SelectionDAG.cpp revision 4c2454623841f05c6c665659b34c214950d12d7e
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallSet.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/StringExtras.h"
40#include <algorithm>
41#include <cmath>
42using namespace llvm;
43
44/// makeVTList - Return an instance of the SDVTList struct initialized with the
45/// specified members.
46static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
47  SDVTList Res = {VTs, NumVTs};
48  return Res;
49}
50
51static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
52  switch (VT.getSimpleVT()) {
53  default: assert(0 && "Unknown FP format");
54  case MVT::f32:     return &APFloat::IEEEsingle;
55  case MVT::f64:     return &APFloat::IEEEdouble;
56  case MVT::f80:     return &APFloat::x87DoubleExtended;
57  case MVT::f128:    return &APFloat::IEEEquad;
58  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
59  }
60}
61
62SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
63
64//===----------------------------------------------------------------------===//
65//                              ConstantFPSDNode Class
66//===----------------------------------------------------------------------===//
67
68/// isExactlyValue - We don't rely on operator== working on double values, as
69/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
70/// As such, this method can be used to do an exact bit-for-bit comparison of
71/// two floating point values.
72bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
73  return getValueAPF().bitwiseIsEqual(V);
74}
75
76bool ConstantFPSDNode::isValueValidForType(MVT VT,
77                                           const APFloat& Val) {
78  assert(VT.isFloatingPoint() && "Can only convert between FP types");
79
80  // PPC long double cannot be converted to any other type.
81  if (VT == MVT::ppcf128 ||
82      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
83    return false;
84
85  // convert modifies in place, so make a copy.
86  APFloat Val2 = APFloat(Val);
87  bool losesInfo;
88  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
89                      &losesInfo);
90  return !losesInfo;
91}
92
93//===----------------------------------------------------------------------===//
94//                              ISD Namespace
95//===----------------------------------------------------------------------===//
96
97/// isBuildVectorAllOnes - Return true if the specified node is a
98/// BUILD_VECTOR where all of the elements are ~0 or undef.
99bool ISD::isBuildVectorAllOnes(const SDNode *N) {
100  // Look through a bit convert.
101  if (N->getOpcode() == ISD::BIT_CONVERT)
102    N = N->getOperand(0).getNode();
103
104  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
105
106  unsigned i = 0, e = N->getNumOperands();
107
108  // Skip over all of the undef values.
109  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
110    ++i;
111
112  // Do not accept an all-undef vector.
113  if (i == e) return false;
114
115  // Do not accept build_vectors that aren't all constants or which have non-~0
116  // elements.
117  SDValue NotZero = N->getOperand(i);
118  if (isa<ConstantSDNode>(NotZero)) {
119    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
120      return false;
121  } else if (isa<ConstantFPSDNode>(NotZero)) {
122    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
123                bitcastToAPInt().isAllOnesValue())
124      return false;
125  } else
126    return false;
127
128  // Okay, we have at least one ~0 value, check to see if the rest match or are
129  // undefs.
130  for (++i; i != e; ++i)
131    if (N->getOperand(i) != NotZero &&
132        N->getOperand(i).getOpcode() != ISD::UNDEF)
133      return false;
134  return true;
135}
136
137
138/// isBuildVectorAllZeros - Return true if the specified node is a
139/// BUILD_VECTOR where all of the elements are 0 or undef.
140bool ISD::isBuildVectorAllZeros(const SDNode *N) {
141  // Look through a bit convert.
142  if (N->getOpcode() == ISD::BIT_CONVERT)
143    N = N->getOperand(0).getNode();
144
145  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
146
147  unsigned i = 0, e = N->getNumOperands();
148
149  // Skip over all of the undef values.
150  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
151    ++i;
152
153  // Do not accept an all-undef vector.
154  if (i == e) return false;
155
156  // Do not accept build_vectors that aren't all constants or which have non-~0
157  // elements.
158  SDValue Zero = N->getOperand(i);
159  if (isa<ConstantSDNode>(Zero)) {
160    if (!cast<ConstantSDNode>(Zero)->isNullValue())
161      return false;
162  } else if (isa<ConstantFPSDNode>(Zero)) {
163    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
164      return false;
165  } else
166    return false;
167
168  // Okay, we have at least one ~0 value, check to see if the rest match or are
169  // undefs.
170  for (++i; i != e; ++i)
171    if (N->getOperand(i) != Zero &&
172        N->getOperand(i).getOpcode() != ISD::UNDEF)
173      return false;
174  return true;
175}
176
177/// isScalarToVector - Return true if the specified node is a
178/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
179/// element is not an undef.
180bool ISD::isScalarToVector(const SDNode *N) {
181  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
182    return true;
183
184  if (N->getOpcode() != ISD::BUILD_VECTOR)
185    return false;
186  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
187    return false;
188  unsigned NumElems = N->getNumOperands();
189  for (unsigned i = 1; i < NumElems; ++i) {
190    SDValue V = N->getOperand(i);
191    if (V.getOpcode() != ISD::UNDEF)
192      return false;
193  }
194  return true;
195}
196
197
198/// isDebugLabel - Return true if the specified node represents a debug
199/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
200bool ISD::isDebugLabel(const SDNode *N) {
201  SDValue Zero;
202  if (N->getOpcode() == ISD::DBG_LABEL)
203    return true;
204  if (N->isMachineOpcode() &&
205      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
206    return true;
207  return false;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: assert(0 && "Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309const TargetMachine &SelectionDAG::getTarget() const {
310  return MF->getTarget();
311}
312
313//===----------------------------------------------------------------------===//
314//                           SDNode Profile Support
315//===----------------------------------------------------------------------===//
316
317/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
318///
319static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
320  ID.AddInteger(OpC);
321}
322
323/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
324/// solely with their pointer.
325static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
326  ID.AddPointer(VTList.VTs);
327}
328
329/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
330///
331static void AddNodeIDOperands(FoldingSetNodeID &ID,
332                              const SDValue *Ops, unsigned NumOps) {
333  for (; NumOps; --NumOps, ++Ops) {
334    ID.AddPointer(Ops->getNode());
335    ID.AddInteger(Ops->getResNo());
336  }
337}
338
339/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
340///
341static void AddNodeIDOperands(FoldingSetNodeID &ID,
342                              const SDUse *Ops, unsigned NumOps) {
343  for (; NumOps; --NumOps, ++Ops) {
344    ID.AddPointer(Ops->getVal());
345    ID.AddInteger(Ops->getSDValue().getResNo());
346  }
347}
348
349static void AddNodeIDNode(FoldingSetNodeID &ID,
350                          unsigned short OpC, SDVTList VTList,
351                          const SDValue *OpList, unsigned N) {
352  AddNodeIDOpcode(ID, OpC);
353  AddNodeIDValueTypes(ID, VTList);
354  AddNodeIDOperands(ID, OpList, N);
355}
356
357/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
358/// the NodeID data.
359static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
360  switch (N->getOpcode()) {
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::ARG_FLAGS:
363    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
364    break;
365  case ISD::TargetConstant:
366  case ISD::Constant:
367    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
368    break;
369  case ISD::TargetConstantFP:
370  case ISD::ConstantFP: {
371    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
372    break;
373  }
374  case ISD::TargetGlobalAddress:
375  case ISD::GlobalAddress:
376  case ISD::TargetGlobalTLSAddress:
377  case ISD::GlobalTLSAddress: {
378    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
379    ID.AddPointer(GA->getGlobal());
380    ID.AddInteger(GA->getOffset());
381    break;
382  }
383  case ISD::BasicBlock:
384    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
385    break;
386  case ISD::Register:
387    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
388    break;
389  case ISD::DBG_STOPPOINT: {
390    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
391    ID.AddInteger(DSP->getLine());
392    ID.AddInteger(DSP->getColumn());
393    ID.AddPointer(DSP->getCompileUnit());
394    break;
395  }
396  case ISD::SRCVALUE:
397    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
398    break;
399  case ISD::MEMOPERAND: {
400    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
401    MO.Profile(ID);
402    break;
403  }
404  case ISD::FrameIndex:
405  case ISD::TargetFrameIndex:
406    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
407    break;
408  case ISD::JumpTable:
409  case ISD::TargetJumpTable:
410    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
411    break;
412  case ISD::ConstantPool:
413  case ISD::TargetConstantPool: {
414    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
415    ID.AddInteger(CP->getAlignment());
416    ID.AddInteger(CP->getOffset());
417    if (CP->isMachineConstantPoolEntry())
418      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
419    else
420      ID.AddPointer(CP->getConstVal());
421    break;
422  }
423  case ISD::CALL: {
424    const CallSDNode *Call = cast<CallSDNode>(N);
425    ID.AddInteger(Call->getCallingConv());
426    ID.AddInteger(Call->isVarArg());
427    break;
428  }
429  case ISD::LOAD: {
430    const LoadSDNode *LD = cast<LoadSDNode>(N);
431    ID.AddInteger(LD->getAddressingMode());
432    ID.AddInteger(LD->getExtensionType());
433    ID.AddInteger(LD->getMemoryVT().getRawBits());
434    ID.AddInteger(LD->getRawFlags());
435    break;
436  }
437  case ISD::STORE: {
438    const StoreSDNode *ST = cast<StoreSDNode>(N);
439    ID.AddInteger(ST->getAddressingMode());
440    ID.AddInteger(ST->isTruncatingStore());
441    ID.AddInteger(ST->getMemoryVT().getRawBits());
442    ID.AddInteger(ST->getRawFlags());
443    break;
444  }
445  case ISD::ATOMIC_CMP_SWAP:
446  case ISD::ATOMIC_SWAP:
447  case ISD::ATOMIC_LOAD_ADD:
448  case ISD::ATOMIC_LOAD_SUB:
449  case ISD::ATOMIC_LOAD_AND:
450  case ISD::ATOMIC_LOAD_OR:
451  case ISD::ATOMIC_LOAD_XOR:
452  case ISD::ATOMIC_LOAD_NAND:
453  case ISD::ATOMIC_LOAD_MIN:
454  case ISD::ATOMIC_LOAD_MAX:
455  case ISD::ATOMIC_LOAD_UMIN:
456  case ISD::ATOMIC_LOAD_UMAX: {
457    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
458    ID.AddInteger(AT->getRawFlags());
459    break;
460  }
461  } // end switch (N->getOpcode())
462}
463
464/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
465/// data.
466static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
467  AddNodeIDOpcode(ID, N->getOpcode());
468  // Add the return value info.
469  AddNodeIDValueTypes(ID, N->getVTList());
470  // Add the operand info.
471  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
472
473  // Handle SDNode leafs with special info.
474  AddNodeIDCustom(ID, N);
475}
476
477/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
478/// the CSE map that carries both alignment and volatility information.
479///
480static inline unsigned
481encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
482  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
483}
484
485//===----------------------------------------------------------------------===//
486//                              SelectionDAG Class
487//===----------------------------------------------------------------------===//
488
489/// doNotCSE - Return true if CSE should not be performed for this node.
490static bool doNotCSE(SDNode *N) {
491  if (N->getValueType(0) == MVT::Flag)
492    return true; // Never CSE anything that produces a flag.
493
494  switch (N->getOpcode()) {
495  default: break;
496  case ISD::HANDLENODE:
497  case ISD::DBG_LABEL:
498  case ISD::DBG_STOPPOINT:
499  case ISD::EH_LABEL:
500  case ISD::DECLARE:
501    return true;   // Never CSE these nodes.
502  }
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return true; // Never CSE anything that produces a flag.
508
509  return false;
510}
511
512/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513/// SelectionDAG.
514void SelectionDAG::RemoveDeadNodes() {
515  // Create a dummy node (which is not added to allnodes), that adds a reference
516  // to the root node, preventing it from being deleted.
517  HandleSDNode Dummy(getRoot());
518
519  SmallVector<SDNode*, 128> DeadNodes;
520
521  // Add all obviously-dead nodes to the DeadNodes worklist.
522  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523    if (I->use_empty())
524      DeadNodes.push_back(I);
525
526  RemoveDeadNodes(DeadNodes);
527
528  // If the root changed (e.g. it was a dead load, update the root).
529  setRoot(Dummy.getValue());
530}
531
532/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533/// given list, and any nodes that become unreachable as a result.
534void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535                                   DAGUpdateListener *UpdateListener) {
536
537  // Process the worklist, deleting the nodes and adding their uses to the
538  // worklist.
539  while (!DeadNodes.empty()) {
540    SDNode *N = DeadNodes.back();
541    DeadNodes.pop_back();
542
543    if (UpdateListener)
544      UpdateListener->NodeDeleted(N, 0);
545
546    // Take the node out of the appropriate CSE map.
547    RemoveNodeFromCSEMaps(N);
548
549    // Next, brutally remove the operand list.  This is safe to do, as there are
550    // no cycles in the graph.
551    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
552      SDNode *Operand = I->getVal();
553      Operand->removeUser(std::distance(N->op_begin(), I), N);
554
555      // Now that we removed this operand, see if there are no uses of it left.
556      if (Operand->use_empty())
557        DeadNodes.push_back(Operand);
558    }
559
560    DeallocateNode(N);
561  }
562}
563
564void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
565  SmallVector<SDNode*, 16> DeadNodes(1, N);
566  RemoveDeadNodes(DeadNodes, UpdateListener);
567}
568
569void SelectionDAG::DeleteNode(SDNode *N) {
570  assert(N->use_empty() && "Cannot delete a node that is not dead!");
571
572  // First take this out of the appropriate CSE map.
573  RemoveNodeFromCSEMaps(N);
574
575  // Finally, remove uses due to operands of this node, remove from the
576  // AllNodes list, and delete the node.
577  DeleteNodeNotInCSEMaps(N);
578}
579
580void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
581  assert(N != AllNodes.begin());
582
583  // Drop all of the operands and decrement used node's use counts.
584  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
585    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
586
587  DeallocateNode(N);
588}
589
590void SelectionDAG::DeallocateNode(SDNode *N) {
591  if (N->OperandsNeedDelete)
592    delete[] N->OperandList;
593
594  // Set the opcode to DELETED_NODE to help catch bugs when node
595  // memory is reallocated.
596  N->NodeType = ISD::DELETED_NODE;
597
598  NodeAllocator.Deallocate(AllNodes.remove(N));
599}
600
601/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
602/// correspond to it.  This is useful when we're about to delete or repurpose
603/// the node.  We don't want future request for structurally identical nodes
604/// to return N anymore.
605bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
606  bool Erased = false;
607  switch (N->getOpcode()) {
608  case ISD::EntryToken:
609    assert(0 && "EntryToken should not be in CSEMaps!");
610    return false;
611  case ISD::HANDLENODE: return false;  // noop.
612  case ISD::CONDCODE:
613    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
614           "Cond code doesn't exist!");
615    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
616    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
617    break;
618  case ISD::ExternalSymbol:
619    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
620    break;
621  case ISD::TargetExternalSymbol:
622    Erased =
623      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624    break;
625  case ISD::VALUETYPE: {
626    MVT VT = cast<VTSDNode>(N)->getVT();
627    if (VT.isExtended()) {
628      Erased = ExtendedValueTypeNodes.erase(VT);
629    } else {
630      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
631      ValueTypeNodes[VT.getSimpleVT()] = 0;
632    }
633    break;
634  }
635  default:
636    // Remove it from the CSE Map.
637    Erased = CSEMap.RemoveNode(N);
638    break;
639  }
640#ifndef NDEBUG
641  // Verify that the node was actually in one of the CSE maps, unless it has a
642  // flag result (which cannot be CSE'd) or is one of the special cases that are
643  // not subject to CSE.
644  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
645      !N->isMachineOpcode() && !doNotCSE(N)) {
646    N->dump(this);
647    cerr << "\n";
648    assert(0 && "Node is not in map!");
649  }
650#endif
651  return Erased;
652}
653
654/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
655/// has been taken out and modified in some way.  If the specified node already
656/// exists in the CSE maps, do not modify the maps, but return the existing node
657/// instead.  If it doesn't exist, add it and return null.
658///
659SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
660  assert(N->getNumOperands() && "This is a leaf node!");
661
662  if (doNotCSE(N))
663    return 0;
664
665  SDNode *New = CSEMap.GetOrInsertNode(N);
666  if (New != N) return New;  // Node already existed.
667  return 0;
668}
669
670/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
671/// were replaced with those specified.  If this node is never memoized,
672/// return null, otherwise return a pointer to the slot it would take.  If a
673/// node already exists with these operands, the slot will be non-null.
674SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
675                                           void *&InsertPos) {
676  if (doNotCSE(N))
677    return 0;
678
679  SDValue Ops[] = { Op };
680  FoldingSetNodeID ID;
681  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
682  AddNodeIDCustom(ID, N);
683  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
684}
685
686/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
687/// were replaced with those specified.  If this node is never memoized,
688/// return null, otherwise return a pointer to the slot it would take.  If a
689/// node already exists with these operands, the slot will be non-null.
690SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
691                                           SDValue Op1, SDValue Op2,
692                                           void *&InsertPos) {
693  if (doNotCSE(N))
694    return 0;
695
696  SDValue Ops[] = { Op1, Op2 };
697  FoldingSetNodeID ID;
698  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
699  AddNodeIDCustom(ID, N);
700  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
701}
702
703
704/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
705/// were replaced with those specified.  If this node is never memoized,
706/// return null, otherwise return a pointer to the slot it would take.  If a
707/// node already exists with these operands, the slot will be non-null.
708SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
709                                           const SDValue *Ops,unsigned NumOps,
710                                           void *&InsertPos) {
711  if (doNotCSE(N))
712    return 0;
713
714  FoldingSetNodeID ID;
715  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
716  AddNodeIDCustom(ID, N);
717  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
718}
719
720/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
721void SelectionDAG::VerifyNode(SDNode *N) {
722  switch (N->getOpcode()) {
723  default:
724    break;
725  case ISD::BUILD_PAIR: {
726    MVT VT = N->getValueType(0);
727    assert(N->getNumValues() == 1 && "Too many results!");
728    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
729           "Wrong return type!");
730    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
731    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
732           "Mismatched operand types!");
733    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
734           "Wrong operand type!");
735    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
736           "Wrong return type size");
737    break;
738  }
739  case ISD::BUILD_VECTOR: {
740    assert(N->getNumValues() == 1 && "Too many results!");
741    assert(N->getValueType(0).isVector() && "Wrong return type!");
742    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
743           "Wrong number of operands!");
744    // FIXME: Change vector_shuffle to a variadic node with mask elements being
745    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
746    // operand, and it is not always possible to legalize it.  Turning off the
747    // following checks at least makes it possible to legalize most of the time.
748//    MVT EltVT = N->getValueType(0).getVectorElementType();
749//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
750//      assert(I->getSDValue().getValueType() == EltVT &&
751//             "Wrong operand type!");
752    break;
753  }
754  }
755}
756
757/// getMVTAlignment - Compute the default alignment value for the
758/// given type.
759///
760unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
761  const Type *Ty = VT == MVT::iPTR ?
762                   PointerType::get(Type::Int8Ty, 0) :
763                   VT.getTypeForMVT();
764
765  return TLI.getTargetData()->getABITypeAlignment(Ty);
766}
767
768SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
769  : TLI(tli), FLI(fli),
770    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
771    Root(getEntryNode()) {
772  AllNodes.push_back(&EntryNode);
773}
774
775void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
776                        DwarfWriter *dw) {
777  MF = &mf;
778  MMI = mmi;
779  DW = dw;
780}
781
782SelectionDAG::~SelectionDAG() {
783  allnodes_clear();
784}
785
786void SelectionDAG::allnodes_clear() {
787  assert(&*AllNodes.begin() == &EntryNode);
788  AllNodes.remove(AllNodes.begin());
789  while (!AllNodes.empty())
790    DeallocateNode(AllNodes.begin());
791}
792
793void SelectionDAG::clear() {
794  allnodes_clear();
795  OperandAllocator.Reset();
796  CSEMap.clear();
797
798  ExtendedValueTypeNodes.clear();
799  ExternalSymbols.clear();
800  TargetExternalSymbols.clear();
801  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
802            static_cast<CondCodeSDNode*>(0));
803  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
804            static_cast<SDNode*>(0));
805
806  EntryNode.Uses = 0;
807  AllNodes.push_back(&EntryNode);
808  Root = getEntryNode();
809}
810
811SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
812  if (Op.getValueType() == VT) return Op;
813  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
814                                   VT.getSizeInBits());
815  return getNode(ISD::AND, Op.getValueType(), Op,
816                 getConstant(Imm, Op.getValueType()));
817}
818
819/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
820///
821SDValue SelectionDAG::getNOT(SDValue Val, MVT VT) {
822  SDValue NegOne;
823  if (VT.isVector()) {
824    MVT EltVT = VT.getVectorElementType();
825    SDValue NegOneElt = getConstant(EltVT.getIntegerVTBitMask(), EltVT);
826    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
827    NegOne = getNode(ISD::BUILD_VECTOR, VT, &NegOnes[0], NegOnes.size());
828  } else
829    NegOne = getConstant(VT.getIntegerVTBitMask(), VT);
830
831  return getNode(ISD::XOR, VT, Val, NegOne);
832}
833
834SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
835  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
836  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
837}
838
839SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
840  return getConstant(*ConstantInt::get(Val), VT, isT);
841}
842
843SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
844  assert(VT.isInteger() && "Cannot create FP integer constant!");
845
846  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
847  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
848         "APInt size does not match type size!");
849
850  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
851  FoldingSetNodeID ID;
852  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
853  ID.AddPointer(&Val);
854  void *IP = 0;
855  SDNode *N = NULL;
856  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
857    if (!VT.isVector())
858      return SDValue(N, 0);
859  if (!N) {
860    N = NodeAllocator.Allocate<ConstantSDNode>();
861    new (N) ConstantSDNode(isT, &Val, EltVT);
862    CSEMap.InsertNode(N, IP);
863    AllNodes.push_back(N);
864  }
865
866  SDValue Result(N, 0);
867  if (VT.isVector()) {
868    SmallVector<SDValue, 8> Ops;
869    Ops.assign(VT.getVectorNumElements(), Result);
870    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
871  }
872  return Result;
873}
874
875SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
876  return getConstant(Val, TLI.getPointerTy(), isTarget);
877}
878
879
880SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
881  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
882}
883
884SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
885  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
886
887  MVT EltVT =
888    VT.isVector() ? VT.getVectorElementType() : VT;
889
890  // Do the map lookup using the actual bit pattern for the floating point
891  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
892  // we don't have issues with SNANs.
893  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
894  FoldingSetNodeID ID;
895  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
896  ID.AddPointer(&V);
897  void *IP = 0;
898  SDNode *N = NULL;
899  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
900    if (!VT.isVector())
901      return SDValue(N, 0);
902  if (!N) {
903    N = NodeAllocator.Allocate<ConstantFPSDNode>();
904    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
905    CSEMap.InsertNode(N, IP);
906    AllNodes.push_back(N);
907  }
908
909  SDValue Result(N, 0);
910  if (VT.isVector()) {
911    SmallVector<SDValue, 8> Ops;
912    Ops.assign(VT.getVectorNumElements(), Result);
913    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
914  }
915  return Result;
916}
917
918SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
919  MVT EltVT =
920    VT.isVector() ? VT.getVectorElementType() : VT;
921  if (EltVT==MVT::f32)
922    return getConstantFP(APFloat((float)Val), VT, isTarget);
923  else
924    return getConstantFP(APFloat(Val), VT, isTarget);
925}
926
927SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
928                                       MVT VT, int64_t Offset,
929                                       bool isTargetGA) {
930  unsigned Opc;
931
932  // Truncate (with sign-extension) the offset value to the pointer size.
933  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
934  if (BitWidth < 64)
935    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
936
937  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
938  if (!GVar) {
939    // If GV is an alias then use the aliasee for determining thread-localness.
940    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
941      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
942  }
943
944  if (GVar && GVar->isThreadLocal())
945    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
946  else
947    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
948
949  FoldingSetNodeID ID;
950  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
951  ID.AddPointer(GV);
952  ID.AddInteger(Offset);
953  void *IP = 0;
954  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
955   return SDValue(E, 0);
956  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
957  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
958  CSEMap.InsertNode(N, IP);
959  AllNodes.push_back(N);
960  return SDValue(N, 0);
961}
962
963SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
964  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
965  FoldingSetNodeID ID;
966  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
967  ID.AddInteger(FI);
968  void *IP = 0;
969  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
970    return SDValue(E, 0);
971  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
972  new (N) FrameIndexSDNode(FI, VT, isTarget);
973  CSEMap.InsertNode(N, IP);
974  AllNodes.push_back(N);
975  return SDValue(N, 0);
976}
977
978SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
979  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
980  FoldingSetNodeID ID;
981  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
982  ID.AddInteger(JTI);
983  void *IP = 0;
984  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
985    return SDValue(E, 0);
986  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
987  new (N) JumpTableSDNode(JTI, VT, isTarget);
988  CSEMap.InsertNode(N, IP);
989  AllNodes.push_back(N);
990  return SDValue(N, 0);
991}
992
993SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
994                                      unsigned Alignment, int Offset,
995                                      bool isTarget) {
996  if (Alignment == 0)
997    Alignment =
998      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
999  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1000  FoldingSetNodeID ID;
1001  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1002  ID.AddInteger(Alignment);
1003  ID.AddInteger(Offset);
1004  ID.AddPointer(C);
1005  void *IP = 0;
1006  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1007    return SDValue(E, 0);
1008  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1009  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1010  CSEMap.InsertNode(N, IP);
1011  AllNodes.push_back(N);
1012  return SDValue(N, 0);
1013}
1014
1015
1016SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1017                                      unsigned Alignment, int Offset,
1018                                      bool isTarget) {
1019  if (Alignment == 0)
1020    Alignment =
1021      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1022  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1023  FoldingSetNodeID ID;
1024  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1025  ID.AddInteger(Alignment);
1026  ID.AddInteger(Offset);
1027  C->AddSelectionDAGCSEId(ID);
1028  void *IP = 0;
1029  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1030    return SDValue(E, 0);
1031  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1032  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1033  CSEMap.InsertNode(N, IP);
1034  AllNodes.push_back(N);
1035  return SDValue(N, 0);
1036}
1037
1038
1039SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1040  FoldingSetNodeID ID;
1041  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1042  ID.AddPointer(MBB);
1043  void *IP = 0;
1044  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1045    return SDValue(E, 0);
1046  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1047  new (N) BasicBlockSDNode(MBB);
1048  CSEMap.InsertNode(N, IP);
1049  AllNodes.push_back(N);
1050  return SDValue(N, 0);
1051}
1052
1053SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1054  FoldingSetNodeID ID;
1055  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1056  ID.AddInteger(Flags.getRawBits());
1057  void *IP = 0;
1058  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1059    return SDValue(E, 0);
1060  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1061  new (N) ARG_FLAGSSDNode(Flags);
1062  CSEMap.InsertNode(N, IP);
1063  AllNodes.push_back(N);
1064  return SDValue(N, 0);
1065}
1066
1067SDValue SelectionDAG::getValueType(MVT VT) {
1068  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1069    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1070
1071  SDNode *&N = VT.isExtended() ?
1072    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1073
1074  if (N) return SDValue(N, 0);
1075  N = NodeAllocator.Allocate<VTSDNode>();
1076  new (N) VTSDNode(VT);
1077  AllNodes.push_back(N);
1078  return SDValue(N, 0);
1079}
1080
1081SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1082  SDNode *&N = ExternalSymbols[Sym];
1083  if (N) return SDValue(N, 0);
1084  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1085  new (N) ExternalSymbolSDNode(false, Sym, VT);
1086  AllNodes.push_back(N);
1087  return SDValue(N, 0);
1088}
1089
1090SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1091  SDNode *&N = TargetExternalSymbols[Sym];
1092  if (N) return SDValue(N, 0);
1093  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1094  new (N) ExternalSymbolSDNode(true, Sym, VT);
1095  AllNodes.push_back(N);
1096  return SDValue(N, 0);
1097}
1098
1099SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1100  if ((unsigned)Cond >= CondCodeNodes.size())
1101    CondCodeNodes.resize(Cond+1);
1102
1103  if (CondCodeNodes[Cond] == 0) {
1104    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1105    new (N) CondCodeSDNode(Cond);
1106    CondCodeNodes[Cond] = N;
1107    AllNodes.push_back(N);
1108  }
1109  return SDValue(CondCodeNodes[Cond], 0);
1110}
1111
1112SDValue SelectionDAG::getConvertRndSat(MVT VT, SDValue Val, SDValue DTy,
1113                                       SDValue STy, SDValue Rnd, SDValue Sat,
1114                                       ISD::CvtCode Code) {
1115  // If the src and dest types are the same, no conversion is necessary.
1116  if (DTy == STy)
1117    return Val;
1118
1119  FoldingSetNodeID ID;
1120  void* IP = 0;
1121  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1122    return SDValue(E, 0);
1123  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1124  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1125  new (N) CvtRndSatSDNode(VT, Ops, 5, Code);
1126  CSEMap.InsertNode(N, IP);
1127  AllNodes.push_back(N);
1128  return SDValue(N, 0);
1129}
1130
1131SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1132  FoldingSetNodeID ID;
1133  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1134  ID.AddInteger(RegNo);
1135  void *IP = 0;
1136  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1137    return SDValue(E, 0);
1138  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1139  new (N) RegisterSDNode(RegNo, VT);
1140  CSEMap.InsertNode(N, IP);
1141  AllNodes.push_back(N);
1142  return SDValue(N, 0);
1143}
1144
1145SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1146                                      unsigned Line, unsigned Col,
1147                                      Value *CU) {
1148  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1149  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1150  AllNodes.push_back(N);
1151  return SDValue(N, 0);
1152}
1153
1154SDValue SelectionDAG::getLabel(unsigned Opcode,
1155                               SDValue Root,
1156                               unsigned LabelID) {
1157  FoldingSetNodeID ID;
1158  SDValue Ops[] = { Root };
1159  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1160  ID.AddInteger(LabelID);
1161  void *IP = 0;
1162  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1163    return SDValue(E, 0);
1164  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1165  new (N) LabelSDNode(Opcode, Root, LabelID);
1166  CSEMap.InsertNode(N, IP);
1167  AllNodes.push_back(N);
1168  return SDValue(N, 0);
1169}
1170
1171SDValue SelectionDAG::getSrcValue(const Value *V) {
1172  assert((!V || isa<PointerType>(V->getType())) &&
1173         "SrcValue is not a pointer?");
1174
1175  FoldingSetNodeID ID;
1176  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1177  ID.AddPointer(V);
1178
1179  void *IP = 0;
1180  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1181    return SDValue(E, 0);
1182
1183  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1184  new (N) SrcValueSDNode(V);
1185  CSEMap.InsertNode(N, IP);
1186  AllNodes.push_back(N);
1187  return SDValue(N, 0);
1188}
1189
1190SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1191#ifndef NDEBUG
1192  const Value *v = MO.getValue();
1193  assert((!v || isa<PointerType>(v->getType())) &&
1194         "SrcValue is not a pointer?");
1195#endif
1196
1197  FoldingSetNodeID ID;
1198  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1199  MO.Profile(ID);
1200
1201  void *IP = 0;
1202  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1203    return SDValue(E, 0);
1204
1205  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1206  new (N) MemOperandSDNode(MO);
1207  CSEMap.InsertNode(N, IP);
1208  AllNodes.push_back(N);
1209  return SDValue(N, 0);
1210}
1211
1212/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1213/// specified value type.
1214SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1215  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1216  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1217  const Type *Ty = VT.getTypeForMVT();
1218  unsigned StackAlign =
1219  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1220
1221  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1222  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1223}
1224
1225/// CreateStackTemporary - Create a stack temporary suitable for holding
1226/// either of the specified value types.
1227SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1228  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1229                            VT2.getStoreSizeInBits())/8;
1230  const Type *Ty1 = VT1.getTypeForMVT();
1231  const Type *Ty2 = VT2.getTypeForMVT();
1232  const TargetData *TD = TLI.getTargetData();
1233  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1234                            TD->getPrefTypeAlignment(Ty2));
1235
1236  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1237  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1238  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1239}
1240
1241SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1242                                SDValue N2, ISD::CondCode Cond) {
1243  // These setcc operations always fold.
1244  switch (Cond) {
1245  default: break;
1246  case ISD::SETFALSE:
1247  case ISD::SETFALSE2: return getConstant(0, VT);
1248  case ISD::SETTRUE:
1249  case ISD::SETTRUE2:  return getConstant(1, VT);
1250
1251  case ISD::SETOEQ:
1252  case ISD::SETOGT:
1253  case ISD::SETOGE:
1254  case ISD::SETOLT:
1255  case ISD::SETOLE:
1256  case ISD::SETONE:
1257  case ISD::SETO:
1258  case ISD::SETUO:
1259  case ISD::SETUEQ:
1260  case ISD::SETUNE:
1261    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1262    break;
1263  }
1264
1265  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1266    const APInt &C2 = N2C->getAPIntValue();
1267    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1268      const APInt &C1 = N1C->getAPIntValue();
1269
1270      switch (Cond) {
1271      default: assert(0 && "Unknown integer setcc!");
1272      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1273      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1274      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1275      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1276      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1277      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1278      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1279      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1280      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1281      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1282      }
1283    }
1284  }
1285  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1286    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1287      // No compile time operations on this type yet.
1288      if (N1C->getValueType(0) == MVT::ppcf128)
1289        return SDValue();
1290
1291      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1292      switch (Cond) {
1293      default: break;
1294      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1295                          return getNode(ISD::UNDEF, VT);
1296                        // fall through
1297      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1298      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1299                          return getNode(ISD::UNDEF, VT);
1300                        // fall through
1301      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1302                                           R==APFloat::cmpLessThan, VT);
1303      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1304                          return getNode(ISD::UNDEF, VT);
1305                        // fall through
1306      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1307      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1308                          return getNode(ISD::UNDEF, VT);
1309                        // fall through
1310      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1311      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1312                          return getNode(ISD::UNDEF, VT);
1313                        // fall through
1314      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1315                                           R==APFloat::cmpEqual, VT);
1316      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1317                          return getNode(ISD::UNDEF, VT);
1318                        // fall through
1319      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1320                                           R==APFloat::cmpEqual, VT);
1321      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1322      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1323      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1324                                           R==APFloat::cmpEqual, VT);
1325      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1326      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1327                                           R==APFloat::cmpLessThan, VT);
1328      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1329                                           R==APFloat::cmpUnordered, VT);
1330      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1331      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1332      }
1333    } else {
1334      // Ensure that the constant occurs on the RHS.
1335      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1336    }
1337  }
1338
1339  // Could not fold it.
1340  return SDValue();
1341}
1342
1343/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1344/// use this predicate to simplify operations downstream.
1345bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1346  unsigned BitWidth = Op.getValueSizeInBits();
1347  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1348}
1349
1350/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1351/// this predicate to simplify operations downstream.  Mask is known to be zero
1352/// for bits that V cannot have.
1353bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1354                                     unsigned Depth) const {
1355  APInt KnownZero, KnownOne;
1356  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1357  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1358  return (KnownZero & Mask) == Mask;
1359}
1360
1361/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1362/// known to be either zero or one and return them in the KnownZero/KnownOne
1363/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1364/// processing.
1365void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1366                                     APInt &KnownZero, APInt &KnownOne,
1367                                     unsigned Depth) const {
1368  unsigned BitWidth = Mask.getBitWidth();
1369  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1370         "Mask size mismatches value type size!");
1371
1372  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1373  if (Depth == 6 || Mask == 0)
1374    return;  // Limit search depth.
1375
1376  APInt KnownZero2, KnownOne2;
1377
1378  switch (Op.getOpcode()) {
1379  case ISD::Constant:
1380    // We know all of the bits for a constant!
1381    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1382    KnownZero = ~KnownOne & Mask;
1383    return;
1384  case ISD::AND:
1385    // If either the LHS or the RHS are Zero, the result is zero.
1386    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1387    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1388                      KnownZero2, KnownOne2, Depth+1);
1389    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1390    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1391
1392    // Output known-1 bits are only known if set in both the LHS & RHS.
1393    KnownOne &= KnownOne2;
1394    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1395    KnownZero |= KnownZero2;
1396    return;
1397  case ISD::OR:
1398    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1399    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1400                      KnownZero2, KnownOne2, Depth+1);
1401    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1402    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1403
1404    // Output known-0 bits are only known if clear in both the LHS & RHS.
1405    KnownZero &= KnownZero2;
1406    // Output known-1 are known to be set if set in either the LHS | RHS.
1407    KnownOne |= KnownOne2;
1408    return;
1409  case ISD::XOR: {
1410    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1411    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1412    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1413    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1414
1415    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1416    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1417    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1418    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1419    KnownZero = KnownZeroOut;
1420    return;
1421  }
1422  case ISD::MUL: {
1423    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1424    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1425    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1426    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1427    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1428
1429    // If low bits are zero in either operand, output low known-0 bits.
1430    // Also compute a conserative estimate for high known-0 bits.
1431    // More trickiness is possible, but this is sufficient for the
1432    // interesting case of alignment computation.
1433    KnownOne.clear();
1434    unsigned TrailZ = KnownZero.countTrailingOnes() +
1435                      KnownZero2.countTrailingOnes();
1436    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1437                               KnownZero2.countLeadingOnes(),
1438                               BitWidth) - BitWidth;
1439
1440    TrailZ = std::min(TrailZ, BitWidth);
1441    LeadZ = std::min(LeadZ, BitWidth);
1442    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1443                APInt::getHighBitsSet(BitWidth, LeadZ);
1444    KnownZero &= Mask;
1445    return;
1446  }
1447  case ISD::UDIV: {
1448    // For the purposes of computing leading zeros we can conservatively
1449    // treat a udiv as a logical right shift by the power of 2 known to
1450    // be less than the denominator.
1451    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1452    ComputeMaskedBits(Op.getOperand(0),
1453                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1454    unsigned LeadZ = KnownZero2.countLeadingOnes();
1455
1456    KnownOne2.clear();
1457    KnownZero2.clear();
1458    ComputeMaskedBits(Op.getOperand(1),
1459                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1460    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1461    if (RHSUnknownLeadingOnes != BitWidth)
1462      LeadZ = std::min(BitWidth,
1463                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1464
1465    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1466    return;
1467  }
1468  case ISD::SELECT:
1469    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1470    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1471    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1472    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1473
1474    // Only known if known in both the LHS and RHS.
1475    KnownOne &= KnownOne2;
1476    KnownZero &= KnownZero2;
1477    return;
1478  case ISD::SELECT_CC:
1479    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1480    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1481    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1482    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1483
1484    // Only known if known in both the LHS and RHS.
1485    KnownOne &= KnownOne2;
1486    KnownZero &= KnownZero2;
1487    return;
1488  case ISD::SADDO:
1489  case ISD::UADDO:
1490  case ISD::SSUBO:
1491  case ISD::USUBO:
1492  case ISD::SMULO:
1493  case ISD::UMULO:
1494    if (Op.getResNo() != 1)
1495      return;
1496    // The boolean result conforms to getBooleanContents.  Fall through.
1497  case ISD::SETCC:
1498    // If we know the result of a setcc has the top bits zero, use this info.
1499    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1500        BitWidth > 1)
1501      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1502    return;
1503  case ISD::SHL:
1504    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1505    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1506      unsigned ShAmt = SA->getZExtValue();
1507
1508      // If the shift count is an invalid immediate, don't do anything.
1509      if (ShAmt >= BitWidth)
1510        return;
1511
1512      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1513                        KnownZero, KnownOne, Depth+1);
1514      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1515      KnownZero <<= ShAmt;
1516      KnownOne  <<= ShAmt;
1517      // low bits known zero.
1518      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1519    }
1520    return;
1521  case ISD::SRL:
1522    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1523    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1524      unsigned ShAmt = SA->getZExtValue();
1525
1526      // If the shift count is an invalid immediate, don't do anything.
1527      if (ShAmt >= BitWidth)
1528        return;
1529
1530      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1531                        KnownZero, KnownOne, Depth+1);
1532      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1533      KnownZero = KnownZero.lshr(ShAmt);
1534      KnownOne  = KnownOne.lshr(ShAmt);
1535
1536      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1537      KnownZero |= HighBits;  // High bits known zero.
1538    }
1539    return;
1540  case ISD::SRA:
1541    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1542      unsigned ShAmt = SA->getZExtValue();
1543
1544      // If the shift count is an invalid immediate, don't do anything.
1545      if (ShAmt >= BitWidth)
1546        return;
1547
1548      APInt InDemandedMask = (Mask << ShAmt);
1549      // If any of the demanded bits are produced by the sign extension, we also
1550      // demand the input sign bit.
1551      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1552      if (HighBits.getBoolValue())
1553        InDemandedMask |= APInt::getSignBit(BitWidth);
1554
1555      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1556                        Depth+1);
1557      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1558      KnownZero = KnownZero.lshr(ShAmt);
1559      KnownOne  = KnownOne.lshr(ShAmt);
1560
1561      // Handle the sign bits.
1562      APInt SignBit = APInt::getSignBit(BitWidth);
1563      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1564
1565      if (KnownZero.intersects(SignBit)) {
1566        KnownZero |= HighBits;  // New bits are known zero.
1567      } else if (KnownOne.intersects(SignBit)) {
1568        KnownOne  |= HighBits;  // New bits are known one.
1569      }
1570    }
1571    return;
1572  case ISD::SIGN_EXTEND_INREG: {
1573    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1574    unsigned EBits = EVT.getSizeInBits();
1575
1576    // Sign extension.  Compute the demanded bits in the result that are not
1577    // present in the input.
1578    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1579
1580    APInt InSignBit = APInt::getSignBit(EBits);
1581    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1582
1583    // If the sign extended bits are demanded, we know that the sign
1584    // bit is demanded.
1585    InSignBit.zext(BitWidth);
1586    if (NewBits.getBoolValue())
1587      InputDemandedBits |= InSignBit;
1588
1589    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1590                      KnownZero, KnownOne, Depth+1);
1591    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1592
1593    // If the sign bit of the input is known set or clear, then we know the
1594    // top bits of the result.
1595    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1596      KnownZero |= NewBits;
1597      KnownOne  &= ~NewBits;
1598    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1599      KnownOne  |= NewBits;
1600      KnownZero &= ~NewBits;
1601    } else {                              // Input sign bit unknown
1602      KnownZero &= ~NewBits;
1603      KnownOne  &= ~NewBits;
1604    }
1605    return;
1606  }
1607  case ISD::CTTZ:
1608  case ISD::CTLZ:
1609  case ISD::CTPOP: {
1610    unsigned LowBits = Log2_32(BitWidth)+1;
1611    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1612    KnownOne.clear();
1613    return;
1614  }
1615  case ISD::LOAD: {
1616    if (ISD::isZEXTLoad(Op.getNode())) {
1617      LoadSDNode *LD = cast<LoadSDNode>(Op);
1618      MVT VT = LD->getMemoryVT();
1619      unsigned MemBits = VT.getSizeInBits();
1620      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1621    }
1622    return;
1623  }
1624  case ISD::ZERO_EXTEND: {
1625    MVT InVT = Op.getOperand(0).getValueType();
1626    unsigned InBits = InVT.getSizeInBits();
1627    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1628    APInt InMask    = Mask;
1629    InMask.trunc(InBits);
1630    KnownZero.trunc(InBits);
1631    KnownOne.trunc(InBits);
1632    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1633    KnownZero.zext(BitWidth);
1634    KnownOne.zext(BitWidth);
1635    KnownZero |= NewBits;
1636    return;
1637  }
1638  case ISD::SIGN_EXTEND: {
1639    MVT InVT = Op.getOperand(0).getValueType();
1640    unsigned InBits = InVT.getSizeInBits();
1641    APInt InSignBit = APInt::getSignBit(InBits);
1642    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1643    APInt InMask = Mask;
1644    InMask.trunc(InBits);
1645
1646    // If any of the sign extended bits are demanded, we know that the sign
1647    // bit is demanded. Temporarily set this bit in the mask for our callee.
1648    if (NewBits.getBoolValue())
1649      InMask |= InSignBit;
1650
1651    KnownZero.trunc(InBits);
1652    KnownOne.trunc(InBits);
1653    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1654
1655    // Note if the sign bit is known to be zero or one.
1656    bool SignBitKnownZero = KnownZero.isNegative();
1657    bool SignBitKnownOne  = KnownOne.isNegative();
1658    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1659           "Sign bit can't be known to be both zero and one!");
1660
1661    // If the sign bit wasn't actually demanded by our caller, we don't
1662    // want it set in the KnownZero and KnownOne result values. Reset the
1663    // mask and reapply it to the result values.
1664    InMask = Mask;
1665    InMask.trunc(InBits);
1666    KnownZero &= InMask;
1667    KnownOne  &= InMask;
1668
1669    KnownZero.zext(BitWidth);
1670    KnownOne.zext(BitWidth);
1671
1672    // If the sign bit is known zero or one, the top bits match.
1673    if (SignBitKnownZero)
1674      KnownZero |= NewBits;
1675    else if (SignBitKnownOne)
1676      KnownOne  |= NewBits;
1677    return;
1678  }
1679  case ISD::ANY_EXTEND: {
1680    MVT InVT = Op.getOperand(0).getValueType();
1681    unsigned InBits = InVT.getSizeInBits();
1682    APInt InMask = Mask;
1683    InMask.trunc(InBits);
1684    KnownZero.trunc(InBits);
1685    KnownOne.trunc(InBits);
1686    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1687    KnownZero.zext(BitWidth);
1688    KnownOne.zext(BitWidth);
1689    return;
1690  }
1691  case ISD::TRUNCATE: {
1692    MVT InVT = Op.getOperand(0).getValueType();
1693    unsigned InBits = InVT.getSizeInBits();
1694    APInt InMask = Mask;
1695    InMask.zext(InBits);
1696    KnownZero.zext(InBits);
1697    KnownOne.zext(InBits);
1698    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1699    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1700    KnownZero.trunc(BitWidth);
1701    KnownOne.trunc(BitWidth);
1702    break;
1703  }
1704  case ISD::AssertZext: {
1705    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1706    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1707    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1708                      KnownOne, Depth+1);
1709    KnownZero |= (~InMask) & Mask;
1710    return;
1711  }
1712  case ISD::FGETSIGN:
1713    // All bits are zero except the low bit.
1714    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1715    return;
1716
1717  case ISD::SUB: {
1718    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1719      // We know that the top bits of C-X are clear if X contains less bits
1720      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1721      // positive if we can prove that X is >= 0 and < 16.
1722      if (CLHS->getAPIntValue().isNonNegative()) {
1723        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1724        // NLZ can't be BitWidth with no sign bit
1725        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1726        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1727                          Depth+1);
1728
1729        // If all of the MaskV bits are known to be zero, then we know the
1730        // output top bits are zero, because we now know that the output is
1731        // from [0-C].
1732        if ((KnownZero2 & MaskV) == MaskV) {
1733          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1734          // Top bits known zero.
1735          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1736        }
1737      }
1738    }
1739  }
1740  // fall through
1741  case ISD::ADD: {
1742    // Output known-0 bits are known if clear or set in both the low clear bits
1743    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1744    // low 3 bits clear.
1745    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1746    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1747    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1748    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1749
1750    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1751    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1752    KnownZeroOut = std::min(KnownZeroOut,
1753                            KnownZero2.countTrailingOnes());
1754
1755    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1756    return;
1757  }
1758  case ISD::SREM:
1759    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1760      const APInt &RA = Rem->getAPIntValue();
1761      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1762        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1763        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1764        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1765
1766        // If the sign bit of the first operand is zero, the sign bit of
1767        // the result is zero. If the first operand has no one bits below
1768        // the second operand's single 1 bit, its sign will be zero.
1769        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1770          KnownZero2 |= ~LowBits;
1771
1772        KnownZero |= KnownZero2 & Mask;
1773
1774        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1775      }
1776    }
1777    return;
1778  case ISD::UREM: {
1779    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1780      const APInt &RA = Rem->getAPIntValue();
1781      if (RA.isPowerOf2()) {
1782        APInt LowBits = (RA - 1);
1783        APInt Mask2 = LowBits & Mask;
1784        KnownZero |= ~LowBits & Mask;
1785        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1786        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1787        break;
1788      }
1789    }
1790
1791    // Since the result is less than or equal to either operand, any leading
1792    // zero bits in either operand must also exist in the result.
1793    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1794    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1795                      Depth+1);
1796    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1797                      Depth+1);
1798
1799    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1800                                KnownZero2.countLeadingOnes());
1801    KnownOne.clear();
1802    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1803    return;
1804  }
1805  default:
1806    // Allow the target to implement this method for its nodes.
1807    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1808  case ISD::INTRINSIC_WO_CHAIN:
1809  case ISD::INTRINSIC_W_CHAIN:
1810  case ISD::INTRINSIC_VOID:
1811      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1812    }
1813    return;
1814  }
1815}
1816
1817/// ComputeNumSignBits - Return the number of times the sign bit of the
1818/// register is replicated into the other bits.  We know that at least 1 bit
1819/// is always equal to the sign bit (itself), but other cases can give us
1820/// information.  For example, immediately after an "SRA X, 2", we know that
1821/// the top 3 bits are all equal to each other, so we return 3.
1822unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1823  MVT VT = Op.getValueType();
1824  assert(VT.isInteger() && "Invalid VT!");
1825  unsigned VTBits = VT.getSizeInBits();
1826  unsigned Tmp, Tmp2;
1827  unsigned FirstAnswer = 1;
1828
1829  if (Depth == 6)
1830    return 1;  // Limit search depth.
1831
1832  switch (Op.getOpcode()) {
1833  default: break;
1834  case ISD::AssertSext:
1835    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1836    return VTBits-Tmp+1;
1837  case ISD::AssertZext:
1838    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1839    return VTBits-Tmp;
1840
1841  case ISD::Constant: {
1842    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1843    // If negative, return # leading ones.
1844    if (Val.isNegative())
1845      return Val.countLeadingOnes();
1846
1847    // Return # leading zeros.
1848    return Val.countLeadingZeros();
1849  }
1850
1851  case ISD::SIGN_EXTEND:
1852    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1853    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1854
1855  case ISD::SIGN_EXTEND_INREG:
1856    // Max of the input and what this extends.
1857    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1858    Tmp = VTBits-Tmp+1;
1859
1860    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1861    return std::max(Tmp, Tmp2);
1862
1863  case ISD::SRA:
1864    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1865    // SRA X, C   -> adds C sign bits.
1866    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1867      Tmp += C->getZExtValue();
1868      if (Tmp > VTBits) Tmp = VTBits;
1869    }
1870    return Tmp;
1871  case ISD::SHL:
1872    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1873      // shl destroys sign bits.
1874      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1875      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1876          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1877      return Tmp - C->getZExtValue();
1878    }
1879    break;
1880  case ISD::AND:
1881  case ISD::OR:
1882  case ISD::XOR:    // NOT is handled here.
1883    // Logical binary ops preserve the number of sign bits at the worst.
1884    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1885    if (Tmp != 1) {
1886      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1887      FirstAnswer = std::min(Tmp, Tmp2);
1888      // We computed what we know about the sign bits as our first
1889      // answer. Now proceed to the generic code that uses
1890      // ComputeMaskedBits, and pick whichever answer is better.
1891    }
1892    break;
1893
1894  case ISD::SELECT:
1895    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1896    if (Tmp == 1) return 1;  // Early out.
1897    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1898    return std::min(Tmp, Tmp2);
1899
1900  case ISD::SADDO:
1901  case ISD::UADDO:
1902  case ISD::SSUBO:
1903  case ISD::USUBO:
1904  case ISD::SMULO:
1905  case ISD::UMULO:
1906    if (Op.getResNo() != 1)
1907      break;
1908    // The boolean result conforms to getBooleanContents.  Fall through.
1909  case ISD::SETCC:
1910    // If setcc returns 0/-1, all bits are sign bits.
1911    if (TLI.getBooleanContents() ==
1912        TargetLowering::ZeroOrNegativeOneBooleanContent)
1913      return VTBits;
1914    break;
1915  case ISD::ROTL:
1916  case ISD::ROTR:
1917    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1918      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1919
1920      // Handle rotate right by N like a rotate left by 32-N.
1921      if (Op.getOpcode() == ISD::ROTR)
1922        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1923
1924      // If we aren't rotating out all of the known-in sign bits, return the
1925      // number that are left.  This handles rotl(sext(x), 1) for example.
1926      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1927      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1928    }
1929    break;
1930  case ISD::ADD:
1931    // Add can have at most one carry bit.  Thus we know that the output
1932    // is, at worst, one more bit than the inputs.
1933    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1934    if (Tmp == 1) return 1;  // Early out.
1935
1936    // Special case decrementing a value (ADD X, -1):
1937    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1938      if (CRHS->isAllOnesValue()) {
1939        APInt KnownZero, KnownOne;
1940        APInt Mask = APInt::getAllOnesValue(VTBits);
1941        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1942
1943        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1944        // sign bits set.
1945        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1946          return VTBits;
1947
1948        // If we are subtracting one from a positive number, there is no carry
1949        // out of the result.
1950        if (KnownZero.isNegative())
1951          return Tmp;
1952      }
1953
1954    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1955    if (Tmp2 == 1) return 1;
1956      return std::min(Tmp, Tmp2)-1;
1957    break;
1958
1959  case ISD::SUB:
1960    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1961    if (Tmp2 == 1) return 1;
1962
1963    // Handle NEG.
1964    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1965      if (CLHS->isNullValue()) {
1966        APInt KnownZero, KnownOne;
1967        APInt Mask = APInt::getAllOnesValue(VTBits);
1968        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1969        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1970        // sign bits set.
1971        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1972          return VTBits;
1973
1974        // If the input is known to be positive (the sign bit is known clear),
1975        // the output of the NEG has the same number of sign bits as the input.
1976        if (KnownZero.isNegative())
1977          return Tmp2;
1978
1979        // Otherwise, we treat this like a SUB.
1980      }
1981
1982    // Sub can have at most one carry bit.  Thus we know that the output
1983    // is, at worst, one more bit than the inputs.
1984    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1985    if (Tmp == 1) return 1;  // Early out.
1986      return std::min(Tmp, Tmp2)-1;
1987    break;
1988  case ISD::TRUNCATE:
1989    // FIXME: it's tricky to do anything useful for this, but it is an important
1990    // case for targets like X86.
1991    break;
1992  }
1993
1994  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1995  if (Op.getOpcode() == ISD::LOAD) {
1996    LoadSDNode *LD = cast<LoadSDNode>(Op);
1997    unsigned ExtType = LD->getExtensionType();
1998    switch (ExtType) {
1999    default: break;
2000    case ISD::SEXTLOAD:    // '17' bits known
2001      Tmp = LD->getMemoryVT().getSizeInBits();
2002      return VTBits-Tmp+1;
2003    case ISD::ZEXTLOAD:    // '16' bits known
2004      Tmp = LD->getMemoryVT().getSizeInBits();
2005      return VTBits-Tmp;
2006    }
2007  }
2008
2009  // Allow the target to implement this method for its nodes.
2010  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2011      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2012      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2013      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2014    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2015    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2016  }
2017
2018  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2019  // use this information.
2020  APInt KnownZero, KnownOne;
2021  APInt Mask = APInt::getAllOnesValue(VTBits);
2022  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2023
2024  if (KnownZero.isNegative()) {        // sign bit is 0
2025    Mask = KnownZero;
2026  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2027    Mask = KnownOne;
2028  } else {
2029    // Nothing known.
2030    return FirstAnswer;
2031  }
2032
2033  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2034  // the number of identical bits in the top of the input value.
2035  Mask = ~Mask;
2036  Mask <<= Mask.getBitWidth()-VTBits;
2037  // Return # leading zeros.  We use 'min' here in case Val was zero before
2038  // shifting.  We don't want to return '64' as for an i32 "0".
2039  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2040}
2041
2042
2043bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2044  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2045  if (!GA) return false;
2046  if (GA->getOffset() != 0) return false;
2047  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2048  if (!GV) return false;
2049  MachineModuleInfo *MMI = getMachineModuleInfo();
2050  return MMI && MMI->hasDebugInfo();
2051}
2052
2053
2054/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2055/// element of the result of the vector shuffle.
2056SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2057  MVT VT = N->getValueType(0);
2058  SDValue PermMask = N->getOperand(2);
2059  SDValue Idx = PermMask.getOperand(i);
2060  if (Idx.getOpcode() == ISD::UNDEF)
2061    return getNode(ISD::UNDEF, VT.getVectorElementType());
2062  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2063  unsigned NumElems = PermMask.getNumOperands();
2064  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2065  Index %= NumElems;
2066
2067  if (V.getOpcode() == ISD::BIT_CONVERT) {
2068    V = V.getOperand(0);
2069    MVT VVT = V.getValueType();
2070    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2071      return SDValue();
2072  }
2073  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2074    return (Index == 0) ? V.getOperand(0)
2075                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2076  if (V.getOpcode() == ISD::BUILD_VECTOR)
2077    return V.getOperand(Index);
2078  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2079    return getShuffleScalarElt(V.getNode(), Index);
2080  return SDValue();
2081}
2082
2083
2084/// getNode - Gets or creates the specified node.
2085///
2086SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2087  FoldingSetNodeID ID;
2088  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2089  void *IP = 0;
2090  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2091    return SDValue(E, 0);
2092  SDNode *N = NodeAllocator.Allocate<SDNode>();
2093  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2094  CSEMap.InsertNode(N, IP);
2095
2096  AllNodes.push_back(N);
2097#ifndef NDEBUG
2098  VerifyNode(N);
2099#endif
2100  return SDValue(N, 0);
2101}
2102
2103SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2104  // Constant fold unary operations with an integer constant operand.
2105  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2106    const APInt &Val = C->getAPIntValue();
2107    unsigned BitWidth = VT.getSizeInBits();
2108    switch (Opcode) {
2109    default: break;
2110    case ISD::SIGN_EXTEND:
2111      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2112    case ISD::ANY_EXTEND:
2113    case ISD::ZERO_EXTEND:
2114    case ISD::TRUNCATE:
2115      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2116    case ISD::UINT_TO_FP:
2117    case ISD::SINT_TO_FP: {
2118      const uint64_t zero[] = {0, 0};
2119      // No compile time operations on this type.
2120      if (VT==MVT::ppcf128)
2121        break;
2122      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2123      (void)apf.convertFromAPInt(Val,
2124                                 Opcode==ISD::SINT_TO_FP,
2125                                 APFloat::rmNearestTiesToEven);
2126      return getConstantFP(apf, VT);
2127    }
2128    case ISD::BIT_CONVERT:
2129      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2130        return getConstantFP(Val.bitsToFloat(), VT);
2131      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2132        return getConstantFP(Val.bitsToDouble(), VT);
2133      break;
2134    case ISD::BSWAP:
2135      return getConstant(Val.byteSwap(), VT);
2136    case ISD::CTPOP:
2137      return getConstant(Val.countPopulation(), VT);
2138    case ISD::CTLZ:
2139      return getConstant(Val.countLeadingZeros(), VT);
2140    case ISD::CTTZ:
2141      return getConstant(Val.countTrailingZeros(), VT);
2142    }
2143  }
2144
2145  // Constant fold unary operations with a floating point constant operand.
2146  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2147    APFloat V = C->getValueAPF();    // make copy
2148    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2149      switch (Opcode) {
2150      case ISD::FNEG:
2151        V.changeSign();
2152        return getConstantFP(V, VT);
2153      case ISD::FABS:
2154        V.clearSign();
2155        return getConstantFP(V, VT);
2156      case ISD::FP_ROUND:
2157      case ISD::FP_EXTEND: {
2158        bool ignored;
2159        // This can return overflow, underflow, or inexact; we don't care.
2160        // FIXME need to be more flexible about rounding mode.
2161        (void)V.convert(*MVTToAPFloatSemantics(VT),
2162                        APFloat::rmNearestTiesToEven, &ignored);
2163        return getConstantFP(V, VT);
2164      }
2165      case ISD::FP_TO_SINT:
2166      case ISD::FP_TO_UINT: {
2167        integerPart x;
2168        bool ignored;
2169        assert(integerPartWidth >= 64);
2170        // FIXME need to be more flexible about rounding mode.
2171        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2172                              Opcode==ISD::FP_TO_SINT,
2173                              APFloat::rmTowardZero, &ignored);
2174        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2175          break;
2176        return getConstant(x, VT);
2177      }
2178      case ISD::BIT_CONVERT:
2179        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2180          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2181        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2182          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2183        break;
2184      }
2185    }
2186  }
2187
2188  unsigned OpOpcode = Operand.getNode()->getOpcode();
2189  switch (Opcode) {
2190  case ISD::TokenFactor:
2191  case ISD::MERGE_VALUES:
2192  case ISD::CONCAT_VECTORS:
2193    return Operand;         // Factor, merge or concat of one node?  No need.
2194  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2195  case ISD::FP_EXTEND:
2196    assert(VT.isFloatingPoint() &&
2197           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2198    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2199    if (Operand.getOpcode() == ISD::UNDEF)
2200      return getNode(ISD::UNDEF, VT);
2201    break;
2202  case ISD::SIGN_EXTEND:
2203    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2204           "Invalid SIGN_EXTEND!");
2205    if (Operand.getValueType() == VT) return Operand;   // noop extension
2206    assert(Operand.getValueType().bitsLT(VT)
2207           && "Invalid sext node, dst < src!");
2208    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2209      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2210    break;
2211  case ISD::ZERO_EXTEND:
2212    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2213           "Invalid ZERO_EXTEND!");
2214    if (Operand.getValueType() == VT) return Operand;   // noop extension
2215    assert(Operand.getValueType().bitsLT(VT)
2216           && "Invalid zext node, dst < src!");
2217    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2218      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2219    break;
2220  case ISD::ANY_EXTEND:
2221    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2222           "Invalid ANY_EXTEND!");
2223    if (Operand.getValueType() == VT) return Operand;   // noop extension
2224    assert(Operand.getValueType().bitsLT(VT)
2225           && "Invalid anyext node, dst < src!");
2226    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2227      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2228      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2229    break;
2230  case ISD::TRUNCATE:
2231    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2232           "Invalid TRUNCATE!");
2233    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2234    assert(Operand.getValueType().bitsGT(VT)
2235           && "Invalid truncate node, src < dst!");
2236    if (OpOpcode == ISD::TRUNCATE)
2237      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2238    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2239             OpOpcode == ISD::ANY_EXTEND) {
2240      // If the source is smaller than the dest, we still need an extend.
2241      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2242        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2243      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2244        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2245      else
2246        return Operand.getNode()->getOperand(0);
2247    }
2248    break;
2249  case ISD::BIT_CONVERT:
2250    // Basic sanity checking.
2251    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2252           && "Cannot BIT_CONVERT between types of different sizes!");
2253    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2254    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2255      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2256    if (OpOpcode == ISD::UNDEF)
2257      return getNode(ISD::UNDEF, VT);
2258    break;
2259  case ISD::SCALAR_TO_VECTOR:
2260    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2261           VT.getVectorElementType() == Operand.getValueType() &&
2262           "Illegal SCALAR_TO_VECTOR node!");
2263    if (OpOpcode == ISD::UNDEF)
2264      return getNode(ISD::UNDEF, VT);
2265    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2266    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2267        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2268        Operand.getConstantOperandVal(1) == 0 &&
2269        Operand.getOperand(0).getValueType() == VT)
2270      return Operand.getOperand(0);
2271    break;
2272  case ISD::FNEG:
2273    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2274      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2275                     Operand.getNode()->getOperand(0));
2276    if (OpOpcode == ISD::FNEG)  // --X -> X
2277      return Operand.getNode()->getOperand(0);
2278    break;
2279  case ISD::FABS:
2280    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2281      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2282    break;
2283  }
2284
2285  SDNode *N;
2286  SDVTList VTs = getVTList(VT);
2287  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2288    FoldingSetNodeID ID;
2289    SDValue Ops[1] = { Operand };
2290    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2291    void *IP = 0;
2292    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2293      return SDValue(E, 0);
2294    N = NodeAllocator.Allocate<UnarySDNode>();
2295    new (N) UnarySDNode(Opcode, VTs, Operand);
2296    CSEMap.InsertNode(N, IP);
2297  } else {
2298    N = NodeAllocator.Allocate<UnarySDNode>();
2299    new (N) UnarySDNode(Opcode, VTs, Operand);
2300  }
2301
2302  AllNodes.push_back(N);
2303#ifndef NDEBUG
2304  VerifyNode(N);
2305#endif
2306  return SDValue(N, 0);
2307}
2308
2309SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2310                                             MVT VT,
2311                                             ConstantSDNode *Cst1,
2312                                             ConstantSDNode *Cst2) {
2313  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2314
2315  switch (Opcode) {
2316  case ISD::ADD:  return getConstant(C1 + C2, VT);
2317  case ISD::SUB:  return getConstant(C1 - C2, VT);
2318  case ISD::MUL:  return getConstant(C1 * C2, VT);
2319  case ISD::UDIV:
2320    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2321    break;
2322  case ISD::UREM:
2323    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2324    break;
2325  case ISD::SDIV:
2326    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2327    break;
2328  case ISD::SREM:
2329    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2330    break;
2331  case ISD::AND:  return getConstant(C1 & C2, VT);
2332  case ISD::OR:   return getConstant(C1 | C2, VT);
2333  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2334  case ISD::SHL:  return getConstant(C1 << C2, VT);
2335  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2336  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2337  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2338  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2339  default: break;
2340  }
2341
2342  return SDValue();
2343}
2344
2345SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2346                              SDValue N1, SDValue N2) {
2347  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2348  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2349  switch (Opcode) {
2350  default: break;
2351  case ISD::TokenFactor:
2352    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2353           N2.getValueType() == MVT::Other && "Invalid token factor!");
2354    // Fold trivial token factors.
2355    if (N1.getOpcode() == ISD::EntryToken) return N2;
2356    if (N2.getOpcode() == ISD::EntryToken) return N1;
2357    if (N1 == N2) return N1;
2358    break;
2359  case ISD::CONCAT_VECTORS:
2360    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2361    // one big BUILD_VECTOR.
2362    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2363        N2.getOpcode() == ISD::BUILD_VECTOR) {
2364      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2365      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2366      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2367    }
2368    break;
2369  case ISD::AND:
2370    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2371           N1.getValueType() == VT && "Binary operator types must match!");
2372    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2373    // worth handling here.
2374    if (N2C && N2C->isNullValue())
2375      return N2;
2376    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2377      return N1;
2378    break;
2379  case ISD::OR:
2380  case ISD::XOR:
2381  case ISD::ADD:
2382  case ISD::SUB:
2383    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2384           N1.getValueType() == VT && "Binary operator types must match!");
2385    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2386    // it's worth handling here.
2387    if (N2C && N2C->isNullValue())
2388      return N1;
2389    break;
2390  case ISD::UDIV:
2391  case ISD::UREM:
2392  case ISD::MULHU:
2393  case ISD::MULHS:
2394    assert(VT.isInteger() && "This operator does not apply to FP types!");
2395    // fall through
2396  case ISD::MUL:
2397  case ISD::SDIV:
2398  case ISD::SREM:
2399  case ISD::FADD:
2400  case ISD::FSUB:
2401  case ISD::FMUL:
2402  case ISD::FDIV:
2403  case ISD::FREM:
2404    assert(N1.getValueType() == N2.getValueType() &&
2405           N1.getValueType() == VT && "Binary operator types must match!");
2406    break;
2407  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2408    assert(N1.getValueType() == VT &&
2409           N1.getValueType().isFloatingPoint() &&
2410           N2.getValueType().isFloatingPoint() &&
2411           "Invalid FCOPYSIGN!");
2412    break;
2413  case ISD::SHL:
2414  case ISD::SRA:
2415  case ISD::SRL:
2416  case ISD::ROTL:
2417  case ISD::ROTR:
2418    assert(VT == N1.getValueType() &&
2419           "Shift operators return type must be the same as their first arg");
2420    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2421           "Shifts only work on integers");
2422    assert((N2.getValueType() == TLI.getShiftAmountTy() ||
2423            (N2.getValueType().isVector() && N2.getValueType().isInteger())) &&
2424           "Wrong type for shift amount");
2425
2426    // Always fold shifts of i1 values so the code generator doesn't need to
2427    // handle them.  Since we know the size of the shift has to be less than the
2428    // size of the value, the shift/rotate count is guaranteed to be zero.
2429    if (VT == MVT::i1)
2430      return N1;
2431    break;
2432  case ISD::FP_ROUND_INREG: {
2433    MVT EVT = cast<VTSDNode>(N2)->getVT();
2434    assert(VT == N1.getValueType() && "Not an inreg round!");
2435    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2436           "Cannot FP_ROUND_INREG integer types");
2437    assert(EVT.bitsLE(VT) && "Not rounding down!");
2438    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2439    break;
2440  }
2441  case ISD::FP_ROUND:
2442    assert(VT.isFloatingPoint() &&
2443           N1.getValueType().isFloatingPoint() &&
2444           VT.bitsLE(N1.getValueType()) &&
2445           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2446    if (N1.getValueType() == VT) return N1;  // noop conversion.
2447    break;
2448  case ISD::AssertSext:
2449  case ISD::AssertZext: {
2450    MVT EVT = cast<VTSDNode>(N2)->getVT();
2451    assert(VT == N1.getValueType() && "Not an inreg extend!");
2452    assert(VT.isInteger() && EVT.isInteger() &&
2453           "Cannot *_EXTEND_INREG FP types");
2454    assert(EVT.bitsLE(VT) && "Not extending!");
2455    if (VT == EVT) return N1; // noop assertion.
2456    break;
2457  }
2458  case ISD::SIGN_EXTEND_INREG: {
2459    MVT EVT = cast<VTSDNode>(N2)->getVT();
2460    assert(VT == N1.getValueType() && "Not an inreg extend!");
2461    assert(VT.isInteger() && EVT.isInteger() &&
2462           "Cannot *_EXTEND_INREG FP types");
2463    assert(EVT.bitsLE(VT) && "Not extending!");
2464    if (EVT == VT) return N1;  // Not actually extending
2465
2466    if (N1C) {
2467      APInt Val = N1C->getAPIntValue();
2468      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2469      Val <<= Val.getBitWidth()-FromBits;
2470      Val = Val.ashr(Val.getBitWidth()-FromBits);
2471      return getConstant(Val, VT);
2472    }
2473    break;
2474  }
2475  case ISD::EXTRACT_VECTOR_ELT:
2476    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2477    if (N1.getOpcode() == ISD::UNDEF)
2478      return getNode(ISD::UNDEF, VT);
2479
2480    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2481    // expanding copies of large vectors from registers.
2482    if (N2C &&
2483        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2484        N1.getNumOperands() > 0) {
2485      unsigned Factor =
2486        N1.getOperand(0).getValueType().getVectorNumElements();
2487      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2488                     N1.getOperand(N2C->getZExtValue() / Factor),
2489                     getConstant(N2C->getZExtValue() % Factor,
2490                                 N2.getValueType()));
2491    }
2492
2493    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2494    // expanding large vector constants.
2495    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2496      return N1.getOperand(N2C->getZExtValue());
2497
2498    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2499    // operations are lowered to scalars.
2500    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2501      if (N1.getOperand(2) == N2)
2502        return N1.getOperand(1);
2503      else
2504        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2505    }
2506    break;
2507  case ISD::EXTRACT_ELEMENT:
2508    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2509    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2510           (N1.getValueType().isInteger() == VT.isInteger()) &&
2511           "Wrong types for EXTRACT_ELEMENT!");
2512
2513    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2514    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2515    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2516    if (N1.getOpcode() == ISD::BUILD_PAIR)
2517      return N1.getOperand(N2C->getZExtValue());
2518
2519    // EXTRACT_ELEMENT of a constant int is also very common.
2520    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2521      unsigned ElementSize = VT.getSizeInBits();
2522      unsigned Shift = ElementSize * N2C->getZExtValue();
2523      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2524      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2525    }
2526    break;
2527  case ISD::EXTRACT_SUBVECTOR:
2528    if (N1.getValueType() == VT) // Trivial extraction.
2529      return N1;
2530    break;
2531  }
2532
2533  if (N1C) {
2534    if (N2C) {
2535      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2536      if (SV.getNode()) return SV;
2537    } else {      // Cannonicalize constant to RHS if commutative
2538      if (isCommutativeBinOp(Opcode)) {
2539        std::swap(N1C, N2C);
2540        std::swap(N1, N2);
2541      }
2542    }
2543  }
2544
2545  // Constant fold FP operations.
2546  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2547  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2548  if (N1CFP) {
2549    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2550      // Cannonicalize constant to RHS if commutative
2551      std::swap(N1CFP, N2CFP);
2552      std::swap(N1, N2);
2553    } else if (N2CFP && VT != MVT::ppcf128) {
2554      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2555      APFloat::opStatus s;
2556      switch (Opcode) {
2557      case ISD::FADD:
2558        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2559        if (s != APFloat::opInvalidOp)
2560          return getConstantFP(V1, VT);
2561        break;
2562      case ISD::FSUB:
2563        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2564        if (s!=APFloat::opInvalidOp)
2565          return getConstantFP(V1, VT);
2566        break;
2567      case ISD::FMUL:
2568        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2569        if (s!=APFloat::opInvalidOp)
2570          return getConstantFP(V1, VT);
2571        break;
2572      case ISD::FDIV:
2573        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2574        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2575          return getConstantFP(V1, VT);
2576        break;
2577      case ISD::FREM :
2578        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2579        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2580          return getConstantFP(V1, VT);
2581        break;
2582      case ISD::FCOPYSIGN:
2583        V1.copySign(V2);
2584        return getConstantFP(V1, VT);
2585      default: break;
2586      }
2587    }
2588  }
2589
2590  // Canonicalize an UNDEF to the RHS, even over a constant.
2591  if (N1.getOpcode() == ISD::UNDEF) {
2592    if (isCommutativeBinOp(Opcode)) {
2593      std::swap(N1, N2);
2594    } else {
2595      switch (Opcode) {
2596      case ISD::FP_ROUND_INREG:
2597      case ISD::SIGN_EXTEND_INREG:
2598      case ISD::SUB:
2599      case ISD::FSUB:
2600      case ISD::FDIV:
2601      case ISD::FREM:
2602      case ISD::SRA:
2603        return N1;     // fold op(undef, arg2) -> undef
2604      case ISD::UDIV:
2605      case ISD::SDIV:
2606      case ISD::UREM:
2607      case ISD::SREM:
2608      case ISD::SRL:
2609      case ISD::SHL:
2610        if (!VT.isVector())
2611          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2612        // For vectors, we can't easily build an all zero vector, just return
2613        // the LHS.
2614        return N2;
2615      }
2616    }
2617  }
2618
2619  // Fold a bunch of operators when the RHS is undef.
2620  if (N2.getOpcode() == ISD::UNDEF) {
2621    switch (Opcode) {
2622    case ISD::XOR:
2623      if (N1.getOpcode() == ISD::UNDEF)
2624        // Handle undef ^ undef -> 0 special case. This is a common
2625        // idiom (misuse).
2626        return getConstant(0, VT);
2627      // fallthrough
2628    case ISD::ADD:
2629    case ISD::ADDC:
2630    case ISD::ADDE:
2631    case ISD::SUB:
2632    case ISD::FADD:
2633    case ISD::FSUB:
2634    case ISD::FMUL:
2635    case ISD::FDIV:
2636    case ISD::FREM:
2637    case ISD::UDIV:
2638    case ISD::SDIV:
2639    case ISD::UREM:
2640    case ISD::SREM:
2641      return N2;       // fold op(arg1, undef) -> undef
2642    case ISD::MUL:
2643    case ISD::AND:
2644    case ISD::SRL:
2645    case ISD::SHL:
2646      if (!VT.isVector())
2647        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2648      // For vectors, we can't easily build an all zero vector, just return
2649      // the LHS.
2650      return N1;
2651    case ISD::OR:
2652      if (!VT.isVector())
2653        return getConstant(VT.getIntegerVTBitMask(), VT);
2654      // For vectors, we can't easily build an all one vector, just return
2655      // the LHS.
2656      return N1;
2657    case ISD::SRA:
2658      return N1;
2659    }
2660  }
2661
2662  // Memoize this node if possible.
2663  SDNode *N;
2664  SDVTList VTs = getVTList(VT);
2665  if (VT != MVT::Flag) {
2666    SDValue Ops[] = { N1, N2 };
2667    FoldingSetNodeID ID;
2668    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2669    void *IP = 0;
2670    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2671      return SDValue(E, 0);
2672    N = NodeAllocator.Allocate<BinarySDNode>();
2673    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2674    CSEMap.InsertNode(N, IP);
2675  } else {
2676    N = NodeAllocator.Allocate<BinarySDNode>();
2677    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2678  }
2679
2680  AllNodes.push_back(N);
2681#ifndef NDEBUG
2682  VerifyNode(N);
2683#endif
2684  return SDValue(N, 0);
2685}
2686
2687SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2688                              SDValue N1, SDValue N2, SDValue N3) {
2689  // Perform various simplifications.
2690  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2691  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2692  switch (Opcode) {
2693  case ISD::CONCAT_VECTORS:
2694    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2695    // one big BUILD_VECTOR.
2696    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2697        N2.getOpcode() == ISD::BUILD_VECTOR &&
2698        N3.getOpcode() == ISD::BUILD_VECTOR) {
2699      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2700      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2701      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2702      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2703    }
2704    break;
2705  case ISD::SETCC: {
2706    // Use FoldSetCC to simplify SETCC's.
2707    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2708    if (Simp.getNode()) return Simp;
2709    break;
2710  }
2711  case ISD::SELECT:
2712    if (N1C) {
2713     if (N1C->getZExtValue())
2714        return N2;             // select true, X, Y -> X
2715      else
2716        return N3;             // select false, X, Y -> Y
2717    }
2718
2719    if (N2 == N3) return N2;   // select C, X, X -> X
2720    break;
2721  case ISD::BRCOND:
2722    if (N2C) {
2723      if (N2C->getZExtValue()) // Unconditional branch
2724        return getNode(ISD::BR, MVT::Other, N1, N3);
2725      else
2726        return N1;         // Never-taken branch
2727    }
2728    break;
2729  case ISD::VECTOR_SHUFFLE:
2730    assert(N1.getValueType() == N2.getValueType() &&
2731           N1.getValueType().isVector() &&
2732           VT.isVector() && N3.getValueType().isVector() &&
2733           N3.getOpcode() == ISD::BUILD_VECTOR &&
2734           VT.getVectorNumElements() == N3.getNumOperands() &&
2735           "Illegal VECTOR_SHUFFLE node!");
2736    break;
2737  case ISD::BIT_CONVERT:
2738    // Fold bit_convert nodes from a type to themselves.
2739    if (N1.getValueType() == VT)
2740      return N1;
2741    break;
2742  }
2743
2744  // Memoize node if it doesn't produce a flag.
2745  SDNode *N;
2746  SDVTList VTs = getVTList(VT);
2747  if (VT != MVT::Flag) {
2748    SDValue Ops[] = { N1, N2, N3 };
2749    FoldingSetNodeID ID;
2750    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2751    void *IP = 0;
2752    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2753      return SDValue(E, 0);
2754    N = NodeAllocator.Allocate<TernarySDNode>();
2755    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2756    CSEMap.InsertNode(N, IP);
2757  } else {
2758    N = NodeAllocator.Allocate<TernarySDNode>();
2759    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2760  }
2761  AllNodes.push_back(N);
2762#ifndef NDEBUG
2763  VerifyNode(N);
2764#endif
2765  return SDValue(N, 0);
2766}
2767
2768SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2769                              SDValue N1, SDValue N2, SDValue N3,
2770                              SDValue N4) {
2771  SDValue Ops[] = { N1, N2, N3, N4 };
2772  return getNode(Opcode, VT, Ops, 4);
2773}
2774
2775SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2776                              SDValue N1, SDValue N2, SDValue N3,
2777                              SDValue N4, SDValue N5) {
2778  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2779  return getNode(Opcode, VT, Ops, 5);
2780}
2781
2782/// getMemsetValue - Vectorized representation of the memset value
2783/// operand.
2784static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2785  unsigned NumBits = VT.isVector() ?
2786    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2787  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2788    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2789    unsigned Shift = 8;
2790    for (unsigned i = NumBits; i > 8; i >>= 1) {
2791      Val = (Val << Shift) | Val;
2792      Shift <<= 1;
2793    }
2794    if (VT.isInteger())
2795      return DAG.getConstant(Val, VT);
2796    return DAG.getConstantFP(APFloat(Val), VT);
2797  }
2798
2799  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2800  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2801  unsigned Shift = 8;
2802  for (unsigned i = NumBits; i > 8; i >>= 1) {
2803    Value = DAG.getNode(ISD::OR, VT,
2804                        DAG.getNode(ISD::SHL, VT, Value,
2805                                    DAG.getConstant(Shift,
2806                                                    TLI.getShiftAmountTy())),
2807                        Value);
2808    Shift <<= 1;
2809  }
2810
2811  return Value;
2812}
2813
2814/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2815/// used when a memcpy is turned into a memset when the source is a constant
2816/// string ptr.
2817static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2818                                    const TargetLowering &TLI,
2819                                    std::string &Str, unsigned Offset) {
2820  // Handle vector with all elements zero.
2821  if (Str.empty()) {
2822    if (VT.isInteger())
2823      return DAG.getConstant(0, VT);
2824    unsigned NumElts = VT.getVectorNumElements();
2825    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2826    return DAG.getNode(ISD::BIT_CONVERT, VT,
2827                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2828  }
2829
2830  assert(!VT.isVector() && "Can't handle vector type here!");
2831  unsigned NumBits = VT.getSizeInBits();
2832  unsigned MSB = NumBits / 8;
2833  uint64_t Val = 0;
2834  if (TLI.isLittleEndian())
2835    Offset = Offset + MSB - 1;
2836  for (unsigned i = 0; i != MSB; ++i) {
2837    Val = (Val << 8) | (unsigned char)Str[Offset];
2838    Offset += TLI.isLittleEndian() ? -1 : 1;
2839  }
2840  return DAG.getConstant(Val, VT);
2841}
2842
2843/// getMemBasePlusOffset - Returns base and offset node for the
2844///
2845static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2846                                      SelectionDAG &DAG) {
2847  MVT VT = Base.getValueType();
2848  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2849}
2850
2851/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2852///
2853static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2854  unsigned SrcDelta = 0;
2855  GlobalAddressSDNode *G = NULL;
2856  if (Src.getOpcode() == ISD::GlobalAddress)
2857    G = cast<GlobalAddressSDNode>(Src);
2858  else if (Src.getOpcode() == ISD::ADD &&
2859           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2860           Src.getOperand(1).getOpcode() == ISD::Constant) {
2861    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2862    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2863  }
2864  if (!G)
2865    return false;
2866
2867  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2868  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2869    return true;
2870
2871  return false;
2872}
2873
2874/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2875/// to replace the memset / memcpy is below the threshold. It also returns the
2876/// types of the sequence of memory ops to perform memset / memcpy.
2877static
2878bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2879                              SDValue Dst, SDValue Src,
2880                              unsigned Limit, uint64_t Size, unsigned &Align,
2881                              std::string &Str, bool &isSrcStr,
2882                              SelectionDAG &DAG,
2883                              const TargetLowering &TLI) {
2884  isSrcStr = isMemSrcFromString(Src, Str);
2885  bool isSrcConst = isa<ConstantSDNode>(Src);
2886  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2887  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2888  if (VT != MVT::iAny) {
2889    unsigned NewAlign = (unsigned)
2890      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2891    // If source is a string constant, this will require an unaligned load.
2892    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2893      if (Dst.getOpcode() != ISD::FrameIndex) {
2894        // Can't change destination alignment. It requires a unaligned store.
2895        if (AllowUnalign)
2896          VT = MVT::iAny;
2897      } else {
2898        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2899        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2900        if (MFI->isFixedObjectIndex(FI)) {
2901          // Can't change destination alignment. It requires a unaligned store.
2902          if (AllowUnalign)
2903            VT = MVT::iAny;
2904        } else {
2905          // Give the stack frame object a larger alignment if needed.
2906          if (MFI->getObjectAlignment(FI) < NewAlign)
2907            MFI->setObjectAlignment(FI, NewAlign);
2908          Align = NewAlign;
2909        }
2910      }
2911    }
2912  }
2913
2914  if (VT == MVT::iAny) {
2915    if (AllowUnalign) {
2916      VT = MVT::i64;
2917    } else {
2918      switch (Align & 7) {
2919      case 0:  VT = MVT::i64; break;
2920      case 4:  VT = MVT::i32; break;
2921      case 2:  VT = MVT::i16; break;
2922      default: VT = MVT::i8;  break;
2923      }
2924    }
2925
2926    MVT LVT = MVT::i64;
2927    while (!TLI.isTypeLegal(LVT))
2928      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2929    assert(LVT.isInteger());
2930
2931    if (VT.bitsGT(LVT))
2932      VT = LVT;
2933  }
2934
2935  unsigned NumMemOps = 0;
2936  while (Size != 0) {
2937    unsigned VTSize = VT.getSizeInBits() / 8;
2938    while (VTSize > Size) {
2939      // For now, only use non-vector load / store's for the left-over pieces.
2940      if (VT.isVector()) {
2941        VT = MVT::i64;
2942        while (!TLI.isTypeLegal(VT))
2943          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2944        VTSize = VT.getSizeInBits() / 8;
2945      } else {
2946        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2947        VTSize >>= 1;
2948      }
2949    }
2950
2951    if (++NumMemOps > Limit)
2952      return false;
2953    MemOps.push_back(VT);
2954    Size -= VTSize;
2955  }
2956
2957  return true;
2958}
2959
2960static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2961                                         SDValue Chain, SDValue Dst,
2962                                         SDValue Src, uint64_t Size,
2963                                         unsigned Align, bool AlwaysInline,
2964                                         const Value *DstSV, uint64_t DstSVOff,
2965                                         const Value *SrcSV, uint64_t SrcSVOff){
2966  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2967
2968  // Expand memcpy to a series of load and store ops if the size operand falls
2969  // below a certain threshold.
2970  std::vector<MVT> MemOps;
2971  uint64_t Limit = -1ULL;
2972  if (!AlwaysInline)
2973    Limit = TLI.getMaxStoresPerMemcpy();
2974  unsigned DstAlign = Align;  // Destination alignment can change.
2975  std::string Str;
2976  bool CopyFromStr;
2977  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2978                                Str, CopyFromStr, DAG, TLI))
2979    return SDValue();
2980
2981
2982  bool isZeroStr = CopyFromStr && Str.empty();
2983  SmallVector<SDValue, 8> OutChains;
2984  unsigned NumMemOps = MemOps.size();
2985  uint64_t SrcOff = 0, DstOff = 0;
2986  for (unsigned i = 0; i < NumMemOps; i++) {
2987    MVT VT = MemOps[i];
2988    unsigned VTSize = VT.getSizeInBits() / 8;
2989    SDValue Value, Store;
2990
2991    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2992      // It's unlikely a store of a vector immediate can be done in a single
2993      // instruction. It would require a load from a constantpool first.
2994      // We also handle store a vector with all zero's.
2995      // FIXME: Handle other cases where store of vector immediate is done in
2996      // a single instruction.
2997      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2998      Store = DAG.getStore(Chain, Value,
2999                           getMemBasePlusOffset(Dst, DstOff, DAG),
3000                           DstSV, DstSVOff + DstOff, false, DstAlign);
3001    } else {
3002      Value = DAG.getLoad(VT, Chain,
3003                          getMemBasePlusOffset(Src, SrcOff, DAG),
3004                          SrcSV, SrcSVOff + SrcOff, false, Align);
3005      Store = DAG.getStore(Chain, Value,
3006                           getMemBasePlusOffset(Dst, DstOff, DAG),
3007                           DstSV, DstSVOff + DstOff, false, DstAlign);
3008    }
3009    OutChains.push_back(Store);
3010    SrcOff += VTSize;
3011    DstOff += VTSize;
3012  }
3013
3014  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3015                     &OutChains[0], OutChains.size());
3016}
3017
3018static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
3019                                          SDValue Chain, SDValue Dst,
3020                                          SDValue Src, uint64_t Size,
3021                                          unsigned Align, bool AlwaysInline,
3022                                          const Value *DstSV, uint64_t DstSVOff,
3023                                          const Value *SrcSV, uint64_t SrcSVOff){
3024  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3025
3026  // Expand memmove to a series of load and store ops if the size operand falls
3027  // below a certain threshold.
3028  std::vector<MVT> MemOps;
3029  uint64_t Limit = -1ULL;
3030  if (!AlwaysInline)
3031    Limit = TLI.getMaxStoresPerMemmove();
3032  unsigned DstAlign = Align;  // Destination alignment can change.
3033  std::string Str;
3034  bool CopyFromStr;
3035  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3036                                Str, CopyFromStr, DAG, TLI))
3037    return SDValue();
3038
3039  uint64_t SrcOff = 0, DstOff = 0;
3040
3041  SmallVector<SDValue, 8> LoadValues;
3042  SmallVector<SDValue, 8> LoadChains;
3043  SmallVector<SDValue, 8> OutChains;
3044  unsigned NumMemOps = MemOps.size();
3045  for (unsigned i = 0; i < NumMemOps; i++) {
3046    MVT VT = MemOps[i];
3047    unsigned VTSize = VT.getSizeInBits() / 8;
3048    SDValue Value, Store;
3049
3050    Value = DAG.getLoad(VT, Chain,
3051                        getMemBasePlusOffset(Src, SrcOff, DAG),
3052                        SrcSV, SrcSVOff + SrcOff, false, Align);
3053    LoadValues.push_back(Value);
3054    LoadChains.push_back(Value.getValue(1));
3055    SrcOff += VTSize;
3056  }
3057  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3058                      &LoadChains[0], LoadChains.size());
3059  OutChains.clear();
3060  for (unsigned i = 0; i < NumMemOps; i++) {
3061    MVT VT = MemOps[i];
3062    unsigned VTSize = VT.getSizeInBits() / 8;
3063    SDValue Value, Store;
3064
3065    Store = DAG.getStore(Chain, LoadValues[i],
3066                         getMemBasePlusOffset(Dst, DstOff, DAG),
3067                         DstSV, DstSVOff + DstOff, false, DstAlign);
3068    OutChains.push_back(Store);
3069    DstOff += VTSize;
3070  }
3071
3072  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3073                     &OutChains[0], OutChains.size());
3074}
3075
3076static SDValue getMemsetStores(SelectionDAG &DAG,
3077                                 SDValue Chain, SDValue Dst,
3078                                 SDValue Src, uint64_t Size,
3079                                 unsigned Align,
3080                                 const Value *DstSV, uint64_t DstSVOff) {
3081  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3082
3083  // Expand memset to a series of load/store ops if the size operand
3084  // falls below a certain threshold.
3085  std::vector<MVT> MemOps;
3086  std::string Str;
3087  bool CopyFromStr;
3088  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3089                                Size, Align, Str, CopyFromStr, DAG, TLI))
3090    return SDValue();
3091
3092  SmallVector<SDValue, 8> OutChains;
3093  uint64_t DstOff = 0;
3094
3095  unsigned NumMemOps = MemOps.size();
3096  for (unsigned i = 0; i < NumMemOps; i++) {
3097    MVT VT = MemOps[i];
3098    unsigned VTSize = VT.getSizeInBits() / 8;
3099    SDValue Value = getMemsetValue(Src, VT, DAG);
3100    SDValue Store = DAG.getStore(Chain, Value,
3101                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3102                                 DstSV, DstSVOff + DstOff);
3103    OutChains.push_back(Store);
3104    DstOff += VTSize;
3105  }
3106
3107  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3108                     &OutChains[0], OutChains.size());
3109}
3110
3111SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3112                                SDValue Src, SDValue Size,
3113                                unsigned Align, bool AlwaysInline,
3114                                const Value *DstSV, uint64_t DstSVOff,
3115                                const Value *SrcSV, uint64_t SrcSVOff) {
3116
3117  // Check to see if we should lower the memcpy to loads and stores first.
3118  // For cases within the target-specified limits, this is the best choice.
3119  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3120  if (ConstantSize) {
3121    // Memcpy with size zero? Just return the original chain.
3122    if (ConstantSize->isNullValue())
3123      return Chain;
3124
3125    SDValue Result =
3126      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3127                              ConstantSize->getZExtValue(),
3128                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3129    if (Result.getNode())
3130      return Result;
3131  }
3132
3133  // Then check to see if we should lower the memcpy with target-specific
3134  // code. If the target chooses to do this, this is the next best.
3135  SDValue Result =
3136    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3137                                AlwaysInline,
3138                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3139  if (Result.getNode())
3140    return Result;
3141
3142  // If we really need inline code and the target declined to provide it,
3143  // use a (potentially long) sequence of loads and stores.
3144  if (AlwaysInline) {
3145    assert(ConstantSize && "AlwaysInline requires a constant size!");
3146    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3147                                   ConstantSize->getZExtValue(), Align, true,
3148                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3149  }
3150
3151  // Emit a library call.
3152  TargetLowering::ArgListTy Args;
3153  TargetLowering::ArgListEntry Entry;
3154  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3155  Entry.Node = Dst; Args.push_back(Entry);
3156  Entry.Node = Src; Args.push_back(Entry);
3157  Entry.Node = Size; Args.push_back(Entry);
3158  std::pair<SDValue,SDValue> CallResult =
3159    TLI.LowerCallTo(Chain, Type::VoidTy,
3160                    false, false, false, false, CallingConv::C, false,
3161                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3162                    Args, *this);
3163  return CallResult.second;
3164}
3165
3166SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3167                                 SDValue Src, SDValue Size,
3168                                 unsigned Align,
3169                                 const Value *DstSV, uint64_t DstSVOff,
3170                                 const Value *SrcSV, uint64_t SrcSVOff) {
3171
3172  // Check to see if we should lower the memmove to loads and stores first.
3173  // For cases within the target-specified limits, this is the best choice.
3174  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3175  if (ConstantSize) {
3176    // Memmove with size zero? Just return the original chain.
3177    if (ConstantSize->isNullValue())
3178      return Chain;
3179
3180    SDValue Result =
3181      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3182                               ConstantSize->getZExtValue(),
3183                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3184    if (Result.getNode())
3185      return Result;
3186  }
3187
3188  // Then check to see if we should lower the memmove with target-specific
3189  // code. If the target chooses to do this, this is the next best.
3190  SDValue Result =
3191    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3192                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3193  if (Result.getNode())
3194    return Result;
3195
3196  // Emit a library call.
3197  TargetLowering::ArgListTy Args;
3198  TargetLowering::ArgListEntry Entry;
3199  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3200  Entry.Node = Dst; Args.push_back(Entry);
3201  Entry.Node = Src; Args.push_back(Entry);
3202  Entry.Node = Size; Args.push_back(Entry);
3203  std::pair<SDValue,SDValue> CallResult =
3204    TLI.LowerCallTo(Chain, Type::VoidTy,
3205                    false, false, false, false, CallingConv::C, false,
3206                    getExternalSymbol("memmove", TLI.getPointerTy()),
3207                    Args, *this);
3208  return CallResult.second;
3209}
3210
3211SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3212                                SDValue Src, SDValue Size,
3213                                unsigned Align,
3214                                const Value *DstSV, uint64_t DstSVOff) {
3215
3216  // Check to see if we should lower the memset to stores first.
3217  // For cases within the target-specified limits, this is the best choice.
3218  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3219  if (ConstantSize) {
3220    // Memset with size zero? Just return the original chain.
3221    if (ConstantSize->isNullValue())
3222      return Chain;
3223
3224    SDValue Result =
3225      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3226                      Align, DstSV, DstSVOff);
3227    if (Result.getNode())
3228      return Result;
3229  }
3230
3231  // Then check to see if we should lower the memset with target-specific
3232  // code. If the target chooses to do this, this is the next best.
3233  SDValue Result =
3234    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3235                                DstSV, DstSVOff);
3236  if (Result.getNode())
3237    return Result;
3238
3239  // Emit a library call.
3240  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3241  TargetLowering::ArgListTy Args;
3242  TargetLowering::ArgListEntry Entry;
3243  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3244  Args.push_back(Entry);
3245  // Extend or truncate the argument to be an i32 value for the call.
3246  if (Src.getValueType().bitsGT(MVT::i32))
3247    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3248  else
3249    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3250  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3251  Args.push_back(Entry);
3252  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3253  Args.push_back(Entry);
3254  std::pair<SDValue,SDValue> CallResult =
3255    TLI.LowerCallTo(Chain, Type::VoidTy,
3256                    false, false, false, false, CallingConv::C, false,
3257                    getExternalSymbol("memset", TLI.getPointerTy()),
3258                    Args, *this);
3259  return CallResult.second;
3260}
3261
3262SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3263                                SDValue Chain,
3264                                SDValue Ptr, SDValue Cmp,
3265                                SDValue Swp, const Value* PtrVal,
3266                                unsigned Alignment) {
3267  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3268  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3269
3270  MVT VT = Cmp.getValueType();
3271
3272  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3273    Alignment = getMVTAlignment(MemVT);
3274
3275  SDVTList VTs = getVTList(VT, MVT::Other);
3276  FoldingSetNodeID ID;
3277  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3278  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3279  void* IP = 0;
3280  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3281    return SDValue(E, 0);
3282  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3283  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3284                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3285  CSEMap.InsertNode(N, IP);
3286  AllNodes.push_back(N);
3287  return SDValue(N, 0);
3288}
3289
3290SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3291                                SDValue Chain,
3292                                SDValue Ptr, SDValue Val,
3293                                const Value* PtrVal,
3294                                unsigned Alignment) {
3295  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3296          Opcode == ISD::ATOMIC_LOAD_SUB ||
3297          Opcode == ISD::ATOMIC_LOAD_AND ||
3298          Opcode == ISD::ATOMIC_LOAD_OR ||
3299          Opcode == ISD::ATOMIC_LOAD_XOR ||
3300          Opcode == ISD::ATOMIC_LOAD_NAND ||
3301          Opcode == ISD::ATOMIC_LOAD_MIN ||
3302          Opcode == ISD::ATOMIC_LOAD_MAX ||
3303          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3304          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3305          Opcode == ISD::ATOMIC_SWAP) &&
3306         "Invalid Atomic Op");
3307
3308  MVT VT = Val.getValueType();
3309
3310  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3311    Alignment = getMVTAlignment(MemVT);
3312
3313  SDVTList VTs = getVTList(VT, MVT::Other);
3314  FoldingSetNodeID ID;
3315  SDValue Ops[] = {Chain, Ptr, Val};
3316  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3317  void* IP = 0;
3318  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3319    return SDValue(E, 0);
3320  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3321  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3322                       Chain, Ptr, Val, PtrVal, Alignment);
3323  CSEMap.InsertNode(N, IP);
3324  AllNodes.push_back(N);
3325  return SDValue(N, 0);
3326}
3327
3328/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3329/// Allowed to return something different (and simpler) if Simplify is true.
3330SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps) {
3331  if (NumOps == 1)
3332    return Ops[0];
3333
3334  SmallVector<MVT, 4> VTs;
3335  VTs.reserve(NumOps);
3336  for (unsigned i = 0; i < NumOps; ++i)
3337    VTs.push_back(Ops[i].getValueType());
3338  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3339}
3340
3341SDValue
3342SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3343                                  const MVT *VTs, unsigned NumVTs,
3344                                  const SDValue *Ops, unsigned NumOps,
3345                                  MVT MemVT, const Value *srcValue, int SVOff,
3346                                  unsigned Align, bool Vol,
3347                                  bool ReadMem, bool WriteMem) {
3348  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3349                             MemVT, srcValue, SVOff, Align, Vol,
3350                             ReadMem, WriteMem);
3351}
3352
3353SDValue
3354SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3355                                  const SDValue *Ops, unsigned NumOps,
3356                                  MVT MemVT, const Value *srcValue, int SVOff,
3357                                  unsigned Align, bool Vol,
3358                                  bool ReadMem, bool WriteMem) {
3359  // Memoize the node unless it returns a flag.
3360  MemIntrinsicSDNode *N;
3361  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3362    FoldingSetNodeID ID;
3363    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3364    void *IP = 0;
3365    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3366      return SDValue(E, 0);
3367
3368    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3369    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3370                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3371    CSEMap.InsertNode(N, IP);
3372  } else {
3373    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3374    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3375                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3376  }
3377  AllNodes.push_back(N);
3378  return SDValue(N, 0);
3379}
3380
3381SDValue
3382SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3383                      bool IsInreg, SDVTList VTs,
3384                      const SDValue *Operands, unsigned NumOperands) {
3385  // Do not include isTailCall in the folding set profile.
3386  FoldingSetNodeID ID;
3387  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3388  ID.AddInteger(CallingConv);
3389  ID.AddInteger(IsVarArgs);
3390  void *IP = 0;
3391  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3392    // Instead of including isTailCall in the folding set, we just
3393    // set the flag of the existing node.
3394    if (!IsTailCall)
3395      cast<CallSDNode>(E)->setNotTailCall();
3396    return SDValue(E, 0);
3397  }
3398  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3399  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3400                     VTs, Operands, NumOperands);
3401  CSEMap.InsertNode(N, IP);
3402  AllNodes.push_back(N);
3403  return SDValue(N, 0);
3404}
3405
3406SDValue
3407SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3408                      MVT VT, SDValue Chain,
3409                      SDValue Ptr, SDValue Offset,
3410                      const Value *SV, int SVOffset, MVT EVT,
3411                      bool isVolatile, unsigned Alignment) {
3412  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3413    Alignment = getMVTAlignment(VT);
3414
3415  if (VT == EVT) {
3416    ExtType = ISD::NON_EXTLOAD;
3417  } else if (ExtType == ISD::NON_EXTLOAD) {
3418    assert(VT == EVT && "Non-extending load from different memory type!");
3419  } else {
3420    // Extending load.
3421    if (VT.isVector())
3422      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3423             "Invalid vector extload!");
3424    else
3425      assert(EVT.bitsLT(VT) &&
3426             "Should only be an extending load, not truncating!");
3427    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3428           "Cannot sign/zero extend a FP/Vector load!");
3429    assert(VT.isInteger() == EVT.isInteger() &&
3430           "Cannot convert from FP to Int or Int -> FP!");
3431  }
3432
3433  bool Indexed = AM != ISD::UNINDEXED;
3434  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3435         "Unindexed load with an offset!");
3436
3437  SDVTList VTs = Indexed ?
3438    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3439  SDValue Ops[] = { Chain, Ptr, Offset };
3440  FoldingSetNodeID ID;
3441  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3442  ID.AddInteger(AM);
3443  ID.AddInteger(ExtType);
3444  ID.AddInteger(EVT.getRawBits());
3445  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3446  void *IP = 0;
3447  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3448    return SDValue(E, 0);
3449  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3450  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3451                     Alignment, isVolatile);
3452  CSEMap.InsertNode(N, IP);
3453  AllNodes.push_back(N);
3454  return SDValue(N, 0);
3455}
3456
3457SDValue SelectionDAG::getLoad(MVT VT,
3458                              SDValue Chain, SDValue Ptr,
3459                              const Value *SV, int SVOffset,
3460                              bool isVolatile, unsigned Alignment) {
3461  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3462  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3463                 SV, SVOffset, VT, isVolatile, Alignment);
3464}
3465
3466SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3467                                 SDValue Chain, SDValue Ptr,
3468                                 const Value *SV,
3469                                 int SVOffset, MVT EVT,
3470                                 bool isVolatile, unsigned Alignment) {
3471  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3472  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3473                 SV, SVOffset, EVT, isVolatile, Alignment);
3474}
3475
3476SDValue
3477SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3478                             SDValue Offset, ISD::MemIndexedMode AM) {
3479  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3480  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3481         "Load is already a indexed load!");
3482  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3483                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3484                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3485                 LD->isVolatile(), LD->getAlignment());
3486}
3487
3488SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3489                               SDValue Ptr, const Value *SV, int SVOffset,
3490                               bool isVolatile, unsigned Alignment) {
3491  MVT VT = Val.getValueType();
3492
3493  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3494    Alignment = getMVTAlignment(VT);
3495
3496  SDVTList VTs = getVTList(MVT::Other);
3497  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3498  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3499  FoldingSetNodeID ID;
3500  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3501  ID.AddInteger(ISD::UNINDEXED);
3502  ID.AddInteger(false);
3503  ID.AddInteger(VT.getRawBits());
3504  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3505  void *IP = 0;
3506  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3507    return SDValue(E, 0);
3508  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3509  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3510                      VT, SV, SVOffset, Alignment, isVolatile);
3511  CSEMap.InsertNode(N, IP);
3512  AllNodes.push_back(N);
3513  return SDValue(N, 0);
3514}
3515
3516SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3517                                    SDValue Ptr, const Value *SV,
3518                                    int SVOffset, MVT SVT,
3519                                    bool isVolatile, unsigned Alignment) {
3520  MVT VT = Val.getValueType();
3521
3522  if (VT == SVT)
3523    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3524
3525  assert(VT.bitsGT(SVT) && "Not a truncation?");
3526  assert(VT.isInteger() == SVT.isInteger() &&
3527         "Can't do FP-INT conversion!");
3528
3529  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3530    Alignment = getMVTAlignment(VT);
3531
3532  SDVTList VTs = getVTList(MVT::Other);
3533  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3534  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3535  FoldingSetNodeID ID;
3536  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3537  ID.AddInteger(ISD::UNINDEXED);
3538  ID.AddInteger(1);
3539  ID.AddInteger(SVT.getRawBits());
3540  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3541  void *IP = 0;
3542  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3543    return SDValue(E, 0);
3544  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3545  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3546                      SVT, SV, SVOffset, Alignment, isVolatile);
3547  CSEMap.InsertNode(N, IP);
3548  AllNodes.push_back(N);
3549  return SDValue(N, 0);
3550}
3551
3552SDValue
3553SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3554                              SDValue Offset, ISD::MemIndexedMode AM) {
3555  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3556  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3557         "Store is already a indexed store!");
3558  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3559  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3560  FoldingSetNodeID ID;
3561  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3562  ID.AddInteger(AM);
3563  ID.AddInteger(ST->isTruncatingStore());
3564  ID.AddInteger(ST->getMemoryVT().getRawBits());
3565  ID.AddInteger(ST->getRawFlags());
3566  void *IP = 0;
3567  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3568    return SDValue(E, 0);
3569  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3570  new (N) StoreSDNode(Ops, VTs, AM,
3571                      ST->isTruncatingStore(), ST->getMemoryVT(),
3572                      ST->getSrcValue(), ST->getSrcValueOffset(),
3573                      ST->getAlignment(), ST->isVolatile());
3574  CSEMap.InsertNode(N, IP);
3575  AllNodes.push_back(N);
3576  return SDValue(N, 0);
3577}
3578
3579SDValue SelectionDAG::getVAArg(MVT VT,
3580                               SDValue Chain, SDValue Ptr,
3581                               SDValue SV) {
3582  SDValue Ops[] = { Chain, Ptr, SV };
3583  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3584}
3585
3586SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3587                              const SDUse *Ops, unsigned NumOps) {
3588  switch (NumOps) {
3589  case 0: return getNode(Opcode, VT);
3590  case 1: return getNode(Opcode, VT, Ops[0]);
3591  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3592  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3593  default: break;
3594  }
3595
3596  // Copy from an SDUse array into an SDValue array for use with
3597  // the regular getNode logic.
3598  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3599  return getNode(Opcode, VT, &NewOps[0], NumOps);
3600}
3601
3602SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3603                              const SDValue *Ops, unsigned NumOps) {
3604  switch (NumOps) {
3605  case 0: return getNode(Opcode, VT);
3606  case 1: return getNode(Opcode, VT, Ops[0]);
3607  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3608  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3609  default: break;
3610  }
3611
3612  switch (Opcode) {
3613  default: break;
3614  case ISD::SELECT_CC: {
3615    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3616    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3617           "LHS and RHS of condition must have same type!");
3618    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3619           "True and False arms of SelectCC must have same type!");
3620    assert(Ops[2].getValueType() == VT &&
3621           "select_cc node must be of same type as true and false value!");
3622    break;
3623  }
3624  case ISD::BR_CC: {
3625    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3626    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3627           "LHS/RHS of comparison should match types!");
3628    break;
3629  }
3630  }
3631
3632  // Memoize nodes.
3633  SDNode *N;
3634  SDVTList VTs = getVTList(VT);
3635  if (VT != MVT::Flag) {
3636    FoldingSetNodeID ID;
3637    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3638    void *IP = 0;
3639    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3640      return SDValue(E, 0);
3641    N = NodeAllocator.Allocate<SDNode>();
3642    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3643    CSEMap.InsertNode(N, IP);
3644  } else {
3645    N = NodeAllocator.Allocate<SDNode>();
3646    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3647  }
3648  AllNodes.push_back(N);
3649#ifndef NDEBUG
3650  VerifyNode(N);
3651#endif
3652  return SDValue(N, 0);
3653}
3654
3655SDValue SelectionDAG::getNode(unsigned Opcode,
3656                              const std::vector<MVT> &ResultTys,
3657                              const SDValue *Ops, unsigned NumOps) {
3658  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3659                 Ops, NumOps);
3660}
3661
3662SDValue SelectionDAG::getNode(unsigned Opcode,
3663                              const MVT *VTs, unsigned NumVTs,
3664                              const SDValue *Ops, unsigned NumOps) {
3665  if (NumVTs == 1)
3666    return getNode(Opcode, VTs[0], Ops, NumOps);
3667  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3668}
3669
3670SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3671                              const SDValue *Ops, unsigned NumOps) {
3672  if (VTList.NumVTs == 1)
3673    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3674
3675  switch (Opcode) {
3676  // FIXME: figure out how to safely handle things like
3677  // int foo(int x) { return 1 << (x & 255); }
3678  // int bar() { return foo(256); }
3679#if 0
3680  case ISD::SRA_PARTS:
3681  case ISD::SRL_PARTS:
3682  case ISD::SHL_PARTS:
3683    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3684        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3685      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3686    else if (N3.getOpcode() == ISD::AND)
3687      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3688        // If the and is only masking out bits that cannot effect the shift,
3689        // eliminate the and.
3690        unsigned NumBits = VT.getSizeInBits()*2;
3691        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3692          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3693      }
3694    break;
3695#endif
3696  }
3697
3698  // Memoize the node unless it returns a flag.
3699  SDNode *N;
3700  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3701    FoldingSetNodeID ID;
3702    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3703    void *IP = 0;
3704    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3705      return SDValue(E, 0);
3706    if (NumOps == 1) {
3707      N = NodeAllocator.Allocate<UnarySDNode>();
3708      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3709    } else if (NumOps == 2) {
3710      N = NodeAllocator.Allocate<BinarySDNode>();
3711      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3712    } else if (NumOps == 3) {
3713      N = NodeAllocator.Allocate<TernarySDNode>();
3714      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3715    } else {
3716      N = NodeAllocator.Allocate<SDNode>();
3717      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3718    }
3719    CSEMap.InsertNode(N, IP);
3720  } else {
3721    if (NumOps == 1) {
3722      N = NodeAllocator.Allocate<UnarySDNode>();
3723      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3724    } else if (NumOps == 2) {
3725      N = NodeAllocator.Allocate<BinarySDNode>();
3726      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3727    } else if (NumOps == 3) {
3728      N = NodeAllocator.Allocate<TernarySDNode>();
3729      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3730    } else {
3731      N = NodeAllocator.Allocate<SDNode>();
3732      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3733    }
3734  }
3735  AllNodes.push_back(N);
3736#ifndef NDEBUG
3737  VerifyNode(N);
3738#endif
3739  return SDValue(N, 0);
3740}
3741
3742SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3743  return getNode(Opcode, VTList, 0, 0);
3744}
3745
3746SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3747                                SDValue N1) {
3748  SDValue Ops[] = { N1 };
3749  return getNode(Opcode, VTList, Ops, 1);
3750}
3751
3752SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3753                              SDValue N1, SDValue N2) {
3754  SDValue Ops[] = { N1, N2 };
3755  return getNode(Opcode, VTList, Ops, 2);
3756}
3757
3758SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3759                              SDValue N1, SDValue N2, SDValue N3) {
3760  SDValue Ops[] = { N1, N2, N3 };
3761  return getNode(Opcode, VTList, Ops, 3);
3762}
3763
3764SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3765                              SDValue N1, SDValue N2, SDValue N3,
3766                              SDValue N4) {
3767  SDValue Ops[] = { N1, N2, N3, N4 };
3768  return getNode(Opcode, VTList, Ops, 4);
3769}
3770
3771SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3772                              SDValue N1, SDValue N2, SDValue N3,
3773                              SDValue N4, SDValue N5) {
3774  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3775  return getNode(Opcode, VTList, Ops, 5);
3776}
3777
3778SDVTList SelectionDAG::getVTList(MVT VT) {
3779  return makeVTList(SDNode::getValueTypeList(VT), 1);
3780}
3781
3782SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3783  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3784       E = VTList.rend(); I != E; ++I)
3785    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3786      return *I;
3787
3788  MVT *Array = Allocator.Allocate<MVT>(2);
3789  Array[0] = VT1;
3790  Array[1] = VT2;
3791  SDVTList Result = makeVTList(Array, 2);
3792  VTList.push_back(Result);
3793  return Result;
3794}
3795
3796SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3797  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3798       E = VTList.rend(); I != E; ++I)
3799    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3800                          I->VTs[2] == VT3)
3801      return *I;
3802
3803  MVT *Array = Allocator.Allocate<MVT>(3);
3804  Array[0] = VT1;
3805  Array[1] = VT2;
3806  Array[2] = VT3;
3807  SDVTList Result = makeVTList(Array, 3);
3808  VTList.push_back(Result);
3809  return Result;
3810}
3811
3812SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3813  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3814       E = VTList.rend(); I != E; ++I)
3815    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3816                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3817      return *I;
3818
3819  MVT *Array = Allocator.Allocate<MVT>(3);
3820  Array[0] = VT1;
3821  Array[1] = VT2;
3822  Array[2] = VT3;
3823  Array[3] = VT4;
3824  SDVTList Result = makeVTList(Array, 4);
3825  VTList.push_back(Result);
3826  return Result;
3827}
3828
3829SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3830  switch (NumVTs) {
3831    case 0: assert(0 && "Cannot have nodes without results!");
3832    case 1: return getVTList(VTs[0]);
3833    case 2: return getVTList(VTs[0], VTs[1]);
3834    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3835    default: break;
3836  }
3837
3838  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3839       E = VTList.rend(); I != E; ++I) {
3840    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3841      continue;
3842
3843    bool NoMatch = false;
3844    for (unsigned i = 2; i != NumVTs; ++i)
3845      if (VTs[i] != I->VTs[i]) {
3846        NoMatch = true;
3847        break;
3848      }
3849    if (!NoMatch)
3850      return *I;
3851  }
3852
3853  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3854  std::copy(VTs, VTs+NumVTs, Array);
3855  SDVTList Result = makeVTList(Array, NumVTs);
3856  VTList.push_back(Result);
3857  return Result;
3858}
3859
3860
3861/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3862/// specified operands.  If the resultant node already exists in the DAG,
3863/// this does not modify the specified node, instead it returns the node that
3864/// already exists.  If the resultant node does not exist in the DAG, the
3865/// input node is returned.  As a degenerate case, if you specify the same
3866/// input operands as the node already has, the input node is returned.
3867SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3868  SDNode *N = InN.getNode();
3869  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3870
3871  // Check to see if there is no change.
3872  if (Op == N->getOperand(0)) return InN;
3873
3874  // See if the modified node already exists.
3875  void *InsertPos = 0;
3876  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3877    return SDValue(Existing, InN.getResNo());
3878
3879  // Nope it doesn't.  Remove the node from its current place in the maps.
3880  if (InsertPos)
3881    if (!RemoveNodeFromCSEMaps(N))
3882      InsertPos = 0;
3883
3884  // Now we update the operands.
3885  N->OperandList[0].getVal()->removeUser(0, N);
3886  N->OperandList[0] = Op;
3887  N->OperandList[0].setUser(N);
3888  Op.getNode()->addUser(0, N);
3889
3890  // If this gets put into a CSE map, add it.
3891  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3892  return InN;
3893}
3894
3895SDValue SelectionDAG::
3896UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3897  SDNode *N = InN.getNode();
3898  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3899
3900  // Check to see if there is no change.
3901  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3902    return InN;   // No operands changed, just return the input node.
3903
3904  // See if the modified node already exists.
3905  void *InsertPos = 0;
3906  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3907    return SDValue(Existing, InN.getResNo());
3908
3909  // Nope it doesn't.  Remove the node from its current place in the maps.
3910  if (InsertPos)
3911    if (!RemoveNodeFromCSEMaps(N))
3912      InsertPos = 0;
3913
3914  // Now we update the operands.
3915  if (N->OperandList[0] != Op1) {
3916    N->OperandList[0].getVal()->removeUser(0, N);
3917    N->OperandList[0] = Op1;
3918    N->OperandList[0].setUser(N);
3919    Op1.getNode()->addUser(0, N);
3920  }
3921  if (N->OperandList[1] != Op2) {
3922    N->OperandList[1].getVal()->removeUser(1, N);
3923    N->OperandList[1] = Op2;
3924    N->OperandList[1].setUser(N);
3925    Op2.getNode()->addUser(1, N);
3926  }
3927
3928  // If this gets put into a CSE map, add it.
3929  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3930  return InN;
3931}
3932
3933SDValue SelectionDAG::
3934UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3935  SDValue Ops[] = { Op1, Op2, Op3 };
3936  return UpdateNodeOperands(N, Ops, 3);
3937}
3938
3939SDValue SelectionDAG::
3940UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3941                   SDValue Op3, SDValue Op4) {
3942  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3943  return UpdateNodeOperands(N, Ops, 4);
3944}
3945
3946SDValue SelectionDAG::
3947UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3948                   SDValue Op3, SDValue Op4, SDValue Op5) {
3949  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3950  return UpdateNodeOperands(N, Ops, 5);
3951}
3952
3953SDValue SelectionDAG::
3954UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3955  SDNode *N = InN.getNode();
3956  assert(N->getNumOperands() == NumOps &&
3957         "Update with wrong number of operands");
3958
3959  // Check to see if there is no change.
3960  bool AnyChange = false;
3961  for (unsigned i = 0; i != NumOps; ++i) {
3962    if (Ops[i] != N->getOperand(i)) {
3963      AnyChange = true;
3964      break;
3965    }
3966  }
3967
3968  // No operands changed, just return the input node.
3969  if (!AnyChange) return InN;
3970
3971  // See if the modified node already exists.
3972  void *InsertPos = 0;
3973  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3974    return SDValue(Existing, InN.getResNo());
3975
3976  // Nope it doesn't.  Remove the node from its current place in the maps.
3977  if (InsertPos)
3978    if (!RemoveNodeFromCSEMaps(N))
3979      InsertPos = 0;
3980
3981  // Now we update the operands.
3982  for (unsigned i = 0; i != NumOps; ++i) {
3983    if (N->OperandList[i] != Ops[i]) {
3984      N->OperandList[i].getVal()->removeUser(i, N);
3985      N->OperandList[i] = Ops[i];
3986      N->OperandList[i].setUser(N);
3987      Ops[i].getNode()->addUser(i, N);
3988    }
3989  }
3990
3991  // If this gets put into a CSE map, add it.
3992  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3993  return InN;
3994}
3995
3996/// DropOperands - Release the operands and set this node to have
3997/// zero operands.
3998void SDNode::DropOperands() {
3999  // Unlike the code in MorphNodeTo that does this, we don't need to
4000  // watch for dead nodes here.
4001  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
4002    I->getVal()->removeUser(std::distance(op_begin(), I), this);
4003
4004  NumOperands = 0;
4005}
4006
4007/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4008/// machine opcode.
4009///
4010SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4011                                   MVT VT) {
4012  SDVTList VTs = getVTList(VT);
4013  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4014}
4015
4016SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4017                                   MVT VT, SDValue Op1) {
4018  SDVTList VTs = getVTList(VT);
4019  SDValue Ops[] = { Op1 };
4020  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4021}
4022
4023SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4024                                   MVT VT, SDValue Op1,
4025                                   SDValue Op2) {
4026  SDVTList VTs = getVTList(VT);
4027  SDValue Ops[] = { Op1, Op2 };
4028  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4029}
4030
4031SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4032                                   MVT VT, SDValue Op1,
4033                                   SDValue Op2, SDValue Op3) {
4034  SDVTList VTs = getVTList(VT);
4035  SDValue Ops[] = { Op1, Op2, Op3 };
4036  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4037}
4038
4039SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4040                                   MVT VT, const SDValue *Ops,
4041                                   unsigned NumOps) {
4042  SDVTList VTs = getVTList(VT);
4043  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4044}
4045
4046SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4047                                   MVT VT1, MVT VT2, const SDValue *Ops,
4048                                   unsigned NumOps) {
4049  SDVTList VTs = getVTList(VT1, VT2);
4050  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4051}
4052
4053SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4054                                   MVT VT1, MVT VT2) {
4055  SDVTList VTs = getVTList(VT1, VT2);
4056  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4057}
4058
4059SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4060                                   MVT VT1, MVT VT2, MVT VT3,
4061                                   const SDValue *Ops, unsigned NumOps) {
4062  SDVTList VTs = getVTList(VT1, VT2, VT3);
4063  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4064}
4065
4066SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4067                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4068                                   const SDValue *Ops, unsigned NumOps) {
4069  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4070  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4071}
4072
4073SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4074                                   MVT VT1, MVT VT2,
4075                                   SDValue Op1) {
4076  SDVTList VTs = getVTList(VT1, VT2);
4077  SDValue Ops[] = { Op1 };
4078  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4079}
4080
4081SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4082                                   MVT VT1, MVT VT2,
4083                                   SDValue Op1, SDValue Op2) {
4084  SDVTList VTs = getVTList(VT1, VT2);
4085  SDValue Ops[] = { Op1, Op2 };
4086  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4087}
4088
4089SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4090                                   MVT VT1, MVT VT2,
4091                                   SDValue Op1, SDValue Op2,
4092                                   SDValue Op3) {
4093  SDVTList VTs = getVTList(VT1, VT2);
4094  SDValue Ops[] = { Op1, Op2, Op3 };
4095  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4096}
4097
4098SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4099                                   MVT VT1, MVT VT2, MVT VT3,
4100                                   SDValue Op1, SDValue Op2,
4101                                   SDValue Op3) {
4102  SDVTList VTs = getVTList(VT1, VT2, VT3);
4103  SDValue Ops[] = { Op1, Op2, Op3 };
4104  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4105}
4106
4107SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4108                                   SDVTList VTs, const SDValue *Ops,
4109                                   unsigned NumOps) {
4110  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4111}
4112
4113SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4114                                  MVT VT) {
4115  SDVTList VTs = getVTList(VT);
4116  return MorphNodeTo(N, Opc, VTs, 0, 0);
4117}
4118
4119SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4120                                  MVT VT, SDValue Op1) {
4121  SDVTList VTs = getVTList(VT);
4122  SDValue Ops[] = { Op1 };
4123  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4124}
4125
4126SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4127                                  MVT VT, SDValue Op1,
4128                                  SDValue Op2) {
4129  SDVTList VTs = getVTList(VT);
4130  SDValue Ops[] = { Op1, Op2 };
4131  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4132}
4133
4134SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4135                                  MVT VT, SDValue Op1,
4136                                  SDValue Op2, SDValue Op3) {
4137  SDVTList VTs = getVTList(VT);
4138  SDValue Ops[] = { Op1, Op2, Op3 };
4139  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4140}
4141
4142SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4143                                  MVT VT, const SDValue *Ops,
4144                                  unsigned NumOps) {
4145  SDVTList VTs = getVTList(VT);
4146  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4147}
4148
4149SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4150                                  MVT VT1, MVT VT2, const SDValue *Ops,
4151                                  unsigned NumOps) {
4152  SDVTList VTs = getVTList(VT1, VT2);
4153  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4154}
4155
4156SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4157                                  MVT VT1, MVT VT2) {
4158  SDVTList VTs = getVTList(VT1, VT2);
4159  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4160}
4161
4162SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4163                                  MVT VT1, MVT VT2, MVT VT3,
4164                                  const SDValue *Ops, unsigned NumOps) {
4165  SDVTList VTs = getVTList(VT1, VT2, VT3);
4166  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4167}
4168
4169SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4170                                  MVT VT1, MVT VT2,
4171                                  SDValue Op1) {
4172  SDVTList VTs = getVTList(VT1, VT2);
4173  SDValue Ops[] = { Op1 };
4174  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4175}
4176
4177SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4178                                  MVT VT1, MVT VT2,
4179                                  SDValue Op1, SDValue Op2) {
4180  SDVTList VTs = getVTList(VT1, VT2);
4181  SDValue Ops[] = { Op1, Op2 };
4182  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4183}
4184
4185SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4186                                  MVT VT1, MVT VT2,
4187                                  SDValue Op1, SDValue Op2,
4188                                  SDValue Op3) {
4189  SDVTList VTs = getVTList(VT1, VT2);
4190  SDValue Ops[] = { Op1, Op2, Op3 };
4191  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4192}
4193
4194/// MorphNodeTo - These *mutate* the specified node to have the specified
4195/// return type, opcode, and operands.
4196///
4197/// Note that MorphNodeTo returns the resultant node.  If there is already a
4198/// node of the specified opcode and operands, it returns that node instead of
4199/// the current one.
4200///
4201/// Using MorphNodeTo is faster than creating a new node and swapping it in
4202/// with ReplaceAllUsesWith both because it often avoids allocating a new
4203/// node, and because it doesn't require CSE recalculation for any of
4204/// the node's users.
4205///
4206SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4207                                  SDVTList VTs, const SDValue *Ops,
4208                                  unsigned NumOps) {
4209  // If an identical node already exists, use it.
4210  void *IP = 0;
4211  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4212    FoldingSetNodeID ID;
4213    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4214    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4215      return ON;
4216  }
4217
4218  if (!RemoveNodeFromCSEMaps(N))
4219    IP = 0;
4220
4221  // Start the morphing.
4222  N->NodeType = Opc;
4223  N->ValueList = VTs.VTs;
4224  N->NumValues = VTs.NumVTs;
4225
4226  // Clear the operands list, updating used nodes to remove this from their
4227  // use list.  Keep track of any operands that become dead as a result.
4228  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4229  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4230       I != E; ++I) {
4231    SDNode *Used = I->getVal();
4232    Used->removeUser(std::distance(B, I), N);
4233    if (Used->use_empty())
4234      DeadNodeSet.insert(Used);
4235  }
4236
4237  // If NumOps is larger than the # of operands we currently have, reallocate
4238  // the operand list.
4239  if (NumOps > N->NumOperands) {
4240    if (N->OperandsNeedDelete)
4241      delete[] N->OperandList;
4242
4243    if (N->isMachineOpcode()) {
4244      // We're creating a final node that will live unmorphed for the
4245      // remainder of the current SelectionDAG iteration, so we can allocate
4246      // the operands directly out of a pool with no recycling metadata.
4247      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4248      N->OperandsNeedDelete = false;
4249    } else {
4250      N->OperandList = new SDUse[NumOps];
4251      N->OperandsNeedDelete = true;
4252    }
4253  }
4254
4255  // Assign the new operands.
4256  N->NumOperands = NumOps;
4257  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4258    N->OperandList[i] = Ops[i];
4259    N->OperandList[i].setUser(N);
4260    SDNode *ToUse = N->OperandList[i].getVal();
4261    ToUse->addUser(i, N);
4262  }
4263
4264  // Delete any nodes that are still dead after adding the uses for the
4265  // new operands.
4266  SmallVector<SDNode *, 16> DeadNodes;
4267  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4268       E = DeadNodeSet.end(); I != E; ++I)
4269    if ((*I)->use_empty())
4270      DeadNodes.push_back(*I);
4271  RemoveDeadNodes(DeadNodes);
4272
4273  if (IP)
4274    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4275  return N;
4276}
4277
4278
4279/// getTargetNode - These are used for target selectors to create a new node
4280/// with specified return type(s), target opcode, and operands.
4281///
4282/// Note that getTargetNode returns the resultant node.  If there is already a
4283/// node of the specified opcode and operands, it returns that node instead of
4284/// the current one.
4285SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4286  return getNode(~Opcode, VT).getNode();
4287}
4288SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4289  return getNode(~Opcode, VT, Op1).getNode();
4290}
4291SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4292                                    SDValue Op1, SDValue Op2) {
4293  return getNode(~Opcode, VT, Op1, Op2).getNode();
4294}
4295SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4296                                    SDValue Op1, SDValue Op2,
4297                                    SDValue Op3) {
4298  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4299}
4300SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4301                                    const SDValue *Ops, unsigned NumOps) {
4302  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4303}
4304SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4305  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4306  SDValue Op;
4307  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4308}
4309SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4310                                    MVT VT2, SDValue Op1) {
4311  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4312  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4313}
4314SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4315                                    MVT VT2, SDValue Op1,
4316                                    SDValue Op2) {
4317  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4318  SDValue Ops[] = { Op1, Op2 };
4319  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4320}
4321SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4322                                    MVT VT2, SDValue Op1,
4323                                    SDValue Op2, SDValue Op3) {
4324  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4325  SDValue Ops[] = { Op1, Op2, Op3 };
4326  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4327}
4328SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4329                                    const SDValue *Ops, unsigned NumOps) {
4330  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4331  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4332}
4333SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4334                                    SDValue Op1, SDValue Op2) {
4335  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4336  SDValue Ops[] = { Op1, Op2 };
4337  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4338}
4339SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4340                                    SDValue Op1, SDValue Op2,
4341                                    SDValue Op3) {
4342  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4343  SDValue Ops[] = { Op1, Op2, Op3 };
4344  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4345}
4346SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4347                                    const SDValue *Ops, unsigned NumOps) {
4348  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4349  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4350}
4351SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4352                                    MVT VT2, MVT VT3, MVT VT4,
4353                                    const SDValue *Ops, unsigned NumOps) {
4354  std::vector<MVT> VTList;
4355  VTList.push_back(VT1);
4356  VTList.push_back(VT2);
4357  VTList.push_back(VT3);
4358  VTList.push_back(VT4);
4359  const MVT *VTs = getNodeValueTypes(VTList);
4360  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4361}
4362SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4363                                    const std::vector<MVT> &ResultTys,
4364                                    const SDValue *Ops, unsigned NumOps) {
4365  const MVT *VTs = getNodeValueTypes(ResultTys);
4366  return getNode(~Opcode, VTs, ResultTys.size(),
4367                 Ops, NumOps).getNode();
4368}
4369
4370/// getNodeIfExists - Get the specified node if it's already available, or
4371/// else return NULL.
4372SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4373                                      const SDValue *Ops, unsigned NumOps) {
4374  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4375    FoldingSetNodeID ID;
4376    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4377    void *IP = 0;
4378    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4379      return E;
4380  }
4381  return NULL;
4382}
4383
4384
4385/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4386/// This can cause recursive merging of nodes in the DAG.
4387///
4388/// This version assumes From has a single result value.
4389///
4390void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4391                                      DAGUpdateListener *UpdateListener) {
4392  SDNode *From = FromN.getNode();
4393  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4394         "Cannot replace with this method!");
4395  assert(From != To.getNode() && "Cannot replace uses of with self");
4396
4397  // Iterate over all the existing uses of From. This specifically avoids
4398  // visiting any new uses of From that arise while the replacement is
4399  // happening, because any such uses would be the result of CSE: If an
4400  // existing node looks like From after one of its operands is replaced
4401  // by To, we don't want to replace of all its users with To too.
4402  // See PR3018 for more info.
4403  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4404  while (UI != UE) {
4405    SDNode *U = *UI;
4406    do ++UI; while (UI != UE && *UI == U);
4407
4408    // This node is about to morph, remove its old self from the CSE maps.
4409    RemoveNodeFromCSEMaps(U);
4410    int operandNum = 0;
4411    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4412         I != E; ++I, ++operandNum)
4413      if (I->getVal() == From) {
4414        From->removeUser(operandNum, U);
4415        *I = To;
4416        I->setUser(U);
4417        To.getNode()->addUser(operandNum, U);
4418      }
4419
4420    // Now that we have modified U, add it back to the CSE maps.  If it already
4421    // exists there, recursively merge the results together.
4422    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4423      ReplaceAllUsesWith(U, Existing, UpdateListener);
4424      // U is now dead.  Inform the listener if it exists and delete it.
4425      if (UpdateListener)
4426        UpdateListener->NodeDeleted(U, Existing);
4427      DeleteNodeNotInCSEMaps(U);
4428    } else {
4429      // If the node doesn't already exist, we updated it.  Inform a listener if
4430      // it exists.
4431      if (UpdateListener)
4432        UpdateListener->NodeUpdated(U);
4433    }
4434  }
4435}
4436
4437/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4438/// This can cause recursive merging of nodes in the DAG.
4439///
4440/// This version assumes From/To have matching types and numbers of result
4441/// values.
4442///
4443void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4444                                      DAGUpdateListener *UpdateListener) {
4445  assert(From->getVTList().VTs == To->getVTList().VTs &&
4446         From->getNumValues() == To->getNumValues() &&
4447         "Cannot use this version of ReplaceAllUsesWith!");
4448
4449  // Handle the trivial case.
4450  if (From == To)
4451    return;
4452
4453  // Iterate over just the existing users of From. See the comments in
4454  // the ReplaceAllUsesWith above.
4455  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4456  while (UI != UE) {
4457    SDNode *U = *UI;
4458    do ++UI; while (UI != UE && *UI == U);
4459
4460    // This node is about to morph, remove its old self from the CSE maps.
4461    RemoveNodeFromCSEMaps(U);
4462    int operandNum = 0;
4463    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4464         I != E; ++I, ++operandNum)
4465      if (I->getVal() == From) {
4466        From->removeUser(operandNum, U);
4467        I->getSDValue().setNode(To);
4468        To->addUser(operandNum, U);
4469      }
4470
4471    // Now that we have modified U, add it back to the CSE maps.  If it already
4472    // exists there, recursively merge the results together.
4473    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4474      ReplaceAllUsesWith(U, Existing, UpdateListener);
4475      // U is now dead.  Inform the listener if it exists and delete it.
4476      if (UpdateListener)
4477        UpdateListener->NodeDeleted(U, Existing);
4478      DeleteNodeNotInCSEMaps(U);
4479    } else {
4480      // If the node doesn't already exist, we updated it.  Inform a listener if
4481      // it exists.
4482      if (UpdateListener)
4483        UpdateListener->NodeUpdated(U);
4484    }
4485  }
4486}
4487
4488/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4489/// This can cause recursive merging of nodes in the DAG.
4490///
4491/// This version can replace From with any result values.  To must match the
4492/// number and types of values returned by From.
4493void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4494                                      const SDValue *To,
4495                                      DAGUpdateListener *UpdateListener) {
4496  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4497    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4498
4499  // Iterate over just the existing users of From. See the comments in
4500  // the ReplaceAllUsesWith above.
4501  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4502  while (UI != UE) {
4503    SDNode *U = *UI;
4504    do ++UI; while (UI != UE && *UI == U);
4505
4506    // This node is about to morph, remove its old self from the CSE maps.
4507    RemoveNodeFromCSEMaps(U);
4508    int operandNum = 0;
4509    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4510         I != E; ++I, ++operandNum)
4511      if (I->getVal() == From) {
4512        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4513        From->removeUser(operandNum, U);
4514        *I = ToOp;
4515        I->setUser(U);
4516        ToOp.getNode()->addUser(operandNum, U);
4517      }
4518
4519    // Now that we have modified U, add it back to the CSE maps.  If it already
4520    // exists there, recursively merge the results together.
4521    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4522      ReplaceAllUsesWith(U, Existing, UpdateListener);
4523      // U is now dead.  Inform the listener if it exists and delete it.
4524      if (UpdateListener)
4525        UpdateListener->NodeDeleted(U, Existing);
4526      DeleteNodeNotInCSEMaps(U);
4527    } else {
4528      // If the node doesn't already exist, we updated it.  Inform a listener if
4529      // it exists.
4530      if (UpdateListener)
4531        UpdateListener->NodeUpdated(U);
4532    }
4533  }
4534}
4535
4536/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4537/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4538/// handled the same way as for ReplaceAllUsesWith.
4539void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4540                                             DAGUpdateListener *UpdateListener){
4541  // Handle the really simple, really trivial case efficiently.
4542  if (From == To) return;
4543
4544  // Handle the simple, trivial, case efficiently.
4545  if (From.getNode()->getNumValues() == 1) {
4546    ReplaceAllUsesWith(From, To, UpdateListener);
4547    return;
4548  }
4549
4550  // Get all of the users of From.getNode().  We want these in a nice,
4551  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4552  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4553
4554  while (!Users.empty()) {
4555    // We know that this user uses some value of From.  If it is the right
4556    // value, update it.
4557    SDNode *User = Users.back();
4558    Users.pop_back();
4559
4560    // Scan for an operand that matches From.
4561    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4562    for (; Op != E; ++Op)
4563      if (*Op == From) break;
4564
4565    // If there are no matches, the user must use some other result of From.
4566    if (Op == E) continue;
4567
4568    // Okay, we know this user needs to be updated.  Remove its old self
4569    // from the CSE maps.
4570    RemoveNodeFromCSEMaps(User);
4571
4572    // Update all operands that match "From" in case there are multiple uses.
4573    for (; Op != E; ++Op) {
4574      if (*Op == From) {
4575        From.getNode()->removeUser(Op-User->op_begin(), User);
4576        *Op = To;
4577        Op->setUser(User);
4578        To.getNode()->addUser(Op-User->op_begin(), User);
4579      }
4580    }
4581
4582    // Now that we have modified User, add it back to the CSE maps.  If it
4583    // already exists there, recursively merge the results together.
4584    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4585    if (!Existing) {
4586      if (UpdateListener) UpdateListener->NodeUpdated(User);
4587      continue;  // Continue on to next user.
4588    }
4589
4590    // If there was already an existing matching node, use ReplaceAllUsesWith
4591    // to replace the dead one with the existing one.  This can cause
4592    // recursive merging of other unrelated nodes down the line.
4593    ReplaceAllUsesWith(User, Existing, UpdateListener);
4594
4595    // User is now dead.  Notify a listener if present.
4596    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4597    DeleteNodeNotInCSEMaps(User);
4598  }
4599}
4600
4601/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4602/// uses of other values produced by From.getVal() alone.  The same value may
4603/// appear in both the From and To list.  The Deleted vector is
4604/// handled the same way as for ReplaceAllUsesWith.
4605void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4606                                              const SDValue *To,
4607                                              unsigned Num,
4608                                              DAGUpdateListener *UpdateListener){
4609  // Handle the simple, trivial case efficiently.
4610  if (Num == 1)
4611    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4612
4613  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4614  for (unsigned i = 0; i != Num; ++i)
4615    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4616         E = From[i].getNode()->use_end(); UI != E; ++UI)
4617      Users.push_back(std::make_pair(*UI, i));
4618
4619  while (!Users.empty()) {
4620    // We know that this user uses some value of From.  If it is the right
4621    // value, update it.
4622    SDNode *User = Users.back().first;
4623    unsigned i = Users.back().second;
4624    Users.pop_back();
4625
4626    // Scan for an operand that matches From.
4627    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4628    for (; Op != E; ++Op)
4629      if (*Op == From[i]) break;
4630
4631    // If there are no matches, the user must use some other result of From.
4632    if (Op == E) continue;
4633
4634    // Okay, we know this user needs to be updated.  Remove its old self
4635    // from the CSE maps.
4636    RemoveNodeFromCSEMaps(User);
4637
4638    // Update all operands that match "From" in case there are multiple uses.
4639    for (; Op != E; ++Op) {
4640      if (*Op == From[i]) {
4641        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4642        *Op = To[i];
4643        Op->setUser(User);
4644        To[i].getNode()->addUser(Op-User->op_begin(), User);
4645      }
4646    }
4647
4648    // Now that we have modified User, add it back to the CSE maps.  If it
4649    // already exists there, recursively merge the results together.
4650    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4651    if (!Existing) {
4652      if (UpdateListener) UpdateListener->NodeUpdated(User);
4653      continue;  // Continue on to next user.
4654    }
4655
4656    // If there was already an existing matching node, use ReplaceAllUsesWith
4657    // to replace the dead one with the existing one.  This can cause
4658    // recursive merging of other unrelated nodes down the line.
4659    ReplaceAllUsesWith(User, Existing, UpdateListener);
4660
4661    // User is now dead.  Notify a listener if present.
4662    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4663    DeleteNodeNotInCSEMaps(User);
4664  }
4665}
4666
4667/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4668/// based on their topological order. It returns the maximum id and a vector
4669/// of the SDNodes* in assigned order by reference.
4670unsigned SelectionDAG::AssignTopologicalOrder() {
4671
4672  unsigned DAGSize = 0;
4673
4674  // SortedPos tracks the progress of the algorithm. Nodes before it are
4675  // sorted, nodes after it are unsorted. When the algorithm completes
4676  // it is at the end of the list.
4677  allnodes_iterator SortedPos = allnodes_begin();
4678
4679  // Visit all the nodes. Move nodes with no operands to the front of
4680  // the list immediately. Annotate nodes that do have operands with their
4681  // operand count. Before we do this, the Node Id fields of the nodes
4682  // may contain arbitrary values. After, the Node Id fields for nodes
4683  // before SortedPos will contain the topological sort index, and the
4684  // Node Id fields for nodes At SortedPos and after will contain the
4685  // count of outstanding operands.
4686  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4687    SDNode *N = I++;
4688    unsigned Degree = N->getNumOperands();
4689    if (Degree == 0) {
4690      // A node with no uses, add it to the result array immediately.
4691      N->setNodeId(DAGSize++);
4692      allnodes_iterator Q = N;
4693      if (Q != SortedPos)
4694        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4695      ++SortedPos;
4696    } else {
4697      // Temporarily use the Node Id as scratch space for the degree count.
4698      N->setNodeId(Degree);
4699    }
4700  }
4701
4702  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4703  // such that by the time the end is reached all nodes will be sorted.
4704  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4705    SDNode *N = I;
4706    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4707         UI != UE; ++UI) {
4708      SDNode *P = *UI;
4709      unsigned Degree = P->getNodeId();
4710      --Degree;
4711      if (Degree == 0) {
4712        // All of P's operands are sorted, so P may sorted now.
4713        P->setNodeId(DAGSize++);
4714        if (P != SortedPos)
4715          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4716        ++SortedPos;
4717      } else {
4718        // Update P's outstanding operand count.
4719        P->setNodeId(Degree);
4720      }
4721    }
4722  }
4723
4724  assert(SortedPos == AllNodes.end() &&
4725         "Topological sort incomplete!");
4726  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4727         "First node in topological sort is not the entry token!");
4728  assert(AllNodes.front().getNodeId() == 0 &&
4729         "First node in topological sort has non-zero id!");
4730  assert(AllNodes.front().getNumOperands() == 0 &&
4731         "First node in topological sort has operands!");
4732  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4733         "Last node in topologic sort has unexpected id!");
4734  assert(AllNodes.back().use_empty() &&
4735         "Last node in topologic sort has users!");
4736  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4737  return DAGSize;
4738}
4739
4740
4741
4742//===----------------------------------------------------------------------===//
4743//                              SDNode Class
4744//===----------------------------------------------------------------------===//
4745
4746HandleSDNode::~HandleSDNode() {
4747  DropOperands();
4748}
4749
4750GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4751                                         MVT VT, int64_t o)
4752  : SDNode(isa<GlobalVariable>(GA) &&
4753           cast<GlobalVariable>(GA)->isThreadLocal() ?
4754           // Thread Local
4755           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4756           // Non Thread Local
4757           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4758           getSDVTList(VT)), Offset(o) {
4759  TheGlobal = const_cast<GlobalValue*>(GA);
4760}
4761
4762MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4763                     const Value *srcValue, int SVO,
4764                     unsigned alignment, bool vol)
4765 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4766   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4767
4768  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4769  assert(getAlignment() == alignment && "Alignment representation error!");
4770  assert(isVolatile() == vol && "Volatile representation error!");
4771}
4772
4773MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4774                     unsigned NumOps, MVT memvt, const Value *srcValue,
4775                     int SVO, unsigned alignment, bool vol)
4776   : SDNode(Opc, VTs, Ops, NumOps),
4777     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4778     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
4779  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4780  assert(getAlignment() == alignment && "Alignment representation error!");
4781  assert(isVolatile() == vol && "Volatile representation error!");
4782}
4783
4784/// getMemOperand - Return a MachineMemOperand object describing the memory
4785/// reference performed by this memory reference.
4786MachineMemOperand MemSDNode::getMemOperand() const {
4787  int Flags = 0;
4788  if (isa<LoadSDNode>(this))
4789    Flags = MachineMemOperand::MOLoad;
4790  else if (isa<StoreSDNode>(this))
4791    Flags = MachineMemOperand::MOStore;
4792  else if (isa<AtomicSDNode>(this)) {
4793    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4794  }
4795  else {
4796    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4797    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4798    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4799    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4800  }
4801
4802  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4803  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4804
4805  // Check if the memory reference references a frame index
4806  const FrameIndexSDNode *FI =
4807  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4808  if (!getSrcValue() && FI)
4809    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4810                             Flags, 0, Size, getAlignment());
4811  else
4812    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4813                             Size, getAlignment());
4814}
4815
4816/// Profile - Gather unique data for the node.
4817///
4818void SDNode::Profile(FoldingSetNodeID &ID) const {
4819  AddNodeIDNode(ID, this);
4820}
4821
4822/// getValueTypeList - Return a pointer to the specified value type.
4823///
4824const MVT *SDNode::getValueTypeList(MVT VT) {
4825  if (VT.isExtended()) {
4826    static std::set<MVT, MVT::compareRawBits> EVTs;
4827    return &(*EVTs.insert(VT).first);
4828  } else {
4829    static MVT VTs[MVT::LAST_VALUETYPE];
4830    VTs[VT.getSimpleVT()] = VT;
4831    return &VTs[VT.getSimpleVT()];
4832  }
4833}
4834
4835/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4836/// indicated value.  This method ignores uses of other values defined by this
4837/// operation.
4838bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4839  assert(Value < getNumValues() && "Bad value!");
4840
4841  // TODO: Only iterate over uses of a given value of the node
4842  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4843    if (UI.getUse().getSDValue().getResNo() == Value) {
4844      if (NUses == 0)
4845        return false;
4846      --NUses;
4847    }
4848  }
4849
4850  // Found exactly the right number of uses?
4851  return NUses == 0;
4852}
4853
4854
4855/// hasAnyUseOfValue - Return true if there are any use of the indicated
4856/// value. This method ignores uses of other values defined by this operation.
4857bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4858  assert(Value < getNumValues() && "Bad value!");
4859
4860  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4861    if (UI.getUse().getSDValue().getResNo() == Value)
4862      return true;
4863
4864  return false;
4865}
4866
4867
4868/// isOnlyUserOf - Return true if this node is the only use of N.
4869///
4870bool SDNode::isOnlyUserOf(SDNode *N) const {
4871  bool Seen = false;
4872  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4873    SDNode *User = *I;
4874    if (User == this)
4875      Seen = true;
4876    else
4877      return false;
4878  }
4879
4880  return Seen;
4881}
4882
4883/// isOperand - Return true if this node is an operand of N.
4884///
4885bool SDValue::isOperandOf(SDNode *N) const {
4886  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4887    if (*this == N->getOperand(i))
4888      return true;
4889  return false;
4890}
4891
4892bool SDNode::isOperandOf(SDNode *N) const {
4893  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4894    if (this == N->OperandList[i].getVal())
4895      return true;
4896  return false;
4897}
4898
4899/// reachesChainWithoutSideEffects - Return true if this operand (which must
4900/// be a chain) reaches the specified operand without crossing any
4901/// side-effecting instructions.  In practice, this looks through token
4902/// factors and non-volatile loads.  In order to remain efficient, this only
4903/// looks a couple of nodes in, it does not do an exhaustive search.
4904bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4905                                               unsigned Depth) const {
4906  if (*this == Dest) return true;
4907
4908  // Don't search too deeply, we just want to be able to see through
4909  // TokenFactor's etc.
4910  if (Depth == 0) return false;
4911
4912  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4913  // of the operands of the TF reach dest, then we can do the xform.
4914  if (getOpcode() == ISD::TokenFactor) {
4915    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4916      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4917        return true;
4918    return false;
4919  }
4920
4921  // Loads don't have side effects, look through them.
4922  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4923    if (!Ld->isVolatile())
4924      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4925  }
4926  return false;
4927}
4928
4929
4930static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4931                            SmallPtrSet<SDNode *, 32> &Visited) {
4932  if (found || !Visited.insert(N))
4933    return;
4934
4935  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4936    SDNode *Op = N->getOperand(i).getNode();
4937    if (Op == P) {
4938      found = true;
4939      return;
4940    }
4941    findPredecessor(Op, P, found, Visited);
4942  }
4943}
4944
4945/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4946/// is either an operand of N or it can be reached by recursively traversing
4947/// up the operands.
4948/// NOTE: this is an expensive method. Use it carefully.
4949bool SDNode::isPredecessorOf(SDNode *N) const {
4950  SmallPtrSet<SDNode *, 32> Visited;
4951  bool found = false;
4952  findPredecessor(N, this, found, Visited);
4953  return found;
4954}
4955
4956uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4957  assert(Num < NumOperands && "Invalid child # of SDNode!");
4958  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4959}
4960
4961std::string SDNode::getOperationName(const SelectionDAG *G) const {
4962  switch (getOpcode()) {
4963  default:
4964    if (getOpcode() < ISD::BUILTIN_OP_END)
4965      return "<<Unknown DAG Node>>";
4966    if (isMachineOpcode()) {
4967      if (G)
4968        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4969          if (getMachineOpcode() < TII->getNumOpcodes())
4970            return TII->get(getMachineOpcode()).getName();
4971      return "<<Unknown Machine Node>>";
4972    }
4973    if (G) {
4974      const TargetLowering &TLI = G->getTargetLoweringInfo();
4975      const char *Name = TLI.getTargetNodeName(getOpcode());
4976      if (Name) return Name;
4977      return "<<Unknown Target Node>>";
4978    }
4979    return "<<Unknown Node>>";
4980
4981#ifndef NDEBUG
4982  case ISD::DELETED_NODE:
4983    return "<<Deleted Node!>>";
4984#endif
4985  case ISD::PREFETCH:      return "Prefetch";
4986  case ISD::MEMBARRIER:    return "MemBarrier";
4987  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
4988  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
4989  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
4990  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
4991  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
4992  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
4993  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
4994  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
4995  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
4996  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
4997  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
4998  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
4999  case ISD::PCMARKER:      return "PCMarker";
5000  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5001  case ISD::SRCVALUE:      return "SrcValue";
5002  case ISD::MEMOPERAND:    return "MemOperand";
5003  case ISD::EntryToken:    return "EntryToken";
5004  case ISD::TokenFactor:   return "TokenFactor";
5005  case ISD::AssertSext:    return "AssertSext";
5006  case ISD::AssertZext:    return "AssertZext";
5007
5008  case ISD::BasicBlock:    return "BasicBlock";
5009  case ISD::ARG_FLAGS:     return "ArgFlags";
5010  case ISD::VALUETYPE:     return "ValueType";
5011  case ISD::Register:      return "Register";
5012
5013  case ISD::Constant:      return "Constant";
5014  case ISD::ConstantFP:    return "ConstantFP";
5015  case ISD::GlobalAddress: return "GlobalAddress";
5016  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5017  case ISD::FrameIndex:    return "FrameIndex";
5018  case ISD::JumpTable:     return "JumpTable";
5019  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5020  case ISD::RETURNADDR: return "RETURNADDR";
5021  case ISD::FRAMEADDR: return "FRAMEADDR";
5022  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5023  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5024  case ISD::EHSELECTION: return "EHSELECTION";
5025  case ISD::EH_RETURN: return "EH_RETURN";
5026  case ISD::ConstantPool:  return "ConstantPool";
5027  case ISD::ExternalSymbol: return "ExternalSymbol";
5028  case ISD::INTRINSIC_WO_CHAIN: {
5029    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5030    return Intrinsic::getName((Intrinsic::ID)IID);
5031  }
5032  case ISD::INTRINSIC_VOID:
5033  case ISD::INTRINSIC_W_CHAIN: {
5034    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5035    return Intrinsic::getName((Intrinsic::ID)IID);
5036  }
5037
5038  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5039  case ISD::TargetConstant: return "TargetConstant";
5040  case ISD::TargetConstantFP:return "TargetConstantFP";
5041  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5042  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5043  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5044  case ISD::TargetJumpTable:  return "TargetJumpTable";
5045  case ISD::TargetConstantPool:  return "TargetConstantPool";
5046  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5047
5048  case ISD::CopyToReg:     return "CopyToReg";
5049  case ISD::CopyFromReg:   return "CopyFromReg";
5050  case ISD::UNDEF:         return "undef";
5051  case ISD::MERGE_VALUES:  return "merge_values";
5052  case ISD::INLINEASM:     return "inlineasm";
5053  case ISD::DBG_LABEL:     return "dbg_label";
5054  case ISD::EH_LABEL:      return "eh_label";
5055  case ISD::DECLARE:       return "declare";
5056  case ISD::HANDLENODE:    return "handlenode";
5057  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5058  case ISD::CALL:          return "call";
5059
5060  // Unary operators
5061  case ISD::FABS:   return "fabs";
5062  case ISD::FNEG:   return "fneg";
5063  case ISD::FSQRT:  return "fsqrt";
5064  case ISD::FSIN:   return "fsin";
5065  case ISD::FCOS:   return "fcos";
5066  case ISD::FPOWI:  return "fpowi";
5067  case ISD::FPOW:   return "fpow";
5068  case ISD::FTRUNC: return "ftrunc";
5069  case ISD::FFLOOR: return "ffloor";
5070  case ISD::FCEIL:  return "fceil";
5071  case ISD::FRINT:  return "frint";
5072  case ISD::FNEARBYINT: return "fnearbyint";
5073
5074  // Binary operators
5075  case ISD::ADD:    return "add";
5076  case ISD::SUB:    return "sub";
5077  case ISD::MUL:    return "mul";
5078  case ISD::MULHU:  return "mulhu";
5079  case ISD::MULHS:  return "mulhs";
5080  case ISD::SDIV:   return "sdiv";
5081  case ISD::UDIV:   return "udiv";
5082  case ISD::SREM:   return "srem";
5083  case ISD::UREM:   return "urem";
5084  case ISD::SMUL_LOHI:  return "smul_lohi";
5085  case ISD::UMUL_LOHI:  return "umul_lohi";
5086  case ISD::SDIVREM:    return "sdivrem";
5087  case ISD::UDIVREM:    return "udivrem";
5088  case ISD::AND:    return "and";
5089  case ISD::OR:     return "or";
5090  case ISD::XOR:    return "xor";
5091  case ISD::SHL:    return "shl";
5092  case ISD::SRA:    return "sra";
5093  case ISD::SRL:    return "srl";
5094  case ISD::ROTL:   return "rotl";
5095  case ISD::ROTR:   return "rotr";
5096  case ISD::FADD:   return "fadd";
5097  case ISD::FSUB:   return "fsub";
5098  case ISD::FMUL:   return "fmul";
5099  case ISD::FDIV:   return "fdiv";
5100  case ISD::FREM:   return "frem";
5101  case ISD::FCOPYSIGN: return "fcopysign";
5102  case ISD::FGETSIGN:  return "fgetsign";
5103
5104  case ISD::SETCC:       return "setcc";
5105  case ISD::VSETCC:      return "vsetcc";
5106  case ISD::SELECT:      return "select";
5107  case ISD::SELECT_CC:   return "select_cc";
5108  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5109  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5110  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5111  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5112  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5113  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5114  case ISD::CARRY_FALSE:         return "carry_false";
5115  case ISD::ADDC:        return "addc";
5116  case ISD::ADDE:        return "adde";
5117  case ISD::SADDO:       return "saddo";
5118  case ISD::UADDO:       return "uaddo";
5119  case ISD::SSUBO:       return "ssubo";
5120  case ISD::USUBO:       return "usubo";
5121  case ISD::SMULO:       return "smulo";
5122  case ISD::UMULO:       return "umulo";
5123  case ISD::SUBC:        return "subc";
5124  case ISD::SUBE:        return "sube";
5125  case ISD::SHL_PARTS:   return "shl_parts";
5126  case ISD::SRA_PARTS:   return "sra_parts";
5127  case ISD::SRL_PARTS:   return "srl_parts";
5128
5129  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5130  case ISD::INSERT_SUBREG:      return "insert_subreg";
5131
5132  // Conversion operators.
5133  case ISD::SIGN_EXTEND: return "sign_extend";
5134  case ISD::ZERO_EXTEND: return "zero_extend";
5135  case ISD::ANY_EXTEND:  return "any_extend";
5136  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5137  case ISD::TRUNCATE:    return "truncate";
5138  case ISD::FP_ROUND:    return "fp_round";
5139  case ISD::FLT_ROUNDS_: return "flt_rounds";
5140  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5141  case ISD::FP_EXTEND:   return "fp_extend";
5142
5143  case ISD::SINT_TO_FP:  return "sint_to_fp";
5144  case ISD::UINT_TO_FP:  return "uint_to_fp";
5145  case ISD::FP_TO_SINT:  return "fp_to_sint";
5146  case ISD::FP_TO_UINT:  return "fp_to_uint";
5147  case ISD::BIT_CONVERT: return "bit_convert";
5148
5149  case ISD::CONVERT_RNDSAT: {
5150    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5151    default: assert(0 && "Unknown cvt code!");
5152    case ISD::CVT_FF:  return "cvt_ff";
5153    case ISD::CVT_FS:  return "cvt_fs";
5154    case ISD::CVT_FU:  return "cvt_fu";
5155    case ISD::CVT_SF:  return "cvt_sf";
5156    case ISD::CVT_UF:  return "cvt_uf";
5157    case ISD::CVT_SS:  return "cvt_ss";
5158    case ISD::CVT_SU:  return "cvt_su";
5159    case ISD::CVT_US:  return "cvt_us";
5160    case ISD::CVT_UU:  return "cvt_uu";
5161    }
5162  }
5163
5164    // Control flow instructions
5165  case ISD::BR:      return "br";
5166  case ISD::BRIND:   return "brind";
5167  case ISD::BR_JT:   return "br_jt";
5168  case ISD::BRCOND:  return "brcond";
5169  case ISD::BR_CC:   return "br_cc";
5170  case ISD::RET:     return "ret";
5171  case ISD::CALLSEQ_START:  return "callseq_start";
5172  case ISD::CALLSEQ_END:    return "callseq_end";
5173
5174    // Other operators
5175  case ISD::LOAD:               return "load";
5176  case ISD::STORE:              return "store";
5177  case ISD::VAARG:              return "vaarg";
5178  case ISD::VACOPY:             return "vacopy";
5179  case ISD::VAEND:              return "vaend";
5180  case ISD::VASTART:            return "vastart";
5181  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5182  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5183  case ISD::BUILD_PAIR:         return "build_pair";
5184  case ISD::STACKSAVE:          return "stacksave";
5185  case ISD::STACKRESTORE:       return "stackrestore";
5186  case ISD::TRAP:               return "trap";
5187
5188  // Bit manipulation
5189  case ISD::BSWAP:   return "bswap";
5190  case ISD::CTPOP:   return "ctpop";
5191  case ISD::CTTZ:    return "cttz";
5192  case ISD::CTLZ:    return "ctlz";
5193
5194  // Debug info
5195  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5196  case ISD::DEBUG_LOC: return "debug_loc";
5197
5198  // Trampolines
5199  case ISD::TRAMPOLINE: return "trampoline";
5200
5201  case ISD::CONDCODE:
5202    switch (cast<CondCodeSDNode>(this)->get()) {
5203    default: assert(0 && "Unknown setcc condition!");
5204    case ISD::SETOEQ:  return "setoeq";
5205    case ISD::SETOGT:  return "setogt";
5206    case ISD::SETOGE:  return "setoge";
5207    case ISD::SETOLT:  return "setolt";
5208    case ISD::SETOLE:  return "setole";
5209    case ISD::SETONE:  return "setone";
5210
5211    case ISD::SETO:    return "seto";
5212    case ISD::SETUO:   return "setuo";
5213    case ISD::SETUEQ:  return "setue";
5214    case ISD::SETUGT:  return "setugt";
5215    case ISD::SETUGE:  return "setuge";
5216    case ISD::SETULT:  return "setult";
5217    case ISD::SETULE:  return "setule";
5218    case ISD::SETUNE:  return "setune";
5219
5220    case ISD::SETEQ:   return "seteq";
5221    case ISD::SETGT:   return "setgt";
5222    case ISD::SETGE:   return "setge";
5223    case ISD::SETLT:   return "setlt";
5224    case ISD::SETLE:   return "setle";
5225    case ISD::SETNE:   return "setne";
5226    }
5227  }
5228}
5229
5230const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5231  switch (AM) {
5232  default:
5233    return "";
5234  case ISD::PRE_INC:
5235    return "<pre-inc>";
5236  case ISD::PRE_DEC:
5237    return "<pre-dec>";
5238  case ISD::POST_INC:
5239    return "<post-inc>";
5240  case ISD::POST_DEC:
5241    return "<post-dec>";
5242  }
5243}
5244
5245std::string ISD::ArgFlagsTy::getArgFlagsString() {
5246  std::string S = "< ";
5247
5248  if (isZExt())
5249    S += "zext ";
5250  if (isSExt())
5251    S += "sext ";
5252  if (isInReg())
5253    S += "inreg ";
5254  if (isSRet())
5255    S += "sret ";
5256  if (isByVal())
5257    S += "byval ";
5258  if (isNest())
5259    S += "nest ";
5260  if (getByValAlign())
5261    S += "byval-align:" + utostr(getByValAlign()) + " ";
5262  if (getOrigAlign())
5263    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5264  if (getByValSize())
5265    S += "byval-size:" + utostr(getByValSize()) + " ";
5266  return S + ">";
5267}
5268
5269void SDNode::dump() const { dump(0); }
5270void SDNode::dump(const SelectionDAG *G) const {
5271  print(errs(), G);
5272  errs().flush();
5273}
5274
5275void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5276  OS << (void*)this << ": ";
5277
5278  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5279    if (i) OS << ",";
5280    if (getValueType(i) == MVT::Other)
5281      OS << "ch";
5282    else
5283      OS << getValueType(i).getMVTString();
5284  }
5285  OS << " = " << getOperationName(G);
5286
5287  OS << " ";
5288  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5289    if (i) OS << ", ";
5290    OS << (void*)getOperand(i).getNode();
5291    if (unsigned RN = getOperand(i).getResNo())
5292      OS << ":" << RN;
5293  }
5294
5295  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5296    SDNode *Mask = getOperand(2).getNode();
5297    OS << "<";
5298    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5299      if (i) OS << ",";
5300      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5301        OS << "u";
5302      else
5303        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5304    }
5305    OS << ">";
5306  }
5307
5308  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5309    OS << '<' << CSDN->getAPIntValue() << '>';
5310  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5311    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5312      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5313    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5314      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5315    else {
5316      OS << "<APFloat(";
5317      CSDN->getValueAPF().bitcastToAPInt().dump();
5318      OS << ")>";
5319    }
5320  } else if (const GlobalAddressSDNode *GADN =
5321             dyn_cast<GlobalAddressSDNode>(this)) {
5322    int64_t offset = GADN->getOffset();
5323    OS << '<';
5324    WriteAsOperand(OS, GADN->getGlobal());
5325    OS << '>';
5326    if (offset > 0)
5327      OS << " + " << offset;
5328    else
5329      OS << " " << offset;
5330  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5331    OS << "<" << FIDN->getIndex() << ">";
5332  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5333    OS << "<" << JTDN->getIndex() << ">";
5334  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5335    int offset = CP->getOffset();
5336    if (CP->isMachineConstantPoolEntry())
5337      OS << "<" << *CP->getMachineCPVal() << ">";
5338    else
5339      OS << "<" << *CP->getConstVal() << ">";
5340    if (offset > 0)
5341      OS << " + " << offset;
5342    else
5343      OS << " " << offset;
5344  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5345    OS << "<";
5346    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5347    if (LBB)
5348      OS << LBB->getName() << " ";
5349    OS << (const void*)BBDN->getBasicBlock() << ">";
5350  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5351    if (G && R->getReg() &&
5352        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5353      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5354    } else {
5355      OS << " #" << R->getReg();
5356    }
5357  } else if (const ExternalSymbolSDNode *ES =
5358             dyn_cast<ExternalSymbolSDNode>(this)) {
5359    OS << "'" << ES->getSymbol() << "'";
5360  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5361    if (M->getValue())
5362      OS << "<" << M->getValue() << ">";
5363    else
5364      OS << "<null>";
5365  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5366    if (M->MO.getValue())
5367      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5368    else
5369      OS << "<null:" << M->MO.getOffset() << ">";
5370  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5371    OS << N->getArgFlags().getArgFlagsString();
5372  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5373    OS << ":" << N->getVT().getMVTString();
5374  }
5375  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5376    const Value *SrcValue = LD->getSrcValue();
5377    int SrcOffset = LD->getSrcValueOffset();
5378    OS << " <";
5379    if (SrcValue)
5380      OS << SrcValue;
5381    else
5382      OS << "null";
5383    OS << ":" << SrcOffset << ">";
5384
5385    bool doExt = true;
5386    switch (LD->getExtensionType()) {
5387    default: doExt = false; break;
5388    case ISD::EXTLOAD: OS << " <anyext "; break;
5389    case ISD::SEXTLOAD: OS << " <sext "; break;
5390    case ISD::ZEXTLOAD: OS << " <zext "; break;
5391    }
5392    if (doExt)
5393      OS << LD->getMemoryVT().getMVTString() << ">";
5394
5395    const char *AM = getIndexedModeName(LD->getAddressingMode());
5396    if (*AM)
5397      OS << " " << AM;
5398    if (LD->isVolatile())
5399      OS << " <volatile>";
5400    OS << " alignment=" << LD->getAlignment();
5401  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5402    const Value *SrcValue = ST->getSrcValue();
5403    int SrcOffset = ST->getSrcValueOffset();
5404    OS << " <";
5405    if (SrcValue)
5406      OS << SrcValue;
5407    else
5408      OS << "null";
5409    OS << ":" << SrcOffset << ">";
5410
5411    if (ST->isTruncatingStore())
5412      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5413
5414    const char *AM = getIndexedModeName(ST->getAddressingMode());
5415    if (*AM)
5416      OS << " " << AM;
5417    if (ST->isVolatile())
5418      OS << " <volatile>";
5419    OS << " alignment=" << ST->getAlignment();
5420  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5421    const Value *SrcValue = AT->getSrcValue();
5422    int SrcOffset = AT->getSrcValueOffset();
5423    OS << " <";
5424    if (SrcValue)
5425      OS << SrcValue;
5426    else
5427      OS << "null";
5428    OS << ":" << SrcOffset << ">";
5429    if (AT->isVolatile())
5430      OS << " <volatile>";
5431    OS << " alignment=" << AT->getAlignment();
5432  }
5433}
5434
5435static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5436  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5437    if (N->getOperand(i).getNode()->hasOneUse())
5438      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5439    else
5440      cerr << "\n" << std::string(indent+2, ' ')
5441           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5442
5443
5444  cerr << "\n" << std::string(indent, ' ');
5445  N->dump(G);
5446}
5447
5448void SelectionDAG::dump() const {
5449  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5450
5451  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5452       I != E; ++I) {
5453    const SDNode *N = I;
5454    if (!N->hasOneUse() && N != getRoot().getNode())
5455      DumpNodes(N, 2, this);
5456  }
5457
5458  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5459
5460  cerr << "\n\n";
5461}
5462
5463const Type *ConstantPoolSDNode::getType() const {
5464  if (isMachineConstantPoolEntry())
5465    return Val.MachineCPVal->getType();
5466  return Val.ConstVal->getType();
5467}
5468