SelectionDAG.cpp revision 63e3f14df6cf76f1a12de1153e1114f4b20b15a9
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/Support/MathExtras.h"
22#include "llvm/Target/MRegisterInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/ADT/SetVector.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringExtras.h"
30#include <algorithm>
31#include <cmath>
32using namespace llvm;
33
34/// makeVTList - Return an instance of the SDVTList struct initialized with the
35/// specified members.
36static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
37  SDVTList Res = {VTs, NumVTs};
38  return Res;
39}
40
41//===----------------------------------------------------------------------===//
42//                              ConstantFPSDNode Class
43//===----------------------------------------------------------------------===//
44
45/// isExactlyValue - We don't rely on operator== working on double values, as
46/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
47/// As such, this method can be used to do an exact bit-for-bit comparison of
48/// two floating point values.
49bool ConstantFPSDNode::isExactlyValue(double V) const {
50  return DoubleToBits(V) == DoubleToBits(Value);
51}
52
53//===----------------------------------------------------------------------===//
54//                              ISD Namespace
55//===----------------------------------------------------------------------===//
56
57/// isBuildVectorAllOnes - Return true if the specified node is a
58/// BUILD_VECTOR where all of the elements are ~0 or undef.
59bool ISD::isBuildVectorAllOnes(const SDNode *N) {
60  // Look through a bit convert.
61  if (N->getOpcode() == ISD::BIT_CONVERT)
62    N = N->getOperand(0).Val;
63
64  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
65
66  unsigned i = 0, e = N->getNumOperands();
67
68  // Skip over all of the undef values.
69  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
70    ++i;
71
72  // Do not accept an all-undef vector.
73  if (i == e) return false;
74
75  // Do not accept build_vectors that aren't all constants or which have non-~0
76  // elements.
77  SDOperand NotZero = N->getOperand(i);
78  if (isa<ConstantSDNode>(NotZero)) {
79    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
80      return false;
81  } else if (isa<ConstantFPSDNode>(NotZero)) {
82    MVT::ValueType VT = NotZero.getValueType();
83    if (VT== MVT::f64) {
84      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
85          (uint64_t)-1)
86        return false;
87    } else {
88      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
89          (uint32_t)-1)
90        return false;
91    }
92  } else
93    return false;
94
95  // Okay, we have at least one ~0 value, check to see if the rest match or are
96  // undefs.
97  for (++i; i != e; ++i)
98    if (N->getOperand(i) != NotZero &&
99        N->getOperand(i).getOpcode() != ISD::UNDEF)
100      return false;
101  return true;
102}
103
104
105/// isBuildVectorAllZeros - Return true if the specified node is a
106/// BUILD_VECTOR where all of the elements are 0 or undef.
107bool ISD::isBuildVectorAllZeros(const SDNode *N) {
108  // Look through a bit convert.
109  if (N->getOpcode() == ISD::BIT_CONVERT)
110    N = N->getOperand(0).Val;
111
112  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
113
114  unsigned i = 0, e = N->getNumOperands();
115
116  // Skip over all of the undef values.
117  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
118    ++i;
119
120  // Do not accept an all-undef vector.
121  if (i == e) return false;
122
123  // Do not accept build_vectors that aren't all constants or which have non-~0
124  // elements.
125  SDOperand Zero = N->getOperand(i);
126  if (isa<ConstantSDNode>(Zero)) {
127    if (!cast<ConstantSDNode>(Zero)->isNullValue())
128      return false;
129  } else if (isa<ConstantFPSDNode>(Zero)) {
130    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
131      return false;
132  } else
133    return false;
134
135  // Okay, we have at least one ~0 value, check to see if the rest match or are
136  // undefs.
137  for (++i; i != e; ++i)
138    if (N->getOperand(i) != Zero &&
139        N->getOperand(i).getOpcode() != ISD::UNDEF)
140      return false;
141  return true;
142}
143
144/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
145/// when given the operation for (X op Y).
146ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
147  // To perform this operation, we just need to swap the L and G bits of the
148  // operation.
149  unsigned OldL = (Operation >> 2) & 1;
150  unsigned OldG = (Operation >> 1) & 1;
151  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
152                       (OldL << 1) |       // New G bit
153                       (OldG << 2));        // New L bit.
154}
155
156/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
157/// 'op' is a valid SetCC operation.
158ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
159  unsigned Operation = Op;
160  if (isInteger)
161    Operation ^= 7;   // Flip L, G, E bits, but not U.
162  else
163    Operation ^= 15;  // Flip all of the condition bits.
164  if (Operation > ISD::SETTRUE2)
165    Operation &= ~8;     // Don't let N and U bits get set.
166  return ISD::CondCode(Operation);
167}
168
169
170/// isSignedOp - For an integer comparison, return 1 if the comparison is a
171/// signed operation and 2 if the result is an unsigned comparison.  Return zero
172/// if the operation does not depend on the sign of the input (setne and seteq).
173static int isSignedOp(ISD::CondCode Opcode) {
174  switch (Opcode) {
175  default: assert(0 && "Illegal integer setcc operation!");
176  case ISD::SETEQ:
177  case ISD::SETNE: return 0;
178  case ISD::SETLT:
179  case ISD::SETLE:
180  case ISD::SETGT:
181  case ISD::SETGE: return 1;
182  case ISD::SETULT:
183  case ISD::SETULE:
184  case ISD::SETUGT:
185  case ISD::SETUGE: return 2;
186  }
187}
188
189/// getSetCCOrOperation - Return the result of a logical OR between different
190/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
191/// returns SETCC_INVALID if it is not possible to represent the resultant
192/// comparison.
193ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
194                                       bool isInteger) {
195  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
196    // Cannot fold a signed integer setcc with an unsigned integer setcc.
197    return ISD::SETCC_INVALID;
198
199  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
200
201  // If the N and U bits get set then the resultant comparison DOES suddenly
202  // care about orderedness, and is true when ordered.
203  if (Op > ISD::SETTRUE2)
204    Op &= ~16;     // Clear the U bit if the N bit is set.
205
206  // Canonicalize illegal integer setcc's.
207  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
208    Op = ISD::SETNE;
209
210  return ISD::CondCode(Op);
211}
212
213/// getSetCCAndOperation - Return the result of a logical AND between different
214/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
215/// function returns zero if it is not possible to represent the resultant
216/// comparison.
217ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
218                                        bool isInteger) {
219  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
220    // Cannot fold a signed setcc with an unsigned setcc.
221    return ISD::SETCC_INVALID;
222
223  // Combine all of the condition bits.
224  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
225
226  // Canonicalize illegal integer setcc's.
227  if (isInteger) {
228    switch (Result) {
229    default: break;
230    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
231    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
232    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
233    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
234    }
235  }
236
237  return Result;
238}
239
240const TargetMachine &SelectionDAG::getTarget() const {
241  return TLI.getTargetMachine();
242}
243
244//===----------------------------------------------------------------------===//
245//                           SDNode Profile Support
246//===----------------------------------------------------------------------===//
247
248/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
249///
250static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
251  ID.AddInteger(OpC);
252}
253
254/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
255/// solely with their pointer.
256void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
257  ID.AddPointer(VTList.VTs);
258}
259
260/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
261///
262static void AddNodeIDOperands(FoldingSetNodeID &ID,
263                              const SDOperand *Ops, unsigned NumOps) {
264  for (; NumOps; --NumOps, ++Ops) {
265    ID.AddPointer(Ops->Val);
266    ID.AddInteger(Ops->ResNo);
267  }
268}
269
270static void AddNodeIDNode(FoldingSetNodeID &ID,
271                          unsigned short OpC, SDVTList VTList,
272                          const SDOperand *OpList, unsigned N) {
273  AddNodeIDOpcode(ID, OpC);
274  AddNodeIDValueTypes(ID, VTList);
275  AddNodeIDOperands(ID, OpList, N);
276}
277
278/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
279/// data.
280static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
281  AddNodeIDOpcode(ID, N->getOpcode());
282  // Add the return value info.
283  AddNodeIDValueTypes(ID, N->getVTList());
284  // Add the operand info.
285  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
286
287  // Handle SDNode leafs with special info.
288  if (N->getNumOperands() == 0) {
289    switch (N->getOpcode()) {
290    default: break;  // Normal nodes don't need extra info.
291    case ISD::TargetConstant:
292    case ISD::Constant:
293      ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
294      break;
295    case ISD::TargetConstantFP:
296    case ISD::ConstantFP:
297      ID.AddDouble(cast<ConstantFPSDNode>(N)->getValue());
298      break;
299    case ISD::TargetGlobalAddress:
300    case ISD::GlobalAddress: {
301      GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
302      ID.AddPointer(GA->getGlobal());
303      ID.AddInteger(GA->getOffset());
304      break;
305    }
306    case ISD::BasicBlock:
307      ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
308      break;
309    case ISD::Register:
310      ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
311      break;
312    case ISD::SRCVALUE: {
313      SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
314      ID.AddPointer(SV->getValue());
315      ID.AddInteger(SV->getOffset());
316      break;
317    }
318    case ISD::FrameIndex:
319    case ISD::TargetFrameIndex:
320      ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
321      break;
322    case ISD::JumpTable:
323    case ISD::TargetJumpTable:
324      ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
325      break;
326    case ISD::ConstantPool:
327    case ISD::TargetConstantPool: {
328      ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
329      ID.AddInteger(CP->getAlignment());
330      ID.AddInteger(CP->getOffset());
331      if (CP->isMachineConstantPoolEntry())
332        CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
333      else
334        ID.AddPointer(CP->getConstVal());
335      break;
336    }
337    case ISD::LOAD: {
338      LoadSDNode *LD = cast<LoadSDNode>(N);
339      ID.AddInteger(LD->getAddressingMode());
340      ID.AddInteger(LD->getExtensionType());
341      ID.AddInteger(LD->getLoadedVT());
342      ID.AddPointer(LD->getSrcValue());
343      ID.AddInteger(LD->getSrcValueOffset());
344      ID.AddInteger(LD->getAlignment());
345      ID.AddInteger(LD->isVolatile());
346      break;
347    }
348    case ISD::STORE: {
349      StoreSDNode *ST = cast<StoreSDNode>(N);
350      ID.AddInteger(ST->getAddressingMode());
351      ID.AddInteger(ST->isTruncatingStore());
352      ID.AddInteger(ST->getStoredVT());
353      ID.AddPointer(ST->getSrcValue());
354      ID.AddInteger(ST->getSrcValueOffset());
355      ID.AddInteger(ST->getAlignment());
356      ID.AddInteger(ST->isVolatile());
357      break;
358    }
359    }
360  }
361}
362
363//===----------------------------------------------------------------------===//
364//                              SelectionDAG Class
365//===----------------------------------------------------------------------===//
366
367/// RemoveDeadNodes - This method deletes all unreachable nodes in the
368/// SelectionDAG.
369void SelectionDAG::RemoveDeadNodes() {
370  // Create a dummy node (which is not added to allnodes), that adds a reference
371  // to the root node, preventing it from being deleted.
372  HandleSDNode Dummy(getRoot());
373
374  SmallVector<SDNode*, 128> DeadNodes;
375
376  // Add all obviously-dead nodes to the DeadNodes worklist.
377  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
378    if (I->use_empty())
379      DeadNodes.push_back(I);
380
381  // Process the worklist, deleting the nodes and adding their uses to the
382  // worklist.
383  while (!DeadNodes.empty()) {
384    SDNode *N = DeadNodes.back();
385    DeadNodes.pop_back();
386
387    // Take the node out of the appropriate CSE map.
388    RemoveNodeFromCSEMaps(N);
389
390    // Next, brutally remove the operand list.  This is safe to do, as there are
391    // no cycles in the graph.
392    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
393      SDNode *Operand = I->Val;
394      Operand->removeUser(N);
395
396      // Now that we removed this operand, see if there are no uses of it left.
397      if (Operand->use_empty())
398        DeadNodes.push_back(Operand);
399    }
400    if (N->OperandsNeedDelete)
401      delete[] N->OperandList;
402    N->OperandList = 0;
403    N->NumOperands = 0;
404
405    // Finally, remove N itself.
406    AllNodes.erase(N);
407  }
408
409  // If the root changed (e.g. it was a dead load, update the root).
410  setRoot(Dummy.getValue());
411}
412
413void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
414  SmallVector<SDNode*, 16> DeadNodes;
415  DeadNodes.push_back(N);
416
417  // Process the worklist, deleting the nodes and adding their uses to the
418  // worklist.
419  while (!DeadNodes.empty()) {
420    SDNode *N = DeadNodes.back();
421    DeadNodes.pop_back();
422
423    // Take the node out of the appropriate CSE map.
424    RemoveNodeFromCSEMaps(N);
425
426    // Next, brutally remove the operand list.  This is safe to do, as there are
427    // no cycles in the graph.
428    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
429      SDNode *Operand = I->Val;
430      Operand->removeUser(N);
431
432      // Now that we removed this operand, see if there are no uses of it left.
433      if (Operand->use_empty())
434        DeadNodes.push_back(Operand);
435    }
436    if (N->OperandsNeedDelete)
437      delete[] N->OperandList;
438    N->OperandList = 0;
439    N->NumOperands = 0;
440
441    // Finally, remove N itself.
442    Deleted.push_back(N);
443    AllNodes.erase(N);
444  }
445}
446
447void SelectionDAG::DeleteNode(SDNode *N) {
448  assert(N->use_empty() && "Cannot delete a node that is not dead!");
449
450  // First take this out of the appropriate CSE map.
451  RemoveNodeFromCSEMaps(N);
452
453  // Finally, remove uses due to operands of this node, remove from the
454  // AllNodes list, and delete the node.
455  DeleteNodeNotInCSEMaps(N);
456}
457
458void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
459
460  // Remove it from the AllNodes list.
461  AllNodes.remove(N);
462
463  // Drop all of the operands and decrement used nodes use counts.
464  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
465    I->Val->removeUser(N);
466  if (N->OperandsNeedDelete)
467    delete[] N->OperandList;
468  N->OperandList = 0;
469  N->NumOperands = 0;
470
471  delete N;
472}
473
474/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
475/// correspond to it.  This is useful when we're about to delete or repurpose
476/// the node.  We don't want future request for structurally identical nodes
477/// to return N anymore.
478void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
479  bool Erased = false;
480  switch (N->getOpcode()) {
481  case ISD::HANDLENODE: return;  // noop.
482  case ISD::STRING:
483    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
484    break;
485  case ISD::CONDCODE:
486    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
487           "Cond code doesn't exist!");
488    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
489    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
490    break;
491  case ISD::ExternalSymbol:
492    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
493    break;
494  case ISD::TargetExternalSymbol:
495    Erased =
496      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
497    break;
498  case ISD::VALUETYPE:
499    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
500    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
501    break;
502  default:
503    // Remove it from the CSE Map.
504    Erased = CSEMap.RemoveNode(N);
505    break;
506  }
507#ifndef NDEBUG
508  // Verify that the node was actually in one of the CSE maps, unless it has a
509  // flag result (which cannot be CSE'd) or is one of the special cases that are
510  // not subject to CSE.
511  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
512      !N->isTargetOpcode()) {
513    N->dump();
514    cerr << "\n";
515    assert(0 && "Node is not in map!");
516  }
517#endif
518}
519
520/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
521/// has been taken out and modified in some way.  If the specified node already
522/// exists in the CSE maps, do not modify the maps, but return the existing node
523/// instead.  If it doesn't exist, add it and return null.
524///
525SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
526  assert(N->getNumOperands() && "This is a leaf node!");
527  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
528    return 0;    // Never add these nodes.
529
530  // Check that remaining values produced are not flags.
531  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
532    if (N->getValueType(i) == MVT::Flag)
533      return 0;   // Never CSE anything that produces a flag.
534
535  SDNode *New = CSEMap.GetOrInsertNode(N);
536  if (New != N) return New;  // Node already existed.
537  return 0;
538}
539
540/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
541/// were replaced with those specified.  If this node is never memoized,
542/// return null, otherwise return a pointer to the slot it would take.  If a
543/// node already exists with these operands, the slot will be non-null.
544SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
545                                           void *&InsertPos) {
546  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
547    return 0;    // Never add these nodes.
548
549  // Check that remaining values produced are not flags.
550  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
551    if (N->getValueType(i) == MVT::Flag)
552      return 0;   // Never CSE anything that produces a flag.
553
554  SDOperand Ops[] = { Op };
555  FoldingSetNodeID ID;
556  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
557  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
558}
559
560/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
561/// were replaced with those specified.  If this node is never memoized,
562/// return null, otherwise return a pointer to the slot it would take.  If a
563/// node already exists with these operands, the slot will be non-null.
564SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
565                                           SDOperand Op1, SDOperand Op2,
566                                           void *&InsertPos) {
567  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
568    return 0;    // Never add these nodes.
569
570  // Check that remaining values produced are not flags.
571  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
572    if (N->getValueType(i) == MVT::Flag)
573      return 0;   // Never CSE anything that produces a flag.
574
575  SDOperand Ops[] = { Op1, Op2 };
576  FoldingSetNodeID ID;
577  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
578  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
579}
580
581
582/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
583/// were replaced with those specified.  If this node is never memoized,
584/// return null, otherwise return a pointer to the slot it would take.  If a
585/// node already exists with these operands, the slot will be non-null.
586SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
587                                           const SDOperand *Ops,unsigned NumOps,
588                                           void *&InsertPos) {
589  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
590    return 0;    // Never add these nodes.
591
592  // Check that remaining values produced are not flags.
593  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
594    if (N->getValueType(i) == MVT::Flag)
595      return 0;   // Never CSE anything that produces a flag.
596
597  FoldingSetNodeID ID;
598  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), 0, 0);
599
600  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
601    ID.AddInteger(LD->getAddressingMode());
602    ID.AddInteger(LD->getExtensionType());
603    ID.AddInteger(LD->getLoadedVT());
604    ID.AddPointer(LD->getSrcValue());
605    ID.AddInteger(LD->getSrcValueOffset());
606    ID.AddInteger(LD->getAlignment());
607    ID.AddInteger(LD->isVolatile());
608  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
609    ID.AddInteger(ST->getAddressingMode());
610    ID.AddInteger(ST->isTruncatingStore());
611    ID.AddInteger(ST->getStoredVT());
612    ID.AddPointer(ST->getSrcValue());
613    ID.AddInteger(ST->getSrcValueOffset());
614    ID.AddInteger(ST->getAlignment());
615    ID.AddInteger(ST->isVolatile());
616  }
617
618  AddNodeIDOperands(ID, Ops, NumOps);
619  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
620}
621
622
623SelectionDAG::~SelectionDAG() {
624  while (!AllNodes.empty()) {
625    SDNode *N = AllNodes.begin();
626    N->SetNextInBucket(0);
627    if (N->OperandsNeedDelete)
628      delete [] N->OperandList;
629    N->OperandList = 0;
630    N->NumOperands = 0;
631    AllNodes.pop_front();
632  }
633}
634
635SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
636  if (Op.getValueType() == VT) return Op;
637  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
638  return getNode(ISD::AND, Op.getValueType(), Op,
639                 getConstant(Imm, Op.getValueType()));
640}
641
642SDOperand SelectionDAG::getString(const std::string &Val) {
643  StringSDNode *&N = StringNodes[Val];
644  if (!N) {
645    N = new StringSDNode(Val);
646    AllNodes.push_back(N);
647  }
648  return SDOperand(N, 0);
649}
650
651SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
652  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
653  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
654
655  // Mask out any bits that are not valid for this constant.
656  Val &= MVT::getIntVTBitMask(VT);
657
658  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
659  FoldingSetNodeID ID;
660  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
661  ID.AddInteger(Val);
662  void *IP = 0;
663  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
664    return SDOperand(E, 0);
665  SDNode *N = new ConstantSDNode(isT, Val, VT);
666  CSEMap.InsertNode(N, IP);
667  AllNodes.push_back(N);
668  return SDOperand(N, 0);
669}
670
671
672SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
673                                      bool isTarget) {
674  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
675  if (VT == MVT::f32)
676    Val = (float)Val;  // Mask out extra precision.
677
678  // Do the map lookup using the actual bit pattern for the floating point
679  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
680  // we don't have issues with SNANs.
681  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
682  FoldingSetNodeID ID;
683  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
684  ID.AddDouble(Val);
685  void *IP = 0;
686  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
687    return SDOperand(E, 0);
688  SDNode *N = new ConstantFPSDNode(isTarget, Val, VT);
689  CSEMap.InsertNode(N, IP);
690  AllNodes.push_back(N);
691  return SDOperand(N, 0);
692}
693
694SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
695                                         MVT::ValueType VT, int Offset,
696                                         bool isTargetGA) {
697  unsigned Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
698  FoldingSetNodeID ID;
699  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
700  ID.AddPointer(GV);
701  ID.AddInteger(Offset);
702  void *IP = 0;
703  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
704   return SDOperand(E, 0);
705  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
706  CSEMap.InsertNode(N, IP);
707  AllNodes.push_back(N);
708  return SDOperand(N, 0);
709}
710
711SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
712                                      bool isTarget) {
713  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
714  FoldingSetNodeID ID;
715  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
716  ID.AddInteger(FI);
717  void *IP = 0;
718  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
719    return SDOperand(E, 0);
720  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
721  CSEMap.InsertNode(N, IP);
722  AllNodes.push_back(N);
723  return SDOperand(N, 0);
724}
725
726SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
727  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
728  FoldingSetNodeID ID;
729  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
730  ID.AddInteger(JTI);
731  void *IP = 0;
732  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
733    return SDOperand(E, 0);
734  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
735  CSEMap.InsertNode(N, IP);
736  AllNodes.push_back(N);
737  return SDOperand(N, 0);
738}
739
740SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
741                                        unsigned Alignment, int Offset,
742                                        bool isTarget) {
743  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
744  FoldingSetNodeID ID;
745  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
746  ID.AddInteger(Alignment);
747  ID.AddInteger(Offset);
748  ID.AddPointer(C);
749  void *IP = 0;
750  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
751    return SDOperand(E, 0);
752  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
753  CSEMap.InsertNode(N, IP);
754  AllNodes.push_back(N);
755  return SDOperand(N, 0);
756}
757
758
759SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
760                                        MVT::ValueType VT,
761                                        unsigned Alignment, int Offset,
762                                        bool isTarget) {
763  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
764  FoldingSetNodeID ID;
765  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
766  ID.AddInteger(Alignment);
767  ID.AddInteger(Offset);
768  C->AddSelectionDAGCSEId(ID);
769  void *IP = 0;
770  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
771    return SDOperand(E, 0);
772  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
773  CSEMap.InsertNode(N, IP);
774  AllNodes.push_back(N);
775  return SDOperand(N, 0);
776}
777
778
779SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
780  FoldingSetNodeID ID;
781  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
782  ID.AddPointer(MBB);
783  void *IP = 0;
784  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
785    return SDOperand(E, 0);
786  SDNode *N = new BasicBlockSDNode(MBB);
787  CSEMap.InsertNode(N, IP);
788  AllNodes.push_back(N);
789  return SDOperand(N, 0);
790}
791
792SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
793  if ((unsigned)VT >= ValueTypeNodes.size())
794    ValueTypeNodes.resize(VT+1);
795  if (ValueTypeNodes[VT] == 0) {
796    ValueTypeNodes[VT] = new VTSDNode(VT);
797    AllNodes.push_back(ValueTypeNodes[VT]);
798  }
799
800  return SDOperand(ValueTypeNodes[VT], 0);
801}
802
803SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
804  SDNode *&N = ExternalSymbols[Sym];
805  if (N) return SDOperand(N, 0);
806  N = new ExternalSymbolSDNode(false, Sym, VT);
807  AllNodes.push_back(N);
808  return SDOperand(N, 0);
809}
810
811SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
812                                                MVT::ValueType VT) {
813  SDNode *&N = TargetExternalSymbols[Sym];
814  if (N) return SDOperand(N, 0);
815  N = new ExternalSymbolSDNode(true, Sym, VT);
816  AllNodes.push_back(N);
817  return SDOperand(N, 0);
818}
819
820SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
821  if ((unsigned)Cond >= CondCodeNodes.size())
822    CondCodeNodes.resize(Cond+1);
823
824  if (CondCodeNodes[Cond] == 0) {
825    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
826    AllNodes.push_back(CondCodeNodes[Cond]);
827  }
828  return SDOperand(CondCodeNodes[Cond], 0);
829}
830
831SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
832  FoldingSetNodeID ID;
833  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
834  ID.AddInteger(RegNo);
835  void *IP = 0;
836  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
837    return SDOperand(E, 0);
838  SDNode *N = new RegisterSDNode(RegNo, VT);
839  CSEMap.InsertNode(N, IP);
840  AllNodes.push_back(N);
841  return SDOperand(N, 0);
842}
843
844SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
845  assert((!V || isa<PointerType>(V->getType())) &&
846         "SrcValue is not a pointer?");
847
848  FoldingSetNodeID ID;
849  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
850  ID.AddPointer(V);
851  ID.AddInteger(Offset);
852  void *IP = 0;
853  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
854    return SDOperand(E, 0);
855  SDNode *N = new SrcValueSDNode(V, Offset);
856  CSEMap.InsertNode(N, IP);
857  AllNodes.push_back(N);
858  return SDOperand(N, 0);
859}
860
861SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
862                                  SDOperand N2, ISD::CondCode Cond) {
863  // These setcc operations always fold.
864  switch (Cond) {
865  default: break;
866  case ISD::SETFALSE:
867  case ISD::SETFALSE2: return getConstant(0, VT);
868  case ISD::SETTRUE:
869  case ISD::SETTRUE2:  return getConstant(1, VT);
870
871  case ISD::SETOEQ:
872  case ISD::SETOGT:
873  case ISD::SETOGE:
874  case ISD::SETOLT:
875  case ISD::SETOLE:
876  case ISD::SETONE:
877  case ISD::SETO:
878  case ISD::SETUO:
879  case ISD::SETUEQ:
880  case ISD::SETUNE:
881    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
882    break;
883  }
884
885  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
886    uint64_t C2 = N2C->getValue();
887    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
888      uint64_t C1 = N1C->getValue();
889
890      // Sign extend the operands if required
891      if (ISD::isSignedIntSetCC(Cond)) {
892        C1 = N1C->getSignExtended();
893        C2 = N2C->getSignExtended();
894      }
895
896      switch (Cond) {
897      default: assert(0 && "Unknown integer setcc!");
898      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
899      case ISD::SETNE:  return getConstant(C1 != C2, VT);
900      case ISD::SETULT: return getConstant(C1 <  C2, VT);
901      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
902      case ISD::SETULE: return getConstant(C1 <= C2, VT);
903      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
904      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
905      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
906      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
907      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
908      }
909    }
910  }
911  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
912    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
913      double C1 = N1C->getValue(), C2 = N2C->getValue();
914
915      switch (Cond) {
916      default: break; // FIXME: Implement the rest of these!
917      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
918      case ISD::SETNE:  return getConstant(C1 != C2, VT);
919      case ISD::SETLT:  return getConstant(C1 < C2, VT);
920      case ISD::SETGT:  return getConstant(C1 > C2, VT);
921      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
922      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
923      }
924    } else {
925      // Ensure that the constant occurs on the RHS.
926      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
927    }
928
929  // Could not fold it.
930  return SDOperand();
931}
932
933
934/// getNode - Gets or creates the specified node.
935///
936SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
937  FoldingSetNodeID ID;
938  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
939  void *IP = 0;
940  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
941    return SDOperand(E, 0);
942  SDNode *N = new SDNode(Opcode, 0, 0);
943  N->setValueTypes(SDNode::getSDVTList(VT));
944  CSEMap.InsertNode(N, IP);
945
946  AllNodes.push_back(N);
947  return SDOperand(N, 0);
948}
949
950SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
951                                SDOperand Operand) {
952  unsigned Tmp1;
953  // Constant fold unary operations with an integer constant operand.
954  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
955    uint64_t Val = C->getValue();
956    switch (Opcode) {
957    default: break;
958    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
959    case ISD::ANY_EXTEND:
960    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
961    case ISD::TRUNCATE:    return getConstant(Val, VT);
962    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
963    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
964    case ISD::BIT_CONVERT:
965      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
966        return getConstantFP(BitsToFloat(Val), VT);
967      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
968        return getConstantFP(BitsToDouble(Val), VT);
969      break;
970    case ISD::BSWAP:
971      switch(VT) {
972      default: assert(0 && "Invalid bswap!"); break;
973      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
974      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
975      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
976      }
977      break;
978    case ISD::CTPOP:
979      switch(VT) {
980      default: assert(0 && "Invalid ctpop!"); break;
981      case MVT::i1: return getConstant(Val != 0, VT);
982      case MVT::i8:
983        Tmp1 = (unsigned)Val & 0xFF;
984        return getConstant(CountPopulation_32(Tmp1), VT);
985      case MVT::i16:
986        Tmp1 = (unsigned)Val & 0xFFFF;
987        return getConstant(CountPopulation_32(Tmp1), VT);
988      case MVT::i32:
989        return getConstant(CountPopulation_32((unsigned)Val), VT);
990      case MVT::i64:
991        return getConstant(CountPopulation_64(Val), VT);
992      }
993    case ISD::CTLZ:
994      switch(VT) {
995      default: assert(0 && "Invalid ctlz!"); break;
996      case MVT::i1: return getConstant(Val == 0, VT);
997      case MVT::i8:
998        Tmp1 = (unsigned)Val & 0xFF;
999        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1000      case MVT::i16:
1001        Tmp1 = (unsigned)Val & 0xFFFF;
1002        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1003      case MVT::i32:
1004        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1005      case MVT::i64:
1006        return getConstant(CountLeadingZeros_64(Val), VT);
1007      }
1008    case ISD::CTTZ:
1009      switch(VT) {
1010      default: assert(0 && "Invalid cttz!"); break;
1011      case MVT::i1: return getConstant(Val == 0, VT);
1012      case MVT::i8:
1013        Tmp1 = (unsigned)Val | 0x100;
1014        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1015      case MVT::i16:
1016        Tmp1 = (unsigned)Val | 0x10000;
1017        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1018      case MVT::i32:
1019        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1020      case MVT::i64:
1021        return getConstant(CountTrailingZeros_64(Val), VT);
1022      }
1023    }
1024  }
1025
1026  // Constant fold unary operations with an floating point constant operand.
1027  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1028    switch (Opcode) {
1029    case ISD::FNEG:
1030      return getConstantFP(-C->getValue(), VT);
1031    case ISD::FABS:
1032      return getConstantFP(fabs(C->getValue()), VT);
1033    case ISD::FP_ROUND:
1034    case ISD::FP_EXTEND:
1035      return getConstantFP(C->getValue(), VT);
1036    case ISD::FP_TO_SINT:
1037      return getConstant((int64_t)C->getValue(), VT);
1038    case ISD::FP_TO_UINT:
1039      return getConstant((uint64_t)C->getValue(), VT);
1040    case ISD::BIT_CONVERT:
1041      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1042        return getConstant(FloatToBits(C->getValue()), VT);
1043      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1044        return getConstant(DoubleToBits(C->getValue()), VT);
1045      break;
1046    }
1047
1048  unsigned OpOpcode = Operand.Val->getOpcode();
1049  switch (Opcode) {
1050  case ISD::TokenFactor:
1051    return Operand;         // Factor of one node?  No factor.
1052  case ISD::SIGN_EXTEND:
1053    if (Operand.getValueType() == VT) return Operand;   // noop extension
1054    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1055    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1056      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1057    break;
1058  case ISD::ZERO_EXTEND:
1059    if (Operand.getValueType() == VT) return Operand;   // noop extension
1060    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1061    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1062      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1063    break;
1064  case ISD::ANY_EXTEND:
1065    if (Operand.getValueType() == VT) return Operand;   // noop extension
1066    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1067    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1068      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1069      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1070    break;
1071  case ISD::TRUNCATE:
1072    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1073    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1074    if (OpOpcode == ISD::TRUNCATE)
1075      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1076    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1077             OpOpcode == ISD::ANY_EXTEND) {
1078      // If the source is smaller than the dest, we still need an extend.
1079      if (Operand.Val->getOperand(0).getValueType() < VT)
1080        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1081      else if (Operand.Val->getOperand(0).getValueType() > VT)
1082        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1083      else
1084        return Operand.Val->getOperand(0);
1085    }
1086    break;
1087  case ISD::BIT_CONVERT:
1088    // Basic sanity checking.
1089    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1090           && "Cannot BIT_CONVERT between types of different sizes!");
1091    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1092    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1093      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1094    if (OpOpcode == ISD::UNDEF)
1095      return getNode(ISD::UNDEF, VT);
1096    break;
1097  case ISD::SCALAR_TO_VECTOR:
1098    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1099           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1100           "Illegal SCALAR_TO_VECTOR node!");
1101    break;
1102  case ISD::FNEG:
1103    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1104      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1105                     Operand.Val->getOperand(0));
1106    if (OpOpcode == ISD::FNEG)  // --X -> X
1107      return Operand.Val->getOperand(0);
1108    break;
1109  case ISD::FABS:
1110    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1111      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1112    break;
1113  }
1114
1115  SDNode *N;
1116  SDVTList VTs = getVTList(VT);
1117  SDOperand Ops[1] = { Operand };
1118  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1119    FoldingSetNodeID ID;
1120    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1121    void *IP = 0;
1122    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1123      return SDOperand(E, 0);
1124    N = new SDNode(Opcode, Ops, 1);
1125    N->setValueTypes(VTs);
1126    CSEMap.InsertNode(N, IP);
1127  } else {
1128    N = new SDNode(Opcode, Ops, 1);
1129    N->setValueTypes(VTs);
1130  }
1131  AllNodes.push_back(N);
1132  return SDOperand(N, 0);
1133}
1134
1135
1136
1137SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1138                                SDOperand N1, SDOperand N2) {
1139#ifndef NDEBUG
1140  switch (Opcode) {
1141  case ISD::TokenFactor:
1142    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1143           N2.getValueType() == MVT::Other && "Invalid token factor!");
1144    break;
1145  case ISD::AND:
1146  case ISD::OR:
1147  case ISD::XOR:
1148  case ISD::UDIV:
1149  case ISD::UREM:
1150  case ISD::MULHU:
1151  case ISD::MULHS:
1152    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1153    // fall through
1154  case ISD::ADD:
1155  case ISD::SUB:
1156  case ISD::MUL:
1157  case ISD::SDIV:
1158  case ISD::SREM:
1159    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1160    // fall through.
1161  case ISD::FADD:
1162  case ISD::FSUB:
1163  case ISD::FMUL:
1164  case ISD::FDIV:
1165  case ISD::FREM:
1166    assert(N1.getValueType() == N2.getValueType() &&
1167           N1.getValueType() == VT && "Binary operator types must match!");
1168    break;
1169  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1170    assert(N1.getValueType() == VT &&
1171           MVT::isFloatingPoint(N1.getValueType()) &&
1172           MVT::isFloatingPoint(N2.getValueType()) &&
1173           "Invalid FCOPYSIGN!");
1174    break;
1175  case ISD::SHL:
1176  case ISD::SRA:
1177  case ISD::SRL:
1178  case ISD::ROTL:
1179  case ISD::ROTR:
1180    assert(VT == N1.getValueType() &&
1181           "Shift operators return type must be the same as their first arg");
1182    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1183           VT != MVT::i1 && "Shifts only work on integers");
1184    break;
1185  case ISD::FP_ROUND_INREG: {
1186    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1187    assert(VT == N1.getValueType() && "Not an inreg round!");
1188    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1189           "Cannot FP_ROUND_INREG integer types");
1190    assert(EVT <= VT && "Not rounding down!");
1191    break;
1192  }
1193  case ISD::AssertSext:
1194  case ISD::AssertZext:
1195  case ISD::SIGN_EXTEND_INREG: {
1196    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1197    assert(VT == N1.getValueType() && "Not an inreg extend!");
1198    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1199           "Cannot *_EXTEND_INREG FP types");
1200    assert(EVT <= VT && "Not extending!");
1201  }
1202
1203  default: break;
1204  }
1205#endif
1206
1207  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1208  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1209  if (N1C) {
1210    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1211      int64_t Val = N1C->getValue();
1212      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1213      Val <<= 64-FromBits;
1214      Val >>= 64-FromBits;
1215      return getConstant(Val, VT);
1216    }
1217
1218    if (N2C) {
1219      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1220      switch (Opcode) {
1221      case ISD::ADD: return getConstant(C1 + C2, VT);
1222      case ISD::SUB: return getConstant(C1 - C2, VT);
1223      case ISD::MUL: return getConstant(C1 * C2, VT);
1224      case ISD::UDIV:
1225        if (C2) return getConstant(C1 / C2, VT);
1226        break;
1227      case ISD::UREM :
1228        if (C2) return getConstant(C1 % C2, VT);
1229        break;
1230      case ISD::SDIV :
1231        if (C2) return getConstant(N1C->getSignExtended() /
1232                                   N2C->getSignExtended(), VT);
1233        break;
1234      case ISD::SREM :
1235        if (C2) return getConstant(N1C->getSignExtended() %
1236                                   N2C->getSignExtended(), VT);
1237        break;
1238      case ISD::AND  : return getConstant(C1 & C2, VT);
1239      case ISD::OR   : return getConstant(C1 | C2, VT);
1240      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1241      case ISD::SHL  : return getConstant(C1 << C2, VT);
1242      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1243      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1244      case ISD::ROTL :
1245        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1246                           VT);
1247      case ISD::ROTR :
1248        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1249                           VT);
1250      default: break;
1251      }
1252    } else {      // Cannonicalize constant to RHS if commutative
1253      if (isCommutativeBinOp(Opcode)) {
1254        std::swap(N1C, N2C);
1255        std::swap(N1, N2);
1256      }
1257    }
1258  }
1259
1260  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1261  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1262  if (N1CFP) {
1263    if (N2CFP) {
1264      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1265      switch (Opcode) {
1266      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1267      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1268      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1269      case ISD::FDIV:
1270        if (C2) return getConstantFP(C1 / C2, VT);
1271        break;
1272      case ISD::FREM :
1273        if (C2) return getConstantFP(fmod(C1, C2), VT);
1274        break;
1275      case ISD::FCOPYSIGN: {
1276        union {
1277          double   F;
1278          uint64_t I;
1279        } u1;
1280        union {
1281          double  F;
1282          int64_t I;
1283        } u2;
1284        u1.F = C1;
1285        u2.F = C2;
1286        if (u2.I < 0)  // Sign bit of RHS set?
1287          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1288        else
1289          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1290        return getConstantFP(u1.F, VT);
1291      }
1292      default: break;
1293      }
1294    } else {      // Cannonicalize constant to RHS if commutative
1295      if (isCommutativeBinOp(Opcode)) {
1296        std::swap(N1CFP, N2CFP);
1297        std::swap(N1, N2);
1298      }
1299    }
1300  }
1301
1302  // Canonicalize an UNDEF to the RHS, even over a constant.
1303  if (N1.getOpcode() == ISD::UNDEF) {
1304    if (isCommutativeBinOp(Opcode)) {
1305      std::swap(N1, N2);
1306    } else {
1307      switch (Opcode) {
1308      case ISD::FP_ROUND_INREG:
1309      case ISD::SIGN_EXTEND_INREG:
1310      case ISD::SUB:
1311      case ISD::FSUB:
1312      case ISD::FDIV:
1313      case ISD::FREM:
1314      case ISD::SRA:
1315        return N1;     // fold op(undef, arg2) -> undef
1316      case ISD::UDIV:
1317      case ISD::SDIV:
1318      case ISD::UREM:
1319      case ISD::SREM:
1320      case ISD::SRL:
1321      case ISD::SHL:
1322        return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1323      }
1324    }
1325  }
1326
1327  // Fold a bunch of operators when the RHS is undef.
1328  if (N2.getOpcode() == ISD::UNDEF) {
1329    switch (Opcode) {
1330    case ISD::ADD:
1331    case ISD::SUB:
1332    case ISD::FADD:
1333    case ISD::FSUB:
1334    case ISD::FMUL:
1335    case ISD::FDIV:
1336    case ISD::FREM:
1337    case ISD::UDIV:
1338    case ISD::SDIV:
1339    case ISD::UREM:
1340    case ISD::SREM:
1341    case ISD::XOR:
1342      return N2;       // fold op(arg1, undef) -> undef
1343    case ISD::MUL:
1344    case ISD::AND:
1345    case ISD::SRL:
1346    case ISD::SHL:
1347      return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1348    case ISD::OR:
1349      return getConstant(MVT::getIntVTBitMask(VT), VT);
1350    case ISD::SRA:
1351      return N1;
1352    }
1353  }
1354
1355  // Fold operations.
1356  switch (Opcode) {
1357  case ISD::AND:
1358    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1359    // worth handling here.
1360    if (N2C && N2C->getValue() == 0)
1361      return N2;
1362    break;
1363  case ISD::OR:
1364  case ISD::XOR:
1365    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1366    // worth handling here.
1367    if (N2C && N2C->getValue() == 0)
1368      return N1;
1369    break;
1370  case ISD::FP_ROUND_INREG:
1371    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1372    break;
1373  case ISD::SIGN_EXTEND_INREG: {
1374    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1375    if (EVT == VT) return N1;  // Not actually extending
1376    break;
1377  }
1378  case ISD::EXTRACT_ELEMENT:
1379    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
1380
1381    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
1382    // 64-bit integers into 32-bit parts.  Instead of building the extract of
1383    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
1384    if (N1.getOpcode() == ISD::BUILD_PAIR)
1385      return N1.getOperand(N2C->getValue());
1386
1387    // EXTRACT_ELEMENT of a constant int is also very common.
1388    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
1389      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
1390      return getConstant(C->getValue() >> Shift, VT);
1391    }
1392    break;
1393
1394  // FIXME: figure out how to safely handle things like
1395  // int foo(int x) { return 1 << (x & 255); }
1396  // int bar() { return foo(256); }
1397#if 0
1398  case ISD::SHL:
1399  case ISD::SRL:
1400  case ISD::SRA:
1401    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1402        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1403      return getNode(Opcode, VT, N1, N2.getOperand(0));
1404    else if (N2.getOpcode() == ISD::AND)
1405      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1406        // If the and is only masking out bits that cannot effect the shift,
1407        // eliminate the and.
1408        unsigned NumBits = MVT::getSizeInBits(VT);
1409        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1410          return getNode(Opcode, VT, N1, N2.getOperand(0));
1411      }
1412    break;
1413#endif
1414  }
1415
1416  // Memoize this node if possible.
1417  SDNode *N;
1418  SDVTList VTs = getVTList(VT);
1419  SDOperand Ops[] = { N1, N2 };
1420  if (VT != MVT::Flag) {
1421    FoldingSetNodeID ID;
1422    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
1423    void *IP = 0;
1424    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1425      return SDOperand(E, 0);
1426    N = new SDNode(Opcode, Ops, 2);
1427    N->setValueTypes(VTs);
1428    CSEMap.InsertNode(N, IP);
1429  } else {
1430    N = new SDNode(Opcode, Ops, 2);
1431    N->setValueTypes(VTs);
1432  }
1433
1434  AllNodes.push_back(N);
1435  return SDOperand(N, 0);
1436}
1437
1438SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1439                                SDOperand N1, SDOperand N2, SDOperand N3) {
1440  // Perform various simplifications.
1441  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1442  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1443  switch (Opcode) {
1444  case ISD::SETCC: {
1445    // Use FoldSetCC to simplify SETCC's.
1446    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1447    if (Simp.Val) return Simp;
1448    break;
1449  }
1450  case ISD::SELECT:
1451    if (N1C)
1452      if (N1C->getValue())
1453        return N2;             // select true, X, Y -> X
1454      else
1455        return N3;             // select false, X, Y -> Y
1456
1457    if (N2 == N3) return N2;   // select C, X, X -> X
1458    break;
1459  case ISD::BRCOND:
1460    if (N2C)
1461      if (N2C->getValue()) // Unconditional branch
1462        return getNode(ISD::BR, MVT::Other, N1, N3);
1463      else
1464        return N1;         // Never-taken branch
1465    break;
1466  case ISD::VECTOR_SHUFFLE:
1467    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1468           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1469           N3.getOpcode() == ISD::BUILD_VECTOR &&
1470           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1471           "Illegal VECTOR_SHUFFLE node!");
1472    break;
1473  }
1474
1475  // Memoize node if it doesn't produce a flag.
1476  SDNode *N;
1477  SDVTList VTs = getVTList(VT);
1478  SDOperand Ops[] = { N1, N2, N3 };
1479  if (VT != MVT::Flag) {
1480    FoldingSetNodeID ID;
1481    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
1482    void *IP = 0;
1483    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1484      return SDOperand(E, 0);
1485    N = new SDNode(Opcode, Ops, 3);
1486    N->setValueTypes(VTs);
1487    CSEMap.InsertNode(N, IP);
1488  } else {
1489    N = new SDNode(Opcode, Ops, 3);
1490    N->setValueTypes(VTs);
1491  }
1492  AllNodes.push_back(N);
1493  return SDOperand(N, 0);
1494}
1495
1496SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1497                                SDOperand N1, SDOperand N2, SDOperand N3,
1498                                SDOperand N4) {
1499  SDOperand Ops[] = { N1, N2, N3, N4 };
1500  return getNode(Opcode, VT, Ops, 4);
1501}
1502
1503SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1504                                SDOperand N1, SDOperand N2, SDOperand N3,
1505                                SDOperand N4, SDOperand N5) {
1506  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
1507  return getNode(Opcode, VT, Ops, 5);
1508}
1509
1510SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1511                                SDOperand Chain, SDOperand Ptr,
1512                                const Value *SV, int SVOffset,
1513                                bool isVolatile) {
1514  // FIXME: Alignment == 1 for now.
1515  unsigned Alignment = 1;
1516  SDVTList VTs = getVTList(VT, MVT::Other);
1517  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1518  SDOperand Ops[] = { Chain, Ptr, Undef };
1519  FoldingSetNodeID ID;
1520  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
1521  ID.AddInteger(ISD::UNINDEXED);
1522  ID.AddInteger(ISD::NON_EXTLOAD);
1523  ID.AddInteger(VT);
1524  ID.AddPointer(SV);
1525  ID.AddInteger(SVOffset);
1526  ID.AddInteger(Alignment);
1527  ID.AddInteger(isVolatile);
1528  void *IP = 0;
1529  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1530    return SDOperand(E, 0);
1531  SDNode *N = new LoadSDNode(Ops, ISD::UNINDEXED,
1532                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
1533                             isVolatile);
1534  N->setValueTypes(VTs);
1535  CSEMap.InsertNode(N, IP);
1536  AllNodes.push_back(N);
1537  return SDOperand(N, 0);
1538}
1539
1540SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
1541                                   SDOperand Chain, SDOperand Ptr,
1542                                   const Value *SV,
1543                                   int SVOffset, MVT::ValueType EVT,
1544                                   bool isVolatile) {
1545  // If they are asking for an extending load from/to the same thing, return a
1546  // normal load.
1547  if (VT == EVT)
1548    ExtType = ISD::NON_EXTLOAD;
1549
1550  if (MVT::isVector(VT))
1551    assert(EVT == MVT::getVectorBaseType(VT) && "Invalid vector extload!");
1552  else
1553    assert(EVT < VT && "Should only be an extending load, not truncating!");
1554  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
1555         "Cannot sign/zero extend a FP/Vector load!");
1556  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
1557         "Cannot convert from FP to Int or Int -> FP!");
1558
1559  // FIXME: Alignment == 1 for now.
1560  unsigned Alignment = 1;
1561  SDVTList VTs = getVTList(VT, MVT::Other);
1562  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1563  SDOperand Ops[] = { Chain, Ptr, Undef };
1564  FoldingSetNodeID ID;
1565  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
1566  ID.AddInteger(ISD::UNINDEXED);
1567  ID.AddInteger(ExtType);
1568  ID.AddInteger(EVT);
1569  ID.AddPointer(SV);
1570  ID.AddInteger(SVOffset);
1571  ID.AddInteger(Alignment);
1572  ID.AddInteger(isVolatile);
1573  void *IP = 0;
1574  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1575    return SDOperand(E, 0);
1576  SDNode *N = new LoadSDNode(Ops, ISD::UNINDEXED, ExtType, EVT,
1577                             SV, SVOffset, Alignment, isVolatile);
1578  N->setValueTypes(VTs);
1579  CSEMap.InsertNode(N, IP);
1580  AllNodes.push_back(N);
1581  return SDOperand(N, 0);
1582}
1583
1584SDOperand
1585SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
1586                             SDOperand Offset, ISD::MemIndexedMode AM) {
1587  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
1588  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
1589         "Load is already a indexed load!");
1590  MVT::ValueType VT = OrigLoad.getValueType();
1591  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
1592  SDOperand Ops[] = { LD->getChain(), Base, Offset };
1593  FoldingSetNodeID ID;
1594  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
1595  ID.AddInteger(AM);
1596  ID.AddInteger(LD->getExtensionType());
1597  ID.AddInteger(LD->getLoadedVT());
1598  ID.AddPointer(LD->getSrcValue());
1599  ID.AddInteger(LD->getSrcValueOffset());
1600  ID.AddInteger(LD->getAlignment());
1601  ID.AddInteger(LD->isVolatile());
1602  void *IP = 0;
1603  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1604    return SDOperand(E, 0);
1605  SDNode *N = new LoadSDNode(Ops, AM,
1606                             LD->getExtensionType(), LD->getLoadedVT(),
1607                             LD->getSrcValue(), LD->getSrcValueOffset(),
1608                             LD->getAlignment(), LD->isVolatile());
1609  N->setValueTypes(VTs);
1610  CSEMap.InsertNode(N, IP);
1611  AllNodes.push_back(N);
1612  return SDOperand(N, 0);
1613}
1614
1615SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1616                                   SDOperand Chain, SDOperand Ptr,
1617                                   SDOperand SV) {
1618  SDOperand Ops[] = { Chain, Ptr, SV, getConstant(Count, MVT::i32),
1619                      getValueType(EVT) };
1620  return getNode(ISD::VLOAD, getVTList(MVT::Vector, MVT::Other), Ops, 5);
1621}
1622
1623SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
1624                                 SDOperand Ptr, const Value *SV, int SVOffset,
1625                                 bool isVolatile) {
1626  MVT::ValueType VT = Val.getValueType();
1627
1628  // FIXME: Alignment == 1 for now.
1629  unsigned Alignment = 1;
1630  SDVTList VTs = getVTList(MVT::Other);
1631  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1632  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
1633  FoldingSetNodeID ID;
1634  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1635  ID.AddInteger(ISD::UNINDEXED);
1636  ID.AddInteger(false);
1637  ID.AddInteger(VT);
1638  ID.AddPointer(SV);
1639  ID.AddInteger(SVOffset);
1640  ID.AddInteger(Alignment);
1641  ID.AddInteger(isVolatile);
1642  void *IP = 0;
1643  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1644    return SDOperand(E, 0);
1645  SDNode *N = new StoreSDNode(Ops, ISD::UNINDEXED, false,
1646                              VT, SV, SVOffset, Alignment, isVolatile);
1647  N->setValueTypes(VTs);
1648  CSEMap.InsertNode(N, IP);
1649  AllNodes.push_back(N);
1650  return SDOperand(N, 0);
1651}
1652
1653SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
1654                                      SDOperand Ptr, const Value *SV,
1655                                      int SVOffset, MVT::ValueType SVT,
1656                                      bool isVolatile) {
1657  MVT::ValueType VT = Val.getValueType();
1658  bool isTrunc = VT != SVT;
1659
1660  assert(VT > SVT && "Not a truncation?");
1661  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
1662         "Can't do FP-INT conversion!");
1663
1664  // FIXME: Alignment == 1 for now.
1665  unsigned Alignment = 1;
1666  SDVTList VTs = getVTList(MVT::Other);
1667  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1668  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
1669  FoldingSetNodeID ID;
1670  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1671  ID.AddInteger(ISD::UNINDEXED);
1672  ID.AddInteger(isTrunc);
1673  ID.AddInteger(SVT);
1674  ID.AddPointer(SV);
1675  ID.AddInteger(SVOffset);
1676  ID.AddInteger(Alignment);
1677  ID.AddInteger(isVolatile);
1678  void *IP = 0;
1679  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1680    return SDOperand(E, 0);
1681  SDNode *N = new StoreSDNode(Ops, ISD::UNINDEXED, isTrunc,
1682                              SVT, SV, SVOffset, Alignment, isVolatile);
1683  N->setValueTypes(VTs);
1684  CSEMap.InsertNode(N, IP);
1685  AllNodes.push_back(N);
1686  return SDOperand(N, 0);
1687}
1688
1689SDOperand
1690SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
1691                              SDOperand Offset, ISD::MemIndexedMode AM) {
1692  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
1693  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
1694         "Store is already a indexed store!");
1695  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
1696  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
1697  FoldingSetNodeID ID;
1698  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1699  ID.AddInteger(AM);
1700  ID.AddInteger(ST->isTruncatingStore());
1701  ID.AddInteger(ST->getStoredVT());
1702  ID.AddPointer(ST->getSrcValue());
1703  ID.AddInteger(ST->getSrcValueOffset());
1704  ID.AddInteger(ST->getAlignment());
1705  ID.AddInteger(ST->isVolatile());
1706  void *IP = 0;
1707  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1708    return SDOperand(E, 0);
1709  SDNode *N = new StoreSDNode(Ops, AM,
1710                              ST->isTruncatingStore(), ST->getStoredVT(),
1711                              ST->getSrcValue(), ST->getSrcValueOffset(),
1712                              ST->getAlignment(), ST->isVolatile());
1713  N->setValueTypes(VTs);
1714  CSEMap.InsertNode(N, IP);
1715  AllNodes.push_back(N);
1716  return SDOperand(N, 0);
1717}
1718
1719SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1720                                 SDOperand Chain, SDOperand Ptr,
1721                                 SDOperand SV) {
1722  SDOperand Ops[] = { Chain, Ptr, SV };
1723  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
1724}
1725
1726SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1727                                const SDOperand *Ops, unsigned NumOps) {
1728  switch (NumOps) {
1729  case 0: return getNode(Opcode, VT);
1730  case 1: return getNode(Opcode, VT, Ops[0]);
1731  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1732  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1733  default: break;
1734  }
1735
1736  switch (Opcode) {
1737  default: break;
1738  case ISD::SELECT_CC: {
1739    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
1740    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1741           "LHS and RHS of condition must have same type!");
1742    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1743           "True and False arms of SelectCC must have same type!");
1744    assert(Ops[2].getValueType() == VT &&
1745           "select_cc node must be of same type as true and false value!");
1746    break;
1747  }
1748  case ISD::BR_CC: {
1749    assert(NumOps == 5 && "BR_CC takes 5 operands!");
1750    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1751           "LHS/RHS of comparison should match types!");
1752    break;
1753  }
1754  }
1755
1756  // Memoize nodes.
1757  SDNode *N;
1758  SDVTList VTs = getVTList(VT);
1759  if (VT != MVT::Flag) {
1760    FoldingSetNodeID ID;
1761    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
1762    void *IP = 0;
1763    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1764      return SDOperand(E, 0);
1765    N = new SDNode(Opcode, Ops, NumOps);
1766    N->setValueTypes(VTs);
1767    CSEMap.InsertNode(N, IP);
1768  } else {
1769    N = new SDNode(Opcode, Ops, NumOps);
1770    N->setValueTypes(VTs);
1771  }
1772  AllNodes.push_back(N);
1773  return SDOperand(N, 0);
1774}
1775
1776SDOperand SelectionDAG::getNode(unsigned Opcode,
1777                                std::vector<MVT::ValueType> &ResultTys,
1778                                const SDOperand *Ops, unsigned NumOps) {
1779  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
1780                 Ops, NumOps);
1781}
1782
1783SDOperand SelectionDAG::getNode(unsigned Opcode,
1784                                const MVT::ValueType *VTs, unsigned NumVTs,
1785                                const SDOperand *Ops, unsigned NumOps) {
1786  if (NumVTs == 1)
1787    return getNode(Opcode, VTs[0], Ops, NumOps);
1788  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
1789}
1790
1791SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
1792                                const SDOperand *Ops, unsigned NumOps) {
1793  if (VTList.NumVTs == 1)
1794    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
1795
1796  switch (Opcode) {
1797  // FIXME: figure out how to safely handle things like
1798  // int foo(int x) { return 1 << (x & 255); }
1799  // int bar() { return foo(256); }
1800#if 0
1801  case ISD::SRA_PARTS:
1802  case ISD::SRL_PARTS:
1803  case ISD::SHL_PARTS:
1804    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1805        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1806      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1807    else if (N3.getOpcode() == ISD::AND)
1808      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1809        // If the and is only masking out bits that cannot effect the shift,
1810        // eliminate the and.
1811        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1812        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1813          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1814      }
1815    break;
1816#endif
1817  }
1818
1819  // Memoize the node unless it returns a flag.
1820  SDNode *N;
1821  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
1822    FoldingSetNodeID ID;
1823    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
1824    void *IP = 0;
1825    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1826      return SDOperand(E, 0);
1827    N = new SDNode(Opcode, Ops, NumOps);
1828    N->setValueTypes(VTList);
1829    CSEMap.InsertNode(N, IP);
1830  } else {
1831    N = new SDNode(Opcode, Ops, NumOps);
1832    N->setValueTypes(VTList);
1833  }
1834  AllNodes.push_back(N);
1835  return SDOperand(N, 0);
1836}
1837
1838SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
1839  return makeVTList(SDNode::getValueTypeList(VT), 1);
1840}
1841
1842SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
1843  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1844       E = VTList.end(); I != E; ++I) {
1845    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
1846      return makeVTList(&(*I)[0], 2);
1847  }
1848  std::vector<MVT::ValueType> V;
1849  V.push_back(VT1);
1850  V.push_back(VT2);
1851  VTList.push_front(V);
1852  return makeVTList(&(*VTList.begin())[0], 2);
1853}
1854SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
1855                                 MVT::ValueType VT3) {
1856  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1857       E = VTList.end(); I != E; ++I) {
1858    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
1859        (*I)[2] == VT3)
1860      return makeVTList(&(*I)[0], 3);
1861  }
1862  std::vector<MVT::ValueType> V;
1863  V.push_back(VT1);
1864  V.push_back(VT2);
1865  V.push_back(VT3);
1866  VTList.push_front(V);
1867  return makeVTList(&(*VTList.begin())[0], 3);
1868}
1869
1870SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
1871  switch (NumVTs) {
1872    case 0: assert(0 && "Cannot have nodes without results!");
1873    case 1: return makeVTList(SDNode::getValueTypeList(VTs[0]), 1);
1874    case 2: return getVTList(VTs[0], VTs[1]);
1875    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
1876    default: break;
1877  }
1878
1879  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1880       E = VTList.end(); I != E; ++I) {
1881    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
1882
1883    bool NoMatch = false;
1884    for (unsigned i = 2; i != NumVTs; ++i)
1885      if (VTs[i] != (*I)[i]) {
1886        NoMatch = true;
1887        break;
1888      }
1889    if (!NoMatch)
1890      return makeVTList(&*I->begin(), NumVTs);
1891  }
1892
1893  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
1894  return makeVTList(&*VTList.begin()->begin(), NumVTs);
1895}
1896
1897
1898/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1899/// specified operands.  If the resultant node already exists in the DAG,
1900/// this does not modify the specified node, instead it returns the node that
1901/// already exists.  If the resultant node does not exist in the DAG, the
1902/// input node is returned.  As a degenerate case, if you specify the same
1903/// input operands as the node already has, the input node is returned.
1904SDOperand SelectionDAG::
1905UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1906  SDNode *N = InN.Val;
1907  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1908
1909  // Check to see if there is no change.
1910  if (Op == N->getOperand(0)) return InN;
1911
1912  // See if the modified node already exists.
1913  void *InsertPos = 0;
1914  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
1915    return SDOperand(Existing, InN.ResNo);
1916
1917  // Nope it doesn't.  Remove the node from it's current place in the maps.
1918  if (InsertPos)
1919    RemoveNodeFromCSEMaps(N);
1920
1921  // Now we update the operands.
1922  N->OperandList[0].Val->removeUser(N);
1923  Op.Val->addUser(N);
1924  N->OperandList[0] = Op;
1925
1926  // If this gets put into a CSE map, add it.
1927  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1928  return InN;
1929}
1930
1931SDOperand SelectionDAG::
1932UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1933  SDNode *N = InN.Val;
1934  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1935
1936  // Check to see if there is no change.
1937  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1938    return InN;   // No operands changed, just return the input node.
1939
1940  // See if the modified node already exists.
1941  void *InsertPos = 0;
1942  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
1943    return SDOperand(Existing, InN.ResNo);
1944
1945  // Nope it doesn't.  Remove the node from it's current place in the maps.
1946  if (InsertPos)
1947    RemoveNodeFromCSEMaps(N);
1948
1949  // Now we update the operands.
1950  if (N->OperandList[0] != Op1) {
1951    N->OperandList[0].Val->removeUser(N);
1952    Op1.Val->addUser(N);
1953    N->OperandList[0] = Op1;
1954  }
1955  if (N->OperandList[1] != Op2) {
1956    N->OperandList[1].Val->removeUser(N);
1957    Op2.Val->addUser(N);
1958    N->OperandList[1] = Op2;
1959  }
1960
1961  // If this gets put into a CSE map, add it.
1962  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1963  return InN;
1964}
1965
1966SDOperand SelectionDAG::
1967UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1968  SDOperand Ops[] = { Op1, Op2, Op3 };
1969  return UpdateNodeOperands(N, Ops, 3);
1970}
1971
1972SDOperand SelectionDAG::
1973UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1974                   SDOperand Op3, SDOperand Op4) {
1975  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
1976  return UpdateNodeOperands(N, Ops, 4);
1977}
1978
1979SDOperand SelectionDAG::
1980UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1981                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1982  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
1983  return UpdateNodeOperands(N, Ops, 5);
1984}
1985
1986
1987SDOperand SelectionDAG::
1988UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
1989  SDNode *N = InN.Val;
1990  assert(N->getNumOperands() == NumOps &&
1991         "Update with wrong number of operands");
1992
1993  // Check to see if there is no change.
1994  bool AnyChange = false;
1995  for (unsigned i = 0; i != NumOps; ++i) {
1996    if (Ops[i] != N->getOperand(i)) {
1997      AnyChange = true;
1998      break;
1999    }
2000  }
2001
2002  // No operands changed, just return the input node.
2003  if (!AnyChange) return InN;
2004
2005  // See if the modified node already exists.
2006  void *InsertPos = 0;
2007  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2008    return SDOperand(Existing, InN.ResNo);
2009
2010  // Nope it doesn't.  Remove the node from it's current place in the maps.
2011  if (InsertPos)
2012    RemoveNodeFromCSEMaps(N);
2013
2014  // Now we update the operands.
2015  for (unsigned i = 0; i != NumOps; ++i) {
2016    if (N->OperandList[i] != Ops[i]) {
2017      N->OperandList[i].Val->removeUser(N);
2018      Ops[i].Val->addUser(N);
2019      N->OperandList[i] = Ops[i];
2020    }
2021  }
2022
2023  // If this gets put into a CSE map, add it.
2024  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2025  return InN;
2026}
2027
2028
2029/// MorphNodeTo - This frees the operands of the current node, resets the
2030/// opcode, types, and operands to the specified value.  This should only be
2031/// used by the SelectionDAG class.
2032void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2033                         const SDOperand *Ops, unsigned NumOps) {
2034  NodeType = Opc;
2035  ValueList = L.VTs;
2036  NumValues = L.NumVTs;
2037
2038  // Clear the operands list, updating used nodes to remove this from their
2039  // use list.
2040  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2041    I->Val->removeUser(this);
2042
2043  // If NumOps is larger than the # of operands we currently have, reallocate
2044  // the operand list.
2045  if (NumOps > NumOperands) {
2046    if (OperandsNeedDelete)
2047      delete [] OperandList;
2048    OperandList = new SDOperand[NumOps];
2049    OperandsNeedDelete = true;
2050  }
2051
2052  // Assign the new operands.
2053  NumOperands = NumOps;
2054
2055  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2056    OperandList[i] = Ops[i];
2057    SDNode *N = OperandList[i].Val;
2058    N->Uses.push_back(this);
2059  }
2060}
2061
2062/// SelectNodeTo - These are used for target selectors to *mutate* the
2063/// specified node to have the specified return type, Target opcode, and
2064/// operands.  Note that target opcodes are stored as
2065/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2066///
2067/// Note that SelectNodeTo returns the resultant node.  If there is already a
2068/// node of the specified opcode and operands, it returns that node instead of
2069/// the current one.
2070SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2071                                   MVT::ValueType VT) {
2072  SDVTList VTs = getVTList(VT);
2073  FoldingSetNodeID ID;
2074  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2075  void *IP = 0;
2076  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2077    return ON;
2078
2079  RemoveNodeFromCSEMaps(N);
2080
2081  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2082
2083  CSEMap.InsertNode(N, IP);
2084  return N;
2085}
2086
2087SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2088                                   MVT::ValueType VT, SDOperand Op1) {
2089  // If an identical node already exists, use it.
2090  SDVTList VTs = getVTList(VT);
2091  SDOperand Ops[] = { Op1 };
2092
2093  FoldingSetNodeID ID;
2094  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2095  void *IP = 0;
2096  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2097    return ON;
2098
2099  RemoveNodeFromCSEMaps(N);
2100  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2101  CSEMap.InsertNode(N, IP);
2102  return N;
2103}
2104
2105SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2106                                   MVT::ValueType VT, SDOperand Op1,
2107                                   SDOperand Op2) {
2108  // If an identical node already exists, use it.
2109  SDVTList VTs = getVTList(VT);
2110  SDOperand Ops[] = { Op1, Op2 };
2111
2112  FoldingSetNodeID ID;
2113  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2114  void *IP = 0;
2115  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2116    return ON;
2117
2118  RemoveNodeFromCSEMaps(N);
2119
2120  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2121
2122  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2123  return N;
2124}
2125
2126SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2127                                   MVT::ValueType VT, SDOperand Op1,
2128                                   SDOperand Op2, SDOperand Op3) {
2129  // If an identical node already exists, use it.
2130  SDVTList VTs = getVTList(VT);
2131  SDOperand Ops[] = { Op1, Op2, Op3 };
2132  FoldingSetNodeID ID;
2133  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2134  void *IP = 0;
2135  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2136    return ON;
2137
2138  RemoveNodeFromCSEMaps(N);
2139
2140  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2141
2142  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2143  return N;
2144}
2145
2146SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2147                                   MVT::ValueType VT, const SDOperand *Ops,
2148                                   unsigned NumOps) {
2149  // If an identical node already exists, use it.
2150  SDVTList VTs = getVTList(VT);
2151  FoldingSetNodeID ID;
2152  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2153  void *IP = 0;
2154  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2155    return ON;
2156
2157  RemoveNodeFromCSEMaps(N);
2158  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2159
2160  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2161  return N;
2162}
2163
2164SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2165                                   MVT::ValueType VT1, MVT::ValueType VT2,
2166                                   SDOperand Op1, SDOperand Op2) {
2167  SDVTList VTs = getVTList(VT1, VT2);
2168  FoldingSetNodeID ID;
2169  SDOperand Ops[] = { Op1, Op2 };
2170  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2171  void *IP = 0;
2172  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2173    return ON;
2174
2175  RemoveNodeFromCSEMaps(N);
2176  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2177  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2178  return N;
2179}
2180
2181SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2182                                   MVT::ValueType VT1, MVT::ValueType VT2,
2183                                   SDOperand Op1, SDOperand Op2,
2184                                   SDOperand Op3) {
2185  // If an identical node already exists, use it.
2186  SDVTList VTs = getVTList(VT1, VT2);
2187  SDOperand Ops[] = { Op1, Op2, Op3 };
2188  FoldingSetNodeID ID;
2189  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2190  void *IP = 0;
2191  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2192    return ON;
2193
2194  RemoveNodeFromCSEMaps(N);
2195
2196  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2197  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2198  return N;
2199}
2200
2201
2202/// getTargetNode - These are used for target selectors to create a new node
2203/// with specified return type(s), target opcode, and operands.
2204///
2205/// Note that getTargetNode returns the resultant node.  If there is already a
2206/// node of the specified opcode and operands, it returns that node instead of
2207/// the current one.
2208SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2209  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2210}
2211SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2212                                    SDOperand Op1) {
2213  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2214}
2215SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2216                                    SDOperand Op1, SDOperand Op2) {
2217  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2218}
2219SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2220                                    SDOperand Op1, SDOperand Op2,
2221                                    SDOperand Op3) {
2222  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2223}
2224SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2225                                    const SDOperand *Ops, unsigned NumOps) {
2226  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2227}
2228SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2229                                    MVT::ValueType VT2, SDOperand Op1) {
2230  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2231  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2232}
2233SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2234                                    MVT::ValueType VT2, SDOperand Op1,
2235                                    SDOperand Op2) {
2236  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2237  SDOperand Ops[] = { Op1, Op2 };
2238  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2239}
2240SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2241                                    MVT::ValueType VT2, SDOperand Op1,
2242                                    SDOperand Op2, SDOperand Op3) {
2243  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2244  SDOperand Ops[] = { Op1, Op2, Op3 };
2245  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2246}
2247SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2248                                    MVT::ValueType VT2,
2249                                    const SDOperand *Ops, unsigned NumOps) {
2250  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2251  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2252}
2253SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2254                                    MVT::ValueType VT2, MVT::ValueType VT3,
2255                                    SDOperand Op1, SDOperand Op2) {
2256  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2257  SDOperand Ops[] = { Op1, Op2 };
2258  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
2259}
2260SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2261                                    MVT::ValueType VT2, MVT::ValueType VT3,
2262                                    const SDOperand *Ops, unsigned NumOps) {
2263  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2264  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
2265}
2266
2267/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2268/// This can cause recursive merging of nodes in the DAG.
2269///
2270/// This version assumes From/To have a single result value.
2271///
2272void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2273                                      std::vector<SDNode*> *Deleted) {
2274  SDNode *From = FromN.Val, *To = ToN.Val;
2275  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2276         "Cannot replace with this method!");
2277  assert(From != To && "Cannot replace uses of with self");
2278
2279  while (!From->use_empty()) {
2280    // Process users until they are all gone.
2281    SDNode *U = *From->use_begin();
2282
2283    // This node is about to morph, remove its old self from the CSE maps.
2284    RemoveNodeFromCSEMaps(U);
2285
2286    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2287         I != E; ++I)
2288      if (I->Val == From) {
2289        From->removeUser(U);
2290        I->Val = To;
2291        To->addUser(U);
2292      }
2293
2294    // Now that we have modified U, add it back to the CSE maps.  If it already
2295    // exists there, recursively merge the results together.
2296    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2297      ReplaceAllUsesWith(U, Existing, Deleted);
2298      // U is now dead.
2299      if (Deleted) Deleted->push_back(U);
2300      DeleteNodeNotInCSEMaps(U);
2301    }
2302  }
2303}
2304
2305/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2306/// This can cause recursive merging of nodes in the DAG.
2307///
2308/// This version assumes From/To have matching types and numbers of result
2309/// values.
2310///
2311void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2312                                      std::vector<SDNode*> *Deleted) {
2313  assert(From != To && "Cannot replace uses of with self");
2314  assert(From->getNumValues() == To->getNumValues() &&
2315         "Cannot use this version of ReplaceAllUsesWith!");
2316  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2317    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2318    return;
2319  }
2320
2321  while (!From->use_empty()) {
2322    // Process users until they are all gone.
2323    SDNode *U = *From->use_begin();
2324
2325    // This node is about to morph, remove its old self from the CSE maps.
2326    RemoveNodeFromCSEMaps(U);
2327
2328    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2329         I != E; ++I)
2330      if (I->Val == From) {
2331        From->removeUser(U);
2332        I->Val = To;
2333        To->addUser(U);
2334      }
2335
2336    // Now that we have modified U, add it back to the CSE maps.  If it already
2337    // exists there, recursively merge the results together.
2338    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2339      ReplaceAllUsesWith(U, Existing, Deleted);
2340      // U is now dead.
2341      if (Deleted) Deleted->push_back(U);
2342      DeleteNodeNotInCSEMaps(U);
2343    }
2344  }
2345}
2346
2347/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2348/// This can cause recursive merging of nodes in the DAG.
2349///
2350/// This version can replace From with any result values.  To must match the
2351/// number and types of values returned by From.
2352void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2353                                      const SDOperand *To,
2354                                      std::vector<SDNode*> *Deleted) {
2355  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
2356    // Degenerate case handled above.
2357    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2358    return;
2359  }
2360
2361  while (!From->use_empty()) {
2362    // Process users until they are all gone.
2363    SDNode *U = *From->use_begin();
2364
2365    // This node is about to morph, remove its old self from the CSE maps.
2366    RemoveNodeFromCSEMaps(U);
2367
2368    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2369         I != E; ++I)
2370      if (I->Val == From) {
2371        const SDOperand &ToOp = To[I->ResNo];
2372        From->removeUser(U);
2373        *I = ToOp;
2374        ToOp.Val->addUser(U);
2375      }
2376
2377    // Now that we have modified U, add it back to the CSE maps.  If it already
2378    // exists there, recursively merge the results together.
2379    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2380      ReplaceAllUsesWith(U, Existing, Deleted);
2381      // U is now dead.
2382      if (Deleted) Deleted->push_back(U);
2383      DeleteNodeNotInCSEMaps(U);
2384    }
2385  }
2386}
2387
2388/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2389/// uses of other values produced by From.Val alone.  The Deleted vector is
2390/// handled the same was as for ReplaceAllUsesWith.
2391void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2392                                             std::vector<SDNode*> &Deleted) {
2393  assert(From != To && "Cannot replace a value with itself");
2394  // Handle the simple, trivial, case efficiently.
2395  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2396    ReplaceAllUsesWith(From, To, &Deleted);
2397    return;
2398  }
2399
2400  // Get all of the users of From.Val.  We want these in a nice,
2401  // deterministically ordered and uniqued set, so we use a SmallSetVector.
2402  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
2403
2404  while (!Users.empty()) {
2405    // We know that this user uses some value of From.  If it is the right
2406    // value, update it.
2407    SDNode *User = Users.back();
2408    Users.pop_back();
2409
2410    for (SDOperand *Op = User->OperandList,
2411         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2412      if (*Op == From) {
2413        // Okay, we know this user needs to be updated.  Remove its old self
2414        // from the CSE maps.
2415        RemoveNodeFromCSEMaps(User);
2416
2417        // Update all operands that match "From".
2418        for (; Op != E; ++Op) {
2419          if (*Op == From) {
2420            From.Val->removeUser(User);
2421            *Op = To;
2422            To.Val->addUser(User);
2423          }
2424        }
2425
2426        // Now that we have modified User, add it back to the CSE maps.  If it
2427        // already exists there, recursively merge the results together.
2428        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2429          unsigned NumDeleted = Deleted.size();
2430          ReplaceAllUsesWith(User, Existing, &Deleted);
2431
2432          // User is now dead.
2433          Deleted.push_back(User);
2434          DeleteNodeNotInCSEMaps(User);
2435
2436          // We have to be careful here, because ReplaceAllUsesWith could have
2437          // deleted a user of From, which means there may be dangling pointers
2438          // in the "Users" setvector.  Scan over the deleted node pointers and
2439          // remove them from the setvector.
2440          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2441            Users.remove(Deleted[i]);
2442        }
2443        break;   // Exit the operand scanning loop.
2444      }
2445    }
2446  }
2447}
2448
2449
2450/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
2451/// their allnodes order. It returns the maximum id.
2452unsigned SelectionDAG::AssignNodeIds() {
2453  unsigned Id = 0;
2454  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
2455    SDNode *N = I;
2456    N->setNodeId(Id++);
2457  }
2458  return Id;
2459}
2460
2461/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
2462/// based on their topological order. It returns the maximum id and a vector
2463/// of the SDNodes* in assigned order by reference.
2464unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
2465  unsigned DAGSize = AllNodes.size();
2466  std::vector<unsigned> InDegree(DAGSize);
2467  std::vector<SDNode*> Sources;
2468
2469  // Use a two pass approach to avoid using a std::map which is slow.
2470  unsigned Id = 0;
2471  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
2472    SDNode *N = I;
2473    N->setNodeId(Id++);
2474    unsigned Degree = N->use_size();
2475    InDegree[N->getNodeId()] = Degree;
2476    if (Degree == 0)
2477      Sources.push_back(N);
2478  }
2479
2480  TopOrder.clear();
2481  while (!Sources.empty()) {
2482    SDNode *N = Sources.back();
2483    Sources.pop_back();
2484    TopOrder.push_back(N);
2485    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
2486      SDNode *P = I->Val;
2487      unsigned Degree = --InDegree[P->getNodeId()];
2488      if (Degree == 0)
2489        Sources.push_back(P);
2490    }
2491  }
2492
2493  // Second pass, assign the actual topological order as node ids.
2494  Id = 0;
2495  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
2496       TI != TE; ++TI)
2497    (*TI)->setNodeId(Id++);
2498
2499  return Id;
2500}
2501
2502
2503
2504//===----------------------------------------------------------------------===//
2505//                              SDNode Class
2506//===----------------------------------------------------------------------===//
2507
2508// Out-of-line virtual method to give class a home.
2509void SDNode::ANCHOR() {}
2510void HandleSDNode::ANCHOR() {}
2511void StringSDNode::ANCHOR() {}
2512void ConstantSDNode::ANCHOR() {}
2513void ConstantFPSDNode::ANCHOR() {}
2514void GlobalAddressSDNode::ANCHOR() {}
2515void FrameIndexSDNode::ANCHOR() {}
2516void JumpTableSDNode::ANCHOR() {}
2517void ConstantPoolSDNode::ANCHOR() {}
2518void BasicBlockSDNode::ANCHOR() {}
2519void SrcValueSDNode::ANCHOR() {}
2520void RegisterSDNode::ANCHOR() {}
2521void ExternalSymbolSDNode::ANCHOR() {}
2522void CondCodeSDNode::ANCHOR() {}
2523void VTSDNode::ANCHOR() {}
2524void LoadSDNode::ANCHOR() {}
2525void StoreSDNode::ANCHOR() {}
2526
2527HandleSDNode::~HandleSDNode() {
2528  SDVTList VTs = { 0, 0 };
2529  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
2530}
2531
2532
2533/// Profile - Gather unique data for the node.
2534///
2535void SDNode::Profile(FoldingSetNodeID &ID) {
2536  AddNodeIDNode(ID, this);
2537}
2538
2539/// getValueTypeList - Return a pointer to the specified value type.
2540///
2541MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2542  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2543  VTs[VT] = VT;
2544  return &VTs[VT];
2545}
2546
2547/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2548/// indicated value.  This method ignores uses of other values defined by this
2549/// operation.
2550bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2551  assert(Value < getNumValues() && "Bad value!");
2552
2553  // If there is only one value, this is easy.
2554  if (getNumValues() == 1)
2555    return use_size() == NUses;
2556  if (Uses.size() < NUses) return false;
2557
2558  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2559
2560  SmallPtrSet<SDNode*, 32> UsersHandled;
2561
2562  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
2563    SDNode *User = *UI;
2564    if (User->getNumOperands() == 1 ||
2565        UsersHandled.insert(User))     // First time we've seen this?
2566      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2567        if (User->getOperand(i) == TheValue) {
2568          if (NUses == 0)
2569            return false;   // too many uses
2570          --NUses;
2571        }
2572  }
2573
2574  // Found exactly the right number of uses?
2575  return NUses == 0;
2576}
2577
2578
2579/// isOnlyUse - Return true if this node is the only use of N.
2580///
2581bool SDNode::isOnlyUse(SDNode *N) const {
2582  bool Seen = false;
2583  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2584    SDNode *User = *I;
2585    if (User == this)
2586      Seen = true;
2587    else
2588      return false;
2589  }
2590
2591  return Seen;
2592}
2593
2594/// isOperand - Return true if this node is an operand of N.
2595///
2596bool SDOperand::isOperand(SDNode *N) const {
2597  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2598    if (*this == N->getOperand(i))
2599      return true;
2600  return false;
2601}
2602
2603bool SDNode::isOperand(SDNode *N) const {
2604  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2605    if (this == N->OperandList[i].Val)
2606      return true;
2607  return false;
2608}
2609
2610static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
2611                            SmallPtrSet<SDNode *, 32> &Visited) {
2612  if (found || !Visited.insert(N))
2613    return;
2614
2615  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
2616    SDNode *Op = N->getOperand(i).Val;
2617    if (Op == P) {
2618      found = true;
2619      return;
2620    }
2621    findPredecessor(Op, P, found, Visited);
2622  }
2623}
2624
2625/// isPredecessor - Return true if this node is a predecessor of N. This node
2626/// is either an operand of N or it can be reached by recursively traversing
2627/// up the operands.
2628/// NOTE: this is an expensive method. Use it carefully.
2629bool SDNode::isPredecessor(SDNode *N) const {
2630  SmallPtrSet<SDNode *, 32> Visited;
2631  bool found = false;
2632  findPredecessor(N, this, found, Visited);
2633  return found;
2634}
2635
2636uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
2637  assert(Num < NumOperands && "Invalid child # of SDNode!");
2638  return cast<ConstantSDNode>(OperandList[Num])->getValue();
2639}
2640
2641const char *SDNode::getOperationName(const SelectionDAG *G) const {
2642  switch (getOpcode()) {
2643  default:
2644    if (getOpcode() < ISD::BUILTIN_OP_END)
2645      return "<<Unknown DAG Node>>";
2646    else {
2647      if (G) {
2648        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2649          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2650            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2651
2652        TargetLowering &TLI = G->getTargetLoweringInfo();
2653        const char *Name =
2654          TLI.getTargetNodeName(getOpcode());
2655        if (Name) return Name;
2656      }
2657
2658      return "<<Unknown Target Node>>";
2659    }
2660
2661  case ISD::PCMARKER:      return "PCMarker";
2662  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2663  case ISD::SRCVALUE:      return "SrcValue";
2664  case ISD::EntryToken:    return "EntryToken";
2665  case ISD::TokenFactor:   return "TokenFactor";
2666  case ISD::AssertSext:    return "AssertSext";
2667  case ISD::AssertZext:    return "AssertZext";
2668
2669  case ISD::STRING:        return "String";
2670  case ISD::BasicBlock:    return "BasicBlock";
2671  case ISD::VALUETYPE:     return "ValueType";
2672  case ISD::Register:      return "Register";
2673
2674  case ISD::Constant:      return "Constant";
2675  case ISD::ConstantFP:    return "ConstantFP";
2676  case ISD::GlobalAddress: return "GlobalAddress";
2677  case ISD::FrameIndex:    return "FrameIndex";
2678  case ISD::JumpTable:     return "JumpTable";
2679  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
2680  case ISD::RETURNADDR: return "RETURNADDR";
2681  case ISD::FRAMEADDR: return "FRAMEADDR";
2682  case ISD::ConstantPool:  return "ConstantPool";
2683  case ISD::ExternalSymbol: return "ExternalSymbol";
2684  case ISD::INTRINSIC_WO_CHAIN: {
2685    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
2686    return Intrinsic::getName((Intrinsic::ID)IID);
2687  }
2688  case ISD::INTRINSIC_VOID:
2689  case ISD::INTRINSIC_W_CHAIN: {
2690    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
2691    return Intrinsic::getName((Intrinsic::ID)IID);
2692  }
2693
2694  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2695  case ISD::TargetConstant: return "TargetConstant";
2696  case ISD::TargetConstantFP:return "TargetConstantFP";
2697  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2698  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2699  case ISD::TargetJumpTable:  return "TargetJumpTable";
2700  case ISD::TargetConstantPool:  return "TargetConstantPool";
2701  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2702
2703  case ISD::CopyToReg:     return "CopyToReg";
2704  case ISD::CopyFromReg:   return "CopyFromReg";
2705  case ISD::UNDEF:         return "undef";
2706  case ISD::MERGE_VALUES:  return "mergevalues";
2707  case ISD::INLINEASM:     return "inlineasm";
2708  case ISD::LABEL:         return "label";
2709  case ISD::HANDLENODE:    return "handlenode";
2710  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
2711  case ISD::CALL:          return "call";
2712
2713  // Unary operators
2714  case ISD::FABS:   return "fabs";
2715  case ISD::FNEG:   return "fneg";
2716  case ISD::FSQRT:  return "fsqrt";
2717  case ISD::FSIN:   return "fsin";
2718  case ISD::FCOS:   return "fcos";
2719  case ISD::FPOWI:  return "fpowi";
2720
2721  // Binary operators
2722  case ISD::ADD:    return "add";
2723  case ISD::SUB:    return "sub";
2724  case ISD::MUL:    return "mul";
2725  case ISD::MULHU:  return "mulhu";
2726  case ISD::MULHS:  return "mulhs";
2727  case ISD::SDIV:   return "sdiv";
2728  case ISD::UDIV:   return "udiv";
2729  case ISD::SREM:   return "srem";
2730  case ISD::UREM:   return "urem";
2731  case ISD::AND:    return "and";
2732  case ISD::OR:     return "or";
2733  case ISD::XOR:    return "xor";
2734  case ISD::SHL:    return "shl";
2735  case ISD::SRA:    return "sra";
2736  case ISD::SRL:    return "srl";
2737  case ISD::ROTL:   return "rotl";
2738  case ISD::ROTR:   return "rotr";
2739  case ISD::FADD:   return "fadd";
2740  case ISD::FSUB:   return "fsub";
2741  case ISD::FMUL:   return "fmul";
2742  case ISD::FDIV:   return "fdiv";
2743  case ISD::FREM:   return "frem";
2744  case ISD::FCOPYSIGN: return "fcopysign";
2745  case ISD::VADD:   return "vadd";
2746  case ISD::VSUB:   return "vsub";
2747  case ISD::VMUL:   return "vmul";
2748  case ISD::VSDIV:  return "vsdiv";
2749  case ISD::VUDIV:  return "vudiv";
2750  case ISD::VAND:   return "vand";
2751  case ISD::VOR:    return "vor";
2752  case ISD::VXOR:   return "vxor";
2753
2754  case ISD::SETCC:       return "setcc";
2755  case ISD::SELECT:      return "select";
2756  case ISD::SELECT_CC:   return "select_cc";
2757  case ISD::VSELECT:     return "vselect";
2758  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
2759  case ISD::VINSERT_VECTOR_ELT:  return "vinsert_vector_elt";
2760  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
2761  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2762  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
2763  case ISD::VBUILD_VECTOR:       return "vbuild_vector";
2764  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
2765  case ISD::VVECTOR_SHUFFLE:     return "vvector_shuffle";
2766  case ISD::VBIT_CONVERT:        return "vbit_convert";
2767  case ISD::ADDC:        return "addc";
2768  case ISD::ADDE:        return "adde";
2769  case ISD::SUBC:        return "subc";
2770  case ISD::SUBE:        return "sube";
2771  case ISD::SHL_PARTS:   return "shl_parts";
2772  case ISD::SRA_PARTS:   return "sra_parts";
2773  case ISD::SRL_PARTS:   return "srl_parts";
2774
2775  // Conversion operators.
2776  case ISD::SIGN_EXTEND: return "sign_extend";
2777  case ISD::ZERO_EXTEND: return "zero_extend";
2778  case ISD::ANY_EXTEND:  return "any_extend";
2779  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2780  case ISD::TRUNCATE:    return "truncate";
2781  case ISD::FP_ROUND:    return "fp_round";
2782  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2783  case ISD::FP_EXTEND:   return "fp_extend";
2784
2785  case ISD::SINT_TO_FP:  return "sint_to_fp";
2786  case ISD::UINT_TO_FP:  return "uint_to_fp";
2787  case ISD::FP_TO_SINT:  return "fp_to_sint";
2788  case ISD::FP_TO_UINT:  return "fp_to_uint";
2789  case ISD::BIT_CONVERT: return "bit_convert";
2790
2791    // Control flow instructions
2792  case ISD::BR:      return "br";
2793  case ISD::BRIND:   return "brind";
2794  case ISD::BR_JT:   return "br_jt";
2795  case ISD::BRCOND:  return "brcond";
2796  case ISD::BR_CC:   return "br_cc";
2797  case ISD::RET:     return "ret";
2798  case ISD::CALLSEQ_START:  return "callseq_start";
2799  case ISD::CALLSEQ_END:    return "callseq_end";
2800
2801    // Other operators
2802  case ISD::LOAD:               return "load";
2803  case ISD::STORE:              return "store";
2804  case ISD::VLOAD:              return "vload";
2805  case ISD::VAARG:              return "vaarg";
2806  case ISD::VACOPY:             return "vacopy";
2807  case ISD::VAEND:              return "vaend";
2808  case ISD::VASTART:            return "vastart";
2809  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2810  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2811  case ISD::BUILD_PAIR:         return "build_pair";
2812  case ISD::STACKSAVE:          return "stacksave";
2813  case ISD::STACKRESTORE:       return "stackrestore";
2814
2815  // Block memory operations.
2816  case ISD::MEMSET:  return "memset";
2817  case ISD::MEMCPY:  return "memcpy";
2818  case ISD::MEMMOVE: return "memmove";
2819
2820  // Bit manipulation
2821  case ISD::BSWAP:   return "bswap";
2822  case ISD::CTPOP:   return "ctpop";
2823  case ISD::CTTZ:    return "cttz";
2824  case ISD::CTLZ:    return "ctlz";
2825
2826  // Debug info
2827  case ISD::LOCATION: return "location";
2828  case ISD::DEBUG_LOC: return "debug_loc";
2829
2830  case ISD::CONDCODE:
2831    switch (cast<CondCodeSDNode>(this)->get()) {
2832    default: assert(0 && "Unknown setcc condition!");
2833    case ISD::SETOEQ:  return "setoeq";
2834    case ISD::SETOGT:  return "setogt";
2835    case ISD::SETOGE:  return "setoge";
2836    case ISD::SETOLT:  return "setolt";
2837    case ISD::SETOLE:  return "setole";
2838    case ISD::SETONE:  return "setone";
2839
2840    case ISD::SETO:    return "seto";
2841    case ISD::SETUO:   return "setuo";
2842    case ISD::SETUEQ:  return "setue";
2843    case ISD::SETUGT:  return "setugt";
2844    case ISD::SETUGE:  return "setuge";
2845    case ISD::SETULT:  return "setult";
2846    case ISD::SETULE:  return "setule";
2847    case ISD::SETUNE:  return "setune";
2848
2849    case ISD::SETEQ:   return "seteq";
2850    case ISD::SETGT:   return "setgt";
2851    case ISD::SETGE:   return "setge";
2852    case ISD::SETLT:   return "setlt";
2853    case ISD::SETLE:   return "setle";
2854    case ISD::SETNE:   return "setne";
2855    }
2856  }
2857}
2858
2859const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
2860  switch (AM) {
2861  default:
2862    return "";
2863  case ISD::PRE_INC:
2864    return "<pre-inc>";
2865  case ISD::PRE_DEC:
2866    return "<pre-dec>";
2867  case ISD::POST_INC:
2868    return "<post-inc>";
2869  case ISD::POST_DEC:
2870    return "<post-dec>";
2871  }
2872}
2873
2874void SDNode::dump() const { dump(0); }
2875void SDNode::dump(const SelectionDAG *G) const {
2876  cerr << (void*)this << ": ";
2877
2878  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2879    if (i) cerr << ",";
2880    if (getValueType(i) == MVT::Other)
2881      cerr << "ch";
2882    else
2883      cerr << MVT::getValueTypeString(getValueType(i));
2884  }
2885  cerr << " = " << getOperationName(G);
2886
2887  cerr << " ";
2888  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2889    if (i) cerr << ", ";
2890    cerr << (void*)getOperand(i).Val;
2891    if (unsigned RN = getOperand(i).ResNo)
2892      cerr << ":" << RN;
2893  }
2894
2895  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2896    cerr << "<" << CSDN->getValue() << ">";
2897  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2898    cerr << "<" << CSDN->getValue() << ">";
2899  } else if (const GlobalAddressSDNode *GADN =
2900             dyn_cast<GlobalAddressSDNode>(this)) {
2901    int offset = GADN->getOffset();
2902    cerr << "<";
2903    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
2904    if (offset > 0)
2905      cerr << " + " << offset;
2906    else
2907      cerr << " " << offset;
2908  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2909    cerr << "<" << FIDN->getIndex() << ">";
2910  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
2911    cerr << "<" << JTDN->getIndex() << ">";
2912  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2913    int offset = CP->getOffset();
2914    if (CP->isMachineConstantPoolEntry())
2915      cerr << "<" << *CP->getMachineCPVal() << ">";
2916    else
2917      cerr << "<" << *CP->getConstVal() << ">";
2918    if (offset > 0)
2919      cerr << " + " << offset;
2920    else
2921      cerr << " " << offset;
2922  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2923    cerr << "<";
2924    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2925    if (LBB)
2926      cerr << LBB->getName() << " ";
2927    cerr << (const void*)BBDN->getBasicBlock() << ">";
2928  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2929    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2930      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2931    } else {
2932      cerr << " #" << R->getReg();
2933    }
2934  } else if (const ExternalSymbolSDNode *ES =
2935             dyn_cast<ExternalSymbolSDNode>(this)) {
2936    cerr << "'" << ES->getSymbol() << "'";
2937  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2938    if (M->getValue())
2939      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2940    else
2941      cerr << "<null:" << M->getOffset() << ">";
2942  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2943    cerr << ":" << getValueTypeString(N->getVT());
2944  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
2945    bool doExt = true;
2946    switch (LD->getExtensionType()) {
2947    default: doExt = false; break;
2948    case ISD::EXTLOAD:
2949      cerr << " <anyext ";
2950      break;
2951    case ISD::SEXTLOAD:
2952      cerr << " <sext ";
2953      break;
2954    case ISD::ZEXTLOAD:
2955      cerr << " <zext ";
2956      break;
2957    }
2958    if (doExt)
2959      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
2960
2961    const char *AM = getIndexedModeName(LD->getAddressingMode());
2962    if (AM != "")
2963      cerr << " " << AM;
2964  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
2965    if (ST->isTruncatingStore())
2966      cerr << " <trunc "
2967           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
2968
2969    const char *AM = getIndexedModeName(ST->getAddressingMode());
2970    if (AM != "")
2971      cerr << " " << AM;
2972  }
2973}
2974
2975static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2976  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2977    if (N->getOperand(i).Val->hasOneUse())
2978      DumpNodes(N->getOperand(i).Val, indent+2, G);
2979    else
2980      cerr << "\n" << std::string(indent+2, ' ')
2981           << (void*)N->getOperand(i).Val << ": <multiple use>";
2982
2983
2984  cerr << "\n" << std::string(indent, ' ');
2985  N->dump(G);
2986}
2987
2988void SelectionDAG::dump() const {
2989  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2990  std::vector<const SDNode*> Nodes;
2991  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2992       I != E; ++I)
2993    Nodes.push_back(I);
2994
2995  std::sort(Nodes.begin(), Nodes.end());
2996
2997  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2998    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2999      DumpNodes(Nodes[i], 2, this);
3000  }
3001
3002  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3003
3004  cerr << "\n\n";
3005}
3006
3007const Type *ConstantPoolSDNode::getType() const {
3008  if (isMachineConstantPoolEntry())
3009    return Val.MachineCPVal->getType();
3010  return Val.ConstVal->getType();
3011}
3012