SelectionDAG.cpp revision 62b5772959741f1f1368e9a603d171caac1083f5
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/Support/MathExtras.h"
21#include "llvm/Target/MRegisterInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetInstrInfo.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/ADT/SetVector.h"
26#include "llvm/ADT/StringExtras.h"
27#include <iostream>
28#include <set>
29#include <cmath>
30#include <algorithm>
31using namespace llvm;
32
33static bool isCommutativeBinOp(unsigned Opcode) {
34  switch (Opcode) {
35  case ISD::ADD:
36  case ISD::MUL:
37  case ISD::MULHU:
38  case ISD::MULHS:
39  case ISD::FADD:
40  case ISD::FMUL:
41  case ISD::AND:
42  case ISD::OR:
43  case ISD::XOR: return true;
44  default: return false; // FIXME: Need commutative info for user ops!
45  }
46}
47
48// isInvertibleForFree - Return true if there is no cost to emitting the logical
49// inverse of this node.
50static bool isInvertibleForFree(SDOperand N) {
51  if (isa<ConstantSDNode>(N.Val)) return true;
52  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
53    return true;
54  return false;
55}
56
57//===----------------------------------------------------------------------===//
58//                              ConstantFPSDNode Class
59//===----------------------------------------------------------------------===//
60
61/// isExactlyValue - We don't rely on operator== working on double values, as
62/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
63/// As such, this method can be used to do an exact bit-for-bit comparison of
64/// two floating point values.
65bool ConstantFPSDNode::isExactlyValue(double V) const {
66  return DoubleToBits(V) == DoubleToBits(Value);
67}
68
69//===----------------------------------------------------------------------===//
70//                              ISD Namespace
71//===----------------------------------------------------------------------===//
72
73/// isBuildVectorAllOnes - Return true if the specified node is a
74/// BUILD_VECTOR where all of the elements are ~0 or undef.
75bool ISD::isBuildVectorAllOnes(const SDNode *N) {
76  // Look through a bit convert.
77  if (N->getOpcode() == ISD::BIT_CONVERT)
78    N = N->getOperand(0).Val;
79
80  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
81
82  unsigned i = 0, e = N->getNumOperands();
83
84  // Skip over all of the undef values.
85  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
86    ++i;
87
88  // Do not accept an all-undef vector.
89  if (i == e) return false;
90
91  // Do not accept build_vectors that aren't all constants or which have non-~0
92  // elements.
93  SDOperand NotZero = N->getOperand(i);
94  if (isa<ConstantSDNode>(NotZero)) {
95    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
96      return false;
97  } else if (isa<ConstantFPSDNode>(NotZero)) {
98    MVT::ValueType VT = NotZero.getValueType();
99    if (VT== MVT::f64) {
100      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
101          (uint64_t)-1)
102        return false;
103    } else {
104      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
105          (uint32_t)-1)
106        return false;
107    }
108  } else
109    return false;
110
111  // Okay, we have at least one ~0 value, check to see if the rest match or are
112  // undefs.
113  for (++i; i != e; ++i)
114    if (N->getOperand(i) != NotZero &&
115        N->getOperand(i).getOpcode() != ISD::UNDEF)
116      return false;
117  return true;
118}
119
120
121/// isBuildVectorAllZeros - Return true if the specified node is a
122/// BUILD_VECTOR where all of the elements are 0 or undef.
123bool ISD::isBuildVectorAllZeros(const SDNode *N) {
124  // Look through a bit convert.
125  if (N->getOpcode() == ISD::BIT_CONVERT)
126    N = N->getOperand(0).Val;
127
128  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
129
130  unsigned i = 0, e = N->getNumOperands();
131
132  // Skip over all of the undef values.
133  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
134    ++i;
135
136  // Do not accept an all-undef vector.
137  if (i == e) return false;
138
139  // Do not accept build_vectors that aren't all constants or which have non-~0
140  // elements.
141  SDOperand Zero = N->getOperand(i);
142  if (isa<ConstantSDNode>(Zero)) {
143    if (!cast<ConstantSDNode>(Zero)->isNullValue())
144      return false;
145  } else if (isa<ConstantFPSDNode>(Zero)) {
146    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
147      return false;
148  } else
149    return false;
150
151  // Okay, we have at least one ~0 value, check to see if the rest match or are
152  // undefs.
153  for (++i; i != e; ++i)
154    if (N->getOperand(i) != Zero &&
155        N->getOperand(i).getOpcode() != ISD::UNDEF)
156      return false;
157  return true;
158}
159
160/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
161/// when given the operation for (X op Y).
162ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
163  // To perform this operation, we just need to swap the L and G bits of the
164  // operation.
165  unsigned OldL = (Operation >> 2) & 1;
166  unsigned OldG = (Operation >> 1) & 1;
167  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
168                       (OldL << 1) |       // New G bit
169                       (OldG << 2));        // New L bit.
170}
171
172/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
173/// 'op' is a valid SetCC operation.
174ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
175  unsigned Operation = Op;
176  if (isInteger)
177    Operation ^= 7;   // Flip L, G, E bits, but not U.
178  else
179    Operation ^= 15;  // Flip all of the condition bits.
180  if (Operation > ISD::SETTRUE2)
181    Operation &= ~8;     // Don't let N and U bits get set.
182  return ISD::CondCode(Operation);
183}
184
185
186/// isSignedOp - For an integer comparison, return 1 if the comparison is a
187/// signed operation and 2 if the result is an unsigned comparison.  Return zero
188/// if the operation does not depend on the sign of the input (setne and seteq).
189static int isSignedOp(ISD::CondCode Opcode) {
190  switch (Opcode) {
191  default: assert(0 && "Illegal integer setcc operation!");
192  case ISD::SETEQ:
193  case ISD::SETNE: return 0;
194  case ISD::SETLT:
195  case ISD::SETLE:
196  case ISD::SETGT:
197  case ISD::SETGE: return 1;
198  case ISD::SETULT:
199  case ISD::SETULE:
200  case ISD::SETUGT:
201  case ISD::SETUGE: return 2;
202  }
203}
204
205/// getSetCCOrOperation - Return the result of a logical OR between different
206/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
207/// returns SETCC_INVALID if it is not possible to represent the resultant
208/// comparison.
209ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
210                                       bool isInteger) {
211  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
212    // Cannot fold a signed integer setcc with an unsigned integer setcc.
213    return ISD::SETCC_INVALID;
214
215  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
216
217  // If the N and U bits get set then the resultant comparison DOES suddenly
218  // care about orderedness, and is true when ordered.
219  if (Op > ISD::SETTRUE2)
220    Op &= ~16;     // Clear the N bit.
221  return ISD::CondCode(Op);
222}
223
224/// getSetCCAndOperation - Return the result of a logical AND between different
225/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
226/// function returns zero if it is not possible to represent the resultant
227/// comparison.
228ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
229                                        bool isInteger) {
230  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
231    // Cannot fold a signed setcc with an unsigned setcc.
232    return ISD::SETCC_INVALID;
233
234  // Combine all of the condition bits.
235  return ISD::CondCode(Op1 & Op2);
236}
237
238const TargetMachine &SelectionDAG::getTarget() const {
239  return TLI.getTargetMachine();
240}
241
242//===----------------------------------------------------------------------===//
243//                              SelectionDAG Class
244//===----------------------------------------------------------------------===//
245
246/// RemoveDeadNodes - This method deletes all unreachable nodes in the
247/// SelectionDAG, including nodes (like loads) that have uses of their token
248/// chain but no other uses and no side effect.  If a node is passed in as an
249/// argument, it is used as the seed for node deletion.
250void SelectionDAG::RemoveDeadNodes(SDNode *N) {
251  // Create a dummy node (which is not added to allnodes), that adds a reference
252  // to the root node, preventing it from being deleted.
253  HandleSDNode Dummy(getRoot());
254
255  bool MadeChange = false;
256
257  // If we have a hint to start from, use it.
258  if (N && N->use_empty()) {
259    DestroyDeadNode(N);
260    MadeChange = true;
261  }
262
263  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
264    if (I->use_empty() && I->getOpcode() != 65535) {
265      // Node is dead, recursively delete newly dead uses.
266      DestroyDeadNode(I);
267      MadeChange = true;
268    }
269
270  // Walk the nodes list, removing the nodes we've marked as dead.
271  if (MadeChange) {
272    for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ) {
273      SDNode *N = I++;
274      if (N->use_empty())
275        AllNodes.erase(N);
276    }
277  }
278
279  // If the root changed (e.g. it was a dead load, update the root).
280  setRoot(Dummy.getValue());
281}
282
283/// DestroyDeadNode - We know that N is dead.  Nuke it from the CSE maps for the
284/// graph.  If it is the last user of any of its operands, recursively process
285/// them the same way.
286///
287void SelectionDAG::DestroyDeadNode(SDNode *N) {
288  // Okay, we really are going to delete this node.  First take this out of the
289  // appropriate CSE map.
290  RemoveNodeFromCSEMaps(N);
291
292  // Next, brutally remove the operand list.  This is safe to do, as there are
293  // no cycles in the graph.
294  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
295    SDNode *O = I->Val;
296    O->removeUser(N);
297
298    // Now that we removed this operand, see if there are no uses of it left.
299    if (O->use_empty())
300      DestroyDeadNode(O);
301  }
302  delete[] N->OperandList;
303  N->OperandList = 0;
304  N->NumOperands = 0;
305
306  // Mark the node as dead.
307  N->MorphNodeTo(65535);
308}
309
310void SelectionDAG::DeleteNode(SDNode *N) {
311  assert(N->use_empty() && "Cannot delete a node that is not dead!");
312
313  // First take this out of the appropriate CSE map.
314  RemoveNodeFromCSEMaps(N);
315
316  // Finally, remove uses due to operands of this node, remove from the
317  // AllNodes list, and delete the node.
318  DeleteNodeNotInCSEMaps(N);
319}
320
321void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
322
323  // Remove it from the AllNodes list.
324  AllNodes.remove(N);
325
326  // Drop all of the operands and decrement used nodes use counts.
327  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
328    I->Val->removeUser(N);
329  delete[] N->OperandList;
330  N->OperandList = 0;
331  N->NumOperands = 0;
332
333  delete N;
334}
335
336/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
337/// correspond to it.  This is useful when we're about to delete or repurpose
338/// the node.  We don't want future request for structurally identical nodes
339/// to return N anymore.
340void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
341  bool Erased = false;
342  switch (N->getOpcode()) {
343  case ISD::HANDLENODE: return;  // noop.
344  case ISD::Constant:
345    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
346                                            N->getValueType(0)));
347    break;
348  case ISD::TargetConstant:
349    Erased = TargetConstants.erase(std::make_pair(
350                                    cast<ConstantSDNode>(N)->getValue(),
351                                                  N->getValueType(0)));
352    break;
353  case ISD::ConstantFP: {
354    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
355    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
356    break;
357  }
358  case ISD::TargetConstantFP: {
359    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
360    Erased = TargetConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
361    break;
362  }
363  case ISD::STRING:
364    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
365    break;
366  case ISD::CONDCODE:
367    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
368           "Cond code doesn't exist!");
369    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
370    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
371    break;
372  case ISD::GlobalAddress: {
373    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
374    Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(),
375                                               GN->getOffset()));
376    break;
377  }
378  case ISD::TargetGlobalAddress: {
379    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
380    Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(),
381                                                    GN->getOffset()));
382    break;
383  }
384  case ISD::FrameIndex:
385    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
386    break;
387  case ISD::TargetFrameIndex:
388    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
389    break;
390  case ISD::ConstantPool:
391    Erased = ConstantPoolIndices.
392      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
393                        std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
394                                 cast<ConstantPoolSDNode>(N)->getAlignment())));
395    break;
396  case ISD::TargetConstantPool:
397    Erased = TargetConstantPoolIndices.
398      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
399                        std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
400                                 cast<ConstantPoolSDNode>(N)->getAlignment())));
401    break;
402  case ISD::BasicBlock:
403    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
404    break;
405  case ISD::ExternalSymbol:
406    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
407    break;
408  case ISD::TargetExternalSymbol:
409    Erased =
410      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
411    break;
412  case ISD::VALUETYPE:
413    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
414    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
415    break;
416  case ISD::Register:
417    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
418                                           N->getValueType(0)));
419    break;
420  case ISD::SRCVALUE: {
421    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
422    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
423    break;
424  }
425  case ISD::LOAD:
426    Erased = Loads.erase(std::make_pair(N->getOperand(1),
427                                        std::make_pair(N->getOperand(0),
428                                                       N->getValueType(0))));
429    break;
430  default:
431    if (N->getNumValues() == 1) {
432      if (N->getNumOperands() == 0) {
433        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
434                                                 N->getValueType(0)));
435      } else if (N->getNumOperands() == 1) {
436        Erased =
437          UnaryOps.erase(std::make_pair(N->getOpcode(),
438                                        std::make_pair(N->getOperand(0),
439                                                       N->getValueType(0))));
440      } else if (N->getNumOperands() == 2) {
441        Erased =
442          BinaryOps.erase(std::make_pair(N->getOpcode(),
443                                         std::make_pair(N->getOperand(0),
444                                                        N->getOperand(1))));
445      } else {
446        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
447        Erased =
448          OneResultNodes.erase(std::make_pair(N->getOpcode(),
449                                              std::make_pair(N->getValueType(0),
450                                                             Ops)));
451      }
452    } else {
453      // Remove the node from the ArbitraryNodes map.
454      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
455      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
456      Erased =
457        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
458                                            std::make_pair(RV, Ops)));
459    }
460    break;
461  }
462#ifndef NDEBUG
463  // Verify that the node was actually in one of the CSE maps, unless it has a
464  // flag result (which cannot be CSE'd) or is one of the special cases that are
465  // not subject to CSE.
466  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
467      !N->isTargetOpcode()) {
468    N->dump();
469    assert(0 && "Node is not in map!");
470  }
471#endif
472}
473
474/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
475/// has been taken out and modified in some way.  If the specified node already
476/// exists in the CSE maps, do not modify the maps, but return the existing node
477/// instead.  If it doesn't exist, add it and return null.
478///
479SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
480  assert(N->getNumOperands() && "This is a leaf node!");
481  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
482    return 0;    // Never add these nodes.
483
484  // Check that remaining values produced are not flags.
485  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
486    if (N->getValueType(i) == MVT::Flag)
487      return 0;   // Never CSE anything that produces a flag.
488
489  if (N->getNumValues() == 1) {
490    if (N->getNumOperands() == 1) {
491      SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
492                                           std::make_pair(N->getOperand(0),
493                                                          N->getValueType(0)))];
494      if (U) return U;
495      U = N;
496    } else if (N->getNumOperands() == 2) {
497      SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
498                                            std::make_pair(N->getOperand(0),
499                                                           N->getOperand(1)))];
500      if (B) return B;
501      B = N;
502    } else {
503      std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
504      SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
505                                      std::make_pair(N->getValueType(0), Ops))];
506      if (ORN) return ORN;
507      ORN = N;
508    }
509  } else {
510    if (N->getOpcode() == ISD::LOAD) {
511      SDNode *&L = Loads[std::make_pair(N->getOperand(1),
512                                        std::make_pair(N->getOperand(0),
513                                                       N->getValueType(0)))];
514      if (L) return L;
515      L = N;
516    } else {
517      // Remove the node from the ArbitraryNodes map.
518      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
519      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
520      SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
521                                                  std::make_pair(RV, Ops))];
522      if (AN) return AN;
523      AN = N;
524    }
525  }
526  return 0;
527}
528
529/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
530/// were replaced with those specified.  If this node is never memoized,
531/// return null, otherwise return a pointer to the slot it would take.  If a
532/// node already exists with these operands, the slot will be non-null.
533SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op) {
534  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
535    return 0;    // Never add these nodes.
536
537  // Check that remaining values produced are not flags.
538  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
539    if (N->getValueType(i) == MVT::Flag)
540      return 0;   // Never CSE anything that produces a flag.
541
542  if (N->getNumValues() == 1) {
543    return &UnaryOps[std::make_pair(N->getOpcode(),
544                                    std::make_pair(Op, N->getValueType(0)))];
545  } else {
546    // Remove the node from the ArbitraryNodes map.
547    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
548    std::vector<SDOperand> Ops;
549    Ops.push_back(Op);
550    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
551                                          std::make_pair(RV, Ops))];
552  }
553  return 0;
554}
555
556/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
557/// were replaced with those specified.  If this node is never memoized,
558/// return null, otherwise return a pointer to the slot it would take.  If a
559/// node already exists with these operands, the slot will be non-null.
560SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
561                                            SDOperand Op1, SDOperand Op2) {
562  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
563    return 0;    // Never add these nodes.
564
565  // Check that remaining values produced are not flags.
566  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
567    if (N->getValueType(i) == MVT::Flag)
568      return 0;   // Never CSE anything that produces a flag.
569
570  if (N->getNumValues() == 1) {
571    return &BinaryOps[std::make_pair(N->getOpcode(),
572                                     std::make_pair(Op1, Op2))];
573  } else {
574    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
575    std::vector<SDOperand> Ops;
576    Ops.push_back(Op1);
577    Ops.push_back(Op2);
578    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
579                                          std::make_pair(RV, Ops))];
580  }
581  return 0;
582}
583
584
585/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
586/// were replaced with those specified.  If this node is never memoized,
587/// return null, otherwise return a pointer to the slot it would take.  If a
588/// node already exists with these operands, the slot will be non-null.
589SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
590                                            const std::vector<SDOperand> &Ops) {
591  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
592    return 0;    // Never add these nodes.
593
594  // Check that remaining values produced are not flags.
595  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
596    if (N->getValueType(i) == MVT::Flag)
597      return 0;   // Never CSE anything that produces a flag.
598
599  if (N->getNumValues() == 1) {
600    if (N->getNumOperands() == 1) {
601      return &UnaryOps[std::make_pair(N->getOpcode(),
602                                      std::make_pair(Ops[0],
603                                                     N->getValueType(0)))];
604    } else if (N->getNumOperands() == 2) {
605      return &BinaryOps[std::make_pair(N->getOpcode(),
606                                       std::make_pair(Ops[0], Ops[1]))];
607    } else {
608      return &OneResultNodes[std::make_pair(N->getOpcode(),
609                                            std::make_pair(N->getValueType(0),
610                                                           Ops))];
611    }
612  } else {
613    if (N->getOpcode() == ISD::LOAD) {
614      return &Loads[std::make_pair(Ops[1],
615                                   std::make_pair(Ops[0], N->getValueType(0)))];
616    } else {
617      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
618      return &ArbitraryNodes[std::make_pair(N->getOpcode(),
619                                            std::make_pair(RV, Ops))];
620    }
621  }
622  return 0;
623}
624
625
626SelectionDAG::~SelectionDAG() {
627  while (!AllNodes.empty()) {
628    SDNode *N = AllNodes.begin();
629    delete [] N->OperandList;
630    N->OperandList = 0;
631    N->NumOperands = 0;
632    AllNodes.pop_front();
633  }
634}
635
636SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
637  if (Op.getValueType() == VT) return Op;
638  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
639  return getNode(ISD::AND, Op.getValueType(), Op,
640                 getConstant(Imm, Op.getValueType()));
641}
642
643SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
644  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
645  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
646
647  // Mask out any bits that are not valid for this constant.
648  if (VT != MVT::i64)
649    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
650
651  SDNode *&N = Constants[std::make_pair(Val, VT)];
652  if (N) return SDOperand(N, 0);
653  N = new ConstantSDNode(false, Val, VT);
654  AllNodes.push_back(N);
655  return SDOperand(N, 0);
656}
657
658SDOperand SelectionDAG::getString(const std::string &Val) {
659  StringSDNode *&N = StringNodes[Val];
660  if (!N) {
661    N = new StringSDNode(Val);
662    AllNodes.push_back(N);
663  }
664  return SDOperand(N, 0);
665}
666
667SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
668  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
669  // Mask out any bits that are not valid for this constant.
670  if (VT != MVT::i64)
671    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
672
673  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
674  if (N) return SDOperand(N, 0);
675  N = new ConstantSDNode(true, Val, VT);
676  AllNodes.push_back(N);
677  return SDOperand(N, 0);
678}
679
680SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
681  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
682  if (VT == MVT::f32)
683    Val = (float)Val;  // Mask out extra precision.
684
685  // Do the map lookup using the actual bit pattern for the floating point
686  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
687  // we don't have issues with SNANs.
688  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
689  if (N) return SDOperand(N, 0);
690  N = new ConstantFPSDNode(false, Val, VT);
691  AllNodes.push_back(N);
692  return SDOperand(N, 0);
693}
694
695SDOperand SelectionDAG::getTargetConstantFP(double Val, MVT::ValueType VT) {
696  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
697  if (VT == MVT::f32)
698    Val = (float)Val;  // Mask out extra precision.
699
700  // Do the map lookup using the actual bit pattern for the floating point
701  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
702  // we don't have issues with SNANs.
703  SDNode *&N = TargetConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
704  if (N) return SDOperand(N, 0);
705  N = new ConstantFPSDNode(true, Val, VT);
706  AllNodes.push_back(N);
707  return SDOperand(N, 0);
708}
709
710SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
711                                         MVT::ValueType VT, int offset) {
712  SDNode *&N = GlobalValues[std::make_pair(GV, offset)];
713  if (N) return SDOperand(N, 0);
714  N = new GlobalAddressSDNode(false, GV, VT, offset);
715  AllNodes.push_back(N);
716  return SDOperand(N, 0);
717}
718
719SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
720                                               MVT::ValueType VT, int offset) {
721  SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)];
722  if (N) return SDOperand(N, 0);
723  N = new GlobalAddressSDNode(true, GV, VT, offset);
724  AllNodes.push_back(N);
725  return SDOperand(N, 0);
726}
727
728SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
729  SDNode *&N = FrameIndices[FI];
730  if (N) return SDOperand(N, 0);
731  N = new FrameIndexSDNode(FI, VT, false);
732  AllNodes.push_back(N);
733  return SDOperand(N, 0);
734}
735
736SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
737  SDNode *&N = TargetFrameIndices[FI];
738  if (N) return SDOperand(N, 0);
739  N = new FrameIndexSDNode(FI, VT, true);
740  AllNodes.push_back(N);
741  return SDOperand(N, 0);
742}
743
744SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
745                                        unsigned Alignment,  int Offset) {
746  SDNode *&N = ConstantPoolIndices[std::make_pair(C,
747                                            std::make_pair(Offset, Alignment))];
748  if (N) return SDOperand(N, 0);
749  N = new ConstantPoolSDNode(false, C, VT, Offset, Alignment);
750  AllNodes.push_back(N);
751  return SDOperand(N, 0);
752}
753
754SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT,
755                                             unsigned Alignment,  int Offset) {
756  SDNode *&N = TargetConstantPoolIndices[std::make_pair(C,
757                                            std::make_pair(Offset, Alignment))];
758  if (N) return SDOperand(N, 0);
759  N = new ConstantPoolSDNode(true, C, VT, Offset, Alignment);
760  AllNodes.push_back(N);
761  return SDOperand(N, 0);
762}
763
764SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
765  SDNode *&N = BBNodes[MBB];
766  if (N) return SDOperand(N, 0);
767  N = new BasicBlockSDNode(MBB);
768  AllNodes.push_back(N);
769  return SDOperand(N, 0);
770}
771
772SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
773  if ((unsigned)VT >= ValueTypeNodes.size())
774    ValueTypeNodes.resize(VT+1);
775  if (ValueTypeNodes[VT] == 0) {
776    ValueTypeNodes[VT] = new VTSDNode(VT);
777    AllNodes.push_back(ValueTypeNodes[VT]);
778  }
779
780  return SDOperand(ValueTypeNodes[VT], 0);
781}
782
783SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
784  SDNode *&N = ExternalSymbols[Sym];
785  if (N) return SDOperand(N, 0);
786  N = new ExternalSymbolSDNode(false, Sym, VT);
787  AllNodes.push_back(N);
788  return SDOperand(N, 0);
789}
790
791SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
792                                                MVT::ValueType VT) {
793  SDNode *&N = TargetExternalSymbols[Sym];
794  if (N) return SDOperand(N, 0);
795  N = new ExternalSymbolSDNode(true, Sym, VT);
796  AllNodes.push_back(N);
797  return SDOperand(N, 0);
798}
799
800SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
801  if ((unsigned)Cond >= CondCodeNodes.size())
802    CondCodeNodes.resize(Cond+1);
803
804  if (CondCodeNodes[Cond] == 0) {
805    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
806    AllNodes.push_back(CondCodeNodes[Cond]);
807  }
808  return SDOperand(CondCodeNodes[Cond], 0);
809}
810
811SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
812  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
813  if (!Reg) {
814    Reg = new RegisterSDNode(RegNo, VT);
815    AllNodes.push_back(Reg);
816  }
817  return SDOperand(Reg, 0);
818}
819
820SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
821                                      SDOperand N2, ISD::CondCode Cond) {
822  // These setcc operations always fold.
823  switch (Cond) {
824  default: break;
825  case ISD::SETFALSE:
826  case ISD::SETFALSE2: return getConstant(0, VT);
827  case ISD::SETTRUE:
828  case ISD::SETTRUE2:  return getConstant(1, VT);
829  }
830
831  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
832    uint64_t C2 = N2C->getValue();
833    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
834      uint64_t C1 = N1C->getValue();
835
836      // Sign extend the operands if required
837      if (ISD::isSignedIntSetCC(Cond)) {
838        C1 = N1C->getSignExtended();
839        C2 = N2C->getSignExtended();
840      }
841
842      switch (Cond) {
843      default: assert(0 && "Unknown integer setcc!");
844      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
845      case ISD::SETNE:  return getConstant(C1 != C2, VT);
846      case ISD::SETULT: return getConstant(C1 <  C2, VT);
847      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
848      case ISD::SETULE: return getConstant(C1 <= C2, VT);
849      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
850      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
851      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
852      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
853      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
854      }
855    } else {
856      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
857      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
858        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
859
860        // If the comparison constant has bits in the upper part, the
861        // zero-extended value could never match.
862        if (C2 & (~0ULL << InSize)) {
863          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
864          switch (Cond) {
865          case ISD::SETUGT:
866          case ISD::SETUGE:
867          case ISD::SETEQ: return getConstant(0, VT);
868          case ISD::SETULT:
869          case ISD::SETULE:
870          case ISD::SETNE: return getConstant(1, VT);
871          case ISD::SETGT:
872          case ISD::SETGE:
873            // True if the sign bit of C2 is set.
874            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
875          case ISD::SETLT:
876          case ISD::SETLE:
877            // True if the sign bit of C2 isn't set.
878            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
879          default:
880            break;
881          }
882        }
883
884        // Otherwise, we can perform the comparison with the low bits.
885        switch (Cond) {
886        case ISD::SETEQ:
887        case ISD::SETNE:
888        case ISD::SETUGT:
889        case ISD::SETUGE:
890        case ISD::SETULT:
891        case ISD::SETULE:
892          return getSetCC(VT, N1.getOperand(0),
893                          getConstant(C2, N1.getOperand(0).getValueType()),
894                          Cond);
895        default:
896          break;   // todo, be more careful with signed comparisons
897        }
898      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
899                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
900        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
901        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
902        MVT::ValueType ExtDstTy = N1.getValueType();
903        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
904
905        // If the extended part has any inconsistent bits, it cannot ever
906        // compare equal.  In other words, they have to be all ones or all
907        // zeros.
908        uint64_t ExtBits =
909          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
910        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
911          return getConstant(Cond == ISD::SETNE, VT);
912
913        // Otherwise, make this a use of a zext.
914        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
915                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
916                        Cond);
917      }
918
919      uint64_t MinVal, MaxVal;
920      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
921      if (ISD::isSignedIntSetCC(Cond)) {
922        MinVal = 1ULL << (OperandBitSize-1);
923        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
924          MaxVal = ~0ULL >> (65-OperandBitSize);
925        else
926          MaxVal = 0;
927      } else {
928        MinVal = 0;
929        MaxVal = ~0ULL >> (64-OperandBitSize);
930      }
931
932      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
933      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
934        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
935        --C2;                                          // X >= C1 --> X > (C1-1)
936        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
937                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
938      }
939
940      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
941        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
942        ++C2;                                          // X <= C1 --> X < (C1+1)
943        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
944                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
945      }
946
947      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
948        return getConstant(0, VT);      // X < MIN --> false
949
950      // Canonicalize setgt X, Min --> setne X, Min
951      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
952        return getSetCC(VT, N1, N2, ISD::SETNE);
953
954      // If we have setult X, 1, turn it into seteq X, 0
955      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
956        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
957                        ISD::SETEQ);
958      // If we have setugt X, Max-1, turn it into seteq X, Max
959      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
960        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
961                        ISD::SETEQ);
962
963      // If we have "setcc X, C1", check to see if we can shrink the immediate
964      // by changing cc.
965
966      // SETUGT X, SINTMAX  -> SETLT X, 0
967      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
968          C2 == (~0ULL >> (65-OperandBitSize)))
969        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
970
971      // FIXME: Implement the rest of these.
972
973
974      // Fold bit comparisons when we can.
975      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
976          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
977        if (ConstantSDNode *AndRHS =
978                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
979          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
980            // Perform the xform if the AND RHS is a single bit.
981            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
982              return getNode(ISD::SRL, VT, N1,
983                             getConstant(Log2_64(AndRHS->getValue()),
984                                                   TLI.getShiftAmountTy()));
985            }
986          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
987            // (X & 8) == 8  -->  (X & 8) >> 3
988            // Perform the xform if C2 is a single bit.
989            if ((C2 & (C2-1)) == 0) {
990              return getNode(ISD::SRL, VT, N1,
991                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
992            }
993          }
994        }
995    }
996  } else if (isa<ConstantSDNode>(N1.Val)) {
997      // Ensure that the constant occurs on the RHS.
998    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
999  }
1000
1001  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
1002    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1003      double C1 = N1C->getValue(), C2 = N2C->getValue();
1004
1005      switch (Cond) {
1006      default: break; // FIXME: Implement the rest of these!
1007      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1008      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1009      case ISD::SETLT:  return getConstant(C1 < C2, VT);
1010      case ISD::SETGT:  return getConstant(C1 > C2, VT);
1011      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
1012      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
1013      }
1014    } else {
1015      // Ensure that the constant occurs on the RHS.
1016      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1017    }
1018
1019  // Could not fold it.
1020  return SDOperand();
1021}
1022
1023/// getNode - Gets or creates the specified node.
1024///
1025SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1026  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
1027  if (!N) {
1028    N = new SDNode(Opcode, VT);
1029    AllNodes.push_back(N);
1030  }
1031  return SDOperand(N, 0);
1032}
1033
1034SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1035                                SDOperand Operand) {
1036  unsigned Tmp1;
1037  // Constant fold unary operations with an integer constant operand.
1038  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1039    uint64_t Val = C->getValue();
1040    switch (Opcode) {
1041    default: break;
1042    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1043    case ISD::ANY_EXTEND:
1044    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1045    case ISD::TRUNCATE:    return getConstant(Val, VT);
1046    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
1047    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
1048    case ISD::BIT_CONVERT:
1049      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1050        return getConstantFP(BitsToFloat(Val), VT);
1051      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1052        return getConstantFP(BitsToDouble(Val), VT);
1053      break;
1054    case ISD::BSWAP:
1055      switch(VT) {
1056      default: assert(0 && "Invalid bswap!"); break;
1057      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1058      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1059      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1060      }
1061      break;
1062    case ISD::CTPOP:
1063      switch(VT) {
1064      default: assert(0 && "Invalid ctpop!"); break;
1065      case MVT::i1: return getConstant(Val != 0, VT);
1066      case MVT::i8:
1067        Tmp1 = (unsigned)Val & 0xFF;
1068        return getConstant(CountPopulation_32(Tmp1), VT);
1069      case MVT::i16:
1070        Tmp1 = (unsigned)Val & 0xFFFF;
1071        return getConstant(CountPopulation_32(Tmp1), VT);
1072      case MVT::i32:
1073        return getConstant(CountPopulation_32((unsigned)Val), VT);
1074      case MVT::i64:
1075        return getConstant(CountPopulation_64(Val), VT);
1076      }
1077    case ISD::CTLZ:
1078      switch(VT) {
1079      default: assert(0 && "Invalid ctlz!"); break;
1080      case MVT::i1: return getConstant(Val == 0, VT);
1081      case MVT::i8:
1082        Tmp1 = (unsigned)Val & 0xFF;
1083        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1084      case MVT::i16:
1085        Tmp1 = (unsigned)Val & 0xFFFF;
1086        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1087      case MVT::i32:
1088        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1089      case MVT::i64:
1090        return getConstant(CountLeadingZeros_64(Val), VT);
1091      }
1092    case ISD::CTTZ:
1093      switch(VT) {
1094      default: assert(0 && "Invalid cttz!"); break;
1095      case MVT::i1: return getConstant(Val == 0, VT);
1096      case MVT::i8:
1097        Tmp1 = (unsigned)Val | 0x100;
1098        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1099      case MVT::i16:
1100        Tmp1 = (unsigned)Val | 0x10000;
1101        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1102      case MVT::i32:
1103        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1104      case MVT::i64:
1105        return getConstant(CountTrailingZeros_64(Val), VT);
1106      }
1107    }
1108  }
1109
1110  // Constant fold unary operations with an floating point constant operand.
1111  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1112    switch (Opcode) {
1113    case ISD::FNEG:
1114      return getConstantFP(-C->getValue(), VT);
1115    case ISD::FABS:
1116      return getConstantFP(fabs(C->getValue()), VT);
1117    case ISD::FP_ROUND:
1118    case ISD::FP_EXTEND:
1119      return getConstantFP(C->getValue(), VT);
1120    case ISD::FP_TO_SINT:
1121      return getConstant((int64_t)C->getValue(), VT);
1122    case ISD::FP_TO_UINT:
1123      return getConstant((uint64_t)C->getValue(), VT);
1124    case ISD::BIT_CONVERT:
1125      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1126        return getConstant(FloatToBits(C->getValue()), VT);
1127      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1128        return getConstant(DoubleToBits(C->getValue()), VT);
1129      break;
1130    }
1131
1132  unsigned OpOpcode = Operand.Val->getOpcode();
1133  switch (Opcode) {
1134  case ISD::TokenFactor:
1135    return Operand;         // Factor of one node?  No factor.
1136  case ISD::SIGN_EXTEND:
1137    if (Operand.getValueType() == VT) return Operand;   // noop extension
1138    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1139    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1140      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1141    break;
1142  case ISD::ZERO_EXTEND:
1143    if (Operand.getValueType() == VT) return Operand;   // noop extension
1144    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1145    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1146      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1147    break;
1148  case ISD::ANY_EXTEND:
1149    if (Operand.getValueType() == VT) return Operand;   // noop extension
1150    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1151    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1152      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1153      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1154    break;
1155  case ISD::TRUNCATE:
1156    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1157    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1158    if (OpOpcode == ISD::TRUNCATE)
1159      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1160    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1161             OpOpcode == ISD::ANY_EXTEND) {
1162      // If the source is smaller than the dest, we still need an extend.
1163      if (Operand.Val->getOperand(0).getValueType() < VT)
1164        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1165      else if (Operand.Val->getOperand(0).getValueType() > VT)
1166        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1167      else
1168        return Operand.Val->getOperand(0);
1169    }
1170    break;
1171  case ISD::BIT_CONVERT:
1172    // Basic sanity checking.
1173    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1174           && "Cannot BIT_CONVERT between two different types!");
1175    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1176    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1177      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1178    if (OpOpcode == ISD::UNDEF)
1179      return getNode(ISD::UNDEF, VT);
1180    break;
1181  case ISD::SCALAR_TO_VECTOR:
1182    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1183           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1184           "Illegal SCALAR_TO_VECTOR node!");
1185    break;
1186  case ISD::FNEG:
1187    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1188      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1189                     Operand.Val->getOperand(0));
1190    if (OpOpcode == ISD::FNEG)  // --X -> X
1191      return Operand.Val->getOperand(0);
1192    break;
1193  case ISD::FABS:
1194    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1195      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1196    break;
1197  }
1198
1199  SDNode *N;
1200  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1201    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1202    if (E) return SDOperand(E, 0);
1203    E = N = new SDNode(Opcode, Operand);
1204  } else {
1205    N = new SDNode(Opcode, Operand);
1206  }
1207  N->setValueTypes(VT);
1208  AllNodes.push_back(N);
1209  return SDOperand(N, 0);
1210}
1211
1212
1213
1214SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1215                                SDOperand N1, SDOperand N2) {
1216#ifndef NDEBUG
1217  switch (Opcode) {
1218  case ISD::TokenFactor:
1219    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1220           N2.getValueType() == MVT::Other && "Invalid token factor!");
1221    break;
1222  case ISD::AND:
1223  case ISD::OR:
1224  case ISD::XOR:
1225  case ISD::UDIV:
1226  case ISD::UREM:
1227  case ISD::MULHU:
1228  case ISD::MULHS:
1229    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1230    // fall through
1231  case ISD::ADD:
1232  case ISD::SUB:
1233  case ISD::MUL:
1234  case ISD::SDIV:
1235  case ISD::SREM:
1236    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1237    // fall through.
1238  case ISD::FADD:
1239  case ISD::FSUB:
1240  case ISD::FMUL:
1241  case ISD::FDIV:
1242  case ISD::FREM:
1243    assert(N1.getValueType() == N2.getValueType() &&
1244           N1.getValueType() == VT && "Binary operator types must match!");
1245    break;
1246  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1247    assert(N1.getValueType() == VT &&
1248           MVT::isFloatingPoint(N1.getValueType()) &&
1249           MVT::isFloatingPoint(N2.getValueType()) &&
1250           "Invalid FCOPYSIGN!");
1251    break;
1252  case ISD::SHL:
1253  case ISD::SRA:
1254  case ISD::SRL:
1255  case ISD::ROTL:
1256  case ISD::ROTR:
1257    assert(VT == N1.getValueType() &&
1258           "Shift operators return type must be the same as their first arg");
1259    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1260           VT != MVT::i1 && "Shifts only work on integers");
1261    break;
1262  case ISD::FP_ROUND_INREG: {
1263    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1264    assert(VT == N1.getValueType() && "Not an inreg round!");
1265    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1266           "Cannot FP_ROUND_INREG integer types");
1267    assert(EVT <= VT && "Not rounding down!");
1268    break;
1269  }
1270  case ISD::AssertSext:
1271  case ISD::AssertZext:
1272  case ISD::SIGN_EXTEND_INREG: {
1273    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1274    assert(VT == N1.getValueType() && "Not an inreg extend!");
1275    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1276           "Cannot *_EXTEND_INREG FP types");
1277    assert(EVT <= VT && "Not extending!");
1278  }
1279
1280  default: break;
1281  }
1282#endif
1283
1284  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1285  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1286  if (N1C) {
1287    if (N2C) {
1288      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1289      switch (Opcode) {
1290      case ISD::ADD: return getConstant(C1 + C2, VT);
1291      case ISD::SUB: return getConstant(C1 - C2, VT);
1292      case ISD::MUL: return getConstant(C1 * C2, VT);
1293      case ISD::UDIV:
1294        if (C2) return getConstant(C1 / C2, VT);
1295        break;
1296      case ISD::UREM :
1297        if (C2) return getConstant(C1 % C2, VT);
1298        break;
1299      case ISD::SDIV :
1300        if (C2) return getConstant(N1C->getSignExtended() /
1301                                   N2C->getSignExtended(), VT);
1302        break;
1303      case ISD::SREM :
1304        if (C2) return getConstant(N1C->getSignExtended() %
1305                                   N2C->getSignExtended(), VT);
1306        break;
1307      case ISD::AND  : return getConstant(C1 & C2, VT);
1308      case ISD::OR   : return getConstant(C1 | C2, VT);
1309      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1310      case ISD::SHL  : return getConstant(C1 << C2, VT);
1311      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1312      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1313      case ISD::ROTL :
1314        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1315                           VT);
1316      case ISD::ROTR :
1317        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1318                           VT);
1319      default: break;
1320      }
1321    } else {      // Cannonicalize constant to RHS if commutative
1322      if (isCommutativeBinOp(Opcode)) {
1323        std::swap(N1C, N2C);
1324        std::swap(N1, N2);
1325      }
1326    }
1327  }
1328
1329  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1330  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1331  if (N1CFP) {
1332    if (N2CFP) {
1333      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1334      switch (Opcode) {
1335      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1336      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1337      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1338      case ISD::FDIV:
1339        if (C2) return getConstantFP(C1 / C2, VT);
1340        break;
1341      case ISD::FREM :
1342        if (C2) return getConstantFP(fmod(C1, C2), VT);
1343        break;
1344      case ISD::FCOPYSIGN: {
1345        union {
1346          double   F;
1347          uint64_t I;
1348        } u1;
1349        union {
1350          double  F;
1351          int64_t I;
1352        } u2;
1353        u1.F = C1;
1354        u2.F = C2;
1355        if (u2.I < 0)  // Sign bit of RHS set?
1356          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1357        else
1358          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1359        return getConstantFP(u1.F, VT);
1360      }
1361      default: break;
1362      }
1363    } else {      // Cannonicalize constant to RHS if commutative
1364      if (isCommutativeBinOp(Opcode)) {
1365        std::swap(N1CFP, N2CFP);
1366        std::swap(N1, N2);
1367      }
1368    }
1369  }
1370
1371  // Canonicalize an UNDEF to the RHS, even over a constant.
1372  if (N1.getOpcode() == ISD::UNDEF) {
1373    if (isCommutativeBinOp(Opcode)) {
1374      std::swap(N1, N2);
1375    } else {
1376      switch (Opcode) {
1377      case ISD::FP_ROUND_INREG:
1378      case ISD::SIGN_EXTEND_INREG:
1379      case ISD::SUB:
1380      case ISD::FSUB:
1381      case ISD::FDIV:
1382      case ISD::FREM:
1383        return N1;     // fold op(undef, arg2) -> undef
1384      case ISD::UDIV:
1385      case ISD::SDIV:
1386      case ISD::UREM:
1387      case ISD::SREM:
1388        return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1389      }
1390    }
1391  }
1392
1393  // Fold a bunch of operators that
1394  if (N2.getOpcode() == ISD::UNDEF) {
1395    switch (Opcode) {
1396    case ISD::ADD:
1397    case ISD::SUB:
1398    case ISD::FADD:
1399    case ISD::FSUB:
1400    case ISD::FMUL:
1401    case ISD::FDIV:
1402    case ISD::FREM:
1403    case ISD::UDIV:
1404    case ISD::SDIV:
1405    case ISD::UREM:
1406    case ISD::SREM:
1407    case ISD::XOR:
1408      return N2;       // fold op(arg1, undef) -> undef
1409    case ISD::MUL:
1410    case ISD::AND:
1411      return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1412    case ISD::OR:
1413      return getConstant(MVT::getIntVTBitMask(VT), VT);
1414    }
1415  }
1416
1417  // Finally, fold operations that do not require constants.
1418  switch (Opcode) {
1419  case ISD::FP_ROUND_INREG:
1420    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1421    break;
1422  case ISD::SIGN_EXTEND_INREG: {
1423    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1424    if (EVT == VT) return N1;  // Not actually extending
1425    break;
1426  }
1427
1428  // FIXME: figure out how to safely handle things like
1429  // int foo(int x) { return 1 << (x & 255); }
1430  // int bar() { return foo(256); }
1431#if 0
1432  case ISD::SHL:
1433  case ISD::SRL:
1434  case ISD::SRA:
1435    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1436        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1437      return getNode(Opcode, VT, N1, N2.getOperand(0));
1438    else if (N2.getOpcode() == ISD::AND)
1439      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1440        // If the and is only masking out bits that cannot effect the shift,
1441        // eliminate the and.
1442        unsigned NumBits = MVT::getSizeInBits(VT);
1443        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1444          return getNode(Opcode, VT, N1, N2.getOperand(0));
1445      }
1446    break;
1447#endif
1448  }
1449
1450  // Memoize this node if possible.
1451  SDNode *N;
1452  if (VT != MVT::Flag) {
1453    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1454    if (BON) return SDOperand(BON, 0);
1455
1456    BON = N = new SDNode(Opcode, N1, N2);
1457  } else {
1458    N = new SDNode(Opcode, N1, N2);
1459  }
1460
1461  N->setValueTypes(VT);
1462  AllNodes.push_back(N);
1463  return SDOperand(N, 0);
1464}
1465
1466SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1467                                SDOperand N1, SDOperand N2, SDOperand N3) {
1468  // Perform various simplifications.
1469  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1470  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1471  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1472  switch (Opcode) {
1473  case ISD::SETCC: {
1474    // Use SimplifySetCC  to simplify SETCC's.
1475    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1476    if (Simp.Val) return Simp;
1477    break;
1478  }
1479  case ISD::SELECT:
1480    if (N1C)
1481      if (N1C->getValue())
1482        return N2;             // select true, X, Y -> X
1483      else
1484        return N3;             // select false, X, Y -> Y
1485
1486    if (N2 == N3) return N2;   // select C, X, X -> X
1487    break;
1488  case ISD::BRCOND:
1489    if (N2C)
1490      if (N2C->getValue()) // Unconditional branch
1491        return getNode(ISD::BR, MVT::Other, N1, N3);
1492      else
1493        return N1;         // Never-taken branch
1494    break;
1495  case ISD::VECTOR_SHUFFLE:
1496    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1497           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1498           N3.getOpcode() == ISD::BUILD_VECTOR &&
1499           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1500           "Illegal VECTOR_SHUFFLE node!");
1501    break;
1502  }
1503
1504  std::vector<SDOperand> Ops;
1505  Ops.reserve(3);
1506  Ops.push_back(N1);
1507  Ops.push_back(N2);
1508  Ops.push_back(N3);
1509
1510  // Memoize node if it doesn't produce a flag.
1511  SDNode *N;
1512  if (VT != MVT::Flag) {
1513    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1514    if (E) return SDOperand(E, 0);
1515    E = N = new SDNode(Opcode, N1, N2, N3);
1516  } else {
1517    N = new SDNode(Opcode, N1, N2, N3);
1518  }
1519  N->setValueTypes(VT);
1520  AllNodes.push_back(N);
1521  return SDOperand(N, 0);
1522}
1523
1524SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1525                                SDOperand N1, SDOperand N2, SDOperand N3,
1526                                SDOperand N4) {
1527  std::vector<SDOperand> Ops;
1528  Ops.reserve(4);
1529  Ops.push_back(N1);
1530  Ops.push_back(N2);
1531  Ops.push_back(N3);
1532  Ops.push_back(N4);
1533  return getNode(Opcode, VT, Ops);
1534}
1535
1536SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1537                                SDOperand N1, SDOperand N2, SDOperand N3,
1538                                SDOperand N4, SDOperand N5) {
1539  std::vector<SDOperand> Ops;
1540  Ops.reserve(5);
1541  Ops.push_back(N1);
1542  Ops.push_back(N2);
1543  Ops.push_back(N3);
1544  Ops.push_back(N4);
1545  Ops.push_back(N5);
1546  return getNode(Opcode, VT, Ops);
1547}
1548
1549SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1550                                SDOperand Chain, SDOperand Ptr,
1551                                SDOperand SV) {
1552  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1553  if (N) return SDOperand(N, 0);
1554  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1555
1556  // Loads have a token chain.
1557  setNodeValueTypes(N, VT, MVT::Other);
1558  AllNodes.push_back(N);
1559  return SDOperand(N, 0);
1560}
1561
1562SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1563                                   SDOperand Chain, SDOperand Ptr,
1564                                   SDOperand SV) {
1565  std::vector<SDOperand> Ops;
1566  Ops.reserve(5);
1567  Ops.push_back(Chain);
1568  Ops.push_back(Ptr);
1569  Ops.push_back(SV);
1570  Ops.push_back(getConstant(Count, MVT::i32));
1571  Ops.push_back(getValueType(EVT));
1572  std::vector<MVT::ValueType> VTs;
1573  VTs.reserve(2);
1574  VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other);  // Add token chain.
1575  return getNode(ISD::VLOAD, VTs, Ops);
1576}
1577
1578SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1579                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1580                                   MVT::ValueType EVT) {
1581  std::vector<SDOperand> Ops;
1582  Ops.reserve(4);
1583  Ops.push_back(Chain);
1584  Ops.push_back(Ptr);
1585  Ops.push_back(SV);
1586  Ops.push_back(getValueType(EVT));
1587  std::vector<MVT::ValueType> VTs;
1588  VTs.reserve(2);
1589  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1590  return getNode(Opcode, VTs, Ops);
1591}
1592
1593SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1594  assert((!V || isa<PointerType>(V->getType())) &&
1595         "SrcValue is not a pointer?");
1596  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1597  if (N) return SDOperand(N, 0);
1598
1599  N = new SrcValueSDNode(V, Offset);
1600  AllNodes.push_back(N);
1601  return SDOperand(N, 0);
1602}
1603
1604SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1605                                 SDOperand Chain, SDOperand Ptr,
1606                                 SDOperand SV) {
1607  std::vector<SDOperand> Ops;
1608  Ops.reserve(3);
1609  Ops.push_back(Chain);
1610  Ops.push_back(Ptr);
1611  Ops.push_back(SV);
1612  std::vector<MVT::ValueType> VTs;
1613  VTs.reserve(2);
1614  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1615  return getNode(ISD::VAARG, VTs, Ops);
1616}
1617
1618SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1619                                std::vector<SDOperand> &Ops) {
1620  switch (Ops.size()) {
1621  case 0: return getNode(Opcode, VT);
1622  case 1: return getNode(Opcode, VT, Ops[0]);
1623  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1624  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1625  default: break;
1626  }
1627
1628  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1629  switch (Opcode) {
1630  default: break;
1631  case ISD::TRUNCSTORE: {
1632    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1633    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1634#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1635    // If this is a truncating store of a constant, convert to the desired type
1636    // and store it instead.
1637    if (isa<Constant>(Ops[0])) {
1638      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1639      if (isa<Constant>(Op))
1640        N1 = Op;
1641    }
1642    // Also for ConstantFP?
1643#endif
1644    if (Ops[0].getValueType() == EVT)       // Normal store?
1645      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1646    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1647    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1648           "Can't do FP-INT conversion!");
1649    break;
1650  }
1651  case ISD::SELECT_CC: {
1652    assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
1653    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1654           "LHS and RHS of condition must have same type!");
1655    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1656           "True and False arms of SelectCC must have same type!");
1657    assert(Ops[2].getValueType() == VT &&
1658           "select_cc node must be of same type as true and false value!");
1659    break;
1660  }
1661  case ISD::BR_CC: {
1662    assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
1663    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1664           "LHS/RHS of comparison should match types!");
1665    break;
1666  }
1667  }
1668
1669  // Memoize nodes.
1670  SDNode *N;
1671  if (VT != MVT::Flag) {
1672    SDNode *&E =
1673      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1674    if (E) return SDOperand(E, 0);
1675    E = N = new SDNode(Opcode, Ops);
1676  } else {
1677    N = new SDNode(Opcode, Ops);
1678  }
1679  N->setValueTypes(VT);
1680  AllNodes.push_back(N);
1681  return SDOperand(N, 0);
1682}
1683
1684SDOperand SelectionDAG::getNode(unsigned Opcode,
1685                                std::vector<MVT::ValueType> &ResultTys,
1686                                std::vector<SDOperand> &Ops) {
1687  if (ResultTys.size() == 1)
1688    return getNode(Opcode, ResultTys[0], Ops);
1689
1690  switch (Opcode) {
1691  case ISD::EXTLOAD:
1692  case ISD::SEXTLOAD:
1693  case ISD::ZEXTLOAD: {
1694    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1695    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1696    // If they are asking for an extending load from/to the same thing, return a
1697    // normal load.
1698    if (ResultTys[0] == EVT)
1699      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1700    if (MVT::isVector(ResultTys[0])) {
1701      assert(EVT == MVT::getVectorBaseType(ResultTys[0]) &&
1702             "Invalid vector extload!");
1703    } else {
1704      assert(EVT < ResultTys[0] &&
1705             "Should only be an extending load, not truncating!");
1706    }
1707    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1708           "Cannot sign/zero extend a FP/Vector load!");
1709    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1710           "Cannot convert from FP to Int or Int -> FP!");
1711    break;
1712  }
1713
1714  // FIXME: figure out how to safely handle things like
1715  // int foo(int x) { return 1 << (x & 255); }
1716  // int bar() { return foo(256); }
1717#if 0
1718  case ISD::SRA_PARTS:
1719  case ISD::SRL_PARTS:
1720  case ISD::SHL_PARTS:
1721    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1722        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1723      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1724    else if (N3.getOpcode() == ISD::AND)
1725      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1726        // If the and is only masking out bits that cannot effect the shift,
1727        // eliminate the and.
1728        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1729        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1730          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1731      }
1732    break;
1733#endif
1734  }
1735
1736  // Memoize the node unless it returns a flag.
1737  SDNode *N;
1738  if (ResultTys.back() != MVT::Flag) {
1739    SDNode *&E =
1740      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
1741    if (E) return SDOperand(E, 0);
1742    E = N = new SDNode(Opcode, Ops);
1743  } else {
1744    N = new SDNode(Opcode, Ops);
1745  }
1746  setNodeValueTypes(N, ResultTys);
1747  AllNodes.push_back(N);
1748  return SDOperand(N, 0);
1749}
1750
1751void SelectionDAG::setNodeValueTypes(SDNode *N,
1752                                     std::vector<MVT::ValueType> &RetVals) {
1753  switch (RetVals.size()) {
1754  case 0: return;
1755  case 1: N->setValueTypes(RetVals[0]); return;
1756  case 2: setNodeValueTypes(N, RetVals[0], RetVals[1]); return;
1757  default: break;
1758  }
1759
1760  std::list<std::vector<MVT::ValueType> >::iterator I =
1761    std::find(VTList.begin(), VTList.end(), RetVals);
1762  if (I == VTList.end()) {
1763    VTList.push_front(RetVals);
1764    I = VTList.begin();
1765  }
1766
1767  N->setValueTypes(&(*I)[0], I->size());
1768}
1769
1770void SelectionDAG::setNodeValueTypes(SDNode *N, MVT::ValueType VT1,
1771                                     MVT::ValueType VT2) {
1772  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1773       E = VTList.end(); I != E; ++I) {
1774    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) {
1775      N->setValueTypes(&(*I)[0], 2);
1776      return;
1777    }
1778  }
1779  std::vector<MVT::ValueType> V;
1780  V.push_back(VT1);
1781  V.push_back(VT2);
1782  VTList.push_front(V);
1783  N->setValueTypes(&(*VTList.begin())[0], 2);
1784}
1785
1786/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1787/// specified operands.  If the resultant node already exists in the DAG,
1788/// this does not modify the specified node, instead it returns the node that
1789/// already exists.  If the resultant node does not exist in the DAG, the
1790/// input node is returned.  As a degenerate case, if you specify the same
1791/// input operands as the node already has, the input node is returned.
1792SDOperand SelectionDAG::
1793UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1794  SDNode *N = InN.Val;
1795  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1796
1797  // Check to see if there is no change.
1798  if (Op == N->getOperand(0)) return InN;
1799
1800  // See if the modified node already exists.
1801  SDNode **NewSlot = FindModifiedNodeSlot(N, Op);
1802  if (NewSlot && *NewSlot)
1803    return SDOperand(*NewSlot, InN.ResNo);
1804
1805  // Nope it doesn't.  Remove the node from it's current place in the maps.
1806  if (NewSlot)
1807    RemoveNodeFromCSEMaps(N);
1808
1809  // Now we update the operands.
1810  N->OperandList[0].Val->removeUser(N);
1811  Op.Val->addUser(N);
1812  N->OperandList[0] = Op;
1813
1814  // If this gets put into a CSE map, add it.
1815  if (NewSlot) *NewSlot = N;
1816  return InN;
1817}
1818
1819SDOperand SelectionDAG::
1820UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1821  SDNode *N = InN.Val;
1822  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1823
1824  // Check to see if there is no change.
1825  bool AnyChange = false;
1826  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1827    return InN;   // No operands changed, just return the input node.
1828
1829  // See if the modified node already exists.
1830  SDNode **NewSlot = FindModifiedNodeSlot(N, Op1, Op2);
1831  if (NewSlot && *NewSlot)
1832    return SDOperand(*NewSlot, InN.ResNo);
1833
1834  // Nope it doesn't.  Remove the node from it's current place in the maps.
1835  if (NewSlot)
1836    RemoveNodeFromCSEMaps(N);
1837
1838  // Now we update the operands.
1839  if (N->OperandList[0] != Op1) {
1840    N->OperandList[0].Val->removeUser(N);
1841    Op1.Val->addUser(N);
1842    N->OperandList[0] = Op1;
1843  }
1844  if (N->OperandList[1] != Op2) {
1845    N->OperandList[1].Val->removeUser(N);
1846    Op2.Val->addUser(N);
1847    N->OperandList[1] = Op2;
1848  }
1849
1850  // If this gets put into a CSE map, add it.
1851  if (NewSlot) *NewSlot = N;
1852  return InN;
1853}
1854
1855SDOperand SelectionDAG::
1856UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1857  std::vector<SDOperand> Ops;
1858  Ops.push_back(Op1);
1859  Ops.push_back(Op2);
1860  Ops.push_back(Op3);
1861  return UpdateNodeOperands(N, Ops);
1862}
1863
1864SDOperand SelectionDAG::
1865UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1866                   SDOperand Op3, SDOperand Op4) {
1867  std::vector<SDOperand> Ops;
1868  Ops.push_back(Op1);
1869  Ops.push_back(Op2);
1870  Ops.push_back(Op3);
1871  Ops.push_back(Op4);
1872  return UpdateNodeOperands(N, Ops);
1873}
1874
1875SDOperand SelectionDAG::
1876UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1877                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1878  std::vector<SDOperand> Ops;
1879  Ops.push_back(Op1);
1880  Ops.push_back(Op2);
1881  Ops.push_back(Op3);
1882  Ops.push_back(Op4);
1883  Ops.push_back(Op5);
1884  return UpdateNodeOperands(N, Ops);
1885}
1886
1887
1888SDOperand SelectionDAG::
1889UpdateNodeOperands(SDOperand InN, const std::vector<SDOperand> &Ops) {
1890  SDNode *N = InN.Val;
1891  assert(N->getNumOperands() == Ops.size() &&
1892         "Update with wrong number of operands");
1893
1894  // Check to see if there is no change.
1895  unsigned NumOps = Ops.size();
1896  bool AnyChange = false;
1897  for (unsigned i = 0; i != NumOps; ++i) {
1898    if (Ops[i] != N->getOperand(i)) {
1899      AnyChange = true;
1900      break;
1901    }
1902  }
1903
1904  // No operands changed, just return the input node.
1905  if (!AnyChange) return InN;
1906
1907  // See if the modified node already exists.
1908  SDNode **NewSlot = FindModifiedNodeSlot(N, Ops);
1909  if (NewSlot && *NewSlot)
1910    return SDOperand(*NewSlot, InN.ResNo);
1911
1912  // Nope it doesn't.  Remove the node from it's current place in the maps.
1913  if (NewSlot)
1914    RemoveNodeFromCSEMaps(N);
1915
1916  // Now we update the operands.
1917  for (unsigned i = 0; i != NumOps; ++i) {
1918    if (N->OperandList[i] != Ops[i]) {
1919      N->OperandList[i].Val->removeUser(N);
1920      Ops[i].Val->addUser(N);
1921      N->OperandList[i] = Ops[i];
1922    }
1923  }
1924
1925  // If this gets put into a CSE map, add it.
1926  if (NewSlot) *NewSlot = N;
1927  return InN;
1928}
1929
1930
1931
1932
1933/// SelectNodeTo - These are used for target selectors to *mutate* the
1934/// specified node to have the specified return type, Target opcode, and
1935/// operands.  Note that target opcodes are stored as
1936/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1937///
1938/// Note that SelectNodeTo returns the resultant node.  If there is already a
1939/// node of the specified opcode and operands, it returns that node instead of
1940/// the current one.
1941SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1942                                     MVT::ValueType VT) {
1943  // If an identical node already exists, use it.
1944  SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)];
1945  if (ON) return SDOperand(ON, 0);
1946
1947  RemoveNodeFromCSEMaps(N);
1948
1949  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1950  N->setValueTypes(VT);
1951
1952  ON = N;   // Memoize the new node.
1953  return SDOperand(N, 0);
1954}
1955
1956SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1957                                     MVT::ValueType VT, SDOperand Op1) {
1958  // If an identical node already exists, use it.
1959  SDNode *&ON = UnaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1960                                        std::make_pair(Op1, VT))];
1961  if (ON) return SDOperand(ON, 0);
1962
1963  RemoveNodeFromCSEMaps(N);
1964  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1965  N->setValueTypes(VT);
1966  N->setOperands(Op1);
1967
1968  ON = N;   // Memoize the new node.
1969  return SDOperand(N, 0);
1970}
1971
1972SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1973                                     MVT::ValueType VT, SDOperand Op1,
1974                                     SDOperand Op2) {
1975  // If an identical node already exists, use it.
1976  SDNode *&ON = BinaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1977                                         std::make_pair(Op1, Op2))];
1978  if (ON) return SDOperand(ON, 0);
1979
1980  RemoveNodeFromCSEMaps(N);
1981  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1982  N->setValueTypes(VT);
1983  N->setOperands(Op1, Op2);
1984
1985  ON = N;   // Memoize the new node.
1986  return SDOperand(N, 0);
1987}
1988
1989SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1990                                     MVT::ValueType VT, SDOperand Op1,
1991                                     SDOperand Op2, SDOperand Op3) {
1992  // If an identical node already exists, use it.
1993  std::vector<SDOperand> OpList;
1994  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1995  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1996                                              std::make_pair(VT, OpList))];
1997  if (ON) return SDOperand(ON, 0);
1998
1999  RemoveNodeFromCSEMaps(N);
2000  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2001  N->setValueTypes(VT);
2002  N->setOperands(Op1, Op2, Op3);
2003
2004  ON = N;   // Memoize the new node.
2005  return SDOperand(N, 0);
2006}
2007
2008SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2009                                     MVT::ValueType VT, SDOperand Op1,
2010                                     SDOperand Op2, SDOperand Op3,
2011                                     SDOperand Op4) {
2012  // If an identical node already exists, use it.
2013  std::vector<SDOperand> OpList;
2014  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2015  OpList.push_back(Op4);
2016  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2017                                              std::make_pair(VT, OpList))];
2018  if (ON) return SDOperand(ON, 0);
2019
2020  RemoveNodeFromCSEMaps(N);
2021  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2022  N->setValueTypes(VT);
2023  N->setOperands(Op1, Op2, Op3, Op4);
2024
2025  ON = N;   // Memoize the new node.
2026  return SDOperand(N, 0);
2027}
2028
2029SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2030                                     MVT::ValueType VT, SDOperand Op1,
2031                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2032                                     SDOperand Op5) {
2033  // If an identical node already exists, use it.
2034  std::vector<SDOperand> OpList;
2035  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2036  OpList.push_back(Op4); OpList.push_back(Op5);
2037  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2038                                              std::make_pair(VT, OpList))];
2039  if (ON) return SDOperand(ON, 0);
2040
2041  RemoveNodeFromCSEMaps(N);
2042  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2043  N->setValueTypes(VT);
2044  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2045
2046  ON = N;   // Memoize the new node.
2047  return SDOperand(N, 0);
2048}
2049
2050SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2051                                     MVT::ValueType VT, SDOperand Op1,
2052                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2053                                     SDOperand Op5, SDOperand Op6) {
2054  // If an identical node already exists, use it.
2055  std::vector<SDOperand> OpList;
2056  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2057  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
2058  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2059                                              std::make_pair(VT, OpList))];
2060  if (ON) return SDOperand(ON, 0);
2061
2062  RemoveNodeFromCSEMaps(N);
2063  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2064  N->setValueTypes(VT);
2065  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
2066
2067  ON = N;   // Memoize the new node.
2068  return SDOperand(N, 0);
2069}
2070
2071SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2072                                     MVT::ValueType VT, SDOperand Op1,
2073                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2074                                     SDOperand Op5, SDOperand Op6,
2075				     SDOperand Op7) {
2076  // If an identical node already exists, use it.
2077  std::vector<SDOperand> OpList;
2078  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2079  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
2080  OpList.push_back(Op7);
2081  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2082                                              std::make_pair(VT, OpList))];
2083  if (ON) return SDOperand(ON, 0);
2084
2085  RemoveNodeFromCSEMaps(N);
2086  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2087  N->setValueTypes(VT);
2088  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7);
2089
2090  ON = N;   // Memoize the new node.
2091  return SDOperand(N, 0);
2092}
2093SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2094                                     MVT::ValueType VT, SDOperand Op1,
2095                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2096                                     SDOperand Op5, SDOperand Op6,
2097				     SDOperand Op7, SDOperand Op8) {
2098  // If an identical node already exists, use it.
2099  std::vector<SDOperand> OpList;
2100  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2101  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
2102  OpList.push_back(Op7); OpList.push_back(Op8);
2103  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2104                                              std::make_pair(VT, OpList))];
2105  if (ON) return SDOperand(ON, 0);
2106
2107  RemoveNodeFromCSEMaps(N);
2108  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2109  N->setValueTypes(VT);
2110  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8);
2111
2112  ON = N;   // Memoize the new node.
2113  return SDOperand(N, 0);
2114}
2115
2116SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2117                                     MVT::ValueType VT1, MVT::ValueType VT2,
2118                                     SDOperand Op1, SDOperand Op2) {
2119  // If an identical node already exists, use it.
2120  std::vector<SDOperand> OpList;
2121  OpList.push_back(Op1); OpList.push_back(Op2);
2122  std::vector<MVT::ValueType> VTList;
2123  VTList.push_back(VT1); VTList.push_back(VT2);
2124  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2125                                              std::make_pair(VTList, OpList))];
2126  if (ON) return SDOperand(ON, 0);
2127
2128  RemoveNodeFromCSEMaps(N);
2129  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2130  setNodeValueTypes(N, VT1, VT2);
2131  N->setOperands(Op1, Op2);
2132
2133  ON = N;   // Memoize the new node.
2134  return SDOperand(N, 0);
2135}
2136
2137SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2138                                     MVT::ValueType VT1, MVT::ValueType VT2,
2139                                     SDOperand Op1, SDOperand Op2,
2140                                     SDOperand Op3) {
2141  // If an identical node already exists, use it.
2142  std::vector<SDOperand> OpList;
2143  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2144  std::vector<MVT::ValueType> VTList;
2145  VTList.push_back(VT1); VTList.push_back(VT2);
2146  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2147                                              std::make_pair(VTList, OpList))];
2148  if (ON) return SDOperand(ON, 0);
2149
2150  RemoveNodeFromCSEMaps(N);
2151  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2152  setNodeValueTypes(N, VT1, VT2);
2153  N->setOperands(Op1, Op2, Op3);
2154
2155  ON = N;   // Memoize the new node.
2156  return SDOperand(N, 0);
2157}
2158
2159SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2160                                     MVT::ValueType VT1, MVT::ValueType VT2,
2161                                     SDOperand Op1, SDOperand Op2,
2162                                     SDOperand Op3, SDOperand Op4) {
2163  // If an identical node already exists, use it.
2164  std::vector<SDOperand> OpList;
2165  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2166  OpList.push_back(Op4);
2167  std::vector<MVT::ValueType> VTList;
2168  VTList.push_back(VT1); VTList.push_back(VT2);
2169  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2170                                              std::make_pair(VTList, OpList))];
2171  if (ON) return SDOperand(ON, 0);
2172
2173  RemoveNodeFromCSEMaps(N);
2174  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2175  setNodeValueTypes(N, VT1, VT2);
2176  N->setOperands(Op1, Op2, Op3, Op4);
2177
2178  ON = N;   // Memoize the new node.
2179  return SDOperand(N, 0);
2180}
2181
2182SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2183                                     MVT::ValueType VT1, MVT::ValueType VT2,
2184                                     SDOperand Op1, SDOperand Op2,
2185                                     SDOperand Op3, SDOperand Op4,
2186                                     SDOperand Op5) {
2187  // If an identical node already exists, use it.
2188  std::vector<SDOperand> OpList;
2189  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2190  OpList.push_back(Op4); OpList.push_back(Op5);
2191  std::vector<MVT::ValueType> VTList;
2192  VTList.push_back(VT1); VTList.push_back(VT2);
2193  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2194                                              std::make_pair(VTList, OpList))];
2195  if (ON) return SDOperand(ON, 0);
2196
2197  RemoveNodeFromCSEMaps(N);
2198  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2199  setNodeValueTypes(N, VT1, VT2);
2200  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2201
2202  ON = N;   // Memoize the new node.
2203  return SDOperand(N, 0);
2204}
2205
2206/// getTargetNode - These are used for target selectors to create a new node
2207/// with specified return type(s), target opcode, and operands.
2208///
2209/// Note that getTargetNode returns the resultant node.  If there is already a
2210/// node of the specified opcode and operands, it returns that node instead of
2211/// the current one.
2212SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2213  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2214}
2215SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2216                                    SDOperand Op1) {
2217  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2218}
2219SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2220                                    SDOperand Op1, SDOperand Op2) {
2221  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2222}
2223SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2224                                    SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2225  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2226}
2227SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2228                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2229                                    SDOperand Op4) {
2230  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4).Val;
2231}
2232SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2233                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2234                                    SDOperand Op4, SDOperand Op5) {
2235  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4, Op5).Val;
2236}
2237SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2238                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2239                                    SDOperand Op4, SDOperand Op5, SDOperand Op6) {
2240  std::vector<SDOperand> Ops;
2241  Ops.reserve(6);
2242  Ops.push_back(Op1);
2243  Ops.push_back(Op2);
2244  Ops.push_back(Op3);
2245  Ops.push_back(Op4);
2246  Ops.push_back(Op5);
2247  Ops.push_back(Op6);
2248  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2249}
2250SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2251                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2252                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2253                                    SDOperand Op7) {
2254  std::vector<SDOperand> Ops;
2255  Ops.reserve(7);
2256  Ops.push_back(Op1);
2257  Ops.push_back(Op2);
2258  Ops.push_back(Op3);
2259  Ops.push_back(Op4);
2260  Ops.push_back(Op5);
2261  Ops.push_back(Op6);
2262  Ops.push_back(Op7);
2263  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2264}
2265SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2266                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2267                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2268                                    SDOperand Op7, SDOperand Op8) {
2269  std::vector<SDOperand> Ops;
2270  Ops.reserve(8);
2271  Ops.push_back(Op1);
2272  Ops.push_back(Op2);
2273  Ops.push_back(Op3);
2274  Ops.push_back(Op4);
2275  Ops.push_back(Op5);
2276  Ops.push_back(Op6);
2277  Ops.push_back(Op7);
2278  Ops.push_back(Op8);
2279  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2280}
2281SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2282                                    std::vector<SDOperand> &Ops) {
2283  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2284}
2285SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2286                                    MVT::ValueType VT2, SDOperand Op1) {
2287  std::vector<MVT::ValueType> ResultTys;
2288  ResultTys.push_back(VT1);
2289  ResultTys.push_back(VT2);
2290  std::vector<SDOperand> Ops;
2291  Ops.push_back(Op1);
2292  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2293}
2294SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2295                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2) {
2296  std::vector<MVT::ValueType> ResultTys;
2297  ResultTys.push_back(VT1);
2298  ResultTys.push_back(VT2);
2299  std::vector<SDOperand> Ops;
2300  Ops.push_back(Op1);
2301  Ops.push_back(Op2);
2302  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2303}
2304SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2305                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2306                                    SDOperand Op3) {
2307  std::vector<MVT::ValueType> ResultTys;
2308  ResultTys.push_back(VT1);
2309  ResultTys.push_back(VT2);
2310  std::vector<SDOperand> Ops;
2311  Ops.push_back(Op1);
2312  Ops.push_back(Op2);
2313  Ops.push_back(Op3);
2314  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2315}
2316SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2317                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2318                                    SDOperand Op3, SDOperand Op4) {
2319  std::vector<MVT::ValueType> ResultTys;
2320  ResultTys.push_back(VT1);
2321  ResultTys.push_back(VT2);
2322  std::vector<SDOperand> Ops;
2323  Ops.push_back(Op1);
2324  Ops.push_back(Op2);
2325  Ops.push_back(Op3);
2326  Ops.push_back(Op4);
2327  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2328}
2329SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2330                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2331                                    SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2332  std::vector<MVT::ValueType> ResultTys;
2333  ResultTys.push_back(VT1);
2334  ResultTys.push_back(VT2);
2335  std::vector<SDOperand> Ops;
2336  Ops.push_back(Op1);
2337  Ops.push_back(Op2);
2338  Ops.push_back(Op3);
2339  Ops.push_back(Op4);
2340  Ops.push_back(Op5);
2341  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2342}
2343SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2344                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2345                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2346                                    SDOperand Op6) {
2347  std::vector<MVT::ValueType> ResultTys;
2348  ResultTys.push_back(VT1);
2349  ResultTys.push_back(VT2);
2350  std::vector<SDOperand> Ops;
2351  Ops.push_back(Op1);
2352  Ops.push_back(Op2);
2353  Ops.push_back(Op3);
2354  Ops.push_back(Op4);
2355  Ops.push_back(Op5);
2356  Ops.push_back(Op6);
2357  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2358}
2359SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2360                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2361                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2362                                    SDOperand Op6, SDOperand Op7) {
2363  std::vector<MVT::ValueType> ResultTys;
2364  ResultTys.push_back(VT1);
2365  ResultTys.push_back(VT2);
2366  std::vector<SDOperand> Ops;
2367  Ops.push_back(Op1);
2368  Ops.push_back(Op2);
2369  Ops.push_back(Op3);
2370  Ops.push_back(Op4);
2371  Ops.push_back(Op5);
2372  Ops.push_back(Op6);
2373  Ops.push_back(Op7);
2374  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2375}
2376SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2377                                    MVT::ValueType VT2, MVT::ValueType VT3,
2378                                    SDOperand Op1, SDOperand Op2) {
2379  std::vector<MVT::ValueType> ResultTys;
2380  ResultTys.push_back(VT1);
2381  ResultTys.push_back(VT2);
2382  ResultTys.push_back(VT3);
2383  std::vector<SDOperand> Ops;
2384  Ops.push_back(Op1);
2385  Ops.push_back(Op2);
2386  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2387}
2388SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2389                                    MVT::ValueType VT2, MVT::ValueType VT3,
2390                                    SDOperand Op1, SDOperand Op2,
2391                                    SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2392  std::vector<MVT::ValueType> ResultTys;
2393  ResultTys.push_back(VT1);
2394  ResultTys.push_back(VT2);
2395  ResultTys.push_back(VT3);
2396  std::vector<SDOperand> Ops;
2397  Ops.push_back(Op1);
2398  Ops.push_back(Op2);
2399  Ops.push_back(Op3);
2400  Ops.push_back(Op4);
2401  Ops.push_back(Op5);
2402  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2403}
2404SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2405                                    MVT::ValueType VT2, MVT::ValueType VT3,
2406                                    SDOperand Op1, SDOperand Op2,
2407                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2408                                    SDOperand Op6) {
2409  std::vector<MVT::ValueType> ResultTys;
2410  ResultTys.push_back(VT1);
2411  ResultTys.push_back(VT2);
2412  ResultTys.push_back(VT3);
2413  std::vector<SDOperand> Ops;
2414  Ops.push_back(Op1);
2415  Ops.push_back(Op2);
2416  Ops.push_back(Op3);
2417  Ops.push_back(Op4);
2418  Ops.push_back(Op5);
2419  Ops.push_back(Op6);
2420  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2421}
2422SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2423                                    MVT::ValueType VT2, MVT::ValueType VT3,
2424                                    SDOperand Op1, SDOperand Op2,
2425                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2426                                    SDOperand Op6, SDOperand Op7) {
2427  std::vector<MVT::ValueType> ResultTys;
2428  ResultTys.push_back(VT1);
2429  ResultTys.push_back(VT2);
2430  ResultTys.push_back(VT3);
2431  std::vector<SDOperand> Ops;
2432  Ops.push_back(Op1);
2433  Ops.push_back(Op2);
2434  Ops.push_back(Op3);
2435  Ops.push_back(Op4);
2436  Ops.push_back(Op5);
2437  Ops.push_back(Op6);
2438  Ops.push_back(Op7);
2439  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2440}
2441SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2442                                    MVT::ValueType VT2, std::vector<SDOperand> &Ops) {
2443  std::vector<MVT::ValueType> ResultTys;
2444  ResultTys.push_back(VT1);
2445  ResultTys.push_back(VT2);
2446  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2447}
2448
2449// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2450/// This can cause recursive merging of nodes in the DAG.
2451///
2452/// This version assumes From/To have a single result value.
2453///
2454void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2455                                      std::vector<SDNode*> *Deleted) {
2456  SDNode *From = FromN.Val, *To = ToN.Val;
2457  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2458         "Cannot replace with this method!");
2459  assert(From != To && "Cannot replace uses of with self");
2460
2461  while (!From->use_empty()) {
2462    // Process users until they are all gone.
2463    SDNode *U = *From->use_begin();
2464
2465    // This node is about to morph, remove its old self from the CSE maps.
2466    RemoveNodeFromCSEMaps(U);
2467
2468    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2469         I != E; ++I)
2470      if (I->Val == From) {
2471        From->removeUser(U);
2472        I->Val = To;
2473        To->addUser(U);
2474      }
2475
2476    // Now that we have modified U, add it back to the CSE maps.  If it already
2477    // exists there, recursively merge the results together.
2478    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2479      ReplaceAllUsesWith(U, Existing, Deleted);
2480      // U is now dead.
2481      if (Deleted) Deleted->push_back(U);
2482      DeleteNodeNotInCSEMaps(U);
2483    }
2484  }
2485}
2486
2487/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2488/// This can cause recursive merging of nodes in the DAG.
2489///
2490/// This version assumes From/To have matching types and numbers of result
2491/// values.
2492///
2493void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2494                                      std::vector<SDNode*> *Deleted) {
2495  assert(From != To && "Cannot replace uses of with self");
2496  assert(From->getNumValues() == To->getNumValues() &&
2497         "Cannot use this version of ReplaceAllUsesWith!");
2498  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2499    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2500    return;
2501  }
2502
2503  while (!From->use_empty()) {
2504    // Process users until they are all gone.
2505    SDNode *U = *From->use_begin();
2506
2507    // This node is about to morph, remove its old self from the CSE maps.
2508    RemoveNodeFromCSEMaps(U);
2509
2510    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2511         I != E; ++I)
2512      if (I->Val == From) {
2513        From->removeUser(U);
2514        I->Val = To;
2515        To->addUser(U);
2516      }
2517
2518    // Now that we have modified U, add it back to the CSE maps.  If it already
2519    // exists there, recursively merge the results together.
2520    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2521      ReplaceAllUsesWith(U, Existing, Deleted);
2522      // U is now dead.
2523      if (Deleted) Deleted->push_back(U);
2524      DeleteNodeNotInCSEMaps(U);
2525    }
2526  }
2527}
2528
2529/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2530/// This can cause recursive merging of nodes in the DAG.
2531///
2532/// This version can replace From with any result values.  To must match the
2533/// number and types of values returned by From.
2534void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2535                                      const std::vector<SDOperand> &To,
2536                                      std::vector<SDNode*> *Deleted) {
2537  assert(From->getNumValues() == To.size() &&
2538         "Incorrect number of values to replace with!");
2539  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
2540    // Degenerate case handled above.
2541    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2542    return;
2543  }
2544
2545  while (!From->use_empty()) {
2546    // Process users until they are all gone.
2547    SDNode *U = *From->use_begin();
2548
2549    // This node is about to morph, remove its old self from the CSE maps.
2550    RemoveNodeFromCSEMaps(U);
2551
2552    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2553         I != E; ++I)
2554      if (I->Val == From) {
2555        const SDOperand &ToOp = To[I->ResNo];
2556        From->removeUser(U);
2557        *I = ToOp;
2558        ToOp.Val->addUser(U);
2559      }
2560
2561    // Now that we have modified U, add it back to the CSE maps.  If it already
2562    // exists there, recursively merge the results together.
2563    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2564      ReplaceAllUsesWith(U, Existing, Deleted);
2565      // U is now dead.
2566      if (Deleted) Deleted->push_back(U);
2567      DeleteNodeNotInCSEMaps(U);
2568    }
2569  }
2570}
2571
2572/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2573/// uses of other values produced by From.Val alone.  The Deleted vector is
2574/// handled the same was as for ReplaceAllUsesWith.
2575void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2576                                             std::vector<SDNode*> &Deleted) {
2577  assert(From != To && "Cannot replace a value with itself");
2578  // Handle the simple, trivial, case efficiently.
2579  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2580    ReplaceAllUsesWith(From, To, &Deleted);
2581    return;
2582  }
2583
2584  // Get all of the users in a nice, deterministically ordered, uniqued set.
2585  SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end());
2586
2587  while (!Users.empty()) {
2588    // We know that this user uses some value of From.  If it is the right
2589    // value, update it.
2590    SDNode *User = Users.back();
2591    Users.pop_back();
2592
2593    for (SDOperand *Op = User->OperandList,
2594         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2595      if (*Op == From) {
2596        // Okay, we know this user needs to be updated.  Remove its old self
2597        // from the CSE maps.
2598        RemoveNodeFromCSEMaps(User);
2599
2600        // Update all operands that match "From".
2601        for (; Op != E; ++Op) {
2602          if (*Op == From) {
2603            From.Val->removeUser(User);
2604            *Op = To;
2605            To.Val->addUser(User);
2606          }
2607        }
2608
2609        // Now that we have modified User, add it back to the CSE maps.  If it
2610        // already exists there, recursively merge the results together.
2611        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2612          unsigned NumDeleted = Deleted.size();
2613          ReplaceAllUsesWith(User, Existing, &Deleted);
2614
2615          // User is now dead.
2616          Deleted.push_back(User);
2617          DeleteNodeNotInCSEMaps(User);
2618
2619          // We have to be careful here, because ReplaceAllUsesWith could have
2620          // deleted a user of From, which means there may be dangling pointers
2621          // in the "Users" setvector.  Scan over the deleted node pointers and
2622          // remove them from the setvector.
2623          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2624            Users.remove(Deleted[i]);
2625        }
2626        break;   // Exit the operand scanning loop.
2627      }
2628    }
2629  }
2630}
2631
2632
2633//===----------------------------------------------------------------------===//
2634//                              SDNode Class
2635//===----------------------------------------------------------------------===//
2636
2637
2638/// getValueTypeList - Return a pointer to the specified value type.
2639///
2640MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2641  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2642  VTs[VT] = VT;
2643  return &VTs[VT];
2644}
2645
2646/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2647/// indicated value.  This method ignores uses of other values defined by this
2648/// operation.
2649bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2650  assert(Value < getNumValues() && "Bad value!");
2651
2652  // If there is only one value, this is easy.
2653  if (getNumValues() == 1)
2654    return use_size() == NUses;
2655  if (Uses.size() < NUses) return false;
2656
2657  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2658
2659  std::set<SDNode*> UsersHandled;
2660
2661  for (std::vector<SDNode*>::const_iterator UI = Uses.begin(), E = Uses.end();
2662       UI != E; ++UI) {
2663    SDNode *User = *UI;
2664    if (User->getNumOperands() == 1 ||
2665        UsersHandled.insert(User).second)     // First time we've seen this?
2666      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2667        if (User->getOperand(i) == TheValue) {
2668          if (NUses == 0)
2669            return false;   // too many uses
2670          --NUses;
2671        }
2672  }
2673
2674  // Found exactly the right number of uses?
2675  return NUses == 0;
2676}
2677
2678
2679// isOnlyUse - Return true if this node is the only use of N.
2680bool SDNode::isOnlyUse(SDNode *N) const {
2681  bool Seen = false;
2682  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2683    SDNode *User = *I;
2684    if (User == this)
2685      Seen = true;
2686    else
2687      return false;
2688  }
2689
2690  return Seen;
2691}
2692
2693// isOperand - Return true if this node is an operand of N.
2694bool SDOperand::isOperand(SDNode *N) const {
2695  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2696    if (*this == N->getOperand(i))
2697      return true;
2698  return false;
2699}
2700
2701bool SDNode::isOperand(SDNode *N) const {
2702  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2703    if (this == N->OperandList[i].Val)
2704      return true;
2705  return false;
2706}
2707
2708const char *SDNode::getOperationName(const SelectionDAG *G) const {
2709  switch (getOpcode()) {
2710  default:
2711    if (getOpcode() < ISD::BUILTIN_OP_END)
2712      return "<<Unknown DAG Node>>";
2713    else {
2714      if (G) {
2715        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2716          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2717            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2718
2719        TargetLowering &TLI = G->getTargetLoweringInfo();
2720        const char *Name =
2721          TLI.getTargetNodeName(getOpcode());
2722        if (Name) return Name;
2723      }
2724
2725      return "<<Unknown Target Node>>";
2726    }
2727
2728  case ISD::PCMARKER:      return "PCMarker";
2729  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2730  case ISD::SRCVALUE:      return "SrcValue";
2731  case ISD::EntryToken:    return "EntryToken";
2732  case ISD::TokenFactor:   return "TokenFactor";
2733  case ISD::AssertSext:    return "AssertSext";
2734  case ISD::AssertZext:    return "AssertZext";
2735
2736  case ISD::STRING:        return "String";
2737  case ISD::BasicBlock:    return "BasicBlock";
2738  case ISD::VALUETYPE:     return "ValueType";
2739  case ISD::Register:      return "Register";
2740
2741  case ISD::Constant:      return "Constant";
2742  case ISD::ConstantFP:    return "ConstantFP";
2743  case ISD::GlobalAddress: return "GlobalAddress";
2744  case ISD::FrameIndex:    return "FrameIndex";
2745  case ISD::ConstantPool:  return "ConstantPool";
2746  case ISD::ExternalSymbol: return "ExternalSymbol";
2747  case ISD::INTRINSIC_WO_CHAIN: {
2748    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
2749    return Intrinsic::getName((Intrinsic::ID)IID);
2750  }
2751  case ISD::INTRINSIC_VOID:
2752  case ISD::INTRINSIC_W_CHAIN: {
2753    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
2754    return Intrinsic::getName((Intrinsic::ID)IID);
2755  }
2756
2757  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2758  case ISD::TargetConstant: return "TargetConstant";
2759  case ISD::TargetConstantFP:return "TargetConstantFP";
2760  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2761  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2762  case ISD::TargetConstantPool:  return "TargetConstantPool";
2763  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2764
2765  case ISD::CopyToReg:     return "CopyToReg";
2766  case ISD::CopyFromReg:   return "CopyFromReg";
2767  case ISD::UNDEF:         return "undef";
2768  case ISD::MERGE_VALUES:  return "mergevalues";
2769  case ISD::INLINEASM:     return "inlineasm";
2770  case ISD::HANDLENODE:    return "handlenode";
2771  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
2772
2773  // Unary operators
2774  case ISD::FABS:   return "fabs";
2775  case ISD::FNEG:   return "fneg";
2776  case ISD::FSQRT:  return "fsqrt";
2777  case ISD::FSIN:   return "fsin";
2778  case ISD::FCOS:   return "fcos";
2779
2780  // Binary operators
2781  case ISD::ADD:    return "add";
2782  case ISD::SUB:    return "sub";
2783  case ISD::MUL:    return "mul";
2784  case ISD::MULHU:  return "mulhu";
2785  case ISD::MULHS:  return "mulhs";
2786  case ISD::SDIV:   return "sdiv";
2787  case ISD::UDIV:   return "udiv";
2788  case ISD::SREM:   return "srem";
2789  case ISD::UREM:   return "urem";
2790  case ISD::AND:    return "and";
2791  case ISD::OR:     return "or";
2792  case ISD::XOR:    return "xor";
2793  case ISD::SHL:    return "shl";
2794  case ISD::SRA:    return "sra";
2795  case ISD::SRL:    return "srl";
2796  case ISD::ROTL:   return "rotl";
2797  case ISD::ROTR:   return "rotr";
2798  case ISD::FADD:   return "fadd";
2799  case ISD::FSUB:   return "fsub";
2800  case ISD::FMUL:   return "fmul";
2801  case ISD::FDIV:   return "fdiv";
2802  case ISD::FREM:   return "frem";
2803  case ISD::FCOPYSIGN: return "fcopysign";
2804  case ISD::VADD:   return "vadd";
2805  case ISD::VSUB:   return "vsub";
2806  case ISD::VMUL:   return "vmul";
2807  case ISD::VSDIV:  return "vsdiv";
2808  case ISD::VUDIV:  return "vudiv";
2809  case ISD::VAND:   return "vand";
2810  case ISD::VOR:    return "vor";
2811  case ISD::VXOR:   return "vxor";
2812
2813  case ISD::SETCC:       return "setcc";
2814  case ISD::SELECT:      return "select";
2815  case ISD::SELECT_CC:   return "select_cc";
2816  case ISD::VSELECT:     return "vselect";
2817  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
2818  case ISD::VINSERT_VECTOR_ELT:  return "vinsert_vector_elt";
2819  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
2820  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2821  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
2822  case ISD::VBUILD_VECTOR:       return "vbuild_vector";
2823  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
2824  case ISD::VVECTOR_SHUFFLE:     return "vvector_shuffle";
2825  case ISD::VBIT_CONVERT:        return "vbit_convert";
2826  case ISD::ADDC:        return "addc";
2827  case ISD::ADDE:        return "adde";
2828  case ISD::SUBC:        return "subc";
2829  case ISD::SUBE:        return "sube";
2830  case ISD::SHL_PARTS:   return "shl_parts";
2831  case ISD::SRA_PARTS:   return "sra_parts";
2832  case ISD::SRL_PARTS:   return "srl_parts";
2833
2834  // Conversion operators.
2835  case ISD::SIGN_EXTEND: return "sign_extend";
2836  case ISD::ZERO_EXTEND: return "zero_extend";
2837  case ISD::ANY_EXTEND:  return "any_extend";
2838  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2839  case ISD::TRUNCATE:    return "truncate";
2840  case ISD::FP_ROUND:    return "fp_round";
2841  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2842  case ISD::FP_EXTEND:   return "fp_extend";
2843
2844  case ISD::SINT_TO_FP:  return "sint_to_fp";
2845  case ISD::UINT_TO_FP:  return "uint_to_fp";
2846  case ISD::FP_TO_SINT:  return "fp_to_sint";
2847  case ISD::FP_TO_UINT:  return "fp_to_uint";
2848  case ISD::BIT_CONVERT: return "bit_convert";
2849
2850    // Control flow instructions
2851  case ISD::BR:      return "br";
2852  case ISD::BRCOND:  return "brcond";
2853  case ISD::BR_CC:   return "br_cc";
2854  case ISD::RET:     return "ret";
2855  case ISD::CALLSEQ_START:  return "callseq_start";
2856  case ISD::CALLSEQ_END:    return "callseq_end";
2857
2858    // Other operators
2859  case ISD::LOAD:               return "load";
2860  case ISD::STORE:              return "store";
2861  case ISD::VLOAD:              return "vload";
2862  case ISD::EXTLOAD:            return "extload";
2863  case ISD::SEXTLOAD:           return "sextload";
2864  case ISD::ZEXTLOAD:           return "zextload";
2865  case ISD::TRUNCSTORE:         return "truncstore";
2866  case ISD::VAARG:              return "vaarg";
2867  case ISD::VACOPY:             return "vacopy";
2868  case ISD::VAEND:              return "vaend";
2869  case ISD::VASTART:            return "vastart";
2870  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2871  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2872  case ISD::BUILD_PAIR:         return "build_pair";
2873  case ISD::STACKSAVE:          return "stacksave";
2874  case ISD::STACKRESTORE:       return "stackrestore";
2875
2876  // Block memory operations.
2877  case ISD::MEMSET:  return "memset";
2878  case ISD::MEMCPY:  return "memcpy";
2879  case ISD::MEMMOVE: return "memmove";
2880
2881  // Bit manipulation
2882  case ISD::BSWAP:   return "bswap";
2883  case ISD::CTPOP:   return "ctpop";
2884  case ISD::CTTZ:    return "cttz";
2885  case ISD::CTLZ:    return "ctlz";
2886
2887  // Debug info
2888  case ISD::LOCATION: return "location";
2889  case ISD::DEBUG_LOC: return "debug_loc";
2890  case ISD::DEBUG_LABEL: return "debug_label";
2891
2892  case ISD::CONDCODE:
2893    switch (cast<CondCodeSDNode>(this)->get()) {
2894    default: assert(0 && "Unknown setcc condition!");
2895    case ISD::SETOEQ:  return "setoeq";
2896    case ISD::SETOGT:  return "setogt";
2897    case ISD::SETOGE:  return "setoge";
2898    case ISD::SETOLT:  return "setolt";
2899    case ISD::SETOLE:  return "setole";
2900    case ISD::SETONE:  return "setone";
2901
2902    case ISD::SETO:    return "seto";
2903    case ISD::SETUO:   return "setuo";
2904    case ISD::SETUEQ:  return "setue";
2905    case ISD::SETUGT:  return "setugt";
2906    case ISD::SETUGE:  return "setuge";
2907    case ISD::SETULT:  return "setult";
2908    case ISD::SETULE:  return "setule";
2909    case ISD::SETUNE:  return "setune";
2910
2911    case ISD::SETEQ:   return "seteq";
2912    case ISD::SETGT:   return "setgt";
2913    case ISD::SETGE:   return "setge";
2914    case ISD::SETLT:   return "setlt";
2915    case ISD::SETLE:   return "setle";
2916    case ISD::SETNE:   return "setne";
2917    }
2918  }
2919}
2920
2921void SDNode::dump() const { dump(0); }
2922void SDNode::dump(const SelectionDAG *G) const {
2923  std::cerr << (void*)this << ": ";
2924
2925  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2926    if (i) std::cerr << ",";
2927    if (getValueType(i) == MVT::Other)
2928      std::cerr << "ch";
2929    else
2930      std::cerr << MVT::getValueTypeString(getValueType(i));
2931  }
2932  std::cerr << " = " << getOperationName(G);
2933
2934  std::cerr << " ";
2935  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2936    if (i) std::cerr << ", ";
2937    std::cerr << (void*)getOperand(i).Val;
2938    if (unsigned RN = getOperand(i).ResNo)
2939      std::cerr << ":" << RN;
2940  }
2941
2942  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2943    std::cerr << "<" << CSDN->getValue() << ">";
2944  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2945    std::cerr << "<" << CSDN->getValue() << ">";
2946  } else if (const GlobalAddressSDNode *GADN =
2947             dyn_cast<GlobalAddressSDNode>(this)) {
2948    int offset = GADN->getOffset();
2949    std::cerr << "<";
2950    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2951    if (offset > 0)
2952      std::cerr << " + " << offset;
2953    else
2954      std::cerr << " " << offset;
2955  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2956    std::cerr << "<" << FIDN->getIndex() << ">";
2957  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2958    int offset = CP->getOffset();
2959    std::cerr << "<" << *CP->get() << ">";
2960    if (offset > 0)
2961      std::cerr << " + " << offset;
2962    else
2963      std::cerr << " " << offset;
2964  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2965    std::cerr << "<";
2966    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2967    if (LBB)
2968      std::cerr << LBB->getName() << " ";
2969    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2970  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2971    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2972      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2973    } else {
2974      std::cerr << " #" << R->getReg();
2975    }
2976  } else if (const ExternalSymbolSDNode *ES =
2977             dyn_cast<ExternalSymbolSDNode>(this)) {
2978    std::cerr << "'" << ES->getSymbol() << "'";
2979  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2980    if (M->getValue())
2981      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2982    else
2983      std::cerr << "<null:" << M->getOffset() << ">";
2984  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2985    std::cerr << ":" << getValueTypeString(N->getVT());
2986  }
2987}
2988
2989static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2990  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2991    if (N->getOperand(i).Val->hasOneUse())
2992      DumpNodes(N->getOperand(i).Val, indent+2, G);
2993    else
2994      std::cerr << "\n" << std::string(indent+2, ' ')
2995                << (void*)N->getOperand(i).Val << ": <multiple use>";
2996
2997
2998  std::cerr << "\n" << std::string(indent, ' ');
2999  N->dump(G);
3000}
3001
3002void SelectionDAG::dump() const {
3003  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3004  std::vector<const SDNode*> Nodes;
3005  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3006       I != E; ++I)
3007    Nodes.push_back(I);
3008
3009  std::sort(Nodes.begin(), Nodes.end());
3010
3011  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3012    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3013      DumpNodes(Nodes[i], 2, this);
3014  }
3015
3016  DumpNodes(getRoot().Val, 2, this);
3017
3018  std::cerr << "\n\n";
3019}
3020
3021/// InsertISelMapEntry - A helper function to insert a key / element pair
3022/// into a SDOperand to SDOperand map. This is added to avoid the map
3023/// insertion operator from being inlined.
3024void SelectionDAG::InsertISelMapEntry(std::map<SDOperand, SDOperand> &Map,
3025                                      SDNode *Key, unsigned KeyResNo,
3026                                      SDNode *Element, unsigned ElementResNo) {
3027  Map.insert(std::make_pair(SDOperand(Key, KeyResNo),
3028                            SDOperand(Element, ElementResNo)));
3029}
3030