SelectionDAG.cpp revision 472d12c47f1704853971a564e03c5490ce5066b7
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/ADT/SetVector.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/SmallSet.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/ADT/StringExtras.h"
38#include <algorithm>
39#include <cmath>
40using namespace llvm;
41
42/// makeVTList - Return an instance of the SDVTList struct initialized with the
43/// specified members.
44static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
45  SDVTList Res = {VTs, NumVTs};
46  return Res;
47}
48
49static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
50  switch (VT.getSimpleVT()) {
51  default: assert(0 && "Unknown FP format");
52  case MVT::f32:     return &APFloat::IEEEsingle;
53  case MVT::f64:     return &APFloat::IEEEdouble;
54  case MVT::f80:     return &APFloat::x87DoubleExtended;
55  case MVT::f128:    return &APFloat::IEEEquad;
56  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
57  }
58}
59
60SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
61
62//===----------------------------------------------------------------------===//
63//                              ConstantFPSDNode Class
64//===----------------------------------------------------------------------===//
65
66/// isExactlyValue - We don't rely on operator== working on double values, as
67/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
68/// As such, this method can be used to do an exact bit-for-bit comparison of
69/// two floating point values.
70bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
71  return Value.bitwiseIsEqual(V);
72}
73
74bool ConstantFPSDNode::isValueValidForType(MVT VT,
75                                           const APFloat& Val) {
76  assert(VT.isFloatingPoint() && "Can only convert between FP types");
77
78  // PPC long double cannot be converted to any other type.
79  if (VT == MVT::ppcf128 ||
80      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
81    return false;
82
83  // convert modifies in place, so make a copy.
84  APFloat Val2 = APFloat(Val);
85  return Val2.convert(*MVTToAPFloatSemantics(VT),
86                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
87}
88
89//===----------------------------------------------------------------------===//
90//                              ISD Namespace
91//===----------------------------------------------------------------------===//
92
93/// isBuildVectorAllOnes - Return true if the specified node is a
94/// BUILD_VECTOR where all of the elements are ~0 or undef.
95bool ISD::isBuildVectorAllOnes(const SDNode *N) {
96  // Look through a bit convert.
97  if (N->getOpcode() == ISD::BIT_CONVERT)
98    N = N->getOperand(0).Val;
99
100  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
101
102  unsigned i = 0, e = N->getNumOperands();
103
104  // Skip over all of the undef values.
105  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
106    ++i;
107
108  // Do not accept an all-undef vector.
109  if (i == e) return false;
110
111  // Do not accept build_vectors that aren't all constants or which have non-~0
112  // elements.
113  SDOperand NotZero = N->getOperand(i);
114  if (isa<ConstantSDNode>(NotZero)) {
115    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
116      return false;
117  } else if (isa<ConstantFPSDNode>(NotZero)) {
118    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
119                convertToAPInt().isAllOnesValue())
120      return false;
121  } else
122    return false;
123
124  // Okay, we have at least one ~0 value, check to see if the rest match or are
125  // undefs.
126  for (++i; i != e; ++i)
127    if (N->getOperand(i) != NotZero &&
128        N->getOperand(i).getOpcode() != ISD::UNDEF)
129      return false;
130  return true;
131}
132
133
134/// isBuildVectorAllZeros - Return true if the specified node is a
135/// BUILD_VECTOR where all of the elements are 0 or undef.
136bool ISD::isBuildVectorAllZeros(const SDNode *N) {
137  // Look through a bit convert.
138  if (N->getOpcode() == ISD::BIT_CONVERT)
139    N = N->getOperand(0).Val;
140
141  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
142
143  unsigned i = 0, e = N->getNumOperands();
144
145  // Skip over all of the undef values.
146  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
147    ++i;
148
149  // Do not accept an all-undef vector.
150  if (i == e) return false;
151
152  // Do not accept build_vectors that aren't all constants or which have non-~0
153  // elements.
154  SDOperand Zero = N->getOperand(i);
155  if (isa<ConstantSDNode>(Zero)) {
156    if (!cast<ConstantSDNode>(Zero)->isNullValue())
157      return false;
158  } else if (isa<ConstantFPSDNode>(Zero)) {
159    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
160      return false;
161  } else
162    return false;
163
164  // Okay, we have at least one ~0 value, check to see if the rest match or are
165  // undefs.
166  for (++i; i != e; ++i)
167    if (N->getOperand(i) != Zero &&
168        N->getOperand(i).getOpcode() != ISD::UNDEF)
169      return false;
170  return true;
171}
172
173/// isScalarToVector - Return true if the specified node is a
174/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
175/// element is not an undef.
176bool ISD::isScalarToVector(const SDNode *N) {
177  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
178    return true;
179
180  if (N->getOpcode() != ISD::BUILD_VECTOR)
181    return false;
182  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
183    return false;
184  unsigned NumElems = N->getNumOperands();
185  for (unsigned i = 1; i < NumElems; ++i) {
186    SDOperand V = N->getOperand(i);
187    if (V.getOpcode() != ISD::UNDEF)
188      return false;
189  }
190  return true;
191}
192
193
194/// isDebugLabel - Return true if the specified node represents a debug
195/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
196/// is 0).
197bool ISD::isDebugLabel(const SDNode *N) {
198  SDOperand Zero;
199  if (N->getOpcode() == ISD::LABEL)
200    Zero = N->getOperand(2);
201  else if (N->isTargetOpcode() &&
202           N->getTargetOpcode() == TargetInstrInfo::LABEL)
203    // Chain moved to last operand.
204    Zero = N->getOperand(1);
205  else
206    return false;
207  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));        // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230  if (Operation > ISD::SETTRUE2)
231    Operation &= ~8;     // Don't let N and U bits get set.
232  return ISD::CondCode(Operation);
233}
234
235
236/// isSignedOp - For an integer comparison, return 1 if the comparison is a
237/// signed operation and 2 if the result is an unsigned comparison.  Return zero
238/// if the operation does not depend on the sign of the input (setne and seteq).
239static int isSignedOp(ISD::CondCode Opcode) {
240  switch (Opcode) {
241  default: assert(0 && "Illegal integer setcc operation!");
242  case ISD::SETEQ:
243  case ISD::SETNE: return 0;
244  case ISD::SETLT:
245  case ISD::SETLE:
246  case ISD::SETGT:
247  case ISD::SETGE: return 1;
248  case ISD::SETULT:
249  case ISD::SETULE:
250  case ISD::SETUGT:
251  case ISD::SETUGE: return 2;
252  }
253}
254
255/// getSetCCOrOperation - Return the result of a logical OR between different
256/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
257/// returns SETCC_INVALID if it is not possible to represent the resultant
258/// comparison.
259ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
260                                       bool isInteger) {
261  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
262    // Cannot fold a signed integer setcc with an unsigned integer setcc.
263    return ISD::SETCC_INVALID;
264
265  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
266
267  // If the N and U bits get set then the resultant comparison DOES suddenly
268  // care about orderedness, and is true when ordered.
269  if (Op > ISD::SETTRUE2)
270    Op &= ~16;     // Clear the U bit if the N bit is set.
271
272  // Canonicalize illegal integer setcc's.
273  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
274    Op = ISD::SETNE;
275
276  return ISD::CondCode(Op);
277}
278
279/// getSetCCAndOperation - Return the result of a logical AND between different
280/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
281/// function returns zero if it is not possible to represent the resultant
282/// comparison.
283ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
284                                        bool isInteger) {
285  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
286    // Cannot fold a signed setcc with an unsigned setcc.
287    return ISD::SETCC_INVALID;
288
289  // Combine all of the condition bits.
290  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291
292  // Canonicalize illegal integer setcc's.
293  if (isInteger) {
294    switch (Result) {
295    default: break;
296    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
297    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307const TargetMachine &SelectionDAG::getTarget() const {
308  return TLI.getTargetMachine();
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              SDOperandPtr Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->Val);
333    ID.AddInteger(Ops->ResNo);
334  }
335}
336
337static void AddNodeIDNode(FoldingSetNodeID &ID,
338                          unsigned short OpC, SDVTList VTList,
339                          SDOperandPtr OpList, unsigned N) {
340  AddNodeIDOpcode(ID, OpC);
341  AddNodeIDValueTypes(ID, VTList);
342  AddNodeIDOperands(ID, OpList, N);
343}
344
345
346/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
347/// data.
348static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
349  AddNodeIDOpcode(ID, N->getOpcode());
350  // Add the return value info.
351  AddNodeIDValueTypes(ID, N->getVTList());
352  // Add the operand info.
353  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
354
355  // Handle SDNode leafs with special info.
356  switch (N->getOpcode()) {
357  default: break;  // Normal nodes don't need extra info.
358  case ISD::ARG_FLAGS:
359    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
360    break;
361  case ISD::TargetConstant:
362  case ISD::Constant:
363    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
364    break;
365  case ISD::TargetConstantFP:
366  case ISD::ConstantFP: {
367    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
368    break;
369  }
370  case ISD::TargetGlobalAddress:
371  case ISD::GlobalAddress:
372  case ISD::TargetGlobalTLSAddress:
373  case ISD::GlobalTLSAddress: {
374    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
375    ID.AddPointer(GA->getGlobal());
376    ID.AddInteger(GA->getOffset());
377    break;
378  }
379  case ISD::BasicBlock:
380    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
381    break;
382  case ISD::Register:
383    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
384    break;
385  case ISD::DBG_STOPPOINT: {
386    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
387    ID.AddInteger(DSP->getLine());
388    ID.AddInteger(DSP->getColumn());
389    ID.AddPointer(DSP->getCompileUnit());
390    break;
391  }
392  case ISD::SRCVALUE:
393    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
394    break;
395  case ISD::MEMOPERAND: {
396    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
397    ID.AddPointer(MO.getValue());
398    ID.AddInteger(MO.getFlags());
399    ID.AddInteger(MO.getOffset());
400    ID.AddInteger(MO.getSize());
401    ID.AddInteger(MO.getAlignment());
402    break;
403  }
404  case ISD::FrameIndex:
405  case ISD::TargetFrameIndex:
406    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
407    break;
408  case ISD::JumpTable:
409  case ISD::TargetJumpTable:
410    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
411    break;
412  case ISD::ConstantPool:
413  case ISD::TargetConstantPool: {
414    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
415    ID.AddInteger(CP->getAlignment());
416    ID.AddInteger(CP->getOffset());
417    if (CP->isMachineConstantPoolEntry())
418      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
419    else
420      ID.AddPointer(CP->getConstVal());
421    break;
422  }
423  case ISD::LOAD: {
424    LoadSDNode *LD = cast<LoadSDNode>(N);
425    ID.AddInteger(LD->getAddressingMode());
426    ID.AddInteger(LD->getExtensionType());
427    ID.AddInteger(LD->getMemoryVT().getRawBits());
428    ID.AddInteger(LD->getAlignment());
429    ID.AddInteger(LD->isVolatile());
430    break;
431  }
432  case ISD::STORE: {
433    StoreSDNode *ST = cast<StoreSDNode>(N);
434    ID.AddInteger(ST->getAddressingMode());
435    ID.AddInteger(ST->isTruncatingStore());
436    ID.AddInteger(ST->getMemoryVT().getRawBits());
437    ID.AddInteger(ST->getAlignment());
438    ID.AddInteger(ST->isVolatile());
439    break;
440  }
441  case ISD::ATOMIC_CMP_SWAP:
442  case ISD::ATOMIC_LOAD_ADD:
443  case ISD::ATOMIC_SWAP:
444  case ISD::ATOMIC_LOAD_SUB:
445  case ISD::ATOMIC_LOAD_AND:
446  case ISD::ATOMIC_LOAD_OR:
447  case ISD::ATOMIC_LOAD_XOR:
448  case ISD::ATOMIC_LOAD_NAND:
449  case ISD::ATOMIC_LOAD_MIN:
450  case ISD::ATOMIC_LOAD_MAX:
451  case ISD::ATOMIC_LOAD_UMIN:
452  case ISD::ATOMIC_LOAD_UMAX: {
453    AtomicSDNode *AT = cast<AtomicSDNode>(N);
454    ID.AddInteger(AT->getAlignment());
455    ID.AddInteger(AT->isVolatile());
456    break;
457  }
458  } // end switch (N->getOpcode())
459}
460
461//===----------------------------------------------------------------------===//
462//                              SelectionDAG Class
463//===----------------------------------------------------------------------===//
464
465/// RemoveDeadNodes - This method deletes all unreachable nodes in the
466/// SelectionDAG.
467void SelectionDAG::RemoveDeadNodes() {
468  // Create a dummy node (which is not added to allnodes), that adds a reference
469  // to the root node, preventing it from being deleted.
470  HandleSDNode Dummy(getRoot());
471
472  SmallVector<SDNode*, 128> DeadNodes;
473
474  // Add all obviously-dead nodes to the DeadNodes worklist.
475  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
476    if (I->use_empty())
477      DeadNodes.push_back(I);
478
479  // Process the worklist, deleting the nodes and adding their uses to the
480  // worklist.
481  while (!DeadNodes.empty()) {
482    SDNode *N = DeadNodes.back();
483    DeadNodes.pop_back();
484
485    // Take the node out of the appropriate CSE map.
486    RemoveNodeFromCSEMaps(N);
487
488    // Next, brutally remove the operand list.  This is safe to do, as there are
489    // no cycles in the graph.
490    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
491      SDNode *Operand = I->getVal();
492      Operand->removeUser(std::distance(N->op_begin(), I), N);
493
494      // Now that we removed this operand, see if there are no uses of it left.
495      if (Operand->use_empty())
496        DeadNodes.push_back(Operand);
497    }
498    if (N->OperandsNeedDelete) {
499      delete[] N->OperandList;
500    }
501    N->OperandList = 0;
502    N->NumOperands = 0;
503
504    // Finally, remove N itself.
505    AllNodes.erase(N);
506  }
507
508  // If the root changed (e.g. it was a dead load, update the root).
509  setRoot(Dummy.getValue());
510}
511
512void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
513  SmallVector<SDNode*, 16> DeadNodes;
514  DeadNodes.push_back(N);
515
516  // Process the worklist, deleting the nodes and adding their uses to the
517  // worklist.
518  while (!DeadNodes.empty()) {
519    SDNode *N = DeadNodes.back();
520    DeadNodes.pop_back();
521
522    if (UpdateListener)
523      UpdateListener->NodeDeleted(N, 0);
524
525    // Take the node out of the appropriate CSE map.
526    RemoveNodeFromCSEMaps(N);
527
528    // Next, brutally remove the operand list.  This is safe to do, as there are
529    // no cycles in the graph.
530    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
531      SDNode *Operand = I->getVal();
532      Operand->removeUser(std::distance(N->op_begin(), I), N);
533
534      // Now that we removed this operand, see if there are no uses of it left.
535      if (Operand->use_empty())
536        DeadNodes.push_back(Operand);
537    }
538    if (N->OperandsNeedDelete) {
539      delete[] N->OperandList;
540    }
541    N->OperandList = 0;
542    N->NumOperands = 0;
543
544    // Finally, remove N itself.
545    AllNodes.erase(N);
546  }
547}
548
549void SelectionDAG::DeleteNode(SDNode *N) {
550  assert(N->use_empty() && "Cannot delete a node that is not dead!");
551
552  // First take this out of the appropriate CSE map.
553  RemoveNodeFromCSEMaps(N);
554
555  // Finally, remove uses due to operands of this node, remove from the
556  // AllNodes list, and delete the node.
557  DeleteNodeNotInCSEMaps(N);
558}
559
560void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
561
562  // Remove it from the AllNodes list.
563  AllNodes.remove(N);
564
565  // Drop all of the operands and decrement used nodes use counts.
566  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
567    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
568  if (N->OperandsNeedDelete) {
569    delete[] N->OperandList;
570  }
571  N->OperandList = 0;
572  N->NumOperands = 0;
573
574  delete N;
575}
576
577/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
578/// correspond to it.  This is useful when we're about to delete or repurpose
579/// the node.  We don't want future request for structurally identical nodes
580/// to return N anymore.
581void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
582  bool Erased = false;
583  switch (N->getOpcode()) {
584  case ISD::HANDLENODE: return;  // noop.
585  case ISD::CONDCODE:
586    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
587           "Cond code doesn't exist!");
588    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
589    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
590    break;
591  case ISD::ExternalSymbol:
592    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
593    break;
594  case ISD::TargetExternalSymbol:
595    Erased =
596      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
597    break;
598  case ISD::VALUETYPE: {
599    MVT VT = cast<VTSDNode>(N)->getVT();
600    if (VT.isExtended()) {
601      Erased = ExtendedValueTypeNodes.erase(VT);
602    } else {
603      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
604      ValueTypeNodes[VT.getSimpleVT()] = 0;
605    }
606    break;
607  }
608  default:
609    // Remove it from the CSE Map.
610    Erased = CSEMap.RemoveNode(N);
611    break;
612  }
613#ifndef NDEBUG
614  // Verify that the node was actually in one of the CSE maps, unless it has a
615  // flag result (which cannot be CSE'd) or is one of the special cases that are
616  // not subject to CSE.
617  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
618      !N->isTargetOpcode()) {
619    N->dump(this);
620    cerr << "\n";
621    assert(0 && "Node is not in map!");
622  }
623#endif
624}
625
626/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
627/// has been taken out and modified in some way.  If the specified node already
628/// exists in the CSE maps, do not modify the maps, but return the existing node
629/// instead.  If it doesn't exist, add it and return null.
630///
631SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
632  assert(N->getNumOperands() && "This is a leaf node!");
633  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
634    return 0;    // Never add these nodes.
635
636  // Check that remaining values produced are not flags.
637  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
638    if (N->getValueType(i) == MVT::Flag)
639      return 0;   // Never CSE anything that produces a flag.
640
641  SDNode *New = CSEMap.GetOrInsertNode(N);
642  if (New != N) return New;  // Node already existed.
643  return 0;
644}
645
646/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
647/// were replaced with those specified.  If this node is never memoized,
648/// return null, otherwise return a pointer to the slot it would take.  If a
649/// node already exists with these operands, the slot will be non-null.
650SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
651                                           void *&InsertPos) {
652  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
653    return 0;    // Never add these nodes.
654
655  // Check that remaining values produced are not flags.
656  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
657    if (N->getValueType(i) == MVT::Flag)
658      return 0;   // Never CSE anything that produces a flag.
659
660  SDOperand Ops[] = { Op };
661  FoldingSetNodeID ID;
662  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
663  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
664}
665
666/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
667/// were replaced with those specified.  If this node is never memoized,
668/// return null, otherwise return a pointer to the slot it would take.  If a
669/// node already exists with these operands, the slot will be non-null.
670SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
671                                           SDOperand Op1, SDOperand Op2,
672                                           void *&InsertPos) {
673  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
674    return 0;    // Never add these nodes.
675
676  // Check that remaining values produced are not flags.
677  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
678    if (N->getValueType(i) == MVT::Flag)
679      return 0;   // Never CSE anything that produces a flag.
680
681  SDOperand Ops[] = { Op1, Op2 };
682  FoldingSetNodeID ID;
683  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
684  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
685}
686
687
688/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
689/// were replaced with those specified.  If this node is never memoized,
690/// return null, otherwise return a pointer to the slot it would take.  If a
691/// node already exists with these operands, the slot will be non-null.
692SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
693                                           SDOperandPtr Ops,unsigned NumOps,
694                                           void *&InsertPos) {
695  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
696    return 0;    // Never add these nodes.
697
698  // Check that remaining values produced are not flags.
699  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
700    if (N->getValueType(i) == MVT::Flag)
701      return 0;   // Never CSE anything that produces a flag.
702
703  FoldingSetNodeID ID;
704  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
705
706  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
707    ID.AddInteger(LD->getAddressingMode());
708    ID.AddInteger(LD->getExtensionType());
709    ID.AddInteger(LD->getMemoryVT().getRawBits());
710    ID.AddInteger(LD->getAlignment());
711    ID.AddInteger(LD->isVolatile());
712  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
713    ID.AddInteger(ST->getAddressingMode());
714    ID.AddInteger(ST->isTruncatingStore());
715    ID.AddInteger(ST->getMemoryVT().getRawBits());
716    ID.AddInteger(ST->getAlignment());
717    ID.AddInteger(ST->isVolatile());
718  }
719
720  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
721}
722
723
724SelectionDAG::~SelectionDAG() {
725  while (!AllNodes.empty()) {
726    SDNode *N = AllNodes.begin();
727    N->SetNextInBucket(0);
728    if (N->OperandsNeedDelete) {
729      delete [] N->OperandList;
730    }
731    N->OperandList = 0;
732    N->NumOperands = 0;
733    AllNodes.pop_front();
734  }
735}
736
737SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT VT) {
738  if (Op.getValueType() == VT) return Op;
739  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
740                                   VT.getSizeInBits());
741  return getNode(ISD::AND, Op.getValueType(), Op,
742                 getConstant(Imm, Op.getValueType()));
743}
744
745SDOperand SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
746  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
747  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
748}
749
750SDOperand SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
751  assert(VT.isInteger() && "Cannot create FP integer constant!");
752
753  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
754  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
755         "APInt size does not match type size!");
756
757  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
758  FoldingSetNodeID ID;
759  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
760  ID.Add(Val);
761  void *IP = 0;
762  SDNode *N = NULL;
763  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
764    if (!VT.isVector())
765      return SDOperand(N, 0);
766  if (!N) {
767    N = new ConstantSDNode(isT, Val, EltVT);
768    CSEMap.InsertNode(N, IP);
769    AllNodes.push_back(N);
770  }
771
772  SDOperand Result(N, 0);
773  if (VT.isVector()) {
774    SmallVector<SDOperand, 8> Ops;
775    Ops.assign(VT.getVectorNumElements(), Result);
776    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
777  }
778  return Result;
779}
780
781SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
782  return getConstant(Val, TLI.getPointerTy(), isTarget);
783}
784
785
786SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
787  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
788
789  MVT EltVT =
790    VT.isVector() ? VT.getVectorElementType() : VT;
791
792  // Do the map lookup using the actual bit pattern for the floating point
793  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
794  // we don't have issues with SNANs.
795  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
796  FoldingSetNodeID ID;
797  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
798  ID.Add(V);
799  void *IP = 0;
800  SDNode *N = NULL;
801  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
802    if (!VT.isVector())
803      return SDOperand(N, 0);
804  if (!N) {
805    N = new ConstantFPSDNode(isTarget, V, EltVT);
806    CSEMap.InsertNode(N, IP);
807    AllNodes.push_back(N);
808  }
809
810  SDOperand Result(N, 0);
811  if (VT.isVector()) {
812    SmallVector<SDOperand, 8> Ops;
813    Ops.assign(VT.getVectorNumElements(), Result);
814    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
815  }
816  return Result;
817}
818
819SDOperand SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
820  MVT EltVT =
821    VT.isVector() ? VT.getVectorElementType() : VT;
822  if (EltVT==MVT::f32)
823    return getConstantFP(APFloat((float)Val), VT, isTarget);
824  else
825    return getConstantFP(APFloat(Val), VT, isTarget);
826}
827
828SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
829                                         MVT VT, int Offset,
830                                         bool isTargetGA) {
831  unsigned Opc;
832
833  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
834  if (!GVar) {
835    // If GV is an alias then use the aliasee for determining thread-localness.
836    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
837      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
838  }
839
840  if (GVar && GVar->isThreadLocal())
841    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
842  else
843    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
844
845  FoldingSetNodeID ID;
846  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
847  ID.AddPointer(GV);
848  ID.AddInteger(Offset);
849  void *IP = 0;
850  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
851   return SDOperand(E, 0);
852  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
853  CSEMap.InsertNode(N, IP);
854  AllNodes.push_back(N);
855  return SDOperand(N, 0);
856}
857
858SDOperand SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
859  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
860  FoldingSetNodeID ID;
861  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
862  ID.AddInteger(FI);
863  void *IP = 0;
864  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
865    return SDOperand(E, 0);
866  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
867  CSEMap.InsertNode(N, IP);
868  AllNodes.push_back(N);
869  return SDOperand(N, 0);
870}
871
872SDOperand SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
873  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
874  FoldingSetNodeID ID;
875  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
876  ID.AddInteger(JTI);
877  void *IP = 0;
878  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
879    return SDOperand(E, 0);
880  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
881  CSEMap.InsertNode(N, IP);
882  AllNodes.push_back(N);
883  return SDOperand(N, 0);
884}
885
886SDOperand SelectionDAG::getConstantPool(Constant *C, MVT VT,
887                                        unsigned Alignment, int Offset,
888                                        bool isTarget) {
889  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
890  FoldingSetNodeID ID;
891  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
892  ID.AddInteger(Alignment);
893  ID.AddInteger(Offset);
894  ID.AddPointer(C);
895  void *IP = 0;
896  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
897    return SDOperand(E, 0);
898  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
899  CSEMap.InsertNode(N, IP);
900  AllNodes.push_back(N);
901  return SDOperand(N, 0);
902}
903
904
905SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
906                                        unsigned Alignment, int Offset,
907                                        bool isTarget) {
908  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
909  FoldingSetNodeID ID;
910  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
911  ID.AddInteger(Alignment);
912  ID.AddInteger(Offset);
913  C->AddSelectionDAGCSEId(ID);
914  void *IP = 0;
915  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
916    return SDOperand(E, 0);
917  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
918  CSEMap.InsertNode(N, IP);
919  AllNodes.push_back(N);
920  return SDOperand(N, 0);
921}
922
923
924SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
925  FoldingSetNodeID ID;
926  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), (SDOperand*)0, 0);
927  ID.AddPointer(MBB);
928  void *IP = 0;
929  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
930    return SDOperand(E, 0);
931  SDNode *N = new BasicBlockSDNode(MBB);
932  CSEMap.InsertNode(N, IP);
933  AllNodes.push_back(N);
934  return SDOperand(N, 0);
935}
936
937SDOperand SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
938  FoldingSetNodeID ID;
939  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), (SDOperand*)0, 0);
940  ID.AddInteger(Flags.getRawBits());
941  void *IP = 0;
942  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
943    return SDOperand(E, 0);
944  SDNode *N = new ARG_FLAGSSDNode(Flags);
945  CSEMap.InsertNode(N, IP);
946  AllNodes.push_back(N);
947  return SDOperand(N, 0);
948}
949
950SDOperand SelectionDAG::getValueType(MVT VT) {
951  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
952    ValueTypeNodes.resize(VT.getSimpleVT()+1);
953
954  SDNode *&N = VT.isExtended() ?
955    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
956
957  if (N) return SDOperand(N, 0);
958  N = new VTSDNode(VT);
959  AllNodes.push_back(N);
960  return SDOperand(N, 0);
961}
962
963SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
964  SDNode *&N = ExternalSymbols[Sym];
965  if (N) return SDOperand(N, 0);
966  N = new ExternalSymbolSDNode(false, Sym, VT);
967  AllNodes.push_back(N);
968  return SDOperand(N, 0);
969}
970
971SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
972  SDNode *&N = TargetExternalSymbols[Sym];
973  if (N) return SDOperand(N, 0);
974  N = new ExternalSymbolSDNode(true, Sym, VT);
975  AllNodes.push_back(N);
976  return SDOperand(N, 0);
977}
978
979SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
980  if ((unsigned)Cond >= CondCodeNodes.size())
981    CondCodeNodes.resize(Cond+1);
982
983  if (CondCodeNodes[Cond] == 0) {
984    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
985    AllNodes.push_back(CondCodeNodes[Cond]);
986  }
987  return SDOperand(CondCodeNodes[Cond], 0);
988}
989
990SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
991  FoldingSetNodeID ID;
992  AddNodeIDNode(ID, ISD::Register, getVTList(VT), (SDOperand*)0, 0);
993  ID.AddInteger(RegNo);
994  void *IP = 0;
995  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
996    return SDOperand(E, 0);
997  SDNode *N = new RegisterSDNode(RegNo, VT);
998  CSEMap.InsertNode(N, IP);
999  AllNodes.push_back(N);
1000  return SDOperand(N, 0);
1001}
1002
1003SDOperand SelectionDAG::getDbgStopPoint(SDOperand Root,
1004                                        unsigned Line, unsigned Col,
1005                                        const CompileUnitDesc *CU) {
1006  FoldingSetNodeID ID;
1007  SDOperand Ops[] = { Root };
1008  AddNodeIDNode(ID, ISD::DBG_STOPPOINT, getVTList(MVT::Other), &Ops[0], 1);
1009  ID.AddInteger(Line);
1010  ID.AddInteger(Col);
1011  ID.AddPointer(CU);
1012  void *IP = 0;
1013  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1014    return SDOperand(E, 0);
1015  SDNode *N = new DbgStopPointSDNode(Root, Line, Col, CU);
1016  CSEMap.InsertNode(N, IP);
1017  AllNodes.push_back(N);
1018  return SDOperand(N, 0);
1019}
1020
1021SDOperand SelectionDAG::getSrcValue(const Value *V) {
1022  assert((!V || isa<PointerType>(V->getType())) &&
1023         "SrcValue is not a pointer?");
1024
1025  FoldingSetNodeID ID;
1026  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), (SDOperand*)0, 0);
1027  ID.AddPointer(V);
1028
1029  void *IP = 0;
1030  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1031    return SDOperand(E, 0);
1032
1033  SDNode *N = new SrcValueSDNode(V);
1034  CSEMap.InsertNode(N, IP);
1035  AllNodes.push_back(N);
1036  return SDOperand(N, 0);
1037}
1038
1039SDOperand SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1040  const Value *v = MO.getValue();
1041  assert((!v || isa<PointerType>(v->getType())) &&
1042         "SrcValue is not a pointer?");
1043
1044  FoldingSetNodeID ID;
1045  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), (SDOperand*)0, 0);
1046  ID.AddPointer(v);
1047  ID.AddInteger(MO.getFlags());
1048  ID.AddInteger(MO.getOffset());
1049  ID.AddInteger(MO.getSize());
1050  ID.AddInteger(MO.getAlignment());
1051
1052  void *IP = 0;
1053  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1054    return SDOperand(E, 0);
1055
1056  SDNode *N = new MemOperandSDNode(MO);
1057  CSEMap.InsertNode(N, IP);
1058  AllNodes.push_back(N);
1059  return SDOperand(N, 0);
1060}
1061
1062/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1063/// specified value type.
1064SDOperand SelectionDAG::CreateStackTemporary(MVT VT) {
1065  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1066  unsigned ByteSize = VT.getSizeInBits()/8;
1067  const Type *Ty = VT.getTypeForMVT();
1068  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1069  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1070  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1071}
1072
1073
1074SDOperand SelectionDAG::FoldSetCC(MVT VT, SDOperand N1,
1075                                  SDOperand N2, ISD::CondCode Cond) {
1076  // These setcc operations always fold.
1077  switch (Cond) {
1078  default: break;
1079  case ISD::SETFALSE:
1080  case ISD::SETFALSE2: return getConstant(0, VT);
1081  case ISD::SETTRUE:
1082  case ISD::SETTRUE2:  return getConstant(1, VT);
1083
1084  case ISD::SETOEQ:
1085  case ISD::SETOGT:
1086  case ISD::SETOGE:
1087  case ISD::SETOLT:
1088  case ISD::SETOLE:
1089  case ISD::SETONE:
1090  case ISD::SETO:
1091  case ISD::SETUO:
1092  case ISD::SETUEQ:
1093  case ISD::SETUNE:
1094    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1095    break;
1096  }
1097
1098  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1099    const APInt &C2 = N2C->getAPIntValue();
1100    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1101      const APInt &C1 = N1C->getAPIntValue();
1102
1103      switch (Cond) {
1104      default: assert(0 && "Unknown integer setcc!");
1105      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1106      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1107      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1108      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1109      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1110      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1111      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1112      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1113      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1114      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1115      }
1116    }
1117  }
1118  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1119    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1120      // No compile time operations on this type yet.
1121      if (N1C->getValueType(0) == MVT::ppcf128)
1122        return SDOperand();
1123
1124      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1125      switch (Cond) {
1126      default: break;
1127      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1128                          return getNode(ISD::UNDEF, VT);
1129                        // fall through
1130      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1131      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1132                          return getNode(ISD::UNDEF, VT);
1133                        // fall through
1134      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1135                                           R==APFloat::cmpLessThan, VT);
1136      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1137                          return getNode(ISD::UNDEF, VT);
1138                        // fall through
1139      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1140      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1141                          return getNode(ISD::UNDEF, VT);
1142                        // fall through
1143      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1144      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1145                          return getNode(ISD::UNDEF, VT);
1146                        // fall through
1147      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1148                                           R==APFloat::cmpEqual, VT);
1149      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1150                          return getNode(ISD::UNDEF, VT);
1151                        // fall through
1152      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1153                                           R==APFloat::cmpEqual, VT);
1154      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1155      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1156      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1157                                           R==APFloat::cmpEqual, VT);
1158      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1159      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1160                                           R==APFloat::cmpLessThan, VT);
1161      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1162                                           R==APFloat::cmpUnordered, VT);
1163      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1164      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1165      }
1166    } else {
1167      // Ensure that the constant occurs on the RHS.
1168      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1169    }
1170  }
1171
1172  // Could not fold it.
1173  return SDOperand();
1174}
1175
1176/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1177/// use this predicate to simplify operations downstream.
1178bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1179  unsigned BitWidth = Op.getValueSizeInBits();
1180  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1181}
1182
1183/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1184/// this predicate to simplify operations downstream.  Mask is known to be zero
1185/// for bits that V cannot have.
1186bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1187                                     unsigned Depth) const {
1188  APInt KnownZero, KnownOne;
1189  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1190  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1191  return (KnownZero & Mask) == Mask;
1192}
1193
1194/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1195/// known to be either zero or one and return them in the KnownZero/KnownOne
1196/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1197/// processing.
1198void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1199                                     APInt &KnownZero, APInt &KnownOne,
1200                                     unsigned Depth) const {
1201  unsigned BitWidth = Mask.getBitWidth();
1202  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1203         "Mask size mismatches value type size!");
1204
1205  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1206  if (Depth == 6 || Mask == 0)
1207    return;  // Limit search depth.
1208
1209  APInt KnownZero2, KnownOne2;
1210
1211  switch (Op.getOpcode()) {
1212  case ISD::Constant:
1213    // We know all of the bits for a constant!
1214    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1215    KnownZero = ~KnownOne & Mask;
1216    return;
1217  case ISD::AND:
1218    // If either the LHS or the RHS are Zero, the result is zero.
1219    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1220    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1221                      KnownZero2, KnownOne2, Depth+1);
1222    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1223    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1224
1225    // Output known-1 bits are only known if set in both the LHS & RHS.
1226    KnownOne &= KnownOne2;
1227    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1228    KnownZero |= KnownZero2;
1229    return;
1230  case ISD::OR:
1231    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1232    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1233                      KnownZero2, KnownOne2, Depth+1);
1234    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1235    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1236
1237    // Output known-0 bits are only known if clear in both the LHS & RHS.
1238    KnownZero &= KnownZero2;
1239    // Output known-1 are known to be set if set in either the LHS | RHS.
1240    KnownOne |= KnownOne2;
1241    return;
1242  case ISD::XOR: {
1243    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1244    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1245    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1246    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1247
1248    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1249    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1250    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1251    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1252    KnownZero = KnownZeroOut;
1253    return;
1254  }
1255  case ISD::MUL: {
1256    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1257    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1258    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1259    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1260    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1261
1262    // If low bits are zero in either operand, output low known-0 bits.
1263    // Also compute a conserative estimate for high known-0 bits.
1264    // More trickiness is possible, but this is sufficient for the
1265    // interesting case of alignment computation.
1266    KnownOne.clear();
1267    unsigned TrailZ = KnownZero.countTrailingOnes() +
1268                      KnownZero2.countTrailingOnes();
1269    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1270                               KnownZero2.countLeadingOnes(),
1271                               BitWidth) - BitWidth;
1272
1273    TrailZ = std::min(TrailZ, BitWidth);
1274    LeadZ = std::min(LeadZ, BitWidth);
1275    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1276                APInt::getHighBitsSet(BitWidth, LeadZ);
1277    KnownZero &= Mask;
1278    return;
1279  }
1280  case ISD::UDIV: {
1281    // For the purposes of computing leading zeros we can conservatively
1282    // treat a udiv as a logical right shift by the power of 2 known to
1283    // be less than the denominator.
1284    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1285    ComputeMaskedBits(Op.getOperand(0),
1286                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1287    unsigned LeadZ = KnownZero2.countLeadingOnes();
1288
1289    KnownOne2.clear();
1290    KnownZero2.clear();
1291    ComputeMaskedBits(Op.getOperand(1),
1292                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1293    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1294    if (RHSUnknownLeadingOnes != BitWidth)
1295      LeadZ = std::min(BitWidth,
1296                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1297
1298    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1299    return;
1300  }
1301  case ISD::SELECT:
1302    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1303    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1304    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1305    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1306
1307    // Only known if known in both the LHS and RHS.
1308    KnownOne &= KnownOne2;
1309    KnownZero &= KnownZero2;
1310    return;
1311  case ISD::SELECT_CC:
1312    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1313    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1314    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1315    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1316
1317    // Only known if known in both the LHS and RHS.
1318    KnownOne &= KnownOne2;
1319    KnownZero &= KnownZero2;
1320    return;
1321  case ISD::SETCC:
1322    // If we know the result of a setcc has the top bits zero, use this info.
1323    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1324        BitWidth > 1)
1325      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1326    return;
1327  case ISD::SHL:
1328    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1329    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1330      unsigned ShAmt = SA->getValue();
1331
1332      // If the shift count is an invalid immediate, don't do anything.
1333      if (ShAmt >= BitWidth)
1334        return;
1335
1336      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1337                        KnownZero, KnownOne, Depth+1);
1338      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1339      KnownZero <<= ShAmt;
1340      KnownOne  <<= ShAmt;
1341      // low bits known zero.
1342      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1343    }
1344    return;
1345  case ISD::SRL:
1346    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1347    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1348      unsigned ShAmt = SA->getValue();
1349
1350      // If the shift count is an invalid immediate, don't do anything.
1351      if (ShAmt >= BitWidth)
1352        return;
1353
1354      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1355                        KnownZero, KnownOne, Depth+1);
1356      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1357      KnownZero = KnownZero.lshr(ShAmt);
1358      KnownOne  = KnownOne.lshr(ShAmt);
1359
1360      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1361      KnownZero |= HighBits;  // High bits known zero.
1362    }
1363    return;
1364  case ISD::SRA:
1365    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1366      unsigned ShAmt = SA->getValue();
1367
1368      // If the shift count is an invalid immediate, don't do anything.
1369      if (ShAmt >= BitWidth)
1370        return;
1371
1372      APInt InDemandedMask = (Mask << ShAmt);
1373      // If any of the demanded bits are produced by the sign extension, we also
1374      // demand the input sign bit.
1375      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1376      if (HighBits.getBoolValue())
1377        InDemandedMask |= APInt::getSignBit(BitWidth);
1378
1379      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1380                        Depth+1);
1381      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1382      KnownZero = KnownZero.lshr(ShAmt);
1383      KnownOne  = KnownOne.lshr(ShAmt);
1384
1385      // Handle the sign bits.
1386      APInt SignBit = APInt::getSignBit(BitWidth);
1387      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1388
1389      if (KnownZero.intersects(SignBit)) {
1390        KnownZero |= HighBits;  // New bits are known zero.
1391      } else if (KnownOne.intersects(SignBit)) {
1392        KnownOne  |= HighBits;  // New bits are known one.
1393      }
1394    }
1395    return;
1396  case ISD::SIGN_EXTEND_INREG: {
1397    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1398    unsigned EBits = EVT.getSizeInBits();
1399
1400    // Sign extension.  Compute the demanded bits in the result that are not
1401    // present in the input.
1402    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1403
1404    APInt InSignBit = APInt::getSignBit(EBits);
1405    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1406
1407    // If the sign extended bits are demanded, we know that the sign
1408    // bit is demanded.
1409    InSignBit.zext(BitWidth);
1410    if (NewBits.getBoolValue())
1411      InputDemandedBits |= InSignBit;
1412
1413    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1414                      KnownZero, KnownOne, Depth+1);
1415    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1416
1417    // If the sign bit of the input is known set or clear, then we know the
1418    // top bits of the result.
1419    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1420      KnownZero |= NewBits;
1421      KnownOne  &= ~NewBits;
1422    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1423      KnownOne  |= NewBits;
1424      KnownZero &= ~NewBits;
1425    } else {                              // Input sign bit unknown
1426      KnownZero &= ~NewBits;
1427      KnownOne  &= ~NewBits;
1428    }
1429    return;
1430  }
1431  case ISD::CTTZ:
1432  case ISD::CTLZ:
1433  case ISD::CTPOP: {
1434    unsigned LowBits = Log2_32(BitWidth)+1;
1435    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1436    KnownOne.clear();
1437    return;
1438  }
1439  case ISD::LOAD: {
1440    if (ISD::isZEXTLoad(Op.Val)) {
1441      LoadSDNode *LD = cast<LoadSDNode>(Op);
1442      MVT VT = LD->getMemoryVT();
1443      unsigned MemBits = VT.getSizeInBits();
1444      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1445    }
1446    return;
1447  }
1448  case ISD::ZERO_EXTEND: {
1449    MVT InVT = Op.getOperand(0).getValueType();
1450    unsigned InBits = InVT.getSizeInBits();
1451    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1452    APInt InMask    = Mask;
1453    InMask.trunc(InBits);
1454    KnownZero.trunc(InBits);
1455    KnownOne.trunc(InBits);
1456    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1457    KnownZero.zext(BitWidth);
1458    KnownOne.zext(BitWidth);
1459    KnownZero |= NewBits;
1460    return;
1461  }
1462  case ISD::SIGN_EXTEND: {
1463    MVT InVT = Op.getOperand(0).getValueType();
1464    unsigned InBits = InVT.getSizeInBits();
1465    APInt InSignBit = APInt::getSignBit(InBits);
1466    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1467    APInt InMask = Mask;
1468    InMask.trunc(InBits);
1469
1470    // If any of the sign extended bits are demanded, we know that the sign
1471    // bit is demanded. Temporarily set this bit in the mask for our callee.
1472    if (NewBits.getBoolValue())
1473      InMask |= InSignBit;
1474
1475    KnownZero.trunc(InBits);
1476    KnownOne.trunc(InBits);
1477    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1478
1479    // Note if the sign bit is known to be zero or one.
1480    bool SignBitKnownZero = KnownZero.isNegative();
1481    bool SignBitKnownOne  = KnownOne.isNegative();
1482    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1483           "Sign bit can't be known to be both zero and one!");
1484
1485    // If the sign bit wasn't actually demanded by our caller, we don't
1486    // want it set in the KnownZero and KnownOne result values. Reset the
1487    // mask and reapply it to the result values.
1488    InMask = Mask;
1489    InMask.trunc(InBits);
1490    KnownZero &= InMask;
1491    KnownOne  &= InMask;
1492
1493    KnownZero.zext(BitWidth);
1494    KnownOne.zext(BitWidth);
1495
1496    // If the sign bit is known zero or one, the top bits match.
1497    if (SignBitKnownZero)
1498      KnownZero |= NewBits;
1499    else if (SignBitKnownOne)
1500      KnownOne  |= NewBits;
1501    return;
1502  }
1503  case ISD::ANY_EXTEND: {
1504    MVT InVT = Op.getOperand(0).getValueType();
1505    unsigned InBits = InVT.getSizeInBits();
1506    APInt InMask = Mask;
1507    InMask.trunc(InBits);
1508    KnownZero.trunc(InBits);
1509    KnownOne.trunc(InBits);
1510    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1511    KnownZero.zext(BitWidth);
1512    KnownOne.zext(BitWidth);
1513    return;
1514  }
1515  case ISD::TRUNCATE: {
1516    MVT InVT = Op.getOperand(0).getValueType();
1517    unsigned InBits = InVT.getSizeInBits();
1518    APInt InMask = Mask;
1519    InMask.zext(InBits);
1520    KnownZero.zext(InBits);
1521    KnownOne.zext(InBits);
1522    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1523    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1524    KnownZero.trunc(BitWidth);
1525    KnownOne.trunc(BitWidth);
1526    break;
1527  }
1528  case ISD::AssertZext: {
1529    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1530    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1531    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1532                      KnownOne, Depth+1);
1533    KnownZero |= (~InMask) & Mask;
1534    return;
1535  }
1536  case ISD::FGETSIGN:
1537    // All bits are zero except the low bit.
1538    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1539    return;
1540
1541  case ISD::SUB: {
1542    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1543      // We know that the top bits of C-X are clear if X contains less bits
1544      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1545      // positive if we can prove that X is >= 0 and < 16.
1546      if (CLHS->getAPIntValue().isNonNegative()) {
1547        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1548        // NLZ can't be BitWidth with no sign bit
1549        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1550        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1551                          Depth+1);
1552
1553        // If all of the MaskV bits are known to be zero, then we know the
1554        // output top bits are zero, because we now know that the output is
1555        // from [0-C].
1556        if ((KnownZero2 & MaskV) == MaskV) {
1557          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1558          // Top bits known zero.
1559          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1560        }
1561      }
1562    }
1563  }
1564  // fall through
1565  case ISD::ADD: {
1566    // Output known-0 bits are known if clear or set in both the low clear bits
1567    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1568    // low 3 bits clear.
1569    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1570    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1571    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1572    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1573
1574    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1575    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1576    KnownZeroOut = std::min(KnownZeroOut,
1577                            KnownZero2.countTrailingOnes());
1578
1579    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1580    return;
1581  }
1582  case ISD::SREM:
1583    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1584      APInt RA = Rem->getAPIntValue();
1585      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1586        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1587        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1588        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1589
1590        // The sign of a remainder is equal to the sign of the first
1591        // operand (zero being positive).
1592        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1593          KnownZero2 |= ~LowBits;
1594        else if (KnownOne2[BitWidth-1])
1595          KnownOne2 |= ~LowBits;
1596
1597        KnownZero |= KnownZero2 & Mask;
1598        KnownOne |= KnownOne2 & Mask;
1599
1600        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1601      }
1602    }
1603    return;
1604  case ISD::UREM: {
1605    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1606      APInt RA = Rem->getAPIntValue();
1607      if (RA.isPowerOf2()) {
1608        APInt LowBits = (RA - 1);
1609        APInt Mask2 = LowBits & Mask;
1610        KnownZero |= ~LowBits & Mask;
1611        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1612        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1613        break;
1614      }
1615    }
1616
1617    // Since the result is less than or equal to either operand, any leading
1618    // zero bits in either operand must also exist in the result.
1619    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1620    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1621                      Depth+1);
1622    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1623                      Depth+1);
1624
1625    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1626                                KnownZero2.countLeadingOnes());
1627    KnownOne.clear();
1628    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1629    return;
1630  }
1631  default:
1632    // Allow the target to implement this method for its nodes.
1633    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1634  case ISD::INTRINSIC_WO_CHAIN:
1635  case ISD::INTRINSIC_W_CHAIN:
1636  case ISD::INTRINSIC_VOID:
1637      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1638    }
1639    return;
1640  }
1641}
1642
1643/// ComputeNumSignBits - Return the number of times the sign bit of the
1644/// register is replicated into the other bits.  We know that at least 1 bit
1645/// is always equal to the sign bit (itself), but other cases can give us
1646/// information.  For example, immediately after an "SRA X, 2", we know that
1647/// the top 3 bits are all equal to each other, so we return 3.
1648unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1649  MVT VT = Op.getValueType();
1650  assert(VT.isInteger() && "Invalid VT!");
1651  unsigned VTBits = VT.getSizeInBits();
1652  unsigned Tmp, Tmp2;
1653  unsigned FirstAnswer = 1;
1654
1655  if (Depth == 6)
1656    return 1;  // Limit search depth.
1657
1658  switch (Op.getOpcode()) {
1659  default: break;
1660  case ISD::AssertSext:
1661    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1662    return VTBits-Tmp+1;
1663  case ISD::AssertZext:
1664    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1665    return VTBits-Tmp;
1666
1667  case ISD::Constant: {
1668    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1669    // If negative, return # leading ones.
1670    if (Val.isNegative())
1671      return Val.countLeadingOnes();
1672
1673    // Return # leading zeros.
1674    return Val.countLeadingZeros();
1675  }
1676
1677  case ISD::SIGN_EXTEND:
1678    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1679    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1680
1681  case ISD::SIGN_EXTEND_INREG:
1682    // Max of the input and what this extends.
1683    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1684    Tmp = VTBits-Tmp+1;
1685
1686    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1687    return std::max(Tmp, Tmp2);
1688
1689  case ISD::SRA:
1690    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1691    // SRA X, C   -> adds C sign bits.
1692    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1693      Tmp += C->getValue();
1694      if (Tmp > VTBits) Tmp = VTBits;
1695    }
1696    return Tmp;
1697  case ISD::SHL:
1698    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1699      // shl destroys sign bits.
1700      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1701      if (C->getValue() >= VTBits ||      // Bad shift.
1702          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1703      return Tmp - C->getValue();
1704    }
1705    break;
1706  case ISD::AND:
1707  case ISD::OR:
1708  case ISD::XOR:    // NOT is handled here.
1709    // Logical binary ops preserve the number of sign bits at the worst.
1710    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1711    if (Tmp != 1) {
1712      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1713      FirstAnswer = std::min(Tmp, Tmp2);
1714      // We computed what we know about the sign bits as our first
1715      // answer. Now proceed to the generic code that uses
1716      // ComputeMaskedBits, and pick whichever answer is better.
1717    }
1718    break;
1719
1720  case ISD::SELECT:
1721    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1722    if (Tmp == 1) return 1;  // Early out.
1723    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1724    return std::min(Tmp, Tmp2);
1725
1726  case ISD::SETCC:
1727    // If setcc returns 0/-1, all bits are sign bits.
1728    if (TLI.getSetCCResultContents() ==
1729        TargetLowering::ZeroOrNegativeOneSetCCResult)
1730      return VTBits;
1731    break;
1732  case ISD::ROTL:
1733  case ISD::ROTR:
1734    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1735      unsigned RotAmt = C->getValue() & (VTBits-1);
1736
1737      // Handle rotate right by N like a rotate left by 32-N.
1738      if (Op.getOpcode() == ISD::ROTR)
1739        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1740
1741      // If we aren't rotating out all of the known-in sign bits, return the
1742      // number that are left.  This handles rotl(sext(x), 1) for example.
1743      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1744      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1745    }
1746    break;
1747  case ISD::ADD:
1748    // Add can have at most one carry bit.  Thus we know that the output
1749    // is, at worst, one more bit than the inputs.
1750    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1751    if (Tmp == 1) return 1;  // Early out.
1752
1753    // Special case decrementing a value (ADD X, -1):
1754    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1755      if (CRHS->isAllOnesValue()) {
1756        APInt KnownZero, KnownOne;
1757        APInt Mask = APInt::getAllOnesValue(VTBits);
1758        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1759
1760        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1761        // sign bits set.
1762        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1763          return VTBits;
1764
1765        // If we are subtracting one from a positive number, there is no carry
1766        // out of the result.
1767        if (KnownZero.isNegative())
1768          return Tmp;
1769      }
1770
1771    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1772    if (Tmp2 == 1) return 1;
1773      return std::min(Tmp, Tmp2)-1;
1774    break;
1775
1776  case ISD::SUB:
1777    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1778    if (Tmp2 == 1) return 1;
1779
1780    // Handle NEG.
1781    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1782      if (CLHS->isNullValue()) {
1783        APInt KnownZero, KnownOne;
1784        APInt Mask = APInt::getAllOnesValue(VTBits);
1785        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1786        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1787        // sign bits set.
1788        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1789          return VTBits;
1790
1791        // If the input is known to be positive (the sign bit is known clear),
1792        // the output of the NEG has the same number of sign bits as the input.
1793        if (KnownZero.isNegative())
1794          return Tmp2;
1795
1796        // Otherwise, we treat this like a SUB.
1797      }
1798
1799    // Sub can have at most one carry bit.  Thus we know that the output
1800    // is, at worst, one more bit than the inputs.
1801    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1802    if (Tmp == 1) return 1;  // Early out.
1803      return std::min(Tmp, Tmp2)-1;
1804    break;
1805  case ISD::TRUNCATE:
1806    // FIXME: it's tricky to do anything useful for this, but it is an important
1807    // case for targets like X86.
1808    break;
1809  }
1810
1811  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1812  if (Op.getOpcode() == ISD::LOAD) {
1813    LoadSDNode *LD = cast<LoadSDNode>(Op);
1814    unsigned ExtType = LD->getExtensionType();
1815    switch (ExtType) {
1816    default: break;
1817    case ISD::SEXTLOAD:    // '17' bits known
1818      Tmp = LD->getMemoryVT().getSizeInBits();
1819      return VTBits-Tmp+1;
1820    case ISD::ZEXTLOAD:    // '16' bits known
1821      Tmp = LD->getMemoryVT().getSizeInBits();
1822      return VTBits-Tmp;
1823    }
1824  }
1825
1826  // Allow the target to implement this method for its nodes.
1827  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1828      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1829      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1830      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1831    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1832    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1833  }
1834
1835  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1836  // use this information.
1837  APInt KnownZero, KnownOne;
1838  APInt Mask = APInt::getAllOnesValue(VTBits);
1839  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1840
1841  if (KnownZero.isNegative()) {        // sign bit is 0
1842    Mask = KnownZero;
1843  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1844    Mask = KnownOne;
1845  } else {
1846    // Nothing known.
1847    return FirstAnswer;
1848  }
1849
1850  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1851  // the number of identical bits in the top of the input value.
1852  Mask = ~Mask;
1853  Mask <<= Mask.getBitWidth()-VTBits;
1854  // Return # leading zeros.  We use 'min' here in case Val was zero before
1855  // shifting.  We don't want to return '64' as for an i32 "0".
1856  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
1857}
1858
1859
1860bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1861  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1862  if (!GA) return false;
1863  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1864  if (!GV) return false;
1865  MachineModuleInfo *MMI = getMachineModuleInfo();
1866  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1867}
1868
1869
1870/// getShuffleScalarElt - Returns the scalar element that will make up the ith
1871/// element of the result of the vector shuffle.
1872SDOperand SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
1873  MVT VT = N->getValueType(0);
1874  SDOperand PermMask = N->getOperand(2);
1875  SDOperand Idx = PermMask.getOperand(i);
1876  if (Idx.getOpcode() == ISD::UNDEF)
1877    return getNode(ISD::UNDEF, VT.getVectorElementType());
1878  unsigned Index = cast<ConstantSDNode>(Idx)->getValue();
1879  unsigned NumElems = PermMask.getNumOperands();
1880  SDOperand V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
1881  Index %= NumElems;
1882
1883  if (V.getOpcode() == ISD::BIT_CONVERT) {
1884    V = V.getOperand(0);
1885    if (V.getValueType().getVectorNumElements() != NumElems)
1886      return SDOperand();
1887  }
1888  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
1889    return (Index == 0) ? V.getOperand(0)
1890                      : getNode(ISD::UNDEF, VT.getVectorElementType());
1891  if (V.getOpcode() == ISD::BUILD_VECTOR)
1892    return V.getOperand(Index);
1893  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
1894    return getShuffleScalarElt(V.Val, Index);
1895  return SDOperand();
1896}
1897
1898
1899/// getNode - Gets or creates the specified node.
1900///
1901SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT) {
1902  FoldingSetNodeID ID;
1903  AddNodeIDNode(ID, Opcode, getVTList(VT), (SDOperand*)0, 0);
1904  void *IP = 0;
1905  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1906    return SDOperand(E, 0);
1907  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1908  CSEMap.InsertNode(N, IP);
1909
1910  AllNodes.push_back(N);
1911  return SDOperand(N, 0);
1912}
1913
1914SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT, SDOperand Operand) {
1915  // Constant fold unary operations with an integer constant operand.
1916  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1917    const APInt &Val = C->getAPIntValue();
1918    unsigned BitWidth = VT.getSizeInBits();
1919    switch (Opcode) {
1920    default: break;
1921    case ISD::SIGN_EXTEND:
1922      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1923    case ISD::ANY_EXTEND:
1924    case ISD::ZERO_EXTEND:
1925    case ISD::TRUNCATE:
1926      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1927    case ISD::UINT_TO_FP:
1928    case ISD::SINT_TO_FP: {
1929      const uint64_t zero[] = {0, 0};
1930      // No compile time operations on this type.
1931      if (VT==MVT::ppcf128)
1932        break;
1933      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1934      (void)apf.convertFromAPInt(Val,
1935                                 Opcode==ISD::SINT_TO_FP,
1936                                 APFloat::rmNearestTiesToEven);
1937      return getConstantFP(apf, VT);
1938    }
1939    case ISD::BIT_CONVERT:
1940      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1941        return getConstantFP(Val.bitsToFloat(), VT);
1942      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1943        return getConstantFP(Val.bitsToDouble(), VT);
1944      break;
1945    case ISD::BSWAP:
1946      return getConstant(Val.byteSwap(), VT);
1947    case ISD::CTPOP:
1948      return getConstant(Val.countPopulation(), VT);
1949    case ISD::CTLZ:
1950      return getConstant(Val.countLeadingZeros(), VT);
1951    case ISD::CTTZ:
1952      return getConstant(Val.countTrailingZeros(), VT);
1953    }
1954  }
1955
1956  // Constant fold unary operations with a floating point constant operand.
1957  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1958    APFloat V = C->getValueAPF();    // make copy
1959    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1960      switch (Opcode) {
1961      case ISD::FNEG:
1962        V.changeSign();
1963        return getConstantFP(V, VT);
1964      case ISD::FABS:
1965        V.clearSign();
1966        return getConstantFP(V, VT);
1967      case ISD::FP_ROUND:
1968      case ISD::FP_EXTEND:
1969        // This can return overflow, underflow, or inexact; we don't care.
1970        // FIXME need to be more flexible about rounding mode.
1971        (void)V.convert(*MVTToAPFloatSemantics(VT),
1972                        APFloat::rmNearestTiesToEven);
1973        return getConstantFP(V, VT);
1974      case ISD::FP_TO_SINT:
1975      case ISD::FP_TO_UINT: {
1976        integerPart x;
1977        assert(integerPartWidth >= 64);
1978        // FIXME need to be more flexible about rounding mode.
1979        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1980                              Opcode==ISD::FP_TO_SINT,
1981                              APFloat::rmTowardZero);
1982        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1983          break;
1984        return getConstant(x, VT);
1985      }
1986      case ISD::BIT_CONVERT:
1987        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1988          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1989        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1990          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1991        break;
1992      }
1993    }
1994  }
1995
1996  unsigned OpOpcode = Operand.Val->getOpcode();
1997  switch (Opcode) {
1998  case ISD::TokenFactor:
1999    return Operand;         // Factor of one node?  No need.
2000  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2001  case ISD::FP_EXTEND:
2002    assert(VT.isFloatingPoint() &&
2003           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2004    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2005    if (Operand.getOpcode() == ISD::UNDEF)
2006      return getNode(ISD::UNDEF, VT);
2007    break;
2008  case ISD::SIGN_EXTEND:
2009    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2010           "Invalid SIGN_EXTEND!");
2011    if (Operand.getValueType() == VT) return Operand;   // noop extension
2012    assert(Operand.getValueType().bitsLT(VT)
2013           && "Invalid sext node, dst < src!");
2014    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2015      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2016    break;
2017  case ISD::ZERO_EXTEND:
2018    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2019           "Invalid ZERO_EXTEND!");
2020    if (Operand.getValueType() == VT) return Operand;   // noop extension
2021    assert(Operand.getValueType().bitsLT(VT)
2022           && "Invalid zext node, dst < src!");
2023    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2024      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
2025    break;
2026  case ISD::ANY_EXTEND:
2027    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2028           "Invalid ANY_EXTEND!");
2029    if (Operand.getValueType() == VT) return Operand;   // noop extension
2030    assert(Operand.getValueType().bitsLT(VT)
2031           && "Invalid anyext node, dst < src!");
2032    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2033      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2034      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2035    break;
2036  case ISD::TRUNCATE:
2037    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2038           "Invalid TRUNCATE!");
2039    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2040    assert(Operand.getValueType().bitsGT(VT)
2041           && "Invalid truncate node, src < dst!");
2042    if (OpOpcode == ISD::TRUNCATE)
2043      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2044    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2045             OpOpcode == ISD::ANY_EXTEND) {
2046      // If the source is smaller than the dest, we still need an extend.
2047      if (Operand.Val->getOperand(0).getValueType().bitsLT(VT))
2048        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2049      else if (Operand.Val->getOperand(0).getValueType().bitsGT(VT))
2050        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2051      else
2052        return Operand.Val->getOperand(0);
2053    }
2054    break;
2055  case ISD::BIT_CONVERT:
2056    // Basic sanity checking.
2057    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2058           && "Cannot BIT_CONVERT between types of different sizes!");
2059    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2060    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2061      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2062    if (OpOpcode == ISD::UNDEF)
2063      return getNode(ISD::UNDEF, VT);
2064    break;
2065  case ISD::SCALAR_TO_VECTOR:
2066    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2067           VT.getVectorElementType() == Operand.getValueType() &&
2068           "Illegal SCALAR_TO_VECTOR node!");
2069    if (OpOpcode == ISD::UNDEF)
2070      return getNode(ISD::UNDEF, VT);
2071    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2072    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2073        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2074        Operand.getConstantOperandVal(1) == 0 &&
2075        Operand.getOperand(0).getValueType() == VT)
2076      return Operand.getOperand(0);
2077    break;
2078  case ISD::FNEG:
2079    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2080      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
2081                     Operand.Val->getOperand(0));
2082    if (OpOpcode == ISD::FNEG)  // --X -> X
2083      return Operand.Val->getOperand(0);
2084    break;
2085  case ISD::FABS:
2086    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2087      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
2088    break;
2089  }
2090
2091  SDNode *N;
2092  SDVTList VTs = getVTList(VT);
2093  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2094    FoldingSetNodeID ID;
2095    SDOperand Ops[1] = { Operand };
2096    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2097    void *IP = 0;
2098    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2099      return SDOperand(E, 0);
2100    N = new UnarySDNode(Opcode, VTs, Operand);
2101    CSEMap.InsertNode(N, IP);
2102  } else {
2103    N = new UnarySDNode(Opcode, VTs, Operand);
2104  }
2105  AllNodes.push_back(N);
2106  return SDOperand(N, 0);
2107}
2108
2109
2110
2111SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2112                                SDOperand N1, SDOperand N2) {
2113  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2114  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2115  switch (Opcode) {
2116  default: break;
2117  case ISD::TokenFactor:
2118    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2119           N2.getValueType() == MVT::Other && "Invalid token factor!");
2120    // Fold trivial token factors.
2121    if (N1.getOpcode() == ISD::EntryToken) return N2;
2122    if (N2.getOpcode() == ISD::EntryToken) return N1;
2123    break;
2124  case ISD::AND:
2125    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2126           N1.getValueType() == VT && "Binary operator types must match!");
2127    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2128    // worth handling here.
2129    if (N2C && N2C->isNullValue())
2130      return N2;
2131    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2132      return N1;
2133    break;
2134  case ISD::OR:
2135  case ISD::XOR:
2136  case ISD::ADD:
2137  case ISD::SUB:
2138    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2139           N1.getValueType() == VT && "Binary operator types must match!");
2140    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2141    // it's worth handling here.
2142    if (N2C && N2C->isNullValue())
2143      return N1;
2144    break;
2145  case ISD::UDIV:
2146  case ISD::UREM:
2147  case ISD::MULHU:
2148  case ISD::MULHS:
2149    assert(VT.isInteger() && "This operator does not apply to FP types!");
2150    // fall through
2151  case ISD::MUL:
2152  case ISD::SDIV:
2153  case ISD::SREM:
2154  case ISD::FADD:
2155  case ISD::FSUB:
2156  case ISD::FMUL:
2157  case ISD::FDIV:
2158  case ISD::FREM:
2159    assert(N1.getValueType() == N2.getValueType() &&
2160           N1.getValueType() == VT && "Binary operator types must match!");
2161    break;
2162  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2163    assert(N1.getValueType() == VT &&
2164           N1.getValueType().isFloatingPoint() &&
2165           N2.getValueType().isFloatingPoint() &&
2166           "Invalid FCOPYSIGN!");
2167    break;
2168  case ISD::SHL:
2169  case ISD::SRA:
2170  case ISD::SRL:
2171  case ISD::ROTL:
2172  case ISD::ROTR:
2173    assert(VT == N1.getValueType() &&
2174           "Shift operators return type must be the same as their first arg");
2175    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2176           VT != MVT::i1 && "Shifts only work on integers");
2177    break;
2178  case ISD::FP_ROUND_INREG: {
2179    MVT EVT = cast<VTSDNode>(N2)->getVT();
2180    assert(VT == N1.getValueType() && "Not an inreg round!");
2181    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2182           "Cannot FP_ROUND_INREG integer types");
2183    assert(EVT.bitsLE(VT) && "Not rounding down!");
2184    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2185    break;
2186  }
2187  case ISD::FP_ROUND:
2188    assert(VT.isFloatingPoint() &&
2189           N1.getValueType().isFloatingPoint() &&
2190           VT.bitsLE(N1.getValueType()) &&
2191           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2192    if (N1.getValueType() == VT) return N1;  // noop conversion.
2193    break;
2194  case ISD::AssertSext:
2195  case ISD::AssertZext: {
2196    MVT EVT = cast<VTSDNode>(N2)->getVT();
2197    assert(VT == N1.getValueType() && "Not an inreg extend!");
2198    assert(VT.isInteger() && EVT.isInteger() &&
2199           "Cannot *_EXTEND_INREG FP types");
2200    assert(EVT.bitsLE(VT) && "Not extending!");
2201    if (VT == EVT) return N1; // noop assertion.
2202    break;
2203  }
2204  case ISD::SIGN_EXTEND_INREG: {
2205    MVT EVT = cast<VTSDNode>(N2)->getVT();
2206    assert(VT == N1.getValueType() && "Not an inreg extend!");
2207    assert(VT.isInteger() && EVT.isInteger() &&
2208           "Cannot *_EXTEND_INREG FP types");
2209    assert(EVT.bitsLE(VT) && "Not extending!");
2210    if (EVT == VT) return N1;  // Not actually extending
2211
2212    if (N1C) {
2213      APInt Val = N1C->getAPIntValue();
2214      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2215      Val <<= Val.getBitWidth()-FromBits;
2216      Val = Val.ashr(Val.getBitWidth()-FromBits);
2217      return getConstant(Val, VT);
2218    }
2219    break;
2220  }
2221  case ISD::EXTRACT_VECTOR_ELT:
2222    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2223
2224    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2225    if (N1.getOpcode() == ISD::UNDEF)
2226      return getNode(ISD::UNDEF, VT);
2227
2228    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2229    // expanding copies of large vectors from registers.
2230    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2231        N1.getNumOperands() > 0) {
2232      unsigned Factor =
2233        N1.getOperand(0).getValueType().getVectorNumElements();
2234      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2235                     N1.getOperand(N2C->getValue() / Factor),
2236                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2237    }
2238
2239    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2240    // expanding large vector constants.
2241    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2242      return N1.getOperand(N2C->getValue());
2243
2244    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2245    // operations are lowered to scalars.
2246    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2247      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2248        if (IEC == N2C)
2249          return N1.getOperand(1);
2250        else
2251          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2252      }
2253    break;
2254  case ISD::EXTRACT_ELEMENT:
2255    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2256    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2257           (N1.getValueType().isInteger() == VT.isInteger()) &&
2258           "Wrong types for EXTRACT_ELEMENT!");
2259
2260    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2261    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2262    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2263    if (N1.getOpcode() == ISD::BUILD_PAIR)
2264      return N1.getOperand(N2C->getValue());
2265
2266    // EXTRACT_ELEMENT of a constant int is also very common.
2267    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2268      unsigned ElementSize = VT.getSizeInBits();
2269      unsigned Shift = ElementSize * N2C->getValue();
2270      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2271      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2272    }
2273    break;
2274  case ISD::EXTRACT_SUBVECTOR:
2275    if (N1.getValueType() == VT) // Trivial extraction.
2276      return N1;
2277    break;
2278  }
2279
2280  if (N1C) {
2281    if (N2C) {
2282      APInt C1 = N1C->getAPIntValue(), C2 = N2C->getAPIntValue();
2283      switch (Opcode) {
2284      case ISD::ADD: return getConstant(C1 + C2, VT);
2285      case ISD::SUB: return getConstant(C1 - C2, VT);
2286      case ISD::MUL: return getConstant(C1 * C2, VT);
2287      case ISD::UDIV:
2288        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2289        break;
2290      case ISD::UREM :
2291        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2292        break;
2293      case ISD::SDIV :
2294        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2295        break;
2296      case ISD::SREM :
2297        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2298        break;
2299      case ISD::AND  : return getConstant(C1 & C2, VT);
2300      case ISD::OR   : return getConstant(C1 | C2, VT);
2301      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2302      case ISD::SHL  : return getConstant(C1 << C2, VT);
2303      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2304      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2305      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2306      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2307      default: break;
2308      }
2309    } else {      // Cannonicalize constant to RHS if commutative
2310      if (isCommutativeBinOp(Opcode)) {
2311        std::swap(N1C, N2C);
2312        std::swap(N1, N2);
2313      }
2314    }
2315  }
2316
2317  // Constant fold FP operations.
2318  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2319  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2320  if (N1CFP) {
2321    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2322      // Cannonicalize constant to RHS if commutative
2323      std::swap(N1CFP, N2CFP);
2324      std::swap(N1, N2);
2325    } else if (N2CFP && VT != MVT::ppcf128) {
2326      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2327      APFloat::opStatus s;
2328      switch (Opcode) {
2329      case ISD::FADD:
2330        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2331        if (s != APFloat::opInvalidOp)
2332          return getConstantFP(V1, VT);
2333        break;
2334      case ISD::FSUB:
2335        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2336        if (s!=APFloat::opInvalidOp)
2337          return getConstantFP(V1, VT);
2338        break;
2339      case ISD::FMUL:
2340        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2341        if (s!=APFloat::opInvalidOp)
2342          return getConstantFP(V1, VT);
2343        break;
2344      case ISD::FDIV:
2345        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2346        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2347          return getConstantFP(V1, VT);
2348        break;
2349      case ISD::FREM :
2350        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2351        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2352          return getConstantFP(V1, VT);
2353        break;
2354      case ISD::FCOPYSIGN:
2355        V1.copySign(V2);
2356        return getConstantFP(V1, VT);
2357      default: break;
2358      }
2359    }
2360  }
2361
2362  // Canonicalize an UNDEF to the RHS, even over a constant.
2363  if (N1.getOpcode() == ISD::UNDEF) {
2364    if (isCommutativeBinOp(Opcode)) {
2365      std::swap(N1, N2);
2366    } else {
2367      switch (Opcode) {
2368      case ISD::FP_ROUND_INREG:
2369      case ISD::SIGN_EXTEND_INREG:
2370      case ISD::SUB:
2371      case ISD::FSUB:
2372      case ISD::FDIV:
2373      case ISD::FREM:
2374      case ISD::SRA:
2375        return N1;     // fold op(undef, arg2) -> undef
2376      case ISD::UDIV:
2377      case ISD::SDIV:
2378      case ISD::UREM:
2379      case ISD::SREM:
2380      case ISD::SRL:
2381      case ISD::SHL:
2382        if (!VT.isVector())
2383          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2384        // For vectors, we can't easily build an all zero vector, just return
2385        // the LHS.
2386        return N2;
2387      }
2388    }
2389  }
2390
2391  // Fold a bunch of operators when the RHS is undef.
2392  if (N2.getOpcode() == ISD::UNDEF) {
2393    switch (Opcode) {
2394    case ISD::XOR:
2395      if (N1.getOpcode() == ISD::UNDEF)
2396        // Handle undef ^ undef -> 0 special case. This is a common
2397        // idiom (misuse).
2398        return getConstant(0, VT);
2399      // fallthrough
2400    case ISD::ADD:
2401    case ISD::ADDC:
2402    case ISD::ADDE:
2403    case ISD::SUB:
2404    case ISD::FADD:
2405    case ISD::FSUB:
2406    case ISD::FMUL:
2407    case ISD::FDIV:
2408    case ISD::FREM:
2409    case ISD::UDIV:
2410    case ISD::SDIV:
2411    case ISD::UREM:
2412    case ISD::SREM:
2413      return N2;       // fold op(arg1, undef) -> undef
2414    case ISD::MUL:
2415    case ISD::AND:
2416    case ISD::SRL:
2417    case ISD::SHL:
2418      if (!VT.isVector())
2419        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2420      // For vectors, we can't easily build an all zero vector, just return
2421      // the LHS.
2422      return N1;
2423    case ISD::OR:
2424      if (!VT.isVector())
2425        return getConstant(VT.getIntegerVTBitMask(), VT);
2426      // For vectors, we can't easily build an all one vector, just return
2427      // the LHS.
2428      return N1;
2429    case ISD::SRA:
2430      return N1;
2431    }
2432  }
2433
2434  // Memoize this node if possible.
2435  SDNode *N;
2436  SDVTList VTs = getVTList(VT);
2437  if (VT != MVT::Flag) {
2438    SDOperand Ops[] = { N1, N2 };
2439    FoldingSetNodeID ID;
2440    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2441    void *IP = 0;
2442    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2443      return SDOperand(E, 0);
2444    N = new BinarySDNode(Opcode, VTs, N1, N2);
2445    CSEMap.InsertNode(N, IP);
2446  } else {
2447    N = new BinarySDNode(Opcode, VTs, N1, N2);
2448  }
2449
2450  AllNodes.push_back(N);
2451  return SDOperand(N, 0);
2452}
2453
2454SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2455                                SDOperand N1, SDOperand N2, SDOperand N3) {
2456  // Perform various simplifications.
2457  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2458  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2459  switch (Opcode) {
2460  case ISD::SETCC: {
2461    // Use FoldSetCC to simplify SETCC's.
2462    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2463    if (Simp.Val) return Simp;
2464    break;
2465  }
2466  case ISD::SELECT:
2467    if (N1C) {
2468     if (N1C->getValue())
2469        return N2;             // select true, X, Y -> X
2470      else
2471        return N3;             // select false, X, Y -> Y
2472    }
2473
2474    if (N2 == N3) return N2;   // select C, X, X -> X
2475    break;
2476  case ISD::BRCOND:
2477    if (N2C) {
2478      if (N2C->getValue()) // Unconditional branch
2479        return getNode(ISD::BR, MVT::Other, N1, N3);
2480      else
2481        return N1;         // Never-taken branch
2482    }
2483    break;
2484  case ISD::VECTOR_SHUFFLE:
2485    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2486           VT.isVector() && N3.getValueType().isVector() &&
2487           N3.getOpcode() == ISD::BUILD_VECTOR &&
2488           VT.getVectorNumElements() == N3.getNumOperands() &&
2489           "Illegal VECTOR_SHUFFLE node!");
2490    break;
2491  case ISD::BIT_CONVERT:
2492    // Fold bit_convert nodes from a type to themselves.
2493    if (N1.getValueType() == VT)
2494      return N1;
2495    break;
2496  }
2497
2498  // Memoize node if it doesn't produce a flag.
2499  SDNode *N;
2500  SDVTList VTs = getVTList(VT);
2501  if (VT != MVT::Flag) {
2502    SDOperand Ops[] = { N1, N2, N3 };
2503    FoldingSetNodeID ID;
2504    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2505    void *IP = 0;
2506    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2507      return SDOperand(E, 0);
2508    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2509    CSEMap.InsertNode(N, IP);
2510  } else {
2511    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2512  }
2513  AllNodes.push_back(N);
2514  return SDOperand(N, 0);
2515}
2516
2517SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2518                                SDOperand N1, SDOperand N2, SDOperand N3,
2519                                SDOperand N4) {
2520  SDOperand Ops[] = { N1, N2, N3, N4 };
2521  return getNode(Opcode, VT, Ops, 4);
2522}
2523
2524SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2525                                SDOperand N1, SDOperand N2, SDOperand N3,
2526                                SDOperand N4, SDOperand N5) {
2527  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2528  return getNode(Opcode, VT, Ops, 5);
2529}
2530
2531/// getMemsetValue - Vectorized representation of the memset value
2532/// operand.
2533static SDOperand getMemsetValue(SDOperand Value, MVT VT, SelectionDAG &DAG) {
2534  unsigned NumBits = VT.isVector() ?
2535    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2536  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2537    APInt Val = APInt(NumBits, C->getValue() & 255);
2538    unsigned Shift = 8;
2539    for (unsigned i = NumBits; i > 8; i >>= 1) {
2540      Val = (Val << Shift) | Val;
2541      Shift <<= 1;
2542    }
2543    if (VT.isInteger())
2544      return DAG.getConstant(Val, VT);
2545    return DAG.getConstantFP(APFloat(Val), VT);
2546  }
2547
2548  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2549  unsigned Shift = 8;
2550  for (unsigned i = NumBits; i > 8; i >>= 1) {
2551    Value = DAG.getNode(ISD::OR, VT,
2552                        DAG.getNode(ISD::SHL, VT, Value,
2553                                    DAG.getConstant(Shift, MVT::i8)), Value);
2554    Shift <<= 1;
2555  }
2556
2557  return Value;
2558}
2559
2560/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2561/// used when a memcpy is turned into a memset when the source is a constant
2562/// string ptr.
2563static SDOperand getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2564                                    const TargetLowering &TLI,
2565                                    std::string &Str, unsigned Offset) {
2566  // Handle vector with all elements zero.
2567  if (Str.empty()) {
2568    if (VT.isInteger())
2569      return DAG.getConstant(0, VT);
2570    unsigned NumElts = VT.getVectorNumElements();
2571    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2572    return DAG.getNode(ISD::BIT_CONVERT, VT,
2573                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2574  }
2575
2576  assert(!VT.isVector() && "Can't handle vector type here!");
2577  unsigned NumBits = VT.getSizeInBits();
2578  unsigned MSB = NumBits / 8;
2579  uint64_t Val = 0;
2580  if (TLI.isLittleEndian())
2581    Offset = Offset + MSB - 1;
2582  for (unsigned i = 0; i != MSB; ++i) {
2583    Val = (Val << 8) | (unsigned char)Str[Offset];
2584    Offset += TLI.isLittleEndian() ? -1 : 1;
2585  }
2586  return DAG.getConstant(Val, VT);
2587}
2588
2589/// getMemBasePlusOffset - Returns base and offset node for the
2590///
2591static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2592                                      SelectionDAG &DAG) {
2593  MVT VT = Base.getValueType();
2594  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2595}
2596
2597/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2598///
2599static bool isMemSrcFromString(SDOperand Src, std::string &Str) {
2600  unsigned SrcDelta = 0;
2601  GlobalAddressSDNode *G = NULL;
2602  if (Src.getOpcode() == ISD::GlobalAddress)
2603    G = cast<GlobalAddressSDNode>(Src);
2604  else if (Src.getOpcode() == ISD::ADD &&
2605           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2606           Src.getOperand(1).getOpcode() == ISD::Constant) {
2607    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2608    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
2609  }
2610  if (!G)
2611    return false;
2612
2613  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2614  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2615    return true;
2616
2617  return false;
2618}
2619
2620/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2621/// to replace the memset / memcpy is below the threshold. It also returns the
2622/// types of the sequence of memory ops to perform memset / memcpy.
2623static
2624bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2625                              SDOperand Dst, SDOperand Src,
2626                              unsigned Limit, uint64_t Size, unsigned &Align,
2627                              std::string &Str, bool &isSrcStr,
2628                              SelectionDAG &DAG,
2629                              const TargetLowering &TLI) {
2630  isSrcStr = isMemSrcFromString(Src, Str);
2631  bool isSrcConst = isa<ConstantSDNode>(Src);
2632  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2633  MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2634  if (VT != MVT::iAny) {
2635    unsigned NewAlign = (unsigned)
2636      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2637    // If source is a string constant, this will require an unaligned load.
2638    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2639      if (Dst.getOpcode() != ISD::FrameIndex) {
2640        // Can't change destination alignment. It requires a unaligned store.
2641        if (AllowUnalign)
2642          VT = MVT::iAny;
2643      } else {
2644        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2645        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2646        if (MFI->isFixedObjectIndex(FI)) {
2647          // Can't change destination alignment. It requires a unaligned store.
2648          if (AllowUnalign)
2649            VT = MVT::iAny;
2650        } else {
2651          // Give the stack frame object a larger alignment if needed.
2652          if (MFI->getObjectAlignment(FI) < NewAlign)
2653            MFI->setObjectAlignment(FI, NewAlign);
2654          Align = NewAlign;
2655        }
2656      }
2657    }
2658  }
2659
2660  if (VT == MVT::iAny) {
2661    if (AllowUnalign) {
2662      VT = MVT::i64;
2663    } else {
2664      switch (Align & 7) {
2665      case 0:  VT = MVT::i64; break;
2666      case 4:  VT = MVT::i32; break;
2667      case 2:  VT = MVT::i16; break;
2668      default: VT = MVT::i8;  break;
2669      }
2670    }
2671
2672    MVT LVT = MVT::i64;
2673    while (!TLI.isTypeLegal(LVT))
2674      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2675    assert(LVT.isInteger());
2676
2677    if (VT.bitsGT(LVT))
2678      VT = LVT;
2679  }
2680
2681  unsigned NumMemOps = 0;
2682  while (Size != 0) {
2683    unsigned VTSize = VT.getSizeInBits() / 8;
2684    while (VTSize > Size) {
2685      // For now, only use non-vector load / store's for the left-over pieces.
2686      if (VT.isVector()) {
2687        VT = MVT::i64;
2688        while (!TLI.isTypeLegal(VT))
2689          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2690        VTSize = VT.getSizeInBits() / 8;
2691      } else {
2692        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2693        VTSize >>= 1;
2694      }
2695    }
2696
2697    if (++NumMemOps > Limit)
2698      return false;
2699    MemOps.push_back(VT);
2700    Size -= VTSize;
2701  }
2702
2703  return true;
2704}
2705
2706static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
2707                                         SDOperand Chain, SDOperand Dst,
2708                                         SDOperand Src, uint64_t Size,
2709                                         unsigned Align, bool AlwaysInline,
2710                                         const Value *DstSV, uint64_t DstSVOff,
2711                                         const Value *SrcSV, uint64_t SrcSVOff){
2712  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2713
2714  // Expand memcpy to a series of load and store ops if the size operand falls
2715  // below a certain threshold.
2716  std::vector<MVT> MemOps;
2717  uint64_t Limit = -1;
2718  if (!AlwaysInline)
2719    Limit = TLI.getMaxStoresPerMemcpy();
2720  unsigned DstAlign = Align;  // Destination alignment can change.
2721  std::string Str;
2722  bool CopyFromStr;
2723  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2724                                Str, CopyFromStr, DAG, TLI))
2725    return SDOperand();
2726
2727
2728  bool isZeroStr = CopyFromStr && Str.empty();
2729  SmallVector<SDOperand, 8> OutChains;
2730  unsigned NumMemOps = MemOps.size();
2731  uint64_t SrcOff = 0, DstOff = 0;
2732  for (unsigned i = 0; i < NumMemOps; i++) {
2733    MVT VT = MemOps[i];
2734    unsigned VTSize = VT.getSizeInBits() / 8;
2735    SDOperand Value, Store;
2736
2737    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2738      // It's unlikely a store of a vector immediate can be done in a single
2739      // instruction. It would require a load from a constantpool first.
2740      // We also handle store a vector with all zero's.
2741      // FIXME: Handle other cases where store of vector immediate is done in
2742      // a single instruction.
2743      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2744      Store = DAG.getStore(Chain, Value,
2745                           getMemBasePlusOffset(Dst, DstOff, DAG),
2746                           DstSV, DstSVOff + DstOff);
2747    } else {
2748      Value = DAG.getLoad(VT, Chain,
2749                          getMemBasePlusOffset(Src, SrcOff, DAG),
2750                          SrcSV, SrcSVOff + SrcOff, false, Align);
2751      Store = DAG.getStore(Chain, Value,
2752                           getMemBasePlusOffset(Dst, DstOff, DAG),
2753                           DstSV, DstSVOff + DstOff, false, DstAlign);
2754    }
2755    OutChains.push_back(Store);
2756    SrcOff += VTSize;
2757    DstOff += VTSize;
2758  }
2759
2760  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2761                     &OutChains[0], OutChains.size());
2762}
2763
2764static SDOperand getMemmoveLoadsAndStores(SelectionDAG &DAG,
2765                                          SDOperand Chain, SDOperand Dst,
2766                                          SDOperand Src, uint64_t Size,
2767                                          unsigned Align, bool AlwaysInline,
2768                                          const Value *DstSV, uint64_t DstSVOff,
2769                                          const Value *SrcSV, uint64_t SrcSVOff){
2770  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2771
2772  // Expand memmove to a series of load and store ops if the size operand falls
2773  // below a certain threshold.
2774  std::vector<MVT> MemOps;
2775  uint64_t Limit = -1;
2776  if (!AlwaysInline)
2777    Limit = TLI.getMaxStoresPerMemmove();
2778  unsigned DstAlign = Align;  // Destination alignment can change.
2779  std::string Str;
2780  bool CopyFromStr;
2781  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2782                                Str, CopyFromStr, DAG, TLI))
2783    return SDOperand();
2784
2785  uint64_t SrcOff = 0, DstOff = 0;
2786
2787  SmallVector<SDOperand, 8> LoadValues;
2788  SmallVector<SDOperand, 8> LoadChains;
2789  SmallVector<SDOperand, 8> OutChains;
2790  unsigned NumMemOps = MemOps.size();
2791  for (unsigned i = 0; i < NumMemOps; i++) {
2792    MVT VT = MemOps[i];
2793    unsigned VTSize = VT.getSizeInBits() / 8;
2794    SDOperand Value, Store;
2795
2796    Value = DAG.getLoad(VT, Chain,
2797                        getMemBasePlusOffset(Src, SrcOff, DAG),
2798                        SrcSV, SrcSVOff + SrcOff, false, Align);
2799    LoadValues.push_back(Value);
2800    LoadChains.push_back(Value.getValue(1));
2801    SrcOff += VTSize;
2802  }
2803  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2804                      &LoadChains[0], LoadChains.size());
2805  OutChains.clear();
2806  for (unsigned i = 0; i < NumMemOps; i++) {
2807    MVT VT = MemOps[i];
2808    unsigned VTSize = VT.getSizeInBits() / 8;
2809    SDOperand Value, Store;
2810
2811    Store = DAG.getStore(Chain, LoadValues[i],
2812                         getMemBasePlusOffset(Dst, DstOff, DAG),
2813                         DstSV, DstSVOff + DstOff, false, DstAlign);
2814    OutChains.push_back(Store);
2815    DstOff += VTSize;
2816  }
2817
2818  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2819                     &OutChains[0], OutChains.size());
2820}
2821
2822static SDOperand getMemsetStores(SelectionDAG &DAG,
2823                                 SDOperand Chain, SDOperand Dst,
2824                                 SDOperand Src, uint64_t Size,
2825                                 unsigned Align,
2826                                 const Value *DstSV, uint64_t DstSVOff) {
2827  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2828
2829  // Expand memset to a series of load/store ops if the size operand
2830  // falls below a certain threshold.
2831  std::vector<MVT> MemOps;
2832  std::string Str;
2833  bool CopyFromStr;
2834  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
2835                                Size, Align, Str, CopyFromStr, DAG, TLI))
2836    return SDOperand();
2837
2838  SmallVector<SDOperand, 8> OutChains;
2839  uint64_t DstOff = 0;
2840
2841  unsigned NumMemOps = MemOps.size();
2842  for (unsigned i = 0; i < NumMemOps; i++) {
2843    MVT VT = MemOps[i];
2844    unsigned VTSize = VT.getSizeInBits() / 8;
2845    SDOperand Value = getMemsetValue(Src, VT, DAG);
2846    SDOperand Store = DAG.getStore(Chain, Value,
2847                                   getMemBasePlusOffset(Dst, DstOff, DAG),
2848                                   DstSV, DstSVOff + DstOff);
2849    OutChains.push_back(Store);
2850    DstOff += VTSize;
2851  }
2852
2853  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2854                     &OutChains[0], OutChains.size());
2855}
2856
2857SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dst,
2858                                  SDOperand Src, SDOperand Size,
2859                                  unsigned Align, bool AlwaysInline,
2860                                  const Value *DstSV, uint64_t DstSVOff,
2861                                  const Value *SrcSV, uint64_t SrcSVOff) {
2862
2863  // Check to see if we should lower the memcpy to loads and stores first.
2864  // For cases within the target-specified limits, this is the best choice.
2865  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2866  if (ConstantSize) {
2867    // Memcpy with size zero? Just return the original chain.
2868    if (ConstantSize->isNullValue())
2869      return Chain;
2870
2871    SDOperand Result =
2872      getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2873                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2874    if (Result.Val)
2875      return Result;
2876  }
2877
2878  // Then check to see if we should lower the memcpy with target-specific
2879  // code. If the target chooses to do this, this is the next best.
2880  SDOperand Result =
2881    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
2882                                AlwaysInline,
2883                                DstSV, DstSVOff, SrcSV, SrcSVOff);
2884  if (Result.Val)
2885    return Result;
2886
2887  // If we really need inline code and the target declined to provide it,
2888  // use a (potentially long) sequence of loads and stores.
2889  if (AlwaysInline) {
2890    assert(ConstantSize && "AlwaysInline requires a constant size!");
2891    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
2892                                   ConstantSize->getValue(), Align, true,
2893                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
2894  }
2895
2896  // Emit a library call.
2897  TargetLowering::ArgListTy Args;
2898  TargetLowering::ArgListEntry Entry;
2899  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2900  Entry.Node = Dst; Args.push_back(Entry);
2901  Entry.Node = Src; Args.push_back(Entry);
2902  Entry.Node = Size; Args.push_back(Entry);
2903  std::pair<SDOperand,SDOperand> CallResult =
2904    TLI.LowerCallTo(Chain, Type::VoidTy,
2905                    false, false, false, CallingConv::C, false,
2906                    getExternalSymbol("memcpy", TLI.getPointerTy()),
2907                    Args, *this);
2908  return CallResult.second;
2909}
2910
2911SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dst,
2912                                   SDOperand Src, SDOperand Size,
2913                                   unsigned Align,
2914                                   const Value *DstSV, uint64_t DstSVOff,
2915                                   const Value *SrcSV, uint64_t SrcSVOff) {
2916
2917  // Check to see if we should lower the memmove to loads and stores first.
2918  // For cases within the target-specified limits, this is the best choice.
2919  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2920  if (ConstantSize) {
2921    // Memmove with size zero? Just return the original chain.
2922    if (ConstantSize->isNullValue())
2923      return Chain;
2924
2925    SDOperand Result =
2926      getMemmoveLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2927                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2928    if (Result.Val)
2929      return Result;
2930  }
2931
2932  // Then check to see if we should lower the memmove with target-specific
2933  // code. If the target chooses to do this, this is the next best.
2934  SDOperand Result =
2935    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
2936                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
2937  if (Result.Val)
2938    return Result;
2939
2940  // Emit a library call.
2941  TargetLowering::ArgListTy Args;
2942  TargetLowering::ArgListEntry Entry;
2943  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2944  Entry.Node = Dst; Args.push_back(Entry);
2945  Entry.Node = Src; Args.push_back(Entry);
2946  Entry.Node = Size; Args.push_back(Entry);
2947  std::pair<SDOperand,SDOperand> CallResult =
2948    TLI.LowerCallTo(Chain, Type::VoidTy,
2949                    false, false, false, CallingConv::C, false,
2950                    getExternalSymbol("memmove", TLI.getPointerTy()),
2951                    Args, *this);
2952  return CallResult.second;
2953}
2954
2955SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dst,
2956                                  SDOperand Src, SDOperand Size,
2957                                  unsigned Align,
2958                                  const Value *DstSV, uint64_t DstSVOff) {
2959
2960  // Check to see if we should lower the memset to stores first.
2961  // For cases within the target-specified limits, this is the best choice.
2962  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2963  if (ConstantSize) {
2964    // Memset with size zero? Just return the original chain.
2965    if (ConstantSize->isNullValue())
2966      return Chain;
2967
2968    SDOperand Result =
2969      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
2970                      DstSV, DstSVOff);
2971    if (Result.Val)
2972      return Result;
2973  }
2974
2975  // Then check to see if we should lower the memset with target-specific
2976  // code. If the target chooses to do this, this is the next best.
2977  SDOperand Result =
2978    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
2979                                DstSV, DstSVOff);
2980  if (Result.Val)
2981    return Result;
2982
2983  // Emit a library call.
2984  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
2985  TargetLowering::ArgListTy Args;
2986  TargetLowering::ArgListEntry Entry;
2987  Entry.Node = Dst; Entry.Ty = IntPtrTy;
2988  Args.push_back(Entry);
2989  // Extend or truncate the argument to be an i32 value for the call.
2990  if (Src.getValueType().bitsGT(MVT::i32))
2991    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
2992  else
2993    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
2994  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
2995  Args.push_back(Entry);
2996  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
2997  Args.push_back(Entry);
2998  std::pair<SDOperand,SDOperand> CallResult =
2999    TLI.LowerCallTo(Chain, Type::VoidTy,
3000                    false, false, false, CallingConv::C, false,
3001                    getExternalSymbol("memset", TLI.getPointerTy()),
3002                    Args, *this);
3003  return CallResult.second;
3004}
3005
3006SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
3007                                  SDOperand Ptr, SDOperand Cmp,
3008                                  SDOperand Swp, const Value* PtrVal,
3009                                  unsigned Alignment) {
3010  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3011  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3012  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
3013  FoldingSetNodeID ID;
3014  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
3015  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3016  void* IP = 0;
3017  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3018    return SDOperand(E, 0);
3019  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp,
3020                               PtrVal, Alignment);
3021  CSEMap.InsertNode(N, IP);
3022  AllNodes.push_back(N);
3023  return SDOperand(N, 0);
3024}
3025
3026SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
3027                                  SDOperand Ptr, SDOperand Val,
3028                                  const Value* PtrVal,
3029                                  unsigned Alignment) {
3030  assert((   Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB
3031          || Opcode == ISD::ATOMIC_SWAP || Opcode == ISD::ATOMIC_LOAD_AND
3032          || Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR
3033          || Opcode == ISD::ATOMIC_LOAD_NAND
3034          || Opcode == ISD::ATOMIC_LOAD_MIN || Opcode == ISD::ATOMIC_LOAD_MAX
3035          || Opcode == ISD::ATOMIC_LOAD_UMIN || Opcode == ISD::ATOMIC_LOAD_UMAX)
3036         && "Invalid Atomic Op");
3037  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
3038  FoldingSetNodeID ID;
3039  SDOperand Ops[] = {Chain, Ptr, Val};
3040  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3041  void* IP = 0;
3042  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3043    return SDOperand(E, 0);
3044  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val,
3045                               PtrVal, Alignment);
3046  CSEMap.InsertNode(N, IP);
3047  AllNodes.push_back(N);
3048  return SDOperand(N, 0);
3049}
3050
3051SDOperand
3052SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3053                      MVT VT, SDOperand Chain,
3054                      SDOperand Ptr, SDOperand Offset,
3055                      const Value *SV, int SVOffset, MVT EVT,
3056                      bool isVolatile, unsigned Alignment) {
3057  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3058    const Type *Ty = 0;
3059    if (VT != MVT::iPTR) {
3060      Ty = VT.getTypeForMVT();
3061    } else if (SV) {
3062      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3063      assert(PT && "Value for load must be a pointer");
3064      Ty = PT->getElementType();
3065    }
3066    assert(Ty && "Could not get type information for load");
3067    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3068  }
3069
3070  if (VT == EVT) {
3071    ExtType = ISD::NON_EXTLOAD;
3072  } else if (ExtType == ISD::NON_EXTLOAD) {
3073    assert(VT == EVT && "Non-extending load from different memory type!");
3074  } else {
3075    // Extending load.
3076    if (VT.isVector())
3077      assert(EVT == VT.getVectorElementType() && "Invalid vector extload!");
3078    else
3079      assert(EVT.bitsLT(VT) &&
3080             "Should only be an extending load, not truncating!");
3081    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3082           "Cannot sign/zero extend a FP/Vector load!");
3083    assert(VT.isInteger() == EVT.isInteger() &&
3084           "Cannot convert from FP to Int or Int -> FP!");
3085  }
3086
3087  bool Indexed = AM != ISD::UNINDEXED;
3088  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3089         "Unindexed load with an offset!");
3090
3091  SDVTList VTs = Indexed ?
3092    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3093  SDOperand Ops[] = { Chain, Ptr, Offset };
3094  FoldingSetNodeID ID;
3095  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3096  ID.AddInteger(AM);
3097  ID.AddInteger(ExtType);
3098  ID.AddInteger(EVT.getRawBits());
3099  ID.AddInteger(Alignment);
3100  ID.AddInteger(isVolatile);
3101  void *IP = 0;
3102  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3103    return SDOperand(E, 0);
3104  SDNode *N = new LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3105                             Alignment, isVolatile);
3106  CSEMap.InsertNode(N, IP);
3107  AllNodes.push_back(N);
3108  return SDOperand(N, 0);
3109}
3110
3111SDOperand SelectionDAG::getLoad(MVT VT,
3112                                SDOperand Chain, SDOperand Ptr,
3113                                const Value *SV, int SVOffset,
3114                                bool isVolatile, unsigned Alignment) {
3115  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3116  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3117                 SV, SVOffset, VT, isVolatile, Alignment);
3118}
3119
3120SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3121                                   SDOperand Chain, SDOperand Ptr,
3122                                   const Value *SV,
3123                                   int SVOffset, MVT EVT,
3124                                   bool isVolatile, unsigned Alignment) {
3125  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3126  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3127                 SV, SVOffset, EVT, isVolatile, Alignment);
3128}
3129
3130SDOperand
3131SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
3132                             SDOperand Offset, ISD::MemIndexedMode AM) {
3133  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3134  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3135         "Load is already a indexed load!");
3136  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3137                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3138                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3139                 LD->isVolatile(), LD->getAlignment());
3140}
3141
3142SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
3143                                 SDOperand Ptr, const Value *SV, int SVOffset,
3144                                 bool isVolatile, unsigned Alignment) {
3145  MVT VT = Val.getValueType();
3146
3147  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3148    const Type *Ty = 0;
3149    if (VT != MVT::iPTR) {
3150      Ty = VT.getTypeForMVT();
3151    } else if (SV) {
3152      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3153      assert(PT && "Value for store must be a pointer");
3154      Ty = PT->getElementType();
3155    }
3156    assert(Ty && "Could not get type information for store");
3157    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3158  }
3159  SDVTList VTs = getVTList(MVT::Other);
3160  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3161  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3162  FoldingSetNodeID ID;
3163  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3164  ID.AddInteger(ISD::UNINDEXED);
3165  ID.AddInteger(false);
3166  ID.AddInteger(VT.getRawBits());
3167  ID.AddInteger(Alignment);
3168  ID.AddInteger(isVolatile);
3169  void *IP = 0;
3170  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3171    return SDOperand(E, 0);
3172  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3173                              VT, SV, SVOffset, Alignment, isVolatile);
3174  CSEMap.InsertNode(N, IP);
3175  AllNodes.push_back(N);
3176  return SDOperand(N, 0);
3177}
3178
3179SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
3180                                      SDOperand Ptr, const Value *SV,
3181                                      int SVOffset, MVT SVT,
3182                                      bool isVolatile, unsigned Alignment) {
3183  MVT VT = Val.getValueType();
3184
3185  if (VT == SVT)
3186    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3187
3188  assert(VT.bitsGT(SVT) && "Not a truncation?");
3189  assert(VT.isInteger() == SVT.isInteger() &&
3190         "Can't do FP-INT conversion!");
3191
3192  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3193    const Type *Ty = 0;
3194    if (VT != MVT::iPTR) {
3195      Ty = VT.getTypeForMVT();
3196    } else if (SV) {
3197      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3198      assert(PT && "Value for store must be a pointer");
3199      Ty = PT->getElementType();
3200    }
3201    assert(Ty && "Could not get type information for store");
3202    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3203  }
3204  SDVTList VTs = getVTList(MVT::Other);
3205  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3206  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3207  FoldingSetNodeID ID;
3208  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3209  ID.AddInteger(ISD::UNINDEXED);
3210  ID.AddInteger(1);
3211  ID.AddInteger(SVT.getRawBits());
3212  ID.AddInteger(Alignment);
3213  ID.AddInteger(isVolatile);
3214  void *IP = 0;
3215  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3216    return SDOperand(E, 0);
3217  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3218                              SVT, SV, SVOffset, Alignment, isVolatile);
3219  CSEMap.InsertNode(N, IP);
3220  AllNodes.push_back(N);
3221  return SDOperand(N, 0);
3222}
3223
3224SDOperand
3225SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
3226                              SDOperand Offset, ISD::MemIndexedMode AM) {
3227  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3228  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3229         "Store is already a indexed store!");
3230  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3231  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3232  FoldingSetNodeID ID;
3233  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3234  ID.AddInteger(AM);
3235  ID.AddInteger(ST->isTruncatingStore());
3236  ID.AddInteger(ST->getMemoryVT().getRawBits());
3237  ID.AddInteger(ST->getAlignment());
3238  ID.AddInteger(ST->isVolatile());
3239  void *IP = 0;
3240  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3241    return SDOperand(E, 0);
3242  SDNode *N = new StoreSDNode(Ops, VTs, AM,
3243                              ST->isTruncatingStore(), ST->getMemoryVT(),
3244                              ST->getSrcValue(), ST->getSrcValueOffset(),
3245                              ST->getAlignment(), ST->isVolatile());
3246  CSEMap.InsertNode(N, IP);
3247  AllNodes.push_back(N);
3248  return SDOperand(N, 0);
3249}
3250
3251SDOperand SelectionDAG::getVAArg(MVT VT,
3252                                 SDOperand Chain, SDOperand Ptr,
3253                                 SDOperand SV) {
3254  SDOperand Ops[] = { Chain, Ptr, SV };
3255  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3256}
3257
3258SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
3259                                SDOperandPtr Ops, unsigned NumOps) {
3260  switch (NumOps) {
3261  case 0: return getNode(Opcode, VT);
3262  case 1: return getNode(Opcode, VT, Ops[0]);
3263  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3264  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3265  default: break;
3266  }
3267
3268  switch (Opcode) {
3269  default: break;
3270  case ISD::SELECT_CC: {
3271    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3272    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3273           "LHS and RHS of condition must have same type!");
3274    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3275           "True and False arms of SelectCC must have same type!");
3276    assert(Ops[2].getValueType() == VT &&
3277           "select_cc node must be of same type as true and false value!");
3278    break;
3279  }
3280  case ISD::BR_CC: {
3281    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3282    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3283           "LHS/RHS of comparison should match types!");
3284    break;
3285  }
3286  }
3287
3288  // Memoize nodes.
3289  SDNode *N;
3290  SDVTList VTs = getVTList(VT);
3291  if (VT != MVT::Flag) {
3292    FoldingSetNodeID ID;
3293    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3294    void *IP = 0;
3295    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3296      return SDOperand(E, 0);
3297    N = new SDNode(Opcode, VTs, Ops, NumOps);
3298    CSEMap.InsertNode(N, IP);
3299  } else {
3300    N = new SDNode(Opcode, VTs, Ops, NumOps);
3301  }
3302  AllNodes.push_back(N);
3303  return SDOperand(N, 0);
3304}
3305
3306SDOperand SelectionDAG::getNode(unsigned Opcode,
3307                                std::vector<MVT> &ResultTys,
3308                                SDOperandPtr Ops, unsigned NumOps) {
3309  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3310                 Ops, NumOps);
3311}
3312
3313SDOperand SelectionDAG::getNode(unsigned Opcode,
3314                                const MVT *VTs, unsigned NumVTs,
3315                                SDOperandPtr Ops, unsigned NumOps) {
3316  if (NumVTs == 1)
3317    return getNode(Opcode, VTs[0], Ops, NumOps);
3318  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3319}
3320
3321SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3322                                SDOperandPtr Ops, unsigned NumOps) {
3323  if (VTList.NumVTs == 1)
3324    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3325
3326  switch (Opcode) {
3327  // FIXME: figure out how to safely handle things like
3328  // int foo(int x) { return 1 << (x & 255); }
3329  // int bar() { return foo(256); }
3330#if 0
3331  case ISD::SRA_PARTS:
3332  case ISD::SRL_PARTS:
3333  case ISD::SHL_PARTS:
3334    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3335        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3336      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3337    else if (N3.getOpcode() == ISD::AND)
3338      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3339        // If the and is only masking out bits that cannot effect the shift,
3340        // eliminate the and.
3341        unsigned NumBits = VT.getSizeInBits()*2;
3342        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3343          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3344      }
3345    break;
3346#endif
3347  }
3348
3349  // Memoize the node unless it returns a flag.
3350  SDNode *N;
3351  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3352    FoldingSetNodeID ID;
3353    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3354    void *IP = 0;
3355    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3356      return SDOperand(E, 0);
3357    if (NumOps == 1)
3358      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3359    else if (NumOps == 2)
3360      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3361    else if (NumOps == 3)
3362      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3363    else
3364      N = new SDNode(Opcode, VTList, Ops, NumOps);
3365    CSEMap.InsertNode(N, IP);
3366  } else {
3367    if (NumOps == 1)
3368      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3369    else if (NumOps == 2)
3370      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3371    else if (NumOps == 3)
3372      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3373    else
3374      N = new SDNode(Opcode, VTList, Ops, NumOps);
3375  }
3376  AllNodes.push_back(N);
3377  return SDOperand(N, 0);
3378}
3379
3380SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3381  return getNode(Opcode, VTList, (SDOperand*)0, 0);
3382}
3383
3384SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3385                                SDOperand N1) {
3386  SDOperand Ops[] = { N1 };
3387  return getNode(Opcode, VTList, Ops, 1);
3388}
3389
3390SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3391                                SDOperand N1, SDOperand N2) {
3392  SDOperand Ops[] = { N1, N2 };
3393  return getNode(Opcode, VTList, Ops, 2);
3394}
3395
3396SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3397                                SDOperand N1, SDOperand N2, SDOperand N3) {
3398  SDOperand Ops[] = { N1, N2, N3 };
3399  return getNode(Opcode, VTList, Ops, 3);
3400}
3401
3402SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3403                                SDOperand N1, SDOperand N2, SDOperand N3,
3404                                SDOperand N4) {
3405  SDOperand Ops[] = { N1, N2, N3, N4 };
3406  return getNode(Opcode, VTList, Ops, 4);
3407}
3408
3409SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3410                                SDOperand N1, SDOperand N2, SDOperand N3,
3411                                SDOperand N4, SDOperand N5) {
3412  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
3413  return getNode(Opcode, VTList, Ops, 5);
3414}
3415
3416SDVTList SelectionDAG::getVTList(MVT VT) {
3417  return makeVTList(SDNode::getValueTypeList(VT), 1);
3418}
3419
3420SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3421  for (std::list<std::vector<MVT> >::iterator I = VTList.begin(),
3422       E = VTList.end(); I != E; ++I) {
3423    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
3424      return makeVTList(&(*I)[0], 2);
3425  }
3426  std::vector<MVT> V;
3427  V.push_back(VT1);
3428  V.push_back(VT2);
3429  VTList.push_front(V);
3430  return makeVTList(&(*VTList.begin())[0], 2);
3431}
3432SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2,
3433                                 MVT VT3) {
3434  for (std::list<std::vector<MVT> >::iterator I = VTList.begin(),
3435       E = VTList.end(); I != E; ++I) {
3436    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
3437        (*I)[2] == VT3)
3438      return makeVTList(&(*I)[0], 3);
3439  }
3440  std::vector<MVT> V;
3441  V.push_back(VT1);
3442  V.push_back(VT2);
3443  V.push_back(VT3);
3444  VTList.push_front(V);
3445  return makeVTList(&(*VTList.begin())[0], 3);
3446}
3447
3448SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3449  switch (NumVTs) {
3450    case 0: assert(0 && "Cannot have nodes without results!");
3451    case 1: return getVTList(VTs[0]);
3452    case 2: return getVTList(VTs[0], VTs[1]);
3453    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3454    default: break;
3455  }
3456
3457  for (std::list<std::vector<MVT> >::iterator I = VTList.begin(),
3458       E = VTList.end(); I != E; ++I) {
3459    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
3460
3461    bool NoMatch = false;
3462    for (unsigned i = 2; i != NumVTs; ++i)
3463      if (VTs[i] != (*I)[i]) {
3464        NoMatch = true;
3465        break;
3466      }
3467    if (!NoMatch)
3468      return makeVTList(&*I->begin(), NumVTs);
3469  }
3470
3471  VTList.push_front(std::vector<MVT>(VTs, VTs+NumVTs));
3472  return makeVTList(&*VTList.begin()->begin(), NumVTs);
3473}
3474
3475
3476/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3477/// specified operands.  If the resultant node already exists in the DAG,
3478/// this does not modify the specified node, instead it returns the node that
3479/// already exists.  If the resultant node does not exist in the DAG, the
3480/// input node is returned.  As a degenerate case, if you specify the same
3481/// input operands as the node already has, the input node is returned.
3482SDOperand SelectionDAG::
3483UpdateNodeOperands(SDOperand InN, SDOperand Op) {
3484  SDNode *N = InN.Val;
3485  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3486
3487  // Check to see if there is no change.
3488  if (Op == N->getOperand(0)) return InN;
3489
3490  // See if the modified node already exists.
3491  void *InsertPos = 0;
3492  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3493    return SDOperand(Existing, InN.ResNo);
3494
3495  // Nope it doesn't.  Remove the node from it's current place in the maps.
3496  if (InsertPos)
3497    RemoveNodeFromCSEMaps(N);
3498
3499  // Now we update the operands.
3500  N->OperandList[0].getVal()->removeUser(0, N);
3501  N->OperandList[0] = Op;
3502  N->OperandList[0].setUser(N);
3503  Op.Val->addUser(0, N);
3504
3505  // If this gets put into a CSE map, add it.
3506  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3507  return InN;
3508}
3509
3510SDOperand SelectionDAG::
3511UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
3512  SDNode *N = InN.Val;
3513  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3514
3515  // Check to see if there is no change.
3516  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3517    return InN;   // No operands changed, just return the input node.
3518
3519  // See if the modified node already exists.
3520  void *InsertPos = 0;
3521  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3522    return SDOperand(Existing, InN.ResNo);
3523
3524  // Nope it doesn't.  Remove the node from it's current place in the maps.
3525  if (InsertPos)
3526    RemoveNodeFromCSEMaps(N);
3527
3528  // Now we update the operands.
3529  if (N->OperandList[0] != Op1) {
3530    N->OperandList[0].getVal()->removeUser(0, N);
3531    N->OperandList[0] = Op1;
3532    N->OperandList[0].setUser(N);
3533    Op1.Val->addUser(0, N);
3534  }
3535  if (N->OperandList[1] != Op2) {
3536    N->OperandList[1].getVal()->removeUser(1, N);
3537    N->OperandList[1] = Op2;
3538    N->OperandList[1].setUser(N);
3539    Op2.Val->addUser(1, N);
3540  }
3541
3542  // If this gets put into a CSE map, add it.
3543  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3544  return InN;
3545}
3546
3547SDOperand SelectionDAG::
3548UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
3549  SDOperand Ops[] = { Op1, Op2, Op3 };
3550  return UpdateNodeOperands(N, Ops, 3);
3551}
3552
3553SDOperand SelectionDAG::
3554UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3555                   SDOperand Op3, SDOperand Op4) {
3556  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
3557  return UpdateNodeOperands(N, Ops, 4);
3558}
3559
3560SDOperand SelectionDAG::
3561UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3562                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
3563  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3564  return UpdateNodeOperands(N, Ops, 5);
3565}
3566
3567SDOperand SelectionDAG::
3568UpdateNodeOperands(SDOperand InN, SDOperandPtr Ops, unsigned NumOps) {
3569  SDNode *N = InN.Val;
3570  assert(N->getNumOperands() == NumOps &&
3571         "Update with wrong number of operands");
3572
3573  // Check to see if there is no change.
3574  bool AnyChange = false;
3575  for (unsigned i = 0; i != NumOps; ++i) {
3576    if (Ops[i] != N->getOperand(i)) {
3577      AnyChange = true;
3578      break;
3579    }
3580  }
3581
3582  // No operands changed, just return the input node.
3583  if (!AnyChange) return InN;
3584
3585  // See if the modified node already exists.
3586  void *InsertPos = 0;
3587  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3588    return SDOperand(Existing, InN.ResNo);
3589
3590  // Nope it doesn't.  Remove the node from its current place in the maps.
3591  if (InsertPos)
3592    RemoveNodeFromCSEMaps(N);
3593
3594  // Now we update the operands.
3595  for (unsigned i = 0; i != NumOps; ++i) {
3596    if (N->OperandList[i] != Ops[i]) {
3597      N->OperandList[i].getVal()->removeUser(i, N);
3598      N->OperandList[i] = Ops[i];
3599      N->OperandList[i].setUser(N);
3600      Ops[i].Val->addUser(i, N);
3601    }
3602  }
3603
3604  // If this gets put into a CSE map, add it.
3605  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3606  return InN;
3607}
3608
3609/// MorphNodeTo - This frees the operands of the current node, resets the
3610/// opcode, types, and operands to the specified value.  This should only be
3611/// used by the SelectionDAG class.
3612void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3613                         SDOperandPtr Ops, unsigned NumOps) {
3614  NodeType = Opc;
3615  ValueList = L.VTs;
3616  NumValues = L.NumVTs;
3617
3618  // Clear the operands list, updating used nodes to remove this from their
3619  // use list.
3620  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3621    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3622
3623  // If NumOps is larger than the # of operands we currently have, reallocate
3624  // the operand list.
3625  if (NumOps > NumOperands) {
3626    if (OperandsNeedDelete) {
3627      delete [] OperandList;
3628    }
3629    OperandList = new SDUse[NumOps];
3630    OperandsNeedDelete = true;
3631  }
3632
3633  // Assign the new operands.
3634  NumOperands = NumOps;
3635
3636  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3637    OperandList[i] = Ops[i];
3638    OperandList[i].setUser(this);
3639    SDNode *N = OperandList[i].getVal();
3640    N->addUser(i, this);
3641    ++N->UsesSize;
3642  }
3643}
3644
3645/// SelectNodeTo - These are used for target selectors to *mutate* the
3646/// specified node to have the specified return type, Target opcode, and
3647/// operands.  Note that target opcodes are stored as
3648/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3649///
3650/// Note that SelectNodeTo returns the resultant node.  If there is already a
3651/// node of the specified opcode and operands, it returns that node instead of
3652/// the current one.
3653SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3654                                   MVT VT) {
3655  SDVTList VTs = getVTList(VT);
3656  FoldingSetNodeID ID;
3657  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, (SDOperand*)0, 0);
3658  void *IP = 0;
3659  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3660    return ON;
3661
3662  RemoveNodeFromCSEMaps(N);
3663
3664  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, SDOperandPtr(), 0);
3665
3666  CSEMap.InsertNode(N, IP);
3667  return N;
3668}
3669
3670SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3671                                   MVT VT, SDOperand Op1) {
3672  // If an identical node already exists, use it.
3673  SDVTList VTs = getVTList(VT);
3674  SDOperand Ops[] = { Op1 };
3675
3676  FoldingSetNodeID ID;
3677  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3678  void *IP = 0;
3679  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3680    return ON;
3681
3682  RemoveNodeFromCSEMaps(N);
3683  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3684  CSEMap.InsertNode(N, IP);
3685  return N;
3686}
3687
3688SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3689                                   MVT VT, SDOperand Op1,
3690                                   SDOperand Op2) {
3691  // If an identical node already exists, use it.
3692  SDVTList VTs = getVTList(VT);
3693  SDOperand Ops[] = { Op1, Op2 };
3694
3695  FoldingSetNodeID ID;
3696  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3697  void *IP = 0;
3698  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3699    return ON;
3700
3701  RemoveNodeFromCSEMaps(N);
3702
3703  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3704
3705  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3706  return N;
3707}
3708
3709SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3710                                   MVT VT, SDOperand Op1,
3711                                   SDOperand Op2, SDOperand Op3) {
3712  // If an identical node already exists, use it.
3713  SDVTList VTs = getVTList(VT);
3714  SDOperand Ops[] = { Op1, Op2, Op3 };
3715  FoldingSetNodeID ID;
3716  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3717  void *IP = 0;
3718  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3719    return ON;
3720
3721  RemoveNodeFromCSEMaps(N);
3722
3723  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3724
3725  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3726  return N;
3727}
3728
3729SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3730                                   MVT VT, SDOperandPtr Ops,
3731                                   unsigned NumOps) {
3732  // If an identical node already exists, use it.
3733  SDVTList VTs = getVTList(VT);
3734  FoldingSetNodeID ID;
3735  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3736  void *IP = 0;
3737  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3738    return ON;
3739
3740  RemoveNodeFromCSEMaps(N);
3741  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3742
3743  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3744  return N;
3745}
3746
3747SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3748                                   MVT VT1, MVT VT2,
3749                                   SDOperand Op1, SDOperand Op2) {
3750  SDVTList VTs = getVTList(VT1, VT2);
3751  FoldingSetNodeID ID;
3752  SDOperand Ops[] = { Op1, Op2 };
3753  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3754  void *IP = 0;
3755  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3756    return ON;
3757
3758  RemoveNodeFromCSEMaps(N);
3759  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3760  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3761  return N;
3762}
3763
3764SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3765                                   MVT VT1, MVT VT2,
3766                                   SDOperand Op1, SDOperand Op2,
3767                                   SDOperand Op3) {
3768  // If an identical node already exists, use it.
3769  SDVTList VTs = getVTList(VT1, VT2);
3770  SDOperand Ops[] = { Op1, Op2, Op3 };
3771  FoldingSetNodeID ID;
3772  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3773  void *IP = 0;
3774  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3775    return ON;
3776
3777  RemoveNodeFromCSEMaps(N);
3778
3779  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3780  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3781  return N;
3782}
3783
3784
3785/// getTargetNode - These are used for target selectors to create a new node
3786/// with specified return type(s), target opcode, and operands.
3787///
3788/// Note that getTargetNode returns the resultant node.  If there is already a
3789/// node of the specified opcode and operands, it returns that node instead of
3790/// the current one.
3791SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
3792  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3793}
3794SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDOperand Op1) {
3795  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3796}
3797SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
3798                                    SDOperand Op1, SDOperand Op2) {
3799  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3800}
3801SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
3802                                    SDOperand Op1, SDOperand Op2,
3803                                    SDOperand Op3) {
3804  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3805}
3806SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
3807                                    SDOperandPtr Ops, unsigned NumOps) {
3808  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3809}
3810SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
3811  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3812  SDOperand Op;
3813  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3814}
3815SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3816                                    MVT VT2, SDOperand Op1) {
3817  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3818  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3819}
3820SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3821                                    MVT VT2, SDOperand Op1,
3822                                    SDOperand Op2) {
3823  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3824  SDOperand Ops[] = { Op1, Op2 };
3825  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3826}
3827SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3828                                    MVT VT2, SDOperand Op1,
3829                                    SDOperand Op2, SDOperand Op3) {
3830  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3831  SDOperand Ops[] = { Op1, Op2, Op3 };
3832  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3833}
3834SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
3835                                    SDOperandPtr Ops, unsigned NumOps) {
3836  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3837  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3838}
3839SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
3840                                    SDOperand Op1, SDOperand Op2) {
3841  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
3842  SDOperand Ops[] = { Op1, Op2 };
3843  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3844}
3845SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
3846                                    SDOperand Op1, SDOperand Op2,
3847                                    SDOperand Op3) {
3848  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
3849  SDOperand Ops[] = { Op1, Op2, Op3 };
3850  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3851}
3852SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
3853                                    SDOperandPtr Ops, unsigned NumOps) {
3854  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
3855  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3856}
3857SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3858                                    MVT VT2, MVT VT3, MVT VT4,
3859                                    SDOperandPtr Ops, unsigned NumOps) {
3860  std::vector<MVT> VTList;
3861  VTList.push_back(VT1);
3862  VTList.push_back(VT2);
3863  VTList.push_back(VT3);
3864  VTList.push_back(VT4);
3865  const MVT *VTs = getNodeValueTypes(VTList);
3866  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3867}
3868SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3869                                    std::vector<MVT> &ResultTys,
3870                                    SDOperandPtr Ops, unsigned NumOps) {
3871  const MVT *VTs = getNodeValueTypes(ResultTys);
3872  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3873                 Ops, NumOps).Val;
3874}
3875
3876/// getNodeIfExists - Get the specified node if it's already available, or
3877/// else return NULL.
3878SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
3879                                      SDOperandPtr Ops, unsigned NumOps) {
3880  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3881    FoldingSetNodeID ID;
3882    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3883    void *IP = 0;
3884    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3885      return E;
3886  }
3887  return NULL;
3888}
3889
3890
3891/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3892/// This can cause recursive merging of nodes in the DAG.
3893///
3894/// This version assumes From has a single result value.
3895///
3896void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3897                                      DAGUpdateListener *UpdateListener) {
3898  SDNode *From = FromN.Val;
3899  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3900         "Cannot replace with this method!");
3901  assert(From != To.Val && "Cannot replace uses of with self");
3902
3903  while (!From->use_empty()) {
3904    SDNode::use_iterator UI = From->use_begin();
3905    SDNode *U = UI->getUser();
3906
3907    // This node is about to morph, remove its old self from the CSE maps.
3908    RemoveNodeFromCSEMaps(U);
3909    int operandNum = 0;
3910    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3911         I != E; ++I, ++operandNum)
3912      if (I->getVal() == From) {
3913        From->removeUser(operandNum, U);
3914        *I = To;
3915        I->setUser(U);
3916        To.Val->addUser(operandNum, U);
3917      }
3918
3919    // Now that we have modified U, add it back to the CSE maps.  If it already
3920    // exists there, recursively merge the results together.
3921    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3922      ReplaceAllUsesWith(U, Existing, UpdateListener);
3923      // U is now dead.  Inform the listener if it exists and delete it.
3924      if (UpdateListener)
3925        UpdateListener->NodeDeleted(U, Existing);
3926      DeleteNodeNotInCSEMaps(U);
3927    } else {
3928      // If the node doesn't already exist, we updated it.  Inform a listener if
3929      // it exists.
3930      if (UpdateListener)
3931        UpdateListener->NodeUpdated(U);
3932    }
3933  }
3934}
3935
3936/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3937/// This can cause recursive merging of nodes in the DAG.
3938///
3939/// This version assumes From/To have matching types and numbers of result
3940/// values.
3941///
3942void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3943                                      DAGUpdateListener *UpdateListener) {
3944  assert(From != To && "Cannot replace uses of with self");
3945  assert(From->getNumValues() == To->getNumValues() &&
3946         "Cannot use this version of ReplaceAllUsesWith!");
3947  if (From->getNumValues() == 1)   // If possible, use the faster version.
3948    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3949                              UpdateListener);
3950
3951  while (!From->use_empty()) {
3952    SDNode::use_iterator UI = From->use_begin();
3953    SDNode *U = UI->getUser();
3954
3955    // This node is about to morph, remove its old self from the CSE maps.
3956    RemoveNodeFromCSEMaps(U);
3957    int operandNum = 0;
3958    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3959         I != E; ++I, ++operandNum)
3960      if (I->getVal() == From) {
3961        From->removeUser(operandNum, U);
3962        I->getVal() = To;
3963        To->addUser(operandNum, U);
3964      }
3965
3966    // Now that we have modified U, add it back to the CSE maps.  If it already
3967    // exists there, recursively merge the results together.
3968    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3969      ReplaceAllUsesWith(U, Existing, UpdateListener);
3970      // U is now dead.  Inform the listener if it exists and delete it.
3971      if (UpdateListener)
3972        UpdateListener->NodeDeleted(U, Existing);
3973      DeleteNodeNotInCSEMaps(U);
3974    } else {
3975      // If the node doesn't already exist, we updated it.  Inform a listener if
3976      // it exists.
3977      if (UpdateListener)
3978        UpdateListener->NodeUpdated(U);
3979    }
3980  }
3981}
3982
3983/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3984/// This can cause recursive merging of nodes in the DAG.
3985///
3986/// This version can replace From with any result values.  To must match the
3987/// number and types of values returned by From.
3988void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3989                                      SDOperandPtr To,
3990                                      DAGUpdateListener *UpdateListener) {
3991  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3992    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3993
3994  while (!From->use_empty()) {
3995    SDNode::use_iterator UI = From->use_begin();
3996    SDNode *U = UI->getUser();
3997
3998    // This node is about to morph, remove its old self from the CSE maps.
3999    RemoveNodeFromCSEMaps(U);
4000    int operandNum = 0;
4001    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4002         I != E; ++I, ++operandNum)
4003      if (I->getVal() == From) {
4004        const SDOperand &ToOp = To[I->getSDOperand().ResNo];
4005        From->removeUser(operandNum, U);
4006        *I = ToOp;
4007        I->setUser(U);
4008        ToOp.Val->addUser(operandNum, U);
4009      }
4010
4011    // Now that we have modified U, add it back to the CSE maps.  If it already
4012    // exists there, recursively merge the results together.
4013    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4014      ReplaceAllUsesWith(U, Existing, UpdateListener);
4015      // U is now dead.  Inform the listener if it exists and delete it.
4016      if (UpdateListener)
4017        UpdateListener->NodeDeleted(U, Existing);
4018      DeleteNodeNotInCSEMaps(U);
4019    } else {
4020      // If the node doesn't already exist, we updated it.  Inform a listener if
4021      // it exists.
4022      if (UpdateListener)
4023        UpdateListener->NodeUpdated(U);
4024    }
4025  }
4026}
4027
4028namespace {
4029  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
4030  /// any deleted nodes from the set passed into its constructor and recursively
4031  /// notifies another update listener if specified.
4032  class ChainedSetUpdaterListener :
4033  public SelectionDAG::DAGUpdateListener {
4034    SmallSetVector<SDNode*, 16> &Set;
4035    SelectionDAG::DAGUpdateListener *Chain;
4036  public:
4037    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
4038                              SelectionDAG::DAGUpdateListener *chain)
4039      : Set(set), Chain(chain) {}
4040
4041    virtual void NodeDeleted(SDNode *N, SDNode *E) {
4042      Set.remove(N);
4043      if (Chain) Chain->NodeDeleted(N, E);
4044    }
4045    virtual void NodeUpdated(SDNode *N) {
4046      if (Chain) Chain->NodeUpdated(N);
4047    }
4048  };
4049}
4050
4051/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4052/// uses of other values produced by From.Val alone.  The Deleted vector is
4053/// handled the same way as for ReplaceAllUsesWith.
4054void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
4055                                             DAGUpdateListener *UpdateListener){
4056  assert(From != To && "Cannot replace a value with itself");
4057
4058  // Handle the simple, trivial, case efficiently.
4059  if (From.Val->getNumValues() == 1) {
4060    ReplaceAllUsesWith(From, To, UpdateListener);
4061    return;
4062  }
4063
4064  if (From.use_empty()) return;
4065
4066  // Get all of the users of From.Val.  We want these in a nice,
4067  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4068  SmallSetVector<SDNode*, 16> Users;
4069  for (SDNode::use_iterator UI = From.Val->use_begin(),
4070      E = From.Val->use_end(); UI != E; ++UI) {
4071    SDNode *User = UI->getUser();
4072    if (!Users.count(User))
4073      Users.insert(User);
4074  }
4075
4076  // When one of the recursive merges deletes nodes from the graph, we need to
4077  // make sure that UpdateListener is notified *and* that the node is removed
4078  // from Users if present.  CSUL does this.
4079  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
4080
4081  while (!Users.empty()) {
4082    // We know that this user uses some value of From.  If it is the right
4083    // value, update it.
4084    SDNode *User = Users.back();
4085    Users.pop_back();
4086
4087    // Scan for an operand that matches From.
4088    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4089    for (; Op != E; ++Op)
4090      if (*Op == From) break;
4091
4092    // If there are no matches, the user must use some other result of From.
4093    if (Op == E) continue;
4094
4095    // Okay, we know this user needs to be updated.  Remove its old self
4096    // from the CSE maps.
4097    RemoveNodeFromCSEMaps(User);
4098
4099    // Update all operands that match "From" in case there are multiple uses.
4100    for (; Op != E; ++Op) {
4101      if (*Op == From) {
4102        From.Val->removeUser(Op-User->op_begin(), User);
4103        *Op = To;
4104        Op->setUser(User);
4105        To.Val->addUser(Op-User->op_begin(), User);
4106      }
4107    }
4108
4109    // Now that we have modified User, add it back to the CSE maps.  If it
4110    // already exists there, recursively merge the results together.
4111    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4112    if (!Existing) {
4113      if (UpdateListener) UpdateListener->NodeUpdated(User);
4114      continue;  // Continue on to next user.
4115    }
4116
4117    // If there was already an existing matching node, use ReplaceAllUsesWith
4118    // to replace the dead one with the existing one.  This can cause
4119    // recursive merging of other unrelated nodes down the line.  The merging
4120    // can cause deletion of nodes that used the old value.  To handle this, we
4121    // use CSUL to remove them from the Users set.
4122    ReplaceAllUsesWith(User, Existing, &CSUL);
4123
4124    // User is now dead.  Notify a listener if present.
4125    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4126    DeleteNodeNotInCSEMaps(User);
4127  }
4128}
4129
4130/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
4131/// their allnodes order. It returns the maximum id.
4132unsigned SelectionDAG::AssignNodeIds() {
4133  unsigned Id = 0;
4134  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
4135    SDNode *N = I;
4136    N->setNodeId(Id++);
4137  }
4138  return Id;
4139}
4140
4141/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4142/// based on their topological order. It returns the maximum id and a vector
4143/// of the SDNodes* in assigned order by reference.
4144unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
4145  unsigned DAGSize = AllNodes.size();
4146  std::vector<unsigned> InDegree(DAGSize);
4147  std::vector<SDNode*> Sources;
4148
4149  // Use a two pass approach to avoid using a std::map which is slow.
4150  unsigned Id = 0;
4151  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
4152    SDNode *N = I;
4153    N->setNodeId(Id++);
4154    unsigned Degree = N->use_size();
4155    InDegree[N->getNodeId()] = Degree;
4156    if (Degree == 0)
4157      Sources.push_back(N);
4158  }
4159
4160  TopOrder.clear();
4161  while (!Sources.empty()) {
4162    SDNode *N = Sources.back();
4163    Sources.pop_back();
4164    TopOrder.push_back(N);
4165    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
4166      SDNode *P = I->getVal();
4167      unsigned Degree = --InDegree[P->getNodeId()];
4168      if (Degree == 0)
4169        Sources.push_back(P);
4170    }
4171  }
4172
4173  // Second pass, assign the actual topological order as node ids.
4174  Id = 0;
4175  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
4176       TI != TE; ++TI)
4177    (*TI)->setNodeId(Id++);
4178
4179  return Id;
4180}
4181
4182
4183
4184//===----------------------------------------------------------------------===//
4185//                              SDNode Class
4186//===----------------------------------------------------------------------===//
4187
4188// Out-of-line virtual method to give class a home.
4189void SDNode::ANCHOR() {}
4190void UnarySDNode::ANCHOR() {}
4191void BinarySDNode::ANCHOR() {}
4192void TernarySDNode::ANCHOR() {}
4193void HandleSDNode::ANCHOR() {}
4194void ConstantSDNode::ANCHOR() {}
4195void ConstantFPSDNode::ANCHOR() {}
4196void GlobalAddressSDNode::ANCHOR() {}
4197void FrameIndexSDNode::ANCHOR() {}
4198void JumpTableSDNode::ANCHOR() {}
4199void ConstantPoolSDNode::ANCHOR() {}
4200void BasicBlockSDNode::ANCHOR() {}
4201void SrcValueSDNode::ANCHOR() {}
4202void MemOperandSDNode::ANCHOR() {}
4203void RegisterSDNode::ANCHOR() {}
4204void DbgStopPointSDNode::ANCHOR() {}
4205void ExternalSymbolSDNode::ANCHOR() {}
4206void CondCodeSDNode::ANCHOR() {}
4207void ARG_FLAGSSDNode::ANCHOR() {}
4208void VTSDNode::ANCHOR() {}
4209void MemSDNode::ANCHOR() {}
4210void LoadSDNode::ANCHOR() {}
4211void StoreSDNode::ANCHOR() {}
4212void AtomicSDNode::ANCHOR() {}
4213
4214HandleSDNode::~HandleSDNode() {
4215  SDVTList VTs = { 0, 0 };
4216  MorphNodeTo(ISD::HANDLENODE, VTs, SDOperandPtr(), 0);  // Drops operand uses.
4217}
4218
4219GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4220                                         MVT VT, int o)
4221  : SDNode(isa<GlobalVariable>(GA) &&
4222           cast<GlobalVariable>(GA)->isThreadLocal() ?
4223           // Thread Local
4224           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4225           // Non Thread Local
4226           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4227           getSDVTList(VT)), Offset(o) {
4228  TheGlobal = const_cast<GlobalValue*>(GA);
4229}
4230
4231/// getMemOperand - Return a MachineMemOperand object describing the memory
4232/// reference performed by this atomic.
4233MachineMemOperand AtomicSDNode::getMemOperand() const {
4234  int Size = (getValueType(0).getSizeInBits() + 7) >> 3;
4235  int Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4236  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4237
4238  // Check if the atomic references a frame index
4239  const FrameIndexSDNode *FI =
4240  dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4241  if (!getSrcValue() && FI)
4242    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
4243                             FI->getIndex(), Size, getAlignment());
4244  else
4245    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4246                             Size, getAlignment());
4247}
4248
4249/// getMemOperand - Return a MachineMemOperand object describing the memory
4250/// reference performed by this load or store.
4251MachineMemOperand LSBaseSDNode::getMemOperand() const {
4252  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4253  int Flags =
4254    getOpcode() == ISD::LOAD ? MachineMemOperand::MOLoad :
4255                               MachineMemOperand::MOStore;
4256  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4257
4258  // Check if the load references a frame index, and does not have
4259  // an SV attached.
4260  const FrameIndexSDNode *FI =
4261    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4262  if (!getSrcValue() && FI)
4263    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
4264                             FI->getIndex(), Size, getAlignment());
4265  else
4266    return MachineMemOperand(getSrcValue(), Flags,
4267                             getSrcValueOffset(), Size, getAlignment());
4268}
4269
4270/// Profile - Gather unique data for the node.
4271///
4272void SDNode::Profile(FoldingSetNodeID &ID) {
4273  AddNodeIDNode(ID, this);
4274}
4275
4276/// getValueTypeList - Return a pointer to the specified value type.
4277///
4278const MVT *SDNode::getValueTypeList(MVT VT) {
4279  if (VT.isExtended()) {
4280    static std::set<MVT, MVT::compareRawBits> EVTs;
4281    return &(*EVTs.insert(VT).first);
4282  } else {
4283    static MVT VTs[MVT::LAST_VALUETYPE];
4284    VTs[VT.getSimpleVT()] = VT;
4285    return &VTs[VT.getSimpleVT()];
4286  }
4287}
4288
4289/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4290/// indicated value.  This method ignores uses of other values defined by this
4291/// operation.
4292bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4293  assert(Value < getNumValues() && "Bad value!");
4294
4295  // If there is only one value, this is easy.
4296  if (getNumValues() == 1)
4297    return use_size() == NUses;
4298  if (use_size() < NUses) return false;
4299
4300  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4301
4302  SmallPtrSet<SDNode*, 32> UsersHandled;
4303
4304  // TODO: Only iterate over uses of a given value of the node
4305  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4306    if (*UI == TheValue) {
4307      if (NUses == 0)
4308        return false;
4309      --NUses;
4310    }
4311  }
4312
4313  // Found exactly the right number of uses?
4314  return NUses == 0;
4315}
4316
4317
4318/// hasAnyUseOfValue - Return true if there are any use of the indicated
4319/// value. This method ignores uses of other values defined by this operation.
4320bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4321  assert(Value < getNumValues() && "Bad value!");
4322
4323  if (use_empty()) return false;
4324
4325  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4326
4327  SmallPtrSet<SDNode*, 32> UsersHandled;
4328
4329  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4330    SDNode *User = UI->getUser();
4331    if (User->getNumOperands() == 1 ||
4332        UsersHandled.insert(User))     // First time we've seen this?
4333      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
4334        if (User->getOperand(i) == TheValue) {
4335          return true;
4336        }
4337  }
4338
4339  return false;
4340}
4341
4342
4343/// isOnlyUseOf - Return true if this node is the only use of N.
4344///
4345bool SDNode::isOnlyUseOf(SDNode *N) const {
4346  bool Seen = false;
4347  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4348    SDNode *User = I->getUser();
4349    if (User == this)
4350      Seen = true;
4351    else
4352      return false;
4353  }
4354
4355  return Seen;
4356}
4357
4358/// isOperand - Return true if this node is an operand of N.
4359///
4360bool SDOperand::isOperandOf(SDNode *N) const {
4361  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4362    if (*this == N->getOperand(i))
4363      return true;
4364  return false;
4365}
4366
4367bool SDNode::isOperandOf(SDNode *N) const {
4368  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4369    if (this == N->OperandList[i].getVal())
4370      return true;
4371  return false;
4372}
4373
4374/// reachesChainWithoutSideEffects - Return true if this operand (which must
4375/// be a chain) reaches the specified operand without crossing any
4376/// side-effecting instructions.  In practice, this looks through token
4377/// factors and non-volatile loads.  In order to remain efficient, this only
4378/// looks a couple of nodes in, it does not do an exhaustive search.
4379bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
4380                                               unsigned Depth) const {
4381  if (*this == Dest) return true;
4382
4383  // Don't search too deeply, we just want to be able to see through
4384  // TokenFactor's etc.
4385  if (Depth == 0) return false;
4386
4387  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4388  // of the operands of the TF reach dest, then we can do the xform.
4389  if (getOpcode() == ISD::TokenFactor) {
4390    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4391      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4392        return true;
4393    return false;
4394  }
4395
4396  // Loads don't have side effects, look through them.
4397  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4398    if (!Ld->isVolatile())
4399      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4400  }
4401  return false;
4402}
4403
4404
4405static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4406                            SmallPtrSet<SDNode *, 32> &Visited) {
4407  if (found || !Visited.insert(N))
4408    return;
4409
4410  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4411    SDNode *Op = N->getOperand(i).Val;
4412    if (Op == P) {
4413      found = true;
4414      return;
4415    }
4416    findPredecessor(Op, P, found, Visited);
4417  }
4418}
4419
4420/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4421/// is either an operand of N or it can be reached by recursively traversing
4422/// up the operands.
4423/// NOTE: this is an expensive method. Use it carefully.
4424bool SDNode::isPredecessorOf(SDNode *N) const {
4425  SmallPtrSet<SDNode *, 32> Visited;
4426  bool found = false;
4427  findPredecessor(N, this, found, Visited);
4428  return found;
4429}
4430
4431uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4432  assert(Num < NumOperands && "Invalid child # of SDNode!");
4433  return cast<ConstantSDNode>(OperandList[Num])->getValue();
4434}
4435
4436std::string SDNode::getOperationName(const SelectionDAG *G) const {
4437  switch (getOpcode()) {
4438  default:
4439    if (getOpcode() < ISD::BUILTIN_OP_END)
4440      return "<<Unknown DAG Node>>";
4441    else {
4442      if (G) {
4443        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4444          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
4445            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
4446
4447        TargetLowering &TLI = G->getTargetLoweringInfo();
4448        const char *Name =
4449          TLI.getTargetNodeName(getOpcode());
4450        if (Name) return Name;
4451      }
4452
4453      return "<<Unknown Target Node>>";
4454    }
4455
4456  case ISD::PREFETCH:      return "Prefetch";
4457  case ISD::MEMBARRIER:    return "MemBarrier";
4458  case ISD::ATOMIC_CMP_SWAP:  return "AtomicCmpSwap";
4459  case ISD::ATOMIC_LOAD_ADD:  return "AtomicLoadAdd";
4460  case ISD::ATOMIC_LOAD_SUB:  return "AtomicLoadSub";
4461  case ISD::ATOMIC_LOAD_AND:  return "AtomicLoadAnd";
4462  case ISD::ATOMIC_LOAD_OR:   return "AtomicLoadOr";
4463  case ISD::ATOMIC_LOAD_XOR:  return "AtomicLoadXor";
4464  case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
4465  case ISD::ATOMIC_LOAD_MIN:  return "AtomicLoadMin";
4466  case ISD::ATOMIC_LOAD_MAX:  return "AtomicLoadMax";
4467  case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
4468  case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
4469  case ISD::ATOMIC_SWAP:   return "AtomicSWAP";
4470  case ISD::PCMARKER:      return "PCMarker";
4471  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4472  case ISD::SRCVALUE:      return "SrcValue";
4473  case ISD::MEMOPERAND:    return "MemOperand";
4474  case ISD::EntryToken:    return "EntryToken";
4475  case ISD::TokenFactor:   return "TokenFactor";
4476  case ISD::AssertSext:    return "AssertSext";
4477  case ISD::AssertZext:    return "AssertZext";
4478
4479  case ISD::BasicBlock:    return "BasicBlock";
4480  case ISD::ARG_FLAGS:     return "ArgFlags";
4481  case ISD::VALUETYPE:     return "ValueType";
4482  case ISD::Register:      return "Register";
4483
4484  case ISD::Constant:      return "Constant";
4485  case ISD::ConstantFP:    return "ConstantFP";
4486  case ISD::GlobalAddress: return "GlobalAddress";
4487  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4488  case ISD::FrameIndex:    return "FrameIndex";
4489  case ISD::JumpTable:     return "JumpTable";
4490  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4491  case ISD::RETURNADDR: return "RETURNADDR";
4492  case ISD::FRAMEADDR: return "FRAMEADDR";
4493  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4494  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4495  case ISD::EHSELECTION: return "EHSELECTION";
4496  case ISD::EH_RETURN: return "EH_RETURN";
4497  case ISD::ConstantPool:  return "ConstantPool";
4498  case ISD::ExternalSymbol: return "ExternalSymbol";
4499  case ISD::INTRINSIC_WO_CHAIN: {
4500    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
4501    return Intrinsic::getName((Intrinsic::ID)IID);
4502  }
4503  case ISD::INTRINSIC_VOID:
4504  case ISD::INTRINSIC_W_CHAIN: {
4505    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
4506    return Intrinsic::getName((Intrinsic::ID)IID);
4507  }
4508
4509  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4510  case ISD::TargetConstant: return "TargetConstant";
4511  case ISD::TargetConstantFP:return "TargetConstantFP";
4512  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4513  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4514  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4515  case ISD::TargetJumpTable:  return "TargetJumpTable";
4516  case ISD::TargetConstantPool:  return "TargetConstantPool";
4517  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4518
4519  case ISD::CopyToReg:     return "CopyToReg";
4520  case ISD::CopyFromReg:   return "CopyFromReg";
4521  case ISD::UNDEF:         return "undef";
4522  case ISD::MERGE_VALUES:  return "merge_values";
4523  case ISD::INLINEASM:     return "inlineasm";
4524  case ISD::LABEL:         return "label";
4525  case ISD::DECLARE:       return "declare";
4526  case ISD::HANDLENODE:    return "handlenode";
4527  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4528  case ISD::CALL:          return "call";
4529
4530  // Unary operators
4531  case ISD::FABS:   return "fabs";
4532  case ISD::FNEG:   return "fneg";
4533  case ISD::FSQRT:  return "fsqrt";
4534  case ISD::FSIN:   return "fsin";
4535  case ISD::FCOS:   return "fcos";
4536  case ISD::FPOWI:  return "fpowi";
4537  case ISD::FPOW:   return "fpow";
4538
4539  // Binary operators
4540  case ISD::ADD:    return "add";
4541  case ISD::SUB:    return "sub";
4542  case ISD::MUL:    return "mul";
4543  case ISD::MULHU:  return "mulhu";
4544  case ISD::MULHS:  return "mulhs";
4545  case ISD::SDIV:   return "sdiv";
4546  case ISD::UDIV:   return "udiv";
4547  case ISD::SREM:   return "srem";
4548  case ISD::UREM:   return "urem";
4549  case ISD::SMUL_LOHI:  return "smul_lohi";
4550  case ISD::UMUL_LOHI:  return "umul_lohi";
4551  case ISD::SDIVREM:    return "sdivrem";
4552  case ISD::UDIVREM:    return "divrem";
4553  case ISD::AND:    return "and";
4554  case ISD::OR:     return "or";
4555  case ISD::XOR:    return "xor";
4556  case ISD::SHL:    return "shl";
4557  case ISD::SRA:    return "sra";
4558  case ISD::SRL:    return "srl";
4559  case ISD::ROTL:   return "rotl";
4560  case ISD::ROTR:   return "rotr";
4561  case ISD::FADD:   return "fadd";
4562  case ISD::FSUB:   return "fsub";
4563  case ISD::FMUL:   return "fmul";
4564  case ISD::FDIV:   return "fdiv";
4565  case ISD::FREM:   return "frem";
4566  case ISD::FCOPYSIGN: return "fcopysign";
4567  case ISD::FGETSIGN:  return "fgetsign";
4568
4569  case ISD::SETCC:       return "setcc";
4570  case ISD::VSETCC:      return "vsetcc";
4571  case ISD::SELECT:      return "select";
4572  case ISD::SELECT_CC:   return "select_cc";
4573  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
4574  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
4575  case ISD::CONCAT_VECTORS:      return "concat_vectors";
4576  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
4577  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
4578  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
4579  case ISD::CARRY_FALSE:         return "carry_false";
4580  case ISD::ADDC:        return "addc";
4581  case ISD::ADDE:        return "adde";
4582  case ISD::SUBC:        return "subc";
4583  case ISD::SUBE:        return "sube";
4584  case ISD::SHL_PARTS:   return "shl_parts";
4585  case ISD::SRA_PARTS:   return "sra_parts";
4586  case ISD::SRL_PARTS:   return "srl_parts";
4587
4588  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
4589  case ISD::INSERT_SUBREG:      return "insert_subreg";
4590
4591  // Conversion operators.
4592  case ISD::SIGN_EXTEND: return "sign_extend";
4593  case ISD::ZERO_EXTEND: return "zero_extend";
4594  case ISD::ANY_EXTEND:  return "any_extend";
4595  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
4596  case ISD::TRUNCATE:    return "truncate";
4597  case ISD::FP_ROUND:    return "fp_round";
4598  case ISD::FLT_ROUNDS_: return "flt_rounds";
4599  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
4600  case ISD::FP_EXTEND:   return "fp_extend";
4601
4602  case ISD::SINT_TO_FP:  return "sint_to_fp";
4603  case ISD::UINT_TO_FP:  return "uint_to_fp";
4604  case ISD::FP_TO_SINT:  return "fp_to_sint";
4605  case ISD::FP_TO_UINT:  return "fp_to_uint";
4606  case ISD::BIT_CONVERT: return "bit_convert";
4607
4608    // Control flow instructions
4609  case ISD::BR:      return "br";
4610  case ISD::BRIND:   return "brind";
4611  case ISD::BR_JT:   return "br_jt";
4612  case ISD::BRCOND:  return "brcond";
4613  case ISD::BR_CC:   return "br_cc";
4614  case ISD::RET:     return "ret";
4615  case ISD::CALLSEQ_START:  return "callseq_start";
4616  case ISD::CALLSEQ_END:    return "callseq_end";
4617
4618    // Other operators
4619  case ISD::LOAD:               return "load";
4620  case ISD::STORE:              return "store";
4621  case ISD::VAARG:              return "vaarg";
4622  case ISD::VACOPY:             return "vacopy";
4623  case ISD::VAEND:              return "vaend";
4624  case ISD::VASTART:            return "vastart";
4625  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4626  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4627  case ISD::BUILD_PAIR:         return "build_pair";
4628  case ISD::STACKSAVE:          return "stacksave";
4629  case ISD::STACKRESTORE:       return "stackrestore";
4630  case ISD::TRAP:               return "trap";
4631
4632  // Bit manipulation
4633  case ISD::BSWAP:   return "bswap";
4634  case ISD::CTPOP:   return "ctpop";
4635  case ISD::CTTZ:    return "cttz";
4636  case ISD::CTLZ:    return "ctlz";
4637
4638  // Debug info
4639  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
4640  case ISD::DEBUG_LOC: return "debug_loc";
4641
4642  // Trampolines
4643  case ISD::TRAMPOLINE: return "trampoline";
4644
4645  case ISD::CONDCODE:
4646    switch (cast<CondCodeSDNode>(this)->get()) {
4647    default: assert(0 && "Unknown setcc condition!");
4648    case ISD::SETOEQ:  return "setoeq";
4649    case ISD::SETOGT:  return "setogt";
4650    case ISD::SETOGE:  return "setoge";
4651    case ISD::SETOLT:  return "setolt";
4652    case ISD::SETOLE:  return "setole";
4653    case ISD::SETONE:  return "setone";
4654
4655    case ISD::SETO:    return "seto";
4656    case ISD::SETUO:   return "setuo";
4657    case ISD::SETUEQ:  return "setue";
4658    case ISD::SETUGT:  return "setugt";
4659    case ISD::SETUGE:  return "setuge";
4660    case ISD::SETULT:  return "setult";
4661    case ISD::SETULE:  return "setule";
4662    case ISD::SETUNE:  return "setune";
4663
4664    case ISD::SETEQ:   return "seteq";
4665    case ISD::SETGT:   return "setgt";
4666    case ISD::SETGE:   return "setge";
4667    case ISD::SETLT:   return "setlt";
4668    case ISD::SETLE:   return "setle";
4669    case ISD::SETNE:   return "setne";
4670    }
4671  }
4672}
4673
4674const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4675  switch (AM) {
4676  default:
4677    return "";
4678  case ISD::PRE_INC:
4679    return "<pre-inc>";
4680  case ISD::PRE_DEC:
4681    return "<pre-dec>";
4682  case ISD::POST_INC:
4683    return "<post-inc>";
4684  case ISD::POST_DEC:
4685    return "<post-dec>";
4686  }
4687}
4688
4689std::string ISD::ArgFlagsTy::getArgFlagsString() {
4690  std::string S = "< ";
4691
4692  if (isZExt())
4693    S += "zext ";
4694  if (isSExt())
4695    S += "sext ";
4696  if (isInReg())
4697    S += "inreg ";
4698  if (isSRet())
4699    S += "sret ";
4700  if (isByVal())
4701    S += "byval ";
4702  if (isNest())
4703    S += "nest ";
4704  if (getByValAlign())
4705    S += "byval-align:" + utostr(getByValAlign()) + " ";
4706  if (getOrigAlign())
4707    S += "orig-align:" + utostr(getOrigAlign()) + " ";
4708  if (getByValSize())
4709    S += "byval-size:" + utostr(getByValSize()) + " ";
4710  return S + ">";
4711}
4712
4713void SDNode::dump() const { dump(0); }
4714void SDNode::dump(const SelectionDAG *G) const {
4715  cerr << (void*)this << ": ";
4716
4717  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4718    if (i) cerr << ",";
4719    if (getValueType(i) == MVT::Other)
4720      cerr << "ch";
4721    else
4722      cerr << getValueType(i).getMVTString();
4723  }
4724  cerr << " = " << getOperationName(G);
4725
4726  cerr << " ";
4727  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4728    if (i) cerr << ", ";
4729    cerr << (void*)getOperand(i).Val;
4730    if (unsigned RN = getOperand(i).ResNo)
4731      cerr << ":" << RN;
4732  }
4733
4734  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4735    SDNode *Mask = getOperand(2).Val;
4736    cerr << "<";
4737    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4738      if (i) cerr << ",";
4739      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4740        cerr << "u";
4741      else
4742        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4743    }
4744    cerr << ">";
4745  }
4746
4747  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4748    cerr << "<" << CSDN->getValue() << ">";
4749  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4750    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4751      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4752    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4753      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4754    else {
4755      cerr << "<APFloat(";
4756      CSDN->getValueAPF().convertToAPInt().dump();
4757      cerr << ")>";
4758    }
4759  } else if (const GlobalAddressSDNode *GADN =
4760             dyn_cast<GlobalAddressSDNode>(this)) {
4761    int offset = GADN->getOffset();
4762    cerr << "<";
4763    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4764    if (offset > 0)
4765      cerr << " + " << offset;
4766    else
4767      cerr << " " << offset;
4768  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4769    cerr << "<" << FIDN->getIndex() << ">";
4770  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4771    cerr << "<" << JTDN->getIndex() << ">";
4772  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4773    int offset = CP->getOffset();
4774    if (CP->isMachineConstantPoolEntry())
4775      cerr << "<" << *CP->getMachineCPVal() << ">";
4776    else
4777      cerr << "<" << *CP->getConstVal() << ">";
4778    if (offset > 0)
4779      cerr << " + " << offset;
4780    else
4781      cerr << " " << offset;
4782  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4783    cerr << "<";
4784    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4785    if (LBB)
4786      cerr << LBB->getName() << " ";
4787    cerr << (const void*)BBDN->getBasicBlock() << ">";
4788  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4789    if (G && R->getReg() &&
4790        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4791      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4792    } else {
4793      cerr << " #" << R->getReg();
4794    }
4795  } else if (const ExternalSymbolSDNode *ES =
4796             dyn_cast<ExternalSymbolSDNode>(this)) {
4797    cerr << "'" << ES->getSymbol() << "'";
4798  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4799    if (M->getValue())
4800      cerr << "<" << M->getValue() << ">";
4801    else
4802      cerr << "<null>";
4803  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4804    if (M->MO.getValue())
4805      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4806    else
4807      cerr << "<null:" << M->MO.getOffset() << ">";
4808  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
4809    cerr << N->getArgFlags().getArgFlagsString();
4810  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4811    cerr << ":" << N->getVT().getMVTString();
4812  }
4813  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4814    const Value *SrcValue = LD->getSrcValue();
4815    int SrcOffset = LD->getSrcValueOffset();
4816    cerr << " <";
4817    if (SrcValue)
4818      cerr << SrcValue;
4819    else
4820      cerr << "null";
4821    cerr << ":" << SrcOffset << ">";
4822
4823    bool doExt = true;
4824    switch (LD->getExtensionType()) {
4825    default: doExt = false; break;
4826    case ISD::EXTLOAD:
4827      cerr << " <anyext ";
4828      break;
4829    case ISD::SEXTLOAD:
4830      cerr << " <sext ";
4831      break;
4832    case ISD::ZEXTLOAD:
4833      cerr << " <zext ";
4834      break;
4835    }
4836    if (doExt)
4837      cerr << LD->getMemoryVT().getMVTString() << ">";
4838
4839    const char *AM = getIndexedModeName(LD->getAddressingMode());
4840    if (*AM)
4841      cerr << " " << AM;
4842    if (LD->isVolatile())
4843      cerr << " <volatile>";
4844    cerr << " alignment=" << LD->getAlignment();
4845  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4846    const Value *SrcValue = ST->getSrcValue();
4847    int SrcOffset = ST->getSrcValueOffset();
4848    cerr << " <";
4849    if (SrcValue)
4850      cerr << SrcValue;
4851    else
4852      cerr << "null";
4853    cerr << ":" << SrcOffset << ">";
4854
4855    if (ST->isTruncatingStore())
4856      cerr << " <trunc "
4857           << ST->getMemoryVT().getMVTString() << ">";
4858
4859    const char *AM = getIndexedModeName(ST->getAddressingMode());
4860    if (*AM)
4861      cerr << " " << AM;
4862    if (ST->isVolatile())
4863      cerr << " <volatile>";
4864    cerr << " alignment=" << ST->getAlignment();
4865  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
4866    const Value *SrcValue = AT->getSrcValue();
4867    int SrcOffset = AT->getSrcValueOffset();
4868    cerr << " <";
4869    if (SrcValue)
4870      cerr << SrcValue;
4871    else
4872      cerr << "null";
4873    cerr << ":" << SrcOffset << ">";
4874    if (AT->isVolatile())
4875      cerr << " <volatile>";
4876    cerr << " alignment=" << AT->getAlignment();
4877  }
4878}
4879
4880static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4881  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4882    if (N->getOperand(i).Val->hasOneUse())
4883      DumpNodes(N->getOperand(i).Val, indent+2, G);
4884    else
4885      cerr << "\n" << std::string(indent+2, ' ')
4886           << (void*)N->getOperand(i).Val << ": <multiple use>";
4887
4888
4889  cerr << "\n" << std::string(indent, ' ');
4890  N->dump(G);
4891}
4892
4893void SelectionDAG::dump() const {
4894  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4895  std::vector<const SDNode*> Nodes;
4896  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4897       I != E; ++I)
4898    Nodes.push_back(I);
4899
4900  std::sort(Nodes.begin(), Nodes.end());
4901
4902  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4903    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4904      DumpNodes(Nodes[i], 2, this);
4905  }
4906
4907  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4908
4909  cerr << "\n\n";
4910}
4911
4912const Type *ConstantPoolSDNode::getType() const {
4913  if (isMachineConstantPoolEntry())
4914    return Val.MachineCPVal->getType();
4915  return Val.ConstVal->getType();
4916}
4917