SelectionDAG.cpp revision 5405d58e21402a8ba3aaaa580ca65155bee00443
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetSelectionDAGInfo.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetIntrinsicInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/ManagedStatic.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Support/Mutex.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallPtrSet.h"
49#include "llvm/ADT/SmallSet.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/StringExtras.h"
52#include <algorithm>
53#include <cmath>
54using namespace llvm;
55
56/// makeVTList - Return an instance of the SDVTList struct initialized with the
57/// specified members.
58static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59  SDVTList Res = {VTs, NumVTs};
60  return Res;
61}
62
63static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
64  switch (VT.getSimpleVT().SimpleTy) {
65  default: llvm_unreachable("Unknown FP format");
66  case MVT::f32:     return &APFloat::IEEEsingle;
67  case MVT::f64:     return &APFloat::IEEEdouble;
68  case MVT::f80:     return &APFloat::x87DoubleExtended;
69  case MVT::f128:    return &APFloat::IEEEquad;
70  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
71  }
72}
73
74SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
75
76//===----------------------------------------------------------------------===//
77//                              ConstantFPSDNode Class
78//===----------------------------------------------------------------------===//
79
80/// isExactlyValue - We don't rely on operator== working on double values, as
81/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
82/// As such, this method can be used to do an exact bit-for-bit comparison of
83/// two floating point values.
84bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
85  return getValueAPF().bitwiseIsEqual(V);
86}
87
88bool ConstantFPSDNode::isValueValidForType(EVT VT,
89                                           const APFloat& Val) {
90  assert(VT.isFloatingPoint() && "Can only convert between FP types");
91
92  // PPC long double cannot be converted to any other type.
93  if (VT == MVT::ppcf128 ||
94      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
95    return false;
96
97  // convert modifies in place, so make a copy.
98  APFloat Val2 = APFloat(Val);
99  bool losesInfo;
100  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
101                      &losesInfo);
102  return !losesInfo;
103}
104
105//===----------------------------------------------------------------------===//
106//                              ISD Namespace
107//===----------------------------------------------------------------------===//
108
109/// isBuildVectorAllOnes - Return true if the specified node is a
110/// BUILD_VECTOR where all of the elements are ~0 or undef.
111bool ISD::isBuildVectorAllOnes(const SDNode *N) {
112  // Look through a bit convert.
113  if (N->getOpcode() == ISD::BITCAST)
114    N = N->getOperand(0).getNode();
115
116  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
117
118  unsigned i = 0, e = N->getNumOperands();
119
120  // Skip over all of the undef values.
121  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
122    ++i;
123
124  // Do not accept an all-undef vector.
125  if (i == e) return false;
126
127  // Do not accept build_vectors that aren't all constants or which have non-~0
128  // elements.
129  SDValue NotZero = N->getOperand(i);
130  if (isa<ConstantSDNode>(NotZero)) {
131    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
132      return false;
133  } else if (isa<ConstantFPSDNode>(NotZero)) {
134    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
135                bitcastToAPInt().isAllOnesValue())
136      return false;
137  } else
138    return false;
139
140  // Okay, we have at least one ~0 value, check to see if the rest match or are
141  // undefs.
142  for (++i; i != e; ++i)
143    if (N->getOperand(i) != NotZero &&
144        N->getOperand(i).getOpcode() != ISD::UNDEF)
145      return false;
146  return true;
147}
148
149
150/// isBuildVectorAllZeros - Return true if the specified node is a
151/// BUILD_VECTOR where all of the elements are 0 or undef.
152bool ISD::isBuildVectorAllZeros(const SDNode *N) {
153  // Look through a bit convert.
154  if (N->getOpcode() == ISD::BITCAST)
155    N = N->getOperand(0).getNode();
156
157  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158
159  unsigned i = 0, e = N->getNumOperands();
160
161  // Skip over all of the undef values.
162  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
163    ++i;
164
165  // Do not accept an all-undef vector.
166  if (i == e) return false;
167
168  // Do not accept build_vectors that aren't all constants or which have non-0
169  // elements.
170  SDValue Zero = N->getOperand(i);
171  if (isa<ConstantSDNode>(Zero)) {
172    if (!cast<ConstantSDNode>(Zero)->isNullValue())
173      return false;
174  } else if (isa<ConstantFPSDNode>(Zero)) {
175    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
176      return false;
177  } else
178    return false;
179
180  // Okay, we have at least one 0 value, check to see if the rest match or are
181  // undefs.
182  for (++i; i != e; ++i)
183    if (N->getOperand(i) != Zero &&
184        N->getOperand(i).getOpcode() != ISD::UNDEF)
185      return false;
186  return true;
187}
188
189/// isScalarToVector - Return true if the specified node is a
190/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191/// element is not an undef.
192bool ISD::isScalarToVector(const SDNode *N) {
193  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
194    return true;
195
196  if (N->getOpcode() != ISD::BUILD_VECTOR)
197    return false;
198  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
199    return false;
200  unsigned NumElems = N->getNumOperands();
201  if (NumElems == 1)
202    return false;
203  for (unsigned i = 1; i < NumElems; ++i) {
204    SDValue V = N->getOperand(i);
205    if (V.getOpcode() != ISD::UNDEF)
206      return false;
207  }
208  return true;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: llvm_unreachable("Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX:
436  case ISD::ATOMIC_LOAD:
437  case ISD::ATOMIC_STORE: {
438    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
439    ID.AddInteger(AT->getMemoryVT().getRawBits());
440    ID.AddInteger(AT->getRawSubclassData());
441    break;
442  }
443  case ISD::VECTOR_SHUFFLE: {
444    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
445    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
446         i != e; ++i)
447      ID.AddInteger(SVN->getMaskElt(i));
448    break;
449  }
450  case ISD::TargetBlockAddress:
451  case ISD::BlockAddress: {
452    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
453    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
454    break;
455  }
456  } // end switch (N->getOpcode())
457}
458
459/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
460/// data.
461static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
462  AddNodeIDOpcode(ID, N->getOpcode());
463  // Add the return value info.
464  AddNodeIDValueTypes(ID, N->getVTList());
465  // Add the operand info.
466  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
467
468  // Handle SDNode leafs with special info.
469  AddNodeIDCustom(ID, N);
470}
471
472/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
473/// the CSE map that carries volatility, temporalness, indexing mode, and
474/// extension/truncation information.
475///
476static inline unsigned
477encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
478                     bool isNonTemporal) {
479  assert((ConvType & 3) == ConvType &&
480         "ConvType may not require more than 2 bits!");
481  assert((AM & 7) == AM &&
482         "AM may not require more than 3 bits!");
483  return ConvType |
484         (AM << 2) |
485         (isVolatile << 5) |
486         (isNonTemporal << 6);
487}
488
489//===----------------------------------------------------------------------===//
490//                              SelectionDAG Class
491//===----------------------------------------------------------------------===//
492
493/// doNotCSE - Return true if CSE should not be performed for this node.
494static bool doNotCSE(SDNode *N) {
495  if (N->getValueType(0) == MVT::Glue)
496    return true; // Never CSE anything that produces a flag.
497
498  switch (N->getOpcode()) {
499  default: break;
500  case ISD::HANDLENODE:
501  case ISD::EH_LABEL:
502    return true;   // Never CSE these nodes.
503  }
504
505  // Check that remaining values produced are not flags.
506  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
507    if (N->getValueType(i) == MVT::Glue)
508      return true; // Never CSE anything that produces a flag.
509
510  return false;
511}
512
513/// RemoveDeadNodes - This method deletes all unreachable nodes in the
514/// SelectionDAG.
515void SelectionDAG::RemoveDeadNodes() {
516  // Create a dummy node (which is not added to allnodes), that adds a reference
517  // to the root node, preventing it from being deleted.
518  HandleSDNode Dummy(getRoot());
519
520  SmallVector<SDNode*, 128> DeadNodes;
521
522  // Add all obviously-dead nodes to the DeadNodes worklist.
523  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
524    if (I->use_empty())
525      DeadNodes.push_back(I);
526
527  RemoveDeadNodes(DeadNodes);
528
529  // If the root changed (e.g. it was a dead load, update the root).
530  setRoot(Dummy.getValue());
531}
532
533/// RemoveDeadNodes - This method deletes the unreachable nodes in the
534/// given list, and any nodes that become unreachable as a result.
535void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
536                                   DAGUpdateListener *UpdateListener) {
537
538  // Process the worklist, deleting the nodes and adding their uses to the
539  // worklist.
540  while (!DeadNodes.empty()) {
541    SDNode *N = DeadNodes.pop_back_val();
542
543    if (UpdateListener)
544      UpdateListener->NodeDeleted(N, 0);
545
546    // Take the node out of the appropriate CSE map.
547    RemoveNodeFromCSEMaps(N);
548
549    // Next, brutally remove the operand list.  This is safe to do, as there are
550    // no cycles in the graph.
551    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
552      SDUse &Use = *I++;
553      SDNode *Operand = Use.getNode();
554      Use.set(SDValue());
555
556      // Now that we removed this operand, see if there are no uses of it left.
557      if (Operand->use_empty())
558        DeadNodes.push_back(Operand);
559    }
560
561    DeallocateNode(N);
562  }
563}
564
565void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
566  SmallVector<SDNode*, 16> DeadNodes(1, N);
567  RemoveDeadNodes(DeadNodes, UpdateListener);
568}
569
570void SelectionDAG::DeleteNode(SDNode *N) {
571  // First take this out of the appropriate CSE map.
572  RemoveNodeFromCSEMaps(N);
573
574  // Finally, remove uses due to operands of this node, remove from the
575  // AllNodes list, and delete the node.
576  DeleteNodeNotInCSEMaps(N);
577}
578
579void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
580  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
581  assert(N->use_empty() && "Cannot delete a node that is not dead!");
582
583  // Drop all of the operands and decrement used node's use counts.
584  N->DropOperands();
585
586  DeallocateNode(N);
587}
588
589void SelectionDAG::DeallocateNode(SDNode *N) {
590  if (N->OperandsNeedDelete)
591    delete[] N->OperandList;
592
593  // Set the opcode to DELETED_NODE to help catch bugs when node
594  // memory is reallocated.
595  N->NodeType = ISD::DELETED_NODE;
596
597  NodeAllocator.Deallocate(AllNodes.remove(N));
598
599  // Remove the ordering of this node.
600  Ordering->remove(N);
601
602  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
603  ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N);
604  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
605    DbgVals[i]->setIsInvalidated();
606}
607
608/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
609/// correspond to it.  This is useful when we're about to delete or repurpose
610/// the node.  We don't want future request for structurally identical nodes
611/// to return N anymore.
612bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
613  bool Erased = false;
614  switch (N->getOpcode()) {
615  case ISD::HANDLENODE: return false;  // noop.
616  case ISD::CONDCODE:
617    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
618           "Cond code doesn't exist!");
619    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
620    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
621    break;
622  case ISD::ExternalSymbol:
623    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624    break;
625  case ISD::TargetExternalSymbol: {
626    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
627    Erased = TargetExternalSymbols.erase(
628               std::pair<std::string,unsigned char>(ESN->getSymbol(),
629                                                    ESN->getTargetFlags()));
630    break;
631  }
632  case ISD::VALUETYPE: {
633    EVT VT = cast<VTSDNode>(N)->getVT();
634    if (VT.isExtended()) {
635      Erased = ExtendedValueTypeNodes.erase(VT);
636    } else {
637      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
638      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
639    }
640    break;
641  }
642  default:
643    // Remove it from the CSE Map.
644    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
645    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
646    Erased = CSEMap.RemoveNode(N);
647    break;
648  }
649#ifndef NDEBUG
650  // Verify that the node was actually in one of the CSE maps, unless it has a
651  // flag result (which cannot be CSE'd) or is one of the special cases that are
652  // not subject to CSE.
653  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
654      !N->isMachineOpcode() && !doNotCSE(N)) {
655    N->dump(this);
656    dbgs() << "\n";
657    llvm_unreachable("Node is not in map!");
658  }
659#endif
660  return Erased;
661}
662
663/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
664/// maps and modified in place. Add it back to the CSE maps, unless an identical
665/// node already exists, in which case transfer all its users to the existing
666/// node. This transfer can potentially trigger recursive merging.
667///
668void
669SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
670                                       DAGUpdateListener *UpdateListener) {
671  // For node types that aren't CSE'd, just act as if no identical node
672  // already exists.
673  if (!doNotCSE(N)) {
674    SDNode *Existing = CSEMap.GetOrInsertNode(N);
675    if (Existing != N) {
676      // If there was already an existing matching node, use ReplaceAllUsesWith
677      // to replace the dead one with the existing one.  This can cause
678      // recursive merging of other unrelated nodes down the line.
679      ReplaceAllUsesWith(N, Existing, UpdateListener);
680
681      // N is now dead.  Inform the listener if it exists and delete it.
682      if (UpdateListener)
683        UpdateListener->NodeDeleted(N, Existing);
684      DeleteNodeNotInCSEMaps(N);
685      return;
686    }
687  }
688
689  // If the node doesn't already exist, we updated it.  Inform a listener if
690  // it exists.
691  if (UpdateListener)
692    UpdateListener->NodeUpdated(N);
693}
694
695/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
696/// were replaced with those specified.  If this node is never memoized,
697/// return null, otherwise return a pointer to the slot it would take.  If a
698/// node already exists with these operands, the slot will be non-null.
699SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
700                                           void *&InsertPos) {
701  if (doNotCSE(N))
702    return 0;
703
704  SDValue Ops[] = { Op };
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707  AddNodeIDCustom(ID, N);
708  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
709  return Node;
710}
711
712/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
713/// were replaced with those specified.  If this node is never memoized,
714/// return null, otherwise return a pointer to the slot it would take.  If a
715/// node already exists with these operands, the slot will be non-null.
716SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
717                                           SDValue Op1, SDValue Op2,
718                                           void *&InsertPos) {
719  if (doNotCSE(N))
720    return 0;
721
722  SDValue Ops[] = { Op1, Op2 };
723  FoldingSetNodeID ID;
724  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
725  AddNodeIDCustom(ID, N);
726  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
727  return Node;
728}
729
730
731/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
732/// were replaced with those specified.  If this node is never memoized,
733/// return null, otherwise return a pointer to the slot it would take.  If a
734/// node already exists with these operands, the slot will be non-null.
735SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
736                                           const SDValue *Ops,unsigned NumOps,
737                                           void *&InsertPos) {
738  if (doNotCSE(N))
739    return 0;
740
741  FoldingSetNodeID ID;
742  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
743  AddNodeIDCustom(ID, N);
744  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
745  return Node;
746}
747
748#ifndef NDEBUG
749/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
750static void VerifyNodeCommon(SDNode *N) {
751  switch (N->getOpcode()) {
752  default:
753    break;
754  case ISD::BUILD_PAIR: {
755    EVT VT = N->getValueType(0);
756    assert(N->getNumValues() == 1 && "Too many results!");
757    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
758           "Wrong return type!");
759    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
760    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
761           "Mismatched operand types!");
762    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
763           "Wrong operand type!");
764    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
765           "Wrong return type size");
766    break;
767  }
768  case ISD::BUILD_VECTOR: {
769    assert(N->getNumValues() == 1 && "Too many results!");
770    assert(N->getValueType(0).isVector() && "Wrong return type!");
771    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
772           "Wrong number of operands!");
773    EVT EltVT = N->getValueType(0).getVectorElementType();
774    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
775      assert((I->getValueType() == EltVT ||
776             (EltVT.isInteger() && I->getValueType().isInteger() &&
777              EltVT.bitsLE(I->getValueType()))) &&
778            "Wrong operand type!");
779      assert(I->getValueType() == N->getOperand(0).getValueType() &&
780             "Operands must all have the same type");
781    }
782    break;
783  }
784  }
785}
786
787/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
788static void VerifySDNode(SDNode *N) {
789  // The SDNode allocators cannot be used to allocate nodes with fields that are
790  // not present in an SDNode!
791  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
792  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
793  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
794  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
795  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
796  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
797  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
798  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
799  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
800  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
801  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
802  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
803  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
804  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
805  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
806  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
807  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
808  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
809  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
810
811  VerifyNodeCommon(N);
812}
813
814/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
815/// invalid.
816static void VerifyMachineNode(SDNode *N) {
817  // The MachineNode allocators cannot be used to allocate nodes with fields
818  // that are not present in a MachineNode!
819  // Currently there are no such nodes.
820
821  VerifyNodeCommon(N);
822}
823#endif // NDEBUG
824
825/// getEVTAlignment - Compute the default alignment value for the
826/// given type.
827///
828unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
829  Type *Ty = VT == MVT::iPTR ?
830                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
831                   VT.getTypeForEVT(*getContext());
832
833  return TLI.getTargetData()->getABITypeAlignment(Ty);
834}
835
836// EntryNode could meaningfully have debug info if we can find it...
837SelectionDAG::SelectionDAG(const TargetMachine &tm)
838  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
839    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
840    Root(getEntryNode()), Ordering(0) {
841  AllNodes.push_back(&EntryNode);
842  Ordering = new SDNodeOrdering();
843  DbgInfo = new SDDbgInfo();
844}
845
846void SelectionDAG::init(MachineFunction &mf) {
847  MF = &mf;
848  Context = &mf.getFunction()->getContext();
849}
850
851SelectionDAG::~SelectionDAG() {
852  allnodes_clear();
853  delete Ordering;
854  delete DbgInfo;
855}
856
857void SelectionDAG::allnodes_clear() {
858  assert(&*AllNodes.begin() == &EntryNode);
859  AllNodes.remove(AllNodes.begin());
860  while (!AllNodes.empty())
861    DeallocateNode(AllNodes.begin());
862}
863
864void SelectionDAG::clear() {
865  allnodes_clear();
866  OperandAllocator.Reset();
867  CSEMap.clear();
868
869  ExtendedValueTypeNodes.clear();
870  ExternalSymbols.clear();
871  TargetExternalSymbols.clear();
872  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
873            static_cast<CondCodeSDNode*>(0));
874  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
875            static_cast<SDNode*>(0));
876
877  EntryNode.UseList = 0;
878  AllNodes.push_back(&EntryNode);
879  Root = getEntryNode();
880  Ordering->clear();
881  DbgInfo->clear();
882}
883
884SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
885  return VT.bitsGT(Op.getValueType()) ?
886    getNode(ISD::ANY_EXTEND, DL, VT, Op) :
887    getNode(ISD::TRUNCATE, DL, VT, Op);
888}
889
890SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
891  return VT.bitsGT(Op.getValueType()) ?
892    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
893    getNode(ISD::TRUNCATE, DL, VT, Op);
894}
895
896SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
897  return VT.bitsGT(Op.getValueType()) ?
898    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
899    getNode(ISD::TRUNCATE, DL, VT, Op);
900}
901
902SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
903  assert(!VT.isVector() &&
904         "getZeroExtendInReg should use the vector element type instead of "
905         "the vector type!");
906  if (Op.getValueType() == VT) return Op;
907  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
908  APInt Imm = APInt::getLowBitsSet(BitWidth,
909                                   VT.getSizeInBits());
910  return getNode(ISD::AND, DL, Op.getValueType(), Op,
911                 getConstant(Imm, Op.getValueType()));
912}
913
914/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
915///
916SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
917  EVT EltVT = VT.getScalarType();
918  SDValue NegOne =
919    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
920  return getNode(ISD::XOR, DL, VT, Val, NegOne);
921}
922
923SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
924  EVT EltVT = VT.getScalarType();
925  assert((EltVT.getSizeInBits() >= 64 ||
926         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
927         "getConstant with a uint64_t value that doesn't fit in the type!");
928  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
929}
930
931SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
932  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
933}
934
935SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
936  assert(VT.isInteger() && "Cannot create FP integer constant!");
937
938  EVT EltVT = VT.getScalarType();
939  const ConstantInt *Elt = &Val;
940
941  // In some cases the vector type is legal but the element type is illegal and
942  // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
943  // inserted value (the type does not need to match the vector element type).
944  // Any extra bits introduced will be truncated away.
945  if (VT.isVector() && TLI.getTypeAction(*getContext(), EltVT) ==
946      TargetLowering::TypePromoteInteger) {
947   EltVT = TLI.getTypeToTransformTo(*getContext(), EltVT);
948   APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
949   Elt = ConstantInt::get(*getContext(), NewVal);
950  }
951
952  assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
953         "APInt size does not match type size!");
954  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
955  FoldingSetNodeID ID;
956  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
957  ID.AddPointer(Elt);
958  void *IP = 0;
959  SDNode *N = NULL;
960  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
961    if (!VT.isVector())
962      return SDValue(N, 0);
963
964  if (!N) {
965    N = new (NodeAllocator) ConstantSDNode(isT, Elt, EltVT);
966    CSEMap.InsertNode(N, IP);
967    AllNodes.push_back(N);
968  }
969
970  SDValue Result(N, 0);
971  if (VT.isVector()) {
972    SmallVector<SDValue, 8> Ops;
973    Ops.assign(VT.getVectorNumElements(), Result);
974    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
975  }
976  return Result;
977}
978
979SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
980  return getConstant(Val, TLI.getPointerTy(), isTarget);
981}
982
983
984SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
985  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
986}
987
988SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
989  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
990
991  EVT EltVT = VT.getScalarType();
992
993  // Do the map lookup using the actual bit pattern for the floating point
994  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
995  // we don't have issues with SNANs.
996  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
997  FoldingSetNodeID ID;
998  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
999  ID.AddPointer(&V);
1000  void *IP = 0;
1001  SDNode *N = NULL;
1002  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
1003    if (!VT.isVector())
1004      return SDValue(N, 0);
1005
1006  if (!N) {
1007    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
1008    CSEMap.InsertNode(N, IP);
1009    AllNodes.push_back(N);
1010  }
1011
1012  SDValue Result(N, 0);
1013  if (VT.isVector()) {
1014    SmallVector<SDValue, 8> Ops;
1015    Ops.assign(VT.getVectorNumElements(), Result);
1016    // FIXME DebugLoc info might be appropriate here
1017    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
1018  }
1019  return Result;
1020}
1021
1022SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1023  EVT EltVT = VT.getScalarType();
1024  if (EltVT==MVT::f32)
1025    return getConstantFP(APFloat((float)Val), VT, isTarget);
1026  else if (EltVT==MVT::f64)
1027    return getConstantFP(APFloat(Val), VT, isTarget);
1028  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1029    bool ignored;
1030    APFloat apf = APFloat(Val);
1031    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1032                &ignored);
1033    return getConstantFP(apf, VT, isTarget);
1034  } else {
1035    assert(0 && "Unsupported type in getConstantFP");
1036    return SDValue();
1037  }
1038}
1039
1040SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1041                                       EVT VT, int64_t Offset,
1042                                       bool isTargetGA,
1043                                       unsigned char TargetFlags) {
1044  assert((TargetFlags == 0 || isTargetGA) &&
1045         "Cannot set target flags on target-independent globals");
1046
1047  // Truncate (with sign-extension) the offset value to the pointer size.
1048  EVT PTy = TLI.getPointerTy();
1049  unsigned BitWidth = PTy.getSizeInBits();
1050  if (BitWidth < 64)
1051    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1052
1053  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1054  if (!GVar) {
1055    // If GV is an alias then use the aliasee for determining thread-localness.
1056    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1057      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1058  }
1059
1060  unsigned Opc;
1061  if (GVar && GVar->isThreadLocal())
1062    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1063  else
1064    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1065
1066  FoldingSetNodeID ID;
1067  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1068  ID.AddPointer(GV);
1069  ID.AddInteger(Offset);
1070  ID.AddInteger(TargetFlags);
1071  void *IP = 0;
1072  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1073    return SDValue(E, 0);
1074
1075  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1076                                                      Offset, TargetFlags);
1077  CSEMap.InsertNode(N, IP);
1078  AllNodes.push_back(N);
1079  return SDValue(N, 0);
1080}
1081
1082SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1083  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1084  FoldingSetNodeID ID;
1085  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1086  ID.AddInteger(FI);
1087  void *IP = 0;
1088  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1089    return SDValue(E, 0);
1090
1091  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1092  CSEMap.InsertNode(N, IP);
1093  AllNodes.push_back(N);
1094  return SDValue(N, 0);
1095}
1096
1097SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1098                                   unsigned char TargetFlags) {
1099  assert((TargetFlags == 0 || isTarget) &&
1100         "Cannot set target flags on target-independent jump tables");
1101  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1102  FoldingSetNodeID ID;
1103  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1104  ID.AddInteger(JTI);
1105  ID.AddInteger(TargetFlags);
1106  void *IP = 0;
1107  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1108    return SDValue(E, 0);
1109
1110  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1111                                                  TargetFlags);
1112  CSEMap.InsertNode(N, IP);
1113  AllNodes.push_back(N);
1114  return SDValue(N, 0);
1115}
1116
1117SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1118                                      unsigned Alignment, int Offset,
1119                                      bool isTarget,
1120                                      unsigned char TargetFlags) {
1121  assert((TargetFlags == 0 || isTarget) &&
1122         "Cannot set target flags on target-independent globals");
1123  if (Alignment == 0)
1124    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1125  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1126  FoldingSetNodeID ID;
1127  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1128  ID.AddInteger(Alignment);
1129  ID.AddInteger(Offset);
1130  ID.AddPointer(C);
1131  ID.AddInteger(TargetFlags);
1132  void *IP = 0;
1133  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1134    return SDValue(E, 0);
1135
1136  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1137                                                     Alignment, TargetFlags);
1138  CSEMap.InsertNode(N, IP);
1139  AllNodes.push_back(N);
1140  return SDValue(N, 0);
1141}
1142
1143
1144SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1145                                      unsigned Alignment, int Offset,
1146                                      bool isTarget,
1147                                      unsigned char TargetFlags) {
1148  assert((TargetFlags == 0 || isTarget) &&
1149         "Cannot set target flags on target-independent globals");
1150  if (Alignment == 0)
1151    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1152  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1153  FoldingSetNodeID ID;
1154  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1155  ID.AddInteger(Alignment);
1156  ID.AddInteger(Offset);
1157  C->addSelectionDAGCSEId(ID);
1158  ID.AddInteger(TargetFlags);
1159  void *IP = 0;
1160  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1161    return SDValue(E, 0);
1162
1163  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1164                                                     Alignment, TargetFlags);
1165  CSEMap.InsertNode(N, IP);
1166  AllNodes.push_back(N);
1167  return SDValue(N, 0);
1168}
1169
1170SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1171  FoldingSetNodeID ID;
1172  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1173  ID.AddPointer(MBB);
1174  void *IP = 0;
1175  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1176    return SDValue(E, 0);
1177
1178  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1179  CSEMap.InsertNode(N, IP);
1180  AllNodes.push_back(N);
1181  return SDValue(N, 0);
1182}
1183
1184SDValue SelectionDAG::getValueType(EVT VT) {
1185  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1186      ValueTypeNodes.size())
1187    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1188
1189  SDNode *&N = VT.isExtended() ?
1190    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1191
1192  if (N) return SDValue(N, 0);
1193  N = new (NodeAllocator) VTSDNode(VT);
1194  AllNodes.push_back(N);
1195  return SDValue(N, 0);
1196}
1197
1198SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1199  SDNode *&N = ExternalSymbols[Sym];
1200  if (N) return SDValue(N, 0);
1201  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1202  AllNodes.push_back(N);
1203  return SDValue(N, 0);
1204}
1205
1206SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1207                                              unsigned char TargetFlags) {
1208  SDNode *&N =
1209    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1210                                                               TargetFlags)];
1211  if (N) return SDValue(N, 0);
1212  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1213  AllNodes.push_back(N);
1214  return SDValue(N, 0);
1215}
1216
1217SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1218  if ((unsigned)Cond >= CondCodeNodes.size())
1219    CondCodeNodes.resize(Cond+1);
1220
1221  if (CondCodeNodes[Cond] == 0) {
1222    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1223    CondCodeNodes[Cond] = N;
1224    AllNodes.push_back(N);
1225  }
1226
1227  return SDValue(CondCodeNodes[Cond], 0);
1228}
1229
1230// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1231// the shuffle mask M that point at N1 to point at N2, and indices that point
1232// N2 to point at N1.
1233static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1234  std::swap(N1, N2);
1235  int NElts = M.size();
1236  for (int i = 0; i != NElts; ++i) {
1237    if (M[i] >= NElts)
1238      M[i] -= NElts;
1239    else if (M[i] >= 0)
1240      M[i] += NElts;
1241  }
1242}
1243
1244SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1245                                       SDValue N2, const int *Mask) {
1246  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1247  assert(VT.isVector() && N1.getValueType().isVector() &&
1248         "Vector Shuffle VTs must be a vectors");
1249  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1250         && "Vector Shuffle VTs must have same element type");
1251
1252  // Canonicalize shuffle undef, undef -> undef
1253  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1254    return getUNDEF(VT);
1255
1256  // Validate that all indices in Mask are within the range of the elements
1257  // input to the shuffle.
1258  unsigned NElts = VT.getVectorNumElements();
1259  SmallVector<int, 8> MaskVec;
1260  for (unsigned i = 0; i != NElts; ++i) {
1261    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1262    MaskVec.push_back(Mask[i]);
1263  }
1264
1265  // Canonicalize shuffle v, v -> v, undef
1266  if (N1 == N2) {
1267    N2 = getUNDEF(VT);
1268    for (unsigned i = 0; i != NElts; ++i)
1269      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1270  }
1271
1272  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1273  if (N1.getOpcode() == ISD::UNDEF)
1274    commuteShuffle(N1, N2, MaskVec);
1275
1276  // Canonicalize all index into lhs, -> shuffle lhs, undef
1277  // Canonicalize all index into rhs, -> shuffle rhs, undef
1278  bool AllLHS = true, AllRHS = true;
1279  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1280  for (unsigned i = 0; i != NElts; ++i) {
1281    if (MaskVec[i] >= (int)NElts) {
1282      if (N2Undef)
1283        MaskVec[i] = -1;
1284      else
1285        AllLHS = false;
1286    } else if (MaskVec[i] >= 0) {
1287      AllRHS = false;
1288    }
1289  }
1290  if (AllLHS && AllRHS)
1291    return getUNDEF(VT);
1292  if (AllLHS && !N2Undef)
1293    N2 = getUNDEF(VT);
1294  if (AllRHS) {
1295    N1 = getUNDEF(VT);
1296    commuteShuffle(N1, N2, MaskVec);
1297  }
1298
1299  // If Identity shuffle, or all shuffle in to undef, return that node.
1300  bool AllUndef = true;
1301  bool Identity = true;
1302  for (unsigned i = 0; i != NElts; ++i) {
1303    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1304    if (MaskVec[i] >= 0) AllUndef = false;
1305  }
1306  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1307    return N1;
1308  if (AllUndef)
1309    return getUNDEF(VT);
1310
1311  FoldingSetNodeID ID;
1312  SDValue Ops[2] = { N1, N2 };
1313  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1314  for (unsigned i = 0; i != NElts; ++i)
1315    ID.AddInteger(MaskVec[i]);
1316
1317  void* IP = 0;
1318  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1319    return SDValue(E, 0);
1320
1321  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1322  // SDNode doesn't have access to it.  This memory will be "leaked" when
1323  // the node is deallocated, but recovered when the NodeAllocator is released.
1324  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1325  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1326
1327  ShuffleVectorSDNode *N =
1328    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1329  CSEMap.InsertNode(N, IP);
1330  AllNodes.push_back(N);
1331  return SDValue(N, 0);
1332}
1333
1334SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1335                                       SDValue Val, SDValue DTy,
1336                                       SDValue STy, SDValue Rnd, SDValue Sat,
1337                                       ISD::CvtCode Code) {
1338  // If the src and dest types are the same and the conversion is between
1339  // integer types of the same sign or two floats, no conversion is necessary.
1340  if (DTy == STy &&
1341      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1342    return Val;
1343
1344  FoldingSetNodeID ID;
1345  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1346  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1347  void* IP = 0;
1348  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1349    return SDValue(E, 0);
1350
1351  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1352                                                           Code);
1353  CSEMap.InsertNode(N, IP);
1354  AllNodes.push_back(N);
1355  return SDValue(N, 0);
1356}
1357
1358SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1359  FoldingSetNodeID ID;
1360  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1361  ID.AddInteger(RegNo);
1362  void *IP = 0;
1363  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1364    return SDValue(E, 0);
1365
1366  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1367  CSEMap.InsertNode(N, IP);
1368  AllNodes.push_back(N);
1369  return SDValue(N, 0);
1370}
1371
1372SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1373  FoldingSetNodeID ID;
1374  SDValue Ops[] = { Root };
1375  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1376  ID.AddPointer(Label);
1377  void *IP = 0;
1378  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1379    return SDValue(E, 0);
1380
1381  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1382  CSEMap.InsertNode(N, IP);
1383  AllNodes.push_back(N);
1384  return SDValue(N, 0);
1385}
1386
1387
1388SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1389                                      bool isTarget,
1390                                      unsigned char TargetFlags) {
1391  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1392
1393  FoldingSetNodeID ID;
1394  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1395  ID.AddPointer(BA);
1396  ID.AddInteger(TargetFlags);
1397  void *IP = 0;
1398  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1399    return SDValue(E, 0);
1400
1401  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1402  CSEMap.InsertNode(N, IP);
1403  AllNodes.push_back(N);
1404  return SDValue(N, 0);
1405}
1406
1407SDValue SelectionDAG::getSrcValue(const Value *V) {
1408  assert((!V || V->getType()->isPointerTy()) &&
1409         "SrcValue is not a pointer?");
1410
1411  FoldingSetNodeID ID;
1412  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1413  ID.AddPointer(V);
1414
1415  void *IP = 0;
1416  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1417    return SDValue(E, 0);
1418
1419  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1420  CSEMap.InsertNode(N, IP);
1421  AllNodes.push_back(N);
1422  return SDValue(N, 0);
1423}
1424
1425/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1426SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1427  FoldingSetNodeID ID;
1428  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1429  ID.AddPointer(MD);
1430
1431  void *IP = 0;
1432  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1433    return SDValue(E, 0);
1434
1435  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1436  CSEMap.InsertNode(N, IP);
1437  AllNodes.push_back(N);
1438  return SDValue(N, 0);
1439}
1440
1441
1442/// getShiftAmountOperand - Return the specified value casted to
1443/// the target's desired shift amount type.
1444SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1445  EVT OpTy = Op.getValueType();
1446  MVT ShTy = TLI.getShiftAmountTy(LHSTy);
1447  if (OpTy == ShTy || OpTy.isVector()) return Op;
1448
1449  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1450  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1451}
1452
1453/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1454/// specified value type.
1455SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1456  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1457  unsigned ByteSize = VT.getStoreSize();
1458  Type *Ty = VT.getTypeForEVT(*getContext());
1459  unsigned StackAlign =
1460  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1461
1462  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1463  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1464}
1465
1466/// CreateStackTemporary - Create a stack temporary suitable for holding
1467/// either of the specified value types.
1468SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1469  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1470                            VT2.getStoreSizeInBits())/8;
1471  Type *Ty1 = VT1.getTypeForEVT(*getContext());
1472  Type *Ty2 = VT2.getTypeForEVT(*getContext());
1473  const TargetData *TD = TLI.getTargetData();
1474  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1475                            TD->getPrefTypeAlignment(Ty2));
1476
1477  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1478  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1479  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1480}
1481
1482SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1483                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1484  // These setcc operations always fold.
1485  switch (Cond) {
1486  default: break;
1487  case ISD::SETFALSE:
1488  case ISD::SETFALSE2: return getConstant(0, VT);
1489  case ISD::SETTRUE:
1490  case ISD::SETTRUE2:  return getConstant(1, VT);
1491
1492  case ISD::SETOEQ:
1493  case ISD::SETOGT:
1494  case ISD::SETOGE:
1495  case ISD::SETOLT:
1496  case ISD::SETOLE:
1497  case ISD::SETONE:
1498  case ISD::SETO:
1499  case ISD::SETUO:
1500  case ISD::SETUEQ:
1501  case ISD::SETUNE:
1502    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1503    break;
1504  }
1505
1506  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1507    const APInt &C2 = N2C->getAPIntValue();
1508    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1509      const APInt &C1 = N1C->getAPIntValue();
1510
1511      switch (Cond) {
1512      default: llvm_unreachable("Unknown integer setcc!");
1513      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1514      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1515      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1516      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1517      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1518      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1519      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1520      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1521      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1522      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1523      }
1524    }
1525  }
1526  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1527    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1528      // No compile time operations on this type yet.
1529      if (N1C->getValueType(0) == MVT::ppcf128)
1530        return SDValue();
1531
1532      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1533      switch (Cond) {
1534      default: break;
1535      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1536                          return getUNDEF(VT);
1537                        // fall through
1538      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1539      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1540                          return getUNDEF(VT);
1541                        // fall through
1542      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1543                                           R==APFloat::cmpLessThan, VT);
1544      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1545                          return getUNDEF(VT);
1546                        // fall through
1547      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1548      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1549                          return getUNDEF(VT);
1550                        // fall through
1551      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1552      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1553                          return getUNDEF(VT);
1554                        // fall through
1555      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1556                                           R==APFloat::cmpEqual, VT);
1557      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1558                          return getUNDEF(VT);
1559                        // fall through
1560      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1561                                           R==APFloat::cmpEqual, VT);
1562      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1563      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1564      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1565                                           R==APFloat::cmpEqual, VT);
1566      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1567      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1568                                           R==APFloat::cmpLessThan, VT);
1569      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1570                                           R==APFloat::cmpUnordered, VT);
1571      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1572      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1573      }
1574    } else {
1575      // Ensure that the constant occurs on the RHS.
1576      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1577    }
1578  }
1579
1580  // Could not fold it.
1581  return SDValue();
1582}
1583
1584/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1585/// use this predicate to simplify operations downstream.
1586bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1587  // This predicate is not safe for vector operations.
1588  if (Op.getValueType().isVector())
1589    return false;
1590
1591  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1592  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1593}
1594
1595/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1596/// this predicate to simplify operations downstream.  Mask is known to be zero
1597/// for bits that V cannot have.
1598bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1599                                     unsigned Depth) const {
1600  APInt KnownZero, KnownOne;
1601  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1602  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1603  return (KnownZero & Mask) == Mask;
1604}
1605
1606/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1607/// known to be either zero or one and return them in the KnownZero/KnownOne
1608/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1609/// processing.
1610void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1611                                     APInt &KnownZero, APInt &KnownOne,
1612                                     unsigned Depth) const {
1613  unsigned BitWidth = Mask.getBitWidth();
1614  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1615         "Mask size mismatches value type size!");
1616
1617  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1618  if (Depth == 6 || Mask == 0)
1619    return;  // Limit search depth.
1620
1621  APInt KnownZero2, KnownOne2;
1622
1623  switch (Op.getOpcode()) {
1624  case ISD::Constant:
1625    // We know all of the bits for a constant!
1626    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1627    KnownZero = ~KnownOne & Mask;
1628    return;
1629  case ISD::AND:
1630    // If either the LHS or the RHS are Zero, the result is zero.
1631    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1632    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1633                      KnownZero2, KnownOne2, Depth+1);
1634    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1635    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1636
1637    // Output known-1 bits are only known if set in both the LHS & RHS.
1638    KnownOne &= KnownOne2;
1639    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1640    KnownZero |= KnownZero2;
1641    return;
1642  case ISD::OR:
1643    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1644    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1645                      KnownZero2, KnownOne2, Depth+1);
1646    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1647    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1648
1649    // Output known-0 bits are only known if clear in both the LHS & RHS.
1650    KnownZero &= KnownZero2;
1651    // Output known-1 are known to be set if set in either the LHS | RHS.
1652    KnownOne |= KnownOne2;
1653    return;
1654  case ISD::XOR: {
1655    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1656    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1657    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1658    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1659
1660    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1661    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1662    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1663    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1664    KnownZero = KnownZeroOut;
1665    return;
1666  }
1667  case ISD::MUL: {
1668    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1669    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1670    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1671    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1672    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1673
1674    // If low bits are zero in either operand, output low known-0 bits.
1675    // Also compute a conserative estimate for high known-0 bits.
1676    // More trickiness is possible, but this is sufficient for the
1677    // interesting case of alignment computation.
1678    KnownOne.clearAllBits();
1679    unsigned TrailZ = KnownZero.countTrailingOnes() +
1680                      KnownZero2.countTrailingOnes();
1681    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1682                               KnownZero2.countLeadingOnes(),
1683                               BitWidth) - BitWidth;
1684
1685    TrailZ = std::min(TrailZ, BitWidth);
1686    LeadZ = std::min(LeadZ, BitWidth);
1687    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1688                APInt::getHighBitsSet(BitWidth, LeadZ);
1689    KnownZero &= Mask;
1690    return;
1691  }
1692  case ISD::UDIV: {
1693    // For the purposes of computing leading zeros we can conservatively
1694    // treat a udiv as a logical right shift by the power of 2 known to
1695    // be less than the denominator.
1696    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1697    ComputeMaskedBits(Op.getOperand(0),
1698                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1699    unsigned LeadZ = KnownZero2.countLeadingOnes();
1700
1701    KnownOne2.clearAllBits();
1702    KnownZero2.clearAllBits();
1703    ComputeMaskedBits(Op.getOperand(1),
1704                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1705    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1706    if (RHSUnknownLeadingOnes != BitWidth)
1707      LeadZ = std::min(BitWidth,
1708                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1709
1710    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1711    return;
1712  }
1713  case ISD::SELECT:
1714    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1715    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1716    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1717    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1718
1719    // Only known if known in both the LHS and RHS.
1720    KnownOne &= KnownOne2;
1721    KnownZero &= KnownZero2;
1722    return;
1723  case ISD::SELECT_CC:
1724    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1725    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1726    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1727    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1728
1729    // Only known if known in both the LHS and RHS.
1730    KnownOne &= KnownOne2;
1731    KnownZero &= KnownZero2;
1732    return;
1733  case ISD::SADDO:
1734  case ISD::UADDO:
1735  case ISD::SSUBO:
1736  case ISD::USUBO:
1737  case ISD::SMULO:
1738  case ISD::UMULO:
1739    if (Op.getResNo() != 1)
1740      return;
1741    // The boolean result conforms to getBooleanContents.  Fall through.
1742  case ISD::SETCC:
1743    // If we know the result of a setcc has the top bits zero, use this info.
1744    if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
1745        TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1)
1746      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1747    return;
1748  case ISD::SHL:
1749    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1750    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1751      unsigned ShAmt = SA->getZExtValue();
1752
1753      // If the shift count is an invalid immediate, don't do anything.
1754      if (ShAmt >= BitWidth)
1755        return;
1756
1757      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1758                        KnownZero, KnownOne, Depth+1);
1759      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1760      KnownZero <<= ShAmt;
1761      KnownOne  <<= ShAmt;
1762      // low bits known zero.
1763      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1764    }
1765    return;
1766  case ISD::SRL:
1767    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1768    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1769      unsigned ShAmt = SA->getZExtValue();
1770
1771      // If the shift count is an invalid immediate, don't do anything.
1772      if (ShAmt >= BitWidth)
1773        return;
1774
1775      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1776                        KnownZero, KnownOne, Depth+1);
1777      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1778      KnownZero = KnownZero.lshr(ShAmt);
1779      KnownOne  = KnownOne.lshr(ShAmt);
1780
1781      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1782      KnownZero |= HighBits;  // High bits known zero.
1783    }
1784    return;
1785  case ISD::SRA:
1786    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1787      unsigned ShAmt = SA->getZExtValue();
1788
1789      // If the shift count is an invalid immediate, don't do anything.
1790      if (ShAmt >= BitWidth)
1791        return;
1792
1793      APInt InDemandedMask = (Mask << ShAmt);
1794      // If any of the demanded bits are produced by the sign extension, we also
1795      // demand the input sign bit.
1796      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1797      if (HighBits.getBoolValue())
1798        InDemandedMask |= APInt::getSignBit(BitWidth);
1799
1800      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1801                        Depth+1);
1802      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1803      KnownZero = KnownZero.lshr(ShAmt);
1804      KnownOne  = KnownOne.lshr(ShAmt);
1805
1806      // Handle the sign bits.
1807      APInt SignBit = APInt::getSignBit(BitWidth);
1808      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1809
1810      if (KnownZero.intersects(SignBit)) {
1811        KnownZero |= HighBits;  // New bits are known zero.
1812      } else if (KnownOne.intersects(SignBit)) {
1813        KnownOne  |= HighBits;  // New bits are known one.
1814      }
1815    }
1816    return;
1817  case ISD::SIGN_EXTEND_INREG: {
1818    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1819    unsigned EBits = EVT.getScalarType().getSizeInBits();
1820
1821    // Sign extension.  Compute the demanded bits in the result that are not
1822    // present in the input.
1823    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1824
1825    APInt InSignBit = APInt::getSignBit(EBits);
1826    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1827
1828    // If the sign extended bits are demanded, we know that the sign
1829    // bit is demanded.
1830    InSignBit = InSignBit.zext(BitWidth);
1831    if (NewBits.getBoolValue())
1832      InputDemandedBits |= InSignBit;
1833
1834    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1835                      KnownZero, KnownOne, Depth+1);
1836    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1837
1838    // If the sign bit of the input is known set or clear, then we know the
1839    // top bits of the result.
1840    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1841      KnownZero |= NewBits;
1842      KnownOne  &= ~NewBits;
1843    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1844      KnownOne  |= NewBits;
1845      KnownZero &= ~NewBits;
1846    } else {                              // Input sign bit unknown
1847      KnownZero &= ~NewBits;
1848      KnownOne  &= ~NewBits;
1849    }
1850    return;
1851  }
1852  case ISD::CTTZ:
1853  case ISD::CTLZ:
1854  case ISD::CTPOP: {
1855    unsigned LowBits = Log2_32(BitWidth)+1;
1856    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1857    KnownOne.clearAllBits();
1858    return;
1859  }
1860  case ISD::LOAD: {
1861    if (ISD::isZEXTLoad(Op.getNode())) {
1862      LoadSDNode *LD = cast<LoadSDNode>(Op);
1863      EVT VT = LD->getMemoryVT();
1864      unsigned MemBits = VT.getScalarType().getSizeInBits();
1865      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1866    }
1867    return;
1868  }
1869  case ISD::ZERO_EXTEND: {
1870    EVT InVT = Op.getOperand(0).getValueType();
1871    unsigned InBits = InVT.getScalarType().getSizeInBits();
1872    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1873    APInt InMask    = Mask.trunc(InBits);
1874    KnownZero = KnownZero.trunc(InBits);
1875    KnownOne = KnownOne.trunc(InBits);
1876    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1877    KnownZero = KnownZero.zext(BitWidth);
1878    KnownOne = KnownOne.zext(BitWidth);
1879    KnownZero |= NewBits;
1880    return;
1881  }
1882  case ISD::SIGN_EXTEND: {
1883    EVT InVT = Op.getOperand(0).getValueType();
1884    unsigned InBits = InVT.getScalarType().getSizeInBits();
1885    APInt InSignBit = APInt::getSignBit(InBits);
1886    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1887    APInt InMask = Mask.trunc(InBits);
1888
1889    // If any of the sign extended bits are demanded, we know that the sign
1890    // bit is demanded. Temporarily set this bit in the mask for our callee.
1891    if (NewBits.getBoolValue())
1892      InMask |= InSignBit;
1893
1894    KnownZero = KnownZero.trunc(InBits);
1895    KnownOne = KnownOne.trunc(InBits);
1896    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1897
1898    // Note if the sign bit is known to be zero or one.
1899    bool SignBitKnownZero = KnownZero.isNegative();
1900    bool SignBitKnownOne  = KnownOne.isNegative();
1901    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1902           "Sign bit can't be known to be both zero and one!");
1903
1904    // If the sign bit wasn't actually demanded by our caller, we don't
1905    // want it set in the KnownZero and KnownOne result values. Reset the
1906    // mask and reapply it to the result values.
1907    InMask = Mask.trunc(InBits);
1908    KnownZero &= InMask;
1909    KnownOne  &= InMask;
1910
1911    KnownZero = KnownZero.zext(BitWidth);
1912    KnownOne = KnownOne.zext(BitWidth);
1913
1914    // If the sign bit is known zero or one, the top bits match.
1915    if (SignBitKnownZero)
1916      KnownZero |= NewBits;
1917    else if (SignBitKnownOne)
1918      KnownOne  |= NewBits;
1919    return;
1920  }
1921  case ISD::ANY_EXTEND: {
1922    EVT InVT = Op.getOperand(0).getValueType();
1923    unsigned InBits = InVT.getScalarType().getSizeInBits();
1924    APInt InMask = Mask.trunc(InBits);
1925    KnownZero = KnownZero.trunc(InBits);
1926    KnownOne = KnownOne.trunc(InBits);
1927    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1928    KnownZero = KnownZero.zext(BitWidth);
1929    KnownOne = KnownOne.zext(BitWidth);
1930    return;
1931  }
1932  case ISD::TRUNCATE: {
1933    EVT InVT = Op.getOperand(0).getValueType();
1934    unsigned InBits = InVT.getScalarType().getSizeInBits();
1935    APInt InMask = Mask.zext(InBits);
1936    KnownZero = KnownZero.zext(InBits);
1937    KnownOne = KnownOne.zext(InBits);
1938    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1939    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1940    KnownZero = KnownZero.trunc(BitWidth);
1941    KnownOne = KnownOne.trunc(BitWidth);
1942    break;
1943  }
1944  case ISD::AssertZext: {
1945    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1946    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1947    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1948                      KnownOne, Depth+1);
1949    KnownZero |= (~InMask) & Mask;
1950    return;
1951  }
1952  case ISD::FGETSIGN:
1953    // All bits are zero except the low bit.
1954    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1955    return;
1956
1957  case ISD::SUB: {
1958    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1959      // We know that the top bits of C-X are clear if X contains less bits
1960      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1961      // positive if we can prove that X is >= 0 and < 16.
1962      if (CLHS->getAPIntValue().isNonNegative()) {
1963        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1964        // NLZ can't be BitWidth with no sign bit
1965        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1966        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1967                          Depth+1);
1968
1969        // If all of the MaskV bits are known to be zero, then we know the
1970        // output top bits are zero, because we now know that the output is
1971        // from [0-C].
1972        if ((KnownZero2 & MaskV) == MaskV) {
1973          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1974          // Top bits known zero.
1975          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1976        }
1977      }
1978    }
1979  }
1980  // fall through
1981  case ISD::ADD:
1982  case ISD::ADDE: {
1983    // Output known-0 bits are known if clear or set in both the low clear bits
1984    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1985    // low 3 bits clear.
1986    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1987                                       BitWidth - Mask.countLeadingZeros());
1988    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1989    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1990    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1991
1992    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1993    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1994    KnownZeroOut = std::min(KnownZeroOut,
1995                            KnownZero2.countTrailingOnes());
1996
1997    if (Op.getOpcode() == ISD::ADD) {
1998      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1999      return;
2000    }
2001
2002    // With ADDE, a carry bit may be added in, so we can only use this
2003    // information if we know (at least) that the low two bits are clear.  We
2004    // then return to the caller that the low bit is unknown but that other bits
2005    // are known zero.
2006    if (KnownZeroOut >= 2) // ADDE
2007      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
2008    return;
2009  }
2010  case ISD::SREM:
2011    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2012      const APInt &RA = Rem->getAPIntValue().abs();
2013      if (RA.isPowerOf2()) {
2014        APInt LowBits = RA - 1;
2015        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
2016        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
2017
2018        // The low bits of the first operand are unchanged by the srem.
2019        KnownZero = KnownZero2 & LowBits;
2020        KnownOne = KnownOne2 & LowBits;
2021
2022        // If the first operand is non-negative or has all low bits zero, then
2023        // the upper bits are all zero.
2024        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2025          KnownZero |= ~LowBits;
2026
2027        // If the first operand is negative and not all low bits are zero, then
2028        // the upper bits are all one.
2029        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2030          KnownOne |= ~LowBits;
2031
2032        KnownZero &= Mask;
2033        KnownOne &= Mask;
2034
2035        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2036      }
2037    }
2038    return;
2039  case ISD::UREM: {
2040    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2041      const APInt &RA = Rem->getAPIntValue();
2042      if (RA.isPowerOf2()) {
2043        APInt LowBits = (RA - 1);
2044        APInt Mask2 = LowBits & Mask;
2045        KnownZero |= ~LowBits & Mask;
2046        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2047        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2048        break;
2049      }
2050    }
2051
2052    // Since the result is less than or equal to either operand, any leading
2053    // zero bits in either operand must also exist in the result.
2054    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2055    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2056                      Depth+1);
2057    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2058                      Depth+1);
2059
2060    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2061                                KnownZero2.countLeadingOnes());
2062    KnownOne.clearAllBits();
2063    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2064    return;
2065  }
2066  case ISD::FrameIndex:
2067  case ISD::TargetFrameIndex:
2068    if (unsigned Align = InferPtrAlignment(Op)) {
2069      // The low bits are known zero if the pointer is aligned.
2070      KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2071      return;
2072    }
2073    break;
2074
2075  default:
2076    if (Op.getOpcode() < ISD::BUILTIN_OP_END)
2077      break;
2078    // Fallthrough
2079  case ISD::INTRINSIC_WO_CHAIN:
2080  case ISD::INTRINSIC_W_CHAIN:
2081  case ISD::INTRINSIC_VOID:
2082    // Allow the target to implement this method for its nodes.
2083    TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2084                                       Depth);
2085    return;
2086  }
2087}
2088
2089/// ComputeNumSignBits - Return the number of times the sign bit of the
2090/// register is replicated into the other bits.  We know that at least 1 bit
2091/// is always equal to the sign bit (itself), but other cases can give us
2092/// information.  For example, immediately after an "SRA X, 2", we know that
2093/// the top 3 bits are all equal to each other, so we return 3.
2094unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2095  EVT VT = Op.getValueType();
2096  assert(VT.isInteger() && "Invalid VT!");
2097  unsigned VTBits = VT.getScalarType().getSizeInBits();
2098  unsigned Tmp, Tmp2;
2099  unsigned FirstAnswer = 1;
2100
2101  if (Depth == 6)
2102    return 1;  // Limit search depth.
2103
2104  switch (Op.getOpcode()) {
2105  default: break;
2106  case ISD::AssertSext:
2107    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2108    return VTBits-Tmp+1;
2109  case ISD::AssertZext:
2110    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2111    return VTBits-Tmp;
2112
2113  case ISD::Constant: {
2114    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2115    return Val.getNumSignBits();
2116  }
2117
2118  case ISD::SIGN_EXTEND:
2119    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2120    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2121
2122  case ISD::SIGN_EXTEND_INREG:
2123    // Max of the input and what this extends.
2124    Tmp =
2125      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2126    Tmp = VTBits-Tmp+1;
2127
2128    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2129    return std::max(Tmp, Tmp2);
2130
2131  case ISD::SRA:
2132    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2133    // SRA X, C   -> adds C sign bits.
2134    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2135      Tmp += C->getZExtValue();
2136      if (Tmp > VTBits) Tmp = VTBits;
2137    }
2138    return Tmp;
2139  case ISD::SHL:
2140    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2141      // shl destroys sign bits.
2142      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2143      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2144          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2145      return Tmp - C->getZExtValue();
2146    }
2147    break;
2148  case ISD::AND:
2149  case ISD::OR:
2150  case ISD::XOR:    // NOT is handled here.
2151    // Logical binary ops preserve the number of sign bits at the worst.
2152    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2153    if (Tmp != 1) {
2154      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2155      FirstAnswer = std::min(Tmp, Tmp2);
2156      // We computed what we know about the sign bits as our first
2157      // answer. Now proceed to the generic code that uses
2158      // ComputeMaskedBits, and pick whichever answer is better.
2159    }
2160    break;
2161
2162  case ISD::SELECT:
2163    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2164    if (Tmp == 1) return 1;  // Early out.
2165    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2166    return std::min(Tmp, Tmp2);
2167
2168  case ISD::SADDO:
2169  case ISD::UADDO:
2170  case ISD::SSUBO:
2171  case ISD::USUBO:
2172  case ISD::SMULO:
2173  case ISD::UMULO:
2174    if (Op.getResNo() != 1)
2175      break;
2176    // The boolean result conforms to getBooleanContents.  Fall through.
2177  case ISD::SETCC:
2178    // If setcc returns 0/-1, all bits are sign bits.
2179    if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
2180        TargetLowering::ZeroOrNegativeOneBooleanContent)
2181      return VTBits;
2182    break;
2183  case ISD::ROTL:
2184  case ISD::ROTR:
2185    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2186      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2187
2188      // Handle rotate right by N like a rotate left by 32-N.
2189      if (Op.getOpcode() == ISD::ROTR)
2190        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2191
2192      // If we aren't rotating out all of the known-in sign bits, return the
2193      // number that are left.  This handles rotl(sext(x), 1) for example.
2194      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2195      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2196    }
2197    break;
2198  case ISD::ADD:
2199    // Add can have at most one carry bit.  Thus we know that the output
2200    // is, at worst, one more bit than the inputs.
2201    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2202    if (Tmp == 1) return 1;  // Early out.
2203
2204    // Special case decrementing a value (ADD X, -1):
2205    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2206      if (CRHS->isAllOnesValue()) {
2207        APInt KnownZero, KnownOne;
2208        APInt Mask = APInt::getAllOnesValue(VTBits);
2209        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2210
2211        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2212        // sign bits set.
2213        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2214          return VTBits;
2215
2216        // If we are subtracting one from a positive number, there is no carry
2217        // out of the result.
2218        if (KnownZero.isNegative())
2219          return Tmp;
2220      }
2221
2222    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2223    if (Tmp2 == 1) return 1;
2224      return std::min(Tmp, Tmp2)-1;
2225    break;
2226
2227  case ISD::SUB:
2228    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2229    if (Tmp2 == 1) return 1;
2230
2231    // Handle NEG.
2232    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2233      if (CLHS->isNullValue()) {
2234        APInt KnownZero, KnownOne;
2235        APInt Mask = APInt::getAllOnesValue(VTBits);
2236        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2237        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2238        // sign bits set.
2239        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2240          return VTBits;
2241
2242        // If the input is known to be positive (the sign bit is known clear),
2243        // the output of the NEG has the same number of sign bits as the input.
2244        if (KnownZero.isNegative())
2245          return Tmp2;
2246
2247        // Otherwise, we treat this like a SUB.
2248      }
2249
2250    // Sub can have at most one carry bit.  Thus we know that the output
2251    // is, at worst, one more bit than the inputs.
2252    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2253    if (Tmp == 1) return 1;  // Early out.
2254      return std::min(Tmp, Tmp2)-1;
2255    break;
2256  case ISD::TRUNCATE:
2257    // FIXME: it's tricky to do anything useful for this, but it is an important
2258    // case for targets like X86.
2259    break;
2260  }
2261
2262  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2263  if (Op.getOpcode() == ISD::LOAD) {
2264    LoadSDNode *LD = cast<LoadSDNode>(Op);
2265    unsigned ExtType = LD->getExtensionType();
2266    switch (ExtType) {
2267    default: break;
2268    case ISD::SEXTLOAD:    // '17' bits known
2269      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2270      return VTBits-Tmp+1;
2271    case ISD::ZEXTLOAD:    // '16' bits known
2272      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2273      return VTBits-Tmp;
2274    }
2275  }
2276
2277  // Allow the target to implement this method for its nodes.
2278  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2279      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2280      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2281      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2282    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2283    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2284  }
2285
2286  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2287  // use this information.
2288  APInt KnownZero, KnownOne;
2289  APInt Mask = APInt::getAllOnesValue(VTBits);
2290  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2291
2292  if (KnownZero.isNegative()) {        // sign bit is 0
2293    Mask = KnownZero;
2294  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2295    Mask = KnownOne;
2296  } else {
2297    // Nothing known.
2298    return FirstAnswer;
2299  }
2300
2301  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2302  // the number of identical bits in the top of the input value.
2303  Mask = ~Mask;
2304  Mask <<= Mask.getBitWidth()-VTBits;
2305  // Return # leading zeros.  We use 'min' here in case Val was zero before
2306  // shifting.  We don't want to return '64' as for an i32 "0".
2307  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2308}
2309
2310/// isBaseWithConstantOffset - Return true if the specified operand is an
2311/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2312/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2313/// semantics as an ADD.  This handles the equivalence:
2314///     X|Cst == X+Cst iff X&Cst = 0.
2315bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2316  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2317      !isa<ConstantSDNode>(Op.getOperand(1)))
2318    return false;
2319
2320  if (Op.getOpcode() == ISD::OR &&
2321      !MaskedValueIsZero(Op.getOperand(0),
2322                     cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2323    return false;
2324
2325  return true;
2326}
2327
2328
2329bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2330  // If we're told that NaNs won't happen, assume they won't.
2331  if (NoNaNsFPMath)
2332    return true;
2333
2334  // If the value is a constant, we can obviously see if it is a NaN or not.
2335  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2336    return !C->getValueAPF().isNaN();
2337
2338  // TODO: Recognize more cases here.
2339
2340  return false;
2341}
2342
2343bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2344  // If the value is a constant, we can obviously see if it is a zero or not.
2345  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2346    return !C->isZero();
2347
2348  // TODO: Recognize more cases here.
2349  switch (Op.getOpcode()) {
2350  default: break;
2351  case ISD::OR:
2352    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2353      return !C->isNullValue();
2354    break;
2355  }
2356
2357  return false;
2358}
2359
2360bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2361  // Check the obvious case.
2362  if (A == B) return true;
2363
2364  // For for negative and positive zero.
2365  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2366    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2367      if (CA->isZero() && CB->isZero()) return true;
2368
2369  // Otherwise they may not be equal.
2370  return false;
2371}
2372
2373/// getNode - Gets or creates the specified node.
2374///
2375SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2376  FoldingSetNodeID ID;
2377  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2378  void *IP = 0;
2379  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2380    return SDValue(E, 0);
2381
2382  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2383  CSEMap.InsertNode(N, IP);
2384
2385  AllNodes.push_back(N);
2386#ifndef NDEBUG
2387  VerifySDNode(N);
2388#endif
2389  return SDValue(N, 0);
2390}
2391
2392SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2393                              EVT VT, SDValue Operand) {
2394  // Constant fold unary operations with an integer constant operand.
2395  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2396    const APInt &Val = C->getAPIntValue();
2397    switch (Opcode) {
2398    default: break;
2399    case ISD::SIGN_EXTEND:
2400      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2401    case ISD::ANY_EXTEND:
2402    case ISD::ZERO_EXTEND:
2403    case ISD::TRUNCATE:
2404      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2405    case ISD::UINT_TO_FP:
2406    case ISD::SINT_TO_FP: {
2407      // No compile time operations on ppcf128.
2408      if (VT == MVT::ppcf128) break;
2409      APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2410      (void)apf.convertFromAPInt(Val,
2411                                 Opcode==ISD::SINT_TO_FP,
2412                                 APFloat::rmNearestTiesToEven);
2413      return getConstantFP(apf, VT);
2414    }
2415    case ISD::BITCAST:
2416      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2417        return getConstantFP(Val.bitsToFloat(), VT);
2418      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2419        return getConstantFP(Val.bitsToDouble(), VT);
2420      break;
2421    case ISD::BSWAP:
2422      return getConstant(Val.byteSwap(), VT);
2423    case ISD::CTPOP:
2424      return getConstant(Val.countPopulation(), VT);
2425    case ISD::CTLZ:
2426      return getConstant(Val.countLeadingZeros(), VT);
2427    case ISD::CTTZ:
2428      return getConstant(Val.countTrailingZeros(), VT);
2429    }
2430  }
2431
2432  // Constant fold unary operations with a floating point constant operand.
2433  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2434    APFloat V = C->getValueAPF();    // make copy
2435    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2436      switch (Opcode) {
2437      case ISD::FNEG:
2438        V.changeSign();
2439        return getConstantFP(V, VT);
2440      case ISD::FABS:
2441        V.clearSign();
2442        return getConstantFP(V, VT);
2443      case ISD::FP_ROUND:
2444      case ISD::FP_EXTEND: {
2445        bool ignored;
2446        // This can return overflow, underflow, or inexact; we don't care.
2447        // FIXME need to be more flexible about rounding mode.
2448        (void)V.convert(*EVTToAPFloatSemantics(VT),
2449                        APFloat::rmNearestTiesToEven, &ignored);
2450        return getConstantFP(V, VT);
2451      }
2452      case ISD::FP_TO_SINT:
2453      case ISD::FP_TO_UINT: {
2454        integerPart x[2];
2455        bool ignored;
2456        assert(integerPartWidth >= 64);
2457        // FIXME need to be more flexible about rounding mode.
2458        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2459                              Opcode==ISD::FP_TO_SINT,
2460                              APFloat::rmTowardZero, &ignored);
2461        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2462          break;
2463        APInt api(VT.getSizeInBits(), x);
2464        return getConstant(api, VT);
2465      }
2466      case ISD::BITCAST:
2467        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2468          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2469        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2470          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2471        break;
2472      }
2473    }
2474  }
2475
2476  unsigned OpOpcode = Operand.getNode()->getOpcode();
2477  switch (Opcode) {
2478  case ISD::TokenFactor:
2479  case ISD::MERGE_VALUES:
2480  case ISD::CONCAT_VECTORS:
2481    return Operand;         // Factor, merge or concat of one node?  No need.
2482  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2483  case ISD::FP_EXTEND:
2484    assert(VT.isFloatingPoint() &&
2485           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2486    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2487    assert((!VT.isVector() ||
2488            VT.getVectorNumElements() ==
2489            Operand.getValueType().getVectorNumElements()) &&
2490           "Vector element count mismatch!");
2491    if (Operand.getOpcode() == ISD::UNDEF)
2492      return getUNDEF(VT);
2493    break;
2494  case ISD::SIGN_EXTEND:
2495    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2496           "Invalid SIGN_EXTEND!");
2497    if (Operand.getValueType() == VT) return Operand;   // noop extension
2498    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2499           "Invalid sext node, dst < src!");
2500    assert((!VT.isVector() ||
2501            VT.getVectorNumElements() ==
2502            Operand.getValueType().getVectorNumElements()) &&
2503           "Vector element count mismatch!");
2504    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2505      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2506    else if (OpOpcode == ISD::UNDEF)
2507      // sext(undef) = 0, because the top bits will all be the same.
2508      return getConstant(0, VT);
2509    break;
2510  case ISD::ZERO_EXTEND:
2511    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2512           "Invalid ZERO_EXTEND!");
2513    if (Operand.getValueType() == VT) return Operand;   // noop extension
2514    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2515           "Invalid zext node, dst < src!");
2516    assert((!VT.isVector() ||
2517            VT.getVectorNumElements() ==
2518            Operand.getValueType().getVectorNumElements()) &&
2519           "Vector element count mismatch!");
2520    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2521      return getNode(ISD::ZERO_EXTEND, DL, VT,
2522                     Operand.getNode()->getOperand(0));
2523    else if (OpOpcode == ISD::UNDEF)
2524      // zext(undef) = 0, because the top bits will be zero.
2525      return getConstant(0, VT);
2526    break;
2527  case ISD::ANY_EXTEND:
2528    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2529           "Invalid ANY_EXTEND!");
2530    if (Operand.getValueType() == VT) return Operand;   // noop extension
2531    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2532           "Invalid anyext node, dst < src!");
2533    assert((!VT.isVector() ||
2534            VT.getVectorNumElements() ==
2535            Operand.getValueType().getVectorNumElements()) &&
2536           "Vector element count mismatch!");
2537
2538    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2539        OpOpcode == ISD::ANY_EXTEND)
2540      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2541      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2542    else if (OpOpcode == ISD::UNDEF)
2543      return getUNDEF(VT);
2544
2545    // (ext (trunx x)) -> x
2546    if (OpOpcode == ISD::TRUNCATE) {
2547      SDValue OpOp = Operand.getNode()->getOperand(0);
2548      if (OpOp.getValueType() == VT)
2549        return OpOp;
2550    }
2551    break;
2552  case ISD::TRUNCATE:
2553    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2554           "Invalid TRUNCATE!");
2555    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2556    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2557           "Invalid truncate node, src < dst!");
2558    assert((!VT.isVector() ||
2559            VT.getVectorNumElements() ==
2560            Operand.getValueType().getVectorNumElements()) &&
2561           "Vector element count mismatch!");
2562    if (OpOpcode == ISD::TRUNCATE)
2563      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2564    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2565             OpOpcode == ISD::ANY_EXTEND) {
2566      // If the source is smaller than the dest, we still need an extend.
2567      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2568            .bitsLT(VT.getScalarType()))
2569        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2570      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2571        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2572      else
2573        return Operand.getNode()->getOperand(0);
2574    }
2575    break;
2576  case ISD::BITCAST:
2577    // Basic sanity checking.
2578    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2579           && "Cannot BITCAST between types of different sizes!");
2580    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2581    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2582      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2583    if (OpOpcode == ISD::UNDEF)
2584      return getUNDEF(VT);
2585    break;
2586  case ISD::SCALAR_TO_VECTOR:
2587    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2588           (VT.getVectorElementType() == Operand.getValueType() ||
2589            (VT.getVectorElementType().isInteger() &&
2590             Operand.getValueType().isInteger() &&
2591             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2592           "Illegal SCALAR_TO_VECTOR node!");
2593    if (OpOpcode == ISD::UNDEF)
2594      return getUNDEF(VT);
2595    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2596    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2597        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2598        Operand.getConstantOperandVal(1) == 0 &&
2599        Operand.getOperand(0).getValueType() == VT)
2600      return Operand.getOperand(0);
2601    break;
2602  case ISD::FNEG:
2603    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2604    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2605      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2606                     Operand.getNode()->getOperand(0));
2607    if (OpOpcode == ISD::FNEG)  // --X -> X
2608      return Operand.getNode()->getOperand(0);
2609    break;
2610  case ISD::FABS:
2611    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2612      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2613    break;
2614  }
2615
2616  SDNode *N;
2617  SDVTList VTs = getVTList(VT);
2618  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2619    FoldingSetNodeID ID;
2620    SDValue Ops[1] = { Operand };
2621    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2622    void *IP = 0;
2623    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2624      return SDValue(E, 0);
2625
2626    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2627    CSEMap.InsertNode(N, IP);
2628  } else {
2629    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2630  }
2631
2632  AllNodes.push_back(N);
2633#ifndef NDEBUG
2634  VerifySDNode(N);
2635#endif
2636  return SDValue(N, 0);
2637}
2638
2639SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2640                                             EVT VT,
2641                                             ConstantSDNode *Cst1,
2642                                             ConstantSDNode *Cst2) {
2643  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2644
2645  switch (Opcode) {
2646  case ISD::ADD:  return getConstant(C1 + C2, VT);
2647  case ISD::SUB:  return getConstant(C1 - C2, VT);
2648  case ISD::MUL:  return getConstant(C1 * C2, VT);
2649  case ISD::UDIV:
2650    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2651    break;
2652  case ISD::UREM:
2653    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2654    break;
2655  case ISD::SDIV:
2656    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2657    break;
2658  case ISD::SREM:
2659    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2660    break;
2661  case ISD::AND:  return getConstant(C1 & C2, VT);
2662  case ISD::OR:   return getConstant(C1 | C2, VT);
2663  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2664  case ISD::SHL:  return getConstant(C1 << C2, VT);
2665  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2666  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2667  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2668  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2669  default: break;
2670  }
2671
2672  return SDValue();
2673}
2674
2675SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2676                              SDValue N1, SDValue N2) {
2677  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2678  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2679  switch (Opcode) {
2680  default: break;
2681  case ISD::TokenFactor:
2682    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2683           N2.getValueType() == MVT::Other && "Invalid token factor!");
2684    // Fold trivial token factors.
2685    if (N1.getOpcode() == ISD::EntryToken) return N2;
2686    if (N2.getOpcode() == ISD::EntryToken) return N1;
2687    if (N1 == N2) return N1;
2688    break;
2689  case ISD::CONCAT_VECTORS:
2690    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2691    // one big BUILD_VECTOR.
2692    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2693        N2.getOpcode() == ISD::BUILD_VECTOR) {
2694      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2695                                    N1.getNode()->op_end());
2696      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2697      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2698    }
2699    break;
2700  case ISD::AND:
2701    assert(VT.isInteger() && "This operator does not apply to FP types!");
2702    assert(N1.getValueType() == N2.getValueType() &&
2703           N1.getValueType() == VT && "Binary operator types must match!");
2704    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2705    // worth handling here.
2706    if (N2C && N2C->isNullValue())
2707      return N2;
2708    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2709      return N1;
2710    break;
2711  case ISD::OR:
2712  case ISD::XOR:
2713  case ISD::ADD:
2714  case ISD::SUB:
2715    assert(VT.isInteger() && "This operator does not apply to FP types!");
2716    assert(N1.getValueType() == N2.getValueType() &&
2717           N1.getValueType() == VT && "Binary operator types must match!");
2718    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2719    // it's worth handling here.
2720    if (N2C && N2C->isNullValue())
2721      return N1;
2722    break;
2723  case ISD::UDIV:
2724  case ISD::UREM:
2725  case ISD::MULHU:
2726  case ISD::MULHS:
2727  case ISD::MUL:
2728  case ISD::SDIV:
2729  case ISD::SREM:
2730    assert(VT.isInteger() && "This operator does not apply to FP types!");
2731    assert(N1.getValueType() == N2.getValueType() &&
2732           N1.getValueType() == VT && "Binary operator types must match!");
2733    break;
2734  case ISD::FADD:
2735  case ISD::FSUB:
2736  case ISD::FMUL:
2737  case ISD::FDIV:
2738  case ISD::FREM:
2739    if (UnsafeFPMath) {
2740      if (Opcode == ISD::FADD) {
2741        // 0+x --> x
2742        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2743          if (CFP->getValueAPF().isZero())
2744            return N2;
2745        // x+0 --> x
2746        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2747          if (CFP->getValueAPF().isZero())
2748            return N1;
2749      } else if (Opcode == ISD::FSUB) {
2750        // x-0 --> x
2751        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2752          if (CFP->getValueAPF().isZero())
2753            return N1;
2754      }
2755    }
2756    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2757    assert(N1.getValueType() == N2.getValueType() &&
2758           N1.getValueType() == VT && "Binary operator types must match!");
2759    break;
2760  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2761    assert(N1.getValueType() == VT &&
2762           N1.getValueType().isFloatingPoint() &&
2763           N2.getValueType().isFloatingPoint() &&
2764           "Invalid FCOPYSIGN!");
2765    break;
2766  case ISD::SHL:
2767  case ISD::SRA:
2768  case ISD::SRL:
2769  case ISD::ROTL:
2770  case ISD::ROTR:
2771    assert(VT == N1.getValueType() &&
2772           "Shift operators return type must be the same as their first arg");
2773    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2774           "Shifts only work on integers");
2775    // Verify that the shift amount VT is bit enough to hold valid shift
2776    // amounts.  This catches things like trying to shift an i1024 value by an
2777    // i8, which is easy to fall into in generic code that uses
2778    // TLI.getShiftAmount().
2779    assert(N2.getValueType().getSizeInBits() >=
2780                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2781           "Invalid use of small shift amount with oversized value!");
2782
2783    // Always fold shifts of i1 values so the code generator doesn't need to
2784    // handle them.  Since we know the size of the shift has to be less than the
2785    // size of the value, the shift/rotate count is guaranteed to be zero.
2786    if (VT == MVT::i1)
2787      return N1;
2788    if (N2C && N2C->isNullValue())
2789      return N1;
2790    break;
2791  case ISD::FP_ROUND_INREG: {
2792    EVT EVT = cast<VTSDNode>(N2)->getVT();
2793    assert(VT == N1.getValueType() && "Not an inreg round!");
2794    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2795           "Cannot FP_ROUND_INREG integer types");
2796    assert(EVT.isVector() == VT.isVector() &&
2797           "FP_ROUND_INREG type should be vector iff the operand "
2798           "type is vector!");
2799    assert((!EVT.isVector() ||
2800            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2801           "Vector element counts must match in FP_ROUND_INREG");
2802    assert(EVT.bitsLE(VT) && "Not rounding down!");
2803    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2804    break;
2805  }
2806  case ISD::FP_ROUND:
2807    assert(VT.isFloatingPoint() &&
2808           N1.getValueType().isFloatingPoint() &&
2809           VT.bitsLE(N1.getValueType()) &&
2810           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2811    if (N1.getValueType() == VT) return N1;  // noop conversion.
2812    break;
2813  case ISD::AssertSext:
2814  case ISD::AssertZext: {
2815    EVT EVT = cast<VTSDNode>(N2)->getVT();
2816    assert(VT == N1.getValueType() && "Not an inreg extend!");
2817    assert(VT.isInteger() && EVT.isInteger() &&
2818           "Cannot *_EXTEND_INREG FP types");
2819    assert(!EVT.isVector() &&
2820           "AssertSExt/AssertZExt type should be the vector element type "
2821           "rather than the vector type!");
2822    assert(EVT.bitsLE(VT) && "Not extending!");
2823    if (VT == EVT) return N1; // noop assertion.
2824    break;
2825  }
2826  case ISD::SIGN_EXTEND_INREG: {
2827    EVT EVT = cast<VTSDNode>(N2)->getVT();
2828    assert(VT == N1.getValueType() && "Not an inreg extend!");
2829    assert(VT.isInteger() && EVT.isInteger() &&
2830           "Cannot *_EXTEND_INREG FP types");
2831    assert(EVT.isVector() == VT.isVector() &&
2832           "SIGN_EXTEND_INREG type should be vector iff the operand "
2833           "type is vector!");
2834    assert((!EVT.isVector() ||
2835            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2836           "Vector element counts must match in SIGN_EXTEND_INREG");
2837    assert(EVT.bitsLE(VT) && "Not extending!");
2838    if (EVT == VT) return N1;  // Not actually extending
2839
2840    if (N1C) {
2841      APInt Val = N1C->getAPIntValue();
2842      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2843      Val <<= Val.getBitWidth()-FromBits;
2844      Val = Val.ashr(Val.getBitWidth()-FromBits);
2845      return getConstant(Val, VT);
2846    }
2847    break;
2848  }
2849  case ISD::EXTRACT_VECTOR_ELT:
2850    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2851    if (N1.getOpcode() == ISD::UNDEF)
2852      return getUNDEF(VT);
2853
2854    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2855    // expanding copies of large vectors from registers.
2856    if (N2C &&
2857        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2858        N1.getNumOperands() > 0) {
2859      unsigned Factor =
2860        N1.getOperand(0).getValueType().getVectorNumElements();
2861      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2862                     N1.getOperand(N2C->getZExtValue() / Factor),
2863                     getConstant(N2C->getZExtValue() % Factor,
2864                                 N2.getValueType()));
2865    }
2866
2867    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2868    // expanding large vector constants.
2869    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2870      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2871      EVT VEltTy = N1.getValueType().getVectorElementType();
2872      if (Elt.getValueType() != VEltTy) {
2873        // If the vector element type is not legal, the BUILD_VECTOR operands
2874        // are promoted and implicitly truncated.  Make that explicit here.
2875        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2876      }
2877      if (VT != VEltTy) {
2878        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2879        // result is implicitly extended.
2880        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2881      }
2882      return Elt;
2883    }
2884
2885    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2886    // operations are lowered to scalars.
2887    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2888      // If the indices are the same, return the inserted element else
2889      // if the indices are known different, extract the element from
2890      // the original vector.
2891      SDValue N1Op2 = N1.getOperand(2);
2892      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2893
2894      if (N1Op2C && N2C) {
2895        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2896          if (VT == N1.getOperand(1).getValueType())
2897            return N1.getOperand(1);
2898          else
2899            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2900        }
2901
2902        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2903      }
2904    }
2905    break;
2906  case ISD::EXTRACT_ELEMENT:
2907    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2908    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2909           (N1.getValueType().isInteger() == VT.isInteger()) &&
2910           N1.getValueType() != VT &&
2911           "Wrong types for EXTRACT_ELEMENT!");
2912
2913    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2914    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2915    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2916    if (N1.getOpcode() == ISD::BUILD_PAIR)
2917      return N1.getOperand(N2C->getZExtValue());
2918
2919    // EXTRACT_ELEMENT of a constant int is also very common.
2920    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2921      unsigned ElementSize = VT.getSizeInBits();
2922      unsigned Shift = ElementSize * N2C->getZExtValue();
2923      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2924      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2925    }
2926    break;
2927  case ISD::EXTRACT_SUBVECTOR: {
2928    SDValue Index = N2;
2929    if (VT.isSimple() && N1.getValueType().isSimple()) {
2930      assert(VT.isVector() && N1.getValueType().isVector() &&
2931             "Extract subvector VTs must be a vectors!");
2932      assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
2933             "Extract subvector VTs must have the same element type!");
2934      assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
2935             "Extract subvector must be from larger vector to smaller vector!");
2936
2937      if (isa<ConstantSDNode>(Index.getNode())) {
2938        assert((VT.getVectorNumElements() +
2939                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
2940                <= N1.getValueType().getVectorNumElements())
2941               && "Extract subvector overflow!");
2942      }
2943
2944      // Trivial extraction.
2945      if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
2946        return N1;
2947    }
2948    break;
2949  }
2950  }
2951
2952  if (N1C) {
2953    if (N2C) {
2954      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2955      if (SV.getNode()) return SV;
2956    } else {      // Cannonicalize constant to RHS if commutative
2957      if (isCommutativeBinOp(Opcode)) {
2958        std::swap(N1C, N2C);
2959        std::swap(N1, N2);
2960      }
2961    }
2962  }
2963
2964  // Constant fold FP operations.
2965  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2966  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2967  if (N1CFP) {
2968    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2969      // Cannonicalize constant to RHS if commutative
2970      std::swap(N1CFP, N2CFP);
2971      std::swap(N1, N2);
2972    } else if (N2CFP && VT != MVT::ppcf128) {
2973      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2974      APFloat::opStatus s;
2975      switch (Opcode) {
2976      case ISD::FADD:
2977        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2978        if (s != APFloat::opInvalidOp)
2979          return getConstantFP(V1, VT);
2980        break;
2981      case ISD::FSUB:
2982        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2983        if (s!=APFloat::opInvalidOp)
2984          return getConstantFP(V1, VT);
2985        break;
2986      case ISD::FMUL:
2987        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2988        if (s!=APFloat::opInvalidOp)
2989          return getConstantFP(V1, VT);
2990        break;
2991      case ISD::FDIV:
2992        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2993        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2994          return getConstantFP(V1, VT);
2995        break;
2996      case ISD::FREM :
2997        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2998        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2999          return getConstantFP(V1, VT);
3000        break;
3001      case ISD::FCOPYSIGN:
3002        V1.copySign(V2);
3003        return getConstantFP(V1, VT);
3004      default: break;
3005      }
3006    }
3007  }
3008
3009  // Canonicalize an UNDEF to the RHS, even over a constant.
3010  if (N1.getOpcode() == ISD::UNDEF) {
3011    if (isCommutativeBinOp(Opcode)) {
3012      std::swap(N1, N2);
3013    } else {
3014      switch (Opcode) {
3015      case ISD::FP_ROUND_INREG:
3016      case ISD::SIGN_EXTEND_INREG:
3017      case ISD::SUB:
3018      case ISD::FSUB:
3019      case ISD::FDIV:
3020      case ISD::FREM:
3021      case ISD::SRA:
3022        return N1;     // fold op(undef, arg2) -> undef
3023      case ISD::UDIV:
3024      case ISD::SDIV:
3025      case ISD::UREM:
3026      case ISD::SREM:
3027      case ISD::SRL:
3028      case ISD::SHL:
3029        if (!VT.isVector())
3030          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
3031        // For vectors, we can't easily build an all zero vector, just return
3032        // the LHS.
3033        return N2;
3034      }
3035    }
3036  }
3037
3038  // Fold a bunch of operators when the RHS is undef.
3039  if (N2.getOpcode() == ISD::UNDEF) {
3040    switch (Opcode) {
3041    case ISD::XOR:
3042      if (N1.getOpcode() == ISD::UNDEF)
3043        // Handle undef ^ undef -> 0 special case. This is a common
3044        // idiom (misuse).
3045        return getConstant(0, VT);
3046      // fallthrough
3047    case ISD::ADD:
3048    case ISD::ADDC:
3049    case ISD::ADDE:
3050    case ISD::SUB:
3051    case ISD::UDIV:
3052    case ISD::SDIV:
3053    case ISD::UREM:
3054    case ISD::SREM:
3055      return N2;       // fold op(arg1, undef) -> undef
3056    case ISD::FADD:
3057    case ISD::FSUB:
3058    case ISD::FMUL:
3059    case ISD::FDIV:
3060    case ISD::FREM:
3061      if (UnsafeFPMath)
3062        return N2;
3063      break;
3064    case ISD::MUL:
3065    case ISD::AND:
3066    case ISD::SRL:
3067    case ISD::SHL:
3068      if (!VT.isVector())
3069        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3070      // For vectors, we can't easily build an all zero vector, just return
3071      // the LHS.
3072      return N1;
3073    case ISD::OR:
3074      if (!VT.isVector())
3075        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3076      // For vectors, we can't easily build an all one vector, just return
3077      // the LHS.
3078      return N1;
3079    case ISD::SRA:
3080      return N1;
3081    }
3082  }
3083
3084  // Memoize this node if possible.
3085  SDNode *N;
3086  SDVTList VTs = getVTList(VT);
3087  if (VT != MVT::Glue) {
3088    SDValue Ops[] = { N1, N2 };
3089    FoldingSetNodeID ID;
3090    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3091    void *IP = 0;
3092    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3093      return SDValue(E, 0);
3094
3095    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3096    CSEMap.InsertNode(N, IP);
3097  } else {
3098    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3099  }
3100
3101  AllNodes.push_back(N);
3102#ifndef NDEBUG
3103  VerifySDNode(N);
3104#endif
3105  return SDValue(N, 0);
3106}
3107
3108SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3109                              SDValue N1, SDValue N2, SDValue N3) {
3110  // Perform various simplifications.
3111  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3112  switch (Opcode) {
3113  case ISD::CONCAT_VECTORS:
3114    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3115    // one big BUILD_VECTOR.
3116    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3117        N2.getOpcode() == ISD::BUILD_VECTOR &&
3118        N3.getOpcode() == ISD::BUILD_VECTOR) {
3119      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3120                                    N1.getNode()->op_end());
3121      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3122      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3123      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3124    }
3125    break;
3126  case ISD::SETCC: {
3127    // Use FoldSetCC to simplify SETCC's.
3128    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3129    if (Simp.getNode()) return Simp;
3130    break;
3131  }
3132  case ISD::SELECT:
3133    if (N1C) {
3134     if (N1C->getZExtValue())
3135        return N2;             // select true, X, Y -> X
3136      else
3137        return N3;             // select false, X, Y -> Y
3138    }
3139
3140    if (N2 == N3) return N2;   // select C, X, X -> X
3141    break;
3142  case ISD::VECTOR_SHUFFLE:
3143    llvm_unreachable("should use getVectorShuffle constructor!");
3144    break;
3145  case ISD::INSERT_SUBVECTOR: {
3146    SDValue Index = N3;
3147    if (VT.isSimple() && N1.getValueType().isSimple()
3148        && N2.getValueType().isSimple()) {
3149      assert(VT.isVector() && N1.getValueType().isVector() &&
3150             N2.getValueType().isVector() &&
3151             "Insert subvector VTs must be a vectors");
3152      assert(VT == N1.getValueType() &&
3153             "Dest and insert subvector source types must match!");
3154      assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3155             "Insert subvector must be from smaller vector to larger vector!");
3156      if (isa<ConstantSDNode>(Index.getNode())) {
3157        assert((N2.getValueType().getVectorNumElements() +
3158                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3159                <= VT.getVectorNumElements())
3160               && "Insert subvector overflow!");
3161      }
3162
3163      // Trivial insertion.
3164      if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3165        return N2;
3166    }
3167    break;
3168  }
3169  case ISD::BITCAST:
3170    // Fold bit_convert nodes from a type to themselves.
3171    if (N1.getValueType() == VT)
3172      return N1;
3173    break;
3174  }
3175
3176  // Memoize node if it doesn't produce a flag.
3177  SDNode *N;
3178  SDVTList VTs = getVTList(VT);
3179  if (VT != MVT::Glue) {
3180    SDValue Ops[] = { N1, N2, N3 };
3181    FoldingSetNodeID ID;
3182    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3183    void *IP = 0;
3184    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3185      return SDValue(E, 0);
3186
3187    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3188    CSEMap.InsertNode(N, IP);
3189  } else {
3190    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3191  }
3192
3193  AllNodes.push_back(N);
3194#ifndef NDEBUG
3195  VerifySDNode(N);
3196#endif
3197  return SDValue(N, 0);
3198}
3199
3200SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3201                              SDValue N1, SDValue N2, SDValue N3,
3202                              SDValue N4) {
3203  SDValue Ops[] = { N1, N2, N3, N4 };
3204  return getNode(Opcode, DL, VT, Ops, 4);
3205}
3206
3207SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3208                              SDValue N1, SDValue N2, SDValue N3,
3209                              SDValue N4, SDValue N5) {
3210  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3211  return getNode(Opcode, DL, VT, Ops, 5);
3212}
3213
3214/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3215/// the incoming stack arguments to be loaded from the stack.
3216SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3217  SmallVector<SDValue, 8> ArgChains;
3218
3219  // Include the original chain at the beginning of the list. When this is
3220  // used by target LowerCall hooks, this helps legalize find the
3221  // CALLSEQ_BEGIN node.
3222  ArgChains.push_back(Chain);
3223
3224  // Add a chain value for each stack argument.
3225  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3226       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3227    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3228      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3229        if (FI->getIndex() < 0)
3230          ArgChains.push_back(SDValue(L, 1));
3231
3232  // Build a tokenfactor for all the chains.
3233  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3234                 &ArgChains[0], ArgChains.size());
3235}
3236
3237/// SplatByte - Distribute ByteVal over NumBits bits.
3238static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
3239  APInt Val = APInt(NumBits, ByteVal);
3240  unsigned Shift = 8;
3241  for (unsigned i = NumBits; i > 8; i >>= 1) {
3242    Val = (Val << Shift) | Val;
3243    Shift <<= 1;
3244  }
3245  return Val;
3246}
3247
3248/// getMemsetValue - Vectorized representation of the memset value
3249/// operand.
3250static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3251                              DebugLoc dl) {
3252  assert(Value.getOpcode() != ISD::UNDEF);
3253
3254  unsigned NumBits = VT.getScalarType().getSizeInBits();
3255  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3256    APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
3257    if (VT.isInteger())
3258      return DAG.getConstant(Val, VT);
3259    return DAG.getConstantFP(APFloat(Val), VT);
3260  }
3261
3262  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3263  if (NumBits > 8) {
3264    // Use a multiplication with 0x010101... to extend the input to the
3265    // required length.
3266    APInt Magic = SplatByte(NumBits, 0x01);
3267    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3268  }
3269
3270  return Value;
3271}
3272
3273/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3274/// used when a memcpy is turned into a memset when the source is a constant
3275/// string ptr.
3276static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3277                                  const TargetLowering &TLI,
3278                                  std::string &Str, unsigned Offset) {
3279  // Handle vector with all elements zero.
3280  if (Str.empty()) {
3281    if (VT.isInteger())
3282      return DAG.getConstant(0, VT);
3283    else if (VT == MVT::f32 || VT == MVT::f64)
3284      return DAG.getConstantFP(0.0, VT);
3285    else if (VT.isVector()) {
3286      unsigned NumElts = VT.getVectorNumElements();
3287      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3288      return DAG.getNode(ISD::BITCAST, dl, VT,
3289                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3290                                                             EltVT, NumElts)));
3291    } else
3292      llvm_unreachable("Expected type!");
3293  }
3294
3295  assert(!VT.isVector() && "Can't handle vector type here!");
3296  unsigned NumBits = VT.getSizeInBits();
3297  unsigned MSB = NumBits / 8;
3298  uint64_t Val = 0;
3299  if (TLI.isLittleEndian())
3300    Offset = Offset + MSB - 1;
3301  for (unsigned i = 0; i != MSB; ++i) {
3302    Val = (Val << 8) | (unsigned char)Str[Offset];
3303    Offset += TLI.isLittleEndian() ? -1 : 1;
3304  }
3305  return DAG.getConstant(Val, VT);
3306}
3307
3308/// getMemBasePlusOffset - Returns base and offset node for the
3309///
3310static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3311                                      SelectionDAG &DAG) {
3312  EVT VT = Base.getValueType();
3313  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3314                     VT, Base, DAG.getConstant(Offset, VT));
3315}
3316
3317/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3318///
3319static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3320  unsigned SrcDelta = 0;
3321  GlobalAddressSDNode *G = NULL;
3322  if (Src.getOpcode() == ISD::GlobalAddress)
3323    G = cast<GlobalAddressSDNode>(Src);
3324  else if (Src.getOpcode() == ISD::ADD &&
3325           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3326           Src.getOperand(1).getOpcode() == ISD::Constant) {
3327    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3328    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3329  }
3330  if (!G)
3331    return false;
3332
3333  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3334  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3335    return true;
3336
3337  return false;
3338}
3339
3340/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3341/// to replace the memset / memcpy. Return true if the number of memory ops
3342/// is below the threshold. It returns the types of the sequence of
3343/// memory ops to perform memset / memcpy by reference.
3344static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3345                                     unsigned Limit, uint64_t Size,
3346                                     unsigned DstAlign, unsigned SrcAlign,
3347                                     bool NonScalarIntSafe,
3348                                     bool MemcpyStrSrc,
3349                                     SelectionDAG &DAG,
3350                                     const TargetLowering &TLI) {
3351  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3352         "Expecting memcpy / memset source to meet alignment requirement!");
3353  // If 'SrcAlign' is zero, that means the memory operation does not need to
3354  // load the value, i.e. memset or memcpy from constant string. Otherwise,
3355  // it's the inferred alignment of the source. 'DstAlign', on the other hand,
3356  // is the specified alignment of the memory operation. If it is zero, that
3357  // means it's possible to change the alignment of the destination.
3358  // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
3359  // not need to be loaded.
3360  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3361                                   NonScalarIntSafe, MemcpyStrSrc,
3362                                   DAG.getMachineFunction());
3363
3364  if (VT == MVT::Other) {
3365    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3366        TLI.allowsUnalignedMemoryAccesses(VT)) {
3367      VT = TLI.getPointerTy();
3368    } else {
3369      switch (DstAlign & 7) {
3370      case 0:  VT = MVT::i64; break;
3371      case 4:  VT = MVT::i32; break;
3372      case 2:  VT = MVT::i16; break;
3373      default: VT = MVT::i8;  break;
3374      }
3375    }
3376
3377    MVT LVT = MVT::i64;
3378    while (!TLI.isTypeLegal(LVT))
3379      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3380    assert(LVT.isInteger());
3381
3382    if (VT.bitsGT(LVT))
3383      VT = LVT;
3384  }
3385
3386  unsigned NumMemOps = 0;
3387  while (Size != 0) {
3388    unsigned VTSize = VT.getSizeInBits() / 8;
3389    while (VTSize > Size) {
3390      // For now, only use non-vector load / store's for the left-over pieces.
3391      if (VT.isVector() || VT.isFloatingPoint()) {
3392        VT = MVT::i64;
3393        while (!TLI.isTypeLegal(VT))
3394          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3395        VTSize = VT.getSizeInBits() / 8;
3396      } else {
3397        // This can result in a type that is not legal on the target, e.g.
3398        // 1 or 2 bytes on PPC.
3399        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3400        VTSize >>= 1;
3401      }
3402    }
3403
3404    if (++NumMemOps > Limit)
3405      return false;
3406    MemOps.push_back(VT);
3407    Size -= VTSize;
3408  }
3409
3410  return true;
3411}
3412
3413static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3414                                       SDValue Chain, SDValue Dst,
3415                                       SDValue Src, uint64_t Size,
3416                                       unsigned Align, bool isVol,
3417                                       bool AlwaysInline,
3418                                       MachinePointerInfo DstPtrInfo,
3419                                       MachinePointerInfo SrcPtrInfo) {
3420  // Turn a memcpy of undef to nop.
3421  if (Src.getOpcode() == ISD::UNDEF)
3422    return Chain;
3423
3424  // Expand memcpy to a series of load and store ops if the size operand falls
3425  // below a certain threshold.
3426  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3427  // rather than maybe a humongous number of loads and stores.
3428  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3429  std::vector<EVT> MemOps;
3430  bool DstAlignCanChange = false;
3431  MachineFunction &MF = DAG.getMachineFunction();
3432  MachineFrameInfo *MFI = MF.getFrameInfo();
3433  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3434  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3435  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3436    DstAlignCanChange = true;
3437  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3438  if (Align > SrcAlign)
3439    SrcAlign = Align;
3440  std::string Str;
3441  bool CopyFromStr = isMemSrcFromString(Src, Str);
3442  bool isZeroStr = CopyFromStr && Str.empty();
3443  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3444
3445  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3446                                (DstAlignCanChange ? 0 : Align),
3447                                (isZeroStr ? 0 : SrcAlign),
3448                                true, CopyFromStr, DAG, TLI))
3449    return SDValue();
3450
3451  if (DstAlignCanChange) {
3452    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3453    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3454    if (NewAlign > Align) {
3455      // Give the stack frame object a larger alignment if needed.
3456      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3457        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3458      Align = NewAlign;
3459    }
3460  }
3461
3462  SmallVector<SDValue, 8> OutChains;
3463  unsigned NumMemOps = MemOps.size();
3464  uint64_t SrcOff = 0, DstOff = 0;
3465  for (unsigned i = 0; i != NumMemOps; ++i) {
3466    EVT VT = MemOps[i];
3467    unsigned VTSize = VT.getSizeInBits() / 8;
3468    SDValue Value, Store;
3469
3470    if (CopyFromStr &&
3471        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3472      // It's unlikely a store of a vector immediate can be done in a single
3473      // instruction. It would require a load from a constantpool first.
3474      // We only handle zero vectors here.
3475      // FIXME: Handle other cases where store of vector immediate is done in
3476      // a single instruction.
3477      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3478      Store = DAG.getStore(Chain, dl, Value,
3479                           getMemBasePlusOffset(Dst, DstOff, DAG),
3480                           DstPtrInfo.getWithOffset(DstOff), isVol,
3481                           false, Align);
3482    } else {
3483      // The type might not be legal for the target.  This should only happen
3484      // if the type is smaller than a legal type, as on PPC, so the right
3485      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3486      // to Load/Store if NVT==VT.
3487      // FIXME does the case above also need this?
3488      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3489      assert(NVT.bitsGE(VT));
3490      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3491                             getMemBasePlusOffset(Src, SrcOff, DAG),
3492                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3493                             MinAlign(SrcAlign, SrcOff));
3494      Store = DAG.getTruncStore(Chain, dl, Value,
3495                                getMemBasePlusOffset(Dst, DstOff, DAG),
3496                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3497                                false, Align);
3498    }
3499    OutChains.push_back(Store);
3500    SrcOff += VTSize;
3501    DstOff += VTSize;
3502  }
3503
3504  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3505                     &OutChains[0], OutChains.size());
3506}
3507
3508static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3509                                        SDValue Chain, SDValue Dst,
3510                                        SDValue Src, uint64_t Size,
3511                                        unsigned Align,  bool isVol,
3512                                        bool AlwaysInline,
3513                                        MachinePointerInfo DstPtrInfo,
3514                                        MachinePointerInfo SrcPtrInfo) {
3515  // Turn a memmove of undef to nop.
3516  if (Src.getOpcode() == ISD::UNDEF)
3517    return Chain;
3518
3519  // Expand memmove to a series of load and store ops if the size operand falls
3520  // below a certain threshold.
3521  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3522  std::vector<EVT> MemOps;
3523  bool DstAlignCanChange = false;
3524  MachineFunction &MF = DAG.getMachineFunction();
3525  MachineFrameInfo *MFI = MF.getFrameInfo();
3526  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3527  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3528  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3529    DstAlignCanChange = true;
3530  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3531  if (Align > SrcAlign)
3532    SrcAlign = Align;
3533  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3534
3535  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3536                                (DstAlignCanChange ? 0 : Align),
3537                                SrcAlign, true, false, DAG, TLI))
3538    return SDValue();
3539
3540  if (DstAlignCanChange) {
3541    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3542    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3543    if (NewAlign > Align) {
3544      // Give the stack frame object a larger alignment if needed.
3545      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3546        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3547      Align = NewAlign;
3548    }
3549  }
3550
3551  uint64_t SrcOff = 0, DstOff = 0;
3552  SmallVector<SDValue, 8> LoadValues;
3553  SmallVector<SDValue, 8> LoadChains;
3554  SmallVector<SDValue, 8> OutChains;
3555  unsigned NumMemOps = MemOps.size();
3556  for (unsigned i = 0; i < NumMemOps; i++) {
3557    EVT VT = MemOps[i];
3558    unsigned VTSize = VT.getSizeInBits() / 8;
3559    SDValue Value, Store;
3560
3561    Value = DAG.getLoad(VT, dl, Chain,
3562                        getMemBasePlusOffset(Src, SrcOff, DAG),
3563                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3564                        false, SrcAlign);
3565    LoadValues.push_back(Value);
3566    LoadChains.push_back(Value.getValue(1));
3567    SrcOff += VTSize;
3568  }
3569  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3570                      &LoadChains[0], LoadChains.size());
3571  OutChains.clear();
3572  for (unsigned i = 0; i < NumMemOps; i++) {
3573    EVT VT = MemOps[i];
3574    unsigned VTSize = VT.getSizeInBits() / 8;
3575    SDValue Value, Store;
3576
3577    Store = DAG.getStore(Chain, dl, LoadValues[i],
3578                         getMemBasePlusOffset(Dst, DstOff, DAG),
3579                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3580    OutChains.push_back(Store);
3581    DstOff += VTSize;
3582  }
3583
3584  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3585                     &OutChains[0], OutChains.size());
3586}
3587
3588static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3589                               SDValue Chain, SDValue Dst,
3590                               SDValue Src, uint64_t Size,
3591                               unsigned Align, bool isVol,
3592                               MachinePointerInfo DstPtrInfo) {
3593  // Turn a memset of undef to nop.
3594  if (Src.getOpcode() == ISD::UNDEF)
3595    return Chain;
3596
3597  // Expand memset to a series of load/store ops if the size operand
3598  // falls below a certain threshold.
3599  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3600  std::vector<EVT> MemOps;
3601  bool DstAlignCanChange = false;
3602  MachineFunction &MF = DAG.getMachineFunction();
3603  MachineFrameInfo *MFI = MF.getFrameInfo();
3604  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3605  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3606  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3607    DstAlignCanChange = true;
3608  bool NonScalarIntSafe =
3609    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3610  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3611                                Size, (DstAlignCanChange ? 0 : Align), 0,
3612                                NonScalarIntSafe, false, DAG, TLI))
3613    return SDValue();
3614
3615  if (DstAlignCanChange) {
3616    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3617    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3618    if (NewAlign > Align) {
3619      // Give the stack frame object a larger alignment if needed.
3620      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3621        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3622      Align = NewAlign;
3623    }
3624  }
3625
3626  SmallVector<SDValue, 8> OutChains;
3627  uint64_t DstOff = 0;
3628  unsigned NumMemOps = MemOps.size();
3629
3630  // Find the largest store and generate the bit pattern for it.
3631  EVT LargestVT = MemOps[0];
3632  for (unsigned i = 1; i < NumMemOps; i++)
3633    if (MemOps[i].bitsGT(LargestVT))
3634      LargestVT = MemOps[i];
3635  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3636
3637  for (unsigned i = 0; i < NumMemOps; i++) {
3638    EVT VT = MemOps[i];
3639
3640    // If this store is smaller than the largest store see whether we can get
3641    // the smaller value for free with a truncate.
3642    SDValue Value = MemSetValue;
3643    if (VT.bitsLT(LargestVT)) {
3644      if (!LargestVT.isVector() && !VT.isVector() &&
3645          TLI.isTruncateFree(LargestVT, VT))
3646        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3647      else
3648        Value = getMemsetValue(Src, VT, DAG, dl);
3649    }
3650    assert(Value.getValueType() == VT && "Value with wrong type.");
3651    SDValue Store = DAG.getStore(Chain, dl, Value,
3652                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3653                                 DstPtrInfo.getWithOffset(DstOff),
3654                                 isVol, false, Align);
3655    OutChains.push_back(Store);
3656    DstOff += VT.getSizeInBits() / 8;
3657  }
3658
3659  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3660                     &OutChains[0], OutChains.size());
3661}
3662
3663SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3664                                SDValue Src, SDValue Size,
3665                                unsigned Align, bool isVol, bool AlwaysInline,
3666                                MachinePointerInfo DstPtrInfo,
3667                                MachinePointerInfo SrcPtrInfo) {
3668
3669  // Check to see if we should lower the memcpy to loads and stores first.
3670  // For cases within the target-specified limits, this is the best choice.
3671  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3672  if (ConstantSize) {
3673    // Memcpy with size zero? Just return the original chain.
3674    if (ConstantSize->isNullValue())
3675      return Chain;
3676
3677    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3678                                             ConstantSize->getZExtValue(),Align,
3679                                isVol, false, DstPtrInfo, SrcPtrInfo);
3680    if (Result.getNode())
3681      return Result;
3682  }
3683
3684  // Then check to see if we should lower the memcpy with target-specific
3685  // code. If the target chooses to do this, this is the next best.
3686  SDValue Result =
3687    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3688                                isVol, AlwaysInline,
3689                                DstPtrInfo, SrcPtrInfo);
3690  if (Result.getNode())
3691    return Result;
3692
3693  // If we really need inline code and the target declined to provide it,
3694  // use a (potentially long) sequence of loads and stores.
3695  if (AlwaysInline) {
3696    assert(ConstantSize && "AlwaysInline requires a constant size!");
3697    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3698                                   ConstantSize->getZExtValue(), Align, isVol,
3699                                   true, DstPtrInfo, SrcPtrInfo);
3700  }
3701
3702  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3703  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3704  // respect volatile, so they may do things like read or write memory
3705  // beyond the given memory regions. But fixing this isn't easy, and most
3706  // people don't care.
3707
3708  // Emit a library call.
3709  TargetLowering::ArgListTy Args;
3710  TargetLowering::ArgListEntry Entry;
3711  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3712  Entry.Node = Dst; Args.push_back(Entry);
3713  Entry.Node = Src; Args.push_back(Entry);
3714  Entry.Node = Size; Args.push_back(Entry);
3715  // FIXME: pass in DebugLoc
3716  std::pair<SDValue,SDValue> CallResult =
3717    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3718                    false, false, false, false, 0,
3719                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3720                    /*isReturnValueUsed=*/false,
3721                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3722                                      TLI.getPointerTy()),
3723                    Args, *this, dl);
3724  return CallResult.second;
3725}
3726
3727SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3728                                 SDValue Src, SDValue Size,
3729                                 unsigned Align, bool isVol,
3730                                 MachinePointerInfo DstPtrInfo,
3731                                 MachinePointerInfo SrcPtrInfo) {
3732
3733  // Check to see if we should lower the memmove to loads and stores first.
3734  // For cases within the target-specified limits, this is the best choice.
3735  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3736  if (ConstantSize) {
3737    // Memmove with size zero? Just return the original chain.
3738    if (ConstantSize->isNullValue())
3739      return Chain;
3740
3741    SDValue Result =
3742      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3743                               ConstantSize->getZExtValue(), Align, isVol,
3744                               false, DstPtrInfo, SrcPtrInfo);
3745    if (Result.getNode())
3746      return Result;
3747  }
3748
3749  // Then check to see if we should lower the memmove with target-specific
3750  // code. If the target chooses to do this, this is the next best.
3751  SDValue Result =
3752    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3753                                 DstPtrInfo, SrcPtrInfo);
3754  if (Result.getNode())
3755    return Result;
3756
3757  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3758  // not be safe.  See memcpy above for more details.
3759
3760  // Emit a library call.
3761  TargetLowering::ArgListTy Args;
3762  TargetLowering::ArgListEntry Entry;
3763  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3764  Entry.Node = Dst; Args.push_back(Entry);
3765  Entry.Node = Src; Args.push_back(Entry);
3766  Entry.Node = Size; Args.push_back(Entry);
3767  // FIXME:  pass in DebugLoc
3768  std::pair<SDValue,SDValue> CallResult =
3769    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3770                    false, false, false, false, 0,
3771                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3772                    /*isReturnValueUsed=*/false,
3773                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3774                                      TLI.getPointerTy()),
3775                    Args, *this, dl);
3776  return CallResult.second;
3777}
3778
3779SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3780                                SDValue Src, SDValue Size,
3781                                unsigned Align, bool isVol,
3782                                MachinePointerInfo DstPtrInfo) {
3783
3784  // Check to see if we should lower the memset to stores first.
3785  // For cases within the target-specified limits, this is the best choice.
3786  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3787  if (ConstantSize) {
3788    // Memset with size zero? Just return the original chain.
3789    if (ConstantSize->isNullValue())
3790      return Chain;
3791
3792    SDValue Result =
3793      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3794                      Align, isVol, DstPtrInfo);
3795
3796    if (Result.getNode())
3797      return Result;
3798  }
3799
3800  // Then check to see if we should lower the memset with target-specific
3801  // code. If the target chooses to do this, this is the next best.
3802  SDValue Result =
3803    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3804                                DstPtrInfo);
3805  if (Result.getNode())
3806    return Result;
3807
3808  // Emit a library call.
3809  Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3810  TargetLowering::ArgListTy Args;
3811  TargetLowering::ArgListEntry Entry;
3812  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3813  Args.push_back(Entry);
3814  // Extend or truncate the argument to be an i32 value for the call.
3815  if (Src.getValueType().bitsGT(MVT::i32))
3816    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3817  else
3818    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3819  Entry.Node = Src;
3820  Entry.Ty = Type::getInt32Ty(*getContext());
3821  Entry.isSExt = true;
3822  Args.push_back(Entry);
3823  Entry.Node = Size;
3824  Entry.Ty = IntPtrTy;
3825  Entry.isSExt = false;
3826  Args.push_back(Entry);
3827  // FIXME: pass in DebugLoc
3828  std::pair<SDValue,SDValue> CallResult =
3829    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3830                    false, false, false, false, 0,
3831                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3832                    /*isReturnValueUsed=*/false,
3833                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3834                                      TLI.getPointerTy()),
3835                    Args, *this, dl);
3836  return CallResult.second;
3837}
3838
3839SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3840                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3841                                SDValue Swp, MachinePointerInfo PtrInfo,
3842                                unsigned Alignment,
3843                                AtomicOrdering Ordering,
3844                                SynchronizationScope SynchScope) {
3845  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3846    Alignment = getEVTAlignment(MemVT);
3847
3848  MachineFunction &MF = getMachineFunction();
3849  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3850
3851  // For now, atomics are considered to be volatile always.
3852  // FIXME: Volatile isn't really correct; we should keep track of atomic
3853  // orderings in the memoperand.
3854  Flags |= MachineMemOperand::MOVolatile;
3855
3856  MachineMemOperand *MMO =
3857    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3858
3859  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO,
3860                   Ordering, SynchScope);
3861}
3862
3863SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3864                                SDValue Chain,
3865                                SDValue Ptr, SDValue Cmp,
3866                                SDValue Swp, MachineMemOperand *MMO,
3867                                AtomicOrdering Ordering,
3868                                SynchronizationScope SynchScope) {
3869  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3870  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3871
3872  EVT VT = Cmp.getValueType();
3873
3874  SDVTList VTs = getVTList(VT, MVT::Other);
3875  FoldingSetNodeID ID;
3876  ID.AddInteger(MemVT.getRawBits());
3877  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3878  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3879  void* IP = 0;
3880  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3881    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3882    return SDValue(E, 0);
3883  }
3884  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3885                                               Ptr, Cmp, Swp, MMO, Ordering,
3886                                               SynchScope);
3887  CSEMap.InsertNode(N, IP);
3888  AllNodes.push_back(N);
3889  return SDValue(N, 0);
3890}
3891
3892SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3893                                SDValue Chain,
3894                                SDValue Ptr, SDValue Val,
3895                                const Value* PtrVal,
3896                                unsigned Alignment,
3897                                AtomicOrdering Ordering,
3898                                SynchronizationScope SynchScope) {
3899  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3900    Alignment = getEVTAlignment(MemVT);
3901
3902  MachineFunction &MF = getMachineFunction();
3903  // A monotonic store does not load; a release store "loads" in the sense
3904  // that other stores cannot be sunk past it.
3905  // (An atomicrmw obviously both loads and stores.)
3906  unsigned Flags = MachineMemOperand::MOStore;
3907  if (Opcode != ISD::ATOMIC_STORE || Ordering > Monotonic)
3908    Flags |= MachineMemOperand::MOLoad;
3909
3910  // For now, atomics are considered to be volatile always.
3911  // FIXME: Volatile isn't really correct; we should keep track of atomic
3912  // orderings in the memoperand.
3913  Flags |= MachineMemOperand::MOVolatile;
3914
3915  MachineMemOperand *MMO =
3916    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3917                            MemVT.getStoreSize(), Alignment);
3918
3919  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
3920                   Ordering, SynchScope);
3921}
3922
3923SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3924                                SDValue Chain,
3925                                SDValue Ptr, SDValue Val,
3926                                MachineMemOperand *MMO,
3927                                AtomicOrdering Ordering,
3928                                SynchronizationScope SynchScope) {
3929  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3930          Opcode == ISD::ATOMIC_LOAD_SUB ||
3931          Opcode == ISD::ATOMIC_LOAD_AND ||
3932          Opcode == ISD::ATOMIC_LOAD_OR ||
3933          Opcode == ISD::ATOMIC_LOAD_XOR ||
3934          Opcode == ISD::ATOMIC_LOAD_NAND ||
3935          Opcode == ISD::ATOMIC_LOAD_MIN ||
3936          Opcode == ISD::ATOMIC_LOAD_MAX ||
3937          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3938          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3939          Opcode == ISD::ATOMIC_SWAP ||
3940          Opcode == ISD::ATOMIC_STORE) &&
3941         "Invalid Atomic Op");
3942
3943  EVT VT = Val.getValueType();
3944
3945  SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
3946                                               getVTList(VT, MVT::Other);
3947  FoldingSetNodeID ID;
3948  ID.AddInteger(MemVT.getRawBits());
3949  SDValue Ops[] = {Chain, Ptr, Val};
3950  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3951  void* IP = 0;
3952  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3953    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3954    return SDValue(E, 0);
3955  }
3956  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3957                                               Ptr, Val, MMO,
3958                                               Ordering, SynchScope);
3959  CSEMap.InsertNode(N, IP);
3960  AllNodes.push_back(N);
3961  return SDValue(N, 0);
3962}
3963
3964SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3965                                EVT VT, SDValue Chain,
3966                                SDValue Ptr,
3967                                const Value* PtrVal,
3968                                unsigned Alignment,
3969                                AtomicOrdering Ordering,
3970                                SynchronizationScope SynchScope) {
3971  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3972    Alignment = getEVTAlignment(MemVT);
3973
3974  MachineFunction &MF = getMachineFunction();
3975  // A monotonic load does not store; an acquire load "stores" in the sense
3976  // that other loads cannot be hoisted past it.
3977  unsigned Flags = MachineMemOperand::MOLoad;
3978  if (Ordering > Monotonic)
3979    Flags |= MachineMemOperand::MOStore;
3980
3981  // For now, atomics are considered to be volatile always.
3982  // FIXME: Volatile isn't really correct; we should keep track of atomic
3983  // orderings in the memoperand.
3984  Flags |= MachineMemOperand::MOVolatile;
3985
3986  MachineMemOperand *MMO =
3987    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3988                            MemVT.getStoreSize(), Alignment);
3989
3990  return getAtomic(Opcode, dl, MemVT, VT, Chain, Ptr, MMO,
3991                   Ordering, SynchScope);
3992}
3993
3994SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3995                                EVT VT, SDValue Chain,
3996                                SDValue Ptr,
3997                                MachineMemOperand *MMO,
3998                                AtomicOrdering Ordering,
3999                                SynchronizationScope SynchScope) {
4000  assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
4001
4002  SDVTList VTs = getVTList(VT, MVT::Other);
4003  FoldingSetNodeID ID;
4004  ID.AddInteger(MemVT.getRawBits());
4005  SDValue Ops[] = {Chain, Ptr};
4006  AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
4007  void* IP = 0;
4008  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4009    cast<AtomicSDNode>(E)->refineAlignment(MMO);
4010    return SDValue(E, 0);
4011  }
4012  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
4013                                               Ptr, MMO, Ordering, SynchScope);
4014  CSEMap.InsertNode(N, IP);
4015  AllNodes.push_back(N);
4016  return SDValue(N, 0);
4017}
4018
4019/// getMergeValues - Create a MERGE_VALUES node from the given operands.
4020SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
4021                                     DebugLoc dl) {
4022  if (NumOps == 1)
4023    return Ops[0];
4024
4025  SmallVector<EVT, 4> VTs;
4026  VTs.reserve(NumOps);
4027  for (unsigned i = 0; i < NumOps; ++i)
4028    VTs.push_back(Ops[i].getValueType());
4029  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
4030                 Ops, NumOps);
4031}
4032
4033SDValue
4034SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
4035                                  const EVT *VTs, unsigned NumVTs,
4036                                  const SDValue *Ops, unsigned NumOps,
4037                                  EVT MemVT, MachinePointerInfo PtrInfo,
4038                                  unsigned Align, bool Vol,
4039                                  bool ReadMem, bool WriteMem) {
4040  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
4041                             MemVT, PtrInfo, Align, Vol,
4042                             ReadMem, WriteMem);
4043}
4044
4045SDValue
4046SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4047                                  const SDValue *Ops, unsigned NumOps,
4048                                  EVT MemVT, MachinePointerInfo PtrInfo,
4049                                  unsigned Align, bool Vol,
4050                                  bool ReadMem, bool WriteMem) {
4051  if (Align == 0)  // Ensure that codegen never sees alignment 0
4052    Align = getEVTAlignment(MemVT);
4053
4054  MachineFunction &MF = getMachineFunction();
4055  unsigned Flags = 0;
4056  if (WriteMem)
4057    Flags |= MachineMemOperand::MOStore;
4058  if (ReadMem)
4059    Flags |= MachineMemOperand::MOLoad;
4060  if (Vol)
4061    Flags |= MachineMemOperand::MOVolatile;
4062  MachineMemOperand *MMO =
4063    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
4064
4065  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
4066}
4067
4068SDValue
4069SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4070                                  const SDValue *Ops, unsigned NumOps,
4071                                  EVT MemVT, MachineMemOperand *MMO) {
4072  assert((Opcode == ISD::INTRINSIC_VOID ||
4073          Opcode == ISD::INTRINSIC_W_CHAIN ||
4074          Opcode == ISD::PREFETCH ||
4075          (Opcode <= INT_MAX &&
4076           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
4077         "Opcode is not a memory-accessing opcode!");
4078
4079  // Memoize the node unless it returns a flag.
4080  MemIntrinsicSDNode *N;
4081  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4082    FoldingSetNodeID ID;
4083    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4084    void *IP = 0;
4085    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4086      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
4087      return SDValue(E, 0);
4088    }
4089
4090    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4091                                               MemVT, MMO);
4092    CSEMap.InsertNode(N, IP);
4093  } else {
4094    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4095                                               MemVT, MMO);
4096  }
4097  AllNodes.push_back(N);
4098  return SDValue(N, 0);
4099}
4100
4101/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4102/// MachinePointerInfo record from it.  This is particularly useful because the
4103/// code generator has many cases where it doesn't bother passing in a
4104/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4105static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
4106  // If this is FI+Offset, we can model it.
4107  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4108    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4109
4110  // If this is (FI+Offset1)+Offset2, we can model it.
4111  if (Ptr.getOpcode() != ISD::ADD ||
4112      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4113      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4114    return MachinePointerInfo();
4115
4116  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4117  return MachinePointerInfo::getFixedStack(FI, Offset+
4118                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4119}
4120
4121/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4122/// MachinePointerInfo record from it.  This is particularly useful because the
4123/// code generator has many cases where it doesn't bother passing in a
4124/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4125static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4126  // If the 'Offset' value isn't a constant, we can't handle this.
4127  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4128    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4129  if (OffsetOp.getOpcode() == ISD::UNDEF)
4130    return InferPointerInfo(Ptr);
4131  return MachinePointerInfo();
4132}
4133
4134
4135SDValue
4136SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4137                      EVT VT, DebugLoc dl, SDValue Chain,
4138                      SDValue Ptr, SDValue Offset,
4139                      MachinePointerInfo PtrInfo, EVT MemVT,
4140                      bool isVolatile, bool isNonTemporal,
4141                      unsigned Alignment, const MDNode *TBAAInfo) {
4142  assert(Chain.getValueType() == MVT::Other &&
4143        "Invalid chain type");
4144  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4145    Alignment = getEVTAlignment(VT);
4146
4147  unsigned Flags = MachineMemOperand::MOLoad;
4148  if (isVolatile)
4149    Flags |= MachineMemOperand::MOVolatile;
4150  if (isNonTemporal)
4151    Flags |= MachineMemOperand::MONonTemporal;
4152
4153  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4154  // clients.
4155  if (PtrInfo.V == 0)
4156    PtrInfo = InferPointerInfo(Ptr, Offset);
4157
4158  MachineFunction &MF = getMachineFunction();
4159  MachineMemOperand *MMO =
4160    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4161                            TBAAInfo);
4162  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4163}
4164
4165SDValue
4166SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4167                      EVT VT, DebugLoc dl, SDValue Chain,
4168                      SDValue Ptr, SDValue Offset, EVT MemVT,
4169                      MachineMemOperand *MMO) {
4170  if (VT == MemVT) {
4171    ExtType = ISD::NON_EXTLOAD;
4172  } else if (ExtType == ISD::NON_EXTLOAD) {
4173    assert(VT == MemVT && "Non-extending load from different memory type!");
4174  } else {
4175    // Extending load.
4176    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4177           "Should only be an extending load, not truncating!");
4178    assert(VT.isInteger() == MemVT.isInteger() &&
4179           "Cannot convert from FP to Int or Int -> FP!");
4180    assert(VT.isVector() == MemVT.isVector() &&
4181           "Cannot use trunc store to convert to or from a vector!");
4182    assert((!VT.isVector() ||
4183            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4184           "Cannot use trunc store to change the number of vector elements!");
4185  }
4186
4187  bool Indexed = AM != ISD::UNINDEXED;
4188  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4189         "Unindexed load with an offset!");
4190
4191  SDVTList VTs = Indexed ?
4192    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4193  SDValue Ops[] = { Chain, Ptr, Offset };
4194  FoldingSetNodeID ID;
4195  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4196  ID.AddInteger(MemVT.getRawBits());
4197  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4198                                     MMO->isNonTemporal()));
4199  void *IP = 0;
4200  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4201    cast<LoadSDNode>(E)->refineAlignment(MMO);
4202    return SDValue(E, 0);
4203  }
4204  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4205                                             MemVT, MMO);
4206  CSEMap.InsertNode(N, IP);
4207  AllNodes.push_back(N);
4208  return SDValue(N, 0);
4209}
4210
4211SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4212                              SDValue Chain, SDValue Ptr,
4213                              MachinePointerInfo PtrInfo,
4214                              bool isVolatile, bool isNonTemporal,
4215                              unsigned Alignment, const MDNode *TBAAInfo) {
4216  SDValue Undef = getUNDEF(Ptr.getValueType());
4217  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4218                 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
4219}
4220
4221SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
4222                                 SDValue Chain, SDValue Ptr,
4223                                 MachinePointerInfo PtrInfo, EVT MemVT,
4224                                 bool isVolatile, bool isNonTemporal,
4225                                 unsigned Alignment, const MDNode *TBAAInfo) {
4226  SDValue Undef = getUNDEF(Ptr.getValueType());
4227  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4228                 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
4229                 TBAAInfo);
4230}
4231
4232
4233SDValue
4234SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4235                             SDValue Offset, ISD::MemIndexedMode AM) {
4236  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4237  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4238         "Load is already a indexed load!");
4239  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4240                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4241                 LD->getMemoryVT(),
4242                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4243}
4244
4245SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4246                               SDValue Ptr, MachinePointerInfo PtrInfo,
4247                               bool isVolatile, bool isNonTemporal,
4248                               unsigned Alignment, const MDNode *TBAAInfo) {
4249  assert(Chain.getValueType() == MVT::Other &&
4250        "Invalid chain type");
4251  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4252    Alignment = getEVTAlignment(Val.getValueType());
4253
4254  unsigned Flags = MachineMemOperand::MOStore;
4255  if (isVolatile)
4256    Flags |= MachineMemOperand::MOVolatile;
4257  if (isNonTemporal)
4258    Flags |= MachineMemOperand::MONonTemporal;
4259
4260  if (PtrInfo.V == 0)
4261    PtrInfo = InferPointerInfo(Ptr);
4262
4263  MachineFunction &MF = getMachineFunction();
4264  MachineMemOperand *MMO =
4265    MF.getMachineMemOperand(PtrInfo, Flags,
4266                            Val.getValueType().getStoreSize(), Alignment,
4267                            TBAAInfo);
4268
4269  return getStore(Chain, dl, Val, Ptr, MMO);
4270}
4271
4272SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4273                               SDValue Ptr, MachineMemOperand *MMO) {
4274  assert(Chain.getValueType() == MVT::Other &&
4275        "Invalid chain type");
4276  EVT VT = Val.getValueType();
4277  SDVTList VTs = getVTList(MVT::Other);
4278  SDValue Undef = getUNDEF(Ptr.getValueType());
4279  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4280  FoldingSetNodeID ID;
4281  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4282  ID.AddInteger(VT.getRawBits());
4283  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4284                                     MMO->isNonTemporal()));
4285  void *IP = 0;
4286  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4287    cast<StoreSDNode>(E)->refineAlignment(MMO);
4288    return SDValue(E, 0);
4289  }
4290  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4291                                              false, VT, MMO);
4292  CSEMap.InsertNode(N, IP);
4293  AllNodes.push_back(N);
4294  return SDValue(N, 0);
4295}
4296
4297SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4298                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4299                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4300                                    unsigned Alignment,
4301                                    const MDNode *TBAAInfo) {
4302  assert(Chain.getValueType() == MVT::Other &&
4303        "Invalid chain type");
4304  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4305    Alignment = getEVTAlignment(SVT);
4306
4307  unsigned Flags = MachineMemOperand::MOStore;
4308  if (isVolatile)
4309    Flags |= MachineMemOperand::MOVolatile;
4310  if (isNonTemporal)
4311    Flags |= MachineMemOperand::MONonTemporal;
4312
4313  if (PtrInfo.V == 0)
4314    PtrInfo = InferPointerInfo(Ptr);
4315
4316  MachineFunction &MF = getMachineFunction();
4317  MachineMemOperand *MMO =
4318    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4319                            TBAAInfo);
4320
4321  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4322}
4323
4324SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4325                                    SDValue Ptr, EVT SVT,
4326                                    MachineMemOperand *MMO) {
4327  EVT VT = Val.getValueType();
4328
4329  assert(Chain.getValueType() == MVT::Other &&
4330        "Invalid chain type");
4331  if (VT == SVT)
4332    return getStore(Chain, dl, Val, Ptr, MMO);
4333
4334  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4335         "Should only be a truncating store, not extending!");
4336  assert(VT.isInteger() == SVT.isInteger() &&
4337         "Can't do FP-INT conversion!");
4338  assert(VT.isVector() == SVT.isVector() &&
4339         "Cannot use trunc store to convert to or from a vector!");
4340  assert((!VT.isVector() ||
4341          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4342         "Cannot use trunc store to change the number of vector elements!");
4343
4344  SDVTList VTs = getVTList(MVT::Other);
4345  SDValue Undef = getUNDEF(Ptr.getValueType());
4346  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4347  FoldingSetNodeID ID;
4348  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4349  ID.AddInteger(SVT.getRawBits());
4350  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4351                                     MMO->isNonTemporal()));
4352  void *IP = 0;
4353  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4354    cast<StoreSDNode>(E)->refineAlignment(MMO);
4355    return SDValue(E, 0);
4356  }
4357  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4358                                              true, SVT, MMO);
4359  CSEMap.InsertNode(N, IP);
4360  AllNodes.push_back(N);
4361  return SDValue(N, 0);
4362}
4363
4364SDValue
4365SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4366                              SDValue Offset, ISD::MemIndexedMode AM) {
4367  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4368  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4369         "Store is already a indexed store!");
4370  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4371  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4372  FoldingSetNodeID ID;
4373  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4374  ID.AddInteger(ST->getMemoryVT().getRawBits());
4375  ID.AddInteger(ST->getRawSubclassData());
4376  void *IP = 0;
4377  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4378    return SDValue(E, 0);
4379
4380  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4381                                              ST->isTruncatingStore(),
4382                                              ST->getMemoryVT(),
4383                                              ST->getMemOperand());
4384  CSEMap.InsertNode(N, IP);
4385  AllNodes.push_back(N);
4386  return SDValue(N, 0);
4387}
4388
4389SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4390                               SDValue Chain, SDValue Ptr,
4391                               SDValue SV,
4392                               unsigned Align) {
4393  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4394  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4395}
4396
4397SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4398                              const SDUse *Ops, unsigned NumOps) {
4399  switch (NumOps) {
4400  case 0: return getNode(Opcode, DL, VT);
4401  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4402  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4403  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4404  default: break;
4405  }
4406
4407  // Copy from an SDUse array into an SDValue array for use with
4408  // the regular getNode logic.
4409  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4410  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4411}
4412
4413SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4414                              const SDValue *Ops, unsigned NumOps) {
4415  switch (NumOps) {
4416  case 0: return getNode(Opcode, DL, VT);
4417  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4418  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4419  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4420  default: break;
4421  }
4422
4423  switch (Opcode) {
4424  default: break;
4425  case ISD::SELECT_CC: {
4426    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4427    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4428           "LHS and RHS of condition must have same type!");
4429    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4430           "True and False arms of SelectCC must have same type!");
4431    assert(Ops[2].getValueType() == VT &&
4432           "select_cc node must be of same type as true and false value!");
4433    break;
4434  }
4435  case ISD::BR_CC: {
4436    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4437    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4438           "LHS/RHS of comparison should match types!");
4439    break;
4440  }
4441  }
4442
4443  // Memoize nodes.
4444  SDNode *N;
4445  SDVTList VTs = getVTList(VT);
4446
4447  if (VT != MVT::Glue) {
4448    FoldingSetNodeID ID;
4449    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4450    void *IP = 0;
4451
4452    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4453      return SDValue(E, 0);
4454
4455    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4456    CSEMap.InsertNode(N, IP);
4457  } else {
4458    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4459  }
4460
4461  AllNodes.push_back(N);
4462#ifndef NDEBUG
4463  VerifySDNode(N);
4464#endif
4465  return SDValue(N, 0);
4466}
4467
4468SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4469                              const std::vector<EVT> &ResultTys,
4470                              const SDValue *Ops, unsigned NumOps) {
4471  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4472                 Ops, NumOps);
4473}
4474
4475SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4476                              const EVT *VTs, unsigned NumVTs,
4477                              const SDValue *Ops, unsigned NumOps) {
4478  if (NumVTs == 1)
4479    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4480  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4481}
4482
4483SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4484                              const SDValue *Ops, unsigned NumOps) {
4485  if (VTList.NumVTs == 1)
4486    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4487
4488#if 0
4489  switch (Opcode) {
4490  // FIXME: figure out how to safely handle things like
4491  // int foo(int x) { return 1 << (x & 255); }
4492  // int bar() { return foo(256); }
4493  case ISD::SRA_PARTS:
4494  case ISD::SRL_PARTS:
4495  case ISD::SHL_PARTS:
4496    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4497        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4498      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4499    else if (N3.getOpcode() == ISD::AND)
4500      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4501        // If the and is only masking out bits that cannot effect the shift,
4502        // eliminate the and.
4503        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4504        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4505          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4506      }
4507    break;
4508  }
4509#endif
4510
4511  // Memoize the node unless it returns a flag.
4512  SDNode *N;
4513  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4514    FoldingSetNodeID ID;
4515    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4516    void *IP = 0;
4517    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4518      return SDValue(E, 0);
4519
4520    if (NumOps == 1) {
4521      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4522    } else if (NumOps == 2) {
4523      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4524    } else if (NumOps == 3) {
4525      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4526                                            Ops[2]);
4527    } else {
4528      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4529    }
4530    CSEMap.InsertNode(N, IP);
4531  } else {
4532    if (NumOps == 1) {
4533      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4534    } else if (NumOps == 2) {
4535      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4536    } else if (NumOps == 3) {
4537      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4538                                            Ops[2]);
4539    } else {
4540      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4541    }
4542  }
4543  AllNodes.push_back(N);
4544#ifndef NDEBUG
4545  VerifySDNode(N);
4546#endif
4547  return SDValue(N, 0);
4548}
4549
4550SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4551  return getNode(Opcode, DL, VTList, 0, 0);
4552}
4553
4554SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4555                              SDValue N1) {
4556  SDValue Ops[] = { N1 };
4557  return getNode(Opcode, DL, VTList, Ops, 1);
4558}
4559
4560SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4561                              SDValue N1, SDValue N2) {
4562  SDValue Ops[] = { N1, N2 };
4563  return getNode(Opcode, DL, VTList, Ops, 2);
4564}
4565
4566SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4567                              SDValue N1, SDValue N2, SDValue N3) {
4568  SDValue Ops[] = { N1, N2, N3 };
4569  return getNode(Opcode, DL, VTList, Ops, 3);
4570}
4571
4572SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4573                              SDValue N1, SDValue N2, SDValue N3,
4574                              SDValue N4) {
4575  SDValue Ops[] = { N1, N2, N3, N4 };
4576  return getNode(Opcode, DL, VTList, Ops, 4);
4577}
4578
4579SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4580                              SDValue N1, SDValue N2, SDValue N3,
4581                              SDValue N4, SDValue N5) {
4582  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4583  return getNode(Opcode, DL, VTList, Ops, 5);
4584}
4585
4586SDVTList SelectionDAG::getVTList(EVT VT) {
4587  return makeVTList(SDNode::getValueTypeList(VT), 1);
4588}
4589
4590SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4591  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4592       E = VTList.rend(); I != E; ++I)
4593    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4594      return *I;
4595
4596  EVT *Array = Allocator.Allocate<EVT>(2);
4597  Array[0] = VT1;
4598  Array[1] = VT2;
4599  SDVTList Result = makeVTList(Array, 2);
4600  VTList.push_back(Result);
4601  return Result;
4602}
4603
4604SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4605  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4606       E = VTList.rend(); I != E; ++I)
4607    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4608                          I->VTs[2] == VT3)
4609      return *I;
4610
4611  EVT *Array = Allocator.Allocate<EVT>(3);
4612  Array[0] = VT1;
4613  Array[1] = VT2;
4614  Array[2] = VT3;
4615  SDVTList Result = makeVTList(Array, 3);
4616  VTList.push_back(Result);
4617  return Result;
4618}
4619
4620SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4621  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4622       E = VTList.rend(); I != E; ++I)
4623    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4624                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4625      return *I;
4626
4627  EVT *Array = Allocator.Allocate<EVT>(4);
4628  Array[0] = VT1;
4629  Array[1] = VT2;
4630  Array[2] = VT3;
4631  Array[3] = VT4;
4632  SDVTList Result = makeVTList(Array, 4);
4633  VTList.push_back(Result);
4634  return Result;
4635}
4636
4637SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4638  switch (NumVTs) {
4639    case 0: llvm_unreachable("Cannot have nodes without results!");
4640    case 1: return getVTList(VTs[0]);
4641    case 2: return getVTList(VTs[0], VTs[1]);
4642    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4643    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4644    default: break;
4645  }
4646
4647  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4648       E = VTList.rend(); I != E; ++I) {
4649    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4650      continue;
4651
4652    bool NoMatch = false;
4653    for (unsigned i = 2; i != NumVTs; ++i)
4654      if (VTs[i] != I->VTs[i]) {
4655        NoMatch = true;
4656        break;
4657      }
4658    if (!NoMatch)
4659      return *I;
4660  }
4661
4662  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4663  std::copy(VTs, VTs+NumVTs, Array);
4664  SDVTList Result = makeVTList(Array, NumVTs);
4665  VTList.push_back(Result);
4666  return Result;
4667}
4668
4669
4670/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4671/// specified operands.  If the resultant node already exists in the DAG,
4672/// this does not modify the specified node, instead it returns the node that
4673/// already exists.  If the resultant node does not exist in the DAG, the
4674/// input node is returned.  As a degenerate case, if you specify the same
4675/// input operands as the node already has, the input node is returned.
4676SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4677  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4678
4679  // Check to see if there is no change.
4680  if (Op == N->getOperand(0)) return N;
4681
4682  // See if the modified node already exists.
4683  void *InsertPos = 0;
4684  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4685    return Existing;
4686
4687  // Nope it doesn't.  Remove the node from its current place in the maps.
4688  if (InsertPos)
4689    if (!RemoveNodeFromCSEMaps(N))
4690      InsertPos = 0;
4691
4692  // Now we update the operands.
4693  N->OperandList[0].set(Op);
4694
4695  // If this gets put into a CSE map, add it.
4696  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4697  return N;
4698}
4699
4700SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4701  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4702
4703  // Check to see if there is no change.
4704  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4705    return N;   // No operands changed, just return the input node.
4706
4707  // See if the modified node already exists.
4708  void *InsertPos = 0;
4709  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4710    return Existing;
4711
4712  // Nope it doesn't.  Remove the node from its current place in the maps.
4713  if (InsertPos)
4714    if (!RemoveNodeFromCSEMaps(N))
4715      InsertPos = 0;
4716
4717  // Now we update the operands.
4718  if (N->OperandList[0] != Op1)
4719    N->OperandList[0].set(Op1);
4720  if (N->OperandList[1] != Op2)
4721    N->OperandList[1].set(Op2);
4722
4723  // If this gets put into a CSE map, add it.
4724  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4725  return N;
4726}
4727
4728SDNode *SelectionDAG::
4729UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4730  SDValue Ops[] = { Op1, Op2, Op3 };
4731  return UpdateNodeOperands(N, Ops, 3);
4732}
4733
4734SDNode *SelectionDAG::
4735UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4736                   SDValue Op3, SDValue Op4) {
4737  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4738  return UpdateNodeOperands(N, Ops, 4);
4739}
4740
4741SDNode *SelectionDAG::
4742UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4743                   SDValue Op3, SDValue Op4, SDValue Op5) {
4744  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4745  return UpdateNodeOperands(N, Ops, 5);
4746}
4747
4748SDNode *SelectionDAG::
4749UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4750  assert(N->getNumOperands() == NumOps &&
4751         "Update with wrong number of operands");
4752
4753  // Check to see if there is no change.
4754  bool AnyChange = false;
4755  for (unsigned i = 0; i != NumOps; ++i) {
4756    if (Ops[i] != N->getOperand(i)) {
4757      AnyChange = true;
4758      break;
4759    }
4760  }
4761
4762  // No operands changed, just return the input node.
4763  if (!AnyChange) return N;
4764
4765  // See if the modified node already exists.
4766  void *InsertPos = 0;
4767  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4768    return Existing;
4769
4770  // Nope it doesn't.  Remove the node from its current place in the maps.
4771  if (InsertPos)
4772    if (!RemoveNodeFromCSEMaps(N))
4773      InsertPos = 0;
4774
4775  // Now we update the operands.
4776  for (unsigned i = 0; i != NumOps; ++i)
4777    if (N->OperandList[i] != Ops[i])
4778      N->OperandList[i].set(Ops[i]);
4779
4780  // If this gets put into a CSE map, add it.
4781  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4782  return N;
4783}
4784
4785/// DropOperands - Release the operands and set this node to have
4786/// zero operands.
4787void SDNode::DropOperands() {
4788  // Unlike the code in MorphNodeTo that does this, we don't need to
4789  // watch for dead nodes here.
4790  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4791    SDUse &Use = *I++;
4792    Use.set(SDValue());
4793  }
4794}
4795
4796/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4797/// machine opcode.
4798///
4799SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4800                                   EVT VT) {
4801  SDVTList VTs = getVTList(VT);
4802  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4803}
4804
4805SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4806                                   EVT VT, SDValue Op1) {
4807  SDVTList VTs = getVTList(VT);
4808  SDValue Ops[] = { Op1 };
4809  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4810}
4811
4812SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4813                                   EVT VT, SDValue Op1,
4814                                   SDValue Op2) {
4815  SDVTList VTs = getVTList(VT);
4816  SDValue Ops[] = { Op1, Op2 };
4817  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4818}
4819
4820SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4821                                   EVT VT, SDValue Op1,
4822                                   SDValue Op2, SDValue Op3) {
4823  SDVTList VTs = getVTList(VT);
4824  SDValue Ops[] = { Op1, Op2, Op3 };
4825  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4826}
4827
4828SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4829                                   EVT VT, const SDValue *Ops,
4830                                   unsigned NumOps) {
4831  SDVTList VTs = getVTList(VT);
4832  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4833}
4834
4835SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4836                                   EVT VT1, EVT VT2, const SDValue *Ops,
4837                                   unsigned NumOps) {
4838  SDVTList VTs = getVTList(VT1, VT2);
4839  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4840}
4841
4842SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4843                                   EVT VT1, EVT VT2) {
4844  SDVTList VTs = getVTList(VT1, VT2);
4845  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4846}
4847
4848SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4849                                   EVT VT1, EVT VT2, EVT VT3,
4850                                   const SDValue *Ops, unsigned NumOps) {
4851  SDVTList VTs = getVTList(VT1, VT2, VT3);
4852  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4853}
4854
4855SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4856                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4857                                   const SDValue *Ops, unsigned NumOps) {
4858  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4859  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4860}
4861
4862SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4863                                   EVT VT1, EVT VT2,
4864                                   SDValue Op1) {
4865  SDVTList VTs = getVTList(VT1, VT2);
4866  SDValue Ops[] = { Op1 };
4867  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4868}
4869
4870SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4871                                   EVT VT1, EVT VT2,
4872                                   SDValue Op1, SDValue Op2) {
4873  SDVTList VTs = getVTList(VT1, VT2);
4874  SDValue Ops[] = { Op1, Op2 };
4875  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4876}
4877
4878SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4879                                   EVT VT1, EVT VT2,
4880                                   SDValue Op1, SDValue Op2,
4881                                   SDValue Op3) {
4882  SDVTList VTs = getVTList(VT1, VT2);
4883  SDValue Ops[] = { Op1, Op2, Op3 };
4884  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4885}
4886
4887SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4888                                   EVT VT1, EVT VT2, EVT VT3,
4889                                   SDValue Op1, SDValue Op2,
4890                                   SDValue Op3) {
4891  SDVTList VTs = getVTList(VT1, VT2, VT3);
4892  SDValue Ops[] = { Op1, Op2, Op3 };
4893  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4894}
4895
4896SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4897                                   SDVTList VTs, const SDValue *Ops,
4898                                   unsigned NumOps) {
4899  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4900  // Reset the NodeID to -1.
4901  N->setNodeId(-1);
4902  return N;
4903}
4904
4905/// MorphNodeTo - This *mutates* the specified node to have the specified
4906/// return type, opcode, and operands.
4907///
4908/// Note that MorphNodeTo returns the resultant node.  If there is already a
4909/// node of the specified opcode and operands, it returns that node instead of
4910/// the current one.  Note that the DebugLoc need not be the same.
4911///
4912/// Using MorphNodeTo is faster than creating a new node and swapping it in
4913/// with ReplaceAllUsesWith both because it often avoids allocating a new
4914/// node, and because it doesn't require CSE recalculation for any of
4915/// the node's users.
4916///
4917SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4918                                  SDVTList VTs, const SDValue *Ops,
4919                                  unsigned NumOps) {
4920  // If an identical node already exists, use it.
4921  void *IP = 0;
4922  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
4923    FoldingSetNodeID ID;
4924    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4925    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4926      return ON;
4927  }
4928
4929  if (!RemoveNodeFromCSEMaps(N))
4930    IP = 0;
4931
4932  // Start the morphing.
4933  N->NodeType = Opc;
4934  N->ValueList = VTs.VTs;
4935  N->NumValues = VTs.NumVTs;
4936
4937  // Clear the operands list, updating used nodes to remove this from their
4938  // use list.  Keep track of any operands that become dead as a result.
4939  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4940  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4941    SDUse &Use = *I++;
4942    SDNode *Used = Use.getNode();
4943    Use.set(SDValue());
4944    if (Used->use_empty())
4945      DeadNodeSet.insert(Used);
4946  }
4947
4948  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4949    // Initialize the memory references information.
4950    MN->setMemRefs(0, 0);
4951    // If NumOps is larger than the # of operands we can have in a
4952    // MachineSDNode, reallocate the operand list.
4953    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4954      if (MN->OperandsNeedDelete)
4955        delete[] MN->OperandList;
4956      if (NumOps > array_lengthof(MN->LocalOperands))
4957        // We're creating a final node that will live unmorphed for the
4958        // remainder of the current SelectionDAG iteration, so we can allocate
4959        // the operands directly out of a pool with no recycling metadata.
4960        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4961                         Ops, NumOps);
4962      else
4963        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4964      MN->OperandsNeedDelete = false;
4965    } else
4966      MN->InitOperands(MN->OperandList, Ops, NumOps);
4967  } else {
4968    // If NumOps is larger than the # of operands we currently have, reallocate
4969    // the operand list.
4970    if (NumOps > N->NumOperands) {
4971      if (N->OperandsNeedDelete)
4972        delete[] N->OperandList;
4973      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4974      N->OperandsNeedDelete = true;
4975    } else
4976      N->InitOperands(N->OperandList, Ops, NumOps);
4977  }
4978
4979  // Delete any nodes that are still dead after adding the uses for the
4980  // new operands.
4981  if (!DeadNodeSet.empty()) {
4982    SmallVector<SDNode *, 16> DeadNodes;
4983    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4984         E = DeadNodeSet.end(); I != E; ++I)
4985      if ((*I)->use_empty())
4986        DeadNodes.push_back(*I);
4987    RemoveDeadNodes(DeadNodes);
4988  }
4989
4990  if (IP)
4991    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4992  return N;
4993}
4994
4995
4996/// getMachineNode - These are used for target selectors to create a new node
4997/// with specified return type(s), MachineInstr opcode, and operands.
4998///
4999/// Note that getMachineNode returns the resultant node.  If there is already a
5000/// node of the specified opcode and operands, it returns that node instead of
5001/// the current one.
5002MachineSDNode *
5003SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
5004  SDVTList VTs = getVTList(VT);
5005  return getMachineNode(Opcode, dl, VTs, 0, 0);
5006}
5007
5008MachineSDNode *
5009SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
5010  SDVTList VTs = getVTList(VT);
5011  SDValue Ops[] = { Op1 };
5012  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5013}
5014
5015MachineSDNode *
5016SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5017                             SDValue Op1, SDValue Op2) {
5018  SDVTList VTs = getVTList(VT);
5019  SDValue Ops[] = { Op1, Op2 };
5020  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5021}
5022
5023MachineSDNode *
5024SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5025                             SDValue Op1, SDValue Op2, SDValue Op3) {
5026  SDVTList VTs = getVTList(VT);
5027  SDValue Ops[] = { Op1, Op2, Op3 };
5028  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5029}
5030
5031MachineSDNode *
5032SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5033                             const SDValue *Ops, unsigned NumOps) {
5034  SDVTList VTs = getVTList(VT);
5035  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5036}
5037
5038MachineSDNode *
5039SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
5040  SDVTList VTs = getVTList(VT1, VT2);
5041  return getMachineNode(Opcode, dl, VTs, 0, 0);
5042}
5043
5044MachineSDNode *
5045SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5046                             EVT VT1, EVT VT2, SDValue Op1) {
5047  SDVTList VTs = getVTList(VT1, VT2);
5048  SDValue Ops[] = { Op1 };
5049  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5050}
5051
5052MachineSDNode *
5053SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5054                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
5055  SDVTList VTs = getVTList(VT1, VT2);
5056  SDValue Ops[] = { Op1, Op2 };
5057  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5058}
5059
5060MachineSDNode *
5061SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5062                             EVT VT1, EVT VT2, SDValue Op1,
5063                             SDValue Op2, SDValue Op3) {
5064  SDVTList VTs = getVTList(VT1, VT2);
5065  SDValue Ops[] = { Op1, Op2, Op3 };
5066  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5067}
5068
5069MachineSDNode *
5070SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5071                             EVT VT1, EVT VT2,
5072                             const SDValue *Ops, unsigned NumOps) {
5073  SDVTList VTs = getVTList(VT1, VT2);
5074  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5075}
5076
5077MachineSDNode *
5078SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5079                             EVT VT1, EVT VT2, EVT VT3,
5080                             SDValue Op1, SDValue Op2) {
5081  SDVTList VTs = getVTList(VT1, VT2, VT3);
5082  SDValue Ops[] = { Op1, Op2 };
5083  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5084}
5085
5086MachineSDNode *
5087SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5088                             EVT VT1, EVT VT2, EVT VT3,
5089                             SDValue Op1, SDValue Op2, SDValue Op3) {
5090  SDVTList VTs = getVTList(VT1, VT2, VT3);
5091  SDValue Ops[] = { Op1, Op2, Op3 };
5092  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5093}
5094
5095MachineSDNode *
5096SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5097                             EVT VT1, EVT VT2, EVT VT3,
5098                             const SDValue *Ops, unsigned NumOps) {
5099  SDVTList VTs = getVTList(VT1, VT2, VT3);
5100  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5101}
5102
5103MachineSDNode *
5104SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
5105                             EVT VT2, EVT VT3, EVT VT4,
5106                             const SDValue *Ops, unsigned NumOps) {
5107  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
5108  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5109}
5110
5111MachineSDNode *
5112SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5113                             const std::vector<EVT> &ResultTys,
5114                             const SDValue *Ops, unsigned NumOps) {
5115  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
5116  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5117}
5118
5119MachineSDNode *
5120SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
5121                             const SDValue *Ops, unsigned NumOps) {
5122  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5123  MachineSDNode *N;
5124  void *IP = 0;
5125
5126  if (DoCSE) {
5127    FoldingSetNodeID ID;
5128    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5129    IP = 0;
5130    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5131      return cast<MachineSDNode>(E);
5132  }
5133
5134  // Allocate a new MachineSDNode.
5135  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
5136
5137  // Initialize the operands list.
5138  if (NumOps > array_lengthof(N->LocalOperands))
5139    // We're creating a final node that will live unmorphed for the
5140    // remainder of the current SelectionDAG iteration, so we can allocate
5141    // the operands directly out of a pool with no recycling metadata.
5142    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5143                    Ops, NumOps);
5144  else
5145    N->InitOperands(N->LocalOperands, Ops, NumOps);
5146  N->OperandsNeedDelete = false;
5147
5148  if (DoCSE)
5149    CSEMap.InsertNode(N, IP);
5150
5151  AllNodes.push_back(N);
5152#ifndef NDEBUG
5153  VerifyMachineNode(N);
5154#endif
5155  return N;
5156}
5157
5158/// getTargetExtractSubreg - A convenience function for creating
5159/// TargetOpcode::EXTRACT_SUBREG nodes.
5160SDValue
5161SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5162                                     SDValue Operand) {
5163  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5164  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5165                                  VT, Operand, SRIdxVal);
5166  return SDValue(Subreg, 0);
5167}
5168
5169/// getTargetInsertSubreg - A convenience function for creating
5170/// TargetOpcode::INSERT_SUBREG nodes.
5171SDValue
5172SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5173                                    SDValue Operand, SDValue Subreg) {
5174  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5175  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5176                                  VT, Operand, Subreg, SRIdxVal);
5177  return SDValue(Result, 0);
5178}
5179
5180/// getNodeIfExists - Get the specified node if it's already available, or
5181/// else return NULL.
5182SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5183                                      const SDValue *Ops, unsigned NumOps) {
5184  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5185    FoldingSetNodeID ID;
5186    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5187    void *IP = 0;
5188    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5189      return E;
5190  }
5191  return NULL;
5192}
5193
5194/// getDbgValue - Creates a SDDbgValue node.
5195///
5196SDDbgValue *
5197SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5198                          DebugLoc DL, unsigned O) {
5199  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5200}
5201
5202SDDbgValue *
5203SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5204                          DebugLoc DL, unsigned O) {
5205  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5206}
5207
5208SDDbgValue *
5209SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5210                          DebugLoc DL, unsigned O) {
5211  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5212}
5213
5214namespace {
5215
5216/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5217/// pointed to by a use iterator is deleted, increment the use iterator
5218/// so that it doesn't dangle.
5219///
5220/// This class also manages a "downlink" DAGUpdateListener, to forward
5221/// messages to ReplaceAllUsesWith's callers.
5222///
5223class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5224  SelectionDAG::DAGUpdateListener *DownLink;
5225  SDNode::use_iterator &UI;
5226  SDNode::use_iterator &UE;
5227
5228  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5229    // Increment the iterator as needed.
5230    while (UI != UE && N == *UI)
5231      ++UI;
5232
5233    // Then forward the message.
5234    if (DownLink) DownLink->NodeDeleted(N, E);
5235  }
5236
5237  virtual void NodeUpdated(SDNode *N) {
5238    // Just forward the message.
5239    if (DownLink) DownLink->NodeUpdated(N);
5240  }
5241
5242public:
5243  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5244                     SDNode::use_iterator &ui,
5245                     SDNode::use_iterator &ue)
5246    : DownLink(dl), UI(ui), UE(ue) {}
5247};
5248
5249}
5250
5251/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5252/// This can cause recursive merging of nodes in the DAG.
5253///
5254/// This version assumes From has a single result value.
5255///
5256void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5257                                      DAGUpdateListener *UpdateListener) {
5258  SDNode *From = FromN.getNode();
5259  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5260         "Cannot replace with this method!");
5261  assert(From != To.getNode() && "Cannot replace uses of with self");
5262
5263  // Iterate over all the existing uses of From. New uses will be added
5264  // to the beginning of the use list, which we avoid visiting.
5265  // This specifically avoids visiting uses of From that arise while the
5266  // replacement is happening, because any such uses would be the result
5267  // of CSE: If an existing node looks like From after one of its operands
5268  // is replaced by To, we don't want to replace of all its users with To
5269  // too. See PR3018 for more info.
5270  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5271  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5272  while (UI != UE) {
5273    SDNode *User = *UI;
5274
5275    // This node is about to morph, remove its old self from the CSE maps.
5276    RemoveNodeFromCSEMaps(User);
5277
5278    // A user can appear in a use list multiple times, and when this
5279    // happens the uses are usually next to each other in the list.
5280    // To help reduce the number of CSE recomputations, process all
5281    // the uses of this user that we can find this way.
5282    do {
5283      SDUse &Use = UI.getUse();
5284      ++UI;
5285      Use.set(To);
5286    } while (UI != UE && *UI == User);
5287
5288    // Now that we have modified User, add it back to the CSE maps.  If it
5289    // already exists there, recursively merge the results together.
5290    AddModifiedNodeToCSEMaps(User, &Listener);
5291  }
5292}
5293
5294/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5295/// This can cause recursive merging of nodes in the DAG.
5296///
5297/// This version assumes that for each value of From, there is a
5298/// corresponding value in To in the same position with the same type.
5299///
5300void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5301                                      DAGUpdateListener *UpdateListener) {
5302#ifndef NDEBUG
5303  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5304    assert((!From->hasAnyUseOfValue(i) ||
5305            From->getValueType(i) == To->getValueType(i)) &&
5306           "Cannot use this version of ReplaceAllUsesWith!");
5307#endif
5308
5309  // Handle the trivial case.
5310  if (From == To)
5311    return;
5312
5313  // Iterate over just the existing users of From. See the comments in
5314  // the ReplaceAllUsesWith above.
5315  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5316  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5317  while (UI != UE) {
5318    SDNode *User = *UI;
5319
5320    // This node is about to morph, remove its old self from the CSE maps.
5321    RemoveNodeFromCSEMaps(User);
5322
5323    // A user can appear in a use list multiple times, and when this
5324    // happens the uses are usually next to each other in the list.
5325    // To help reduce the number of CSE recomputations, process all
5326    // the uses of this user that we can find this way.
5327    do {
5328      SDUse &Use = UI.getUse();
5329      ++UI;
5330      Use.setNode(To);
5331    } while (UI != UE && *UI == User);
5332
5333    // Now that we have modified User, add it back to the CSE maps.  If it
5334    // already exists there, recursively merge the results together.
5335    AddModifiedNodeToCSEMaps(User, &Listener);
5336  }
5337}
5338
5339/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5340/// This can cause recursive merging of nodes in the DAG.
5341///
5342/// This version can replace From with any result values.  To must match the
5343/// number and types of values returned by From.
5344void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5345                                      const SDValue *To,
5346                                      DAGUpdateListener *UpdateListener) {
5347  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5348    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5349
5350  // Iterate over just the existing users of From. See the comments in
5351  // the ReplaceAllUsesWith above.
5352  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5353  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5354  while (UI != UE) {
5355    SDNode *User = *UI;
5356
5357    // This node is about to morph, remove its old self from the CSE maps.
5358    RemoveNodeFromCSEMaps(User);
5359
5360    // A user can appear in a use list multiple times, and when this
5361    // happens the uses are usually next to each other in the list.
5362    // To help reduce the number of CSE recomputations, process all
5363    // the uses of this user that we can find this way.
5364    do {
5365      SDUse &Use = UI.getUse();
5366      const SDValue &ToOp = To[Use.getResNo()];
5367      ++UI;
5368      Use.set(ToOp);
5369    } while (UI != UE && *UI == User);
5370
5371    // Now that we have modified User, add it back to the CSE maps.  If it
5372    // already exists there, recursively merge the results together.
5373    AddModifiedNodeToCSEMaps(User, &Listener);
5374  }
5375}
5376
5377/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5378/// uses of other values produced by From.getNode() alone.  The Deleted
5379/// vector is handled the same way as for ReplaceAllUsesWith.
5380void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5381                                             DAGUpdateListener *UpdateListener){
5382  // Handle the really simple, really trivial case efficiently.
5383  if (From == To) return;
5384
5385  // Handle the simple, trivial, case efficiently.
5386  if (From.getNode()->getNumValues() == 1) {
5387    ReplaceAllUsesWith(From, To, UpdateListener);
5388    return;
5389  }
5390
5391  // Iterate over just the existing users of From. See the comments in
5392  // the ReplaceAllUsesWith above.
5393  SDNode::use_iterator UI = From.getNode()->use_begin(),
5394                       UE = From.getNode()->use_end();
5395  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5396  while (UI != UE) {
5397    SDNode *User = *UI;
5398    bool UserRemovedFromCSEMaps = false;
5399
5400    // A user can appear in a use list multiple times, and when this
5401    // happens the uses are usually next to each other in the list.
5402    // To help reduce the number of CSE recomputations, process all
5403    // the uses of this user that we can find this way.
5404    do {
5405      SDUse &Use = UI.getUse();
5406
5407      // Skip uses of different values from the same node.
5408      if (Use.getResNo() != From.getResNo()) {
5409        ++UI;
5410        continue;
5411      }
5412
5413      // If this node hasn't been modified yet, it's still in the CSE maps,
5414      // so remove its old self from the CSE maps.
5415      if (!UserRemovedFromCSEMaps) {
5416        RemoveNodeFromCSEMaps(User);
5417        UserRemovedFromCSEMaps = true;
5418      }
5419
5420      ++UI;
5421      Use.set(To);
5422    } while (UI != UE && *UI == User);
5423
5424    // We are iterating over all uses of the From node, so if a use
5425    // doesn't use the specific value, no changes are made.
5426    if (!UserRemovedFromCSEMaps)
5427      continue;
5428
5429    // Now that we have modified User, add it back to the CSE maps.  If it
5430    // already exists there, recursively merge the results together.
5431    AddModifiedNodeToCSEMaps(User, &Listener);
5432  }
5433}
5434
5435namespace {
5436  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5437  /// to record information about a use.
5438  struct UseMemo {
5439    SDNode *User;
5440    unsigned Index;
5441    SDUse *Use;
5442  };
5443
5444  /// operator< - Sort Memos by User.
5445  bool operator<(const UseMemo &L, const UseMemo &R) {
5446    return (intptr_t)L.User < (intptr_t)R.User;
5447  }
5448}
5449
5450/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5451/// uses of other values produced by From.getNode() alone.  The same value
5452/// may appear in both the From and To list.  The Deleted vector is
5453/// handled the same way as for ReplaceAllUsesWith.
5454void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5455                                              const SDValue *To,
5456                                              unsigned Num,
5457                                              DAGUpdateListener *UpdateListener){
5458  // Handle the simple, trivial case efficiently.
5459  if (Num == 1)
5460    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5461
5462  // Read up all the uses and make records of them. This helps
5463  // processing new uses that are introduced during the
5464  // replacement process.
5465  SmallVector<UseMemo, 4> Uses;
5466  for (unsigned i = 0; i != Num; ++i) {
5467    unsigned FromResNo = From[i].getResNo();
5468    SDNode *FromNode = From[i].getNode();
5469    for (SDNode::use_iterator UI = FromNode->use_begin(),
5470         E = FromNode->use_end(); UI != E; ++UI) {
5471      SDUse &Use = UI.getUse();
5472      if (Use.getResNo() == FromResNo) {
5473        UseMemo Memo = { *UI, i, &Use };
5474        Uses.push_back(Memo);
5475      }
5476    }
5477  }
5478
5479  // Sort the uses, so that all the uses from a given User are together.
5480  std::sort(Uses.begin(), Uses.end());
5481
5482  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5483       UseIndex != UseIndexEnd; ) {
5484    // We know that this user uses some value of From.  If it is the right
5485    // value, update it.
5486    SDNode *User = Uses[UseIndex].User;
5487
5488    // This node is about to morph, remove its old self from the CSE maps.
5489    RemoveNodeFromCSEMaps(User);
5490
5491    // The Uses array is sorted, so all the uses for a given User
5492    // are next to each other in the list.
5493    // To help reduce the number of CSE recomputations, process all
5494    // the uses of this user that we can find this way.
5495    do {
5496      unsigned i = Uses[UseIndex].Index;
5497      SDUse &Use = *Uses[UseIndex].Use;
5498      ++UseIndex;
5499
5500      Use.set(To[i]);
5501    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5502
5503    // Now that we have modified User, add it back to the CSE maps.  If it
5504    // already exists there, recursively merge the results together.
5505    AddModifiedNodeToCSEMaps(User, UpdateListener);
5506  }
5507}
5508
5509/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5510/// based on their topological order. It returns the maximum id and a vector
5511/// of the SDNodes* in assigned order by reference.
5512unsigned SelectionDAG::AssignTopologicalOrder() {
5513
5514  unsigned DAGSize = 0;
5515
5516  // SortedPos tracks the progress of the algorithm. Nodes before it are
5517  // sorted, nodes after it are unsorted. When the algorithm completes
5518  // it is at the end of the list.
5519  allnodes_iterator SortedPos = allnodes_begin();
5520
5521  // Visit all the nodes. Move nodes with no operands to the front of
5522  // the list immediately. Annotate nodes that do have operands with their
5523  // operand count. Before we do this, the Node Id fields of the nodes
5524  // may contain arbitrary values. After, the Node Id fields for nodes
5525  // before SortedPos will contain the topological sort index, and the
5526  // Node Id fields for nodes At SortedPos and after will contain the
5527  // count of outstanding operands.
5528  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5529    SDNode *N = I++;
5530    checkForCycles(N);
5531    unsigned Degree = N->getNumOperands();
5532    if (Degree == 0) {
5533      // A node with no uses, add it to the result array immediately.
5534      N->setNodeId(DAGSize++);
5535      allnodes_iterator Q = N;
5536      if (Q != SortedPos)
5537        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5538      assert(SortedPos != AllNodes.end() && "Overran node list");
5539      ++SortedPos;
5540    } else {
5541      // Temporarily use the Node Id as scratch space for the degree count.
5542      N->setNodeId(Degree);
5543    }
5544  }
5545
5546  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5547  // such that by the time the end is reached all nodes will be sorted.
5548  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5549    SDNode *N = I;
5550    checkForCycles(N);
5551    // N is in sorted position, so all its uses have one less operand
5552    // that needs to be sorted.
5553    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5554         UI != UE; ++UI) {
5555      SDNode *P = *UI;
5556      unsigned Degree = P->getNodeId();
5557      assert(Degree != 0 && "Invalid node degree");
5558      --Degree;
5559      if (Degree == 0) {
5560        // All of P's operands are sorted, so P may sorted now.
5561        P->setNodeId(DAGSize++);
5562        if (P != SortedPos)
5563          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5564        assert(SortedPos != AllNodes.end() && "Overran node list");
5565        ++SortedPos;
5566      } else {
5567        // Update P's outstanding operand count.
5568        P->setNodeId(Degree);
5569      }
5570    }
5571    if (I == SortedPos) {
5572#ifndef NDEBUG
5573      SDNode *S = ++I;
5574      dbgs() << "Overran sorted position:\n";
5575      S->dumprFull();
5576#endif
5577      llvm_unreachable(0);
5578    }
5579  }
5580
5581  assert(SortedPos == AllNodes.end() &&
5582         "Topological sort incomplete!");
5583  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5584         "First node in topological sort is not the entry token!");
5585  assert(AllNodes.front().getNodeId() == 0 &&
5586         "First node in topological sort has non-zero id!");
5587  assert(AllNodes.front().getNumOperands() == 0 &&
5588         "First node in topological sort has operands!");
5589  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5590         "Last node in topologic sort has unexpected id!");
5591  assert(AllNodes.back().use_empty() &&
5592         "Last node in topologic sort has users!");
5593  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5594  return DAGSize;
5595}
5596
5597/// AssignOrdering - Assign an order to the SDNode.
5598void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5599  assert(SD && "Trying to assign an order to a null node!");
5600  Ordering->add(SD, Order);
5601}
5602
5603/// GetOrdering - Get the order for the SDNode.
5604unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5605  assert(SD && "Trying to get the order of a null node!");
5606  return Ordering->getOrder(SD);
5607}
5608
5609/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5610/// value is produced by SD.
5611void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5612  DbgInfo->add(DB, SD, isParameter);
5613  if (SD)
5614    SD->setHasDebugValue(true);
5615}
5616
5617/// TransferDbgValues - Transfer SDDbgValues.
5618void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5619  if (From == To || !From.getNode()->getHasDebugValue())
5620    return;
5621  SDNode *FromNode = From.getNode();
5622  SDNode *ToNode = To.getNode();
5623  ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
5624  SmallVector<SDDbgValue *, 2> ClonedDVs;
5625  for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
5626       I != E; ++I) {
5627    SDDbgValue *Dbg = *I;
5628    if (Dbg->getKind() == SDDbgValue::SDNODE) {
5629      SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
5630                                      Dbg->getOffset(), Dbg->getDebugLoc(),
5631                                      Dbg->getOrder());
5632      ClonedDVs.push_back(Clone);
5633    }
5634  }
5635  for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
5636         E = ClonedDVs.end(); I != E; ++I)
5637    AddDbgValue(*I, ToNode, false);
5638}
5639
5640//===----------------------------------------------------------------------===//
5641//                              SDNode Class
5642//===----------------------------------------------------------------------===//
5643
5644HandleSDNode::~HandleSDNode() {
5645  DropOperands();
5646}
5647
5648GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5649                                         const GlobalValue *GA,
5650                                         EVT VT, int64_t o, unsigned char TF)
5651  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5652  TheGlobal = GA;
5653}
5654
5655MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5656                     MachineMemOperand *mmo)
5657 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5658  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5659                                      MMO->isNonTemporal());
5660  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5661  assert(isNonTemporal() == MMO->isNonTemporal() &&
5662         "Non-temporal encoding error!");
5663  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5664}
5665
5666MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5667                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5668                     MachineMemOperand *mmo)
5669   : SDNode(Opc, dl, VTs, Ops, NumOps),
5670     MemoryVT(memvt), MMO(mmo) {
5671  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5672                                      MMO->isNonTemporal());
5673  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5674  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5675}
5676
5677/// Profile - Gather unique data for the node.
5678///
5679void SDNode::Profile(FoldingSetNodeID &ID) const {
5680  AddNodeIDNode(ID, this);
5681}
5682
5683namespace {
5684  struct EVTArray {
5685    std::vector<EVT> VTs;
5686
5687    EVTArray() {
5688      VTs.reserve(MVT::LAST_VALUETYPE);
5689      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5690        VTs.push_back(MVT((MVT::SimpleValueType)i));
5691    }
5692  };
5693}
5694
5695static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5696static ManagedStatic<EVTArray> SimpleVTArray;
5697static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5698
5699/// getValueTypeList - Return a pointer to the specified value type.
5700///
5701const EVT *SDNode::getValueTypeList(EVT VT) {
5702  if (VT.isExtended()) {
5703    sys::SmartScopedLock<true> Lock(*VTMutex);
5704    return &(*EVTs->insert(VT).first);
5705  } else {
5706    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5707           "Value type out of range!");
5708    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5709  }
5710}
5711
5712/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5713/// indicated value.  This method ignores uses of other values defined by this
5714/// operation.
5715bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5716  assert(Value < getNumValues() && "Bad value!");
5717
5718  // TODO: Only iterate over uses of a given value of the node
5719  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5720    if (UI.getUse().getResNo() == Value) {
5721      if (NUses == 0)
5722        return false;
5723      --NUses;
5724    }
5725  }
5726
5727  // Found exactly the right number of uses?
5728  return NUses == 0;
5729}
5730
5731
5732/// hasAnyUseOfValue - Return true if there are any use of the indicated
5733/// value. This method ignores uses of other values defined by this operation.
5734bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5735  assert(Value < getNumValues() && "Bad value!");
5736
5737  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5738    if (UI.getUse().getResNo() == Value)
5739      return true;
5740
5741  return false;
5742}
5743
5744
5745/// isOnlyUserOf - Return true if this node is the only use of N.
5746///
5747bool SDNode::isOnlyUserOf(SDNode *N) const {
5748  bool Seen = false;
5749  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5750    SDNode *User = *I;
5751    if (User == this)
5752      Seen = true;
5753    else
5754      return false;
5755  }
5756
5757  return Seen;
5758}
5759
5760/// isOperand - Return true if this node is an operand of N.
5761///
5762bool SDValue::isOperandOf(SDNode *N) const {
5763  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5764    if (*this == N->getOperand(i))
5765      return true;
5766  return false;
5767}
5768
5769bool SDNode::isOperandOf(SDNode *N) const {
5770  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5771    if (this == N->OperandList[i].getNode())
5772      return true;
5773  return false;
5774}
5775
5776/// reachesChainWithoutSideEffects - Return true if this operand (which must
5777/// be a chain) reaches the specified operand without crossing any
5778/// side-effecting instructions on any chain path.  In practice, this looks
5779/// through token factors and non-volatile loads.  In order to remain efficient,
5780/// this only looks a couple of nodes in, it does not do an exhaustive search.
5781bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5782                                               unsigned Depth) const {
5783  if (*this == Dest) return true;
5784
5785  // Don't search too deeply, we just want to be able to see through
5786  // TokenFactor's etc.
5787  if (Depth == 0) return false;
5788
5789  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5790  // of the operands of the TF does not reach dest, then we cannot do the xform.
5791  if (getOpcode() == ISD::TokenFactor) {
5792    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5793      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5794        return false;
5795    return true;
5796  }
5797
5798  // Loads don't have side effects, look through them.
5799  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5800    if (!Ld->isVolatile())
5801      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5802  }
5803  return false;
5804}
5805
5806/// hasPredecessor - Return true if N is a predecessor of this node.
5807/// N is either an operand of this node, or can be reached by recursively
5808/// traversing up the operands.
5809/// NOTE: This is an expensive method. Use it carefully.
5810bool SDNode::hasPredecessor(const SDNode *N) const {
5811  SmallPtrSet<const SDNode *, 32> Visited;
5812  SmallVector<const SDNode *, 16> Worklist;
5813  return hasPredecessorHelper(N, Visited, Worklist);
5814}
5815
5816bool SDNode::hasPredecessorHelper(const SDNode *N,
5817                                  SmallPtrSet<const SDNode *, 32> &Visited,
5818                                  SmallVector<const SDNode *, 16> &Worklist) const {
5819  if (Visited.empty()) {
5820    Worklist.push_back(this);
5821  } else {
5822    // Take a look in the visited set. If we've already encountered this node
5823    // we needn't search further.
5824    if (Visited.count(N))
5825      return true;
5826  }
5827
5828  // Haven't visited N yet. Continue the search.
5829  while (!Worklist.empty()) {
5830    const SDNode *M = Worklist.pop_back_val();
5831    for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
5832      SDNode *Op = M->getOperand(i).getNode();
5833      if (Visited.insert(Op))
5834        Worklist.push_back(Op);
5835      if (Op == N)
5836        return true;
5837    }
5838  }
5839
5840  return false;
5841}
5842
5843uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5844  assert(Num < NumOperands && "Invalid child # of SDNode!");
5845  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5846}
5847
5848std::string SDNode::getOperationName(const SelectionDAG *G) const {
5849  switch (getOpcode()) {
5850  default:
5851    if (getOpcode() < ISD::BUILTIN_OP_END)
5852      return "<<Unknown DAG Node>>";
5853    if (isMachineOpcode()) {
5854      if (G)
5855        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5856          if (getMachineOpcode() < TII->getNumOpcodes())
5857            return TII->get(getMachineOpcode()).getName();
5858      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5859    }
5860    if (G) {
5861      const TargetLowering &TLI = G->getTargetLoweringInfo();
5862      const char *Name = TLI.getTargetNodeName(getOpcode());
5863      if (Name) return Name;
5864      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5865    }
5866    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5867
5868#ifndef NDEBUG
5869  case ISD::DELETED_NODE:
5870    return "<<Deleted Node!>>";
5871#endif
5872  case ISD::PREFETCH:      return "Prefetch";
5873  case ISD::MEMBARRIER:    return "MemBarrier";
5874  case ISD::ATOMIC_FENCE:    return "AtomicFence";
5875  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5876  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5877  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5878  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5879  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5880  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5881  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5882  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5883  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5884  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5885  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5886  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5887  case ISD::ATOMIC_LOAD:        return "AtomicLoad";
5888  case ISD::ATOMIC_STORE:       return "AtomicStore";
5889  case ISD::PCMARKER:      return "PCMarker";
5890  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5891  case ISD::SRCVALUE:      return "SrcValue";
5892  case ISD::MDNODE_SDNODE: return "MDNode";
5893  case ISD::EntryToken:    return "EntryToken";
5894  case ISD::TokenFactor:   return "TokenFactor";
5895  case ISD::AssertSext:    return "AssertSext";
5896  case ISD::AssertZext:    return "AssertZext";
5897
5898  case ISD::BasicBlock:    return "BasicBlock";
5899  case ISD::VALUETYPE:     return "ValueType";
5900  case ISD::Register:      return "Register";
5901
5902  case ISD::Constant:      return "Constant";
5903  case ISD::ConstantFP:    return "ConstantFP";
5904  case ISD::GlobalAddress: return "GlobalAddress";
5905  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5906  case ISD::FrameIndex:    return "FrameIndex";
5907  case ISD::JumpTable:     return "JumpTable";
5908  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5909  case ISD::RETURNADDR: return "RETURNADDR";
5910  case ISD::FRAMEADDR: return "FRAMEADDR";
5911  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5912  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5913  case ISD::LSDAADDR: return "LSDAADDR";
5914  case ISD::EHSELECTION: return "EHSELECTION";
5915  case ISD::EH_RETURN: return "EH_RETURN";
5916  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5917  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5918  case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5919  case ISD::ConstantPool:  return "ConstantPool";
5920  case ISD::ExternalSymbol: return "ExternalSymbol";
5921  case ISD::BlockAddress:  return "BlockAddress";
5922  case ISD::INTRINSIC_WO_CHAIN:
5923  case ISD::INTRINSIC_VOID:
5924  case ISD::INTRINSIC_W_CHAIN: {
5925    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5926    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5927    if (IID < Intrinsic::num_intrinsics)
5928      return Intrinsic::getName((Intrinsic::ID)IID);
5929    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5930      return TII->getName(IID);
5931    llvm_unreachable("Invalid intrinsic ID");
5932  }
5933
5934  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5935  case ISD::TargetConstant: return "TargetConstant";
5936  case ISD::TargetConstantFP:return "TargetConstantFP";
5937  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5938  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5939  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5940  case ISD::TargetJumpTable:  return "TargetJumpTable";
5941  case ISD::TargetConstantPool:  return "TargetConstantPool";
5942  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5943  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5944
5945  case ISD::CopyToReg:     return "CopyToReg";
5946  case ISD::CopyFromReg:   return "CopyFromReg";
5947  case ISD::UNDEF:         return "undef";
5948  case ISD::MERGE_VALUES:  return "merge_values";
5949  case ISD::INLINEASM:     return "inlineasm";
5950  case ISD::EH_LABEL:      return "eh_label";
5951  case ISD::HANDLENODE:    return "handlenode";
5952
5953  // Unary operators
5954  case ISD::FABS:   return "fabs";
5955  case ISD::FNEG:   return "fneg";
5956  case ISD::FSQRT:  return "fsqrt";
5957  case ISD::FSIN:   return "fsin";
5958  case ISD::FCOS:   return "fcos";
5959  case ISD::FTRUNC: return "ftrunc";
5960  case ISD::FFLOOR: return "ffloor";
5961  case ISD::FCEIL:  return "fceil";
5962  case ISD::FRINT:  return "frint";
5963  case ISD::FNEARBYINT: return "fnearbyint";
5964  case ISD::FEXP:   return "fexp";
5965  case ISD::FEXP2:  return "fexp2";
5966  case ISD::FLOG:   return "flog";
5967  case ISD::FLOG2:  return "flog2";
5968  case ISD::FLOG10: return "flog10";
5969
5970  // Binary operators
5971  case ISD::ADD:    return "add";
5972  case ISD::SUB:    return "sub";
5973  case ISD::MUL:    return "mul";
5974  case ISD::MULHU:  return "mulhu";
5975  case ISD::MULHS:  return "mulhs";
5976  case ISD::SDIV:   return "sdiv";
5977  case ISD::UDIV:   return "udiv";
5978  case ISD::SREM:   return "srem";
5979  case ISD::UREM:   return "urem";
5980  case ISD::SMUL_LOHI:  return "smul_lohi";
5981  case ISD::UMUL_LOHI:  return "umul_lohi";
5982  case ISD::SDIVREM:    return "sdivrem";
5983  case ISD::UDIVREM:    return "udivrem";
5984  case ISD::AND:    return "and";
5985  case ISD::OR:     return "or";
5986  case ISD::XOR:    return "xor";
5987  case ISD::SHL:    return "shl";
5988  case ISD::SRA:    return "sra";
5989  case ISD::SRL:    return "srl";
5990  case ISD::ROTL:   return "rotl";
5991  case ISD::ROTR:   return "rotr";
5992  case ISD::FADD:   return "fadd";
5993  case ISD::FSUB:   return "fsub";
5994  case ISD::FMUL:   return "fmul";
5995  case ISD::FDIV:   return "fdiv";
5996  case ISD::FMA:    return "fma";
5997  case ISD::FREM:   return "frem";
5998  case ISD::FCOPYSIGN: return "fcopysign";
5999  case ISD::FGETSIGN:  return "fgetsign";
6000  case ISD::FPOW:   return "fpow";
6001
6002  case ISD::FPOWI:  return "fpowi";
6003  case ISD::SETCC:       return "setcc";
6004  case ISD::SELECT:      return "select";
6005  case ISD::VSELECT:     return "vselect";
6006  case ISD::SELECT_CC:   return "select_cc";
6007  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
6008  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
6009  case ISD::CONCAT_VECTORS:      return "concat_vectors";
6010  case ISD::INSERT_SUBVECTOR:    return "insert_subvector";
6011  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
6012  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
6013  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
6014  case ISD::CARRY_FALSE:         return "carry_false";
6015  case ISD::ADDC:        return "addc";
6016  case ISD::ADDE:        return "adde";
6017  case ISD::SADDO:       return "saddo";
6018  case ISD::UADDO:       return "uaddo";
6019  case ISD::SSUBO:       return "ssubo";
6020  case ISD::USUBO:       return "usubo";
6021  case ISD::SMULO:       return "smulo";
6022  case ISD::UMULO:       return "umulo";
6023  case ISD::SUBC:        return "subc";
6024  case ISD::SUBE:        return "sube";
6025  case ISD::SHL_PARTS:   return "shl_parts";
6026  case ISD::SRA_PARTS:   return "sra_parts";
6027  case ISD::SRL_PARTS:   return "srl_parts";
6028
6029  // Conversion operators.
6030  case ISD::SIGN_EXTEND: return "sign_extend";
6031  case ISD::ZERO_EXTEND: return "zero_extend";
6032  case ISD::ANY_EXTEND:  return "any_extend";
6033  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
6034  case ISD::TRUNCATE:    return "truncate";
6035  case ISD::FP_ROUND:    return "fp_round";
6036  case ISD::FLT_ROUNDS_: return "flt_rounds";
6037  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
6038  case ISD::FP_EXTEND:   return "fp_extend";
6039
6040  case ISD::SINT_TO_FP:  return "sint_to_fp";
6041  case ISD::UINT_TO_FP:  return "uint_to_fp";
6042  case ISD::FP_TO_SINT:  return "fp_to_sint";
6043  case ISD::FP_TO_UINT:  return "fp_to_uint";
6044  case ISD::BITCAST:     return "bitcast";
6045  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
6046  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
6047
6048  case ISD::CONVERT_RNDSAT: {
6049    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
6050    default: llvm_unreachable("Unknown cvt code!");
6051    case ISD::CVT_FF:  return "cvt_ff";
6052    case ISD::CVT_FS:  return "cvt_fs";
6053    case ISD::CVT_FU:  return "cvt_fu";
6054    case ISD::CVT_SF:  return "cvt_sf";
6055    case ISD::CVT_UF:  return "cvt_uf";
6056    case ISD::CVT_SS:  return "cvt_ss";
6057    case ISD::CVT_SU:  return "cvt_su";
6058    case ISD::CVT_US:  return "cvt_us";
6059    case ISD::CVT_UU:  return "cvt_uu";
6060    }
6061  }
6062
6063    // Control flow instructions
6064  case ISD::BR:      return "br";
6065  case ISD::BRIND:   return "brind";
6066  case ISD::BR_JT:   return "br_jt";
6067  case ISD::BRCOND:  return "brcond";
6068  case ISD::BR_CC:   return "br_cc";
6069  case ISD::CALLSEQ_START:  return "callseq_start";
6070  case ISD::CALLSEQ_END:    return "callseq_end";
6071
6072    // Other operators
6073  case ISD::LOAD:               return "load";
6074  case ISD::STORE:              return "store";
6075  case ISD::VAARG:              return "vaarg";
6076  case ISD::VACOPY:             return "vacopy";
6077  case ISD::VAEND:              return "vaend";
6078  case ISD::VASTART:            return "vastart";
6079  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
6080  case ISD::EXTRACT_ELEMENT:    return "extract_element";
6081  case ISD::BUILD_PAIR:         return "build_pair";
6082  case ISD::STACKSAVE:          return "stacksave";
6083  case ISD::STACKRESTORE:       return "stackrestore";
6084  case ISD::TRAP:               return "trap";
6085
6086  // Bit manipulation
6087  case ISD::BSWAP:   return "bswap";
6088  case ISD::CTPOP:   return "ctpop";
6089  case ISD::CTTZ:    return "cttz";
6090  case ISD::CTLZ:    return "ctlz";
6091
6092  // Trampolines
6093  case ISD::INIT_TRAMPOLINE: return "init_trampoline";
6094  case ISD::ADJUST_TRAMPOLINE: return "adjust_trampoline";
6095
6096  case ISD::CONDCODE:
6097    switch (cast<CondCodeSDNode>(this)->get()) {
6098    default: llvm_unreachable("Unknown setcc condition!");
6099    case ISD::SETOEQ:  return "setoeq";
6100    case ISD::SETOGT:  return "setogt";
6101    case ISD::SETOGE:  return "setoge";
6102    case ISD::SETOLT:  return "setolt";
6103    case ISD::SETOLE:  return "setole";
6104    case ISD::SETONE:  return "setone";
6105
6106    case ISD::SETO:    return "seto";
6107    case ISD::SETUO:   return "setuo";
6108    case ISD::SETUEQ:  return "setue";
6109    case ISD::SETUGT:  return "setugt";
6110    case ISD::SETUGE:  return "setuge";
6111    case ISD::SETULT:  return "setult";
6112    case ISD::SETULE:  return "setule";
6113    case ISD::SETUNE:  return "setune";
6114
6115    case ISD::SETEQ:   return "seteq";
6116    case ISD::SETGT:   return "setgt";
6117    case ISD::SETGE:   return "setge";
6118    case ISD::SETLT:   return "setlt";
6119    case ISD::SETLE:   return "setle";
6120    case ISD::SETNE:   return "setne";
6121    }
6122  }
6123}
6124
6125const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
6126  switch (AM) {
6127  default:
6128    return "";
6129  case ISD::PRE_INC:
6130    return "<pre-inc>";
6131  case ISD::PRE_DEC:
6132    return "<pre-dec>";
6133  case ISD::POST_INC:
6134    return "<post-inc>";
6135  case ISD::POST_DEC:
6136    return "<post-dec>";
6137  }
6138}
6139
6140std::string ISD::ArgFlagsTy::getArgFlagsString() {
6141  std::string S = "< ";
6142
6143  if (isZExt())
6144    S += "zext ";
6145  if (isSExt())
6146    S += "sext ";
6147  if (isInReg())
6148    S += "inreg ";
6149  if (isSRet())
6150    S += "sret ";
6151  if (isByVal())
6152    S += "byval ";
6153  if (isNest())
6154    S += "nest ";
6155  if (getByValAlign())
6156    S += "byval-align:" + utostr(getByValAlign()) + " ";
6157  if (getOrigAlign())
6158    S += "orig-align:" + utostr(getOrigAlign()) + " ";
6159  if (getByValSize())
6160    S += "byval-size:" + utostr(getByValSize()) + " ";
6161  return S + ">";
6162}
6163
6164void SDNode::dump() const { dump(0); }
6165void SDNode::dump(const SelectionDAG *G) const {
6166  print(dbgs(), G);
6167  dbgs() << '\n';
6168}
6169
6170void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
6171  OS << (void*)this << ": ";
6172
6173  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
6174    if (i) OS << ",";
6175    if (getValueType(i) == MVT::Other)
6176      OS << "ch";
6177    else
6178      OS << getValueType(i).getEVTString();
6179  }
6180  OS << " = " << getOperationName(G);
6181}
6182
6183void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
6184  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
6185    if (!MN->memoperands_empty()) {
6186      OS << "<";
6187      OS << "Mem:";
6188      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
6189           e = MN->memoperands_end(); i != e; ++i) {
6190        OS << **i;
6191        if (llvm::next(i) != e)
6192          OS << " ";
6193      }
6194      OS << ">";
6195    }
6196  } else if (const ShuffleVectorSDNode *SVN =
6197               dyn_cast<ShuffleVectorSDNode>(this)) {
6198    OS << "<";
6199    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
6200      int Idx = SVN->getMaskElt(i);
6201      if (i) OS << ",";
6202      if (Idx < 0)
6203        OS << "u";
6204      else
6205        OS << Idx;
6206    }
6207    OS << ">";
6208  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
6209    OS << '<' << CSDN->getAPIntValue() << '>';
6210  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
6211    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
6212      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
6213    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
6214      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
6215    else {
6216      OS << "<APFloat(";
6217      CSDN->getValueAPF().bitcastToAPInt().dump();
6218      OS << ")>";
6219    }
6220  } else if (const GlobalAddressSDNode *GADN =
6221             dyn_cast<GlobalAddressSDNode>(this)) {
6222    int64_t offset = GADN->getOffset();
6223    OS << '<';
6224    WriteAsOperand(OS, GADN->getGlobal());
6225    OS << '>';
6226    if (offset > 0)
6227      OS << " + " << offset;
6228    else
6229      OS << " " << offset;
6230    if (unsigned int TF = GADN->getTargetFlags())
6231      OS << " [TF=" << TF << ']';
6232  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
6233    OS << "<" << FIDN->getIndex() << ">";
6234  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
6235    OS << "<" << JTDN->getIndex() << ">";
6236    if (unsigned int TF = JTDN->getTargetFlags())
6237      OS << " [TF=" << TF << ']';
6238  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
6239    int offset = CP->getOffset();
6240    if (CP->isMachineConstantPoolEntry())
6241      OS << "<" << *CP->getMachineCPVal() << ">";
6242    else
6243      OS << "<" << *CP->getConstVal() << ">";
6244    if (offset > 0)
6245      OS << " + " << offset;
6246    else
6247      OS << " " << offset;
6248    if (unsigned int TF = CP->getTargetFlags())
6249      OS << " [TF=" << TF << ']';
6250  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
6251    OS << "<";
6252    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
6253    if (LBB)
6254      OS << LBB->getName() << " ";
6255    OS << (const void*)BBDN->getBasicBlock() << ">";
6256  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
6257    OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
6258  } else if (const ExternalSymbolSDNode *ES =
6259             dyn_cast<ExternalSymbolSDNode>(this)) {
6260    OS << "'" << ES->getSymbol() << "'";
6261    if (unsigned int TF = ES->getTargetFlags())
6262      OS << " [TF=" << TF << ']';
6263  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
6264    if (M->getValue())
6265      OS << "<" << M->getValue() << ">";
6266    else
6267      OS << "<null>";
6268  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
6269    if (MD->getMD())
6270      OS << "<" << MD->getMD() << ">";
6271    else
6272      OS << "<null>";
6273  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6274    OS << ":" << N->getVT().getEVTString();
6275  }
6276  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6277    OS << "<" << *LD->getMemOperand();
6278
6279    bool doExt = true;
6280    switch (LD->getExtensionType()) {
6281    default: doExt = false; break;
6282    case ISD::EXTLOAD: OS << ", anyext"; break;
6283    case ISD::SEXTLOAD: OS << ", sext"; break;
6284    case ISD::ZEXTLOAD: OS << ", zext"; break;
6285    }
6286    if (doExt)
6287      OS << " from " << LD->getMemoryVT().getEVTString();
6288
6289    const char *AM = getIndexedModeName(LD->getAddressingMode());
6290    if (*AM)
6291      OS << ", " << AM;
6292
6293    OS << ">";
6294  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6295    OS << "<" << *ST->getMemOperand();
6296
6297    if (ST->isTruncatingStore())
6298      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6299
6300    const char *AM = getIndexedModeName(ST->getAddressingMode());
6301    if (*AM)
6302      OS << ", " << AM;
6303
6304    OS << ">";
6305  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6306    OS << "<" << *M->getMemOperand() << ">";
6307  } else if (const BlockAddressSDNode *BA =
6308               dyn_cast<BlockAddressSDNode>(this)) {
6309    OS << "<";
6310    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6311    OS << ", ";
6312    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6313    OS << ">";
6314    if (unsigned int TF = BA->getTargetFlags())
6315      OS << " [TF=" << TF << ']';
6316  }
6317
6318  if (G)
6319    if (unsigned Order = G->GetOrdering(this))
6320      OS << " [ORD=" << Order << ']';
6321
6322  if (getNodeId() != -1)
6323    OS << " [ID=" << getNodeId() << ']';
6324
6325  DebugLoc dl = getDebugLoc();
6326  if (G && !dl.isUnknown()) {
6327    DIScope
6328      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6329    OS << " dbg:";
6330    // Omit the directory, since it's usually long and uninteresting.
6331    if (Scope.Verify())
6332      OS << Scope.getFilename();
6333    else
6334      OS << "<unknown>";
6335    OS << ':' << dl.getLine();
6336    if (dl.getCol() != 0)
6337      OS << ':' << dl.getCol();
6338  }
6339}
6340
6341void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6342  print_types(OS, G);
6343  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6344    if (i) OS << ", "; else OS << " ";
6345    OS << (void*)getOperand(i).getNode();
6346    if (unsigned RN = getOperand(i).getResNo())
6347      OS << ":" << RN;
6348  }
6349  print_details(OS, G);
6350}
6351
6352static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6353                                  const SelectionDAG *G, unsigned depth,
6354                                  unsigned indent)
6355{
6356  if (depth == 0)
6357    return;
6358
6359  OS.indent(indent);
6360
6361  N->print(OS, G);
6362
6363  if (depth < 1)
6364    return;
6365
6366  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6367    // Don't follow chain operands.
6368    if (N->getOperand(i).getValueType() == MVT::Other)
6369      continue;
6370    OS << '\n';
6371    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6372  }
6373}
6374
6375void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6376                            unsigned depth) const {
6377  printrWithDepthHelper(OS, this, G, depth, 0);
6378}
6379
6380void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6381  // Don't print impossibly deep things.
6382  printrWithDepth(OS, G, 10);
6383}
6384
6385void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6386  printrWithDepth(dbgs(), G, depth);
6387}
6388
6389void SDNode::dumprFull(const SelectionDAG *G) const {
6390  // Don't print impossibly deep things.
6391  dumprWithDepth(G, 10);
6392}
6393
6394static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6395  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6396    if (N->getOperand(i).getNode()->hasOneUse())
6397      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6398    else
6399      dbgs() << "\n" << std::string(indent+2, ' ')
6400           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6401
6402
6403  dbgs() << "\n";
6404  dbgs().indent(indent);
6405  N->dump(G);
6406}
6407
6408SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6409  assert(N->getNumValues() == 1 &&
6410         "Can't unroll a vector with multiple results!");
6411
6412  EVT VT = N->getValueType(0);
6413  unsigned NE = VT.getVectorNumElements();
6414  EVT EltVT = VT.getVectorElementType();
6415  DebugLoc dl = N->getDebugLoc();
6416
6417  SmallVector<SDValue, 8> Scalars;
6418  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6419
6420  // If ResNE is 0, fully unroll the vector op.
6421  if (ResNE == 0)
6422    ResNE = NE;
6423  else if (NE > ResNE)
6424    NE = ResNE;
6425
6426  unsigned i;
6427  for (i= 0; i != NE; ++i) {
6428    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6429      SDValue Operand = N->getOperand(j);
6430      EVT OperandVT = Operand.getValueType();
6431      if (OperandVT.isVector()) {
6432        // A vector operand; extract a single element.
6433        EVT OperandEltVT = OperandVT.getVectorElementType();
6434        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6435                              OperandEltVT,
6436                              Operand,
6437                              getConstant(i, TLI.getPointerTy()));
6438      } else {
6439        // A scalar operand; just use it as is.
6440        Operands[j] = Operand;
6441      }
6442    }
6443
6444    switch (N->getOpcode()) {
6445    default:
6446      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6447                                &Operands[0], Operands.size()));
6448      break;
6449    case ISD::VSELECT:
6450      Scalars.push_back(getNode(ISD::SELECT, dl, EltVT,
6451                                &Operands[0], Operands.size()));
6452      break;
6453    case ISD::SHL:
6454    case ISD::SRA:
6455    case ISD::SRL:
6456    case ISD::ROTL:
6457    case ISD::ROTR:
6458      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6459                                getShiftAmountOperand(Operands[0].getValueType(),
6460                                                      Operands[1])));
6461      break;
6462    case ISD::SIGN_EXTEND_INREG:
6463    case ISD::FP_ROUND_INREG: {
6464      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6465      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6466                                Operands[0],
6467                                getValueType(ExtVT)));
6468    }
6469    }
6470  }
6471
6472  for (; i < ResNE; ++i)
6473    Scalars.push_back(getUNDEF(EltVT));
6474
6475  return getNode(ISD::BUILD_VECTOR, dl,
6476                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6477                 &Scalars[0], Scalars.size());
6478}
6479
6480
6481/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6482/// location that is 'Dist' units away from the location that the 'Base' load
6483/// is loading from.
6484bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6485                                     unsigned Bytes, int Dist) const {
6486  if (LD->getChain() != Base->getChain())
6487    return false;
6488  EVT VT = LD->getValueType(0);
6489  if (VT.getSizeInBits() / 8 != Bytes)
6490    return false;
6491
6492  SDValue Loc = LD->getOperand(1);
6493  SDValue BaseLoc = Base->getOperand(1);
6494  if (Loc.getOpcode() == ISD::FrameIndex) {
6495    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6496      return false;
6497    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6498    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6499    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6500    int FS  = MFI->getObjectSize(FI);
6501    int BFS = MFI->getObjectSize(BFI);
6502    if (FS != BFS || FS != (int)Bytes) return false;
6503    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6504  }
6505
6506  // Handle X+C
6507  if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6508      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6509    return true;
6510
6511  const GlobalValue *GV1 = NULL;
6512  const GlobalValue *GV2 = NULL;
6513  int64_t Offset1 = 0;
6514  int64_t Offset2 = 0;
6515  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6516  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6517  if (isGA1 && isGA2 && GV1 == GV2)
6518    return Offset1 == (Offset2 + Dist*Bytes);
6519  return false;
6520}
6521
6522
6523/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6524/// it cannot be inferred.
6525unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6526  // If this is a GlobalAddress + cst, return the alignment.
6527  const GlobalValue *GV;
6528  int64_t GVOffset = 0;
6529  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6530    // If GV has specified alignment, then use it. Otherwise, use the preferred
6531    // alignment.
6532    unsigned Align = GV->getAlignment();
6533    if (!Align) {
6534      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6535        if (GVar->hasInitializer()) {
6536          const TargetData *TD = TLI.getTargetData();
6537          Align = TD->getPreferredAlignment(GVar);
6538        }
6539      }
6540    }
6541    return MinAlign(Align, GVOffset);
6542  }
6543
6544  // If this is a direct reference to a stack slot, use information about the
6545  // stack slot's alignment.
6546  int FrameIdx = 1 << 31;
6547  int64_t FrameOffset = 0;
6548  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6549    FrameIdx = FI->getIndex();
6550  } else if (isBaseWithConstantOffset(Ptr) &&
6551             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6552    // Handle FI+Cst
6553    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6554    FrameOffset = Ptr.getConstantOperandVal(1);
6555  }
6556
6557  if (FrameIdx != (1 << 31)) {
6558    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6559    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6560                                    FrameOffset);
6561    return FIInfoAlign;
6562  }
6563
6564  return 0;
6565}
6566
6567void SelectionDAG::dump() const {
6568  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6569
6570  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6571       I != E; ++I) {
6572    const SDNode *N = I;
6573    if (!N->hasOneUse() && N != getRoot().getNode())
6574      DumpNodes(N, 2, this);
6575  }
6576
6577  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6578
6579  dbgs() << "\n\n";
6580}
6581
6582void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6583  print_types(OS, G);
6584  print_details(OS, G);
6585}
6586
6587typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6588static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6589                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6590  if (!once.insert(N))          // If we've been here before, return now.
6591    return;
6592
6593  // Dump the current SDNode, but don't end the line yet.
6594  OS << std::string(indent, ' ');
6595  N->printr(OS, G);
6596
6597  // Having printed this SDNode, walk the children:
6598  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6599    const SDNode *child = N->getOperand(i).getNode();
6600
6601    if (i) OS << ",";
6602    OS << " ";
6603
6604    if (child->getNumOperands() == 0) {
6605      // This child has no grandchildren; print it inline right here.
6606      child->printr(OS, G);
6607      once.insert(child);
6608    } else {         // Just the address. FIXME: also print the child's opcode.
6609      OS << (void*)child;
6610      if (unsigned RN = N->getOperand(i).getResNo())
6611        OS << ":" << RN;
6612    }
6613  }
6614
6615  OS << "\n";
6616
6617  // Dump children that have grandchildren on their own line(s).
6618  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6619    const SDNode *child = N->getOperand(i).getNode();
6620    DumpNodesr(OS, child, indent+2, G, once);
6621  }
6622}
6623
6624void SDNode::dumpr() const {
6625  VisitedSDNodeSet once;
6626  DumpNodesr(dbgs(), this, 0, 0, once);
6627}
6628
6629void SDNode::dumpr(const SelectionDAG *G) const {
6630  VisitedSDNodeSet once;
6631  DumpNodesr(dbgs(), this, 0, G, once);
6632}
6633
6634
6635// getAddressSpace - Return the address space this GlobalAddress belongs to.
6636unsigned GlobalAddressSDNode::getAddressSpace() const {
6637  return getGlobal()->getType()->getAddressSpace();
6638}
6639
6640
6641Type *ConstantPoolSDNode::getType() const {
6642  if (isMachineConstantPoolEntry())
6643    return Val.MachineCPVal->getType();
6644  return Val.ConstVal->getType();
6645}
6646
6647bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6648                                        APInt &SplatUndef,
6649                                        unsigned &SplatBitSize,
6650                                        bool &HasAnyUndefs,
6651                                        unsigned MinSplatBits,
6652                                        bool isBigEndian) {
6653  EVT VT = getValueType(0);
6654  assert(VT.isVector() && "Expected a vector type");
6655  unsigned sz = VT.getSizeInBits();
6656  if (MinSplatBits > sz)
6657    return false;
6658
6659  SplatValue = APInt(sz, 0);
6660  SplatUndef = APInt(sz, 0);
6661
6662  // Get the bits.  Bits with undefined values (when the corresponding element
6663  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6664  // in SplatValue.  If any of the values are not constant, give up and return
6665  // false.
6666  unsigned int nOps = getNumOperands();
6667  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6668  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6669
6670  for (unsigned j = 0; j < nOps; ++j) {
6671    unsigned i = isBigEndian ? nOps-1-j : j;
6672    SDValue OpVal = getOperand(i);
6673    unsigned BitPos = j * EltBitSize;
6674
6675    if (OpVal.getOpcode() == ISD::UNDEF)
6676      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6677    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6678      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6679                    zextOrTrunc(sz) << BitPos;
6680    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6681      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6682     else
6683      return false;
6684  }
6685
6686  // The build_vector is all constants or undefs.  Find the smallest element
6687  // size that splats the vector.
6688
6689  HasAnyUndefs = (SplatUndef != 0);
6690  while (sz > 8) {
6691
6692    unsigned HalfSize = sz / 2;
6693    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6694    APInt LowValue = SplatValue.trunc(HalfSize);
6695    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6696    APInt LowUndef = SplatUndef.trunc(HalfSize);
6697
6698    // If the two halves do not match (ignoring undef bits), stop here.
6699    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6700        MinSplatBits > HalfSize)
6701      break;
6702
6703    SplatValue = HighValue | LowValue;
6704    SplatUndef = HighUndef & LowUndef;
6705
6706    sz = HalfSize;
6707  }
6708
6709  SplatBitSize = sz;
6710  return true;
6711}
6712
6713bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6714  // Find the first non-undef value in the shuffle mask.
6715  unsigned i, e;
6716  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6717    /* search */;
6718
6719  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6720
6721  // Make sure all remaining elements are either undef or the same as the first
6722  // non-undef value.
6723  for (int Idx = Mask[i]; i != e; ++i)
6724    if (Mask[i] >= 0 && Mask[i] != Idx)
6725      return false;
6726  return true;
6727}
6728
6729#ifdef XDEBUG
6730static void checkForCyclesHelper(const SDNode *N,
6731                                 SmallPtrSet<const SDNode*, 32> &Visited,
6732                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6733  // If this node has already been checked, don't check it again.
6734  if (Checked.count(N))
6735    return;
6736
6737  // If a node has already been visited on this depth-first walk, reject it as
6738  // a cycle.
6739  if (!Visited.insert(N)) {
6740    dbgs() << "Offending node:\n";
6741    N->dumprFull();
6742    errs() << "Detected cycle in SelectionDAG\n";
6743    abort();
6744  }
6745
6746  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6747    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6748
6749  Checked.insert(N);
6750  Visited.erase(N);
6751}
6752#endif
6753
6754void llvm::checkForCycles(const llvm::SDNode *N) {
6755#ifdef XDEBUG
6756  assert(N && "Checking nonexistant SDNode");
6757  SmallPtrSet<const SDNode*, 32> visited;
6758  SmallPtrSet<const SDNode*, 32> checked;
6759  checkForCyclesHelper(N, visited, checked);
6760#endif
6761}
6762
6763void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6764  checkForCycles(DAG->getRoot().getNode());
6765}
6766