SelectionDAG.cpp revision 55ba816883842e793cdeb32fcb805c4e011b527f
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetSelectionDAGInfo.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetIntrinsicInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/ManagedStatic.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Support/Mutex.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallPtrSet.h"
49#include "llvm/ADT/SmallSet.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/StringExtras.h"
52#include <algorithm>
53#include <cmath>
54using namespace llvm;
55
56/// makeVTList - Return an instance of the SDVTList struct initialized with the
57/// specified members.
58static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59  SDVTList Res = {VTs, NumVTs};
60  return Res;
61}
62
63static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
64  switch (VT.getSimpleVT().SimpleTy) {
65  default: llvm_unreachable("Unknown FP format");
66  case MVT::f32:     return &APFloat::IEEEsingle;
67  case MVT::f64:     return &APFloat::IEEEdouble;
68  case MVT::f80:     return &APFloat::x87DoubleExtended;
69  case MVT::f128:    return &APFloat::IEEEquad;
70  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
71  }
72}
73
74SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
75
76//===----------------------------------------------------------------------===//
77//                              ConstantFPSDNode Class
78//===----------------------------------------------------------------------===//
79
80/// isExactlyValue - We don't rely on operator== working on double values, as
81/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
82/// As such, this method can be used to do an exact bit-for-bit comparison of
83/// two floating point values.
84bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
85  return getValueAPF().bitwiseIsEqual(V);
86}
87
88bool ConstantFPSDNode::isValueValidForType(EVT VT,
89                                           const APFloat& Val) {
90  assert(VT.isFloatingPoint() && "Can only convert between FP types");
91
92  // PPC long double cannot be converted to any other type.
93  if (VT == MVT::ppcf128 ||
94      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
95    return false;
96
97  // convert modifies in place, so make a copy.
98  APFloat Val2 = APFloat(Val);
99  bool losesInfo;
100  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
101                      &losesInfo);
102  return !losesInfo;
103}
104
105//===----------------------------------------------------------------------===//
106//                              ISD Namespace
107//===----------------------------------------------------------------------===//
108
109/// isBuildVectorAllOnes - Return true if the specified node is a
110/// BUILD_VECTOR where all of the elements are ~0 or undef.
111bool ISD::isBuildVectorAllOnes(const SDNode *N) {
112  // Look through a bit convert.
113  if (N->getOpcode() == ISD::BITCAST)
114    N = N->getOperand(0).getNode();
115
116  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
117
118  unsigned i = 0, e = N->getNumOperands();
119
120  // Skip over all of the undef values.
121  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
122    ++i;
123
124  // Do not accept an all-undef vector.
125  if (i == e) return false;
126
127  // Do not accept build_vectors that aren't all constants or which have non-~0
128  // elements.
129  SDValue NotZero = N->getOperand(i);
130  if (isa<ConstantSDNode>(NotZero)) {
131    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
132      return false;
133  } else if (isa<ConstantFPSDNode>(NotZero)) {
134    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
135                bitcastToAPInt().isAllOnesValue())
136      return false;
137  } else
138    return false;
139
140  // Okay, we have at least one ~0 value, check to see if the rest match or are
141  // undefs.
142  for (++i; i != e; ++i)
143    if (N->getOperand(i) != NotZero &&
144        N->getOperand(i).getOpcode() != ISD::UNDEF)
145      return false;
146  return true;
147}
148
149
150/// isBuildVectorAllZeros - Return true if the specified node is a
151/// BUILD_VECTOR where all of the elements are 0 or undef.
152bool ISD::isBuildVectorAllZeros(const SDNode *N) {
153  // Look through a bit convert.
154  if (N->getOpcode() == ISD::BITCAST)
155    N = N->getOperand(0).getNode();
156
157  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158
159  unsigned i = 0, e = N->getNumOperands();
160
161  // Skip over all of the undef values.
162  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
163    ++i;
164
165  // Do not accept an all-undef vector.
166  if (i == e) return false;
167
168  // Do not accept build_vectors that aren't all constants or which have non-0
169  // elements.
170  SDValue Zero = N->getOperand(i);
171  if (isa<ConstantSDNode>(Zero)) {
172    if (!cast<ConstantSDNode>(Zero)->isNullValue())
173      return false;
174  } else if (isa<ConstantFPSDNode>(Zero)) {
175    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
176      return false;
177  } else
178    return false;
179
180  // Okay, we have at least one 0 value, check to see if the rest match or are
181  // undefs.
182  for (++i; i != e; ++i)
183    if (N->getOperand(i) != Zero &&
184        N->getOperand(i).getOpcode() != ISD::UNDEF)
185      return false;
186  return true;
187}
188
189/// isScalarToVector - Return true if the specified node is a
190/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191/// element is not an undef.
192bool ISD::isScalarToVector(const SDNode *N) {
193  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
194    return true;
195
196  if (N->getOpcode() != ISD::BUILD_VECTOR)
197    return false;
198  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
199    return false;
200  unsigned NumElems = N->getNumOperands();
201  if (NumElems == 1)
202    return false;
203  for (unsigned i = 1; i < NumElems; ++i) {
204    SDValue V = N->getOperand(i);
205    if (V.getOpcode() != ISD::UNDEF)
206      return false;
207  }
208  return true;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: llvm_unreachable("Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX: {
436    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437    ID.AddInteger(AT->getMemoryVT().getRawBits());
438    ID.AddInteger(AT->getRawSubclassData());
439    break;
440  }
441  case ISD::VECTOR_SHUFFLE: {
442    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444         i != e; ++i)
445      ID.AddInteger(SVN->getMaskElt(i));
446    break;
447  }
448  case ISD::TargetBlockAddress:
449  case ISD::BlockAddress: {
450    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452    break;
453  }
454  } // end switch (N->getOpcode())
455}
456
457/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458/// data.
459static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460  AddNodeIDOpcode(ID, N->getOpcode());
461  // Add the return value info.
462  AddNodeIDValueTypes(ID, N->getVTList());
463  // Add the operand info.
464  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465
466  // Handle SDNode leafs with special info.
467  AddNodeIDCustom(ID, N);
468}
469
470/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471/// the CSE map that carries volatility, temporalness, indexing mode, and
472/// extension/truncation information.
473///
474static inline unsigned
475encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
476                     bool isNonTemporal) {
477  assert((ConvType & 3) == ConvType &&
478         "ConvType may not require more than 2 bits!");
479  assert((AM & 7) == AM &&
480         "AM may not require more than 3 bits!");
481  return ConvType |
482         (AM << 2) |
483         (isVolatile << 5) |
484         (isNonTemporal << 6);
485}
486
487//===----------------------------------------------------------------------===//
488//                              SelectionDAG Class
489//===----------------------------------------------------------------------===//
490
491/// doNotCSE - Return true if CSE should not be performed for this node.
492static bool doNotCSE(SDNode *N) {
493  if (N->getValueType(0) == MVT::Glue)
494    return true; // Never CSE anything that produces a flag.
495
496  switch (N->getOpcode()) {
497  default: break;
498  case ISD::HANDLENODE:
499  case ISD::EH_LABEL:
500    return true;   // Never CSE these nodes.
501  }
502
503  // Check that remaining values produced are not flags.
504  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
505    if (N->getValueType(i) == MVT::Glue)
506      return true; // Never CSE anything that produces a flag.
507
508  return false;
509}
510
511/// RemoveDeadNodes - This method deletes all unreachable nodes in the
512/// SelectionDAG.
513void SelectionDAG::RemoveDeadNodes() {
514  // Create a dummy node (which is not added to allnodes), that adds a reference
515  // to the root node, preventing it from being deleted.
516  HandleSDNode Dummy(getRoot());
517
518  SmallVector<SDNode*, 128> DeadNodes;
519
520  // Add all obviously-dead nodes to the DeadNodes worklist.
521  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
522    if (I->use_empty())
523      DeadNodes.push_back(I);
524
525  RemoveDeadNodes(DeadNodes);
526
527  // If the root changed (e.g. it was a dead load, update the root).
528  setRoot(Dummy.getValue());
529}
530
531/// RemoveDeadNodes - This method deletes the unreachable nodes in the
532/// given list, and any nodes that become unreachable as a result.
533void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
534                                   DAGUpdateListener *UpdateListener) {
535
536  // Process the worklist, deleting the nodes and adding their uses to the
537  // worklist.
538  while (!DeadNodes.empty()) {
539    SDNode *N = DeadNodes.pop_back_val();
540
541    if (UpdateListener)
542      UpdateListener->NodeDeleted(N, 0);
543
544    // Take the node out of the appropriate CSE map.
545    RemoveNodeFromCSEMaps(N);
546
547    // Next, brutally remove the operand list.  This is safe to do, as there are
548    // no cycles in the graph.
549    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
550      SDUse &Use = *I++;
551      SDNode *Operand = Use.getNode();
552      Use.set(SDValue());
553
554      // Now that we removed this operand, see if there are no uses of it left.
555      if (Operand->use_empty())
556        DeadNodes.push_back(Operand);
557    }
558
559    DeallocateNode(N);
560  }
561}
562
563void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
564  SmallVector<SDNode*, 16> DeadNodes(1, N);
565  RemoveDeadNodes(DeadNodes, UpdateListener);
566}
567
568void SelectionDAG::DeleteNode(SDNode *N) {
569  // First take this out of the appropriate CSE map.
570  RemoveNodeFromCSEMaps(N);
571
572  // Finally, remove uses due to operands of this node, remove from the
573  // AllNodes list, and delete the node.
574  DeleteNodeNotInCSEMaps(N);
575}
576
577void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
578  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
579  assert(N->use_empty() && "Cannot delete a node that is not dead!");
580
581  // Drop all of the operands and decrement used node's use counts.
582  N->DropOperands();
583
584  DeallocateNode(N);
585}
586
587void SelectionDAG::DeallocateNode(SDNode *N) {
588  if (N->OperandsNeedDelete)
589    delete[] N->OperandList;
590
591  // Set the opcode to DELETED_NODE to help catch bugs when node
592  // memory is reallocated.
593  N->NodeType = ISD::DELETED_NODE;
594
595  NodeAllocator.Deallocate(AllNodes.remove(N));
596
597  // Remove the ordering of this node.
598  Ordering->remove(N);
599
600  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
601  ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N);
602  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
603    DbgVals[i]->setIsInvalidated();
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::HANDLENODE: return false;  // noop.
614  case ISD::CONDCODE:
615    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
616           "Cond code doesn't exist!");
617    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
618    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
619    break;
620  case ISD::ExternalSymbol:
621    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
622    break;
623  case ISD::TargetExternalSymbol: {
624    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
625    Erased = TargetExternalSymbols.erase(
626               std::pair<std::string,unsigned char>(ESN->getSymbol(),
627                                                    ESN->getTargetFlags()));
628    break;
629  }
630  case ISD::VALUETYPE: {
631    EVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
636      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
643    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
644    Erased = CSEMap.RemoveNode(N);
645    break;
646  }
647#ifndef NDEBUG
648  // Verify that the node was actually in one of the CSE maps, unless it has a
649  // flag result (which cannot be CSE'd) or is one of the special cases that are
650  // not subject to CSE.
651  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
652      !N->isMachineOpcode() && !doNotCSE(N)) {
653    N->dump(this);
654    dbgs() << "\n";
655    llvm_unreachable("Node is not in map!");
656  }
657#endif
658  return Erased;
659}
660
661/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662/// maps and modified in place. Add it back to the CSE maps, unless an identical
663/// node already exists, in which case transfer all its users to the existing
664/// node. This transfer can potentially trigger recursive merging.
665///
666void
667SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668                                       DAGUpdateListener *UpdateListener) {
669  // For node types that aren't CSE'd, just act as if no identical node
670  // already exists.
671  if (!doNotCSE(N)) {
672    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673    if (Existing != N) {
674      // If there was already an existing matching node, use ReplaceAllUsesWith
675      // to replace the dead one with the existing one.  This can cause
676      // recursive merging of other unrelated nodes down the line.
677      ReplaceAllUsesWith(N, Existing, UpdateListener);
678
679      // N is now dead.  Inform the listener if it exists and delete it.
680      if (UpdateListener)
681        UpdateListener->NodeDeleted(N, Existing);
682      DeleteNodeNotInCSEMaps(N);
683      return;
684    }
685  }
686
687  // If the node doesn't already exist, we updated it.  Inform a listener if
688  // it exists.
689  if (UpdateListener)
690    UpdateListener->NodeUpdated(N);
691}
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698                                           void *&InsertPos) {
699  if (doNotCSE(N))
700    return 0;
701
702  SDValue Ops[] = { Op };
703  FoldingSetNodeID ID;
704  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705  AddNodeIDCustom(ID, N);
706  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707  return Node;
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725  return Node;
726}
727
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                           const SDValue *Ops,unsigned NumOps,
735                                           void *&InsertPos) {
736  if (doNotCSE(N))
737    return 0;
738
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741  AddNodeIDCustom(ID, N);
742  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743  return Node;
744}
745
746#ifndef NDEBUG
747/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
748static void VerifyNodeCommon(SDNode *N) {
749  switch (N->getOpcode()) {
750  default:
751    break;
752  case ISD::BUILD_PAIR: {
753    EVT VT = N->getValueType(0);
754    assert(N->getNumValues() == 1 && "Too many results!");
755    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
756           "Wrong return type!");
757    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
758    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
759           "Mismatched operand types!");
760    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
761           "Wrong operand type!");
762    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
763           "Wrong return type size");
764    break;
765  }
766  case ISD::BUILD_VECTOR: {
767    assert(N->getNumValues() == 1 && "Too many results!");
768    assert(N->getValueType(0).isVector() && "Wrong return type!");
769    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
770           "Wrong number of operands!");
771    EVT EltVT = N->getValueType(0).getVectorElementType();
772    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
773      assert((I->getValueType() == EltVT ||
774             (EltVT.isInteger() && I->getValueType().isInteger() &&
775              EltVT.bitsLE(I->getValueType()))) &&
776            "Wrong operand type!");
777    break;
778  }
779  }
780}
781
782/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
783static void VerifySDNode(SDNode *N) {
784  // The SDNode allocators cannot be used to allocate nodes with fields that are
785  // not present in an SDNode!
786  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
787  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
788  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
789  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
790  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
791  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
792  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
793  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
794  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
795  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
796  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
797  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
798  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
799  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
800  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
801  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
802  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
803  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
804  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
805
806  VerifyNodeCommon(N);
807}
808
809/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
810/// invalid.
811static void VerifyMachineNode(SDNode *N) {
812  // The MachineNode allocators cannot be used to allocate nodes with fields
813  // that are not present in a MachineNode!
814  // Currently there are no such nodes.
815
816  VerifyNodeCommon(N);
817}
818#endif // NDEBUG
819
820/// getEVTAlignment - Compute the default alignment value for the
821/// given type.
822///
823unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
824  Type *Ty = VT == MVT::iPTR ?
825                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
826                   VT.getTypeForEVT(*getContext());
827
828  return TLI.getTargetData()->getABITypeAlignment(Ty);
829}
830
831// EntryNode could meaningfully have debug info if we can find it...
832SelectionDAG::SelectionDAG(const TargetMachine &tm)
833  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
834    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
835    Root(getEntryNode()), Ordering(0) {
836  AllNodes.push_back(&EntryNode);
837  Ordering = new SDNodeOrdering();
838  DbgInfo = new SDDbgInfo();
839}
840
841void SelectionDAG::init(MachineFunction &mf) {
842  MF = &mf;
843  Context = &mf.getFunction()->getContext();
844}
845
846SelectionDAG::~SelectionDAG() {
847  allnodes_clear();
848  delete Ordering;
849  delete DbgInfo;
850}
851
852void SelectionDAG::allnodes_clear() {
853  assert(&*AllNodes.begin() == &EntryNode);
854  AllNodes.remove(AllNodes.begin());
855  while (!AllNodes.empty())
856    DeallocateNode(AllNodes.begin());
857}
858
859void SelectionDAG::clear() {
860  allnodes_clear();
861  OperandAllocator.Reset();
862  CSEMap.clear();
863
864  ExtendedValueTypeNodes.clear();
865  ExternalSymbols.clear();
866  TargetExternalSymbols.clear();
867  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
868            static_cast<CondCodeSDNode*>(0));
869  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
870            static_cast<SDNode*>(0));
871
872  EntryNode.UseList = 0;
873  AllNodes.push_back(&EntryNode);
874  Root = getEntryNode();
875  Ordering->clear();
876  DbgInfo->clear();
877}
878
879SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
880  return VT.bitsGT(Op.getValueType()) ?
881    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
882    getNode(ISD::TRUNCATE, DL, VT, Op);
883}
884
885SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
886  return VT.bitsGT(Op.getValueType()) ?
887    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
888    getNode(ISD::TRUNCATE, DL, VT, Op);
889}
890
891SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
892  assert(!VT.isVector() &&
893         "getZeroExtendInReg should use the vector element type instead of "
894         "the vector type!");
895  if (Op.getValueType() == VT) return Op;
896  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
897  APInt Imm = APInt::getLowBitsSet(BitWidth,
898                                   VT.getSizeInBits());
899  return getNode(ISD::AND, DL, Op.getValueType(), Op,
900                 getConstant(Imm, Op.getValueType()));
901}
902
903/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
904///
905SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
906  EVT EltVT = VT.getScalarType();
907  SDValue NegOne =
908    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
909  return getNode(ISD::XOR, DL, VT, Val, NegOne);
910}
911
912SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
913  EVT EltVT = VT.getScalarType();
914  assert((EltVT.getSizeInBits() >= 64 ||
915         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
916         "getConstant with a uint64_t value that doesn't fit in the type!");
917  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
918}
919
920SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
921  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
922}
923
924SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
925  assert(VT.isInteger() && "Cannot create FP integer constant!");
926
927  EVT EltVT = VT.getScalarType();
928  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
929         "APInt size does not match type size!");
930
931  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
932  FoldingSetNodeID ID;
933  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
934  ID.AddPointer(&Val);
935  void *IP = 0;
936  SDNode *N = NULL;
937  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
938    if (!VT.isVector())
939      return SDValue(N, 0);
940
941  if (!N) {
942    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
943    CSEMap.InsertNode(N, IP);
944    AllNodes.push_back(N);
945  }
946
947  SDValue Result(N, 0);
948  if (VT.isVector()) {
949    SmallVector<SDValue, 8> Ops;
950    Ops.assign(VT.getVectorNumElements(), Result);
951    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
952  }
953  return Result;
954}
955
956SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
957  return getConstant(Val, TLI.getPointerTy(), isTarget);
958}
959
960
961SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
962  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
963}
964
965SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
966  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
967
968  EVT EltVT = VT.getScalarType();
969
970  // Do the map lookup using the actual bit pattern for the floating point
971  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
972  // we don't have issues with SNANs.
973  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
974  FoldingSetNodeID ID;
975  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
976  ID.AddPointer(&V);
977  void *IP = 0;
978  SDNode *N = NULL;
979  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
980    if (!VT.isVector())
981      return SDValue(N, 0);
982
983  if (!N) {
984    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
985    CSEMap.InsertNode(N, IP);
986    AllNodes.push_back(N);
987  }
988
989  SDValue Result(N, 0);
990  if (VT.isVector()) {
991    SmallVector<SDValue, 8> Ops;
992    Ops.assign(VT.getVectorNumElements(), Result);
993    // FIXME DebugLoc info might be appropriate here
994    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
995  }
996  return Result;
997}
998
999SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1000  EVT EltVT = VT.getScalarType();
1001  if (EltVT==MVT::f32)
1002    return getConstantFP(APFloat((float)Val), VT, isTarget);
1003  else if (EltVT==MVT::f64)
1004    return getConstantFP(APFloat(Val), VT, isTarget);
1005  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1006    bool ignored;
1007    APFloat apf = APFloat(Val);
1008    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1009                &ignored);
1010    return getConstantFP(apf, VT, isTarget);
1011  } else {
1012    assert(0 && "Unsupported type in getConstantFP");
1013    return SDValue();
1014  }
1015}
1016
1017SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1018                                       EVT VT, int64_t Offset,
1019                                       bool isTargetGA,
1020                                       unsigned char TargetFlags) {
1021  assert((TargetFlags == 0 || isTargetGA) &&
1022         "Cannot set target flags on target-independent globals");
1023
1024  // Truncate (with sign-extension) the offset value to the pointer size.
1025  EVT PTy = TLI.getPointerTy();
1026  unsigned BitWidth = PTy.getSizeInBits();
1027  if (BitWidth < 64)
1028    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1029
1030  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1031  if (!GVar) {
1032    // If GV is an alias then use the aliasee for determining thread-localness.
1033    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1034      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1035  }
1036
1037  unsigned Opc;
1038  if (GVar && GVar->isThreadLocal())
1039    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1040  else
1041    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1042
1043  FoldingSetNodeID ID;
1044  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1045  ID.AddPointer(GV);
1046  ID.AddInteger(Offset);
1047  ID.AddInteger(TargetFlags);
1048  void *IP = 0;
1049  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1050    return SDValue(E, 0);
1051
1052  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1053                                                      Offset, TargetFlags);
1054  CSEMap.InsertNode(N, IP);
1055  AllNodes.push_back(N);
1056  return SDValue(N, 0);
1057}
1058
1059SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1060  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1061  FoldingSetNodeID ID;
1062  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1063  ID.AddInteger(FI);
1064  void *IP = 0;
1065  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1066    return SDValue(E, 0);
1067
1068  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1069  CSEMap.InsertNode(N, IP);
1070  AllNodes.push_back(N);
1071  return SDValue(N, 0);
1072}
1073
1074SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1075                                   unsigned char TargetFlags) {
1076  assert((TargetFlags == 0 || isTarget) &&
1077         "Cannot set target flags on target-independent jump tables");
1078  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1079  FoldingSetNodeID ID;
1080  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1081  ID.AddInteger(JTI);
1082  ID.AddInteger(TargetFlags);
1083  void *IP = 0;
1084  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1085    return SDValue(E, 0);
1086
1087  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1088                                                  TargetFlags);
1089  CSEMap.InsertNode(N, IP);
1090  AllNodes.push_back(N);
1091  return SDValue(N, 0);
1092}
1093
1094SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1095                                      unsigned Alignment, int Offset,
1096                                      bool isTarget,
1097                                      unsigned char TargetFlags) {
1098  assert((TargetFlags == 0 || isTarget) &&
1099         "Cannot set target flags on target-independent globals");
1100  if (Alignment == 0)
1101    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1102  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1103  FoldingSetNodeID ID;
1104  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1105  ID.AddInteger(Alignment);
1106  ID.AddInteger(Offset);
1107  ID.AddPointer(C);
1108  ID.AddInteger(TargetFlags);
1109  void *IP = 0;
1110  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1111    return SDValue(E, 0);
1112
1113  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1114                                                     Alignment, TargetFlags);
1115  CSEMap.InsertNode(N, IP);
1116  AllNodes.push_back(N);
1117  return SDValue(N, 0);
1118}
1119
1120
1121SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1122                                      unsigned Alignment, int Offset,
1123                                      bool isTarget,
1124                                      unsigned char TargetFlags) {
1125  assert((TargetFlags == 0 || isTarget) &&
1126         "Cannot set target flags on target-independent globals");
1127  if (Alignment == 0)
1128    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1129  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1130  FoldingSetNodeID ID;
1131  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1132  ID.AddInteger(Alignment);
1133  ID.AddInteger(Offset);
1134  C->AddSelectionDAGCSEId(ID);
1135  ID.AddInteger(TargetFlags);
1136  void *IP = 0;
1137  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1138    return SDValue(E, 0);
1139
1140  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1141                                                     Alignment, TargetFlags);
1142  CSEMap.InsertNode(N, IP);
1143  AllNodes.push_back(N);
1144  return SDValue(N, 0);
1145}
1146
1147SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1148  FoldingSetNodeID ID;
1149  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1150  ID.AddPointer(MBB);
1151  void *IP = 0;
1152  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1153    return SDValue(E, 0);
1154
1155  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1156  CSEMap.InsertNode(N, IP);
1157  AllNodes.push_back(N);
1158  return SDValue(N, 0);
1159}
1160
1161SDValue SelectionDAG::getValueType(EVT VT) {
1162  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1163      ValueTypeNodes.size())
1164    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1165
1166  SDNode *&N = VT.isExtended() ?
1167    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1168
1169  if (N) return SDValue(N, 0);
1170  N = new (NodeAllocator) VTSDNode(VT);
1171  AllNodes.push_back(N);
1172  return SDValue(N, 0);
1173}
1174
1175SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1176  SDNode *&N = ExternalSymbols[Sym];
1177  if (N) return SDValue(N, 0);
1178  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1179  AllNodes.push_back(N);
1180  return SDValue(N, 0);
1181}
1182
1183SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1184                                              unsigned char TargetFlags) {
1185  SDNode *&N =
1186    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1187                                                               TargetFlags)];
1188  if (N) return SDValue(N, 0);
1189  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1190  AllNodes.push_back(N);
1191  return SDValue(N, 0);
1192}
1193
1194SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1195  if ((unsigned)Cond >= CondCodeNodes.size())
1196    CondCodeNodes.resize(Cond+1);
1197
1198  if (CondCodeNodes[Cond] == 0) {
1199    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1200    CondCodeNodes[Cond] = N;
1201    AllNodes.push_back(N);
1202  }
1203
1204  return SDValue(CondCodeNodes[Cond], 0);
1205}
1206
1207// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1208// the shuffle mask M that point at N1 to point at N2, and indices that point
1209// N2 to point at N1.
1210static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1211  std::swap(N1, N2);
1212  int NElts = M.size();
1213  for (int i = 0; i != NElts; ++i) {
1214    if (M[i] >= NElts)
1215      M[i] -= NElts;
1216    else if (M[i] >= 0)
1217      M[i] += NElts;
1218  }
1219}
1220
1221SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1222                                       SDValue N2, const int *Mask) {
1223  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1224  assert(VT.isVector() && N1.getValueType().isVector() &&
1225         "Vector Shuffle VTs must be a vectors");
1226  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1227         && "Vector Shuffle VTs must have same element type");
1228
1229  // Canonicalize shuffle undef, undef -> undef
1230  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1231    return getUNDEF(VT);
1232
1233  // Validate that all indices in Mask are within the range of the elements
1234  // input to the shuffle.
1235  unsigned NElts = VT.getVectorNumElements();
1236  SmallVector<int, 8> MaskVec;
1237  for (unsigned i = 0; i != NElts; ++i) {
1238    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1239    MaskVec.push_back(Mask[i]);
1240  }
1241
1242  // Canonicalize shuffle v, v -> v, undef
1243  if (N1 == N2) {
1244    N2 = getUNDEF(VT);
1245    for (unsigned i = 0; i != NElts; ++i)
1246      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1247  }
1248
1249  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1250  if (N1.getOpcode() == ISD::UNDEF)
1251    commuteShuffle(N1, N2, MaskVec);
1252
1253  // Canonicalize all index into lhs, -> shuffle lhs, undef
1254  // Canonicalize all index into rhs, -> shuffle rhs, undef
1255  bool AllLHS = true, AllRHS = true;
1256  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1257  for (unsigned i = 0; i != NElts; ++i) {
1258    if (MaskVec[i] >= (int)NElts) {
1259      if (N2Undef)
1260        MaskVec[i] = -1;
1261      else
1262        AllLHS = false;
1263    } else if (MaskVec[i] >= 0) {
1264      AllRHS = false;
1265    }
1266  }
1267  if (AllLHS && AllRHS)
1268    return getUNDEF(VT);
1269  if (AllLHS && !N2Undef)
1270    N2 = getUNDEF(VT);
1271  if (AllRHS) {
1272    N1 = getUNDEF(VT);
1273    commuteShuffle(N1, N2, MaskVec);
1274  }
1275
1276  // If Identity shuffle, or all shuffle in to undef, return that node.
1277  bool AllUndef = true;
1278  bool Identity = true;
1279  for (unsigned i = 0; i != NElts; ++i) {
1280    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1281    if (MaskVec[i] >= 0) AllUndef = false;
1282  }
1283  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1284    return N1;
1285  if (AllUndef)
1286    return getUNDEF(VT);
1287
1288  FoldingSetNodeID ID;
1289  SDValue Ops[2] = { N1, N2 };
1290  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1291  for (unsigned i = 0; i != NElts; ++i)
1292    ID.AddInteger(MaskVec[i]);
1293
1294  void* IP = 0;
1295  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1296    return SDValue(E, 0);
1297
1298  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1299  // SDNode doesn't have access to it.  This memory will be "leaked" when
1300  // the node is deallocated, but recovered when the NodeAllocator is released.
1301  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1302  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1303
1304  ShuffleVectorSDNode *N =
1305    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1306  CSEMap.InsertNode(N, IP);
1307  AllNodes.push_back(N);
1308  return SDValue(N, 0);
1309}
1310
1311SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1312                                       SDValue Val, SDValue DTy,
1313                                       SDValue STy, SDValue Rnd, SDValue Sat,
1314                                       ISD::CvtCode Code) {
1315  // If the src and dest types are the same and the conversion is between
1316  // integer types of the same sign or two floats, no conversion is necessary.
1317  if (DTy == STy &&
1318      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1319    return Val;
1320
1321  FoldingSetNodeID ID;
1322  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1323  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1324  void* IP = 0;
1325  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1326    return SDValue(E, 0);
1327
1328  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1329                                                           Code);
1330  CSEMap.InsertNode(N, IP);
1331  AllNodes.push_back(N);
1332  return SDValue(N, 0);
1333}
1334
1335SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1336  FoldingSetNodeID ID;
1337  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1338  ID.AddInteger(RegNo);
1339  void *IP = 0;
1340  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1341    return SDValue(E, 0);
1342
1343  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1344  CSEMap.InsertNode(N, IP);
1345  AllNodes.push_back(N);
1346  return SDValue(N, 0);
1347}
1348
1349SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1350  FoldingSetNodeID ID;
1351  SDValue Ops[] = { Root };
1352  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1353  ID.AddPointer(Label);
1354  void *IP = 0;
1355  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1356    return SDValue(E, 0);
1357
1358  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1359  CSEMap.InsertNode(N, IP);
1360  AllNodes.push_back(N);
1361  return SDValue(N, 0);
1362}
1363
1364
1365SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1366                                      bool isTarget,
1367                                      unsigned char TargetFlags) {
1368  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1369
1370  FoldingSetNodeID ID;
1371  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1372  ID.AddPointer(BA);
1373  ID.AddInteger(TargetFlags);
1374  void *IP = 0;
1375  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1376    return SDValue(E, 0);
1377
1378  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1379  CSEMap.InsertNode(N, IP);
1380  AllNodes.push_back(N);
1381  return SDValue(N, 0);
1382}
1383
1384SDValue SelectionDAG::getSrcValue(const Value *V) {
1385  assert((!V || V->getType()->isPointerTy()) &&
1386         "SrcValue is not a pointer?");
1387
1388  FoldingSetNodeID ID;
1389  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1390  ID.AddPointer(V);
1391
1392  void *IP = 0;
1393  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1394    return SDValue(E, 0);
1395
1396  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1397  CSEMap.InsertNode(N, IP);
1398  AllNodes.push_back(N);
1399  return SDValue(N, 0);
1400}
1401
1402/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1403SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1404  FoldingSetNodeID ID;
1405  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1406  ID.AddPointer(MD);
1407
1408  void *IP = 0;
1409  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1410    return SDValue(E, 0);
1411
1412  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1413  CSEMap.InsertNode(N, IP);
1414  AllNodes.push_back(N);
1415  return SDValue(N, 0);
1416}
1417
1418
1419/// getShiftAmountOperand - Return the specified value casted to
1420/// the target's desired shift amount type.
1421SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1422  EVT OpTy = Op.getValueType();
1423  MVT ShTy = TLI.getShiftAmountTy(LHSTy);
1424  if (OpTy == ShTy || OpTy.isVector()) return Op;
1425
1426  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1427  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1428}
1429
1430/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1431/// specified value type.
1432SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1433  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1434  unsigned ByteSize = VT.getStoreSize();
1435  Type *Ty = VT.getTypeForEVT(*getContext());
1436  unsigned StackAlign =
1437  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1438
1439  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1440  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1441}
1442
1443/// CreateStackTemporary - Create a stack temporary suitable for holding
1444/// either of the specified value types.
1445SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1446  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1447                            VT2.getStoreSizeInBits())/8;
1448  Type *Ty1 = VT1.getTypeForEVT(*getContext());
1449  Type *Ty2 = VT2.getTypeForEVT(*getContext());
1450  const TargetData *TD = TLI.getTargetData();
1451  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1452                            TD->getPrefTypeAlignment(Ty2));
1453
1454  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1455  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1456  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1457}
1458
1459SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1460                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1461  // These setcc operations always fold.
1462  switch (Cond) {
1463  default: break;
1464  case ISD::SETFALSE:
1465  case ISD::SETFALSE2: return getConstant(0, VT);
1466  case ISD::SETTRUE:
1467  case ISD::SETTRUE2:  return getConstant(1, VT);
1468
1469  case ISD::SETOEQ:
1470  case ISD::SETOGT:
1471  case ISD::SETOGE:
1472  case ISD::SETOLT:
1473  case ISD::SETOLE:
1474  case ISD::SETONE:
1475  case ISD::SETO:
1476  case ISD::SETUO:
1477  case ISD::SETUEQ:
1478  case ISD::SETUNE:
1479    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1480    break;
1481  }
1482
1483  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1484    const APInt &C2 = N2C->getAPIntValue();
1485    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1486      const APInt &C1 = N1C->getAPIntValue();
1487
1488      switch (Cond) {
1489      default: llvm_unreachable("Unknown integer setcc!");
1490      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1491      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1492      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1493      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1494      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1495      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1496      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1497      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1498      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1499      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1500      }
1501    }
1502  }
1503  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1504    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1505      // No compile time operations on this type yet.
1506      if (N1C->getValueType(0) == MVT::ppcf128)
1507        return SDValue();
1508
1509      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1510      switch (Cond) {
1511      default: break;
1512      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1513                          return getUNDEF(VT);
1514                        // fall through
1515      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1516      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1517                          return getUNDEF(VT);
1518                        // fall through
1519      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1520                                           R==APFloat::cmpLessThan, VT);
1521      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1522                          return getUNDEF(VT);
1523                        // fall through
1524      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1525      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1526                          return getUNDEF(VT);
1527                        // fall through
1528      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1529      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1530                          return getUNDEF(VT);
1531                        // fall through
1532      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1533                                           R==APFloat::cmpEqual, VT);
1534      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1535                          return getUNDEF(VT);
1536                        // fall through
1537      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1538                                           R==APFloat::cmpEqual, VT);
1539      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1540      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1541      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1542                                           R==APFloat::cmpEqual, VT);
1543      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1544      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1545                                           R==APFloat::cmpLessThan, VT);
1546      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1547                                           R==APFloat::cmpUnordered, VT);
1548      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1549      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1550      }
1551    } else {
1552      // Ensure that the constant occurs on the RHS.
1553      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1554    }
1555  }
1556
1557  // Could not fold it.
1558  return SDValue();
1559}
1560
1561/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1562/// use this predicate to simplify operations downstream.
1563bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1564  // This predicate is not safe for vector operations.
1565  if (Op.getValueType().isVector())
1566    return false;
1567
1568  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1569  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1570}
1571
1572/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1573/// this predicate to simplify operations downstream.  Mask is known to be zero
1574/// for bits that V cannot have.
1575bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1576                                     unsigned Depth) const {
1577  APInt KnownZero, KnownOne;
1578  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1579  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1580  return (KnownZero & Mask) == Mask;
1581}
1582
1583/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1584/// known to be either zero or one and return them in the KnownZero/KnownOne
1585/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1586/// processing.
1587void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1588                                     APInt &KnownZero, APInt &KnownOne,
1589                                     unsigned Depth) const {
1590  unsigned BitWidth = Mask.getBitWidth();
1591  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1592         "Mask size mismatches value type size!");
1593
1594  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1595  if (Depth == 6 || Mask == 0)
1596    return;  // Limit search depth.
1597
1598  APInt KnownZero2, KnownOne2;
1599
1600  switch (Op.getOpcode()) {
1601  case ISD::Constant:
1602    // We know all of the bits for a constant!
1603    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1604    KnownZero = ~KnownOne & Mask;
1605    return;
1606  case ISD::AND:
1607    // If either the LHS or the RHS are Zero, the result is zero.
1608    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1609    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1610                      KnownZero2, KnownOne2, Depth+1);
1611    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1612    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1613
1614    // Output known-1 bits are only known if set in both the LHS & RHS.
1615    KnownOne &= KnownOne2;
1616    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1617    KnownZero |= KnownZero2;
1618    return;
1619  case ISD::OR:
1620    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1621    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1622                      KnownZero2, KnownOne2, Depth+1);
1623    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1624    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1625
1626    // Output known-0 bits are only known if clear in both the LHS & RHS.
1627    KnownZero &= KnownZero2;
1628    // Output known-1 are known to be set if set in either the LHS | RHS.
1629    KnownOne |= KnownOne2;
1630    return;
1631  case ISD::XOR: {
1632    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1633    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1634    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1635    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1636
1637    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1638    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1639    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1640    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1641    KnownZero = KnownZeroOut;
1642    return;
1643  }
1644  case ISD::MUL: {
1645    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1646    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1647    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1648    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1649    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1650
1651    // If low bits are zero in either operand, output low known-0 bits.
1652    // Also compute a conserative estimate for high known-0 bits.
1653    // More trickiness is possible, but this is sufficient for the
1654    // interesting case of alignment computation.
1655    KnownOne.clearAllBits();
1656    unsigned TrailZ = KnownZero.countTrailingOnes() +
1657                      KnownZero2.countTrailingOnes();
1658    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1659                               KnownZero2.countLeadingOnes(),
1660                               BitWidth) - BitWidth;
1661
1662    TrailZ = std::min(TrailZ, BitWidth);
1663    LeadZ = std::min(LeadZ, BitWidth);
1664    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1665                APInt::getHighBitsSet(BitWidth, LeadZ);
1666    KnownZero &= Mask;
1667    return;
1668  }
1669  case ISD::UDIV: {
1670    // For the purposes of computing leading zeros we can conservatively
1671    // treat a udiv as a logical right shift by the power of 2 known to
1672    // be less than the denominator.
1673    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1674    ComputeMaskedBits(Op.getOperand(0),
1675                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1676    unsigned LeadZ = KnownZero2.countLeadingOnes();
1677
1678    KnownOne2.clearAllBits();
1679    KnownZero2.clearAllBits();
1680    ComputeMaskedBits(Op.getOperand(1),
1681                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1682    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1683    if (RHSUnknownLeadingOnes != BitWidth)
1684      LeadZ = std::min(BitWidth,
1685                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1686
1687    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1688    return;
1689  }
1690  case ISD::SELECT:
1691    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1692    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1693    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1694    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1695
1696    // Only known if known in both the LHS and RHS.
1697    KnownOne &= KnownOne2;
1698    KnownZero &= KnownZero2;
1699    return;
1700  case ISD::SELECT_CC:
1701    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1702    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1703    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1704    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1705
1706    // Only known if known in both the LHS and RHS.
1707    KnownOne &= KnownOne2;
1708    KnownZero &= KnownZero2;
1709    return;
1710  case ISD::SADDO:
1711  case ISD::UADDO:
1712  case ISD::SSUBO:
1713  case ISD::USUBO:
1714  case ISD::SMULO:
1715  case ISD::UMULO:
1716    if (Op.getResNo() != 1)
1717      return;
1718    // The boolean result conforms to getBooleanContents.  Fall through.
1719  case ISD::SETCC:
1720    // If we know the result of a setcc has the top bits zero, use this info.
1721    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1722        BitWidth > 1)
1723      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1724    return;
1725  case ISD::SHL:
1726    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1727    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1728      unsigned ShAmt = SA->getZExtValue();
1729
1730      // If the shift count is an invalid immediate, don't do anything.
1731      if (ShAmt >= BitWidth)
1732        return;
1733
1734      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1735                        KnownZero, KnownOne, Depth+1);
1736      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1737      KnownZero <<= ShAmt;
1738      KnownOne  <<= ShAmt;
1739      // low bits known zero.
1740      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1741    }
1742    return;
1743  case ISD::SRL:
1744    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1745    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1746      unsigned ShAmt = SA->getZExtValue();
1747
1748      // If the shift count is an invalid immediate, don't do anything.
1749      if (ShAmt >= BitWidth)
1750        return;
1751
1752      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1753                        KnownZero, KnownOne, Depth+1);
1754      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1755      KnownZero = KnownZero.lshr(ShAmt);
1756      KnownOne  = KnownOne.lshr(ShAmt);
1757
1758      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1759      KnownZero |= HighBits;  // High bits known zero.
1760    }
1761    return;
1762  case ISD::SRA:
1763    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1764      unsigned ShAmt = SA->getZExtValue();
1765
1766      // If the shift count is an invalid immediate, don't do anything.
1767      if (ShAmt >= BitWidth)
1768        return;
1769
1770      APInt InDemandedMask = (Mask << ShAmt);
1771      // If any of the demanded bits are produced by the sign extension, we also
1772      // demand the input sign bit.
1773      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1774      if (HighBits.getBoolValue())
1775        InDemandedMask |= APInt::getSignBit(BitWidth);
1776
1777      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1778                        Depth+1);
1779      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1780      KnownZero = KnownZero.lshr(ShAmt);
1781      KnownOne  = KnownOne.lshr(ShAmt);
1782
1783      // Handle the sign bits.
1784      APInt SignBit = APInt::getSignBit(BitWidth);
1785      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1786
1787      if (KnownZero.intersects(SignBit)) {
1788        KnownZero |= HighBits;  // New bits are known zero.
1789      } else if (KnownOne.intersects(SignBit)) {
1790        KnownOne  |= HighBits;  // New bits are known one.
1791      }
1792    }
1793    return;
1794  case ISD::SIGN_EXTEND_INREG: {
1795    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1796    unsigned EBits = EVT.getScalarType().getSizeInBits();
1797
1798    // Sign extension.  Compute the demanded bits in the result that are not
1799    // present in the input.
1800    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1801
1802    APInt InSignBit = APInt::getSignBit(EBits);
1803    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1804
1805    // If the sign extended bits are demanded, we know that the sign
1806    // bit is demanded.
1807    InSignBit = InSignBit.zext(BitWidth);
1808    if (NewBits.getBoolValue())
1809      InputDemandedBits |= InSignBit;
1810
1811    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1812                      KnownZero, KnownOne, Depth+1);
1813    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1814
1815    // If the sign bit of the input is known set or clear, then we know the
1816    // top bits of the result.
1817    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1818      KnownZero |= NewBits;
1819      KnownOne  &= ~NewBits;
1820    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1821      KnownOne  |= NewBits;
1822      KnownZero &= ~NewBits;
1823    } else {                              // Input sign bit unknown
1824      KnownZero &= ~NewBits;
1825      KnownOne  &= ~NewBits;
1826    }
1827    return;
1828  }
1829  case ISD::CTTZ:
1830  case ISD::CTLZ:
1831  case ISD::CTPOP: {
1832    unsigned LowBits = Log2_32(BitWidth)+1;
1833    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1834    KnownOne.clearAllBits();
1835    return;
1836  }
1837  case ISD::LOAD: {
1838    if (ISD::isZEXTLoad(Op.getNode())) {
1839      LoadSDNode *LD = cast<LoadSDNode>(Op);
1840      EVT VT = LD->getMemoryVT();
1841      unsigned MemBits = VT.getScalarType().getSizeInBits();
1842      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1843    }
1844    return;
1845  }
1846  case ISD::ZERO_EXTEND: {
1847    EVT InVT = Op.getOperand(0).getValueType();
1848    unsigned InBits = InVT.getScalarType().getSizeInBits();
1849    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1850    APInt InMask    = Mask.trunc(InBits);
1851    KnownZero = KnownZero.trunc(InBits);
1852    KnownOne = KnownOne.trunc(InBits);
1853    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1854    KnownZero = KnownZero.zext(BitWidth);
1855    KnownOne = KnownOne.zext(BitWidth);
1856    KnownZero |= NewBits;
1857    return;
1858  }
1859  case ISD::SIGN_EXTEND: {
1860    EVT InVT = Op.getOperand(0).getValueType();
1861    unsigned InBits = InVT.getScalarType().getSizeInBits();
1862    APInt InSignBit = APInt::getSignBit(InBits);
1863    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1864    APInt InMask = Mask.trunc(InBits);
1865
1866    // If any of the sign extended bits are demanded, we know that the sign
1867    // bit is demanded. Temporarily set this bit in the mask for our callee.
1868    if (NewBits.getBoolValue())
1869      InMask |= InSignBit;
1870
1871    KnownZero = KnownZero.trunc(InBits);
1872    KnownOne = KnownOne.trunc(InBits);
1873    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1874
1875    // Note if the sign bit is known to be zero or one.
1876    bool SignBitKnownZero = KnownZero.isNegative();
1877    bool SignBitKnownOne  = KnownOne.isNegative();
1878    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1879           "Sign bit can't be known to be both zero and one!");
1880
1881    // If the sign bit wasn't actually demanded by our caller, we don't
1882    // want it set in the KnownZero and KnownOne result values. Reset the
1883    // mask and reapply it to the result values.
1884    InMask = Mask.trunc(InBits);
1885    KnownZero &= InMask;
1886    KnownOne  &= InMask;
1887
1888    KnownZero = KnownZero.zext(BitWidth);
1889    KnownOne = KnownOne.zext(BitWidth);
1890
1891    // If the sign bit is known zero or one, the top bits match.
1892    if (SignBitKnownZero)
1893      KnownZero |= NewBits;
1894    else if (SignBitKnownOne)
1895      KnownOne  |= NewBits;
1896    return;
1897  }
1898  case ISD::ANY_EXTEND: {
1899    EVT InVT = Op.getOperand(0).getValueType();
1900    unsigned InBits = InVT.getScalarType().getSizeInBits();
1901    APInt InMask = Mask.trunc(InBits);
1902    KnownZero = KnownZero.trunc(InBits);
1903    KnownOne = KnownOne.trunc(InBits);
1904    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1905    KnownZero = KnownZero.zext(BitWidth);
1906    KnownOne = KnownOne.zext(BitWidth);
1907    return;
1908  }
1909  case ISD::TRUNCATE: {
1910    EVT InVT = Op.getOperand(0).getValueType();
1911    unsigned InBits = InVT.getScalarType().getSizeInBits();
1912    APInt InMask = Mask.zext(InBits);
1913    KnownZero = KnownZero.zext(InBits);
1914    KnownOne = KnownOne.zext(InBits);
1915    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1916    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1917    KnownZero = KnownZero.trunc(BitWidth);
1918    KnownOne = KnownOne.trunc(BitWidth);
1919    break;
1920  }
1921  case ISD::AssertZext: {
1922    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1923    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1924    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1925                      KnownOne, Depth+1);
1926    KnownZero |= (~InMask) & Mask;
1927    return;
1928  }
1929  case ISD::FGETSIGN:
1930    // All bits are zero except the low bit.
1931    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1932    return;
1933
1934  case ISD::SUB: {
1935    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1936      // We know that the top bits of C-X are clear if X contains less bits
1937      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1938      // positive if we can prove that X is >= 0 and < 16.
1939      if (CLHS->getAPIntValue().isNonNegative()) {
1940        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1941        // NLZ can't be BitWidth with no sign bit
1942        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1943        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1944                          Depth+1);
1945
1946        // If all of the MaskV bits are known to be zero, then we know the
1947        // output top bits are zero, because we now know that the output is
1948        // from [0-C].
1949        if ((KnownZero2 & MaskV) == MaskV) {
1950          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1951          // Top bits known zero.
1952          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1953        }
1954      }
1955    }
1956  }
1957  // fall through
1958  case ISD::ADD:
1959  case ISD::ADDE: {
1960    // Output known-0 bits are known if clear or set in both the low clear bits
1961    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1962    // low 3 bits clear.
1963    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1964                                       BitWidth - Mask.countLeadingZeros());
1965    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1966    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1967    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1968
1969    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1970    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1971    KnownZeroOut = std::min(KnownZeroOut,
1972                            KnownZero2.countTrailingOnes());
1973
1974    if (Op.getOpcode() == ISD::ADD) {
1975      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1976      return;
1977    }
1978
1979    // With ADDE, a carry bit may be added in, so we can only use this
1980    // information if we know (at least) that the low two bits are clear.  We
1981    // then return to the caller that the low bit is unknown but that other bits
1982    // are known zero.
1983    if (KnownZeroOut >= 2) // ADDE
1984      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
1985    return;
1986  }
1987  case ISD::SREM:
1988    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1989      const APInt &RA = Rem->getAPIntValue().abs();
1990      if (RA.isPowerOf2()) {
1991        APInt LowBits = RA - 1;
1992        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1993        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1994
1995        // The low bits of the first operand are unchanged by the srem.
1996        KnownZero = KnownZero2 & LowBits;
1997        KnownOne = KnownOne2 & LowBits;
1998
1999        // If the first operand is non-negative or has all low bits zero, then
2000        // the upper bits are all zero.
2001        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2002          KnownZero |= ~LowBits;
2003
2004        // If the first operand is negative and not all low bits are zero, then
2005        // the upper bits are all one.
2006        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2007          KnownOne |= ~LowBits;
2008
2009        KnownZero &= Mask;
2010        KnownOne &= Mask;
2011
2012        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2013      }
2014    }
2015    return;
2016  case ISD::UREM: {
2017    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2018      const APInt &RA = Rem->getAPIntValue();
2019      if (RA.isPowerOf2()) {
2020        APInt LowBits = (RA - 1);
2021        APInt Mask2 = LowBits & Mask;
2022        KnownZero |= ~LowBits & Mask;
2023        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2024        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2025        break;
2026      }
2027    }
2028
2029    // Since the result is less than or equal to either operand, any leading
2030    // zero bits in either operand must also exist in the result.
2031    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2032    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2033                      Depth+1);
2034    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2035                      Depth+1);
2036
2037    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2038                                KnownZero2.countLeadingOnes());
2039    KnownOne.clearAllBits();
2040    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2041    return;
2042  }
2043  case ISD::FrameIndex:
2044  case ISD::TargetFrameIndex:
2045    if (unsigned Align = InferPtrAlignment(Op)) {
2046      // The low bits are known zero if the pointer is aligned.
2047      KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2048      return;
2049    }
2050    break;
2051
2052  default:
2053    if (Op.getOpcode() < ISD::BUILTIN_OP_END)
2054      break;
2055    // Fallthrough
2056  case ISD::INTRINSIC_WO_CHAIN:
2057  case ISD::INTRINSIC_W_CHAIN:
2058  case ISD::INTRINSIC_VOID:
2059    // Allow the target to implement this method for its nodes.
2060    TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2061                                       Depth);
2062    return;
2063  }
2064}
2065
2066/// ComputeNumSignBits - Return the number of times the sign bit of the
2067/// register is replicated into the other bits.  We know that at least 1 bit
2068/// is always equal to the sign bit (itself), but other cases can give us
2069/// information.  For example, immediately after an "SRA X, 2", we know that
2070/// the top 3 bits are all equal to each other, so we return 3.
2071unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2072  EVT VT = Op.getValueType();
2073  assert(VT.isInteger() && "Invalid VT!");
2074  unsigned VTBits = VT.getScalarType().getSizeInBits();
2075  unsigned Tmp, Tmp2;
2076  unsigned FirstAnswer = 1;
2077
2078  if (Depth == 6)
2079    return 1;  // Limit search depth.
2080
2081  switch (Op.getOpcode()) {
2082  default: break;
2083  case ISD::AssertSext:
2084    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2085    return VTBits-Tmp+1;
2086  case ISD::AssertZext:
2087    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2088    return VTBits-Tmp;
2089
2090  case ISD::Constant: {
2091    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2092    return Val.getNumSignBits();
2093  }
2094
2095  case ISD::SIGN_EXTEND:
2096    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2097    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2098
2099  case ISD::SIGN_EXTEND_INREG:
2100    // Max of the input and what this extends.
2101    Tmp =
2102      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2103    Tmp = VTBits-Tmp+1;
2104
2105    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2106    return std::max(Tmp, Tmp2);
2107
2108  case ISD::SRA:
2109    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2110    // SRA X, C   -> adds C sign bits.
2111    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2112      Tmp += C->getZExtValue();
2113      if (Tmp > VTBits) Tmp = VTBits;
2114    }
2115    return Tmp;
2116  case ISD::SHL:
2117    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2118      // shl destroys sign bits.
2119      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2120      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2121          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2122      return Tmp - C->getZExtValue();
2123    }
2124    break;
2125  case ISD::AND:
2126  case ISD::OR:
2127  case ISD::XOR:    // NOT is handled here.
2128    // Logical binary ops preserve the number of sign bits at the worst.
2129    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2130    if (Tmp != 1) {
2131      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2132      FirstAnswer = std::min(Tmp, Tmp2);
2133      // We computed what we know about the sign bits as our first
2134      // answer. Now proceed to the generic code that uses
2135      // ComputeMaskedBits, and pick whichever answer is better.
2136    }
2137    break;
2138
2139  case ISD::SELECT:
2140    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2141    if (Tmp == 1) return 1;  // Early out.
2142    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2143    return std::min(Tmp, Tmp2);
2144
2145  case ISD::SADDO:
2146  case ISD::UADDO:
2147  case ISD::SSUBO:
2148  case ISD::USUBO:
2149  case ISD::SMULO:
2150  case ISD::UMULO:
2151    if (Op.getResNo() != 1)
2152      break;
2153    // The boolean result conforms to getBooleanContents.  Fall through.
2154  case ISD::SETCC:
2155    // If setcc returns 0/-1, all bits are sign bits.
2156    if (TLI.getBooleanContents() ==
2157        TargetLowering::ZeroOrNegativeOneBooleanContent)
2158      return VTBits;
2159    break;
2160  case ISD::ROTL:
2161  case ISD::ROTR:
2162    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2163      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2164
2165      // Handle rotate right by N like a rotate left by 32-N.
2166      if (Op.getOpcode() == ISD::ROTR)
2167        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2168
2169      // If we aren't rotating out all of the known-in sign bits, return the
2170      // number that are left.  This handles rotl(sext(x), 1) for example.
2171      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2172      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2173    }
2174    break;
2175  case ISD::ADD:
2176    // Add can have at most one carry bit.  Thus we know that the output
2177    // is, at worst, one more bit than the inputs.
2178    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2179    if (Tmp == 1) return 1;  // Early out.
2180
2181    // Special case decrementing a value (ADD X, -1):
2182    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2183      if (CRHS->isAllOnesValue()) {
2184        APInt KnownZero, KnownOne;
2185        APInt Mask = APInt::getAllOnesValue(VTBits);
2186        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2187
2188        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2189        // sign bits set.
2190        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2191          return VTBits;
2192
2193        // If we are subtracting one from a positive number, there is no carry
2194        // out of the result.
2195        if (KnownZero.isNegative())
2196          return Tmp;
2197      }
2198
2199    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2200    if (Tmp2 == 1) return 1;
2201      return std::min(Tmp, Tmp2)-1;
2202    break;
2203
2204  case ISD::SUB:
2205    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2206    if (Tmp2 == 1) return 1;
2207
2208    // Handle NEG.
2209    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2210      if (CLHS->isNullValue()) {
2211        APInt KnownZero, KnownOne;
2212        APInt Mask = APInt::getAllOnesValue(VTBits);
2213        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2214        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2215        // sign bits set.
2216        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2217          return VTBits;
2218
2219        // If the input is known to be positive (the sign bit is known clear),
2220        // the output of the NEG has the same number of sign bits as the input.
2221        if (KnownZero.isNegative())
2222          return Tmp2;
2223
2224        // Otherwise, we treat this like a SUB.
2225      }
2226
2227    // Sub can have at most one carry bit.  Thus we know that the output
2228    // is, at worst, one more bit than the inputs.
2229    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2230    if (Tmp == 1) return 1;  // Early out.
2231      return std::min(Tmp, Tmp2)-1;
2232    break;
2233  case ISD::TRUNCATE:
2234    // FIXME: it's tricky to do anything useful for this, but it is an important
2235    // case for targets like X86.
2236    break;
2237  }
2238
2239  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2240  if (Op.getOpcode() == ISD::LOAD) {
2241    LoadSDNode *LD = cast<LoadSDNode>(Op);
2242    unsigned ExtType = LD->getExtensionType();
2243    switch (ExtType) {
2244    default: break;
2245    case ISD::SEXTLOAD:    // '17' bits known
2246      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2247      return VTBits-Tmp+1;
2248    case ISD::ZEXTLOAD:    // '16' bits known
2249      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2250      return VTBits-Tmp;
2251    }
2252  }
2253
2254  // Allow the target to implement this method for its nodes.
2255  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2256      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2257      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2258      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2259    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2260    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2261  }
2262
2263  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2264  // use this information.
2265  APInt KnownZero, KnownOne;
2266  APInt Mask = APInt::getAllOnesValue(VTBits);
2267  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2268
2269  if (KnownZero.isNegative()) {        // sign bit is 0
2270    Mask = KnownZero;
2271  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2272    Mask = KnownOne;
2273  } else {
2274    // Nothing known.
2275    return FirstAnswer;
2276  }
2277
2278  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2279  // the number of identical bits in the top of the input value.
2280  Mask = ~Mask;
2281  Mask <<= Mask.getBitWidth()-VTBits;
2282  // Return # leading zeros.  We use 'min' here in case Val was zero before
2283  // shifting.  We don't want to return '64' as for an i32 "0".
2284  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2285}
2286
2287/// isBaseWithConstantOffset - Return true if the specified operand is an
2288/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2289/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2290/// semantics as an ADD.  This handles the equivalence:
2291///     X|Cst == X+Cst iff X&Cst = 0.
2292bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2293  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2294      !isa<ConstantSDNode>(Op.getOperand(1)))
2295    return false;
2296
2297  if (Op.getOpcode() == ISD::OR &&
2298      !MaskedValueIsZero(Op.getOperand(0),
2299                     cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2300    return false;
2301
2302  return true;
2303}
2304
2305
2306bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2307  // If we're told that NaNs won't happen, assume they won't.
2308  if (NoNaNsFPMath)
2309    return true;
2310
2311  // If the value is a constant, we can obviously see if it is a NaN or not.
2312  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2313    return !C->getValueAPF().isNaN();
2314
2315  // TODO: Recognize more cases here.
2316
2317  return false;
2318}
2319
2320bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2321  // If the value is a constant, we can obviously see if it is a zero or not.
2322  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2323    return !C->isZero();
2324
2325  // TODO: Recognize more cases here.
2326  switch (Op.getOpcode()) {
2327  default: break;
2328  case ISD::OR:
2329    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2330      return !C->isNullValue();
2331    break;
2332  }
2333
2334  return false;
2335}
2336
2337bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2338  // Check the obvious case.
2339  if (A == B) return true;
2340
2341  // For for negative and positive zero.
2342  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2343    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2344      if (CA->isZero() && CB->isZero()) return true;
2345
2346  // Otherwise they may not be equal.
2347  return false;
2348}
2349
2350/// getNode - Gets or creates the specified node.
2351///
2352SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2353  FoldingSetNodeID ID;
2354  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2355  void *IP = 0;
2356  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2357    return SDValue(E, 0);
2358
2359  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2360  CSEMap.InsertNode(N, IP);
2361
2362  AllNodes.push_back(N);
2363#ifndef NDEBUG
2364  VerifySDNode(N);
2365#endif
2366  return SDValue(N, 0);
2367}
2368
2369SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2370                              EVT VT, SDValue Operand) {
2371  // Constant fold unary operations with an integer constant operand.
2372  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2373    const APInt &Val = C->getAPIntValue();
2374    switch (Opcode) {
2375    default: break;
2376    case ISD::SIGN_EXTEND:
2377      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2378    case ISD::ANY_EXTEND:
2379    case ISD::ZERO_EXTEND:
2380    case ISD::TRUNCATE:
2381      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2382    case ISD::UINT_TO_FP:
2383    case ISD::SINT_TO_FP: {
2384      // No compile time operations on ppcf128.
2385      if (VT == MVT::ppcf128) break;
2386      APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2387      (void)apf.convertFromAPInt(Val,
2388                                 Opcode==ISD::SINT_TO_FP,
2389                                 APFloat::rmNearestTiesToEven);
2390      return getConstantFP(apf, VT);
2391    }
2392    case ISD::BITCAST:
2393      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2394        return getConstantFP(Val.bitsToFloat(), VT);
2395      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2396        return getConstantFP(Val.bitsToDouble(), VT);
2397      break;
2398    case ISD::BSWAP:
2399      return getConstant(Val.byteSwap(), VT);
2400    case ISD::CTPOP:
2401      return getConstant(Val.countPopulation(), VT);
2402    case ISD::CTLZ:
2403      return getConstant(Val.countLeadingZeros(), VT);
2404    case ISD::CTTZ:
2405      return getConstant(Val.countTrailingZeros(), VT);
2406    }
2407  }
2408
2409  // Constant fold unary operations with a floating point constant operand.
2410  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2411    APFloat V = C->getValueAPF();    // make copy
2412    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2413      switch (Opcode) {
2414      case ISD::FNEG:
2415        V.changeSign();
2416        return getConstantFP(V, VT);
2417      case ISD::FABS:
2418        V.clearSign();
2419        return getConstantFP(V, VT);
2420      case ISD::FP_ROUND:
2421      case ISD::FP_EXTEND: {
2422        bool ignored;
2423        // This can return overflow, underflow, or inexact; we don't care.
2424        // FIXME need to be more flexible about rounding mode.
2425        (void)V.convert(*EVTToAPFloatSemantics(VT),
2426                        APFloat::rmNearestTiesToEven, &ignored);
2427        return getConstantFP(V, VT);
2428      }
2429      case ISD::FP_TO_SINT:
2430      case ISD::FP_TO_UINT: {
2431        integerPart x[2];
2432        bool ignored;
2433        assert(integerPartWidth >= 64);
2434        // FIXME need to be more flexible about rounding mode.
2435        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2436                              Opcode==ISD::FP_TO_SINT,
2437                              APFloat::rmTowardZero, &ignored);
2438        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2439          break;
2440        APInt api(VT.getSizeInBits(), x);
2441        return getConstant(api, VT);
2442      }
2443      case ISD::BITCAST:
2444        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2445          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2446        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2447          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2448        break;
2449      }
2450    }
2451  }
2452
2453  unsigned OpOpcode = Operand.getNode()->getOpcode();
2454  switch (Opcode) {
2455  case ISD::TokenFactor:
2456  case ISD::MERGE_VALUES:
2457  case ISD::CONCAT_VECTORS:
2458    return Operand;         // Factor, merge or concat of one node?  No need.
2459  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2460  case ISD::FP_EXTEND:
2461    assert(VT.isFloatingPoint() &&
2462           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2463    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2464    assert((!VT.isVector() ||
2465            VT.getVectorNumElements() ==
2466            Operand.getValueType().getVectorNumElements()) &&
2467           "Vector element count mismatch!");
2468    if (Operand.getOpcode() == ISD::UNDEF)
2469      return getUNDEF(VT);
2470    break;
2471  case ISD::SIGN_EXTEND:
2472    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2473           "Invalid SIGN_EXTEND!");
2474    if (Operand.getValueType() == VT) return Operand;   // noop extension
2475    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2476           "Invalid sext node, dst < src!");
2477    assert((!VT.isVector() ||
2478            VT.getVectorNumElements() ==
2479            Operand.getValueType().getVectorNumElements()) &&
2480           "Vector element count mismatch!");
2481    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2482      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2483    else if (OpOpcode == ISD::UNDEF)
2484      // sext(undef) = 0, because the top bits will all be the same.
2485      return getConstant(0, VT);
2486    break;
2487  case ISD::ZERO_EXTEND:
2488    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2489           "Invalid ZERO_EXTEND!");
2490    if (Operand.getValueType() == VT) return Operand;   // noop extension
2491    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2492           "Invalid zext node, dst < src!");
2493    assert((!VT.isVector() ||
2494            VT.getVectorNumElements() ==
2495            Operand.getValueType().getVectorNumElements()) &&
2496           "Vector element count mismatch!");
2497    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2498      return getNode(ISD::ZERO_EXTEND, DL, VT,
2499                     Operand.getNode()->getOperand(0));
2500    else if (OpOpcode == ISD::UNDEF)
2501      // zext(undef) = 0, because the top bits will be zero.
2502      return getConstant(0, VT);
2503    break;
2504  case ISD::ANY_EXTEND:
2505    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2506           "Invalid ANY_EXTEND!");
2507    if (Operand.getValueType() == VT) return Operand;   // noop extension
2508    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2509           "Invalid anyext node, dst < src!");
2510    assert((!VT.isVector() ||
2511            VT.getVectorNumElements() ==
2512            Operand.getValueType().getVectorNumElements()) &&
2513           "Vector element count mismatch!");
2514
2515    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2516        OpOpcode == ISD::ANY_EXTEND)
2517      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2518      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2519    else if (OpOpcode == ISD::UNDEF)
2520      return getUNDEF(VT);
2521
2522    // (ext (trunx x)) -> x
2523    if (OpOpcode == ISD::TRUNCATE) {
2524      SDValue OpOp = Operand.getNode()->getOperand(0);
2525      if (OpOp.getValueType() == VT)
2526        return OpOp;
2527    }
2528    break;
2529  case ISD::TRUNCATE:
2530    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2531           "Invalid TRUNCATE!");
2532    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2533    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2534           "Invalid truncate node, src < dst!");
2535    assert((!VT.isVector() ||
2536            VT.getVectorNumElements() ==
2537            Operand.getValueType().getVectorNumElements()) &&
2538           "Vector element count mismatch!");
2539    if (OpOpcode == ISD::TRUNCATE)
2540      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2541    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2542             OpOpcode == ISD::ANY_EXTEND) {
2543      // If the source is smaller than the dest, we still need an extend.
2544      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2545            .bitsLT(VT.getScalarType()))
2546        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2547      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2548        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2549      else
2550        return Operand.getNode()->getOperand(0);
2551    }
2552    break;
2553  case ISD::BITCAST:
2554    // Basic sanity checking.
2555    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2556           && "Cannot BITCAST between types of different sizes!");
2557    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2558    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2559      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2560    if (OpOpcode == ISD::UNDEF)
2561      return getUNDEF(VT);
2562    break;
2563  case ISD::SCALAR_TO_VECTOR:
2564    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2565           (VT.getVectorElementType() == Operand.getValueType() ||
2566            (VT.getVectorElementType().isInteger() &&
2567             Operand.getValueType().isInteger() &&
2568             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2569           "Illegal SCALAR_TO_VECTOR node!");
2570    if (OpOpcode == ISD::UNDEF)
2571      return getUNDEF(VT);
2572    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2573    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2574        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2575        Operand.getConstantOperandVal(1) == 0 &&
2576        Operand.getOperand(0).getValueType() == VT)
2577      return Operand.getOperand(0);
2578    break;
2579  case ISD::FNEG:
2580    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2581    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2582      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2583                     Operand.getNode()->getOperand(0));
2584    if (OpOpcode == ISD::FNEG)  // --X -> X
2585      return Operand.getNode()->getOperand(0);
2586    break;
2587  case ISD::FABS:
2588    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2589      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2590    break;
2591  }
2592
2593  SDNode *N;
2594  SDVTList VTs = getVTList(VT);
2595  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2596    FoldingSetNodeID ID;
2597    SDValue Ops[1] = { Operand };
2598    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2599    void *IP = 0;
2600    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2601      return SDValue(E, 0);
2602
2603    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2604    CSEMap.InsertNode(N, IP);
2605  } else {
2606    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2607  }
2608
2609  AllNodes.push_back(N);
2610#ifndef NDEBUG
2611  VerifySDNode(N);
2612#endif
2613  return SDValue(N, 0);
2614}
2615
2616SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2617                                             EVT VT,
2618                                             ConstantSDNode *Cst1,
2619                                             ConstantSDNode *Cst2) {
2620  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2621
2622  switch (Opcode) {
2623  case ISD::ADD:  return getConstant(C1 + C2, VT);
2624  case ISD::SUB:  return getConstant(C1 - C2, VT);
2625  case ISD::MUL:  return getConstant(C1 * C2, VT);
2626  case ISD::UDIV:
2627    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2628    break;
2629  case ISD::UREM:
2630    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2631    break;
2632  case ISD::SDIV:
2633    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2634    break;
2635  case ISD::SREM:
2636    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2637    break;
2638  case ISD::AND:  return getConstant(C1 & C2, VT);
2639  case ISD::OR:   return getConstant(C1 | C2, VT);
2640  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2641  case ISD::SHL:  return getConstant(C1 << C2, VT);
2642  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2643  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2644  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2645  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2646  default: break;
2647  }
2648
2649  return SDValue();
2650}
2651
2652SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2653                              SDValue N1, SDValue N2) {
2654  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2655  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2656  switch (Opcode) {
2657  default: break;
2658  case ISD::TokenFactor:
2659    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2660           N2.getValueType() == MVT::Other && "Invalid token factor!");
2661    // Fold trivial token factors.
2662    if (N1.getOpcode() == ISD::EntryToken) return N2;
2663    if (N2.getOpcode() == ISD::EntryToken) return N1;
2664    if (N1 == N2) return N1;
2665    break;
2666  case ISD::CONCAT_VECTORS:
2667    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2668    // one big BUILD_VECTOR.
2669    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2670        N2.getOpcode() == ISD::BUILD_VECTOR) {
2671      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2672                                    N1.getNode()->op_end());
2673      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2674      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2675    }
2676    break;
2677  case ISD::AND:
2678    assert(VT.isInteger() && "This operator does not apply to FP types!");
2679    assert(N1.getValueType() == N2.getValueType() &&
2680           N1.getValueType() == VT && "Binary operator types must match!");
2681    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2682    // worth handling here.
2683    if (N2C && N2C->isNullValue())
2684      return N2;
2685    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2686      return N1;
2687    break;
2688  case ISD::OR:
2689  case ISD::XOR:
2690  case ISD::ADD:
2691  case ISD::SUB:
2692    assert(VT.isInteger() && "This operator does not apply to FP types!");
2693    assert(N1.getValueType() == N2.getValueType() &&
2694           N1.getValueType() == VT && "Binary operator types must match!");
2695    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2696    // it's worth handling here.
2697    if (N2C && N2C->isNullValue())
2698      return N1;
2699    break;
2700  case ISD::UDIV:
2701  case ISD::UREM:
2702  case ISD::MULHU:
2703  case ISD::MULHS:
2704  case ISD::MUL:
2705  case ISD::SDIV:
2706  case ISD::SREM:
2707    assert(VT.isInteger() && "This operator does not apply to FP types!");
2708    assert(N1.getValueType() == N2.getValueType() &&
2709           N1.getValueType() == VT && "Binary operator types must match!");
2710    break;
2711  case ISD::FADD:
2712  case ISD::FSUB:
2713  case ISD::FMUL:
2714  case ISD::FDIV:
2715  case ISD::FREM:
2716    if (UnsafeFPMath) {
2717      if (Opcode == ISD::FADD) {
2718        // 0+x --> x
2719        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2720          if (CFP->getValueAPF().isZero())
2721            return N2;
2722        // x+0 --> x
2723        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2724          if (CFP->getValueAPF().isZero())
2725            return N1;
2726      } else if (Opcode == ISD::FSUB) {
2727        // x-0 --> x
2728        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2729          if (CFP->getValueAPF().isZero())
2730            return N1;
2731      }
2732    }
2733    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2734    assert(N1.getValueType() == N2.getValueType() &&
2735           N1.getValueType() == VT && "Binary operator types must match!");
2736    break;
2737  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2738    assert(N1.getValueType() == VT &&
2739           N1.getValueType().isFloatingPoint() &&
2740           N2.getValueType().isFloatingPoint() &&
2741           "Invalid FCOPYSIGN!");
2742    break;
2743  case ISD::SHL:
2744  case ISD::SRA:
2745  case ISD::SRL:
2746  case ISD::ROTL:
2747  case ISD::ROTR:
2748    assert(VT == N1.getValueType() &&
2749           "Shift operators return type must be the same as their first arg");
2750    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2751           "Shifts only work on integers");
2752    // Verify that the shift amount VT is bit enough to hold valid shift
2753    // amounts.  This catches things like trying to shift an i1024 value by an
2754    // i8, which is easy to fall into in generic code that uses
2755    // TLI.getShiftAmount().
2756    assert(N2.getValueType().getSizeInBits() >=
2757                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2758           "Invalid use of small shift amount with oversized value!");
2759
2760    // Always fold shifts of i1 values so the code generator doesn't need to
2761    // handle them.  Since we know the size of the shift has to be less than the
2762    // size of the value, the shift/rotate count is guaranteed to be zero.
2763    if (VT == MVT::i1)
2764      return N1;
2765    if (N2C && N2C->isNullValue())
2766      return N1;
2767    break;
2768  case ISD::FP_ROUND_INREG: {
2769    EVT EVT = cast<VTSDNode>(N2)->getVT();
2770    assert(VT == N1.getValueType() && "Not an inreg round!");
2771    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2772           "Cannot FP_ROUND_INREG integer types");
2773    assert(EVT.isVector() == VT.isVector() &&
2774           "FP_ROUND_INREG type should be vector iff the operand "
2775           "type is vector!");
2776    assert((!EVT.isVector() ||
2777            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2778           "Vector element counts must match in FP_ROUND_INREG");
2779    assert(EVT.bitsLE(VT) && "Not rounding down!");
2780    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2781    break;
2782  }
2783  case ISD::FP_ROUND:
2784    assert(VT.isFloatingPoint() &&
2785           N1.getValueType().isFloatingPoint() &&
2786           VT.bitsLE(N1.getValueType()) &&
2787           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2788    if (N1.getValueType() == VT) return N1;  // noop conversion.
2789    break;
2790  case ISD::AssertSext:
2791  case ISD::AssertZext: {
2792    EVT EVT = cast<VTSDNode>(N2)->getVT();
2793    assert(VT == N1.getValueType() && "Not an inreg extend!");
2794    assert(VT.isInteger() && EVT.isInteger() &&
2795           "Cannot *_EXTEND_INREG FP types");
2796    assert(!EVT.isVector() &&
2797           "AssertSExt/AssertZExt type should be the vector element type "
2798           "rather than the vector type!");
2799    assert(EVT.bitsLE(VT) && "Not extending!");
2800    if (VT == EVT) return N1; // noop assertion.
2801    break;
2802  }
2803  case ISD::SIGN_EXTEND_INREG: {
2804    EVT EVT = cast<VTSDNode>(N2)->getVT();
2805    assert(VT == N1.getValueType() && "Not an inreg extend!");
2806    assert(VT.isInteger() && EVT.isInteger() &&
2807           "Cannot *_EXTEND_INREG FP types");
2808    assert(EVT.isVector() == VT.isVector() &&
2809           "SIGN_EXTEND_INREG type should be vector iff the operand "
2810           "type is vector!");
2811    assert((!EVT.isVector() ||
2812            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2813           "Vector element counts must match in SIGN_EXTEND_INREG");
2814    assert(EVT.bitsLE(VT) && "Not extending!");
2815    if (EVT == VT) return N1;  // Not actually extending
2816
2817    if (N1C) {
2818      APInt Val = N1C->getAPIntValue();
2819      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2820      Val <<= Val.getBitWidth()-FromBits;
2821      Val = Val.ashr(Val.getBitWidth()-FromBits);
2822      return getConstant(Val, VT);
2823    }
2824    break;
2825  }
2826  case ISD::EXTRACT_VECTOR_ELT:
2827    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2828    if (N1.getOpcode() == ISD::UNDEF)
2829      return getUNDEF(VT);
2830
2831    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2832    // expanding copies of large vectors from registers.
2833    if (N2C &&
2834        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2835        N1.getNumOperands() > 0) {
2836      unsigned Factor =
2837        N1.getOperand(0).getValueType().getVectorNumElements();
2838      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2839                     N1.getOperand(N2C->getZExtValue() / Factor),
2840                     getConstant(N2C->getZExtValue() % Factor,
2841                                 N2.getValueType()));
2842    }
2843
2844    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2845    // expanding large vector constants.
2846    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2847      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2848      EVT VEltTy = N1.getValueType().getVectorElementType();
2849      if (Elt.getValueType() != VEltTy) {
2850        // If the vector element type is not legal, the BUILD_VECTOR operands
2851        // are promoted and implicitly truncated.  Make that explicit here.
2852        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2853      }
2854      if (VT != VEltTy) {
2855        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2856        // result is implicitly extended.
2857        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2858      }
2859      return Elt;
2860    }
2861
2862    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2863    // operations are lowered to scalars.
2864    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2865      // If the indices are the same, return the inserted element else
2866      // if the indices are known different, extract the element from
2867      // the original vector.
2868      SDValue N1Op2 = N1.getOperand(2);
2869      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2870
2871      if (N1Op2C && N2C) {
2872        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2873          if (VT == N1.getOperand(1).getValueType())
2874            return N1.getOperand(1);
2875          else
2876            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2877        }
2878
2879        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2880      }
2881    }
2882    break;
2883  case ISD::EXTRACT_ELEMENT:
2884    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2885    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2886           (N1.getValueType().isInteger() == VT.isInteger()) &&
2887           "Wrong types for EXTRACT_ELEMENT!");
2888
2889    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2890    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2891    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2892    if (N1.getOpcode() == ISD::BUILD_PAIR)
2893      return N1.getOperand(N2C->getZExtValue());
2894
2895    // EXTRACT_ELEMENT of a constant int is also very common.
2896    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2897      unsigned ElementSize = VT.getSizeInBits();
2898      unsigned Shift = ElementSize * N2C->getZExtValue();
2899      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2900      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2901    }
2902    break;
2903  case ISD::EXTRACT_SUBVECTOR: {
2904    SDValue Index = N2;
2905    if (VT.isSimple() && N1.getValueType().isSimple()) {
2906      assert(VT.isVector() && N1.getValueType().isVector() &&
2907             "Extract subvector VTs must be a vectors!");
2908      assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
2909             "Extract subvector VTs must have the same element type!");
2910      assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
2911             "Extract subvector must be from larger vector to smaller vector!");
2912
2913      if (isa<ConstantSDNode>(Index.getNode())) {
2914        assert((VT.getVectorNumElements() +
2915                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
2916                <= N1.getValueType().getVectorNumElements())
2917               && "Extract subvector overflow!");
2918      }
2919
2920      // Trivial extraction.
2921      if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
2922        return N1;
2923    }
2924    break;
2925  }
2926  }
2927
2928  if (N1C) {
2929    if (N2C) {
2930      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2931      if (SV.getNode()) return SV;
2932    } else {      // Cannonicalize constant to RHS if commutative
2933      if (isCommutativeBinOp(Opcode)) {
2934        std::swap(N1C, N2C);
2935        std::swap(N1, N2);
2936      }
2937    }
2938  }
2939
2940  // Constant fold FP operations.
2941  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2942  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2943  if (N1CFP) {
2944    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2945      // Cannonicalize constant to RHS if commutative
2946      std::swap(N1CFP, N2CFP);
2947      std::swap(N1, N2);
2948    } else if (N2CFP && VT != MVT::ppcf128) {
2949      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2950      APFloat::opStatus s;
2951      switch (Opcode) {
2952      case ISD::FADD:
2953        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2954        if (s != APFloat::opInvalidOp)
2955          return getConstantFP(V1, VT);
2956        break;
2957      case ISD::FSUB:
2958        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2959        if (s!=APFloat::opInvalidOp)
2960          return getConstantFP(V1, VT);
2961        break;
2962      case ISD::FMUL:
2963        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2964        if (s!=APFloat::opInvalidOp)
2965          return getConstantFP(V1, VT);
2966        break;
2967      case ISD::FDIV:
2968        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2969        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2970          return getConstantFP(V1, VT);
2971        break;
2972      case ISD::FREM :
2973        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2974        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2975          return getConstantFP(V1, VT);
2976        break;
2977      case ISD::FCOPYSIGN:
2978        V1.copySign(V2);
2979        return getConstantFP(V1, VT);
2980      default: break;
2981      }
2982    }
2983  }
2984
2985  // Canonicalize an UNDEF to the RHS, even over a constant.
2986  if (N1.getOpcode() == ISD::UNDEF) {
2987    if (isCommutativeBinOp(Opcode)) {
2988      std::swap(N1, N2);
2989    } else {
2990      switch (Opcode) {
2991      case ISD::FP_ROUND_INREG:
2992      case ISD::SIGN_EXTEND_INREG:
2993      case ISD::SUB:
2994      case ISD::FSUB:
2995      case ISD::FDIV:
2996      case ISD::FREM:
2997      case ISD::SRA:
2998        return N1;     // fold op(undef, arg2) -> undef
2999      case ISD::UDIV:
3000      case ISD::SDIV:
3001      case ISD::UREM:
3002      case ISD::SREM:
3003      case ISD::SRL:
3004      case ISD::SHL:
3005        if (!VT.isVector())
3006          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
3007        // For vectors, we can't easily build an all zero vector, just return
3008        // the LHS.
3009        return N2;
3010      }
3011    }
3012  }
3013
3014  // Fold a bunch of operators when the RHS is undef.
3015  if (N2.getOpcode() == ISD::UNDEF) {
3016    switch (Opcode) {
3017    case ISD::XOR:
3018      if (N1.getOpcode() == ISD::UNDEF)
3019        // Handle undef ^ undef -> 0 special case. This is a common
3020        // idiom (misuse).
3021        return getConstant(0, VT);
3022      // fallthrough
3023    case ISD::ADD:
3024    case ISD::ADDC:
3025    case ISD::ADDE:
3026    case ISD::SUB:
3027    case ISD::UDIV:
3028    case ISD::SDIV:
3029    case ISD::UREM:
3030    case ISD::SREM:
3031      return N2;       // fold op(arg1, undef) -> undef
3032    case ISD::FADD:
3033    case ISD::FSUB:
3034    case ISD::FMUL:
3035    case ISD::FDIV:
3036    case ISD::FREM:
3037      if (UnsafeFPMath)
3038        return N2;
3039      break;
3040    case ISD::MUL:
3041    case ISD::AND:
3042    case ISD::SRL:
3043    case ISD::SHL:
3044      if (!VT.isVector())
3045        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3046      // For vectors, we can't easily build an all zero vector, just return
3047      // the LHS.
3048      return N1;
3049    case ISD::OR:
3050      if (!VT.isVector())
3051        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3052      // For vectors, we can't easily build an all one vector, just return
3053      // the LHS.
3054      return N1;
3055    case ISD::SRA:
3056      return N1;
3057    }
3058  }
3059
3060  // Memoize this node if possible.
3061  SDNode *N;
3062  SDVTList VTs = getVTList(VT);
3063  if (VT != MVT::Glue) {
3064    SDValue Ops[] = { N1, N2 };
3065    FoldingSetNodeID ID;
3066    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3067    void *IP = 0;
3068    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3069      return SDValue(E, 0);
3070
3071    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3072    CSEMap.InsertNode(N, IP);
3073  } else {
3074    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3075  }
3076
3077  AllNodes.push_back(N);
3078#ifndef NDEBUG
3079  VerifySDNode(N);
3080#endif
3081  return SDValue(N, 0);
3082}
3083
3084SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3085                              SDValue N1, SDValue N2, SDValue N3) {
3086  // Perform various simplifications.
3087  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3088  switch (Opcode) {
3089  case ISD::CONCAT_VECTORS:
3090    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3091    // one big BUILD_VECTOR.
3092    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3093        N2.getOpcode() == ISD::BUILD_VECTOR &&
3094        N3.getOpcode() == ISD::BUILD_VECTOR) {
3095      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3096                                    N1.getNode()->op_end());
3097      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3098      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3099      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3100    }
3101    break;
3102  case ISD::SETCC: {
3103    // Use FoldSetCC to simplify SETCC's.
3104    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3105    if (Simp.getNode()) return Simp;
3106    break;
3107  }
3108  case ISD::SELECT:
3109    if (N1C) {
3110     if (N1C->getZExtValue())
3111        return N2;             // select true, X, Y -> X
3112      else
3113        return N3;             // select false, X, Y -> Y
3114    }
3115
3116    if (N2 == N3) return N2;   // select C, X, X -> X
3117    break;
3118  case ISD::VECTOR_SHUFFLE:
3119    llvm_unreachable("should use getVectorShuffle constructor!");
3120    break;
3121  case ISD::INSERT_SUBVECTOR: {
3122    SDValue Index = N3;
3123    if (VT.isSimple() && N1.getValueType().isSimple()
3124        && N2.getValueType().isSimple()) {
3125      assert(VT.isVector() && N1.getValueType().isVector() &&
3126             N2.getValueType().isVector() &&
3127             "Insert subvector VTs must be a vectors");
3128      assert(VT == N1.getValueType() &&
3129             "Dest and insert subvector source types must match!");
3130      assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3131             "Insert subvector must be from smaller vector to larger vector!");
3132      if (isa<ConstantSDNode>(Index.getNode())) {
3133        assert((N2.getValueType().getVectorNumElements() +
3134                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3135                <= VT.getVectorNumElements())
3136               && "Insert subvector overflow!");
3137      }
3138
3139      // Trivial insertion.
3140      if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3141        return N2;
3142    }
3143    break;
3144  }
3145  case ISD::BITCAST:
3146    // Fold bit_convert nodes from a type to themselves.
3147    if (N1.getValueType() == VT)
3148      return N1;
3149    break;
3150  }
3151
3152  // Memoize node if it doesn't produce a flag.
3153  SDNode *N;
3154  SDVTList VTs = getVTList(VT);
3155  if (VT != MVT::Glue) {
3156    SDValue Ops[] = { N1, N2, N3 };
3157    FoldingSetNodeID ID;
3158    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3159    void *IP = 0;
3160    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3161      return SDValue(E, 0);
3162
3163    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3164    CSEMap.InsertNode(N, IP);
3165  } else {
3166    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3167  }
3168
3169  AllNodes.push_back(N);
3170#ifndef NDEBUG
3171  VerifySDNode(N);
3172#endif
3173  return SDValue(N, 0);
3174}
3175
3176SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3177                              SDValue N1, SDValue N2, SDValue N3,
3178                              SDValue N4) {
3179  SDValue Ops[] = { N1, N2, N3, N4 };
3180  return getNode(Opcode, DL, VT, Ops, 4);
3181}
3182
3183SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3184                              SDValue N1, SDValue N2, SDValue N3,
3185                              SDValue N4, SDValue N5) {
3186  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3187  return getNode(Opcode, DL, VT, Ops, 5);
3188}
3189
3190/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3191/// the incoming stack arguments to be loaded from the stack.
3192SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3193  SmallVector<SDValue, 8> ArgChains;
3194
3195  // Include the original chain at the beginning of the list. When this is
3196  // used by target LowerCall hooks, this helps legalize find the
3197  // CALLSEQ_BEGIN node.
3198  ArgChains.push_back(Chain);
3199
3200  // Add a chain value for each stack argument.
3201  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3202       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3203    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3204      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3205        if (FI->getIndex() < 0)
3206          ArgChains.push_back(SDValue(L, 1));
3207
3208  // Build a tokenfactor for all the chains.
3209  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3210                 &ArgChains[0], ArgChains.size());
3211}
3212
3213/// SplatByte - Distribute ByteVal over NumBits bits.
3214static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
3215  APInt Val = APInt(NumBits, ByteVal);
3216  unsigned Shift = 8;
3217  for (unsigned i = NumBits; i > 8; i >>= 1) {
3218    Val = (Val << Shift) | Val;
3219    Shift <<= 1;
3220  }
3221  return Val;
3222}
3223
3224/// getMemsetValue - Vectorized representation of the memset value
3225/// operand.
3226static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3227                              DebugLoc dl) {
3228  assert(Value.getOpcode() != ISD::UNDEF);
3229
3230  unsigned NumBits = VT.getScalarType().getSizeInBits();
3231  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3232    APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
3233    if (VT.isInteger())
3234      return DAG.getConstant(Val, VT);
3235    return DAG.getConstantFP(APFloat(Val), VT);
3236  }
3237
3238  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3239  if (NumBits > 8) {
3240    // Use a multiplication with 0x010101... to extend the input to the
3241    // required length.
3242    APInt Magic = SplatByte(NumBits, 0x01);
3243    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3244  }
3245
3246  return Value;
3247}
3248
3249/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3250/// used when a memcpy is turned into a memset when the source is a constant
3251/// string ptr.
3252static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3253                                  const TargetLowering &TLI,
3254                                  std::string &Str, unsigned Offset) {
3255  // Handle vector with all elements zero.
3256  if (Str.empty()) {
3257    if (VT.isInteger())
3258      return DAG.getConstant(0, VT);
3259    else if (VT == MVT::f32 || VT == MVT::f64)
3260      return DAG.getConstantFP(0.0, VT);
3261    else if (VT.isVector()) {
3262      unsigned NumElts = VT.getVectorNumElements();
3263      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3264      return DAG.getNode(ISD::BITCAST, dl, VT,
3265                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3266                                                             EltVT, NumElts)));
3267    } else
3268      llvm_unreachable("Expected type!");
3269  }
3270
3271  assert(!VT.isVector() && "Can't handle vector type here!");
3272  unsigned NumBits = VT.getSizeInBits();
3273  unsigned MSB = NumBits / 8;
3274  uint64_t Val = 0;
3275  if (TLI.isLittleEndian())
3276    Offset = Offset + MSB - 1;
3277  for (unsigned i = 0; i != MSB; ++i) {
3278    Val = (Val << 8) | (unsigned char)Str[Offset];
3279    Offset += TLI.isLittleEndian() ? -1 : 1;
3280  }
3281  return DAG.getConstant(Val, VT);
3282}
3283
3284/// getMemBasePlusOffset - Returns base and offset node for the
3285///
3286static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3287                                      SelectionDAG &DAG) {
3288  EVT VT = Base.getValueType();
3289  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3290                     VT, Base, DAG.getConstant(Offset, VT));
3291}
3292
3293/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3294///
3295static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3296  unsigned SrcDelta = 0;
3297  GlobalAddressSDNode *G = NULL;
3298  if (Src.getOpcode() == ISD::GlobalAddress)
3299    G = cast<GlobalAddressSDNode>(Src);
3300  else if (Src.getOpcode() == ISD::ADD &&
3301           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3302           Src.getOperand(1).getOpcode() == ISD::Constant) {
3303    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3304    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3305  }
3306  if (!G)
3307    return false;
3308
3309  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3310  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3311    return true;
3312
3313  return false;
3314}
3315
3316/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3317/// to replace the memset / memcpy. Return true if the number of memory ops
3318/// is below the threshold. It returns the types of the sequence of
3319/// memory ops to perform memset / memcpy by reference.
3320static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3321                                     unsigned Limit, uint64_t Size,
3322                                     unsigned DstAlign, unsigned SrcAlign,
3323                                     bool NonScalarIntSafe,
3324                                     bool MemcpyStrSrc,
3325                                     SelectionDAG &DAG,
3326                                     const TargetLowering &TLI) {
3327  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3328         "Expecting memcpy / memset source to meet alignment requirement!");
3329  // If 'SrcAlign' is zero, that means the memory operation does not need to
3330  // load the value, i.e. memset or memcpy from constant string. Otherwise,
3331  // it's the inferred alignment of the source. 'DstAlign', on the other hand,
3332  // is the specified alignment of the memory operation. If it is zero, that
3333  // means it's possible to change the alignment of the destination.
3334  // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
3335  // not need to be loaded.
3336  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3337                                   NonScalarIntSafe, MemcpyStrSrc,
3338                                   DAG.getMachineFunction());
3339
3340  if (VT == MVT::Other) {
3341    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3342        TLI.allowsUnalignedMemoryAccesses(VT)) {
3343      VT = TLI.getPointerTy();
3344    } else {
3345      switch (DstAlign & 7) {
3346      case 0:  VT = MVT::i64; break;
3347      case 4:  VT = MVT::i32; break;
3348      case 2:  VT = MVT::i16; break;
3349      default: VT = MVT::i8;  break;
3350      }
3351    }
3352
3353    MVT LVT = MVT::i64;
3354    while (!TLI.isTypeLegal(LVT))
3355      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3356    assert(LVT.isInteger());
3357
3358    if (VT.bitsGT(LVT))
3359      VT = LVT;
3360  }
3361
3362  unsigned NumMemOps = 0;
3363  while (Size != 0) {
3364    unsigned VTSize = VT.getSizeInBits() / 8;
3365    while (VTSize > Size) {
3366      // For now, only use non-vector load / store's for the left-over pieces.
3367      if (VT.isVector() || VT.isFloatingPoint()) {
3368        VT = MVT::i64;
3369        while (!TLI.isTypeLegal(VT))
3370          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3371        VTSize = VT.getSizeInBits() / 8;
3372      } else {
3373        // This can result in a type that is not legal on the target, e.g.
3374        // 1 or 2 bytes on PPC.
3375        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3376        VTSize >>= 1;
3377      }
3378    }
3379
3380    if (++NumMemOps > Limit)
3381      return false;
3382    MemOps.push_back(VT);
3383    Size -= VTSize;
3384  }
3385
3386  return true;
3387}
3388
3389static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3390                                       SDValue Chain, SDValue Dst,
3391                                       SDValue Src, uint64_t Size,
3392                                       unsigned Align, bool isVol,
3393                                       bool AlwaysInline,
3394                                       MachinePointerInfo DstPtrInfo,
3395                                       MachinePointerInfo SrcPtrInfo) {
3396  // Turn a memcpy of undef to nop.
3397  if (Src.getOpcode() == ISD::UNDEF)
3398    return Chain;
3399
3400  // Expand memcpy to a series of load and store ops if the size operand falls
3401  // below a certain threshold.
3402  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3403  // rather than maybe a humongous number of loads and stores.
3404  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3405  std::vector<EVT> MemOps;
3406  bool DstAlignCanChange = false;
3407  MachineFunction &MF = DAG.getMachineFunction();
3408  MachineFrameInfo *MFI = MF.getFrameInfo();
3409  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3410  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3411  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3412    DstAlignCanChange = true;
3413  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3414  if (Align > SrcAlign)
3415    SrcAlign = Align;
3416  std::string Str;
3417  bool CopyFromStr = isMemSrcFromString(Src, Str);
3418  bool isZeroStr = CopyFromStr && Str.empty();
3419  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3420
3421  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3422                                (DstAlignCanChange ? 0 : Align),
3423                                (isZeroStr ? 0 : SrcAlign),
3424                                true, CopyFromStr, DAG, TLI))
3425    return SDValue();
3426
3427  if (DstAlignCanChange) {
3428    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3429    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3430    if (NewAlign > Align) {
3431      // Give the stack frame object a larger alignment if needed.
3432      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3433        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3434      Align = NewAlign;
3435    }
3436  }
3437
3438  SmallVector<SDValue, 8> OutChains;
3439  unsigned NumMemOps = MemOps.size();
3440  uint64_t SrcOff = 0, DstOff = 0;
3441  for (unsigned i = 0; i != NumMemOps; ++i) {
3442    EVT VT = MemOps[i];
3443    unsigned VTSize = VT.getSizeInBits() / 8;
3444    SDValue Value, Store;
3445
3446    if (CopyFromStr &&
3447        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3448      // It's unlikely a store of a vector immediate can be done in a single
3449      // instruction. It would require a load from a constantpool first.
3450      // We only handle zero vectors here.
3451      // FIXME: Handle other cases where store of vector immediate is done in
3452      // a single instruction.
3453      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3454      Store = DAG.getStore(Chain, dl, Value,
3455                           getMemBasePlusOffset(Dst, DstOff, DAG),
3456                           DstPtrInfo.getWithOffset(DstOff), isVol,
3457                           false, Align);
3458    } else {
3459      // The type might not be legal for the target.  This should only happen
3460      // if the type is smaller than a legal type, as on PPC, so the right
3461      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3462      // to Load/Store if NVT==VT.
3463      // FIXME does the case above also need this?
3464      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3465      assert(NVT.bitsGE(VT));
3466      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3467                             getMemBasePlusOffset(Src, SrcOff, DAG),
3468                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3469                             MinAlign(SrcAlign, SrcOff));
3470      Store = DAG.getTruncStore(Chain, dl, Value,
3471                                getMemBasePlusOffset(Dst, DstOff, DAG),
3472                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3473                                false, Align);
3474    }
3475    OutChains.push_back(Store);
3476    SrcOff += VTSize;
3477    DstOff += VTSize;
3478  }
3479
3480  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3481                     &OutChains[0], OutChains.size());
3482}
3483
3484static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3485                                        SDValue Chain, SDValue Dst,
3486                                        SDValue Src, uint64_t Size,
3487                                        unsigned Align,  bool isVol,
3488                                        bool AlwaysInline,
3489                                        MachinePointerInfo DstPtrInfo,
3490                                        MachinePointerInfo SrcPtrInfo) {
3491  // Turn a memmove of undef to nop.
3492  if (Src.getOpcode() == ISD::UNDEF)
3493    return Chain;
3494
3495  // Expand memmove to a series of load and store ops if the size operand falls
3496  // below a certain threshold.
3497  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3498  std::vector<EVT> MemOps;
3499  bool DstAlignCanChange = false;
3500  MachineFunction &MF = DAG.getMachineFunction();
3501  MachineFrameInfo *MFI = MF.getFrameInfo();
3502  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3503  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3504  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3505    DstAlignCanChange = true;
3506  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3507  if (Align > SrcAlign)
3508    SrcAlign = Align;
3509  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3510
3511  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3512                                (DstAlignCanChange ? 0 : Align),
3513                                SrcAlign, true, false, DAG, TLI))
3514    return SDValue();
3515
3516  if (DstAlignCanChange) {
3517    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3518    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3519    if (NewAlign > Align) {
3520      // Give the stack frame object a larger alignment if needed.
3521      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3522        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3523      Align = NewAlign;
3524    }
3525  }
3526
3527  uint64_t SrcOff = 0, DstOff = 0;
3528  SmallVector<SDValue, 8> LoadValues;
3529  SmallVector<SDValue, 8> LoadChains;
3530  SmallVector<SDValue, 8> OutChains;
3531  unsigned NumMemOps = MemOps.size();
3532  for (unsigned i = 0; i < NumMemOps; i++) {
3533    EVT VT = MemOps[i];
3534    unsigned VTSize = VT.getSizeInBits() / 8;
3535    SDValue Value, Store;
3536
3537    Value = DAG.getLoad(VT, dl, Chain,
3538                        getMemBasePlusOffset(Src, SrcOff, DAG),
3539                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3540                        false, SrcAlign);
3541    LoadValues.push_back(Value);
3542    LoadChains.push_back(Value.getValue(1));
3543    SrcOff += VTSize;
3544  }
3545  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3546                      &LoadChains[0], LoadChains.size());
3547  OutChains.clear();
3548  for (unsigned i = 0; i < NumMemOps; i++) {
3549    EVT VT = MemOps[i];
3550    unsigned VTSize = VT.getSizeInBits() / 8;
3551    SDValue Value, Store;
3552
3553    Store = DAG.getStore(Chain, dl, LoadValues[i],
3554                         getMemBasePlusOffset(Dst, DstOff, DAG),
3555                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3556    OutChains.push_back(Store);
3557    DstOff += VTSize;
3558  }
3559
3560  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3561                     &OutChains[0], OutChains.size());
3562}
3563
3564static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3565                               SDValue Chain, SDValue Dst,
3566                               SDValue Src, uint64_t Size,
3567                               unsigned Align, bool isVol,
3568                               MachinePointerInfo DstPtrInfo) {
3569  // Turn a memset of undef to nop.
3570  if (Src.getOpcode() == ISD::UNDEF)
3571    return Chain;
3572
3573  // Expand memset to a series of load/store ops if the size operand
3574  // falls below a certain threshold.
3575  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3576  std::vector<EVT> MemOps;
3577  bool DstAlignCanChange = false;
3578  MachineFunction &MF = DAG.getMachineFunction();
3579  MachineFrameInfo *MFI = MF.getFrameInfo();
3580  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3581  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3582  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3583    DstAlignCanChange = true;
3584  bool NonScalarIntSafe =
3585    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3586  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3587                                Size, (DstAlignCanChange ? 0 : Align), 0,
3588                                NonScalarIntSafe, false, DAG, TLI))
3589    return SDValue();
3590
3591  if (DstAlignCanChange) {
3592    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3593    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3594    if (NewAlign > Align) {
3595      // Give the stack frame object a larger alignment if needed.
3596      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3597        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3598      Align = NewAlign;
3599    }
3600  }
3601
3602  SmallVector<SDValue, 8> OutChains;
3603  uint64_t DstOff = 0;
3604  unsigned NumMemOps = MemOps.size();
3605
3606  // Find the largest store and generate the bit pattern for it.
3607  EVT LargestVT = MemOps[0];
3608  for (unsigned i = 1; i < NumMemOps; i++)
3609    if (MemOps[i].bitsGT(LargestVT))
3610      LargestVT = MemOps[i];
3611  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3612
3613  for (unsigned i = 0; i < NumMemOps; i++) {
3614    EVT VT = MemOps[i];
3615
3616    // If this store is smaller than the largest store see whether we can get
3617    // the smaller value for free with a truncate.
3618    SDValue Value = MemSetValue;
3619    if (VT.bitsLT(LargestVT)) {
3620      if (!LargestVT.isVector() && !VT.isVector() &&
3621          TLI.isTruncateFree(LargestVT, VT))
3622        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3623      else
3624        Value = getMemsetValue(Src, VT, DAG, dl);
3625    }
3626    assert(Value.getValueType() == VT && "Value with wrong type.");
3627    SDValue Store = DAG.getStore(Chain, dl, Value,
3628                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3629                                 DstPtrInfo.getWithOffset(DstOff),
3630                                 isVol, false, Align);
3631    OutChains.push_back(Store);
3632    DstOff += VT.getSizeInBits() / 8;
3633  }
3634
3635  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3636                     &OutChains[0], OutChains.size());
3637}
3638
3639SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3640                                SDValue Src, SDValue Size,
3641                                unsigned Align, bool isVol, bool AlwaysInline,
3642                                MachinePointerInfo DstPtrInfo,
3643                                MachinePointerInfo SrcPtrInfo) {
3644
3645  // Check to see if we should lower the memcpy to loads and stores first.
3646  // For cases within the target-specified limits, this is the best choice.
3647  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3648  if (ConstantSize) {
3649    // Memcpy with size zero? Just return the original chain.
3650    if (ConstantSize->isNullValue())
3651      return Chain;
3652
3653    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3654                                             ConstantSize->getZExtValue(),Align,
3655                                isVol, false, DstPtrInfo, SrcPtrInfo);
3656    if (Result.getNode())
3657      return Result;
3658  }
3659
3660  // Then check to see if we should lower the memcpy with target-specific
3661  // code. If the target chooses to do this, this is the next best.
3662  SDValue Result =
3663    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3664                                isVol, AlwaysInline,
3665                                DstPtrInfo, SrcPtrInfo);
3666  if (Result.getNode())
3667    return Result;
3668
3669  // If we really need inline code and the target declined to provide it,
3670  // use a (potentially long) sequence of loads and stores.
3671  if (AlwaysInline) {
3672    assert(ConstantSize && "AlwaysInline requires a constant size!");
3673    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3674                                   ConstantSize->getZExtValue(), Align, isVol,
3675                                   true, DstPtrInfo, SrcPtrInfo);
3676  }
3677
3678  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3679  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3680  // respect volatile, so they may do things like read or write memory
3681  // beyond the given memory regions. But fixing this isn't easy, and most
3682  // people don't care.
3683
3684  // Emit a library call.
3685  TargetLowering::ArgListTy Args;
3686  TargetLowering::ArgListEntry Entry;
3687  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3688  Entry.Node = Dst; Args.push_back(Entry);
3689  Entry.Node = Src; Args.push_back(Entry);
3690  Entry.Node = Size; Args.push_back(Entry);
3691  // FIXME: pass in DebugLoc
3692  std::pair<SDValue,SDValue> CallResult =
3693    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3694                    false, false, false, false, 0,
3695                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3696                    /*isReturnValueUsed=*/false,
3697                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3698                                      TLI.getPointerTy()),
3699                    Args, *this, dl);
3700  return CallResult.second;
3701}
3702
3703SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3704                                 SDValue Src, SDValue Size,
3705                                 unsigned Align, bool isVol,
3706                                 MachinePointerInfo DstPtrInfo,
3707                                 MachinePointerInfo SrcPtrInfo) {
3708
3709  // Check to see if we should lower the memmove to loads and stores first.
3710  // For cases within the target-specified limits, this is the best choice.
3711  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3712  if (ConstantSize) {
3713    // Memmove with size zero? Just return the original chain.
3714    if (ConstantSize->isNullValue())
3715      return Chain;
3716
3717    SDValue Result =
3718      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3719                               ConstantSize->getZExtValue(), Align, isVol,
3720                               false, DstPtrInfo, SrcPtrInfo);
3721    if (Result.getNode())
3722      return Result;
3723  }
3724
3725  // Then check to see if we should lower the memmove with target-specific
3726  // code. If the target chooses to do this, this is the next best.
3727  SDValue Result =
3728    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3729                                 DstPtrInfo, SrcPtrInfo);
3730  if (Result.getNode())
3731    return Result;
3732
3733  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3734  // not be safe.  See memcpy above for more details.
3735
3736  // Emit a library call.
3737  TargetLowering::ArgListTy Args;
3738  TargetLowering::ArgListEntry Entry;
3739  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3740  Entry.Node = Dst; Args.push_back(Entry);
3741  Entry.Node = Src; Args.push_back(Entry);
3742  Entry.Node = Size; Args.push_back(Entry);
3743  // FIXME:  pass in DebugLoc
3744  std::pair<SDValue,SDValue> CallResult =
3745    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3746                    false, false, false, false, 0,
3747                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3748                    /*isReturnValueUsed=*/false,
3749                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3750                                      TLI.getPointerTy()),
3751                    Args, *this, dl);
3752  return CallResult.second;
3753}
3754
3755SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3756                                SDValue Src, SDValue Size,
3757                                unsigned Align, bool isVol,
3758                                MachinePointerInfo DstPtrInfo) {
3759
3760  // Check to see if we should lower the memset to stores first.
3761  // For cases within the target-specified limits, this is the best choice.
3762  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3763  if (ConstantSize) {
3764    // Memset with size zero? Just return the original chain.
3765    if (ConstantSize->isNullValue())
3766      return Chain;
3767
3768    SDValue Result =
3769      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3770                      Align, isVol, DstPtrInfo);
3771
3772    if (Result.getNode())
3773      return Result;
3774  }
3775
3776  // Then check to see if we should lower the memset with target-specific
3777  // code. If the target chooses to do this, this is the next best.
3778  SDValue Result =
3779    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3780                                DstPtrInfo);
3781  if (Result.getNode())
3782    return Result;
3783
3784  // Emit a library call.
3785  Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3786  TargetLowering::ArgListTy Args;
3787  TargetLowering::ArgListEntry Entry;
3788  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3789  Args.push_back(Entry);
3790  // Extend or truncate the argument to be an i32 value for the call.
3791  if (Src.getValueType().bitsGT(MVT::i32))
3792    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3793  else
3794    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3795  Entry.Node = Src;
3796  Entry.Ty = Type::getInt32Ty(*getContext());
3797  Entry.isSExt = true;
3798  Args.push_back(Entry);
3799  Entry.Node = Size;
3800  Entry.Ty = IntPtrTy;
3801  Entry.isSExt = false;
3802  Args.push_back(Entry);
3803  // FIXME: pass in DebugLoc
3804  std::pair<SDValue,SDValue> CallResult =
3805    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3806                    false, false, false, false, 0,
3807                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3808                    /*isReturnValueUsed=*/false,
3809                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3810                                      TLI.getPointerTy()),
3811                    Args, *this, dl);
3812  return CallResult.second;
3813}
3814
3815SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3816                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3817                                SDValue Swp, MachinePointerInfo PtrInfo,
3818                                unsigned Alignment,
3819                                AtomicOrdering Ordering,
3820                                SynchronizationScope SynchScope) {
3821  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3822    Alignment = getEVTAlignment(MemVT);
3823
3824  MachineFunction &MF = getMachineFunction();
3825  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3826
3827  // For now, atomics are considered to be volatile always.
3828  Flags |= MachineMemOperand::MOVolatile;
3829
3830  MachineMemOperand *MMO =
3831    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3832
3833  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO,
3834                   Ordering, SynchScope);
3835}
3836
3837SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3838                                SDValue Chain,
3839                                SDValue Ptr, SDValue Cmp,
3840                                SDValue Swp, MachineMemOperand *MMO,
3841                                AtomicOrdering Ordering,
3842                                SynchronizationScope SynchScope) {
3843  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3844  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3845
3846  EVT VT = Cmp.getValueType();
3847
3848  SDVTList VTs = getVTList(VT, MVT::Other);
3849  FoldingSetNodeID ID;
3850  ID.AddInteger(MemVT.getRawBits());
3851  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3852  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3853  void* IP = 0;
3854  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3855    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3856    return SDValue(E, 0);
3857  }
3858  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3859                                               Ptr, Cmp, Swp, MMO, Ordering,
3860                                               SynchScope);
3861  CSEMap.InsertNode(N, IP);
3862  AllNodes.push_back(N);
3863  return SDValue(N, 0);
3864}
3865
3866SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3867                                SDValue Chain,
3868                                SDValue Ptr, SDValue Val,
3869                                const Value* PtrVal,
3870                                unsigned Alignment,
3871                                AtomicOrdering Ordering,
3872                                SynchronizationScope SynchScope) {
3873  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3874    Alignment = getEVTAlignment(MemVT);
3875
3876  MachineFunction &MF = getMachineFunction();
3877  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3878
3879  // For now, atomics are considered to be volatile always.
3880  Flags |= MachineMemOperand::MOVolatile;
3881
3882  MachineMemOperand *MMO =
3883    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3884                            MemVT.getStoreSize(), Alignment);
3885
3886  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
3887                   Ordering, SynchScope);
3888}
3889
3890SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3891                                SDValue Chain,
3892                                SDValue Ptr, SDValue Val,
3893                                MachineMemOperand *MMO,
3894                                AtomicOrdering Ordering,
3895                                SynchronizationScope SynchScope) {
3896  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3897          Opcode == ISD::ATOMIC_LOAD_SUB ||
3898          Opcode == ISD::ATOMIC_LOAD_AND ||
3899          Opcode == ISD::ATOMIC_LOAD_OR ||
3900          Opcode == ISD::ATOMIC_LOAD_XOR ||
3901          Opcode == ISD::ATOMIC_LOAD_NAND ||
3902          Opcode == ISD::ATOMIC_LOAD_MIN ||
3903          Opcode == ISD::ATOMIC_LOAD_MAX ||
3904          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3905          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3906          Opcode == ISD::ATOMIC_SWAP) &&
3907         "Invalid Atomic Op");
3908
3909  EVT VT = Val.getValueType();
3910
3911  SDVTList VTs = getVTList(VT, MVT::Other);
3912  FoldingSetNodeID ID;
3913  ID.AddInteger(MemVT.getRawBits());
3914  SDValue Ops[] = {Chain, Ptr, Val};
3915  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3916  void* IP = 0;
3917  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3918    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3919    return SDValue(E, 0);
3920  }
3921  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3922                                               Ptr, Val, MMO,
3923                                               Ordering, SynchScope);
3924  CSEMap.InsertNode(N, IP);
3925  AllNodes.push_back(N);
3926  return SDValue(N, 0);
3927}
3928
3929/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3930SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3931                                     DebugLoc dl) {
3932  if (NumOps == 1)
3933    return Ops[0];
3934
3935  SmallVector<EVT, 4> VTs;
3936  VTs.reserve(NumOps);
3937  for (unsigned i = 0; i < NumOps; ++i)
3938    VTs.push_back(Ops[i].getValueType());
3939  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3940                 Ops, NumOps);
3941}
3942
3943SDValue
3944SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3945                                  const EVT *VTs, unsigned NumVTs,
3946                                  const SDValue *Ops, unsigned NumOps,
3947                                  EVT MemVT, MachinePointerInfo PtrInfo,
3948                                  unsigned Align, bool Vol,
3949                                  bool ReadMem, bool WriteMem) {
3950  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3951                             MemVT, PtrInfo, Align, Vol,
3952                             ReadMem, WriteMem);
3953}
3954
3955SDValue
3956SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3957                                  const SDValue *Ops, unsigned NumOps,
3958                                  EVT MemVT, MachinePointerInfo PtrInfo,
3959                                  unsigned Align, bool Vol,
3960                                  bool ReadMem, bool WriteMem) {
3961  if (Align == 0)  // Ensure that codegen never sees alignment 0
3962    Align = getEVTAlignment(MemVT);
3963
3964  MachineFunction &MF = getMachineFunction();
3965  unsigned Flags = 0;
3966  if (WriteMem)
3967    Flags |= MachineMemOperand::MOStore;
3968  if (ReadMem)
3969    Flags |= MachineMemOperand::MOLoad;
3970  if (Vol)
3971    Flags |= MachineMemOperand::MOVolatile;
3972  MachineMemOperand *MMO =
3973    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
3974
3975  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3976}
3977
3978SDValue
3979SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3980                                  const SDValue *Ops, unsigned NumOps,
3981                                  EVT MemVT, MachineMemOperand *MMO) {
3982  assert((Opcode == ISD::INTRINSIC_VOID ||
3983          Opcode == ISD::INTRINSIC_W_CHAIN ||
3984          Opcode == ISD::PREFETCH ||
3985          (Opcode <= INT_MAX &&
3986           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3987         "Opcode is not a memory-accessing opcode!");
3988
3989  // Memoize the node unless it returns a flag.
3990  MemIntrinsicSDNode *N;
3991  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
3992    FoldingSetNodeID ID;
3993    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3994    void *IP = 0;
3995    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3996      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3997      return SDValue(E, 0);
3998    }
3999
4000    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4001                                               MemVT, MMO);
4002    CSEMap.InsertNode(N, IP);
4003  } else {
4004    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4005                                               MemVT, MMO);
4006  }
4007  AllNodes.push_back(N);
4008  return SDValue(N, 0);
4009}
4010
4011/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4012/// MachinePointerInfo record from it.  This is particularly useful because the
4013/// code generator has many cases where it doesn't bother passing in a
4014/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4015static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
4016  // If this is FI+Offset, we can model it.
4017  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4018    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4019
4020  // If this is (FI+Offset1)+Offset2, we can model it.
4021  if (Ptr.getOpcode() != ISD::ADD ||
4022      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4023      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4024    return MachinePointerInfo();
4025
4026  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4027  return MachinePointerInfo::getFixedStack(FI, Offset+
4028                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4029}
4030
4031/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4032/// MachinePointerInfo record from it.  This is particularly useful because the
4033/// code generator has many cases where it doesn't bother passing in a
4034/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4035static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4036  // If the 'Offset' value isn't a constant, we can't handle this.
4037  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4038    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4039  if (OffsetOp.getOpcode() == ISD::UNDEF)
4040    return InferPointerInfo(Ptr);
4041  return MachinePointerInfo();
4042}
4043
4044
4045SDValue
4046SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4047                      EVT VT, DebugLoc dl, SDValue Chain,
4048                      SDValue Ptr, SDValue Offset,
4049                      MachinePointerInfo PtrInfo, EVT MemVT,
4050                      bool isVolatile, bool isNonTemporal,
4051                      unsigned Alignment, const MDNode *TBAAInfo) {
4052  assert(Chain.getValueType() == MVT::Other &&
4053        "Invalid chain type");
4054  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4055    Alignment = getEVTAlignment(VT);
4056
4057  unsigned Flags = MachineMemOperand::MOLoad;
4058  if (isVolatile)
4059    Flags |= MachineMemOperand::MOVolatile;
4060  if (isNonTemporal)
4061    Flags |= MachineMemOperand::MONonTemporal;
4062
4063  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4064  // clients.
4065  if (PtrInfo.V == 0)
4066    PtrInfo = InferPointerInfo(Ptr, Offset);
4067
4068  MachineFunction &MF = getMachineFunction();
4069  MachineMemOperand *MMO =
4070    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4071                            TBAAInfo);
4072  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4073}
4074
4075SDValue
4076SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4077                      EVT VT, DebugLoc dl, SDValue Chain,
4078                      SDValue Ptr, SDValue Offset, EVT MemVT,
4079                      MachineMemOperand *MMO) {
4080  if (VT == MemVT) {
4081    ExtType = ISD::NON_EXTLOAD;
4082  } else if (ExtType == ISD::NON_EXTLOAD) {
4083    assert(VT == MemVT && "Non-extending load from different memory type!");
4084  } else {
4085    // Extending load.
4086    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4087           "Should only be an extending load, not truncating!");
4088    assert(VT.isInteger() == MemVT.isInteger() &&
4089           "Cannot convert from FP to Int or Int -> FP!");
4090    assert(VT.isVector() == MemVT.isVector() &&
4091           "Cannot use trunc store to convert to or from a vector!");
4092    assert((!VT.isVector() ||
4093            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4094           "Cannot use trunc store to change the number of vector elements!");
4095  }
4096
4097  bool Indexed = AM != ISD::UNINDEXED;
4098  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4099         "Unindexed load with an offset!");
4100
4101  SDVTList VTs = Indexed ?
4102    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4103  SDValue Ops[] = { Chain, Ptr, Offset };
4104  FoldingSetNodeID ID;
4105  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4106  ID.AddInteger(MemVT.getRawBits());
4107  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4108                                     MMO->isNonTemporal()));
4109  void *IP = 0;
4110  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4111    cast<LoadSDNode>(E)->refineAlignment(MMO);
4112    return SDValue(E, 0);
4113  }
4114  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4115                                             MemVT, MMO);
4116  CSEMap.InsertNode(N, IP);
4117  AllNodes.push_back(N);
4118  return SDValue(N, 0);
4119}
4120
4121SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4122                              SDValue Chain, SDValue Ptr,
4123                              MachinePointerInfo PtrInfo,
4124                              bool isVolatile, bool isNonTemporal,
4125                              unsigned Alignment, const MDNode *TBAAInfo) {
4126  SDValue Undef = getUNDEF(Ptr.getValueType());
4127  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4128                 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
4129}
4130
4131SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
4132                                 SDValue Chain, SDValue Ptr,
4133                                 MachinePointerInfo PtrInfo, EVT MemVT,
4134                                 bool isVolatile, bool isNonTemporal,
4135                                 unsigned Alignment, const MDNode *TBAAInfo) {
4136  SDValue Undef = getUNDEF(Ptr.getValueType());
4137  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4138                 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
4139                 TBAAInfo);
4140}
4141
4142
4143SDValue
4144SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4145                             SDValue Offset, ISD::MemIndexedMode AM) {
4146  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4147  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4148         "Load is already a indexed load!");
4149  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4150                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4151                 LD->getMemoryVT(),
4152                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4153}
4154
4155SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4156                               SDValue Ptr, MachinePointerInfo PtrInfo,
4157                               bool isVolatile, bool isNonTemporal,
4158                               unsigned Alignment, const MDNode *TBAAInfo) {
4159  assert(Chain.getValueType() == MVT::Other &&
4160        "Invalid chain type");
4161  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4162    Alignment = getEVTAlignment(Val.getValueType());
4163
4164  unsigned Flags = MachineMemOperand::MOStore;
4165  if (isVolatile)
4166    Flags |= MachineMemOperand::MOVolatile;
4167  if (isNonTemporal)
4168    Flags |= MachineMemOperand::MONonTemporal;
4169
4170  if (PtrInfo.V == 0)
4171    PtrInfo = InferPointerInfo(Ptr);
4172
4173  MachineFunction &MF = getMachineFunction();
4174  MachineMemOperand *MMO =
4175    MF.getMachineMemOperand(PtrInfo, Flags,
4176                            Val.getValueType().getStoreSize(), Alignment,
4177                            TBAAInfo);
4178
4179  return getStore(Chain, dl, Val, Ptr, MMO);
4180}
4181
4182SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4183                               SDValue Ptr, MachineMemOperand *MMO) {
4184  assert(Chain.getValueType() == MVT::Other &&
4185        "Invalid chain type");
4186  EVT VT = Val.getValueType();
4187  SDVTList VTs = getVTList(MVT::Other);
4188  SDValue Undef = getUNDEF(Ptr.getValueType());
4189  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4190  FoldingSetNodeID ID;
4191  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4192  ID.AddInteger(VT.getRawBits());
4193  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4194                                     MMO->isNonTemporal()));
4195  void *IP = 0;
4196  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4197    cast<StoreSDNode>(E)->refineAlignment(MMO);
4198    return SDValue(E, 0);
4199  }
4200  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4201                                              false, VT, MMO);
4202  CSEMap.InsertNode(N, IP);
4203  AllNodes.push_back(N);
4204  return SDValue(N, 0);
4205}
4206
4207SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4208                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4209                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4210                                    unsigned Alignment,
4211                                    const MDNode *TBAAInfo) {
4212  assert(Chain.getValueType() == MVT::Other &&
4213        "Invalid chain type");
4214  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4215    Alignment = getEVTAlignment(SVT);
4216
4217  unsigned Flags = MachineMemOperand::MOStore;
4218  if (isVolatile)
4219    Flags |= MachineMemOperand::MOVolatile;
4220  if (isNonTemporal)
4221    Flags |= MachineMemOperand::MONonTemporal;
4222
4223  if (PtrInfo.V == 0)
4224    PtrInfo = InferPointerInfo(Ptr);
4225
4226  MachineFunction &MF = getMachineFunction();
4227  MachineMemOperand *MMO =
4228    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4229                            TBAAInfo);
4230
4231  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4232}
4233
4234SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4235                                    SDValue Ptr, EVT SVT,
4236                                    MachineMemOperand *MMO) {
4237  EVT VT = Val.getValueType();
4238
4239  assert(Chain.getValueType() == MVT::Other &&
4240        "Invalid chain type");
4241  if (VT == SVT)
4242    return getStore(Chain, dl, Val, Ptr, MMO);
4243
4244  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4245         "Should only be a truncating store, not extending!");
4246  assert(VT.isInteger() == SVT.isInteger() &&
4247         "Can't do FP-INT conversion!");
4248  assert(VT.isVector() == SVT.isVector() &&
4249         "Cannot use trunc store to convert to or from a vector!");
4250  assert((!VT.isVector() ||
4251          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4252         "Cannot use trunc store to change the number of vector elements!");
4253
4254  SDVTList VTs = getVTList(MVT::Other);
4255  SDValue Undef = getUNDEF(Ptr.getValueType());
4256  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4257  FoldingSetNodeID ID;
4258  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4259  ID.AddInteger(SVT.getRawBits());
4260  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4261                                     MMO->isNonTemporal()));
4262  void *IP = 0;
4263  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4264    cast<StoreSDNode>(E)->refineAlignment(MMO);
4265    return SDValue(E, 0);
4266  }
4267  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4268                                              true, SVT, MMO);
4269  CSEMap.InsertNode(N, IP);
4270  AllNodes.push_back(N);
4271  return SDValue(N, 0);
4272}
4273
4274SDValue
4275SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4276                              SDValue Offset, ISD::MemIndexedMode AM) {
4277  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4278  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4279         "Store is already a indexed store!");
4280  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4281  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4282  FoldingSetNodeID ID;
4283  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4284  ID.AddInteger(ST->getMemoryVT().getRawBits());
4285  ID.AddInteger(ST->getRawSubclassData());
4286  void *IP = 0;
4287  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4288    return SDValue(E, 0);
4289
4290  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4291                                              ST->isTruncatingStore(),
4292                                              ST->getMemoryVT(),
4293                                              ST->getMemOperand());
4294  CSEMap.InsertNode(N, IP);
4295  AllNodes.push_back(N);
4296  return SDValue(N, 0);
4297}
4298
4299SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4300                               SDValue Chain, SDValue Ptr,
4301                               SDValue SV,
4302                               unsigned Align) {
4303  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4304  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4305}
4306
4307SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4308                              const SDUse *Ops, unsigned NumOps) {
4309  switch (NumOps) {
4310  case 0: return getNode(Opcode, DL, VT);
4311  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4312  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4313  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4314  default: break;
4315  }
4316
4317  // Copy from an SDUse array into an SDValue array for use with
4318  // the regular getNode logic.
4319  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4320  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4321}
4322
4323SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4324                              const SDValue *Ops, unsigned NumOps) {
4325  switch (NumOps) {
4326  case 0: return getNode(Opcode, DL, VT);
4327  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4328  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4329  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4330  default: break;
4331  }
4332
4333  switch (Opcode) {
4334  default: break;
4335  case ISD::SELECT_CC: {
4336    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4337    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4338           "LHS and RHS of condition must have same type!");
4339    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4340           "True and False arms of SelectCC must have same type!");
4341    assert(Ops[2].getValueType() == VT &&
4342           "select_cc node must be of same type as true and false value!");
4343    break;
4344  }
4345  case ISD::BR_CC: {
4346    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4347    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4348           "LHS/RHS of comparison should match types!");
4349    break;
4350  }
4351  }
4352
4353  // Memoize nodes.
4354  SDNode *N;
4355  SDVTList VTs = getVTList(VT);
4356
4357  if (VT != MVT::Glue) {
4358    FoldingSetNodeID ID;
4359    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4360    void *IP = 0;
4361
4362    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4363      return SDValue(E, 0);
4364
4365    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4366    CSEMap.InsertNode(N, IP);
4367  } else {
4368    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4369  }
4370
4371  AllNodes.push_back(N);
4372#ifndef NDEBUG
4373  VerifySDNode(N);
4374#endif
4375  return SDValue(N, 0);
4376}
4377
4378SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4379                              const std::vector<EVT> &ResultTys,
4380                              const SDValue *Ops, unsigned NumOps) {
4381  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4382                 Ops, NumOps);
4383}
4384
4385SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4386                              const EVT *VTs, unsigned NumVTs,
4387                              const SDValue *Ops, unsigned NumOps) {
4388  if (NumVTs == 1)
4389    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4390  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4391}
4392
4393SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4394                              const SDValue *Ops, unsigned NumOps) {
4395  if (VTList.NumVTs == 1)
4396    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4397
4398#if 0
4399  switch (Opcode) {
4400  // FIXME: figure out how to safely handle things like
4401  // int foo(int x) { return 1 << (x & 255); }
4402  // int bar() { return foo(256); }
4403  case ISD::SRA_PARTS:
4404  case ISD::SRL_PARTS:
4405  case ISD::SHL_PARTS:
4406    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4407        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4408      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4409    else if (N3.getOpcode() == ISD::AND)
4410      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4411        // If the and is only masking out bits that cannot effect the shift,
4412        // eliminate the and.
4413        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4414        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4415          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4416      }
4417    break;
4418  }
4419#endif
4420
4421  // Memoize the node unless it returns a flag.
4422  SDNode *N;
4423  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4424    FoldingSetNodeID ID;
4425    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4426    void *IP = 0;
4427    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4428      return SDValue(E, 0);
4429
4430    if (NumOps == 1) {
4431      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4432    } else if (NumOps == 2) {
4433      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4434    } else if (NumOps == 3) {
4435      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4436                                            Ops[2]);
4437    } else {
4438      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4439    }
4440    CSEMap.InsertNode(N, IP);
4441  } else {
4442    if (NumOps == 1) {
4443      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4444    } else if (NumOps == 2) {
4445      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4446    } else if (NumOps == 3) {
4447      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4448                                            Ops[2]);
4449    } else {
4450      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4451    }
4452  }
4453  AllNodes.push_back(N);
4454#ifndef NDEBUG
4455  VerifySDNode(N);
4456#endif
4457  return SDValue(N, 0);
4458}
4459
4460SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4461  return getNode(Opcode, DL, VTList, 0, 0);
4462}
4463
4464SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4465                              SDValue N1) {
4466  SDValue Ops[] = { N1 };
4467  return getNode(Opcode, DL, VTList, Ops, 1);
4468}
4469
4470SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4471                              SDValue N1, SDValue N2) {
4472  SDValue Ops[] = { N1, N2 };
4473  return getNode(Opcode, DL, VTList, Ops, 2);
4474}
4475
4476SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4477                              SDValue N1, SDValue N2, SDValue N3) {
4478  SDValue Ops[] = { N1, N2, N3 };
4479  return getNode(Opcode, DL, VTList, Ops, 3);
4480}
4481
4482SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4483                              SDValue N1, SDValue N2, SDValue N3,
4484                              SDValue N4) {
4485  SDValue Ops[] = { N1, N2, N3, N4 };
4486  return getNode(Opcode, DL, VTList, Ops, 4);
4487}
4488
4489SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4490                              SDValue N1, SDValue N2, SDValue N3,
4491                              SDValue N4, SDValue N5) {
4492  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4493  return getNode(Opcode, DL, VTList, Ops, 5);
4494}
4495
4496SDVTList SelectionDAG::getVTList(EVT VT) {
4497  return makeVTList(SDNode::getValueTypeList(VT), 1);
4498}
4499
4500SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4501  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4502       E = VTList.rend(); I != E; ++I)
4503    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4504      return *I;
4505
4506  EVT *Array = Allocator.Allocate<EVT>(2);
4507  Array[0] = VT1;
4508  Array[1] = VT2;
4509  SDVTList Result = makeVTList(Array, 2);
4510  VTList.push_back(Result);
4511  return Result;
4512}
4513
4514SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4515  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4516       E = VTList.rend(); I != E; ++I)
4517    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4518                          I->VTs[2] == VT3)
4519      return *I;
4520
4521  EVT *Array = Allocator.Allocate<EVT>(3);
4522  Array[0] = VT1;
4523  Array[1] = VT2;
4524  Array[2] = VT3;
4525  SDVTList Result = makeVTList(Array, 3);
4526  VTList.push_back(Result);
4527  return Result;
4528}
4529
4530SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4531  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4532       E = VTList.rend(); I != E; ++I)
4533    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4534                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4535      return *I;
4536
4537  EVT *Array = Allocator.Allocate<EVT>(4);
4538  Array[0] = VT1;
4539  Array[1] = VT2;
4540  Array[2] = VT3;
4541  Array[3] = VT4;
4542  SDVTList Result = makeVTList(Array, 4);
4543  VTList.push_back(Result);
4544  return Result;
4545}
4546
4547SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4548  switch (NumVTs) {
4549    case 0: llvm_unreachable("Cannot have nodes without results!");
4550    case 1: return getVTList(VTs[0]);
4551    case 2: return getVTList(VTs[0], VTs[1]);
4552    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4553    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4554    default: break;
4555  }
4556
4557  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4558       E = VTList.rend(); I != E; ++I) {
4559    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4560      continue;
4561
4562    bool NoMatch = false;
4563    for (unsigned i = 2; i != NumVTs; ++i)
4564      if (VTs[i] != I->VTs[i]) {
4565        NoMatch = true;
4566        break;
4567      }
4568    if (!NoMatch)
4569      return *I;
4570  }
4571
4572  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4573  std::copy(VTs, VTs+NumVTs, Array);
4574  SDVTList Result = makeVTList(Array, NumVTs);
4575  VTList.push_back(Result);
4576  return Result;
4577}
4578
4579
4580/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4581/// specified operands.  If the resultant node already exists in the DAG,
4582/// this does not modify the specified node, instead it returns the node that
4583/// already exists.  If the resultant node does not exist in the DAG, the
4584/// input node is returned.  As a degenerate case, if you specify the same
4585/// input operands as the node already has, the input node is returned.
4586SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4587  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4588
4589  // Check to see if there is no change.
4590  if (Op == N->getOperand(0)) return N;
4591
4592  // See if the modified node already exists.
4593  void *InsertPos = 0;
4594  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4595    return Existing;
4596
4597  // Nope it doesn't.  Remove the node from its current place in the maps.
4598  if (InsertPos)
4599    if (!RemoveNodeFromCSEMaps(N))
4600      InsertPos = 0;
4601
4602  // Now we update the operands.
4603  N->OperandList[0].set(Op);
4604
4605  // If this gets put into a CSE map, add it.
4606  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4607  return N;
4608}
4609
4610SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4611  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4612
4613  // Check to see if there is no change.
4614  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4615    return N;   // No operands changed, just return the input node.
4616
4617  // See if the modified node already exists.
4618  void *InsertPos = 0;
4619  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4620    return Existing;
4621
4622  // Nope it doesn't.  Remove the node from its current place in the maps.
4623  if (InsertPos)
4624    if (!RemoveNodeFromCSEMaps(N))
4625      InsertPos = 0;
4626
4627  // Now we update the operands.
4628  if (N->OperandList[0] != Op1)
4629    N->OperandList[0].set(Op1);
4630  if (N->OperandList[1] != Op2)
4631    N->OperandList[1].set(Op2);
4632
4633  // If this gets put into a CSE map, add it.
4634  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4635  return N;
4636}
4637
4638SDNode *SelectionDAG::
4639UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4640  SDValue Ops[] = { Op1, Op2, Op3 };
4641  return UpdateNodeOperands(N, Ops, 3);
4642}
4643
4644SDNode *SelectionDAG::
4645UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4646                   SDValue Op3, SDValue Op4) {
4647  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4648  return UpdateNodeOperands(N, Ops, 4);
4649}
4650
4651SDNode *SelectionDAG::
4652UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4653                   SDValue Op3, SDValue Op4, SDValue Op5) {
4654  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4655  return UpdateNodeOperands(N, Ops, 5);
4656}
4657
4658SDNode *SelectionDAG::
4659UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4660  assert(N->getNumOperands() == NumOps &&
4661         "Update with wrong number of operands");
4662
4663  // Check to see if there is no change.
4664  bool AnyChange = false;
4665  for (unsigned i = 0; i != NumOps; ++i) {
4666    if (Ops[i] != N->getOperand(i)) {
4667      AnyChange = true;
4668      break;
4669    }
4670  }
4671
4672  // No operands changed, just return the input node.
4673  if (!AnyChange) return N;
4674
4675  // See if the modified node already exists.
4676  void *InsertPos = 0;
4677  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4678    return Existing;
4679
4680  // Nope it doesn't.  Remove the node from its current place in the maps.
4681  if (InsertPos)
4682    if (!RemoveNodeFromCSEMaps(N))
4683      InsertPos = 0;
4684
4685  // Now we update the operands.
4686  for (unsigned i = 0; i != NumOps; ++i)
4687    if (N->OperandList[i] != Ops[i])
4688      N->OperandList[i].set(Ops[i]);
4689
4690  // If this gets put into a CSE map, add it.
4691  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4692  return N;
4693}
4694
4695/// DropOperands - Release the operands and set this node to have
4696/// zero operands.
4697void SDNode::DropOperands() {
4698  // Unlike the code in MorphNodeTo that does this, we don't need to
4699  // watch for dead nodes here.
4700  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4701    SDUse &Use = *I++;
4702    Use.set(SDValue());
4703  }
4704}
4705
4706/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4707/// machine opcode.
4708///
4709SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4710                                   EVT VT) {
4711  SDVTList VTs = getVTList(VT);
4712  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4713}
4714
4715SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4716                                   EVT VT, SDValue Op1) {
4717  SDVTList VTs = getVTList(VT);
4718  SDValue Ops[] = { Op1 };
4719  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4720}
4721
4722SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4723                                   EVT VT, SDValue Op1,
4724                                   SDValue Op2) {
4725  SDVTList VTs = getVTList(VT);
4726  SDValue Ops[] = { Op1, Op2 };
4727  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4728}
4729
4730SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4731                                   EVT VT, SDValue Op1,
4732                                   SDValue Op2, SDValue Op3) {
4733  SDVTList VTs = getVTList(VT);
4734  SDValue Ops[] = { Op1, Op2, Op3 };
4735  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4736}
4737
4738SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4739                                   EVT VT, const SDValue *Ops,
4740                                   unsigned NumOps) {
4741  SDVTList VTs = getVTList(VT);
4742  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4743}
4744
4745SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4746                                   EVT VT1, EVT VT2, const SDValue *Ops,
4747                                   unsigned NumOps) {
4748  SDVTList VTs = getVTList(VT1, VT2);
4749  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4750}
4751
4752SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4753                                   EVT VT1, EVT VT2) {
4754  SDVTList VTs = getVTList(VT1, VT2);
4755  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4756}
4757
4758SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4759                                   EVT VT1, EVT VT2, EVT VT3,
4760                                   const SDValue *Ops, unsigned NumOps) {
4761  SDVTList VTs = getVTList(VT1, VT2, VT3);
4762  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4763}
4764
4765SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4766                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4767                                   const SDValue *Ops, unsigned NumOps) {
4768  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4769  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4770}
4771
4772SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4773                                   EVT VT1, EVT VT2,
4774                                   SDValue Op1) {
4775  SDVTList VTs = getVTList(VT1, VT2);
4776  SDValue Ops[] = { Op1 };
4777  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4778}
4779
4780SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4781                                   EVT VT1, EVT VT2,
4782                                   SDValue Op1, SDValue Op2) {
4783  SDVTList VTs = getVTList(VT1, VT2);
4784  SDValue Ops[] = { Op1, Op2 };
4785  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4786}
4787
4788SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4789                                   EVT VT1, EVT VT2,
4790                                   SDValue Op1, SDValue Op2,
4791                                   SDValue Op3) {
4792  SDVTList VTs = getVTList(VT1, VT2);
4793  SDValue Ops[] = { Op1, Op2, Op3 };
4794  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4795}
4796
4797SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4798                                   EVT VT1, EVT VT2, EVT VT3,
4799                                   SDValue Op1, SDValue Op2,
4800                                   SDValue Op3) {
4801  SDVTList VTs = getVTList(VT1, VT2, VT3);
4802  SDValue Ops[] = { Op1, Op2, Op3 };
4803  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4804}
4805
4806SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4807                                   SDVTList VTs, const SDValue *Ops,
4808                                   unsigned NumOps) {
4809  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4810  // Reset the NodeID to -1.
4811  N->setNodeId(-1);
4812  return N;
4813}
4814
4815/// MorphNodeTo - This *mutates* the specified node to have the specified
4816/// return type, opcode, and operands.
4817///
4818/// Note that MorphNodeTo returns the resultant node.  If there is already a
4819/// node of the specified opcode and operands, it returns that node instead of
4820/// the current one.  Note that the DebugLoc need not be the same.
4821///
4822/// Using MorphNodeTo is faster than creating a new node and swapping it in
4823/// with ReplaceAllUsesWith both because it often avoids allocating a new
4824/// node, and because it doesn't require CSE recalculation for any of
4825/// the node's users.
4826///
4827SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4828                                  SDVTList VTs, const SDValue *Ops,
4829                                  unsigned NumOps) {
4830  // If an identical node already exists, use it.
4831  void *IP = 0;
4832  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
4833    FoldingSetNodeID ID;
4834    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4835    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4836      return ON;
4837  }
4838
4839  if (!RemoveNodeFromCSEMaps(N))
4840    IP = 0;
4841
4842  // Start the morphing.
4843  N->NodeType = Opc;
4844  N->ValueList = VTs.VTs;
4845  N->NumValues = VTs.NumVTs;
4846
4847  // Clear the operands list, updating used nodes to remove this from their
4848  // use list.  Keep track of any operands that become dead as a result.
4849  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4850  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4851    SDUse &Use = *I++;
4852    SDNode *Used = Use.getNode();
4853    Use.set(SDValue());
4854    if (Used->use_empty())
4855      DeadNodeSet.insert(Used);
4856  }
4857
4858  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4859    // Initialize the memory references information.
4860    MN->setMemRefs(0, 0);
4861    // If NumOps is larger than the # of operands we can have in a
4862    // MachineSDNode, reallocate the operand list.
4863    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4864      if (MN->OperandsNeedDelete)
4865        delete[] MN->OperandList;
4866      if (NumOps > array_lengthof(MN->LocalOperands))
4867        // We're creating a final node that will live unmorphed for the
4868        // remainder of the current SelectionDAG iteration, so we can allocate
4869        // the operands directly out of a pool with no recycling metadata.
4870        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4871                         Ops, NumOps);
4872      else
4873        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4874      MN->OperandsNeedDelete = false;
4875    } else
4876      MN->InitOperands(MN->OperandList, Ops, NumOps);
4877  } else {
4878    // If NumOps is larger than the # of operands we currently have, reallocate
4879    // the operand list.
4880    if (NumOps > N->NumOperands) {
4881      if (N->OperandsNeedDelete)
4882        delete[] N->OperandList;
4883      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4884      N->OperandsNeedDelete = true;
4885    } else
4886      N->InitOperands(N->OperandList, Ops, NumOps);
4887  }
4888
4889  // Delete any nodes that are still dead after adding the uses for the
4890  // new operands.
4891  if (!DeadNodeSet.empty()) {
4892    SmallVector<SDNode *, 16> DeadNodes;
4893    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4894         E = DeadNodeSet.end(); I != E; ++I)
4895      if ((*I)->use_empty())
4896        DeadNodes.push_back(*I);
4897    RemoveDeadNodes(DeadNodes);
4898  }
4899
4900  if (IP)
4901    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4902  return N;
4903}
4904
4905
4906/// getMachineNode - These are used for target selectors to create a new node
4907/// with specified return type(s), MachineInstr opcode, and operands.
4908///
4909/// Note that getMachineNode returns the resultant node.  If there is already a
4910/// node of the specified opcode and operands, it returns that node instead of
4911/// the current one.
4912MachineSDNode *
4913SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4914  SDVTList VTs = getVTList(VT);
4915  return getMachineNode(Opcode, dl, VTs, 0, 0);
4916}
4917
4918MachineSDNode *
4919SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4920  SDVTList VTs = getVTList(VT);
4921  SDValue Ops[] = { Op1 };
4922  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4923}
4924
4925MachineSDNode *
4926SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4927                             SDValue Op1, SDValue Op2) {
4928  SDVTList VTs = getVTList(VT);
4929  SDValue Ops[] = { Op1, Op2 };
4930  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4931}
4932
4933MachineSDNode *
4934SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4935                             SDValue Op1, SDValue Op2, SDValue Op3) {
4936  SDVTList VTs = getVTList(VT);
4937  SDValue Ops[] = { Op1, Op2, Op3 };
4938  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4939}
4940
4941MachineSDNode *
4942SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4943                             const SDValue *Ops, unsigned NumOps) {
4944  SDVTList VTs = getVTList(VT);
4945  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4946}
4947
4948MachineSDNode *
4949SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4950  SDVTList VTs = getVTList(VT1, VT2);
4951  return getMachineNode(Opcode, dl, VTs, 0, 0);
4952}
4953
4954MachineSDNode *
4955SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4956                             EVT VT1, EVT VT2, SDValue Op1) {
4957  SDVTList VTs = getVTList(VT1, VT2);
4958  SDValue Ops[] = { Op1 };
4959  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4960}
4961
4962MachineSDNode *
4963SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4964                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4965  SDVTList VTs = getVTList(VT1, VT2);
4966  SDValue Ops[] = { Op1, Op2 };
4967  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4968}
4969
4970MachineSDNode *
4971SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4972                             EVT VT1, EVT VT2, SDValue Op1,
4973                             SDValue Op2, SDValue Op3) {
4974  SDVTList VTs = getVTList(VT1, VT2);
4975  SDValue Ops[] = { Op1, Op2, Op3 };
4976  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4977}
4978
4979MachineSDNode *
4980SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4981                             EVT VT1, EVT VT2,
4982                             const SDValue *Ops, unsigned NumOps) {
4983  SDVTList VTs = getVTList(VT1, VT2);
4984  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4985}
4986
4987MachineSDNode *
4988SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4989                             EVT VT1, EVT VT2, EVT VT3,
4990                             SDValue Op1, SDValue Op2) {
4991  SDVTList VTs = getVTList(VT1, VT2, VT3);
4992  SDValue Ops[] = { Op1, Op2 };
4993  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4994}
4995
4996MachineSDNode *
4997SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4998                             EVT VT1, EVT VT2, EVT VT3,
4999                             SDValue Op1, SDValue Op2, SDValue Op3) {
5000  SDVTList VTs = getVTList(VT1, VT2, VT3);
5001  SDValue Ops[] = { Op1, Op2, Op3 };
5002  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5003}
5004
5005MachineSDNode *
5006SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5007                             EVT VT1, EVT VT2, EVT VT3,
5008                             const SDValue *Ops, unsigned NumOps) {
5009  SDVTList VTs = getVTList(VT1, VT2, VT3);
5010  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5011}
5012
5013MachineSDNode *
5014SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
5015                             EVT VT2, EVT VT3, EVT VT4,
5016                             const SDValue *Ops, unsigned NumOps) {
5017  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
5018  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5019}
5020
5021MachineSDNode *
5022SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5023                             const std::vector<EVT> &ResultTys,
5024                             const SDValue *Ops, unsigned NumOps) {
5025  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
5026  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5027}
5028
5029MachineSDNode *
5030SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
5031                             const SDValue *Ops, unsigned NumOps) {
5032  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5033  MachineSDNode *N;
5034  void *IP = 0;
5035
5036  if (DoCSE) {
5037    FoldingSetNodeID ID;
5038    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5039    IP = 0;
5040    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5041      return cast<MachineSDNode>(E);
5042  }
5043
5044  // Allocate a new MachineSDNode.
5045  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
5046
5047  // Initialize the operands list.
5048  if (NumOps > array_lengthof(N->LocalOperands))
5049    // We're creating a final node that will live unmorphed for the
5050    // remainder of the current SelectionDAG iteration, so we can allocate
5051    // the operands directly out of a pool with no recycling metadata.
5052    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5053                    Ops, NumOps);
5054  else
5055    N->InitOperands(N->LocalOperands, Ops, NumOps);
5056  N->OperandsNeedDelete = false;
5057
5058  if (DoCSE)
5059    CSEMap.InsertNode(N, IP);
5060
5061  AllNodes.push_back(N);
5062#ifndef NDEBUG
5063  VerifyMachineNode(N);
5064#endif
5065  return N;
5066}
5067
5068/// getTargetExtractSubreg - A convenience function for creating
5069/// TargetOpcode::EXTRACT_SUBREG nodes.
5070SDValue
5071SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5072                                     SDValue Operand) {
5073  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5074  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5075                                  VT, Operand, SRIdxVal);
5076  return SDValue(Subreg, 0);
5077}
5078
5079/// getTargetInsertSubreg - A convenience function for creating
5080/// TargetOpcode::INSERT_SUBREG nodes.
5081SDValue
5082SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5083                                    SDValue Operand, SDValue Subreg) {
5084  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5085  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5086                                  VT, Operand, Subreg, SRIdxVal);
5087  return SDValue(Result, 0);
5088}
5089
5090/// getNodeIfExists - Get the specified node if it's already available, or
5091/// else return NULL.
5092SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5093                                      const SDValue *Ops, unsigned NumOps) {
5094  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5095    FoldingSetNodeID ID;
5096    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5097    void *IP = 0;
5098    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5099      return E;
5100  }
5101  return NULL;
5102}
5103
5104/// getDbgValue - Creates a SDDbgValue node.
5105///
5106SDDbgValue *
5107SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5108                          DebugLoc DL, unsigned O) {
5109  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5110}
5111
5112SDDbgValue *
5113SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5114                          DebugLoc DL, unsigned O) {
5115  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5116}
5117
5118SDDbgValue *
5119SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5120                          DebugLoc DL, unsigned O) {
5121  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5122}
5123
5124namespace {
5125
5126/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5127/// pointed to by a use iterator is deleted, increment the use iterator
5128/// so that it doesn't dangle.
5129///
5130/// This class also manages a "downlink" DAGUpdateListener, to forward
5131/// messages to ReplaceAllUsesWith's callers.
5132///
5133class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5134  SelectionDAG::DAGUpdateListener *DownLink;
5135  SDNode::use_iterator &UI;
5136  SDNode::use_iterator &UE;
5137
5138  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5139    // Increment the iterator as needed.
5140    while (UI != UE && N == *UI)
5141      ++UI;
5142
5143    // Then forward the message.
5144    if (DownLink) DownLink->NodeDeleted(N, E);
5145  }
5146
5147  virtual void NodeUpdated(SDNode *N) {
5148    // Just forward the message.
5149    if (DownLink) DownLink->NodeUpdated(N);
5150  }
5151
5152public:
5153  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5154                     SDNode::use_iterator &ui,
5155                     SDNode::use_iterator &ue)
5156    : DownLink(dl), UI(ui), UE(ue) {}
5157};
5158
5159}
5160
5161/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5162/// This can cause recursive merging of nodes in the DAG.
5163///
5164/// This version assumes From has a single result value.
5165///
5166void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5167                                      DAGUpdateListener *UpdateListener) {
5168  SDNode *From = FromN.getNode();
5169  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5170         "Cannot replace with this method!");
5171  assert(From != To.getNode() && "Cannot replace uses of with self");
5172
5173  // Iterate over all the existing uses of From. New uses will be added
5174  // to the beginning of the use list, which we avoid visiting.
5175  // This specifically avoids visiting uses of From that arise while the
5176  // replacement is happening, because any such uses would be the result
5177  // of CSE: If an existing node looks like From after one of its operands
5178  // is replaced by To, we don't want to replace of all its users with To
5179  // too. See PR3018 for more info.
5180  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5181  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5182  while (UI != UE) {
5183    SDNode *User = *UI;
5184
5185    // This node is about to morph, remove its old self from the CSE maps.
5186    RemoveNodeFromCSEMaps(User);
5187
5188    // A user can appear in a use list multiple times, and when this
5189    // happens the uses are usually next to each other in the list.
5190    // To help reduce the number of CSE recomputations, process all
5191    // the uses of this user that we can find this way.
5192    do {
5193      SDUse &Use = UI.getUse();
5194      ++UI;
5195      Use.set(To);
5196    } while (UI != UE && *UI == User);
5197
5198    // Now that we have modified User, add it back to the CSE maps.  If it
5199    // already exists there, recursively merge the results together.
5200    AddModifiedNodeToCSEMaps(User, &Listener);
5201  }
5202}
5203
5204/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5205/// This can cause recursive merging of nodes in the DAG.
5206///
5207/// This version assumes that for each value of From, there is a
5208/// corresponding value in To in the same position with the same type.
5209///
5210void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5211                                      DAGUpdateListener *UpdateListener) {
5212#ifndef NDEBUG
5213  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5214    assert((!From->hasAnyUseOfValue(i) ||
5215            From->getValueType(i) == To->getValueType(i)) &&
5216           "Cannot use this version of ReplaceAllUsesWith!");
5217#endif
5218
5219  // Handle the trivial case.
5220  if (From == To)
5221    return;
5222
5223  // Iterate over just the existing users of From. See the comments in
5224  // the ReplaceAllUsesWith above.
5225  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5226  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5227  while (UI != UE) {
5228    SDNode *User = *UI;
5229
5230    // This node is about to morph, remove its old self from the CSE maps.
5231    RemoveNodeFromCSEMaps(User);
5232
5233    // A user can appear in a use list multiple times, and when this
5234    // happens the uses are usually next to each other in the list.
5235    // To help reduce the number of CSE recomputations, process all
5236    // the uses of this user that we can find this way.
5237    do {
5238      SDUse &Use = UI.getUse();
5239      ++UI;
5240      Use.setNode(To);
5241    } while (UI != UE && *UI == User);
5242
5243    // Now that we have modified User, add it back to the CSE maps.  If it
5244    // already exists there, recursively merge the results together.
5245    AddModifiedNodeToCSEMaps(User, &Listener);
5246  }
5247}
5248
5249/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5250/// This can cause recursive merging of nodes in the DAG.
5251///
5252/// This version can replace From with any result values.  To must match the
5253/// number and types of values returned by From.
5254void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5255                                      const SDValue *To,
5256                                      DAGUpdateListener *UpdateListener) {
5257  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5258    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5259
5260  // Iterate over just the existing users of From. See the comments in
5261  // the ReplaceAllUsesWith above.
5262  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5263  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5264  while (UI != UE) {
5265    SDNode *User = *UI;
5266
5267    // This node is about to morph, remove its old self from the CSE maps.
5268    RemoveNodeFromCSEMaps(User);
5269
5270    // A user can appear in a use list multiple times, and when this
5271    // happens the uses are usually next to each other in the list.
5272    // To help reduce the number of CSE recomputations, process all
5273    // the uses of this user that we can find this way.
5274    do {
5275      SDUse &Use = UI.getUse();
5276      const SDValue &ToOp = To[Use.getResNo()];
5277      ++UI;
5278      Use.set(ToOp);
5279    } while (UI != UE && *UI == User);
5280
5281    // Now that we have modified User, add it back to the CSE maps.  If it
5282    // already exists there, recursively merge the results together.
5283    AddModifiedNodeToCSEMaps(User, &Listener);
5284  }
5285}
5286
5287/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5288/// uses of other values produced by From.getNode() alone.  The Deleted
5289/// vector is handled the same way as for ReplaceAllUsesWith.
5290void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5291                                             DAGUpdateListener *UpdateListener){
5292  // Handle the really simple, really trivial case efficiently.
5293  if (From == To) return;
5294
5295  // Handle the simple, trivial, case efficiently.
5296  if (From.getNode()->getNumValues() == 1) {
5297    ReplaceAllUsesWith(From, To, UpdateListener);
5298    return;
5299  }
5300
5301  // Iterate over just the existing users of From. See the comments in
5302  // the ReplaceAllUsesWith above.
5303  SDNode::use_iterator UI = From.getNode()->use_begin(),
5304                       UE = From.getNode()->use_end();
5305  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5306  while (UI != UE) {
5307    SDNode *User = *UI;
5308    bool UserRemovedFromCSEMaps = false;
5309
5310    // A user can appear in a use list multiple times, and when this
5311    // happens the uses are usually next to each other in the list.
5312    // To help reduce the number of CSE recomputations, process all
5313    // the uses of this user that we can find this way.
5314    do {
5315      SDUse &Use = UI.getUse();
5316
5317      // Skip uses of different values from the same node.
5318      if (Use.getResNo() != From.getResNo()) {
5319        ++UI;
5320        continue;
5321      }
5322
5323      // If this node hasn't been modified yet, it's still in the CSE maps,
5324      // so remove its old self from the CSE maps.
5325      if (!UserRemovedFromCSEMaps) {
5326        RemoveNodeFromCSEMaps(User);
5327        UserRemovedFromCSEMaps = true;
5328      }
5329
5330      ++UI;
5331      Use.set(To);
5332    } while (UI != UE && *UI == User);
5333
5334    // We are iterating over all uses of the From node, so if a use
5335    // doesn't use the specific value, no changes are made.
5336    if (!UserRemovedFromCSEMaps)
5337      continue;
5338
5339    // Now that we have modified User, add it back to the CSE maps.  If it
5340    // already exists there, recursively merge the results together.
5341    AddModifiedNodeToCSEMaps(User, &Listener);
5342  }
5343}
5344
5345namespace {
5346  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5347  /// to record information about a use.
5348  struct UseMemo {
5349    SDNode *User;
5350    unsigned Index;
5351    SDUse *Use;
5352  };
5353
5354  /// operator< - Sort Memos by User.
5355  bool operator<(const UseMemo &L, const UseMemo &R) {
5356    return (intptr_t)L.User < (intptr_t)R.User;
5357  }
5358}
5359
5360/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5361/// uses of other values produced by From.getNode() alone.  The same value
5362/// may appear in both the From and To list.  The Deleted vector is
5363/// handled the same way as for ReplaceAllUsesWith.
5364void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5365                                              const SDValue *To,
5366                                              unsigned Num,
5367                                              DAGUpdateListener *UpdateListener){
5368  // Handle the simple, trivial case efficiently.
5369  if (Num == 1)
5370    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5371
5372  // Read up all the uses and make records of them. This helps
5373  // processing new uses that are introduced during the
5374  // replacement process.
5375  SmallVector<UseMemo, 4> Uses;
5376  for (unsigned i = 0; i != Num; ++i) {
5377    unsigned FromResNo = From[i].getResNo();
5378    SDNode *FromNode = From[i].getNode();
5379    for (SDNode::use_iterator UI = FromNode->use_begin(),
5380         E = FromNode->use_end(); UI != E; ++UI) {
5381      SDUse &Use = UI.getUse();
5382      if (Use.getResNo() == FromResNo) {
5383        UseMemo Memo = { *UI, i, &Use };
5384        Uses.push_back(Memo);
5385      }
5386    }
5387  }
5388
5389  // Sort the uses, so that all the uses from a given User are together.
5390  std::sort(Uses.begin(), Uses.end());
5391
5392  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5393       UseIndex != UseIndexEnd; ) {
5394    // We know that this user uses some value of From.  If it is the right
5395    // value, update it.
5396    SDNode *User = Uses[UseIndex].User;
5397
5398    // This node is about to morph, remove its old self from the CSE maps.
5399    RemoveNodeFromCSEMaps(User);
5400
5401    // The Uses array is sorted, so all the uses for a given User
5402    // are next to each other in the list.
5403    // To help reduce the number of CSE recomputations, process all
5404    // the uses of this user that we can find this way.
5405    do {
5406      unsigned i = Uses[UseIndex].Index;
5407      SDUse &Use = *Uses[UseIndex].Use;
5408      ++UseIndex;
5409
5410      Use.set(To[i]);
5411    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5412
5413    // Now that we have modified User, add it back to the CSE maps.  If it
5414    // already exists there, recursively merge the results together.
5415    AddModifiedNodeToCSEMaps(User, UpdateListener);
5416  }
5417}
5418
5419/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5420/// based on their topological order. It returns the maximum id and a vector
5421/// of the SDNodes* in assigned order by reference.
5422unsigned SelectionDAG::AssignTopologicalOrder() {
5423
5424  unsigned DAGSize = 0;
5425
5426  // SortedPos tracks the progress of the algorithm. Nodes before it are
5427  // sorted, nodes after it are unsorted. When the algorithm completes
5428  // it is at the end of the list.
5429  allnodes_iterator SortedPos = allnodes_begin();
5430
5431  // Visit all the nodes. Move nodes with no operands to the front of
5432  // the list immediately. Annotate nodes that do have operands with their
5433  // operand count. Before we do this, the Node Id fields of the nodes
5434  // may contain arbitrary values. After, the Node Id fields for nodes
5435  // before SortedPos will contain the topological sort index, and the
5436  // Node Id fields for nodes At SortedPos and after will contain the
5437  // count of outstanding operands.
5438  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5439    SDNode *N = I++;
5440    checkForCycles(N);
5441    unsigned Degree = N->getNumOperands();
5442    if (Degree == 0) {
5443      // A node with no uses, add it to the result array immediately.
5444      N->setNodeId(DAGSize++);
5445      allnodes_iterator Q = N;
5446      if (Q != SortedPos)
5447        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5448      assert(SortedPos != AllNodes.end() && "Overran node list");
5449      ++SortedPos;
5450    } else {
5451      // Temporarily use the Node Id as scratch space for the degree count.
5452      N->setNodeId(Degree);
5453    }
5454  }
5455
5456  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5457  // such that by the time the end is reached all nodes will be sorted.
5458  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5459    SDNode *N = I;
5460    checkForCycles(N);
5461    // N is in sorted position, so all its uses have one less operand
5462    // that needs to be sorted.
5463    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5464         UI != UE; ++UI) {
5465      SDNode *P = *UI;
5466      unsigned Degree = P->getNodeId();
5467      assert(Degree != 0 && "Invalid node degree");
5468      --Degree;
5469      if (Degree == 0) {
5470        // All of P's operands are sorted, so P may sorted now.
5471        P->setNodeId(DAGSize++);
5472        if (P != SortedPos)
5473          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5474        assert(SortedPos != AllNodes.end() && "Overran node list");
5475        ++SortedPos;
5476      } else {
5477        // Update P's outstanding operand count.
5478        P->setNodeId(Degree);
5479      }
5480    }
5481    if (I == SortedPos) {
5482#ifndef NDEBUG
5483      SDNode *S = ++I;
5484      dbgs() << "Overran sorted position:\n";
5485      S->dumprFull();
5486#endif
5487      llvm_unreachable(0);
5488    }
5489  }
5490
5491  assert(SortedPos == AllNodes.end() &&
5492         "Topological sort incomplete!");
5493  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5494         "First node in topological sort is not the entry token!");
5495  assert(AllNodes.front().getNodeId() == 0 &&
5496         "First node in topological sort has non-zero id!");
5497  assert(AllNodes.front().getNumOperands() == 0 &&
5498         "First node in topological sort has operands!");
5499  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5500         "Last node in topologic sort has unexpected id!");
5501  assert(AllNodes.back().use_empty() &&
5502         "Last node in topologic sort has users!");
5503  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5504  return DAGSize;
5505}
5506
5507/// AssignOrdering - Assign an order to the SDNode.
5508void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5509  assert(SD && "Trying to assign an order to a null node!");
5510  Ordering->add(SD, Order);
5511}
5512
5513/// GetOrdering - Get the order for the SDNode.
5514unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5515  assert(SD && "Trying to get the order of a null node!");
5516  return Ordering->getOrder(SD);
5517}
5518
5519/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5520/// value is produced by SD.
5521void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5522  DbgInfo->add(DB, SD, isParameter);
5523  if (SD)
5524    SD->setHasDebugValue(true);
5525}
5526
5527/// TransferDbgValues - Transfer SDDbgValues.
5528void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5529  if (From == To || !From.getNode()->getHasDebugValue())
5530    return;
5531  SDNode *FromNode = From.getNode();
5532  SDNode *ToNode = To.getNode();
5533  ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
5534  SmallVector<SDDbgValue *, 2> ClonedDVs;
5535  for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
5536       I != E; ++I) {
5537    SDDbgValue *Dbg = *I;
5538    if (Dbg->getKind() == SDDbgValue::SDNODE) {
5539      SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
5540                                      Dbg->getOffset(), Dbg->getDebugLoc(),
5541                                      Dbg->getOrder());
5542      ClonedDVs.push_back(Clone);
5543    }
5544  }
5545  for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
5546         E = ClonedDVs.end(); I != E; ++I)
5547    AddDbgValue(*I, ToNode, false);
5548}
5549
5550//===----------------------------------------------------------------------===//
5551//                              SDNode Class
5552//===----------------------------------------------------------------------===//
5553
5554HandleSDNode::~HandleSDNode() {
5555  DropOperands();
5556}
5557
5558GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5559                                         const GlobalValue *GA,
5560                                         EVT VT, int64_t o, unsigned char TF)
5561  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5562  TheGlobal = GA;
5563}
5564
5565MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5566                     MachineMemOperand *mmo)
5567 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5568  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5569                                      MMO->isNonTemporal());
5570  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5571  assert(isNonTemporal() == MMO->isNonTemporal() &&
5572         "Non-temporal encoding error!");
5573  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5574}
5575
5576MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5577                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5578                     MachineMemOperand *mmo)
5579   : SDNode(Opc, dl, VTs, Ops, NumOps),
5580     MemoryVT(memvt), MMO(mmo) {
5581  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5582                                      MMO->isNonTemporal());
5583  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5584  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5585}
5586
5587/// Profile - Gather unique data for the node.
5588///
5589void SDNode::Profile(FoldingSetNodeID &ID) const {
5590  AddNodeIDNode(ID, this);
5591}
5592
5593namespace {
5594  struct EVTArray {
5595    std::vector<EVT> VTs;
5596
5597    EVTArray() {
5598      VTs.reserve(MVT::LAST_VALUETYPE);
5599      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5600        VTs.push_back(MVT((MVT::SimpleValueType)i));
5601    }
5602  };
5603}
5604
5605static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5606static ManagedStatic<EVTArray> SimpleVTArray;
5607static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5608
5609/// getValueTypeList - Return a pointer to the specified value type.
5610///
5611const EVT *SDNode::getValueTypeList(EVT VT) {
5612  if (VT.isExtended()) {
5613    sys::SmartScopedLock<true> Lock(*VTMutex);
5614    return &(*EVTs->insert(VT).first);
5615  } else {
5616    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5617           "Value type out of range!");
5618    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5619  }
5620}
5621
5622/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5623/// indicated value.  This method ignores uses of other values defined by this
5624/// operation.
5625bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5626  assert(Value < getNumValues() && "Bad value!");
5627
5628  // TODO: Only iterate over uses of a given value of the node
5629  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5630    if (UI.getUse().getResNo() == Value) {
5631      if (NUses == 0)
5632        return false;
5633      --NUses;
5634    }
5635  }
5636
5637  // Found exactly the right number of uses?
5638  return NUses == 0;
5639}
5640
5641
5642/// hasAnyUseOfValue - Return true if there are any use of the indicated
5643/// value. This method ignores uses of other values defined by this operation.
5644bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5645  assert(Value < getNumValues() && "Bad value!");
5646
5647  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5648    if (UI.getUse().getResNo() == Value)
5649      return true;
5650
5651  return false;
5652}
5653
5654
5655/// isOnlyUserOf - Return true if this node is the only use of N.
5656///
5657bool SDNode::isOnlyUserOf(SDNode *N) const {
5658  bool Seen = false;
5659  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5660    SDNode *User = *I;
5661    if (User == this)
5662      Seen = true;
5663    else
5664      return false;
5665  }
5666
5667  return Seen;
5668}
5669
5670/// isOperand - Return true if this node is an operand of N.
5671///
5672bool SDValue::isOperandOf(SDNode *N) const {
5673  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5674    if (*this == N->getOperand(i))
5675      return true;
5676  return false;
5677}
5678
5679bool SDNode::isOperandOf(SDNode *N) const {
5680  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5681    if (this == N->OperandList[i].getNode())
5682      return true;
5683  return false;
5684}
5685
5686/// reachesChainWithoutSideEffects - Return true if this operand (which must
5687/// be a chain) reaches the specified operand without crossing any
5688/// side-effecting instructions on any chain path.  In practice, this looks
5689/// through token factors and non-volatile loads.  In order to remain efficient,
5690/// this only looks a couple of nodes in, it does not do an exhaustive search.
5691bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5692                                               unsigned Depth) const {
5693  if (*this == Dest) return true;
5694
5695  // Don't search too deeply, we just want to be able to see through
5696  // TokenFactor's etc.
5697  if (Depth == 0) return false;
5698
5699  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5700  // of the operands of the TF does not reach dest, then we cannot do the xform.
5701  if (getOpcode() == ISD::TokenFactor) {
5702    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5703      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5704        return false;
5705    return true;
5706  }
5707
5708  // Loads don't have side effects, look through them.
5709  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5710    if (!Ld->isVolatile())
5711      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5712  }
5713  return false;
5714}
5715
5716/// hasPredecessor - Return true if N is a predecessor of this node.
5717/// N is either an operand of this node, or can be reached by recursively
5718/// traversing up the operands.
5719/// NOTE: This is an expensive method. Use it carefully.
5720bool SDNode::hasPredecessor(const SDNode *N) const {
5721  SmallPtrSet<const SDNode *, 32> Visited;
5722  SmallVector<const SDNode *, 16> Worklist;
5723  return hasPredecessorHelper(N, Visited, Worklist);
5724}
5725
5726bool SDNode::hasPredecessorHelper(const SDNode *N,
5727                                  SmallPtrSet<const SDNode *, 32> &Visited,
5728                                  SmallVector<const SDNode *, 16> &Worklist) const {
5729  if (Visited.empty()) {
5730    Worklist.push_back(this);
5731  } else {
5732    // Take a look in the visited set. If we've already encountered this node
5733    // we needn't search further.
5734    if (Visited.count(N))
5735      return true;
5736  }
5737
5738  // Haven't visited N yet. Continue the search.
5739  while (!Worklist.empty()) {
5740    const SDNode *M = Worklist.pop_back_val();
5741    for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
5742      SDNode *Op = M->getOperand(i).getNode();
5743      if (Visited.insert(Op))
5744        Worklist.push_back(Op);
5745      if (Op == N)
5746        return true;
5747    }
5748  }
5749
5750  return false;
5751}
5752
5753uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5754  assert(Num < NumOperands && "Invalid child # of SDNode!");
5755  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5756}
5757
5758std::string SDNode::getOperationName(const SelectionDAG *G) const {
5759  switch (getOpcode()) {
5760  default:
5761    if (getOpcode() < ISD::BUILTIN_OP_END)
5762      return "<<Unknown DAG Node>>";
5763    if (isMachineOpcode()) {
5764      if (G)
5765        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5766          if (getMachineOpcode() < TII->getNumOpcodes())
5767            return TII->get(getMachineOpcode()).getName();
5768      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5769    }
5770    if (G) {
5771      const TargetLowering &TLI = G->getTargetLoweringInfo();
5772      const char *Name = TLI.getTargetNodeName(getOpcode());
5773      if (Name) return Name;
5774      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5775    }
5776    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5777
5778#ifndef NDEBUG
5779  case ISD::DELETED_NODE:
5780    return "<<Deleted Node!>>";
5781#endif
5782  case ISD::PREFETCH:      return "Prefetch";
5783  case ISD::MEMBARRIER:    return "MemBarrier";
5784  case ISD::ATOMIC_FENCE:    return "AtomicFence";
5785  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5786  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5787  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5788  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5789  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5790  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5791  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5792  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5793  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5794  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5795  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5796  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5797  case ISD::PCMARKER:      return "PCMarker";
5798  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5799  case ISD::SRCVALUE:      return "SrcValue";
5800  case ISD::MDNODE_SDNODE: return "MDNode";
5801  case ISD::EntryToken:    return "EntryToken";
5802  case ISD::TokenFactor:   return "TokenFactor";
5803  case ISD::AssertSext:    return "AssertSext";
5804  case ISD::AssertZext:    return "AssertZext";
5805
5806  case ISD::BasicBlock:    return "BasicBlock";
5807  case ISD::VALUETYPE:     return "ValueType";
5808  case ISD::Register:      return "Register";
5809
5810  case ISD::Constant:      return "Constant";
5811  case ISD::ConstantFP:    return "ConstantFP";
5812  case ISD::GlobalAddress: return "GlobalAddress";
5813  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5814  case ISD::FrameIndex:    return "FrameIndex";
5815  case ISD::JumpTable:     return "JumpTable";
5816  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5817  case ISD::RETURNADDR: return "RETURNADDR";
5818  case ISD::FRAMEADDR: return "FRAMEADDR";
5819  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5820  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5821  case ISD::LSDAADDR: return "LSDAADDR";
5822  case ISD::EHSELECTION: return "EHSELECTION";
5823  case ISD::EH_RETURN: return "EH_RETURN";
5824  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5825  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5826  case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5827  case ISD::ConstantPool:  return "ConstantPool";
5828  case ISD::ExternalSymbol: return "ExternalSymbol";
5829  case ISD::BlockAddress:  return "BlockAddress";
5830  case ISD::INTRINSIC_WO_CHAIN:
5831  case ISD::INTRINSIC_VOID:
5832  case ISD::INTRINSIC_W_CHAIN: {
5833    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5834    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5835    if (IID < Intrinsic::num_intrinsics)
5836      return Intrinsic::getName((Intrinsic::ID)IID);
5837    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5838      return TII->getName(IID);
5839    llvm_unreachable("Invalid intrinsic ID");
5840  }
5841
5842  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5843  case ISD::TargetConstant: return "TargetConstant";
5844  case ISD::TargetConstantFP:return "TargetConstantFP";
5845  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5846  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5847  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5848  case ISD::TargetJumpTable:  return "TargetJumpTable";
5849  case ISD::TargetConstantPool:  return "TargetConstantPool";
5850  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5851  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5852
5853  case ISD::CopyToReg:     return "CopyToReg";
5854  case ISD::CopyFromReg:   return "CopyFromReg";
5855  case ISD::UNDEF:         return "undef";
5856  case ISD::MERGE_VALUES:  return "merge_values";
5857  case ISD::INLINEASM:     return "inlineasm";
5858  case ISD::EH_LABEL:      return "eh_label";
5859  case ISD::HANDLENODE:    return "handlenode";
5860
5861  // Unary operators
5862  case ISD::FABS:   return "fabs";
5863  case ISD::FNEG:   return "fneg";
5864  case ISD::FSQRT:  return "fsqrt";
5865  case ISD::FSIN:   return "fsin";
5866  case ISD::FCOS:   return "fcos";
5867  case ISD::FTRUNC: return "ftrunc";
5868  case ISD::FFLOOR: return "ffloor";
5869  case ISD::FCEIL:  return "fceil";
5870  case ISD::FRINT:  return "frint";
5871  case ISD::FNEARBYINT: return "fnearbyint";
5872  case ISD::FEXP:   return "fexp";
5873  case ISD::FEXP2:  return "fexp2";
5874  case ISD::FLOG:   return "flog";
5875  case ISD::FLOG2:  return "flog2";
5876  case ISD::FLOG10: return "flog10";
5877
5878  // Binary operators
5879  case ISD::ADD:    return "add";
5880  case ISD::SUB:    return "sub";
5881  case ISD::MUL:    return "mul";
5882  case ISD::MULHU:  return "mulhu";
5883  case ISD::MULHS:  return "mulhs";
5884  case ISD::SDIV:   return "sdiv";
5885  case ISD::UDIV:   return "udiv";
5886  case ISD::SREM:   return "srem";
5887  case ISD::UREM:   return "urem";
5888  case ISD::SMUL_LOHI:  return "smul_lohi";
5889  case ISD::UMUL_LOHI:  return "umul_lohi";
5890  case ISD::SDIVREM:    return "sdivrem";
5891  case ISD::UDIVREM:    return "udivrem";
5892  case ISD::AND:    return "and";
5893  case ISD::OR:     return "or";
5894  case ISD::XOR:    return "xor";
5895  case ISD::SHL:    return "shl";
5896  case ISD::SRA:    return "sra";
5897  case ISD::SRL:    return "srl";
5898  case ISD::ROTL:   return "rotl";
5899  case ISD::ROTR:   return "rotr";
5900  case ISD::FADD:   return "fadd";
5901  case ISD::FSUB:   return "fsub";
5902  case ISD::FMUL:   return "fmul";
5903  case ISD::FDIV:   return "fdiv";
5904  case ISD::FMA:    return "fma";
5905  case ISD::FREM:   return "frem";
5906  case ISD::FCOPYSIGN: return "fcopysign";
5907  case ISD::FGETSIGN:  return "fgetsign";
5908  case ISD::FPOW:   return "fpow";
5909
5910  case ISD::FPOWI:  return "fpowi";
5911  case ISD::SETCC:       return "setcc";
5912  case ISD::VSETCC:      return "vsetcc";
5913  case ISD::SELECT:      return "select";
5914  case ISD::SELECT_CC:   return "select_cc";
5915  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5916  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5917  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5918  case ISD::INSERT_SUBVECTOR:    return "insert_subvector";
5919  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5920  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5921  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5922  case ISD::CARRY_FALSE:         return "carry_false";
5923  case ISD::ADDC:        return "addc";
5924  case ISD::ADDE:        return "adde";
5925  case ISD::SADDO:       return "saddo";
5926  case ISD::UADDO:       return "uaddo";
5927  case ISD::SSUBO:       return "ssubo";
5928  case ISD::USUBO:       return "usubo";
5929  case ISD::SMULO:       return "smulo";
5930  case ISD::UMULO:       return "umulo";
5931  case ISD::SUBC:        return "subc";
5932  case ISD::SUBE:        return "sube";
5933  case ISD::SHL_PARTS:   return "shl_parts";
5934  case ISD::SRA_PARTS:   return "sra_parts";
5935  case ISD::SRL_PARTS:   return "srl_parts";
5936
5937  // Conversion operators.
5938  case ISD::SIGN_EXTEND: return "sign_extend";
5939  case ISD::ZERO_EXTEND: return "zero_extend";
5940  case ISD::ANY_EXTEND:  return "any_extend";
5941  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5942  case ISD::TRUNCATE:    return "truncate";
5943  case ISD::FP_ROUND:    return "fp_round";
5944  case ISD::FLT_ROUNDS_: return "flt_rounds";
5945  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5946  case ISD::FP_EXTEND:   return "fp_extend";
5947
5948  case ISD::SINT_TO_FP:  return "sint_to_fp";
5949  case ISD::UINT_TO_FP:  return "uint_to_fp";
5950  case ISD::FP_TO_SINT:  return "fp_to_sint";
5951  case ISD::FP_TO_UINT:  return "fp_to_uint";
5952  case ISD::BITCAST:     return "bitcast";
5953  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5954  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5955
5956  case ISD::CONVERT_RNDSAT: {
5957    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5958    default: llvm_unreachable("Unknown cvt code!");
5959    case ISD::CVT_FF:  return "cvt_ff";
5960    case ISD::CVT_FS:  return "cvt_fs";
5961    case ISD::CVT_FU:  return "cvt_fu";
5962    case ISD::CVT_SF:  return "cvt_sf";
5963    case ISD::CVT_UF:  return "cvt_uf";
5964    case ISD::CVT_SS:  return "cvt_ss";
5965    case ISD::CVT_SU:  return "cvt_su";
5966    case ISD::CVT_US:  return "cvt_us";
5967    case ISD::CVT_UU:  return "cvt_uu";
5968    }
5969  }
5970
5971    // Control flow instructions
5972  case ISD::BR:      return "br";
5973  case ISD::BRIND:   return "brind";
5974  case ISD::BR_JT:   return "br_jt";
5975  case ISD::BRCOND:  return "brcond";
5976  case ISD::BR_CC:   return "br_cc";
5977  case ISD::CALLSEQ_START:  return "callseq_start";
5978  case ISD::CALLSEQ_END:    return "callseq_end";
5979
5980    // Other operators
5981  case ISD::LOAD:               return "load";
5982  case ISD::STORE:              return "store";
5983  case ISD::VAARG:              return "vaarg";
5984  case ISD::VACOPY:             return "vacopy";
5985  case ISD::VAEND:              return "vaend";
5986  case ISD::VASTART:            return "vastart";
5987  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5988  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5989  case ISD::BUILD_PAIR:         return "build_pair";
5990  case ISD::STACKSAVE:          return "stacksave";
5991  case ISD::STACKRESTORE:       return "stackrestore";
5992  case ISD::TRAP:               return "trap";
5993
5994  // Bit manipulation
5995  case ISD::BSWAP:   return "bswap";
5996  case ISD::CTPOP:   return "ctpop";
5997  case ISD::CTTZ:    return "cttz";
5998  case ISD::CTLZ:    return "ctlz";
5999
6000  // Trampolines
6001  case ISD::TRAMPOLINE: return "trampoline";
6002
6003  case ISD::CONDCODE:
6004    switch (cast<CondCodeSDNode>(this)->get()) {
6005    default: llvm_unreachable("Unknown setcc condition!");
6006    case ISD::SETOEQ:  return "setoeq";
6007    case ISD::SETOGT:  return "setogt";
6008    case ISD::SETOGE:  return "setoge";
6009    case ISD::SETOLT:  return "setolt";
6010    case ISD::SETOLE:  return "setole";
6011    case ISD::SETONE:  return "setone";
6012
6013    case ISD::SETO:    return "seto";
6014    case ISD::SETUO:   return "setuo";
6015    case ISD::SETUEQ:  return "setue";
6016    case ISD::SETUGT:  return "setugt";
6017    case ISD::SETUGE:  return "setuge";
6018    case ISD::SETULT:  return "setult";
6019    case ISD::SETULE:  return "setule";
6020    case ISD::SETUNE:  return "setune";
6021
6022    case ISD::SETEQ:   return "seteq";
6023    case ISD::SETGT:   return "setgt";
6024    case ISD::SETGE:   return "setge";
6025    case ISD::SETLT:   return "setlt";
6026    case ISD::SETLE:   return "setle";
6027    case ISD::SETNE:   return "setne";
6028    }
6029  }
6030}
6031
6032const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
6033  switch (AM) {
6034  default:
6035    return "";
6036  case ISD::PRE_INC:
6037    return "<pre-inc>";
6038  case ISD::PRE_DEC:
6039    return "<pre-dec>";
6040  case ISD::POST_INC:
6041    return "<post-inc>";
6042  case ISD::POST_DEC:
6043    return "<post-dec>";
6044  }
6045}
6046
6047std::string ISD::ArgFlagsTy::getArgFlagsString() {
6048  std::string S = "< ";
6049
6050  if (isZExt())
6051    S += "zext ";
6052  if (isSExt())
6053    S += "sext ";
6054  if (isInReg())
6055    S += "inreg ";
6056  if (isSRet())
6057    S += "sret ";
6058  if (isByVal())
6059    S += "byval ";
6060  if (isNest())
6061    S += "nest ";
6062  if (getByValAlign())
6063    S += "byval-align:" + utostr(getByValAlign()) + " ";
6064  if (getOrigAlign())
6065    S += "orig-align:" + utostr(getOrigAlign()) + " ";
6066  if (getByValSize())
6067    S += "byval-size:" + utostr(getByValSize()) + " ";
6068  return S + ">";
6069}
6070
6071void SDNode::dump() const { dump(0); }
6072void SDNode::dump(const SelectionDAG *G) const {
6073  print(dbgs(), G);
6074  dbgs() << '\n';
6075}
6076
6077void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
6078  OS << (void*)this << ": ";
6079
6080  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
6081    if (i) OS << ",";
6082    if (getValueType(i) == MVT::Other)
6083      OS << "ch";
6084    else
6085      OS << getValueType(i).getEVTString();
6086  }
6087  OS << " = " << getOperationName(G);
6088}
6089
6090void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
6091  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
6092    if (!MN->memoperands_empty()) {
6093      OS << "<";
6094      OS << "Mem:";
6095      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
6096           e = MN->memoperands_end(); i != e; ++i) {
6097        OS << **i;
6098        if (llvm::next(i) != e)
6099          OS << " ";
6100      }
6101      OS << ">";
6102    }
6103  } else if (const ShuffleVectorSDNode *SVN =
6104               dyn_cast<ShuffleVectorSDNode>(this)) {
6105    OS << "<";
6106    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
6107      int Idx = SVN->getMaskElt(i);
6108      if (i) OS << ",";
6109      if (Idx < 0)
6110        OS << "u";
6111      else
6112        OS << Idx;
6113    }
6114    OS << ">";
6115  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
6116    OS << '<' << CSDN->getAPIntValue() << '>';
6117  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
6118    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
6119      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
6120    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
6121      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
6122    else {
6123      OS << "<APFloat(";
6124      CSDN->getValueAPF().bitcastToAPInt().dump();
6125      OS << ")>";
6126    }
6127  } else if (const GlobalAddressSDNode *GADN =
6128             dyn_cast<GlobalAddressSDNode>(this)) {
6129    int64_t offset = GADN->getOffset();
6130    OS << '<';
6131    WriteAsOperand(OS, GADN->getGlobal());
6132    OS << '>';
6133    if (offset > 0)
6134      OS << " + " << offset;
6135    else
6136      OS << " " << offset;
6137    if (unsigned int TF = GADN->getTargetFlags())
6138      OS << " [TF=" << TF << ']';
6139  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
6140    OS << "<" << FIDN->getIndex() << ">";
6141  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
6142    OS << "<" << JTDN->getIndex() << ">";
6143    if (unsigned int TF = JTDN->getTargetFlags())
6144      OS << " [TF=" << TF << ']';
6145  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
6146    int offset = CP->getOffset();
6147    if (CP->isMachineConstantPoolEntry())
6148      OS << "<" << *CP->getMachineCPVal() << ">";
6149    else
6150      OS << "<" << *CP->getConstVal() << ">";
6151    if (offset > 0)
6152      OS << " + " << offset;
6153    else
6154      OS << " " << offset;
6155    if (unsigned int TF = CP->getTargetFlags())
6156      OS << " [TF=" << TF << ']';
6157  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
6158    OS << "<";
6159    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
6160    if (LBB)
6161      OS << LBB->getName() << " ";
6162    OS << (const void*)BBDN->getBasicBlock() << ">";
6163  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
6164    OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
6165  } else if (const ExternalSymbolSDNode *ES =
6166             dyn_cast<ExternalSymbolSDNode>(this)) {
6167    OS << "'" << ES->getSymbol() << "'";
6168    if (unsigned int TF = ES->getTargetFlags())
6169      OS << " [TF=" << TF << ']';
6170  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
6171    if (M->getValue())
6172      OS << "<" << M->getValue() << ">";
6173    else
6174      OS << "<null>";
6175  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
6176    if (MD->getMD())
6177      OS << "<" << MD->getMD() << ">";
6178    else
6179      OS << "<null>";
6180  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6181    OS << ":" << N->getVT().getEVTString();
6182  }
6183  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6184    OS << "<" << *LD->getMemOperand();
6185
6186    bool doExt = true;
6187    switch (LD->getExtensionType()) {
6188    default: doExt = false; break;
6189    case ISD::EXTLOAD: OS << ", anyext"; break;
6190    case ISD::SEXTLOAD: OS << ", sext"; break;
6191    case ISD::ZEXTLOAD: OS << ", zext"; break;
6192    }
6193    if (doExt)
6194      OS << " from " << LD->getMemoryVT().getEVTString();
6195
6196    const char *AM = getIndexedModeName(LD->getAddressingMode());
6197    if (*AM)
6198      OS << ", " << AM;
6199
6200    OS << ">";
6201  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6202    OS << "<" << *ST->getMemOperand();
6203
6204    if (ST->isTruncatingStore())
6205      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6206
6207    const char *AM = getIndexedModeName(ST->getAddressingMode());
6208    if (*AM)
6209      OS << ", " << AM;
6210
6211    OS << ">";
6212  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6213    OS << "<" << *M->getMemOperand() << ">";
6214  } else if (const BlockAddressSDNode *BA =
6215               dyn_cast<BlockAddressSDNode>(this)) {
6216    OS << "<";
6217    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6218    OS << ", ";
6219    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6220    OS << ">";
6221    if (unsigned int TF = BA->getTargetFlags())
6222      OS << " [TF=" << TF << ']';
6223  }
6224
6225  if (G)
6226    if (unsigned Order = G->GetOrdering(this))
6227      OS << " [ORD=" << Order << ']';
6228
6229  if (getNodeId() != -1)
6230    OS << " [ID=" << getNodeId() << ']';
6231
6232  DebugLoc dl = getDebugLoc();
6233  if (G && !dl.isUnknown()) {
6234    DIScope
6235      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6236    OS << " dbg:";
6237    // Omit the directory, since it's usually long and uninteresting.
6238    if (Scope.Verify())
6239      OS << Scope.getFilename();
6240    else
6241      OS << "<unknown>";
6242    OS << ':' << dl.getLine();
6243    if (dl.getCol() != 0)
6244      OS << ':' << dl.getCol();
6245  }
6246}
6247
6248void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6249  print_types(OS, G);
6250  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6251    if (i) OS << ", "; else OS << " ";
6252    OS << (void*)getOperand(i).getNode();
6253    if (unsigned RN = getOperand(i).getResNo())
6254      OS << ":" << RN;
6255  }
6256  print_details(OS, G);
6257}
6258
6259static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6260                                  const SelectionDAG *G, unsigned depth,
6261                                  unsigned indent)
6262{
6263  if (depth == 0)
6264    return;
6265
6266  OS.indent(indent);
6267
6268  N->print(OS, G);
6269
6270  if (depth < 1)
6271    return;
6272
6273  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6274    // Don't follow chain operands.
6275    if (N->getOperand(i).getValueType() == MVT::Other)
6276      continue;
6277    OS << '\n';
6278    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6279  }
6280}
6281
6282void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6283                            unsigned depth) const {
6284  printrWithDepthHelper(OS, this, G, depth, 0);
6285}
6286
6287void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6288  // Don't print impossibly deep things.
6289  printrWithDepth(OS, G, 10);
6290}
6291
6292void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6293  printrWithDepth(dbgs(), G, depth);
6294}
6295
6296void SDNode::dumprFull(const SelectionDAG *G) const {
6297  // Don't print impossibly deep things.
6298  dumprWithDepth(G, 10);
6299}
6300
6301static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6302  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6303    if (N->getOperand(i).getNode()->hasOneUse())
6304      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6305    else
6306      dbgs() << "\n" << std::string(indent+2, ' ')
6307           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6308
6309
6310  dbgs() << "\n";
6311  dbgs().indent(indent);
6312  N->dump(G);
6313}
6314
6315SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6316  assert(N->getNumValues() == 1 &&
6317         "Can't unroll a vector with multiple results!");
6318
6319  EVT VT = N->getValueType(0);
6320  unsigned NE = VT.getVectorNumElements();
6321  EVT EltVT = VT.getVectorElementType();
6322  DebugLoc dl = N->getDebugLoc();
6323
6324  SmallVector<SDValue, 8> Scalars;
6325  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6326
6327  // If ResNE is 0, fully unroll the vector op.
6328  if (ResNE == 0)
6329    ResNE = NE;
6330  else if (NE > ResNE)
6331    NE = ResNE;
6332
6333  unsigned i;
6334  for (i= 0; i != NE; ++i) {
6335    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6336      SDValue Operand = N->getOperand(j);
6337      EVT OperandVT = Operand.getValueType();
6338      if (OperandVT.isVector()) {
6339        // A vector operand; extract a single element.
6340        EVT OperandEltVT = OperandVT.getVectorElementType();
6341        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6342                              OperandEltVT,
6343                              Operand,
6344                              getConstant(i, TLI.getPointerTy()));
6345      } else {
6346        // A scalar operand; just use it as is.
6347        Operands[j] = Operand;
6348      }
6349    }
6350
6351    switch (N->getOpcode()) {
6352    default:
6353      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6354                                &Operands[0], Operands.size()));
6355      break;
6356    case ISD::SHL:
6357    case ISD::SRA:
6358    case ISD::SRL:
6359    case ISD::ROTL:
6360    case ISD::ROTR:
6361      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6362                                getShiftAmountOperand(Operands[0].getValueType(),
6363                                                      Operands[1])));
6364      break;
6365    case ISD::SIGN_EXTEND_INREG:
6366    case ISD::FP_ROUND_INREG: {
6367      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6368      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6369                                Operands[0],
6370                                getValueType(ExtVT)));
6371    }
6372    }
6373  }
6374
6375  for (; i < ResNE; ++i)
6376    Scalars.push_back(getUNDEF(EltVT));
6377
6378  return getNode(ISD::BUILD_VECTOR, dl,
6379                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6380                 &Scalars[0], Scalars.size());
6381}
6382
6383
6384/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6385/// location that is 'Dist' units away from the location that the 'Base' load
6386/// is loading from.
6387bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6388                                     unsigned Bytes, int Dist) const {
6389  if (LD->getChain() != Base->getChain())
6390    return false;
6391  EVT VT = LD->getValueType(0);
6392  if (VT.getSizeInBits() / 8 != Bytes)
6393    return false;
6394
6395  SDValue Loc = LD->getOperand(1);
6396  SDValue BaseLoc = Base->getOperand(1);
6397  if (Loc.getOpcode() == ISD::FrameIndex) {
6398    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6399      return false;
6400    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6401    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6402    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6403    int FS  = MFI->getObjectSize(FI);
6404    int BFS = MFI->getObjectSize(BFI);
6405    if (FS != BFS || FS != (int)Bytes) return false;
6406    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6407  }
6408
6409  // Handle X+C
6410  if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6411      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6412    return true;
6413
6414  const GlobalValue *GV1 = NULL;
6415  const GlobalValue *GV2 = NULL;
6416  int64_t Offset1 = 0;
6417  int64_t Offset2 = 0;
6418  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6419  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6420  if (isGA1 && isGA2 && GV1 == GV2)
6421    return Offset1 == (Offset2 + Dist*Bytes);
6422  return false;
6423}
6424
6425
6426/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6427/// it cannot be inferred.
6428unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6429  // If this is a GlobalAddress + cst, return the alignment.
6430  const GlobalValue *GV;
6431  int64_t GVOffset = 0;
6432  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6433    // If GV has specified alignment, then use it. Otherwise, use the preferred
6434    // alignment.
6435    unsigned Align = GV->getAlignment();
6436    if (!Align) {
6437      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6438        if (GVar->hasInitializer()) {
6439          const TargetData *TD = TLI.getTargetData();
6440          Align = TD->getPreferredAlignment(GVar);
6441        }
6442      }
6443    }
6444    return MinAlign(Align, GVOffset);
6445  }
6446
6447  // If this is a direct reference to a stack slot, use information about the
6448  // stack slot's alignment.
6449  int FrameIdx = 1 << 31;
6450  int64_t FrameOffset = 0;
6451  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6452    FrameIdx = FI->getIndex();
6453  } else if (isBaseWithConstantOffset(Ptr) &&
6454             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6455    // Handle FI+Cst
6456    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6457    FrameOffset = Ptr.getConstantOperandVal(1);
6458  }
6459
6460  if (FrameIdx != (1 << 31)) {
6461    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6462    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6463                                    FrameOffset);
6464    return FIInfoAlign;
6465  }
6466
6467  return 0;
6468}
6469
6470void SelectionDAG::dump() const {
6471  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6472
6473  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6474       I != E; ++I) {
6475    const SDNode *N = I;
6476    if (!N->hasOneUse() && N != getRoot().getNode())
6477      DumpNodes(N, 2, this);
6478  }
6479
6480  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6481
6482  dbgs() << "\n\n";
6483}
6484
6485void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6486  print_types(OS, G);
6487  print_details(OS, G);
6488}
6489
6490typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6491static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6492                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6493  if (!once.insert(N))          // If we've been here before, return now.
6494    return;
6495
6496  // Dump the current SDNode, but don't end the line yet.
6497  OS << std::string(indent, ' ');
6498  N->printr(OS, G);
6499
6500  // Having printed this SDNode, walk the children:
6501  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6502    const SDNode *child = N->getOperand(i).getNode();
6503
6504    if (i) OS << ",";
6505    OS << " ";
6506
6507    if (child->getNumOperands() == 0) {
6508      // This child has no grandchildren; print it inline right here.
6509      child->printr(OS, G);
6510      once.insert(child);
6511    } else {         // Just the address. FIXME: also print the child's opcode.
6512      OS << (void*)child;
6513      if (unsigned RN = N->getOperand(i).getResNo())
6514        OS << ":" << RN;
6515    }
6516  }
6517
6518  OS << "\n";
6519
6520  // Dump children that have grandchildren on their own line(s).
6521  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6522    const SDNode *child = N->getOperand(i).getNode();
6523    DumpNodesr(OS, child, indent+2, G, once);
6524  }
6525}
6526
6527void SDNode::dumpr() const {
6528  VisitedSDNodeSet once;
6529  DumpNodesr(dbgs(), this, 0, 0, once);
6530}
6531
6532void SDNode::dumpr(const SelectionDAG *G) const {
6533  VisitedSDNodeSet once;
6534  DumpNodesr(dbgs(), this, 0, G, once);
6535}
6536
6537
6538// getAddressSpace - Return the address space this GlobalAddress belongs to.
6539unsigned GlobalAddressSDNode::getAddressSpace() const {
6540  return getGlobal()->getType()->getAddressSpace();
6541}
6542
6543
6544Type *ConstantPoolSDNode::getType() const {
6545  if (isMachineConstantPoolEntry())
6546    return Val.MachineCPVal->getType();
6547  return Val.ConstVal->getType();
6548}
6549
6550bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6551                                        APInt &SplatUndef,
6552                                        unsigned &SplatBitSize,
6553                                        bool &HasAnyUndefs,
6554                                        unsigned MinSplatBits,
6555                                        bool isBigEndian) {
6556  EVT VT = getValueType(0);
6557  assert(VT.isVector() && "Expected a vector type");
6558  unsigned sz = VT.getSizeInBits();
6559  if (MinSplatBits > sz)
6560    return false;
6561
6562  SplatValue = APInt(sz, 0);
6563  SplatUndef = APInt(sz, 0);
6564
6565  // Get the bits.  Bits with undefined values (when the corresponding element
6566  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6567  // in SplatValue.  If any of the values are not constant, give up and return
6568  // false.
6569  unsigned int nOps = getNumOperands();
6570  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6571  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6572
6573  for (unsigned j = 0; j < nOps; ++j) {
6574    unsigned i = isBigEndian ? nOps-1-j : j;
6575    SDValue OpVal = getOperand(i);
6576    unsigned BitPos = j * EltBitSize;
6577
6578    if (OpVal.getOpcode() == ISD::UNDEF)
6579      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6580    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6581      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6582                    zextOrTrunc(sz) << BitPos;
6583    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6584      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6585     else
6586      return false;
6587  }
6588
6589  // The build_vector is all constants or undefs.  Find the smallest element
6590  // size that splats the vector.
6591
6592  HasAnyUndefs = (SplatUndef != 0);
6593  while (sz > 8) {
6594
6595    unsigned HalfSize = sz / 2;
6596    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6597    APInt LowValue = SplatValue.trunc(HalfSize);
6598    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6599    APInt LowUndef = SplatUndef.trunc(HalfSize);
6600
6601    // If the two halves do not match (ignoring undef bits), stop here.
6602    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6603        MinSplatBits > HalfSize)
6604      break;
6605
6606    SplatValue = HighValue | LowValue;
6607    SplatUndef = HighUndef & LowUndef;
6608
6609    sz = HalfSize;
6610  }
6611
6612  SplatBitSize = sz;
6613  return true;
6614}
6615
6616bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6617  // Find the first non-undef value in the shuffle mask.
6618  unsigned i, e;
6619  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6620    /* search */;
6621
6622  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6623
6624  // Make sure all remaining elements are either undef or the same as the first
6625  // non-undef value.
6626  for (int Idx = Mask[i]; i != e; ++i)
6627    if (Mask[i] >= 0 && Mask[i] != Idx)
6628      return false;
6629  return true;
6630}
6631
6632#ifdef XDEBUG
6633static void checkForCyclesHelper(const SDNode *N,
6634                                 SmallPtrSet<const SDNode*, 32> &Visited,
6635                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6636  // If this node has already been checked, don't check it again.
6637  if (Checked.count(N))
6638    return;
6639
6640  // If a node has already been visited on this depth-first walk, reject it as
6641  // a cycle.
6642  if (!Visited.insert(N)) {
6643    dbgs() << "Offending node:\n";
6644    N->dumprFull();
6645    errs() << "Detected cycle in SelectionDAG\n";
6646    abort();
6647  }
6648
6649  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6650    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6651
6652  Checked.insert(N);
6653  Visited.erase(N);
6654}
6655#endif
6656
6657void llvm::checkForCycles(const llvm::SDNode *N) {
6658#ifdef XDEBUG
6659  assert(N && "Checking nonexistant SDNode");
6660  SmallPtrSet<const SDNode*, 32> visited;
6661  SmallPtrSet<const SDNode*, 32> checked;
6662  checkForCyclesHelper(N, visited, checked);
6663#endif
6664}
6665
6666void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6667  checkForCycles(DAG->getRoot().getNode());
6668}
6669