUseOf - Return true if this node is the only use of N.
3677///
3678bool SDNode::isOnlyUseOf(SDNode *N) const {
3679  bool Seen = false;
3680  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3681    SDNode *User = *I;
3682    if (User == this)
3683      Seen = true;
3684    else
3685      return false;
3686  }
3687
3688  return Seen;
3689}
3690
3691/// isOperand - Return true if this node is an operand of N.
3692///
3693bool SDOperand::isOperandOf(SDNode *N) const {
3694  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3695    if (*this == N->getOperand(i))
3696      return true;
3697  return false;
3698}
3699
3700bool SDNode::isOperandOf(SDNode *N) const {
3701  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3702    if (this == N->OperandList[i].Val)
3703      return true;
3704  return false;
3705}
3706
3707/// reachesChainWithoutSideEffects - Return true if this operand (which must
3708/// be a chain) reaches the specified operand without crossing any
3709/// side-effecting instructions.  In practice, this looks through token
3710/// factors and non-volatile loads.  In order to remain efficient, this only
3711/// looks a couple of nodes in, it does not do an exhaustive search.
3712bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3713                                               unsigned Depth) const {
3714  if (*this == Dest) return true;
3715
3716  // Don't search too deeply, we just want to be able to see through
3717  // TokenFactor's etc.
3718  if (Depth == 0) return false;
3719
3720  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3721  // of the operands of the TF reach dest, then we can do the xform.
3722  if (getOpcode() == ISD::TokenFactor) {
3723    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3724      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3725        return true;
3726    return false;
3727  }
3728
3729  // Loads don't have side effects, look through them.
3730  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3731    if (!Ld->isVolatile())
3732      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3733  }
3734  return false;
3735}
3736
3737
3738static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3739                            SmallPtrSet<SDNode *, 32> &Visited) {
3740  if (found || !Visited.insert(N))
3741    return;
3742
3743  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3744    SDNode *Op = N->getOperand(i).Val;
3745    if (Op == P) {
3746      found = true;
3747      return;
3748    }
3749    findPredecessor(Op, P, found, Visited);
3750  }
3751}
3752
3753/// isPredecessorOf - Return true if this node is a predecessor of N. This node
3754/// is either an operand of N or it can be reached by recursively traversing
3755/// up the operands.
3756/// NOTE: this is an expensive method. Use it carefully.
3757bool SDNode::isPredecessorOf(SDNode *N) const {
3758  SmallPtrSet<SDNode *, 32> Visited;
3759  bool found = false;
3760  findPredecessor(N, this, found, Visited);
3761  return found;
3762}
3763
3764uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3765  assert(Num < NumOperands && "Invalid child # of SDNode!");
3766  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3767}
3768
3769std::string SDNode::getOperationName(const SelectionDAG *G) const {
3770  switch (getOpcode()) {
3771  default:
3772    if (getOpcode() < ISD::BUILTIN_OP_END)
3773      return "<<Unknown DAG Node>>";
3774    else {
3775      if (G) {
3776        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3777          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3778            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3779
3780        TargetLowering &TLI = G->getTargetLoweringInfo();
3781        const char *Name =
3782          TLI.getTargetNodeName(getOpcode());
3783        if (Name) return Name;
3784      }
3785
3786      return "<<Unknown Target Node>>";
3787    }
3788
3789  case ISD::MEMBARRIER:    return "MemBarrier";
3790  case ISD::ATOMIC_LCS:    return "AtomicLCS";
3791  case ISD::ATOMIC_LAS:    return "AtomicLAS";
3792  case ISD::ATOMIC_SWAP:    return "AtomicSWAP";
3793  case ISD::PCMARKER:      return "PCMarker";
3794  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3795  case ISD::SRCVALUE:      return "SrcValue";
3796  case ISD::MEMOPERAND:    return "MemOperand";
3797  case ISD::EntryToken:    return "EntryToken";
3798  case ISD::TokenFactor:   return "TokenFactor";
3799  case ISD::AssertSext:    return "AssertSext";
3800  case ISD::AssertZext:    return "AssertZext";
3801
3802  case ISD::STRING:        return "String";
3803  case ISD::BasicBlock:    return "BasicBlock";
3804  case ISD::VALUETYPE:     return "ValueType";
3805  case ISD::Register:      return "Register";
3806
3807  case ISD::Constant:      return "Constant";
3808  case ISD::ConstantFP:    return "ConstantFP";
3809  case ISD::GlobalAddress: return "GlobalAddress";
3810  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3811  case ISD::FrameIndex:    return "FrameIndex";
3812  case ISD::JumpTable:     return "JumpTable";
3813  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3814  case ISD::RETURNADDR: return "RETURNADDR";
3815  case ISD::FRAMEADDR: return "FRAMEADDR";
3816  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3817  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3818  case ISD::EHSELECTION: return "EHSELECTION";
3819  case ISD::EH_RETURN: return "EH_RETURN";
3820  case ISD::ConstantPool:  return "ConstantPool";
3821  case ISD::ExternalSymbol: return "ExternalSymbol";
3822  case ISD::INTRINSIC_WO_CHAIN: {
3823    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3824    return Intrinsic::getName((Intrinsic::ID)IID);
3825  }
3826  case ISD::INTRINSIC_VOID:
3827  case ISD::INTRINSIC_W_CHAIN: {
3828    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3829    return Intrinsic::getName((Intrinsic::ID)IID);
3830  }
3831
3832  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3833  case ISD::TargetConstant: return "TargetConstant";
3834  case ISD::TargetConstantFP:return "TargetConstantFP";
3835  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3836  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3837  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3838  case ISD::TargetJumpTable:  return "TargetJumpTable";
3839  case ISD::TargetConstantPool:  return "TargetConstantPool";
3840  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3841
3842  case ISD::CopyToReg:     return "CopyToReg";
3843  case ISD::CopyFromReg:   return "CopyFromReg";
3844  case ISD::UNDEF:         return "undef";
3845  case ISD::MERGE_VALUES:  return "merge_values";
3846  case ISD::INLINEASM:     return "inlineasm";
3847  case ISD::LABEL:         return "label";
3848  case ISD::DECLARE:       return "declare";
3849  case ISD::HANDLENODE:    return "handlenode";
3850  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3851  case ISD::CALL:          return "call";
3852
3853  // Unary operators
3854  case ISD::FABS:   return "fabs";
3855  case ISD::FNEG:   return "fneg";
3856  case ISD::FSQRT:  return "fsqrt";
3857  case ISD::FSIN:   return "fsin";
3858  case ISD::FCOS:   return "fcos";
3859  case ISD::FPOWI:  return "fpowi";
3860  case ISD::FPOW:   return "fpow";
3861
3862  // Binary operators
3863  case ISD::ADD:    return "add";
3864  case ISD::SUB:    return "sub";
3865  case ISD::MUL:    return "mul";
3866  case ISD::MULHU:  return "mulhu";
3867  case ISD::MULHS:  return "mulhs";
3868  case ISD::SDIV:   return "sdiv";
3869  case ISD::UDIV:   return "udiv";
3870  case ISD::SREM:   return "srem";
3871  case ISD::UREM:   return "urem";
3872  case ISD::SMUL_LOHI:  return "smul_lohi";
3873  case ISD::UMUL_LOHI:  return "umul_lohi";
3874  case ISD::SDIVREM:    return "sdivrem";
3875  case ISD::UDIVREM:    return "divrem";
3876  case ISD::AND:    return "and";
3877  case ISD::OR:     return "or";
3878  case ISD::XOR:    return "xor";
3879  case ISD::SHL:    return "shl";
3880  case ISD::SRA:    return "sra";
3881  case ISD::SRL:    return "srl";
3882  case ISD::ROTL:   return "rotl";
3883  case ISD::ROTR:   return "rotr";
3884  case ISD::FADD:   return "fadd";
3885  case ISD::FSUB:   return "fsub";
3886  case ISD::FMUL:   return "fmul";
3887  case ISD::FDIV:   return "fdiv";
3888  case ISD::FREM:   return "frem";
3889  case ISD::FCOPYSIGN: return "fcopysign";
3890  case ISD::FGETSIGN:  return "fgetsign";
3891
3892  case ISD::SETCC:       return "setcc";
3893  case ISD::SELECT:      return "select";
3894  case ISD::SELECT_CC:   return "select_cc";
3895  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3896  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3897  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3898  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3899  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3900  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3901  case ISD::CARRY_FALSE:         return "carry_false";
3902  case ISD::ADDC:        return "addc";
3903  case ISD::ADDE:        return "adde";
3904  case ISD::SUBC:        return "subc";
3905  case ISD::SUBE:        return "sube";
3906  case ISD::SHL_PARTS:   return "shl_parts";
3907  case ISD::SRA_PARTS:   return "sra_parts";
3908  case ISD::SRL_PARTS:   return "srl_parts";
3909
3910  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3911  case ISD::INSERT_SUBREG:      return "insert_subreg";
3912
3913  // Conversion operators.
3914  case ISD::SIGN_EXTEND: return "sign_extend";
3915  case ISD::ZERO_EXTEND: return "zero_extend";
3916  case ISD::ANY_EXTEND:  return "any_extend";
3917  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3918  case ISD::TRUNCATE:    return "truncate";
3919  case ISD::FP_ROUND:    return "fp_round";
3920  case ISD::FLT_ROUNDS_: return "flt_rounds";
3921  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3922  case ISD::FP_EXTEND:   return "fp_extend";
3923
3924  case ISD::SINT_TO_FP:  return "sint_to_fp";
3925  case ISD::UINT_TO_FP:  return "uint_to_fp";
3926  case ISD::FP_TO_SINT:  return "fp_to_sint";
3927  case ISD::FP_TO_UINT:  return "fp_to_uint";
3928  case ISD::BIT_CONVERT: return "bit_convert";
3929
3930    // Control flow instructions
3931  case ISD::BR:      return "br";
3932  case ISD::BRIND:   return "brind";
3933  case ISD::BR_JT:   return "br_jt";
3934  case ISD::BRCOND:  return "brcond";
3935  case ISD::BR_CC:   return "br_cc";
3936  case ISD::RET:     return "ret";
3937  case ISD::CALLSEQ_START:  return "callseq_start";
3938  case ISD::CALLSEQ_END:    return "callseq_end";
3939
3940    // Other operators
3941  case ISD::LOAD:               return "load";
3942  case ISD::STORE:              return "store";
3943  case ISD::VAARG:              return "vaarg";
3944  case ISD::VACOPY:             return "vacopy";
3945  case ISD::VAEND:              return "vaend";
3946  case ISD::VASTART:            return "vastart";
3947  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3948  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3949  case ISD::BUILD_PAIR:         return "build_pair";
3950  case ISD::STACKSAVE:          return "stacksave";
3951  case ISD::STACKRESTORE:       return "stackrestore";
3952  case ISD::TRAP:               return "trap";
3953
3954  // Block memory operations.
3955  case ISD::MEMSET:  return "memset";
3956  case ISD::MEMCPY:  return "memcpy";
3957  case ISD::MEMMOVE: return "memmove";
3958
3959  // Bit manipulation
3960  case ISD::BSWAP:   return "bswap";
3961  case ISD::CTPOP:   return "ctpop";
3962  case ISD::CTTZ:    return "cttz";
3963  case ISD::CTLZ:    return "ctlz";
3964
3965  // Debug info
3966  case ISD::LOCATION: return "location";
3967  case ISD::DEBUG_LOC: return "debug_loc";
3968
3969  // Trampolines
3970  case ISD::TRAMPOLINE: return "trampoline";
3971
3972  case ISD::CONDCODE:
3973    switch (cast<CondCodeSDNode>(this)->get()) {
3974    default: assert(0 && "Unknown setcc condition!");
3975    case ISD::SETOEQ:  return "setoeq";
3976    case ISD::SETOGT:  return "setogt";
3977    case ISD::SETOGE:  return "setoge";
3978    case ISD::SETOLT:  return "setolt";
3979    case ISD::SETOLE:  return "setole";
3980    case ISD::SETONE:  return "setone";
3981
3982    case ISD::SETO:    return "seto";
3983    case ISD::SETUO:   return "setuo";
3984    case ISD::SETUEQ:  return "setue";
3985    case ISD::SETUGT:  return "setugt";
3986    case ISD::SETUGE:  return "setuge";
3987    case ISD::SETULT:  return "setult";
3988    case ISD::SETULE:  return "setule";
3989    case ISD::SETUNE:  return "setune";
3990
3991    case ISD::SETEQ:   return "seteq";
3992    case ISD::SETGT:   return "setgt";
3993    case ISD::SETGE:   return "setge";
3994    case ISD::SETLT:   return "setlt";
3995    case ISD::SETLE:   return "setle";
3996    case ISD::SETNE:   return "setne";
3997    }
3998  }
3999}
4000
4001const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4002  switch (AM) {
4003  default:
4004    return "";
4005  case ISD::PRE_INC:
4006    return "<pre-inc>";
4007  case ISD::PRE_DEC:
4008    return "<pre-dec>";
4009  case ISD::POST_INC:
4010    return "<post-inc>";
4011  case ISD::POST_DEC:
4012    return "<post-dec>";
4013  }
4014}
4015
4016void SDNode::dump() const { dump(0); }
4017void SDNode::dump(const SelectionDAG *G) const {
4018  cerr << (void*)this << ": ";
4019
4020  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4021    if (i) cerr << ",";
4022    if (getValueType(i) == MVT::Other)
4023      cerr << "ch";
4024    else
4025      cerr << MVT::getValueTypeString(getValueType(i));
4026  }
4027  cerr << " = " << getOperationName(G);
4028
4029  cerr << " ";
4030  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4031    if (i) cerr << ", ";
4032    cerr << (void*)getOperand(i).Val;
4033    if (unsigned RN = getOperand(i).ResNo)
4034      cerr << ":" << RN;
4035  }
4036
4037  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4038    SDNode *Mask = getOperand(2).Val;
4039    cerr << "<";
4040    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4041      if (i) cerr << ",";
4042      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4043        cerr << "u";
4044      else
4045        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4046    }
4047    cerr << ">";
4048  }
4049
4050  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4051    cerr << "<" << CSDN->getValue() << ">";
4052  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4053    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4054      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4055    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4056      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4057    else {
4058      cerr << "<APFloat(";
4059      CSDN->getValueAPF().convertToAPInt().dump();
4060      cerr << ")>";
4061    }
4062  } else if (const GlobalAddressSDNode *GADN =
4063             dyn_cast<GlobalAddressSDNode>(this)) {
4064    int offset = GADN->getOffset();
4065    cerr << "<";
4066    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4067    if (offset > 0)
4068      cerr << " + " << offset;
4069    else
4070      cerr << " " << offset;
4071  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4072    cerr << "<" << FIDN->getIndex() << ">";
4073  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4074    cerr << "<" << JTDN->getIndex() << ">";
4075  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4076    int offset = CP->getOffset();
4077    if (CP->isMachineConstantPoolEntry())
4078      cerr << "<" << *CP->getMachineCPVal() << ">";
4079    else
4080      cerr << "<" << *CP->getConstVal() << ">";
4081    if (offset > 0)
4082      cerr << " + " << offset;
4083    else
4084      cerr << " " << offset;
4085  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4086    cerr << "<";
4087    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4088    if (LBB)
4089      cerr << LBB->getName() << " ";
4090    cerr << (const void*)BBDN->getBasicBlock() << ">";
4091  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4092    if (G && R->getReg() &&
4093        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4094      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4095    } else {
4096      cerr << " #" << R->getReg();
4097    }
4098  } else if (const ExternalSymbolSDNode *ES =
4099             dyn_cast<ExternalSymbolSDNode>(this)) {
4100    cerr << "'" << ES->getSymbol() << "'";
4101  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4102    if (M->getValue())
4103      cerr << "<" << M->getValue() << ">";
4104    else
4105      cerr << "<null>";
4106  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4107    if (M->MO.getValue())
4108      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4109    else
4110      cerr << "<null:" << M->MO.getOffset() << ">";
4111  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4112    cerr << ":" << MVT::getValueTypeString(N->getVT());
4113  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4114    const Value *SrcValue = LD->getSrcValue();
4115    int SrcOffset = LD->getSrcValueOffset();
4116    cerr << " <";
4117    if (SrcValue)
4118      cerr << SrcValue;
4119    else
4120      cerr << "null";
4121    cerr << ":" << SrcOffset << ">";
4122
4123    bool doExt = true;
4124    switch (LD->getExtensionType()) {
4125    default: doExt = false; break;
4126    case ISD::EXTLOAD:
4127      cerr << " <anyext ";
4128      break;
4129    case ISD::SEXTLOAD:
4130      cerr << " <sext ";
4131      break;
4132    case ISD::ZEXTLOAD:
4133      cerr << " <zext ";
4134      break;
4135    }
4136    if (doExt)
4137      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4138
4139    const char *AM = getIndexedModeName(LD->getAddressingMode());
4140    if (*AM)
4141      cerr << " " << AM;
4142    if (LD->isVolatile())
4143      cerr << " <volatile>";
4144    cerr << " alignment=" << LD->getAlignment();
4145  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4146    const Value *SrcValue = ST->getSrcValue();
4147    int SrcOffset = ST->getSrcValueOffset();
4148    cerr << " <";
4149    if (SrcValue)
4150      cerr << SrcValue;
4151    else
4152      cerr << "null";
4153    cerr << ":" << SrcOffset << ">";
4154
4155    if (ST->isTruncatingStore())
4156      cerr << " <trunc "
4157           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4158
4159    const char *AM = getIndexedModeName(ST->getAddressingMode());
4160    if (*AM)
4161      cerr << " " << AM;
4162    if (ST->isVolatile())
4163      cerr << " <volatile>";
4164    cerr << " alignment=" << ST->getAlignment();
4165  }
4166}
4167
4168static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4169  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4170    if (N->getOperand(i).Val->hasOneUse())
4171      DumpNodes(N->getOperand(i).Val, indent+2, G);
4172    else
4173      cerr << "\n" << std::string(indent+2, ' ')
4174           << (void*)N->getOperand(i).Val << ": <multiple use>";
4175
4176
4177  cerr << "\n" << std::string(indent, ' ');
4178  N->dump(G);
4179}
4180
4181void SelectionDAG::dump() const {
4182  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4183  std::vector<const SDNode*> Nodes;
4184  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4185       I != E; ++I)
4186    Nodes.push_back(I);
4187
4188  std::sort(Nodes.begin(), Nodes.end());
4189
4190  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4191    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4192      DumpNodes(Nodes[i], 2, this);
4193  }
4194
4195  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4196
4197  cerr << "\n\n";
4198}
4199
4200const Type *ConstantPoolSDNode::getType() const {
4201  if (isMachineConstantPoolEntry())
4202    return Val.MachineCPVal->getType();
4203  return Val.ConstVal->getType();
4204}
4205