SelectionDAG.cpp revision 452e8354d58960289aae610fa265ee69431b6b83
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/ADT/SetVector.h"
25#include "llvm/ADT/StringExtras.h"
26#include <iostream>
27#include <set>
28#include <cmath>
29#include <algorithm>
30using namespace llvm;
31
32static bool isCommutativeBinOp(unsigned Opcode) {
33  switch (Opcode) {
34  case ISD::ADD:
35  case ISD::MUL:
36  case ISD::MULHU:
37  case ISD::MULHS:
38  case ISD::FADD:
39  case ISD::FMUL:
40  case ISD::AND:
41  case ISD::OR:
42  case ISD::XOR: return true;
43  default: return false; // FIXME: Need commutative info for user ops!
44  }
45}
46
47// isInvertibleForFree - Return true if there is no cost to emitting the logical
48// inverse of this node.
49static bool isInvertibleForFree(SDOperand N) {
50  if (isa<ConstantSDNode>(N.Val)) return true;
51  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
52    return true;
53  return false;
54}
55
56//===----------------------------------------------------------------------===//
57//                              ConstantFPSDNode Class
58//===----------------------------------------------------------------------===//
59
60/// isExactlyValue - We don't rely on operator== working on double values, as
61/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
62/// As such, this method can be used to do an exact bit-for-bit comparison of
63/// two floating point values.
64bool ConstantFPSDNode::isExactlyValue(double V) const {
65  return DoubleToBits(V) == DoubleToBits(Value);
66}
67
68//===----------------------------------------------------------------------===//
69//                              ISD Namespace
70//===----------------------------------------------------------------------===//
71
72/// isBuildVectorAllOnesInteger - Return true if the specified node is a
73/// BUILD_VECTOR where all of the elements are ~0 or undef.
74bool ISD::isBuildVectorAllOnesInteger(const SDNode *N) {
75  if (N->getOpcode() != ISD::BUILD_VECTOR ||
76      !MVT::isInteger(N->getOperand(0).getValueType())) return false;
77
78  unsigned i = 0, e = N->getNumOperands();
79
80  // Skip over all of the undef values.
81  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
82    ++i;
83
84  // Do not accept an all-undef vector.
85  if (i == e) return false;
86
87  // Do not accept build_vectors that aren't all constants or which have non-~0
88  // elements.
89  SDOperand NotZero = N->getOperand(i);
90  if (!isa<ConstantSDNode>(NotZero) ||
91      !cast<ConstantSDNode>(NotZero)->isAllOnesValue())
92    return false;
93
94  // Okay, we have at least one ~0 value, check to see if the rest match or are
95  // undefs.
96  for (++i; i != e; ++i)
97    if (N->getOperand(i) != NotZero &&
98        N->getOperand(i).getOpcode() != ISD::UNDEF)
99      return false;
100  return true;
101}
102
103
104/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
105/// when given the operation for (X op Y).
106ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
107  // To perform this operation, we just need to swap the L and G bits of the
108  // operation.
109  unsigned OldL = (Operation >> 2) & 1;
110  unsigned OldG = (Operation >> 1) & 1;
111  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
112                       (OldL << 1) |       // New G bit
113                       (OldG << 2));        // New L bit.
114}
115
116/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
117/// 'op' is a valid SetCC operation.
118ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
119  unsigned Operation = Op;
120  if (isInteger)
121    Operation ^= 7;   // Flip L, G, E bits, but not U.
122  else
123    Operation ^= 15;  // Flip all of the condition bits.
124  if (Operation > ISD::SETTRUE2)
125    Operation &= ~8;     // Don't let N and U bits get set.
126  return ISD::CondCode(Operation);
127}
128
129
130/// isSignedOp - For an integer comparison, return 1 if the comparison is a
131/// signed operation and 2 if the result is an unsigned comparison.  Return zero
132/// if the operation does not depend on the sign of the input (setne and seteq).
133static int isSignedOp(ISD::CondCode Opcode) {
134  switch (Opcode) {
135  default: assert(0 && "Illegal integer setcc operation!");
136  case ISD::SETEQ:
137  case ISD::SETNE: return 0;
138  case ISD::SETLT:
139  case ISD::SETLE:
140  case ISD::SETGT:
141  case ISD::SETGE: return 1;
142  case ISD::SETULT:
143  case ISD::SETULE:
144  case ISD::SETUGT:
145  case ISD::SETUGE: return 2;
146  }
147}
148
149/// getSetCCOrOperation - Return the result of a logical OR between different
150/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
151/// returns SETCC_INVALID if it is not possible to represent the resultant
152/// comparison.
153ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
154                                       bool isInteger) {
155  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
156    // Cannot fold a signed integer setcc with an unsigned integer setcc.
157    return ISD::SETCC_INVALID;
158
159  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
160
161  // If the N and U bits get set then the resultant comparison DOES suddenly
162  // care about orderedness, and is true when ordered.
163  if (Op > ISD::SETTRUE2)
164    Op &= ~16;     // Clear the N bit.
165  return ISD::CondCode(Op);
166}
167
168/// getSetCCAndOperation - Return the result of a logical AND between different
169/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
170/// function returns zero if it is not possible to represent the resultant
171/// comparison.
172ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
173                                        bool isInteger) {
174  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
175    // Cannot fold a signed setcc with an unsigned setcc.
176    return ISD::SETCC_INVALID;
177
178  // Combine all of the condition bits.
179  return ISD::CondCode(Op1 & Op2);
180}
181
182const TargetMachine &SelectionDAG::getTarget() const {
183  return TLI.getTargetMachine();
184}
185
186//===----------------------------------------------------------------------===//
187//                              SelectionDAG Class
188//===----------------------------------------------------------------------===//
189
190/// RemoveDeadNodes - This method deletes all unreachable nodes in the
191/// SelectionDAG, including nodes (like loads) that have uses of their token
192/// chain but no other uses and no side effect.  If a node is passed in as an
193/// argument, it is used as the seed for node deletion.
194void SelectionDAG::RemoveDeadNodes(SDNode *N) {
195  // Create a dummy node (which is not added to allnodes), that adds a reference
196  // to the root node, preventing it from being deleted.
197  HandleSDNode Dummy(getRoot());
198
199  bool MadeChange = false;
200
201  // If we have a hint to start from, use it.
202  if (N && N->use_empty()) {
203    DestroyDeadNode(N);
204    MadeChange = true;
205  }
206
207  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
208    if (I->use_empty() && I->getOpcode() != 65535) {
209      // Node is dead, recursively delete newly dead uses.
210      DestroyDeadNode(I);
211      MadeChange = true;
212    }
213
214  // Walk the nodes list, removing the nodes we've marked as dead.
215  if (MadeChange) {
216    for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ) {
217      SDNode *N = I++;
218      if (N->use_empty())
219        AllNodes.erase(N);
220    }
221  }
222
223  // If the root changed (e.g. it was a dead load, update the root).
224  setRoot(Dummy.getValue());
225}
226
227/// DestroyDeadNode - We know that N is dead.  Nuke it from the CSE maps for the
228/// graph.  If it is the last user of any of its operands, recursively process
229/// them the same way.
230///
231void SelectionDAG::DestroyDeadNode(SDNode *N) {
232  // Okay, we really are going to delete this node.  First take this out of the
233  // appropriate CSE map.
234  RemoveNodeFromCSEMaps(N);
235
236  // Next, brutally remove the operand list.  This is safe to do, as there are
237  // no cycles in the graph.
238  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
239    SDNode *O = I->Val;
240    O->removeUser(N);
241
242    // Now that we removed this operand, see if there are no uses of it left.
243    if (O->use_empty())
244      DestroyDeadNode(O);
245  }
246  delete[] N->OperandList;
247  N->OperandList = 0;
248  N->NumOperands = 0;
249
250  // Mark the node as dead.
251  N->MorphNodeTo(65535);
252}
253
254void SelectionDAG::DeleteNode(SDNode *N) {
255  assert(N->use_empty() && "Cannot delete a node that is not dead!");
256
257  // First take this out of the appropriate CSE map.
258  RemoveNodeFromCSEMaps(N);
259
260  // Finally, remove uses due to operands of this node, remove from the
261  // AllNodes list, and delete the node.
262  DeleteNodeNotInCSEMaps(N);
263}
264
265void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
266
267  // Remove it from the AllNodes list.
268  AllNodes.remove(N);
269
270  // Drop all of the operands and decrement used nodes use counts.
271  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
272    I->Val->removeUser(N);
273  delete[] N->OperandList;
274  N->OperandList = 0;
275  N->NumOperands = 0;
276
277  delete N;
278}
279
280/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
281/// correspond to it.  This is useful when we're about to delete or repurpose
282/// the node.  We don't want future request for structurally identical nodes
283/// to return N anymore.
284void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
285  bool Erased = false;
286  switch (N->getOpcode()) {
287  case ISD::HANDLENODE: return;  // noop.
288  case ISD::Constant:
289    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
290                                            N->getValueType(0)));
291    break;
292  case ISD::TargetConstant:
293    Erased = TargetConstants.erase(std::make_pair(
294                                    cast<ConstantSDNode>(N)->getValue(),
295                                                  N->getValueType(0)));
296    break;
297  case ISD::ConstantFP: {
298    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
299    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
300    break;
301  }
302  case ISD::TargetConstantFP: {
303    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
304    Erased = TargetConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
305    break;
306  }
307  case ISD::STRING:
308    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
309    break;
310  case ISD::CONDCODE:
311    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
312           "Cond code doesn't exist!");
313    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
314    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
315    break;
316  case ISD::GlobalAddress: {
317    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
318    Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(),
319                                               GN->getOffset()));
320    break;
321  }
322  case ISD::TargetGlobalAddress: {
323    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
324    Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(),
325                                                    GN->getOffset()));
326    break;
327  }
328  case ISD::FrameIndex:
329    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
330    break;
331  case ISD::TargetFrameIndex:
332    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
333    break;
334  case ISD::ConstantPool:
335    Erased = ConstantPoolIndices.
336      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
337                        std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
338                                 cast<ConstantPoolSDNode>(N)->getAlignment())));
339    break;
340  case ISD::TargetConstantPool:
341    Erased = TargetConstantPoolIndices.
342      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
343                        std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
344                                 cast<ConstantPoolSDNode>(N)->getAlignment())));
345    break;
346  case ISD::BasicBlock:
347    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
348    break;
349  case ISD::ExternalSymbol:
350    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
351    break;
352  case ISD::TargetExternalSymbol:
353    Erased =
354      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
355    break;
356  case ISD::VALUETYPE:
357    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
358    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
359    break;
360  case ISD::Register:
361    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
362                                           N->getValueType(0)));
363    break;
364  case ISD::SRCVALUE: {
365    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
366    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
367    break;
368  }
369  case ISD::LOAD:
370    Erased = Loads.erase(std::make_pair(N->getOperand(1),
371                                        std::make_pair(N->getOperand(0),
372                                                       N->getValueType(0))));
373    break;
374  default:
375    if (N->getNumValues() == 1) {
376      if (N->getNumOperands() == 0) {
377        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
378                                                 N->getValueType(0)));
379      } else if (N->getNumOperands() == 1) {
380        Erased =
381          UnaryOps.erase(std::make_pair(N->getOpcode(),
382                                        std::make_pair(N->getOperand(0),
383                                                       N->getValueType(0))));
384      } else if (N->getNumOperands() == 2) {
385        Erased =
386          BinaryOps.erase(std::make_pair(N->getOpcode(),
387                                         std::make_pair(N->getOperand(0),
388                                                        N->getOperand(1))));
389      } else {
390        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
391        Erased =
392          OneResultNodes.erase(std::make_pair(N->getOpcode(),
393                                              std::make_pair(N->getValueType(0),
394                                                             Ops)));
395      }
396    } else {
397      // Remove the node from the ArbitraryNodes map.
398      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
399      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
400      Erased =
401        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
402                                            std::make_pair(RV, Ops)));
403    }
404    break;
405  }
406#ifndef NDEBUG
407  // Verify that the node was actually in one of the CSE maps, unless it has a
408  // flag result (which cannot be CSE'd) or is one of the special cases that are
409  // not subject to CSE.
410  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
411      !N->isTargetOpcode()) {
412    N->dump();
413    assert(0 && "Node is not in map!");
414  }
415#endif
416}
417
418/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
419/// has been taken out and modified in some way.  If the specified node already
420/// exists in the CSE maps, do not modify the maps, but return the existing node
421/// instead.  If it doesn't exist, add it and return null.
422///
423SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
424  assert(N->getNumOperands() && "This is a leaf node!");
425  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
426    return 0;    // Never add these nodes.
427
428  // Check that remaining values produced are not flags.
429  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
430    if (N->getValueType(i) == MVT::Flag)
431      return 0;   // Never CSE anything that produces a flag.
432
433  if (N->getNumValues() == 1) {
434    if (N->getNumOperands() == 1) {
435      SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
436                                           std::make_pair(N->getOperand(0),
437                                                          N->getValueType(0)))];
438      if (U) return U;
439      U = N;
440    } else if (N->getNumOperands() == 2) {
441      SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
442                                            std::make_pair(N->getOperand(0),
443                                                           N->getOperand(1)))];
444      if (B) return B;
445      B = N;
446    } else {
447      std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
448      SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
449                                      std::make_pair(N->getValueType(0), Ops))];
450      if (ORN) return ORN;
451      ORN = N;
452    }
453  } else {
454    if (N->getOpcode() == ISD::LOAD) {
455      SDNode *&L = Loads[std::make_pair(N->getOperand(1),
456                                        std::make_pair(N->getOperand(0),
457                                                       N->getValueType(0)))];
458      if (L) return L;
459      L = N;
460    } else {
461      // Remove the node from the ArbitraryNodes map.
462      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
463      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
464      SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
465                                                  std::make_pair(RV, Ops))];
466      if (AN) return AN;
467      AN = N;
468    }
469  }
470  return 0;
471}
472
473/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
474/// were replaced with those specified.  If this node is never memoized,
475/// return null, otherwise return a pointer to the slot it would take.  If a
476/// node already exists with these operands, the slot will be non-null.
477SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op) {
478  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
479    return 0;    // Never add these nodes.
480
481  // Check that remaining values produced are not flags.
482  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
483    if (N->getValueType(i) == MVT::Flag)
484      return 0;   // Never CSE anything that produces a flag.
485
486  if (N->getNumValues() == 1) {
487    return &UnaryOps[std::make_pair(N->getOpcode(),
488                                    std::make_pair(Op, N->getValueType(0)))];
489  } else {
490    // Remove the node from the ArbitraryNodes map.
491    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
492    std::vector<SDOperand> Ops;
493    Ops.push_back(Op);
494    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
495                                          std::make_pair(RV, Ops))];
496  }
497  return 0;
498}
499
500/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
501/// were replaced with those specified.  If this node is never memoized,
502/// return null, otherwise return a pointer to the slot it would take.  If a
503/// node already exists with these operands, the slot will be non-null.
504SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
505                                            SDOperand Op1, SDOperand Op2) {
506  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
507    return 0;    // Never add these nodes.
508
509  // Check that remaining values produced are not flags.
510  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
511    if (N->getValueType(i) == MVT::Flag)
512      return 0;   // Never CSE anything that produces a flag.
513
514  if (N->getNumValues() == 1) {
515    return &BinaryOps[std::make_pair(N->getOpcode(),
516                                     std::make_pair(Op1, Op2))];
517  } else {
518    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
519    std::vector<SDOperand> Ops;
520    Ops.push_back(Op1);
521    Ops.push_back(Op2);
522    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
523                                          std::make_pair(RV, Ops))];
524  }
525  return 0;
526}
527
528
529/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
530/// were replaced with those specified.  If this node is never memoized,
531/// return null, otherwise return a pointer to the slot it would take.  If a
532/// node already exists with these operands, the slot will be non-null.
533SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
534                                            const std::vector<SDOperand> &Ops) {
535  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
536    return 0;    // Never add these nodes.
537
538  // Check that remaining values produced are not flags.
539  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
540    if (N->getValueType(i) == MVT::Flag)
541      return 0;   // Never CSE anything that produces a flag.
542
543  if (N->getNumValues() == 1) {
544    if (N->getNumOperands() == 1) {
545      return &UnaryOps[std::make_pair(N->getOpcode(),
546                                      std::make_pair(Ops[0],
547                                                     N->getValueType(0)))];
548    } else if (N->getNumOperands() == 2) {
549      return &BinaryOps[std::make_pair(N->getOpcode(),
550                                       std::make_pair(Ops[0], Ops[1]))];
551    } else {
552      return &OneResultNodes[std::make_pair(N->getOpcode(),
553                                            std::make_pair(N->getValueType(0),
554                                                           Ops))];
555    }
556  } else {
557    if (N->getOpcode() == ISD::LOAD) {
558      return &Loads[std::make_pair(Ops[1],
559                                   std::make_pair(Ops[0], N->getValueType(0)))];
560    } else {
561      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
562      return &ArbitraryNodes[std::make_pair(N->getOpcode(),
563                                            std::make_pair(RV, Ops))];
564    }
565  }
566  return 0;
567}
568
569
570SelectionDAG::~SelectionDAG() {
571  while (!AllNodes.empty()) {
572    SDNode *N = AllNodes.begin();
573    delete [] N->OperandList;
574    N->OperandList = 0;
575    N->NumOperands = 0;
576    AllNodes.pop_front();
577  }
578}
579
580SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
581  if (Op.getValueType() == VT) return Op;
582  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
583  return getNode(ISD::AND, Op.getValueType(), Op,
584                 getConstant(Imm, Op.getValueType()));
585}
586
587SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
588  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
589  // Mask out any bits that are not valid for this constant.
590  if (VT != MVT::i64)
591    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
592
593  SDNode *&N = Constants[std::make_pair(Val, VT)];
594  if (N) return SDOperand(N, 0);
595  N = new ConstantSDNode(false, Val, VT);
596  AllNodes.push_back(N);
597  return SDOperand(N, 0);
598}
599
600SDOperand SelectionDAG::getString(const std::string &Val) {
601  StringSDNode *&N = StringNodes[Val];
602  if (!N) {
603    N = new StringSDNode(Val);
604    AllNodes.push_back(N);
605  }
606  return SDOperand(N, 0);
607}
608
609SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
610  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
611  // Mask out any bits that are not valid for this constant.
612  if (VT != MVT::i64)
613    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
614
615  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
616  if (N) return SDOperand(N, 0);
617  N = new ConstantSDNode(true, Val, VT);
618  AllNodes.push_back(N);
619  return SDOperand(N, 0);
620}
621
622SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
623  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
624  if (VT == MVT::f32)
625    Val = (float)Val;  // Mask out extra precision.
626
627  // Do the map lookup using the actual bit pattern for the floating point
628  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
629  // we don't have issues with SNANs.
630  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
631  if (N) return SDOperand(N, 0);
632  N = new ConstantFPSDNode(false, Val, VT);
633  AllNodes.push_back(N);
634  return SDOperand(N, 0);
635}
636
637SDOperand SelectionDAG::getTargetConstantFP(double Val, MVT::ValueType VT) {
638  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
639  if (VT == MVT::f32)
640    Val = (float)Val;  // Mask out extra precision.
641
642  // Do the map lookup using the actual bit pattern for the floating point
643  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
644  // we don't have issues with SNANs.
645  SDNode *&N = TargetConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
646  if (N) return SDOperand(N, 0);
647  N = new ConstantFPSDNode(true, Val, VT);
648  AllNodes.push_back(N);
649  return SDOperand(N, 0);
650}
651
652SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
653                                         MVT::ValueType VT, int offset) {
654  SDNode *&N = GlobalValues[std::make_pair(GV, offset)];
655  if (N) return SDOperand(N, 0);
656  N = new GlobalAddressSDNode(false, GV, VT, offset);
657  AllNodes.push_back(N);
658  return SDOperand(N, 0);
659}
660
661SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
662                                               MVT::ValueType VT, int offset) {
663  SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)];
664  if (N) return SDOperand(N, 0);
665  N = new GlobalAddressSDNode(true, GV, VT, offset);
666  AllNodes.push_back(N);
667  return SDOperand(N, 0);
668}
669
670SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
671  SDNode *&N = FrameIndices[FI];
672  if (N) return SDOperand(N, 0);
673  N = new FrameIndexSDNode(FI, VT, false);
674  AllNodes.push_back(N);
675  return SDOperand(N, 0);
676}
677
678SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
679  SDNode *&N = TargetFrameIndices[FI];
680  if (N) return SDOperand(N, 0);
681  N = new FrameIndexSDNode(FI, VT, true);
682  AllNodes.push_back(N);
683  return SDOperand(N, 0);
684}
685
686SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
687                                        unsigned Alignment,  int Offset) {
688  SDNode *&N = ConstantPoolIndices[std::make_pair(C,
689                                            std::make_pair(Offset, Alignment))];
690  if (N) return SDOperand(N, 0);
691  N = new ConstantPoolSDNode(false, C, VT, Offset, Alignment);
692  AllNodes.push_back(N);
693  return SDOperand(N, 0);
694}
695
696SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT,
697                                             unsigned Alignment,  int Offset) {
698  SDNode *&N = TargetConstantPoolIndices[std::make_pair(C,
699                                            std::make_pair(Offset, Alignment))];
700  if (N) return SDOperand(N, 0);
701  N = new ConstantPoolSDNode(true, C, VT, Offset, Alignment);
702  AllNodes.push_back(N);
703  return SDOperand(N, 0);
704}
705
706SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
707  SDNode *&N = BBNodes[MBB];
708  if (N) return SDOperand(N, 0);
709  N = new BasicBlockSDNode(MBB);
710  AllNodes.push_back(N);
711  return SDOperand(N, 0);
712}
713
714SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
715  if ((unsigned)VT >= ValueTypeNodes.size())
716    ValueTypeNodes.resize(VT+1);
717  if (ValueTypeNodes[VT] == 0) {
718    ValueTypeNodes[VT] = new VTSDNode(VT);
719    AllNodes.push_back(ValueTypeNodes[VT]);
720  }
721
722  return SDOperand(ValueTypeNodes[VT], 0);
723}
724
725SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
726  SDNode *&N = ExternalSymbols[Sym];
727  if (N) return SDOperand(N, 0);
728  N = new ExternalSymbolSDNode(false, Sym, VT);
729  AllNodes.push_back(N);
730  return SDOperand(N, 0);
731}
732
733SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
734                                                MVT::ValueType VT) {
735  SDNode *&N = TargetExternalSymbols[Sym];
736  if (N) return SDOperand(N, 0);
737  N = new ExternalSymbolSDNode(true, Sym, VT);
738  AllNodes.push_back(N);
739  return SDOperand(N, 0);
740}
741
742SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
743  if ((unsigned)Cond >= CondCodeNodes.size())
744    CondCodeNodes.resize(Cond+1);
745
746  if (CondCodeNodes[Cond] == 0) {
747    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
748    AllNodes.push_back(CondCodeNodes[Cond]);
749  }
750  return SDOperand(CondCodeNodes[Cond], 0);
751}
752
753SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
754  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
755  if (!Reg) {
756    Reg = new RegisterSDNode(RegNo, VT);
757    AllNodes.push_back(Reg);
758  }
759  return SDOperand(Reg, 0);
760}
761
762SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
763                                      SDOperand N2, ISD::CondCode Cond) {
764  // These setcc operations always fold.
765  switch (Cond) {
766  default: break;
767  case ISD::SETFALSE:
768  case ISD::SETFALSE2: return getConstant(0, VT);
769  case ISD::SETTRUE:
770  case ISD::SETTRUE2:  return getConstant(1, VT);
771  }
772
773  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
774    uint64_t C2 = N2C->getValue();
775    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
776      uint64_t C1 = N1C->getValue();
777
778      // Sign extend the operands if required
779      if (ISD::isSignedIntSetCC(Cond)) {
780        C1 = N1C->getSignExtended();
781        C2 = N2C->getSignExtended();
782      }
783
784      switch (Cond) {
785      default: assert(0 && "Unknown integer setcc!");
786      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
787      case ISD::SETNE:  return getConstant(C1 != C2, VT);
788      case ISD::SETULT: return getConstant(C1 <  C2, VT);
789      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
790      case ISD::SETULE: return getConstant(C1 <= C2, VT);
791      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
792      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
793      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
794      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
795      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
796      }
797    } else {
798      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
799      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
800        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
801
802        // If the comparison constant has bits in the upper part, the
803        // zero-extended value could never match.
804        if (C2 & (~0ULL << InSize)) {
805          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
806          switch (Cond) {
807          case ISD::SETUGT:
808          case ISD::SETUGE:
809          case ISD::SETEQ: return getConstant(0, VT);
810          case ISD::SETULT:
811          case ISD::SETULE:
812          case ISD::SETNE: return getConstant(1, VT);
813          case ISD::SETGT:
814          case ISD::SETGE:
815            // True if the sign bit of C2 is set.
816            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
817          case ISD::SETLT:
818          case ISD::SETLE:
819            // True if the sign bit of C2 isn't set.
820            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
821          default:
822            break;
823          }
824        }
825
826        // Otherwise, we can perform the comparison with the low bits.
827        switch (Cond) {
828        case ISD::SETEQ:
829        case ISD::SETNE:
830        case ISD::SETUGT:
831        case ISD::SETUGE:
832        case ISD::SETULT:
833        case ISD::SETULE:
834          return getSetCC(VT, N1.getOperand(0),
835                          getConstant(C2, N1.getOperand(0).getValueType()),
836                          Cond);
837        default:
838          break;   // todo, be more careful with signed comparisons
839        }
840      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
841                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
842        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
843        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
844        MVT::ValueType ExtDstTy = N1.getValueType();
845        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
846
847        // If the extended part has any inconsistent bits, it cannot ever
848        // compare equal.  In other words, they have to be all ones or all
849        // zeros.
850        uint64_t ExtBits =
851          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
852        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
853          return getConstant(Cond == ISD::SETNE, VT);
854
855        // Otherwise, make this a use of a zext.
856        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
857                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
858                        Cond);
859      }
860
861      uint64_t MinVal, MaxVal;
862      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
863      if (ISD::isSignedIntSetCC(Cond)) {
864        MinVal = 1ULL << (OperandBitSize-1);
865        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
866          MaxVal = ~0ULL >> (65-OperandBitSize);
867        else
868          MaxVal = 0;
869      } else {
870        MinVal = 0;
871        MaxVal = ~0ULL >> (64-OperandBitSize);
872      }
873
874      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
875      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
876        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
877        --C2;                                          // X >= C1 --> X > (C1-1)
878        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
879                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
880      }
881
882      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
883        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
884        ++C2;                                          // X <= C1 --> X < (C1+1)
885        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
886                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
887      }
888
889      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
890        return getConstant(0, VT);      // X < MIN --> false
891
892      // Canonicalize setgt X, Min --> setne X, Min
893      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
894        return getSetCC(VT, N1, N2, ISD::SETNE);
895
896      // If we have setult X, 1, turn it into seteq X, 0
897      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
898        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
899                        ISD::SETEQ);
900      // If we have setugt X, Max-1, turn it into seteq X, Max
901      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
902        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
903                        ISD::SETEQ);
904
905      // If we have "setcc X, C1", check to see if we can shrink the immediate
906      // by changing cc.
907
908      // SETUGT X, SINTMAX  -> SETLT X, 0
909      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
910          C2 == (~0ULL >> (65-OperandBitSize)))
911        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
912
913      // FIXME: Implement the rest of these.
914
915
916      // Fold bit comparisons when we can.
917      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
918          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
919        if (ConstantSDNode *AndRHS =
920                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
921          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
922            // Perform the xform if the AND RHS is a single bit.
923            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
924              return getNode(ISD::SRL, VT, N1,
925                             getConstant(Log2_64(AndRHS->getValue()),
926                                                   TLI.getShiftAmountTy()));
927            }
928          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
929            // (X & 8) == 8  -->  (X & 8) >> 3
930            // Perform the xform if C2 is a single bit.
931            if ((C2 & (C2-1)) == 0) {
932              return getNode(ISD::SRL, VT, N1,
933                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
934            }
935          }
936        }
937    }
938  } else if (isa<ConstantSDNode>(N1.Val)) {
939      // Ensure that the constant occurs on the RHS.
940    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
941  }
942
943  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
944    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
945      double C1 = N1C->getValue(), C2 = N2C->getValue();
946
947      switch (Cond) {
948      default: break; // FIXME: Implement the rest of these!
949      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
950      case ISD::SETNE:  return getConstant(C1 != C2, VT);
951      case ISD::SETLT:  return getConstant(C1 < C2, VT);
952      case ISD::SETGT:  return getConstant(C1 > C2, VT);
953      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
954      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
955      }
956    } else {
957      // Ensure that the constant occurs on the RHS.
958      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
959    }
960
961  // Could not fold it.
962  return SDOperand();
963}
964
965/// getNode - Gets or creates the specified node.
966///
967SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
968  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
969  if (!N) {
970    N = new SDNode(Opcode, VT);
971    AllNodes.push_back(N);
972  }
973  return SDOperand(N, 0);
974}
975
976SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
977                                SDOperand Operand) {
978  unsigned Tmp1;
979  // Constant fold unary operations with an integer constant operand.
980  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
981    uint64_t Val = C->getValue();
982    switch (Opcode) {
983    default: break;
984    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
985    case ISD::ANY_EXTEND:
986    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
987    case ISD::TRUNCATE:    return getConstant(Val, VT);
988    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
989    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
990    case ISD::BIT_CONVERT:
991      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
992        return getConstantFP(BitsToFloat(Val), VT);
993      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
994        return getConstantFP(BitsToDouble(Val), VT);
995      break;
996    case ISD::BSWAP:
997      switch(VT) {
998      default: assert(0 && "Invalid bswap!"); break;
999      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1000      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1001      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1002      }
1003      break;
1004    case ISD::CTPOP:
1005      switch(VT) {
1006      default: assert(0 && "Invalid ctpop!"); break;
1007      case MVT::i1: return getConstant(Val != 0, VT);
1008      case MVT::i8:
1009        Tmp1 = (unsigned)Val & 0xFF;
1010        return getConstant(CountPopulation_32(Tmp1), VT);
1011      case MVT::i16:
1012        Tmp1 = (unsigned)Val & 0xFFFF;
1013        return getConstant(CountPopulation_32(Tmp1), VT);
1014      case MVT::i32:
1015        return getConstant(CountPopulation_32((unsigned)Val), VT);
1016      case MVT::i64:
1017        return getConstant(CountPopulation_64(Val), VT);
1018      }
1019    case ISD::CTLZ:
1020      switch(VT) {
1021      default: assert(0 && "Invalid ctlz!"); break;
1022      case MVT::i1: return getConstant(Val == 0, VT);
1023      case MVT::i8:
1024        Tmp1 = (unsigned)Val & 0xFF;
1025        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1026      case MVT::i16:
1027        Tmp1 = (unsigned)Val & 0xFFFF;
1028        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1029      case MVT::i32:
1030        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1031      case MVT::i64:
1032        return getConstant(CountLeadingZeros_64(Val), VT);
1033      }
1034    case ISD::CTTZ:
1035      switch(VT) {
1036      default: assert(0 && "Invalid cttz!"); break;
1037      case MVT::i1: return getConstant(Val == 0, VT);
1038      case MVT::i8:
1039        Tmp1 = (unsigned)Val | 0x100;
1040        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1041      case MVT::i16:
1042        Tmp1 = (unsigned)Val | 0x10000;
1043        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1044      case MVT::i32:
1045        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1046      case MVT::i64:
1047        return getConstant(CountTrailingZeros_64(Val), VT);
1048      }
1049    }
1050  }
1051
1052  // Constant fold unary operations with an floating point constant operand.
1053  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1054    switch (Opcode) {
1055    case ISD::FNEG:
1056      return getConstantFP(-C->getValue(), VT);
1057    case ISD::FABS:
1058      return getConstantFP(fabs(C->getValue()), VT);
1059    case ISD::FP_ROUND:
1060    case ISD::FP_EXTEND:
1061      return getConstantFP(C->getValue(), VT);
1062    case ISD::FP_TO_SINT:
1063      return getConstant((int64_t)C->getValue(), VT);
1064    case ISD::FP_TO_UINT:
1065      return getConstant((uint64_t)C->getValue(), VT);
1066    case ISD::BIT_CONVERT:
1067      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1068        return getConstant(FloatToBits(C->getValue()), VT);
1069      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1070        return getConstant(DoubleToBits(C->getValue()), VT);
1071      break;
1072    }
1073
1074  unsigned OpOpcode = Operand.Val->getOpcode();
1075  switch (Opcode) {
1076  case ISD::TokenFactor:
1077    return Operand;         // Factor of one node?  No factor.
1078  case ISD::SIGN_EXTEND:
1079    if (Operand.getValueType() == VT) return Operand;   // noop extension
1080    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1081    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1082      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1083    break;
1084  case ISD::ZERO_EXTEND:
1085    if (Operand.getValueType() == VT) return Operand;   // noop extension
1086    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1087    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1088      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1089    break;
1090  case ISD::ANY_EXTEND:
1091    if (Operand.getValueType() == VT) return Operand;   // noop extension
1092    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1093    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1094      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1095      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1096    break;
1097  case ISD::TRUNCATE:
1098    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1099    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1100    if (OpOpcode == ISD::TRUNCATE)
1101      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1102    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1103             OpOpcode == ISD::ANY_EXTEND) {
1104      // If the source is smaller than the dest, we still need an extend.
1105      if (Operand.Val->getOperand(0).getValueType() < VT)
1106        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1107      else if (Operand.Val->getOperand(0).getValueType() > VT)
1108        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1109      else
1110        return Operand.Val->getOperand(0);
1111    }
1112    break;
1113  case ISD::BIT_CONVERT:
1114    // Basic sanity checking.
1115    assert((Operand.getValueType() == MVT::Vector ||   // FIXME: This is a hack.
1116           MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType()))
1117           && "Cannot BIT_CONVERT between two different types!");
1118    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1119    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1120      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1121    break;
1122  case ISD::SCALAR_TO_VECTOR:
1123    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1124           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1125           "Illegal SCALAR_TO_VECTOR node!");
1126    break;
1127  case ISD::FNEG:
1128    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1129      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1130                     Operand.Val->getOperand(0));
1131    if (OpOpcode == ISD::FNEG)  // --X -> X
1132      return Operand.Val->getOperand(0);
1133    break;
1134  case ISD::FABS:
1135    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1136      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1137    break;
1138  }
1139
1140  SDNode *N;
1141  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1142    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1143    if (E) return SDOperand(E, 0);
1144    E = N = new SDNode(Opcode, Operand);
1145  } else {
1146    N = new SDNode(Opcode, Operand);
1147  }
1148  N->setValueTypes(VT);
1149  AllNodes.push_back(N);
1150  return SDOperand(N, 0);
1151}
1152
1153
1154
1155SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1156                                SDOperand N1, SDOperand N2) {
1157#ifndef NDEBUG
1158  switch (Opcode) {
1159  case ISD::TokenFactor:
1160    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1161           N2.getValueType() == MVT::Other && "Invalid token factor!");
1162    break;
1163  case ISD::AND:
1164  case ISD::OR:
1165  case ISD::XOR:
1166  case ISD::UDIV:
1167  case ISD::UREM:
1168  case ISD::MULHU:
1169  case ISD::MULHS:
1170    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1171    // fall through
1172  case ISD::ADD:
1173  case ISD::SUB:
1174  case ISD::MUL:
1175  case ISD::SDIV:
1176  case ISD::SREM:
1177    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1178    // fall through.
1179  case ISD::FADD:
1180  case ISD::FSUB:
1181  case ISD::FMUL:
1182  case ISD::FDIV:
1183  case ISD::FREM:
1184    assert(N1.getValueType() == N2.getValueType() &&
1185           N1.getValueType() == VT && "Binary operator types must match!");
1186    break;
1187  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1188    assert(N1.getValueType() == VT &&
1189           MVT::isFloatingPoint(N1.getValueType()) &&
1190           MVT::isFloatingPoint(N2.getValueType()) &&
1191           "Invalid FCOPYSIGN!");
1192    break;
1193  case ISD::SHL:
1194  case ISD::SRA:
1195  case ISD::SRL:
1196  case ISD::ROTL:
1197  case ISD::ROTR:
1198    assert(VT == N1.getValueType() &&
1199           "Shift operators return type must be the same as their first arg");
1200    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1201           VT != MVT::i1 && "Shifts only work on integers");
1202    break;
1203  case ISD::FP_ROUND_INREG: {
1204    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1205    assert(VT == N1.getValueType() && "Not an inreg round!");
1206    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1207           "Cannot FP_ROUND_INREG integer types");
1208    assert(EVT <= VT && "Not rounding down!");
1209    break;
1210  }
1211  case ISD::AssertSext:
1212  case ISD::AssertZext:
1213  case ISD::SIGN_EXTEND_INREG: {
1214    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1215    assert(VT == N1.getValueType() && "Not an inreg extend!");
1216    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1217           "Cannot *_EXTEND_INREG FP types");
1218    assert(EVT <= VT && "Not extending!");
1219  }
1220
1221  default: break;
1222  }
1223#endif
1224
1225  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1226  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1227  if (N1C) {
1228    if (N2C) {
1229      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1230      switch (Opcode) {
1231      case ISD::ADD: return getConstant(C1 + C2, VT);
1232      case ISD::SUB: return getConstant(C1 - C2, VT);
1233      case ISD::MUL: return getConstant(C1 * C2, VT);
1234      case ISD::UDIV:
1235        if (C2) return getConstant(C1 / C2, VT);
1236        break;
1237      case ISD::UREM :
1238        if (C2) return getConstant(C1 % C2, VT);
1239        break;
1240      case ISD::SDIV :
1241        if (C2) return getConstant(N1C->getSignExtended() /
1242                                   N2C->getSignExtended(), VT);
1243        break;
1244      case ISD::SREM :
1245        if (C2) return getConstant(N1C->getSignExtended() %
1246                                   N2C->getSignExtended(), VT);
1247        break;
1248      case ISD::AND  : return getConstant(C1 & C2, VT);
1249      case ISD::OR   : return getConstant(C1 | C2, VT);
1250      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1251      case ISD::SHL  : return getConstant(C1 << C2, VT);
1252      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1253      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1254      case ISD::ROTL :
1255        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1256                           VT);
1257      case ISD::ROTR :
1258        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1259                           VT);
1260      default: break;
1261      }
1262    } else {      // Cannonicalize constant to RHS if commutative
1263      if (isCommutativeBinOp(Opcode)) {
1264        std::swap(N1C, N2C);
1265        std::swap(N1, N2);
1266      }
1267    }
1268  }
1269
1270  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1271  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1272  if (N1CFP) {
1273    if (N2CFP) {
1274      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1275      switch (Opcode) {
1276      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1277      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1278      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1279      case ISD::FDIV:
1280        if (C2) return getConstantFP(C1 / C2, VT);
1281        break;
1282      case ISD::FREM :
1283        if (C2) return getConstantFP(fmod(C1, C2), VT);
1284        break;
1285      case ISD::FCOPYSIGN: {
1286        union {
1287          double   F;
1288          uint64_t I;
1289        } u1;
1290        union {
1291          double  F;
1292          int64_t I;
1293        } u2;
1294        u1.F = C1;
1295        u2.F = C2;
1296        if (u2.I < 0)  // Sign bit of RHS set?
1297          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1298        else
1299          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1300        return getConstantFP(u1.F, VT);
1301      }
1302      default: break;
1303      }
1304    } else {      // Cannonicalize constant to RHS if commutative
1305      if (isCommutativeBinOp(Opcode)) {
1306        std::swap(N1CFP, N2CFP);
1307        std::swap(N1, N2);
1308      }
1309    }
1310  }
1311
1312  // Finally, fold operations that do not require constants.
1313  switch (Opcode) {
1314  case ISD::FP_ROUND_INREG:
1315    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1316    break;
1317  case ISD::SIGN_EXTEND_INREG: {
1318    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1319    if (EVT == VT) return N1;  // Not actually extending
1320    break;
1321  }
1322
1323  // FIXME: figure out how to safely handle things like
1324  // int foo(int x) { return 1 << (x & 255); }
1325  // int bar() { return foo(256); }
1326#if 0
1327  case ISD::SHL:
1328  case ISD::SRL:
1329  case ISD::SRA:
1330    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1331        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1332      return getNode(Opcode, VT, N1, N2.getOperand(0));
1333    else if (N2.getOpcode() == ISD::AND)
1334      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1335        // If the and is only masking out bits that cannot effect the shift,
1336        // eliminate the and.
1337        unsigned NumBits = MVT::getSizeInBits(VT);
1338        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1339          return getNode(Opcode, VT, N1, N2.getOperand(0));
1340      }
1341    break;
1342#endif
1343  }
1344
1345  // Memoize this node if possible.
1346  SDNode *N;
1347  if (VT != MVT::Flag) {
1348    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1349    if (BON) return SDOperand(BON, 0);
1350
1351    BON = N = new SDNode(Opcode, N1, N2);
1352  } else {
1353    N = new SDNode(Opcode, N1, N2);
1354  }
1355
1356  N->setValueTypes(VT);
1357  AllNodes.push_back(N);
1358  return SDOperand(N, 0);
1359}
1360
1361SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1362                                SDOperand N1, SDOperand N2, SDOperand N3) {
1363  // Perform various simplifications.
1364  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1365  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1366  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1367  switch (Opcode) {
1368  case ISD::SETCC: {
1369    // Use SimplifySetCC  to simplify SETCC's.
1370    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1371    if (Simp.Val) return Simp;
1372    break;
1373  }
1374  case ISD::SELECT:
1375    if (N1C)
1376      if (N1C->getValue())
1377        return N2;             // select true, X, Y -> X
1378      else
1379        return N3;             // select false, X, Y -> Y
1380
1381    if (N2 == N3) return N2;   // select C, X, X -> X
1382    break;
1383  case ISD::BRCOND:
1384    if (N2C)
1385      if (N2C->getValue()) // Unconditional branch
1386        return getNode(ISD::BR, MVT::Other, N1, N3);
1387      else
1388        return N1;         // Never-taken branch
1389    break;
1390  case ISD::VECTOR_SHUFFLE:
1391    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1392           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1393           N3.getOpcode() == ISD::BUILD_VECTOR &&
1394           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1395           "Illegal VECTOR_SHUFFLE node!");
1396    break;
1397  }
1398
1399  std::vector<SDOperand> Ops;
1400  Ops.reserve(3);
1401  Ops.push_back(N1);
1402  Ops.push_back(N2);
1403  Ops.push_back(N3);
1404
1405  // Memoize node if it doesn't produce a flag.
1406  SDNode *N;
1407  if (VT != MVT::Flag) {
1408    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1409    if (E) return SDOperand(E, 0);
1410    E = N = new SDNode(Opcode, N1, N2, N3);
1411  } else {
1412    N = new SDNode(Opcode, N1, N2, N3);
1413  }
1414  N->setValueTypes(VT);
1415  AllNodes.push_back(N);
1416  return SDOperand(N, 0);
1417}
1418
1419SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1420                                SDOperand N1, SDOperand N2, SDOperand N3,
1421                                SDOperand N4) {
1422  std::vector<SDOperand> Ops;
1423  Ops.reserve(4);
1424  Ops.push_back(N1);
1425  Ops.push_back(N2);
1426  Ops.push_back(N3);
1427  Ops.push_back(N4);
1428  return getNode(Opcode, VT, Ops);
1429}
1430
1431SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1432                                SDOperand N1, SDOperand N2, SDOperand N3,
1433                                SDOperand N4, SDOperand N5) {
1434  std::vector<SDOperand> Ops;
1435  Ops.reserve(5);
1436  Ops.push_back(N1);
1437  Ops.push_back(N2);
1438  Ops.push_back(N3);
1439  Ops.push_back(N4);
1440  Ops.push_back(N5);
1441  return getNode(Opcode, VT, Ops);
1442}
1443
1444SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1445                                SDOperand Chain, SDOperand Ptr,
1446                                SDOperand SV) {
1447  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1448  if (N) return SDOperand(N, 0);
1449  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1450
1451  // Loads have a token chain.
1452  setNodeValueTypes(N, VT, MVT::Other);
1453  AllNodes.push_back(N);
1454  return SDOperand(N, 0);
1455}
1456
1457SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1458                                   SDOperand Chain, SDOperand Ptr,
1459                                   SDOperand SV) {
1460  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, EVT))];
1461  if (N) return SDOperand(N, 0);
1462  std::vector<SDOperand> Ops;
1463  Ops.reserve(5);
1464  Ops.push_back(Chain);
1465  Ops.push_back(Ptr);
1466  Ops.push_back(SV);
1467  Ops.push_back(getConstant(Count, MVT::i32));
1468  Ops.push_back(getValueType(EVT));
1469  std::vector<MVT::ValueType> VTs;
1470  VTs.reserve(2);
1471  VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other);  // Add token chain.
1472  return getNode(ISD::VLOAD, VTs, Ops);
1473}
1474
1475SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1476                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1477                                   MVT::ValueType EVT) {
1478  std::vector<SDOperand> Ops;
1479  Ops.reserve(4);
1480  Ops.push_back(Chain);
1481  Ops.push_back(Ptr);
1482  Ops.push_back(SV);
1483  Ops.push_back(getValueType(EVT));
1484  std::vector<MVT::ValueType> VTs;
1485  VTs.reserve(2);
1486  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1487  return getNode(Opcode, VTs, Ops);
1488}
1489
1490SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1491  assert((!V || isa<PointerType>(V->getType())) &&
1492         "SrcValue is not a pointer?");
1493  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1494  if (N) return SDOperand(N, 0);
1495
1496  N = new SrcValueSDNode(V, Offset);
1497  AllNodes.push_back(N);
1498  return SDOperand(N, 0);
1499}
1500
1501SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1502                                 SDOperand Chain, SDOperand Ptr,
1503                                 SDOperand SV) {
1504  std::vector<SDOperand> Ops;
1505  Ops.reserve(3);
1506  Ops.push_back(Chain);
1507  Ops.push_back(Ptr);
1508  Ops.push_back(SV);
1509  std::vector<MVT::ValueType> VTs;
1510  VTs.reserve(2);
1511  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1512  return getNode(ISD::VAARG, VTs, Ops);
1513}
1514
1515SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1516                                std::vector<SDOperand> &Ops) {
1517  switch (Ops.size()) {
1518  case 0: return getNode(Opcode, VT);
1519  case 1: return getNode(Opcode, VT, Ops[0]);
1520  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1521  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1522  default: break;
1523  }
1524
1525  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1526  switch (Opcode) {
1527  default: break;
1528  case ISD::TRUNCSTORE: {
1529    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1530    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1531#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1532    // If this is a truncating store of a constant, convert to the desired type
1533    // and store it instead.
1534    if (isa<Constant>(Ops[0])) {
1535      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1536      if (isa<Constant>(Op))
1537        N1 = Op;
1538    }
1539    // Also for ConstantFP?
1540#endif
1541    if (Ops[0].getValueType() == EVT)       // Normal store?
1542      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1543    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1544    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1545           "Can't do FP-INT conversion!");
1546    break;
1547  }
1548  case ISD::SELECT_CC: {
1549    assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
1550    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1551           "LHS and RHS of condition must have same type!");
1552    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1553           "True and False arms of SelectCC must have same type!");
1554    assert(Ops[2].getValueType() == VT &&
1555           "select_cc node must be of same type as true and false value!");
1556    break;
1557  }
1558  case ISD::BR_CC: {
1559    assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
1560    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1561           "LHS/RHS of comparison should match types!");
1562    break;
1563  }
1564  }
1565
1566  // Memoize nodes.
1567  SDNode *N;
1568  if (VT != MVT::Flag) {
1569    SDNode *&E =
1570      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1571    if (E) return SDOperand(E, 0);
1572    E = N = new SDNode(Opcode, Ops);
1573  } else {
1574    N = new SDNode(Opcode, Ops);
1575  }
1576  N->setValueTypes(VT);
1577  AllNodes.push_back(N);
1578  return SDOperand(N, 0);
1579}
1580
1581SDOperand SelectionDAG::getNode(unsigned Opcode,
1582                                std::vector<MVT::ValueType> &ResultTys,
1583                                std::vector<SDOperand> &Ops) {
1584  if (ResultTys.size() == 1)
1585    return getNode(Opcode, ResultTys[0], Ops);
1586
1587  switch (Opcode) {
1588  case ISD::EXTLOAD:
1589  case ISD::SEXTLOAD:
1590  case ISD::ZEXTLOAD: {
1591    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1592    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1593    // If they are asking for an extending load from/to the same thing, return a
1594    // normal load.
1595    if (ResultTys[0] == EVT)
1596      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1597    if (MVT::isVector(ResultTys[0])) {
1598      assert(EVT == MVT::getVectorBaseType(ResultTys[0]) &&
1599             "Invalid vector extload!");
1600    } else {
1601      assert(EVT < ResultTys[0] &&
1602             "Should only be an extending load, not truncating!");
1603    }
1604    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1605           "Cannot sign/zero extend a FP/Vector load!");
1606    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1607           "Cannot convert from FP to Int or Int -> FP!");
1608    break;
1609  }
1610
1611  // FIXME: figure out how to safely handle things like
1612  // int foo(int x) { return 1 << (x & 255); }
1613  // int bar() { return foo(256); }
1614#if 0
1615  case ISD::SRA_PARTS:
1616  case ISD::SRL_PARTS:
1617  case ISD::SHL_PARTS:
1618    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1619        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1620      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1621    else if (N3.getOpcode() == ISD::AND)
1622      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1623        // If the and is only masking out bits that cannot effect the shift,
1624        // eliminate the and.
1625        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1626        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1627          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1628      }
1629    break;
1630#endif
1631  }
1632
1633  // Memoize the node unless it returns a flag.
1634  SDNode *N;
1635  if (ResultTys.back() != MVT::Flag) {
1636    SDNode *&E =
1637      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
1638    if (E) return SDOperand(E, 0);
1639    E = N = new SDNode(Opcode, Ops);
1640  } else {
1641    N = new SDNode(Opcode, Ops);
1642  }
1643  setNodeValueTypes(N, ResultTys);
1644  AllNodes.push_back(N);
1645  return SDOperand(N, 0);
1646}
1647
1648void SelectionDAG::setNodeValueTypes(SDNode *N,
1649                                     std::vector<MVT::ValueType> &RetVals) {
1650  switch (RetVals.size()) {
1651  case 0: return;
1652  case 1: N->setValueTypes(RetVals[0]); return;
1653  case 2: setNodeValueTypes(N, RetVals[0], RetVals[1]); return;
1654  default: break;
1655  }
1656
1657  std::list<std::vector<MVT::ValueType> >::iterator I =
1658    std::find(VTList.begin(), VTList.end(), RetVals);
1659  if (I == VTList.end()) {
1660    VTList.push_front(RetVals);
1661    I = VTList.begin();
1662  }
1663
1664  N->setValueTypes(&(*I)[0], I->size());
1665}
1666
1667void SelectionDAG::setNodeValueTypes(SDNode *N, MVT::ValueType VT1,
1668                                     MVT::ValueType VT2) {
1669  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1670       E = VTList.end(); I != E; ++I) {
1671    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) {
1672      N->setValueTypes(&(*I)[0], 2);
1673      return;
1674    }
1675  }
1676  std::vector<MVT::ValueType> V;
1677  V.push_back(VT1);
1678  V.push_back(VT2);
1679  VTList.push_front(V);
1680  N->setValueTypes(&(*VTList.begin())[0], 2);
1681}
1682
1683/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1684/// specified operands.  If the resultant node already exists in the DAG,
1685/// this does not modify the specified node, instead it returns the node that
1686/// already exists.  If the resultant node does not exist in the DAG, the
1687/// input node is returned.  As a degenerate case, if you specify the same
1688/// input operands as the node already has, the input node is returned.
1689SDOperand SelectionDAG::
1690UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1691  SDNode *N = InN.Val;
1692  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1693
1694  // Check to see if there is no change.
1695  if (Op == N->getOperand(0)) return InN;
1696
1697  // See if the modified node already exists.
1698  SDNode **NewSlot = FindModifiedNodeSlot(N, Op);
1699  if (NewSlot && *NewSlot)
1700    return SDOperand(*NewSlot, InN.ResNo);
1701
1702  // Nope it doesn't.  Remove the node from it's current place in the maps.
1703  if (NewSlot)
1704    RemoveNodeFromCSEMaps(N);
1705
1706  // Now we update the operands.
1707  N->OperandList[0].Val->removeUser(N);
1708  Op.Val->addUser(N);
1709  N->OperandList[0] = Op;
1710
1711  // If this gets put into a CSE map, add it.
1712  if (NewSlot) *NewSlot = N;
1713  return InN;
1714}
1715
1716SDOperand SelectionDAG::
1717UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1718  SDNode *N = InN.Val;
1719  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1720
1721  // Check to see if there is no change.
1722  bool AnyChange = false;
1723  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1724    return InN;   // No operands changed, just return the input node.
1725
1726  // See if the modified node already exists.
1727  SDNode **NewSlot = FindModifiedNodeSlot(N, Op1, Op2);
1728  if (NewSlot && *NewSlot)
1729    return SDOperand(*NewSlot, InN.ResNo);
1730
1731  // Nope it doesn't.  Remove the node from it's current place in the maps.
1732  if (NewSlot)
1733    RemoveNodeFromCSEMaps(N);
1734
1735  // Now we update the operands.
1736  if (N->OperandList[0] != Op1) {
1737    N->OperandList[0].Val->removeUser(N);
1738    Op1.Val->addUser(N);
1739    N->OperandList[0] = Op1;
1740  }
1741  if (N->OperandList[1] != Op2) {
1742    N->OperandList[1].Val->removeUser(N);
1743    Op2.Val->addUser(N);
1744    N->OperandList[1] = Op2;
1745  }
1746
1747  // If this gets put into a CSE map, add it.
1748  if (NewSlot) *NewSlot = N;
1749  return InN;
1750}
1751
1752SDOperand SelectionDAG::
1753UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1754  std::vector<SDOperand> Ops;
1755  Ops.push_back(Op1);
1756  Ops.push_back(Op2);
1757  Ops.push_back(Op3);
1758  return UpdateNodeOperands(N, Ops);
1759}
1760
1761SDOperand SelectionDAG::
1762UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1763                   SDOperand Op3, SDOperand Op4) {
1764  std::vector<SDOperand> Ops;
1765  Ops.push_back(Op1);
1766  Ops.push_back(Op2);
1767  Ops.push_back(Op3);
1768  Ops.push_back(Op4);
1769  return UpdateNodeOperands(N, Ops);
1770}
1771
1772SDOperand SelectionDAG::
1773UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1774                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1775  std::vector<SDOperand> Ops;
1776  Ops.push_back(Op1);
1777  Ops.push_back(Op2);
1778  Ops.push_back(Op3);
1779  Ops.push_back(Op4);
1780  Ops.push_back(Op5);
1781  return UpdateNodeOperands(N, Ops);
1782}
1783
1784
1785SDOperand SelectionDAG::
1786UpdateNodeOperands(SDOperand InN, const std::vector<SDOperand> &Ops) {
1787  SDNode *N = InN.Val;
1788  assert(N->getNumOperands() == Ops.size() &&
1789         "Update with wrong number of operands");
1790
1791  // Check to see if there is no change.
1792  unsigned NumOps = Ops.size();
1793  bool AnyChange = false;
1794  for (unsigned i = 0; i != NumOps; ++i) {
1795    if (Ops[i] != N->getOperand(i)) {
1796      AnyChange = true;
1797      break;
1798    }
1799  }
1800
1801  // No operands changed, just return the input node.
1802  if (!AnyChange) return InN;
1803
1804  // See if the modified node already exists.
1805  SDNode **NewSlot = FindModifiedNodeSlot(N, Ops);
1806  if (NewSlot && *NewSlot)
1807    return SDOperand(*NewSlot, InN.ResNo);
1808
1809  // Nope it doesn't.  Remove the node from it's current place in the maps.
1810  if (NewSlot)
1811    RemoveNodeFromCSEMaps(N);
1812
1813  // Now we update the operands.
1814  for (unsigned i = 0; i != NumOps; ++i) {
1815    if (N->OperandList[i] != Ops[i]) {
1816      N->OperandList[i].Val->removeUser(N);
1817      Ops[i].Val->addUser(N);
1818      N->OperandList[i] = Ops[i];
1819    }
1820  }
1821
1822  // If this gets put into a CSE map, add it.
1823  if (NewSlot) *NewSlot = N;
1824  return InN;
1825}
1826
1827
1828
1829
1830/// SelectNodeTo - These are used for target selectors to *mutate* the
1831/// specified node to have the specified return type, Target opcode, and
1832/// operands.  Note that target opcodes are stored as
1833/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1834///
1835/// Note that SelectNodeTo returns the resultant node.  If there is already a
1836/// node of the specified opcode and operands, it returns that node instead of
1837/// the current one.
1838SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1839                                     MVT::ValueType VT) {
1840  // If an identical node already exists, use it.
1841  SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)];
1842  if (ON) return SDOperand(ON, 0);
1843
1844  RemoveNodeFromCSEMaps(N);
1845
1846  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1847  N->setValueTypes(VT);
1848
1849  ON = N;   // Memoize the new node.
1850  return SDOperand(N, 0);
1851}
1852
1853SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1854                                     MVT::ValueType VT, SDOperand Op1) {
1855  // If an identical node already exists, use it.
1856  SDNode *&ON = UnaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1857                                        std::make_pair(Op1, VT))];
1858  if (ON) return SDOperand(ON, 0);
1859
1860  RemoveNodeFromCSEMaps(N);
1861  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1862  N->setValueTypes(VT);
1863  N->setOperands(Op1);
1864
1865  ON = N;   // Memoize the new node.
1866  return SDOperand(N, 0);
1867}
1868
1869SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1870                                     MVT::ValueType VT, SDOperand Op1,
1871                                     SDOperand Op2) {
1872  // If an identical node already exists, use it.
1873  SDNode *&ON = BinaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1874                                         std::make_pair(Op1, Op2))];
1875  if (ON) return SDOperand(ON, 0);
1876
1877  RemoveNodeFromCSEMaps(N);
1878  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1879  N->setValueTypes(VT);
1880  N->setOperands(Op1, Op2);
1881
1882  ON = N;   // Memoize the new node.
1883  return SDOperand(N, 0);
1884}
1885
1886SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1887                                     MVT::ValueType VT, SDOperand Op1,
1888                                     SDOperand Op2, SDOperand Op3) {
1889  // If an identical node already exists, use it.
1890  std::vector<SDOperand> OpList;
1891  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1892  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1893                                              std::make_pair(VT, OpList))];
1894  if (ON) return SDOperand(ON, 0);
1895
1896  RemoveNodeFromCSEMaps(N);
1897  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1898  N->setValueTypes(VT);
1899  N->setOperands(Op1, Op2, Op3);
1900
1901  ON = N;   // Memoize the new node.
1902  return SDOperand(N, 0);
1903}
1904
1905SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1906                                     MVT::ValueType VT, SDOperand Op1,
1907                                     SDOperand Op2, SDOperand Op3,
1908                                     SDOperand Op4) {
1909  // If an identical node already exists, use it.
1910  std::vector<SDOperand> OpList;
1911  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1912  OpList.push_back(Op4);
1913  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1914                                              std::make_pair(VT, OpList))];
1915  if (ON) return SDOperand(ON, 0);
1916
1917  RemoveNodeFromCSEMaps(N);
1918  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1919  N->setValueTypes(VT);
1920  N->setOperands(Op1, Op2, Op3, Op4);
1921
1922  ON = N;   // Memoize the new node.
1923  return SDOperand(N, 0);
1924}
1925
1926SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1927                                     MVT::ValueType VT, SDOperand Op1,
1928                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1929                                     SDOperand Op5) {
1930  // If an identical node already exists, use it.
1931  std::vector<SDOperand> OpList;
1932  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1933  OpList.push_back(Op4); OpList.push_back(Op5);
1934  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1935                                              std::make_pair(VT, OpList))];
1936  if (ON) return SDOperand(ON, 0);
1937
1938  RemoveNodeFromCSEMaps(N);
1939  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1940  N->setValueTypes(VT);
1941  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1942
1943  ON = N;   // Memoize the new node.
1944  return SDOperand(N, 0);
1945}
1946
1947SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1948                                     MVT::ValueType VT, SDOperand Op1,
1949                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1950                                     SDOperand Op5, SDOperand Op6) {
1951  // If an identical node already exists, use it.
1952  std::vector<SDOperand> OpList;
1953  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1954  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1955  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1956                                              std::make_pair(VT, OpList))];
1957  if (ON) return SDOperand(ON, 0);
1958
1959  RemoveNodeFromCSEMaps(N);
1960  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1961  N->setValueTypes(VT);
1962  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
1963
1964  ON = N;   // Memoize the new node.
1965  return SDOperand(N, 0);
1966}
1967
1968SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1969                                     MVT::ValueType VT, SDOperand Op1,
1970                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1971                                     SDOperand Op5, SDOperand Op6,
1972				     SDOperand Op7) {
1973  // If an identical node already exists, use it.
1974  std::vector<SDOperand> OpList;
1975  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1976  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1977  OpList.push_back(Op7);
1978  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1979                                              std::make_pair(VT, OpList))];
1980  if (ON) return SDOperand(ON, 0);
1981
1982  RemoveNodeFromCSEMaps(N);
1983  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1984  N->setValueTypes(VT);
1985  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7);
1986
1987  ON = N;   // Memoize the new node.
1988  return SDOperand(N, 0);
1989}
1990SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1991                                     MVT::ValueType VT, SDOperand Op1,
1992                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1993                                     SDOperand Op5, SDOperand Op6,
1994				     SDOperand Op7, SDOperand Op8) {
1995  // If an identical node already exists, use it.
1996  std::vector<SDOperand> OpList;
1997  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1998  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1999  OpList.push_back(Op7); OpList.push_back(Op8);
2000  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2001                                              std::make_pair(VT, OpList))];
2002  if (ON) return SDOperand(ON, 0);
2003
2004  RemoveNodeFromCSEMaps(N);
2005  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2006  N->setValueTypes(VT);
2007  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8);
2008
2009  ON = N;   // Memoize the new node.
2010  return SDOperand(N, 0);
2011}
2012
2013SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2014                                     MVT::ValueType VT1, MVT::ValueType VT2,
2015                                     SDOperand Op1, SDOperand Op2) {
2016  // If an identical node already exists, use it.
2017  std::vector<SDOperand> OpList;
2018  OpList.push_back(Op1); OpList.push_back(Op2);
2019  std::vector<MVT::ValueType> VTList;
2020  VTList.push_back(VT1); VTList.push_back(VT2);
2021  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2022                                              std::make_pair(VTList, OpList))];
2023  if (ON) return SDOperand(ON, 0);
2024
2025  RemoveNodeFromCSEMaps(N);
2026  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2027  setNodeValueTypes(N, VT1, VT2);
2028  N->setOperands(Op1, Op2);
2029
2030  ON = N;   // Memoize the new node.
2031  return SDOperand(N, 0);
2032}
2033
2034SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2035                                     MVT::ValueType VT1, MVT::ValueType VT2,
2036                                     SDOperand Op1, SDOperand Op2,
2037                                     SDOperand Op3) {
2038  // If an identical node already exists, use it.
2039  std::vector<SDOperand> OpList;
2040  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2041  std::vector<MVT::ValueType> VTList;
2042  VTList.push_back(VT1); VTList.push_back(VT2);
2043  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2044                                              std::make_pair(VTList, OpList))];
2045  if (ON) return SDOperand(ON, 0);
2046
2047  RemoveNodeFromCSEMaps(N);
2048  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2049  setNodeValueTypes(N, VT1, VT2);
2050  N->setOperands(Op1, Op2, Op3);
2051
2052  ON = N;   // Memoize the new node.
2053  return SDOperand(N, 0);
2054}
2055
2056SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2057                                     MVT::ValueType VT1, MVT::ValueType VT2,
2058                                     SDOperand Op1, SDOperand Op2,
2059                                     SDOperand Op3, SDOperand Op4) {
2060  // If an identical node already exists, use it.
2061  std::vector<SDOperand> OpList;
2062  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2063  OpList.push_back(Op4);
2064  std::vector<MVT::ValueType> VTList;
2065  VTList.push_back(VT1); VTList.push_back(VT2);
2066  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2067                                              std::make_pair(VTList, OpList))];
2068  if (ON) return SDOperand(ON, 0);
2069
2070  RemoveNodeFromCSEMaps(N);
2071  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2072  setNodeValueTypes(N, VT1, VT2);
2073  N->setOperands(Op1, Op2, Op3, Op4);
2074
2075  ON = N;   // Memoize the new node.
2076  return SDOperand(N, 0);
2077}
2078
2079SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2080                                     MVT::ValueType VT1, MVT::ValueType VT2,
2081                                     SDOperand Op1, SDOperand Op2,
2082                                     SDOperand Op3, SDOperand Op4,
2083                                     SDOperand Op5) {
2084  // If an identical node already exists, use it.
2085  std::vector<SDOperand> OpList;
2086  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2087  OpList.push_back(Op4); OpList.push_back(Op5);
2088  std::vector<MVT::ValueType> VTList;
2089  VTList.push_back(VT1); VTList.push_back(VT2);
2090  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2091                                              std::make_pair(VTList, OpList))];
2092  if (ON) return SDOperand(ON, 0);
2093
2094  RemoveNodeFromCSEMaps(N);
2095  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2096  setNodeValueTypes(N, VT1, VT2);
2097  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2098
2099  ON = N;   // Memoize the new node.
2100  return SDOperand(N, 0);
2101}
2102
2103/// getTargetNode - These are used for target selectors to create a new node
2104/// with specified return type(s), target opcode, and operands.
2105///
2106/// Note that getTargetNode returns the resultant node.  If there is already a
2107/// node of the specified opcode and operands, it returns that node instead of
2108/// the current one.
2109SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2110  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2111}
2112SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2113                                    SDOperand Op1) {
2114  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2115}
2116SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2117                                    SDOperand Op1, SDOperand Op2) {
2118  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2119}
2120SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2121                                    SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2122  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2123}
2124SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2125                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2126                                    SDOperand Op4) {
2127  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4).Val;
2128}
2129SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2130                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2131                                    SDOperand Op4, SDOperand Op5) {
2132  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4, Op5).Val;
2133}
2134SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2135                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2136                                    SDOperand Op4, SDOperand Op5, SDOperand Op6) {
2137  std::vector<SDOperand> Ops;
2138  Ops.reserve(6);
2139  Ops.push_back(Op1);
2140  Ops.push_back(Op2);
2141  Ops.push_back(Op3);
2142  Ops.push_back(Op4);
2143  Ops.push_back(Op5);
2144  Ops.push_back(Op6);
2145  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2146}
2147SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2148                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2149                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2150                                    SDOperand Op7) {
2151  std::vector<SDOperand> Ops;
2152  Ops.reserve(7);
2153  Ops.push_back(Op1);
2154  Ops.push_back(Op2);
2155  Ops.push_back(Op3);
2156  Ops.push_back(Op4);
2157  Ops.push_back(Op5);
2158  Ops.push_back(Op6);
2159  Ops.push_back(Op7);
2160  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2161}
2162SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2163                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2164                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2165                                    SDOperand Op7, SDOperand Op8) {
2166  std::vector<SDOperand> Ops;
2167  Ops.reserve(8);
2168  Ops.push_back(Op1);
2169  Ops.push_back(Op2);
2170  Ops.push_back(Op3);
2171  Ops.push_back(Op4);
2172  Ops.push_back(Op5);
2173  Ops.push_back(Op6);
2174  Ops.push_back(Op7);
2175  Ops.push_back(Op8);
2176  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2177}
2178SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2179                                    std::vector<SDOperand> &Ops) {
2180  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2181}
2182SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2183                                    MVT::ValueType VT2, SDOperand Op1) {
2184  std::vector<MVT::ValueType> ResultTys;
2185  ResultTys.push_back(VT1);
2186  ResultTys.push_back(VT2);
2187  std::vector<SDOperand> Ops;
2188  Ops.push_back(Op1);
2189  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2190}
2191SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2192                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2) {
2193  std::vector<MVT::ValueType> ResultTys;
2194  ResultTys.push_back(VT1);
2195  ResultTys.push_back(VT2);
2196  std::vector<SDOperand> Ops;
2197  Ops.push_back(Op1);
2198  Ops.push_back(Op2);
2199  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2200}
2201SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2202                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2203                                    SDOperand Op3) {
2204  std::vector<MVT::ValueType> ResultTys;
2205  ResultTys.push_back(VT1);
2206  ResultTys.push_back(VT2);
2207  std::vector<SDOperand> Ops;
2208  Ops.push_back(Op1);
2209  Ops.push_back(Op2);
2210  Ops.push_back(Op3);
2211  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2212}
2213SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2214                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2215                                    SDOperand Op3, SDOperand Op4) {
2216  std::vector<MVT::ValueType> ResultTys;
2217  ResultTys.push_back(VT1);
2218  ResultTys.push_back(VT2);
2219  std::vector<SDOperand> Ops;
2220  Ops.push_back(Op1);
2221  Ops.push_back(Op2);
2222  Ops.push_back(Op3);
2223  Ops.push_back(Op4);
2224  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2225}
2226SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2227                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2228                                    SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2229  std::vector<MVT::ValueType> ResultTys;
2230  ResultTys.push_back(VT1);
2231  ResultTys.push_back(VT2);
2232  std::vector<SDOperand> Ops;
2233  Ops.push_back(Op1);
2234  Ops.push_back(Op2);
2235  Ops.push_back(Op3);
2236  Ops.push_back(Op4);
2237  Ops.push_back(Op5);
2238  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2239}
2240SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2241                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2242                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2243                                    SDOperand Op6) {
2244  std::vector<MVT::ValueType> ResultTys;
2245  ResultTys.push_back(VT1);
2246  ResultTys.push_back(VT2);
2247  std::vector<SDOperand> Ops;
2248  Ops.push_back(Op1);
2249  Ops.push_back(Op2);
2250  Ops.push_back(Op3);
2251  Ops.push_back(Op4);
2252  Ops.push_back(Op5);
2253  Ops.push_back(Op6);
2254  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2255}
2256SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2257                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2258                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2259                                    SDOperand Op6, SDOperand Op7) {
2260  std::vector<MVT::ValueType> ResultTys;
2261  ResultTys.push_back(VT1);
2262  ResultTys.push_back(VT2);
2263  std::vector<SDOperand> Ops;
2264  Ops.push_back(Op1);
2265  Ops.push_back(Op2);
2266  Ops.push_back(Op3);
2267  Ops.push_back(Op4);
2268  Ops.push_back(Op5);
2269  Ops.push_back(Op6);
2270  Ops.push_back(Op7);
2271  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2272}
2273SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2274                                    MVT::ValueType VT2, MVT::ValueType VT3,
2275                                    SDOperand Op1, SDOperand Op2) {
2276  std::vector<MVT::ValueType> ResultTys;
2277  ResultTys.push_back(VT1);
2278  ResultTys.push_back(VT2);
2279  ResultTys.push_back(VT3);
2280  std::vector<SDOperand> Ops;
2281  Ops.push_back(Op1);
2282  Ops.push_back(Op2);
2283  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2284}
2285SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2286                                    MVT::ValueType VT2, MVT::ValueType VT3,
2287                                    SDOperand Op1, SDOperand Op2,
2288                                    SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2289  std::vector<MVT::ValueType> ResultTys;
2290  ResultTys.push_back(VT1);
2291  ResultTys.push_back(VT2);
2292  ResultTys.push_back(VT3);
2293  std::vector<SDOperand> Ops;
2294  Ops.push_back(Op1);
2295  Ops.push_back(Op2);
2296  Ops.push_back(Op3);
2297  Ops.push_back(Op4);
2298  Ops.push_back(Op5);
2299  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2300}
2301SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2302                                    MVT::ValueType VT2, MVT::ValueType VT3,
2303                                    SDOperand Op1, SDOperand Op2,
2304                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2305                                    SDOperand Op6) {
2306  std::vector<MVT::ValueType> ResultTys;
2307  ResultTys.push_back(VT1);
2308  ResultTys.push_back(VT2);
2309  ResultTys.push_back(VT3);
2310  std::vector<SDOperand> Ops;
2311  Ops.push_back(Op1);
2312  Ops.push_back(Op2);
2313  Ops.push_back(Op3);
2314  Ops.push_back(Op4);
2315  Ops.push_back(Op5);
2316  Ops.push_back(Op6);
2317  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2318}
2319SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2320                                    MVT::ValueType VT2, MVT::ValueType VT3,
2321                                    SDOperand Op1, SDOperand Op2,
2322                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2323                                    SDOperand Op6, SDOperand Op7) {
2324  std::vector<MVT::ValueType> ResultTys;
2325  ResultTys.push_back(VT1);
2326  ResultTys.push_back(VT2);
2327  ResultTys.push_back(VT3);
2328  std::vector<SDOperand> Ops;
2329  Ops.push_back(Op1);
2330  Ops.push_back(Op2);
2331  Ops.push_back(Op3);
2332  Ops.push_back(Op4);
2333  Ops.push_back(Op5);
2334  Ops.push_back(Op6);
2335  Ops.push_back(Op7);
2336  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2337}
2338SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2339                                    MVT::ValueType VT2, std::vector<SDOperand> &Ops) {
2340  std::vector<MVT::ValueType> ResultTys;
2341  ResultTys.push_back(VT1);
2342  ResultTys.push_back(VT2);
2343  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2344}
2345
2346// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2347/// This can cause recursive merging of nodes in the DAG.
2348///
2349/// This version assumes From/To have a single result value.
2350///
2351void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2352                                      std::vector<SDNode*> *Deleted) {
2353  SDNode *From = FromN.Val, *To = ToN.Val;
2354  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2355         "Cannot replace with this method!");
2356  assert(From != To && "Cannot replace uses of with self");
2357
2358  while (!From->use_empty()) {
2359    // Process users until they are all gone.
2360    SDNode *U = *From->use_begin();
2361
2362    // This node is about to morph, remove its old self from the CSE maps.
2363    RemoveNodeFromCSEMaps(U);
2364
2365    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2366         I != E; ++I)
2367      if (I->Val == From) {
2368        From->removeUser(U);
2369        I->Val = To;
2370        To->addUser(U);
2371      }
2372
2373    // Now that we have modified U, add it back to the CSE maps.  If it already
2374    // exists there, recursively merge the results together.
2375    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2376      ReplaceAllUsesWith(U, Existing, Deleted);
2377      // U is now dead.
2378      if (Deleted) Deleted->push_back(U);
2379      DeleteNodeNotInCSEMaps(U);
2380    }
2381  }
2382}
2383
2384/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2385/// This can cause recursive merging of nodes in the DAG.
2386///
2387/// This version assumes From/To have matching types and numbers of result
2388/// values.
2389///
2390void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2391                                      std::vector<SDNode*> *Deleted) {
2392  assert(From != To && "Cannot replace uses of with self");
2393  assert(From->getNumValues() == To->getNumValues() &&
2394         "Cannot use this version of ReplaceAllUsesWith!");
2395  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2396    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2397    return;
2398  }
2399
2400  while (!From->use_empty()) {
2401    // Process users until they are all gone.
2402    SDNode *U = *From->use_begin();
2403
2404    // This node is about to morph, remove its old self from the CSE maps.
2405    RemoveNodeFromCSEMaps(U);
2406
2407    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2408         I != E; ++I)
2409      if (I->Val == From) {
2410        From->removeUser(U);
2411        I->Val = To;
2412        To->addUser(U);
2413      }
2414
2415    // Now that we have modified U, add it back to the CSE maps.  If it already
2416    // exists there, recursively merge the results together.
2417    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2418      ReplaceAllUsesWith(U, Existing, Deleted);
2419      // U is now dead.
2420      if (Deleted) Deleted->push_back(U);
2421      DeleteNodeNotInCSEMaps(U);
2422    }
2423  }
2424}
2425
2426/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2427/// This can cause recursive merging of nodes in the DAG.
2428///
2429/// This version can replace From with any result values.  To must match the
2430/// number and types of values returned by From.
2431void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2432                                      const std::vector<SDOperand> &To,
2433                                      std::vector<SDNode*> *Deleted) {
2434  assert(From->getNumValues() == To.size() &&
2435         "Incorrect number of values to replace with!");
2436  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
2437    // Degenerate case handled above.
2438    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2439    return;
2440  }
2441
2442  while (!From->use_empty()) {
2443    // Process users until they are all gone.
2444    SDNode *U = *From->use_begin();
2445
2446    // This node is about to morph, remove its old self from the CSE maps.
2447    RemoveNodeFromCSEMaps(U);
2448
2449    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2450         I != E; ++I)
2451      if (I->Val == From) {
2452        const SDOperand &ToOp = To[I->ResNo];
2453        From->removeUser(U);
2454        *I = ToOp;
2455        ToOp.Val->addUser(U);
2456      }
2457
2458    // Now that we have modified U, add it back to the CSE maps.  If it already
2459    // exists there, recursively merge the results together.
2460    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2461      ReplaceAllUsesWith(U, Existing, Deleted);
2462      // U is now dead.
2463      if (Deleted) Deleted->push_back(U);
2464      DeleteNodeNotInCSEMaps(U);
2465    }
2466  }
2467}
2468
2469/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2470/// uses of other values produced by From.Val alone.  The Deleted vector is
2471/// handled the same was as for ReplaceAllUsesWith.
2472void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2473                                             std::vector<SDNode*> &Deleted) {
2474  assert(From != To && "Cannot replace a value with itself");
2475  // Handle the simple, trivial, case efficiently.
2476  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2477    ReplaceAllUsesWith(From, To, &Deleted);
2478    return;
2479  }
2480
2481  // Get all of the users in a nice, deterministically ordered, uniqued set.
2482  SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end());
2483
2484  while (!Users.empty()) {
2485    // We know that this user uses some value of From.  If it is the right
2486    // value, update it.
2487    SDNode *User = Users.back();
2488    Users.pop_back();
2489
2490    for (SDOperand *Op = User->OperandList,
2491         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2492      if (*Op == From) {
2493        // Okay, we know this user needs to be updated.  Remove its old self
2494        // from the CSE maps.
2495        RemoveNodeFromCSEMaps(User);
2496
2497        // Update all operands that match "From".
2498        for (; Op != E; ++Op) {
2499          if (*Op == From) {
2500            From.Val->removeUser(User);
2501            *Op = To;
2502            To.Val->addUser(User);
2503          }
2504        }
2505
2506        // Now that we have modified User, add it back to the CSE maps.  If it
2507        // already exists there, recursively merge the results together.
2508        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2509          unsigned NumDeleted = Deleted.size();
2510          ReplaceAllUsesWith(User, Existing, &Deleted);
2511
2512          // User is now dead.
2513          Deleted.push_back(User);
2514          DeleteNodeNotInCSEMaps(User);
2515
2516          // We have to be careful here, because ReplaceAllUsesWith could have
2517          // deleted a user of From, which means there may be dangling pointers
2518          // in the "Users" setvector.  Scan over the deleted node pointers and
2519          // remove them from the setvector.
2520          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2521            Users.remove(Deleted[i]);
2522        }
2523        break;   // Exit the operand scanning loop.
2524      }
2525    }
2526  }
2527}
2528
2529
2530//===----------------------------------------------------------------------===//
2531//                              SDNode Class
2532//===----------------------------------------------------------------------===//
2533
2534
2535/// getValueTypeList - Return a pointer to the specified value type.
2536///
2537MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2538  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2539  VTs[VT] = VT;
2540  return &VTs[VT];
2541}
2542
2543/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2544/// indicated value.  This method ignores uses of other values defined by this
2545/// operation.
2546bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2547  assert(Value < getNumValues() && "Bad value!");
2548
2549  // If there is only one value, this is easy.
2550  if (getNumValues() == 1)
2551    return use_size() == NUses;
2552  if (Uses.size() < NUses) return false;
2553
2554  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2555
2556  std::set<SDNode*> UsersHandled;
2557
2558  for (std::vector<SDNode*>::const_iterator UI = Uses.begin(), E = Uses.end();
2559       UI != E; ++UI) {
2560    SDNode *User = *UI;
2561    if (User->getNumOperands() == 1 ||
2562        UsersHandled.insert(User).second)     // First time we've seen this?
2563      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2564        if (User->getOperand(i) == TheValue) {
2565          if (NUses == 0)
2566            return false;   // too many uses
2567          --NUses;
2568        }
2569  }
2570
2571  // Found exactly the right number of uses?
2572  return NUses == 0;
2573}
2574
2575
2576// isOnlyUse - Return true if this node is the only use of N.
2577bool SDNode::isOnlyUse(SDNode *N) const {
2578  bool Seen = false;
2579  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2580    SDNode *User = *I;
2581    if (User == this)
2582      Seen = true;
2583    else
2584      return false;
2585  }
2586
2587  return Seen;
2588}
2589
2590// isOperand - Return true if this node is an operand of N.
2591bool SDOperand::isOperand(SDNode *N) const {
2592  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2593    if (*this == N->getOperand(i))
2594      return true;
2595  return false;
2596}
2597
2598bool SDNode::isOperand(SDNode *N) const {
2599  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2600    if (this == N->OperandList[i].Val)
2601      return true;
2602  return false;
2603}
2604
2605const char *SDNode::getOperationName(const SelectionDAG *G) const {
2606  switch (getOpcode()) {
2607  default:
2608    if (getOpcode() < ISD::BUILTIN_OP_END)
2609      return "<<Unknown DAG Node>>";
2610    else {
2611      if (G) {
2612        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2613          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2614            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2615
2616        TargetLowering &TLI = G->getTargetLoweringInfo();
2617        const char *Name =
2618          TLI.getTargetNodeName(getOpcode());
2619        if (Name) return Name;
2620      }
2621
2622      return "<<Unknown Target Node>>";
2623    }
2624
2625  case ISD::PCMARKER:      return "PCMarker";
2626  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2627  case ISD::SRCVALUE:      return "SrcValue";
2628  case ISD::EntryToken:    return "EntryToken";
2629  case ISD::TokenFactor:   return "TokenFactor";
2630  case ISD::AssertSext:    return "AssertSext";
2631  case ISD::AssertZext:    return "AssertZext";
2632
2633  case ISD::STRING:        return "String";
2634  case ISD::BasicBlock:    return "BasicBlock";
2635  case ISD::VALUETYPE:     return "ValueType";
2636  case ISD::Register:      return "Register";
2637
2638  case ISD::Constant:      return "Constant";
2639  case ISD::ConstantFP:    return "ConstantFP";
2640  case ISD::GlobalAddress: return "GlobalAddress";
2641  case ISD::FrameIndex:    return "FrameIndex";
2642  case ISD::ConstantPool:  return "ConstantPool";
2643  case ISD::ExternalSymbol: return "ExternalSymbol";
2644  case ISD::INTRINSIC:     return "INTRINSIC";
2645
2646  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2647  case ISD::TargetConstant: return "TargetConstant";
2648  case ISD::TargetConstantFP:return "TargetConstantFP";
2649  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2650  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2651  case ISD::TargetConstantPool:  return "TargetConstantPool";
2652  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2653
2654  case ISD::CopyToReg:     return "CopyToReg";
2655  case ISD::CopyFromReg:   return "CopyFromReg";
2656  case ISD::UNDEF:         return "undef";
2657  case ISD::MERGE_VALUES:  return "mergevalues";
2658  case ISD::INLINEASM:     return "inlineasm";
2659  case ISD::HANDLENODE:    return "handlenode";
2660
2661  // Unary operators
2662  case ISD::FABS:   return "fabs";
2663  case ISD::FNEG:   return "fneg";
2664  case ISD::FSQRT:  return "fsqrt";
2665  case ISD::FSIN:   return "fsin";
2666  case ISD::FCOS:   return "fcos";
2667
2668  // Binary operators
2669  case ISD::ADD:    return "add";
2670  case ISD::SUB:    return "sub";
2671  case ISD::MUL:    return "mul";
2672  case ISD::MULHU:  return "mulhu";
2673  case ISD::MULHS:  return "mulhs";
2674  case ISD::SDIV:   return "sdiv";
2675  case ISD::UDIV:   return "udiv";
2676  case ISD::SREM:   return "srem";
2677  case ISD::UREM:   return "urem";
2678  case ISD::AND:    return "and";
2679  case ISD::OR:     return "or";
2680  case ISD::XOR:    return "xor";
2681  case ISD::SHL:    return "shl";
2682  case ISD::SRA:    return "sra";
2683  case ISD::SRL:    return "srl";
2684  case ISD::ROTL:   return "rotl";
2685  case ISD::ROTR:   return "rotr";
2686  case ISD::FADD:   return "fadd";
2687  case ISD::FSUB:   return "fsub";
2688  case ISD::FMUL:   return "fmul";
2689  case ISD::FDIV:   return "fdiv";
2690  case ISD::FREM:   return "frem";
2691  case ISD::FCOPYSIGN: return "fcopysign";
2692  case ISD::VADD:   return "vadd";
2693  case ISD::VSUB:   return "vsub";
2694  case ISD::VMUL:   return "vmul";
2695
2696  case ISD::SETCC:       return "setcc";
2697  case ISD::SELECT:      return "select";
2698  case ISD::SELECT_CC:   return "select_cc";
2699  case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
2700  case ISD::VINSERT_VECTOR_ELT: return "vinsert_vector_elt";
2701  case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
2702  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2703  case ISD::SCALAR_TO_VECTOR:   return "scalar_to_vector";
2704  case ISD::VBUILD_VECTOR: return "vbuild_vector";
2705  case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
2706  case ISD::VBIT_CONVERT: return "vbit_convert";
2707  case ISD::ADDC:        return "addc";
2708  case ISD::ADDE:        return "adde";
2709  case ISD::SUBC:        return "subc";
2710  case ISD::SUBE:        return "sube";
2711  case ISD::SHL_PARTS:   return "shl_parts";
2712  case ISD::SRA_PARTS:   return "sra_parts";
2713  case ISD::SRL_PARTS:   return "srl_parts";
2714
2715  // Conversion operators.
2716  case ISD::SIGN_EXTEND: return "sign_extend";
2717  case ISD::ZERO_EXTEND: return "zero_extend";
2718  case ISD::ANY_EXTEND:  return "any_extend";
2719  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2720  case ISD::TRUNCATE:    return "truncate";
2721  case ISD::FP_ROUND:    return "fp_round";
2722  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2723  case ISD::FP_EXTEND:   return "fp_extend";
2724
2725  case ISD::SINT_TO_FP:  return "sint_to_fp";
2726  case ISD::UINT_TO_FP:  return "uint_to_fp";
2727  case ISD::FP_TO_SINT:  return "fp_to_sint";
2728  case ISD::FP_TO_UINT:  return "fp_to_uint";
2729  case ISD::BIT_CONVERT: return "bit_convert";
2730
2731    // Control flow instructions
2732  case ISD::BR:      return "br";
2733  case ISD::BRCOND:  return "brcond";
2734  case ISD::BR_CC:   return "br_cc";
2735  case ISD::RET:     return "ret";
2736  case ISD::CALLSEQ_START:  return "callseq_start";
2737  case ISD::CALLSEQ_END:    return "callseq_end";
2738
2739    // Other operators
2740  case ISD::LOAD:               return "load";
2741  case ISD::STORE:              return "store";
2742  case ISD::VLOAD:              return "vload";
2743  case ISD::EXTLOAD:            return "extload";
2744  case ISD::SEXTLOAD:           return "sextload";
2745  case ISD::ZEXTLOAD:           return "zextload";
2746  case ISD::TRUNCSTORE:         return "truncstore";
2747  case ISD::VAARG:              return "vaarg";
2748  case ISD::VACOPY:             return "vacopy";
2749  case ISD::VAEND:              return "vaend";
2750  case ISD::VASTART:            return "vastart";
2751  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2752  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2753  case ISD::BUILD_PAIR:         return "build_pair";
2754  case ISD::STACKSAVE:          return "stacksave";
2755  case ISD::STACKRESTORE:       return "stackrestore";
2756
2757  // Block memory operations.
2758  case ISD::MEMSET:  return "memset";
2759  case ISD::MEMCPY:  return "memcpy";
2760  case ISD::MEMMOVE: return "memmove";
2761
2762  // Bit manipulation
2763  case ISD::BSWAP:   return "bswap";
2764  case ISD::CTPOP:   return "ctpop";
2765  case ISD::CTTZ:    return "cttz";
2766  case ISD::CTLZ:    return "ctlz";
2767
2768  // Debug info
2769  case ISD::LOCATION: return "location";
2770  case ISD::DEBUG_LOC: return "debug_loc";
2771  case ISD::DEBUG_LABEL: return "debug_label";
2772
2773  case ISD::CONDCODE:
2774    switch (cast<CondCodeSDNode>(this)->get()) {
2775    default: assert(0 && "Unknown setcc condition!");
2776    case ISD::SETOEQ:  return "setoeq";
2777    case ISD::SETOGT:  return "setogt";
2778    case ISD::SETOGE:  return "setoge";
2779    case ISD::SETOLT:  return "setolt";
2780    case ISD::SETOLE:  return "setole";
2781    case ISD::SETONE:  return "setone";
2782
2783    case ISD::SETO:    return "seto";
2784    case ISD::SETUO:   return "setuo";
2785    case ISD::SETUEQ:  return "setue";
2786    case ISD::SETUGT:  return "setugt";
2787    case ISD::SETUGE:  return "setuge";
2788    case ISD::SETULT:  return "setult";
2789    case ISD::SETULE:  return "setule";
2790    case ISD::SETUNE:  return "setune";
2791
2792    case ISD::SETEQ:   return "seteq";
2793    case ISD::SETGT:   return "setgt";
2794    case ISD::SETGE:   return "setge";
2795    case ISD::SETLT:   return "setlt";
2796    case ISD::SETLE:   return "setle";
2797    case ISD::SETNE:   return "setne";
2798    }
2799  }
2800}
2801
2802void SDNode::dump() const { dump(0); }
2803void SDNode::dump(const SelectionDAG *G) const {
2804  std::cerr << (void*)this << ": ";
2805
2806  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2807    if (i) std::cerr << ",";
2808    if (getValueType(i) == MVT::Other)
2809      std::cerr << "ch";
2810    else
2811      std::cerr << MVT::getValueTypeString(getValueType(i));
2812  }
2813  std::cerr << " = " << getOperationName(G);
2814
2815  std::cerr << " ";
2816  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2817    if (i) std::cerr << ", ";
2818    std::cerr << (void*)getOperand(i).Val;
2819    if (unsigned RN = getOperand(i).ResNo)
2820      std::cerr << ":" << RN;
2821  }
2822
2823  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2824    std::cerr << "<" << CSDN->getValue() << ">";
2825  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2826    std::cerr << "<" << CSDN->getValue() << ">";
2827  } else if (const GlobalAddressSDNode *GADN =
2828             dyn_cast<GlobalAddressSDNode>(this)) {
2829    int offset = GADN->getOffset();
2830    std::cerr << "<";
2831    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2832    if (offset > 0)
2833      std::cerr << " + " << offset;
2834    else
2835      std::cerr << " " << offset;
2836  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2837    std::cerr << "<" << FIDN->getIndex() << ">";
2838  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2839    int offset = CP->getOffset();
2840    std::cerr << "<" << *CP->get() << ">";
2841    if (offset > 0)
2842      std::cerr << " + " << offset;
2843    else
2844      std::cerr << " " << offset;
2845  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2846    std::cerr << "<";
2847    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2848    if (LBB)
2849      std::cerr << LBB->getName() << " ";
2850    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2851  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2852    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2853      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2854    } else {
2855      std::cerr << " #" << R->getReg();
2856    }
2857  } else if (const ExternalSymbolSDNode *ES =
2858             dyn_cast<ExternalSymbolSDNode>(this)) {
2859    std::cerr << "'" << ES->getSymbol() << "'";
2860  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2861    if (M->getValue())
2862      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2863    else
2864      std::cerr << "<null:" << M->getOffset() << ">";
2865  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2866    std::cerr << ":" << getValueTypeString(N->getVT());
2867  }
2868}
2869
2870static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2871  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2872    if (N->getOperand(i).Val->hasOneUse())
2873      DumpNodes(N->getOperand(i).Val, indent+2, G);
2874    else
2875      std::cerr << "\n" << std::string(indent+2, ' ')
2876                << (void*)N->getOperand(i).Val << ": <multiple use>";
2877
2878
2879  std::cerr << "\n" << std::string(indent, ' ');
2880  N->dump(G);
2881}
2882
2883void SelectionDAG::dump() const {
2884  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2885  std::vector<const SDNode*> Nodes;
2886  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2887       I != E; ++I)
2888    Nodes.push_back(I);
2889
2890  std::sort(Nodes.begin(), Nodes.end());
2891
2892  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2893    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2894      DumpNodes(Nodes[i], 2, this);
2895  }
2896
2897  DumpNodes(getRoot().Val, 2, this);
2898
2899  std::cerr << "\n\n";
2900}
2901
2902/// InsertISelMapEntry - A helper function to insert a key / element pair
2903/// into a SDOperand to SDOperand map. This is added to avoid the map
2904/// insertion operator from being inlined.
2905void SelectionDAG::InsertISelMapEntry(std::map<SDOperand, SDOperand> &Map,
2906                                      SDNode *Key, unsigned KeyResNo,
2907                                      SDNode *Element, unsigned ElementResNo) {
2908  Map.insert(std::make_pair(SDOperand(Key, KeyResNo),
2909                            SDOperand(Element, ElementResNo)));
2910}
2911