SelectionDAG.cpp revision 579cfabdade805651c42971a22ae042dba3a33c4
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include <iostream>
25#include <set>
26#include <cmath>
27#include <algorithm>
28using namespace llvm;
29
30static bool isCommutativeBinOp(unsigned Opcode) {
31  switch (Opcode) {
32  case ISD::ADD:
33  case ISD::MUL:
34  case ISD::AND:
35  case ISD::OR:
36  case ISD::XOR: return true;
37  default: return false; // FIXME: Need commutative info for user ops!
38  }
39}
40
41static bool isAssociativeBinOp(unsigned Opcode) {
42  switch (Opcode) {
43  case ISD::ADD:
44  case ISD::MUL:
45  case ISD::AND:
46  case ISD::OR:
47  case ISD::XOR: return true;
48  default: return false; // FIXME: Need associative info for user ops!
49  }
50}
51
52// isInvertibleForFree - Return true if there is no cost to emitting the logical
53// inverse of this node.
54static bool isInvertibleForFree(SDOperand N) {
55  if (isa<ConstantSDNode>(N.Val)) return true;
56  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
57    return true;
58  return false;
59}
60
61//===----------------------------------------------------------------------===//
62//                              ConstantFPSDNode Class
63//===----------------------------------------------------------------------===//
64
65/// isExactlyValue - We don't rely on operator== working on double values, as
66/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
67/// As such, this method can be used to do an exact bit-for-bit comparison of
68/// two floating point values.
69bool ConstantFPSDNode::isExactlyValue(double V) const {
70  return DoubleToBits(V) == DoubleToBits(Value);
71}
72
73//===----------------------------------------------------------------------===//
74//                              ISD Class
75//===----------------------------------------------------------------------===//
76
77/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
78/// when given the operation for (X op Y).
79ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
80  // To perform this operation, we just need to swap the L and G bits of the
81  // operation.
82  unsigned OldL = (Operation >> 2) & 1;
83  unsigned OldG = (Operation >> 1) & 1;
84  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
85                       (OldL << 1) |       // New G bit
86                       (OldG << 2));        // New L bit.
87}
88
89/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
90/// 'op' is a valid SetCC operation.
91ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
92  unsigned Operation = Op;
93  if (isInteger)
94    Operation ^= 7;   // Flip L, G, E bits, but not U.
95  else
96    Operation ^= 15;  // Flip all of the condition bits.
97  if (Operation > ISD::SETTRUE2)
98    Operation &= ~8;     // Don't let N and U bits get set.
99  return ISD::CondCode(Operation);
100}
101
102
103/// isSignedOp - For an integer comparison, return 1 if the comparison is a
104/// signed operation and 2 if the result is an unsigned comparison.  Return zero
105/// if the operation does not depend on the sign of the input (setne and seteq).
106static int isSignedOp(ISD::CondCode Opcode) {
107  switch (Opcode) {
108  default: assert(0 && "Illegal integer setcc operation!");
109  case ISD::SETEQ:
110  case ISD::SETNE: return 0;
111  case ISD::SETLT:
112  case ISD::SETLE:
113  case ISD::SETGT:
114  case ISD::SETGE: return 1;
115  case ISD::SETULT:
116  case ISD::SETULE:
117  case ISD::SETUGT:
118  case ISD::SETUGE: return 2;
119  }
120}
121
122/// getSetCCOrOperation - Return the result of a logical OR between different
123/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
124/// returns SETCC_INVALID if it is not possible to represent the resultant
125/// comparison.
126ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
127                                       bool isInteger) {
128  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
129    // Cannot fold a signed integer setcc with an unsigned integer setcc.
130    return ISD::SETCC_INVALID;
131
132  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
133
134  // If the N and U bits get set then the resultant comparison DOES suddenly
135  // care about orderedness, and is true when ordered.
136  if (Op > ISD::SETTRUE2)
137    Op &= ~16;     // Clear the N bit.
138  return ISD::CondCode(Op);
139}
140
141/// getSetCCAndOperation - Return the result of a logical AND between different
142/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
143/// function returns zero if it is not possible to represent the resultant
144/// comparison.
145ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
146                                        bool isInteger) {
147  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
148    // Cannot fold a signed setcc with an unsigned setcc.
149    return ISD::SETCC_INVALID;
150
151  // Combine all of the condition bits.
152  return ISD::CondCode(Op1 & Op2);
153}
154
155const TargetMachine &SelectionDAG::getTarget() const {
156  return TLI.getTargetMachine();
157}
158
159//===----------------------------------------------------------------------===//
160//                              SelectionDAG Class
161//===----------------------------------------------------------------------===//
162
163/// RemoveDeadNodes - This method deletes all unreachable nodes in the
164/// SelectionDAG, including nodes (like loads) that have uses of their token
165/// chain but no other uses and no side effect.  If a node is passed in as an
166/// argument, it is used as the seed for node deletion.
167void SelectionDAG::RemoveDeadNodes(SDNode *N) {
168  std::set<SDNode*> AllNodeSet(AllNodes.begin(), AllNodes.end());
169
170  // Create a dummy node (which is not added to allnodes), that adds a reference
171  // to the root node, preventing it from being deleted.
172  SDNode *DummyNode = new SDNode(ISD::EntryToken, getRoot());
173
174  // If we have a hint to start from, use it.
175  if (N) DeleteNodeIfDead(N, &AllNodeSet);
176
177 Restart:
178  unsigned NumNodes = AllNodeSet.size();
179  for (std::set<SDNode*>::iterator I = AllNodeSet.begin(), E = AllNodeSet.end();
180       I != E; ++I) {
181    // Try to delete this node.
182    DeleteNodeIfDead(*I, &AllNodeSet);
183
184    // If we actually deleted any nodes, do not use invalid iterators in
185    // AllNodeSet.
186    if (AllNodeSet.size() != NumNodes)
187      goto Restart;
188  }
189
190  // Restore AllNodes.
191  if (AllNodes.size() != NumNodes)
192    AllNodes.assign(AllNodeSet.begin(), AllNodeSet.end());
193
194  // If the root changed (e.g. it was a dead load, update the root).
195  setRoot(DummyNode->getOperand(0));
196
197  // Now that we are done with the dummy node, delete it.
198  DummyNode->getOperand(0).Val->removeUser(DummyNode);
199  delete DummyNode;
200}
201
202
203void SelectionDAG::DeleteNodeIfDead(SDNode *N, void *NodeSet) {
204  if (!N->use_empty())
205    return;
206
207  // Okay, we really are going to delete this node.  First take this out of the
208  // appropriate CSE map.
209  RemoveNodeFromCSEMaps(N);
210
211  // Next, brutally remove the operand list.  This is safe to do, as there are
212  // no cycles in the graph.
213  while (!N->Operands.empty()) {
214    SDNode *O = N->Operands.back().Val;
215    N->Operands.pop_back();
216    O->removeUser(N);
217
218    // Now that we removed this operand, see if there are no uses of it left.
219    DeleteNodeIfDead(O, NodeSet);
220  }
221
222  // Remove the node from the nodes set and delete it.
223  std::set<SDNode*> &AllNodeSet = *(std::set<SDNode*>*)NodeSet;
224  AllNodeSet.erase(N);
225
226  // Now that the node is gone, check to see if any of the operands of this node
227  // are dead now.
228  delete N;
229}
230
231/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
232/// correspond to it.  This is useful when we're about to delete or repurpose
233/// the node.  We don't want future request for structurally identical nodes
234/// to return N anymore.
235void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
236  switch (N->getOpcode()) {
237  case ISD::Constant:
238    Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
239                                   N->getValueType(0)));
240    break;
241  case ISD::TargetConstant:
242    TargetConstants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
243                                         N->getValueType(0)));
244    break;
245  case ISD::ConstantFP: {
246    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
247    ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
248    break;
249  }
250  case ISD::CONDCODE:
251    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
252           "Cond code doesn't exist!");
253    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
254    break;
255  case ISD::GlobalAddress:
256    GlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
257    break;
258  case ISD::TargetGlobalAddress:
259    TargetGlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
260    break;
261  case ISD::FrameIndex:
262    FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
263    break;
264  case ISD::TargetFrameIndex:
265    TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
266    break;
267  case ISD::ConstantPool:
268    ConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
269    break;
270  case ISD::TargetConstantPool:
271    TargetConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
272    break;
273  case ISD::BasicBlock:
274    BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
275    break;
276  case ISD::ExternalSymbol:
277    ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
278    break;
279  case ISD::VALUETYPE:
280    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
281    break;
282  case ISD::Register:
283    RegNodes[cast<RegisterSDNode>(N)->getReg()] = 0;
284    break;
285  case ISD::SRCVALUE: {
286    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
287    ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
288    break;
289  }
290  case ISD::LOAD:
291    Loads.erase(std::make_pair(N->getOperand(1),
292                               std::make_pair(N->getOperand(0),
293                                              N->getValueType(0))));
294    break;
295  default:
296    if (N->getNumOperands() == 1)
297      UnaryOps.erase(std::make_pair(N->getOpcode(),
298                                    std::make_pair(N->getOperand(0),
299                                                   N->getValueType(0))));
300    else if (N->getNumOperands() == 2)
301      BinaryOps.erase(std::make_pair(N->getOpcode(),
302                                     std::make_pair(N->getOperand(0),
303                                                    N->getOperand(1))));
304    else if (N->getNumValues() == 1) {
305      std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
306      OneResultNodes.erase(std::make_pair(N->getOpcode(),
307                                          std::make_pair(N->getValueType(0),
308                                                         Ops)));
309    } else {
310      // Remove the node from the ArbitraryNodes map.
311      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
312      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
313      ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
314                                          std::make_pair(RV, Ops)));
315    }
316    break;
317  }
318}
319
320/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
321/// has been taken out and modified in some way.  If the specified node already
322/// exists in the CSE maps, do not modify the maps, but return the existing node
323/// instead.  If it doesn't exist, add it and return null.
324///
325SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
326  assert(N->getNumOperands() && "This is a leaf node!");
327  if (N->getOpcode() == ISD::LOAD) {
328    SDNode *&L = Loads[std::make_pair(N->getOperand(1),
329                                      std::make_pair(N->getOperand(0),
330                                                     N->getValueType(0)))];
331    if (L) return L;
332    L = N;
333  } else if (N->getNumOperands() == 1) {
334    SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
335                                         std::make_pair(N->getOperand(0),
336                                                        N->getValueType(0)))];
337    if (U) return U;
338    U = N;
339  } else if (N->getNumOperands() == 2) {
340    SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
341                                          std::make_pair(N->getOperand(0),
342                                                         N->getOperand(1)))];
343    if (B) return B;
344    B = N;
345  } else if (N->getNumValues() == 1) {
346    std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
347    SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
348                                  std::make_pair(N->getValueType(0), Ops))];
349    if (ORN) return ORN;
350    ORN = N;
351  } else {
352    // Remove the node from the ArbitraryNodes map.
353    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
354    std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
355    SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
356                                                std::make_pair(RV, Ops))];
357    if (AN) return AN;
358    AN = N;
359  }
360  return 0;
361
362}
363
364
365
366SelectionDAG::~SelectionDAG() {
367  for (unsigned i = 0, e = AllNodes.size(); i != e; ++i)
368    delete AllNodes[i];
369}
370
371SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
372  if (Op.getValueType() == VT) return Op;
373  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
374  return getNode(ISD::AND, Op.getValueType(), Op,
375                 getConstant(Imm, Op.getValueType()));
376}
377
378SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
379  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
380  // Mask out any bits that are not valid for this constant.
381  if (VT != MVT::i64)
382    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
383
384  SDNode *&N = Constants[std::make_pair(Val, VT)];
385  if (N) return SDOperand(N, 0);
386  N = new ConstantSDNode(false, Val, VT);
387  AllNodes.push_back(N);
388  return SDOperand(N, 0);
389}
390
391SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
392  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
393  // Mask out any bits that are not valid for this constant.
394  if (VT != MVT::i64)
395    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
396
397  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
398  if (N) return SDOperand(N, 0);
399  N = new ConstantSDNode(true, Val, VT);
400  AllNodes.push_back(N);
401  return SDOperand(N, 0);
402}
403
404SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
405  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
406  if (VT == MVT::f32)
407    Val = (float)Val;  // Mask out extra precision.
408
409  // Do the map lookup using the actual bit pattern for the floating point
410  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
411  // we don't have issues with SNANs.
412  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
413  if (N) return SDOperand(N, 0);
414  N = new ConstantFPSDNode(Val, VT);
415  AllNodes.push_back(N);
416  return SDOperand(N, 0);
417}
418
419
420
421SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
422                                         MVT::ValueType VT) {
423  SDNode *&N = GlobalValues[GV];
424  if (N) return SDOperand(N, 0);
425  N = new GlobalAddressSDNode(false, GV, VT);
426  AllNodes.push_back(N);
427  return SDOperand(N, 0);
428}
429
430SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
431                                               MVT::ValueType VT) {
432  SDNode *&N = TargetGlobalValues[GV];
433  if (N) return SDOperand(N, 0);
434  N = new GlobalAddressSDNode(true, GV, VT);
435  AllNodes.push_back(N);
436  return SDOperand(N, 0);
437}
438
439SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
440  SDNode *&N = FrameIndices[FI];
441  if (N) return SDOperand(N, 0);
442  N = new FrameIndexSDNode(FI, VT, false);
443  AllNodes.push_back(N);
444  return SDOperand(N, 0);
445}
446
447SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
448  SDNode *&N = TargetFrameIndices[FI];
449  if (N) return SDOperand(N, 0);
450  N = new FrameIndexSDNode(FI, VT, true);
451  AllNodes.push_back(N);
452  return SDOperand(N, 0);
453}
454
455SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT) {
456  SDNode *&N = ConstantPoolIndices[C];
457  if (N) return SDOperand(N, 0);
458  N = new ConstantPoolSDNode(C, VT, false);
459  AllNodes.push_back(N);
460  return SDOperand(N, 0);
461}
462
463SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT) {
464  SDNode *&N = TargetConstantPoolIndices[C];
465  if (N) return SDOperand(N, 0);
466  N = new ConstantPoolSDNode(C, VT, true);
467  AllNodes.push_back(N);
468  return SDOperand(N, 0);
469}
470
471SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
472  SDNode *&N = BBNodes[MBB];
473  if (N) return SDOperand(N, 0);
474  N = new BasicBlockSDNode(MBB);
475  AllNodes.push_back(N);
476  return SDOperand(N, 0);
477}
478
479SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
480  if ((unsigned)VT >= ValueTypeNodes.size())
481    ValueTypeNodes.resize(VT+1);
482  if (ValueTypeNodes[VT] == 0) {
483    ValueTypeNodes[VT] = new VTSDNode(VT);
484    AllNodes.push_back(ValueTypeNodes[VT]);
485  }
486
487  return SDOperand(ValueTypeNodes[VT], 0);
488}
489
490SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
491  SDNode *&N = ExternalSymbols[Sym];
492  if (N) return SDOperand(N, 0);
493  N = new ExternalSymbolSDNode(Sym, VT);
494  AllNodes.push_back(N);
495  return SDOperand(N, 0);
496}
497
498SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
499  if ((unsigned)Cond >= CondCodeNodes.size())
500    CondCodeNodes.resize(Cond+1);
501
502  if (CondCodeNodes[Cond] == 0) {
503    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
504    AllNodes.push_back(CondCodeNodes[Cond]);
505  }
506  return SDOperand(CondCodeNodes[Cond], 0);
507}
508
509SDOperand SelectionDAG::getRegister(unsigned Reg, MVT::ValueType VT) {
510  if (Reg >= RegNodes.size())
511    RegNodes.resize(Reg+1);
512  RegisterSDNode *&Result = RegNodes[Reg];
513  if (Result) {
514    assert(Result->getValueType(0) == VT &&
515           "Inconsistent value types for machine registers");
516  } else {
517    Result = new RegisterSDNode(Reg, VT);
518    AllNodes.push_back(Result);
519  }
520  return SDOperand(Result, 0);
521}
522
523SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
524                                      SDOperand N2, ISD::CondCode Cond) {
525  // These setcc operations always fold.
526  switch (Cond) {
527  default: break;
528  case ISD::SETFALSE:
529  case ISD::SETFALSE2: return getConstant(0, VT);
530  case ISD::SETTRUE:
531  case ISD::SETTRUE2:  return getConstant(1, VT);
532  }
533
534  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
535    uint64_t C2 = N2C->getValue();
536    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
537      uint64_t C1 = N1C->getValue();
538
539      // Sign extend the operands if required
540      if (ISD::isSignedIntSetCC(Cond)) {
541        C1 = N1C->getSignExtended();
542        C2 = N2C->getSignExtended();
543      }
544
545      switch (Cond) {
546      default: assert(0 && "Unknown integer setcc!");
547      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
548      case ISD::SETNE:  return getConstant(C1 != C2, VT);
549      case ISD::SETULT: return getConstant(C1 <  C2, VT);
550      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
551      case ISD::SETULE: return getConstant(C1 <= C2, VT);
552      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
553      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
554      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
555      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
556      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
557      }
558    } else {
559      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
560      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
561        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
562
563        // If the comparison constant has bits in the upper part, the
564        // zero-extended value could never match.
565        if (C2 & (~0ULL << InSize)) {
566          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
567          switch (Cond) {
568          case ISD::SETUGT:
569          case ISD::SETUGE:
570          case ISD::SETEQ: return getConstant(0, VT);
571          case ISD::SETULT:
572          case ISD::SETULE:
573          case ISD::SETNE: return getConstant(1, VT);
574          case ISD::SETGT:
575          case ISD::SETGE:
576            // True if the sign bit of C2 is set.
577            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
578          case ISD::SETLT:
579          case ISD::SETLE:
580            // True if the sign bit of C2 isn't set.
581            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
582          default:
583            break;
584          }
585        }
586
587        // Otherwise, we can perform the comparison with the low bits.
588        switch (Cond) {
589        case ISD::SETEQ:
590        case ISD::SETNE:
591        case ISD::SETUGT:
592        case ISD::SETUGE:
593        case ISD::SETULT:
594        case ISD::SETULE:
595          return getSetCC(VT, N1.getOperand(0),
596                          getConstant(C2, N1.getOperand(0).getValueType()),
597                          Cond);
598        default:
599          break;   // todo, be more careful with signed comparisons
600        }
601      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
602                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
603        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
604        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
605        MVT::ValueType ExtDstTy = N1.getValueType();
606        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
607
608        // If the extended part has any inconsistent bits, it cannot ever
609        // compare equal.  In other words, they have to be all ones or all
610        // zeros.
611        uint64_t ExtBits =
612          (~0ULL >> 64-ExtSrcTyBits) & (~0ULL << (ExtDstTyBits-1));
613        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
614          return getConstant(Cond == ISD::SETNE, VT);
615
616        // Otherwise, make this a use of a zext.
617        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
618                        getConstant(C2 & (~0ULL >> 64-ExtSrcTyBits), ExtDstTy),
619                        Cond);
620      }
621
622      uint64_t MinVal, MaxVal;
623      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
624      if (ISD::isSignedIntSetCC(Cond)) {
625        MinVal = 1ULL << (OperandBitSize-1);
626        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
627          MaxVal = ~0ULL >> (65-OperandBitSize);
628        else
629          MaxVal = 0;
630      } else {
631        MinVal = 0;
632        MaxVal = ~0ULL >> (64-OperandBitSize);
633      }
634
635      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
636      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
637        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
638        --C2;                                          // X >= C1 --> X > (C1-1)
639        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
640                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
641      }
642
643      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
644        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
645        ++C2;                                          // X <= C1 --> X < (C1+1)
646        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
647                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
648      }
649
650      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
651        return getConstant(0, VT);      // X < MIN --> false
652
653      // Canonicalize setgt X, Min --> setne X, Min
654      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
655        return getSetCC(VT, N1, N2, ISD::SETNE);
656
657      // If we have setult X, 1, turn it into seteq X, 0
658      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
659        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
660                        ISD::SETEQ);
661      // If we have setugt X, Max-1, turn it into seteq X, Max
662      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
663        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
664                        ISD::SETEQ);
665
666      // If we have "setcc X, C1", check to see if we can shrink the immediate
667      // by changing cc.
668
669      // SETUGT X, SINTMAX  -> SETLT X, 0
670      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
671          C2 == (~0ULL >> (65-OperandBitSize)))
672        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
673
674      // FIXME: Implement the rest of these.
675
676
677      // Fold bit comparisons when we can.
678      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
679          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
680        if (ConstantSDNode *AndRHS =
681                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
682          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
683            // Perform the xform if the AND RHS is a single bit.
684            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
685              return getNode(ISD::SRL, VT, N1,
686                             getConstant(Log2_64(AndRHS->getValue()),
687                                                   TLI.getShiftAmountTy()));
688            }
689          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
690            // (X & 8) == 8  -->  (X & 8) >> 3
691            // Perform the xform if C2 is a single bit.
692            if ((C2 & (C2-1)) == 0) {
693              return getNode(ISD::SRL, VT, N1,
694                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
695            }
696          }
697        }
698    }
699  } else if (isa<ConstantSDNode>(N1.Val)) {
700      // Ensure that the constant occurs on the RHS.
701    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
702  }
703
704  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
705    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
706      double C1 = N1C->getValue(), C2 = N2C->getValue();
707
708      switch (Cond) {
709      default: break; // FIXME: Implement the rest of these!
710      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
711      case ISD::SETNE:  return getConstant(C1 != C2, VT);
712      case ISD::SETLT:  return getConstant(C1 < C2, VT);
713      case ISD::SETGT:  return getConstant(C1 > C2, VT);
714      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
715      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
716      }
717    } else {
718      // Ensure that the constant occurs on the RHS.
719      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
720    }
721
722  if (N1 == N2) {
723    // We can always fold X == Y for integer setcc's.
724    if (MVT::isInteger(N1.getValueType()))
725      return getConstant(ISD::isTrueWhenEqual(Cond), VT);
726    unsigned UOF = ISD::getUnorderedFlavor(Cond);
727    if (UOF == 2)   // FP operators that are undefined on NaNs.
728      return getConstant(ISD::isTrueWhenEqual(Cond), VT);
729    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
730      return getConstant(UOF, VT);
731    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
732    // if it is not already.
733    ISD::CondCode NewCond = UOF == 0 ? ISD::SETUO : ISD::SETO;
734    if (NewCond != Cond)
735      return getSetCC(VT, N1, N2, NewCond);
736  }
737
738  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
739      MVT::isInteger(N1.getValueType())) {
740    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
741        N1.getOpcode() == ISD::XOR) {
742      // Simplify (X+Y) == (X+Z) -->  Y == Z
743      if (N1.getOpcode() == N2.getOpcode()) {
744        if (N1.getOperand(0) == N2.getOperand(0))
745          return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond);
746        if (N1.getOperand(1) == N2.getOperand(1))
747          return getSetCC(VT, N1.getOperand(0), N2.getOperand(0), Cond);
748        if (isCommutativeBinOp(N1.getOpcode())) {
749          // If X op Y == Y op X, try other combinations.
750          if (N1.getOperand(0) == N2.getOperand(1))
751            return getSetCC(VT, N1.getOperand(1), N2.getOperand(0), Cond);
752          if (N1.getOperand(1) == N2.getOperand(0))
753            return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond);
754        }
755      }
756
757      // FIXME: move this stuff to the DAG Combiner when it exists!
758
759      // Simplify (X+Z) == X -->  Z == 0
760      if (N1.getOperand(0) == N2)
761        return getSetCC(VT, N1.getOperand(1),
762                        getConstant(0, N1.getValueType()), Cond);
763      if (N1.getOperand(1) == N2) {
764        if (isCommutativeBinOp(N1.getOpcode()))
765          return getSetCC(VT, N1.getOperand(0),
766                          getConstant(0, N1.getValueType()), Cond);
767        else {
768          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
769          // (Z-X) == X  --> Z == X<<1
770          return getSetCC(VT, N1.getOperand(0),
771                          getNode(ISD::SHL, N2.getValueType(),
772                                  N2, getConstant(1, TLI.getShiftAmountTy())),
773                          Cond);
774        }
775      }
776    }
777
778    if (N2.getOpcode() == ISD::ADD || N2.getOpcode() == ISD::SUB ||
779        N2.getOpcode() == ISD::XOR) {
780      // Simplify  X == (X+Z) -->  Z == 0
781      if (N2.getOperand(0) == N1) {
782        return getSetCC(VT, N2.getOperand(1),
783                        getConstant(0, N2.getValueType()), Cond);
784      } else if (N2.getOperand(1) == N1) {
785        if (isCommutativeBinOp(N2.getOpcode())) {
786          return getSetCC(VT, N2.getOperand(0),
787                          getConstant(0, N2.getValueType()), Cond);
788        } else {
789          assert(N2.getOpcode() == ISD::SUB && "Unexpected operation!");
790          // X == (Z-X)  --> X<<1 == Z
791          return getSetCC(VT, getNode(ISD::SHL, N2.getValueType(), N1,
792                                      getConstant(1, TLI.getShiftAmountTy())),
793                          N2.getOperand(0), Cond);
794        }
795      }
796    }
797  }
798
799  // Fold away ALL boolean setcc's.
800  if (N1.getValueType() == MVT::i1) {
801    switch (Cond) {
802    default: assert(0 && "Unknown integer setcc!");
803    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
804      N1 = getNode(ISD::XOR, MVT::i1,
805                   getNode(ISD::XOR, MVT::i1, N1, N2),
806                   getConstant(1, MVT::i1));
807      break;
808    case ISD::SETNE:  // X != Y   -->  (X^Y)
809      N1 = getNode(ISD::XOR, MVT::i1, N1, N2);
810      break;
811    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
812    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
813      N1 = getNode(ISD::AND, MVT::i1, N2,
814                   getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1)));
815      break;
816    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
817    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
818      N1 = getNode(ISD::AND, MVT::i1, N1,
819                   getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1)));
820      break;
821    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
822    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
823      N1 = getNode(ISD::OR, MVT::i1, N2,
824                   getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1)));
825      break;
826    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
827    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
828      N1 = getNode(ISD::OR, MVT::i1, N1,
829                   getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1)));
830      break;
831    }
832    if (VT != MVT::i1)
833      N1 = getNode(ISD::ZERO_EXTEND, VT, N1);
834    return N1;
835  }
836
837  // Could not fold it.
838  return SDOperand();
839}
840
841SDOperand SelectionDAG::SimplifySelectCC(SDOperand N1, SDOperand N2,
842                                         SDOperand N3, SDOperand N4,
843                                         ISD::CondCode CC) {
844  MVT::ValueType VT = N3.getValueType();
845  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
846  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
847  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
848  ConstantSDNode *N4C = dyn_cast<ConstantSDNode>(N4.Val);
849
850  // Check to see if we can simplify the select into an fabs node
851  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2)) {
852    // Allow either -0.0 or 0.0
853    if (CFP->getValue() == 0.0) {
854      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
855      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
856          N1 == N3 && N4.getOpcode() == ISD::FNEG &&
857          N1 == N4.getOperand(0))
858        return getNode(ISD::FABS, VT, N1);
859
860      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
861      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
862          N1 == N4 && N3.getOpcode() == ISD::FNEG &&
863          N3.getOperand(0) == N4)
864        return getNode(ISD::FABS, VT, N4);
865    }
866  }
867
868  // check to see if we're select_cc'ing a select_cc.
869  // this allows us to turn:
870  // select_cc set[eq,ne] (select_cc cc, lhs, rhs, 1, 0), 0, true, false ->
871  // select_cc cc, lhs, rhs, true, false
872  if ((N1C && N1C->isNullValue() && N2.getOpcode() == ISD::SELECT_CC) ||
873      (N2C && N2C->isNullValue() && N1.getOpcode() == ISD::SELECT_CC) &&
874      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
875    SDOperand SCC = N1C ? N2 : N1;
876    ConstantSDNode *SCCT = dyn_cast<ConstantSDNode>(SCC.getOperand(2));
877    ConstantSDNode *SCCF = dyn_cast<ConstantSDNode>(SCC.getOperand(3));
878    if (SCCT && SCCF && SCCF->isNullValue() && SCCT->getValue() == 1ULL) {
879      if (CC == ISD::SETEQ) std::swap(N3, N4);
880      return getNode(ISD::SELECT_CC, N3.getValueType(), SCC.getOperand(0),
881                     SCC.getOperand(1), N3, N4, SCC.getOperand(4));
882    }
883  }
884
885  // Check to see if we can perform the "gzip trick", transforming
886  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
887  if (N2C && N2C->isNullValue() && N4C && N4C->isNullValue() &&
888      MVT::isInteger(N1.getValueType()) &&
889      MVT::isInteger(N3.getValueType()) && CC == ISD::SETLT) {
890    MVT::ValueType XType = N1.getValueType();
891    MVT::ValueType AType = N3.getValueType();
892    if (XType >= AType) {
893      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
894      // single-bit constant.  FIXME: remove once the dag combiner
895      // exists.
896      if (N3C && ((N3C->getValue() & (N3C->getValue()-1)) == 0)) {
897        unsigned ShCtV = Log2_64(N3C->getValue());
898        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
899        SDOperand ShCt = getConstant(ShCtV, TLI.getShiftAmountTy());
900        SDOperand Shift = getNode(ISD::SRL, XType, N1, ShCt);
901        if (XType > AType)
902          Shift = getNode(ISD::TRUNCATE, AType, Shift);
903        return getNode(ISD::AND, AType, Shift, N3);
904      }
905      SDOperand Shift = getNode(ISD::SRA, XType, N1,
906                                getConstant(MVT::getSizeInBits(XType)-1,
907                                            TLI.getShiftAmountTy()));
908      if (XType > AType)
909        Shift = getNode(ISD::TRUNCATE, AType, Shift);
910      return getNode(ISD::AND, AType, Shift, N3);
911    }
912  }
913
914  // Check to see if this is the equivalent of setcc
915  if (N4C && N4C->isNullValue() && N3C && (N3C->getValue() == 1ULL)) {
916    MVT::ValueType XType = N1.getValueType();
917    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy()))
918      return getSetCC(TLI.getSetCCResultTy(), N1, N2, CC);
919
920    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
921    if (N2C && N2C->isNullValue() && CC == ISD::SETEQ &&
922        TLI.isOperationLegal(ISD::CTLZ, XType)) {
923      SDOperand Ctlz = getNode(ISD::CTLZ, XType, N1);
924      return getNode(ISD::SRL, XType, Ctlz,
925                     getConstant(Log2_32(MVT::getSizeInBits(XType)),
926                                 TLI.getShiftAmountTy()));
927    }
928    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
929    if (N2C && N2C->isNullValue() && CC == ISD::SETGT) {
930      SDOperand NegN1 = getNode(ISD::SUB, XType, getConstant(0, XType), N1);
931      SDOperand NotN1 = getNode(ISD::XOR, XType, N1, getConstant(~0ULL, XType));
932      return getNode(ISD::SRL, XType, getNode(ISD::AND, XType, NegN1, NotN1),
933                     getConstant(MVT::getSizeInBits(XType)-1,
934                                 TLI.getShiftAmountTy()));
935    }
936    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
937    if (N2C && N2C->isAllOnesValue() && CC == ISD::SETGT) {
938      SDOperand Sign = getNode(ISD::SRL, XType, N1,
939                               getConstant(MVT::getSizeInBits(XType)-1,
940                                           TLI.getShiftAmountTy()));
941      return getNode(ISD::XOR, XType, Sign, getConstant(1, XType));
942    }
943  }
944
945  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
946  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
947  if (N2C && N2C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
948      N1 == N4 && N3.getOpcode() == ISD::SUB && N1 == N3.getOperand(1)) {
949    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
950      MVT::ValueType XType = N1.getValueType();
951      if (SubC->isNullValue() && MVT::isInteger(XType)) {
952        SDOperand Shift = getNode(ISD::SRA, XType, N1,
953                                  getConstant(MVT::getSizeInBits(XType)-1,
954                                              TLI.getShiftAmountTy()));
955        return getNode(ISD::XOR, XType, getNode(ISD::ADD, XType, N1, Shift),
956                       Shift);
957      }
958    }
959  }
960
961  // Could not fold it.
962  return SDOperand();
963}
964
965/// getNode - Gets or creates the specified node.
966///
967SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
968  SDNode *N = new SDNode(Opcode, VT);
969  AllNodes.push_back(N);
970  return SDOperand(N, 0);
971}
972
973SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
974                                SDOperand Operand) {
975  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
976    uint64_t Val = C->getValue();
977    switch (Opcode) {
978    default: break;
979    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
980    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
981    case ISD::TRUNCATE:    return getConstant(Val, VT);
982    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
983    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
984    }
985  }
986
987  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
988    switch (Opcode) {
989    case ISD::FNEG:
990      return getConstantFP(-C->getValue(), VT);
991    case ISD::FP_ROUND:
992    case ISD::FP_EXTEND:
993      return getConstantFP(C->getValue(), VT);
994    case ISD::FP_TO_SINT:
995      return getConstant((int64_t)C->getValue(), VT);
996    case ISD::FP_TO_UINT:
997      return getConstant((uint64_t)C->getValue(), VT);
998    }
999
1000  unsigned OpOpcode = Operand.Val->getOpcode();
1001  switch (Opcode) {
1002  case ISD::TokenFactor:
1003    return Operand;         // Factor of one node?  No factor.
1004  case ISD::SIGN_EXTEND:
1005    if (Operand.getValueType() == VT) return Operand;   // noop extension
1006    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1007      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1008    break;
1009  case ISD::ZERO_EXTEND:
1010    if (Operand.getValueType() == VT) return Operand;   // noop extension
1011    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1012      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1013    break;
1014  case ISD::TRUNCATE:
1015    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1016    if (OpOpcode == ISD::TRUNCATE)
1017      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1018    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND) {
1019      // If the source is smaller than the dest, we still need an extend.
1020      if (Operand.Val->getOperand(0).getValueType() < VT)
1021        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1022      else if (Operand.Val->getOperand(0).getValueType() > VT)
1023        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1024      else
1025        return Operand.Val->getOperand(0);
1026    }
1027    break;
1028  case ISD::FNEG:
1029    if (OpOpcode == ISD::SUB)   // -(X-Y) -> (Y-X)
1030      return getNode(ISD::SUB, VT, Operand.Val->getOperand(1),
1031                     Operand.Val->getOperand(0));
1032    if (OpOpcode == ISD::FNEG)  // --X -> X
1033      return Operand.Val->getOperand(0);
1034    break;
1035  case ISD::FABS:
1036    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1037      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1038    break;
1039  }
1040
1041  SDNode *N;
1042  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1043    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1044    if (E) return SDOperand(E, 0);
1045    E = N = new SDNode(Opcode, Operand);
1046  } else {
1047    N = new SDNode(Opcode, Operand);
1048  }
1049  N->setValueTypes(VT);
1050  AllNodes.push_back(N);
1051  return SDOperand(N, 0);
1052}
1053
1054/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1055/// this predicate to simplify operations downstream.  V and Mask are known to
1056/// be the same type.
1057static bool MaskedValueIsZero(const SDOperand &Op, uint64_t Mask,
1058                              const TargetLowering &TLI) {
1059  unsigned SrcBits;
1060  if (Mask == 0) return true;
1061
1062  // If we know the result of a setcc has the top bits zero, use this info.
1063  switch (Op.getOpcode()) {
1064  case ISD::Constant:
1065    return (cast<ConstantSDNode>(Op)->getValue() & Mask) == 0;
1066
1067  case ISD::SETCC:
1068    return ((Mask & 1) == 0) &&
1069           TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult;
1070
1071  case ISD::ZEXTLOAD:
1072    SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
1073    return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
1074  case ISD::ZERO_EXTEND:
1075    SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
1076    return MaskedValueIsZero(Op.getOperand(0),Mask & ((1ULL << SrcBits)-1),TLI);
1077
1078  case ISD::AND:
1079    // (X & C1) & C2 == 0   iff   C1 & C2 == 0.
1080    if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1081      return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask, TLI);
1082
1083    // FALL THROUGH
1084  case ISD::OR:
1085  case ISD::XOR:
1086    return MaskedValueIsZero(Op.getOperand(0), Mask, TLI) &&
1087           MaskedValueIsZero(Op.getOperand(1), Mask, TLI);
1088  case ISD::SELECT:
1089    return MaskedValueIsZero(Op.getOperand(1), Mask, TLI) &&
1090           MaskedValueIsZero(Op.getOperand(2), Mask, TLI);
1091  case ISD::SELECT_CC:
1092    return MaskedValueIsZero(Op.getOperand(2), Mask, TLI) &&
1093           MaskedValueIsZero(Op.getOperand(3), Mask, TLI);
1094  case ISD::SRL:
1095    // (ushr X, C1) & C2 == 0   iff  X & (C2 << C1) == 0
1096    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1097      uint64_t NewVal = Mask << ShAmt->getValue();
1098      SrcBits = MVT::getSizeInBits(Op.getValueType());
1099      if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1;
1100      return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
1101    }
1102    return false;
1103  case ISD::SHL:
1104    // (ushl X, C1) & C2 == 0   iff  X & (C2 >> C1) == 0
1105    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1106      uint64_t NewVal = Mask >> ShAmt->getValue();
1107      return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
1108    }
1109    return false;
1110  case ISD::CTTZ:
1111  case ISD::CTLZ:
1112  case ISD::CTPOP:
1113    // Bit counting instructions can not set the high bits of the result
1114    // register.  The max number of bits sets depends on the input.
1115    return (Mask & (MVT::getSizeInBits(Op.getValueType())*2-1)) == 0;
1116
1117    // TODO we could handle some SRA cases here.
1118  default: break;
1119  }
1120
1121  return false;
1122}
1123
1124
1125
1126SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1127                                SDOperand N1, SDOperand N2) {
1128#ifndef NDEBUG
1129  switch (Opcode) {
1130  case ISD::TokenFactor:
1131    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1132           N2.getValueType() == MVT::Other && "Invalid token factor!");
1133    break;
1134  case ISD::AND:
1135  case ISD::OR:
1136  case ISD::XOR:
1137  case ISD::UDIV:
1138  case ISD::UREM:
1139  case ISD::MULHU:
1140  case ISD::MULHS:
1141    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1142    // fall through
1143  case ISD::ADD:
1144  case ISD::SUB:
1145  case ISD::MUL:
1146  case ISD::SDIV:
1147  case ISD::SREM:
1148    assert(N1.getValueType() == N2.getValueType() &&
1149           N1.getValueType() == VT && "Binary operator types must match!");
1150    break;
1151
1152  case ISD::SHL:
1153  case ISD::SRA:
1154  case ISD::SRL:
1155    assert(VT == N1.getValueType() &&
1156           "Shift operators return type must be the same as their first arg");
1157    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1158           VT != MVT::i1 && "Shifts only work on integers");
1159    break;
1160  case ISD::FP_ROUND_INREG: {
1161    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1162    assert(VT == N1.getValueType() && "Not an inreg round!");
1163    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1164           "Cannot FP_ROUND_INREG integer types");
1165    assert(EVT <= VT && "Not rounding down!");
1166    break;
1167  }
1168  case ISD::SIGN_EXTEND_INREG: {
1169    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1170    assert(VT == N1.getValueType() && "Not an inreg extend!");
1171    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1172           "Cannot *_EXTEND_INREG FP types");
1173    assert(EVT <= VT && "Not extending!");
1174  }
1175
1176  default: break;
1177  }
1178#endif
1179
1180  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1181  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1182  if (N1C) {
1183    if (N2C) {
1184      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1185      switch (Opcode) {
1186      case ISD::ADD: return getConstant(C1 + C2, VT);
1187      case ISD::SUB: return getConstant(C1 - C2, VT);
1188      case ISD::MUL: return getConstant(C1 * C2, VT);
1189      case ISD::UDIV:
1190        if (C2) return getConstant(C1 / C2, VT);
1191        break;
1192      case ISD::UREM :
1193        if (C2) return getConstant(C1 % C2, VT);
1194        break;
1195      case ISD::SDIV :
1196        if (C2) return getConstant(N1C->getSignExtended() /
1197                                   N2C->getSignExtended(), VT);
1198        break;
1199      case ISD::SREM :
1200        if (C2) return getConstant(N1C->getSignExtended() %
1201                                   N2C->getSignExtended(), VT);
1202        break;
1203      case ISD::AND  : return getConstant(C1 & C2, VT);
1204      case ISD::OR   : return getConstant(C1 | C2, VT);
1205      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1206      case ISD::SHL  : return getConstant(C1 << (int)C2, VT);
1207      case ISD::SRL  : return getConstant(C1 >> (unsigned)C2, VT);
1208      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1209      default: break;
1210      }
1211
1212    } else {      // Cannonicalize constant to RHS if commutative
1213      if (isCommutativeBinOp(Opcode)) {
1214        std::swap(N1C, N2C);
1215        std::swap(N1, N2);
1216      }
1217    }
1218
1219    switch (Opcode) {
1220    default: break;
1221    case ISD::SHL:    // shl  0, X -> 0
1222      if (N1C->isNullValue()) return N1;
1223      break;
1224    case ISD::SRL:    // srl  0, X -> 0
1225      if (N1C->isNullValue()) return N1;
1226      break;
1227    case ISD::SRA:    // sra -1, X -> -1
1228      if (N1C->isAllOnesValue()) return N1;
1229      break;
1230    case ISD::SIGN_EXTEND_INREG:  // SIGN_EXTEND_INREG N1C, EVT
1231      // Extending a constant?  Just return the extended constant.
1232      SDOperand Tmp = getNode(ISD::TRUNCATE, cast<VTSDNode>(N2)->getVT(), N1);
1233      return getNode(ISD::SIGN_EXTEND, VT, Tmp);
1234    }
1235  }
1236
1237  if (N2C) {
1238    uint64_t C2 = N2C->getValue();
1239
1240    switch (Opcode) {
1241    case ISD::ADD:
1242      if (!C2) return N1;         // add X, 0 -> X
1243      break;
1244    case ISD::SUB:
1245      if (!C2) return N1;         // sub X, 0 -> X
1246      return getNode(ISD::ADD, VT, N1, getConstant(-C2, VT));
1247    case ISD::MUL:
1248      if (!C2) return N2;         // mul X, 0 -> 0
1249      if (N2C->isAllOnesValue()) // mul X, -1 -> 0-X
1250        return getNode(ISD::SUB, VT, getConstant(0, VT), N1);
1251
1252      // FIXME: Move this to the DAG combiner when it exists.
1253      if ((C2 & C2-1) == 0) {
1254        SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy());
1255        return getNode(ISD::SHL, VT, N1, ShAmt);
1256      }
1257      break;
1258
1259    case ISD::MULHU:
1260    case ISD::MULHS:
1261      if (!C2) return N2;         // mul X, 0 -> 0
1262
1263      if (C2 == 1)                // 0X*01 -> 0X  hi(0X) == 0
1264        return getConstant(0, VT);
1265
1266      // Many others could be handled here, including -1, powers of 2, etc.
1267      break;
1268
1269    case ISD::UDIV:
1270      // FIXME: Move this to the DAG combiner when it exists.
1271      if ((C2 & C2-1) == 0 && C2) {
1272        SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy());
1273        return getNode(ISD::SRL, VT, N1, ShAmt);
1274      }
1275      break;
1276
1277    case ISD::SHL:
1278    case ISD::SRL:
1279    case ISD::SRA:
1280      // If the shift amount is bigger than the size of the data, then all the
1281      // bits are shifted out.  Simplify to undef.
1282      if (C2 >= MVT::getSizeInBits(N1.getValueType())) {
1283        return getNode(ISD::UNDEF, N1.getValueType());
1284      }
1285      if (C2 == 0) return N1;
1286
1287      if (Opcode == ISD::SRA) {
1288        // If the sign bit is known to be zero, switch this to a SRL.
1289        if (MaskedValueIsZero(N1,
1290                              1ULL << (MVT::getSizeInBits(N1.getValueType())-1),
1291                              TLI))
1292          return getNode(ISD::SRL, N1.getValueType(), N1, N2);
1293      } else {
1294        // If the part left over is known to be zero, the whole thing is zero.
1295        uint64_t TypeMask = ~0ULL >> (64-MVT::getSizeInBits(N1.getValueType()));
1296        if (Opcode == ISD::SRL) {
1297          if (MaskedValueIsZero(N1, TypeMask << C2, TLI))
1298            return getConstant(0, N1.getValueType());
1299        } else if (Opcode == ISD::SHL) {
1300          if (MaskedValueIsZero(N1, TypeMask >> C2, TLI))
1301            return getConstant(0, N1.getValueType());
1302        }
1303      }
1304
1305      if (Opcode == ISD::SHL && N1.getNumOperands() == 2)
1306        if (ConstantSDNode *OpSA = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
1307          unsigned OpSAC = OpSA->getValue();
1308          if (N1.getOpcode() == ISD::SHL) {
1309            if (C2+OpSAC >= MVT::getSizeInBits(N1.getValueType()))
1310              return getConstant(0, N1.getValueType());
1311            return getNode(ISD::SHL, N1.getValueType(), N1.getOperand(0),
1312                           getConstant(C2+OpSAC, N2.getValueType()));
1313          } else if (N1.getOpcode() == ISD::SRL) {
1314            // (X >> C1) << C2:  if C2 > C1, ((X & ~0<<C1) << C2-C1)
1315            SDOperand Mask = getNode(ISD::AND, VT, N1.getOperand(0),
1316                                     getConstant(~0ULL << OpSAC, VT));
1317            if (C2 > OpSAC) {
1318              return getNode(ISD::SHL, VT, Mask,
1319                             getConstant(C2-OpSAC, N2.getValueType()));
1320            } else {
1321              // (X >> C1) << C2:  if C2 <= C1, ((X & ~0<<C1) >> C1-C2)
1322              return getNode(ISD::SRL, VT, Mask,
1323                             getConstant(OpSAC-C2, N2.getValueType()));
1324            }
1325          } else if (N1.getOpcode() == ISD::SRA) {
1326            // if C1 == C2, just mask out low bits.
1327            if (C2 == OpSAC)
1328              return getNode(ISD::AND, VT, N1.getOperand(0),
1329                             getConstant(~0ULL << C2, VT));
1330          }
1331        }
1332      break;
1333
1334    case ISD::AND:
1335      if (!C2) return N2;         // X and 0 -> 0
1336      if (N2C->isAllOnesValue())
1337        return N1;                // X and -1 -> X
1338
1339      if (MaskedValueIsZero(N1, C2, TLI))  // X and 0 -> 0
1340        return getConstant(0, VT);
1341
1342      {
1343        uint64_t NotC2 = ~C2;
1344        if (VT != MVT::i64)
1345          NotC2 &= (1ULL << MVT::getSizeInBits(VT))-1;
1346
1347        if (MaskedValueIsZero(N1, NotC2, TLI))
1348          return N1;                // if (X & ~C2) -> 0, the and is redundant
1349      }
1350
1351      // FIXME: Should add a corresponding version of this for
1352      // ZERO_EXTEND/SIGN_EXTEND by converting them to an ANY_EXTEND node which
1353      // we don't have yet.
1354
1355      // and (sign_extend_inreg x:16:32), 1 -> and x, 1
1356      if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
1357        // If we are masking out the part of our input that was extended, just
1358        // mask the input to the extension directly.
1359        unsigned ExtendBits =
1360          MVT::getSizeInBits(cast<VTSDNode>(N1.getOperand(1))->getVT());
1361        if ((C2 & (~0ULL << ExtendBits)) == 0)
1362          return getNode(ISD::AND, VT, N1.getOperand(0), N2);
1363      } else if (N1.getOpcode() == ISD::OR) {
1364        if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
1365          if ((ORI->getValue() & C2) == C2) {
1366            // If the 'or' is setting all of the bits that we are masking for,
1367            // we know the result of the AND will be the AND mask itself.
1368            return N2;
1369          }
1370      }
1371      break;
1372    case ISD::OR:
1373      if (!C2)return N1;          // X or 0 -> X
1374      if (N2C->isAllOnesValue())
1375        return N2;                // X or -1 -> -1
1376      break;
1377    case ISD::XOR:
1378      if (!C2) return N1;        // X xor 0 -> X
1379      if (N2C->isAllOnesValue()) {
1380        if (N1.Val->getOpcode() == ISD::SETCC){
1381          SDNode *SetCC = N1.Val;
1382          // !(X op Y) -> (X !op Y)
1383          bool isInteger = MVT::isInteger(SetCC->getOperand(0).getValueType());
1384          ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
1385          return getSetCC(SetCC->getValueType(0),
1386                          SetCC->getOperand(0), SetCC->getOperand(1),
1387                          ISD::getSetCCInverse(CC, isInteger));
1388        } else if (N1.getOpcode() == ISD::AND || N1.getOpcode() == ISD::OR) {
1389          SDNode *Op = N1.Val;
1390          // !(X or Y) -> (!X and !Y) iff X or Y are freely invertible
1391          // !(X and Y) -> (!X or !Y) iff X or Y are freely invertible
1392          SDOperand LHS = Op->getOperand(0), RHS = Op->getOperand(1);
1393          if (isInvertibleForFree(RHS) || isInvertibleForFree(LHS)) {
1394            LHS = getNode(ISD::XOR, VT, LHS, N2);  // RHS = ~LHS
1395            RHS = getNode(ISD::XOR, VT, RHS, N2);  // RHS = ~RHS
1396            if (Op->getOpcode() == ISD::AND)
1397              return getNode(ISD::OR, VT, LHS, RHS);
1398            return getNode(ISD::AND, VT, LHS, RHS);
1399          }
1400        }
1401        // X xor -1 -> not(x)  ?
1402      }
1403      break;
1404    }
1405
1406    // Reassociate ((X op C1) op C2) if possible.
1407    if (N1.getOpcode() == Opcode && isAssociativeBinOp(Opcode))
1408      if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N1.Val->getOperand(1)))
1409        return getNode(Opcode, VT, N1.Val->getOperand(0),
1410                       getNode(Opcode, VT, N2, N1.Val->getOperand(1)));
1411  }
1412
1413  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1414  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1415  if (N1CFP) {
1416    if (N2CFP) {
1417      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1418      switch (Opcode) {
1419      case ISD::ADD: return getConstantFP(C1 + C2, VT);
1420      case ISD::SUB: return getConstantFP(C1 - C2, VT);
1421      case ISD::MUL: return getConstantFP(C1 * C2, VT);
1422      case ISD::SDIV:
1423        if (C2) return getConstantFP(C1 / C2, VT);
1424        break;
1425      case ISD::SREM :
1426        if (C2) return getConstantFP(fmod(C1, C2), VT);
1427        break;
1428      default: break;
1429      }
1430
1431    } else {      // Cannonicalize constant to RHS if commutative
1432      if (isCommutativeBinOp(Opcode)) {
1433        std::swap(N1CFP, N2CFP);
1434        std::swap(N1, N2);
1435      }
1436    }
1437
1438    if (Opcode == ISD::FP_ROUND_INREG)
1439      return getNode(ISD::FP_EXTEND, VT,
1440                     getNode(ISD::FP_ROUND, cast<VTSDNode>(N2)->getVT(), N1));
1441  }
1442
1443  // Finally, fold operations that do not require constants.
1444  switch (Opcode) {
1445  case ISD::TokenFactor:
1446    if (N1.getOpcode() == ISD::EntryToken)
1447      return N2;
1448    if (N2.getOpcode() == ISD::EntryToken)
1449      return N1;
1450    break;
1451
1452  case ISD::AND:
1453  case ISD::OR:
1454    if (N1.Val->getOpcode() == ISD::SETCC && N2.Val->getOpcode() == ISD::SETCC){
1455      SDNode *LHS = N1.Val, *RHS = N2.Val;
1456      SDOperand LL = LHS->getOperand(0), RL = RHS->getOperand(0);
1457      SDOperand LR = LHS->getOperand(1), RR = RHS->getOperand(1);
1458      ISD::CondCode Op1 = cast<CondCodeSDNode>(LHS->getOperand(2))->get();
1459      ISD::CondCode Op2 = cast<CondCodeSDNode>(RHS->getOperand(2))->get();
1460
1461      if (LR == RR && isa<ConstantSDNode>(LR) &&
1462          Op2 == Op1 && MVT::isInteger(LL.getValueType())) {
1463        // (X != 0) | (Y != 0) -> (X|Y != 0)
1464        // (X == 0) & (Y == 0) -> (X|Y == 0)
1465        // (X <  0) | (Y <  0) -> (X|Y < 0)
1466        if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1467            ((Op2 == ISD::SETEQ && Opcode == ISD::AND) ||
1468             (Op2 == ISD::SETNE && Opcode == ISD::OR) ||
1469             (Op2 == ISD::SETLT && Opcode == ISD::OR)))
1470          return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL), LR,
1471                          Op2);
1472
1473        if (cast<ConstantSDNode>(LR)->isAllOnesValue()) {
1474          // (X == -1) & (Y == -1) -> (X&Y == -1)
1475          // (X != -1) | (Y != -1) -> (X&Y != -1)
1476          // (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1477          if ((Opcode == ISD::AND && Op2 == ISD::SETEQ) ||
1478              (Opcode == ISD::OR  && Op2 == ISD::SETNE) ||
1479              (Opcode == ISD::OR  && Op2 == ISD::SETGT))
1480            return getSetCC(VT, getNode(ISD::AND, LR.getValueType(), LL, RL),
1481                            LR, Op2);
1482          // (X >  -1) & (Y >  -1) -> (X|Y > -1)
1483          if (Opcode == ISD::AND && Op2 == ISD::SETGT)
1484            return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL),
1485                            LR, Op2);
1486        }
1487      }
1488
1489      // (X op1 Y) | (Y op2 X) -> (X op1 Y) | (X swapop2 Y)
1490      if (LL == RR && LR == RL) {
1491        Op2 = ISD::getSetCCSwappedOperands(Op2);
1492        goto MatchedBackwards;
1493      }
1494
1495      if (LL == RL && LR == RR) {
1496      MatchedBackwards:
1497        ISD::CondCode Result;
1498        bool isInteger = MVT::isInteger(LL.getValueType());
1499        if (Opcode == ISD::OR)
1500          Result = ISD::getSetCCOrOperation(Op1, Op2, isInteger);
1501        else
1502          Result = ISD::getSetCCAndOperation(Op1, Op2, isInteger);
1503
1504        if (Result != ISD::SETCC_INVALID)
1505          return getSetCC(LHS->getValueType(0), LL, LR, Result);
1506      }
1507    }
1508
1509    // and/or zext(a), zext(b) -> zext(and/or a, b)
1510    if (N1.getOpcode() == ISD::ZERO_EXTEND &&
1511        N2.getOpcode() == ISD::ZERO_EXTEND &&
1512        N1.getOperand(0).getValueType() == N2.getOperand(0).getValueType())
1513      return getNode(ISD::ZERO_EXTEND, VT,
1514                     getNode(Opcode, N1.getOperand(0).getValueType(),
1515                             N1.getOperand(0), N2.getOperand(0)));
1516    break;
1517  case ISD::XOR:
1518    if (N1 == N2) return getConstant(0, VT);  // xor X, Y -> 0
1519    break;
1520  case ISD::ADD:
1521    if (N2.getOpcode() == ISD::FNEG)          // (A+ (-B) -> A-B
1522      return getNode(ISD::SUB, VT, N1, N2.getOperand(0));
1523    if (N1.getOpcode() == ISD::FNEG)          // ((-A)+B) -> B-A
1524      return getNode(ISD::SUB, VT, N2, N1.getOperand(0));
1525    if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1526        cast<ConstantSDNode>(N1.getOperand(0))->getValue() == 0)
1527      return getNode(ISD::SUB, VT, N2, N1.getOperand(1)); // (0-A)+B -> B-A
1528    if (N2.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N2.getOperand(0)) &&
1529        cast<ConstantSDNode>(N2.getOperand(0))->getValue() == 0)
1530      return getNode(ISD::SUB, VT, N1, N2.getOperand(1)); // A+(0-B) -> A-B
1531    if (N2.getOpcode() == ISD::SUB && N1 == N2.Val->getOperand(1) &&
1532        !MVT::isFloatingPoint(N2.getValueType()))
1533      return N2.Val->getOperand(0); // A+(B-A) -> B
1534    break;
1535  case ISD::SUB:
1536    if (N1.getOpcode() == ISD::ADD) {
1537      if (N1.Val->getOperand(0) == N2 &&
1538          !MVT::isFloatingPoint(N2.getValueType()))
1539        return N1.Val->getOperand(1);         // (A+B)-A == B
1540      if (N1.Val->getOperand(1) == N2 &&
1541          !MVT::isFloatingPoint(N2.getValueType()))
1542        return N1.Val->getOperand(0);         // (A+B)-B == A
1543    }
1544    if (N2.getOpcode() == ISD::FNEG)          // (A- (-B) -> A+B
1545      return getNode(ISD::ADD, VT, N1, N2.getOperand(0));
1546    break;
1547  case ISD::FP_ROUND_INREG:
1548    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1549    break;
1550  case ISD::SIGN_EXTEND_INREG: {
1551    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1552    if (EVT == VT) return N1;  // Not actually extending
1553
1554    // If we are sign extending an extension, use the original source.
1555    if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG)
1556      if (cast<VTSDNode>(N1.getOperand(1))->getVT() <= EVT)
1557        return N1;
1558
1559    // If we are sign extending a sextload, return just the load.
1560    if (N1.getOpcode() == ISD::SEXTLOAD)
1561      if (cast<VTSDNode>(N1.getOperand(3))->getVT() <= EVT)
1562        return N1;
1563
1564    // If we are extending the result of a setcc, and we already know the
1565    // contents of the top bits, eliminate the extension.
1566    if (N1.getOpcode() == ISD::SETCC &&
1567        TLI.getSetCCResultContents() ==
1568                        TargetLowering::ZeroOrNegativeOneSetCCResult)
1569      return N1;
1570
1571    // If we are sign extending the result of an (and X, C) operation, and we
1572    // know the extended bits are zeros already, don't do the extend.
1573    if (N1.getOpcode() == ISD::AND)
1574      if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
1575        uint64_t Mask = N1C->getValue();
1576        unsigned NumBits = MVT::getSizeInBits(EVT);
1577        if ((Mask & (~0ULL << (NumBits-1))) == 0)
1578          return N1;
1579      }
1580    break;
1581  }
1582
1583  // FIXME: figure out how to safely handle things like
1584  // int foo(int x) { return 1 << (x & 255); }
1585  // int bar() { return foo(256); }
1586#if 0
1587  case ISD::SHL:
1588  case ISD::SRL:
1589  case ISD::SRA:
1590    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1591        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1592      return getNode(Opcode, VT, N1, N2.getOperand(0));
1593    else if (N2.getOpcode() == ISD::AND)
1594      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1595        // If the and is only masking out bits that cannot effect the shift,
1596        // eliminate the and.
1597        unsigned NumBits = MVT::getSizeInBits(VT);
1598        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1599          return getNode(Opcode, VT, N1, N2.getOperand(0));
1600      }
1601    break;
1602#endif
1603  }
1604
1605  // Memoize this node if possible.
1606  SDNode *N;
1607  if (Opcode != ISD::CALLSEQ_START && Opcode != ISD::CALLSEQ_END &&
1608      VT != MVT::Flag) {
1609    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1610    if (BON) return SDOperand(BON, 0);
1611
1612    BON = N = new SDNode(Opcode, N1, N2);
1613  } else {
1614    N = new SDNode(Opcode, N1, N2);
1615  }
1616
1617  N->setValueTypes(VT);
1618  AllNodes.push_back(N);
1619  return SDOperand(N, 0);
1620}
1621
1622// setAdjCallChain - This method changes the token chain of an
1623// CALLSEQ_START/END node to be the specified operand.
1624void SDNode::setAdjCallChain(SDOperand N) {
1625  assert(N.getValueType() == MVT::Other);
1626  assert((getOpcode() == ISD::CALLSEQ_START ||
1627          getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!");
1628
1629  Operands[0].Val->removeUser(this);
1630  Operands[0] = N;
1631  N.Val->Uses.push_back(this);
1632}
1633
1634
1635
1636SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1637                                SDOperand Chain, SDOperand Ptr,
1638                                SDOperand SV) {
1639  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1640  if (N) return SDOperand(N, 0);
1641  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1642
1643  // Loads have a token chain.
1644  N->setValueTypes(VT, MVT::Other);
1645  AllNodes.push_back(N);
1646  return SDOperand(N, 0);
1647}
1648
1649
1650SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1651                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1652                                   MVT::ValueType EVT) {
1653  std::vector<SDOperand> Ops;
1654  Ops.reserve(4);
1655  Ops.push_back(Chain);
1656  Ops.push_back(Ptr);
1657  Ops.push_back(SV);
1658  Ops.push_back(getValueType(EVT));
1659  std::vector<MVT::ValueType> VTs;
1660  VTs.reserve(2);
1661  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1662  return getNode(Opcode, VTs, Ops);
1663}
1664
1665SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1666                                SDOperand N1, SDOperand N2, SDOperand N3) {
1667  // Perform various simplifications.
1668  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1669  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1670  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1671  switch (Opcode) {
1672  case ISD::SETCC: {
1673    // Use SimplifySetCC  to simplify SETCC's.
1674    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1675    if (Simp.Val) return Simp;
1676    break;
1677  }
1678  case ISD::SELECT:
1679    if (N1C)
1680      if (N1C->getValue())
1681        return N2;             // select true, X, Y -> X
1682      else
1683        return N3;             // select false, X, Y -> Y
1684
1685    if (N2 == N3) return N2;   // select C, X, X -> X
1686
1687    if (VT == MVT::i1) {  // Boolean SELECT
1688      if (N2C) {
1689        if (N2C->getValue())   // select C, 1, X -> C | X
1690          return getNode(ISD::OR, VT, N1, N3);
1691        else                   // select C, 0, X -> ~C & X
1692          return getNode(ISD::AND, VT,
1693                         getNode(ISD::XOR, N1.getValueType(), N1,
1694                                 getConstant(1, N1.getValueType())), N3);
1695      } else if (N3C) {
1696        if (N3C->getValue())   // select C, X, 1 -> ~C | X
1697          return getNode(ISD::OR, VT,
1698                         getNode(ISD::XOR, N1.getValueType(), N1,
1699                                 getConstant(1, N1.getValueType())), N2);
1700        else                   // select C, X, 0 -> C & X
1701          return getNode(ISD::AND, VT, N1, N2);
1702      }
1703
1704      if (N1 == N2)   // X ? X : Y --> X ? 1 : Y --> X | Y
1705        return getNode(ISD::OR, VT, N1, N3);
1706      if (N1 == N3)   // X ? Y : X --> X ? Y : 0 --> X & Y
1707        return getNode(ISD::AND, VT, N1, N2);
1708    }
1709    if (N1.getOpcode() == ISD::SETCC) {
1710      SDOperand Simp = SimplifySelectCC(N1.getOperand(0), N1.getOperand(1), N2,
1711                             N3, cast<CondCodeSDNode>(N1.getOperand(2))->get());
1712      if (Simp.Val) return Simp;
1713    }
1714    break;
1715  case ISD::BRCOND:
1716    if (N2C)
1717      if (N2C->getValue()) // Unconditional branch
1718        return getNode(ISD::BR, MVT::Other, N1, N3);
1719      else
1720        return N1;         // Never-taken branch
1721    break;
1722  }
1723
1724  std::vector<SDOperand> Ops;
1725  Ops.reserve(3);
1726  Ops.push_back(N1);
1727  Ops.push_back(N2);
1728  Ops.push_back(N3);
1729
1730  // Memoize node if it doesn't produce a flag.
1731  SDNode *N;
1732  if (VT != MVT::Flag) {
1733    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1734    if (E) return SDOperand(E, 0);
1735    E = N = new SDNode(Opcode, N1, N2, N3);
1736  } else {
1737    N = new SDNode(Opcode, N1, N2, N3);
1738  }
1739  N->setValueTypes(VT);
1740  AllNodes.push_back(N);
1741  return SDOperand(N, 0);
1742}
1743
1744SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1745                                SDOperand N1, SDOperand N2, SDOperand N3,
1746                                SDOperand N4) {
1747  std::vector<SDOperand> Ops;
1748  Ops.reserve(4);
1749  Ops.push_back(N1);
1750  Ops.push_back(N2);
1751  Ops.push_back(N3);
1752  Ops.push_back(N4);
1753  return getNode(Opcode, VT, Ops);
1754}
1755
1756SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1757                                SDOperand N1, SDOperand N2, SDOperand N3,
1758                                SDOperand N4, SDOperand N5) {
1759  std::vector<SDOperand> Ops;
1760  Ops.reserve(5);
1761  Ops.push_back(N1);
1762  Ops.push_back(N2);
1763  Ops.push_back(N3);
1764  Ops.push_back(N4);
1765  Ops.push_back(N5);
1766  return getNode(Opcode, VT, Ops);
1767}
1768
1769
1770SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1771  assert((!V || isa<PointerType>(V->getType())) &&
1772         "SrcValue is not a pointer?");
1773  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1774  if (N) return SDOperand(N, 0);
1775
1776  N = new SrcValueSDNode(V, Offset);
1777  AllNodes.push_back(N);
1778  return SDOperand(N, 0);
1779}
1780
1781SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1782                                std::vector<SDOperand> &Ops) {
1783  switch (Ops.size()) {
1784  case 0: return getNode(Opcode, VT);
1785  case 1: return getNode(Opcode, VT, Ops[0]);
1786  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1787  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1788  default: break;
1789  }
1790
1791  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1792  switch (Opcode) {
1793  default: break;
1794  case ISD::BRCONDTWOWAY:
1795    if (N1C)
1796      if (N1C->getValue()) // Unconditional branch to true dest.
1797        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
1798      else                 // Unconditional branch to false dest.
1799        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
1800    break;
1801  case ISD::BRTWOWAY_CC:
1802    assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
1803    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1804           "LHS and RHS of comparison must have same type!");
1805    break;
1806  case ISD::TRUNCSTORE: {
1807    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1808    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1809#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1810    // If this is a truncating store of a constant, convert to the desired type
1811    // and store it instead.
1812    if (isa<Constant>(Ops[0])) {
1813      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1814      if (isa<Constant>(Op))
1815        N1 = Op;
1816    }
1817    // Also for ConstantFP?
1818#endif
1819    if (Ops[0].getValueType() == EVT)       // Normal store?
1820      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1821    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1822    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1823           "Can't do FP-INT conversion!");
1824    break;
1825  }
1826  case ISD::SELECT_CC: {
1827    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1828    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1829           "LHS and RHS of condition must have same type!");
1830    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1831           "True and False arms of SelectCC must have same type!");
1832    assert(Ops[2].getValueType() == VT &&
1833           "select_cc node must be of same type as true and false value!");
1834    SDOperand Simp = SimplifySelectCC(Ops[0], Ops[1], Ops[2], Ops[3],
1835                                      cast<CondCodeSDNode>(Ops[4])->get());
1836    if (Simp.Val) return Simp;
1837    break;
1838  }
1839  case ISD::BR_CC: {
1840    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1841    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1842           "LHS/RHS of comparison should match types!");
1843    // Use SimplifySetCC  to simplify SETCC's.
1844    SDOperand Simp = SimplifySetCC(MVT::i1, Ops[2], Ops[3],
1845                                   cast<CondCodeSDNode>(Ops[1])->get());
1846    if (Simp.Val) {
1847      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Simp)) {
1848        if (C->getValue() & 1) // Unconditional branch
1849          return getNode(ISD::BR, MVT::Other, Ops[0], Ops[4]);
1850        else
1851          return Ops[0];          // Unconditional Fall through
1852      } else if (Simp.Val->getOpcode() == ISD::SETCC) {
1853        Ops[2] = Simp.getOperand(0);
1854        Ops[3] = Simp.getOperand(1);
1855        Ops[1] = Simp.getOperand(2);
1856      }
1857    }
1858    break;
1859  }
1860  }
1861
1862  // Memoize nodes.
1863  SDNode *N;
1864  if (VT != MVT::Flag) {
1865    SDNode *&E =
1866      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1867    if (E) return SDOperand(E, 0);
1868    E = N = new SDNode(Opcode, Ops);
1869  } else {
1870    N = new SDNode(Opcode, Ops);
1871  }
1872  N->setValueTypes(VT);
1873  AllNodes.push_back(N);
1874  return SDOperand(N, 0);
1875}
1876
1877SDOperand SelectionDAG::getNode(unsigned Opcode,
1878                                std::vector<MVT::ValueType> &ResultTys,
1879                                std::vector<SDOperand> &Ops) {
1880  if (ResultTys.size() == 1)
1881    return getNode(Opcode, ResultTys[0], Ops);
1882
1883  switch (Opcode) {
1884  case ISD::EXTLOAD:
1885  case ISD::SEXTLOAD:
1886  case ISD::ZEXTLOAD: {
1887    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1888    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1889    // If they are asking for an extending load from/to the same thing, return a
1890    // normal load.
1891    if (ResultTys[0] == EVT)
1892      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1893    assert(EVT < ResultTys[0] &&
1894           "Should only be an extending load, not truncating!");
1895    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1896           "Cannot sign/zero extend a FP load!");
1897    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1898           "Cannot convert from FP to Int or Int -> FP!");
1899    break;
1900  }
1901
1902  // FIXME: figure out how to safely handle things like
1903  // int foo(int x) { return 1 << (x & 255); }
1904  // int bar() { return foo(256); }
1905#if 0
1906  case ISD::SRA_PARTS:
1907  case ISD::SRL_PARTS:
1908  case ISD::SHL_PARTS:
1909    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1910        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1911      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1912    else if (N3.getOpcode() == ISD::AND)
1913      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1914        // If the and is only masking out bits that cannot effect the shift,
1915        // eliminate the and.
1916        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1917        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1918          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1919      }
1920    break;
1921#endif
1922  }
1923
1924  // Memoize the node unless it returns a flag.
1925  SDNode *N;
1926  if (ResultTys.back() != MVT::Flag) {
1927    SDNode *&E =
1928      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
1929    if (E) return SDOperand(E, 0);
1930    E = N = new SDNode(Opcode, Ops);
1931  } else {
1932    N = new SDNode(Opcode, Ops);
1933  }
1934  N->setValueTypes(ResultTys);
1935  AllNodes.push_back(N);
1936  return SDOperand(N, 0);
1937}
1938
1939
1940/// SelectNodeTo - These are used for target selectors to *mutate* the
1941/// specified node to have the specified return type, Target opcode, and
1942/// operands.  Note that target opcodes are stored as
1943/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1944void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1945                                MVT::ValueType VT) {
1946  RemoveNodeFromCSEMaps(N);
1947  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1948  N->setValueTypes(VT);
1949}
1950void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1951                                MVT::ValueType VT, SDOperand Op1) {
1952  RemoveNodeFromCSEMaps(N);
1953  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1954  N->setValueTypes(VT);
1955  N->setOperands(Op1);
1956}
1957void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1958                                MVT::ValueType VT, SDOperand Op1,
1959                                SDOperand Op2) {
1960  RemoveNodeFromCSEMaps(N);
1961  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1962  N->setValueTypes(VT);
1963  N->setOperands(Op1, Op2);
1964}
1965void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1966                                MVT::ValueType VT1, MVT::ValueType VT2,
1967                                SDOperand Op1, SDOperand Op2) {
1968  RemoveNodeFromCSEMaps(N);
1969  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1970  N->setValueTypes(VT1, VT2);
1971  N->setOperands(Op1, Op2);
1972}
1973void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1974                                MVT::ValueType VT, SDOperand Op1,
1975                                SDOperand Op2, SDOperand Op3) {
1976  RemoveNodeFromCSEMaps(N);
1977  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1978  N->setValueTypes(VT);
1979  N->setOperands(Op1, Op2, Op3);
1980}
1981void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1982                                MVT::ValueType VT1, MVT::ValueType VT2,
1983                                SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1984  RemoveNodeFromCSEMaps(N);
1985  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1986  N->setValueTypes(VT1, VT2);
1987  N->setOperands(Op1, Op2, Op3);
1988}
1989
1990void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1991                                MVT::ValueType VT, SDOperand Op1,
1992                                SDOperand Op2, SDOperand Op3, SDOperand Op4) {
1993  RemoveNodeFromCSEMaps(N);
1994  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1995  N->setValueTypes(VT);
1996  N->setOperands(Op1, Op2, Op3, Op4);
1997}
1998void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1999                                MVT::ValueType VT, SDOperand Op1,
2000                                SDOperand Op2, SDOperand Op3, SDOperand Op4,
2001                                SDOperand Op5) {
2002  RemoveNodeFromCSEMaps(N);
2003  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2004  N->setValueTypes(VT);
2005  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2006}
2007
2008/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2009/// This can cause recursive merging of nodes in the DAG.
2010///
2011/// This version assumes From/To have a single result value.
2012///
2013void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN) {
2014  SDNode *From = FromN.Val, *To = ToN.Val;
2015  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2016         "Cannot replace with this method!");
2017  assert(From != To && "Cannot replace uses of with self");
2018
2019  while (!From->use_empty()) {
2020    // Process users until they are all gone.
2021    SDNode *U = *From->use_begin();
2022
2023    // This node is about to morph, remove its old self from the CSE maps.
2024    RemoveNodeFromCSEMaps(U);
2025
2026    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2027      if (U->getOperand(i).Val == From) {
2028        From->removeUser(U);
2029        U->Operands[i].Val = To;
2030        To->addUser(U);
2031      }
2032
2033    // Now that we have modified U, add it back to the CSE maps.  If it already
2034    // exists there, recursively merge the results together.
2035    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U))
2036      ReplaceAllUsesWith(U, Existing);
2037      // U is now dead.
2038  }
2039}
2040
2041/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2042/// This can cause recursive merging of nodes in the DAG.
2043///
2044/// This version assumes From/To have matching types and numbers of result
2045/// values.
2046///
2047void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
2048  assert(From != To && "Cannot replace uses of with self");
2049  assert(From->getNumValues() == To->getNumValues() &&
2050         "Cannot use this version of ReplaceAllUsesWith!");
2051  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2052    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0));
2053    return;
2054  }
2055
2056  while (!From->use_empty()) {
2057    // Process users until they are all gone.
2058    SDNode *U = *From->use_begin();
2059
2060    // This node is about to morph, remove its old self from the CSE maps.
2061    RemoveNodeFromCSEMaps(U);
2062
2063    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2064      if (U->getOperand(i).Val == From) {
2065        From->removeUser(U);
2066        U->Operands[i].Val = To;
2067        To->addUser(U);
2068      }
2069
2070    // Now that we have modified U, add it back to the CSE maps.  If it already
2071    // exists there, recursively merge the results together.
2072    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U))
2073      ReplaceAllUsesWith(U, Existing);
2074    // U is now dead.
2075  }
2076}
2077
2078/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2079/// This can cause recursive merging of nodes in the DAG.
2080///
2081/// This version can replace From with any result values.  To must match the
2082/// number and types of values returned by From.
2083void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2084                                      const std::vector<SDOperand> &To) {
2085  assert(From->getNumValues() == To.size() &&
2086         "Incorrect number of values to replace with!");
2087  if (To.size() == 1) {
2088    // Degenerate case handled above.
2089    ReplaceAllUsesWith(SDOperand(From, 0), To[0]);
2090    return;
2091  }
2092
2093  while (!From->use_empty()) {
2094    // Process users until they are all gone.
2095    SDNode *U = *From->use_begin();
2096
2097    // This node is about to morph, remove its old self from the CSE maps.
2098    RemoveNodeFromCSEMaps(U);
2099
2100    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2101      if (U->getOperand(i).Val == From) {
2102        const SDOperand &ToOp = To[U->getOperand(i).ResNo];
2103        From->removeUser(U);
2104        U->Operands[i] = ToOp;
2105        ToOp.Val->addUser(U);
2106      }
2107
2108    // Now that we have modified U, add it back to the CSE maps.  If it already
2109    // exists there, recursively merge the results together.
2110    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U))
2111      ReplaceAllUsesWith(U, Existing);
2112    // U is now dead.
2113  }
2114}
2115
2116
2117//===----------------------------------------------------------------------===//
2118//                              SDNode Class
2119//===----------------------------------------------------------------------===//
2120
2121/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2122/// indicated value.  This method ignores uses of other values defined by this
2123/// operation.
2124bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) {
2125  assert(Value < getNumValues() && "Bad value!");
2126
2127  // If there is only one value, this is easy.
2128  if (getNumValues() == 1)
2129    return use_size() == NUses;
2130  if (Uses.size() < NUses) return false;
2131
2132  SDOperand TheValue(this, Value);
2133
2134  std::set<SDNode*> UsersHandled;
2135
2136  for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end();
2137       UI != E; ++UI) {
2138    SDNode *User = *UI;
2139    if (User->getNumOperands() == 1 ||
2140        UsersHandled.insert(User).second)     // First time we've seen this?
2141      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2142        if (User->getOperand(i) == TheValue) {
2143          if (NUses == 0)
2144            return false;   // too many uses
2145          --NUses;
2146        }
2147  }
2148
2149  // Found exactly the right number of uses?
2150  return NUses == 0;
2151}
2152
2153
2154const char *SDNode::getOperationName(const SelectionDAG *G) const {
2155  switch (getOpcode()) {
2156  default:
2157    if (getOpcode() < ISD::BUILTIN_OP_END)
2158      return "<<Unknown DAG Node>>";
2159    else {
2160      if (G)
2161        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2162          return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2163      return "<<Unknown Target Node>>";
2164    }
2165
2166  case ISD::PCMARKER:      return "PCMarker";
2167  case ISD::SRCVALUE:      return "SrcValue";
2168  case ISD::VALUETYPE:     return "ValueType";
2169  case ISD::EntryToken:    return "EntryToken";
2170  case ISD::TokenFactor:   return "TokenFactor";
2171  case ISD::Constant:      return "Constant";
2172  case ISD::TargetConstant: return "TargetConstant";
2173  case ISD::ConstantFP:    return "ConstantFP";
2174  case ISD::GlobalAddress: return "GlobalAddress";
2175  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2176  case ISD::FrameIndex:    return "FrameIndex";
2177  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2178  case ISD::BasicBlock:    return "BasicBlock";
2179  case ISD::Register:      return "Register";
2180  case ISD::ExternalSymbol: return "ExternalSymbol";
2181  case ISD::ConstantPool:  return "ConstantPool";
2182  case ISD::TargetConstantPool:  return "TargetConstantPool";
2183  case ISD::CopyToReg:     return "CopyToReg";
2184  case ISD::CopyFromReg:   return "CopyFromReg";
2185  case ISD::ImplicitDef:   return "ImplicitDef";
2186  case ISD::UNDEF:         return "undef";
2187
2188  // Unary operators
2189  case ISD::FABS:   return "fabs";
2190  case ISD::FNEG:   return "fneg";
2191  case ISD::FSQRT:  return "fsqrt";
2192  case ISD::FSIN:   return "fsin";
2193  case ISD::FCOS:   return "fcos";
2194
2195  // Binary operators
2196  case ISD::ADD:    return "add";
2197  case ISD::SUB:    return "sub";
2198  case ISD::MUL:    return "mul";
2199  case ISD::MULHU:  return "mulhu";
2200  case ISD::MULHS:  return "mulhs";
2201  case ISD::SDIV:   return "sdiv";
2202  case ISD::UDIV:   return "udiv";
2203  case ISD::SREM:   return "srem";
2204  case ISD::UREM:   return "urem";
2205  case ISD::AND:    return "and";
2206  case ISD::OR:     return "or";
2207  case ISD::XOR:    return "xor";
2208  case ISD::SHL:    return "shl";
2209  case ISD::SRA:    return "sra";
2210  case ISD::SRL:    return "srl";
2211
2212  case ISD::SETCC:       return "setcc";
2213  case ISD::SELECT:      return "select";
2214  case ISD::SELECT_CC:   return "select_cc";
2215  case ISD::ADD_PARTS:   return "add_parts";
2216  case ISD::SUB_PARTS:   return "sub_parts";
2217  case ISD::SHL_PARTS:   return "shl_parts";
2218  case ISD::SRA_PARTS:   return "sra_parts";
2219  case ISD::SRL_PARTS:   return "srl_parts";
2220
2221  // Conversion operators.
2222  case ISD::SIGN_EXTEND: return "sign_extend";
2223  case ISD::ZERO_EXTEND: return "zero_extend";
2224  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2225  case ISD::TRUNCATE:    return "truncate";
2226  case ISD::FP_ROUND:    return "fp_round";
2227  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2228  case ISD::FP_EXTEND:   return "fp_extend";
2229
2230  case ISD::SINT_TO_FP:  return "sint_to_fp";
2231  case ISD::UINT_TO_FP:  return "uint_to_fp";
2232  case ISD::FP_TO_SINT:  return "fp_to_sint";
2233  case ISD::FP_TO_UINT:  return "fp_to_uint";
2234
2235    // Control flow instructions
2236  case ISD::BR:      return "br";
2237  case ISD::BRCOND:  return "brcond";
2238  case ISD::BRCONDTWOWAY:  return "brcondtwoway";
2239  case ISD::BR_CC:  return "br_cc";
2240  case ISD::BRTWOWAY_CC:  return "brtwoway_cc";
2241  case ISD::RET:     return "ret";
2242  case ISD::CALL:    return "call";
2243  case ISD::TAILCALL:return "tailcall";
2244  case ISD::CALLSEQ_START:  return "callseq_start";
2245  case ISD::CALLSEQ_END:    return "callseq_end";
2246
2247    // Other operators
2248  case ISD::LOAD:    return "load";
2249  case ISD::STORE:   return "store";
2250  case ISD::EXTLOAD:    return "extload";
2251  case ISD::SEXTLOAD:   return "sextload";
2252  case ISD::ZEXTLOAD:   return "zextload";
2253  case ISD::TRUNCSTORE: return "truncstore";
2254
2255  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2256  case ISD::EXTRACT_ELEMENT: return "extract_element";
2257  case ISD::BUILD_PAIR: return "build_pair";
2258  case ISD::MEMSET:  return "memset";
2259  case ISD::MEMCPY:  return "memcpy";
2260  case ISD::MEMMOVE: return "memmove";
2261
2262  // Bit counting
2263  case ISD::CTPOP:   return "ctpop";
2264  case ISD::CTTZ:    return "cttz";
2265  case ISD::CTLZ:    return "ctlz";
2266
2267  // IO Intrinsics
2268  case ISD::READPORT: return "readport";
2269  case ISD::WRITEPORT: return "writeport";
2270  case ISD::READIO: return "readio";
2271  case ISD::WRITEIO: return "writeio";
2272
2273  case ISD::CONDCODE:
2274    switch (cast<CondCodeSDNode>(this)->get()) {
2275    default: assert(0 && "Unknown setcc condition!");
2276    case ISD::SETOEQ:  return "setoeq";
2277    case ISD::SETOGT:  return "setogt";
2278    case ISD::SETOGE:  return "setoge";
2279    case ISD::SETOLT:  return "setolt";
2280    case ISD::SETOLE:  return "setole";
2281    case ISD::SETONE:  return "setone";
2282
2283    case ISD::SETO:    return "seto";
2284    case ISD::SETUO:   return "setuo";
2285    case ISD::SETUEQ:  return "setue";
2286    case ISD::SETUGT:  return "setugt";
2287    case ISD::SETUGE:  return "setuge";
2288    case ISD::SETULT:  return "setult";
2289    case ISD::SETULE:  return "setule";
2290    case ISD::SETUNE:  return "setune";
2291
2292    case ISD::SETEQ:   return "seteq";
2293    case ISD::SETGT:   return "setgt";
2294    case ISD::SETGE:   return "setge";
2295    case ISD::SETLT:   return "setlt";
2296    case ISD::SETLE:   return "setle";
2297    case ISD::SETNE:   return "setne";
2298    }
2299  }
2300}
2301
2302void SDNode::dump() const { dump(0); }
2303void SDNode::dump(const SelectionDAG *G) const {
2304  std::cerr << (void*)this << ": ";
2305
2306  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2307    if (i) std::cerr << ",";
2308    if (getValueType(i) == MVT::Other)
2309      std::cerr << "ch";
2310    else
2311      std::cerr << MVT::getValueTypeString(getValueType(i));
2312  }
2313  std::cerr << " = " << getOperationName(G);
2314
2315  std::cerr << " ";
2316  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2317    if (i) std::cerr << ", ";
2318    std::cerr << (void*)getOperand(i).Val;
2319    if (unsigned RN = getOperand(i).ResNo)
2320      std::cerr << ":" << RN;
2321  }
2322
2323  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2324    std::cerr << "<" << CSDN->getValue() << ">";
2325  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2326    std::cerr << "<" << CSDN->getValue() << ">";
2327  } else if (const GlobalAddressSDNode *GADN =
2328             dyn_cast<GlobalAddressSDNode>(this)) {
2329    std::cerr << "<";
2330    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2331  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2332    std::cerr << "<" << FIDN->getIndex() << ">";
2333  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2334    std::cerr << "<" << *CP->get() << ">";
2335  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2336    std::cerr << "<";
2337    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2338    if (LBB)
2339      std::cerr << LBB->getName() << " ";
2340    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2341  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2342    if (G && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2343      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2344    } else {
2345      std::cerr << " #" << R->getReg();
2346    }
2347  } else if (const ExternalSymbolSDNode *ES =
2348             dyn_cast<ExternalSymbolSDNode>(this)) {
2349    std::cerr << "'" << ES->getSymbol() << "'";
2350  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2351    if (M->getValue())
2352      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2353    else
2354      std::cerr << "<null:" << M->getOffset() << ">";
2355  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2356    std::cerr << ":" << getValueTypeString(N->getVT());
2357  }
2358}
2359
2360static void DumpNodes(SDNode *N, unsigned indent, const SelectionDAG *G) {
2361  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2362    if (N->getOperand(i).Val->hasOneUse())
2363      DumpNodes(N->getOperand(i).Val, indent+2, G);
2364    else
2365      std::cerr << "\n" << std::string(indent+2, ' ')
2366                << (void*)N->getOperand(i).Val << ": <multiple use>";
2367
2368
2369  std::cerr << "\n" << std::string(indent, ' ');
2370  N->dump(G);
2371}
2372
2373void SelectionDAG::dump() const {
2374  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2375  std::vector<SDNode*> Nodes(AllNodes);
2376  std::sort(Nodes.begin(), Nodes.end());
2377
2378  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2379    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2380      DumpNodes(Nodes[i], 2, this);
2381  }
2382
2383  DumpNodes(getRoot().Val, 2, this);
2384
2385  std::cerr << "\n\n";
2386}
2387
2388