SelectionDAG.cpp revision 694481ee01bfe507c6e37de0dc1c64cff455eefd
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/Support/MathExtras.h"
21#include "llvm/Target/MRegisterInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetInstrInfo.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/ADT/SetVector.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringExtras.h"
28#include <iostream>
29#include <set>
30#include <cmath>
31#include <algorithm>
32using namespace llvm;
33
34/// makeVTList - Return an instance of the SDVTList struct initialized with the
35/// specified members.
36static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
37  SDVTList Res = {VTs, NumVTs};
38  return Res;
39}
40
41static bool isCommutativeBinOp(unsigned Opcode) {
42  switch (Opcode) {
43  case ISD::ADD:
44  case ISD::MUL:
45  case ISD::MULHU:
46  case ISD::MULHS:
47  case ISD::FADD:
48  case ISD::FMUL:
49  case ISD::AND:
50  case ISD::OR:
51  case ISD::XOR: return true;
52  default: return false; // FIXME: Need commutative info for user ops!
53  }
54}
55
56// isInvertibleForFree - Return true if there is no cost to emitting the logical
57// inverse of this node.
58static bool isInvertibleForFree(SDOperand N) {
59  if (isa<ConstantSDNode>(N.Val)) return true;
60  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
61    return true;
62  return false;
63}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(double V) const {
74  return DoubleToBits(V) == DoubleToBits(Value);
75}
76
77//===----------------------------------------------------------------------===//
78//                              ISD Namespace
79//===----------------------------------------------------------------------===//
80
81/// isBuildVectorAllOnes - Return true if the specified node is a
82/// BUILD_VECTOR where all of the elements are ~0 or undef.
83bool ISD::isBuildVectorAllOnes(const SDNode *N) {
84  // Look through a bit convert.
85  if (N->getOpcode() == ISD::BIT_CONVERT)
86    N = N->getOperand(0).Val;
87
88  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
89
90  unsigned i = 0, e = N->getNumOperands();
91
92  // Skip over all of the undef values.
93  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
94    ++i;
95
96  // Do not accept an all-undef vector.
97  if (i == e) return false;
98
99  // Do not accept build_vectors that aren't all constants or which have non-~0
100  // elements.
101  SDOperand NotZero = N->getOperand(i);
102  if (isa<ConstantSDNode>(NotZero)) {
103    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
104      return false;
105  } else if (isa<ConstantFPSDNode>(NotZero)) {
106    MVT::ValueType VT = NotZero.getValueType();
107    if (VT== MVT::f64) {
108      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
109          (uint64_t)-1)
110        return false;
111    } else {
112      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
113          (uint32_t)-1)
114        return false;
115    }
116  } else
117    return false;
118
119  // Okay, we have at least one ~0 value, check to see if the rest match or are
120  // undefs.
121  for (++i; i != e; ++i)
122    if (N->getOperand(i) != NotZero &&
123        N->getOperand(i).getOpcode() != ISD::UNDEF)
124      return false;
125  return true;
126}
127
128
129/// isBuildVectorAllZeros - Return true if the specified node is a
130/// BUILD_VECTOR where all of the elements are 0 or undef.
131bool ISD::isBuildVectorAllZeros(const SDNode *N) {
132  // Look through a bit convert.
133  if (N->getOpcode() == ISD::BIT_CONVERT)
134    N = N->getOperand(0).Val;
135
136  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
137
138  unsigned i = 0, e = N->getNumOperands();
139
140  // Skip over all of the undef values.
141  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
142    ++i;
143
144  // Do not accept an all-undef vector.
145  if (i == e) return false;
146
147  // Do not accept build_vectors that aren't all constants or which have non-~0
148  // elements.
149  SDOperand Zero = N->getOperand(i);
150  if (isa<ConstantSDNode>(Zero)) {
151    if (!cast<ConstantSDNode>(Zero)->isNullValue())
152      return false;
153  } else if (isa<ConstantFPSDNode>(Zero)) {
154    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
155      return false;
156  } else
157    return false;
158
159  // Okay, we have at least one ~0 value, check to see if the rest match or are
160  // undefs.
161  for (++i; i != e; ++i)
162    if (N->getOperand(i) != Zero &&
163        N->getOperand(i).getOpcode() != ISD::UNDEF)
164      return false;
165  return true;
166}
167
168/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
169/// when given the operation for (X op Y).
170ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
171  // To perform this operation, we just need to swap the L and G bits of the
172  // operation.
173  unsigned OldL = (Operation >> 2) & 1;
174  unsigned OldG = (Operation >> 1) & 1;
175  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
176                       (OldL << 1) |       // New G bit
177                       (OldG << 2));        // New L bit.
178}
179
180/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
181/// 'op' is a valid SetCC operation.
182ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
183  unsigned Operation = Op;
184  if (isInteger)
185    Operation ^= 7;   // Flip L, G, E bits, but not U.
186  else
187    Operation ^= 15;  // Flip all of the condition bits.
188  if (Operation > ISD::SETTRUE2)
189    Operation &= ~8;     // Don't let N and U bits get set.
190  return ISD::CondCode(Operation);
191}
192
193
194/// isSignedOp - For an integer comparison, return 1 if the comparison is a
195/// signed operation and 2 if the result is an unsigned comparison.  Return zero
196/// if the operation does not depend on the sign of the input (setne and seteq).
197static int isSignedOp(ISD::CondCode Opcode) {
198  switch (Opcode) {
199  default: assert(0 && "Illegal integer setcc operation!");
200  case ISD::SETEQ:
201  case ISD::SETNE: return 0;
202  case ISD::SETLT:
203  case ISD::SETLE:
204  case ISD::SETGT:
205  case ISD::SETGE: return 1;
206  case ISD::SETULT:
207  case ISD::SETULE:
208  case ISD::SETUGT:
209  case ISD::SETUGE: return 2;
210  }
211}
212
213/// getSetCCOrOperation - Return the result of a logical OR between different
214/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
215/// returns SETCC_INVALID if it is not possible to represent the resultant
216/// comparison.
217ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
218                                       bool isInteger) {
219  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
220    // Cannot fold a signed integer setcc with an unsigned integer setcc.
221    return ISD::SETCC_INVALID;
222
223  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
224
225  // If the N and U bits get set then the resultant comparison DOES suddenly
226  // care about orderedness, and is true when ordered.
227  if (Op > ISD::SETTRUE2)
228    Op &= ~16;     // Clear the U bit if the N bit is set.
229
230  // Canonicalize illegal integer setcc's.
231  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
232    Op = ISD::SETNE;
233
234  return ISD::CondCode(Op);
235}
236
237/// getSetCCAndOperation - Return the result of a logical AND between different
238/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
239/// function returns zero if it is not possible to represent the resultant
240/// comparison.
241ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
242                                        bool isInteger) {
243  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
244    // Cannot fold a signed setcc with an unsigned setcc.
245    return ISD::SETCC_INVALID;
246
247  // Combine all of the condition bits.
248  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
249
250  // Canonicalize illegal integer setcc's.
251  if (isInteger) {
252    switch (Result) {
253    default: break;
254    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
255    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
256    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
257    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
258    }
259  }
260
261  return Result;
262}
263
264const TargetMachine &SelectionDAG::getTarget() const {
265  return TLI.getTargetMachine();
266}
267
268//===----------------------------------------------------------------------===//
269//                              SelectionDAG Class
270//===----------------------------------------------------------------------===//
271
272/// RemoveDeadNodes - This method deletes all unreachable nodes in the
273/// SelectionDAG.
274void SelectionDAG::RemoveDeadNodes() {
275  // Create a dummy node (which is not added to allnodes), that adds a reference
276  // to the root node, preventing it from being deleted.
277  HandleSDNode Dummy(getRoot());
278
279  SmallVector<SDNode*, 128> DeadNodes;
280
281  // Add all obviously-dead nodes to the DeadNodes worklist.
282  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
283    if (I->use_empty())
284      DeadNodes.push_back(I);
285
286  // Process the worklist, deleting the nodes and adding their uses to the
287  // worklist.
288  while (!DeadNodes.empty()) {
289    SDNode *N = DeadNodes.back();
290    DeadNodes.pop_back();
291
292    // Take the node out of the appropriate CSE map.
293    RemoveNodeFromCSEMaps(N);
294
295    // Next, brutally remove the operand list.  This is safe to do, as there are
296    // no cycles in the graph.
297    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
298      SDNode *Operand = I->Val;
299      Operand->removeUser(N);
300
301      // Now that we removed this operand, see if there are no uses of it left.
302      if (Operand->use_empty())
303        DeadNodes.push_back(Operand);
304    }
305    delete[] N->OperandList;
306    N->OperandList = 0;
307    N->NumOperands = 0;
308
309    // Finally, remove N itself.
310    AllNodes.erase(N);
311  }
312
313  // If the root changed (e.g. it was a dead load, update the root).
314  setRoot(Dummy.getValue());
315}
316
317void SelectionDAG::DeleteNode(SDNode *N) {
318  assert(N->use_empty() && "Cannot delete a node that is not dead!");
319
320  // First take this out of the appropriate CSE map.
321  RemoveNodeFromCSEMaps(N);
322
323  // Finally, remove uses due to operands of this node, remove from the
324  // AllNodes list, and delete the node.
325  DeleteNodeNotInCSEMaps(N);
326}
327
328void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
329
330  // Remove it from the AllNodes list.
331  AllNodes.remove(N);
332
333  // Drop all of the operands and decrement used nodes use counts.
334  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
335    I->Val->removeUser(N);
336  delete[] N->OperandList;
337  N->OperandList = 0;
338  N->NumOperands = 0;
339
340  delete N;
341}
342
343/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
344/// correspond to it.  This is useful when we're about to delete or repurpose
345/// the node.  We don't want future request for structurally identical nodes
346/// to return N anymore.
347void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
348  bool Erased = false;
349  switch (N->getOpcode()) {
350  case ISD::HANDLENODE: return;  // noop.
351  case ISD::STRING:
352    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
353    break;
354  case ISD::CONDCODE:
355    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
356           "Cond code doesn't exist!");
357    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
358    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
359    break;
360  case ISD::ExternalSymbol:
361    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
362    break;
363  case ISD::TargetExternalSymbol:
364    Erased =
365      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
366    break;
367  case ISD::VALUETYPE:
368    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
369    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
370    break;
371  default:
372    // Remove it from the CSE Map.
373    Erased = CSEMap.RemoveNode(N);
374    break;
375  }
376#ifndef NDEBUG
377  // Verify that the node was actually in one of the CSE maps, unless it has a
378  // flag result (which cannot be CSE'd) or is one of the special cases that are
379  // not subject to CSE.
380  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
381      !N->isTargetOpcode()) {
382    N->dump();
383    std::cerr << "\n";
384    assert(0 && "Node is not in map!");
385  }
386#endif
387}
388
389/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
390/// has been taken out and modified in some way.  If the specified node already
391/// exists in the CSE maps, do not modify the maps, but return the existing node
392/// instead.  If it doesn't exist, add it and return null.
393///
394SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
395  assert(N->getNumOperands() && "This is a leaf node!");
396  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
397    return 0;    // Never add these nodes.
398
399  // Check that remaining values produced are not flags.
400  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
401    if (N->getValueType(i) == MVT::Flag)
402      return 0;   // Never CSE anything that produces a flag.
403
404  SDNode *New = CSEMap.GetOrInsertNode(N);
405  if (New != N) return New;  // Node already existed.
406  return 0;
407}
408
409/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
410/// were replaced with those specified.  If this node is never memoized,
411/// return null, otherwise return a pointer to the slot it would take.  If a
412/// node already exists with these operands, the slot will be non-null.
413SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
414                                           void *&InsertPos) {
415  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
416    return 0;    // Never add these nodes.
417
418  // Check that remaining values produced are not flags.
419  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
420    if (N->getValueType(i) == MVT::Flag)
421      return 0;   // Never CSE anything that produces a flag.
422
423  SelectionDAGCSEMap::NodeID ID;
424  ID.SetOpcode(N->getOpcode());
425  ID.SetValueTypes(N->getVTList());
426  ID.SetOperands(Op);
427  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
428}
429
430/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
431/// were replaced with those specified.  If this node is never memoized,
432/// return null, otherwise return a pointer to the slot it would take.  If a
433/// node already exists with these operands, the slot will be non-null.
434SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
435                                           SDOperand Op1, SDOperand Op2,
436                                           void *&InsertPos) {
437  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
438    return 0;    // Never add these nodes.
439
440  // Check that remaining values produced are not flags.
441  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
442    if (N->getValueType(i) == MVT::Flag)
443      return 0;   // Never CSE anything that produces a flag.
444
445  SelectionDAGCSEMap::NodeID ID;
446  ID.SetOpcode(N->getOpcode());
447  ID.SetValueTypes(N->getVTList());
448  ID.SetOperands(Op1, Op2);
449  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
450}
451
452
453/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
454/// were replaced with those specified.  If this node is never memoized,
455/// return null, otherwise return a pointer to the slot it would take.  If a
456/// node already exists with these operands, the slot will be non-null.
457SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
458                                           const SDOperand *Ops,unsigned NumOps,
459                                           void *&InsertPos) {
460  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
461    return 0;    // Never add these nodes.
462
463  // Check that remaining values produced are not flags.
464  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
465    if (N->getValueType(i) == MVT::Flag)
466      return 0;   // Never CSE anything that produces a flag.
467
468  SelectionDAGCSEMap::NodeID ID;
469  ID.SetOpcode(N->getOpcode());
470  ID.SetValueTypes(N->getVTList());
471  ID.SetOperands(Ops, NumOps);
472  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
473}
474
475
476SelectionDAG::~SelectionDAG() {
477  while (!AllNodes.empty()) {
478    SDNode *N = AllNodes.begin();
479    N->SetNextInBucket(0);
480    delete [] N->OperandList;
481    N->OperandList = 0;
482    N->NumOperands = 0;
483    AllNodes.pop_front();
484  }
485}
486
487SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
488  if (Op.getValueType() == VT) return Op;
489  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
490  return getNode(ISD::AND, Op.getValueType(), Op,
491                 getConstant(Imm, Op.getValueType()));
492}
493
494SDOperand SelectionDAG::getString(const std::string &Val) {
495  StringSDNode *&N = StringNodes[Val];
496  if (!N) {
497    N = new StringSDNode(Val);
498    AllNodes.push_back(N);
499  }
500  return SDOperand(N, 0);
501}
502
503SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
504  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
505  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
506
507  // Mask out any bits that are not valid for this constant.
508  Val &= MVT::getIntVTBitMask(VT);
509
510  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
511  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
512  ID.AddInteger(Val);
513  void *IP = 0;
514  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
515    return SDOperand(E, 0);
516  SDNode *N = new ConstantSDNode(isT, Val, VT);
517  CSEMap.InsertNode(N, IP);
518  AllNodes.push_back(N);
519  return SDOperand(N, 0);
520}
521
522
523SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
524                                      bool isTarget) {
525  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
526  if (VT == MVT::f32)
527    Val = (float)Val;  // Mask out extra precision.
528
529  // Do the map lookup using the actual bit pattern for the floating point
530  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
531  // we don't have issues with SNANs.
532  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
533  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
534  ID.AddInteger(DoubleToBits(Val));
535  void *IP = 0;
536  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
537    return SDOperand(E, 0);
538  SDNode *N = new ConstantFPSDNode(isTarget, Val, VT);
539  CSEMap.InsertNode(N, IP);
540  AllNodes.push_back(N);
541  return SDOperand(N, 0);
542}
543
544SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
545                                         MVT::ValueType VT, int Offset,
546                                         bool isTargetGA) {
547  unsigned Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
548  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
549  ID.AddPointer(GV);
550  ID.AddInteger(Offset);
551  void *IP = 0;
552  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
553   return SDOperand(E, 0);
554  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
555  CSEMap.InsertNode(N, IP);
556  AllNodes.push_back(N);
557  return SDOperand(N, 0);
558}
559
560SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
561                                      bool isTarget) {
562  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
563  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
564  ID.AddInteger(FI);
565  void *IP = 0;
566  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
567    return SDOperand(E, 0);
568  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
569  CSEMap.InsertNode(N, IP);
570  AllNodes.push_back(N);
571  return SDOperand(N, 0);
572}
573
574SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
575  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
576  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
577  ID.AddInteger(JTI);
578  void *IP = 0;
579  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
580    return SDOperand(E, 0);
581  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
582  CSEMap.InsertNode(N, IP);
583  AllNodes.push_back(N);
584  return SDOperand(N, 0);
585}
586
587SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
588                                        unsigned Alignment, int Offset,
589                                        bool isTarget) {
590  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
591  SelectionDAGCSEMap::NodeID ID(Opc, getVTList(VT));
592  ID.AddInteger(Alignment);
593  ID.AddInteger(Offset);
594  ID.AddPointer(C);
595  void *IP = 0;
596  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
597    return SDOperand(E, 0);
598  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
599  CSEMap.InsertNode(N, IP);
600  AllNodes.push_back(N);
601  return SDOperand(N, 0);
602}
603
604
605SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
606  SelectionDAGCSEMap::NodeID ID(ISD::BasicBlock, getVTList(MVT::Other));
607  ID.AddPointer(MBB);
608  void *IP = 0;
609  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
610    return SDOperand(E, 0);
611  SDNode *N = new BasicBlockSDNode(MBB);
612  CSEMap.InsertNode(N, IP);
613  AllNodes.push_back(N);
614  return SDOperand(N, 0);
615}
616
617SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
618  if ((unsigned)VT >= ValueTypeNodes.size())
619    ValueTypeNodes.resize(VT+1);
620  if (ValueTypeNodes[VT] == 0) {
621    ValueTypeNodes[VT] = new VTSDNode(VT);
622    AllNodes.push_back(ValueTypeNodes[VT]);
623  }
624
625  return SDOperand(ValueTypeNodes[VT], 0);
626}
627
628SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
629  SDNode *&N = ExternalSymbols[Sym];
630  if (N) return SDOperand(N, 0);
631  N = new ExternalSymbolSDNode(false, Sym, VT);
632  AllNodes.push_back(N);
633  return SDOperand(N, 0);
634}
635
636SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
637                                                MVT::ValueType VT) {
638  SDNode *&N = TargetExternalSymbols[Sym];
639  if (N) return SDOperand(N, 0);
640  N = new ExternalSymbolSDNode(true, Sym, VT);
641  AllNodes.push_back(N);
642  return SDOperand(N, 0);
643}
644
645SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
646  if ((unsigned)Cond >= CondCodeNodes.size())
647    CondCodeNodes.resize(Cond+1);
648
649  if (CondCodeNodes[Cond] == 0) {
650    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
651    AllNodes.push_back(CondCodeNodes[Cond]);
652  }
653  return SDOperand(CondCodeNodes[Cond], 0);
654}
655
656SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
657  SelectionDAGCSEMap::NodeID ID(ISD::Register, getVTList(VT));
658  ID.AddInteger(RegNo);
659  void *IP = 0;
660  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
661    return SDOperand(E, 0);
662  SDNode *N = new RegisterSDNode(RegNo, VT);
663  CSEMap.InsertNode(N, IP);
664  AllNodes.push_back(N);
665  return SDOperand(N, 0);
666}
667
668SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
669  assert((!V || isa<PointerType>(V->getType())) &&
670         "SrcValue is not a pointer?");
671
672  SelectionDAGCSEMap::NodeID ID(ISD::SRCVALUE, getVTList(MVT::Other));
673  ID.AddPointer(V);
674  ID.AddInteger(Offset);
675  void *IP = 0;
676  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
677    return SDOperand(E, 0);
678  SDNode *N = new SrcValueSDNode(V, Offset);
679  CSEMap.InsertNode(N, IP);
680  AllNodes.push_back(N);
681  return SDOperand(N, 0);
682}
683
684SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
685                                      SDOperand N2, ISD::CondCode Cond) {
686  // These setcc operations always fold.
687  switch (Cond) {
688  default: break;
689  case ISD::SETFALSE:
690  case ISD::SETFALSE2: return getConstant(0, VT);
691  case ISD::SETTRUE:
692  case ISD::SETTRUE2:  return getConstant(1, VT);
693
694  case ISD::SETOEQ:
695  case ISD::SETOGT:
696  case ISD::SETOGE:
697  case ISD::SETOLT:
698  case ISD::SETOLE:
699  case ISD::SETONE:
700  case ISD::SETO:
701  case ISD::SETUO:
702  case ISD::SETUEQ:
703  case ISD::SETUNE:
704    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
705    break;
706  }
707
708  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
709    uint64_t C2 = N2C->getValue();
710    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
711      uint64_t C1 = N1C->getValue();
712
713      // Sign extend the operands if required
714      if (ISD::isSignedIntSetCC(Cond)) {
715        C1 = N1C->getSignExtended();
716        C2 = N2C->getSignExtended();
717      }
718
719      switch (Cond) {
720      default: assert(0 && "Unknown integer setcc!");
721      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
722      case ISD::SETNE:  return getConstant(C1 != C2, VT);
723      case ISD::SETULT: return getConstant(C1 <  C2, VT);
724      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
725      case ISD::SETULE: return getConstant(C1 <= C2, VT);
726      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
727      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
728      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
729      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
730      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
731      }
732    } else {
733      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
734      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
735        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
736
737        // If the comparison constant has bits in the upper part, the
738        // zero-extended value could never match.
739        if (C2 & (~0ULL << InSize)) {
740          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
741          switch (Cond) {
742          case ISD::SETUGT:
743          case ISD::SETUGE:
744          case ISD::SETEQ: return getConstant(0, VT);
745          case ISD::SETULT:
746          case ISD::SETULE:
747          case ISD::SETNE: return getConstant(1, VT);
748          case ISD::SETGT:
749          case ISD::SETGE:
750            // True if the sign bit of C2 is set.
751            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
752          case ISD::SETLT:
753          case ISD::SETLE:
754            // True if the sign bit of C2 isn't set.
755            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
756          default:
757            break;
758          }
759        }
760
761        // Otherwise, we can perform the comparison with the low bits.
762        switch (Cond) {
763        case ISD::SETEQ:
764        case ISD::SETNE:
765        case ISD::SETUGT:
766        case ISD::SETUGE:
767        case ISD::SETULT:
768        case ISD::SETULE:
769          return getSetCC(VT, N1.getOperand(0),
770                          getConstant(C2, N1.getOperand(0).getValueType()),
771                          Cond);
772        default:
773          break;   // todo, be more careful with signed comparisons
774        }
775      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
776                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
777        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
778        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
779        MVT::ValueType ExtDstTy = N1.getValueType();
780        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
781
782        // If the extended part has any inconsistent bits, it cannot ever
783        // compare equal.  In other words, they have to be all ones or all
784        // zeros.
785        uint64_t ExtBits =
786          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
787        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
788          return getConstant(Cond == ISD::SETNE, VT);
789
790        // Otherwise, make this a use of a zext.
791        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
792                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
793                        Cond);
794      }
795
796      uint64_t MinVal, MaxVal;
797      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
798      if (ISD::isSignedIntSetCC(Cond)) {
799        MinVal = 1ULL << (OperandBitSize-1);
800        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
801          MaxVal = ~0ULL >> (65-OperandBitSize);
802        else
803          MaxVal = 0;
804      } else {
805        MinVal = 0;
806        MaxVal = ~0ULL >> (64-OperandBitSize);
807      }
808
809      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
810      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
811        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
812        --C2;                                          // X >= C1 --> X > (C1-1)
813        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
814                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
815      }
816
817      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
818        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
819        ++C2;                                          // X <= C1 --> X < (C1+1)
820        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
821                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
822      }
823
824      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
825        return getConstant(0, VT);      // X < MIN --> false
826
827      // Canonicalize setgt X, Min --> setne X, Min
828      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
829        return getSetCC(VT, N1, N2, ISD::SETNE);
830
831      // If we have setult X, 1, turn it into seteq X, 0
832      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
833        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
834                        ISD::SETEQ);
835      // If we have setugt X, Max-1, turn it into seteq X, Max
836      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
837        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
838                        ISD::SETEQ);
839
840      // If we have "setcc X, C1", check to see if we can shrink the immediate
841      // by changing cc.
842
843      // SETUGT X, SINTMAX  -> SETLT X, 0
844      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
845          C2 == (~0ULL >> (65-OperandBitSize)))
846        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
847
848      // FIXME: Implement the rest of these.
849
850
851      // Fold bit comparisons when we can.
852      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
853          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
854        if (ConstantSDNode *AndRHS =
855                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
856          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
857            // Perform the xform if the AND RHS is a single bit.
858            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
859              return getNode(ISD::SRL, VT, N1,
860                             getConstant(Log2_64(AndRHS->getValue()),
861                                                   TLI.getShiftAmountTy()));
862            }
863          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
864            // (X & 8) == 8  -->  (X & 8) >> 3
865            // Perform the xform if C2 is a single bit.
866            if ((C2 & (C2-1)) == 0) {
867              return getNode(ISD::SRL, VT, N1,
868                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
869            }
870          }
871        }
872    }
873  } else if (isa<ConstantSDNode>(N1.Val)) {
874      // Ensure that the constant occurs on the RHS.
875    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
876  }
877
878  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
879    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
880      double C1 = N1C->getValue(), C2 = N2C->getValue();
881
882      switch (Cond) {
883      default: break; // FIXME: Implement the rest of these!
884      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
885      case ISD::SETNE:  return getConstant(C1 != C2, VT);
886      case ISD::SETLT:  return getConstant(C1 < C2, VT);
887      case ISD::SETGT:  return getConstant(C1 > C2, VT);
888      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
889      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
890      }
891    } else {
892      // Ensure that the constant occurs on the RHS.
893      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
894    }
895
896  // Could not fold it.
897  return SDOperand();
898}
899
900/// getNode - Gets or creates the specified node.
901///
902SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
903  SelectionDAGCSEMap::NodeID ID(Opcode, getVTList(VT));
904  void *IP = 0;
905  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
906    return SDOperand(E, 0);
907  SDNode *N = new SDNode(Opcode, VT);
908  CSEMap.InsertNode(N, IP);
909
910  AllNodes.push_back(N);
911  return SDOperand(N, 0);
912}
913
914SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
915                                SDOperand Operand) {
916  unsigned Tmp1;
917  // Constant fold unary operations with an integer constant operand.
918  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
919    uint64_t Val = C->getValue();
920    switch (Opcode) {
921    default: break;
922    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
923    case ISD::ANY_EXTEND:
924    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
925    case ISD::TRUNCATE:    return getConstant(Val, VT);
926    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
927    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
928    case ISD::BIT_CONVERT:
929      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
930        return getConstantFP(BitsToFloat(Val), VT);
931      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
932        return getConstantFP(BitsToDouble(Val), VT);
933      break;
934    case ISD::BSWAP:
935      switch(VT) {
936      default: assert(0 && "Invalid bswap!"); break;
937      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
938      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
939      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
940      }
941      break;
942    case ISD::CTPOP:
943      switch(VT) {
944      default: assert(0 && "Invalid ctpop!"); break;
945      case MVT::i1: return getConstant(Val != 0, VT);
946      case MVT::i8:
947        Tmp1 = (unsigned)Val & 0xFF;
948        return getConstant(CountPopulation_32(Tmp1), VT);
949      case MVT::i16:
950        Tmp1 = (unsigned)Val & 0xFFFF;
951        return getConstant(CountPopulation_32(Tmp1), VT);
952      case MVT::i32:
953        return getConstant(CountPopulation_32((unsigned)Val), VT);
954      case MVT::i64:
955        return getConstant(CountPopulation_64(Val), VT);
956      }
957    case ISD::CTLZ:
958      switch(VT) {
959      default: assert(0 && "Invalid ctlz!"); break;
960      case MVT::i1: return getConstant(Val == 0, VT);
961      case MVT::i8:
962        Tmp1 = (unsigned)Val & 0xFF;
963        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
964      case MVT::i16:
965        Tmp1 = (unsigned)Val & 0xFFFF;
966        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
967      case MVT::i32:
968        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
969      case MVT::i64:
970        return getConstant(CountLeadingZeros_64(Val), VT);
971      }
972    case ISD::CTTZ:
973      switch(VT) {
974      default: assert(0 && "Invalid cttz!"); break;
975      case MVT::i1: return getConstant(Val == 0, VT);
976      case MVT::i8:
977        Tmp1 = (unsigned)Val | 0x100;
978        return getConstant(CountTrailingZeros_32(Tmp1), VT);
979      case MVT::i16:
980        Tmp1 = (unsigned)Val | 0x10000;
981        return getConstant(CountTrailingZeros_32(Tmp1), VT);
982      case MVT::i32:
983        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
984      case MVT::i64:
985        return getConstant(CountTrailingZeros_64(Val), VT);
986      }
987    }
988  }
989
990  // Constant fold unary operations with an floating point constant operand.
991  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
992    switch (Opcode) {
993    case ISD::FNEG:
994      return getConstantFP(-C->getValue(), VT);
995    case ISD::FABS:
996      return getConstantFP(fabs(C->getValue()), VT);
997    case ISD::FP_ROUND:
998    case ISD::FP_EXTEND:
999      return getConstantFP(C->getValue(), VT);
1000    case ISD::FP_TO_SINT:
1001      return getConstant((int64_t)C->getValue(), VT);
1002    case ISD::FP_TO_UINT:
1003      return getConstant((uint64_t)C->getValue(), VT);
1004    case ISD::BIT_CONVERT:
1005      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1006        return getConstant(FloatToBits(C->getValue()), VT);
1007      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1008        return getConstant(DoubleToBits(C->getValue()), VT);
1009      break;
1010    }
1011
1012  unsigned OpOpcode = Operand.Val->getOpcode();
1013  switch (Opcode) {
1014  case ISD::TokenFactor:
1015    return Operand;         // Factor of one node?  No factor.
1016  case ISD::SIGN_EXTEND:
1017    if (Operand.getValueType() == VT) return Operand;   // noop extension
1018    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1019    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1020      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1021    break;
1022  case ISD::ZERO_EXTEND:
1023    if (Operand.getValueType() == VT) return Operand;   // noop extension
1024    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1025    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1026      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1027    break;
1028  case ISD::ANY_EXTEND:
1029    if (Operand.getValueType() == VT) return Operand;   // noop extension
1030    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1031    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1032      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1033      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1034    break;
1035  case ISD::TRUNCATE:
1036    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1037    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1038    if (OpOpcode == ISD::TRUNCATE)
1039      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1040    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1041             OpOpcode == ISD::ANY_EXTEND) {
1042      // If the source is smaller than the dest, we still need an extend.
1043      if (Operand.Val->getOperand(0).getValueType() < VT)
1044        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1045      else if (Operand.Val->getOperand(0).getValueType() > VT)
1046        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1047      else
1048        return Operand.Val->getOperand(0);
1049    }
1050    break;
1051  case ISD::BIT_CONVERT:
1052    // Basic sanity checking.
1053    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1054           && "Cannot BIT_CONVERT between two different types!");
1055    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1056    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1057      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1058    if (OpOpcode == ISD::UNDEF)
1059      return getNode(ISD::UNDEF, VT);
1060    break;
1061  case ISD::SCALAR_TO_VECTOR:
1062    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1063           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1064           "Illegal SCALAR_TO_VECTOR node!");
1065    break;
1066  case ISD::FNEG:
1067    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1068      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1069                     Operand.Val->getOperand(0));
1070    if (OpOpcode == ISD::FNEG)  // --X -> X
1071      return Operand.Val->getOperand(0);
1072    break;
1073  case ISD::FABS:
1074    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1075      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1076    break;
1077  }
1078
1079  SDNode *N;
1080  SDVTList VTs = getVTList(VT);
1081  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1082    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, Operand);
1083    void *IP = 0;
1084    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1085      return SDOperand(E, 0);
1086    N = new SDNode(Opcode, Operand);
1087    N->setValueTypes(VTs);
1088    CSEMap.InsertNode(N, IP);
1089  } else {
1090    N = new SDNode(Opcode, Operand);
1091    N->setValueTypes(VTs);
1092  }
1093  AllNodes.push_back(N);
1094  return SDOperand(N, 0);
1095}
1096
1097
1098
1099SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1100                                SDOperand N1, SDOperand N2) {
1101#ifndef NDEBUG
1102  switch (Opcode) {
1103  case ISD::TokenFactor:
1104    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1105           N2.getValueType() == MVT::Other && "Invalid token factor!");
1106    break;
1107  case ISD::AND:
1108  case ISD::OR:
1109  case ISD::XOR:
1110  case ISD::UDIV:
1111  case ISD::UREM:
1112  case ISD::MULHU:
1113  case ISD::MULHS:
1114    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1115    // fall through
1116  case ISD::ADD:
1117  case ISD::SUB:
1118  case ISD::MUL:
1119  case ISD::SDIV:
1120  case ISD::SREM:
1121    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1122    // fall through.
1123  case ISD::FADD:
1124  case ISD::FSUB:
1125  case ISD::FMUL:
1126  case ISD::FDIV:
1127  case ISD::FREM:
1128    assert(N1.getValueType() == N2.getValueType() &&
1129           N1.getValueType() == VT && "Binary operator types must match!");
1130    break;
1131  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1132    assert(N1.getValueType() == VT &&
1133           MVT::isFloatingPoint(N1.getValueType()) &&
1134           MVT::isFloatingPoint(N2.getValueType()) &&
1135           "Invalid FCOPYSIGN!");
1136    break;
1137  case ISD::SHL:
1138  case ISD::SRA:
1139  case ISD::SRL:
1140  case ISD::ROTL:
1141  case ISD::ROTR:
1142    assert(VT == N1.getValueType() &&
1143           "Shift operators return type must be the same as their first arg");
1144    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1145           VT != MVT::i1 && "Shifts only work on integers");
1146    break;
1147  case ISD::FP_ROUND_INREG: {
1148    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1149    assert(VT == N1.getValueType() && "Not an inreg round!");
1150    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1151           "Cannot FP_ROUND_INREG integer types");
1152    assert(EVT <= VT && "Not rounding down!");
1153    break;
1154  }
1155  case ISD::AssertSext:
1156  case ISD::AssertZext:
1157  case ISD::SIGN_EXTEND_INREG: {
1158    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1159    assert(VT == N1.getValueType() && "Not an inreg extend!");
1160    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1161           "Cannot *_EXTEND_INREG FP types");
1162    assert(EVT <= VT && "Not extending!");
1163  }
1164
1165  default: break;
1166  }
1167#endif
1168
1169  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1170  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1171  if (N1C) {
1172    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1173      int64_t Val = N1C->getValue();
1174      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1175      Val <<= 64-FromBits;
1176      Val >>= 64-FromBits;
1177      return getConstant(Val, VT);
1178    }
1179
1180    if (N2C) {
1181      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1182      switch (Opcode) {
1183      case ISD::ADD: return getConstant(C1 + C2, VT);
1184      case ISD::SUB: return getConstant(C1 - C2, VT);
1185      case ISD::MUL: return getConstant(C1 * C2, VT);
1186      case ISD::UDIV:
1187        if (C2) return getConstant(C1 / C2, VT);
1188        break;
1189      case ISD::UREM :
1190        if (C2) return getConstant(C1 % C2, VT);
1191        break;
1192      case ISD::SDIV :
1193        if (C2) return getConstant(N1C->getSignExtended() /
1194                                   N2C->getSignExtended(), VT);
1195        break;
1196      case ISD::SREM :
1197        if (C2) return getConstant(N1C->getSignExtended() %
1198                                   N2C->getSignExtended(), VT);
1199        break;
1200      case ISD::AND  : return getConstant(C1 & C2, VT);
1201      case ISD::OR   : return getConstant(C1 | C2, VT);
1202      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1203      case ISD::SHL  : return getConstant(C1 << C2, VT);
1204      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1205      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1206      case ISD::ROTL :
1207        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1208                           VT);
1209      case ISD::ROTR :
1210        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1211                           VT);
1212      default: break;
1213      }
1214    } else {      // Cannonicalize constant to RHS if commutative
1215      if (isCommutativeBinOp(Opcode)) {
1216        std::swap(N1C, N2C);
1217        std::swap(N1, N2);
1218      }
1219    }
1220  }
1221
1222  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1223  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1224  if (N1CFP) {
1225    if (N2CFP) {
1226      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1227      switch (Opcode) {
1228      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1229      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1230      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1231      case ISD::FDIV:
1232        if (C2) return getConstantFP(C1 / C2, VT);
1233        break;
1234      case ISD::FREM :
1235        if (C2) return getConstantFP(fmod(C1, C2), VT);
1236        break;
1237      case ISD::FCOPYSIGN: {
1238        union {
1239          double   F;
1240          uint64_t I;
1241        } u1;
1242        union {
1243          double  F;
1244          int64_t I;
1245        } u2;
1246        u1.F = C1;
1247        u2.F = C2;
1248        if (u2.I < 0)  // Sign bit of RHS set?
1249          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1250        else
1251          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1252        return getConstantFP(u1.F, VT);
1253      }
1254      default: break;
1255      }
1256    } else {      // Cannonicalize constant to RHS if commutative
1257      if (isCommutativeBinOp(Opcode)) {
1258        std::swap(N1CFP, N2CFP);
1259        std::swap(N1, N2);
1260      }
1261    }
1262  }
1263
1264  // Canonicalize an UNDEF to the RHS, even over a constant.
1265  if (N1.getOpcode() == ISD::UNDEF) {
1266    if (isCommutativeBinOp(Opcode)) {
1267      std::swap(N1, N2);
1268    } else {
1269      switch (Opcode) {
1270      case ISD::FP_ROUND_INREG:
1271      case ISD::SIGN_EXTEND_INREG:
1272      case ISD::SUB:
1273      case ISD::FSUB:
1274      case ISD::FDIV:
1275      case ISD::FREM:
1276      case ISD::SRA:
1277        return N1;     // fold op(undef, arg2) -> undef
1278      case ISD::UDIV:
1279      case ISD::SDIV:
1280      case ISD::UREM:
1281      case ISD::SREM:
1282      case ISD::SRL:
1283      case ISD::SHL:
1284        return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1285      }
1286    }
1287  }
1288
1289  // Fold a bunch of operators when the RHS is undef.
1290  if (N2.getOpcode() == ISD::UNDEF) {
1291    switch (Opcode) {
1292    case ISD::ADD:
1293    case ISD::SUB:
1294    case ISD::FADD:
1295    case ISD::FSUB:
1296    case ISD::FMUL:
1297    case ISD::FDIV:
1298    case ISD::FREM:
1299    case ISD::UDIV:
1300    case ISD::SDIV:
1301    case ISD::UREM:
1302    case ISD::SREM:
1303    case ISD::XOR:
1304      return N2;       // fold op(arg1, undef) -> undef
1305    case ISD::MUL:
1306    case ISD::AND:
1307    case ISD::SRL:
1308    case ISD::SHL:
1309      return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1310    case ISD::OR:
1311      return getConstant(MVT::getIntVTBitMask(VT), VT);
1312    case ISD::SRA:
1313      return N1;
1314    }
1315  }
1316
1317  // Finally, fold operations that do not require constants.
1318  switch (Opcode) {
1319  case ISD::FP_ROUND_INREG:
1320    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1321    break;
1322  case ISD::SIGN_EXTEND_INREG: {
1323    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1324    if (EVT == VT) return N1;  // Not actually extending
1325    break;
1326  }
1327
1328  // FIXME: figure out how to safely handle things like
1329  // int foo(int x) { return 1 << (x & 255); }
1330  // int bar() { return foo(256); }
1331#if 0
1332  case ISD::SHL:
1333  case ISD::SRL:
1334  case ISD::SRA:
1335    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1336        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1337      return getNode(Opcode, VT, N1, N2.getOperand(0));
1338    else if (N2.getOpcode() == ISD::AND)
1339      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1340        // If the and is only masking out bits that cannot effect the shift,
1341        // eliminate the and.
1342        unsigned NumBits = MVT::getSizeInBits(VT);
1343        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1344          return getNode(Opcode, VT, N1, N2.getOperand(0));
1345      }
1346    break;
1347#endif
1348  }
1349
1350  // Memoize this node if possible.
1351  SDNode *N;
1352  SDVTList VTs = getVTList(VT);
1353  if (VT != MVT::Flag) {
1354    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, N1, N2);
1355    void *IP = 0;
1356    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1357      return SDOperand(E, 0);
1358    N = new SDNode(Opcode, N1, N2);
1359    N->setValueTypes(VTs);
1360    CSEMap.InsertNode(N, IP);
1361  } else {
1362    N = new SDNode(Opcode, N1, N2);
1363    N->setValueTypes(VTs);
1364  }
1365
1366  AllNodes.push_back(N);
1367  return SDOperand(N, 0);
1368}
1369
1370SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1371                                SDOperand N1, SDOperand N2, SDOperand N3) {
1372  // Perform various simplifications.
1373  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1374  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1375  //ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1376  switch (Opcode) {
1377  case ISD::SETCC: {
1378    // Use SimplifySetCC  to simplify SETCC's.
1379    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1380    if (Simp.Val) return Simp;
1381    break;
1382  }
1383  case ISD::SELECT:
1384    if (N1C)
1385      if (N1C->getValue())
1386        return N2;             // select true, X, Y -> X
1387      else
1388        return N3;             // select false, X, Y -> Y
1389
1390    if (N2 == N3) return N2;   // select C, X, X -> X
1391    break;
1392  case ISD::BRCOND:
1393    if (N2C)
1394      if (N2C->getValue()) // Unconditional branch
1395        return getNode(ISD::BR, MVT::Other, N1, N3);
1396      else
1397        return N1;         // Never-taken branch
1398    break;
1399  case ISD::VECTOR_SHUFFLE:
1400    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1401           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1402           N3.getOpcode() == ISD::BUILD_VECTOR &&
1403           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1404           "Illegal VECTOR_SHUFFLE node!");
1405    break;
1406  }
1407
1408  // Memoize node if it doesn't produce a flag.
1409  SDNode *N;
1410  SDVTList VTs = getVTList(VT);
1411  if (VT != MVT::Flag) {
1412    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, N1, N2, N3);
1413    void *IP = 0;
1414    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1415      return SDOperand(E, 0);
1416    N = new SDNode(Opcode, N1, N2, N3);
1417    N->setValueTypes(VTs);
1418    CSEMap.InsertNode(N, IP);
1419  } else {
1420    N = new SDNode(Opcode, N1, N2, N3);
1421    N->setValueTypes(VTs);
1422  }
1423  AllNodes.push_back(N);
1424  return SDOperand(N, 0);
1425}
1426
1427SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1428                                SDOperand N1, SDOperand N2, SDOperand N3,
1429                                SDOperand N4) {
1430  SDOperand Ops[] = { N1, N2, N3, N4 };
1431  return getNode(Opcode, VT, Ops, 4);
1432}
1433
1434SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1435                                SDOperand N1, SDOperand N2, SDOperand N3,
1436                                SDOperand N4, SDOperand N5) {
1437  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
1438  return getNode(Opcode, VT, Ops, 5);
1439}
1440
1441SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1442                                SDOperand Chain, SDOperand Ptr,
1443                                SDOperand SV) {
1444  SDVTList VTs = getVTList(VT, MVT::Other);
1445
1446  SelectionDAGCSEMap::NodeID ID(ISD::LOAD, VTs, Chain, Ptr, SV);
1447  void *IP = 0;
1448  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1449    return SDOperand(E, 0);
1450  SDNode *N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1451  N->setValueTypes(VTs);
1452  CSEMap.InsertNode(N, IP);
1453  AllNodes.push_back(N);
1454  return SDOperand(N, 0);
1455}
1456
1457SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1458                                   SDOperand Chain, SDOperand Ptr,
1459                                   SDOperand SV) {
1460  SDOperand Ops[] = { Chain, Ptr, SV, getConstant(Count, MVT::i32),
1461                      getValueType(EVT) };
1462  return getNode(ISD::VLOAD, getVTList(MVT::Vector, MVT::Other), Ops, 5);
1463}
1464
1465SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1466                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1467                                   MVT::ValueType EVT) {
1468  SDOperand Ops[] = { Chain, Ptr, SV, getValueType(EVT) };
1469  return getNode(Opcode, getVTList(VT, MVT::Other), Ops, 4);
1470}
1471
1472SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1473                                 SDOperand Chain, SDOperand Ptr,
1474                                 SDOperand SV) {
1475  SDOperand Ops[] = { Chain, Ptr, SV };
1476  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
1477}
1478
1479SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1480                                const SDOperand *Ops, unsigned NumOps) {
1481  switch (NumOps) {
1482  case 0: return getNode(Opcode, VT);
1483  case 1: return getNode(Opcode, VT, Ops[0]);
1484  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1485  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1486  default: break;
1487  }
1488
1489  switch (Opcode) {
1490  default: break;
1491  case ISD::TRUNCSTORE: {
1492    assert(NumOps == 5 && "TRUNCSTORE takes 5 operands!");
1493    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1494#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1495    // If this is a truncating store of a constant, convert to the desired type
1496    // and store it instead.
1497    if (isa<Constant>(Ops[0])) {
1498      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1499      if (isa<Constant>(Op))
1500        N1 = Op;
1501    }
1502    // Also for ConstantFP?
1503#endif
1504    if (Ops[0].getValueType() == EVT)       // Normal store?
1505      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1506    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1507    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1508           "Can't do FP-INT conversion!");
1509    break;
1510  }
1511  case ISD::SELECT_CC: {
1512    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
1513    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1514           "LHS and RHS of condition must have same type!");
1515    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1516           "True and False arms of SelectCC must have same type!");
1517    assert(Ops[2].getValueType() == VT &&
1518           "select_cc node must be of same type as true and false value!");
1519    break;
1520  }
1521  case ISD::BR_CC: {
1522    assert(NumOps == 5 && "BR_CC takes 5 operands!");
1523    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1524           "LHS/RHS of comparison should match types!");
1525    break;
1526  }
1527  }
1528
1529  // Memoize nodes.
1530  SDNode *N;
1531  SDVTList VTs = getVTList(VT);
1532  if (VT != MVT::Flag) {
1533    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, Ops, NumOps);
1534    void *IP = 0;
1535    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1536      return SDOperand(E, 0);
1537    N = new SDNode(Opcode, Ops, NumOps);
1538    N->setValueTypes(VTs);
1539    CSEMap.InsertNode(N, IP);
1540  } else {
1541    N = new SDNode(Opcode, Ops, NumOps);
1542    N->setValueTypes(VTs);
1543  }
1544  AllNodes.push_back(N);
1545  return SDOperand(N, 0);
1546}
1547
1548SDOperand SelectionDAG::getNode(unsigned Opcode,
1549                                std::vector<MVT::ValueType> &ResultTys,
1550                                const SDOperand *Ops, unsigned NumOps) {
1551  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
1552                 Ops, NumOps);
1553}
1554
1555SDOperand SelectionDAG::getNode(unsigned Opcode,
1556                                const MVT::ValueType *VTs, unsigned NumVTs,
1557                                const SDOperand *Ops, unsigned NumOps) {
1558  if (NumVTs == 1)
1559    return getNode(Opcode, VTs[0], Ops, NumOps);
1560  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
1561}
1562
1563SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
1564                                const SDOperand *Ops, unsigned NumOps) {
1565  if (VTList.NumVTs == 1)
1566    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
1567
1568  switch (Opcode) {
1569  case ISD::EXTLOAD:
1570  case ISD::SEXTLOAD:
1571  case ISD::ZEXTLOAD: {
1572    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1573    assert(NumOps == 4 && VTList.NumVTs == 2 && "Bad *EXTLOAD!");
1574    // If they are asking for an extending load from/to the same thing, return a
1575    // normal load.
1576    if (VTList.VTs[0] == EVT)
1577      return getLoad(VTList.VTs[0], Ops[0], Ops[1], Ops[2]);
1578    if (MVT::isVector(VTList.VTs[0])) {
1579      assert(EVT == MVT::getVectorBaseType(VTList.VTs[0]) &&
1580             "Invalid vector extload!");
1581    } else {
1582      assert(EVT < VTList.VTs[0] &&
1583             "Should only be an extending load, not truncating!");
1584    }
1585    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(VTList.VTs[0])) &&
1586           "Cannot sign/zero extend a FP/Vector load!");
1587    assert(MVT::isInteger(VTList.VTs[0]) == MVT::isInteger(EVT) &&
1588           "Cannot convert from FP to Int or Int -> FP!");
1589    break;
1590  }
1591
1592  // FIXME: figure out how to safely handle things like
1593  // int foo(int x) { return 1 << (x & 255); }
1594  // int bar() { return foo(256); }
1595#if 0
1596  case ISD::SRA_PARTS:
1597  case ISD::SRL_PARTS:
1598  case ISD::SHL_PARTS:
1599    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1600        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1601      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1602    else if (N3.getOpcode() == ISD::AND)
1603      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1604        // If the and is only masking out bits that cannot effect the shift,
1605        // eliminate the and.
1606        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1607        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1608          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1609      }
1610    break;
1611#endif
1612  }
1613
1614  // Memoize the node unless it returns a flag.
1615  SDNode *N;
1616  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
1617    SelectionDAGCSEMap::NodeID ID;
1618    ID.SetOpcode(Opcode);
1619    ID.SetValueTypes(VTList);
1620    ID.SetOperands(&Ops[0], NumOps);
1621    void *IP = 0;
1622    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1623      return SDOperand(E, 0);
1624    N = new SDNode(Opcode, Ops, NumOps);
1625    N->setValueTypes(VTList);
1626    CSEMap.InsertNode(N, IP);
1627  } else {
1628    N = new SDNode(Opcode, Ops, NumOps);
1629    N->setValueTypes(VTList);
1630  }
1631  AllNodes.push_back(N);
1632  return SDOperand(N, 0);
1633}
1634
1635SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
1636  return makeVTList(SDNode::getValueTypeList(VT), 1);
1637}
1638
1639SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
1640  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1641       E = VTList.end(); I != E; ++I) {
1642    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
1643      return makeVTList(&(*I)[0], 2);
1644  }
1645  std::vector<MVT::ValueType> V;
1646  V.push_back(VT1);
1647  V.push_back(VT2);
1648  VTList.push_front(V);
1649  return makeVTList(&(*VTList.begin())[0], 2);
1650}
1651SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
1652                                 MVT::ValueType VT3) {
1653  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1654       E = VTList.end(); I != E; ++I) {
1655    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
1656        (*I)[2] == VT3)
1657      return makeVTList(&(*I)[0], 3);
1658  }
1659  std::vector<MVT::ValueType> V;
1660  V.push_back(VT1);
1661  V.push_back(VT2);
1662  V.push_back(VT3);
1663  VTList.push_front(V);
1664  return makeVTList(&(*VTList.begin())[0], 3);
1665}
1666
1667SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
1668  switch (NumVTs) {
1669    case 0: assert(0 && "Cannot have nodes without results!");
1670    case 1: return makeVTList(SDNode::getValueTypeList(VTs[0]), 1);
1671    case 2: return getVTList(VTs[0], VTs[1]);
1672    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
1673    default: break;
1674  }
1675
1676  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1677       E = VTList.end(); I != E; ++I) {
1678    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
1679
1680    bool NoMatch = false;
1681    for (unsigned i = 2; i != NumVTs; ++i)
1682      if (VTs[i] != (*I)[i]) {
1683        NoMatch = true;
1684        break;
1685      }
1686    if (!NoMatch)
1687      return makeVTList(&*I->begin(), NumVTs);
1688  }
1689
1690  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
1691  return makeVTList(&*VTList.begin()->begin(), NumVTs);
1692}
1693
1694
1695/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1696/// specified operands.  If the resultant node already exists in the DAG,
1697/// this does not modify the specified node, instead it returns the node that
1698/// already exists.  If the resultant node does not exist in the DAG, the
1699/// input node is returned.  As a degenerate case, if you specify the same
1700/// input operands as the node already has, the input node is returned.
1701SDOperand SelectionDAG::
1702UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1703  SDNode *N = InN.Val;
1704  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1705
1706  // Check to see if there is no change.
1707  if (Op == N->getOperand(0)) return InN;
1708
1709  // See if the modified node already exists.
1710  void *InsertPos = 0;
1711  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
1712    return SDOperand(Existing, InN.ResNo);
1713
1714  // Nope it doesn't.  Remove the node from it's current place in the maps.
1715  if (InsertPos)
1716    RemoveNodeFromCSEMaps(N);
1717
1718  // Now we update the operands.
1719  N->OperandList[0].Val->removeUser(N);
1720  Op.Val->addUser(N);
1721  N->OperandList[0] = Op;
1722
1723  // If this gets put into a CSE map, add it.
1724  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1725  return InN;
1726}
1727
1728SDOperand SelectionDAG::
1729UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1730  SDNode *N = InN.Val;
1731  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1732
1733  // Check to see if there is no change.
1734  bool AnyChange = false;
1735  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1736    return InN;   // No operands changed, just return the input node.
1737
1738  // See if the modified node already exists.
1739  void *InsertPos = 0;
1740  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
1741    return SDOperand(Existing, InN.ResNo);
1742
1743  // Nope it doesn't.  Remove the node from it's current place in the maps.
1744  if (InsertPos)
1745    RemoveNodeFromCSEMaps(N);
1746
1747  // Now we update the operands.
1748  if (N->OperandList[0] != Op1) {
1749    N->OperandList[0].Val->removeUser(N);
1750    Op1.Val->addUser(N);
1751    N->OperandList[0] = Op1;
1752  }
1753  if (N->OperandList[1] != Op2) {
1754    N->OperandList[1].Val->removeUser(N);
1755    Op2.Val->addUser(N);
1756    N->OperandList[1] = Op2;
1757  }
1758
1759  // If this gets put into a CSE map, add it.
1760  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1761  return InN;
1762}
1763
1764SDOperand SelectionDAG::
1765UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1766  SDOperand Ops[] = { Op1, Op2, Op3 };
1767  return UpdateNodeOperands(N, Ops, 3);
1768}
1769
1770SDOperand SelectionDAG::
1771UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1772                   SDOperand Op3, SDOperand Op4) {
1773  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
1774  return UpdateNodeOperands(N, Ops, 4);
1775}
1776
1777SDOperand SelectionDAG::
1778UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1779                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1780  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
1781  return UpdateNodeOperands(N, Ops, 5);
1782}
1783
1784
1785SDOperand SelectionDAG::
1786UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
1787  SDNode *N = InN.Val;
1788  assert(N->getNumOperands() == NumOps &&
1789         "Update with wrong number of operands");
1790
1791  // Check to see if there is no change.
1792  bool AnyChange = false;
1793  for (unsigned i = 0; i != NumOps; ++i) {
1794    if (Ops[i] != N->getOperand(i)) {
1795      AnyChange = true;
1796      break;
1797    }
1798  }
1799
1800  // No operands changed, just return the input node.
1801  if (!AnyChange) return InN;
1802
1803  // See if the modified node already exists.
1804  void *InsertPos = 0;
1805  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
1806    return SDOperand(Existing, InN.ResNo);
1807
1808  // Nope it doesn't.  Remove the node from it's current place in the maps.
1809  if (InsertPos)
1810    RemoveNodeFromCSEMaps(N);
1811
1812  // Now we update the operands.
1813  for (unsigned i = 0; i != NumOps; ++i) {
1814    if (N->OperandList[i] != Ops[i]) {
1815      N->OperandList[i].Val->removeUser(N);
1816      Ops[i].Val->addUser(N);
1817      N->OperandList[i] = Ops[i];
1818    }
1819  }
1820
1821  // If this gets put into a CSE map, add it.
1822  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1823  return InN;
1824}
1825
1826
1827
1828
1829/// SelectNodeTo - These are used for target selectors to *mutate* the
1830/// specified node to have the specified return type, Target opcode, and
1831/// operands.  Note that target opcodes are stored as
1832/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1833///
1834/// Note that SelectNodeTo returns the resultant node.  If there is already a
1835/// node of the specified opcode and operands, it returns that node instead of
1836/// the current one.
1837SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1838                                   MVT::ValueType VT) {
1839  SDVTList VTs = getVTList(VT);
1840  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1841  void *IP = 0;
1842  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1843    return ON;
1844
1845  RemoveNodeFromCSEMaps(N);
1846
1847  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1848  N->setValueTypes(VTs);
1849
1850  CSEMap.InsertNode(N, IP);
1851  return N;
1852}
1853
1854SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1855                                   MVT::ValueType VT, SDOperand Op1) {
1856  // If an identical node already exists, use it.
1857  SDVTList VTs = getVTList(VT);
1858  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1);
1859  void *IP = 0;
1860  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1861    return ON;
1862
1863  RemoveNodeFromCSEMaps(N);
1864  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1865  N->setValueTypes(VTs);
1866  N->setOperands(Op1);
1867  CSEMap.InsertNode(N, IP);
1868  return N;
1869}
1870
1871SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1872                                   MVT::ValueType VT, SDOperand Op1,
1873                                   SDOperand Op2) {
1874  // If an identical node already exists, use it.
1875  SDVTList VTs = getVTList(VT);
1876  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2);
1877  void *IP = 0;
1878  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1879    return ON;
1880
1881  RemoveNodeFromCSEMaps(N);
1882  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1883  N->setValueTypes(VTs);
1884  N->setOperands(Op1, Op2);
1885
1886  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1887  return N;
1888}
1889
1890SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1891                                   MVT::ValueType VT, SDOperand Op1,
1892                                   SDOperand Op2, SDOperand Op3) {
1893  // If an identical node already exists, use it.
1894  SDVTList VTs = getVTList(VT);
1895  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs,
1896                                Op1, Op2, Op3);
1897  void *IP = 0;
1898  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1899    return ON;
1900
1901  RemoveNodeFromCSEMaps(N);
1902  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1903  N->setValueTypes(VTs);
1904  N->setOperands(Op1, Op2, Op3);
1905
1906  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1907  return N;
1908}
1909
1910SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1911                                   MVT::ValueType VT, const SDOperand *Ops,
1912                                   unsigned NumOps) {
1913  // If an identical node already exists, use it.
1914  SDVTList VTs = getVTList(VT);
1915  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1916  for (unsigned i = 0; i != NumOps; ++i)
1917    ID.AddOperand(Ops[i]);
1918  void *IP = 0;
1919  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1920    return ON;
1921
1922  RemoveNodeFromCSEMaps(N);
1923  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1924  N->setValueTypes(VTs);
1925  N->setOperands(Ops, NumOps);
1926
1927  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1928  return N;
1929}
1930
1931SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1932                                   MVT::ValueType VT1, MVT::ValueType VT2,
1933                                   SDOperand Op1, SDOperand Op2) {
1934  SDVTList VTs = getVTList(VT1, VT2);
1935  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2);
1936  void *IP = 0;
1937  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1938    return ON;
1939
1940  RemoveNodeFromCSEMaps(N);
1941  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1942  N->setValueTypes(VTs);
1943  N->setOperands(Op1, Op2);
1944
1945  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1946  return N;
1947}
1948
1949SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1950                                   MVT::ValueType VT1, MVT::ValueType VT2,
1951                                   SDOperand Op1, SDOperand Op2,
1952                                   SDOperand Op3) {
1953  // If an identical node already exists, use it.
1954  SDVTList VTs = getVTList(VT1, VT2);
1955  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs,
1956                                Op1, Op2, Op3);
1957  void *IP = 0;
1958  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1959    return ON;
1960
1961  RemoveNodeFromCSEMaps(N);
1962  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1963  N->setValueTypes(VTs);
1964  N->setOperands(Op1, Op2, Op3);
1965
1966  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1967  return N;
1968}
1969
1970
1971/// getTargetNode - These are used for target selectors to create a new node
1972/// with specified return type(s), target opcode, and operands.
1973///
1974/// Note that getTargetNode returns the resultant node.  If there is already a
1975/// node of the specified opcode and operands, it returns that node instead of
1976/// the current one.
1977SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
1978  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
1979}
1980SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
1981                                    SDOperand Op1) {
1982  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
1983}
1984SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
1985                                    SDOperand Op1, SDOperand Op2) {
1986  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
1987}
1988SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
1989                                    SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1990  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
1991}
1992SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
1993                                    const SDOperand *Ops, unsigned NumOps) {
1994  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
1995}
1996SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
1997                                    MVT::ValueType VT2, SDOperand Op1) {
1998  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
1999  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2000}
2001SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2002                                    MVT::ValueType VT2, SDOperand Op1,
2003                                    SDOperand Op2) {
2004  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2005  SDOperand Ops[] = { Op1, Op2 };
2006  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2007}
2008SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2009                                    MVT::ValueType VT2, SDOperand Op1,
2010                                    SDOperand Op2, SDOperand Op3) {
2011  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2012  SDOperand Ops[] = { Op1, Op2, Op3 };
2013  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2014}
2015SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2016                                    MVT::ValueType VT2,
2017                                    const SDOperand *Ops, unsigned NumOps) {
2018  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2019  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2020}
2021SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2022                                    MVT::ValueType VT2, MVT::ValueType VT3,
2023                                    SDOperand Op1, SDOperand Op2) {
2024  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2025  SDOperand Ops[] = { Op1, Op2 };
2026  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
2027}
2028SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2029                                    MVT::ValueType VT2, MVT::ValueType VT3,
2030                                    const SDOperand *Ops, unsigned NumOps) {
2031  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2032  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
2033}
2034
2035/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2036/// This can cause recursive merging of nodes in the DAG.
2037///
2038/// This version assumes From/To have a single result value.
2039///
2040void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2041                                      std::vector<SDNode*> *Deleted) {
2042  SDNode *From = FromN.Val, *To = ToN.Val;
2043  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2044         "Cannot replace with this method!");
2045  assert(From != To && "Cannot replace uses of with self");
2046
2047  while (!From->use_empty()) {
2048    // Process users until they are all gone.
2049    SDNode *U = *From->use_begin();
2050
2051    // This node is about to morph, remove its old self from the CSE maps.
2052    RemoveNodeFromCSEMaps(U);
2053
2054    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2055         I != E; ++I)
2056      if (I->Val == From) {
2057        From->removeUser(U);
2058        I->Val = To;
2059        To->addUser(U);
2060      }
2061
2062    // Now that we have modified U, add it back to the CSE maps.  If it already
2063    // exists there, recursively merge the results together.
2064    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2065      ReplaceAllUsesWith(U, Existing, Deleted);
2066      // U is now dead.
2067      if (Deleted) Deleted->push_back(U);
2068      DeleteNodeNotInCSEMaps(U);
2069    }
2070  }
2071}
2072
2073/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2074/// This can cause recursive merging of nodes in the DAG.
2075///
2076/// This version assumes From/To have matching types and numbers of result
2077/// values.
2078///
2079void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2080                                      std::vector<SDNode*> *Deleted) {
2081  assert(From != To && "Cannot replace uses of with self");
2082  assert(From->getNumValues() == To->getNumValues() &&
2083         "Cannot use this version of ReplaceAllUsesWith!");
2084  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2085    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2086    return;
2087  }
2088
2089  while (!From->use_empty()) {
2090    // Process users until they are all gone.
2091    SDNode *U = *From->use_begin();
2092
2093    // This node is about to morph, remove its old self from the CSE maps.
2094    RemoveNodeFromCSEMaps(U);
2095
2096    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2097         I != E; ++I)
2098      if (I->Val == From) {
2099        From->removeUser(U);
2100        I->Val = To;
2101        To->addUser(U);
2102      }
2103
2104    // Now that we have modified U, add it back to the CSE maps.  If it already
2105    // exists there, recursively merge the results together.
2106    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2107      ReplaceAllUsesWith(U, Existing, Deleted);
2108      // U is now dead.
2109      if (Deleted) Deleted->push_back(U);
2110      DeleteNodeNotInCSEMaps(U);
2111    }
2112  }
2113}
2114
2115/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2116/// This can cause recursive merging of nodes in the DAG.
2117///
2118/// This version can replace From with any result values.  To must match the
2119/// number and types of values returned by From.
2120void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2121                                      const SDOperand *To,
2122                                      std::vector<SDNode*> *Deleted) {
2123  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
2124    // Degenerate case handled above.
2125    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2126    return;
2127  }
2128
2129  while (!From->use_empty()) {
2130    // Process users until they are all gone.
2131    SDNode *U = *From->use_begin();
2132
2133    // This node is about to morph, remove its old self from the CSE maps.
2134    RemoveNodeFromCSEMaps(U);
2135
2136    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2137         I != E; ++I)
2138      if (I->Val == From) {
2139        const SDOperand &ToOp = To[I->ResNo];
2140        From->removeUser(U);
2141        *I = ToOp;
2142        ToOp.Val->addUser(U);
2143      }
2144
2145    // Now that we have modified U, add it back to the CSE maps.  If it already
2146    // exists there, recursively merge the results together.
2147    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2148      ReplaceAllUsesWith(U, Existing, Deleted);
2149      // U is now dead.
2150      if (Deleted) Deleted->push_back(U);
2151      DeleteNodeNotInCSEMaps(U);
2152    }
2153  }
2154}
2155
2156/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2157/// uses of other values produced by From.Val alone.  The Deleted vector is
2158/// handled the same was as for ReplaceAllUsesWith.
2159void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2160                                             std::vector<SDNode*> &Deleted) {
2161  assert(From != To && "Cannot replace a value with itself");
2162  // Handle the simple, trivial, case efficiently.
2163  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2164    ReplaceAllUsesWith(From, To, &Deleted);
2165    return;
2166  }
2167
2168  // Get all of the users in a nice, deterministically ordered, uniqued set.
2169  SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end());
2170
2171  while (!Users.empty()) {
2172    // We know that this user uses some value of From.  If it is the right
2173    // value, update it.
2174    SDNode *User = Users.back();
2175    Users.pop_back();
2176
2177    for (SDOperand *Op = User->OperandList,
2178         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2179      if (*Op == From) {
2180        // Okay, we know this user needs to be updated.  Remove its old self
2181        // from the CSE maps.
2182        RemoveNodeFromCSEMaps(User);
2183
2184        // Update all operands that match "From".
2185        for (; Op != E; ++Op) {
2186          if (*Op == From) {
2187            From.Val->removeUser(User);
2188            *Op = To;
2189            To.Val->addUser(User);
2190          }
2191        }
2192
2193        // Now that we have modified User, add it back to the CSE maps.  If it
2194        // already exists there, recursively merge the results together.
2195        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2196          unsigned NumDeleted = Deleted.size();
2197          ReplaceAllUsesWith(User, Existing, &Deleted);
2198
2199          // User is now dead.
2200          Deleted.push_back(User);
2201          DeleteNodeNotInCSEMaps(User);
2202
2203          // We have to be careful here, because ReplaceAllUsesWith could have
2204          // deleted a user of From, which means there may be dangling pointers
2205          // in the "Users" setvector.  Scan over the deleted node pointers and
2206          // remove them from the setvector.
2207          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2208            Users.remove(Deleted[i]);
2209        }
2210        break;   // Exit the operand scanning loop.
2211      }
2212    }
2213  }
2214}
2215
2216
2217/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
2218/// their allnodes order. It returns the maximum id.
2219unsigned SelectionDAG::AssignNodeIds() {
2220  unsigned Id = 0;
2221  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
2222    SDNode *N = I;
2223    N->setNodeId(Id++);
2224  }
2225  return Id;
2226}
2227
2228/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
2229/// based on their topological order. It returns the maximum id and a vector
2230/// of the SDNodes* in assigned order by reference.
2231unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
2232  unsigned DAGSize = AllNodes.size();
2233  std::vector<unsigned> InDegree(DAGSize);
2234  std::vector<SDNode*> Sources;
2235
2236  // Use a two pass approach to avoid using a std::map which is slow.
2237  unsigned Id = 0;
2238  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
2239    SDNode *N = I;
2240    N->setNodeId(Id++);
2241    unsigned Degree = N->use_size();
2242    InDegree[N->getNodeId()] = Degree;
2243    if (Degree == 0)
2244      Sources.push_back(N);
2245  }
2246
2247  TopOrder.clear();
2248  while (!Sources.empty()) {
2249    SDNode *N = Sources.back();
2250    Sources.pop_back();
2251    TopOrder.push_back(N);
2252    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
2253      SDNode *P = I->Val;
2254      unsigned Degree = --InDegree[P->getNodeId()];
2255      if (Degree == 0)
2256        Sources.push_back(P);
2257    }
2258  }
2259
2260  // Second pass, assign the actual topological order as node ids.
2261  Id = 0;
2262  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
2263       TI != TE; ++TI)
2264    (*TI)->setNodeId(Id++);
2265
2266  return Id;
2267}
2268
2269
2270
2271//===----------------------------------------------------------------------===//
2272//                              SDNode Class
2273//===----------------------------------------------------------------------===//
2274
2275// Out-of-line virtual method to give class a home.
2276void SDNode::ANCHOR() {
2277}
2278
2279/// getValueTypeList - Return a pointer to the specified value type.
2280///
2281MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2282  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2283  VTs[VT] = VT;
2284  return &VTs[VT];
2285}
2286
2287/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2288/// indicated value.  This method ignores uses of other values defined by this
2289/// operation.
2290bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2291  assert(Value < getNumValues() && "Bad value!");
2292
2293  // If there is only one value, this is easy.
2294  if (getNumValues() == 1)
2295    return use_size() == NUses;
2296  if (Uses.size() < NUses) return false;
2297
2298  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2299
2300  std::set<SDNode*> UsersHandled;
2301
2302  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
2303    SDNode *User = *UI;
2304    if (User->getNumOperands() == 1 ||
2305        UsersHandled.insert(User).second)     // First time we've seen this?
2306      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2307        if (User->getOperand(i) == TheValue) {
2308          if (NUses == 0)
2309            return false;   // too many uses
2310          --NUses;
2311        }
2312  }
2313
2314  // Found exactly the right number of uses?
2315  return NUses == 0;
2316}
2317
2318
2319// isOnlyUse - Return true if this node is the only use of N.
2320bool SDNode::isOnlyUse(SDNode *N) const {
2321  bool Seen = false;
2322  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2323    SDNode *User = *I;
2324    if (User == this)
2325      Seen = true;
2326    else
2327      return false;
2328  }
2329
2330  return Seen;
2331}
2332
2333// isOperand - Return true if this node is an operand of N.
2334bool SDOperand::isOperand(SDNode *N) const {
2335  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2336    if (*this == N->getOperand(i))
2337      return true;
2338  return false;
2339}
2340
2341bool SDNode::isOperand(SDNode *N) const {
2342  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2343    if (this == N->OperandList[i].Val)
2344      return true;
2345  return false;
2346}
2347
2348const char *SDNode::getOperationName(const SelectionDAG *G) const {
2349  switch (getOpcode()) {
2350  default:
2351    if (getOpcode() < ISD::BUILTIN_OP_END)
2352      return "<<Unknown DAG Node>>";
2353    else {
2354      if (G) {
2355        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2356          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2357            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2358
2359        TargetLowering &TLI = G->getTargetLoweringInfo();
2360        const char *Name =
2361          TLI.getTargetNodeName(getOpcode());
2362        if (Name) return Name;
2363      }
2364
2365      return "<<Unknown Target Node>>";
2366    }
2367
2368  case ISD::PCMARKER:      return "PCMarker";
2369  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2370  case ISD::SRCVALUE:      return "SrcValue";
2371  case ISD::EntryToken:    return "EntryToken";
2372  case ISD::TokenFactor:   return "TokenFactor";
2373  case ISD::AssertSext:    return "AssertSext";
2374  case ISD::AssertZext:    return "AssertZext";
2375
2376  case ISD::STRING:        return "String";
2377  case ISD::BasicBlock:    return "BasicBlock";
2378  case ISD::VALUETYPE:     return "ValueType";
2379  case ISD::Register:      return "Register";
2380
2381  case ISD::Constant:      return "Constant";
2382  case ISD::ConstantFP:    return "ConstantFP";
2383  case ISD::GlobalAddress: return "GlobalAddress";
2384  case ISD::FrameIndex:    return "FrameIndex";
2385  case ISD::JumpTable:     return "JumpTable";
2386  case ISD::ConstantPool:  return "ConstantPool";
2387  case ISD::ExternalSymbol: return "ExternalSymbol";
2388  case ISD::INTRINSIC_WO_CHAIN: {
2389    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
2390    return Intrinsic::getName((Intrinsic::ID)IID);
2391  }
2392  case ISD::INTRINSIC_VOID:
2393  case ISD::INTRINSIC_W_CHAIN: {
2394    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
2395    return Intrinsic::getName((Intrinsic::ID)IID);
2396  }
2397
2398  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2399  case ISD::TargetConstant: return "TargetConstant";
2400  case ISD::TargetConstantFP:return "TargetConstantFP";
2401  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2402  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2403  case ISD::TargetJumpTable:  return "TargetJumpTable";
2404  case ISD::TargetConstantPool:  return "TargetConstantPool";
2405  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2406
2407  case ISD::CopyToReg:     return "CopyToReg";
2408  case ISD::CopyFromReg:   return "CopyFromReg";
2409  case ISD::UNDEF:         return "undef";
2410  case ISD::MERGE_VALUES:  return "mergevalues";
2411  case ISD::INLINEASM:     return "inlineasm";
2412  case ISD::HANDLENODE:    return "handlenode";
2413  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
2414  case ISD::CALL:          return "call";
2415
2416  // Unary operators
2417  case ISD::FABS:   return "fabs";
2418  case ISD::FNEG:   return "fneg";
2419  case ISD::FSQRT:  return "fsqrt";
2420  case ISD::FSIN:   return "fsin";
2421  case ISD::FCOS:   return "fcos";
2422
2423  // Binary operators
2424  case ISD::ADD:    return "add";
2425  case ISD::SUB:    return "sub";
2426  case ISD::MUL:    return "mul";
2427  case ISD::MULHU:  return "mulhu";
2428  case ISD::MULHS:  return "mulhs";
2429  case ISD::SDIV:   return "sdiv";
2430  case ISD::UDIV:   return "udiv";
2431  case ISD::SREM:   return "srem";
2432  case ISD::UREM:   return "urem";
2433  case ISD::AND:    return "and";
2434  case ISD::OR:     return "or";
2435  case ISD::XOR:    return "xor";
2436  case ISD::SHL:    return "shl";
2437  case ISD::SRA:    return "sra";
2438  case ISD::SRL:    return "srl";
2439  case ISD::ROTL:   return "rotl";
2440  case ISD::ROTR:   return "rotr";
2441  case ISD::FADD:   return "fadd";
2442  case ISD::FSUB:   return "fsub";
2443  case ISD::FMUL:   return "fmul";
2444  case ISD::FDIV:   return "fdiv";
2445  case ISD::FREM:   return "frem";
2446  case ISD::FCOPYSIGN: return "fcopysign";
2447  case ISD::VADD:   return "vadd";
2448  case ISD::VSUB:   return "vsub";
2449  case ISD::VMUL:   return "vmul";
2450  case ISD::VSDIV:  return "vsdiv";
2451  case ISD::VUDIV:  return "vudiv";
2452  case ISD::VAND:   return "vand";
2453  case ISD::VOR:    return "vor";
2454  case ISD::VXOR:   return "vxor";
2455
2456  case ISD::SETCC:       return "setcc";
2457  case ISD::SELECT:      return "select";
2458  case ISD::SELECT_CC:   return "select_cc";
2459  case ISD::VSELECT:     return "vselect";
2460  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
2461  case ISD::VINSERT_VECTOR_ELT:  return "vinsert_vector_elt";
2462  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
2463  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2464  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
2465  case ISD::VBUILD_VECTOR:       return "vbuild_vector";
2466  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
2467  case ISD::VVECTOR_SHUFFLE:     return "vvector_shuffle";
2468  case ISD::VBIT_CONVERT:        return "vbit_convert";
2469  case ISD::ADDC:        return "addc";
2470  case ISD::ADDE:        return "adde";
2471  case ISD::SUBC:        return "subc";
2472  case ISD::SUBE:        return "sube";
2473  case ISD::SHL_PARTS:   return "shl_parts";
2474  case ISD::SRA_PARTS:   return "sra_parts";
2475  case ISD::SRL_PARTS:   return "srl_parts";
2476
2477  // Conversion operators.
2478  case ISD::SIGN_EXTEND: return "sign_extend";
2479  case ISD::ZERO_EXTEND: return "zero_extend";
2480  case ISD::ANY_EXTEND:  return "any_extend";
2481  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2482  case ISD::TRUNCATE:    return "truncate";
2483  case ISD::FP_ROUND:    return "fp_round";
2484  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2485  case ISD::FP_EXTEND:   return "fp_extend";
2486
2487  case ISD::SINT_TO_FP:  return "sint_to_fp";
2488  case ISD::UINT_TO_FP:  return "uint_to_fp";
2489  case ISD::FP_TO_SINT:  return "fp_to_sint";
2490  case ISD::FP_TO_UINT:  return "fp_to_uint";
2491  case ISD::BIT_CONVERT: return "bit_convert";
2492
2493    // Control flow instructions
2494  case ISD::BR:      return "br";
2495  case ISD::BRIND:   return "brind";
2496  case ISD::BRCOND:  return "brcond";
2497  case ISD::BR_CC:   return "br_cc";
2498  case ISD::RET:     return "ret";
2499  case ISD::CALLSEQ_START:  return "callseq_start";
2500  case ISD::CALLSEQ_END:    return "callseq_end";
2501
2502    // Other operators
2503  case ISD::LOAD:               return "load";
2504  case ISD::STORE:              return "store";
2505  case ISD::VLOAD:              return "vload";
2506  case ISD::EXTLOAD:            return "extload";
2507  case ISD::SEXTLOAD:           return "sextload";
2508  case ISD::ZEXTLOAD:           return "zextload";
2509  case ISD::TRUNCSTORE:         return "truncstore";
2510  case ISD::VAARG:              return "vaarg";
2511  case ISD::VACOPY:             return "vacopy";
2512  case ISD::VAEND:              return "vaend";
2513  case ISD::VASTART:            return "vastart";
2514  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2515  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2516  case ISD::BUILD_PAIR:         return "build_pair";
2517  case ISD::STACKSAVE:          return "stacksave";
2518  case ISD::STACKRESTORE:       return "stackrestore";
2519
2520  // Block memory operations.
2521  case ISD::MEMSET:  return "memset";
2522  case ISD::MEMCPY:  return "memcpy";
2523  case ISD::MEMMOVE: return "memmove";
2524
2525  // Bit manipulation
2526  case ISD::BSWAP:   return "bswap";
2527  case ISD::CTPOP:   return "ctpop";
2528  case ISD::CTTZ:    return "cttz";
2529  case ISD::CTLZ:    return "ctlz";
2530
2531  // Debug info
2532  case ISD::LOCATION: return "location";
2533  case ISD::DEBUG_LOC: return "debug_loc";
2534  case ISD::DEBUG_LABEL: return "debug_label";
2535
2536  case ISD::CONDCODE:
2537    switch (cast<CondCodeSDNode>(this)->get()) {
2538    default: assert(0 && "Unknown setcc condition!");
2539    case ISD::SETOEQ:  return "setoeq";
2540    case ISD::SETOGT:  return "setogt";
2541    case ISD::SETOGE:  return "setoge";
2542    case ISD::SETOLT:  return "setolt";
2543    case ISD::SETOLE:  return "setole";
2544    case ISD::SETONE:  return "setone";
2545
2546    case ISD::SETO:    return "seto";
2547    case ISD::SETUO:   return "setuo";
2548    case ISD::SETUEQ:  return "setue";
2549    case ISD::SETUGT:  return "setugt";
2550    case ISD::SETUGE:  return "setuge";
2551    case ISD::SETULT:  return "setult";
2552    case ISD::SETULE:  return "setule";
2553    case ISD::SETUNE:  return "setune";
2554
2555    case ISD::SETEQ:   return "seteq";
2556    case ISD::SETGT:   return "setgt";
2557    case ISD::SETGE:   return "setge";
2558    case ISD::SETLT:   return "setlt";
2559    case ISD::SETLE:   return "setle";
2560    case ISD::SETNE:   return "setne";
2561    }
2562  }
2563}
2564
2565void SDNode::dump() const { dump(0); }
2566void SDNode::dump(const SelectionDAG *G) const {
2567  std::cerr << (void*)this << ": ";
2568
2569  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2570    if (i) std::cerr << ",";
2571    if (getValueType(i) == MVT::Other)
2572      std::cerr << "ch";
2573    else
2574      std::cerr << MVT::getValueTypeString(getValueType(i));
2575  }
2576  std::cerr << " = " << getOperationName(G);
2577
2578  std::cerr << " ";
2579  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2580    if (i) std::cerr << ", ";
2581    std::cerr << (void*)getOperand(i).Val;
2582    if (unsigned RN = getOperand(i).ResNo)
2583      std::cerr << ":" << RN;
2584  }
2585
2586  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2587    std::cerr << "<" << CSDN->getValue() << ">";
2588  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2589    std::cerr << "<" << CSDN->getValue() << ">";
2590  } else if (const GlobalAddressSDNode *GADN =
2591             dyn_cast<GlobalAddressSDNode>(this)) {
2592    int offset = GADN->getOffset();
2593    std::cerr << "<";
2594    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2595    if (offset > 0)
2596      std::cerr << " + " << offset;
2597    else
2598      std::cerr << " " << offset;
2599  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2600    std::cerr << "<" << FIDN->getIndex() << ">";
2601  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2602    int offset = CP->getOffset();
2603    std::cerr << "<" << *CP->get() << ">";
2604    if (offset > 0)
2605      std::cerr << " + " << offset;
2606    else
2607      std::cerr << " " << offset;
2608  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2609    std::cerr << "<";
2610    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2611    if (LBB)
2612      std::cerr << LBB->getName() << " ";
2613    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2614  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2615    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2616      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2617    } else {
2618      std::cerr << " #" << R->getReg();
2619    }
2620  } else if (const ExternalSymbolSDNode *ES =
2621             dyn_cast<ExternalSymbolSDNode>(this)) {
2622    std::cerr << "'" << ES->getSymbol() << "'";
2623  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2624    if (M->getValue())
2625      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2626    else
2627      std::cerr << "<null:" << M->getOffset() << ">";
2628  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2629    std::cerr << ":" << getValueTypeString(N->getVT());
2630  }
2631}
2632
2633static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2634  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2635    if (N->getOperand(i).Val->hasOneUse())
2636      DumpNodes(N->getOperand(i).Val, indent+2, G);
2637    else
2638      std::cerr << "\n" << std::string(indent+2, ' ')
2639                << (void*)N->getOperand(i).Val << ": <multiple use>";
2640
2641
2642  std::cerr << "\n" << std::string(indent, ' ');
2643  N->dump(G);
2644}
2645
2646void SelectionDAG::dump() const {
2647  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2648  std::vector<const SDNode*> Nodes;
2649  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2650       I != E; ++I)
2651    Nodes.push_back(I);
2652
2653  std::sort(Nodes.begin(), Nodes.end());
2654
2655  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2656    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2657      DumpNodes(Nodes[i], 2, this);
2658  }
2659
2660  DumpNodes(getRoot().Val, 2, this);
2661
2662  std::cerr << "\n\n";
2663}
2664
2665