SelectionDAG.cpp revision 639dee91a803062997a3714d45dc1ac5ac6dc258
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/ADT/SetVector.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/SmallSet.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/ADT/StringExtras.h"
38#include <algorithm>
39#include <cmath>
40using namespace llvm;
41
42/// makeVTList - Return an instance of the SDVTList struct initialized with the
43/// specified members.
44static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
45  SDVTList Res = {VTs, NumVTs};
46  return Res;
47}
48
49static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
50  switch (VT.getSimpleVT()) {
51  default: assert(0 && "Unknown FP format");
52  case MVT::f32:     return &APFloat::IEEEsingle;
53  case MVT::f64:     return &APFloat::IEEEdouble;
54  case MVT::f80:     return &APFloat::x87DoubleExtended;
55  case MVT::f128:    return &APFloat::IEEEquad;
56  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
57  }
58}
59
60SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
61
62//===----------------------------------------------------------------------===//
63//                              ConstantFPSDNode Class
64//===----------------------------------------------------------------------===//
65
66/// isExactlyValue - We don't rely on operator== working on double values, as
67/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
68/// As such, this method can be used to do an exact bit-for-bit comparison of
69/// two floating point values.
70bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
71  return Value.bitwiseIsEqual(V);
72}
73
74bool ConstantFPSDNode::isValueValidForType(MVT VT,
75                                           const APFloat& Val) {
76  assert(VT.isFloatingPoint() && "Can only convert between FP types");
77
78  // PPC long double cannot be converted to any other type.
79  if (VT == MVT::ppcf128 ||
80      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
81    return false;
82
83  // convert modifies in place, so make a copy.
84  APFloat Val2 = APFloat(Val);
85  return Val2.convert(*MVTToAPFloatSemantics(VT),
86                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
87}
88
89//===----------------------------------------------------------------------===//
90//                              ISD Namespace
91//===----------------------------------------------------------------------===//
92
93/// isBuildVectorAllOnes - Return true if the specified node is a
94/// BUILD_VECTOR where all of the elements are ~0 or undef.
95bool ISD::isBuildVectorAllOnes(const SDNode *N) {
96  // Look through a bit convert.
97  if (N->getOpcode() == ISD::BIT_CONVERT)
98    N = N->getOperand(0).Val;
99
100  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
101
102  unsigned i = 0, e = N->getNumOperands();
103
104  // Skip over all of the undef values.
105  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
106    ++i;
107
108  // Do not accept an all-undef vector.
109  if (i == e) return false;
110
111  // Do not accept build_vectors that aren't all constants or which have non-~0
112  // elements.
113  SDOperand NotZero = N->getOperand(i);
114  if (isa<ConstantSDNode>(NotZero)) {
115    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
116      return false;
117  } else if (isa<ConstantFPSDNode>(NotZero)) {
118    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
119                convertToAPInt().isAllOnesValue())
120      return false;
121  } else
122    return false;
123
124  // Okay, we have at least one ~0 value, check to see if the rest match or are
125  // undefs.
126  for (++i; i != e; ++i)
127    if (N->getOperand(i) != NotZero &&
128        N->getOperand(i).getOpcode() != ISD::UNDEF)
129      return false;
130  return true;
131}
132
133
134/// isBuildVectorAllZeros - Return true if the specified node is a
135/// BUILD_VECTOR where all of the elements are 0 or undef.
136bool ISD::isBuildVectorAllZeros(const SDNode *N) {
137  // Look through a bit convert.
138  if (N->getOpcode() == ISD::BIT_CONVERT)
139    N = N->getOperand(0).Val;
140
141  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
142
143  unsigned i = 0, e = N->getNumOperands();
144
145  // Skip over all of the undef values.
146  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
147    ++i;
148
149  // Do not accept an all-undef vector.
150  if (i == e) return false;
151
152  // Do not accept build_vectors that aren't all constants or which have non-~0
153  // elements.
154  SDOperand Zero = N->getOperand(i);
155  if (isa<ConstantSDNode>(Zero)) {
156    if (!cast<ConstantSDNode>(Zero)->isNullValue())
157      return false;
158  } else if (isa<ConstantFPSDNode>(Zero)) {
159    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
160      return false;
161  } else
162    return false;
163
164  // Okay, we have at least one ~0 value, check to see if the rest match or are
165  // undefs.
166  for (++i; i != e; ++i)
167    if (N->getOperand(i) != Zero &&
168        N->getOperand(i).getOpcode() != ISD::UNDEF)
169      return false;
170  return true;
171}
172
173/// isScalarToVector - Return true if the specified node is a
174/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
175/// element is not an undef.
176bool ISD::isScalarToVector(const SDNode *N) {
177  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
178    return true;
179
180  if (N->getOpcode() != ISD::BUILD_VECTOR)
181    return false;
182  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
183    return false;
184  unsigned NumElems = N->getNumOperands();
185  for (unsigned i = 1; i < NumElems; ++i) {
186    SDOperand V = N->getOperand(i);
187    if (V.getOpcode() != ISD::UNDEF)
188      return false;
189  }
190  return true;
191}
192
193
194/// isDebugLabel - Return true if the specified node represents a debug
195/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
196bool ISD::isDebugLabel(const SDNode *N) {
197  SDOperand Zero;
198  if (N->getOpcode() == ISD::DBG_LABEL)
199    return true;
200  if (N->isTargetOpcode() &&
201      N->getTargetOpcode() == TargetInstrInfo::DBG_LABEL)
202    return true;
203  return false;
204}
205
206/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
207/// when given the operation for (X op Y).
208ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
209  // To perform this operation, we just need to swap the L and G bits of the
210  // operation.
211  unsigned OldL = (Operation >> 2) & 1;
212  unsigned OldG = (Operation >> 1) & 1;
213  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
214                       (OldL << 1) |       // New G bit
215                       (OldG << 2));        // New L bit.
216}
217
218/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
219/// 'op' is a valid SetCC operation.
220ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
221  unsigned Operation = Op;
222  if (isInteger)
223    Operation ^= 7;   // Flip L, G, E bits, but not U.
224  else
225    Operation ^= 15;  // Flip all of the condition bits.
226  if (Operation > ISD::SETTRUE2)
227    Operation &= ~8;     // Don't let N and U bits get set.
228  return ISD::CondCode(Operation);
229}
230
231
232/// isSignedOp - For an integer comparison, return 1 if the comparison is a
233/// signed operation and 2 if the result is an unsigned comparison.  Return zero
234/// if the operation does not depend on the sign of the input (setne and seteq).
235static int isSignedOp(ISD::CondCode Opcode) {
236  switch (Opcode) {
237  default: assert(0 && "Illegal integer setcc operation!");
238  case ISD::SETEQ:
239  case ISD::SETNE: return 0;
240  case ISD::SETLT:
241  case ISD::SETLE:
242  case ISD::SETGT:
243  case ISD::SETGE: return 1;
244  case ISD::SETULT:
245  case ISD::SETULE:
246  case ISD::SETUGT:
247  case ISD::SETUGE: return 2;
248  }
249}
250
251/// getSetCCOrOperation - Return the result of a logical OR between different
252/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
253/// returns SETCC_INVALID if it is not possible to represent the resultant
254/// comparison.
255ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
256                                       bool isInteger) {
257  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
258    // Cannot fold a signed integer setcc with an unsigned integer setcc.
259    return ISD::SETCC_INVALID;
260
261  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
262
263  // If the N and U bits get set then the resultant comparison DOES suddenly
264  // care about orderedness, and is true when ordered.
265  if (Op > ISD::SETTRUE2)
266    Op &= ~16;     // Clear the U bit if the N bit is set.
267
268  // Canonicalize illegal integer setcc's.
269  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
270    Op = ISD::SETNE;
271
272  return ISD::CondCode(Op);
273}
274
275/// getSetCCAndOperation - Return the result of a logical AND between different
276/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
277/// function returns zero if it is not possible to represent the resultant
278/// comparison.
279ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
280                                        bool isInteger) {
281  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
282    // Cannot fold a signed setcc with an unsigned setcc.
283    return ISD::SETCC_INVALID;
284
285  // Combine all of the condition bits.
286  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
287
288  // Canonicalize illegal integer setcc's.
289  if (isInteger) {
290    switch (Result) {
291    default: break;
292    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
293    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
294    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
295    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
296    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
297    }
298  }
299
300  return Result;
301}
302
303const TargetMachine &SelectionDAG::getTarget() const {
304  return TLI.getTargetMachine();
305}
306
307//===----------------------------------------------------------------------===//
308//                           SDNode Profile Support
309//===----------------------------------------------------------------------===//
310
311/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
312///
313static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
314  ID.AddInteger(OpC);
315}
316
317/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
318/// solely with their pointer.
319static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
320  ID.AddPointer(VTList.VTs);
321}
322
323/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
324///
325static void AddNodeIDOperands(FoldingSetNodeID &ID,
326                              SDOperandPtr Ops, unsigned NumOps) {
327  for (; NumOps; --NumOps, ++Ops) {
328    ID.AddPointer(Ops->Val);
329    ID.AddInteger(Ops->ResNo);
330  }
331}
332
333static void AddNodeIDNode(FoldingSetNodeID &ID,
334                          unsigned short OpC, SDVTList VTList,
335                          SDOperandPtr OpList, unsigned N) {
336  AddNodeIDOpcode(ID, OpC);
337  AddNodeIDValueTypes(ID, VTList);
338  AddNodeIDOperands(ID, OpList, N);
339}
340
341
342/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
343/// data.
344static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
345  AddNodeIDOpcode(ID, N->getOpcode());
346  // Add the return value info.
347  AddNodeIDValueTypes(ID, N->getVTList());
348  // Add the operand info.
349  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
350
351  // Handle SDNode leafs with special info.
352  switch (N->getOpcode()) {
353  default: break;  // Normal nodes don't need extra info.
354  case ISD::ARG_FLAGS:
355    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
356    break;
357  case ISD::TargetConstant:
358  case ISD::Constant:
359    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
360    break;
361  case ISD::TargetConstantFP:
362  case ISD::ConstantFP: {
363    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
364    break;
365  }
366  case ISD::TargetGlobalAddress:
367  case ISD::GlobalAddress:
368  case ISD::TargetGlobalTLSAddress:
369  case ISD::GlobalTLSAddress: {
370    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
371    ID.AddPointer(GA->getGlobal());
372    ID.AddInteger(GA->getOffset());
373    break;
374  }
375  case ISD::BasicBlock:
376    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
377    break;
378  case ISD::Register:
379    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
380    break;
381  case ISD::DBG_STOPPOINT: {
382    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
383    ID.AddInteger(DSP->getLine());
384    ID.AddInteger(DSP->getColumn());
385    ID.AddPointer(DSP->getCompileUnit());
386    break;
387  }
388  case ISD::DBG_LABEL:
389  case ISD::EH_LABEL:
390    ID.AddInteger(cast<LabelSDNode>(N)->getLabelID());
391    break;
392  case ISD::SRCVALUE:
393    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
394    break;
395  case ISD::MEMOPERAND: {
396    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
397    ID.AddPointer(MO.getValue());
398    ID.AddInteger(MO.getFlags());
399    ID.AddInteger(MO.getOffset());
400    ID.AddInteger(MO.getSize());
401    ID.AddInteger(MO.getAlignment());
402    break;
403  }
404  case ISD::FrameIndex:
405  case ISD::TargetFrameIndex:
406    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
407    break;
408  case ISD::JumpTable:
409  case ISD::TargetJumpTable:
410    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
411    break;
412  case ISD::ConstantPool:
413  case ISD::TargetConstantPool: {
414    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
415    ID.AddInteger(CP->getAlignment());
416    ID.AddInteger(CP->getOffset());
417    if (CP->isMachineConstantPoolEntry())
418      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
419    else
420      ID.AddPointer(CP->getConstVal());
421    break;
422  }
423  case ISD::LOAD: {
424    LoadSDNode *LD = cast<LoadSDNode>(N);
425    ID.AddInteger(LD->getAddressingMode());
426    ID.AddInteger(LD->getExtensionType());
427    ID.AddInteger(LD->getMemoryVT().getRawBits());
428    ID.AddInteger(LD->getAlignment());
429    ID.AddInteger(LD->isVolatile());
430    break;
431  }
432  case ISD::STORE: {
433    StoreSDNode *ST = cast<StoreSDNode>(N);
434    ID.AddInteger(ST->getAddressingMode());
435    ID.AddInteger(ST->isTruncatingStore());
436    ID.AddInteger(ST->getMemoryVT().getRawBits());
437    ID.AddInteger(ST->getAlignment());
438    ID.AddInteger(ST->isVolatile());
439    break;
440  }
441  case ISD::ATOMIC_CMP_SWAP:
442  case ISD::ATOMIC_LOAD_ADD:
443  case ISD::ATOMIC_SWAP:
444  case ISD::ATOMIC_LOAD_SUB:
445  case ISD::ATOMIC_LOAD_AND:
446  case ISD::ATOMIC_LOAD_OR:
447  case ISD::ATOMIC_LOAD_XOR:
448  case ISD::ATOMIC_LOAD_NAND:
449  case ISD::ATOMIC_LOAD_MIN:
450  case ISD::ATOMIC_LOAD_MAX:
451  case ISD::ATOMIC_LOAD_UMIN:
452  case ISD::ATOMIC_LOAD_UMAX: {
453    AtomicSDNode *AT = cast<AtomicSDNode>(N);
454    ID.AddInteger(AT->getAlignment());
455    ID.AddInteger(AT->isVolatile());
456    break;
457  }
458  } // end switch (N->getOpcode())
459}
460
461//===----------------------------------------------------------------------===//
462//                              SelectionDAG Class
463//===----------------------------------------------------------------------===//
464
465/// RemoveDeadNodes - This method deletes all unreachable nodes in the
466/// SelectionDAG.
467void SelectionDAG::RemoveDeadNodes() {
468  // Create a dummy node (which is not added to allnodes), that adds a reference
469  // to the root node, preventing it from being deleted.
470  HandleSDNode Dummy(getRoot());
471
472  SmallVector<SDNode*, 128> DeadNodes;
473
474  // Add all obviously-dead nodes to the DeadNodes worklist.
475  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
476    if (I->use_empty())
477      DeadNodes.push_back(I);
478
479  // Process the worklist, deleting the nodes and adding their uses to the
480  // worklist.
481  while (!DeadNodes.empty()) {
482    SDNode *N = DeadNodes.back();
483    DeadNodes.pop_back();
484
485    // Take the node out of the appropriate CSE map.
486    RemoveNodeFromCSEMaps(N);
487
488    // Next, brutally remove the operand list.  This is safe to do, as there are
489    // no cycles in the graph.
490    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
491      SDNode *Operand = I->getVal();
492      Operand->removeUser(std::distance(N->op_begin(), I), N);
493
494      // Now that we removed this operand, see if there are no uses of it left.
495      if (Operand->use_empty())
496        DeadNodes.push_back(Operand);
497    }
498    if (N->OperandsNeedDelete) {
499      delete[] N->OperandList;
500    }
501    N->OperandList = 0;
502    N->NumOperands = 0;
503
504    // Finally, remove N itself.
505    AllNodes.erase(N);
506  }
507
508  // If the root changed (e.g. it was a dead load, update the root).
509  setRoot(Dummy.getValue());
510}
511
512void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
513  SmallVector<SDNode*, 16> DeadNodes;
514  DeadNodes.push_back(N);
515
516  // Process the worklist, deleting the nodes and adding their uses to the
517  // worklist.
518  while (!DeadNodes.empty()) {
519    SDNode *N = DeadNodes.back();
520    DeadNodes.pop_back();
521
522    if (UpdateListener)
523      UpdateListener->NodeDeleted(N, 0);
524
525    // Take the node out of the appropriate CSE map.
526    RemoveNodeFromCSEMaps(N);
527
528    // Next, brutally remove the operand list.  This is safe to do, as there are
529    // no cycles in the graph.
530    unsigned op_num = 0;
531    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
532      SDNode *Operand = I->getVal();
533      Operand->removeUser(op_num, N);
534
535      // Now that we removed this operand, see if there are no uses of it left.
536      if (Operand->use_empty())
537        DeadNodes.push_back(Operand);
538
539      op_num++;
540    }
541    if (N->OperandsNeedDelete) {
542      delete[] N->OperandList;
543    }
544    N->OperandList = 0;
545    N->NumOperands = 0;
546
547    // Finally, remove N itself.
548    AllNodes.erase(N);
549  }
550}
551
552void SelectionDAG::DeleteNode(SDNode *N) {
553  assert(N->use_empty() && "Cannot delete a node that is not dead!");
554
555  // First take this out of the appropriate CSE map.
556  RemoveNodeFromCSEMaps(N);
557
558  // Finally, remove uses due to operands of this node, remove from the
559  // AllNodes list, and delete the node.
560  DeleteNodeNotInCSEMaps(N);
561}
562
563void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
564
565  // Remove it from the AllNodes list.
566  AllNodes.remove(N);
567
568  // Drop all of the operands and decrement used nodes use counts.
569  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
570    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
571  if (N->OperandsNeedDelete) {
572    delete[] N->OperandList;
573  }
574  N->OperandList = 0;
575  N->NumOperands = 0;
576
577  delete N;
578}
579
580/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
581/// correspond to it.  This is useful when we're about to delete or repurpose
582/// the node.  We don't want future request for structurally identical nodes
583/// to return N anymore.
584void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
585  bool Erased = false;
586  switch (N->getOpcode()) {
587  case ISD::HANDLENODE: return;  // noop.
588  case ISD::CONDCODE:
589    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
590           "Cond code doesn't exist!");
591    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
592    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
593    break;
594  case ISD::ExternalSymbol:
595    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
596    break;
597  case ISD::TargetExternalSymbol:
598    Erased =
599      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
600    break;
601  case ISD::VALUETYPE: {
602    MVT VT = cast<VTSDNode>(N)->getVT();
603    if (VT.isExtended()) {
604      Erased = ExtendedValueTypeNodes.erase(VT);
605    } else {
606      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
607      ValueTypeNodes[VT.getSimpleVT()] = 0;
608    }
609    break;
610  }
611  default:
612    // Remove it from the CSE Map.
613    Erased = CSEMap.RemoveNode(N);
614    break;
615  }
616#ifndef NDEBUG
617  // Verify that the node was actually in one of the CSE maps, unless it has a
618  // flag result (which cannot be CSE'd) or is one of the special cases that are
619  // not subject to CSE.
620  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
621      !N->isTargetOpcode()) {
622    N->dump(this);
623    cerr << "\n";
624    assert(0 && "Node is not in map!");
625  }
626#endif
627}
628
629/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
630/// has been taken out and modified in some way.  If the specified node already
631/// exists in the CSE maps, do not modify the maps, but return the existing node
632/// instead.  If it doesn't exist, add it and return null.
633///
634SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
635  assert(N->getNumOperands() && "This is a leaf node!");
636  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
637    return 0;    // Never add these nodes.
638
639  // Check that remaining values produced are not flags.
640  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
641    if (N->getValueType(i) == MVT::Flag)
642      return 0;   // Never CSE anything that produces a flag.
643
644  SDNode *New = CSEMap.GetOrInsertNode(N);
645  if (New != N) return New;  // Node already existed.
646  return 0;
647}
648
649/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
650/// were replaced with those specified.  If this node is never memoized,
651/// return null, otherwise return a pointer to the slot it would take.  If a
652/// node already exists with these operands, the slot will be non-null.
653SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
654                                           void *&InsertPos) {
655  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
656    return 0;    // Never add these nodes.
657
658  // Check that remaining values produced are not flags.
659  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
660    if (N->getValueType(i) == MVT::Flag)
661      return 0;   // Never CSE anything that produces a flag.
662
663  SDOperand Ops[] = { Op };
664  FoldingSetNodeID ID;
665  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
666  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
667}
668
669/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
670/// were replaced with those specified.  If this node is never memoized,
671/// return null, otherwise return a pointer to the slot it would take.  If a
672/// node already exists with these operands, the slot will be non-null.
673SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
674                                           SDOperand Op1, SDOperand Op2,
675                                           void *&InsertPos) {
676  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
677    return 0;    // Never add these nodes.
678
679  // Check that remaining values produced are not flags.
680  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
681    if (N->getValueType(i) == MVT::Flag)
682      return 0;   // Never CSE anything that produces a flag.
683
684  SDOperand Ops[] = { Op1, Op2 };
685  FoldingSetNodeID ID;
686  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
687  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
688}
689
690
691/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692/// were replaced with those specified.  If this node is never memoized,
693/// return null, otherwise return a pointer to the slot it would take.  If a
694/// node already exists with these operands, the slot will be non-null.
695SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
696                                           SDOperandPtr Ops,unsigned NumOps,
697                                           void *&InsertPos) {
698  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
699    return 0;    // Never add these nodes.
700
701  // Check that remaining values produced are not flags.
702  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
703    if (N->getValueType(i) == MVT::Flag)
704      return 0;   // Never CSE anything that produces a flag.
705
706  FoldingSetNodeID ID;
707  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
708
709  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
710    ID.AddInteger(LD->getAddressingMode());
711    ID.AddInteger(LD->getExtensionType());
712    ID.AddInteger(LD->getMemoryVT().getRawBits());
713    ID.AddInteger(LD->getAlignment());
714    ID.AddInteger(LD->isVolatile());
715  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
716    ID.AddInteger(ST->getAddressingMode());
717    ID.AddInteger(ST->isTruncatingStore());
718    ID.AddInteger(ST->getMemoryVT().getRawBits());
719    ID.AddInteger(ST->getAlignment());
720    ID.AddInteger(ST->isVolatile());
721  }
722
723  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
724}
725
726
727SelectionDAG::~SelectionDAG() {
728  while (!AllNodes.empty()) {
729    SDNode *N = AllNodes.begin();
730    N->SetNextInBucket(0);
731    if (N->OperandsNeedDelete) {
732      delete [] N->OperandList;
733    }
734    N->OperandList = 0;
735    N->NumOperands = 0;
736    AllNodes.pop_front();
737  }
738}
739
740SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT VT) {
741  if (Op.getValueType() == VT) return Op;
742  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
743                                   VT.getSizeInBits());
744  return getNode(ISD::AND, Op.getValueType(), Op,
745                 getConstant(Imm, Op.getValueType()));
746}
747
748SDOperand SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
749  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
750  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
751}
752
753SDOperand SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
754  assert(VT.isInteger() && "Cannot create FP integer constant!");
755
756  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
757  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
758         "APInt size does not match type size!");
759
760  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
761  FoldingSetNodeID ID;
762  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
763  ID.Add(Val);
764  void *IP = 0;
765  SDNode *N = NULL;
766  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
767    if (!VT.isVector())
768      return SDOperand(N, 0);
769  if (!N) {
770    N = new ConstantSDNode(isT, Val, EltVT);
771    CSEMap.InsertNode(N, IP);
772    AllNodes.push_back(N);
773  }
774
775  SDOperand Result(N, 0);
776  if (VT.isVector()) {
777    SmallVector<SDOperand, 8> Ops;
778    Ops.assign(VT.getVectorNumElements(), Result);
779    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
780  }
781  return Result;
782}
783
784SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
785  return getConstant(Val, TLI.getPointerTy(), isTarget);
786}
787
788
789SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
790  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
791
792  MVT EltVT =
793    VT.isVector() ? VT.getVectorElementType() : VT;
794
795  // Do the map lookup using the actual bit pattern for the floating point
796  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
797  // we don't have issues with SNANs.
798  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
799  FoldingSetNodeID ID;
800  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
801  ID.Add(V);
802  void *IP = 0;
803  SDNode *N = NULL;
804  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
805    if (!VT.isVector())
806      return SDOperand(N, 0);
807  if (!N) {
808    N = new ConstantFPSDNode(isTarget, V, EltVT);
809    CSEMap.InsertNode(N, IP);
810    AllNodes.push_back(N);
811  }
812
813  SDOperand Result(N, 0);
814  if (VT.isVector()) {
815    SmallVector<SDOperand, 8> Ops;
816    Ops.assign(VT.getVectorNumElements(), Result);
817    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
818  }
819  return Result;
820}
821
822SDOperand SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
823  MVT EltVT =
824    VT.isVector() ? VT.getVectorElementType() : VT;
825  if (EltVT==MVT::f32)
826    return getConstantFP(APFloat((float)Val), VT, isTarget);
827  else
828    return getConstantFP(APFloat(Val), VT, isTarget);
829}
830
831SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
832                                         MVT VT, int Offset,
833                                         bool isTargetGA) {
834  unsigned Opc;
835
836  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
837  if (!GVar) {
838    // If GV is an alias then use the aliasee for determining thread-localness.
839    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
840      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
841  }
842
843  if (GVar && GVar->isThreadLocal())
844    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
845  else
846    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
847
848  FoldingSetNodeID ID;
849  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
850  ID.AddPointer(GV);
851  ID.AddInteger(Offset);
852  void *IP = 0;
853  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
854   return SDOperand(E, 0);
855  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
856  CSEMap.InsertNode(N, IP);
857  AllNodes.push_back(N);
858  return SDOperand(N, 0);
859}
860
861SDOperand SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
862  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
863  FoldingSetNodeID ID;
864  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
865  ID.AddInteger(FI);
866  void *IP = 0;
867  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
868    return SDOperand(E, 0);
869  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
870  CSEMap.InsertNode(N, IP);
871  AllNodes.push_back(N);
872  return SDOperand(N, 0);
873}
874
875SDOperand SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
876  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
877  FoldingSetNodeID ID;
878  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
879  ID.AddInteger(JTI);
880  void *IP = 0;
881  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
882    return SDOperand(E, 0);
883  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
884  CSEMap.InsertNode(N, IP);
885  AllNodes.push_back(N);
886  return SDOperand(N, 0);
887}
888
889SDOperand SelectionDAG::getConstantPool(Constant *C, MVT VT,
890                                        unsigned Alignment, int Offset,
891                                        bool isTarget) {
892  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
893  FoldingSetNodeID ID;
894  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
895  ID.AddInteger(Alignment);
896  ID.AddInteger(Offset);
897  ID.AddPointer(C);
898  void *IP = 0;
899  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
900    return SDOperand(E, 0);
901  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
902  CSEMap.InsertNode(N, IP);
903  AllNodes.push_back(N);
904  return SDOperand(N, 0);
905}
906
907
908SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
909                                        unsigned Alignment, int Offset,
910                                        bool isTarget) {
911  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
912  FoldingSetNodeID ID;
913  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
914  ID.AddInteger(Alignment);
915  ID.AddInteger(Offset);
916  C->AddSelectionDAGCSEId(ID);
917  void *IP = 0;
918  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
919    return SDOperand(E, 0);
920  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
921  CSEMap.InsertNode(N, IP);
922  AllNodes.push_back(N);
923  return SDOperand(N, 0);
924}
925
926
927SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
928  FoldingSetNodeID ID;
929  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), (SDOperand*)0, 0);
930  ID.AddPointer(MBB);
931  void *IP = 0;
932  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
933    return SDOperand(E, 0);
934  SDNode *N = new BasicBlockSDNode(MBB);
935  CSEMap.InsertNode(N, IP);
936  AllNodes.push_back(N);
937  return SDOperand(N, 0);
938}
939
940SDOperand SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
941  FoldingSetNodeID ID;
942  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), (SDOperand*)0, 0);
943  ID.AddInteger(Flags.getRawBits());
944  void *IP = 0;
945  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
946    return SDOperand(E, 0);
947  SDNode *N = new ARG_FLAGSSDNode(Flags);
948  CSEMap.InsertNode(N, IP);
949  AllNodes.push_back(N);
950  return SDOperand(N, 0);
951}
952
953SDOperand SelectionDAG::getValueType(MVT VT) {
954  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
955    ValueTypeNodes.resize(VT.getSimpleVT()+1);
956
957  SDNode *&N = VT.isExtended() ?
958    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
959
960  if (N) return SDOperand(N, 0);
961  N = new VTSDNode(VT);
962  AllNodes.push_back(N);
963  return SDOperand(N, 0);
964}
965
966SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
967  SDNode *&N = ExternalSymbols[Sym];
968  if (N) return SDOperand(N, 0);
969  N = new ExternalSymbolSDNode(false, Sym, VT);
970  AllNodes.push_back(N);
971  return SDOperand(N, 0);
972}
973
974SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
975  SDNode *&N = TargetExternalSymbols[Sym];
976  if (N) return SDOperand(N, 0);
977  N = new ExternalSymbolSDNode(true, Sym, VT);
978  AllNodes.push_back(N);
979  return SDOperand(N, 0);
980}
981
982SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
983  if ((unsigned)Cond >= CondCodeNodes.size())
984    CondCodeNodes.resize(Cond+1);
985
986  if (CondCodeNodes[Cond] == 0) {
987    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
988    AllNodes.push_back(CondCodeNodes[Cond]);
989  }
990  return SDOperand(CondCodeNodes[Cond], 0);
991}
992
993SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
994  FoldingSetNodeID ID;
995  AddNodeIDNode(ID, ISD::Register, getVTList(VT), (SDOperand*)0, 0);
996  ID.AddInteger(RegNo);
997  void *IP = 0;
998  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
999    return SDOperand(E, 0);
1000  SDNode *N = new RegisterSDNode(RegNo, VT);
1001  CSEMap.InsertNode(N, IP);
1002  AllNodes.push_back(N);
1003  return SDOperand(N, 0);
1004}
1005
1006SDOperand SelectionDAG::getDbgStopPoint(SDOperand Root,
1007                                        unsigned Line, unsigned Col,
1008                                        const CompileUnitDesc *CU) {
1009  FoldingSetNodeID ID;
1010  SDOperand Ops[] = { Root };
1011  AddNodeIDNode(ID, ISD::DBG_STOPPOINT, getVTList(MVT::Other), &Ops[0], 1);
1012  ID.AddInteger(Line);
1013  ID.AddInteger(Col);
1014  ID.AddPointer(CU);
1015  void *IP = 0;
1016  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1017    return SDOperand(E, 0);
1018  SDNode *N = new DbgStopPointSDNode(Root, Line, Col, CU);
1019  CSEMap.InsertNode(N, IP);
1020  AllNodes.push_back(N);
1021  return SDOperand(N, 0);
1022}
1023
1024SDOperand SelectionDAG::getLabel(unsigned Opcode,
1025                                 SDOperand Root,
1026                                 unsigned LabelID) {
1027  FoldingSetNodeID ID;
1028  SDOperand Ops[] = { Root };
1029  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1030  ID.AddInteger(LabelID);
1031  void *IP = 0;
1032  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1033    return SDOperand(E, 0);
1034  SDNode *N = new LabelSDNode(Opcode, Root, LabelID);
1035  CSEMap.InsertNode(N, IP);
1036  AllNodes.push_back(N);
1037  return SDOperand(N, 0);
1038}
1039
1040SDOperand SelectionDAG::getSrcValue(const Value *V) {
1041  assert((!V || isa<PointerType>(V->getType())) &&
1042         "SrcValue is not a pointer?");
1043
1044  FoldingSetNodeID ID;
1045  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), (SDOperand*)0, 0);
1046  ID.AddPointer(V);
1047
1048  void *IP = 0;
1049  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1050    return SDOperand(E, 0);
1051
1052  SDNode *N = new SrcValueSDNode(V);
1053  CSEMap.InsertNode(N, IP);
1054  AllNodes.push_back(N);
1055  return SDOperand(N, 0);
1056}
1057
1058SDOperand SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1059  const Value *v = MO.getValue();
1060  assert((!v || isa<PointerType>(v->getType())) &&
1061         "SrcValue is not a pointer?");
1062
1063  FoldingSetNodeID ID;
1064  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), (SDOperand*)0, 0);
1065  ID.AddPointer(v);
1066  ID.AddInteger(MO.getFlags());
1067  ID.AddInteger(MO.getOffset());
1068  ID.AddInteger(MO.getSize());
1069  ID.AddInteger(MO.getAlignment());
1070
1071  void *IP = 0;
1072  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1073    return SDOperand(E, 0);
1074
1075  SDNode *N = new MemOperandSDNode(MO);
1076  CSEMap.InsertNode(N, IP);
1077  AllNodes.push_back(N);
1078  return SDOperand(N, 0);
1079}
1080
1081/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1082/// specified value type.
1083SDOperand SelectionDAG::CreateStackTemporary(MVT VT) {
1084  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1085  unsigned ByteSize = VT.getSizeInBits()/8;
1086  const Type *Ty = VT.getTypeForMVT();
1087  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1088  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1089  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1090}
1091
1092
1093SDOperand SelectionDAG::FoldSetCC(MVT VT, SDOperand N1,
1094                                  SDOperand N2, ISD::CondCode Cond) {
1095  // These setcc operations always fold.
1096  switch (Cond) {
1097  default: break;
1098  case ISD::SETFALSE:
1099  case ISD::SETFALSE2: return getConstant(0, VT);
1100  case ISD::SETTRUE:
1101  case ISD::SETTRUE2:  return getConstant(1, VT);
1102
1103  case ISD::SETOEQ:
1104  case ISD::SETOGT:
1105  case ISD::SETOGE:
1106  case ISD::SETOLT:
1107  case ISD::SETOLE:
1108  case ISD::SETONE:
1109  case ISD::SETO:
1110  case ISD::SETUO:
1111  case ISD::SETUEQ:
1112  case ISD::SETUNE:
1113    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1114    break;
1115  }
1116
1117  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1118    const APInt &C2 = N2C->getAPIntValue();
1119    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1120      const APInt &C1 = N1C->getAPIntValue();
1121
1122      switch (Cond) {
1123      default: assert(0 && "Unknown integer setcc!");
1124      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1125      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1126      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1127      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1128      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1129      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1130      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1131      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1132      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1133      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1134      }
1135    }
1136  }
1137  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1138    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1139      // No compile time operations on this type yet.
1140      if (N1C->getValueType(0) == MVT::ppcf128)
1141        return SDOperand();
1142
1143      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1144      switch (Cond) {
1145      default: break;
1146      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1147                          return getNode(ISD::UNDEF, VT);
1148                        // fall through
1149      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1150      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1151                          return getNode(ISD::UNDEF, VT);
1152                        // fall through
1153      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1154                                           R==APFloat::cmpLessThan, VT);
1155      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1156                          return getNode(ISD::UNDEF, VT);
1157                        // fall through
1158      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1159      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1160                          return getNode(ISD::UNDEF, VT);
1161                        // fall through
1162      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1163      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1164                          return getNode(ISD::UNDEF, VT);
1165                        // fall through
1166      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1167                                           R==APFloat::cmpEqual, VT);
1168      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1169                          return getNode(ISD::UNDEF, VT);
1170                        // fall through
1171      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1172                                           R==APFloat::cmpEqual, VT);
1173      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1174      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1175      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1176                                           R==APFloat::cmpEqual, VT);
1177      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1178      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1179                                           R==APFloat::cmpLessThan, VT);
1180      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1181                                           R==APFloat::cmpUnordered, VT);
1182      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1183      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1184      }
1185    } else {
1186      // Ensure that the constant occurs on the RHS.
1187      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1188    }
1189  }
1190
1191  // Could not fold it.
1192  return SDOperand();
1193}
1194
1195/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1196/// use this predicate to simplify operations downstream.
1197bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1198  unsigned BitWidth = Op.getValueSizeInBits();
1199  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1200}
1201
1202/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1203/// this predicate to simplify operations downstream.  Mask is known to be zero
1204/// for bits that V cannot have.
1205bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1206                                     unsigned Depth) const {
1207  APInt KnownZero, KnownOne;
1208  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1209  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1210  return (KnownZero & Mask) == Mask;
1211}
1212
1213/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1214/// known to be either zero or one and return them in the KnownZero/KnownOne
1215/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1216/// processing.
1217void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1218                                     APInt &KnownZero, APInt &KnownOne,
1219                                     unsigned Depth) const {
1220  unsigned BitWidth = Mask.getBitWidth();
1221  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1222         "Mask size mismatches value type size!");
1223
1224  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1225  if (Depth == 6 || Mask == 0)
1226    return;  // Limit search depth.
1227
1228  APInt KnownZero2, KnownOne2;
1229
1230  switch (Op.getOpcode()) {
1231  case ISD::Constant:
1232    // We know all of the bits for a constant!
1233    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1234    KnownZero = ~KnownOne & Mask;
1235    return;
1236  case ISD::AND:
1237    // If either the LHS or the RHS are Zero, the result is zero.
1238    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1239    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1240                      KnownZero2, KnownOne2, Depth+1);
1241    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1242    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1243
1244    // Output known-1 bits are only known if set in both the LHS & RHS.
1245    KnownOne &= KnownOne2;
1246    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1247    KnownZero |= KnownZero2;
1248    return;
1249  case ISD::OR:
1250    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1251    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1252                      KnownZero2, KnownOne2, Depth+1);
1253    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1254    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1255
1256    // Output known-0 bits are only known if clear in both the LHS & RHS.
1257    KnownZero &= KnownZero2;
1258    // Output known-1 are known to be set if set in either the LHS | RHS.
1259    KnownOne |= KnownOne2;
1260    return;
1261  case ISD::XOR: {
1262    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1263    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1264    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1265    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1266
1267    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1268    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1269    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1270    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1271    KnownZero = KnownZeroOut;
1272    return;
1273  }
1274  case ISD::MUL: {
1275    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1276    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1277    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1278    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1279    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1280
1281    // If low bits are zero in either operand, output low known-0 bits.
1282    // Also compute a conserative estimate for high known-0 bits.
1283    // More trickiness is possible, but this is sufficient for the
1284    // interesting case of alignment computation.
1285    KnownOne.clear();
1286    unsigned TrailZ = KnownZero.countTrailingOnes() +
1287                      KnownZero2.countTrailingOnes();
1288    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1289                               KnownZero2.countLeadingOnes(),
1290                               BitWidth) - BitWidth;
1291
1292    TrailZ = std::min(TrailZ, BitWidth);
1293    LeadZ = std::min(LeadZ, BitWidth);
1294    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1295                APInt::getHighBitsSet(BitWidth, LeadZ);
1296    KnownZero &= Mask;
1297    return;
1298  }
1299  case ISD::UDIV: {
1300    // For the purposes of computing leading zeros we can conservatively
1301    // treat a udiv as a logical right shift by the power of 2 known to
1302    // be less than the denominator.
1303    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1304    ComputeMaskedBits(Op.getOperand(0),
1305                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1306    unsigned LeadZ = KnownZero2.countLeadingOnes();
1307
1308    KnownOne2.clear();
1309    KnownZero2.clear();
1310    ComputeMaskedBits(Op.getOperand(1),
1311                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1312    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1313    if (RHSUnknownLeadingOnes != BitWidth)
1314      LeadZ = std::min(BitWidth,
1315                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1316
1317    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1318    return;
1319  }
1320  case ISD::SELECT:
1321    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1322    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1323    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1324    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1325
1326    // Only known if known in both the LHS and RHS.
1327    KnownOne &= KnownOne2;
1328    KnownZero &= KnownZero2;
1329    return;
1330  case ISD::SELECT_CC:
1331    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1332    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1333    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1334    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1335
1336    // Only known if known in both the LHS and RHS.
1337    KnownOne &= KnownOne2;
1338    KnownZero &= KnownZero2;
1339    return;
1340  case ISD::SETCC:
1341    // If we know the result of a setcc has the top bits zero, use this info.
1342    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1343        BitWidth > 1)
1344      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1345    return;
1346  case ISD::SHL:
1347    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1348    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1349      unsigned ShAmt = SA->getValue();
1350
1351      // If the shift count is an invalid immediate, don't do anything.
1352      if (ShAmt >= BitWidth)
1353        return;
1354
1355      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1356                        KnownZero, KnownOne, Depth+1);
1357      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1358      KnownZero <<= ShAmt;
1359      KnownOne  <<= ShAmt;
1360      // low bits known zero.
1361      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1362    }
1363    return;
1364  case ISD::SRL:
1365    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1366    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1367      unsigned ShAmt = SA->getValue();
1368
1369      // If the shift count is an invalid immediate, don't do anything.
1370      if (ShAmt >= BitWidth)
1371        return;
1372
1373      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1374                        KnownZero, KnownOne, Depth+1);
1375      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1376      KnownZero = KnownZero.lshr(ShAmt);
1377      KnownOne  = KnownOne.lshr(ShAmt);
1378
1379      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1380      KnownZero |= HighBits;  // High bits known zero.
1381    }
1382    return;
1383  case ISD::SRA:
1384    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1385      unsigned ShAmt = SA->getValue();
1386
1387      // If the shift count is an invalid immediate, don't do anything.
1388      if (ShAmt >= BitWidth)
1389        return;
1390
1391      APInt InDemandedMask = (Mask << ShAmt);
1392      // If any of the demanded bits are produced by the sign extension, we also
1393      // demand the input sign bit.
1394      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1395      if (HighBits.getBoolValue())
1396        InDemandedMask |= APInt::getSignBit(BitWidth);
1397
1398      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1399                        Depth+1);
1400      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1401      KnownZero = KnownZero.lshr(ShAmt);
1402      KnownOne  = KnownOne.lshr(ShAmt);
1403
1404      // Handle the sign bits.
1405      APInt SignBit = APInt::getSignBit(BitWidth);
1406      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1407
1408      if (KnownZero.intersects(SignBit)) {
1409        KnownZero |= HighBits;  // New bits are known zero.
1410      } else if (KnownOne.intersects(SignBit)) {
1411        KnownOne  |= HighBits;  // New bits are known one.
1412      }
1413    }
1414    return;
1415  case ISD::SIGN_EXTEND_INREG: {
1416    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1417    unsigned EBits = EVT.getSizeInBits();
1418
1419    // Sign extension.  Compute the demanded bits in the result that are not
1420    // present in the input.
1421    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1422
1423    APInt InSignBit = APInt::getSignBit(EBits);
1424    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1425
1426    // If the sign extended bits are demanded, we know that the sign
1427    // bit is demanded.
1428    InSignBit.zext(BitWidth);
1429    if (NewBits.getBoolValue())
1430      InputDemandedBits |= InSignBit;
1431
1432    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1433                      KnownZero, KnownOne, Depth+1);
1434    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1435
1436    // If the sign bit of the input is known set or clear, then we know the
1437    // top bits of the result.
1438    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1439      KnownZero |= NewBits;
1440      KnownOne  &= ~NewBits;
1441    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1442      KnownOne  |= NewBits;
1443      KnownZero &= ~NewBits;
1444    } else {                              // Input sign bit unknown
1445      KnownZero &= ~NewBits;
1446      KnownOne  &= ~NewBits;
1447    }
1448    return;
1449  }
1450  case ISD::CTTZ:
1451  case ISD::CTLZ:
1452  case ISD::CTPOP: {
1453    unsigned LowBits = Log2_32(BitWidth)+1;
1454    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1455    KnownOne.clear();
1456    return;
1457  }
1458  case ISD::LOAD: {
1459    if (ISD::isZEXTLoad(Op.Val)) {
1460      LoadSDNode *LD = cast<LoadSDNode>(Op);
1461      MVT VT = LD->getMemoryVT();
1462      unsigned MemBits = VT.getSizeInBits();
1463      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1464    }
1465    return;
1466  }
1467  case ISD::ZERO_EXTEND: {
1468    MVT InVT = Op.getOperand(0).getValueType();
1469    unsigned InBits = InVT.getSizeInBits();
1470    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1471    APInt InMask    = Mask;
1472    InMask.trunc(InBits);
1473    KnownZero.trunc(InBits);
1474    KnownOne.trunc(InBits);
1475    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1476    KnownZero.zext(BitWidth);
1477    KnownOne.zext(BitWidth);
1478    KnownZero |= NewBits;
1479    return;
1480  }
1481  case ISD::SIGN_EXTEND: {
1482    MVT InVT = Op.getOperand(0).getValueType();
1483    unsigned InBits = InVT.getSizeInBits();
1484    APInt InSignBit = APInt::getSignBit(InBits);
1485    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1486    APInt InMask = Mask;
1487    InMask.trunc(InBits);
1488
1489    // If any of the sign extended bits are demanded, we know that the sign
1490    // bit is demanded. Temporarily set this bit in the mask for our callee.
1491    if (NewBits.getBoolValue())
1492      InMask |= InSignBit;
1493
1494    KnownZero.trunc(InBits);
1495    KnownOne.trunc(InBits);
1496    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1497
1498    // Note if the sign bit is known to be zero or one.
1499    bool SignBitKnownZero = KnownZero.isNegative();
1500    bool SignBitKnownOne  = KnownOne.isNegative();
1501    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1502           "Sign bit can't be known to be both zero and one!");
1503
1504    // If the sign bit wasn't actually demanded by our caller, we don't
1505    // want it set in the KnownZero and KnownOne result values. Reset the
1506    // mask and reapply it to the result values.
1507    InMask = Mask;
1508    InMask.trunc(InBits);
1509    KnownZero &= InMask;
1510    KnownOne  &= InMask;
1511
1512    KnownZero.zext(BitWidth);
1513    KnownOne.zext(BitWidth);
1514
1515    // If the sign bit is known zero or one, the top bits match.
1516    if (SignBitKnownZero)
1517      KnownZero |= NewBits;
1518    else if (SignBitKnownOne)
1519      KnownOne  |= NewBits;
1520    return;
1521  }
1522  case ISD::ANY_EXTEND: {
1523    MVT InVT = Op.getOperand(0).getValueType();
1524    unsigned InBits = InVT.getSizeInBits();
1525    APInt InMask = Mask;
1526    InMask.trunc(InBits);
1527    KnownZero.trunc(InBits);
1528    KnownOne.trunc(InBits);
1529    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1530    KnownZero.zext(BitWidth);
1531    KnownOne.zext(BitWidth);
1532    return;
1533  }
1534  case ISD::TRUNCATE: {
1535    MVT InVT = Op.getOperand(0).getValueType();
1536    unsigned InBits = InVT.getSizeInBits();
1537    APInt InMask = Mask;
1538    InMask.zext(InBits);
1539    KnownZero.zext(InBits);
1540    KnownOne.zext(InBits);
1541    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1542    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1543    KnownZero.trunc(BitWidth);
1544    KnownOne.trunc(BitWidth);
1545    break;
1546  }
1547  case ISD::AssertZext: {
1548    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1549    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1550    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1551                      KnownOne, Depth+1);
1552    KnownZero |= (~InMask) & Mask;
1553    return;
1554  }
1555  case ISD::FGETSIGN:
1556    // All bits are zero except the low bit.
1557    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1558    return;
1559
1560  case ISD::SUB: {
1561    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1562      // We know that the top bits of C-X are clear if X contains less bits
1563      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1564      // positive if we can prove that X is >= 0 and < 16.
1565      if (CLHS->getAPIntValue().isNonNegative()) {
1566        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1567        // NLZ can't be BitWidth with no sign bit
1568        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1569        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1570                          Depth+1);
1571
1572        // If all of the MaskV bits are known to be zero, then we know the
1573        // output top bits are zero, because we now know that the output is
1574        // from [0-C].
1575        if ((KnownZero2 & MaskV) == MaskV) {
1576          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1577          // Top bits known zero.
1578          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1579        }
1580      }
1581    }
1582  }
1583  // fall through
1584  case ISD::ADD: {
1585    // Output known-0 bits are known if clear or set in both the low clear bits
1586    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1587    // low 3 bits clear.
1588    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1589    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1590    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1591    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1592
1593    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1594    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1595    KnownZeroOut = std::min(KnownZeroOut,
1596                            KnownZero2.countTrailingOnes());
1597
1598    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1599    return;
1600  }
1601  case ISD::SREM:
1602    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1603      const APInt &RA = Rem->getAPIntValue();
1604      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1605        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1606        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1607        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1608
1609        // The sign of a remainder is equal to the sign of the first
1610        // operand (zero being positive).
1611        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1612          KnownZero2 |= ~LowBits;
1613        else if (KnownOne2[BitWidth-1])
1614          KnownOne2 |= ~LowBits;
1615
1616        KnownZero |= KnownZero2 & Mask;
1617        KnownOne |= KnownOne2 & Mask;
1618
1619        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1620      }
1621    }
1622    return;
1623  case ISD::UREM: {
1624    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1625      const APInt &RA = Rem->getAPIntValue();
1626      if (RA.isPowerOf2()) {
1627        APInt LowBits = (RA - 1);
1628        APInt Mask2 = LowBits & Mask;
1629        KnownZero |= ~LowBits & Mask;
1630        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1631        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1632        break;
1633      }
1634    }
1635
1636    // Since the result is less than or equal to either operand, any leading
1637    // zero bits in either operand must also exist in the result.
1638    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1639    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1640                      Depth+1);
1641    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1642                      Depth+1);
1643
1644    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1645                                KnownZero2.countLeadingOnes());
1646    KnownOne.clear();
1647    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1648    return;
1649  }
1650  default:
1651    // Allow the target to implement this method for its nodes.
1652    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1653  case ISD::INTRINSIC_WO_CHAIN:
1654  case ISD::INTRINSIC_W_CHAIN:
1655  case ISD::INTRINSIC_VOID:
1656      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1657    }
1658    return;
1659  }
1660}
1661
1662/// ComputeNumSignBits - Return the number of times the sign bit of the
1663/// register is replicated into the other bits.  We know that at least 1 bit
1664/// is always equal to the sign bit (itself), but other cases can give us
1665/// information.  For example, immediately after an "SRA X, 2", we know that
1666/// the top 3 bits are all equal to each other, so we return 3.
1667unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1668  MVT VT = Op.getValueType();
1669  assert(VT.isInteger() && "Invalid VT!");
1670  unsigned VTBits = VT.getSizeInBits();
1671  unsigned Tmp, Tmp2;
1672  unsigned FirstAnswer = 1;
1673
1674  if (Depth == 6)
1675    return 1;  // Limit search depth.
1676
1677  switch (Op.getOpcode()) {
1678  default: break;
1679  case ISD::AssertSext:
1680    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1681    return VTBits-Tmp+1;
1682  case ISD::AssertZext:
1683    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1684    return VTBits-Tmp;
1685
1686  case ISD::Constant: {
1687    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1688    // If negative, return # leading ones.
1689    if (Val.isNegative())
1690      return Val.countLeadingOnes();
1691
1692    // Return # leading zeros.
1693    return Val.countLeadingZeros();
1694  }
1695
1696  case ISD::SIGN_EXTEND:
1697    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1698    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1699
1700  case ISD::SIGN_EXTEND_INREG:
1701    // Max of the input and what this extends.
1702    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1703    Tmp = VTBits-Tmp+1;
1704
1705    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1706    return std::max(Tmp, Tmp2);
1707
1708  case ISD::SRA:
1709    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1710    // SRA X, C   -> adds C sign bits.
1711    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1712      Tmp += C->getValue();
1713      if (Tmp > VTBits) Tmp = VTBits;
1714    }
1715    return Tmp;
1716  case ISD::SHL:
1717    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1718      // shl destroys sign bits.
1719      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1720      if (C->getValue() >= VTBits ||      // Bad shift.
1721          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1722      return Tmp - C->getValue();
1723    }
1724    break;
1725  case ISD::AND:
1726  case ISD::OR:
1727  case ISD::XOR:    // NOT is handled here.
1728    // Logical binary ops preserve the number of sign bits at the worst.
1729    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1730    if (Tmp != 1) {
1731      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1732      FirstAnswer = std::min(Tmp, Tmp2);
1733      // We computed what we know about the sign bits as our first
1734      // answer. Now proceed to the generic code that uses
1735      // ComputeMaskedBits, and pick whichever answer is better.
1736    }
1737    break;
1738
1739  case ISD::SELECT:
1740    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1741    if (Tmp == 1) return 1;  // Early out.
1742    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1743    return std::min(Tmp, Tmp2);
1744
1745  case ISD::SETCC:
1746    // If setcc returns 0/-1, all bits are sign bits.
1747    if (TLI.getSetCCResultContents() ==
1748        TargetLowering::ZeroOrNegativeOneSetCCResult)
1749      return VTBits;
1750    break;
1751  case ISD::ROTL:
1752  case ISD::ROTR:
1753    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1754      unsigned RotAmt = C->getValue() & (VTBits-1);
1755
1756      // Handle rotate right by N like a rotate left by 32-N.
1757      if (Op.getOpcode() == ISD::ROTR)
1758        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1759
1760      // If we aren't rotating out all of the known-in sign bits, return the
1761      // number that are left.  This handles rotl(sext(x), 1) for example.
1762      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1763      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1764    }
1765    break;
1766  case ISD::ADD:
1767    // Add can have at most one carry bit.  Thus we know that the output
1768    // is, at worst, one more bit than the inputs.
1769    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1770    if (Tmp == 1) return 1;  // Early out.
1771
1772    // Special case decrementing a value (ADD X, -1):
1773    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1774      if (CRHS->isAllOnesValue()) {
1775        APInt KnownZero, KnownOne;
1776        APInt Mask = APInt::getAllOnesValue(VTBits);
1777        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1778
1779        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1780        // sign bits set.
1781        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1782          return VTBits;
1783
1784        // If we are subtracting one from a positive number, there is no carry
1785        // out of the result.
1786        if (KnownZero.isNegative())
1787          return Tmp;
1788      }
1789
1790    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1791    if (Tmp2 == 1) return 1;
1792      return std::min(Tmp, Tmp2)-1;
1793    break;
1794
1795  case ISD::SUB:
1796    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1797    if (Tmp2 == 1) return 1;
1798
1799    // Handle NEG.
1800    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1801      if (CLHS->isNullValue()) {
1802        APInt KnownZero, KnownOne;
1803        APInt Mask = APInt::getAllOnesValue(VTBits);
1804        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1805        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1806        // sign bits set.
1807        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1808          return VTBits;
1809
1810        // If the input is known to be positive (the sign bit is known clear),
1811        // the output of the NEG has the same number of sign bits as the input.
1812        if (KnownZero.isNegative())
1813          return Tmp2;
1814
1815        // Otherwise, we treat this like a SUB.
1816      }
1817
1818    // Sub can have at most one carry bit.  Thus we know that the output
1819    // is, at worst, one more bit than the inputs.
1820    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1821    if (Tmp == 1) return 1;  // Early out.
1822      return std::min(Tmp, Tmp2)-1;
1823    break;
1824  case ISD::TRUNCATE:
1825    // FIXME: it's tricky to do anything useful for this, but it is an important
1826    // case for targets like X86.
1827    break;
1828  }
1829
1830  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1831  if (Op.getOpcode() == ISD::LOAD) {
1832    LoadSDNode *LD = cast<LoadSDNode>(Op);
1833    unsigned ExtType = LD->getExtensionType();
1834    switch (ExtType) {
1835    default: break;
1836    case ISD::SEXTLOAD:    // '17' bits known
1837      Tmp = LD->getMemoryVT().getSizeInBits();
1838      return VTBits-Tmp+1;
1839    case ISD::ZEXTLOAD:    // '16' bits known
1840      Tmp = LD->getMemoryVT().getSizeInBits();
1841      return VTBits-Tmp;
1842    }
1843  }
1844
1845  // Allow the target to implement this method for its nodes.
1846  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1847      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1848      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1849      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1850    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1851    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1852  }
1853
1854  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1855  // use this information.
1856  APInt KnownZero, KnownOne;
1857  APInt Mask = APInt::getAllOnesValue(VTBits);
1858  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1859
1860  if (KnownZero.isNegative()) {        // sign bit is 0
1861    Mask = KnownZero;
1862  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1863    Mask = KnownOne;
1864  } else {
1865    // Nothing known.
1866    return FirstAnswer;
1867  }
1868
1869  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1870  // the number of identical bits in the top of the input value.
1871  Mask = ~Mask;
1872  Mask <<= Mask.getBitWidth()-VTBits;
1873  // Return # leading zeros.  We use 'min' here in case Val was zero before
1874  // shifting.  We don't want to return '64' as for an i32 "0".
1875  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
1876}
1877
1878
1879bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1880  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1881  if (!GA) return false;
1882  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1883  if (!GV) return false;
1884  MachineModuleInfo *MMI = getMachineModuleInfo();
1885  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1886}
1887
1888
1889/// getShuffleScalarElt - Returns the scalar element that will make up the ith
1890/// element of the result of the vector shuffle.
1891SDOperand SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
1892  MVT VT = N->getValueType(0);
1893  SDOperand PermMask = N->getOperand(2);
1894  SDOperand Idx = PermMask.getOperand(i);
1895  if (Idx.getOpcode() == ISD::UNDEF)
1896    return getNode(ISD::UNDEF, VT.getVectorElementType());
1897  unsigned Index = cast<ConstantSDNode>(Idx)->getValue();
1898  unsigned NumElems = PermMask.getNumOperands();
1899  SDOperand V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
1900  Index %= NumElems;
1901
1902  if (V.getOpcode() == ISD::BIT_CONVERT) {
1903    V = V.getOperand(0);
1904    if (V.getValueType().getVectorNumElements() != NumElems)
1905      return SDOperand();
1906  }
1907  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
1908    return (Index == 0) ? V.getOperand(0)
1909                      : getNode(ISD::UNDEF, VT.getVectorElementType());
1910  if (V.getOpcode() == ISD::BUILD_VECTOR)
1911    return V.getOperand(Index);
1912  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
1913    return getShuffleScalarElt(V.Val, Index);
1914  return SDOperand();
1915}
1916
1917
1918/// getNode - Gets or creates the specified node.
1919///
1920SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT) {
1921  FoldingSetNodeID ID;
1922  AddNodeIDNode(ID, Opcode, getVTList(VT), (SDOperand*)0, 0);
1923  void *IP = 0;
1924  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1925    return SDOperand(E, 0);
1926  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1927  CSEMap.InsertNode(N, IP);
1928
1929  AllNodes.push_back(N);
1930  return SDOperand(N, 0);
1931}
1932
1933SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT, SDOperand Operand) {
1934  // Constant fold unary operations with an integer constant operand.
1935  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1936    const APInt &Val = C->getAPIntValue();
1937    unsigned BitWidth = VT.getSizeInBits();
1938    switch (Opcode) {
1939    default: break;
1940    case ISD::SIGN_EXTEND:
1941      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1942    case ISD::ANY_EXTEND:
1943    case ISD::ZERO_EXTEND:
1944    case ISD::TRUNCATE:
1945      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1946    case ISD::UINT_TO_FP:
1947    case ISD::SINT_TO_FP: {
1948      const uint64_t zero[] = {0, 0};
1949      // No compile time operations on this type.
1950      if (VT==MVT::ppcf128)
1951        break;
1952      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1953      (void)apf.convertFromAPInt(Val,
1954                                 Opcode==ISD::SINT_TO_FP,
1955                                 APFloat::rmNearestTiesToEven);
1956      return getConstantFP(apf, VT);
1957    }
1958    case ISD::BIT_CONVERT:
1959      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1960        return getConstantFP(Val.bitsToFloat(), VT);
1961      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1962        return getConstantFP(Val.bitsToDouble(), VT);
1963      break;
1964    case ISD::BSWAP:
1965      return getConstant(Val.byteSwap(), VT);
1966    case ISD::CTPOP:
1967      return getConstant(Val.countPopulation(), VT);
1968    case ISD::CTLZ:
1969      return getConstant(Val.countLeadingZeros(), VT);
1970    case ISD::CTTZ:
1971      return getConstant(Val.countTrailingZeros(), VT);
1972    }
1973  }
1974
1975  // Constant fold unary operations with a floating point constant operand.
1976  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1977    APFloat V = C->getValueAPF();    // make copy
1978    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1979      switch (Opcode) {
1980      case ISD::FNEG:
1981        V.changeSign();
1982        return getConstantFP(V, VT);
1983      case ISD::FABS:
1984        V.clearSign();
1985        return getConstantFP(V, VT);
1986      case ISD::FP_ROUND:
1987      case ISD::FP_EXTEND:
1988        // This can return overflow, underflow, or inexact; we don't care.
1989        // FIXME need to be more flexible about rounding mode.
1990        (void)V.convert(*MVTToAPFloatSemantics(VT),
1991                        APFloat::rmNearestTiesToEven);
1992        return getConstantFP(V, VT);
1993      case ISD::FP_TO_SINT:
1994      case ISD::FP_TO_UINT: {
1995        integerPart x;
1996        assert(integerPartWidth >= 64);
1997        // FIXME need to be more flexible about rounding mode.
1998        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1999                              Opcode==ISD::FP_TO_SINT,
2000                              APFloat::rmTowardZero);
2001        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2002          break;
2003        return getConstant(x, VT);
2004      }
2005      case ISD::BIT_CONVERT:
2006        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2007          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
2008        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2009          return getConstant(V.convertToAPInt().getZExtValue(), VT);
2010        break;
2011      }
2012    }
2013  }
2014
2015  unsigned OpOpcode = Operand.Val->getOpcode();
2016  switch (Opcode) {
2017  case ISD::TokenFactor:
2018    return Operand;         // Factor of one node?  No need.
2019  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2020  case ISD::FP_EXTEND:
2021    assert(VT.isFloatingPoint() &&
2022           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2023    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2024    if (Operand.getOpcode() == ISD::UNDEF)
2025      return getNode(ISD::UNDEF, VT);
2026    break;
2027  case ISD::SIGN_EXTEND:
2028    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2029           "Invalid SIGN_EXTEND!");
2030    if (Operand.getValueType() == VT) return Operand;   // noop extension
2031    assert(Operand.getValueType().bitsLT(VT)
2032           && "Invalid sext node, dst < src!");
2033    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2034      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2035    break;
2036  case ISD::ZERO_EXTEND:
2037    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2038           "Invalid ZERO_EXTEND!");
2039    if (Operand.getValueType() == VT) return Operand;   // noop extension
2040    assert(Operand.getValueType().bitsLT(VT)
2041           && "Invalid zext node, dst < src!");
2042    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2043      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
2044    break;
2045  case ISD::ANY_EXTEND:
2046    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2047           "Invalid ANY_EXTEND!");
2048    if (Operand.getValueType() == VT) return Operand;   // noop extension
2049    assert(Operand.getValueType().bitsLT(VT)
2050           && "Invalid anyext node, dst < src!");
2051    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2052      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2053      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2054    break;
2055  case ISD::TRUNCATE:
2056    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2057           "Invalid TRUNCATE!");
2058    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2059    assert(Operand.getValueType().bitsGT(VT)
2060           && "Invalid truncate node, src < dst!");
2061    if (OpOpcode == ISD::TRUNCATE)
2062      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2063    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2064             OpOpcode == ISD::ANY_EXTEND) {
2065      // If the source is smaller than the dest, we still need an extend.
2066      if (Operand.Val->getOperand(0).getValueType().bitsLT(VT))
2067        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2068      else if (Operand.Val->getOperand(0).getValueType().bitsGT(VT))
2069        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2070      else
2071        return Operand.Val->getOperand(0);
2072    }
2073    break;
2074  case ISD::BIT_CONVERT:
2075    // Basic sanity checking.
2076    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2077           && "Cannot BIT_CONVERT between types of different sizes!");
2078    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2079    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2080      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2081    if (OpOpcode == ISD::UNDEF)
2082      return getNode(ISD::UNDEF, VT);
2083    break;
2084  case ISD::SCALAR_TO_VECTOR:
2085    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2086           VT.getVectorElementType() == Operand.getValueType() &&
2087           "Illegal SCALAR_TO_VECTOR node!");
2088    if (OpOpcode == ISD::UNDEF)
2089      return getNode(ISD::UNDEF, VT);
2090    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2091    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2092        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2093        Operand.getConstantOperandVal(1) == 0 &&
2094        Operand.getOperand(0).getValueType() == VT)
2095      return Operand.getOperand(0);
2096    break;
2097  case ISD::FNEG:
2098    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2099      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
2100                     Operand.Val->getOperand(0));
2101    if (OpOpcode == ISD::FNEG)  // --X -> X
2102      return Operand.Val->getOperand(0);
2103    break;
2104  case ISD::FABS:
2105    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2106      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
2107    break;
2108  }
2109
2110  SDNode *N;
2111  SDVTList VTs = getVTList(VT);
2112  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2113    FoldingSetNodeID ID;
2114    SDOperand Ops[1] = { Operand };
2115    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2116    void *IP = 0;
2117    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2118      return SDOperand(E, 0);
2119    N = new UnarySDNode(Opcode, VTs, Operand);
2120    CSEMap.InsertNode(N, IP);
2121  } else {
2122    N = new UnarySDNode(Opcode, VTs, Operand);
2123  }
2124  AllNodes.push_back(N);
2125  return SDOperand(N, 0);
2126}
2127
2128
2129
2130SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2131                                SDOperand N1, SDOperand N2) {
2132  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2133  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2134  switch (Opcode) {
2135  default: break;
2136  case ISD::TokenFactor:
2137    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2138           N2.getValueType() == MVT::Other && "Invalid token factor!");
2139    // Fold trivial token factors.
2140    if (N1.getOpcode() == ISD::EntryToken) return N2;
2141    if (N2.getOpcode() == ISD::EntryToken) return N1;
2142    break;
2143  case ISD::AND:
2144    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2145           N1.getValueType() == VT && "Binary operator types must match!");
2146    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2147    // worth handling here.
2148    if (N2C && N2C->isNullValue())
2149      return N2;
2150    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2151      return N1;
2152    break;
2153  case ISD::OR:
2154  case ISD::XOR:
2155  case ISD::ADD:
2156  case ISD::SUB:
2157    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2158           N1.getValueType() == VT && "Binary operator types must match!");
2159    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2160    // it's worth handling here.
2161    if (N2C && N2C->isNullValue())
2162      return N1;
2163    break;
2164  case ISD::UDIV:
2165  case ISD::UREM:
2166  case ISD::MULHU:
2167  case ISD::MULHS:
2168    assert(VT.isInteger() && "This operator does not apply to FP types!");
2169    // fall through
2170  case ISD::MUL:
2171  case ISD::SDIV:
2172  case ISD::SREM:
2173  case ISD::FADD:
2174  case ISD::FSUB:
2175  case ISD::FMUL:
2176  case ISD::FDIV:
2177  case ISD::FREM:
2178    assert(N1.getValueType() == N2.getValueType() &&
2179           N1.getValueType() == VT && "Binary operator types must match!");
2180    break;
2181  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2182    assert(N1.getValueType() == VT &&
2183           N1.getValueType().isFloatingPoint() &&
2184           N2.getValueType().isFloatingPoint() &&
2185           "Invalid FCOPYSIGN!");
2186    break;
2187  case ISD::SHL:
2188  case ISD::SRA:
2189  case ISD::SRL:
2190  case ISD::ROTL:
2191  case ISD::ROTR:
2192    assert(VT == N1.getValueType() &&
2193           "Shift operators return type must be the same as their first arg");
2194    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2195           "Shifts only work on integers");
2196
2197    // Always fold shifts of i1 values so the code generator doesn't need to
2198    // handle them.  Since we know the size of the shift has to be less than the
2199    // size of the value, the shift/rotate count is guaranteed to be zero.
2200    if (VT == MVT::i1)
2201      return N1;
2202    break;
2203  case ISD::FP_ROUND_INREG: {
2204    MVT EVT = cast<VTSDNode>(N2)->getVT();
2205    assert(VT == N1.getValueType() && "Not an inreg round!");
2206    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2207           "Cannot FP_ROUND_INREG integer types");
2208    assert(EVT.bitsLE(VT) && "Not rounding down!");
2209    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2210    break;
2211  }
2212  case ISD::FP_ROUND:
2213    assert(VT.isFloatingPoint() &&
2214           N1.getValueType().isFloatingPoint() &&
2215           VT.bitsLE(N1.getValueType()) &&
2216           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2217    if (N1.getValueType() == VT) return N1;  // noop conversion.
2218    break;
2219  case ISD::AssertSext:
2220  case ISD::AssertZext: {
2221    MVT EVT = cast<VTSDNode>(N2)->getVT();
2222    assert(VT == N1.getValueType() && "Not an inreg extend!");
2223    assert(VT.isInteger() && EVT.isInteger() &&
2224           "Cannot *_EXTEND_INREG FP types");
2225    assert(EVT.bitsLE(VT) && "Not extending!");
2226    if (VT == EVT) return N1; // noop assertion.
2227    break;
2228  }
2229  case ISD::SIGN_EXTEND_INREG: {
2230    MVT EVT = cast<VTSDNode>(N2)->getVT();
2231    assert(VT == N1.getValueType() && "Not an inreg extend!");
2232    assert(VT.isInteger() && EVT.isInteger() &&
2233           "Cannot *_EXTEND_INREG FP types");
2234    assert(EVT.bitsLE(VT) && "Not extending!");
2235    if (EVT == VT) return N1;  // Not actually extending
2236
2237    if (N1C) {
2238      APInt Val = N1C->getAPIntValue();
2239      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2240      Val <<= Val.getBitWidth()-FromBits;
2241      Val = Val.ashr(Val.getBitWidth()-FromBits);
2242      return getConstant(Val, VT);
2243    }
2244    break;
2245  }
2246  case ISD::EXTRACT_VECTOR_ELT:
2247    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2248
2249    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2250    if (N1.getOpcode() == ISD::UNDEF)
2251      return getNode(ISD::UNDEF, VT);
2252
2253    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2254    // expanding copies of large vectors from registers.
2255    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2256        N1.getNumOperands() > 0) {
2257      unsigned Factor =
2258        N1.getOperand(0).getValueType().getVectorNumElements();
2259      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2260                     N1.getOperand(N2C->getValue() / Factor),
2261                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2262    }
2263
2264    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2265    // expanding large vector constants.
2266    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2267      return N1.getOperand(N2C->getValue());
2268
2269    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2270    // operations are lowered to scalars.
2271    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2272      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2273        if (IEC == N2C)
2274          return N1.getOperand(1);
2275        else
2276          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2277      }
2278    break;
2279  case ISD::EXTRACT_ELEMENT:
2280    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2281    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2282           (N1.getValueType().isInteger() == VT.isInteger()) &&
2283           "Wrong types for EXTRACT_ELEMENT!");
2284
2285    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2286    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2287    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2288    if (N1.getOpcode() == ISD::BUILD_PAIR)
2289      return N1.getOperand(N2C->getValue());
2290
2291    // EXTRACT_ELEMENT of a constant int is also very common.
2292    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2293      unsigned ElementSize = VT.getSizeInBits();
2294      unsigned Shift = ElementSize * N2C->getValue();
2295      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2296      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2297    }
2298    break;
2299  case ISD::EXTRACT_SUBVECTOR:
2300    if (N1.getValueType() == VT) // Trivial extraction.
2301      return N1;
2302    break;
2303  }
2304
2305  if (N1C) {
2306    if (N2C) {
2307      const APInt &C1 = N1C->getAPIntValue(), &C2 = N2C->getAPIntValue();
2308      switch (Opcode) {
2309      case ISD::ADD: return getConstant(C1 + C2, VT);
2310      case ISD::SUB: return getConstant(C1 - C2, VT);
2311      case ISD::MUL: return getConstant(C1 * C2, VT);
2312      case ISD::UDIV:
2313        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2314        break;
2315      case ISD::UREM :
2316        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2317        break;
2318      case ISD::SDIV :
2319        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2320        break;
2321      case ISD::SREM :
2322        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2323        break;
2324      case ISD::AND  : return getConstant(C1 & C2, VT);
2325      case ISD::OR   : return getConstant(C1 | C2, VT);
2326      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2327      case ISD::SHL  : return getConstant(C1 << C2, VT);
2328      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2329      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2330      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2331      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2332      default: break;
2333      }
2334    } else {      // Cannonicalize constant to RHS if commutative
2335      if (isCommutativeBinOp(Opcode)) {
2336        std::swap(N1C, N2C);
2337        std::swap(N1, N2);
2338      }
2339    }
2340  }
2341
2342  // Constant fold FP operations.
2343  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2344  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2345  if (N1CFP) {
2346    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2347      // Cannonicalize constant to RHS if commutative
2348      std::swap(N1CFP, N2CFP);
2349      std::swap(N1, N2);
2350    } else if (N2CFP && VT != MVT::ppcf128) {
2351      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2352      APFloat::opStatus s;
2353      switch (Opcode) {
2354      case ISD::FADD:
2355        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2356        if (s != APFloat::opInvalidOp)
2357          return getConstantFP(V1, VT);
2358        break;
2359      case ISD::FSUB:
2360        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2361        if (s!=APFloat::opInvalidOp)
2362          return getConstantFP(V1, VT);
2363        break;
2364      case ISD::FMUL:
2365        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2366        if (s!=APFloat::opInvalidOp)
2367          return getConstantFP(V1, VT);
2368        break;
2369      case ISD::FDIV:
2370        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2371        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2372          return getConstantFP(V1, VT);
2373        break;
2374      case ISD::FREM :
2375        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2376        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2377          return getConstantFP(V1, VT);
2378        break;
2379      case ISD::FCOPYSIGN:
2380        V1.copySign(V2);
2381        return getConstantFP(V1, VT);
2382      default: break;
2383      }
2384    }
2385  }
2386
2387  // Canonicalize an UNDEF to the RHS, even over a constant.
2388  if (N1.getOpcode() == ISD::UNDEF) {
2389    if (isCommutativeBinOp(Opcode)) {
2390      std::swap(N1, N2);
2391    } else {
2392      switch (Opcode) {
2393      case ISD::FP_ROUND_INREG:
2394      case ISD::SIGN_EXTEND_INREG:
2395      case ISD::SUB:
2396      case ISD::FSUB:
2397      case ISD::FDIV:
2398      case ISD::FREM:
2399      case ISD::SRA:
2400        return N1;     // fold op(undef, arg2) -> undef
2401      case ISD::UDIV:
2402      case ISD::SDIV:
2403      case ISD::UREM:
2404      case ISD::SREM:
2405      case ISD::SRL:
2406      case ISD::SHL:
2407        if (!VT.isVector())
2408          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2409        // For vectors, we can't easily build an all zero vector, just return
2410        // the LHS.
2411        return N2;
2412      }
2413    }
2414  }
2415
2416  // Fold a bunch of operators when the RHS is undef.
2417  if (N2.getOpcode() == ISD::UNDEF) {
2418    switch (Opcode) {
2419    case ISD::XOR:
2420      if (N1.getOpcode() == ISD::UNDEF)
2421        // Handle undef ^ undef -> 0 special case. This is a common
2422        // idiom (misuse).
2423        return getConstant(0, VT);
2424      // fallthrough
2425    case ISD::ADD:
2426    case ISD::ADDC:
2427    case ISD::ADDE:
2428    case ISD::SUB:
2429    case ISD::FADD:
2430    case ISD::FSUB:
2431    case ISD::FMUL:
2432    case ISD::FDIV:
2433    case ISD::FREM:
2434    case ISD::UDIV:
2435    case ISD::SDIV:
2436    case ISD::UREM:
2437    case ISD::SREM:
2438      return N2;       // fold op(arg1, undef) -> undef
2439    case ISD::MUL:
2440    case ISD::AND:
2441    case ISD::SRL:
2442    case ISD::SHL:
2443      if (!VT.isVector())
2444        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2445      // For vectors, we can't easily build an all zero vector, just return
2446      // the LHS.
2447      return N1;
2448    case ISD::OR:
2449      if (!VT.isVector())
2450        return getConstant(VT.getIntegerVTBitMask(), VT);
2451      // For vectors, we can't easily build an all one vector, just return
2452      // the LHS.
2453      return N1;
2454    case ISD::SRA:
2455      return N1;
2456    }
2457  }
2458
2459  // Memoize this node if possible.
2460  SDNode *N;
2461  SDVTList VTs = getVTList(VT);
2462  if (VT != MVT::Flag) {
2463    SDOperand Ops[] = { N1, N2 };
2464    FoldingSetNodeID ID;
2465    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2466    void *IP = 0;
2467    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2468      return SDOperand(E, 0);
2469    N = new BinarySDNode(Opcode, VTs, N1, N2);
2470    CSEMap.InsertNode(N, IP);
2471  } else {
2472    N = new BinarySDNode(Opcode, VTs, N1, N2);
2473  }
2474
2475  AllNodes.push_back(N);
2476  return SDOperand(N, 0);
2477}
2478
2479SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2480                                SDOperand N1, SDOperand N2, SDOperand N3) {
2481  // Perform various simplifications.
2482  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2483  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2484  switch (Opcode) {
2485  case ISD::SETCC: {
2486    // Use FoldSetCC to simplify SETCC's.
2487    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2488    if (Simp.Val) return Simp;
2489    break;
2490  }
2491  case ISD::SELECT:
2492    if (N1C) {
2493     if (N1C->getValue())
2494        return N2;             // select true, X, Y -> X
2495      else
2496        return N3;             // select false, X, Y -> Y
2497    }
2498
2499    if (N2 == N3) return N2;   // select C, X, X -> X
2500    break;
2501  case ISD::BRCOND:
2502    if (N2C) {
2503      if (N2C->getValue()) // Unconditional branch
2504        return getNode(ISD::BR, MVT::Other, N1, N3);
2505      else
2506        return N1;         // Never-taken branch
2507    }
2508    break;
2509  case ISD::VECTOR_SHUFFLE:
2510    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2511           VT.isVector() && N3.getValueType().isVector() &&
2512           N3.getOpcode() == ISD::BUILD_VECTOR &&
2513           VT.getVectorNumElements() == N3.getNumOperands() &&
2514           "Illegal VECTOR_SHUFFLE node!");
2515    break;
2516  case ISD::BIT_CONVERT:
2517    // Fold bit_convert nodes from a type to themselves.
2518    if (N1.getValueType() == VT)
2519      return N1;
2520    break;
2521  }
2522
2523  // Memoize node if it doesn't produce a flag.
2524  SDNode *N;
2525  SDVTList VTs = getVTList(VT);
2526  if (VT != MVT::Flag) {
2527    SDOperand Ops[] = { N1, N2, N3 };
2528    FoldingSetNodeID ID;
2529    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2530    void *IP = 0;
2531    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2532      return SDOperand(E, 0);
2533    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2534    CSEMap.InsertNode(N, IP);
2535  } else {
2536    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2537  }
2538  AllNodes.push_back(N);
2539  return SDOperand(N, 0);
2540}
2541
2542SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2543                                SDOperand N1, SDOperand N2, SDOperand N3,
2544                                SDOperand N4) {
2545  SDOperand Ops[] = { N1, N2, N3, N4 };
2546  return getNode(Opcode, VT, Ops, 4);
2547}
2548
2549SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2550                                SDOperand N1, SDOperand N2, SDOperand N3,
2551                                SDOperand N4, SDOperand N5) {
2552  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2553  return getNode(Opcode, VT, Ops, 5);
2554}
2555
2556/// getMemsetValue - Vectorized representation of the memset value
2557/// operand.
2558static SDOperand getMemsetValue(SDOperand Value, MVT VT, SelectionDAG &DAG) {
2559  unsigned NumBits = VT.isVector() ?
2560    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2561  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2562    APInt Val = APInt(NumBits, C->getValue() & 255);
2563    unsigned Shift = 8;
2564    for (unsigned i = NumBits; i > 8; i >>= 1) {
2565      Val = (Val << Shift) | Val;
2566      Shift <<= 1;
2567    }
2568    if (VT.isInteger())
2569      return DAG.getConstant(Val, VT);
2570    return DAG.getConstantFP(APFloat(Val), VT);
2571  }
2572
2573  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2574  unsigned Shift = 8;
2575  for (unsigned i = NumBits; i > 8; i >>= 1) {
2576    Value = DAG.getNode(ISD::OR, VT,
2577                        DAG.getNode(ISD::SHL, VT, Value,
2578                                    DAG.getConstant(Shift, MVT::i8)), Value);
2579    Shift <<= 1;
2580  }
2581
2582  return Value;
2583}
2584
2585/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2586/// used when a memcpy is turned into a memset when the source is a constant
2587/// string ptr.
2588static SDOperand getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2589                                    const TargetLowering &TLI,
2590                                    std::string &Str, unsigned Offset) {
2591  // Handle vector with all elements zero.
2592  if (Str.empty()) {
2593    if (VT.isInteger())
2594      return DAG.getConstant(0, VT);
2595    unsigned NumElts = VT.getVectorNumElements();
2596    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2597    return DAG.getNode(ISD::BIT_CONVERT, VT,
2598                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2599  }
2600
2601  assert(!VT.isVector() && "Can't handle vector type here!");
2602  unsigned NumBits = VT.getSizeInBits();
2603  unsigned MSB = NumBits / 8;
2604  uint64_t Val = 0;
2605  if (TLI.isLittleEndian())
2606    Offset = Offset + MSB - 1;
2607  for (unsigned i = 0; i != MSB; ++i) {
2608    Val = (Val << 8) | (unsigned char)Str[Offset];
2609    Offset += TLI.isLittleEndian() ? -1 : 1;
2610  }
2611  return DAG.getConstant(Val, VT);
2612}
2613
2614/// getMemBasePlusOffset - Returns base and offset node for the
2615///
2616static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2617                                      SelectionDAG &DAG) {
2618  MVT VT = Base.getValueType();
2619  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2620}
2621
2622/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2623///
2624static bool isMemSrcFromString(SDOperand Src, std::string &Str) {
2625  unsigned SrcDelta = 0;
2626  GlobalAddressSDNode *G = NULL;
2627  if (Src.getOpcode() == ISD::GlobalAddress)
2628    G = cast<GlobalAddressSDNode>(Src);
2629  else if (Src.getOpcode() == ISD::ADD &&
2630           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2631           Src.getOperand(1).getOpcode() == ISD::Constant) {
2632    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2633    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
2634  }
2635  if (!G)
2636    return false;
2637
2638  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2639  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2640    return true;
2641
2642  return false;
2643}
2644
2645/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2646/// to replace the memset / memcpy is below the threshold. It also returns the
2647/// types of the sequence of memory ops to perform memset / memcpy.
2648static
2649bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2650                              SDOperand Dst, SDOperand Src,
2651                              unsigned Limit, uint64_t Size, unsigned &Align,
2652                              std::string &Str, bool &isSrcStr,
2653                              SelectionDAG &DAG,
2654                              const TargetLowering &TLI) {
2655  isSrcStr = isMemSrcFromString(Src, Str);
2656  bool isSrcConst = isa<ConstantSDNode>(Src);
2657  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2658  MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2659  if (VT != MVT::iAny) {
2660    unsigned NewAlign = (unsigned)
2661      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2662    // If source is a string constant, this will require an unaligned load.
2663    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2664      if (Dst.getOpcode() != ISD::FrameIndex) {
2665        // Can't change destination alignment. It requires a unaligned store.
2666        if (AllowUnalign)
2667          VT = MVT::iAny;
2668      } else {
2669        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2670        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2671        if (MFI->isFixedObjectIndex(FI)) {
2672          // Can't change destination alignment. It requires a unaligned store.
2673          if (AllowUnalign)
2674            VT = MVT::iAny;
2675        } else {
2676          // Give the stack frame object a larger alignment if needed.
2677          if (MFI->getObjectAlignment(FI) < NewAlign)
2678            MFI->setObjectAlignment(FI, NewAlign);
2679          Align = NewAlign;
2680        }
2681      }
2682    }
2683  }
2684
2685  if (VT == MVT::iAny) {
2686    if (AllowUnalign) {
2687      VT = MVT::i64;
2688    } else {
2689      switch (Align & 7) {
2690      case 0:  VT = MVT::i64; break;
2691      case 4:  VT = MVT::i32; break;
2692      case 2:  VT = MVT::i16; break;
2693      default: VT = MVT::i8;  break;
2694      }
2695    }
2696
2697    MVT LVT = MVT::i64;
2698    while (!TLI.isTypeLegal(LVT))
2699      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2700    assert(LVT.isInteger());
2701
2702    if (VT.bitsGT(LVT))
2703      VT = LVT;
2704  }
2705
2706  unsigned NumMemOps = 0;
2707  while (Size != 0) {
2708    unsigned VTSize = VT.getSizeInBits() / 8;
2709    while (VTSize > Size) {
2710      // For now, only use non-vector load / store's for the left-over pieces.
2711      if (VT.isVector()) {
2712        VT = MVT::i64;
2713        while (!TLI.isTypeLegal(VT))
2714          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2715        VTSize = VT.getSizeInBits() / 8;
2716      } else {
2717        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2718        VTSize >>= 1;
2719      }
2720    }
2721
2722    if (++NumMemOps > Limit)
2723      return false;
2724    MemOps.push_back(VT);
2725    Size -= VTSize;
2726  }
2727
2728  return true;
2729}
2730
2731static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
2732                                         SDOperand Chain, SDOperand Dst,
2733                                         SDOperand Src, uint64_t Size,
2734                                         unsigned Align, bool AlwaysInline,
2735                                         const Value *DstSV, uint64_t DstSVOff,
2736                                         const Value *SrcSV, uint64_t SrcSVOff){
2737  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2738
2739  // Expand memcpy to a series of load and store ops if the size operand falls
2740  // below a certain threshold.
2741  std::vector<MVT> MemOps;
2742  uint64_t Limit = -1;
2743  if (!AlwaysInline)
2744    Limit = TLI.getMaxStoresPerMemcpy();
2745  unsigned DstAlign = Align;  // Destination alignment can change.
2746  std::string Str;
2747  bool CopyFromStr;
2748  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2749                                Str, CopyFromStr, DAG, TLI))
2750    return SDOperand();
2751
2752
2753  bool isZeroStr = CopyFromStr && Str.empty();
2754  SmallVector<SDOperand, 8> OutChains;
2755  unsigned NumMemOps = MemOps.size();
2756  uint64_t SrcOff = 0, DstOff = 0;
2757  for (unsigned i = 0; i < NumMemOps; i++) {
2758    MVT VT = MemOps[i];
2759    unsigned VTSize = VT.getSizeInBits() / 8;
2760    SDOperand Value, Store;
2761
2762    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2763      // It's unlikely a store of a vector immediate can be done in a single
2764      // instruction. It would require a load from a constantpool first.
2765      // We also handle store a vector with all zero's.
2766      // FIXME: Handle other cases where store of vector immediate is done in
2767      // a single instruction.
2768      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2769      Store = DAG.getStore(Chain, Value,
2770                           getMemBasePlusOffset(Dst, DstOff, DAG),
2771                           DstSV, DstSVOff + DstOff);
2772    } else {
2773      Value = DAG.getLoad(VT, Chain,
2774                          getMemBasePlusOffset(Src, SrcOff, DAG),
2775                          SrcSV, SrcSVOff + SrcOff, false, Align);
2776      Store = DAG.getStore(Chain, Value,
2777                           getMemBasePlusOffset(Dst, DstOff, DAG),
2778                           DstSV, DstSVOff + DstOff, false, DstAlign);
2779    }
2780    OutChains.push_back(Store);
2781    SrcOff += VTSize;
2782    DstOff += VTSize;
2783  }
2784
2785  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2786                     &OutChains[0], OutChains.size());
2787}
2788
2789static SDOperand getMemmoveLoadsAndStores(SelectionDAG &DAG,
2790                                          SDOperand Chain, SDOperand Dst,
2791                                          SDOperand Src, uint64_t Size,
2792                                          unsigned Align, bool AlwaysInline,
2793                                          const Value *DstSV, uint64_t DstSVOff,
2794                                          const Value *SrcSV, uint64_t SrcSVOff){
2795  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2796
2797  // Expand memmove to a series of load and store ops if the size operand falls
2798  // below a certain threshold.
2799  std::vector<MVT> MemOps;
2800  uint64_t Limit = -1;
2801  if (!AlwaysInline)
2802    Limit = TLI.getMaxStoresPerMemmove();
2803  unsigned DstAlign = Align;  // Destination alignment can change.
2804  std::string Str;
2805  bool CopyFromStr;
2806  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2807                                Str, CopyFromStr, DAG, TLI))
2808    return SDOperand();
2809
2810  uint64_t SrcOff = 0, DstOff = 0;
2811
2812  SmallVector<SDOperand, 8> LoadValues;
2813  SmallVector<SDOperand, 8> LoadChains;
2814  SmallVector<SDOperand, 8> OutChains;
2815  unsigned NumMemOps = MemOps.size();
2816  for (unsigned i = 0; i < NumMemOps; i++) {
2817    MVT VT = MemOps[i];
2818    unsigned VTSize = VT.getSizeInBits() / 8;
2819    SDOperand Value, Store;
2820
2821    Value = DAG.getLoad(VT, Chain,
2822                        getMemBasePlusOffset(Src, SrcOff, DAG),
2823                        SrcSV, SrcSVOff + SrcOff, false, Align);
2824    LoadValues.push_back(Value);
2825    LoadChains.push_back(Value.getValue(1));
2826    SrcOff += VTSize;
2827  }
2828  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2829                      &LoadChains[0], LoadChains.size());
2830  OutChains.clear();
2831  for (unsigned i = 0; i < NumMemOps; i++) {
2832    MVT VT = MemOps[i];
2833    unsigned VTSize = VT.getSizeInBits() / 8;
2834    SDOperand Value, Store;
2835
2836    Store = DAG.getStore(Chain, LoadValues[i],
2837                         getMemBasePlusOffset(Dst, DstOff, DAG),
2838                         DstSV, DstSVOff + DstOff, false, DstAlign);
2839    OutChains.push_back(Store);
2840    DstOff += VTSize;
2841  }
2842
2843  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2844                     &OutChains[0], OutChains.size());
2845}
2846
2847static SDOperand getMemsetStores(SelectionDAG &DAG,
2848                                 SDOperand Chain, SDOperand Dst,
2849                                 SDOperand Src, uint64_t Size,
2850                                 unsigned Align,
2851                                 const Value *DstSV, uint64_t DstSVOff) {
2852  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2853
2854  // Expand memset to a series of load/store ops if the size operand
2855  // falls below a certain threshold.
2856  std::vector<MVT> MemOps;
2857  std::string Str;
2858  bool CopyFromStr;
2859  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
2860                                Size, Align, Str, CopyFromStr, DAG, TLI))
2861    return SDOperand();
2862
2863  SmallVector<SDOperand, 8> OutChains;
2864  uint64_t DstOff = 0;
2865
2866  unsigned NumMemOps = MemOps.size();
2867  for (unsigned i = 0; i < NumMemOps; i++) {
2868    MVT VT = MemOps[i];
2869    unsigned VTSize = VT.getSizeInBits() / 8;
2870    SDOperand Value = getMemsetValue(Src, VT, DAG);
2871    SDOperand Store = DAG.getStore(Chain, Value,
2872                                   getMemBasePlusOffset(Dst, DstOff, DAG),
2873                                   DstSV, DstSVOff + DstOff);
2874    OutChains.push_back(Store);
2875    DstOff += VTSize;
2876  }
2877
2878  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2879                     &OutChains[0], OutChains.size());
2880}
2881
2882SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dst,
2883                                  SDOperand Src, SDOperand Size,
2884                                  unsigned Align, bool AlwaysInline,
2885                                  const Value *DstSV, uint64_t DstSVOff,
2886                                  const Value *SrcSV, uint64_t SrcSVOff) {
2887
2888  // Check to see if we should lower the memcpy to loads and stores first.
2889  // For cases within the target-specified limits, this is the best choice.
2890  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2891  if (ConstantSize) {
2892    // Memcpy with size zero? Just return the original chain.
2893    if (ConstantSize->isNullValue())
2894      return Chain;
2895
2896    SDOperand Result =
2897      getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2898                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2899    if (Result.Val)
2900      return Result;
2901  }
2902
2903  // Then check to see if we should lower the memcpy with target-specific
2904  // code. If the target chooses to do this, this is the next best.
2905  SDOperand Result =
2906    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
2907                                AlwaysInline,
2908                                DstSV, DstSVOff, SrcSV, SrcSVOff);
2909  if (Result.Val)
2910    return Result;
2911
2912  // If we really need inline code and the target declined to provide it,
2913  // use a (potentially long) sequence of loads and stores.
2914  if (AlwaysInline) {
2915    assert(ConstantSize && "AlwaysInline requires a constant size!");
2916    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
2917                                   ConstantSize->getValue(), Align, true,
2918                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
2919  }
2920
2921  // Emit a library call.
2922  TargetLowering::ArgListTy Args;
2923  TargetLowering::ArgListEntry Entry;
2924  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2925  Entry.Node = Dst; Args.push_back(Entry);
2926  Entry.Node = Src; Args.push_back(Entry);
2927  Entry.Node = Size; Args.push_back(Entry);
2928  std::pair<SDOperand,SDOperand> CallResult =
2929    TLI.LowerCallTo(Chain, Type::VoidTy,
2930                    false, false, false, CallingConv::C, false,
2931                    getExternalSymbol("memcpy", TLI.getPointerTy()),
2932                    Args, *this);
2933  return CallResult.second;
2934}
2935
2936SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dst,
2937                                   SDOperand Src, SDOperand Size,
2938                                   unsigned Align,
2939                                   const Value *DstSV, uint64_t DstSVOff,
2940                                   const Value *SrcSV, uint64_t SrcSVOff) {
2941
2942  // Check to see if we should lower the memmove to loads and stores first.
2943  // For cases within the target-specified limits, this is the best choice.
2944  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2945  if (ConstantSize) {
2946    // Memmove with size zero? Just return the original chain.
2947    if (ConstantSize->isNullValue())
2948      return Chain;
2949
2950    SDOperand Result =
2951      getMemmoveLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2952                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2953    if (Result.Val)
2954      return Result;
2955  }
2956
2957  // Then check to see if we should lower the memmove with target-specific
2958  // code. If the target chooses to do this, this is the next best.
2959  SDOperand Result =
2960    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
2961                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
2962  if (Result.Val)
2963    return Result;
2964
2965  // Emit a library call.
2966  TargetLowering::ArgListTy Args;
2967  TargetLowering::ArgListEntry Entry;
2968  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2969  Entry.Node = Dst; Args.push_back(Entry);
2970  Entry.Node = Src; Args.push_back(Entry);
2971  Entry.Node = Size; Args.push_back(Entry);
2972  std::pair<SDOperand,SDOperand> CallResult =
2973    TLI.LowerCallTo(Chain, Type::VoidTy,
2974                    false, false, false, CallingConv::C, false,
2975                    getExternalSymbol("memmove", TLI.getPointerTy()),
2976                    Args, *this);
2977  return CallResult.second;
2978}
2979
2980SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dst,
2981                                  SDOperand Src, SDOperand Size,
2982                                  unsigned Align,
2983                                  const Value *DstSV, uint64_t DstSVOff) {
2984
2985  // Check to see if we should lower the memset to stores first.
2986  // For cases within the target-specified limits, this is the best choice.
2987  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2988  if (ConstantSize) {
2989    // Memset with size zero? Just return the original chain.
2990    if (ConstantSize->isNullValue())
2991      return Chain;
2992
2993    SDOperand Result =
2994      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
2995                      DstSV, DstSVOff);
2996    if (Result.Val)
2997      return Result;
2998  }
2999
3000  // Then check to see if we should lower the memset with target-specific
3001  // code. If the target chooses to do this, this is the next best.
3002  SDOperand Result =
3003    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3004                                DstSV, DstSVOff);
3005  if (Result.Val)
3006    return Result;
3007
3008  // Emit a library call.
3009  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3010  TargetLowering::ArgListTy Args;
3011  TargetLowering::ArgListEntry Entry;
3012  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3013  Args.push_back(Entry);
3014  // Extend or truncate the argument to be an i32 value for the call.
3015  if (Src.getValueType().bitsGT(MVT::i32))
3016    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3017  else
3018    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3019  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3020  Args.push_back(Entry);
3021  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3022  Args.push_back(Entry);
3023  std::pair<SDOperand,SDOperand> CallResult =
3024    TLI.LowerCallTo(Chain, Type::VoidTy,
3025                    false, false, false, CallingConv::C, false,
3026                    getExternalSymbol("memset", TLI.getPointerTy()),
3027                    Args, *this);
3028  return CallResult.second;
3029}
3030
3031SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
3032                                  SDOperand Ptr, SDOperand Cmp,
3033                                  SDOperand Swp, const Value* PtrVal,
3034                                  unsigned Alignment) {
3035  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3036  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3037  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
3038  FoldingSetNodeID ID;
3039  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
3040  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3041  void* IP = 0;
3042  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3043    return SDOperand(E, 0);
3044  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp,
3045                               PtrVal, Alignment);
3046  CSEMap.InsertNode(N, IP);
3047  AllNodes.push_back(N);
3048  return SDOperand(N, 0);
3049}
3050
3051SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
3052                                  SDOperand Ptr, SDOperand Val,
3053                                  const Value* PtrVal,
3054                                  unsigned Alignment) {
3055  assert((   Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB
3056          || Opcode == ISD::ATOMIC_SWAP || Opcode == ISD::ATOMIC_LOAD_AND
3057          || Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR
3058          || Opcode == ISD::ATOMIC_LOAD_NAND
3059          || Opcode == ISD::ATOMIC_LOAD_MIN || Opcode == ISD::ATOMIC_LOAD_MAX
3060          || Opcode == ISD::ATOMIC_LOAD_UMIN || Opcode == ISD::ATOMIC_LOAD_UMAX)
3061         && "Invalid Atomic Op");
3062  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
3063  FoldingSetNodeID ID;
3064  SDOperand Ops[] = {Chain, Ptr, Val};
3065  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3066  void* IP = 0;
3067  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3068    return SDOperand(E, 0);
3069  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val,
3070                               PtrVal, Alignment);
3071  CSEMap.InsertNode(N, IP);
3072  AllNodes.push_back(N);
3073  return SDOperand(N, 0);
3074}
3075
3076/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3077/// Allowed to return something different (and simpler) if Simplify is true.
3078SDOperand SelectionDAG::getMergeValues(SDOperandPtr Ops, unsigned NumOps,
3079                                       bool Simplify) {
3080  if (Simplify && NumOps == 1)
3081    return Ops[0];
3082
3083  SmallVector<MVT, 4> VTs;
3084  VTs.reserve(NumOps);
3085  for (unsigned i = 0; i < NumOps; ++i)
3086    VTs.push_back(Ops[i].getValueType());
3087  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3088}
3089
3090SDOperand
3091SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3092                      MVT VT, SDOperand Chain,
3093                      SDOperand Ptr, SDOperand Offset,
3094                      const Value *SV, int SVOffset, MVT EVT,
3095                      bool isVolatile, unsigned Alignment) {
3096  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3097    const Type *Ty = 0;
3098    if (VT != MVT::iPTR) {
3099      Ty = VT.getTypeForMVT();
3100    } else if (SV) {
3101      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3102      assert(PT && "Value for load must be a pointer");
3103      Ty = PT->getElementType();
3104    }
3105    assert(Ty && "Could not get type information for load");
3106    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3107  }
3108
3109  if (VT == EVT) {
3110    ExtType = ISD::NON_EXTLOAD;
3111  } else if (ExtType == ISD::NON_EXTLOAD) {
3112    assert(VT == EVT && "Non-extending load from different memory type!");
3113  } else {
3114    // Extending load.
3115    if (VT.isVector())
3116      assert(EVT == VT.getVectorElementType() && "Invalid vector extload!");
3117    else
3118      assert(EVT.bitsLT(VT) &&
3119             "Should only be an extending load, not truncating!");
3120    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3121           "Cannot sign/zero extend a FP/Vector load!");
3122    assert(VT.isInteger() == EVT.isInteger() &&
3123           "Cannot convert from FP to Int or Int -> FP!");
3124  }
3125
3126  bool Indexed = AM != ISD::UNINDEXED;
3127  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3128         "Unindexed load with an offset!");
3129
3130  SDVTList VTs = Indexed ?
3131    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3132  SDOperand Ops[] = { Chain, Ptr, Offset };
3133  FoldingSetNodeID ID;
3134  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3135  ID.AddInteger(AM);
3136  ID.AddInteger(ExtType);
3137  ID.AddInteger(EVT.getRawBits());
3138  ID.AddInteger(Alignment);
3139  ID.AddInteger(isVolatile);
3140  void *IP = 0;
3141  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3142    return SDOperand(E, 0);
3143  SDNode *N = new LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3144                             Alignment, isVolatile);
3145  CSEMap.InsertNode(N, IP);
3146  AllNodes.push_back(N);
3147  return SDOperand(N, 0);
3148}
3149
3150SDOperand SelectionDAG::getLoad(MVT VT,
3151                                SDOperand Chain, SDOperand Ptr,
3152                                const Value *SV, int SVOffset,
3153                                bool isVolatile, unsigned Alignment) {
3154  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3155  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3156                 SV, SVOffset, VT, isVolatile, Alignment);
3157}
3158
3159SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3160                                   SDOperand Chain, SDOperand Ptr,
3161                                   const Value *SV,
3162                                   int SVOffset, MVT EVT,
3163                                   bool isVolatile, unsigned Alignment) {
3164  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3165  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3166                 SV, SVOffset, EVT, isVolatile, Alignment);
3167}
3168
3169SDOperand
3170SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
3171                             SDOperand Offset, ISD::MemIndexedMode AM) {
3172  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3173  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3174         "Load is already a indexed load!");
3175  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3176                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3177                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3178                 LD->isVolatile(), LD->getAlignment());
3179}
3180
3181SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
3182                                 SDOperand Ptr, const Value *SV, int SVOffset,
3183                                 bool isVolatile, unsigned Alignment) {
3184  MVT VT = Val.getValueType();
3185
3186  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3187    const Type *Ty = 0;
3188    if (VT != MVT::iPTR) {
3189      Ty = VT.getTypeForMVT();
3190    } else if (SV) {
3191      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3192      assert(PT && "Value for store must be a pointer");
3193      Ty = PT->getElementType();
3194    }
3195    assert(Ty && "Could not get type information for store");
3196    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3197  }
3198  SDVTList VTs = getVTList(MVT::Other);
3199  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3200  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3201  FoldingSetNodeID ID;
3202  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3203  ID.AddInteger(ISD::UNINDEXED);
3204  ID.AddInteger(false);
3205  ID.AddInteger(VT.getRawBits());
3206  ID.AddInteger(Alignment);
3207  ID.AddInteger(isVolatile);
3208  void *IP = 0;
3209  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3210    return SDOperand(E, 0);
3211  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3212                              VT, SV, SVOffset, Alignment, isVolatile);
3213  CSEMap.InsertNode(N, IP);
3214  AllNodes.push_back(N);
3215  return SDOperand(N, 0);
3216}
3217
3218SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
3219                                      SDOperand Ptr, const Value *SV,
3220                                      int SVOffset, MVT SVT,
3221                                      bool isVolatile, unsigned Alignment) {
3222  MVT VT = Val.getValueType();
3223
3224  if (VT == SVT)
3225    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3226
3227  assert(VT.bitsGT(SVT) && "Not a truncation?");
3228  assert(VT.isInteger() == SVT.isInteger() &&
3229         "Can't do FP-INT conversion!");
3230
3231  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3232    const Type *Ty = 0;
3233    if (VT != MVT::iPTR) {
3234      Ty = VT.getTypeForMVT();
3235    } else if (SV) {
3236      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3237      assert(PT && "Value for store must be a pointer");
3238      Ty = PT->getElementType();
3239    }
3240    assert(Ty && "Could not get type information for store");
3241    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3242  }
3243  SDVTList VTs = getVTList(MVT::Other);
3244  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3245  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3246  FoldingSetNodeID ID;
3247  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3248  ID.AddInteger(ISD::UNINDEXED);
3249  ID.AddInteger(1);
3250  ID.AddInteger(SVT.getRawBits());
3251  ID.AddInteger(Alignment);
3252  ID.AddInteger(isVolatile);
3253  void *IP = 0;
3254  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3255    return SDOperand(E, 0);
3256  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3257                              SVT, SV, SVOffset, Alignment, isVolatile);
3258  CSEMap.InsertNode(N, IP);
3259  AllNodes.push_back(N);
3260  return SDOperand(N, 0);
3261}
3262
3263SDOperand
3264SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
3265                              SDOperand Offset, ISD::MemIndexedMode AM) {
3266  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3267  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3268         "Store is already a indexed store!");
3269  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3270  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3271  FoldingSetNodeID ID;
3272  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3273  ID.AddInteger(AM);
3274  ID.AddInteger(ST->isTruncatingStore());
3275  ID.AddInteger(ST->getMemoryVT().getRawBits());
3276  ID.AddInteger(ST->getAlignment());
3277  ID.AddInteger(ST->isVolatile());
3278  void *IP = 0;
3279  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3280    return SDOperand(E, 0);
3281  SDNode *N = new StoreSDNode(Ops, VTs, AM,
3282                              ST->isTruncatingStore(), ST->getMemoryVT(),
3283                              ST->getSrcValue(), ST->getSrcValueOffset(),
3284                              ST->getAlignment(), ST->isVolatile());
3285  CSEMap.InsertNode(N, IP);
3286  AllNodes.push_back(N);
3287  return SDOperand(N, 0);
3288}
3289
3290SDOperand SelectionDAG::getVAArg(MVT VT,
3291                                 SDOperand Chain, SDOperand Ptr,
3292                                 SDOperand SV) {
3293  SDOperand Ops[] = { Chain, Ptr, SV };
3294  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3295}
3296
3297SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
3298                                SDOperandPtr Ops, unsigned NumOps) {
3299  switch (NumOps) {
3300  case 0: return getNode(Opcode, VT);
3301  case 1: return getNode(Opcode, VT, Ops[0]);
3302  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3303  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3304  default: break;
3305  }
3306
3307  switch (Opcode) {
3308  default: break;
3309  case ISD::SELECT_CC: {
3310    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3311    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3312           "LHS and RHS of condition must have same type!");
3313    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3314           "True and False arms of SelectCC must have same type!");
3315    assert(Ops[2].getValueType() == VT &&
3316           "select_cc node must be of same type as true and false value!");
3317    break;
3318  }
3319  case ISD::BR_CC: {
3320    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3321    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3322           "LHS/RHS of comparison should match types!");
3323    break;
3324  }
3325  }
3326
3327  // Memoize nodes.
3328  SDNode *N;
3329  SDVTList VTs = getVTList(VT);
3330  if (VT != MVT::Flag) {
3331    FoldingSetNodeID ID;
3332    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3333    void *IP = 0;
3334    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3335      return SDOperand(E, 0);
3336    N = new SDNode(Opcode, VTs, Ops, NumOps);
3337    CSEMap.InsertNode(N, IP);
3338  } else {
3339    N = new SDNode(Opcode, VTs, Ops, NumOps);
3340  }
3341  AllNodes.push_back(N);
3342  return SDOperand(N, 0);
3343}
3344
3345SDOperand SelectionDAG::getNode(unsigned Opcode,
3346                                std::vector<MVT> &ResultTys,
3347                                SDOperandPtr Ops, unsigned NumOps) {
3348  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3349                 Ops, NumOps);
3350}
3351
3352SDOperand SelectionDAG::getNode(unsigned Opcode,
3353                                const MVT *VTs, unsigned NumVTs,
3354                                SDOperandPtr Ops, unsigned NumOps) {
3355  if (NumVTs == 1)
3356    return getNode(Opcode, VTs[0], Ops, NumOps);
3357  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3358}
3359
3360SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3361                                SDOperandPtr Ops, unsigned NumOps) {
3362  if (VTList.NumVTs == 1)
3363    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3364
3365  switch (Opcode) {
3366  // FIXME: figure out how to safely handle things like
3367  // int foo(int x) { return 1 << (x & 255); }
3368  // int bar() { return foo(256); }
3369#if 0
3370  case ISD::SRA_PARTS:
3371  case ISD::SRL_PARTS:
3372  case ISD::SHL_PARTS:
3373    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3374        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3375      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3376    else if (N3.getOpcode() == ISD::AND)
3377      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3378        // If the and is only masking out bits that cannot effect the shift,
3379        // eliminate the and.
3380        unsigned NumBits = VT.getSizeInBits()*2;
3381        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3382          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3383      }
3384    break;
3385#endif
3386  }
3387
3388  // Memoize the node unless it returns a flag.
3389  SDNode *N;
3390  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3391    FoldingSetNodeID ID;
3392    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3393    void *IP = 0;
3394    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3395      return SDOperand(E, 0);
3396    if (NumOps == 1)
3397      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3398    else if (NumOps == 2)
3399      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3400    else if (NumOps == 3)
3401      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3402    else
3403      N = new SDNode(Opcode, VTList, Ops, NumOps);
3404    CSEMap.InsertNode(N, IP);
3405  } else {
3406    if (NumOps == 1)
3407      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3408    else if (NumOps == 2)
3409      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3410    else if (NumOps == 3)
3411      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3412    else
3413      N = new SDNode(Opcode, VTList, Ops, NumOps);
3414  }
3415  AllNodes.push_back(N);
3416  return SDOperand(N, 0);
3417}
3418
3419SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3420  return getNode(Opcode, VTList, (SDOperand*)0, 0);
3421}
3422
3423SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3424                                SDOperand N1) {
3425  SDOperand Ops[] = { N1 };
3426  return getNode(Opcode, VTList, Ops, 1);
3427}
3428
3429SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3430                                SDOperand N1, SDOperand N2) {
3431  SDOperand Ops[] = { N1, N2 };
3432  return getNode(Opcode, VTList, Ops, 2);
3433}
3434
3435SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3436                                SDOperand N1, SDOperand N2, SDOperand N3) {
3437  SDOperand Ops[] = { N1, N2, N3 };
3438  return getNode(Opcode, VTList, Ops, 3);
3439}
3440
3441SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3442                                SDOperand N1, SDOperand N2, SDOperand N3,
3443                                SDOperand N4) {
3444  SDOperand Ops[] = { N1, N2, N3, N4 };
3445  return getNode(Opcode, VTList, Ops, 4);
3446}
3447
3448SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3449                                SDOperand N1, SDOperand N2, SDOperand N3,
3450                                SDOperand N4, SDOperand N5) {
3451  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
3452  return getNode(Opcode, VTList, Ops, 5);
3453}
3454
3455SDVTList SelectionDAG::getVTList(MVT VT) {
3456  return makeVTList(SDNode::getValueTypeList(VT), 1);
3457}
3458
3459SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3460  for (std::list<std::vector<MVT> >::iterator I = VTList.begin(),
3461       E = VTList.end(); I != E; ++I) {
3462    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
3463      return makeVTList(&(*I)[0], 2);
3464  }
3465  std::vector<MVT> V;
3466  V.push_back(VT1);
3467  V.push_back(VT2);
3468  VTList.push_front(V);
3469  return makeVTList(&(*VTList.begin())[0], 2);
3470}
3471SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2,
3472                                 MVT VT3) {
3473  for (std::list<std::vector<MVT> >::iterator I = VTList.begin(),
3474       E = VTList.end(); I != E; ++I) {
3475    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
3476        (*I)[2] == VT3)
3477      return makeVTList(&(*I)[0], 3);
3478  }
3479  std::vector<MVT> V;
3480  V.push_back(VT1);
3481  V.push_back(VT2);
3482  V.push_back(VT3);
3483  VTList.push_front(V);
3484  return makeVTList(&(*VTList.begin())[0], 3);
3485}
3486
3487SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3488  switch (NumVTs) {
3489    case 0: assert(0 && "Cannot have nodes without results!");
3490    case 1: return getVTList(VTs[0]);
3491    case 2: return getVTList(VTs[0], VTs[1]);
3492    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3493    default: break;
3494  }
3495
3496  for (std::list<std::vector<MVT> >::iterator I = VTList.begin(),
3497       E = VTList.end(); I != E; ++I) {
3498    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
3499
3500    bool NoMatch = false;
3501    for (unsigned i = 2; i != NumVTs; ++i)
3502      if (VTs[i] != (*I)[i]) {
3503        NoMatch = true;
3504        break;
3505      }
3506    if (!NoMatch)
3507      return makeVTList(&*I->begin(), NumVTs);
3508  }
3509
3510  VTList.push_front(std::vector<MVT>(VTs, VTs+NumVTs));
3511  return makeVTList(&*VTList.begin()->begin(), NumVTs);
3512}
3513
3514
3515/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3516/// specified operands.  If the resultant node already exists in the DAG,
3517/// this does not modify the specified node, instead it returns the node that
3518/// already exists.  If the resultant node does not exist in the DAG, the
3519/// input node is returned.  As a degenerate case, if you specify the same
3520/// input operands as the node already has, the input node is returned.
3521SDOperand SelectionDAG::
3522UpdateNodeOperands(SDOperand InN, SDOperand Op) {
3523  SDNode *N = InN.Val;
3524  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3525
3526  // Check to see if there is no change.
3527  if (Op == N->getOperand(0)) return InN;
3528
3529  // See if the modified node already exists.
3530  void *InsertPos = 0;
3531  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3532    return SDOperand(Existing, InN.ResNo);
3533
3534  // Nope it doesn't.  Remove the node from it's current place in the maps.
3535  if (InsertPos)
3536    RemoveNodeFromCSEMaps(N);
3537
3538  // Now we update the operands.
3539  N->OperandList[0].getVal()->removeUser(0, N);
3540  N->OperandList[0] = Op;
3541  N->OperandList[0].setUser(N);
3542  Op.Val->addUser(0, N);
3543
3544  // If this gets put into a CSE map, add it.
3545  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3546  return InN;
3547}
3548
3549SDOperand SelectionDAG::
3550UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
3551  SDNode *N = InN.Val;
3552  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3553
3554  // Check to see if there is no change.
3555  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3556    return InN;   // No operands changed, just return the input node.
3557
3558  // See if the modified node already exists.
3559  void *InsertPos = 0;
3560  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3561    return SDOperand(Existing, InN.ResNo);
3562
3563  // Nope it doesn't.  Remove the node from it's current place in the maps.
3564  if (InsertPos)
3565    RemoveNodeFromCSEMaps(N);
3566
3567  // Now we update the operands.
3568  if (N->OperandList[0] != Op1) {
3569    N->OperandList[0].getVal()->removeUser(0, N);
3570    N->OperandList[0] = Op1;
3571    N->OperandList[0].setUser(N);
3572    Op1.Val->addUser(0, N);
3573  }
3574  if (N->OperandList[1] != Op2) {
3575    N->OperandList[1].getVal()->removeUser(1, N);
3576    N->OperandList[1] = Op2;
3577    N->OperandList[1].setUser(N);
3578    Op2.Val->addUser(1, N);
3579  }
3580
3581  // If this gets put into a CSE map, add it.
3582  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3583  return InN;
3584}
3585
3586SDOperand SelectionDAG::
3587UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
3588  SDOperand Ops[] = { Op1, Op2, Op3 };
3589  return UpdateNodeOperands(N, Ops, 3);
3590}
3591
3592SDOperand SelectionDAG::
3593UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3594                   SDOperand Op3, SDOperand Op4) {
3595  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
3596  return UpdateNodeOperands(N, Ops, 4);
3597}
3598
3599SDOperand SelectionDAG::
3600UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3601                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
3602  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3603  return UpdateNodeOperands(N, Ops, 5);
3604}
3605
3606SDOperand SelectionDAG::
3607UpdateNodeOperands(SDOperand InN, SDOperandPtr Ops, unsigned NumOps) {
3608  SDNode *N = InN.Val;
3609  assert(N->getNumOperands() == NumOps &&
3610         "Update with wrong number of operands");
3611
3612  // Check to see if there is no change.
3613  bool AnyChange = false;
3614  for (unsigned i = 0; i != NumOps; ++i) {
3615    if (Ops[i] != N->getOperand(i)) {
3616      AnyChange = true;
3617      break;
3618    }
3619  }
3620
3621  // No operands changed, just return the input node.
3622  if (!AnyChange) return InN;
3623
3624  // See if the modified node already exists.
3625  void *InsertPos = 0;
3626  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3627    return SDOperand(Existing, InN.ResNo);
3628
3629  // Nope it doesn't.  Remove the node from its current place in the maps.
3630  if (InsertPos)
3631    RemoveNodeFromCSEMaps(N);
3632
3633  // Now we update the operands.
3634  for (unsigned i = 0; i != NumOps; ++i) {
3635    if (N->OperandList[i] != Ops[i]) {
3636      N->OperandList[i].getVal()->removeUser(i, N);
3637      N->OperandList[i] = Ops[i];
3638      N->OperandList[i].setUser(N);
3639      Ops[i].Val->addUser(i, N);
3640    }
3641  }
3642
3643  // If this gets put into a CSE map, add it.
3644  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3645  return InN;
3646}
3647
3648/// MorphNodeTo - This frees the operands of the current node, resets the
3649/// opcode, types, and operands to the specified value.  This should only be
3650/// used by the SelectionDAG class.
3651void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3652                         SDOperandPtr Ops, unsigned NumOps) {
3653  NodeType = Opc;
3654  ValueList = L.VTs;
3655  NumValues = L.NumVTs;
3656
3657  // Clear the operands list, updating used nodes to remove this from their
3658  // use list.
3659  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3660    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3661
3662  // If NumOps is larger than the # of operands we currently have, reallocate
3663  // the operand list.
3664  if (NumOps > NumOperands) {
3665    if (OperandsNeedDelete) {
3666      delete [] OperandList;
3667    }
3668    OperandList = new SDUse[NumOps];
3669    OperandsNeedDelete = true;
3670  }
3671
3672  // Assign the new operands.
3673  NumOperands = NumOps;
3674
3675  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3676    OperandList[i] = Ops[i];
3677    OperandList[i].setUser(this);
3678    SDNode *N = OperandList[i].getVal();
3679    N->addUser(i, this);
3680    ++N->UsesSize;
3681  }
3682}
3683
3684/// SelectNodeTo - These are used for target selectors to *mutate* the
3685/// specified node to have the specified return type, Target opcode, and
3686/// operands.  Note that target opcodes are stored as
3687/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3688///
3689/// Note that SelectNodeTo returns the resultant node.  If there is already a
3690/// node of the specified opcode and operands, it returns that node instead of
3691/// the current one.
3692SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3693                                   MVT VT) {
3694  SDVTList VTs = getVTList(VT);
3695  return SelectNodeTo(N, TargetOpc, VTs, (SDOperand*)0, 0);
3696}
3697
3698SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3699                                   MVT VT, SDOperand Op1) {
3700  SDVTList VTs = getVTList(VT);
3701  SDOperand Ops[] = { Op1 };
3702  return SelectNodeTo(N, TargetOpc, VTs, Ops, 1);
3703}
3704
3705SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3706                                   MVT VT, SDOperand Op1,
3707                                   SDOperand Op2) {
3708  SDVTList VTs = getVTList(VT);
3709  SDOperand Ops[] = { Op1, Op2 };
3710  return SelectNodeTo(N, TargetOpc, VTs, Ops, 2);
3711}
3712
3713SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3714                                   MVT VT, SDOperand Op1,
3715                                   SDOperand Op2, SDOperand Op3) {
3716  SDVTList VTs = getVTList(VT);
3717  SDOperand Ops[] = { Op1, Op2, Op3 };
3718  return SelectNodeTo(N, TargetOpc, VTs, Ops, 3);
3719}
3720
3721SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3722                                   MVT VT, SDOperandPtr Ops,
3723                                   unsigned NumOps) {
3724  SDVTList VTs = getVTList(VT);
3725  return SelectNodeTo(N, TargetOpc, VTs, Ops, NumOps);
3726}
3727
3728SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3729                                   MVT VT1, MVT VT2, SDOperandPtr Ops,
3730                                   unsigned NumOps) {
3731  SDVTList VTs = getVTList(VT1, VT2);
3732  return SelectNodeTo(N, TargetOpc, VTs, Ops, NumOps);
3733}
3734
3735SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3736                                   MVT VT1, MVT VT2) {
3737  SDVTList VTs = getVTList(VT1, VT2);
3738  return SelectNodeTo(N, TargetOpc, VTs, (SDOperand *)0, 0);
3739}
3740
3741SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3742                                   MVT VT1, MVT VT2, MVT VT3, SDOperandPtr Ops,
3743                                   unsigned NumOps) {
3744  SDVTList VTs = getVTList(VT1, VT2, VT3);
3745  return SelectNodeTo(N, TargetOpc, VTs, Ops, NumOps);
3746}
3747
3748SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3749                                   MVT VT1, MVT VT2,
3750                                   SDOperand Op1) {
3751  SDVTList VTs = getVTList(VT1, VT2);
3752  SDOperand Ops[] = { Op1 };
3753  return SelectNodeTo(N, TargetOpc, VTs, Ops, 1);
3754}
3755
3756SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3757                                   MVT VT1, MVT VT2,
3758                                   SDOperand Op1, SDOperand Op2) {
3759  SDVTList VTs = getVTList(VT1, VT2);
3760  SDOperand Ops[] = { Op1, Op2 };
3761  return SelectNodeTo(N, TargetOpc, VTs, Ops, 2);
3762}
3763
3764SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3765                                   MVT VT1, MVT VT2,
3766                                   SDOperand Op1, SDOperand Op2,
3767                                   SDOperand Op3) {
3768  SDVTList VTs = getVTList(VT1, VT2);
3769  SDOperand Ops[] = { Op1, Op2, Op3 };
3770  return SelectNodeTo(N, TargetOpc, VTs, Ops, 3);
3771}
3772
3773SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3774                                   SDVTList VTs, SDOperandPtr Ops,
3775                                   unsigned NumOps) {
3776  // If an identical node already exists, use it.
3777  FoldingSetNodeID ID;
3778  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3779  void *IP = 0;
3780  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3781    return ON;
3782
3783  RemoveNodeFromCSEMaps(N);
3784
3785  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3786  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3787  return N;
3788}
3789
3790
3791/// getTargetNode - These are used for target selectors to create a new node
3792/// with specified return type(s), target opcode, and operands.
3793///
3794/// Note that getTargetNode returns the resultant node.  If there is already a
3795/// node of the specified opcode and operands, it returns that node instead of
3796/// the current one.
3797SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
3798  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3799}
3800SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDOperand Op1) {
3801  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3802}
3803SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
3804                                    SDOperand Op1, SDOperand Op2) {
3805  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3806}
3807SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
3808                                    SDOperand Op1, SDOperand Op2,
3809                                    SDOperand Op3) {
3810  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3811}
3812SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
3813                                    SDOperandPtr Ops, unsigned NumOps) {
3814  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3815}
3816SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
3817  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3818  SDOperand Op;
3819  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3820}
3821SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3822                                    MVT VT2, SDOperand Op1) {
3823  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3824  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3825}
3826SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3827                                    MVT VT2, SDOperand Op1,
3828                                    SDOperand Op2) {
3829  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3830  SDOperand Ops[] = { Op1, Op2 };
3831  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3832}
3833SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3834                                    MVT VT2, SDOperand Op1,
3835                                    SDOperand Op2, SDOperand Op3) {
3836  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3837  SDOperand Ops[] = { Op1, Op2, Op3 };
3838  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3839}
3840SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
3841                                    SDOperandPtr Ops, unsigned NumOps) {
3842  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3843  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3844}
3845SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
3846                                    SDOperand Op1, SDOperand Op2) {
3847  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
3848  SDOperand Ops[] = { Op1, Op2 };
3849  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3850}
3851SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
3852                                    SDOperand Op1, SDOperand Op2,
3853                                    SDOperand Op3) {
3854  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
3855  SDOperand Ops[] = { Op1, Op2, Op3 };
3856  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3857}
3858SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
3859                                    SDOperandPtr Ops, unsigned NumOps) {
3860  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
3861  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3862}
3863SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3864                                    MVT VT2, MVT VT3, MVT VT4,
3865                                    SDOperandPtr Ops, unsigned NumOps) {
3866  std::vector<MVT> VTList;
3867  VTList.push_back(VT1);
3868  VTList.push_back(VT2);
3869  VTList.push_back(VT3);
3870  VTList.push_back(VT4);
3871  const MVT *VTs = getNodeValueTypes(VTList);
3872  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3873}
3874SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3875                                    std::vector<MVT> &ResultTys,
3876                                    SDOperandPtr Ops, unsigned NumOps) {
3877  const MVT *VTs = getNodeValueTypes(ResultTys);
3878  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3879                 Ops, NumOps).Val;
3880}
3881
3882/// getNodeIfExists - Get the specified node if it's already available, or
3883/// else return NULL.
3884SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
3885                                      SDOperandPtr Ops, unsigned NumOps) {
3886  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3887    FoldingSetNodeID ID;
3888    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3889    void *IP = 0;
3890    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3891      return E;
3892  }
3893  return NULL;
3894}
3895
3896
3897/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3898/// This can cause recursive merging of nodes in the DAG.
3899///
3900/// This version assumes From has a single result value.
3901///
3902void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3903                                      DAGUpdateListener *UpdateListener) {
3904  SDNode *From = FromN.Val;
3905  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3906         "Cannot replace with this method!");
3907  assert(From != To.Val && "Cannot replace uses of with self");
3908
3909  while (!From->use_empty()) {
3910    SDNode::use_iterator UI = From->use_begin();
3911    SDNode *U = UI->getUser();
3912
3913    // This node is about to morph, remove its old self from the CSE maps.
3914    RemoveNodeFromCSEMaps(U);
3915    int operandNum = 0;
3916    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3917         I != E; ++I, ++operandNum)
3918      if (I->getVal() == From) {
3919        From->removeUser(operandNum, U);
3920        *I = To;
3921        I->setUser(U);
3922        To.Val->addUser(operandNum, U);
3923      }
3924
3925    // Now that we have modified U, add it back to the CSE maps.  If it already
3926    // exists there, recursively merge the results together.
3927    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3928      ReplaceAllUsesWith(U, Existing, UpdateListener);
3929      // U is now dead.  Inform the listener if it exists and delete it.
3930      if (UpdateListener)
3931        UpdateListener->NodeDeleted(U, Existing);
3932      DeleteNodeNotInCSEMaps(U);
3933    } else {
3934      // If the node doesn't already exist, we updated it.  Inform a listener if
3935      // it exists.
3936      if (UpdateListener)
3937        UpdateListener->NodeUpdated(U);
3938    }
3939  }
3940}
3941
3942/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3943/// This can cause recursive merging of nodes in the DAG.
3944///
3945/// This version assumes From/To have matching types and numbers of result
3946/// values.
3947///
3948void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3949                                      DAGUpdateListener *UpdateListener) {
3950  assert(From != To && "Cannot replace uses of with self");
3951  assert(From->getNumValues() == To->getNumValues() &&
3952         "Cannot use this version of ReplaceAllUsesWith!");
3953  if (From->getNumValues() == 1)   // If possible, use the faster version.
3954    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3955                              UpdateListener);
3956
3957  while (!From->use_empty()) {
3958    SDNode::use_iterator UI = From->use_begin();
3959    SDNode *U = UI->getUser();
3960
3961    // This node is about to morph, remove its old self from the CSE maps.
3962    RemoveNodeFromCSEMaps(U);
3963    int operandNum = 0;
3964    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3965         I != E; ++I, ++operandNum)
3966      if (I->getVal() == From) {
3967        From->removeUser(operandNum, U);
3968        I->getVal() = To;
3969        To->addUser(operandNum, U);
3970      }
3971
3972    // Now that we have modified U, add it back to the CSE maps.  If it already
3973    // exists there, recursively merge the results together.
3974    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3975      ReplaceAllUsesWith(U, Existing, UpdateListener);
3976      // U is now dead.  Inform the listener if it exists and delete it.
3977      if (UpdateListener)
3978        UpdateListener->NodeDeleted(U, Existing);
3979      DeleteNodeNotInCSEMaps(U);
3980    } else {
3981      // If the node doesn't already exist, we updated it.  Inform a listener if
3982      // it exists.
3983      if (UpdateListener)
3984        UpdateListener->NodeUpdated(U);
3985    }
3986  }
3987}
3988
3989/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3990/// This can cause recursive merging of nodes in the DAG.
3991///
3992/// This version can replace From with any result values.  To must match the
3993/// number and types of values returned by From.
3994void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3995                                      SDOperandPtr To,
3996                                      DAGUpdateListener *UpdateListener) {
3997  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3998    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3999
4000  while (!From->use_empty()) {
4001    SDNode::use_iterator UI = From->use_begin();
4002    SDNode *U = UI->getUser();
4003
4004    // This node is about to morph, remove its old self from the CSE maps.
4005    RemoveNodeFromCSEMaps(U);
4006    int operandNum = 0;
4007    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4008         I != E; ++I, ++operandNum)
4009      if (I->getVal() == From) {
4010        const SDOperand &ToOp = To[I->getSDOperand().ResNo];
4011        From->removeUser(operandNum, U);
4012        *I = ToOp;
4013        I->setUser(U);
4014        ToOp.Val->addUser(operandNum, U);
4015      }
4016
4017    // Now that we have modified U, add it back to the CSE maps.  If it already
4018    // exists there, recursively merge the results together.
4019    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4020      ReplaceAllUsesWith(U, Existing, UpdateListener);
4021      // U is now dead.  Inform the listener if it exists and delete it.
4022      if (UpdateListener)
4023        UpdateListener->NodeDeleted(U, Existing);
4024      DeleteNodeNotInCSEMaps(U);
4025    } else {
4026      // If the node doesn't already exist, we updated it.  Inform a listener if
4027      // it exists.
4028      if (UpdateListener)
4029        UpdateListener->NodeUpdated(U);
4030    }
4031  }
4032}
4033
4034namespace {
4035  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
4036  /// any deleted nodes from the set passed into its constructor and recursively
4037  /// notifies another update listener if specified.
4038  class ChainedSetUpdaterListener :
4039  public SelectionDAG::DAGUpdateListener {
4040    SmallSetVector<SDNode*, 16> &Set;
4041    SelectionDAG::DAGUpdateListener *Chain;
4042  public:
4043    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
4044                              SelectionDAG::DAGUpdateListener *chain)
4045      : Set(set), Chain(chain) {}
4046
4047    virtual void NodeDeleted(SDNode *N, SDNode *E) {
4048      Set.remove(N);
4049      if (Chain) Chain->NodeDeleted(N, E);
4050    }
4051    virtual void NodeUpdated(SDNode *N) {
4052      if (Chain) Chain->NodeUpdated(N);
4053    }
4054  };
4055}
4056
4057/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4058/// uses of other values produced by From.Val alone.  The Deleted vector is
4059/// handled the same way as for ReplaceAllUsesWith.
4060void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
4061                                             DAGUpdateListener *UpdateListener){
4062  assert(From != To && "Cannot replace a value with itself");
4063
4064  // Handle the simple, trivial, case efficiently.
4065  if (From.Val->getNumValues() == 1) {
4066    ReplaceAllUsesWith(From, To, UpdateListener);
4067    return;
4068  }
4069
4070  if (From.use_empty()) return;
4071
4072  // Get all of the users of From.Val.  We want these in a nice,
4073  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4074  SmallSetVector<SDNode*, 16> Users;
4075  for (SDNode::use_iterator UI = From.Val->use_begin(),
4076      E = From.Val->use_end(); UI != E; ++UI) {
4077    SDNode *User = UI->getUser();
4078    Users.insert(User);
4079  }
4080
4081  // When one of the recursive merges deletes nodes from the graph, we need to
4082  // make sure that UpdateListener is notified *and* that the node is removed
4083  // from Users if present.  CSUL does this.
4084  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
4085
4086  while (!Users.empty()) {
4087    // We know that this user uses some value of From.  If it is the right
4088    // value, update it.
4089    SDNode *User = Users.back();
4090    Users.pop_back();
4091
4092    // Scan for an operand that matches From.
4093    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4094    for (; Op != E; ++Op)
4095      if (*Op == From) break;
4096
4097    // If there are no matches, the user must use some other result of From.
4098    if (Op == E) continue;
4099
4100    // Okay, we know this user needs to be updated.  Remove its old self
4101    // from the CSE maps.
4102    RemoveNodeFromCSEMaps(User);
4103
4104    // Update all operands that match "From" in case there are multiple uses.
4105    for (; Op != E; ++Op) {
4106      if (*Op == From) {
4107        From.Val->removeUser(Op-User->op_begin(), User);
4108        *Op = To;
4109        Op->setUser(User);
4110        To.Val->addUser(Op-User->op_begin(), User);
4111      }
4112    }
4113
4114    // Now that we have modified User, add it back to the CSE maps.  If it
4115    // already exists there, recursively merge the results together.
4116    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4117    if (!Existing) {
4118      if (UpdateListener) UpdateListener->NodeUpdated(User);
4119      continue;  // Continue on to next user.
4120    }
4121
4122    // If there was already an existing matching node, use ReplaceAllUsesWith
4123    // to replace the dead one with the existing one.  This can cause
4124    // recursive merging of other unrelated nodes down the line.  The merging
4125    // can cause deletion of nodes that used the old value.  To handle this, we
4126    // use CSUL to remove them from the Users set.
4127    ReplaceAllUsesWith(User, Existing, &CSUL);
4128
4129    // User is now dead.  Notify a listener if present.
4130    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4131    DeleteNodeNotInCSEMaps(User);
4132  }
4133}
4134
4135/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
4136/// their allnodes order. It returns the maximum id.
4137unsigned SelectionDAG::AssignNodeIds() {
4138  unsigned Id = 0;
4139  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
4140    SDNode *N = I;
4141    N->setNodeId(Id++);
4142  }
4143  return Id;
4144}
4145
4146/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4147/// based on their topological order. It returns the maximum id and a vector
4148/// of the SDNodes* in assigned order by reference.
4149unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
4150  unsigned DAGSize = AllNodes.size();
4151  std::vector<unsigned> InDegree(DAGSize);
4152  std::vector<SDNode*> Sources;
4153
4154  // Use a two pass approach to avoid using a std::map which is slow.
4155  unsigned Id = 0;
4156  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
4157    SDNode *N = I;
4158    N->setNodeId(Id++);
4159    unsigned Degree = N->use_size();
4160    InDegree[N->getNodeId()] = Degree;
4161    if (Degree == 0)
4162      Sources.push_back(N);
4163  }
4164
4165  TopOrder.clear();
4166  while (!Sources.empty()) {
4167    SDNode *N = Sources.back();
4168    Sources.pop_back();
4169    TopOrder.push_back(N);
4170    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
4171      SDNode *P = I->getVal();
4172      unsigned Degree = --InDegree[P->getNodeId()];
4173      if (Degree == 0)
4174        Sources.push_back(P);
4175    }
4176  }
4177
4178  // Second pass, assign the actual topological order as node ids.
4179  Id = 0;
4180  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
4181       TI != TE; ++TI)
4182    (*TI)->setNodeId(Id++);
4183
4184  return Id;
4185}
4186
4187
4188
4189//===----------------------------------------------------------------------===//
4190//                              SDNode Class
4191//===----------------------------------------------------------------------===//
4192
4193// Out-of-line virtual method to give class a home.
4194void SDNode::ANCHOR() {}
4195void UnarySDNode::ANCHOR() {}
4196void BinarySDNode::ANCHOR() {}
4197void TernarySDNode::ANCHOR() {}
4198void HandleSDNode::ANCHOR() {}
4199void ConstantSDNode::ANCHOR() {}
4200void ConstantFPSDNode::ANCHOR() {}
4201void GlobalAddressSDNode::ANCHOR() {}
4202void FrameIndexSDNode::ANCHOR() {}
4203void JumpTableSDNode::ANCHOR() {}
4204void ConstantPoolSDNode::ANCHOR() {}
4205void BasicBlockSDNode::ANCHOR() {}
4206void SrcValueSDNode::ANCHOR() {}
4207void MemOperandSDNode::ANCHOR() {}
4208void RegisterSDNode::ANCHOR() {}
4209void DbgStopPointSDNode::ANCHOR() {}
4210void LabelSDNode::ANCHOR() {}
4211void ExternalSymbolSDNode::ANCHOR() {}
4212void CondCodeSDNode::ANCHOR() {}
4213void ARG_FLAGSSDNode::ANCHOR() {}
4214void VTSDNode::ANCHOR() {}
4215void MemSDNode::ANCHOR() {}
4216void LoadSDNode::ANCHOR() {}
4217void StoreSDNode::ANCHOR() {}
4218void AtomicSDNode::ANCHOR() {}
4219
4220HandleSDNode::~HandleSDNode() {
4221  SDVTList VTs = { 0, 0 };
4222  MorphNodeTo(ISD::HANDLENODE, VTs, SDOperandPtr(), 0);  // Drops operand uses.
4223}
4224
4225GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4226                                         MVT VT, int o)
4227  : SDNode(isa<GlobalVariable>(GA) &&
4228           cast<GlobalVariable>(GA)->isThreadLocal() ?
4229           // Thread Local
4230           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4231           // Non Thread Local
4232           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4233           getSDVTList(VT)), Offset(o) {
4234  TheGlobal = const_cast<GlobalValue*>(GA);
4235}
4236
4237/// getMemOperand - Return a MachineMemOperand object describing the memory
4238/// reference performed by this atomic.
4239MachineMemOperand AtomicSDNode::getMemOperand() const {
4240  int Size = (getValueType(0).getSizeInBits() + 7) >> 3;
4241  int Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4242  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4243
4244  // Check if the atomic references a frame index
4245  const FrameIndexSDNode *FI =
4246  dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4247  if (!getSrcValue() && FI)
4248    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
4249                             FI->getIndex(), Size, getAlignment());
4250  else
4251    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4252                             Size, getAlignment());
4253}
4254
4255/// getMemOperand - Return a MachineMemOperand object describing the memory
4256/// reference performed by this load or store.
4257MachineMemOperand LSBaseSDNode::getMemOperand() const {
4258  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4259  int Flags =
4260    getOpcode() == ISD::LOAD ? MachineMemOperand::MOLoad :
4261                               MachineMemOperand::MOStore;
4262  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4263
4264  // Check if the load references a frame index, and does not have
4265  // an SV attached.
4266  const FrameIndexSDNode *FI =
4267    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4268  if (!getSrcValue() && FI)
4269    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
4270                             FI->getIndex(), Size, getAlignment());
4271  else
4272    return MachineMemOperand(getSrcValue(), Flags,
4273                             getSrcValueOffset(), Size, getAlignment());
4274}
4275
4276/// Profile - Gather unique data for the node.
4277///
4278void SDNode::Profile(FoldingSetNodeID &ID) {
4279  AddNodeIDNode(ID, this);
4280}
4281
4282/// getValueTypeList - Return a pointer to the specified value type.
4283///
4284const MVT *SDNode::getValueTypeList(MVT VT) {
4285  if (VT.isExtended()) {
4286    static std::set<MVT, MVT::compareRawBits> EVTs;
4287    return &(*EVTs.insert(VT).first);
4288  } else {
4289    static MVT VTs[MVT::LAST_VALUETYPE];
4290    VTs[VT.getSimpleVT()] = VT;
4291    return &VTs[VT.getSimpleVT()];
4292  }
4293}
4294
4295/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4296/// indicated value.  This method ignores uses of other values defined by this
4297/// operation.
4298bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4299  assert(Value < getNumValues() && "Bad value!");
4300
4301  // If there is only one value, this is easy.
4302  if (getNumValues() == 1)
4303    return use_size() == NUses;
4304  if (use_size() < NUses) return false;
4305
4306  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4307
4308  SmallPtrSet<SDNode*, 32> UsersHandled;
4309
4310  // TODO: Only iterate over uses of a given value of the node
4311  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4312    if (*UI == TheValue) {
4313      if (NUses == 0)
4314        return false;
4315      --NUses;
4316    }
4317  }
4318
4319  // Found exactly the right number of uses?
4320  return NUses == 0;
4321}
4322
4323
4324/// hasAnyUseOfValue - Return true if there are any use of the indicated
4325/// value. This method ignores uses of other values defined by this operation.
4326bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4327  assert(Value < getNumValues() && "Bad value!");
4328
4329  if (use_empty()) return false;
4330
4331  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4332
4333  SmallPtrSet<SDNode*, 32> UsersHandled;
4334
4335  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4336    SDNode *User = UI->getUser();
4337    if (User->getNumOperands() == 1 ||
4338        UsersHandled.insert(User))     // First time we've seen this?
4339      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
4340        if (User->getOperand(i) == TheValue) {
4341          return true;
4342        }
4343  }
4344
4345  return false;
4346}
4347
4348
4349/// isOnlyUseOf - Return true if this node is the only use of N.
4350///
4351bool SDNode::isOnlyUseOf(SDNode *N) const {
4352  bool Seen = false;
4353  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4354    SDNode *User = I->getUser();
4355    if (User == this)
4356      Seen = true;
4357    else
4358      return false;
4359  }
4360
4361  return Seen;
4362}
4363
4364/// isOperand - Return true if this node is an operand of N.
4365///
4366bool SDOperand::isOperandOf(SDNode *N) const {
4367  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4368    if (*this == N->getOperand(i))
4369      return true;
4370  return false;
4371}
4372
4373bool SDNode::isOperandOf(SDNode *N) const {
4374  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4375    if (this == N->OperandList[i].getVal())
4376      return true;
4377  return false;
4378}
4379
4380/// reachesChainWithoutSideEffects - Return true if this operand (which must
4381/// be a chain) reaches the specified operand without crossing any
4382/// side-effecting instructions.  In practice, this looks through token
4383/// factors and non-volatile loads.  In order to remain efficient, this only
4384/// looks a couple of nodes in, it does not do an exhaustive search.
4385bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
4386                                               unsigned Depth) const {
4387  if (*this == Dest) return true;
4388
4389  // Don't search too deeply, we just want to be able to see through
4390  // TokenFactor's etc.
4391  if (Depth == 0) return false;
4392
4393  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4394  // of the operands of the TF reach dest, then we can do the xform.
4395  if (getOpcode() == ISD::TokenFactor) {
4396    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4397      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4398        return true;
4399    return false;
4400  }
4401
4402  // Loads don't have side effects, look through them.
4403  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4404    if (!Ld->isVolatile())
4405      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4406  }
4407  return false;
4408}
4409
4410
4411static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4412                            SmallPtrSet<SDNode *, 32> &Visited) {
4413  if (found || !Visited.insert(N))
4414    return;
4415
4416  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4417    SDNode *Op = N->getOperand(i).Val;
4418    if (Op == P) {
4419      found = true;
4420      return;
4421    }
4422    findPredecessor(Op, P, found, Visited);
4423  }
4424}
4425
4426/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4427/// is either an operand of N or it can be reached by recursively traversing
4428/// up the operands.
4429/// NOTE: this is an expensive method. Use it carefully.
4430bool SDNode::isPredecessorOf(SDNode *N) const {
4431  SmallPtrSet<SDNode *, 32> Visited;
4432  bool found = false;
4433  findPredecessor(N, this, found, Visited);
4434  return found;
4435}
4436
4437uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4438  assert(Num < NumOperands && "Invalid child # of SDNode!");
4439  return cast<ConstantSDNode>(OperandList[Num])->getValue();
4440}
4441
4442std::string SDNode::getOperationName(const SelectionDAG *G) const {
4443  switch (getOpcode()) {
4444  default:
4445    if (getOpcode() < ISD::BUILTIN_OP_END)
4446      return "<<Unknown DAG Node>>";
4447    else {
4448      if (G) {
4449        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4450          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
4451            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
4452
4453        TargetLowering &TLI = G->getTargetLoweringInfo();
4454        const char *Name =
4455          TLI.getTargetNodeName(getOpcode());
4456        if (Name) return Name;
4457      }
4458
4459      return "<<Unknown Target Node>>";
4460    }
4461
4462  case ISD::PREFETCH:      return "Prefetch";
4463  case ISD::MEMBARRIER:    return "MemBarrier";
4464  case ISD::ATOMIC_CMP_SWAP:  return "AtomicCmpSwap";
4465  case ISD::ATOMIC_LOAD_ADD:  return "AtomicLoadAdd";
4466  case ISD::ATOMIC_LOAD_SUB:  return "AtomicLoadSub";
4467  case ISD::ATOMIC_LOAD_AND:  return "AtomicLoadAnd";
4468  case ISD::ATOMIC_LOAD_OR:   return "AtomicLoadOr";
4469  case ISD::ATOMIC_LOAD_XOR:  return "AtomicLoadXor";
4470  case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
4471  case ISD::ATOMIC_LOAD_MIN:  return "AtomicLoadMin";
4472  case ISD::ATOMIC_LOAD_MAX:  return "AtomicLoadMax";
4473  case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
4474  case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
4475  case ISD::ATOMIC_SWAP:   return "AtomicSWAP";
4476  case ISD::PCMARKER:      return "PCMarker";
4477  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4478  case ISD::SRCVALUE:      return "SrcValue";
4479  case ISD::MEMOPERAND:    return "MemOperand";
4480  case ISD::EntryToken:    return "EntryToken";
4481  case ISD::TokenFactor:   return "TokenFactor";
4482  case ISD::AssertSext:    return "AssertSext";
4483  case ISD::AssertZext:    return "AssertZext";
4484
4485  case ISD::BasicBlock:    return "BasicBlock";
4486  case ISD::ARG_FLAGS:     return "ArgFlags";
4487  case ISD::VALUETYPE:     return "ValueType";
4488  case ISD::Register:      return "Register";
4489
4490  case ISD::Constant:      return "Constant";
4491  case ISD::ConstantFP:    return "ConstantFP";
4492  case ISD::GlobalAddress: return "GlobalAddress";
4493  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4494  case ISD::FrameIndex:    return "FrameIndex";
4495  case ISD::JumpTable:     return "JumpTable";
4496  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4497  case ISD::RETURNADDR: return "RETURNADDR";
4498  case ISD::FRAMEADDR: return "FRAMEADDR";
4499  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4500  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4501  case ISD::EHSELECTION: return "EHSELECTION";
4502  case ISD::EH_RETURN: return "EH_RETURN";
4503  case ISD::ConstantPool:  return "ConstantPool";
4504  case ISD::ExternalSymbol: return "ExternalSymbol";
4505  case ISD::INTRINSIC_WO_CHAIN: {
4506    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
4507    return Intrinsic::getName((Intrinsic::ID)IID);
4508  }
4509  case ISD::INTRINSIC_VOID:
4510  case ISD::INTRINSIC_W_CHAIN: {
4511    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
4512    return Intrinsic::getName((Intrinsic::ID)IID);
4513  }
4514
4515  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4516  case ISD::TargetConstant: return "TargetConstant";
4517  case ISD::TargetConstantFP:return "TargetConstantFP";
4518  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4519  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4520  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4521  case ISD::TargetJumpTable:  return "TargetJumpTable";
4522  case ISD::TargetConstantPool:  return "TargetConstantPool";
4523  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4524
4525  case ISD::CopyToReg:     return "CopyToReg";
4526  case ISD::CopyFromReg:   return "CopyFromReg";
4527  case ISD::UNDEF:         return "undef";
4528  case ISD::MERGE_VALUES:  return "merge_values";
4529  case ISD::INLINEASM:     return "inlineasm";
4530  case ISD::DBG_LABEL:     return "dbg_label";
4531  case ISD::EH_LABEL:      return "eh_label";
4532  case ISD::DECLARE:       return "declare";
4533  case ISD::HANDLENODE:    return "handlenode";
4534  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4535  case ISD::CALL:          return "call";
4536
4537  // Unary operators
4538  case ISD::FABS:   return "fabs";
4539  case ISD::FNEG:   return "fneg";
4540  case ISD::FSQRT:  return "fsqrt";
4541  case ISD::FSIN:   return "fsin";
4542  case ISD::FCOS:   return "fcos";
4543  case ISD::FPOWI:  return "fpowi";
4544  case ISD::FPOW:   return "fpow";
4545
4546  // Binary operators
4547  case ISD::ADD:    return "add";
4548  case ISD::SUB:    return "sub";
4549  case ISD::MUL:    return "mul";
4550  case ISD::MULHU:  return "mulhu";
4551  case ISD::MULHS:  return "mulhs";
4552  case ISD::SDIV:   return "sdiv";
4553  case ISD::UDIV:   return "udiv";
4554  case ISD::SREM:   return "srem";
4555  case ISD::UREM:   return "urem";
4556  case ISD::SMUL_LOHI:  return "smul_lohi";
4557  case ISD::UMUL_LOHI:  return "umul_lohi";
4558  case ISD::SDIVREM:    return "sdivrem";
4559  case ISD::UDIVREM:    return "divrem";
4560  case ISD::AND:    return "and";
4561  case ISD::OR:     return "or";
4562  case ISD::XOR:    return "xor";
4563  case ISD::SHL:    return "shl";
4564  case ISD::SRA:    return "sra";
4565  case ISD::SRL:    return "srl";
4566  case ISD::ROTL:   return "rotl";
4567  case ISD::ROTR:   return "rotr";
4568  case ISD::FADD:   return "fadd";
4569  case ISD::FSUB:   return "fsub";
4570  case ISD::FMUL:   return "fmul";
4571  case ISD::FDIV:   return "fdiv";
4572  case ISD::FREM:   return "frem";
4573  case ISD::FCOPYSIGN: return "fcopysign";
4574  case ISD::FGETSIGN:  return "fgetsign";
4575
4576  case ISD::SETCC:       return "setcc";
4577  case ISD::VSETCC:      return "vsetcc";
4578  case ISD::SELECT:      return "select";
4579  case ISD::SELECT_CC:   return "select_cc";
4580  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
4581  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
4582  case ISD::CONCAT_VECTORS:      return "concat_vectors";
4583  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
4584  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
4585  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
4586  case ISD::CARRY_FALSE:         return "carry_false";
4587  case ISD::ADDC:        return "addc";
4588  case ISD::ADDE:        return "adde";
4589  case ISD::SUBC:        return "subc";
4590  case ISD::SUBE:        return "sube";
4591  case ISD::SHL_PARTS:   return "shl_parts";
4592  case ISD::SRA_PARTS:   return "sra_parts";
4593  case ISD::SRL_PARTS:   return "srl_parts";
4594
4595  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
4596  case ISD::INSERT_SUBREG:      return "insert_subreg";
4597
4598  // Conversion operators.
4599  case ISD::SIGN_EXTEND: return "sign_extend";
4600  case ISD::ZERO_EXTEND: return "zero_extend";
4601  case ISD::ANY_EXTEND:  return "any_extend";
4602  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
4603  case ISD::TRUNCATE:    return "truncate";
4604  case ISD::FP_ROUND:    return "fp_round";
4605  case ISD::FLT_ROUNDS_: return "flt_rounds";
4606  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
4607  case ISD::FP_EXTEND:   return "fp_extend";
4608
4609  case ISD::SINT_TO_FP:  return "sint_to_fp";
4610  case ISD::UINT_TO_FP:  return "uint_to_fp";
4611  case ISD::FP_TO_SINT:  return "fp_to_sint";
4612  case ISD::FP_TO_UINT:  return "fp_to_uint";
4613  case ISD::BIT_CONVERT: return "bit_convert";
4614
4615    // Control flow instructions
4616  case ISD::BR:      return "br";
4617  case ISD::BRIND:   return "brind";
4618  case ISD::BR_JT:   return "br_jt";
4619  case ISD::BRCOND:  return "brcond";
4620  case ISD::BR_CC:   return "br_cc";
4621  case ISD::RET:     return "ret";
4622  case ISD::CALLSEQ_START:  return "callseq_start";
4623  case ISD::CALLSEQ_END:    return "callseq_end";
4624
4625    // Other operators
4626  case ISD::LOAD:               return "load";
4627  case ISD::STORE:              return "store";
4628  case ISD::VAARG:              return "vaarg";
4629  case ISD::VACOPY:             return "vacopy";
4630  case ISD::VAEND:              return "vaend";
4631  case ISD::VASTART:            return "vastart";
4632  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4633  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4634  case ISD::BUILD_PAIR:         return "build_pair";
4635  case ISD::STACKSAVE:          return "stacksave";
4636  case ISD::STACKRESTORE:       return "stackrestore";
4637  case ISD::TRAP:               return "trap";
4638
4639  // Bit manipulation
4640  case ISD::BSWAP:   return "bswap";
4641  case ISD::CTPOP:   return "ctpop";
4642  case ISD::CTTZ:    return "cttz";
4643  case ISD::CTLZ:    return "ctlz";
4644
4645  // Debug info
4646  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
4647  case ISD::DEBUG_LOC: return "debug_loc";
4648
4649  // Trampolines
4650  case ISD::TRAMPOLINE: return "trampoline";
4651
4652  case ISD::CONDCODE:
4653    switch (cast<CondCodeSDNode>(this)->get()) {
4654    default: assert(0 && "Unknown setcc condition!");
4655    case ISD::SETOEQ:  return "setoeq";
4656    case ISD::SETOGT:  return "setogt";
4657    case ISD::SETOGE:  return "setoge";
4658    case ISD::SETOLT:  return "setolt";
4659    case ISD::SETOLE:  return "setole";
4660    case ISD::SETONE:  return "setone";
4661
4662    case ISD::SETO:    return "seto";
4663    case ISD::SETUO:   return "setuo";
4664    case ISD::SETUEQ:  return "setue";
4665    case ISD::SETUGT:  return "setugt";
4666    case ISD::SETUGE:  return "setuge";
4667    case ISD::SETULT:  return "setult";
4668    case ISD::SETULE:  return "setule";
4669    case ISD::SETUNE:  return "setune";
4670
4671    case ISD::SETEQ:   return "seteq";
4672    case ISD::SETGT:   return "setgt";
4673    case ISD::SETGE:   return "setge";
4674    case ISD::SETLT:   return "setlt";
4675    case ISD::SETLE:   return "setle";
4676    case ISD::SETNE:   return "setne";
4677    }
4678  }
4679}
4680
4681const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4682  switch (AM) {
4683  default:
4684    return "";
4685  case ISD::PRE_INC:
4686    return "<pre-inc>";
4687  case ISD::PRE_DEC:
4688    return "<pre-dec>";
4689  case ISD::POST_INC:
4690    return "<post-inc>";
4691  case ISD::POST_DEC:
4692    return "<post-dec>";
4693  }
4694}
4695
4696std::string ISD::ArgFlagsTy::getArgFlagsString() {
4697  std::string S = "< ";
4698
4699  if (isZExt())
4700    S += "zext ";
4701  if (isSExt())
4702    S += "sext ";
4703  if (isInReg())
4704    S += "inreg ";
4705  if (isSRet())
4706    S += "sret ";
4707  if (isByVal())
4708    S += "byval ";
4709  if (isNest())
4710    S += "nest ";
4711  if (getByValAlign())
4712    S += "byval-align:" + utostr(getByValAlign()) + " ";
4713  if (getOrigAlign())
4714    S += "orig-align:" + utostr(getOrigAlign()) + " ";
4715  if (getByValSize())
4716    S += "byval-size:" + utostr(getByValSize()) + " ";
4717  return S + ">";
4718}
4719
4720void SDNode::dump() const { dump(0); }
4721void SDNode::dump(const SelectionDAG *G) const {
4722  cerr << (void*)this << ": ";
4723
4724  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4725    if (i) cerr << ",";
4726    if (getValueType(i) == MVT::Other)
4727      cerr << "ch";
4728    else
4729      cerr << getValueType(i).getMVTString();
4730  }
4731  cerr << " = " << getOperationName(G);
4732
4733  cerr << " ";
4734  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4735    if (i) cerr << ", ";
4736    cerr << (void*)getOperand(i).Val;
4737    if (unsigned RN = getOperand(i).ResNo)
4738      cerr << ":" << RN;
4739  }
4740
4741  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4742    SDNode *Mask = getOperand(2).Val;
4743    cerr << "<";
4744    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4745      if (i) cerr << ",";
4746      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4747        cerr << "u";
4748      else
4749        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4750    }
4751    cerr << ">";
4752  }
4753
4754  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4755    cerr << "<" << CSDN->getValue() << ">";
4756  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4757    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4758      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4759    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4760      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4761    else {
4762      cerr << "<APFloat(";
4763      CSDN->getValueAPF().convertToAPInt().dump();
4764      cerr << ")>";
4765    }
4766  } else if (const GlobalAddressSDNode *GADN =
4767             dyn_cast<GlobalAddressSDNode>(this)) {
4768    int offset = GADN->getOffset();
4769    cerr << "<";
4770    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4771    if (offset > 0)
4772      cerr << " + " << offset;
4773    else
4774      cerr << " " << offset;
4775  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4776    cerr << "<" << FIDN->getIndex() << ">";
4777  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4778    cerr << "<" << JTDN->getIndex() << ">";
4779  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4780    int offset = CP->getOffset();
4781    if (CP->isMachineConstantPoolEntry())
4782      cerr << "<" << *CP->getMachineCPVal() << ">";
4783    else
4784      cerr << "<" << *CP->getConstVal() << ">";
4785    if (offset > 0)
4786      cerr << " + " << offset;
4787    else
4788      cerr << " " << offset;
4789  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4790    cerr << "<";
4791    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4792    if (LBB)
4793      cerr << LBB->getName() << " ";
4794    cerr << (const void*)BBDN->getBasicBlock() << ">";
4795  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4796    if (G && R->getReg() &&
4797        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4798      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4799    } else {
4800      cerr << " #" << R->getReg();
4801    }
4802  } else if (const ExternalSymbolSDNode *ES =
4803             dyn_cast<ExternalSymbolSDNode>(this)) {
4804    cerr << "'" << ES->getSymbol() << "'";
4805  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4806    if (M->getValue())
4807      cerr << "<" << M->getValue() << ">";
4808    else
4809      cerr << "<null>";
4810  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4811    if (M->MO.getValue())
4812      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4813    else
4814      cerr << "<null:" << M->MO.getOffset() << ">";
4815  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
4816    cerr << N->getArgFlags().getArgFlagsString();
4817  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4818    cerr << ":" << N->getVT().getMVTString();
4819  }
4820  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4821    const Value *SrcValue = LD->getSrcValue();
4822    int SrcOffset = LD->getSrcValueOffset();
4823    cerr << " <";
4824    if (SrcValue)
4825      cerr << SrcValue;
4826    else
4827      cerr << "null";
4828    cerr << ":" << SrcOffset << ">";
4829
4830    bool doExt = true;
4831    switch (LD->getExtensionType()) {
4832    default: doExt = false; break;
4833    case ISD::EXTLOAD:
4834      cerr << " <anyext ";
4835      break;
4836    case ISD::SEXTLOAD:
4837      cerr << " <sext ";
4838      break;
4839    case ISD::ZEXTLOAD:
4840      cerr << " <zext ";
4841      break;
4842    }
4843    if (doExt)
4844      cerr << LD->getMemoryVT().getMVTString() << ">";
4845
4846    const char *AM = getIndexedModeName(LD->getAddressingMode());
4847    if (*AM)
4848      cerr << " " << AM;
4849    if (LD->isVolatile())
4850      cerr << " <volatile>";
4851    cerr << " alignment=" << LD->getAlignment();
4852  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4853    const Value *SrcValue = ST->getSrcValue();
4854    int SrcOffset = ST->getSrcValueOffset();
4855    cerr << " <";
4856    if (SrcValue)
4857      cerr << SrcValue;
4858    else
4859      cerr << "null";
4860    cerr << ":" << SrcOffset << ">";
4861
4862    if (ST->isTruncatingStore())
4863      cerr << " <trunc "
4864           << ST->getMemoryVT().getMVTString() << ">";
4865
4866    const char *AM = getIndexedModeName(ST->getAddressingMode());
4867    if (*AM)
4868      cerr << " " << AM;
4869    if (ST->isVolatile())
4870      cerr << " <volatile>";
4871    cerr << " alignment=" << ST->getAlignment();
4872  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
4873    const Value *SrcValue = AT->getSrcValue();
4874    int SrcOffset = AT->getSrcValueOffset();
4875    cerr << " <";
4876    if (SrcValue)
4877      cerr << SrcValue;
4878    else
4879      cerr << "null";
4880    cerr << ":" << SrcOffset << ">";
4881    if (AT->isVolatile())
4882      cerr << " <volatile>";
4883    cerr << " alignment=" << AT->getAlignment();
4884  }
4885}
4886
4887static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4888  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4889    if (N->getOperand(i).Val->hasOneUse())
4890      DumpNodes(N->getOperand(i).Val, indent+2, G);
4891    else
4892      cerr << "\n" << std::string(indent+2, ' ')
4893           << (void*)N->getOperand(i).Val << ": <multiple use>";
4894
4895
4896  cerr << "\n" << std::string(indent, ' ');
4897  N->dump(G);
4898}
4899
4900void SelectionDAG::dump() const {
4901  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4902  std::vector<const SDNode*> Nodes;
4903  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4904       I != E; ++I)
4905    Nodes.push_back(I);
4906
4907  std::sort(Nodes.begin(), Nodes.end());
4908
4909  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4910    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4911      DumpNodes(Nodes[i], 2, this);
4912  }
4913
4914  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4915
4916  cerr << "\n\n";
4917}
4918
4919const Type *ConstantPoolSDNode::getType() const {
4920  if (isMachineConstantPoolEntry())
4921    return Val.MachineCPVal->getType();
4922  return Val.ConstVal->getType();
4923}
4924