SelectionDAG.cpp revision 675d56222b6b98d2c22a17aaf69a036e57d5426a
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/ManagedStatic.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/System/Mutex.h"
39#include "llvm/ADT/SetVector.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/SmallSet.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/ADT/StringExtras.h"
44#include <algorithm>
45#include <cmath>
46using namespace llvm;
47
48/// makeVTList - Return an instance of the SDVTList struct initialized with the
49/// specified members.
50static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
51  SDVTList Res = {VTs, NumVTs};
52  return Res;
53}
54
55static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
56  switch (VT.getSimpleVT()) {
57  default: LLVM_UNREACHABLE("Unknown FP format");
58  case MVT::f32:     return &APFloat::IEEEsingle;
59  case MVT::f64:     return &APFloat::IEEEdouble;
60  case MVT::f80:     return &APFloat::x87DoubleExtended;
61  case MVT::f128:    return &APFloat::IEEEquad;
62  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
63  }
64}
65
66SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
67
68//===----------------------------------------------------------------------===//
69//                              ConstantFPSDNode Class
70//===----------------------------------------------------------------------===//
71
72/// isExactlyValue - We don't rely on operator== working on double values, as
73/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
74/// As such, this method can be used to do an exact bit-for-bit comparison of
75/// two floating point values.
76bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
77  return getValueAPF().bitwiseIsEqual(V);
78}
79
80bool ConstantFPSDNode::isValueValidForType(MVT VT,
81                                           const APFloat& Val) {
82  assert(VT.isFloatingPoint() && "Can only convert between FP types");
83
84  // PPC long double cannot be converted to any other type.
85  if (VT == MVT::ppcf128 ||
86      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
87    return false;
88
89  // convert modifies in place, so make a copy.
90  APFloat Val2 = APFloat(Val);
91  bool losesInfo;
92  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
93                      &losesInfo);
94  return !losesInfo;
95}
96
97//===----------------------------------------------------------------------===//
98//                              ISD Namespace
99//===----------------------------------------------------------------------===//
100
101/// isBuildVectorAllOnes - Return true if the specified node is a
102/// BUILD_VECTOR where all of the elements are ~0 or undef.
103bool ISD::isBuildVectorAllOnes(const SDNode *N) {
104  // Look through a bit convert.
105  if (N->getOpcode() == ISD::BIT_CONVERT)
106    N = N->getOperand(0).getNode();
107
108  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
109
110  unsigned i = 0, e = N->getNumOperands();
111
112  // Skip over all of the undef values.
113  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
114    ++i;
115
116  // Do not accept an all-undef vector.
117  if (i == e) return false;
118
119  // Do not accept build_vectors that aren't all constants or which have non-~0
120  // elements.
121  SDValue NotZero = N->getOperand(i);
122  if (isa<ConstantSDNode>(NotZero)) {
123    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
124      return false;
125  } else if (isa<ConstantFPSDNode>(NotZero)) {
126    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
127                bitcastToAPInt().isAllOnesValue())
128      return false;
129  } else
130    return false;
131
132  // Okay, we have at least one ~0 value, check to see if the rest match or are
133  // undefs.
134  for (++i; i != e; ++i)
135    if (N->getOperand(i) != NotZero &&
136        N->getOperand(i).getOpcode() != ISD::UNDEF)
137      return false;
138  return true;
139}
140
141
142/// isBuildVectorAllZeros - Return true if the specified node is a
143/// BUILD_VECTOR where all of the elements are 0 or undef.
144bool ISD::isBuildVectorAllZeros(const SDNode *N) {
145  // Look through a bit convert.
146  if (N->getOpcode() == ISD::BIT_CONVERT)
147    N = N->getOperand(0).getNode();
148
149  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
150
151  unsigned i = 0, e = N->getNumOperands();
152
153  // Skip over all of the undef values.
154  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
155    ++i;
156
157  // Do not accept an all-undef vector.
158  if (i == e) return false;
159
160  // Do not accept build_vectors that aren't all constants or which have non-0
161  // elements.
162  SDValue Zero = N->getOperand(i);
163  if (isa<ConstantSDNode>(Zero)) {
164    if (!cast<ConstantSDNode>(Zero)->isNullValue())
165      return false;
166  } else if (isa<ConstantFPSDNode>(Zero)) {
167    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
168      return false;
169  } else
170    return false;
171
172  // Okay, we have at least one 0 value, check to see if the rest match or are
173  // undefs.
174  for (++i; i != e; ++i)
175    if (N->getOperand(i) != Zero &&
176        N->getOperand(i).getOpcode() != ISD::UNDEF)
177      return false;
178  return true;
179}
180
181/// isScalarToVector - Return true if the specified node is a
182/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
183/// element is not an undef.
184bool ISD::isScalarToVector(const SDNode *N) {
185  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
186    return true;
187
188  if (N->getOpcode() != ISD::BUILD_VECTOR)
189    return false;
190  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
191    return false;
192  unsigned NumElems = N->getNumOperands();
193  for (unsigned i = 1; i < NumElems; ++i) {
194    SDValue V = N->getOperand(i);
195    if (V.getOpcode() != ISD::UNDEF)
196      return false;
197  }
198  return true;
199}
200
201
202/// isDebugLabel - Return true if the specified node represents a debug
203/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
204bool ISD::isDebugLabel(const SDNode *N) {
205  SDValue Zero;
206  if (N->getOpcode() == ISD::DBG_LABEL)
207    return true;
208  if (N->isMachineOpcode() &&
209      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
210    return true;
211  return false;
212}
213
214/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
215/// when given the operation for (X op Y).
216ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
217  // To perform this operation, we just need to swap the L and G bits of the
218  // operation.
219  unsigned OldL = (Operation >> 2) & 1;
220  unsigned OldG = (Operation >> 1) & 1;
221  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
222                       (OldL << 1) |       // New G bit
223                       (OldG << 2));       // New L bit.
224}
225
226/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
227/// 'op' is a valid SetCC operation.
228ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
229  unsigned Operation = Op;
230  if (isInteger)
231    Operation ^= 7;   // Flip L, G, E bits, but not U.
232  else
233    Operation ^= 15;  // Flip all of the condition bits.
234
235  if (Operation > ISD::SETTRUE2)
236    Operation &= ~8;  // Don't let N and U bits get set.
237
238  return ISD::CondCode(Operation);
239}
240
241
242/// isSignedOp - For an integer comparison, return 1 if the comparison is a
243/// signed operation and 2 if the result is an unsigned comparison.  Return zero
244/// if the operation does not depend on the sign of the input (setne and seteq).
245static int isSignedOp(ISD::CondCode Opcode) {
246  switch (Opcode) {
247  default: LLVM_UNREACHABLE("Illegal integer setcc operation!");
248  case ISD::SETEQ:
249  case ISD::SETNE: return 0;
250  case ISD::SETLT:
251  case ISD::SETLE:
252  case ISD::SETGT:
253  case ISD::SETGE: return 1;
254  case ISD::SETULT:
255  case ISD::SETULE:
256  case ISD::SETUGT:
257  case ISD::SETUGE: return 2;
258  }
259}
260
261/// getSetCCOrOperation - Return the result of a logical OR between different
262/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
263/// returns SETCC_INVALID if it is not possible to represent the resultant
264/// comparison.
265ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
266                                       bool isInteger) {
267  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
268    // Cannot fold a signed integer setcc with an unsigned integer setcc.
269    return ISD::SETCC_INVALID;
270
271  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
272
273  // If the N and U bits get set then the resultant comparison DOES suddenly
274  // care about orderedness, and is true when ordered.
275  if (Op > ISD::SETTRUE2)
276    Op &= ~16;     // Clear the U bit if the N bit is set.
277
278  // Canonicalize illegal integer setcc's.
279  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
280    Op = ISD::SETNE;
281
282  return ISD::CondCode(Op);
283}
284
285/// getSetCCAndOperation - Return the result of a logical AND between different
286/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
287/// function returns zero if it is not possible to represent the resultant
288/// comparison.
289ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
290                                        bool isInteger) {
291  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
292    // Cannot fold a signed setcc with an unsigned setcc.
293    return ISD::SETCC_INVALID;
294
295  // Combine all of the condition bits.
296  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
297
298  // Canonicalize illegal integer setcc's.
299  if (isInteger) {
300    switch (Result) {
301    default: break;
302    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
303    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
304    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
305    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
306    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
307    }
308  }
309
310  return Result;
311}
312
313const TargetMachine &SelectionDAG::getTarget() const {
314  return MF->getTarget();
315}
316
317//===----------------------------------------------------------------------===//
318//                           SDNode Profile Support
319//===----------------------------------------------------------------------===//
320
321/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
322///
323static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
324  ID.AddInteger(OpC);
325}
326
327/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
328/// solely with their pointer.
329static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
330  ID.AddPointer(VTList.VTs);
331}
332
333/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
334///
335static void AddNodeIDOperands(FoldingSetNodeID &ID,
336                              const SDValue *Ops, unsigned NumOps) {
337  for (; NumOps; --NumOps, ++Ops) {
338    ID.AddPointer(Ops->getNode());
339    ID.AddInteger(Ops->getResNo());
340  }
341}
342
343/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
344///
345static void AddNodeIDOperands(FoldingSetNodeID &ID,
346                              const SDUse *Ops, unsigned NumOps) {
347  for (; NumOps; --NumOps, ++Ops) {
348    ID.AddPointer(Ops->getNode());
349    ID.AddInteger(Ops->getResNo());
350  }
351}
352
353static void AddNodeIDNode(FoldingSetNodeID &ID,
354                          unsigned short OpC, SDVTList VTList,
355                          const SDValue *OpList, unsigned N) {
356  AddNodeIDOpcode(ID, OpC);
357  AddNodeIDValueTypes(ID, VTList);
358  AddNodeIDOperands(ID, OpList, N);
359}
360
361/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
362/// the NodeID data.
363static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
364  switch (N->getOpcode()) {
365  case ISD::TargetExternalSymbol:
366  case ISD::ExternalSymbol:
367    LLVM_UNREACHABLE("Should only be used on nodes with operands");
368  default: break;  // Normal nodes don't need extra info.
369  case ISD::ARG_FLAGS:
370    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
371    break;
372  case ISD::TargetConstant:
373  case ISD::Constant:
374    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
375    break;
376  case ISD::TargetConstantFP:
377  case ISD::ConstantFP: {
378    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
379    break;
380  }
381  case ISD::TargetGlobalAddress:
382  case ISD::GlobalAddress:
383  case ISD::TargetGlobalTLSAddress:
384  case ISD::GlobalTLSAddress: {
385    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
386    ID.AddPointer(GA->getGlobal());
387    ID.AddInteger(GA->getOffset());
388    ID.AddInteger(GA->getTargetFlags());
389    break;
390  }
391  case ISD::BasicBlock:
392    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
393    break;
394  case ISD::Register:
395    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
396    break;
397  case ISD::DBG_STOPPOINT: {
398    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
399    ID.AddInteger(DSP->getLine());
400    ID.AddInteger(DSP->getColumn());
401    ID.AddPointer(DSP->getCompileUnit());
402    break;
403  }
404  case ISD::SRCVALUE:
405    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
406    break;
407  case ISD::MEMOPERAND: {
408    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
409    MO.Profile(ID);
410    break;
411  }
412  case ISD::FrameIndex:
413  case ISD::TargetFrameIndex:
414    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
415    break;
416  case ISD::JumpTable:
417  case ISD::TargetJumpTable:
418    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
419    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
420    break;
421  case ISD::ConstantPool:
422  case ISD::TargetConstantPool: {
423    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
424    ID.AddInteger(CP->getAlignment());
425    ID.AddInteger(CP->getOffset());
426    if (CP->isMachineConstantPoolEntry())
427      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
428    else
429      ID.AddPointer(CP->getConstVal());
430    ID.AddInteger(CP->getTargetFlags());
431    break;
432  }
433  case ISD::CALL: {
434    const CallSDNode *Call = cast<CallSDNode>(N);
435    ID.AddInteger(Call->getCallingConv());
436    ID.AddInteger(Call->isVarArg());
437    break;
438  }
439  case ISD::LOAD: {
440    const LoadSDNode *LD = cast<LoadSDNode>(N);
441    ID.AddInteger(LD->getMemoryVT().getRawBits());
442    ID.AddInteger(LD->getRawSubclassData());
443    break;
444  }
445  case ISD::STORE: {
446    const StoreSDNode *ST = cast<StoreSDNode>(N);
447    ID.AddInteger(ST->getMemoryVT().getRawBits());
448    ID.AddInteger(ST->getRawSubclassData());
449    break;
450  }
451  case ISD::ATOMIC_CMP_SWAP:
452  case ISD::ATOMIC_SWAP:
453  case ISD::ATOMIC_LOAD_ADD:
454  case ISD::ATOMIC_LOAD_SUB:
455  case ISD::ATOMIC_LOAD_AND:
456  case ISD::ATOMIC_LOAD_OR:
457  case ISD::ATOMIC_LOAD_XOR:
458  case ISD::ATOMIC_LOAD_NAND:
459  case ISD::ATOMIC_LOAD_MIN:
460  case ISD::ATOMIC_LOAD_MAX:
461  case ISD::ATOMIC_LOAD_UMIN:
462  case ISD::ATOMIC_LOAD_UMAX: {
463    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
464    ID.AddInteger(AT->getMemoryVT().getRawBits());
465    ID.AddInteger(AT->getRawSubclassData());
466    break;
467  }
468  case ISD::VECTOR_SHUFFLE: {
469    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
470    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
471         i != e; ++i)
472      ID.AddInteger(SVN->getMaskElt(i));
473    break;
474  }
475  } // end switch (N->getOpcode())
476}
477
478/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
479/// data.
480static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
481  AddNodeIDOpcode(ID, N->getOpcode());
482  // Add the return value info.
483  AddNodeIDValueTypes(ID, N->getVTList());
484  // Add the operand info.
485  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
486
487  // Handle SDNode leafs with special info.
488  AddNodeIDCustom(ID, N);
489}
490
491/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
492/// the CSE map that carries alignment, volatility, indexing mode, and
493/// extension/truncation information.
494///
495static inline unsigned
496encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
497                     bool isVolatile, unsigned Alignment) {
498  assert((ConvType & 3) == ConvType &&
499         "ConvType may not require more than 2 bits!");
500  assert((AM & 7) == AM &&
501         "AM may not require more than 3 bits!");
502  return ConvType |
503         (AM << 2) |
504         (isVolatile << 5) |
505         ((Log2_32(Alignment) + 1) << 6);
506}
507
508//===----------------------------------------------------------------------===//
509//                              SelectionDAG Class
510//===----------------------------------------------------------------------===//
511
512/// doNotCSE - Return true if CSE should not be performed for this node.
513static bool doNotCSE(SDNode *N) {
514  if (N->getValueType(0) == MVT::Flag)
515    return true; // Never CSE anything that produces a flag.
516
517  switch (N->getOpcode()) {
518  default: break;
519  case ISD::HANDLENODE:
520  case ISD::DBG_LABEL:
521  case ISD::DBG_STOPPOINT:
522  case ISD::EH_LABEL:
523  case ISD::DECLARE:
524    return true;   // Never CSE these nodes.
525  }
526
527  // Check that remaining values produced are not flags.
528  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
529    if (N->getValueType(i) == MVT::Flag)
530      return true; // Never CSE anything that produces a flag.
531
532  return false;
533}
534
535/// RemoveDeadNodes - This method deletes all unreachable nodes in the
536/// SelectionDAG.
537void SelectionDAG::RemoveDeadNodes() {
538  // Create a dummy node (which is not added to allnodes), that adds a reference
539  // to the root node, preventing it from being deleted.
540  HandleSDNode Dummy(getRoot());
541
542  SmallVector<SDNode*, 128> DeadNodes;
543
544  // Add all obviously-dead nodes to the DeadNodes worklist.
545  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
546    if (I->use_empty())
547      DeadNodes.push_back(I);
548
549  RemoveDeadNodes(DeadNodes);
550
551  // If the root changed (e.g. it was a dead load, update the root).
552  setRoot(Dummy.getValue());
553}
554
555/// RemoveDeadNodes - This method deletes the unreachable nodes in the
556/// given list, and any nodes that become unreachable as a result.
557void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
558                                   DAGUpdateListener *UpdateListener) {
559
560  // Process the worklist, deleting the nodes and adding their uses to the
561  // worklist.
562  while (!DeadNodes.empty()) {
563    SDNode *N = DeadNodes.pop_back_val();
564
565    if (UpdateListener)
566      UpdateListener->NodeDeleted(N, 0);
567
568    // Take the node out of the appropriate CSE map.
569    RemoveNodeFromCSEMaps(N);
570
571    // Next, brutally remove the operand list.  This is safe to do, as there are
572    // no cycles in the graph.
573    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
574      SDUse &Use = *I++;
575      SDNode *Operand = Use.getNode();
576      Use.set(SDValue());
577
578      // Now that we removed this operand, see if there are no uses of it left.
579      if (Operand->use_empty())
580        DeadNodes.push_back(Operand);
581    }
582
583    DeallocateNode(N);
584  }
585}
586
587void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
588  SmallVector<SDNode*, 16> DeadNodes(1, N);
589  RemoveDeadNodes(DeadNodes, UpdateListener);
590}
591
592void SelectionDAG::DeleteNode(SDNode *N) {
593  // First take this out of the appropriate CSE map.
594  RemoveNodeFromCSEMaps(N);
595
596  // Finally, remove uses due to operands of this node, remove from the
597  // AllNodes list, and delete the node.
598  DeleteNodeNotInCSEMaps(N);
599}
600
601void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
602  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
603  assert(N->use_empty() && "Cannot delete a node that is not dead!");
604
605  // Drop all of the operands and decrement used node's use counts.
606  N->DropOperands();
607
608  DeallocateNode(N);
609}
610
611void SelectionDAG::DeallocateNode(SDNode *N) {
612  if (N->OperandsNeedDelete)
613    delete[] N->OperandList;
614
615  // Set the opcode to DELETED_NODE to help catch bugs when node
616  // memory is reallocated.
617  N->NodeType = ISD::DELETED_NODE;
618
619  NodeAllocator.Deallocate(AllNodes.remove(N));
620}
621
622/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
623/// correspond to it.  This is useful when we're about to delete or repurpose
624/// the node.  We don't want future request for structurally identical nodes
625/// to return N anymore.
626bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
627  bool Erased = false;
628  switch (N->getOpcode()) {
629  case ISD::EntryToken:
630    LLVM_UNREACHABLE("EntryToken should not be in CSEMaps!");
631    return false;
632  case ISD::HANDLENODE: return false;  // noop.
633  case ISD::CONDCODE:
634    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
635           "Cond code doesn't exist!");
636    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
637    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
638    break;
639  case ISD::ExternalSymbol:
640    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
641    break;
642  case ISD::TargetExternalSymbol: {
643    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
644    Erased = TargetExternalSymbols.erase(
645               std::pair<std::string,unsigned char>(ESN->getSymbol(),
646                                                    ESN->getTargetFlags()));
647    break;
648  }
649  case ISD::VALUETYPE: {
650    MVT VT = cast<VTSDNode>(N)->getVT();
651    if (VT.isExtended()) {
652      Erased = ExtendedValueTypeNodes.erase(VT);
653    } else {
654      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
655      ValueTypeNodes[VT.getSimpleVT()] = 0;
656    }
657    break;
658  }
659  default:
660    // Remove it from the CSE Map.
661    Erased = CSEMap.RemoveNode(N);
662    break;
663  }
664#ifndef NDEBUG
665  // Verify that the node was actually in one of the CSE maps, unless it has a
666  // flag result (which cannot be CSE'd) or is one of the special cases that are
667  // not subject to CSE.
668  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
669      !N->isMachineOpcode() && !doNotCSE(N)) {
670    N->dump(this);
671    cerr << "\n";
672    LLVM_UNREACHABLE("Node is not in map!");
673  }
674#endif
675  return Erased;
676}
677
678/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
679/// maps and modified in place. Add it back to the CSE maps, unless an identical
680/// node already exists, in which case transfer all its users to the existing
681/// node. This transfer can potentially trigger recursive merging.
682///
683void
684SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
685                                       DAGUpdateListener *UpdateListener) {
686  // For node types that aren't CSE'd, just act as if no identical node
687  // already exists.
688  if (!doNotCSE(N)) {
689    SDNode *Existing = CSEMap.GetOrInsertNode(N);
690    if (Existing != N) {
691      // If there was already an existing matching node, use ReplaceAllUsesWith
692      // to replace the dead one with the existing one.  This can cause
693      // recursive merging of other unrelated nodes down the line.
694      ReplaceAllUsesWith(N, Existing, UpdateListener);
695
696      // N is now dead.  Inform the listener if it exists and delete it.
697      if (UpdateListener)
698        UpdateListener->NodeDeleted(N, Existing);
699      DeleteNodeNotInCSEMaps(N);
700      return;
701    }
702  }
703
704  // If the node doesn't already exist, we updated it.  Inform a listener if
705  // it exists.
706  if (UpdateListener)
707    UpdateListener->NodeUpdated(N);
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
715                                           void *&InsertPos) {
716  if (doNotCSE(N))
717    return 0;
718
719  SDValue Ops[] = { Op };
720  FoldingSetNodeID ID;
721  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
722  AddNodeIDCustom(ID, N);
723  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
724}
725
726/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
727/// were replaced with those specified.  If this node is never memoized,
728/// return null, otherwise return a pointer to the slot it would take.  If a
729/// node already exists with these operands, the slot will be non-null.
730SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
731                                           SDValue Op1, SDValue Op2,
732                                           void *&InsertPos) {
733  if (doNotCSE(N))
734    return 0;
735
736  SDValue Ops[] = { Op1, Op2 };
737  FoldingSetNodeID ID;
738  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
739  AddNodeIDCustom(ID, N);
740  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
741}
742
743
744/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
745/// were replaced with those specified.  If this node is never memoized,
746/// return null, otherwise return a pointer to the slot it would take.  If a
747/// node already exists with these operands, the slot will be non-null.
748SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
749                                           const SDValue *Ops,unsigned NumOps,
750                                           void *&InsertPos) {
751  if (doNotCSE(N))
752    return 0;
753
754  FoldingSetNodeID ID;
755  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
756  AddNodeIDCustom(ID, N);
757  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
758}
759
760/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
761void SelectionDAG::VerifyNode(SDNode *N) {
762  switch (N->getOpcode()) {
763  default:
764    break;
765  case ISD::BUILD_PAIR: {
766    MVT VT = N->getValueType(0);
767    assert(N->getNumValues() == 1 && "Too many results!");
768    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
769           "Wrong return type!");
770    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
771    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
772           "Mismatched operand types!");
773    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
774           "Wrong operand type!");
775    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
776           "Wrong return type size");
777    break;
778  }
779  case ISD::BUILD_VECTOR: {
780    assert(N->getNumValues() == 1 && "Too many results!");
781    assert(N->getValueType(0).isVector() && "Wrong return type!");
782    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
783           "Wrong number of operands!");
784    MVT EltVT = N->getValueType(0).getVectorElementType();
785    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
786      assert((I->getValueType() == EltVT ||
787             (EltVT.isInteger() && I->getValueType().isInteger() &&
788              EltVT.bitsLE(I->getValueType()))) &&
789            "Wrong operand type!");
790    break;
791  }
792  }
793}
794
795/// getMVTAlignment - Compute the default alignment value for the
796/// given type.
797///
798unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
799  const Type *Ty = VT == MVT::iPTR ?
800                   PointerType::get(Type::Int8Ty, 0) :
801                   VT.getTypeForMVT(*Context);
802
803  return TLI.getTargetData()->getABITypeAlignment(Ty);
804}
805
806// EntryNode could meaningfully have debug info if we can find it...
807SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
808  : TLI(tli), FLI(fli), DW(0),
809    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
810    getVTList(MVT::Other)), Root(getEntryNode()) {
811  AllNodes.push_back(&EntryNode);
812}
813
814void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
815                        DwarfWriter *dw) {
816  MF = &mf;
817  MMI = mmi;
818  DW = dw;
819  Context = mf.getFunction()->getContext();
820}
821
822SelectionDAG::~SelectionDAG() {
823  allnodes_clear();
824}
825
826void SelectionDAG::allnodes_clear() {
827  assert(&*AllNodes.begin() == &EntryNode);
828  AllNodes.remove(AllNodes.begin());
829  while (!AllNodes.empty())
830    DeallocateNode(AllNodes.begin());
831}
832
833void SelectionDAG::clear() {
834  allnodes_clear();
835  OperandAllocator.Reset();
836  CSEMap.clear();
837
838  ExtendedValueTypeNodes.clear();
839  ExternalSymbols.clear();
840  TargetExternalSymbols.clear();
841  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
842            static_cast<CondCodeSDNode*>(0));
843  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
844            static_cast<SDNode*>(0));
845
846  EntryNode.UseList = 0;
847  AllNodes.push_back(&EntryNode);
848  Root = getEntryNode();
849}
850
851SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
852  if (Op.getValueType() == VT) return Op;
853  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
854                                   VT.getSizeInBits());
855  return getNode(ISD::AND, DL, Op.getValueType(), Op,
856                 getConstant(Imm, Op.getValueType()));
857}
858
859/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
860///
861SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
862  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
863  SDValue NegOne =
864    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
865  return getNode(ISD::XOR, DL, VT, Val, NegOne);
866}
867
868SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
869  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
870  assert((EltVT.getSizeInBits() >= 64 ||
871         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
872         "getConstant with a uint64_t value that doesn't fit in the type!");
873  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
874}
875
876SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
877  return getConstant(*ConstantInt::get(Val), VT, isT);
878}
879
880SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
881  assert(VT.isInteger() && "Cannot create FP integer constant!");
882
883  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
884  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
885         "APInt size does not match type size!");
886
887  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
888  FoldingSetNodeID ID;
889  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
890  ID.AddPointer(&Val);
891  void *IP = 0;
892  SDNode *N = NULL;
893  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
894    if (!VT.isVector())
895      return SDValue(N, 0);
896  if (!N) {
897    N = NodeAllocator.Allocate<ConstantSDNode>();
898    new (N) ConstantSDNode(isT, &Val, EltVT);
899    CSEMap.InsertNode(N, IP);
900    AllNodes.push_back(N);
901  }
902
903  SDValue Result(N, 0);
904  if (VT.isVector()) {
905    SmallVector<SDValue, 8> Ops;
906    Ops.assign(VT.getVectorNumElements(), Result);
907    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
908                     VT, &Ops[0], Ops.size());
909  }
910  return Result;
911}
912
913SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
914  return getConstant(Val, TLI.getPointerTy(), isTarget);
915}
916
917
918SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
919  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
920}
921
922SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
923  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
924
925  MVT EltVT =
926    VT.isVector() ? VT.getVectorElementType() : VT;
927
928  // Do the map lookup using the actual bit pattern for the floating point
929  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
930  // we don't have issues with SNANs.
931  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
932  FoldingSetNodeID ID;
933  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
934  ID.AddPointer(&V);
935  void *IP = 0;
936  SDNode *N = NULL;
937  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
938    if (!VT.isVector())
939      return SDValue(N, 0);
940  if (!N) {
941    N = NodeAllocator.Allocate<ConstantFPSDNode>();
942    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
943    CSEMap.InsertNode(N, IP);
944    AllNodes.push_back(N);
945  }
946
947  SDValue Result(N, 0);
948  if (VT.isVector()) {
949    SmallVector<SDValue, 8> Ops;
950    Ops.assign(VT.getVectorNumElements(), Result);
951    // FIXME DebugLoc info might be appropriate here
952    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
953                     VT, &Ops[0], Ops.size());
954  }
955  return Result;
956}
957
958SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
959  MVT EltVT =
960    VT.isVector() ? VT.getVectorElementType() : VT;
961  if (EltVT==MVT::f32)
962    return getConstantFP(APFloat((float)Val), VT, isTarget);
963  else
964    return getConstantFP(APFloat(Val), VT, isTarget);
965}
966
967SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
968                                       MVT VT, int64_t Offset,
969                                       bool isTargetGA,
970                                       unsigned char TargetFlags) {
971  assert((TargetFlags == 0 || isTargetGA) &&
972         "Cannot set target flags on target-independent globals");
973
974  // Truncate (with sign-extension) the offset value to the pointer size.
975  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
976  if (BitWidth < 64)
977    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
978
979  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
980  if (!GVar) {
981    // If GV is an alias then use the aliasee for determining thread-localness.
982    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
983      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
984  }
985
986  unsigned Opc;
987  if (GVar && GVar->isThreadLocal())
988    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
989  else
990    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
991
992  FoldingSetNodeID ID;
993  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
994  ID.AddPointer(GV);
995  ID.AddInteger(Offset);
996  ID.AddInteger(TargetFlags);
997  void *IP = 0;
998  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
999    return SDValue(E, 0);
1000  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1001  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1002  CSEMap.InsertNode(N, IP);
1003  AllNodes.push_back(N);
1004  return SDValue(N, 0);
1005}
1006
1007SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
1008  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1009  FoldingSetNodeID ID;
1010  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1011  ID.AddInteger(FI);
1012  void *IP = 0;
1013  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1014    return SDValue(E, 0);
1015  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1016  new (N) FrameIndexSDNode(FI, VT, isTarget);
1017  CSEMap.InsertNode(N, IP);
1018  AllNodes.push_back(N);
1019  return SDValue(N, 0);
1020}
1021
1022SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget,
1023                                   unsigned char TargetFlags) {
1024  assert((TargetFlags == 0 || isTarget) &&
1025         "Cannot set target flags on target-independent jump tables");
1026  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1027  FoldingSetNodeID ID;
1028  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1029  ID.AddInteger(JTI);
1030  ID.AddInteger(TargetFlags);
1031  void *IP = 0;
1032  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1033    return SDValue(E, 0);
1034  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1035  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1036  CSEMap.InsertNode(N, IP);
1037  AllNodes.push_back(N);
1038  return SDValue(N, 0);
1039}
1040
1041SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1042                                      unsigned Alignment, int Offset,
1043                                      bool isTarget,
1044                                      unsigned char TargetFlags) {
1045  assert((TargetFlags == 0 || isTarget) &&
1046         "Cannot set target flags on target-independent globals");
1047  if (Alignment == 0)
1048    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1049  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1050  FoldingSetNodeID ID;
1051  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1052  ID.AddInteger(Alignment);
1053  ID.AddInteger(Offset);
1054  ID.AddPointer(C);
1055  ID.AddInteger(TargetFlags);
1056  void *IP = 0;
1057  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1058    return SDValue(E, 0);
1059  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1060  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1061  CSEMap.InsertNode(N, IP);
1062  AllNodes.push_back(N);
1063  return SDValue(N, 0);
1064}
1065
1066
1067SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1068                                      unsigned Alignment, int Offset,
1069                                      bool isTarget,
1070                                      unsigned char TargetFlags) {
1071  assert((TargetFlags == 0 || isTarget) &&
1072         "Cannot set target flags on target-independent globals");
1073  if (Alignment == 0)
1074    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1075  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1076  FoldingSetNodeID ID;
1077  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1078  ID.AddInteger(Alignment);
1079  ID.AddInteger(Offset);
1080  C->AddSelectionDAGCSEId(ID);
1081  ID.AddInteger(TargetFlags);
1082  void *IP = 0;
1083  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1084    return SDValue(E, 0);
1085  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1086  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1087  CSEMap.InsertNode(N, IP);
1088  AllNodes.push_back(N);
1089  return SDValue(N, 0);
1090}
1091
1092SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1093  FoldingSetNodeID ID;
1094  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1095  ID.AddPointer(MBB);
1096  void *IP = 0;
1097  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1098    return SDValue(E, 0);
1099  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1100  new (N) BasicBlockSDNode(MBB);
1101  CSEMap.InsertNode(N, IP);
1102  AllNodes.push_back(N);
1103  return SDValue(N, 0);
1104}
1105
1106SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1107  FoldingSetNodeID ID;
1108  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1109  ID.AddInteger(Flags.getRawBits());
1110  void *IP = 0;
1111  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1112    return SDValue(E, 0);
1113  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1114  new (N) ARG_FLAGSSDNode(Flags);
1115  CSEMap.InsertNode(N, IP);
1116  AllNodes.push_back(N);
1117  return SDValue(N, 0);
1118}
1119
1120SDValue SelectionDAG::getValueType(MVT VT) {
1121  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1122    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1123
1124  SDNode *&N = VT.isExtended() ?
1125    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1126
1127  if (N) return SDValue(N, 0);
1128  N = NodeAllocator.Allocate<VTSDNode>();
1129  new (N) VTSDNode(VT);
1130  AllNodes.push_back(N);
1131  return SDValue(N, 0);
1132}
1133
1134SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1135  SDNode *&N = ExternalSymbols[Sym];
1136  if (N) return SDValue(N, 0);
1137  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1138  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1139  AllNodes.push_back(N);
1140  return SDValue(N, 0);
1141}
1142
1143SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT,
1144                                              unsigned char TargetFlags) {
1145  SDNode *&N =
1146    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1147                                                               TargetFlags)];
1148  if (N) return SDValue(N, 0);
1149  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1150  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1151  AllNodes.push_back(N);
1152  return SDValue(N, 0);
1153}
1154
1155SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1156  if ((unsigned)Cond >= CondCodeNodes.size())
1157    CondCodeNodes.resize(Cond+1);
1158
1159  if (CondCodeNodes[Cond] == 0) {
1160    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1161    new (N) CondCodeSDNode(Cond);
1162    CondCodeNodes[Cond] = N;
1163    AllNodes.push_back(N);
1164  }
1165  return SDValue(CondCodeNodes[Cond], 0);
1166}
1167
1168// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1169// the shuffle mask M that point at N1 to point at N2, and indices that point
1170// N2 to point at N1.
1171static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1172  std::swap(N1, N2);
1173  int NElts = M.size();
1174  for (int i = 0; i != NElts; ++i) {
1175    if (M[i] >= NElts)
1176      M[i] -= NElts;
1177    else if (M[i] >= 0)
1178      M[i] += NElts;
1179  }
1180}
1181
1182SDValue SelectionDAG::getVectorShuffle(MVT VT, DebugLoc dl, SDValue N1,
1183                                       SDValue N2, const int *Mask) {
1184  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1185  assert(VT.isVector() && N1.getValueType().isVector() &&
1186         "Vector Shuffle VTs must be a vectors");
1187  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1188         && "Vector Shuffle VTs must have same element type");
1189
1190  // Canonicalize shuffle undef, undef -> undef
1191  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1192    return getUNDEF(VT);
1193
1194  // Validate that all indices in Mask are within the range of the elements
1195  // input to the shuffle.
1196  unsigned NElts = VT.getVectorNumElements();
1197  SmallVector<int, 8> MaskVec;
1198  for (unsigned i = 0; i != NElts; ++i) {
1199    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1200    MaskVec.push_back(Mask[i]);
1201  }
1202
1203  // Canonicalize shuffle v, v -> v, undef
1204  if (N1 == N2) {
1205    N2 = getUNDEF(VT);
1206    for (unsigned i = 0; i != NElts; ++i)
1207      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1208  }
1209
1210  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1211  if (N1.getOpcode() == ISD::UNDEF)
1212    commuteShuffle(N1, N2, MaskVec);
1213
1214  // Canonicalize all index into lhs, -> shuffle lhs, undef
1215  // Canonicalize all index into rhs, -> shuffle rhs, undef
1216  bool AllLHS = true, AllRHS = true;
1217  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1218  for (unsigned i = 0; i != NElts; ++i) {
1219    if (MaskVec[i] >= (int)NElts) {
1220      if (N2Undef)
1221        MaskVec[i] = -1;
1222      else
1223        AllLHS = false;
1224    } else if (MaskVec[i] >= 0) {
1225      AllRHS = false;
1226    }
1227  }
1228  if (AllLHS && AllRHS)
1229    return getUNDEF(VT);
1230  if (AllLHS && !N2Undef)
1231    N2 = getUNDEF(VT);
1232  if (AllRHS) {
1233    N1 = getUNDEF(VT);
1234    commuteShuffle(N1, N2, MaskVec);
1235  }
1236
1237  // If Identity shuffle, or all shuffle in to undef, return that node.
1238  bool AllUndef = true;
1239  bool Identity = true;
1240  for (unsigned i = 0; i != NElts; ++i) {
1241    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1242    if (MaskVec[i] >= 0) AllUndef = false;
1243  }
1244  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1245    return N1;
1246  if (AllUndef)
1247    return getUNDEF(VT);
1248
1249  FoldingSetNodeID ID;
1250  SDValue Ops[2] = { N1, N2 };
1251  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1252  for (unsigned i = 0; i != NElts; ++i)
1253    ID.AddInteger(MaskVec[i]);
1254
1255  void* IP = 0;
1256  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1257    return SDValue(E, 0);
1258
1259  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1260  // SDNode doesn't have access to it.  This memory will be "leaked" when
1261  // the node is deallocated, but recovered when the NodeAllocator is released.
1262  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1263  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1264
1265  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1266  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1267  CSEMap.InsertNode(N, IP);
1268  AllNodes.push_back(N);
1269  return SDValue(N, 0);
1270}
1271
1272SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1273                                       SDValue Val, SDValue DTy,
1274                                       SDValue STy, SDValue Rnd, SDValue Sat,
1275                                       ISD::CvtCode Code) {
1276  // If the src and dest types are the same and the conversion is between
1277  // integer types of the same sign or two floats, no conversion is necessary.
1278  if (DTy == STy &&
1279      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1280    return Val;
1281
1282  FoldingSetNodeID ID;
1283  void* IP = 0;
1284  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1285    return SDValue(E, 0);
1286  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1287  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1288  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1289  CSEMap.InsertNode(N, IP);
1290  AllNodes.push_back(N);
1291  return SDValue(N, 0);
1292}
1293
1294SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1295  FoldingSetNodeID ID;
1296  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1297  ID.AddInteger(RegNo);
1298  void *IP = 0;
1299  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1300    return SDValue(E, 0);
1301  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1302  new (N) RegisterSDNode(RegNo, VT);
1303  CSEMap.InsertNode(N, IP);
1304  AllNodes.push_back(N);
1305  return SDValue(N, 0);
1306}
1307
1308SDValue SelectionDAG::getDbgStopPoint(DebugLoc DL, SDValue Root,
1309                                      unsigned Line, unsigned Col,
1310                                      Value *CU) {
1311  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1312  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1313  N->setDebugLoc(DL);
1314  AllNodes.push_back(N);
1315  return SDValue(N, 0);
1316}
1317
1318SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1319                               SDValue Root,
1320                               unsigned LabelID) {
1321  FoldingSetNodeID ID;
1322  SDValue Ops[] = { Root };
1323  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1324  ID.AddInteger(LabelID);
1325  void *IP = 0;
1326  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1327    return SDValue(E, 0);
1328  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1329  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1330  CSEMap.InsertNode(N, IP);
1331  AllNodes.push_back(N);
1332  return SDValue(N, 0);
1333}
1334
1335SDValue SelectionDAG::getSrcValue(const Value *V) {
1336  assert((!V || isa<PointerType>(V->getType())) &&
1337         "SrcValue is not a pointer?");
1338
1339  FoldingSetNodeID ID;
1340  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1341  ID.AddPointer(V);
1342
1343  void *IP = 0;
1344  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1345    return SDValue(E, 0);
1346
1347  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1348  new (N) SrcValueSDNode(V);
1349  CSEMap.InsertNode(N, IP);
1350  AllNodes.push_back(N);
1351  return SDValue(N, 0);
1352}
1353
1354SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1355#ifndef NDEBUG
1356  const Value *v = MO.getValue();
1357  assert((!v || isa<PointerType>(v->getType())) &&
1358         "SrcValue is not a pointer?");
1359#endif
1360
1361  FoldingSetNodeID ID;
1362  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1363  MO.Profile(ID);
1364
1365  void *IP = 0;
1366  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1367    return SDValue(E, 0);
1368
1369  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1370  new (N) MemOperandSDNode(MO);
1371  CSEMap.InsertNode(N, IP);
1372  AllNodes.push_back(N);
1373  return SDValue(N, 0);
1374}
1375
1376/// getShiftAmountOperand - Return the specified value casted to
1377/// the target's desired shift amount type.
1378SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1379  MVT OpTy = Op.getValueType();
1380  MVT ShTy = TLI.getShiftAmountTy();
1381  if (OpTy == ShTy || OpTy.isVector()) return Op;
1382
1383  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1384  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1385}
1386
1387/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1388/// specified value type.
1389SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1390  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1391  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1392  const Type *Ty = VT.getTypeForMVT(*Context);
1393  unsigned StackAlign =
1394  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1395
1396  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1397  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1398}
1399
1400/// CreateStackTemporary - Create a stack temporary suitable for holding
1401/// either of the specified value types.
1402SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1403  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1404                            VT2.getStoreSizeInBits())/8;
1405  const Type *Ty1 = VT1.getTypeForMVT(*Context);
1406  const Type *Ty2 = VT2.getTypeForMVT(*Context);
1407  const TargetData *TD = TLI.getTargetData();
1408  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1409                            TD->getPrefTypeAlignment(Ty2));
1410
1411  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1412  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1413  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1414}
1415
1416SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1417                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1418  // These setcc operations always fold.
1419  switch (Cond) {
1420  default: break;
1421  case ISD::SETFALSE:
1422  case ISD::SETFALSE2: return getConstant(0, VT);
1423  case ISD::SETTRUE:
1424  case ISD::SETTRUE2:  return getConstant(1, VT);
1425
1426  case ISD::SETOEQ:
1427  case ISD::SETOGT:
1428  case ISD::SETOGE:
1429  case ISD::SETOLT:
1430  case ISD::SETOLE:
1431  case ISD::SETONE:
1432  case ISD::SETO:
1433  case ISD::SETUO:
1434  case ISD::SETUEQ:
1435  case ISD::SETUNE:
1436    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1437    break;
1438  }
1439
1440  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1441    const APInt &C2 = N2C->getAPIntValue();
1442    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1443      const APInt &C1 = N1C->getAPIntValue();
1444
1445      switch (Cond) {
1446      default: LLVM_UNREACHABLE("Unknown integer setcc!");
1447      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1448      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1449      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1450      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1451      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1452      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1453      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1454      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1455      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1456      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1457      }
1458    }
1459  }
1460  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1461    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1462      // No compile time operations on this type yet.
1463      if (N1C->getValueType(0) == MVT::ppcf128)
1464        return SDValue();
1465
1466      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1467      switch (Cond) {
1468      default: break;
1469      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1470                          return getUNDEF(VT);
1471                        // fall through
1472      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1473      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1474                          return getUNDEF(VT);
1475                        // fall through
1476      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1477                                           R==APFloat::cmpLessThan, VT);
1478      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1479                          return getUNDEF(VT);
1480                        // fall through
1481      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1482      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1483                          return getUNDEF(VT);
1484                        // fall through
1485      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1486      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1487                          return getUNDEF(VT);
1488                        // fall through
1489      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1490                                           R==APFloat::cmpEqual, VT);
1491      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1492                          return getUNDEF(VT);
1493                        // fall through
1494      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1495                                           R==APFloat::cmpEqual, VT);
1496      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1497      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1498      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1499                                           R==APFloat::cmpEqual, VT);
1500      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1501      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1502                                           R==APFloat::cmpLessThan, VT);
1503      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1504                                           R==APFloat::cmpUnordered, VT);
1505      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1506      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1507      }
1508    } else {
1509      // Ensure that the constant occurs on the RHS.
1510      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1511    }
1512  }
1513
1514  // Could not fold it.
1515  return SDValue();
1516}
1517
1518/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1519/// use this predicate to simplify operations downstream.
1520bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1521  // This predicate is not safe for vector operations.
1522  if (Op.getValueType().isVector())
1523    return false;
1524
1525  unsigned BitWidth = Op.getValueSizeInBits();
1526  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1527}
1528
1529/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1530/// this predicate to simplify operations downstream.  Mask is known to be zero
1531/// for bits that V cannot have.
1532bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1533                                     unsigned Depth) const {
1534  APInt KnownZero, KnownOne;
1535  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1536  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1537  return (KnownZero & Mask) == Mask;
1538}
1539
1540/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1541/// known to be either zero or one and return them in the KnownZero/KnownOne
1542/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1543/// processing.
1544void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1545                                     APInt &KnownZero, APInt &KnownOne,
1546                                     unsigned Depth) const {
1547  unsigned BitWidth = Mask.getBitWidth();
1548  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1549         "Mask size mismatches value type size!");
1550
1551  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1552  if (Depth == 6 || Mask == 0)
1553    return;  // Limit search depth.
1554
1555  APInt KnownZero2, KnownOne2;
1556
1557  switch (Op.getOpcode()) {
1558  case ISD::Constant:
1559    // We know all of the bits for a constant!
1560    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1561    KnownZero = ~KnownOne & Mask;
1562    return;
1563  case ISD::AND:
1564    // If either the LHS or the RHS are Zero, the result is zero.
1565    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1566    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1567                      KnownZero2, KnownOne2, Depth+1);
1568    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1569    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1570
1571    // Output known-1 bits are only known if set in both the LHS & RHS.
1572    KnownOne &= KnownOne2;
1573    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1574    KnownZero |= KnownZero2;
1575    return;
1576  case ISD::OR:
1577    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1578    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1579                      KnownZero2, KnownOne2, Depth+1);
1580    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1581    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1582
1583    // Output known-0 bits are only known if clear in both the LHS & RHS.
1584    KnownZero &= KnownZero2;
1585    // Output known-1 are known to be set if set in either the LHS | RHS.
1586    KnownOne |= KnownOne2;
1587    return;
1588  case ISD::XOR: {
1589    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1590    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1591    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1592    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1593
1594    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1595    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1596    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1597    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1598    KnownZero = KnownZeroOut;
1599    return;
1600  }
1601  case ISD::MUL: {
1602    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1603    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1604    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1605    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1606    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1607
1608    // If low bits are zero in either operand, output low known-0 bits.
1609    // Also compute a conserative estimate for high known-0 bits.
1610    // More trickiness is possible, but this is sufficient for the
1611    // interesting case of alignment computation.
1612    KnownOne.clear();
1613    unsigned TrailZ = KnownZero.countTrailingOnes() +
1614                      KnownZero2.countTrailingOnes();
1615    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1616                               KnownZero2.countLeadingOnes(),
1617                               BitWidth) - BitWidth;
1618
1619    TrailZ = std::min(TrailZ, BitWidth);
1620    LeadZ = std::min(LeadZ, BitWidth);
1621    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1622                APInt::getHighBitsSet(BitWidth, LeadZ);
1623    KnownZero &= Mask;
1624    return;
1625  }
1626  case ISD::UDIV: {
1627    // For the purposes of computing leading zeros we can conservatively
1628    // treat a udiv as a logical right shift by the power of 2 known to
1629    // be less than the denominator.
1630    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1631    ComputeMaskedBits(Op.getOperand(0),
1632                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1633    unsigned LeadZ = KnownZero2.countLeadingOnes();
1634
1635    KnownOne2.clear();
1636    KnownZero2.clear();
1637    ComputeMaskedBits(Op.getOperand(1),
1638                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1639    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1640    if (RHSUnknownLeadingOnes != BitWidth)
1641      LeadZ = std::min(BitWidth,
1642                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1643
1644    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1645    return;
1646  }
1647  case ISD::SELECT:
1648    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1649    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1650    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1651    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1652
1653    // Only known if known in both the LHS and RHS.
1654    KnownOne &= KnownOne2;
1655    KnownZero &= KnownZero2;
1656    return;
1657  case ISD::SELECT_CC:
1658    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1659    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1660    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1661    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1662
1663    // Only known if known in both the LHS and RHS.
1664    KnownOne &= KnownOne2;
1665    KnownZero &= KnownZero2;
1666    return;
1667  case ISD::SADDO:
1668  case ISD::UADDO:
1669  case ISD::SSUBO:
1670  case ISD::USUBO:
1671  case ISD::SMULO:
1672  case ISD::UMULO:
1673    if (Op.getResNo() != 1)
1674      return;
1675    // The boolean result conforms to getBooleanContents.  Fall through.
1676  case ISD::SETCC:
1677    // If we know the result of a setcc has the top bits zero, use this info.
1678    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1679        BitWidth > 1)
1680      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1681    return;
1682  case ISD::SHL:
1683    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1684    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1685      unsigned ShAmt = SA->getZExtValue();
1686
1687      // If the shift count is an invalid immediate, don't do anything.
1688      if (ShAmt >= BitWidth)
1689        return;
1690
1691      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1692                        KnownZero, KnownOne, Depth+1);
1693      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1694      KnownZero <<= ShAmt;
1695      KnownOne  <<= ShAmt;
1696      // low bits known zero.
1697      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1698    }
1699    return;
1700  case ISD::SRL:
1701    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1702    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1703      unsigned ShAmt = SA->getZExtValue();
1704
1705      // If the shift count is an invalid immediate, don't do anything.
1706      if (ShAmt >= BitWidth)
1707        return;
1708
1709      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1710                        KnownZero, KnownOne, Depth+1);
1711      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1712      KnownZero = KnownZero.lshr(ShAmt);
1713      KnownOne  = KnownOne.lshr(ShAmt);
1714
1715      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1716      KnownZero |= HighBits;  // High bits known zero.
1717    }
1718    return;
1719  case ISD::SRA:
1720    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1721      unsigned ShAmt = SA->getZExtValue();
1722
1723      // If the shift count is an invalid immediate, don't do anything.
1724      if (ShAmt >= BitWidth)
1725        return;
1726
1727      APInt InDemandedMask = (Mask << ShAmt);
1728      // If any of the demanded bits are produced by the sign extension, we also
1729      // demand the input sign bit.
1730      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1731      if (HighBits.getBoolValue())
1732        InDemandedMask |= APInt::getSignBit(BitWidth);
1733
1734      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1735                        Depth+1);
1736      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1737      KnownZero = KnownZero.lshr(ShAmt);
1738      KnownOne  = KnownOne.lshr(ShAmt);
1739
1740      // Handle the sign bits.
1741      APInt SignBit = APInt::getSignBit(BitWidth);
1742      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1743
1744      if (KnownZero.intersects(SignBit)) {
1745        KnownZero |= HighBits;  // New bits are known zero.
1746      } else if (KnownOne.intersects(SignBit)) {
1747        KnownOne  |= HighBits;  // New bits are known one.
1748      }
1749    }
1750    return;
1751  case ISD::SIGN_EXTEND_INREG: {
1752    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1753    unsigned EBits = EVT.getSizeInBits();
1754
1755    // Sign extension.  Compute the demanded bits in the result that are not
1756    // present in the input.
1757    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1758
1759    APInt InSignBit = APInt::getSignBit(EBits);
1760    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1761
1762    // If the sign extended bits are demanded, we know that the sign
1763    // bit is demanded.
1764    InSignBit.zext(BitWidth);
1765    if (NewBits.getBoolValue())
1766      InputDemandedBits |= InSignBit;
1767
1768    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1769                      KnownZero, KnownOne, Depth+1);
1770    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1771
1772    // If the sign bit of the input is known set or clear, then we know the
1773    // top bits of the result.
1774    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1775      KnownZero |= NewBits;
1776      KnownOne  &= ~NewBits;
1777    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1778      KnownOne  |= NewBits;
1779      KnownZero &= ~NewBits;
1780    } else {                              // Input sign bit unknown
1781      KnownZero &= ~NewBits;
1782      KnownOne  &= ~NewBits;
1783    }
1784    return;
1785  }
1786  case ISD::CTTZ:
1787  case ISD::CTLZ:
1788  case ISD::CTPOP: {
1789    unsigned LowBits = Log2_32(BitWidth)+1;
1790    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1791    KnownOne.clear();
1792    return;
1793  }
1794  case ISD::LOAD: {
1795    if (ISD::isZEXTLoad(Op.getNode())) {
1796      LoadSDNode *LD = cast<LoadSDNode>(Op);
1797      MVT VT = LD->getMemoryVT();
1798      unsigned MemBits = VT.getSizeInBits();
1799      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1800    }
1801    return;
1802  }
1803  case ISD::ZERO_EXTEND: {
1804    MVT InVT = Op.getOperand(0).getValueType();
1805    unsigned InBits = InVT.getSizeInBits();
1806    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1807    APInt InMask    = Mask;
1808    InMask.trunc(InBits);
1809    KnownZero.trunc(InBits);
1810    KnownOne.trunc(InBits);
1811    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1812    KnownZero.zext(BitWidth);
1813    KnownOne.zext(BitWidth);
1814    KnownZero |= NewBits;
1815    return;
1816  }
1817  case ISD::SIGN_EXTEND: {
1818    MVT InVT = Op.getOperand(0).getValueType();
1819    unsigned InBits = InVT.getSizeInBits();
1820    APInt InSignBit = APInt::getSignBit(InBits);
1821    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1822    APInt InMask = Mask;
1823    InMask.trunc(InBits);
1824
1825    // If any of the sign extended bits are demanded, we know that the sign
1826    // bit is demanded. Temporarily set this bit in the mask for our callee.
1827    if (NewBits.getBoolValue())
1828      InMask |= InSignBit;
1829
1830    KnownZero.trunc(InBits);
1831    KnownOne.trunc(InBits);
1832    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1833
1834    // Note if the sign bit is known to be zero or one.
1835    bool SignBitKnownZero = KnownZero.isNegative();
1836    bool SignBitKnownOne  = KnownOne.isNegative();
1837    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1838           "Sign bit can't be known to be both zero and one!");
1839
1840    // If the sign bit wasn't actually demanded by our caller, we don't
1841    // want it set in the KnownZero and KnownOne result values. Reset the
1842    // mask and reapply it to the result values.
1843    InMask = Mask;
1844    InMask.trunc(InBits);
1845    KnownZero &= InMask;
1846    KnownOne  &= InMask;
1847
1848    KnownZero.zext(BitWidth);
1849    KnownOne.zext(BitWidth);
1850
1851    // If the sign bit is known zero or one, the top bits match.
1852    if (SignBitKnownZero)
1853      KnownZero |= NewBits;
1854    else if (SignBitKnownOne)
1855      KnownOne  |= NewBits;
1856    return;
1857  }
1858  case ISD::ANY_EXTEND: {
1859    MVT InVT = Op.getOperand(0).getValueType();
1860    unsigned InBits = InVT.getSizeInBits();
1861    APInt InMask = Mask;
1862    InMask.trunc(InBits);
1863    KnownZero.trunc(InBits);
1864    KnownOne.trunc(InBits);
1865    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1866    KnownZero.zext(BitWidth);
1867    KnownOne.zext(BitWidth);
1868    return;
1869  }
1870  case ISD::TRUNCATE: {
1871    MVT InVT = Op.getOperand(0).getValueType();
1872    unsigned InBits = InVT.getSizeInBits();
1873    APInt InMask = Mask;
1874    InMask.zext(InBits);
1875    KnownZero.zext(InBits);
1876    KnownOne.zext(InBits);
1877    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1878    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1879    KnownZero.trunc(BitWidth);
1880    KnownOne.trunc(BitWidth);
1881    break;
1882  }
1883  case ISD::AssertZext: {
1884    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1885    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1886    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1887                      KnownOne, Depth+1);
1888    KnownZero |= (~InMask) & Mask;
1889    return;
1890  }
1891  case ISD::FGETSIGN:
1892    // All bits are zero except the low bit.
1893    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1894    return;
1895
1896  case ISD::SUB: {
1897    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1898      // We know that the top bits of C-X are clear if X contains less bits
1899      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1900      // positive if we can prove that X is >= 0 and < 16.
1901      if (CLHS->getAPIntValue().isNonNegative()) {
1902        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1903        // NLZ can't be BitWidth with no sign bit
1904        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1905        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1906                          Depth+1);
1907
1908        // If all of the MaskV bits are known to be zero, then we know the
1909        // output top bits are zero, because we now know that the output is
1910        // from [0-C].
1911        if ((KnownZero2 & MaskV) == MaskV) {
1912          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1913          // Top bits known zero.
1914          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1915        }
1916      }
1917    }
1918  }
1919  // fall through
1920  case ISD::ADD: {
1921    // Output known-0 bits are known if clear or set in both the low clear bits
1922    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1923    // low 3 bits clear.
1924    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1925    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1926    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1927    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1928
1929    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1930    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1931    KnownZeroOut = std::min(KnownZeroOut,
1932                            KnownZero2.countTrailingOnes());
1933
1934    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1935    return;
1936  }
1937  case ISD::SREM:
1938    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1939      const APInt &RA = Rem->getAPIntValue();
1940      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1941        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1942        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1943        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1944
1945        // If the sign bit of the first operand is zero, the sign bit of
1946        // the result is zero. If the first operand has no one bits below
1947        // the second operand's single 1 bit, its sign will be zero.
1948        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1949          KnownZero2 |= ~LowBits;
1950
1951        KnownZero |= KnownZero2 & Mask;
1952
1953        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1954      }
1955    }
1956    return;
1957  case ISD::UREM: {
1958    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1959      const APInt &RA = Rem->getAPIntValue();
1960      if (RA.isPowerOf2()) {
1961        APInt LowBits = (RA - 1);
1962        APInt Mask2 = LowBits & Mask;
1963        KnownZero |= ~LowBits & Mask;
1964        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1965        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1966        break;
1967      }
1968    }
1969
1970    // Since the result is less than or equal to either operand, any leading
1971    // zero bits in either operand must also exist in the result.
1972    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1973    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1974                      Depth+1);
1975    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1976                      Depth+1);
1977
1978    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1979                                KnownZero2.countLeadingOnes());
1980    KnownOne.clear();
1981    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1982    return;
1983  }
1984  default:
1985    // Allow the target to implement this method for its nodes.
1986    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1987  case ISD::INTRINSIC_WO_CHAIN:
1988  case ISD::INTRINSIC_W_CHAIN:
1989  case ISD::INTRINSIC_VOID:
1990      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1991    }
1992    return;
1993  }
1994}
1995
1996/// ComputeNumSignBits - Return the number of times the sign bit of the
1997/// register is replicated into the other bits.  We know that at least 1 bit
1998/// is always equal to the sign bit (itself), but other cases can give us
1999/// information.  For example, immediately after an "SRA X, 2", we know that
2000/// the top 3 bits are all equal to each other, so we return 3.
2001unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2002  MVT VT = Op.getValueType();
2003  assert(VT.isInteger() && "Invalid VT!");
2004  unsigned VTBits = VT.getSizeInBits();
2005  unsigned Tmp, Tmp2;
2006  unsigned FirstAnswer = 1;
2007
2008  if (Depth == 6)
2009    return 1;  // Limit search depth.
2010
2011  switch (Op.getOpcode()) {
2012  default: break;
2013  case ISD::AssertSext:
2014    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2015    return VTBits-Tmp+1;
2016  case ISD::AssertZext:
2017    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2018    return VTBits-Tmp;
2019
2020  case ISD::Constant: {
2021    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2022    // If negative, return # leading ones.
2023    if (Val.isNegative())
2024      return Val.countLeadingOnes();
2025
2026    // Return # leading zeros.
2027    return Val.countLeadingZeros();
2028  }
2029
2030  case ISD::SIGN_EXTEND:
2031    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
2032    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2033
2034  case ISD::SIGN_EXTEND_INREG:
2035    // Max of the input and what this extends.
2036    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2037    Tmp = VTBits-Tmp+1;
2038
2039    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2040    return std::max(Tmp, Tmp2);
2041
2042  case ISD::SRA:
2043    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2044    // SRA X, C   -> adds C sign bits.
2045    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2046      Tmp += C->getZExtValue();
2047      if (Tmp > VTBits) Tmp = VTBits;
2048    }
2049    return Tmp;
2050  case ISD::SHL:
2051    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2052      // shl destroys sign bits.
2053      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2054      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2055          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2056      return Tmp - C->getZExtValue();
2057    }
2058    break;
2059  case ISD::AND:
2060  case ISD::OR:
2061  case ISD::XOR:    // NOT is handled here.
2062    // Logical binary ops preserve the number of sign bits at the worst.
2063    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2064    if (Tmp != 1) {
2065      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2066      FirstAnswer = std::min(Tmp, Tmp2);
2067      // We computed what we know about the sign bits as our first
2068      // answer. Now proceed to the generic code that uses
2069      // ComputeMaskedBits, and pick whichever answer is better.
2070    }
2071    break;
2072
2073  case ISD::SELECT:
2074    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2075    if (Tmp == 1) return 1;  // Early out.
2076    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2077    return std::min(Tmp, Tmp2);
2078
2079  case ISD::SADDO:
2080  case ISD::UADDO:
2081  case ISD::SSUBO:
2082  case ISD::USUBO:
2083  case ISD::SMULO:
2084  case ISD::UMULO:
2085    if (Op.getResNo() != 1)
2086      break;
2087    // The boolean result conforms to getBooleanContents.  Fall through.
2088  case ISD::SETCC:
2089    // If setcc returns 0/-1, all bits are sign bits.
2090    if (TLI.getBooleanContents() ==
2091        TargetLowering::ZeroOrNegativeOneBooleanContent)
2092      return VTBits;
2093    break;
2094  case ISD::ROTL:
2095  case ISD::ROTR:
2096    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2097      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2098
2099      // Handle rotate right by N like a rotate left by 32-N.
2100      if (Op.getOpcode() == ISD::ROTR)
2101        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2102
2103      // If we aren't rotating out all of the known-in sign bits, return the
2104      // number that are left.  This handles rotl(sext(x), 1) for example.
2105      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2106      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2107    }
2108    break;
2109  case ISD::ADD:
2110    // Add can have at most one carry bit.  Thus we know that the output
2111    // is, at worst, one more bit than the inputs.
2112    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2113    if (Tmp == 1) return 1;  // Early out.
2114
2115    // Special case decrementing a value (ADD X, -1):
2116    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2117      if (CRHS->isAllOnesValue()) {
2118        APInt KnownZero, KnownOne;
2119        APInt Mask = APInt::getAllOnesValue(VTBits);
2120        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2121
2122        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2123        // sign bits set.
2124        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2125          return VTBits;
2126
2127        // If we are subtracting one from a positive number, there is no carry
2128        // out of the result.
2129        if (KnownZero.isNegative())
2130          return Tmp;
2131      }
2132
2133    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2134    if (Tmp2 == 1) return 1;
2135      return std::min(Tmp, Tmp2)-1;
2136    break;
2137
2138  case ISD::SUB:
2139    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2140    if (Tmp2 == 1) return 1;
2141
2142    // Handle NEG.
2143    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2144      if (CLHS->isNullValue()) {
2145        APInt KnownZero, KnownOne;
2146        APInt Mask = APInt::getAllOnesValue(VTBits);
2147        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2148        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2149        // sign bits set.
2150        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2151          return VTBits;
2152
2153        // If the input is known to be positive (the sign bit is known clear),
2154        // the output of the NEG has the same number of sign bits as the input.
2155        if (KnownZero.isNegative())
2156          return Tmp2;
2157
2158        // Otherwise, we treat this like a SUB.
2159      }
2160
2161    // Sub can have at most one carry bit.  Thus we know that the output
2162    // is, at worst, one more bit than the inputs.
2163    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2164    if (Tmp == 1) return 1;  // Early out.
2165      return std::min(Tmp, Tmp2)-1;
2166    break;
2167  case ISD::TRUNCATE:
2168    // FIXME: it's tricky to do anything useful for this, but it is an important
2169    // case for targets like X86.
2170    break;
2171  }
2172
2173  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2174  if (Op.getOpcode() == ISD::LOAD) {
2175    LoadSDNode *LD = cast<LoadSDNode>(Op);
2176    unsigned ExtType = LD->getExtensionType();
2177    switch (ExtType) {
2178    default: break;
2179    case ISD::SEXTLOAD:    // '17' bits known
2180      Tmp = LD->getMemoryVT().getSizeInBits();
2181      return VTBits-Tmp+1;
2182    case ISD::ZEXTLOAD:    // '16' bits known
2183      Tmp = LD->getMemoryVT().getSizeInBits();
2184      return VTBits-Tmp;
2185    }
2186  }
2187
2188  // Allow the target to implement this method for its nodes.
2189  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2190      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2191      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2192      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2193    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2194    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2195  }
2196
2197  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2198  // use this information.
2199  APInt KnownZero, KnownOne;
2200  APInt Mask = APInt::getAllOnesValue(VTBits);
2201  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2202
2203  if (KnownZero.isNegative()) {        // sign bit is 0
2204    Mask = KnownZero;
2205  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2206    Mask = KnownOne;
2207  } else {
2208    // Nothing known.
2209    return FirstAnswer;
2210  }
2211
2212  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2213  // the number of identical bits in the top of the input value.
2214  Mask = ~Mask;
2215  Mask <<= Mask.getBitWidth()-VTBits;
2216  // Return # leading zeros.  We use 'min' here in case Val was zero before
2217  // shifting.  We don't want to return '64' as for an i32 "0".
2218  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2219}
2220
2221
2222bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2223  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2224  if (!GA) return false;
2225  if (GA->getOffset() != 0) return false;
2226  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2227  if (!GV) return false;
2228  MachineModuleInfo *MMI = getMachineModuleInfo();
2229  return MMI && MMI->hasDebugInfo();
2230}
2231
2232
2233/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2234/// element of the result of the vector shuffle.
2235SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2236                                          unsigned i) {
2237  MVT VT = N->getValueType(0);
2238  DebugLoc dl = N->getDebugLoc();
2239  if (N->getMaskElt(i) < 0)
2240    return getUNDEF(VT.getVectorElementType());
2241  unsigned Index = N->getMaskElt(i);
2242  unsigned NumElems = VT.getVectorNumElements();
2243  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2244  Index %= NumElems;
2245
2246  if (V.getOpcode() == ISD::BIT_CONVERT) {
2247    V = V.getOperand(0);
2248    MVT VVT = V.getValueType();
2249    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2250      return SDValue();
2251  }
2252  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2253    return (Index == 0) ? V.getOperand(0)
2254                      : getUNDEF(VT.getVectorElementType());
2255  if (V.getOpcode() == ISD::BUILD_VECTOR)
2256    return V.getOperand(Index);
2257  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2258    return getShuffleScalarElt(SVN, Index);
2259  return SDValue();
2260}
2261
2262
2263/// getNode - Gets or creates the specified node.
2264///
2265SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2266  FoldingSetNodeID ID;
2267  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2268  void *IP = 0;
2269  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2270    return SDValue(E, 0);
2271  SDNode *N = NodeAllocator.Allocate<SDNode>();
2272  new (N) SDNode(Opcode, DL, getVTList(VT));
2273  CSEMap.InsertNode(N, IP);
2274
2275  AllNodes.push_back(N);
2276#ifndef NDEBUG
2277  VerifyNode(N);
2278#endif
2279  return SDValue(N, 0);
2280}
2281
2282SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2283                              MVT VT, SDValue Operand) {
2284  // Constant fold unary operations with an integer constant operand.
2285  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2286    const APInt &Val = C->getAPIntValue();
2287    unsigned BitWidth = VT.getSizeInBits();
2288    switch (Opcode) {
2289    default: break;
2290    case ISD::SIGN_EXTEND:
2291      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2292    case ISD::ANY_EXTEND:
2293    case ISD::ZERO_EXTEND:
2294    case ISD::TRUNCATE:
2295      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2296    case ISD::UINT_TO_FP:
2297    case ISD::SINT_TO_FP: {
2298      const uint64_t zero[] = {0, 0};
2299      // No compile time operations on this type.
2300      if (VT==MVT::ppcf128)
2301        break;
2302      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2303      (void)apf.convertFromAPInt(Val,
2304                                 Opcode==ISD::SINT_TO_FP,
2305                                 APFloat::rmNearestTiesToEven);
2306      return getConstantFP(apf, VT);
2307    }
2308    case ISD::BIT_CONVERT:
2309      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2310        return getConstantFP(Val.bitsToFloat(), VT);
2311      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2312        return getConstantFP(Val.bitsToDouble(), VT);
2313      break;
2314    case ISD::BSWAP:
2315      return getConstant(Val.byteSwap(), VT);
2316    case ISD::CTPOP:
2317      return getConstant(Val.countPopulation(), VT);
2318    case ISD::CTLZ:
2319      return getConstant(Val.countLeadingZeros(), VT);
2320    case ISD::CTTZ:
2321      return getConstant(Val.countTrailingZeros(), VT);
2322    }
2323  }
2324
2325  // Constant fold unary operations with a floating point constant operand.
2326  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2327    APFloat V = C->getValueAPF();    // make copy
2328    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2329      switch (Opcode) {
2330      case ISD::FNEG:
2331        V.changeSign();
2332        return getConstantFP(V, VT);
2333      case ISD::FABS:
2334        V.clearSign();
2335        return getConstantFP(V, VT);
2336      case ISD::FP_ROUND:
2337      case ISD::FP_EXTEND: {
2338        bool ignored;
2339        // This can return overflow, underflow, or inexact; we don't care.
2340        // FIXME need to be more flexible about rounding mode.
2341        (void)V.convert(*MVTToAPFloatSemantics(VT),
2342                        APFloat::rmNearestTiesToEven, &ignored);
2343        return getConstantFP(V, VT);
2344      }
2345      case ISD::FP_TO_SINT:
2346      case ISD::FP_TO_UINT: {
2347        integerPart x[2];
2348        bool ignored;
2349        assert(integerPartWidth >= 64);
2350        // FIXME need to be more flexible about rounding mode.
2351        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2352                              Opcode==ISD::FP_TO_SINT,
2353                              APFloat::rmTowardZero, &ignored);
2354        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2355          break;
2356        APInt api(VT.getSizeInBits(), 2, x);
2357        return getConstant(api, VT);
2358      }
2359      case ISD::BIT_CONVERT:
2360        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2361          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2362        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2363          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2364        break;
2365      }
2366    }
2367  }
2368
2369  unsigned OpOpcode = Operand.getNode()->getOpcode();
2370  switch (Opcode) {
2371  case ISD::TokenFactor:
2372  case ISD::MERGE_VALUES:
2373  case ISD::CONCAT_VECTORS:
2374    return Operand;         // Factor, merge or concat of one node?  No need.
2375  case ISD::FP_ROUND: LLVM_UNREACHABLE("Invalid method to make FP_ROUND node");
2376  case ISD::FP_EXTEND:
2377    assert(VT.isFloatingPoint() &&
2378           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2379    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2380    if (Operand.getOpcode() == ISD::UNDEF)
2381      return getUNDEF(VT);
2382    break;
2383  case ISD::SIGN_EXTEND:
2384    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2385           "Invalid SIGN_EXTEND!");
2386    if (Operand.getValueType() == VT) return Operand;   // noop extension
2387    assert(Operand.getValueType().bitsLT(VT)
2388           && "Invalid sext node, dst < src!");
2389    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2390      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2391    break;
2392  case ISD::ZERO_EXTEND:
2393    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2394           "Invalid ZERO_EXTEND!");
2395    if (Operand.getValueType() == VT) return Operand;   // noop extension
2396    assert(Operand.getValueType().bitsLT(VT)
2397           && "Invalid zext node, dst < src!");
2398    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2399      return getNode(ISD::ZERO_EXTEND, DL, VT,
2400                     Operand.getNode()->getOperand(0));
2401    break;
2402  case ISD::ANY_EXTEND:
2403    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2404           "Invalid ANY_EXTEND!");
2405    if (Operand.getValueType() == VT) return Operand;   // noop extension
2406    assert(Operand.getValueType().bitsLT(VT)
2407           && "Invalid anyext node, dst < src!");
2408    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2409      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2410      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2411    break;
2412  case ISD::TRUNCATE:
2413    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2414           "Invalid TRUNCATE!");
2415    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2416    assert(Operand.getValueType().bitsGT(VT)
2417           && "Invalid truncate node, src < dst!");
2418    if (OpOpcode == ISD::TRUNCATE)
2419      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2420    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2421             OpOpcode == ISD::ANY_EXTEND) {
2422      // If the source is smaller than the dest, we still need an extend.
2423      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2424        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2425      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2426        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2427      else
2428        return Operand.getNode()->getOperand(0);
2429    }
2430    break;
2431  case ISD::BIT_CONVERT:
2432    // Basic sanity checking.
2433    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2434           && "Cannot BIT_CONVERT between types of different sizes!");
2435    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2436    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2437      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2438    if (OpOpcode == ISD::UNDEF)
2439      return getUNDEF(VT);
2440    break;
2441  case ISD::SCALAR_TO_VECTOR:
2442    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2443           (VT.getVectorElementType() == Operand.getValueType() ||
2444            (VT.getVectorElementType().isInteger() &&
2445             Operand.getValueType().isInteger() &&
2446             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2447           "Illegal SCALAR_TO_VECTOR node!");
2448    if (OpOpcode == ISD::UNDEF)
2449      return getUNDEF(VT);
2450    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2451    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2452        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2453        Operand.getConstantOperandVal(1) == 0 &&
2454        Operand.getOperand(0).getValueType() == VT)
2455      return Operand.getOperand(0);
2456    break;
2457  case ISD::FNEG:
2458    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2459    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2460      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2461                     Operand.getNode()->getOperand(0));
2462    if (OpOpcode == ISD::FNEG)  // --X -> X
2463      return Operand.getNode()->getOperand(0);
2464    break;
2465  case ISD::FABS:
2466    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2467      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2468    break;
2469  }
2470
2471  SDNode *N;
2472  SDVTList VTs = getVTList(VT);
2473  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2474    FoldingSetNodeID ID;
2475    SDValue Ops[1] = { Operand };
2476    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2477    void *IP = 0;
2478    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2479      return SDValue(E, 0);
2480    N = NodeAllocator.Allocate<UnarySDNode>();
2481    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2482    CSEMap.InsertNode(N, IP);
2483  } else {
2484    N = NodeAllocator.Allocate<UnarySDNode>();
2485    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2486  }
2487
2488  AllNodes.push_back(N);
2489#ifndef NDEBUG
2490  VerifyNode(N);
2491#endif
2492  return SDValue(N, 0);
2493}
2494
2495SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2496                                             MVT VT,
2497                                             ConstantSDNode *Cst1,
2498                                             ConstantSDNode *Cst2) {
2499  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2500
2501  switch (Opcode) {
2502  case ISD::ADD:  return getConstant(C1 + C2, VT);
2503  case ISD::SUB:  return getConstant(C1 - C2, VT);
2504  case ISD::MUL:  return getConstant(C1 * C2, VT);
2505  case ISD::UDIV:
2506    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2507    break;
2508  case ISD::UREM:
2509    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2510    break;
2511  case ISD::SDIV:
2512    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2513    break;
2514  case ISD::SREM:
2515    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2516    break;
2517  case ISD::AND:  return getConstant(C1 & C2, VT);
2518  case ISD::OR:   return getConstant(C1 | C2, VT);
2519  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2520  case ISD::SHL:  return getConstant(C1 << C2, VT);
2521  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2522  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2523  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2524  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2525  default: break;
2526  }
2527
2528  return SDValue();
2529}
2530
2531SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2532                              SDValue N1, SDValue N2) {
2533  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2534  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2535  switch (Opcode) {
2536  default: break;
2537  case ISD::TokenFactor:
2538    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2539           N2.getValueType() == MVT::Other && "Invalid token factor!");
2540    // Fold trivial token factors.
2541    if (N1.getOpcode() == ISD::EntryToken) return N2;
2542    if (N2.getOpcode() == ISD::EntryToken) return N1;
2543    if (N1 == N2) return N1;
2544    break;
2545  case ISD::CONCAT_VECTORS:
2546    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2547    // one big BUILD_VECTOR.
2548    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2549        N2.getOpcode() == ISD::BUILD_VECTOR) {
2550      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2551      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2552      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2553    }
2554    break;
2555  case ISD::AND:
2556    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2557           N1.getValueType() == VT && "Binary operator types must match!");
2558    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2559    // worth handling here.
2560    if (N2C && N2C->isNullValue())
2561      return N2;
2562    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2563      return N1;
2564    break;
2565  case ISD::OR:
2566  case ISD::XOR:
2567  case ISD::ADD:
2568  case ISD::SUB:
2569    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2570           N1.getValueType() == VT && "Binary operator types must match!");
2571    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2572    // it's worth handling here.
2573    if (N2C && N2C->isNullValue())
2574      return N1;
2575    break;
2576  case ISD::UDIV:
2577  case ISD::UREM:
2578  case ISD::MULHU:
2579  case ISD::MULHS:
2580  case ISD::MUL:
2581  case ISD::SDIV:
2582  case ISD::SREM:
2583    assert(VT.isInteger() && "This operator does not apply to FP types!");
2584    // fall through
2585  case ISD::FADD:
2586  case ISD::FSUB:
2587  case ISD::FMUL:
2588  case ISD::FDIV:
2589  case ISD::FREM:
2590    if (UnsafeFPMath) {
2591      if (Opcode == ISD::FADD) {
2592        // 0+x --> x
2593        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2594          if (CFP->getValueAPF().isZero())
2595            return N2;
2596        // x+0 --> x
2597        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2598          if (CFP->getValueAPF().isZero())
2599            return N1;
2600      } else if (Opcode == ISD::FSUB) {
2601        // x-0 --> x
2602        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2603          if (CFP->getValueAPF().isZero())
2604            return N1;
2605      }
2606    }
2607    assert(N1.getValueType() == N2.getValueType() &&
2608           N1.getValueType() == VT && "Binary operator types must match!");
2609    break;
2610  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2611    assert(N1.getValueType() == VT &&
2612           N1.getValueType().isFloatingPoint() &&
2613           N2.getValueType().isFloatingPoint() &&
2614           "Invalid FCOPYSIGN!");
2615    break;
2616  case ISD::SHL:
2617  case ISD::SRA:
2618  case ISD::SRL:
2619  case ISD::ROTL:
2620  case ISD::ROTR:
2621    assert(VT == N1.getValueType() &&
2622           "Shift operators return type must be the same as their first arg");
2623    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2624           "Shifts only work on integers");
2625
2626    // Always fold shifts of i1 values so the code generator doesn't need to
2627    // handle them.  Since we know the size of the shift has to be less than the
2628    // size of the value, the shift/rotate count is guaranteed to be zero.
2629    if (VT == MVT::i1)
2630      return N1;
2631    break;
2632  case ISD::FP_ROUND_INREG: {
2633    MVT EVT = cast<VTSDNode>(N2)->getVT();
2634    assert(VT == N1.getValueType() && "Not an inreg round!");
2635    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2636           "Cannot FP_ROUND_INREG integer types");
2637    assert(EVT.bitsLE(VT) && "Not rounding down!");
2638    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2639    break;
2640  }
2641  case ISD::FP_ROUND:
2642    assert(VT.isFloatingPoint() &&
2643           N1.getValueType().isFloatingPoint() &&
2644           VT.bitsLE(N1.getValueType()) &&
2645           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2646    if (N1.getValueType() == VT) return N1;  // noop conversion.
2647    break;
2648  case ISD::AssertSext:
2649  case ISD::AssertZext: {
2650    MVT EVT = cast<VTSDNode>(N2)->getVT();
2651    assert(VT == N1.getValueType() && "Not an inreg extend!");
2652    assert(VT.isInteger() && EVT.isInteger() &&
2653           "Cannot *_EXTEND_INREG FP types");
2654    assert(EVT.bitsLE(VT) && "Not extending!");
2655    if (VT == EVT) return N1; // noop assertion.
2656    break;
2657  }
2658  case ISD::SIGN_EXTEND_INREG: {
2659    MVT EVT = cast<VTSDNode>(N2)->getVT();
2660    assert(VT == N1.getValueType() && "Not an inreg extend!");
2661    assert(VT.isInteger() && EVT.isInteger() &&
2662           "Cannot *_EXTEND_INREG FP types");
2663    assert(EVT.bitsLE(VT) && "Not extending!");
2664    if (EVT == VT) return N1;  // Not actually extending
2665
2666    if (N1C) {
2667      APInt Val = N1C->getAPIntValue();
2668      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2669      Val <<= Val.getBitWidth()-FromBits;
2670      Val = Val.ashr(Val.getBitWidth()-FromBits);
2671      return getConstant(Val, VT);
2672    }
2673    break;
2674  }
2675  case ISD::EXTRACT_VECTOR_ELT:
2676    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2677    if (N1.getOpcode() == ISD::UNDEF)
2678      return getUNDEF(VT);
2679
2680    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2681    // expanding copies of large vectors from registers.
2682    if (N2C &&
2683        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2684        N1.getNumOperands() > 0) {
2685      unsigned Factor =
2686        N1.getOperand(0).getValueType().getVectorNumElements();
2687      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2688                     N1.getOperand(N2C->getZExtValue() / Factor),
2689                     getConstant(N2C->getZExtValue() % Factor,
2690                                 N2.getValueType()));
2691    }
2692
2693    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2694    // expanding large vector constants.
2695    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2696      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2697      MVT VEltTy = N1.getValueType().getVectorElementType();
2698      if (Elt.getValueType() != VEltTy) {
2699        // If the vector element type is not legal, the BUILD_VECTOR operands
2700        // are promoted and implicitly truncated.  Make that explicit here.
2701        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2702      }
2703      if (VT != VEltTy) {
2704        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2705        // result is implicitly extended.
2706        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2707      }
2708      return Elt;
2709    }
2710
2711    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2712    // operations are lowered to scalars.
2713    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2714      // If the indices are the same, return the inserted element.
2715      if (N1.getOperand(2) == N2)
2716        return N1.getOperand(1);
2717      // If the indices are known different, extract the element from
2718      // the original vector.
2719      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2720               isa<ConstantSDNode>(N2))
2721        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2722    }
2723    break;
2724  case ISD::EXTRACT_ELEMENT:
2725    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2726    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2727           (N1.getValueType().isInteger() == VT.isInteger()) &&
2728           "Wrong types for EXTRACT_ELEMENT!");
2729
2730    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2731    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2732    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2733    if (N1.getOpcode() == ISD::BUILD_PAIR)
2734      return N1.getOperand(N2C->getZExtValue());
2735
2736    // EXTRACT_ELEMENT of a constant int is also very common.
2737    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2738      unsigned ElementSize = VT.getSizeInBits();
2739      unsigned Shift = ElementSize * N2C->getZExtValue();
2740      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2741      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2742    }
2743    break;
2744  case ISD::EXTRACT_SUBVECTOR:
2745    if (N1.getValueType() == VT) // Trivial extraction.
2746      return N1;
2747    break;
2748  }
2749
2750  if (N1C) {
2751    if (N2C) {
2752      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2753      if (SV.getNode()) return SV;
2754    } else {      // Cannonicalize constant to RHS if commutative
2755      if (isCommutativeBinOp(Opcode)) {
2756        std::swap(N1C, N2C);
2757        std::swap(N1, N2);
2758      }
2759    }
2760  }
2761
2762  // Constant fold FP operations.
2763  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2764  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2765  if (N1CFP) {
2766    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2767      // Cannonicalize constant to RHS if commutative
2768      std::swap(N1CFP, N2CFP);
2769      std::swap(N1, N2);
2770    } else if (N2CFP && VT != MVT::ppcf128) {
2771      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2772      APFloat::opStatus s;
2773      switch (Opcode) {
2774      case ISD::FADD:
2775        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2776        if (s != APFloat::opInvalidOp)
2777          return getConstantFP(V1, VT);
2778        break;
2779      case ISD::FSUB:
2780        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2781        if (s!=APFloat::opInvalidOp)
2782          return getConstantFP(V1, VT);
2783        break;
2784      case ISD::FMUL:
2785        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2786        if (s!=APFloat::opInvalidOp)
2787          return getConstantFP(V1, VT);
2788        break;
2789      case ISD::FDIV:
2790        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2791        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2792          return getConstantFP(V1, VT);
2793        break;
2794      case ISD::FREM :
2795        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2796        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2797          return getConstantFP(V1, VT);
2798        break;
2799      case ISD::FCOPYSIGN:
2800        V1.copySign(V2);
2801        return getConstantFP(V1, VT);
2802      default: break;
2803      }
2804    }
2805  }
2806
2807  // Canonicalize an UNDEF to the RHS, even over a constant.
2808  if (N1.getOpcode() == ISD::UNDEF) {
2809    if (isCommutativeBinOp(Opcode)) {
2810      std::swap(N1, N2);
2811    } else {
2812      switch (Opcode) {
2813      case ISD::FP_ROUND_INREG:
2814      case ISD::SIGN_EXTEND_INREG:
2815      case ISD::SUB:
2816      case ISD::FSUB:
2817      case ISD::FDIV:
2818      case ISD::FREM:
2819      case ISD::SRA:
2820        return N1;     // fold op(undef, arg2) -> undef
2821      case ISD::UDIV:
2822      case ISD::SDIV:
2823      case ISD::UREM:
2824      case ISD::SREM:
2825      case ISD::SRL:
2826      case ISD::SHL:
2827        if (!VT.isVector())
2828          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2829        // For vectors, we can't easily build an all zero vector, just return
2830        // the LHS.
2831        return N2;
2832      }
2833    }
2834  }
2835
2836  // Fold a bunch of operators when the RHS is undef.
2837  if (N2.getOpcode() == ISD::UNDEF) {
2838    switch (Opcode) {
2839    case ISD::XOR:
2840      if (N1.getOpcode() == ISD::UNDEF)
2841        // Handle undef ^ undef -> 0 special case. This is a common
2842        // idiom (misuse).
2843        return getConstant(0, VT);
2844      // fallthrough
2845    case ISD::ADD:
2846    case ISD::ADDC:
2847    case ISD::ADDE:
2848    case ISD::SUB:
2849    case ISD::UDIV:
2850    case ISD::SDIV:
2851    case ISD::UREM:
2852    case ISD::SREM:
2853      return N2;       // fold op(arg1, undef) -> undef
2854    case ISD::FADD:
2855    case ISD::FSUB:
2856    case ISD::FMUL:
2857    case ISD::FDIV:
2858    case ISD::FREM:
2859      if (UnsafeFPMath)
2860        return N2;
2861      break;
2862    case ISD::MUL:
2863    case ISD::AND:
2864    case ISD::SRL:
2865    case ISD::SHL:
2866      if (!VT.isVector())
2867        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2868      // For vectors, we can't easily build an all zero vector, just return
2869      // the LHS.
2870      return N1;
2871    case ISD::OR:
2872      if (!VT.isVector())
2873        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2874      // For vectors, we can't easily build an all one vector, just return
2875      // the LHS.
2876      return N1;
2877    case ISD::SRA:
2878      return N1;
2879    }
2880  }
2881
2882  // Memoize this node if possible.
2883  SDNode *N;
2884  SDVTList VTs = getVTList(VT);
2885  if (VT != MVT::Flag) {
2886    SDValue Ops[] = { N1, N2 };
2887    FoldingSetNodeID ID;
2888    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2889    void *IP = 0;
2890    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2891      return SDValue(E, 0);
2892    N = NodeAllocator.Allocate<BinarySDNode>();
2893    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2894    CSEMap.InsertNode(N, IP);
2895  } else {
2896    N = NodeAllocator.Allocate<BinarySDNode>();
2897    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2898  }
2899
2900  AllNodes.push_back(N);
2901#ifndef NDEBUG
2902  VerifyNode(N);
2903#endif
2904  return SDValue(N, 0);
2905}
2906
2907SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2908                              SDValue N1, SDValue N2, SDValue N3) {
2909  // Perform various simplifications.
2910  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2911  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2912  switch (Opcode) {
2913  case ISD::CONCAT_VECTORS:
2914    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2915    // one big BUILD_VECTOR.
2916    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2917        N2.getOpcode() == ISD::BUILD_VECTOR &&
2918        N3.getOpcode() == ISD::BUILD_VECTOR) {
2919      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2920      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2921      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2922      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2923    }
2924    break;
2925  case ISD::SETCC: {
2926    // Use FoldSetCC to simplify SETCC's.
2927    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2928    if (Simp.getNode()) return Simp;
2929    break;
2930  }
2931  case ISD::SELECT:
2932    if (N1C) {
2933     if (N1C->getZExtValue())
2934        return N2;             // select true, X, Y -> X
2935      else
2936        return N3;             // select false, X, Y -> Y
2937    }
2938
2939    if (N2 == N3) return N2;   // select C, X, X -> X
2940    break;
2941  case ISD::BRCOND:
2942    if (N2C) {
2943      if (N2C->getZExtValue()) // Unconditional branch
2944        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2945      else
2946        return N1;         // Never-taken branch
2947    }
2948    break;
2949  case ISD::VECTOR_SHUFFLE:
2950    LLVM_UNREACHABLE("should use getVectorShuffle constructor!");
2951    break;
2952  case ISD::BIT_CONVERT:
2953    // Fold bit_convert nodes from a type to themselves.
2954    if (N1.getValueType() == VT)
2955      return N1;
2956    break;
2957  }
2958
2959  // Memoize node if it doesn't produce a flag.
2960  SDNode *N;
2961  SDVTList VTs = getVTList(VT);
2962  if (VT != MVT::Flag) {
2963    SDValue Ops[] = { N1, N2, N3 };
2964    FoldingSetNodeID ID;
2965    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2966    void *IP = 0;
2967    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2968      return SDValue(E, 0);
2969    N = NodeAllocator.Allocate<TernarySDNode>();
2970    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2971    CSEMap.InsertNode(N, IP);
2972  } else {
2973    N = NodeAllocator.Allocate<TernarySDNode>();
2974    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2975  }
2976  AllNodes.push_back(N);
2977#ifndef NDEBUG
2978  VerifyNode(N);
2979#endif
2980  return SDValue(N, 0);
2981}
2982
2983SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2984                              SDValue N1, SDValue N2, SDValue N3,
2985                              SDValue N4) {
2986  SDValue Ops[] = { N1, N2, N3, N4 };
2987  return getNode(Opcode, DL, VT, Ops, 4);
2988}
2989
2990SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2991                              SDValue N1, SDValue N2, SDValue N3,
2992                              SDValue N4, SDValue N5) {
2993  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2994  return getNode(Opcode, DL, VT, Ops, 5);
2995}
2996
2997/// getMemsetValue - Vectorized representation of the memset value
2998/// operand.
2999static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
3000                              DebugLoc dl) {
3001  unsigned NumBits = VT.isVector() ?
3002    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3003  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3004    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3005    unsigned Shift = 8;
3006    for (unsigned i = NumBits; i > 8; i >>= 1) {
3007      Val = (Val << Shift) | Val;
3008      Shift <<= 1;
3009    }
3010    if (VT.isInteger())
3011      return DAG.getConstant(Val, VT);
3012    return DAG.getConstantFP(APFloat(Val), VT);
3013  }
3014
3015  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3016  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3017  unsigned Shift = 8;
3018  for (unsigned i = NumBits; i > 8; i >>= 1) {
3019    Value = DAG.getNode(ISD::OR, dl, VT,
3020                        DAG.getNode(ISD::SHL, dl, VT, Value,
3021                                    DAG.getConstant(Shift,
3022                                                    TLI.getShiftAmountTy())),
3023                        Value);
3024    Shift <<= 1;
3025  }
3026
3027  return Value;
3028}
3029
3030/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3031/// used when a memcpy is turned into a memset when the source is a constant
3032/// string ptr.
3033static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
3034                                    const TargetLowering &TLI,
3035                                    std::string &Str, unsigned Offset) {
3036  // Handle vector with all elements zero.
3037  if (Str.empty()) {
3038    if (VT.isInteger())
3039      return DAG.getConstant(0, VT);
3040    unsigned NumElts = VT.getVectorNumElements();
3041    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3042    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3043                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
3044  }
3045
3046  assert(!VT.isVector() && "Can't handle vector type here!");
3047  unsigned NumBits = VT.getSizeInBits();
3048  unsigned MSB = NumBits / 8;
3049  uint64_t Val = 0;
3050  if (TLI.isLittleEndian())
3051    Offset = Offset + MSB - 1;
3052  for (unsigned i = 0; i != MSB; ++i) {
3053    Val = (Val << 8) | (unsigned char)Str[Offset];
3054    Offset += TLI.isLittleEndian() ? -1 : 1;
3055  }
3056  return DAG.getConstant(Val, VT);
3057}
3058
3059/// getMemBasePlusOffset - Returns base and offset node for the
3060///
3061static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3062                                      SelectionDAG &DAG) {
3063  MVT VT = Base.getValueType();
3064  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3065                     VT, Base, DAG.getConstant(Offset, VT));
3066}
3067
3068/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3069///
3070static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3071  unsigned SrcDelta = 0;
3072  GlobalAddressSDNode *G = NULL;
3073  if (Src.getOpcode() == ISD::GlobalAddress)
3074    G = cast<GlobalAddressSDNode>(Src);
3075  else if (Src.getOpcode() == ISD::ADD &&
3076           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3077           Src.getOperand(1).getOpcode() == ISD::Constant) {
3078    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3079    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3080  }
3081  if (!G)
3082    return false;
3083
3084  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3085  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3086    return true;
3087
3088  return false;
3089}
3090
3091/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3092/// to replace the memset / memcpy is below the threshold. It also returns the
3093/// types of the sequence of memory ops to perform memset / memcpy.
3094static
3095bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
3096                              SDValue Dst, SDValue Src,
3097                              unsigned Limit, uint64_t Size, unsigned &Align,
3098                              std::string &Str, bool &isSrcStr,
3099                              SelectionDAG &DAG,
3100                              const TargetLowering &TLI) {
3101  isSrcStr = isMemSrcFromString(Src, Str);
3102  bool isSrcConst = isa<ConstantSDNode>(Src);
3103  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
3104  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3105  if (VT != MVT::iAny) {
3106    unsigned NewAlign = (unsigned)
3107      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT(
3108                                                            *DAG.getContext()));
3109    // If source is a string constant, this will require an unaligned load.
3110    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3111      if (Dst.getOpcode() != ISD::FrameIndex) {
3112        // Can't change destination alignment. It requires a unaligned store.
3113        if (AllowUnalign)
3114          VT = MVT::iAny;
3115      } else {
3116        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3117        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3118        if (MFI->isFixedObjectIndex(FI)) {
3119          // Can't change destination alignment. It requires a unaligned store.
3120          if (AllowUnalign)
3121            VT = MVT::iAny;
3122        } else {
3123          // Give the stack frame object a larger alignment if needed.
3124          if (MFI->getObjectAlignment(FI) < NewAlign)
3125            MFI->setObjectAlignment(FI, NewAlign);
3126          Align = NewAlign;
3127        }
3128      }
3129    }
3130  }
3131
3132  if (VT == MVT::iAny) {
3133    if (AllowUnalign) {
3134      VT = MVT::i64;
3135    } else {
3136      switch (Align & 7) {
3137      case 0:  VT = MVT::i64; break;
3138      case 4:  VT = MVT::i32; break;
3139      case 2:  VT = MVT::i16; break;
3140      default: VT = MVT::i8;  break;
3141      }
3142    }
3143
3144    MVT LVT = MVT::i64;
3145    while (!TLI.isTypeLegal(LVT))
3146      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3147    assert(LVT.isInteger());
3148
3149    if (VT.bitsGT(LVT))
3150      VT = LVT;
3151  }
3152
3153  unsigned NumMemOps = 0;
3154  while (Size != 0) {
3155    unsigned VTSize = VT.getSizeInBits() / 8;
3156    while (VTSize > Size) {
3157      // For now, only use non-vector load / store's for the left-over pieces.
3158      if (VT.isVector()) {
3159        VT = MVT::i64;
3160        while (!TLI.isTypeLegal(VT))
3161          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3162        VTSize = VT.getSizeInBits() / 8;
3163      } else {
3164        // This can result in a type that is not legal on the target, e.g.
3165        // 1 or 2 bytes on PPC.
3166        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3167        VTSize >>= 1;
3168      }
3169    }
3170
3171    if (++NumMemOps > Limit)
3172      return false;
3173    MemOps.push_back(VT);
3174    Size -= VTSize;
3175  }
3176
3177  return true;
3178}
3179
3180static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3181                                         SDValue Chain, SDValue Dst,
3182                                         SDValue Src, uint64_t Size,
3183                                         unsigned Align, bool AlwaysInline,
3184                                         const Value *DstSV, uint64_t DstSVOff,
3185                                         const Value *SrcSV, uint64_t SrcSVOff){
3186  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3187
3188  // Expand memcpy to a series of load and store ops if the size operand falls
3189  // below a certain threshold.
3190  std::vector<MVT> MemOps;
3191  uint64_t Limit = -1ULL;
3192  if (!AlwaysInline)
3193    Limit = TLI.getMaxStoresPerMemcpy();
3194  unsigned DstAlign = Align;  // Destination alignment can change.
3195  std::string Str;
3196  bool CopyFromStr;
3197  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3198                                Str, CopyFromStr, DAG, TLI))
3199    return SDValue();
3200
3201
3202  bool isZeroStr = CopyFromStr && Str.empty();
3203  SmallVector<SDValue, 8> OutChains;
3204  unsigned NumMemOps = MemOps.size();
3205  uint64_t SrcOff = 0, DstOff = 0;
3206  for (unsigned i = 0; i < NumMemOps; i++) {
3207    MVT VT = MemOps[i];
3208    unsigned VTSize = VT.getSizeInBits() / 8;
3209    SDValue Value, Store;
3210
3211    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3212      // It's unlikely a store of a vector immediate can be done in a single
3213      // instruction. It would require a load from a constantpool first.
3214      // We also handle store a vector with all zero's.
3215      // FIXME: Handle other cases where store of vector immediate is done in
3216      // a single instruction.
3217      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3218      Store = DAG.getStore(Chain, dl, Value,
3219                           getMemBasePlusOffset(Dst, DstOff, DAG),
3220                           DstSV, DstSVOff + DstOff, false, DstAlign);
3221    } else {
3222      // The type might not be legal for the target.  This should only happen
3223      // if the type is smaller than a legal type, as on PPC, so the right
3224      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3225      // to Load/Store if NVT==VT.
3226      // FIXME does the case above also need this?
3227      MVT NVT = TLI.getTypeToTransformTo(VT);
3228      assert(NVT.bitsGE(VT));
3229      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3230                             getMemBasePlusOffset(Src, SrcOff, DAG),
3231                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3232      Store = DAG.getTruncStore(Chain, dl, Value,
3233                             getMemBasePlusOffset(Dst, DstOff, DAG),
3234                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3235    }
3236    OutChains.push_back(Store);
3237    SrcOff += VTSize;
3238    DstOff += VTSize;
3239  }
3240
3241  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3242                     &OutChains[0], OutChains.size());
3243}
3244
3245static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3246                                          SDValue Chain, SDValue Dst,
3247                                          SDValue Src, uint64_t Size,
3248                                          unsigned Align, bool AlwaysInline,
3249                                          const Value *DstSV, uint64_t DstSVOff,
3250                                          const Value *SrcSV, uint64_t SrcSVOff){
3251  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3252
3253  // Expand memmove to a series of load and store ops if the size operand falls
3254  // below a certain threshold.
3255  std::vector<MVT> MemOps;
3256  uint64_t Limit = -1ULL;
3257  if (!AlwaysInline)
3258    Limit = TLI.getMaxStoresPerMemmove();
3259  unsigned DstAlign = Align;  // Destination alignment can change.
3260  std::string Str;
3261  bool CopyFromStr;
3262  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3263                                Str, CopyFromStr, DAG, TLI))
3264    return SDValue();
3265
3266  uint64_t SrcOff = 0, DstOff = 0;
3267
3268  SmallVector<SDValue, 8> LoadValues;
3269  SmallVector<SDValue, 8> LoadChains;
3270  SmallVector<SDValue, 8> OutChains;
3271  unsigned NumMemOps = MemOps.size();
3272  for (unsigned i = 0; i < NumMemOps; i++) {
3273    MVT VT = MemOps[i];
3274    unsigned VTSize = VT.getSizeInBits() / 8;
3275    SDValue Value, Store;
3276
3277    Value = DAG.getLoad(VT, dl, Chain,
3278                        getMemBasePlusOffset(Src, SrcOff, DAG),
3279                        SrcSV, SrcSVOff + SrcOff, false, Align);
3280    LoadValues.push_back(Value);
3281    LoadChains.push_back(Value.getValue(1));
3282    SrcOff += VTSize;
3283  }
3284  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3285                      &LoadChains[0], LoadChains.size());
3286  OutChains.clear();
3287  for (unsigned i = 0; i < NumMemOps; i++) {
3288    MVT VT = MemOps[i];
3289    unsigned VTSize = VT.getSizeInBits() / 8;
3290    SDValue Value, Store;
3291
3292    Store = DAG.getStore(Chain, dl, LoadValues[i],
3293                         getMemBasePlusOffset(Dst, DstOff, DAG),
3294                         DstSV, DstSVOff + DstOff, false, DstAlign);
3295    OutChains.push_back(Store);
3296    DstOff += VTSize;
3297  }
3298
3299  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3300                     &OutChains[0], OutChains.size());
3301}
3302
3303static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3304                                 SDValue Chain, SDValue Dst,
3305                                 SDValue Src, uint64_t Size,
3306                                 unsigned Align,
3307                                 const Value *DstSV, uint64_t DstSVOff) {
3308  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3309
3310  // Expand memset to a series of load/store ops if the size operand
3311  // falls below a certain threshold.
3312  std::vector<MVT> MemOps;
3313  std::string Str;
3314  bool CopyFromStr;
3315  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3316                                Size, Align, Str, CopyFromStr, DAG, TLI))
3317    return SDValue();
3318
3319  SmallVector<SDValue, 8> OutChains;
3320  uint64_t DstOff = 0;
3321
3322  unsigned NumMemOps = MemOps.size();
3323  for (unsigned i = 0; i < NumMemOps; i++) {
3324    MVT VT = MemOps[i];
3325    unsigned VTSize = VT.getSizeInBits() / 8;
3326    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3327    SDValue Store = DAG.getStore(Chain, dl, Value,
3328                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3329                                 DstSV, DstSVOff + DstOff);
3330    OutChains.push_back(Store);
3331    DstOff += VTSize;
3332  }
3333
3334  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3335                     &OutChains[0], OutChains.size());
3336}
3337
3338SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3339                                SDValue Src, SDValue Size,
3340                                unsigned Align, bool AlwaysInline,
3341                                const Value *DstSV, uint64_t DstSVOff,
3342                                const Value *SrcSV, uint64_t SrcSVOff) {
3343
3344  // Check to see if we should lower the memcpy to loads and stores first.
3345  // For cases within the target-specified limits, this is the best choice.
3346  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3347  if (ConstantSize) {
3348    // Memcpy with size zero? Just return the original chain.
3349    if (ConstantSize->isNullValue())
3350      return Chain;
3351
3352    SDValue Result =
3353      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3354                              ConstantSize->getZExtValue(),
3355                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3356    if (Result.getNode())
3357      return Result;
3358  }
3359
3360  // Then check to see if we should lower the memcpy with target-specific
3361  // code. If the target chooses to do this, this is the next best.
3362  SDValue Result =
3363    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3364                                AlwaysInline,
3365                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3366  if (Result.getNode())
3367    return Result;
3368
3369  // If we really need inline code and the target declined to provide it,
3370  // use a (potentially long) sequence of loads and stores.
3371  if (AlwaysInline) {
3372    assert(ConstantSize && "AlwaysInline requires a constant size!");
3373    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3374                                   ConstantSize->getZExtValue(), Align, true,
3375                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3376  }
3377
3378  // Emit a library call.
3379  TargetLowering::ArgListTy Args;
3380  TargetLowering::ArgListEntry Entry;
3381  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3382  Entry.Node = Dst; Args.push_back(Entry);
3383  Entry.Node = Src; Args.push_back(Entry);
3384  Entry.Node = Size; Args.push_back(Entry);
3385  // FIXME: pass in DebugLoc
3386  std::pair<SDValue,SDValue> CallResult =
3387    TLI.LowerCallTo(Chain, Type::VoidTy,
3388                    false, false, false, false, 0, CallingConv::C, false,
3389                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3390                    Args, *this, dl);
3391  return CallResult.second;
3392}
3393
3394SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3395                                 SDValue Src, SDValue Size,
3396                                 unsigned Align,
3397                                 const Value *DstSV, uint64_t DstSVOff,
3398                                 const Value *SrcSV, uint64_t SrcSVOff) {
3399
3400  // Check to see if we should lower the memmove to loads and stores first.
3401  // For cases within the target-specified limits, this is the best choice.
3402  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3403  if (ConstantSize) {
3404    // Memmove with size zero? Just return the original chain.
3405    if (ConstantSize->isNullValue())
3406      return Chain;
3407
3408    SDValue Result =
3409      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3410                               ConstantSize->getZExtValue(),
3411                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3412    if (Result.getNode())
3413      return Result;
3414  }
3415
3416  // Then check to see if we should lower the memmove with target-specific
3417  // code. If the target chooses to do this, this is the next best.
3418  SDValue Result =
3419    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3420                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3421  if (Result.getNode())
3422    return Result;
3423
3424  // Emit a library call.
3425  TargetLowering::ArgListTy Args;
3426  TargetLowering::ArgListEntry Entry;
3427  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3428  Entry.Node = Dst; Args.push_back(Entry);
3429  Entry.Node = Src; Args.push_back(Entry);
3430  Entry.Node = Size; Args.push_back(Entry);
3431  // FIXME:  pass in DebugLoc
3432  std::pair<SDValue,SDValue> CallResult =
3433    TLI.LowerCallTo(Chain, Type::VoidTy,
3434                    false, false, false, false, 0, CallingConv::C, false,
3435                    getExternalSymbol("memmove", TLI.getPointerTy()),
3436                    Args, *this, dl);
3437  return CallResult.second;
3438}
3439
3440SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3441                                SDValue Src, SDValue Size,
3442                                unsigned Align,
3443                                const Value *DstSV, uint64_t DstSVOff) {
3444
3445  // Check to see if we should lower the memset to stores first.
3446  // For cases within the target-specified limits, this is the best choice.
3447  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3448  if (ConstantSize) {
3449    // Memset with size zero? Just return the original chain.
3450    if (ConstantSize->isNullValue())
3451      return Chain;
3452
3453    SDValue Result =
3454      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3455                      Align, DstSV, DstSVOff);
3456    if (Result.getNode())
3457      return Result;
3458  }
3459
3460  // Then check to see if we should lower the memset with target-specific
3461  // code. If the target chooses to do this, this is the next best.
3462  SDValue Result =
3463    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3464                                DstSV, DstSVOff);
3465  if (Result.getNode())
3466    return Result;
3467
3468  // Emit a library call.
3469  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3470  TargetLowering::ArgListTy Args;
3471  TargetLowering::ArgListEntry Entry;
3472  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3473  Args.push_back(Entry);
3474  // Extend or truncate the argument to be an i32 value for the call.
3475  if (Src.getValueType().bitsGT(MVT::i32))
3476    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3477  else
3478    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3479  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3480  Args.push_back(Entry);
3481  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3482  Args.push_back(Entry);
3483  // FIXME: pass in DebugLoc
3484  std::pair<SDValue,SDValue> CallResult =
3485    TLI.LowerCallTo(Chain, Type::VoidTy,
3486                    false, false, false, false, 0, CallingConv::C, false,
3487                    getExternalSymbol("memset", TLI.getPointerTy()),
3488                    Args, *this, dl);
3489  return CallResult.second;
3490}
3491
3492SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3493                                SDValue Chain,
3494                                SDValue Ptr, SDValue Cmp,
3495                                SDValue Swp, const Value* PtrVal,
3496                                unsigned Alignment) {
3497  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3498  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3499
3500  MVT VT = Cmp.getValueType();
3501
3502  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3503    Alignment = getMVTAlignment(MemVT);
3504
3505  SDVTList VTs = getVTList(VT, MVT::Other);
3506  FoldingSetNodeID ID;
3507  ID.AddInteger(MemVT.getRawBits());
3508  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3509  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3510  void* IP = 0;
3511  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3512    return SDValue(E, 0);
3513  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3514  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3515                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3516  CSEMap.InsertNode(N, IP);
3517  AllNodes.push_back(N);
3518  return SDValue(N, 0);
3519}
3520
3521SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3522                                SDValue Chain,
3523                                SDValue Ptr, SDValue Val,
3524                                const Value* PtrVal,
3525                                unsigned Alignment) {
3526  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3527          Opcode == ISD::ATOMIC_LOAD_SUB ||
3528          Opcode == ISD::ATOMIC_LOAD_AND ||
3529          Opcode == ISD::ATOMIC_LOAD_OR ||
3530          Opcode == ISD::ATOMIC_LOAD_XOR ||
3531          Opcode == ISD::ATOMIC_LOAD_NAND ||
3532          Opcode == ISD::ATOMIC_LOAD_MIN ||
3533          Opcode == ISD::ATOMIC_LOAD_MAX ||
3534          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3535          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3536          Opcode == ISD::ATOMIC_SWAP) &&
3537         "Invalid Atomic Op");
3538
3539  MVT VT = Val.getValueType();
3540
3541  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3542    Alignment = getMVTAlignment(MemVT);
3543
3544  SDVTList VTs = getVTList(VT, MVT::Other);
3545  FoldingSetNodeID ID;
3546  ID.AddInteger(MemVT.getRawBits());
3547  SDValue Ops[] = {Chain, Ptr, Val};
3548  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3549  void* IP = 0;
3550  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3551    return SDValue(E, 0);
3552  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3553  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3554                       Chain, Ptr, Val, PtrVal, Alignment);
3555  CSEMap.InsertNode(N, IP);
3556  AllNodes.push_back(N);
3557  return SDValue(N, 0);
3558}
3559
3560/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3561/// Allowed to return something different (and simpler) if Simplify is true.
3562SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3563                                     DebugLoc dl) {
3564  if (NumOps == 1)
3565    return Ops[0];
3566
3567  SmallVector<MVT, 4> VTs;
3568  VTs.reserve(NumOps);
3569  for (unsigned i = 0; i < NumOps; ++i)
3570    VTs.push_back(Ops[i].getValueType());
3571  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3572                 Ops, NumOps);
3573}
3574
3575SDValue
3576SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3577                                  const MVT *VTs, unsigned NumVTs,
3578                                  const SDValue *Ops, unsigned NumOps,
3579                                  MVT MemVT, const Value *srcValue, int SVOff,
3580                                  unsigned Align, bool Vol,
3581                                  bool ReadMem, bool WriteMem) {
3582  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3583                             MemVT, srcValue, SVOff, Align, Vol,
3584                             ReadMem, WriteMem);
3585}
3586
3587SDValue
3588SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3589                                  const SDValue *Ops, unsigned NumOps,
3590                                  MVT MemVT, const Value *srcValue, int SVOff,
3591                                  unsigned Align, bool Vol,
3592                                  bool ReadMem, bool WriteMem) {
3593  // Memoize the node unless it returns a flag.
3594  MemIntrinsicSDNode *N;
3595  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3596    FoldingSetNodeID ID;
3597    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3598    void *IP = 0;
3599    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3600      return SDValue(E, 0);
3601
3602    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3603    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3604                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3605    CSEMap.InsertNode(N, IP);
3606  } else {
3607    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3608    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3609                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3610  }
3611  AllNodes.push_back(N);
3612  return SDValue(N, 0);
3613}
3614
3615SDValue
3616SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3617                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3618                      const SDValue *Operands, unsigned NumOperands,
3619                      unsigned NumFixedArgs) {
3620  // Do not include isTailCall in the folding set profile.
3621  FoldingSetNodeID ID;
3622  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3623  ID.AddInteger(CallingConv);
3624  ID.AddInteger(IsVarArgs);
3625  void *IP = 0;
3626  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3627    // Instead of including isTailCall in the folding set, we just
3628    // set the flag of the existing node.
3629    if (!IsTailCall)
3630      cast<CallSDNode>(E)->setNotTailCall();
3631    return SDValue(E, 0);
3632  }
3633  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3634  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3635                     VTs, Operands, NumOperands, NumFixedArgs);
3636  CSEMap.InsertNode(N, IP);
3637  AllNodes.push_back(N);
3638  return SDValue(N, 0);
3639}
3640
3641SDValue
3642SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3643                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3644                      SDValue Ptr, SDValue Offset,
3645                      const Value *SV, int SVOffset, MVT EVT,
3646                      bool isVolatile, unsigned Alignment) {
3647  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3648    Alignment = getMVTAlignment(VT);
3649
3650  if (VT == EVT) {
3651    ExtType = ISD::NON_EXTLOAD;
3652  } else if (ExtType == ISD::NON_EXTLOAD) {
3653    assert(VT == EVT && "Non-extending load from different memory type!");
3654  } else {
3655    // Extending load.
3656    if (VT.isVector())
3657      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3658             "Invalid vector extload!");
3659    else
3660      assert(EVT.bitsLT(VT) &&
3661             "Should only be an extending load, not truncating!");
3662    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3663           "Cannot sign/zero extend a FP/Vector load!");
3664    assert(VT.isInteger() == EVT.isInteger() &&
3665           "Cannot convert from FP to Int or Int -> FP!");
3666  }
3667
3668  bool Indexed = AM != ISD::UNINDEXED;
3669  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3670         "Unindexed load with an offset!");
3671
3672  SDVTList VTs = Indexed ?
3673    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3674  SDValue Ops[] = { Chain, Ptr, Offset };
3675  FoldingSetNodeID ID;
3676  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3677  ID.AddInteger(EVT.getRawBits());
3678  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3679  void *IP = 0;
3680  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3681    return SDValue(E, 0);
3682  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3683  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3684                     Alignment, isVolatile);
3685  CSEMap.InsertNode(N, IP);
3686  AllNodes.push_back(N);
3687  return SDValue(N, 0);
3688}
3689
3690SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3691                              SDValue Chain, SDValue Ptr,
3692                              const Value *SV, int SVOffset,
3693                              bool isVolatile, unsigned Alignment) {
3694  SDValue Undef = getUNDEF(Ptr.getValueType());
3695  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3696                 SV, SVOffset, VT, isVolatile, Alignment);
3697}
3698
3699SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3700                                 SDValue Chain, SDValue Ptr,
3701                                 const Value *SV,
3702                                 int SVOffset, MVT EVT,
3703                                 bool isVolatile, unsigned Alignment) {
3704  SDValue Undef = getUNDEF(Ptr.getValueType());
3705  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3706                 SV, SVOffset, EVT, isVolatile, Alignment);
3707}
3708
3709SDValue
3710SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3711                             SDValue Offset, ISD::MemIndexedMode AM) {
3712  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3713  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3714         "Load is already a indexed load!");
3715  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3716                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3717                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3718                 LD->isVolatile(), LD->getAlignment());
3719}
3720
3721SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3722                               SDValue Ptr, const Value *SV, int SVOffset,
3723                               bool isVolatile, unsigned Alignment) {
3724  MVT VT = Val.getValueType();
3725
3726  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3727    Alignment = getMVTAlignment(VT);
3728
3729  SDVTList VTs = getVTList(MVT::Other);
3730  SDValue Undef = getUNDEF(Ptr.getValueType());
3731  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3732  FoldingSetNodeID ID;
3733  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3734  ID.AddInteger(VT.getRawBits());
3735  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3736                                     isVolatile, Alignment));
3737  void *IP = 0;
3738  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3739    return SDValue(E, 0);
3740  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3741  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3742                      VT, SV, SVOffset, Alignment, isVolatile);
3743  CSEMap.InsertNode(N, IP);
3744  AllNodes.push_back(N);
3745  return SDValue(N, 0);
3746}
3747
3748SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3749                                    SDValue Ptr, const Value *SV,
3750                                    int SVOffset, MVT SVT,
3751                                    bool isVolatile, unsigned Alignment) {
3752  MVT VT = Val.getValueType();
3753
3754  if (VT == SVT)
3755    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3756
3757  assert(VT.bitsGT(SVT) && "Not a truncation?");
3758  assert(VT.isInteger() == SVT.isInteger() &&
3759         "Can't do FP-INT conversion!");
3760
3761  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3762    Alignment = getMVTAlignment(VT);
3763
3764  SDVTList VTs = getVTList(MVT::Other);
3765  SDValue Undef = getUNDEF(Ptr.getValueType());
3766  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3767  FoldingSetNodeID ID;
3768  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3769  ID.AddInteger(SVT.getRawBits());
3770  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3771                                     isVolatile, Alignment));
3772  void *IP = 0;
3773  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3774    return SDValue(E, 0);
3775  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3776  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3777                      SVT, SV, SVOffset, Alignment, isVolatile);
3778  CSEMap.InsertNode(N, IP);
3779  AllNodes.push_back(N);
3780  return SDValue(N, 0);
3781}
3782
3783SDValue
3784SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3785                              SDValue Offset, ISD::MemIndexedMode AM) {
3786  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3787  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3788         "Store is already a indexed store!");
3789  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3790  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3791  FoldingSetNodeID ID;
3792  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3793  ID.AddInteger(ST->getMemoryVT().getRawBits());
3794  ID.AddInteger(ST->getRawSubclassData());
3795  void *IP = 0;
3796  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3797    return SDValue(E, 0);
3798  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3799  new (N) StoreSDNode(Ops, dl, VTs, AM,
3800                      ST->isTruncatingStore(), ST->getMemoryVT(),
3801                      ST->getSrcValue(), ST->getSrcValueOffset(),
3802                      ST->getAlignment(), ST->isVolatile());
3803  CSEMap.InsertNode(N, IP);
3804  AllNodes.push_back(N);
3805  return SDValue(N, 0);
3806}
3807
3808SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3809                               SDValue Chain, SDValue Ptr,
3810                               SDValue SV) {
3811  SDValue Ops[] = { Chain, Ptr, SV };
3812  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3813}
3814
3815SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3816                              const SDUse *Ops, unsigned NumOps) {
3817  switch (NumOps) {
3818  case 0: return getNode(Opcode, DL, VT);
3819  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3820  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3821  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3822  default: break;
3823  }
3824
3825  // Copy from an SDUse array into an SDValue array for use with
3826  // the regular getNode logic.
3827  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3828  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3829}
3830
3831SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3832                              const SDValue *Ops, unsigned NumOps) {
3833  switch (NumOps) {
3834  case 0: return getNode(Opcode, DL, VT);
3835  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3836  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3837  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3838  default: break;
3839  }
3840
3841  switch (Opcode) {
3842  default: break;
3843  case ISD::SELECT_CC: {
3844    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3845    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3846           "LHS and RHS of condition must have same type!");
3847    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3848           "True and False arms of SelectCC must have same type!");
3849    assert(Ops[2].getValueType() == VT &&
3850           "select_cc node must be of same type as true and false value!");
3851    break;
3852  }
3853  case ISD::BR_CC: {
3854    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3855    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3856           "LHS/RHS of comparison should match types!");
3857    break;
3858  }
3859  }
3860
3861  // Memoize nodes.
3862  SDNode *N;
3863  SDVTList VTs = getVTList(VT);
3864
3865  if (VT != MVT::Flag) {
3866    FoldingSetNodeID ID;
3867    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3868    void *IP = 0;
3869
3870    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3871      return SDValue(E, 0);
3872
3873    N = NodeAllocator.Allocate<SDNode>();
3874    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3875    CSEMap.InsertNode(N, IP);
3876  } else {
3877    N = NodeAllocator.Allocate<SDNode>();
3878    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3879  }
3880
3881  AllNodes.push_back(N);
3882#ifndef NDEBUG
3883  VerifyNode(N);
3884#endif
3885  return SDValue(N, 0);
3886}
3887
3888SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3889                              const std::vector<MVT> &ResultTys,
3890                              const SDValue *Ops, unsigned NumOps) {
3891  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
3892                 Ops, NumOps);
3893}
3894
3895SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3896                              const MVT *VTs, unsigned NumVTs,
3897                              const SDValue *Ops, unsigned NumOps) {
3898  if (NumVTs == 1)
3899    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3900  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3901}
3902
3903SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3904                              const SDValue *Ops, unsigned NumOps) {
3905  if (VTList.NumVTs == 1)
3906    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3907
3908  switch (Opcode) {
3909  // FIXME: figure out how to safely handle things like
3910  // int foo(int x) { return 1 << (x & 255); }
3911  // int bar() { return foo(256); }
3912#if 0
3913  case ISD::SRA_PARTS:
3914  case ISD::SRL_PARTS:
3915  case ISD::SHL_PARTS:
3916    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3917        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3918      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3919    else if (N3.getOpcode() == ISD::AND)
3920      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3921        // If the and is only masking out bits that cannot effect the shift,
3922        // eliminate the and.
3923        unsigned NumBits = VT.getSizeInBits()*2;
3924        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3925          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3926      }
3927    break;
3928#endif
3929  }
3930
3931  // Memoize the node unless it returns a flag.
3932  SDNode *N;
3933  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3934    FoldingSetNodeID ID;
3935    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3936    void *IP = 0;
3937    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3938      return SDValue(E, 0);
3939    if (NumOps == 1) {
3940      N = NodeAllocator.Allocate<UnarySDNode>();
3941      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3942    } else if (NumOps == 2) {
3943      N = NodeAllocator.Allocate<BinarySDNode>();
3944      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3945    } else if (NumOps == 3) {
3946      N = NodeAllocator.Allocate<TernarySDNode>();
3947      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3948    } else {
3949      N = NodeAllocator.Allocate<SDNode>();
3950      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3951    }
3952    CSEMap.InsertNode(N, IP);
3953  } else {
3954    if (NumOps == 1) {
3955      N = NodeAllocator.Allocate<UnarySDNode>();
3956      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3957    } else if (NumOps == 2) {
3958      N = NodeAllocator.Allocate<BinarySDNode>();
3959      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3960    } else if (NumOps == 3) {
3961      N = NodeAllocator.Allocate<TernarySDNode>();
3962      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3963    } else {
3964      N = NodeAllocator.Allocate<SDNode>();
3965      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3966    }
3967  }
3968  AllNodes.push_back(N);
3969#ifndef NDEBUG
3970  VerifyNode(N);
3971#endif
3972  return SDValue(N, 0);
3973}
3974
3975SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3976  return getNode(Opcode, DL, VTList, 0, 0);
3977}
3978
3979SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3980                              SDValue N1) {
3981  SDValue Ops[] = { N1 };
3982  return getNode(Opcode, DL, VTList, Ops, 1);
3983}
3984
3985SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3986                              SDValue N1, SDValue N2) {
3987  SDValue Ops[] = { N1, N2 };
3988  return getNode(Opcode, DL, VTList, Ops, 2);
3989}
3990
3991SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3992                              SDValue N1, SDValue N2, SDValue N3) {
3993  SDValue Ops[] = { N1, N2, N3 };
3994  return getNode(Opcode, DL, VTList, Ops, 3);
3995}
3996
3997SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3998                              SDValue N1, SDValue N2, SDValue N3,
3999                              SDValue N4) {
4000  SDValue Ops[] = { N1, N2, N3, N4 };
4001  return getNode(Opcode, DL, VTList, Ops, 4);
4002}
4003
4004SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4005                              SDValue N1, SDValue N2, SDValue N3,
4006                              SDValue N4, SDValue N5) {
4007  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4008  return getNode(Opcode, DL, VTList, Ops, 5);
4009}
4010
4011SDVTList SelectionDAG::getVTList(MVT VT) {
4012  return makeVTList(SDNode::getValueTypeList(VT), 1);
4013}
4014
4015SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
4016  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4017       E = VTList.rend(); I != E; ++I)
4018    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4019      return *I;
4020
4021  MVT *Array = Allocator.Allocate<MVT>(2);
4022  Array[0] = VT1;
4023  Array[1] = VT2;
4024  SDVTList Result = makeVTList(Array, 2);
4025  VTList.push_back(Result);
4026  return Result;
4027}
4028
4029SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
4030  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4031       E = VTList.rend(); I != E; ++I)
4032    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4033                          I->VTs[2] == VT3)
4034      return *I;
4035
4036  MVT *Array = Allocator.Allocate<MVT>(3);
4037  Array[0] = VT1;
4038  Array[1] = VT2;
4039  Array[2] = VT3;
4040  SDVTList Result = makeVTList(Array, 3);
4041  VTList.push_back(Result);
4042  return Result;
4043}
4044
4045SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
4046  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4047       E = VTList.rend(); I != E; ++I)
4048    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4049                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4050      return *I;
4051
4052  MVT *Array = Allocator.Allocate<MVT>(3);
4053  Array[0] = VT1;
4054  Array[1] = VT2;
4055  Array[2] = VT3;
4056  Array[3] = VT4;
4057  SDVTList Result = makeVTList(Array, 4);
4058  VTList.push_back(Result);
4059  return Result;
4060}
4061
4062SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
4063  switch (NumVTs) {
4064    case 0: LLVM_UNREACHABLE("Cannot have nodes without results!");
4065    case 1: return getVTList(VTs[0]);
4066    case 2: return getVTList(VTs[0], VTs[1]);
4067    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4068    default: break;
4069  }
4070
4071  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4072       E = VTList.rend(); I != E; ++I) {
4073    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4074      continue;
4075
4076    bool NoMatch = false;
4077    for (unsigned i = 2; i != NumVTs; ++i)
4078      if (VTs[i] != I->VTs[i]) {
4079        NoMatch = true;
4080        break;
4081      }
4082    if (!NoMatch)
4083      return *I;
4084  }
4085
4086  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
4087  std::copy(VTs, VTs+NumVTs, Array);
4088  SDVTList Result = makeVTList(Array, NumVTs);
4089  VTList.push_back(Result);
4090  return Result;
4091}
4092
4093
4094/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4095/// specified operands.  If the resultant node already exists in the DAG,
4096/// this does not modify the specified node, instead it returns the node that
4097/// already exists.  If the resultant node does not exist in the DAG, the
4098/// input node is returned.  As a degenerate case, if you specify the same
4099/// input operands as the node already has, the input node is returned.
4100SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4101  SDNode *N = InN.getNode();
4102  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4103
4104  // Check to see if there is no change.
4105  if (Op == N->getOperand(0)) return InN;
4106
4107  // See if the modified node already exists.
4108  void *InsertPos = 0;
4109  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4110    return SDValue(Existing, InN.getResNo());
4111
4112  // Nope it doesn't.  Remove the node from its current place in the maps.
4113  if (InsertPos)
4114    if (!RemoveNodeFromCSEMaps(N))
4115      InsertPos = 0;
4116
4117  // Now we update the operands.
4118  N->OperandList[0].set(Op);
4119
4120  // If this gets put into a CSE map, add it.
4121  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4122  return InN;
4123}
4124
4125SDValue SelectionDAG::
4126UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4127  SDNode *N = InN.getNode();
4128  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4129
4130  // Check to see if there is no change.
4131  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4132    return InN;   // No operands changed, just return the input node.
4133
4134  // See if the modified node already exists.
4135  void *InsertPos = 0;
4136  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4137    return SDValue(Existing, InN.getResNo());
4138
4139  // Nope it doesn't.  Remove the node from its current place in the maps.
4140  if (InsertPos)
4141    if (!RemoveNodeFromCSEMaps(N))
4142      InsertPos = 0;
4143
4144  // Now we update the operands.
4145  if (N->OperandList[0] != Op1)
4146    N->OperandList[0].set(Op1);
4147  if (N->OperandList[1] != Op2)
4148    N->OperandList[1].set(Op2);
4149
4150  // If this gets put into a CSE map, add it.
4151  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4152  return InN;
4153}
4154
4155SDValue SelectionDAG::
4156UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4157  SDValue Ops[] = { Op1, Op2, Op3 };
4158  return UpdateNodeOperands(N, Ops, 3);
4159}
4160
4161SDValue SelectionDAG::
4162UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4163                   SDValue Op3, SDValue Op4) {
4164  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4165  return UpdateNodeOperands(N, Ops, 4);
4166}
4167
4168SDValue SelectionDAG::
4169UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4170                   SDValue Op3, SDValue Op4, SDValue Op5) {
4171  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4172  return UpdateNodeOperands(N, Ops, 5);
4173}
4174
4175SDValue SelectionDAG::
4176UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4177  SDNode *N = InN.getNode();
4178  assert(N->getNumOperands() == NumOps &&
4179         "Update with wrong number of operands");
4180
4181  // Check to see if there is no change.
4182  bool AnyChange = false;
4183  for (unsigned i = 0; i != NumOps; ++i) {
4184    if (Ops[i] != N->getOperand(i)) {
4185      AnyChange = true;
4186      break;
4187    }
4188  }
4189
4190  // No operands changed, just return the input node.
4191  if (!AnyChange) return InN;
4192
4193  // See if the modified node already exists.
4194  void *InsertPos = 0;
4195  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4196    return SDValue(Existing, InN.getResNo());
4197
4198  // Nope it doesn't.  Remove the node from its current place in the maps.
4199  if (InsertPos)
4200    if (!RemoveNodeFromCSEMaps(N))
4201      InsertPos = 0;
4202
4203  // Now we update the operands.
4204  for (unsigned i = 0; i != NumOps; ++i)
4205    if (N->OperandList[i] != Ops[i])
4206      N->OperandList[i].set(Ops[i]);
4207
4208  // If this gets put into a CSE map, add it.
4209  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4210  return InN;
4211}
4212
4213/// DropOperands - Release the operands and set this node to have
4214/// zero operands.
4215void SDNode::DropOperands() {
4216  // Unlike the code in MorphNodeTo that does this, we don't need to
4217  // watch for dead nodes here.
4218  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4219    SDUse &Use = *I++;
4220    Use.set(SDValue());
4221  }
4222}
4223
4224/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4225/// machine opcode.
4226///
4227SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4228                                   MVT VT) {
4229  SDVTList VTs = getVTList(VT);
4230  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4231}
4232
4233SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4234                                   MVT VT, SDValue Op1) {
4235  SDVTList VTs = getVTList(VT);
4236  SDValue Ops[] = { Op1 };
4237  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4238}
4239
4240SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4241                                   MVT VT, SDValue Op1,
4242                                   SDValue Op2) {
4243  SDVTList VTs = getVTList(VT);
4244  SDValue Ops[] = { Op1, Op2 };
4245  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4246}
4247
4248SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4249                                   MVT VT, SDValue Op1,
4250                                   SDValue Op2, SDValue Op3) {
4251  SDVTList VTs = getVTList(VT);
4252  SDValue Ops[] = { Op1, Op2, Op3 };
4253  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4254}
4255
4256SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4257                                   MVT VT, const SDValue *Ops,
4258                                   unsigned NumOps) {
4259  SDVTList VTs = getVTList(VT);
4260  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4261}
4262
4263SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4264                                   MVT VT1, MVT VT2, const SDValue *Ops,
4265                                   unsigned NumOps) {
4266  SDVTList VTs = getVTList(VT1, VT2);
4267  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4268}
4269
4270SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4271                                   MVT VT1, MVT VT2) {
4272  SDVTList VTs = getVTList(VT1, VT2);
4273  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4274}
4275
4276SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4277                                   MVT VT1, MVT VT2, MVT VT3,
4278                                   const SDValue *Ops, unsigned NumOps) {
4279  SDVTList VTs = getVTList(VT1, VT2, VT3);
4280  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4281}
4282
4283SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4284                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4285                                   const SDValue *Ops, unsigned NumOps) {
4286  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4287  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4288}
4289
4290SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4291                                   MVT VT1, MVT VT2,
4292                                   SDValue Op1) {
4293  SDVTList VTs = getVTList(VT1, VT2);
4294  SDValue Ops[] = { Op1 };
4295  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4296}
4297
4298SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4299                                   MVT VT1, MVT VT2,
4300                                   SDValue Op1, SDValue Op2) {
4301  SDVTList VTs = getVTList(VT1, VT2);
4302  SDValue Ops[] = { Op1, Op2 };
4303  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4304}
4305
4306SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4307                                   MVT VT1, MVT VT2,
4308                                   SDValue Op1, SDValue Op2,
4309                                   SDValue Op3) {
4310  SDVTList VTs = getVTList(VT1, VT2);
4311  SDValue Ops[] = { Op1, Op2, Op3 };
4312  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4313}
4314
4315SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4316                                   MVT VT1, MVT VT2, MVT VT3,
4317                                   SDValue Op1, SDValue Op2,
4318                                   SDValue Op3) {
4319  SDVTList VTs = getVTList(VT1, VT2, VT3);
4320  SDValue Ops[] = { Op1, Op2, Op3 };
4321  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4322}
4323
4324SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4325                                   SDVTList VTs, const SDValue *Ops,
4326                                   unsigned NumOps) {
4327  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4328}
4329
4330SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4331                                  MVT VT) {
4332  SDVTList VTs = getVTList(VT);
4333  return MorphNodeTo(N, Opc, VTs, 0, 0);
4334}
4335
4336SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4337                                  MVT VT, SDValue Op1) {
4338  SDVTList VTs = getVTList(VT);
4339  SDValue Ops[] = { Op1 };
4340  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4341}
4342
4343SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4344                                  MVT VT, SDValue Op1,
4345                                  SDValue Op2) {
4346  SDVTList VTs = getVTList(VT);
4347  SDValue Ops[] = { Op1, Op2 };
4348  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4349}
4350
4351SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4352                                  MVT VT, SDValue Op1,
4353                                  SDValue Op2, SDValue Op3) {
4354  SDVTList VTs = getVTList(VT);
4355  SDValue Ops[] = { Op1, Op2, Op3 };
4356  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4357}
4358
4359SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4360                                  MVT VT, const SDValue *Ops,
4361                                  unsigned NumOps) {
4362  SDVTList VTs = getVTList(VT);
4363  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4364}
4365
4366SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4367                                  MVT VT1, MVT VT2, const SDValue *Ops,
4368                                  unsigned NumOps) {
4369  SDVTList VTs = getVTList(VT1, VT2);
4370  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4371}
4372
4373SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4374                                  MVT VT1, MVT VT2) {
4375  SDVTList VTs = getVTList(VT1, VT2);
4376  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4377}
4378
4379SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4380                                  MVT VT1, MVT VT2, MVT VT3,
4381                                  const SDValue *Ops, unsigned NumOps) {
4382  SDVTList VTs = getVTList(VT1, VT2, VT3);
4383  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4384}
4385
4386SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4387                                  MVT VT1, MVT VT2,
4388                                  SDValue Op1) {
4389  SDVTList VTs = getVTList(VT1, VT2);
4390  SDValue Ops[] = { Op1 };
4391  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4392}
4393
4394SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4395                                  MVT VT1, MVT VT2,
4396                                  SDValue Op1, SDValue Op2) {
4397  SDVTList VTs = getVTList(VT1, VT2);
4398  SDValue Ops[] = { Op1, Op2 };
4399  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4400}
4401
4402SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4403                                  MVT VT1, MVT VT2,
4404                                  SDValue Op1, SDValue Op2,
4405                                  SDValue Op3) {
4406  SDVTList VTs = getVTList(VT1, VT2);
4407  SDValue Ops[] = { Op1, Op2, Op3 };
4408  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4409}
4410
4411/// MorphNodeTo - These *mutate* the specified node to have the specified
4412/// return type, opcode, and operands.
4413///
4414/// Note that MorphNodeTo returns the resultant node.  If there is already a
4415/// node of the specified opcode and operands, it returns that node instead of
4416/// the current one.  Note that the DebugLoc need not be the same.
4417///
4418/// Using MorphNodeTo is faster than creating a new node and swapping it in
4419/// with ReplaceAllUsesWith both because it often avoids allocating a new
4420/// node, and because it doesn't require CSE recalculation for any of
4421/// the node's users.
4422///
4423SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4424                                  SDVTList VTs, const SDValue *Ops,
4425                                  unsigned NumOps) {
4426  // If an identical node already exists, use it.
4427  void *IP = 0;
4428  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4429    FoldingSetNodeID ID;
4430    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4431    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4432      return ON;
4433  }
4434
4435  if (!RemoveNodeFromCSEMaps(N))
4436    IP = 0;
4437
4438  // Start the morphing.
4439  N->NodeType = Opc;
4440  N->ValueList = VTs.VTs;
4441  N->NumValues = VTs.NumVTs;
4442
4443  // Clear the operands list, updating used nodes to remove this from their
4444  // use list.  Keep track of any operands that become dead as a result.
4445  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4446  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4447    SDUse &Use = *I++;
4448    SDNode *Used = Use.getNode();
4449    Use.set(SDValue());
4450    if (Used->use_empty())
4451      DeadNodeSet.insert(Used);
4452  }
4453
4454  // If NumOps is larger than the # of operands we currently have, reallocate
4455  // the operand list.
4456  if (NumOps > N->NumOperands) {
4457    if (N->OperandsNeedDelete)
4458      delete[] N->OperandList;
4459
4460    if (N->isMachineOpcode()) {
4461      // We're creating a final node that will live unmorphed for the
4462      // remainder of the current SelectionDAG iteration, so we can allocate
4463      // the operands directly out of a pool with no recycling metadata.
4464      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4465      N->OperandsNeedDelete = false;
4466    } else {
4467      N->OperandList = new SDUse[NumOps];
4468      N->OperandsNeedDelete = true;
4469    }
4470  }
4471
4472  // Assign the new operands.
4473  N->NumOperands = NumOps;
4474  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4475    N->OperandList[i].setUser(N);
4476    N->OperandList[i].setInitial(Ops[i]);
4477  }
4478
4479  // Delete any nodes that are still dead after adding the uses for the
4480  // new operands.
4481  SmallVector<SDNode *, 16> DeadNodes;
4482  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4483       E = DeadNodeSet.end(); I != E; ++I)
4484    if ((*I)->use_empty())
4485      DeadNodes.push_back(*I);
4486  RemoveDeadNodes(DeadNodes);
4487
4488  if (IP)
4489    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4490  return N;
4491}
4492
4493
4494/// getTargetNode - These are used for target selectors to create a new node
4495/// with specified return type(s), target opcode, and operands.
4496///
4497/// Note that getTargetNode returns the resultant node.  If there is already a
4498/// node of the specified opcode and operands, it returns that node instead of
4499/// the current one.
4500SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4501  return getNode(~Opcode, dl, VT).getNode();
4502}
4503
4504SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4505                                    SDValue Op1) {
4506  return getNode(~Opcode, dl, VT, Op1).getNode();
4507}
4508
4509SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4510                                    SDValue Op1, SDValue Op2) {
4511  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4512}
4513
4514SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4515                                    SDValue Op1, SDValue Op2,
4516                                    SDValue Op3) {
4517  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4518}
4519
4520SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4521                                    const SDValue *Ops, unsigned NumOps) {
4522  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4523}
4524
4525SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4526                                    MVT VT1, MVT VT2) {
4527  SDVTList VTs = getVTList(VT1, VT2);
4528  SDValue Op;
4529  return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
4530}
4531
4532SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4533                                    MVT VT2, SDValue Op1) {
4534  SDVTList VTs = getVTList(VT1, VT2);
4535  return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
4536}
4537
4538SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4539                                    MVT VT2, SDValue Op1,
4540                                    SDValue Op2) {
4541  SDVTList VTs = getVTList(VT1, VT2);
4542  SDValue Ops[] = { Op1, Op2 };
4543  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4544}
4545
4546SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4547                                    MVT VT2, SDValue Op1,
4548                                    SDValue Op2, SDValue Op3) {
4549  SDVTList VTs = getVTList(VT1, VT2);
4550  SDValue Ops[] = { Op1, Op2, Op3 };
4551  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4552}
4553
4554SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4555                                    MVT VT1, MVT VT2,
4556                                    const SDValue *Ops, unsigned NumOps) {
4557  SDVTList VTs = getVTList(VT1, VT2);
4558  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4559}
4560
4561SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4562                                    MVT VT1, MVT VT2, MVT VT3,
4563                                    SDValue Op1, SDValue Op2) {
4564  SDVTList VTs = getVTList(VT1, VT2, VT3);
4565  SDValue Ops[] = { Op1, Op2 };
4566  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4567}
4568
4569SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4570                                    MVT VT1, MVT VT2, MVT VT3,
4571                                    SDValue Op1, SDValue Op2,
4572                                    SDValue Op3) {
4573  SDVTList VTs = getVTList(VT1, VT2, VT3);
4574  SDValue Ops[] = { Op1, Op2, Op3 };
4575  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4576}
4577
4578SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4579                                    MVT VT1, MVT VT2, MVT VT3,
4580                                    const SDValue *Ops, unsigned NumOps) {
4581  SDVTList VTs = getVTList(VT1, VT2, VT3);
4582  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4583}
4584
4585SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4586                                    MVT VT2, MVT VT3, MVT VT4,
4587                                    const SDValue *Ops, unsigned NumOps) {
4588  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4589  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4590}
4591
4592SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4593                                    const std::vector<MVT> &ResultTys,
4594                                    const SDValue *Ops, unsigned NumOps) {
4595  return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
4596}
4597
4598/// getNodeIfExists - Get the specified node if it's already available, or
4599/// else return NULL.
4600SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4601                                      const SDValue *Ops, unsigned NumOps) {
4602  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4603    FoldingSetNodeID ID;
4604    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4605    void *IP = 0;
4606    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4607      return E;
4608  }
4609  return NULL;
4610}
4611
4612/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4613/// This can cause recursive merging of nodes in the DAG.
4614///
4615/// This version assumes From has a single result value.
4616///
4617void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4618                                      DAGUpdateListener *UpdateListener) {
4619  SDNode *From = FromN.getNode();
4620  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4621         "Cannot replace with this method!");
4622  assert(From != To.getNode() && "Cannot replace uses of with self");
4623
4624  // Iterate over all the existing uses of From. New uses will be added
4625  // to the beginning of the use list, which we avoid visiting.
4626  // This specifically avoids visiting uses of From that arise while the
4627  // replacement is happening, because any such uses would be the result
4628  // of CSE: If an existing node looks like From after one of its operands
4629  // is replaced by To, we don't want to replace of all its users with To
4630  // too. See PR3018 for more info.
4631  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4632  while (UI != UE) {
4633    SDNode *User = *UI;
4634
4635    // This node is about to morph, remove its old self from the CSE maps.
4636    RemoveNodeFromCSEMaps(User);
4637
4638    // A user can appear in a use list multiple times, and when this
4639    // happens the uses are usually next to each other in the list.
4640    // To help reduce the number of CSE recomputations, process all
4641    // the uses of this user that we can find this way.
4642    do {
4643      SDUse &Use = UI.getUse();
4644      ++UI;
4645      Use.set(To);
4646    } while (UI != UE && *UI == User);
4647
4648    // Now that we have modified User, add it back to the CSE maps.  If it
4649    // already exists there, recursively merge the results together.
4650    AddModifiedNodeToCSEMaps(User, UpdateListener);
4651  }
4652}
4653
4654/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4655/// This can cause recursive merging of nodes in the DAG.
4656///
4657/// This version assumes that for each value of From, there is a
4658/// corresponding value in To in the same position with the same type.
4659///
4660void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4661                                      DAGUpdateListener *UpdateListener) {
4662#ifndef NDEBUG
4663  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4664    assert((!From->hasAnyUseOfValue(i) ||
4665            From->getValueType(i) == To->getValueType(i)) &&
4666           "Cannot use this version of ReplaceAllUsesWith!");
4667#endif
4668
4669  // Handle the trivial case.
4670  if (From == To)
4671    return;
4672
4673  // Iterate over just the existing users of From. See the comments in
4674  // the ReplaceAllUsesWith above.
4675  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4676  while (UI != UE) {
4677    SDNode *User = *UI;
4678
4679    // This node is about to morph, remove its old self from the CSE maps.
4680    RemoveNodeFromCSEMaps(User);
4681
4682    // A user can appear in a use list multiple times, and when this
4683    // happens the uses are usually next to each other in the list.
4684    // To help reduce the number of CSE recomputations, process all
4685    // the uses of this user that we can find this way.
4686    do {
4687      SDUse &Use = UI.getUse();
4688      ++UI;
4689      Use.setNode(To);
4690    } while (UI != UE && *UI == User);
4691
4692    // Now that we have modified User, add it back to the CSE maps.  If it
4693    // already exists there, recursively merge the results together.
4694    AddModifiedNodeToCSEMaps(User, UpdateListener);
4695  }
4696}
4697
4698/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4699/// This can cause recursive merging of nodes in the DAG.
4700///
4701/// This version can replace From with any result values.  To must match the
4702/// number and types of values returned by From.
4703void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4704                                      const SDValue *To,
4705                                      DAGUpdateListener *UpdateListener) {
4706  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4707    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4708
4709  // Iterate over just the existing users of From. See the comments in
4710  // the ReplaceAllUsesWith above.
4711  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4712  while (UI != UE) {
4713    SDNode *User = *UI;
4714
4715    // This node is about to morph, remove its old self from the CSE maps.
4716    RemoveNodeFromCSEMaps(User);
4717
4718    // A user can appear in a use list multiple times, and when this
4719    // happens the uses are usually next to each other in the list.
4720    // To help reduce the number of CSE recomputations, process all
4721    // the uses of this user that we can find this way.
4722    do {
4723      SDUse &Use = UI.getUse();
4724      const SDValue &ToOp = To[Use.getResNo()];
4725      ++UI;
4726      Use.set(ToOp);
4727    } while (UI != UE && *UI == User);
4728
4729    // Now that we have modified User, add it back to the CSE maps.  If it
4730    // already exists there, recursively merge the results together.
4731    AddModifiedNodeToCSEMaps(User, UpdateListener);
4732  }
4733}
4734
4735/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4736/// uses of other values produced by From.getNode() alone.  The Deleted
4737/// vector is handled the same way as for ReplaceAllUsesWith.
4738void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4739                                             DAGUpdateListener *UpdateListener){
4740  // Handle the really simple, really trivial case efficiently.
4741  if (From == To) return;
4742
4743  // Handle the simple, trivial, case efficiently.
4744  if (From.getNode()->getNumValues() == 1) {
4745    ReplaceAllUsesWith(From, To, UpdateListener);
4746    return;
4747  }
4748
4749  // Iterate over just the existing users of From. See the comments in
4750  // the ReplaceAllUsesWith above.
4751  SDNode::use_iterator UI = From.getNode()->use_begin(),
4752                       UE = From.getNode()->use_end();
4753  while (UI != UE) {
4754    SDNode *User = *UI;
4755    bool UserRemovedFromCSEMaps = false;
4756
4757    // A user can appear in a use list multiple times, and when this
4758    // happens the uses are usually next to each other in the list.
4759    // To help reduce the number of CSE recomputations, process all
4760    // the uses of this user that we can find this way.
4761    do {
4762      SDUse &Use = UI.getUse();
4763
4764      // Skip uses of different values from the same node.
4765      if (Use.getResNo() != From.getResNo()) {
4766        ++UI;
4767        continue;
4768      }
4769
4770      // If this node hasn't been modified yet, it's still in the CSE maps,
4771      // so remove its old self from the CSE maps.
4772      if (!UserRemovedFromCSEMaps) {
4773        RemoveNodeFromCSEMaps(User);
4774        UserRemovedFromCSEMaps = true;
4775      }
4776
4777      ++UI;
4778      Use.set(To);
4779    } while (UI != UE && *UI == User);
4780
4781    // We are iterating over all uses of the From node, so if a use
4782    // doesn't use the specific value, no changes are made.
4783    if (!UserRemovedFromCSEMaps)
4784      continue;
4785
4786    // Now that we have modified User, add it back to the CSE maps.  If it
4787    // already exists there, recursively merge the results together.
4788    AddModifiedNodeToCSEMaps(User, UpdateListener);
4789  }
4790}
4791
4792namespace {
4793  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4794  /// to record information about a use.
4795  struct UseMemo {
4796    SDNode *User;
4797    unsigned Index;
4798    SDUse *Use;
4799  };
4800
4801  /// operator< - Sort Memos by User.
4802  bool operator<(const UseMemo &L, const UseMemo &R) {
4803    return (intptr_t)L.User < (intptr_t)R.User;
4804  }
4805}
4806
4807/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4808/// uses of other values produced by From.getNode() alone.  The same value
4809/// may appear in both the From and To list.  The Deleted vector is
4810/// handled the same way as for ReplaceAllUsesWith.
4811void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4812                                              const SDValue *To,
4813                                              unsigned Num,
4814                                              DAGUpdateListener *UpdateListener){
4815  // Handle the simple, trivial case efficiently.
4816  if (Num == 1)
4817    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4818
4819  // Read up all the uses and make records of them. This helps
4820  // processing new uses that are introduced during the
4821  // replacement process.
4822  SmallVector<UseMemo, 4> Uses;
4823  for (unsigned i = 0; i != Num; ++i) {
4824    unsigned FromResNo = From[i].getResNo();
4825    SDNode *FromNode = From[i].getNode();
4826    for (SDNode::use_iterator UI = FromNode->use_begin(),
4827         E = FromNode->use_end(); UI != E; ++UI) {
4828      SDUse &Use = UI.getUse();
4829      if (Use.getResNo() == FromResNo) {
4830        UseMemo Memo = { *UI, i, &Use };
4831        Uses.push_back(Memo);
4832      }
4833    }
4834  }
4835
4836  // Sort the uses, so that all the uses from a given User are together.
4837  std::sort(Uses.begin(), Uses.end());
4838
4839  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4840       UseIndex != UseIndexEnd; ) {
4841    // We know that this user uses some value of From.  If it is the right
4842    // value, update it.
4843    SDNode *User = Uses[UseIndex].User;
4844
4845    // This node is about to morph, remove its old self from the CSE maps.
4846    RemoveNodeFromCSEMaps(User);
4847
4848    // The Uses array is sorted, so all the uses for a given User
4849    // are next to each other in the list.
4850    // To help reduce the number of CSE recomputations, process all
4851    // the uses of this user that we can find this way.
4852    do {
4853      unsigned i = Uses[UseIndex].Index;
4854      SDUse &Use = *Uses[UseIndex].Use;
4855      ++UseIndex;
4856
4857      Use.set(To[i]);
4858    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4859
4860    // Now that we have modified User, add it back to the CSE maps.  If it
4861    // already exists there, recursively merge the results together.
4862    AddModifiedNodeToCSEMaps(User, UpdateListener);
4863  }
4864}
4865
4866/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4867/// based on their topological order. It returns the maximum id and a vector
4868/// of the SDNodes* in assigned order by reference.
4869unsigned SelectionDAG::AssignTopologicalOrder() {
4870
4871  unsigned DAGSize = 0;
4872
4873  // SortedPos tracks the progress of the algorithm. Nodes before it are
4874  // sorted, nodes after it are unsorted. When the algorithm completes
4875  // it is at the end of the list.
4876  allnodes_iterator SortedPos = allnodes_begin();
4877
4878  // Visit all the nodes. Move nodes with no operands to the front of
4879  // the list immediately. Annotate nodes that do have operands with their
4880  // operand count. Before we do this, the Node Id fields of the nodes
4881  // may contain arbitrary values. After, the Node Id fields for nodes
4882  // before SortedPos will contain the topological sort index, and the
4883  // Node Id fields for nodes At SortedPos and after will contain the
4884  // count of outstanding operands.
4885  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4886    SDNode *N = I++;
4887    unsigned Degree = N->getNumOperands();
4888    if (Degree == 0) {
4889      // A node with no uses, add it to the result array immediately.
4890      N->setNodeId(DAGSize++);
4891      allnodes_iterator Q = N;
4892      if (Q != SortedPos)
4893        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4894      ++SortedPos;
4895    } else {
4896      // Temporarily use the Node Id as scratch space for the degree count.
4897      N->setNodeId(Degree);
4898    }
4899  }
4900
4901  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4902  // such that by the time the end is reached all nodes will be sorted.
4903  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4904    SDNode *N = I;
4905    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4906         UI != UE; ++UI) {
4907      SDNode *P = *UI;
4908      unsigned Degree = P->getNodeId();
4909      --Degree;
4910      if (Degree == 0) {
4911        // All of P's operands are sorted, so P may sorted now.
4912        P->setNodeId(DAGSize++);
4913        if (P != SortedPos)
4914          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4915        ++SortedPos;
4916      } else {
4917        // Update P's outstanding operand count.
4918        P->setNodeId(Degree);
4919      }
4920    }
4921  }
4922
4923  assert(SortedPos == AllNodes.end() &&
4924         "Topological sort incomplete!");
4925  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4926         "First node in topological sort is not the entry token!");
4927  assert(AllNodes.front().getNodeId() == 0 &&
4928         "First node in topological sort has non-zero id!");
4929  assert(AllNodes.front().getNumOperands() == 0 &&
4930         "First node in topological sort has operands!");
4931  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4932         "Last node in topologic sort has unexpected id!");
4933  assert(AllNodes.back().use_empty() &&
4934         "Last node in topologic sort has users!");
4935  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4936  return DAGSize;
4937}
4938
4939
4940
4941//===----------------------------------------------------------------------===//
4942//                              SDNode Class
4943//===----------------------------------------------------------------------===//
4944
4945HandleSDNode::~HandleSDNode() {
4946  DropOperands();
4947}
4948
4949GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
4950                                         MVT VT, int64_t o, unsigned char TF)
4951  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
4952    Offset(o), TargetFlags(TF) {
4953  TheGlobal = const_cast<GlobalValue*>(GA);
4954}
4955
4956MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4957                     const Value *srcValue, int SVO,
4958                     unsigned alignment, bool vol)
4959 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4960  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4961  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4962  assert(getAlignment() == alignment && "Alignment representation error!");
4963  assert(isVolatile() == vol && "Volatile representation error!");
4964}
4965
4966MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4967                     const SDValue *Ops,
4968                     unsigned NumOps, MVT memvt, const Value *srcValue,
4969                     int SVO, unsigned alignment, bool vol)
4970   : SDNode(Opc, dl, VTs, Ops, NumOps),
4971     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4972  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4973  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4974  assert(getAlignment() == alignment && "Alignment representation error!");
4975  assert(isVolatile() == vol && "Volatile representation error!");
4976}
4977
4978/// getMemOperand - Return a MachineMemOperand object describing the memory
4979/// reference performed by this memory reference.
4980MachineMemOperand MemSDNode::getMemOperand() const {
4981  int Flags = 0;
4982  if (isa<LoadSDNode>(this))
4983    Flags = MachineMemOperand::MOLoad;
4984  else if (isa<StoreSDNode>(this))
4985    Flags = MachineMemOperand::MOStore;
4986  else if (isa<AtomicSDNode>(this)) {
4987    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4988  }
4989  else {
4990    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4991    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4992    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4993    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4994  }
4995
4996  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4997  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4998
4999  // Check if the memory reference references a frame index
5000  const FrameIndexSDNode *FI =
5001  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
5002  if (!getSrcValue() && FI)
5003    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
5004                             Flags, 0, Size, getAlignment());
5005  else
5006    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
5007                             Size, getAlignment());
5008}
5009
5010/// Profile - Gather unique data for the node.
5011///
5012void SDNode::Profile(FoldingSetNodeID &ID) const {
5013  AddNodeIDNode(ID, this);
5014}
5015
5016static ManagedStatic<std::set<MVT, MVT::compareRawBits> > EVTs;
5017static MVT VTs[MVT::LAST_VALUETYPE];
5018static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5019
5020/// getValueTypeList - Return a pointer to the specified value type.
5021///
5022const MVT *SDNode::getValueTypeList(MVT VT) {
5023  sys::SmartScopedLock<true> Lock(*VTMutex);
5024  if (VT.isExtended()) {
5025    return &(*EVTs->insert(VT).first);
5026  } else {
5027    VTs[VT.getSimpleVT()] = VT;
5028    return &VTs[VT.getSimpleVT()];
5029  }
5030}
5031
5032/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5033/// indicated value.  This method ignores uses of other values defined by this
5034/// operation.
5035bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5036  assert(Value < getNumValues() && "Bad value!");
5037
5038  // TODO: Only iterate over uses of a given value of the node
5039  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5040    if (UI.getUse().getResNo() == Value) {
5041      if (NUses == 0)
5042        return false;
5043      --NUses;
5044    }
5045  }
5046
5047  // Found exactly the right number of uses?
5048  return NUses == 0;
5049}
5050
5051
5052/// hasAnyUseOfValue - Return true if there are any use of the indicated
5053/// value. This method ignores uses of other values defined by this operation.
5054bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5055  assert(Value < getNumValues() && "Bad value!");
5056
5057  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5058    if (UI.getUse().getResNo() == Value)
5059      return true;
5060
5061  return false;
5062}
5063
5064
5065/// isOnlyUserOf - Return true if this node is the only use of N.
5066///
5067bool SDNode::isOnlyUserOf(SDNode *N) const {
5068  bool Seen = false;
5069  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5070    SDNode *User = *I;
5071    if (User == this)
5072      Seen = true;
5073    else
5074      return false;
5075  }
5076
5077  return Seen;
5078}
5079
5080/// isOperand - Return true if this node is an operand of N.
5081///
5082bool SDValue::isOperandOf(SDNode *N) const {
5083  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5084    if (*this == N->getOperand(i))
5085      return true;
5086  return false;
5087}
5088
5089bool SDNode::isOperandOf(SDNode *N) const {
5090  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5091    if (this == N->OperandList[i].getNode())
5092      return true;
5093  return false;
5094}
5095
5096/// reachesChainWithoutSideEffects - Return true if this operand (which must
5097/// be a chain) reaches the specified operand without crossing any
5098/// side-effecting instructions.  In practice, this looks through token
5099/// factors and non-volatile loads.  In order to remain efficient, this only
5100/// looks a couple of nodes in, it does not do an exhaustive search.
5101bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5102                                               unsigned Depth) const {
5103  if (*this == Dest) return true;
5104
5105  // Don't search too deeply, we just want to be able to see through
5106  // TokenFactor's etc.
5107  if (Depth == 0) return false;
5108
5109  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5110  // of the operands of the TF reach dest, then we can do the xform.
5111  if (getOpcode() == ISD::TokenFactor) {
5112    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5113      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5114        return true;
5115    return false;
5116  }
5117
5118  // Loads don't have side effects, look through them.
5119  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5120    if (!Ld->isVolatile())
5121      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5122  }
5123  return false;
5124}
5125
5126
5127static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5128                            SmallPtrSet<SDNode *, 32> &Visited) {
5129  if (found || !Visited.insert(N))
5130    return;
5131
5132  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5133    SDNode *Op = N->getOperand(i).getNode();
5134    if (Op == P) {
5135      found = true;
5136      return;
5137    }
5138    findPredecessor(Op, P, found, Visited);
5139  }
5140}
5141
5142/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5143/// is either an operand of N or it can be reached by recursively traversing
5144/// up the operands.
5145/// NOTE: this is an expensive method. Use it carefully.
5146bool SDNode::isPredecessorOf(SDNode *N) const {
5147  SmallPtrSet<SDNode *, 32> Visited;
5148  bool found = false;
5149  findPredecessor(N, this, found, Visited);
5150  return found;
5151}
5152
5153uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5154  assert(Num < NumOperands && "Invalid child # of SDNode!");
5155  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5156}
5157
5158std::string SDNode::getOperationName(const SelectionDAG *G) const {
5159  switch (getOpcode()) {
5160  default:
5161    if (getOpcode() < ISD::BUILTIN_OP_END)
5162      return "<<Unknown DAG Node>>";
5163    if (isMachineOpcode()) {
5164      if (G)
5165        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5166          if (getMachineOpcode() < TII->getNumOpcodes())
5167            return TII->get(getMachineOpcode()).getName();
5168      return "<<Unknown Machine Node>>";
5169    }
5170    if (G) {
5171      const TargetLowering &TLI = G->getTargetLoweringInfo();
5172      const char *Name = TLI.getTargetNodeName(getOpcode());
5173      if (Name) return Name;
5174      return "<<Unknown Target Node>>";
5175    }
5176    return "<<Unknown Node>>";
5177
5178#ifndef NDEBUG
5179  case ISD::DELETED_NODE:
5180    return "<<Deleted Node!>>";
5181#endif
5182  case ISD::PREFETCH:      return "Prefetch";
5183  case ISD::MEMBARRIER:    return "MemBarrier";
5184  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5185  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5186  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5187  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5188  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5189  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5190  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5191  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5192  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5193  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5194  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5195  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5196  case ISD::PCMARKER:      return "PCMarker";
5197  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5198  case ISD::SRCVALUE:      return "SrcValue";
5199  case ISD::MEMOPERAND:    return "MemOperand";
5200  case ISD::EntryToken:    return "EntryToken";
5201  case ISD::TokenFactor:   return "TokenFactor";
5202  case ISD::AssertSext:    return "AssertSext";
5203  case ISD::AssertZext:    return "AssertZext";
5204
5205  case ISD::BasicBlock:    return "BasicBlock";
5206  case ISD::ARG_FLAGS:     return "ArgFlags";
5207  case ISD::VALUETYPE:     return "ValueType";
5208  case ISD::Register:      return "Register";
5209
5210  case ISD::Constant:      return "Constant";
5211  case ISD::ConstantFP:    return "ConstantFP";
5212  case ISD::GlobalAddress: return "GlobalAddress";
5213  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5214  case ISD::FrameIndex:    return "FrameIndex";
5215  case ISD::JumpTable:     return "JumpTable";
5216  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5217  case ISD::RETURNADDR: return "RETURNADDR";
5218  case ISD::FRAMEADDR: return "FRAMEADDR";
5219  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5220  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5221  case ISD::EHSELECTION: return "EHSELECTION";
5222  case ISD::EH_RETURN: return "EH_RETURN";
5223  case ISD::ConstantPool:  return "ConstantPool";
5224  case ISD::ExternalSymbol: return "ExternalSymbol";
5225  case ISD::INTRINSIC_WO_CHAIN: {
5226    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5227    return Intrinsic::getName((Intrinsic::ID)IID);
5228  }
5229  case ISD::INTRINSIC_VOID:
5230  case ISD::INTRINSIC_W_CHAIN: {
5231    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5232    return Intrinsic::getName((Intrinsic::ID)IID);
5233  }
5234
5235  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5236  case ISD::TargetConstant: return "TargetConstant";
5237  case ISD::TargetConstantFP:return "TargetConstantFP";
5238  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5239  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5240  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5241  case ISD::TargetJumpTable:  return "TargetJumpTable";
5242  case ISD::TargetConstantPool:  return "TargetConstantPool";
5243  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5244
5245  case ISD::CopyToReg:     return "CopyToReg";
5246  case ISD::CopyFromReg:   return "CopyFromReg";
5247  case ISD::UNDEF:         return "undef";
5248  case ISD::MERGE_VALUES:  return "merge_values";
5249  case ISD::INLINEASM:     return "inlineasm";
5250  case ISD::DBG_LABEL:     return "dbg_label";
5251  case ISD::EH_LABEL:      return "eh_label";
5252  case ISD::DECLARE:       return "declare";
5253  case ISD::HANDLENODE:    return "handlenode";
5254  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5255  case ISD::CALL:          return "call";
5256
5257  // Unary operators
5258  case ISD::FABS:   return "fabs";
5259  case ISD::FNEG:   return "fneg";
5260  case ISD::FSQRT:  return "fsqrt";
5261  case ISD::FSIN:   return "fsin";
5262  case ISD::FCOS:   return "fcos";
5263  case ISD::FPOWI:  return "fpowi";
5264  case ISD::FPOW:   return "fpow";
5265  case ISD::FTRUNC: return "ftrunc";
5266  case ISD::FFLOOR: return "ffloor";
5267  case ISD::FCEIL:  return "fceil";
5268  case ISD::FRINT:  return "frint";
5269  case ISD::FNEARBYINT: return "fnearbyint";
5270
5271  // Binary operators
5272  case ISD::ADD:    return "add";
5273  case ISD::SUB:    return "sub";
5274  case ISD::MUL:    return "mul";
5275  case ISD::MULHU:  return "mulhu";
5276  case ISD::MULHS:  return "mulhs";
5277  case ISD::SDIV:   return "sdiv";
5278  case ISD::UDIV:   return "udiv";
5279  case ISD::SREM:   return "srem";
5280  case ISD::UREM:   return "urem";
5281  case ISD::SMUL_LOHI:  return "smul_lohi";
5282  case ISD::UMUL_LOHI:  return "umul_lohi";
5283  case ISD::SDIVREM:    return "sdivrem";
5284  case ISD::UDIVREM:    return "udivrem";
5285  case ISD::AND:    return "and";
5286  case ISD::OR:     return "or";
5287  case ISD::XOR:    return "xor";
5288  case ISD::SHL:    return "shl";
5289  case ISD::SRA:    return "sra";
5290  case ISD::SRL:    return "srl";
5291  case ISD::ROTL:   return "rotl";
5292  case ISD::ROTR:   return "rotr";
5293  case ISD::FADD:   return "fadd";
5294  case ISD::FSUB:   return "fsub";
5295  case ISD::FMUL:   return "fmul";
5296  case ISD::FDIV:   return "fdiv";
5297  case ISD::FREM:   return "frem";
5298  case ISD::FCOPYSIGN: return "fcopysign";
5299  case ISD::FGETSIGN:  return "fgetsign";
5300
5301  case ISD::SETCC:       return "setcc";
5302  case ISD::VSETCC:      return "vsetcc";
5303  case ISD::SELECT:      return "select";
5304  case ISD::SELECT_CC:   return "select_cc";
5305  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5306  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5307  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5308  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5309  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5310  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5311  case ISD::CARRY_FALSE:         return "carry_false";
5312  case ISD::ADDC:        return "addc";
5313  case ISD::ADDE:        return "adde";
5314  case ISD::SADDO:       return "saddo";
5315  case ISD::UADDO:       return "uaddo";
5316  case ISD::SSUBO:       return "ssubo";
5317  case ISD::USUBO:       return "usubo";
5318  case ISD::SMULO:       return "smulo";
5319  case ISD::UMULO:       return "umulo";
5320  case ISD::SUBC:        return "subc";
5321  case ISD::SUBE:        return "sube";
5322  case ISD::SHL_PARTS:   return "shl_parts";
5323  case ISD::SRA_PARTS:   return "sra_parts";
5324  case ISD::SRL_PARTS:   return "srl_parts";
5325
5326  // Conversion operators.
5327  case ISD::SIGN_EXTEND: return "sign_extend";
5328  case ISD::ZERO_EXTEND: return "zero_extend";
5329  case ISD::ANY_EXTEND:  return "any_extend";
5330  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5331  case ISD::TRUNCATE:    return "truncate";
5332  case ISD::FP_ROUND:    return "fp_round";
5333  case ISD::FLT_ROUNDS_: return "flt_rounds";
5334  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5335  case ISD::FP_EXTEND:   return "fp_extend";
5336
5337  case ISD::SINT_TO_FP:  return "sint_to_fp";
5338  case ISD::UINT_TO_FP:  return "uint_to_fp";
5339  case ISD::FP_TO_SINT:  return "fp_to_sint";
5340  case ISD::FP_TO_UINT:  return "fp_to_uint";
5341  case ISD::BIT_CONVERT: return "bit_convert";
5342
5343  case ISD::CONVERT_RNDSAT: {
5344    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5345    default: LLVM_UNREACHABLE("Unknown cvt code!");
5346    case ISD::CVT_FF:  return "cvt_ff";
5347    case ISD::CVT_FS:  return "cvt_fs";
5348    case ISD::CVT_FU:  return "cvt_fu";
5349    case ISD::CVT_SF:  return "cvt_sf";
5350    case ISD::CVT_UF:  return "cvt_uf";
5351    case ISD::CVT_SS:  return "cvt_ss";
5352    case ISD::CVT_SU:  return "cvt_su";
5353    case ISD::CVT_US:  return "cvt_us";
5354    case ISD::CVT_UU:  return "cvt_uu";
5355    }
5356  }
5357
5358    // Control flow instructions
5359  case ISD::BR:      return "br";
5360  case ISD::BRIND:   return "brind";
5361  case ISD::BR_JT:   return "br_jt";
5362  case ISD::BRCOND:  return "brcond";
5363  case ISD::BR_CC:   return "br_cc";
5364  case ISD::RET:     return "ret";
5365  case ISD::CALLSEQ_START:  return "callseq_start";
5366  case ISD::CALLSEQ_END:    return "callseq_end";
5367
5368    // Other operators
5369  case ISD::LOAD:               return "load";
5370  case ISD::STORE:              return "store";
5371  case ISD::VAARG:              return "vaarg";
5372  case ISD::VACOPY:             return "vacopy";
5373  case ISD::VAEND:              return "vaend";
5374  case ISD::VASTART:            return "vastart";
5375  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5376  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5377  case ISD::BUILD_PAIR:         return "build_pair";
5378  case ISD::STACKSAVE:          return "stacksave";
5379  case ISD::STACKRESTORE:       return "stackrestore";
5380  case ISD::TRAP:               return "trap";
5381
5382  // Bit manipulation
5383  case ISD::BSWAP:   return "bswap";
5384  case ISD::CTPOP:   return "ctpop";
5385  case ISD::CTTZ:    return "cttz";
5386  case ISD::CTLZ:    return "ctlz";
5387
5388  // Debug info
5389  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5390  case ISD::DEBUG_LOC: return "debug_loc";
5391
5392  // Trampolines
5393  case ISD::TRAMPOLINE: return "trampoline";
5394
5395  case ISD::CONDCODE:
5396    switch (cast<CondCodeSDNode>(this)->get()) {
5397    default: LLVM_UNREACHABLE("Unknown setcc condition!");
5398    case ISD::SETOEQ:  return "setoeq";
5399    case ISD::SETOGT:  return "setogt";
5400    case ISD::SETOGE:  return "setoge";
5401    case ISD::SETOLT:  return "setolt";
5402    case ISD::SETOLE:  return "setole";
5403    case ISD::SETONE:  return "setone";
5404
5405    case ISD::SETO:    return "seto";
5406    case ISD::SETUO:   return "setuo";
5407    case ISD::SETUEQ:  return "setue";
5408    case ISD::SETUGT:  return "setugt";
5409    case ISD::SETUGE:  return "setuge";
5410    case ISD::SETULT:  return "setult";
5411    case ISD::SETULE:  return "setule";
5412    case ISD::SETUNE:  return "setune";
5413
5414    case ISD::SETEQ:   return "seteq";
5415    case ISD::SETGT:   return "setgt";
5416    case ISD::SETGE:   return "setge";
5417    case ISD::SETLT:   return "setlt";
5418    case ISD::SETLE:   return "setle";
5419    case ISD::SETNE:   return "setne";
5420    }
5421  }
5422}
5423
5424const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5425  switch (AM) {
5426  default:
5427    return "";
5428  case ISD::PRE_INC:
5429    return "<pre-inc>";
5430  case ISD::PRE_DEC:
5431    return "<pre-dec>";
5432  case ISD::POST_INC:
5433    return "<post-inc>";
5434  case ISD::POST_DEC:
5435    return "<post-dec>";
5436  }
5437}
5438
5439std::string ISD::ArgFlagsTy::getArgFlagsString() {
5440  std::string S = "< ";
5441
5442  if (isZExt())
5443    S += "zext ";
5444  if (isSExt())
5445    S += "sext ";
5446  if (isInReg())
5447    S += "inreg ";
5448  if (isSRet())
5449    S += "sret ";
5450  if (isByVal())
5451    S += "byval ";
5452  if (isNest())
5453    S += "nest ";
5454  if (getByValAlign())
5455    S += "byval-align:" + utostr(getByValAlign()) + " ";
5456  if (getOrigAlign())
5457    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5458  if (getByValSize())
5459    S += "byval-size:" + utostr(getByValSize()) + " ";
5460  return S + ">";
5461}
5462
5463void SDNode::dump() const { dump(0); }
5464void SDNode::dump(const SelectionDAG *G) const {
5465  print(errs(), G);
5466}
5467
5468void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5469  OS << (void*)this << ": ";
5470
5471  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5472    if (i) OS << ",";
5473    if (getValueType(i) == MVT::Other)
5474      OS << "ch";
5475    else
5476      OS << getValueType(i).getMVTString();
5477  }
5478  OS << " = " << getOperationName(G);
5479}
5480
5481void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5482  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5483    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(this);
5484    OS << "<";
5485    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5486      int Idx = SVN->getMaskElt(i);
5487      if (i) OS << ",";
5488      if (Idx < 0)
5489        OS << "u";
5490      else
5491        OS << Idx;
5492    }
5493    OS << ">";
5494  }
5495
5496  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5497    OS << '<' << CSDN->getAPIntValue() << '>';
5498  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5499    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5500      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5501    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5502      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5503    else {
5504      OS << "<APFloat(";
5505      CSDN->getValueAPF().bitcastToAPInt().dump();
5506      OS << ")>";
5507    }
5508  } else if (const GlobalAddressSDNode *GADN =
5509             dyn_cast<GlobalAddressSDNode>(this)) {
5510    int64_t offset = GADN->getOffset();
5511    OS << '<';
5512    WriteAsOperand(OS, GADN->getGlobal());
5513    OS << '>';
5514    if (offset > 0)
5515      OS << " + " << offset;
5516    else
5517      OS << " " << offset;
5518    if (unsigned char TF = GADN->getTargetFlags())
5519      OS << " [TF=" << TF << ']';
5520  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5521    OS << "<" << FIDN->getIndex() << ">";
5522  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5523    OS << "<" << JTDN->getIndex() << ">";
5524    if (unsigned char TF = JTDN->getTargetFlags())
5525      OS << " [TF=" << TF << ']';
5526  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5527    int offset = CP->getOffset();
5528    if (CP->isMachineConstantPoolEntry())
5529      OS << "<" << *CP->getMachineCPVal() << ">";
5530    else
5531      OS << "<" << *CP->getConstVal() << ">";
5532    if (offset > 0)
5533      OS << " + " << offset;
5534    else
5535      OS << " " << offset;
5536    if (unsigned char TF = CP->getTargetFlags())
5537      OS << " [TF=" << TF << ']';
5538  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5539    OS << "<";
5540    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5541    if (LBB)
5542      OS << LBB->getName() << " ";
5543    OS << (const void*)BBDN->getBasicBlock() << ">";
5544  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5545    if (G && R->getReg() &&
5546        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5547      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5548    } else {
5549      OS << " #" << R->getReg();
5550    }
5551  } else if (const ExternalSymbolSDNode *ES =
5552             dyn_cast<ExternalSymbolSDNode>(this)) {
5553    OS << "'" << ES->getSymbol() << "'";
5554    if (unsigned char TF = ES->getTargetFlags())
5555      OS << " [TF=" << TF << ']';
5556  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5557    if (M->getValue())
5558      OS << "<" << M->getValue() << ">";
5559    else
5560      OS << "<null>";
5561  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5562    if (M->MO.getValue())
5563      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5564    else
5565      OS << "<null:" << M->MO.getOffset() << ">";
5566  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5567    OS << N->getArgFlags().getArgFlagsString();
5568  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5569    OS << ":" << N->getVT().getMVTString();
5570  }
5571  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5572    const Value *SrcValue = LD->getSrcValue();
5573    int SrcOffset = LD->getSrcValueOffset();
5574    OS << " <";
5575    if (SrcValue)
5576      OS << SrcValue;
5577    else
5578      OS << "null";
5579    OS << ":" << SrcOffset << ">";
5580
5581    bool doExt = true;
5582    switch (LD->getExtensionType()) {
5583    default: doExt = false; break;
5584    case ISD::EXTLOAD: OS << " <anyext "; break;
5585    case ISD::SEXTLOAD: OS << " <sext "; break;
5586    case ISD::ZEXTLOAD: OS << " <zext "; break;
5587    }
5588    if (doExt)
5589      OS << LD->getMemoryVT().getMVTString() << ">";
5590
5591    const char *AM = getIndexedModeName(LD->getAddressingMode());
5592    if (*AM)
5593      OS << " " << AM;
5594    if (LD->isVolatile())
5595      OS << " <volatile>";
5596    OS << " alignment=" << LD->getAlignment();
5597  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5598    const Value *SrcValue = ST->getSrcValue();
5599    int SrcOffset = ST->getSrcValueOffset();
5600    OS << " <";
5601    if (SrcValue)
5602      OS << SrcValue;
5603    else
5604      OS << "null";
5605    OS << ":" << SrcOffset << ">";
5606
5607    if (ST->isTruncatingStore())
5608      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5609
5610    const char *AM = getIndexedModeName(ST->getAddressingMode());
5611    if (*AM)
5612      OS << " " << AM;
5613    if (ST->isVolatile())
5614      OS << " <volatile>";
5615    OS << " alignment=" << ST->getAlignment();
5616  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5617    const Value *SrcValue = AT->getSrcValue();
5618    int SrcOffset = AT->getSrcValueOffset();
5619    OS << " <";
5620    if (SrcValue)
5621      OS << SrcValue;
5622    else
5623      OS << "null";
5624    OS << ":" << SrcOffset << ">";
5625    if (AT->isVolatile())
5626      OS << " <volatile>";
5627    OS << " alignment=" << AT->getAlignment();
5628  }
5629}
5630
5631void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5632  print_types(OS, G);
5633  OS << " ";
5634  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5635    if (i) OS << ", ";
5636    OS << (void*)getOperand(i).getNode();
5637    if (unsigned RN = getOperand(i).getResNo())
5638      OS << ":" << RN;
5639  }
5640  print_details(OS, G);
5641}
5642
5643static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5644  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5645    if (N->getOperand(i).getNode()->hasOneUse())
5646      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5647    else
5648      cerr << "\n" << std::string(indent+2, ' ')
5649           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5650
5651
5652  cerr << "\n" << std::string(indent, ' ');
5653  N->dump(G);
5654}
5655
5656void SelectionDAG::dump() const {
5657  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5658
5659  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5660       I != E; ++I) {
5661    const SDNode *N = I;
5662    if (!N->hasOneUse() && N != getRoot().getNode())
5663      DumpNodes(N, 2, this);
5664  }
5665
5666  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5667
5668  cerr << "\n\n";
5669}
5670
5671void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5672  print_types(OS, G);
5673  print_details(OS, G);
5674}
5675
5676typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5677static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5678                       const SelectionDAG *G, VisitedSDNodeSet &once) {
5679  if (!once.insert(N))          // If we've been here before, return now.
5680    return;
5681  // Dump the current SDNode, but don't end the line yet.
5682  OS << std::string(indent, ' ');
5683  N->printr(OS, G);
5684  // Having printed this SDNode, walk the children:
5685  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5686    const SDNode *child = N->getOperand(i).getNode();
5687    if (i) OS << ",";
5688    OS << " ";
5689    if (child->getNumOperands() == 0) {
5690      // This child has no grandchildren; print it inline right here.
5691      child->printr(OS, G);
5692      once.insert(child);
5693    } else {          // Just the address.  FIXME: also print the child's opcode
5694      OS << (void*)child;
5695      if (unsigned RN = N->getOperand(i).getResNo())
5696        OS << ":" << RN;
5697    }
5698  }
5699  OS << "\n";
5700  // Dump children that have grandchildren on their own line(s).
5701  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5702    const SDNode *child = N->getOperand(i).getNode();
5703    DumpNodesr(OS, child, indent+2, G, once);
5704  }
5705}
5706
5707void SDNode::dumpr() const {
5708  VisitedSDNodeSet once;
5709  DumpNodesr(errs(), this, 0, 0, once);
5710}
5711
5712
5713// getAddressSpace - Return the address space this GlobalAddress belongs to.
5714unsigned GlobalAddressSDNode::getAddressSpace() const {
5715  return getGlobal()->getType()->getAddressSpace();
5716}
5717
5718
5719const Type *ConstantPoolSDNode::getType() const {
5720  if (isMachineConstantPoolEntry())
5721    return Val.MachineCPVal->getType();
5722  return Val.ConstVal->getType();
5723}
5724
5725bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5726                                        APInt &SplatUndef,
5727                                        unsigned &SplatBitSize,
5728                                        bool &HasAnyUndefs,
5729                                        unsigned MinSplatBits) {
5730  MVT VT = getValueType(0);
5731  assert(VT.isVector() && "Expected a vector type");
5732  unsigned sz = VT.getSizeInBits();
5733  if (MinSplatBits > sz)
5734    return false;
5735
5736  SplatValue = APInt(sz, 0);
5737  SplatUndef = APInt(sz, 0);
5738
5739  // Get the bits.  Bits with undefined values (when the corresponding element
5740  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5741  // in SplatValue.  If any of the values are not constant, give up and return
5742  // false.
5743  unsigned int nOps = getNumOperands();
5744  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5745  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5746  for (unsigned i = 0; i < nOps; ++i) {
5747    SDValue OpVal = getOperand(i);
5748    unsigned BitPos = i * EltBitSize;
5749
5750    if (OpVal.getOpcode() == ISD::UNDEF)
5751      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5752    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5753      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5754                     zextOrTrunc(sz) << BitPos);
5755    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5756      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5757     else
5758      return false;
5759  }
5760
5761  // The build_vector is all constants or undefs.  Find the smallest element
5762  // size that splats the vector.
5763
5764  HasAnyUndefs = (SplatUndef != 0);
5765  while (sz > 8) {
5766
5767    unsigned HalfSize = sz / 2;
5768    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5769    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5770    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5771    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5772
5773    // If the two halves do not match (ignoring undef bits), stop here.
5774    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5775        MinSplatBits > HalfSize)
5776      break;
5777
5778    SplatValue = HighValue | LowValue;
5779    SplatUndef = HighUndef & LowUndef;
5780
5781    sz = HalfSize;
5782  }
5783
5784  SplatBitSize = sz;
5785  return true;
5786}
5787
5788bool ShuffleVectorSDNode::isSplatMask(const int *Mask, MVT VT) {
5789  // Find the first non-undef value in the shuffle mask.
5790  unsigned i, e;
5791  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
5792    /* search */;
5793
5794  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
5795
5796  // Make sure all remaining elements are either undef or the same as the first
5797  // non-undef value.
5798  for (int Idx = Mask[i]; i != e; ++i)
5799    if (Mask[i] >= 0 && Mask[i] != Idx)
5800      return false;
5801  return true;
5802}
5803