SelectionDAG.cpp revision 6b378618273bab1ee64c5034f4fd8e8338b7110f
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetSelectionDAGInfo.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetIntrinsicInfo.h"
40#include "llvm/Target/TargetMachine.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/ManagedStatic.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/System/Mutex.h"
48#include "llvm/ADT/SetVector.h"
49#include "llvm/ADT/SmallPtrSet.h"
50#include "llvm/ADT/SmallSet.h"
51#include "llvm/ADT/SmallVector.h"
52#include "llvm/ADT/StringExtras.h"
53#include <algorithm>
54#include <cmath>
55using namespace llvm;
56
57/// makeVTList - Return an instance of the SDVTList struct initialized with the
58/// specified members.
59static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
60  SDVTList Res = {VTs, NumVTs};
61  return Res;
62}
63
64static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
65  switch (VT.getSimpleVT().SimpleTy) {
66  default: llvm_unreachable("Unknown FP format");
67  case MVT::f32:     return &APFloat::IEEEsingle;
68  case MVT::f64:     return &APFloat::IEEEdouble;
69  case MVT::f80:     return &APFloat::x87DoubleExtended;
70  case MVT::f128:    return &APFloat::IEEEquad;
71  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
72  }
73}
74
75SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
76
77//===----------------------------------------------------------------------===//
78//                              ConstantFPSDNode Class
79//===----------------------------------------------------------------------===//
80
81/// isExactlyValue - We don't rely on operator== working on double values, as
82/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
83/// As such, this method can be used to do an exact bit-for-bit comparison of
84/// two floating point values.
85bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
86  return getValueAPF().bitwiseIsEqual(V);
87}
88
89bool ConstantFPSDNode::isValueValidForType(EVT VT,
90                                           const APFloat& Val) {
91  assert(VT.isFloatingPoint() && "Can only convert between FP types");
92
93  // PPC long double cannot be converted to any other type.
94  if (VT == MVT::ppcf128 ||
95      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
96    return false;
97
98  // convert modifies in place, so make a copy.
99  APFloat Val2 = APFloat(Val);
100  bool losesInfo;
101  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
102                      &losesInfo);
103  return !losesInfo;
104}
105
106//===----------------------------------------------------------------------===//
107//                              ISD Namespace
108//===----------------------------------------------------------------------===//
109
110/// isBuildVectorAllOnes - Return true if the specified node is a
111/// BUILD_VECTOR where all of the elements are ~0 or undef.
112bool ISD::isBuildVectorAllOnes(const SDNode *N) {
113  // Look through a bit convert.
114  if (N->getOpcode() == ISD::BIT_CONVERT)
115    N = N->getOperand(0).getNode();
116
117  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118
119  unsigned i = 0, e = N->getNumOperands();
120
121  // Skip over all of the undef values.
122  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
123    ++i;
124
125  // Do not accept an all-undef vector.
126  if (i == e) return false;
127
128  // Do not accept build_vectors that aren't all constants or which have non-~0
129  // elements.
130  SDValue NotZero = N->getOperand(i);
131  if (isa<ConstantSDNode>(NotZero)) {
132    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
133      return false;
134  } else if (isa<ConstantFPSDNode>(NotZero)) {
135    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
136                bitcastToAPInt().isAllOnesValue())
137      return false;
138  } else
139    return false;
140
141  // Okay, we have at least one ~0 value, check to see if the rest match or are
142  // undefs.
143  for (++i; i != e; ++i)
144    if (N->getOperand(i) != NotZero &&
145        N->getOperand(i).getOpcode() != ISD::UNDEF)
146      return false;
147  return true;
148}
149
150
151/// isBuildVectorAllZeros - Return true if the specified node is a
152/// BUILD_VECTOR where all of the elements are 0 or undef.
153bool ISD::isBuildVectorAllZeros(const SDNode *N) {
154  // Look through a bit convert.
155  if (N->getOpcode() == ISD::BIT_CONVERT)
156    N = N->getOperand(0).getNode();
157
158  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
159
160  unsigned i = 0, e = N->getNumOperands();
161
162  // Skip over all of the undef values.
163  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
164    ++i;
165
166  // Do not accept an all-undef vector.
167  if (i == e) return false;
168
169  // Do not accept build_vectors that aren't all constants or which have non-0
170  // elements.
171  SDValue Zero = N->getOperand(i);
172  if (isa<ConstantSDNode>(Zero)) {
173    if (!cast<ConstantSDNode>(Zero)->isNullValue())
174      return false;
175  } else if (isa<ConstantFPSDNode>(Zero)) {
176    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
177      return false;
178  } else
179    return false;
180
181  // Okay, we have at least one 0 value, check to see if the rest match or are
182  // undefs.
183  for (++i; i != e; ++i)
184    if (N->getOperand(i) != Zero &&
185        N->getOperand(i).getOpcode() != ISD::UNDEF)
186      return false;
187  return true;
188}
189
190/// isScalarToVector - Return true if the specified node is a
191/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
192/// element is not an undef.
193bool ISD::isScalarToVector(const SDNode *N) {
194  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
195    return true;
196
197  if (N->getOpcode() != ISD::BUILD_VECTOR)
198    return false;
199  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
200    return false;
201  unsigned NumElems = N->getNumOperands();
202  for (unsigned i = 1; i < NumElems; ++i) {
203    SDValue V = N->getOperand(i);
204    if (V.getOpcode() != ISD::UNDEF)
205      return false;
206  }
207  return true;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: llvm_unreachable("Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309//===----------------------------------------------------------------------===//
310//                           SDNode Profile Support
311//===----------------------------------------------------------------------===//
312
313/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
314///
315static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
316  ID.AddInteger(OpC);
317}
318
319/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
320/// solely with their pointer.
321static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
322  ID.AddPointer(VTList.VTs);
323}
324
325/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
326///
327static void AddNodeIDOperands(FoldingSetNodeID &ID,
328                              const SDValue *Ops, unsigned NumOps) {
329  for (; NumOps; --NumOps, ++Ops) {
330    ID.AddPointer(Ops->getNode());
331    ID.AddInteger(Ops->getResNo());
332  }
333}
334
335/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
336///
337static void AddNodeIDOperands(FoldingSetNodeID &ID,
338                              const SDUse *Ops, unsigned NumOps) {
339  for (; NumOps; --NumOps, ++Ops) {
340    ID.AddPointer(Ops->getNode());
341    ID.AddInteger(Ops->getResNo());
342  }
343}
344
345static void AddNodeIDNode(FoldingSetNodeID &ID,
346                          unsigned short OpC, SDVTList VTList,
347                          const SDValue *OpList, unsigned N) {
348  AddNodeIDOpcode(ID, OpC);
349  AddNodeIDValueTypes(ID, VTList);
350  AddNodeIDOperands(ID, OpList, N);
351}
352
353/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
354/// the NodeID data.
355static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
356  switch (N->getOpcode()) {
357  case ISD::TargetExternalSymbol:
358  case ISD::ExternalSymbol:
359    llvm_unreachable("Should only be used on nodes with operands");
360  default: break;  // Normal nodes don't need extra info.
361  case ISD::TargetConstant:
362  case ISD::Constant:
363    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
364    break;
365  case ISD::TargetConstantFP:
366  case ISD::ConstantFP: {
367    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
368    break;
369  }
370  case ISD::TargetGlobalAddress:
371  case ISD::GlobalAddress:
372  case ISD::TargetGlobalTLSAddress:
373  case ISD::GlobalTLSAddress: {
374    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
375    ID.AddPointer(GA->getGlobal());
376    ID.AddInteger(GA->getOffset());
377    ID.AddInteger(GA->getTargetFlags());
378    break;
379  }
380  case ISD::BasicBlock:
381    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
382    break;
383  case ISD::Register:
384    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
385    break;
386
387  case ISD::SRCVALUE:
388    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
389    break;
390  case ISD::FrameIndex:
391  case ISD::TargetFrameIndex:
392    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
393    break;
394  case ISD::JumpTable:
395  case ISD::TargetJumpTable:
396    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
398    break;
399  case ISD::ConstantPool:
400  case ISD::TargetConstantPool: {
401    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
402    ID.AddInteger(CP->getAlignment());
403    ID.AddInteger(CP->getOffset());
404    if (CP->isMachineConstantPoolEntry())
405      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
406    else
407      ID.AddPointer(CP->getConstVal());
408    ID.AddInteger(CP->getTargetFlags());
409    break;
410  }
411  case ISD::LOAD: {
412    const LoadSDNode *LD = cast<LoadSDNode>(N);
413    ID.AddInteger(LD->getMemoryVT().getRawBits());
414    ID.AddInteger(LD->getRawSubclassData());
415    break;
416  }
417  case ISD::STORE: {
418    const StoreSDNode *ST = cast<StoreSDNode>(N);
419    ID.AddInteger(ST->getMemoryVT().getRawBits());
420    ID.AddInteger(ST->getRawSubclassData());
421    break;
422  }
423  case ISD::ATOMIC_CMP_SWAP:
424  case ISD::ATOMIC_SWAP:
425  case ISD::ATOMIC_LOAD_ADD:
426  case ISD::ATOMIC_LOAD_SUB:
427  case ISD::ATOMIC_LOAD_AND:
428  case ISD::ATOMIC_LOAD_OR:
429  case ISD::ATOMIC_LOAD_XOR:
430  case ISD::ATOMIC_LOAD_NAND:
431  case ISD::ATOMIC_LOAD_MIN:
432  case ISD::ATOMIC_LOAD_MAX:
433  case ISD::ATOMIC_LOAD_UMIN:
434  case ISD::ATOMIC_LOAD_UMAX: {
435    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
436    ID.AddInteger(AT->getMemoryVT().getRawBits());
437    ID.AddInteger(AT->getRawSubclassData());
438    break;
439  }
440  case ISD::VECTOR_SHUFFLE: {
441    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
442    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
443         i != e; ++i)
444      ID.AddInteger(SVN->getMaskElt(i));
445    break;
446  }
447  case ISD::TargetBlockAddress:
448  case ISD::BlockAddress: {
449    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
450    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
451    break;
452  }
453  } // end switch (N->getOpcode())
454}
455
456/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
457/// data.
458static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
459  AddNodeIDOpcode(ID, N->getOpcode());
460  // Add the return value info.
461  AddNodeIDValueTypes(ID, N->getVTList());
462  // Add the operand info.
463  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
464
465  // Handle SDNode leafs with special info.
466  AddNodeIDCustom(ID, N);
467}
468
469/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
470/// the CSE map that carries volatility, temporalness, indexing mode, and
471/// extension/truncation information.
472///
473static inline unsigned
474encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
475                     bool isNonTemporal) {
476  assert((ConvType & 3) == ConvType &&
477         "ConvType may not require more than 2 bits!");
478  assert((AM & 7) == AM &&
479         "AM may not require more than 3 bits!");
480  return ConvType |
481         (AM << 2) |
482         (isVolatile << 5) |
483         (isNonTemporal << 6);
484}
485
486//===----------------------------------------------------------------------===//
487//                              SelectionDAG Class
488//===----------------------------------------------------------------------===//
489
490/// doNotCSE - Return true if CSE should not be performed for this node.
491static bool doNotCSE(SDNode *N) {
492  if (N->getValueType(0) == MVT::Flag)
493    return true; // Never CSE anything that produces a flag.
494
495  switch (N->getOpcode()) {
496  default: break;
497  case ISD::HANDLENODE:
498  case ISD::EH_LABEL:
499    return true;   // Never CSE these nodes.
500  }
501
502  // Check that remaining values produced are not flags.
503  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
504    if (N->getValueType(i) == MVT::Flag)
505      return true; // Never CSE anything that produces a flag.
506
507  return false;
508}
509
510/// RemoveDeadNodes - This method deletes all unreachable nodes in the
511/// SelectionDAG.
512void SelectionDAG::RemoveDeadNodes() {
513  // Create a dummy node (which is not added to allnodes), that adds a reference
514  // to the root node, preventing it from being deleted.
515  HandleSDNode Dummy(getRoot());
516
517  SmallVector<SDNode*, 128> DeadNodes;
518
519  // Add all obviously-dead nodes to the DeadNodes worklist.
520  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
521    if (I->use_empty())
522      DeadNodes.push_back(I);
523
524  RemoveDeadNodes(DeadNodes);
525
526  // If the root changed (e.g. it was a dead load, update the root).
527  setRoot(Dummy.getValue());
528}
529
530/// RemoveDeadNodes - This method deletes the unreachable nodes in the
531/// given list, and any nodes that become unreachable as a result.
532void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
533                                   DAGUpdateListener *UpdateListener) {
534
535  // Process the worklist, deleting the nodes and adding their uses to the
536  // worklist.
537  while (!DeadNodes.empty()) {
538    SDNode *N = DeadNodes.pop_back_val();
539
540    if (UpdateListener)
541      UpdateListener->NodeDeleted(N, 0);
542
543    // Take the node out of the appropriate CSE map.
544    RemoveNodeFromCSEMaps(N);
545
546    // Next, brutally remove the operand list.  This is safe to do, as there are
547    // no cycles in the graph.
548    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
549      SDUse &Use = *I++;
550      SDNode *Operand = Use.getNode();
551      Use.set(SDValue());
552
553      // Now that we removed this operand, see if there are no uses of it left.
554      if (Operand->use_empty())
555        DeadNodes.push_back(Operand);
556    }
557
558    DeallocateNode(N);
559  }
560}
561
562void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
563  SmallVector<SDNode*, 16> DeadNodes(1, N);
564  RemoveDeadNodes(DeadNodes, UpdateListener);
565}
566
567void SelectionDAG::DeleteNode(SDNode *N) {
568  // First take this out of the appropriate CSE map.
569  RemoveNodeFromCSEMaps(N);
570
571  // Finally, remove uses due to operands of this node, remove from the
572  // AllNodes list, and delete the node.
573  DeleteNodeNotInCSEMaps(N);
574}
575
576void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
577  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
578  assert(N->use_empty() && "Cannot delete a node that is not dead!");
579
580  // Drop all of the operands and decrement used node's use counts.
581  N->DropOperands();
582
583  DeallocateNode(N);
584}
585
586void SelectionDAG::DeallocateNode(SDNode *N) {
587  if (N->OperandsNeedDelete)
588    delete[] N->OperandList;
589
590  // Set the opcode to DELETED_NODE to help catch bugs when node
591  // memory is reallocated.
592  N->NodeType = ISD::DELETED_NODE;
593
594  NodeAllocator.Deallocate(AllNodes.remove(N));
595
596  // Remove the ordering of this node.
597  Ordering->remove(N);
598
599  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
600  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
601  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
602    DbgVals[i]->setIsInvalidated();
603}
604
605/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
606/// correspond to it.  This is useful when we're about to delete or repurpose
607/// the node.  We don't want future request for structurally identical nodes
608/// to return N anymore.
609bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
610  bool Erased = false;
611  switch (N->getOpcode()) {
612  case ISD::EntryToken:
613    llvm_unreachable("EntryToken should not be in CSEMaps!");
614    return false;
615  case ISD::HANDLENODE: return false;  // noop.
616  case ISD::CONDCODE:
617    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
618           "Cond code doesn't exist!");
619    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
620    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
621    break;
622  case ISD::ExternalSymbol:
623    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624    break;
625  case ISD::TargetExternalSymbol: {
626    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
627    Erased = TargetExternalSymbols.erase(
628               std::pair<std::string,unsigned char>(ESN->getSymbol(),
629                                                    ESN->getTargetFlags()));
630    break;
631  }
632  case ISD::VALUETYPE: {
633    EVT VT = cast<VTSDNode>(N)->getVT();
634    if (VT.isExtended()) {
635      Erased = ExtendedValueTypeNodes.erase(VT);
636    } else {
637      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
638      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
639    }
640    break;
641  }
642  default:
643    // Remove it from the CSE Map.
644    Erased = CSEMap.RemoveNode(N);
645    break;
646  }
647#ifndef NDEBUG
648  // Verify that the node was actually in one of the CSE maps, unless it has a
649  // flag result (which cannot be CSE'd) or is one of the special cases that are
650  // not subject to CSE.
651  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
652      !N->isMachineOpcode() && !doNotCSE(N)) {
653    N->dump(this);
654    dbgs() << "\n";
655    llvm_unreachable("Node is not in map!");
656  }
657#endif
658  return Erased;
659}
660
661/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662/// maps and modified in place. Add it back to the CSE maps, unless an identical
663/// node already exists, in which case transfer all its users to the existing
664/// node. This transfer can potentially trigger recursive merging.
665///
666void
667SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668                                       DAGUpdateListener *UpdateListener) {
669  // For node types that aren't CSE'd, just act as if no identical node
670  // already exists.
671  if (!doNotCSE(N)) {
672    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673    if (Existing != N) {
674      // If there was already an existing matching node, use ReplaceAllUsesWith
675      // to replace the dead one with the existing one.  This can cause
676      // recursive merging of other unrelated nodes down the line.
677      ReplaceAllUsesWith(N, Existing, UpdateListener);
678
679      // N is now dead.  Inform the listener if it exists and delete it.
680      if (UpdateListener)
681        UpdateListener->NodeDeleted(N, Existing);
682      DeleteNodeNotInCSEMaps(N);
683      return;
684    }
685  }
686
687  // If the node doesn't already exist, we updated it.  Inform a listener if
688  // it exists.
689  if (UpdateListener)
690    UpdateListener->NodeUpdated(N);
691}
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698                                           void *&InsertPos) {
699  if (doNotCSE(N))
700    return 0;
701
702  SDValue Ops[] = { Op };
703  FoldingSetNodeID ID;
704  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705  AddNodeIDCustom(ID, N);
706  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707  return Node;
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725  return Node;
726}
727
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                           const SDValue *Ops,unsigned NumOps,
735                                           void *&InsertPos) {
736  if (doNotCSE(N))
737    return 0;
738
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741  AddNodeIDCustom(ID, N);
742  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743  return Node;
744}
745
746/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
747void SelectionDAG::VerifyNode(SDNode *N) {
748  switch (N->getOpcode()) {
749  default:
750    break;
751  case ISD::BUILD_PAIR: {
752    EVT VT = N->getValueType(0);
753    assert(N->getNumValues() == 1 && "Too many results!");
754    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
755           "Wrong return type!");
756    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
757    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
758           "Mismatched operand types!");
759    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
760           "Wrong operand type!");
761    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
762           "Wrong return type size");
763    break;
764  }
765  case ISD::BUILD_VECTOR: {
766    assert(N->getNumValues() == 1 && "Too many results!");
767    assert(N->getValueType(0).isVector() && "Wrong return type!");
768    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
769           "Wrong number of operands!");
770    EVT EltVT = N->getValueType(0).getVectorElementType();
771    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
772      assert((I->getValueType() == EltVT ||
773             (EltVT.isInteger() && I->getValueType().isInteger() &&
774              EltVT.bitsLE(I->getValueType()))) &&
775            "Wrong operand type!");
776    break;
777  }
778  }
779}
780
781/// getEVTAlignment - Compute the default alignment value for the
782/// given type.
783///
784unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
785  const Type *Ty = VT == MVT::iPTR ?
786                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
787                   VT.getTypeForEVT(*getContext());
788
789  return TLI.getTargetData()->getABITypeAlignment(Ty);
790}
791
792// EntryNode could meaningfully have debug info if we can find it...
793SelectionDAG::SelectionDAG(const TargetMachine &tm)
794  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
795    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
796    Root(getEntryNode()), Ordering(0) {
797  AllNodes.push_back(&EntryNode);
798  Ordering = new SDNodeOrdering();
799  DbgInfo = new SDDbgInfo();
800}
801
802void SelectionDAG::init(MachineFunction &mf) {
803  MF = &mf;
804  Context = &mf.getFunction()->getContext();
805}
806
807SelectionDAG::~SelectionDAG() {
808  allnodes_clear();
809  delete Ordering;
810  DbgInfo->clear();
811  delete DbgInfo;
812}
813
814void SelectionDAG::allnodes_clear() {
815  assert(&*AllNodes.begin() == &EntryNode);
816  AllNodes.remove(AllNodes.begin());
817  while (!AllNodes.empty())
818    DeallocateNode(AllNodes.begin());
819}
820
821void SelectionDAG::clear() {
822  allnodes_clear();
823  OperandAllocator.Reset();
824  CSEMap.clear();
825
826  ExtendedValueTypeNodes.clear();
827  ExternalSymbols.clear();
828  TargetExternalSymbols.clear();
829  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
830            static_cast<CondCodeSDNode*>(0));
831  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
832            static_cast<SDNode*>(0));
833
834  EntryNode.UseList = 0;
835  AllNodes.push_back(&EntryNode);
836  Root = getEntryNode();
837  delete Ordering;
838  Ordering = new SDNodeOrdering();
839  DbgInfo->clear();
840  delete DbgInfo;
841  DbgInfo = new SDDbgInfo();
842}
843
844SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
845  return VT.bitsGT(Op.getValueType()) ?
846    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
847    getNode(ISD::TRUNCATE, DL, VT, Op);
848}
849
850SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
851  return VT.bitsGT(Op.getValueType()) ?
852    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
853    getNode(ISD::TRUNCATE, DL, VT, Op);
854}
855
856SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
857  assert(!VT.isVector() &&
858         "getZeroExtendInReg should use the vector element type instead of "
859         "the vector type!");
860  if (Op.getValueType() == VT) return Op;
861  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
862  APInt Imm = APInt::getLowBitsSet(BitWidth,
863                                   VT.getSizeInBits());
864  return getNode(ISD::AND, DL, Op.getValueType(), Op,
865                 getConstant(Imm, Op.getValueType()));
866}
867
868/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
869///
870SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
871  EVT EltVT = VT.getScalarType();
872  SDValue NegOne =
873    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
874  return getNode(ISD::XOR, DL, VT, Val, NegOne);
875}
876
877SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
878  EVT EltVT = VT.getScalarType();
879  assert((EltVT.getSizeInBits() >= 64 ||
880         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
881         "getConstant with a uint64_t value that doesn't fit in the type!");
882  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
883}
884
885SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
886  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
887}
888
889SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
890  assert(VT.isInteger() && "Cannot create FP integer constant!");
891
892  EVT EltVT = VT.getScalarType();
893  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
894         "APInt size does not match type size!");
895
896  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
897  FoldingSetNodeID ID;
898  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
899  ID.AddPointer(&Val);
900  void *IP = 0;
901  SDNode *N = NULL;
902  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
903    if (!VT.isVector())
904      return SDValue(N, 0);
905
906  if (!N) {
907    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
908    CSEMap.InsertNode(N, IP);
909    AllNodes.push_back(N);
910  }
911
912  SDValue Result(N, 0);
913  if (VT.isVector()) {
914    SmallVector<SDValue, 8> Ops;
915    Ops.assign(VT.getVectorNumElements(), Result);
916    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
917  }
918  return Result;
919}
920
921SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
922  return getConstant(Val, TLI.getPointerTy(), isTarget);
923}
924
925
926SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
927  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
928}
929
930SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
931  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
932
933  EVT EltVT = VT.getScalarType();
934
935  // Do the map lookup using the actual bit pattern for the floating point
936  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
937  // we don't have issues with SNANs.
938  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
939  FoldingSetNodeID ID;
940  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
941  ID.AddPointer(&V);
942  void *IP = 0;
943  SDNode *N = NULL;
944  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
945    if (!VT.isVector())
946      return SDValue(N, 0);
947
948  if (!N) {
949    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
950    CSEMap.InsertNode(N, IP);
951    AllNodes.push_back(N);
952  }
953
954  SDValue Result(N, 0);
955  if (VT.isVector()) {
956    SmallVector<SDValue, 8> Ops;
957    Ops.assign(VT.getVectorNumElements(), Result);
958    // FIXME DebugLoc info might be appropriate here
959    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
960  }
961  return Result;
962}
963
964SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
965  EVT EltVT = VT.getScalarType();
966  if (EltVT==MVT::f32)
967    return getConstantFP(APFloat((float)Val), VT, isTarget);
968  else if (EltVT==MVT::f64)
969    return getConstantFP(APFloat(Val), VT, isTarget);
970  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
971    bool ignored;
972    APFloat apf = APFloat(Val);
973    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
974                &ignored);
975    return getConstantFP(apf, VT, isTarget);
976  } else {
977    assert(0 && "Unsupported type in getConstantFP");
978    return SDValue();
979  }
980}
981
982SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
983                                       EVT VT, int64_t Offset,
984                                       bool isTargetGA,
985                                       unsigned char TargetFlags) {
986  assert((TargetFlags == 0 || isTargetGA) &&
987         "Cannot set target flags on target-independent globals");
988
989  // Truncate (with sign-extension) the offset value to the pointer size.
990  EVT PTy = TLI.getPointerTy();
991  unsigned BitWidth = PTy.getSizeInBits();
992  if (BitWidth < 64)
993    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
994
995  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
996  if (!GVar) {
997    // If GV is an alias then use the aliasee for determining thread-localness.
998    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
999      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1000  }
1001
1002  unsigned Opc;
1003  if (GVar && GVar->isThreadLocal())
1004    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1005  else
1006    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1007
1008  FoldingSetNodeID ID;
1009  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1010  ID.AddPointer(GV);
1011  ID.AddInteger(Offset);
1012  ID.AddInteger(TargetFlags);
1013  void *IP = 0;
1014  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1015    return SDValue(E, 0);
1016
1017  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1018                                                      Offset, TargetFlags);
1019  CSEMap.InsertNode(N, IP);
1020  AllNodes.push_back(N);
1021  return SDValue(N, 0);
1022}
1023
1024SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1025  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1026  FoldingSetNodeID ID;
1027  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1028  ID.AddInteger(FI);
1029  void *IP = 0;
1030  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1031    return SDValue(E, 0);
1032
1033  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1034  CSEMap.InsertNode(N, IP);
1035  AllNodes.push_back(N);
1036  return SDValue(N, 0);
1037}
1038
1039SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1040                                   unsigned char TargetFlags) {
1041  assert((TargetFlags == 0 || isTarget) &&
1042         "Cannot set target flags on target-independent jump tables");
1043  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1044  FoldingSetNodeID ID;
1045  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1046  ID.AddInteger(JTI);
1047  ID.AddInteger(TargetFlags);
1048  void *IP = 0;
1049  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1050    return SDValue(E, 0);
1051
1052  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1053                                                  TargetFlags);
1054  CSEMap.InsertNode(N, IP);
1055  AllNodes.push_back(N);
1056  return SDValue(N, 0);
1057}
1058
1059SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1060                                      unsigned Alignment, int Offset,
1061                                      bool isTarget,
1062                                      unsigned char TargetFlags) {
1063  assert((TargetFlags == 0 || isTarget) &&
1064         "Cannot set target flags on target-independent globals");
1065  if (Alignment == 0)
1066    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1067  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1068  FoldingSetNodeID ID;
1069  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1070  ID.AddInteger(Alignment);
1071  ID.AddInteger(Offset);
1072  ID.AddPointer(C);
1073  ID.AddInteger(TargetFlags);
1074  void *IP = 0;
1075  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1076    return SDValue(E, 0);
1077
1078  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1079                                                     Alignment, TargetFlags);
1080  CSEMap.InsertNode(N, IP);
1081  AllNodes.push_back(N);
1082  return SDValue(N, 0);
1083}
1084
1085
1086SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1087                                      unsigned Alignment, int Offset,
1088                                      bool isTarget,
1089                                      unsigned char TargetFlags) {
1090  assert((TargetFlags == 0 || isTarget) &&
1091         "Cannot set target flags on target-independent globals");
1092  if (Alignment == 0)
1093    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1094  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1095  FoldingSetNodeID ID;
1096  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1097  ID.AddInteger(Alignment);
1098  ID.AddInteger(Offset);
1099  C->AddSelectionDAGCSEId(ID);
1100  ID.AddInteger(TargetFlags);
1101  void *IP = 0;
1102  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1103    return SDValue(E, 0);
1104
1105  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1106                                                     Alignment, TargetFlags);
1107  CSEMap.InsertNode(N, IP);
1108  AllNodes.push_back(N);
1109  return SDValue(N, 0);
1110}
1111
1112SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1113  FoldingSetNodeID ID;
1114  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1115  ID.AddPointer(MBB);
1116  void *IP = 0;
1117  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1118    return SDValue(E, 0);
1119
1120  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1121  CSEMap.InsertNode(N, IP);
1122  AllNodes.push_back(N);
1123  return SDValue(N, 0);
1124}
1125
1126SDValue SelectionDAG::getValueType(EVT VT) {
1127  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1128      ValueTypeNodes.size())
1129    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1130
1131  SDNode *&N = VT.isExtended() ?
1132    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1133
1134  if (N) return SDValue(N, 0);
1135  N = new (NodeAllocator) VTSDNode(VT);
1136  AllNodes.push_back(N);
1137  return SDValue(N, 0);
1138}
1139
1140SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1141  SDNode *&N = ExternalSymbols[Sym];
1142  if (N) return SDValue(N, 0);
1143  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1144  AllNodes.push_back(N);
1145  return SDValue(N, 0);
1146}
1147
1148SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1149                                              unsigned char TargetFlags) {
1150  SDNode *&N =
1151    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1152                                                               TargetFlags)];
1153  if (N) return SDValue(N, 0);
1154  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1155  AllNodes.push_back(N);
1156  return SDValue(N, 0);
1157}
1158
1159SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1160  if ((unsigned)Cond >= CondCodeNodes.size())
1161    CondCodeNodes.resize(Cond+1);
1162
1163  if (CondCodeNodes[Cond] == 0) {
1164    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1165    CondCodeNodes[Cond] = N;
1166    AllNodes.push_back(N);
1167  }
1168
1169  return SDValue(CondCodeNodes[Cond], 0);
1170}
1171
1172// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1173// the shuffle mask M that point at N1 to point at N2, and indices that point
1174// N2 to point at N1.
1175static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1176  std::swap(N1, N2);
1177  int NElts = M.size();
1178  for (int i = 0; i != NElts; ++i) {
1179    if (M[i] >= NElts)
1180      M[i] -= NElts;
1181    else if (M[i] >= 0)
1182      M[i] += NElts;
1183  }
1184}
1185
1186SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1187                                       SDValue N2, const int *Mask) {
1188  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1189  assert(VT.isVector() && N1.getValueType().isVector() &&
1190         "Vector Shuffle VTs must be a vectors");
1191  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1192         && "Vector Shuffle VTs must have same element type");
1193
1194  // Canonicalize shuffle undef, undef -> undef
1195  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1196    return getUNDEF(VT);
1197
1198  // Validate that all indices in Mask are within the range of the elements
1199  // input to the shuffle.
1200  unsigned NElts = VT.getVectorNumElements();
1201  SmallVector<int, 8> MaskVec;
1202  for (unsigned i = 0; i != NElts; ++i) {
1203    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1204    MaskVec.push_back(Mask[i]);
1205  }
1206
1207  // Canonicalize shuffle v, v -> v, undef
1208  if (N1 == N2) {
1209    N2 = getUNDEF(VT);
1210    for (unsigned i = 0; i != NElts; ++i)
1211      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1212  }
1213
1214  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1215  if (N1.getOpcode() == ISD::UNDEF)
1216    commuteShuffle(N1, N2, MaskVec);
1217
1218  // Canonicalize all index into lhs, -> shuffle lhs, undef
1219  // Canonicalize all index into rhs, -> shuffle rhs, undef
1220  bool AllLHS = true, AllRHS = true;
1221  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1222  for (unsigned i = 0; i != NElts; ++i) {
1223    if (MaskVec[i] >= (int)NElts) {
1224      if (N2Undef)
1225        MaskVec[i] = -1;
1226      else
1227        AllLHS = false;
1228    } else if (MaskVec[i] >= 0) {
1229      AllRHS = false;
1230    }
1231  }
1232  if (AllLHS && AllRHS)
1233    return getUNDEF(VT);
1234  if (AllLHS && !N2Undef)
1235    N2 = getUNDEF(VT);
1236  if (AllRHS) {
1237    N1 = getUNDEF(VT);
1238    commuteShuffle(N1, N2, MaskVec);
1239  }
1240
1241  // If Identity shuffle, or all shuffle in to undef, return that node.
1242  bool AllUndef = true;
1243  bool Identity = true;
1244  for (unsigned i = 0; i != NElts; ++i) {
1245    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1246    if (MaskVec[i] >= 0) AllUndef = false;
1247  }
1248  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1249    return N1;
1250  if (AllUndef)
1251    return getUNDEF(VT);
1252
1253  FoldingSetNodeID ID;
1254  SDValue Ops[2] = { N1, N2 };
1255  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1256  for (unsigned i = 0; i != NElts; ++i)
1257    ID.AddInteger(MaskVec[i]);
1258
1259  void* IP = 0;
1260  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1261    return SDValue(E, 0);
1262
1263  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1264  // SDNode doesn't have access to it.  This memory will be "leaked" when
1265  // the node is deallocated, but recovered when the NodeAllocator is released.
1266  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1267  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1268
1269  ShuffleVectorSDNode *N =
1270    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1271  CSEMap.InsertNode(N, IP);
1272  AllNodes.push_back(N);
1273  return SDValue(N, 0);
1274}
1275
1276SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1277                                       SDValue Val, SDValue DTy,
1278                                       SDValue STy, SDValue Rnd, SDValue Sat,
1279                                       ISD::CvtCode Code) {
1280  // If the src and dest types are the same and the conversion is between
1281  // integer types of the same sign or two floats, no conversion is necessary.
1282  if (DTy == STy &&
1283      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1284    return Val;
1285
1286  FoldingSetNodeID ID;
1287  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1288  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1289  void* IP = 0;
1290  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1291    return SDValue(E, 0);
1292
1293  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1294                                                           Code);
1295  CSEMap.InsertNode(N, IP);
1296  AllNodes.push_back(N);
1297  return SDValue(N, 0);
1298}
1299
1300SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1301  FoldingSetNodeID ID;
1302  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1303  ID.AddInteger(RegNo);
1304  void *IP = 0;
1305  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1306    return SDValue(E, 0);
1307
1308  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1309  CSEMap.InsertNode(N, IP);
1310  AllNodes.push_back(N);
1311  return SDValue(N, 0);
1312}
1313
1314SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1315  FoldingSetNodeID ID;
1316  SDValue Ops[] = { Root };
1317  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1318  ID.AddPointer(Label);
1319  void *IP = 0;
1320  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1321    return SDValue(E, 0);
1322
1323  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1324  CSEMap.InsertNode(N, IP);
1325  AllNodes.push_back(N);
1326  return SDValue(N, 0);
1327}
1328
1329
1330SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1331                                      bool isTarget,
1332                                      unsigned char TargetFlags) {
1333  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1334
1335  FoldingSetNodeID ID;
1336  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1337  ID.AddPointer(BA);
1338  ID.AddInteger(TargetFlags);
1339  void *IP = 0;
1340  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1341    return SDValue(E, 0);
1342
1343  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1344  CSEMap.InsertNode(N, IP);
1345  AllNodes.push_back(N);
1346  return SDValue(N, 0);
1347}
1348
1349SDValue SelectionDAG::getSrcValue(const Value *V) {
1350  assert((!V || V->getType()->isPointerTy()) &&
1351         "SrcValue is not a pointer?");
1352
1353  FoldingSetNodeID ID;
1354  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1355  ID.AddPointer(V);
1356
1357  void *IP = 0;
1358  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1359    return SDValue(E, 0);
1360
1361  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1362  CSEMap.InsertNode(N, IP);
1363  AllNodes.push_back(N);
1364  return SDValue(N, 0);
1365}
1366
1367/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1368SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1369  FoldingSetNodeID ID;
1370  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1371  ID.AddPointer(MD);
1372
1373  void *IP = 0;
1374  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1375    return SDValue(E, 0);
1376
1377  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1378  CSEMap.InsertNode(N, IP);
1379  AllNodes.push_back(N);
1380  return SDValue(N, 0);
1381}
1382
1383
1384/// getShiftAmountOperand - Return the specified value casted to
1385/// the target's desired shift amount type.
1386SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1387  EVT OpTy = Op.getValueType();
1388  MVT ShTy = TLI.getShiftAmountTy();
1389  if (OpTy == ShTy || OpTy.isVector()) return Op;
1390
1391  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1392  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1393}
1394
1395/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1396/// specified value type.
1397SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1398  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1399  unsigned ByteSize = VT.getStoreSize();
1400  const Type *Ty = VT.getTypeForEVT(*getContext());
1401  unsigned StackAlign =
1402  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1403
1404  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1405  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1406}
1407
1408/// CreateStackTemporary - Create a stack temporary suitable for holding
1409/// either of the specified value types.
1410SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1411  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1412                            VT2.getStoreSizeInBits())/8;
1413  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1414  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1415  const TargetData *TD = TLI.getTargetData();
1416  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1417                            TD->getPrefTypeAlignment(Ty2));
1418
1419  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1420  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1421  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1422}
1423
1424SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1425                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1426  // These setcc operations always fold.
1427  switch (Cond) {
1428  default: break;
1429  case ISD::SETFALSE:
1430  case ISD::SETFALSE2: return getConstant(0, VT);
1431  case ISD::SETTRUE:
1432  case ISD::SETTRUE2:  return getConstant(1, VT);
1433
1434  case ISD::SETOEQ:
1435  case ISD::SETOGT:
1436  case ISD::SETOGE:
1437  case ISD::SETOLT:
1438  case ISD::SETOLE:
1439  case ISD::SETONE:
1440  case ISD::SETO:
1441  case ISD::SETUO:
1442  case ISD::SETUEQ:
1443  case ISD::SETUNE:
1444    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1445    break;
1446  }
1447
1448  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1449    const APInt &C2 = N2C->getAPIntValue();
1450    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1451      const APInt &C1 = N1C->getAPIntValue();
1452
1453      switch (Cond) {
1454      default: llvm_unreachable("Unknown integer setcc!");
1455      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1456      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1457      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1458      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1459      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1460      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1461      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1462      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1463      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1464      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1465      }
1466    }
1467  }
1468  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1469    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1470      // No compile time operations on this type yet.
1471      if (N1C->getValueType(0) == MVT::ppcf128)
1472        return SDValue();
1473
1474      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1475      switch (Cond) {
1476      default: break;
1477      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1478                          return getUNDEF(VT);
1479                        // fall through
1480      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1481      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1482                          return getUNDEF(VT);
1483                        // fall through
1484      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1485                                           R==APFloat::cmpLessThan, VT);
1486      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1487                          return getUNDEF(VT);
1488                        // fall through
1489      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1490      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1491                          return getUNDEF(VT);
1492                        // fall through
1493      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1494      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1495                          return getUNDEF(VT);
1496                        // fall through
1497      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1498                                           R==APFloat::cmpEqual, VT);
1499      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1500                          return getUNDEF(VT);
1501                        // fall through
1502      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1503                                           R==APFloat::cmpEqual, VT);
1504      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1505      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1506      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1507                                           R==APFloat::cmpEqual, VT);
1508      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1509      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1510                                           R==APFloat::cmpLessThan, VT);
1511      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1512                                           R==APFloat::cmpUnordered, VT);
1513      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1514      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1515      }
1516    } else {
1517      // Ensure that the constant occurs on the RHS.
1518      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1519    }
1520  }
1521
1522  // Could not fold it.
1523  return SDValue();
1524}
1525
1526/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1527/// use this predicate to simplify operations downstream.
1528bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1529  // This predicate is not safe for vector operations.
1530  if (Op.getValueType().isVector())
1531    return false;
1532
1533  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1534  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1535}
1536
1537/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1538/// this predicate to simplify operations downstream.  Mask is known to be zero
1539/// for bits that V cannot have.
1540bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1541                                     unsigned Depth) const {
1542  APInt KnownZero, KnownOne;
1543  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1544  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1545  return (KnownZero & Mask) == Mask;
1546}
1547
1548/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1549/// known to be either zero or one and return them in the KnownZero/KnownOne
1550/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1551/// processing.
1552void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1553                                     APInt &KnownZero, APInt &KnownOne,
1554                                     unsigned Depth) const {
1555  unsigned BitWidth = Mask.getBitWidth();
1556  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1557         "Mask size mismatches value type size!");
1558
1559  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1560  if (Depth == 6 || Mask == 0)
1561    return;  // Limit search depth.
1562
1563  APInt KnownZero2, KnownOne2;
1564
1565  switch (Op.getOpcode()) {
1566  case ISD::Constant:
1567    // We know all of the bits for a constant!
1568    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1569    KnownZero = ~KnownOne & Mask;
1570    return;
1571  case ISD::AND:
1572    // If either the LHS or the RHS are Zero, the result is zero.
1573    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1574    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1575                      KnownZero2, KnownOne2, Depth+1);
1576    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1577    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1578
1579    // Output known-1 bits are only known if set in both the LHS & RHS.
1580    KnownOne &= KnownOne2;
1581    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1582    KnownZero |= KnownZero2;
1583    return;
1584  case ISD::OR:
1585    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1586    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1587                      KnownZero2, KnownOne2, Depth+1);
1588    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1589    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1590
1591    // Output known-0 bits are only known if clear in both the LHS & RHS.
1592    KnownZero &= KnownZero2;
1593    // Output known-1 are known to be set if set in either the LHS | RHS.
1594    KnownOne |= KnownOne2;
1595    return;
1596  case ISD::XOR: {
1597    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1598    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1599    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1600    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1601
1602    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1603    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1604    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1605    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1606    KnownZero = KnownZeroOut;
1607    return;
1608  }
1609  case ISD::MUL: {
1610    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1611    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1612    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1613    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1614    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1615
1616    // If low bits are zero in either operand, output low known-0 bits.
1617    // Also compute a conserative estimate for high known-0 bits.
1618    // More trickiness is possible, but this is sufficient for the
1619    // interesting case of alignment computation.
1620    KnownOne.clear();
1621    unsigned TrailZ = KnownZero.countTrailingOnes() +
1622                      KnownZero2.countTrailingOnes();
1623    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1624                               KnownZero2.countLeadingOnes(),
1625                               BitWidth) - BitWidth;
1626
1627    TrailZ = std::min(TrailZ, BitWidth);
1628    LeadZ = std::min(LeadZ, BitWidth);
1629    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1630                APInt::getHighBitsSet(BitWidth, LeadZ);
1631    KnownZero &= Mask;
1632    return;
1633  }
1634  case ISD::UDIV: {
1635    // For the purposes of computing leading zeros we can conservatively
1636    // treat a udiv as a logical right shift by the power of 2 known to
1637    // be less than the denominator.
1638    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1639    ComputeMaskedBits(Op.getOperand(0),
1640                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1641    unsigned LeadZ = KnownZero2.countLeadingOnes();
1642
1643    KnownOne2.clear();
1644    KnownZero2.clear();
1645    ComputeMaskedBits(Op.getOperand(1),
1646                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1647    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1648    if (RHSUnknownLeadingOnes != BitWidth)
1649      LeadZ = std::min(BitWidth,
1650                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1651
1652    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1653    return;
1654  }
1655  case ISD::SELECT:
1656    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1657    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1658    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1659    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1660
1661    // Only known if known in both the LHS and RHS.
1662    KnownOne &= KnownOne2;
1663    KnownZero &= KnownZero2;
1664    return;
1665  case ISD::SELECT_CC:
1666    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1667    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1668    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1669    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1670
1671    // Only known if known in both the LHS and RHS.
1672    KnownOne &= KnownOne2;
1673    KnownZero &= KnownZero2;
1674    return;
1675  case ISD::SADDO:
1676  case ISD::UADDO:
1677  case ISD::SSUBO:
1678  case ISD::USUBO:
1679  case ISD::SMULO:
1680  case ISD::UMULO:
1681    if (Op.getResNo() != 1)
1682      return;
1683    // The boolean result conforms to getBooleanContents.  Fall through.
1684  case ISD::SETCC:
1685    // If we know the result of a setcc has the top bits zero, use this info.
1686    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1687        BitWidth > 1)
1688      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1689    return;
1690  case ISD::SHL:
1691    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1692    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1693      unsigned ShAmt = SA->getZExtValue();
1694
1695      // If the shift count is an invalid immediate, don't do anything.
1696      if (ShAmt >= BitWidth)
1697        return;
1698
1699      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1700                        KnownZero, KnownOne, Depth+1);
1701      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1702      KnownZero <<= ShAmt;
1703      KnownOne  <<= ShAmt;
1704      // low bits known zero.
1705      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1706    }
1707    return;
1708  case ISD::SRL:
1709    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1710    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1711      unsigned ShAmt = SA->getZExtValue();
1712
1713      // If the shift count is an invalid immediate, don't do anything.
1714      if (ShAmt >= BitWidth)
1715        return;
1716
1717      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1718                        KnownZero, KnownOne, Depth+1);
1719      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1720      KnownZero = KnownZero.lshr(ShAmt);
1721      KnownOne  = KnownOne.lshr(ShAmt);
1722
1723      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1724      KnownZero |= HighBits;  // High bits known zero.
1725    }
1726    return;
1727  case ISD::SRA:
1728    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1729      unsigned ShAmt = SA->getZExtValue();
1730
1731      // If the shift count is an invalid immediate, don't do anything.
1732      if (ShAmt >= BitWidth)
1733        return;
1734
1735      APInt InDemandedMask = (Mask << ShAmt);
1736      // If any of the demanded bits are produced by the sign extension, we also
1737      // demand the input sign bit.
1738      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1739      if (HighBits.getBoolValue())
1740        InDemandedMask |= APInt::getSignBit(BitWidth);
1741
1742      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1743                        Depth+1);
1744      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1745      KnownZero = KnownZero.lshr(ShAmt);
1746      KnownOne  = KnownOne.lshr(ShAmt);
1747
1748      // Handle the sign bits.
1749      APInt SignBit = APInt::getSignBit(BitWidth);
1750      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1751
1752      if (KnownZero.intersects(SignBit)) {
1753        KnownZero |= HighBits;  // New bits are known zero.
1754      } else if (KnownOne.intersects(SignBit)) {
1755        KnownOne  |= HighBits;  // New bits are known one.
1756      }
1757    }
1758    return;
1759  case ISD::SIGN_EXTEND_INREG: {
1760    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1761    unsigned EBits = EVT.getScalarType().getSizeInBits();
1762
1763    // Sign extension.  Compute the demanded bits in the result that are not
1764    // present in the input.
1765    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1766
1767    APInt InSignBit = APInt::getSignBit(EBits);
1768    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1769
1770    // If the sign extended bits are demanded, we know that the sign
1771    // bit is demanded.
1772    InSignBit.zext(BitWidth);
1773    if (NewBits.getBoolValue())
1774      InputDemandedBits |= InSignBit;
1775
1776    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1777                      KnownZero, KnownOne, Depth+1);
1778    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1779
1780    // If the sign bit of the input is known set or clear, then we know the
1781    // top bits of the result.
1782    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1783      KnownZero |= NewBits;
1784      KnownOne  &= ~NewBits;
1785    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1786      KnownOne  |= NewBits;
1787      KnownZero &= ~NewBits;
1788    } else {                              // Input sign bit unknown
1789      KnownZero &= ~NewBits;
1790      KnownOne  &= ~NewBits;
1791    }
1792    return;
1793  }
1794  case ISD::CTTZ:
1795  case ISD::CTLZ:
1796  case ISD::CTPOP: {
1797    unsigned LowBits = Log2_32(BitWidth)+1;
1798    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1799    KnownOne.clear();
1800    return;
1801  }
1802  case ISD::LOAD: {
1803    if (ISD::isZEXTLoad(Op.getNode())) {
1804      LoadSDNode *LD = cast<LoadSDNode>(Op);
1805      EVT VT = LD->getMemoryVT();
1806      unsigned MemBits = VT.getScalarType().getSizeInBits();
1807      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1808    }
1809    return;
1810  }
1811  case ISD::ZERO_EXTEND: {
1812    EVT InVT = Op.getOperand(0).getValueType();
1813    unsigned InBits = InVT.getScalarType().getSizeInBits();
1814    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1815    APInt InMask    = Mask;
1816    InMask.trunc(InBits);
1817    KnownZero.trunc(InBits);
1818    KnownOne.trunc(InBits);
1819    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1820    KnownZero.zext(BitWidth);
1821    KnownOne.zext(BitWidth);
1822    KnownZero |= NewBits;
1823    return;
1824  }
1825  case ISD::SIGN_EXTEND: {
1826    EVT InVT = Op.getOperand(0).getValueType();
1827    unsigned InBits = InVT.getScalarType().getSizeInBits();
1828    APInt InSignBit = APInt::getSignBit(InBits);
1829    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1830    APInt InMask = Mask;
1831    InMask.trunc(InBits);
1832
1833    // If any of the sign extended bits are demanded, we know that the sign
1834    // bit is demanded. Temporarily set this bit in the mask for our callee.
1835    if (NewBits.getBoolValue())
1836      InMask |= InSignBit;
1837
1838    KnownZero.trunc(InBits);
1839    KnownOne.trunc(InBits);
1840    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1841
1842    // Note if the sign bit is known to be zero or one.
1843    bool SignBitKnownZero = KnownZero.isNegative();
1844    bool SignBitKnownOne  = KnownOne.isNegative();
1845    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1846           "Sign bit can't be known to be both zero and one!");
1847
1848    // If the sign bit wasn't actually demanded by our caller, we don't
1849    // want it set in the KnownZero and KnownOne result values. Reset the
1850    // mask and reapply it to the result values.
1851    InMask = Mask;
1852    InMask.trunc(InBits);
1853    KnownZero &= InMask;
1854    KnownOne  &= InMask;
1855
1856    KnownZero.zext(BitWidth);
1857    KnownOne.zext(BitWidth);
1858
1859    // If the sign bit is known zero or one, the top bits match.
1860    if (SignBitKnownZero)
1861      KnownZero |= NewBits;
1862    else if (SignBitKnownOne)
1863      KnownOne  |= NewBits;
1864    return;
1865  }
1866  case ISD::ANY_EXTEND: {
1867    EVT InVT = Op.getOperand(0).getValueType();
1868    unsigned InBits = InVT.getScalarType().getSizeInBits();
1869    APInt InMask = Mask;
1870    InMask.trunc(InBits);
1871    KnownZero.trunc(InBits);
1872    KnownOne.trunc(InBits);
1873    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1874    KnownZero.zext(BitWidth);
1875    KnownOne.zext(BitWidth);
1876    return;
1877  }
1878  case ISD::TRUNCATE: {
1879    EVT InVT = Op.getOperand(0).getValueType();
1880    unsigned InBits = InVT.getScalarType().getSizeInBits();
1881    APInt InMask = Mask;
1882    InMask.zext(InBits);
1883    KnownZero.zext(InBits);
1884    KnownOne.zext(InBits);
1885    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1886    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1887    KnownZero.trunc(BitWidth);
1888    KnownOne.trunc(BitWidth);
1889    break;
1890  }
1891  case ISD::AssertZext: {
1892    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1893    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1894    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1895                      KnownOne, Depth+1);
1896    KnownZero |= (~InMask) & Mask;
1897    return;
1898  }
1899  case ISD::FGETSIGN:
1900    // All bits are zero except the low bit.
1901    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1902    return;
1903
1904  case ISD::SUB: {
1905    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1906      // We know that the top bits of C-X are clear if X contains less bits
1907      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1908      // positive if we can prove that X is >= 0 and < 16.
1909      if (CLHS->getAPIntValue().isNonNegative()) {
1910        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1911        // NLZ can't be BitWidth with no sign bit
1912        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1913        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1914                          Depth+1);
1915
1916        // If all of the MaskV bits are known to be zero, then we know the
1917        // output top bits are zero, because we now know that the output is
1918        // from [0-C].
1919        if ((KnownZero2 & MaskV) == MaskV) {
1920          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1921          // Top bits known zero.
1922          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1923        }
1924      }
1925    }
1926  }
1927  // fall through
1928  case ISD::ADD: {
1929    // Output known-0 bits are known if clear or set in both the low clear bits
1930    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1931    // low 3 bits clear.
1932    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1933                                       BitWidth - Mask.countLeadingZeros());
1934    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1935    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1936    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1937
1938    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1939    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1940    KnownZeroOut = std::min(KnownZeroOut,
1941                            KnownZero2.countTrailingOnes());
1942
1943    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1944    return;
1945  }
1946  case ISD::SREM:
1947    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1948      const APInt &RA = Rem->getAPIntValue().abs();
1949      if (RA.isPowerOf2()) {
1950        APInt LowBits = RA - 1;
1951        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1952        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1953
1954        // The low bits of the first operand are unchanged by the srem.
1955        KnownZero = KnownZero2 & LowBits;
1956        KnownOne = KnownOne2 & LowBits;
1957
1958        // If the first operand is non-negative or has all low bits zero, then
1959        // the upper bits are all zero.
1960        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1961          KnownZero |= ~LowBits;
1962
1963        // If the first operand is negative and not all low bits are zero, then
1964        // the upper bits are all one.
1965        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1966          KnownOne |= ~LowBits;
1967
1968        KnownZero &= Mask;
1969        KnownOne &= Mask;
1970
1971        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1972      }
1973    }
1974    return;
1975  case ISD::UREM: {
1976    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1977      const APInt &RA = Rem->getAPIntValue();
1978      if (RA.isPowerOf2()) {
1979        APInt LowBits = (RA - 1);
1980        APInt Mask2 = LowBits & Mask;
1981        KnownZero |= ~LowBits & Mask;
1982        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1983        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1984        break;
1985      }
1986    }
1987
1988    // Since the result is less than or equal to either operand, any leading
1989    // zero bits in either operand must also exist in the result.
1990    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1991    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1992                      Depth+1);
1993    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1994                      Depth+1);
1995
1996    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1997                                KnownZero2.countLeadingOnes());
1998    KnownOne.clear();
1999    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2000    return;
2001  }
2002  default:
2003    // Allow the target to implement this method for its nodes.
2004    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2005  case ISD::INTRINSIC_WO_CHAIN:
2006  case ISD::INTRINSIC_W_CHAIN:
2007  case ISD::INTRINSIC_VOID:
2008      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2009                                         Depth);
2010    }
2011    return;
2012  }
2013}
2014
2015/// ComputeNumSignBits - Return the number of times the sign bit of the
2016/// register is replicated into the other bits.  We know that at least 1 bit
2017/// is always equal to the sign bit (itself), but other cases can give us
2018/// information.  For example, immediately after an "SRA X, 2", we know that
2019/// the top 3 bits are all equal to each other, so we return 3.
2020unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2021  EVT VT = Op.getValueType();
2022  assert(VT.isInteger() && "Invalid VT!");
2023  unsigned VTBits = VT.getScalarType().getSizeInBits();
2024  unsigned Tmp, Tmp2;
2025  unsigned FirstAnswer = 1;
2026
2027  if (Depth == 6)
2028    return 1;  // Limit search depth.
2029
2030  switch (Op.getOpcode()) {
2031  default: break;
2032  case ISD::AssertSext:
2033    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2034    return VTBits-Tmp+1;
2035  case ISD::AssertZext:
2036    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2037    return VTBits-Tmp;
2038
2039  case ISD::Constant: {
2040    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2041    // If negative, return # leading ones.
2042    if (Val.isNegative())
2043      return Val.countLeadingOnes();
2044
2045    // Return # leading zeros.
2046    return Val.countLeadingZeros();
2047  }
2048
2049  case ISD::SIGN_EXTEND:
2050    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2051    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2052
2053  case ISD::SIGN_EXTEND_INREG:
2054    // Max of the input and what this extends.
2055    Tmp =
2056      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2057    Tmp = VTBits-Tmp+1;
2058
2059    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2060    return std::max(Tmp, Tmp2);
2061
2062  case ISD::SRA:
2063    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2064    // SRA X, C   -> adds C sign bits.
2065    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2066      Tmp += C->getZExtValue();
2067      if (Tmp > VTBits) Tmp = VTBits;
2068    }
2069    return Tmp;
2070  case ISD::SHL:
2071    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2072      // shl destroys sign bits.
2073      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2074      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2075          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2076      return Tmp - C->getZExtValue();
2077    }
2078    break;
2079  case ISD::AND:
2080  case ISD::OR:
2081  case ISD::XOR:    // NOT is handled here.
2082    // Logical binary ops preserve the number of sign bits at the worst.
2083    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2084    if (Tmp != 1) {
2085      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2086      FirstAnswer = std::min(Tmp, Tmp2);
2087      // We computed what we know about the sign bits as our first
2088      // answer. Now proceed to the generic code that uses
2089      // ComputeMaskedBits, and pick whichever answer is better.
2090    }
2091    break;
2092
2093  case ISD::SELECT:
2094    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2095    if (Tmp == 1) return 1;  // Early out.
2096    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2097    return std::min(Tmp, Tmp2);
2098
2099  case ISD::SADDO:
2100  case ISD::UADDO:
2101  case ISD::SSUBO:
2102  case ISD::USUBO:
2103  case ISD::SMULO:
2104  case ISD::UMULO:
2105    if (Op.getResNo() != 1)
2106      break;
2107    // The boolean result conforms to getBooleanContents.  Fall through.
2108  case ISD::SETCC:
2109    // If setcc returns 0/-1, all bits are sign bits.
2110    if (TLI.getBooleanContents() ==
2111        TargetLowering::ZeroOrNegativeOneBooleanContent)
2112      return VTBits;
2113    break;
2114  case ISD::ROTL:
2115  case ISD::ROTR:
2116    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2117      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2118
2119      // Handle rotate right by N like a rotate left by 32-N.
2120      if (Op.getOpcode() == ISD::ROTR)
2121        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2122
2123      // If we aren't rotating out all of the known-in sign bits, return the
2124      // number that are left.  This handles rotl(sext(x), 1) for example.
2125      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2126      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2127    }
2128    break;
2129  case ISD::ADD:
2130    // Add can have at most one carry bit.  Thus we know that the output
2131    // is, at worst, one more bit than the inputs.
2132    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2133    if (Tmp == 1) return 1;  // Early out.
2134
2135    // Special case decrementing a value (ADD X, -1):
2136    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2137      if (CRHS->isAllOnesValue()) {
2138        APInt KnownZero, KnownOne;
2139        APInt Mask = APInt::getAllOnesValue(VTBits);
2140        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2141
2142        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2143        // sign bits set.
2144        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2145          return VTBits;
2146
2147        // If we are subtracting one from a positive number, there is no carry
2148        // out of the result.
2149        if (KnownZero.isNegative())
2150          return Tmp;
2151      }
2152
2153    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2154    if (Tmp2 == 1) return 1;
2155      return std::min(Tmp, Tmp2)-1;
2156    break;
2157
2158  case ISD::SUB:
2159    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2160    if (Tmp2 == 1) return 1;
2161
2162    // Handle NEG.
2163    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2164      if (CLHS->isNullValue()) {
2165        APInt KnownZero, KnownOne;
2166        APInt Mask = APInt::getAllOnesValue(VTBits);
2167        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2168        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2169        // sign bits set.
2170        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2171          return VTBits;
2172
2173        // If the input is known to be positive (the sign bit is known clear),
2174        // the output of the NEG has the same number of sign bits as the input.
2175        if (KnownZero.isNegative())
2176          return Tmp2;
2177
2178        // Otherwise, we treat this like a SUB.
2179      }
2180
2181    // Sub can have at most one carry bit.  Thus we know that the output
2182    // is, at worst, one more bit than the inputs.
2183    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2184    if (Tmp == 1) return 1;  // Early out.
2185      return std::min(Tmp, Tmp2)-1;
2186    break;
2187  case ISD::TRUNCATE:
2188    // FIXME: it's tricky to do anything useful for this, but it is an important
2189    // case for targets like X86.
2190    break;
2191  }
2192
2193  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2194  if (Op.getOpcode() == ISD::LOAD) {
2195    LoadSDNode *LD = cast<LoadSDNode>(Op);
2196    unsigned ExtType = LD->getExtensionType();
2197    switch (ExtType) {
2198    default: break;
2199    case ISD::SEXTLOAD:    // '17' bits known
2200      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2201      return VTBits-Tmp+1;
2202    case ISD::ZEXTLOAD:    // '16' bits known
2203      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2204      return VTBits-Tmp;
2205    }
2206  }
2207
2208  // Allow the target to implement this method for its nodes.
2209  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2210      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2211      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2212      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2213    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2214    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2215  }
2216
2217  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2218  // use this information.
2219  APInt KnownZero, KnownOne;
2220  APInt Mask = APInt::getAllOnesValue(VTBits);
2221  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2222
2223  if (KnownZero.isNegative()) {        // sign bit is 0
2224    Mask = KnownZero;
2225  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2226    Mask = KnownOne;
2227  } else {
2228    // Nothing known.
2229    return FirstAnswer;
2230  }
2231
2232  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2233  // the number of identical bits in the top of the input value.
2234  Mask = ~Mask;
2235  Mask <<= Mask.getBitWidth()-VTBits;
2236  // Return # leading zeros.  We use 'min' here in case Val was zero before
2237  // shifting.  We don't want to return '64' as for an i32 "0".
2238  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2239}
2240
2241bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2242  // If we're told that NaNs won't happen, assume they won't.
2243  if (FiniteOnlyFPMath())
2244    return true;
2245
2246  // If the value is a constant, we can obviously see if it is a NaN or not.
2247  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2248    return !C->getValueAPF().isNaN();
2249
2250  // TODO: Recognize more cases here.
2251
2252  return false;
2253}
2254
2255bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2256  // If the value is a constant, we can obviously see if it is a zero or not.
2257  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2258    return !C->isZero();
2259
2260  // TODO: Recognize more cases here.
2261
2262  return false;
2263}
2264
2265bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2266  // Check the obvious case.
2267  if (A == B) return true;
2268
2269  // For for negative and positive zero.
2270  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2271    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2272      if (CA->isZero() && CB->isZero()) return true;
2273
2274  // Otherwise they may not be equal.
2275  return false;
2276}
2277
2278bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2279  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2280  if (!GA) return false;
2281  if (GA->getOffset() != 0) return false;
2282  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2283  if (!GV) return false;
2284  return MF->getMMI().hasDebugInfo();
2285}
2286
2287
2288/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2289/// element of the result of the vector shuffle.
2290SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2291                                          unsigned i) {
2292  EVT VT = N->getValueType(0);
2293  DebugLoc dl = N->getDebugLoc();
2294  if (N->getMaskElt(i) < 0)
2295    return getUNDEF(VT.getVectorElementType());
2296  unsigned Index = N->getMaskElt(i);
2297  unsigned NumElems = VT.getVectorNumElements();
2298  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2299  Index %= NumElems;
2300
2301  if (V.getOpcode() == ISD::BIT_CONVERT) {
2302    V = V.getOperand(0);
2303    EVT VVT = V.getValueType();
2304    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2305      return SDValue();
2306  }
2307  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2308    return (Index == 0) ? V.getOperand(0)
2309                      : getUNDEF(VT.getVectorElementType());
2310  if (V.getOpcode() == ISD::BUILD_VECTOR)
2311    return V.getOperand(Index);
2312  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2313    return getShuffleScalarElt(SVN, Index);
2314  return SDValue();
2315}
2316
2317
2318/// getNode - Gets or creates the specified node.
2319///
2320SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2321  FoldingSetNodeID ID;
2322  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2323  void *IP = 0;
2324  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2325    return SDValue(E, 0);
2326
2327  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2328  CSEMap.InsertNode(N, IP);
2329
2330  AllNodes.push_back(N);
2331#ifndef NDEBUG
2332  VerifyNode(N);
2333#endif
2334  return SDValue(N, 0);
2335}
2336
2337SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2338                              EVT VT, SDValue Operand) {
2339  // Constant fold unary operations with an integer constant operand.
2340  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2341    const APInt &Val = C->getAPIntValue();
2342    switch (Opcode) {
2343    default: break;
2344    case ISD::SIGN_EXTEND:
2345      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2346    case ISD::ANY_EXTEND:
2347    case ISD::ZERO_EXTEND:
2348    case ISD::TRUNCATE:
2349      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2350    case ISD::UINT_TO_FP:
2351    case ISD::SINT_TO_FP: {
2352      const uint64_t zero[] = {0, 0};
2353      // No compile time operations on ppcf128.
2354      if (VT == MVT::ppcf128) break;
2355      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2356      (void)apf.convertFromAPInt(Val,
2357                                 Opcode==ISD::SINT_TO_FP,
2358                                 APFloat::rmNearestTiesToEven);
2359      return getConstantFP(apf, VT);
2360    }
2361    case ISD::BIT_CONVERT:
2362      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2363        return getConstantFP(Val.bitsToFloat(), VT);
2364      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2365        return getConstantFP(Val.bitsToDouble(), VT);
2366      break;
2367    case ISD::BSWAP:
2368      return getConstant(Val.byteSwap(), VT);
2369    case ISD::CTPOP:
2370      return getConstant(Val.countPopulation(), VT);
2371    case ISD::CTLZ:
2372      return getConstant(Val.countLeadingZeros(), VT);
2373    case ISD::CTTZ:
2374      return getConstant(Val.countTrailingZeros(), VT);
2375    }
2376  }
2377
2378  // Constant fold unary operations with a floating point constant operand.
2379  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2380    APFloat V = C->getValueAPF();    // make copy
2381    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2382      switch (Opcode) {
2383      case ISD::FNEG:
2384        V.changeSign();
2385        return getConstantFP(V, VT);
2386      case ISD::FABS:
2387        V.clearSign();
2388        return getConstantFP(V, VT);
2389      case ISD::FP_ROUND:
2390      case ISD::FP_EXTEND: {
2391        bool ignored;
2392        // This can return overflow, underflow, or inexact; we don't care.
2393        // FIXME need to be more flexible about rounding mode.
2394        (void)V.convert(*EVTToAPFloatSemantics(VT),
2395                        APFloat::rmNearestTiesToEven, &ignored);
2396        return getConstantFP(V, VT);
2397      }
2398      case ISD::FP_TO_SINT:
2399      case ISD::FP_TO_UINT: {
2400        integerPart x[2];
2401        bool ignored;
2402        assert(integerPartWidth >= 64);
2403        // FIXME need to be more flexible about rounding mode.
2404        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2405                              Opcode==ISD::FP_TO_SINT,
2406                              APFloat::rmTowardZero, &ignored);
2407        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2408          break;
2409        APInt api(VT.getSizeInBits(), 2, x);
2410        return getConstant(api, VT);
2411      }
2412      case ISD::BIT_CONVERT:
2413        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2414          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2415        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2416          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2417        break;
2418      }
2419    }
2420  }
2421
2422  unsigned OpOpcode = Operand.getNode()->getOpcode();
2423  switch (Opcode) {
2424  case ISD::TokenFactor:
2425  case ISD::MERGE_VALUES:
2426  case ISD::CONCAT_VECTORS:
2427    return Operand;         // Factor, merge or concat of one node?  No need.
2428  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2429  case ISD::FP_EXTEND:
2430    assert(VT.isFloatingPoint() &&
2431           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2432    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2433    assert((!VT.isVector() ||
2434            VT.getVectorNumElements() ==
2435            Operand.getValueType().getVectorNumElements()) &&
2436           "Vector element count mismatch!");
2437    if (Operand.getOpcode() == ISD::UNDEF)
2438      return getUNDEF(VT);
2439    break;
2440  case ISD::SIGN_EXTEND:
2441    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2442           "Invalid SIGN_EXTEND!");
2443    if (Operand.getValueType() == VT) return Operand;   // noop extension
2444    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2445           "Invalid sext node, dst < src!");
2446    assert((!VT.isVector() ||
2447            VT.getVectorNumElements() ==
2448            Operand.getValueType().getVectorNumElements()) &&
2449           "Vector element count mismatch!");
2450    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2451      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2452    break;
2453  case ISD::ZERO_EXTEND:
2454    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2455           "Invalid ZERO_EXTEND!");
2456    if (Operand.getValueType() == VT) return Operand;   // noop extension
2457    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2458           "Invalid zext node, dst < src!");
2459    assert((!VT.isVector() ||
2460            VT.getVectorNumElements() ==
2461            Operand.getValueType().getVectorNumElements()) &&
2462           "Vector element count mismatch!");
2463    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2464      return getNode(ISD::ZERO_EXTEND, DL, VT,
2465                     Operand.getNode()->getOperand(0));
2466    break;
2467  case ISD::ANY_EXTEND:
2468    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2469           "Invalid ANY_EXTEND!");
2470    if (Operand.getValueType() == VT) return Operand;   // noop extension
2471    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2472           "Invalid anyext node, dst < src!");
2473    assert((!VT.isVector() ||
2474            VT.getVectorNumElements() ==
2475            Operand.getValueType().getVectorNumElements()) &&
2476           "Vector element count mismatch!");
2477    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2478      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2479      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2480    break;
2481  case ISD::TRUNCATE:
2482    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2483           "Invalid TRUNCATE!");
2484    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2485    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2486           "Invalid truncate node, src < dst!");
2487    assert((!VT.isVector() ||
2488            VT.getVectorNumElements() ==
2489            Operand.getValueType().getVectorNumElements()) &&
2490           "Vector element count mismatch!");
2491    if (OpOpcode == ISD::TRUNCATE)
2492      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2493    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2494             OpOpcode == ISD::ANY_EXTEND) {
2495      // If the source is smaller than the dest, we still need an extend.
2496      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2497            .bitsLT(VT.getScalarType()))
2498        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2499      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2500        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2501      else
2502        return Operand.getNode()->getOperand(0);
2503    }
2504    break;
2505  case ISD::BIT_CONVERT:
2506    // Basic sanity checking.
2507    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2508           && "Cannot BIT_CONVERT between types of different sizes!");
2509    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2510    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2511      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2512    if (OpOpcode == ISD::UNDEF)
2513      return getUNDEF(VT);
2514    break;
2515  case ISD::SCALAR_TO_VECTOR:
2516    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2517           (VT.getVectorElementType() == Operand.getValueType() ||
2518            (VT.getVectorElementType().isInteger() &&
2519             Operand.getValueType().isInteger() &&
2520             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2521           "Illegal SCALAR_TO_VECTOR node!");
2522    if (OpOpcode == ISD::UNDEF)
2523      return getUNDEF(VT);
2524    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2525    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2526        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2527        Operand.getConstantOperandVal(1) == 0 &&
2528        Operand.getOperand(0).getValueType() == VT)
2529      return Operand.getOperand(0);
2530    break;
2531  case ISD::FNEG:
2532    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2533    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2534      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2535                     Operand.getNode()->getOperand(0));
2536    if (OpOpcode == ISD::FNEG)  // --X -> X
2537      return Operand.getNode()->getOperand(0);
2538    break;
2539  case ISD::FABS:
2540    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2541      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2542    break;
2543  }
2544
2545  SDNode *N;
2546  SDVTList VTs = getVTList(VT);
2547  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2548    FoldingSetNodeID ID;
2549    SDValue Ops[1] = { Operand };
2550    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2551    void *IP = 0;
2552    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2553      return SDValue(E, 0);
2554
2555    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2556    CSEMap.InsertNode(N, IP);
2557  } else {
2558    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2559  }
2560
2561  AllNodes.push_back(N);
2562#ifndef NDEBUG
2563  VerifyNode(N);
2564#endif
2565  return SDValue(N, 0);
2566}
2567
2568SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2569                                             EVT VT,
2570                                             ConstantSDNode *Cst1,
2571                                             ConstantSDNode *Cst2) {
2572  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2573
2574  switch (Opcode) {
2575  case ISD::ADD:  return getConstant(C1 + C2, VT);
2576  case ISD::SUB:  return getConstant(C1 - C2, VT);
2577  case ISD::MUL:  return getConstant(C1 * C2, VT);
2578  case ISD::UDIV:
2579    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2580    break;
2581  case ISD::UREM:
2582    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2583    break;
2584  case ISD::SDIV:
2585    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2586    break;
2587  case ISD::SREM:
2588    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2589    break;
2590  case ISD::AND:  return getConstant(C1 & C2, VT);
2591  case ISD::OR:   return getConstant(C1 | C2, VT);
2592  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2593  case ISD::SHL:  return getConstant(C1 << C2, VT);
2594  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2595  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2596  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2597  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2598  default: break;
2599  }
2600
2601  return SDValue();
2602}
2603
2604SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2605                              SDValue N1, SDValue N2) {
2606  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2607  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2608  switch (Opcode) {
2609  default: break;
2610  case ISD::TokenFactor:
2611    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2612           N2.getValueType() == MVT::Other && "Invalid token factor!");
2613    // Fold trivial token factors.
2614    if (N1.getOpcode() == ISD::EntryToken) return N2;
2615    if (N2.getOpcode() == ISD::EntryToken) return N1;
2616    if (N1 == N2) return N1;
2617    break;
2618  case ISD::CONCAT_VECTORS:
2619    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2620    // one big BUILD_VECTOR.
2621    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2622        N2.getOpcode() == ISD::BUILD_VECTOR) {
2623      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2624      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2625      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2626    }
2627    break;
2628  case ISD::AND:
2629    assert(VT.isInteger() && "This operator does not apply to FP types!");
2630    assert(N1.getValueType() == N2.getValueType() &&
2631           N1.getValueType() == VT && "Binary operator types must match!");
2632    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2633    // worth handling here.
2634    if (N2C && N2C->isNullValue())
2635      return N2;
2636    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2637      return N1;
2638    break;
2639  case ISD::OR:
2640  case ISD::XOR:
2641  case ISD::ADD:
2642  case ISD::SUB:
2643    assert(VT.isInteger() && "This operator does not apply to FP types!");
2644    assert(N1.getValueType() == N2.getValueType() &&
2645           N1.getValueType() == VT && "Binary operator types must match!");
2646    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2647    // it's worth handling here.
2648    if (N2C && N2C->isNullValue())
2649      return N1;
2650    break;
2651  case ISD::UDIV:
2652  case ISD::UREM:
2653  case ISD::MULHU:
2654  case ISD::MULHS:
2655  case ISD::MUL:
2656  case ISD::SDIV:
2657  case ISD::SREM:
2658    assert(VT.isInteger() && "This operator does not apply to FP types!");
2659    assert(N1.getValueType() == N2.getValueType() &&
2660           N1.getValueType() == VT && "Binary operator types must match!");
2661    break;
2662  case ISD::FADD:
2663  case ISD::FSUB:
2664  case ISD::FMUL:
2665  case ISD::FDIV:
2666  case ISD::FREM:
2667    if (UnsafeFPMath) {
2668      if (Opcode == ISD::FADD) {
2669        // 0+x --> x
2670        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2671          if (CFP->getValueAPF().isZero())
2672            return N2;
2673        // x+0 --> x
2674        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2675          if (CFP->getValueAPF().isZero())
2676            return N1;
2677      } else if (Opcode == ISD::FSUB) {
2678        // x-0 --> x
2679        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2680          if (CFP->getValueAPF().isZero())
2681            return N1;
2682      }
2683    }
2684    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2685    assert(N1.getValueType() == N2.getValueType() &&
2686           N1.getValueType() == VT && "Binary operator types must match!");
2687    break;
2688  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2689    assert(N1.getValueType() == VT &&
2690           N1.getValueType().isFloatingPoint() &&
2691           N2.getValueType().isFloatingPoint() &&
2692           "Invalid FCOPYSIGN!");
2693    break;
2694  case ISD::SHL:
2695  case ISD::SRA:
2696  case ISD::SRL:
2697  case ISD::ROTL:
2698  case ISD::ROTR:
2699    assert(VT == N1.getValueType() &&
2700           "Shift operators return type must be the same as their first arg");
2701    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2702           "Shifts only work on integers");
2703
2704    // Always fold shifts of i1 values so the code generator doesn't need to
2705    // handle them.  Since we know the size of the shift has to be less than the
2706    // size of the value, the shift/rotate count is guaranteed to be zero.
2707    if (VT == MVT::i1)
2708      return N1;
2709    if (N2C && N2C->isNullValue())
2710      return N1;
2711    break;
2712  case ISD::FP_ROUND_INREG: {
2713    EVT EVT = cast<VTSDNode>(N2)->getVT();
2714    assert(VT == N1.getValueType() && "Not an inreg round!");
2715    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2716           "Cannot FP_ROUND_INREG integer types");
2717    assert(EVT.isVector() == VT.isVector() &&
2718           "FP_ROUND_INREG type should be vector iff the operand "
2719           "type is vector!");
2720    assert((!EVT.isVector() ||
2721            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2722           "Vector element counts must match in FP_ROUND_INREG");
2723    assert(EVT.bitsLE(VT) && "Not rounding down!");
2724    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2725    break;
2726  }
2727  case ISD::FP_ROUND:
2728    assert(VT.isFloatingPoint() &&
2729           N1.getValueType().isFloatingPoint() &&
2730           VT.bitsLE(N1.getValueType()) &&
2731           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2732    if (N1.getValueType() == VT) return N1;  // noop conversion.
2733    break;
2734  case ISD::AssertSext:
2735  case ISD::AssertZext: {
2736    EVT EVT = cast<VTSDNode>(N2)->getVT();
2737    assert(VT == N1.getValueType() && "Not an inreg extend!");
2738    assert(VT.isInteger() && EVT.isInteger() &&
2739           "Cannot *_EXTEND_INREG FP types");
2740    assert(!EVT.isVector() &&
2741           "AssertSExt/AssertZExt type should be the vector element type "
2742           "rather than the vector type!");
2743    assert(EVT.bitsLE(VT) && "Not extending!");
2744    if (VT == EVT) return N1; // noop assertion.
2745    break;
2746  }
2747  case ISD::SIGN_EXTEND_INREG: {
2748    EVT EVT = cast<VTSDNode>(N2)->getVT();
2749    assert(VT == N1.getValueType() && "Not an inreg extend!");
2750    assert(VT.isInteger() && EVT.isInteger() &&
2751           "Cannot *_EXTEND_INREG FP types");
2752    assert(EVT.isVector() == VT.isVector() &&
2753           "SIGN_EXTEND_INREG type should be vector iff the operand "
2754           "type is vector!");
2755    assert((!EVT.isVector() ||
2756            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2757           "Vector element counts must match in SIGN_EXTEND_INREG");
2758    assert(EVT.bitsLE(VT) && "Not extending!");
2759    if (EVT == VT) return N1;  // Not actually extending
2760
2761    if (N1C) {
2762      APInt Val = N1C->getAPIntValue();
2763      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2764      Val <<= Val.getBitWidth()-FromBits;
2765      Val = Val.ashr(Val.getBitWidth()-FromBits);
2766      return getConstant(Val, VT);
2767    }
2768    break;
2769  }
2770  case ISD::EXTRACT_VECTOR_ELT:
2771    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2772    if (N1.getOpcode() == ISD::UNDEF)
2773      return getUNDEF(VT);
2774
2775    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2776    // expanding copies of large vectors from registers.
2777    if (N2C &&
2778        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2779        N1.getNumOperands() > 0) {
2780      unsigned Factor =
2781        N1.getOperand(0).getValueType().getVectorNumElements();
2782      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2783                     N1.getOperand(N2C->getZExtValue() / Factor),
2784                     getConstant(N2C->getZExtValue() % Factor,
2785                                 N2.getValueType()));
2786    }
2787
2788    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2789    // expanding large vector constants.
2790    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2791      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2792      EVT VEltTy = N1.getValueType().getVectorElementType();
2793      if (Elt.getValueType() != VEltTy) {
2794        // If the vector element type is not legal, the BUILD_VECTOR operands
2795        // are promoted and implicitly truncated.  Make that explicit here.
2796        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2797      }
2798      if (VT != VEltTy) {
2799        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2800        // result is implicitly extended.
2801        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2802      }
2803      return Elt;
2804    }
2805
2806    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2807    // operations are lowered to scalars.
2808    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2809      // If the indices are the same, return the inserted element else
2810      // if the indices are known different, extract the element from
2811      // the original vector.
2812      SDValue N1Op2 = N1.getOperand(2);
2813      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2814
2815      if (N1Op2C && N2C) {
2816        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2817          if (VT == N1.getOperand(1).getValueType())
2818            return N1.getOperand(1);
2819          else
2820            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2821        }
2822
2823        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2824      }
2825    }
2826    break;
2827  case ISD::EXTRACT_ELEMENT:
2828    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2829    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2830           (N1.getValueType().isInteger() == VT.isInteger()) &&
2831           "Wrong types for EXTRACT_ELEMENT!");
2832
2833    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2834    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2835    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2836    if (N1.getOpcode() == ISD::BUILD_PAIR)
2837      return N1.getOperand(N2C->getZExtValue());
2838
2839    // EXTRACT_ELEMENT of a constant int is also very common.
2840    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2841      unsigned ElementSize = VT.getSizeInBits();
2842      unsigned Shift = ElementSize * N2C->getZExtValue();
2843      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2844      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2845    }
2846    break;
2847  case ISD::EXTRACT_SUBVECTOR:
2848    if (N1.getValueType() == VT) // Trivial extraction.
2849      return N1;
2850    break;
2851  }
2852
2853  if (N1C) {
2854    if (N2C) {
2855      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2856      if (SV.getNode()) return SV;
2857    } else {      // Cannonicalize constant to RHS if commutative
2858      if (isCommutativeBinOp(Opcode)) {
2859        std::swap(N1C, N2C);
2860        std::swap(N1, N2);
2861      }
2862    }
2863  }
2864
2865  // Constant fold FP operations.
2866  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2867  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2868  if (N1CFP) {
2869    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2870      // Cannonicalize constant to RHS if commutative
2871      std::swap(N1CFP, N2CFP);
2872      std::swap(N1, N2);
2873    } else if (N2CFP && VT != MVT::ppcf128) {
2874      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2875      APFloat::opStatus s;
2876      switch (Opcode) {
2877      case ISD::FADD:
2878        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2879        if (s != APFloat::opInvalidOp)
2880          return getConstantFP(V1, VT);
2881        break;
2882      case ISD::FSUB:
2883        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2884        if (s!=APFloat::opInvalidOp)
2885          return getConstantFP(V1, VT);
2886        break;
2887      case ISD::FMUL:
2888        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2889        if (s!=APFloat::opInvalidOp)
2890          return getConstantFP(V1, VT);
2891        break;
2892      case ISD::FDIV:
2893        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2894        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2895          return getConstantFP(V1, VT);
2896        break;
2897      case ISD::FREM :
2898        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2899        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2900          return getConstantFP(V1, VT);
2901        break;
2902      case ISD::FCOPYSIGN:
2903        V1.copySign(V2);
2904        return getConstantFP(V1, VT);
2905      default: break;
2906      }
2907    }
2908  }
2909
2910  // Canonicalize an UNDEF to the RHS, even over a constant.
2911  if (N1.getOpcode() == ISD::UNDEF) {
2912    if (isCommutativeBinOp(Opcode)) {
2913      std::swap(N1, N2);
2914    } else {
2915      switch (Opcode) {
2916      case ISD::FP_ROUND_INREG:
2917      case ISD::SIGN_EXTEND_INREG:
2918      case ISD::SUB:
2919      case ISD::FSUB:
2920      case ISD::FDIV:
2921      case ISD::FREM:
2922      case ISD::SRA:
2923        return N1;     // fold op(undef, arg2) -> undef
2924      case ISD::UDIV:
2925      case ISD::SDIV:
2926      case ISD::UREM:
2927      case ISD::SREM:
2928      case ISD::SRL:
2929      case ISD::SHL:
2930        if (!VT.isVector())
2931          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2932        // For vectors, we can't easily build an all zero vector, just return
2933        // the LHS.
2934        return N2;
2935      }
2936    }
2937  }
2938
2939  // Fold a bunch of operators when the RHS is undef.
2940  if (N2.getOpcode() == ISD::UNDEF) {
2941    switch (Opcode) {
2942    case ISD::XOR:
2943      if (N1.getOpcode() == ISD::UNDEF)
2944        // Handle undef ^ undef -> 0 special case. This is a common
2945        // idiom (misuse).
2946        return getConstant(0, VT);
2947      // fallthrough
2948    case ISD::ADD:
2949    case ISD::ADDC:
2950    case ISD::ADDE:
2951    case ISD::SUB:
2952    case ISD::UDIV:
2953    case ISD::SDIV:
2954    case ISD::UREM:
2955    case ISD::SREM:
2956      return N2;       // fold op(arg1, undef) -> undef
2957    case ISD::FADD:
2958    case ISD::FSUB:
2959    case ISD::FMUL:
2960    case ISD::FDIV:
2961    case ISD::FREM:
2962      if (UnsafeFPMath)
2963        return N2;
2964      break;
2965    case ISD::MUL:
2966    case ISD::AND:
2967    case ISD::SRL:
2968    case ISD::SHL:
2969      if (!VT.isVector())
2970        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2971      // For vectors, we can't easily build an all zero vector, just return
2972      // the LHS.
2973      return N1;
2974    case ISD::OR:
2975      if (!VT.isVector())
2976        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2977      // For vectors, we can't easily build an all one vector, just return
2978      // the LHS.
2979      return N1;
2980    case ISD::SRA:
2981      return N1;
2982    }
2983  }
2984
2985  // Memoize this node if possible.
2986  SDNode *N;
2987  SDVTList VTs = getVTList(VT);
2988  if (VT != MVT::Flag) {
2989    SDValue Ops[] = { N1, N2 };
2990    FoldingSetNodeID ID;
2991    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2992    void *IP = 0;
2993    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2994      return SDValue(E, 0);
2995
2996    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2997    CSEMap.InsertNode(N, IP);
2998  } else {
2999    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3000  }
3001
3002  AllNodes.push_back(N);
3003#ifndef NDEBUG
3004  VerifyNode(N);
3005#endif
3006  return SDValue(N, 0);
3007}
3008
3009SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3010                              SDValue N1, SDValue N2, SDValue N3) {
3011  // Perform various simplifications.
3012  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3013  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
3014  switch (Opcode) {
3015  case ISD::CONCAT_VECTORS:
3016    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3017    // one big BUILD_VECTOR.
3018    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3019        N2.getOpcode() == ISD::BUILD_VECTOR &&
3020        N3.getOpcode() == ISD::BUILD_VECTOR) {
3021      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
3022      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
3023      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
3024      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3025    }
3026    break;
3027  case ISD::SETCC: {
3028    // Use FoldSetCC to simplify SETCC's.
3029    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3030    if (Simp.getNode()) return Simp;
3031    break;
3032  }
3033  case ISD::SELECT:
3034    if (N1C) {
3035     if (N1C->getZExtValue())
3036        return N2;             // select true, X, Y -> X
3037      else
3038        return N3;             // select false, X, Y -> Y
3039    }
3040
3041    if (N2 == N3) return N2;   // select C, X, X -> X
3042    break;
3043  case ISD::BRCOND:
3044    if (N2C) {
3045      if (N2C->getZExtValue()) // Unconditional branch
3046        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3047      else
3048        return N1;         // Never-taken branch
3049    }
3050    break;
3051  case ISD::VECTOR_SHUFFLE:
3052    llvm_unreachable("should use getVectorShuffle constructor!");
3053    break;
3054  case ISD::BIT_CONVERT:
3055    // Fold bit_convert nodes from a type to themselves.
3056    if (N1.getValueType() == VT)
3057      return N1;
3058    break;
3059  }
3060
3061  // Memoize node if it doesn't produce a flag.
3062  SDNode *N;
3063  SDVTList VTs = getVTList(VT);
3064  if (VT != MVT::Flag) {
3065    SDValue Ops[] = { N1, N2, N3 };
3066    FoldingSetNodeID ID;
3067    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3068    void *IP = 0;
3069    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3070      return SDValue(E, 0);
3071
3072    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3073    CSEMap.InsertNode(N, IP);
3074  } else {
3075    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3076  }
3077
3078  AllNodes.push_back(N);
3079#ifndef NDEBUG
3080  VerifyNode(N);
3081#endif
3082  return SDValue(N, 0);
3083}
3084
3085SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3086                              SDValue N1, SDValue N2, SDValue N3,
3087                              SDValue N4) {
3088  SDValue Ops[] = { N1, N2, N3, N4 };
3089  return getNode(Opcode, DL, VT, Ops, 4);
3090}
3091
3092SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3093                              SDValue N1, SDValue N2, SDValue N3,
3094                              SDValue N4, SDValue N5) {
3095  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3096  return getNode(Opcode, DL, VT, Ops, 5);
3097}
3098
3099/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3100/// the incoming stack arguments to be loaded from the stack.
3101SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3102  SmallVector<SDValue, 8> ArgChains;
3103
3104  // Include the original chain at the beginning of the list. When this is
3105  // used by target LowerCall hooks, this helps legalize find the
3106  // CALLSEQ_BEGIN node.
3107  ArgChains.push_back(Chain);
3108
3109  // Add a chain value for each stack argument.
3110  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3111       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3112    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3113      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3114        if (FI->getIndex() < 0)
3115          ArgChains.push_back(SDValue(L, 1));
3116
3117  // Build a tokenfactor for all the chains.
3118  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3119                 &ArgChains[0], ArgChains.size());
3120}
3121
3122/// getMemsetValue - Vectorized representation of the memset value
3123/// operand.
3124static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3125                              DebugLoc dl) {
3126  assert(Value.getOpcode() != ISD::UNDEF);
3127
3128  unsigned NumBits = VT.getScalarType().getSizeInBits();
3129  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3130    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3131    unsigned Shift = 8;
3132    for (unsigned i = NumBits; i > 8; i >>= 1) {
3133      Val = (Val << Shift) | Val;
3134      Shift <<= 1;
3135    }
3136    if (VT.isInteger())
3137      return DAG.getConstant(Val, VT);
3138    return DAG.getConstantFP(APFloat(Val), VT);
3139  }
3140
3141  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3142  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3143  unsigned Shift = 8;
3144  for (unsigned i = NumBits; i > 8; i >>= 1) {
3145    Value = DAG.getNode(ISD::OR, dl, VT,
3146                        DAG.getNode(ISD::SHL, dl, VT, Value,
3147                                    DAG.getConstant(Shift,
3148                                                    TLI.getShiftAmountTy())),
3149                        Value);
3150    Shift <<= 1;
3151  }
3152
3153  return Value;
3154}
3155
3156/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3157/// used when a memcpy is turned into a memset when the source is a constant
3158/// string ptr.
3159static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3160                                  const TargetLowering &TLI,
3161                                  std::string &Str, unsigned Offset) {
3162  // Handle vector with all elements zero.
3163  if (Str.empty()) {
3164    if (VT.isInteger())
3165      return DAG.getConstant(0, VT);
3166    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3167             VT.getSimpleVT().SimpleTy == MVT::f64)
3168      return DAG.getConstantFP(0.0, VT);
3169    else if (VT.isVector()) {
3170      unsigned NumElts = VT.getVectorNumElements();
3171      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3172      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3173                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3174                                                             EltVT, NumElts)));
3175    } else
3176      llvm_unreachable("Expected type!");
3177  }
3178
3179  assert(!VT.isVector() && "Can't handle vector type here!");
3180  unsigned NumBits = VT.getSizeInBits();
3181  unsigned MSB = NumBits / 8;
3182  uint64_t Val = 0;
3183  if (TLI.isLittleEndian())
3184    Offset = Offset + MSB - 1;
3185  for (unsigned i = 0; i != MSB; ++i) {
3186    Val = (Val << 8) | (unsigned char)Str[Offset];
3187    Offset += TLI.isLittleEndian() ? -1 : 1;
3188  }
3189  return DAG.getConstant(Val, VT);
3190}
3191
3192/// getMemBasePlusOffset - Returns base and offset node for the
3193///
3194static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3195                                      SelectionDAG &DAG) {
3196  EVT VT = Base.getValueType();
3197  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3198                     VT, Base, DAG.getConstant(Offset, VT));
3199}
3200
3201/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3202///
3203static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3204  unsigned SrcDelta = 0;
3205  GlobalAddressSDNode *G = NULL;
3206  if (Src.getOpcode() == ISD::GlobalAddress)
3207    G = cast<GlobalAddressSDNode>(Src);
3208  else if (Src.getOpcode() == ISD::ADD &&
3209           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3210           Src.getOperand(1).getOpcode() == ISD::Constant) {
3211    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3212    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3213  }
3214  if (!G)
3215    return false;
3216
3217  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3218  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3219    return true;
3220
3221  return false;
3222}
3223
3224/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3225/// to replace the memset / memcpy. Return true if the number of memory ops
3226/// is below the threshold. It returns the types of the sequence of
3227/// memory ops to perform memset / memcpy by reference.
3228static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3229                                     unsigned Limit, uint64_t Size,
3230                                     unsigned DstAlign, unsigned SrcAlign,
3231                                     bool NonScalarIntSafe,
3232                                     bool MemcpyStrSrc,
3233                                     SelectionDAG &DAG,
3234                                     const TargetLowering &TLI) {
3235  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3236         "Expecting memcpy / memset source to meet alignment requirement!");
3237  // If 'SrcAlign' is zero, that means the memory operation does not need load
3238  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3239  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3240  // specified alignment of the memory operation. If it is zero, that means
3241  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3242  // indicates whether the memcpy source is constant so it does not need to be
3243  // loaded.
3244  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3245                                   NonScalarIntSafe, MemcpyStrSrc,
3246                                   DAG.getMachineFunction());
3247
3248  if (VT == MVT::Other) {
3249    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3250        TLI.allowsUnalignedMemoryAccesses(VT)) {
3251      VT = TLI.getPointerTy();
3252    } else {
3253      switch (DstAlign & 7) {
3254      case 0:  VT = MVT::i64; break;
3255      case 4:  VT = MVT::i32; break;
3256      case 2:  VT = MVT::i16; break;
3257      default: VT = MVT::i8;  break;
3258      }
3259    }
3260
3261    MVT LVT = MVT::i64;
3262    while (!TLI.isTypeLegal(LVT))
3263      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3264    assert(LVT.isInteger());
3265
3266    if (VT.bitsGT(LVT))
3267      VT = LVT;
3268  }
3269
3270  unsigned NumMemOps = 0;
3271  while (Size != 0) {
3272    unsigned VTSize = VT.getSizeInBits() / 8;
3273    while (VTSize > Size) {
3274      // For now, only use non-vector load / store's for the left-over pieces.
3275      if (VT.isVector() || VT.isFloatingPoint()) {
3276        VT = MVT::i64;
3277        while (!TLI.isTypeLegal(VT))
3278          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3279        VTSize = VT.getSizeInBits() / 8;
3280      } else {
3281        // This can result in a type that is not legal on the target, e.g.
3282        // 1 or 2 bytes on PPC.
3283        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3284        VTSize >>= 1;
3285      }
3286    }
3287
3288    if (++NumMemOps > Limit)
3289      return false;
3290    MemOps.push_back(VT);
3291    Size -= VTSize;
3292  }
3293
3294  return true;
3295}
3296
3297static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3298                                       SDValue Chain, SDValue Dst,
3299                                       SDValue Src, uint64_t Size,
3300                                       unsigned Align, bool isVol,
3301                                       bool AlwaysInline,
3302                                       const Value *DstSV, uint64_t DstSVOff,
3303                                       const Value *SrcSV, uint64_t SrcSVOff) {
3304  // Turn a memcpy of undef to nop.
3305  if (Src.getOpcode() == ISD::UNDEF)
3306    return Chain;
3307
3308  // Expand memcpy to a series of load and store ops if the size operand falls
3309  // below a certain threshold.
3310  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3311  std::vector<EVT> MemOps;
3312  bool DstAlignCanChange = false;
3313  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3314  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3315  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3316    DstAlignCanChange = true;
3317  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3318  if (Align > SrcAlign)
3319    SrcAlign = Align;
3320  std::string Str;
3321  bool CopyFromStr = isMemSrcFromString(Src, Str);
3322  bool isZeroStr = CopyFromStr && Str.empty();
3323  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy();
3324
3325  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3326                                (DstAlignCanChange ? 0 : Align),
3327                                (isZeroStr ? 0 : SrcAlign),
3328                                true, CopyFromStr, DAG, TLI))
3329    return SDValue();
3330
3331  if (DstAlignCanChange) {
3332    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3333    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3334    if (NewAlign > Align) {
3335      // Give the stack frame object a larger alignment if needed.
3336      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3337        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3338      Align = NewAlign;
3339    }
3340  }
3341
3342  SmallVector<SDValue, 8> OutChains;
3343  unsigned NumMemOps = MemOps.size();
3344  uint64_t SrcOff = 0, DstOff = 0;
3345  for (unsigned i = 0; i != NumMemOps; ++i) {
3346    EVT VT = MemOps[i];
3347    unsigned VTSize = VT.getSizeInBits() / 8;
3348    SDValue Value, Store;
3349
3350    if (CopyFromStr &&
3351        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3352      // It's unlikely a store of a vector immediate can be done in a single
3353      // instruction. It would require a load from a constantpool first.
3354      // We only handle zero vectors here.
3355      // FIXME: Handle other cases where store of vector immediate is done in
3356      // a single instruction.
3357      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3358      Store = DAG.getStore(Chain, dl, Value,
3359                           getMemBasePlusOffset(Dst, DstOff, DAG),
3360                           DstSV, DstSVOff + DstOff, isVol, false, Align);
3361    } else {
3362      // The type might not be legal for the target.  This should only happen
3363      // if the type is smaller than a legal type, as on PPC, so the right
3364      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3365      // to Load/Store if NVT==VT.
3366      // FIXME does the case above also need this?
3367      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3368      assert(NVT.bitsGE(VT));
3369      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3370                             getMemBasePlusOffset(Src, SrcOff, DAG),
3371                             SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3372                             MinAlign(SrcAlign, SrcOff));
3373      Store = DAG.getTruncStore(Chain, dl, Value,
3374                                getMemBasePlusOffset(Dst, DstOff, DAG),
3375                                DstSV, DstSVOff + DstOff, VT, isVol, false,
3376                                Align);
3377    }
3378    OutChains.push_back(Store);
3379    SrcOff += VTSize;
3380    DstOff += VTSize;
3381  }
3382
3383  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3384                     &OutChains[0], OutChains.size());
3385}
3386
3387static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3388                                        SDValue Chain, SDValue Dst,
3389                                        SDValue Src, uint64_t Size,
3390                                        unsigned Align,  bool isVol,
3391                                        bool AlwaysInline,
3392                                        const Value *DstSV, uint64_t DstSVOff,
3393                                        const Value *SrcSV, uint64_t SrcSVOff) {
3394  // Turn a memmove of undef to nop.
3395  if (Src.getOpcode() == ISD::UNDEF)
3396    return Chain;
3397
3398  // Expand memmove to a series of load and store ops if the size operand falls
3399  // below a certain threshold.
3400  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3401  std::vector<EVT> MemOps;
3402  bool DstAlignCanChange = false;
3403  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3404  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3405  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3406    DstAlignCanChange = true;
3407  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3408  if (Align > SrcAlign)
3409    SrcAlign = Align;
3410  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove();
3411
3412  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3413                                (DstAlignCanChange ? 0 : Align),
3414                                SrcAlign, true, false, DAG, TLI))
3415    return SDValue();
3416
3417  if (DstAlignCanChange) {
3418    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3419    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3420    if (NewAlign > Align) {
3421      // Give the stack frame object a larger alignment if needed.
3422      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3423        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3424      Align = NewAlign;
3425    }
3426  }
3427
3428  uint64_t SrcOff = 0, DstOff = 0;
3429  SmallVector<SDValue, 8> LoadValues;
3430  SmallVector<SDValue, 8> LoadChains;
3431  SmallVector<SDValue, 8> OutChains;
3432  unsigned NumMemOps = MemOps.size();
3433  for (unsigned i = 0; i < NumMemOps; i++) {
3434    EVT VT = MemOps[i];
3435    unsigned VTSize = VT.getSizeInBits() / 8;
3436    SDValue Value, Store;
3437
3438    Value = DAG.getLoad(VT, dl, Chain,
3439                        getMemBasePlusOffset(Src, SrcOff, DAG),
3440                        SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3441    LoadValues.push_back(Value);
3442    LoadChains.push_back(Value.getValue(1));
3443    SrcOff += VTSize;
3444  }
3445  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3446                      &LoadChains[0], LoadChains.size());
3447  OutChains.clear();
3448  for (unsigned i = 0; i < NumMemOps; i++) {
3449    EVT VT = MemOps[i];
3450    unsigned VTSize = VT.getSizeInBits() / 8;
3451    SDValue Value, Store;
3452
3453    Store = DAG.getStore(Chain, dl, LoadValues[i],
3454                         getMemBasePlusOffset(Dst, DstOff, DAG),
3455                         DstSV, DstSVOff + DstOff, isVol, false, Align);
3456    OutChains.push_back(Store);
3457    DstOff += VTSize;
3458  }
3459
3460  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3461                     &OutChains[0], OutChains.size());
3462}
3463
3464static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3465                               SDValue Chain, SDValue Dst,
3466                               SDValue Src, uint64_t Size,
3467                               unsigned Align, bool isVol,
3468                               const Value *DstSV, uint64_t DstSVOff) {
3469  // Turn a memset of undef to nop.
3470  if (Src.getOpcode() == ISD::UNDEF)
3471    return Chain;
3472
3473  // Expand memset to a series of load/store ops if the size operand
3474  // falls below a certain threshold.
3475  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3476  std::vector<EVT> MemOps;
3477  bool DstAlignCanChange = false;
3478  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3479  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3480  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3481    DstAlignCanChange = true;
3482  bool NonScalarIntSafe =
3483    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3484  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3485                                Size, (DstAlignCanChange ? 0 : Align), 0,
3486                                NonScalarIntSafe, false, DAG, TLI))
3487    return SDValue();
3488
3489  if (DstAlignCanChange) {
3490    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3491    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3492    if (NewAlign > Align) {
3493      // Give the stack frame object a larger alignment if needed.
3494      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3495        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3496      Align = NewAlign;
3497    }
3498  }
3499
3500  SmallVector<SDValue, 8> OutChains;
3501  uint64_t DstOff = 0;
3502  unsigned NumMemOps = MemOps.size();
3503  for (unsigned i = 0; i < NumMemOps; i++) {
3504    EVT VT = MemOps[i];
3505    unsigned VTSize = VT.getSizeInBits() / 8;
3506    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3507    SDValue Store = DAG.getStore(Chain, dl, Value,
3508                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3509                                 DstSV, DstSVOff + DstOff, isVol, false, 0);
3510    OutChains.push_back(Store);
3511    DstOff += VTSize;
3512  }
3513
3514  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3515                     &OutChains[0], OutChains.size());
3516}
3517
3518SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3519                                SDValue Src, SDValue Size,
3520                                unsigned Align, bool isVol, bool AlwaysInline,
3521                                const Value *DstSV, uint64_t DstSVOff,
3522                                const Value *SrcSV, uint64_t SrcSVOff) {
3523
3524  // Check to see if we should lower the memcpy to loads and stores first.
3525  // For cases within the target-specified limits, this is the best choice.
3526  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3527  if (ConstantSize) {
3528    // Memcpy with size zero? Just return the original chain.
3529    if (ConstantSize->isNullValue())
3530      return Chain;
3531
3532    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3533                                             ConstantSize->getZExtValue(),Align,
3534                                isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3535    if (Result.getNode())
3536      return Result;
3537  }
3538
3539  // Then check to see if we should lower the memcpy with target-specific
3540  // code. If the target chooses to do this, this is the next best.
3541  SDValue Result =
3542    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3543                                isVol, AlwaysInline,
3544                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3545  if (Result.getNode())
3546    return Result;
3547
3548  // If we really need inline code and the target declined to provide it,
3549  // use a (potentially long) sequence of loads and stores.
3550  if (AlwaysInline) {
3551    assert(ConstantSize && "AlwaysInline requires a constant size!");
3552    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3553                                   ConstantSize->getZExtValue(), Align, isVol,
3554                                   true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3555  }
3556
3557  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3558  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3559  // respect volatile, so they may do things like read or write memory
3560  // beyond the given memory regions. But fixing this isn't easy, and most
3561  // people don't care.
3562
3563  // Emit a library call.
3564  TargetLowering::ArgListTy Args;
3565  TargetLowering::ArgListEntry Entry;
3566  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3567  Entry.Node = Dst; Args.push_back(Entry);
3568  Entry.Node = Src; Args.push_back(Entry);
3569  Entry.Node = Size; Args.push_back(Entry);
3570  // FIXME: pass in DebugLoc
3571  std::pair<SDValue,SDValue> CallResult =
3572    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3573                    false, false, false, false, 0,
3574                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3575                    /*isReturnValueUsed=*/false,
3576                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3577                                      TLI.getPointerTy()),
3578                    Args, *this, dl);
3579  return CallResult.second;
3580}
3581
3582SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3583                                 SDValue Src, SDValue Size,
3584                                 unsigned Align, bool isVol,
3585                                 const Value *DstSV, uint64_t DstSVOff,
3586                                 const Value *SrcSV, uint64_t SrcSVOff) {
3587
3588  // Check to see if we should lower the memmove to loads and stores first.
3589  // For cases within the target-specified limits, this is the best choice.
3590  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3591  if (ConstantSize) {
3592    // Memmove with size zero? Just return the original chain.
3593    if (ConstantSize->isNullValue())
3594      return Chain;
3595
3596    SDValue Result =
3597      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3598                               ConstantSize->getZExtValue(), Align, isVol,
3599                               false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3600    if (Result.getNode())
3601      return Result;
3602  }
3603
3604  // Then check to see if we should lower the memmove with target-specific
3605  // code. If the target chooses to do this, this is the next best.
3606  SDValue Result =
3607    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3608                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3609  if (Result.getNode())
3610    return Result;
3611
3612  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3613  // not be safe.  See memcpy above for more details.
3614
3615  // Emit a library call.
3616  TargetLowering::ArgListTy Args;
3617  TargetLowering::ArgListEntry Entry;
3618  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3619  Entry.Node = Dst; Args.push_back(Entry);
3620  Entry.Node = Src; Args.push_back(Entry);
3621  Entry.Node = Size; Args.push_back(Entry);
3622  // FIXME:  pass in DebugLoc
3623  std::pair<SDValue,SDValue> CallResult =
3624    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3625                    false, false, false, false, 0,
3626                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3627                    /*isReturnValueUsed=*/false,
3628                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3629                                      TLI.getPointerTy()),
3630                    Args, *this, dl);
3631  return CallResult.second;
3632}
3633
3634SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3635                                SDValue Src, SDValue Size,
3636                                unsigned Align, bool isVol,
3637                                const Value *DstSV, uint64_t DstSVOff) {
3638
3639  // Check to see if we should lower the memset to stores first.
3640  // For cases within the target-specified limits, this is the best choice.
3641  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3642  if (ConstantSize) {
3643    // Memset with size zero? Just return the original chain.
3644    if (ConstantSize->isNullValue())
3645      return Chain;
3646
3647    SDValue Result =
3648      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3649                      Align, isVol, DstSV, DstSVOff);
3650
3651    if (Result.getNode())
3652      return Result;
3653  }
3654
3655  // Then check to see if we should lower the memset with target-specific
3656  // code. If the target chooses to do this, this is the next best.
3657  SDValue Result =
3658    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3659                                DstSV, DstSVOff);
3660  if (Result.getNode())
3661    return Result;
3662
3663  // Emit a library call.
3664  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3665  TargetLowering::ArgListTy Args;
3666  TargetLowering::ArgListEntry Entry;
3667  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3668  Args.push_back(Entry);
3669  // Extend or truncate the argument to be an i32 value for the call.
3670  if (Src.getValueType().bitsGT(MVT::i32))
3671    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3672  else
3673    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3674  Entry.Node = Src;
3675  Entry.Ty = Type::getInt32Ty(*getContext());
3676  Entry.isSExt = true;
3677  Args.push_back(Entry);
3678  Entry.Node = Size;
3679  Entry.Ty = IntPtrTy;
3680  Entry.isSExt = false;
3681  Args.push_back(Entry);
3682  // FIXME: pass in DebugLoc
3683  std::pair<SDValue,SDValue> CallResult =
3684    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3685                    false, false, false, false, 0,
3686                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3687                    /*isReturnValueUsed=*/false,
3688                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3689                                      TLI.getPointerTy()),
3690                    Args, *this, dl);
3691  return CallResult.second;
3692}
3693
3694SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3695                                SDValue Chain,
3696                                SDValue Ptr, SDValue Cmp,
3697                                SDValue Swp, const Value* PtrVal,
3698                                unsigned Alignment) {
3699  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3700    Alignment = getEVTAlignment(MemVT);
3701
3702  // Check if the memory reference references a frame index
3703  if (!PtrVal)
3704    if (const FrameIndexSDNode *FI =
3705          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3706      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3707
3708  MachineFunction &MF = getMachineFunction();
3709  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3710
3711  // For now, atomics are considered to be volatile always.
3712  Flags |= MachineMemOperand::MOVolatile;
3713
3714  MachineMemOperand *MMO =
3715    MF.getMachineMemOperand(PtrVal, Flags, 0,
3716                            MemVT.getStoreSize(), Alignment);
3717
3718  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3719}
3720
3721SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3722                                SDValue Chain,
3723                                SDValue Ptr, SDValue Cmp,
3724                                SDValue Swp, MachineMemOperand *MMO) {
3725  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3726  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3727
3728  EVT VT = Cmp.getValueType();
3729
3730  SDVTList VTs = getVTList(VT, MVT::Other);
3731  FoldingSetNodeID ID;
3732  ID.AddInteger(MemVT.getRawBits());
3733  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3734  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3735  void* IP = 0;
3736  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3737    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3738    return SDValue(E, 0);
3739  }
3740  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3741                                               Ptr, Cmp, Swp, MMO);
3742  CSEMap.InsertNode(N, IP);
3743  AllNodes.push_back(N);
3744  return SDValue(N, 0);
3745}
3746
3747SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3748                                SDValue Chain,
3749                                SDValue Ptr, SDValue Val,
3750                                const Value* PtrVal,
3751                                unsigned Alignment) {
3752  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3753    Alignment = getEVTAlignment(MemVT);
3754
3755  // Check if the memory reference references a frame index
3756  if (!PtrVal)
3757    if (const FrameIndexSDNode *FI =
3758          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3759      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3760
3761  MachineFunction &MF = getMachineFunction();
3762  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3763
3764  // For now, atomics are considered to be volatile always.
3765  Flags |= MachineMemOperand::MOVolatile;
3766
3767  MachineMemOperand *MMO =
3768    MF.getMachineMemOperand(PtrVal, Flags, 0,
3769                            MemVT.getStoreSize(), Alignment);
3770
3771  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3772}
3773
3774SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3775                                SDValue Chain,
3776                                SDValue Ptr, SDValue Val,
3777                                MachineMemOperand *MMO) {
3778  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3779          Opcode == ISD::ATOMIC_LOAD_SUB ||
3780          Opcode == ISD::ATOMIC_LOAD_AND ||
3781          Opcode == ISD::ATOMIC_LOAD_OR ||
3782          Opcode == ISD::ATOMIC_LOAD_XOR ||
3783          Opcode == ISD::ATOMIC_LOAD_NAND ||
3784          Opcode == ISD::ATOMIC_LOAD_MIN ||
3785          Opcode == ISD::ATOMIC_LOAD_MAX ||
3786          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3787          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3788          Opcode == ISD::ATOMIC_SWAP) &&
3789         "Invalid Atomic Op");
3790
3791  EVT VT = Val.getValueType();
3792
3793  SDVTList VTs = getVTList(VT, MVT::Other);
3794  FoldingSetNodeID ID;
3795  ID.AddInteger(MemVT.getRawBits());
3796  SDValue Ops[] = {Chain, Ptr, Val};
3797  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3798  void* IP = 0;
3799  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3800    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3801    return SDValue(E, 0);
3802  }
3803  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3804                                               Ptr, Val, MMO);
3805  CSEMap.InsertNode(N, IP);
3806  AllNodes.push_back(N);
3807  return SDValue(N, 0);
3808}
3809
3810/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3811/// Allowed to return something different (and simpler) if Simplify is true.
3812SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3813                                     DebugLoc dl) {
3814  if (NumOps == 1)
3815    return Ops[0];
3816
3817  SmallVector<EVT, 4> VTs;
3818  VTs.reserve(NumOps);
3819  for (unsigned i = 0; i < NumOps; ++i)
3820    VTs.push_back(Ops[i].getValueType());
3821  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3822                 Ops, NumOps);
3823}
3824
3825SDValue
3826SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3827                                  const EVT *VTs, unsigned NumVTs,
3828                                  const SDValue *Ops, unsigned NumOps,
3829                                  EVT MemVT, const Value *srcValue, int SVOff,
3830                                  unsigned Align, bool Vol,
3831                                  bool ReadMem, bool WriteMem) {
3832  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3833                             MemVT, srcValue, SVOff, Align, Vol,
3834                             ReadMem, WriteMem);
3835}
3836
3837SDValue
3838SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3839                                  const SDValue *Ops, unsigned NumOps,
3840                                  EVT MemVT, const Value *srcValue, int SVOff,
3841                                  unsigned Align, bool Vol,
3842                                  bool ReadMem, bool WriteMem) {
3843  if (Align == 0)  // Ensure that codegen never sees alignment 0
3844    Align = getEVTAlignment(MemVT);
3845
3846  MachineFunction &MF = getMachineFunction();
3847  unsigned Flags = 0;
3848  if (WriteMem)
3849    Flags |= MachineMemOperand::MOStore;
3850  if (ReadMem)
3851    Flags |= MachineMemOperand::MOLoad;
3852  if (Vol)
3853    Flags |= MachineMemOperand::MOVolatile;
3854  MachineMemOperand *MMO =
3855    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3856                            MemVT.getStoreSize(), Align);
3857
3858  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3859}
3860
3861SDValue
3862SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3863                                  const SDValue *Ops, unsigned NumOps,
3864                                  EVT MemVT, MachineMemOperand *MMO) {
3865  assert((Opcode == ISD::INTRINSIC_VOID ||
3866          Opcode == ISD::INTRINSIC_W_CHAIN ||
3867          (Opcode <= INT_MAX &&
3868           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3869         "Opcode is not a memory-accessing opcode!");
3870
3871  // Memoize the node unless it returns a flag.
3872  MemIntrinsicSDNode *N;
3873  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3874    FoldingSetNodeID ID;
3875    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3876    void *IP = 0;
3877    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3878      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3879      return SDValue(E, 0);
3880    }
3881
3882    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3883                                               MemVT, MMO);
3884    CSEMap.InsertNode(N, IP);
3885  } else {
3886    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3887                                               MemVT, MMO);
3888  }
3889  AllNodes.push_back(N);
3890  return SDValue(N, 0);
3891}
3892
3893SDValue
3894SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3895                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3896                      SDValue Ptr, SDValue Offset,
3897                      const Value *SV, int SVOffset, EVT MemVT,
3898                      bool isVolatile, bool isNonTemporal,
3899                      unsigned Alignment) {
3900  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3901    Alignment = getEVTAlignment(VT);
3902
3903  // Check if the memory reference references a frame index
3904  if (!SV)
3905    if (const FrameIndexSDNode *FI =
3906          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3907      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3908
3909  MachineFunction &MF = getMachineFunction();
3910  unsigned Flags = MachineMemOperand::MOLoad;
3911  if (isVolatile)
3912    Flags |= MachineMemOperand::MOVolatile;
3913  if (isNonTemporal)
3914    Flags |= MachineMemOperand::MONonTemporal;
3915  MachineMemOperand *MMO =
3916    MF.getMachineMemOperand(SV, Flags, SVOffset,
3917                            MemVT.getStoreSize(), Alignment);
3918  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3919}
3920
3921SDValue
3922SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3923                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3924                      SDValue Ptr, SDValue Offset, EVT MemVT,
3925                      MachineMemOperand *MMO) {
3926  if (VT == MemVT) {
3927    ExtType = ISD::NON_EXTLOAD;
3928  } else if (ExtType == ISD::NON_EXTLOAD) {
3929    assert(VT == MemVT && "Non-extending load from different memory type!");
3930  } else {
3931    // Extending load.
3932    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3933           "Should only be an extending load, not truncating!");
3934    assert(VT.isInteger() == MemVT.isInteger() &&
3935           "Cannot convert from FP to Int or Int -> FP!");
3936    assert(VT.isVector() == MemVT.isVector() &&
3937           "Cannot use trunc store to convert to or from a vector!");
3938    assert((!VT.isVector() ||
3939            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3940           "Cannot use trunc store to change the number of vector elements!");
3941  }
3942
3943  bool Indexed = AM != ISD::UNINDEXED;
3944  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3945         "Unindexed load with an offset!");
3946
3947  SDVTList VTs = Indexed ?
3948    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3949  SDValue Ops[] = { Chain, Ptr, Offset };
3950  FoldingSetNodeID ID;
3951  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3952  ID.AddInteger(MemVT.getRawBits());
3953  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3954                                     MMO->isNonTemporal()));
3955  void *IP = 0;
3956  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3957    cast<LoadSDNode>(E)->refineAlignment(MMO);
3958    return SDValue(E, 0);
3959  }
3960  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3961                                             MemVT, MMO);
3962  CSEMap.InsertNode(N, IP);
3963  AllNodes.push_back(N);
3964  return SDValue(N, 0);
3965}
3966
3967SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3968                              SDValue Chain, SDValue Ptr,
3969                              const Value *SV, int SVOffset,
3970                              bool isVolatile, bool isNonTemporal,
3971                              unsigned Alignment) {
3972  SDValue Undef = getUNDEF(Ptr.getValueType());
3973  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3974                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3975}
3976
3977SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3978                                 SDValue Chain, SDValue Ptr,
3979                                 const Value *SV,
3980                                 int SVOffset, EVT MemVT,
3981                                 bool isVolatile, bool isNonTemporal,
3982                                 unsigned Alignment) {
3983  SDValue Undef = getUNDEF(Ptr.getValueType());
3984  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3985                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3986}
3987
3988SDValue
3989SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3990                             SDValue Offset, ISD::MemIndexedMode AM) {
3991  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3992  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3993         "Load is already a indexed load!");
3994  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3995                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3996                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3997                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3998}
3999
4000SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4001                               SDValue Ptr, const Value *SV, int SVOffset,
4002                               bool isVolatile, bool isNonTemporal,
4003                               unsigned Alignment) {
4004  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4005    Alignment = getEVTAlignment(Val.getValueType());
4006
4007  // Check if the memory reference references a frame index
4008  if (!SV)
4009    if (const FrameIndexSDNode *FI =
4010          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4011      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4012
4013  MachineFunction &MF = getMachineFunction();
4014  unsigned Flags = MachineMemOperand::MOStore;
4015  if (isVolatile)
4016    Flags |= MachineMemOperand::MOVolatile;
4017  if (isNonTemporal)
4018    Flags |= MachineMemOperand::MONonTemporal;
4019  MachineMemOperand *MMO =
4020    MF.getMachineMemOperand(SV, Flags, SVOffset,
4021                            Val.getValueType().getStoreSize(), Alignment);
4022
4023  return getStore(Chain, dl, Val, Ptr, MMO);
4024}
4025
4026SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4027                               SDValue Ptr, MachineMemOperand *MMO) {
4028  EVT VT = Val.getValueType();
4029  SDVTList VTs = getVTList(MVT::Other);
4030  SDValue Undef = getUNDEF(Ptr.getValueType());
4031  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4032  FoldingSetNodeID ID;
4033  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4034  ID.AddInteger(VT.getRawBits());
4035  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4036                                     MMO->isNonTemporal()));
4037  void *IP = 0;
4038  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4039    cast<StoreSDNode>(E)->refineAlignment(MMO);
4040    return SDValue(E, 0);
4041  }
4042  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4043                                              false, VT, MMO);
4044  CSEMap.InsertNode(N, IP);
4045  AllNodes.push_back(N);
4046  return SDValue(N, 0);
4047}
4048
4049SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4050                                    SDValue Ptr, const Value *SV,
4051                                    int SVOffset, EVT SVT,
4052                                    bool isVolatile, bool isNonTemporal,
4053                                    unsigned Alignment) {
4054  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4055    Alignment = getEVTAlignment(SVT);
4056
4057  // Check if the memory reference references a frame index
4058  if (!SV)
4059    if (const FrameIndexSDNode *FI =
4060          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4061      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4062
4063  MachineFunction &MF = getMachineFunction();
4064  unsigned Flags = MachineMemOperand::MOStore;
4065  if (isVolatile)
4066    Flags |= MachineMemOperand::MOVolatile;
4067  if (isNonTemporal)
4068    Flags |= MachineMemOperand::MONonTemporal;
4069  MachineMemOperand *MMO =
4070    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4071
4072  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4073}
4074
4075SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4076                                    SDValue Ptr, EVT SVT,
4077                                    MachineMemOperand *MMO) {
4078  EVT VT = Val.getValueType();
4079
4080  if (VT == SVT)
4081    return getStore(Chain, dl, Val, Ptr, MMO);
4082
4083  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4084         "Should only be a truncating store, not extending!");
4085  assert(VT.isInteger() == SVT.isInteger() &&
4086         "Can't do FP-INT conversion!");
4087  assert(VT.isVector() == SVT.isVector() &&
4088         "Cannot use trunc store to convert to or from a vector!");
4089  assert((!VT.isVector() ||
4090          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4091         "Cannot use trunc store to change the number of vector elements!");
4092
4093  SDVTList VTs = getVTList(MVT::Other);
4094  SDValue Undef = getUNDEF(Ptr.getValueType());
4095  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4096  FoldingSetNodeID ID;
4097  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4098  ID.AddInteger(SVT.getRawBits());
4099  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4100                                     MMO->isNonTemporal()));
4101  void *IP = 0;
4102  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4103    cast<StoreSDNode>(E)->refineAlignment(MMO);
4104    return SDValue(E, 0);
4105  }
4106  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4107                                              true, SVT, MMO);
4108  CSEMap.InsertNode(N, IP);
4109  AllNodes.push_back(N);
4110  return SDValue(N, 0);
4111}
4112
4113SDValue
4114SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4115                              SDValue Offset, ISD::MemIndexedMode AM) {
4116  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4117  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4118         "Store is already a indexed store!");
4119  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4120  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4121  FoldingSetNodeID ID;
4122  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4123  ID.AddInteger(ST->getMemoryVT().getRawBits());
4124  ID.AddInteger(ST->getRawSubclassData());
4125  void *IP = 0;
4126  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4127    return SDValue(E, 0);
4128
4129  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4130                                              ST->isTruncatingStore(),
4131                                              ST->getMemoryVT(),
4132                                              ST->getMemOperand());
4133  CSEMap.InsertNode(N, IP);
4134  AllNodes.push_back(N);
4135  return SDValue(N, 0);
4136}
4137
4138SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4139                               SDValue Chain, SDValue Ptr,
4140                               SDValue SV) {
4141  SDValue Ops[] = { Chain, Ptr, SV };
4142  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4143}
4144
4145SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4146                              const SDUse *Ops, unsigned NumOps) {
4147  switch (NumOps) {
4148  case 0: return getNode(Opcode, DL, VT);
4149  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4150  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4151  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4152  default: break;
4153  }
4154
4155  // Copy from an SDUse array into an SDValue array for use with
4156  // the regular getNode logic.
4157  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4158  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4159}
4160
4161SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4162                              const SDValue *Ops, unsigned NumOps) {
4163  switch (NumOps) {
4164  case 0: return getNode(Opcode, DL, VT);
4165  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4166  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4167  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4168  default: break;
4169  }
4170
4171  switch (Opcode) {
4172  default: break;
4173  case ISD::SELECT_CC: {
4174    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4175    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4176           "LHS and RHS of condition must have same type!");
4177    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4178           "True and False arms of SelectCC must have same type!");
4179    assert(Ops[2].getValueType() == VT &&
4180           "select_cc node must be of same type as true and false value!");
4181    break;
4182  }
4183  case ISD::BR_CC: {
4184    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4185    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4186           "LHS/RHS of comparison should match types!");
4187    break;
4188  }
4189  }
4190
4191  // Memoize nodes.
4192  SDNode *N;
4193  SDVTList VTs = getVTList(VT);
4194
4195  if (VT != MVT::Flag) {
4196    FoldingSetNodeID ID;
4197    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4198    void *IP = 0;
4199
4200    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4201      return SDValue(E, 0);
4202
4203    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4204    CSEMap.InsertNode(N, IP);
4205  } else {
4206    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4207  }
4208
4209  AllNodes.push_back(N);
4210#ifndef NDEBUG
4211  VerifyNode(N);
4212#endif
4213  return SDValue(N, 0);
4214}
4215
4216SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4217                              const std::vector<EVT> &ResultTys,
4218                              const SDValue *Ops, unsigned NumOps) {
4219  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4220                 Ops, NumOps);
4221}
4222
4223SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4224                              const EVT *VTs, unsigned NumVTs,
4225                              const SDValue *Ops, unsigned NumOps) {
4226  if (NumVTs == 1)
4227    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4228  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4229}
4230
4231SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4232                              const SDValue *Ops, unsigned NumOps) {
4233  if (VTList.NumVTs == 1)
4234    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4235
4236#if 0
4237  switch (Opcode) {
4238  // FIXME: figure out how to safely handle things like
4239  // int foo(int x) { return 1 << (x & 255); }
4240  // int bar() { return foo(256); }
4241  case ISD::SRA_PARTS:
4242  case ISD::SRL_PARTS:
4243  case ISD::SHL_PARTS:
4244    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4245        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4246      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4247    else if (N3.getOpcode() == ISD::AND)
4248      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4249        // If the and is only masking out bits that cannot effect the shift,
4250        // eliminate the and.
4251        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4252        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4253          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4254      }
4255    break;
4256  }
4257#endif
4258
4259  // Memoize the node unless it returns a flag.
4260  SDNode *N;
4261  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4262    FoldingSetNodeID ID;
4263    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4264    void *IP = 0;
4265    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4266      return SDValue(E, 0);
4267
4268    if (NumOps == 1) {
4269      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4270    } else if (NumOps == 2) {
4271      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4272    } else if (NumOps == 3) {
4273      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4274                                            Ops[2]);
4275    } else {
4276      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4277    }
4278    CSEMap.InsertNode(N, IP);
4279  } else {
4280    if (NumOps == 1) {
4281      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4282    } else if (NumOps == 2) {
4283      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4284    } else if (NumOps == 3) {
4285      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4286                                            Ops[2]);
4287    } else {
4288      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4289    }
4290  }
4291  AllNodes.push_back(N);
4292#ifndef NDEBUG
4293  VerifyNode(N);
4294#endif
4295  return SDValue(N, 0);
4296}
4297
4298SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4299  return getNode(Opcode, DL, VTList, 0, 0);
4300}
4301
4302SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4303                              SDValue N1) {
4304  SDValue Ops[] = { N1 };
4305  return getNode(Opcode, DL, VTList, Ops, 1);
4306}
4307
4308SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4309                              SDValue N1, SDValue N2) {
4310  SDValue Ops[] = { N1, N2 };
4311  return getNode(Opcode, DL, VTList, Ops, 2);
4312}
4313
4314SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4315                              SDValue N1, SDValue N2, SDValue N3) {
4316  SDValue Ops[] = { N1, N2, N3 };
4317  return getNode(Opcode, DL, VTList, Ops, 3);
4318}
4319
4320SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4321                              SDValue N1, SDValue N2, SDValue N3,
4322                              SDValue N4) {
4323  SDValue Ops[] = { N1, N2, N3, N4 };
4324  return getNode(Opcode, DL, VTList, Ops, 4);
4325}
4326
4327SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4328                              SDValue N1, SDValue N2, SDValue N3,
4329                              SDValue N4, SDValue N5) {
4330  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4331  return getNode(Opcode, DL, VTList, Ops, 5);
4332}
4333
4334SDVTList SelectionDAG::getVTList(EVT VT) {
4335  return makeVTList(SDNode::getValueTypeList(VT), 1);
4336}
4337
4338SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4339  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4340       E = VTList.rend(); I != E; ++I)
4341    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4342      return *I;
4343
4344  EVT *Array = Allocator.Allocate<EVT>(2);
4345  Array[0] = VT1;
4346  Array[1] = VT2;
4347  SDVTList Result = makeVTList(Array, 2);
4348  VTList.push_back(Result);
4349  return Result;
4350}
4351
4352SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4353  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4354       E = VTList.rend(); I != E; ++I)
4355    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4356                          I->VTs[2] == VT3)
4357      return *I;
4358
4359  EVT *Array = Allocator.Allocate<EVT>(3);
4360  Array[0] = VT1;
4361  Array[1] = VT2;
4362  Array[2] = VT3;
4363  SDVTList Result = makeVTList(Array, 3);
4364  VTList.push_back(Result);
4365  return Result;
4366}
4367
4368SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4369  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4370       E = VTList.rend(); I != E; ++I)
4371    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4372                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4373      return *I;
4374
4375  EVT *Array = Allocator.Allocate<EVT>(4);
4376  Array[0] = VT1;
4377  Array[1] = VT2;
4378  Array[2] = VT3;
4379  Array[3] = VT4;
4380  SDVTList Result = makeVTList(Array, 4);
4381  VTList.push_back(Result);
4382  return Result;
4383}
4384
4385SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4386  switch (NumVTs) {
4387    case 0: llvm_unreachable("Cannot have nodes without results!");
4388    case 1: return getVTList(VTs[0]);
4389    case 2: return getVTList(VTs[0], VTs[1]);
4390    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4391    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4392    default: break;
4393  }
4394
4395  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4396       E = VTList.rend(); I != E; ++I) {
4397    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4398      continue;
4399
4400    bool NoMatch = false;
4401    for (unsigned i = 2; i != NumVTs; ++i)
4402      if (VTs[i] != I->VTs[i]) {
4403        NoMatch = true;
4404        break;
4405      }
4406    if (!NoMatch)
4407      return *I;
4408  }
4409
4410  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4411  std::copy(VTs, VTs+NumVTs, Array);
4412  SDVTList Result = makeVTList(Array, NumVTs);
4413  VTList.push_back(Result);
4414  return Result;
4415}
4416
4417
4418/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4419/// specified operands.  If the resultant node already exists in the DAG,
4420/// this does not modify the specified node, instead it returns the node that
4421/// already exists.  If the resultant node does not exist in the DAG, the
4422/// input node is returned.  As a degenerate case, if you specify the same
4423/// input operands as the node already has, the input node is returned.
4424SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4425  SDNode *N = InN.getNode();
4426  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4427
4428  // Check to see if there is no change.
4429  if (Op == N->getOperand(0)) return InN;
4430
4431  // See if the modified node already exists.
4432  void *InsertPos = 0;
4433  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4434    return SDValue(Existing, InN.getResNo());
4435
4436  // Nope it doesn't.  Remove the node from its current place in the maps.
4437  if (InsertPos)
4438    if (!RemoveNodeFromCSEMaps(N))
4439      InsertPos = 0;
4440
4441  // Now we update the operands.
4442  N->OperandList[0].set(Op);
4443
4444  // If this gets put into a CSE map, add it.
4445  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4446  return InN;
4447}
4448
4449SDValue SelectionDAG::
4450UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4451  SDNode *N = InN.getNode();
4452  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4453
4454  // Check to see if there is no change.
4455  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4456    return InN;   // No operands changed, just return the input node.
4457
4458  // See if the modified node already exists.
4459  void *InsertPos = 0;
4460  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4461    return SDValue(Existing, InN.getResNo());
4462
4463  // Nope it doesn't.  Remove the node from its current place in the maps.
4464  if (InsertPos)
4465    if (!RemoveNodeFromCSEMaps(N))
4466      InsertPos = 0;
4467
4468  // Now we update the operands.
4469  if (N->OperandList[0] != Op1)
4470    N->OperandList[0].set(Op1);
4471  if (N->OperandList[1] != Op2)
4472    N->OperandList[1].set(Op2);
4473
4474  // If this gets put into a CSE map, add it.
4475  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4476  return InN;
4477}
4478
4479SDValue SelectionDAG::
4480UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4481  SDValue Ops[] = { Op1, Op2, Op3 };
4482  return UpdateNodeOperands(N, Ops, 3);
4483}
4484
4485SDValue SelectionDAG::
4486UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4487                   SDValue Op3, SDValue Op4) {
4488  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4489  return UpdateNodeOperands(N, Ops, 4);
4490}
4491
4492SDValue SelectionDAG::
4493UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4494                   SDValue Op3, SDValue Op4, SDValue Op5) {
4495  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4496  return UpdateNodeOperands(N, Ops, 5);
4497}
4498
4499SDValue SelectionDAG::
4500UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4501  SDNode *N = InN.getNode();
4502  assert(N->getNumOperands() == NumOps &&
4503         "Update with wrong number of operands");
4504
4505  // Check to see if there is no change.
4506  bool AnyChange = false;
4507  for (unsigned i = 0; i != NumOps; ++i) {
4508    if (Ops[i] != N->getOperand(i)) {
4509      AnyChange = true;
4510      break;
4511    }
4512  }
4513
4514  // No operands changed, just return the input node.
4515  if (!AnyChange) return InN;
4516
4517  // See if the modified node already exists.
4518  void *InsertPos = 0;
4519  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4520    return SDValue(Existing, InN.getResNo());
4521
4522  // Nope it doesn't.  Remove the node from its current place in the maps.
4523  if (InsertPos)
4524    if (!RemoveNodeFromCSEMaps(N))
4525      InsertPos = 0;
4526
4527  // Now we update the operands.
4528  for (unsigned i = 0; i != NumOps; ++i)
4529    if (N->OperandList[i] != Ops[i])
4530      N->OperandList[i].set(Ops[i]);
4531
4532  // If this gets put into a CSE map, add it.
4533  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4534  return InN;
4535}
4536
4537/// DropOperands - Release the operands and set this node to have
4538/// zero operands.
4539void SDNode::DropOperands() {
4540  // Unlike the code in MorphNodeTo that does this, we don't need to
4541  // watch for dead nodes here.
4542  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4543    SDUse &Use = *I++;
4544    Use.set(SDValue());
4545  }
4546}
4547
4548/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4549/// machine opcode.
4550///
4551SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4552                                   EVT VT) {
4553  SDVTList VTs = getVTList(VT);
4554  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4555}
4556
4557SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4558                                   EVT VT, SDValue Op1) {
4559  SDVTList VTs = getVTList(VT);
4560  SDValue Ops[] = { Op1 };
4561  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4562}
4563
4564SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4565                                   EVT VT, SDValue Op1,
4566                                   SDValue Op2) {
4567  SDVTList VTs = getVTList(VT);
4568  SDValue Ops[] = { Op1, Op2 };
4569  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4570}
4571
4572SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4573                                   EVT VT, SDValue Op1,
4574                                   SDValue Op2, SDValue Op3) {
4575  SDVTList VTs = getVTList(VT);
4576  SDValue Ops[] = { Op1, Op2, Op3 };
4577  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4578}
4579
4580SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4581                                   EVT VT, const SDValue *Ops,
4582                                   unsigned NumOps) {
4583  SDVTList VTs = getVTList(VT);
4584  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4585}
4586
4587SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4588                                   EVT VT1, EVT VT2, const SDValue *Ops,
4589                                   unsigned NumOps) {
4590  SDVTList VTs = getVTList(VT1, VT2);
4591  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4592}
4593
4594SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4595                                   EVT VT1, EVT VT2) {
4596  SDVTList VTs = getVTList(VT1, VT2);
4597  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4598}
4599
4600SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4601                                   EVT VT1, EVT VT2, EVT VT3,
4602                                   const SDValue *Ops, unsigned NumOps) {
4603  SDVTList VTs = getVTList(VT1, VT2, VT3);
4604  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4605}
4606
4607SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4608                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4609                                   const SDValue *Ops, unsigned NumOps) {
4610  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4611  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4612}
4613
4614SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4615                                   EVT VT1, EVT VT2,
4616                                   SDValue Op1) {
4617  SDVTList VTs = getVTList(VT1, VT2);
4618  SDValue Ops[] = { Op1 };
4619  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4620}
4621
4622SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4623                                   EVT VT1, EVT VT2,
4624                                   SDValue Op1, SDValue Op2) {
4625  SDVTList VTs = getVTList(VT1, VT2);
4626  SDValue Ops[] = { Op1, Op2 };
4627  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4628}
4629
4630SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4631                                   EVT VT1, EVT VT2,
4632                                   SDValue Op1, SDValue Op2,
4633                                   SDValue Op3) {
4634  SDVTList VTs = getVTList(VT1, VT2);
4635  SDValue Ops[] = { Op1, Op2, Op3 };
4636  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4637}
4638
4639SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4640                                   EVT VT1, EVT VT2, EVT VT3,
4641                                   SDValue Op1, SDValue Op2,
4642                                   SDValue Op3) {
4643  SDVTList VTs = getVTList(VT1, VT2, VT3);
4644  SDValue Ops[] = { Op1, Op2, Op3 };
4645  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4646}
4647
4648SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4649                                   SDVTList VTs, const SDValue *Ops,
4650                                   unsigned NumOps) {
4651  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4652  // Reset the NodeID to -1.
4653  N->setNodeId(-1);
4654  return N;
4655}
4656
4657/// MorphNodeTo - This *mutates* the specified node to have the specified
4658/// return type, opcode, and operands.
4659///
4660/// Note that MorphNodeTo returns the resultant node.  If there is already a
4661/// node of the specified opcode and operands, it returns that node instead of
4662/// the current one.  Note that the DebugLoc need not be the same.
4663///
4664/// Using MorphNodeTo is faster than creating a new node and swapping it in
4665/// with ReplaceAllUsesWith both because it often avoids allocating a new
4666/// node, and because it doesn't require CSE recalculation for any of
4667/// the node's users.
4668///
4669SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4670                                  SDVTList VTs, const SDValue *Ops,
4671                                  unsigned NumOps) {
4672  // If an identical node already exists, use it.
4673  void *IP = 0;
4674  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4675    FoldingSetNodeID ID;
4676    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4677    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4678      return ON;
4679  }
4680
4681  if (!RemoveNodeFromCSEMaps(N))
4682    IP = 0;
4683
4684  // Start the morphing.
4685  N->NodeType = Opc;
4686  N->ValueList = VTs.VTs;
4687  N->NumValues = VTs.NumVTs;
4688
4689  // Clear the operands list, updating used nodes to remove this from their
4690  // use list.  Keep track of any operands that become dead as a result.
4691  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4692  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4693    SDUse &Use = *I++;
4694    SDNode *Used = Use.getNode();
4695    Use.set(SDValue());
4696    if (Used->use_empty())
4697      DeadNodeSet.insert(Used);
4698  }
4699
4700  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4701    // Initialize the memory references information.
4702    MN->setMemRefs(0, 0);
4703    // If NumOps is larger than the # of operands we can have in a
4704    // MachineSDNode, reallocate the operand list.
4705    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4706      if (MN->OperandsNeedDelete)
4707        delete[] MN->OperandList;
4708      if (NumOps > array_lengthof(MN->LocalOperands))
4709        // We're creating a final node that will live unmorphed for the
4710        // remainder of the current SelectionDAG iteration, so we can allocate
4711        // the operands directly out of a pool with no recycling metadata.
4712        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4713                         Ops, NumOps);
4714      else
4715        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4716      MN->OperandsNeedDelete = false;
4717    } else
4718      MN->InitOperands(MN->OperandList, Ops, NumOps);
4719  } else {
4720    // If NumOps is larger than the # of operands we currently have, reallocate
4721    // the operand list.
4722    if (NumOps > N->NumOperands) {
4723      if (N->OperandsNeedDelete)
4724        delete[] N->OperandList;
4725      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4726      N->OperandsNeedDelete = true;
4727    } else
4728      N->InitOperands(N->OperandList, Ops, NumOps);
4729  }
4730
4731  // Delete any nodes that are still dead after adding the uses for the
4732  // new operands.
4733  if (!DeadNodeSet.empty()) {
4734    SmallVector<SDNode *, 16> DeadNodes;
4735    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4736         E = DeadNodeSet.end(); I != E; ++I)
4737      if ((*I)->use_empty())
4738        DeadNodes.push_back(*I);
4739    RemoveDeadNodes(DeadNodes);
4740  }
4741
4742  if (IP)
4743    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4744  return N;
4745}
4746
4747
4748/// getMachineNode - These are used for target selectors to create a new node
4749/// with specified return type(s), MachineInstr opcode, and operands.
4750///
4751/// Note that getMachineNode returns the resultant node.  If there is already a
4752/// node of the specified opcode and operands, it returns that node instead of
4753/// the current one.
4754MachineSDNode *
4755SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4756  SDVTList VTs = getVTList(VT);
4757  return getMachineNode(Opcode, dl, VTs, 0, 0);
4758}
4759
4760MachineSDNode *
4761SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4762  SDVTList VTs = getVTList(VT);
4763  SDValue Ops[] = { Op1 };
4764  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4765}
4766
4767MachineSDNode *
4768SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4769                             SDValue Op1, SDValue Op2) {
4770  SDVTList VTs = getVTList(VT);
4771  SDValue Ops[] = { Op1, Op2 };
4772  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4773}
4774
4775MachineSDNode *
4776SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4777                             SDValue Op1, SDValue Op2, SDValue Op3) {
4778  SDVTList VTs = getVTList(VT);
4779  SDValue Ops[] = { Op1, Op2, Op3 };
4780  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4781}
4782
4783MachineSDNode *
4784SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4785                             const SDValue *Ops, unsigned NumOps) {
4786  SDVTList VTs = getVTList(VT);
4787  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4788}
4789
4790MachineSDNode *
4791SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4792  SDVTList VTs = getVTList(VT1, VT2);
4793  return getMachineNode(Opcode, dl, VTs, 0, 0);
4794}
4795
4796MachineSDNode *
4797SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4798                             EVT VT1, EVT VT2, SDValue Op1) {
4799  SDVTList VTs = getVTList(VT1, VT2);
4800  SDValue Ops[] = { Op1 };
4801  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4802}
4803
4804MachineSDNode *
4805SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4806                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4807  SDVTList VTs = getVTList(VT1, VT2);
4808  SDValue Ops[] = { Op1, Op2 };
4809  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4810}
4811
4812MachineSDNode *
4813SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4814                             EVT VT1, EVT VT2, SDValue Op1,
4815                             SDValue Op2, SDValue Op3) {
4816  SDVTList VTs = getVTList(VT1, VT2);
4817  SDValue Ops[] = { Op1, Op2, Op3 };
4818  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4819}
4820
4821MachineSDNode *
4822SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4823                             EVT VT1, EVT VT2,
4824                             const SDValue *Ops, unsigned NumOps) {
4825  SDVTList VTs = getVTList(VT1, VT2);
4826  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4827}
4828
4829MachineSDNode *
4830SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4831                             EVT VT1, EVT VT2, EVT VT3,
4832                             SDValue Op1, SDValue Op2) {
4833  SDVTList VTs = getVTList(VT1, VT2, VT3);
4834  SDValue Ops[] = { Op1, Op2 };
4835  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4836}
4837
4838MachineSDNode *
4839SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4840                             EVT VT1, EVT VT2, EVT VT3,
4841                             SDValue Op1, SDValue Op2, SDValue Op3) {
4842  SDVTList VTs = getVTList(VT1, VT2, VT3);
4843  SDValue Ops[] = { Op1, Op2, Op3 };
4844  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4845}
4846
4847MachineSDNode *
4848SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4849                             EVT VT1, EVT VT2, EVT VT3,
4850                             const SDValue *Ops, unsigned NumOps) {
4851  SDVTList VTs = getVTList(VT1, VT2, VT3);
4852  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4853}
4854
4855MachineSDNode *
4856SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4857                             EVT VT2, EVT VT3, EVT VT4,
4858                             const SDValue *Ops, unsigned NumOps) {
4859  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4860  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4861}
4862
4863MachineSDNode *
4864SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4865                             const std::vector<EVT> &ResultTys,
4866                             const SDValue *Ops, unsigned NumOps) {
4867  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4868  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4869}
4870
4871MachineSDNode *
4872SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4873                             const SDValue *Ops, unsigned NumOps) {
4874  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4875  MachineSDNode *N;
4876  void *IP;
4877
4878  if (DoCSE) {
4879    FoldingSetNodeID ID;
4880    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4881    IP = 0;
4882    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4883      return cast<MachineSDNode>(E);
4884  }
4885
4886  // Allocate a new MachineSDNode.
4887  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4888
4889  // Initialize the operands list.
4890  if (NumOps > array_lengthof(N->LocalOperands))
4891    // We're creating a final node that will live unmorphed for the
4892    // remainder of the current SelectionDAG iteration, so we can allocate
4893    // the operands directly out of a pool with no recycling metadata.
4894    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4895                    Ops, NumOps);
4896  else
4897    N->InitOperands(N->LocalOperands, Ops, NumOps);
4898  N->OperandsNeedDelete = false;
4899
4900  if (DoCSE)
4901    CSEMap.InsertNode(N, IP);
4902
4903  AllNodes.push_back(N);
4904#ifndef NDEBUG
4905  VerifyNode(N);
4906#endif
4907  return N;
4908}
4909
4910/// getTargetExtractSubreg - A convenience function for creating
4911/// TargetOpcode::EXTRACT_SUBREG nodes.
4912SDValue
4913SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4914                                     SDValue Operand) {
4915  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4916  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4917                                  VT, Operand, SRIdxVal);
4918  return SDValue(Subreg, 0);
4919}
4920
4921/// getTargetInsertSubreg - A convenience function for creating
4922/// TargetOpcode::INSERT_SUBREG nodes.
4923SDValue
4924SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4925                                    SDValue Operand, SDValue Subreg) {
4926  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4927  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4928                                  VT, Operand, Subreg, SRIdxVal);
4929  return SDValue(Result, 0);
4930}
4931
4932/// getNodeIfExists - Get the specified node if it's already available, or
4933/// else return NULL.
4934SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4935                                      const SDValue *Ops, unsigned NumOps) {
4936  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4937    FoldingSetNodeID ID;
4938    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4939    void *IP = 0;
4940    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4941      return E;
4942  }
4943  return NULL;
4944}
4945
4946/// getDbgValue - Creates a SDDbgValue node.
4947///
4948SDDbgValue *
4949SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4950                          DebugLoc DL, unsigned O) {
4951  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4952}
4953
4954SDDbgValue *
4955SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4956                          DebugLoc DL, unsigned O) {
4957  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4958}
4959
4960SDDbgValue *
4961SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4962                          DebugLoc DL, unsigned O) {
4963  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4964}
4965
4966namespace {
4967
4968/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4969/// pointed to by a use iterator is deleted, increment the use iterator
4970/// so that it doesn't dangle.
4971///
4972/// This class also manages a "downlink" DAGUpdateListener, to forward
4973/// messages to ReplaceAllUsesWith's callers.
4974///
4975class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4976  SelectionDAG::DAGUpdateListener *DownLink;
4977  SDNode::use_iterator &UI;
4978  SDNode::use_iterator &UE;
4979
4980  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4981    // Increment the iterator as needed.
4982    while (UI != UE && N == *UI)
4983      ++UI;
4984
4985    // Then forward the message.
4986    if (DownLink) DownLink->NodeDeleted(N, E);
4987  }
4988
4989  virtual void NodeUpdated(SDNode *N) {
4990    // Just forward the message.
4991    if (DownLink) DownLink->NodeUpdated(N);
4992  }
4993
4994public:
4995  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4996                     SDNode::use_iterator &ui,
4997                     SDNode::use_iterator &ue)
4998    : DownLink(dl), UI(ui), UE(ue) {}
4999};
5000
5001}
5002
5003/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5004/// This can cause recursive merging of nodes in the DAG.
5005///
5006/// This version assumes From has a single result value.
5007///
5008void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5009                                      DAGUpdateListener *UpdateListener) {
5010  SDNode *From = FromN.getNode();
5011  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5012         "Cannot replace with this method!");
5013  assert(From != To.getNode() && "Cannot replace uses of with self");
5014
5015  // Iterate over all the existing uses of From. New uses will be added
5016  // to the beginning of the use list, which we avoid visiting.
5017  // This specifically avoids visiting uses of From that arise while the
5018  // replacement is happening, because any such uses would be the result
5019  // of CSE: If an existing node looks like From after one of its operands
5020  // is replaced by To, we don't want to replace of all its users with To
5021  // too. See PR3018 for more info.
5022  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5023  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5024  while (UI != UE) {
5025    SDNode *User = *UI;
5026
5027    // This node is about to morph, remove its old self from the CSE maps.
5028    RemoveNodeFromCSEMaps(User);
5029
5030    // A user can appear in a use list multiple times, and when this
5031    // happens the uses are usually next to each other in the list.
5032    // To help reduce the number of CSE recomputations, process all
5033    // the uses of this user that we can find this way.
5034    do {
5035      SDUse &Use = UI.getUse();
5036      ++UI;
5037      Use.set(To);
5038    } while (UI != UE && *UI == User);
5039
5040    // Now that we have modified User, add it back to the CSE maps.  If it
5041    // already exists there, recursively merge the results together.
5042    AddModifiedNodeToCSEMaps(User, &Listener);
5043  }
5044}
5045
5046/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5047/// This can cause recursive merging of nodes in the DAG.
5048///
5049/// This version assumes that for each value of From, there is a
5050/// corresponding value in To in the same position with the same type.
5051///
5052void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5053                                      DAGUpdateListener *UpdateListener) {
5054#ifndef NDEBUG
5055  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5056    assert((!From->hasAnyUseOfValue(i) ||
5057            From->getValueType(i) == To->getValueType(i)) &&
5058           "Cannot use this version of ReplaceAllUsesWith!");
5059#endif
5060
5061  // Handle the trivial case.
5062  if (From == To)
5063    return;
5064
5065  // Iterate over just the existing users of From. See the comments in
5066  // the ReplaceAllUsesWith above.
5067  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5068  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5069  while (UI != UE) {
5070    SDNode *User = *UI;
5071
5072    // This node is about to morph, remove its old self from the CSE maps.
5073    RemoveNodeFromCSEMaps(User);
5074
5075    // A user can appear in a use list multiple times, and when this
5076    // happens the uses are usually next to each other in the list.
5077    // To help reduce the number of CSE recomputations, process all
5078    // the uses of this user that we can find this way.
5079    do {
5080      SDUse &Use = UI.getUse();
5081      ++UI;
5082      Use.setNode(To);
5083    } while (UI != UE && *UI == User);
5084
5085    // Now that we have modified User, add it back to the CSE maps.  If it
5086    // already exists there, recursively merge the results together.
5087    AddModifiedNodeToCSEMaps(User, &Listener);
5088  }
5089}
5090
5091/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5092/// This can cause recursive merging of nodes in the DAG.
5093///
5094/// This version can replace From with any result values.  To must match the
5095/// number and types of values returned by From.
5096void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5097                                      const SDValue *To,
5098                                      DAGUpdateListener *UpdateListener) {
5099  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5100    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5101
5102  // Iterate over just the existing users of From. See the comments in
5103  // the ReplaceAllUsesWith above.
5104  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5105  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5106  while (UI != UE) {
5107    SDNode *User = *UI;
5108
5109    // This node is about to morph, remove its old self from the CSE maps.
5110    RemoveNodeFromCSEMaps(User);
5111
5112    // A user can appear in a use list multiple times, and when this
5113    // happens the uses are usually next to each other in the list.
5114    // To help reduce the number of CSE recomputations, process all
5115    // the uses of this user that we can find this way.
5116    do {
5117      SDUse &Use = UI.getUse();
5118      const SDValue &ToOp = To[Use.getResNo()];
5119      ++UI;
5120      Use.set(ToOp);
5121    } while (UI != UE && *UI == User);
5122
5123    // Now that we have modified User, add it back to the CSE maps.  If it
5124    // already exists there, recursively merge the results together.
5125    AddModifiedNodeToCSEMaps(User, &Listener);
5126  }
5127}
5128
5129/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5130/// uses of other values produced by From.getNode() alone.  The Deleted
5131/// vector is handled the same way as for ReplaceAllUsesWith.
5132void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5133                                             DAGUpdateListener *UpdateListener){
5134  // Handle the really simple, really trivial case efficiently.
5135  if (From == To) return;
5136
5137  // Handle the simple, trivial, case efficiently.
5138  if (From.getNode()->getNumValues() == 1) {
5139    ReplaceAllUsesWith(From, To, UpdateListener);
5140    return;
5141  }
5142
5143  // Iterate over just the existing users of From. See the comments in
5144  // the ReplaceAllUsesWith above.
5145  SDNode::use_iterator UI = From.getNode()->use_begin(),
5146                       UE = From.getNode()->use_end();
5147  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5148  while (UI != UE) {
5149    SDNode *User = *UI;
5150    bool UserRemovedFromCSEMaps = false;
5151
5152    // A user can appear in a use list multiple times, and when this
5153    // happens the uses are usually next to each other in the list.
5154    // To help reduce the number of CSE recomputations, process all
5155    // the uses of this user that we can find this way.
5156    do {
5157      SDUse &Use = UI.getUse();
5158
5159      // Skip uses of different values from the same node.
5160      if (Use.getResNo() != From.getResNo()) {
5161        ++UI;
5162        continue;
5163      }
5164
5165      // If this node hasn't been modified yet, it's still in the CSE maps,
5166      // so remove its old self from the CSE maps.
5167      if (!UserRemovedFromCSEMaps) {
5168        RemoveNodeFromCSEMaps(User);
5169        UserRemovedFromCSEMaps = true;
5170      }
5171
5172      ++UI;
5173      Use.set(To);
5174    } while (UI != UE && *UI == User);
5175
5176    // We are iterating over all uses of the From node, so if a use
5177    // doesn't use the specific value, no changes are made.
5178    if (!UserRemovedFromCSEMaps)
5179      continue;
5180
5181    // Now that we have modified User, add it back to the CSE maps.  If it
5182    // already exists there, recursively merge the results together.
5183    AddModifiedNodeToCSEMaps(User, &Listener);
5184  }
5185}
5186
5187namespace {
5188  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5189  /// to record information about a use.
5190  struct UseMemo {
5191    SDNode *User;
5192    unsigned Index;
5193    SDUse *Use;
5194  };
5195
5196  /// operator< - Sort Memos by User.
5197  bool operator<(const UseMemo &L, const UseMemo &R) {
5198    return (intptr_t)L.User < (intptr_t)R.User;
5199  }
5200}
5201
5202/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5203/// uses of other values produced by From.getNode() alone.  The same value
5204/// may appear in both the From and To list.  The Deleted vector is
5205/// handled the same way as for ReplaceAllUsesWith.
5206void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5207                                              const SDValue *To,
5208                                              unsigned Num,
5209                                              DAGUpdateListener *UpdateListener){
5210  // Handle the simple, trivial case efficiently.
5211  if (Num == 1)
5212    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5213
5214  // Read up all the uses and make records of them. This helps
5215  // processing new uses that are introduced during the
5216  // replacement process.
5217  SmallVector<UseMemo, 4> Uses;
5218  for (unsigned i = 0; i != Num; ++i) {
5219    unsigned FromResNo = From[i].getResNo();
5220    SDNode *FromNode = From[i].getNode();
5221    for (SDNode::use_iterator UI = FromNode->use_begin(),
5222         E = FromNode->use_end(); UI != E; ++UI) {
5223      SDUse &Use = UI.getUse();
5224      if (Use.getResNo() == FromResNo) {
5225        UseMemo Memo = { *UI, i, &Use };
5226        Uses.push_back(Memo);
5227      }
5228    }
5229  }
5230
5231  // Sort the uses, so that all the uses from a given User are together.
5232  std::sort(Uses.begin(), Uses.end());
5233
5234  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5235       UseIndex != UseIndexEnd; ) {
5236    // We know that this user uses some value of From.  If it is the right
5237    // value, update it.
5238    SDNode *User = Uses[UseIndex].User;
5239
5240    // This node is about to morph, remove its old self from the CSE maps.
5241    RemoveNodeFromCSEMaps(User);
5242
5243    // The Uses array is sorted, so all the uses for a given User
5244    // are next to each other in the list.
5245    // To help reduce the number of CSE recomputations, process all
5246    // the uses of this user that we can find this way.
5247    do {
5248      unsigned i = Uses[UseIndex].Index;
5249      SDUse &Use = *Uses[UseIndex].Use;
5250      ++UseIndex;
5251
5252      Use.set(To[i]);
5253    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5254
5255    // Now that we have modified User, add it back to the CSE maps.  If it
5256    // already exists there, recursively merge the results together.
5257    AddModifiedNodeToCSEMaps(User, UpdateListener);
5258  }
5259}
5260
5261/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5262/// based on their topological order. It returns the maximum id and a vector
5263/// of the SDNodes* in assigned order by reference.
5264unsigned SelectionDAG::AssignTopologicalOrder() {
5265
5266  unsigned DAGSize = 0;
5267
5268  // SortedPos tracks the progress of the algorithm. Nodes before it are
5269  // sorted, nodes after it are unsorted. When the algorithm completes
5270  // it is at the end of the list.
5271  allnodes_iterator SortedPos = allnodes_begin();
5272
5273  // Visit all the nodes. Move nodes with no operands to the front of
5274  // the list immediately. Annotate nodes that do have operands with their
5275  // operand count. Before we do this, the Node Id fields of the nodes
5276  // may contain arbitrary values. After, the Node Id fields for nodes
5277  // before SortedPos will contain the topological sort index, and the
5278  // Node Id fields for nodes At SortedPos and after will contain the
5279  // count of outstanding operands.
5280  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5281    SDNode *N = I++;
5282    checkForCycles(N);
5283    unsigned Degree = N->getNumOperands();
5284    if (Degree == 0) {
5285      // A node with no uses, add it to the result array immediately.
5286      N->setNodeId(DAGSize++);
5287      allnodes_iterator Q = N;
5288      if (Q != SortedPos)
5289        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5290      assert(SortedPos != AllNodes.end() && "Overran node list");
5291      ++SortedPos;
5292    } else {
5293      // Temporarily use the Node Id as scratch space for the degree count.
5294      N->setNodeId(Degree);
5295    }
5296  }
5297
5298  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5299  // such that by the time the end is reached all nodes will be sorted.
5300  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5301    SDNode *N = I;
5302    checkForCycles(N);
5303    // N is in sorted position, so all its uses have one less operand
5304    // that needs to be sorted.
5305    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5306         UI != UE; ++UI) {
5307      SDNode *P = *UI;
5308      unsigned Degree = P->getNodeId();
5309      assert(Degree != 0 && "Invalid node degree");
5310      --Degree;
5311      if (Degree == 0) {
5312        // All of P's operands are sorted, so P may sorted now.
5313        P->setNodeId(DAGSize++);
5314        if (P != SortedPos)
5315          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5316        assert(SortedPos != AllNodes.end() && "Overran node list");
5317        ++SortedPos;
5318      } else {
5319        // Update P's outstanding operand count.
5320        P->setNodeId(Degree);
5321      }
5322    }
5323    if (I == SortedPos) {
5324#ifndef NDEBUG
5325      SDNode *S = ++I;
5326      dbgs() << "Overran sorted position:\n";
5327      S->dumprFull();
5328#endif
5329      llvm_unreachable(0);
5330    }
5331  }
5332
5333  assert(SortedPos == AllNodes.end() &&
5334         "Topological sort incomplete!");
5335  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5336         "First node in topological sort is not the entry token!");
5337  assert(AllNodes.front().getNodeId() == 0 &&
5338         "First node in topological sort has non-zero id!");
5339  assert(AllNodes.front().getNumOperands() == 0 &&
5340         "First node in topological sort has operands!");
5341  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5342         "Last node in topologic sort has unexpected id!");
5343  assert(AllNodes.back().use_empty() &&
5344         "Last node in topologic sort has users!");
5345  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5346  return DAGSize;
5347}
5348
5349/// AssignOrdering - Assign an order to the SDNode.
5350void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5351  assert(SD && "Trying to assign an order to a null node!");
5352  Ordering->add(SD, Order);
5353}
5354
5355/// GetOrdering - Get the order for the SDNode.
5356unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5357  assert(SD && "Trying to get the order of a null node!");
5358  return Ordering->getOrder(SD);
5359}
5360
5361/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5362/// value is produced by SD.
5363void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5364  DbgInfo->add(DB, SD, isParameter);
5365  if (SD)
5366    SD->setHasDebugValue(true);
5367}
5368
5369//===----------------------------------------------------------------------===//
5370//                              SDNode Class
5371//===----------------------------------------------------------------------===//
5372
5373HandleSDNode::~HandleSDNode() {
5374  DropOperands();
5375}
5376
5377GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5378                                         EVT VT, int64_t o, unsigned char TF)
5379  : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5380  TheGlobal = GA;
5381}
5382
5383MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5384                     MachineMemOperand *mmo)
5385 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5386  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5387                                      MMO->isNonTemporal());
5388  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5389  assert(isNonTemporal() == MMO->isNonTemporal() &&
5390         "Non-temporal encoding error!");
5391  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5392}
5393
5394MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5395                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5396                     MachineMemOperand *mmo)
5397   : SDNode(Opc, dl, VTs, Ops, NumOps),
5398     MemoryVT(memvt), MMO(mmo) {
5399  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5400                                      MMO->isNonTemporal());
5401  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5402  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5403}
5404
5405/// Profile - Gather unique data for the node.
5406///
5407void SDNode::Profile(FoldingSetNodeID &ID) const {
5408  AddNodeIDNode(ID, this);
5409}
5410
5411namespace {
5412  struct EVTArray {
5413    std::vector<EVT> VTs;
5414
5415    EVTArray() {
5416      VTs.reserve(MVT::LAST_VALUETYPE);
5417      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5418        VTs.push_back(MVT((MVT::SimpleValueType)i));
5419    }
5420  };
5421}
5422
5423static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5424static ManagedStatic<EVTArray> SimpleVTArray;
5425static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5426
5427/// getValueTypeList - Return a pointer to the specified value type.
5428///
5429const EVT *SDNode::getValueTypeList(EVT VT) {
5430  if (VT.isExtended()) {
5431    sys::SmartScopedLock<true> Lock(*VTMutex);
5432    return &(*EVTs->insert(VT).first);
5433  } else {
5434    assert(VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
5435           "Value type out of range!");
5436    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5437  }
5438}
5439
5440/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5441/// indicated value.  This method ignores uses of other values defined by this
5442/// operation.
5443bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5444  assert(Value < getNumValues() && "Bad value!");
5445
5446  // TODO: Only iterate over uses of a given value of the node
5447  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5448    if (UI.getUse().getResNo() == Value) {
5449      if (NUses == 0)
5450        return false;
5451      --NUses;
5452    }
5453  }
5454
5455  // Found exactly the right number of uses?
5456  return NUses == 0;
5457}
5458
5459
5460/// hasAnyUseOfValue - Return true if there are any use of the indicated
5461/// value. This method ignores uses of other values defined by this operation.
5462bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5463  assert(Value < getNumValues() && "Bad value!");
5464
5465  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5466    if (UI.getUse().getResNo() == Value)
5467      return true;
5468
5469  return false;
5470}
5471
5472
5473/// isOnlyUserOf - Return true if this node is the only use of N.
5474///
5475bool SDNode::isOnlyUserOf(SDNode *N) const {
5476  bool Seen = false;
5477  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5478    SDNode *User = *I;
5479    if (User == this)
5480      Seen = true;
5481    else
5482      return false;
5483  }
5484
5485  return Seen;
5486}
5487
5488/// isOperand - Return true if this node is an operand of N.
5489///
5490bool SDValue::isOperandOf(SDNode *N) const {
5491  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5492    if (*this == N->getOperand(i))
5493      return true;
5494  return false;
5495}
5496
5497bool SDNode::isOperandOf(SDNode *N) const {
5498  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5499    if (this == N->OperandList[i].getNode())
5500      return true;
5501  return false;
5502}
5503
5504/// reachesChainWithoutSideEffects - Return true if this operand (which must
5505/// be a chain) reaches the specified operand without crossing any
5506/// side-effecting instructions.  In practice, this looks through token
5507/// factors and non-volatile loads.  In order to remain efficient, this only
5508/// looks a couple of nodes in, it does not do an exhaustive search.
5509bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5510                                               unsigned Depth) const {
5511  if (*this == Dest) return true;
5512
5513  // Don't search too deeply, we just want to be able to see through
5514  // TokenFactor's etc.
5515  if (Depth == 0) return false;
5516
5517  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5518  // of the operands of the TF reach dest, then we can do the xform.
5519  if (getOpcode() == ISD::TokenFactor) {
5520    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5521      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5522        return true;
5523    return false;
5524  }
5525
5526  // Loads don't have side effects, look through them.
5527  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5528    if (!Ld->isVolatile())
5529      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5530  }
5531  return false;
5532}
5533
5534/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5535/// is either an operand of N or it can be reached by traversing up the operands.
5536/// NOTE: this is an expensive method. Use it carefully.
5537bool SDNode::isPredecessorOf(SDNode *N) const {
5538  SmallPtrSet<SDNode *, 32> Visited;
5539  SmallVector<SDNode *, 16> Worklist;
5540  Worklist.push_back(N);
5541
5542  do {
5543    N = Worklist.pop_back_val();
5544    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5545      SDNode *Op = N->getOperand(i).getNode();
5546      if (Op == this)
5547        return true;
5548      if (Visited.insert(Op))
5549        Worklist.push_back(Op);
5550    }
5551  } while (!Worklist.empty());
5552
5553  return false;
5554}
5555
5556uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5557  assert(Num < NumOperands && "Invalid child # of SDNode!");
5558  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5559}
5560
5561std::string SDNode::getOperationName(const SelectionDAG *G) const {
5562  switch (getOpcode()) {
5563  default:
5564    if (getOpcode() < ISD::BUILTIN_OP_END)
5565      return "<<Unknown DAG Node>>";
5566    if (isMachineOpcode()) {
5567      if (G)
5568        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5569          if (getMachineOpcode() < TII->getNumOpcodes())
5570            return TII->get(getMachineOpcode()).getName();
5571      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5572    }
5573    if (G) {
5574      const TargetLowering &TLI = G->getTargetLoweringInfo();
5575      const char *Name = TLI.getTargetNodeName(getOpcode());
5576      if (Name) return Name;
5577      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5578    }
5579    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5580
5581#ifndef NDEBUG
5582  case ISD::DELETED_NODE:
5583    return "<<Deleted Node!>>";
5584#endif
5585  case ISD::PREFETCH:      return "Prefetch";
5586  case ISD::MEMBARRIER:    return "MemBarrier";
5587  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5588  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5589  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5590  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5591  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5592  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5593  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5594  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5595  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5596  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5597  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5598  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5599  case ISD::PCMARKER:      return "PCMarker";
5600  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5601  case ISD::SRCVALUE:      return "SrcValue";
5602  case ISD::MDNODE_SDNODE: return "MDNode";
5603  case ISD::EntryToken:    return "EntryToken";
5604  case ISD::TokenFactor:   return "TokenFactor";
5605  case ISD::AssertSext:    return "AssertSext";
5606  case ISD::AssertZext:    return "AssertZext";
5607
5608  case ISD::BasicBlock:    return "BasicBlock";
5609  case ISD::VALUETYPE:     return "ValueType";
5610  case ISD::Register:      return "Register";
5611
5612  case ISD::Constant:      return "Constant";
5613  case ISD::ConstantFP:    return "ConstantFP";
5614  case ISD::GlobalAddress: return "GlobalAddress";
5615  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5616  case ISD::FrameIndex:    return "FrameIndex";
5617  case ISD::JumpTable:     return "JumpTable";
5618  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5619  case ISD::RETURNADDR: return "RETURNADDR";
5620  case ISD::FRAMEADDR: return "FRAMEADDR";
5621  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5622  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5623  case ISD::LSDAADDR: return "LSDAADDR";
5624  case ISD::EHSELECTION: return "EHSELECTION";
5625  case ISD::EH_RETURN: return "EH_RETURN";
5626  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5627  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5628  case ISD::ConstantPool:  return "ConstantPool";
5629  case ISD::ExternalSymbol: return "ExternalSymbol";
5630  case ISD::BlockAddress:  return "BlockAddress";
5631  case ISD::INTRINSIC_WO_CHAIN:
5632  case ISD::INTRINSIC_VOID:
5633  case ISD::INTRINSIC_W_CHAIN: {
5634    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5635    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5636    if (IID < Intrinsic::num_intrinsics)
5637      return Intrinsic::getName((Intrinsic::ID)IID);
5638    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5639      return TII->getName(IID);
5640    llvm_unreachable("Invalid intrinsic ID");
5641  }
5642
5643  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5644  case ISD::TargetConstant: return "TargetConstant";
5645  case ISD::TargetConstantFP:return "TargetConstantFP";
5646  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5647  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5648  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5649  case ISD::TargetJumpTable:  return "TargetJumpTable";
5650  case ISD::TargetConstantPool:  return "TargetConstantPool";
5651  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5652  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5653
5654  case ISD::CopyToReg:     return "CopyToReg";
5655  case ISD::CopyFromReg:   return "CopyFromReg";
5656  case ISD::UNDEF:         return "undef";
5657  case ISD::MERGE_VALUES:  return "merge_values";
5658  case ISD::INLINEASM:     return "inlineasm";
5659  case ISD::EH_LABEL:      return "eh_label";
5660  case ISD::HANDLENODE:    return "handlenode";
5661
5662  // Unary operators
5663  case ISD::FABS:   return "fabs";
5664  case ISD::FNEG:   return "fneg";
5665  case ISD::FSQRT:  return "fsqrt";
5666  case ISD::FSIN:   return "fsin";
5667  case ISD::FCOS:   return "fcos";
5668  case ISD::FPOWI:  return "fpowi";
5669  case ISD::FPOW:   return "fpow";
5670  case ISD::FTRUNC: return "ftrunc";
5671  case ISD::FFLOOR: return "ffloor";
5672  case ISD::FCEIL:  return "fceil";
5673  case ISD::FRINT:  return "frint";
5674  case ISD::FNEARBYINT: return "fnearbyint";
5675
5676  // Binary operators
5677  case ISD::ADD:    return "add";
5678  case ISD::SUB:    return "sub";
5679  case ISD::MUL:    return "mul";
5680  case ISD::MULHU:  return "mulhu";
5681  case ISD::MULHS:  return "mulhs";
5682  case ISD::SDIV:   return "sdiv";
5683  case ISD::UDIV:   return "udiv";
5684  case ISD::SREM:   return "srem";
5685  case ISD::UREM:   return "urem";
5686  case ISD::SMUL_LOHI:  return "smul_lohi";
5687  case ISD::UMUL_LOHI:  return "umul_lohi";
5688  case ISD::SDIVREM:    return "sdivrem";
5689  case ISD::UDIVREM:    return "udivrem";
5690  case ISD::AND:    return "and";
5691  case ISD::OR:     return "or";
5692  case ISD::XOR:    return "xor";
5693  case ISD::SHL:    return "shl";
5694  case ISD::SRA:    return "sra";
5695  case ISD::SRL:    return "srl";
5696  case ISD::ROTL:   return "rotl";
5697  case ISD::ROTR:   return "rotr";
5698  case ISD::FADD:   return "fadd";
5699  case ISD::FSUB:   return "fsub";
5700  case ISD::FMUL:   return "fmul";
5701  case ISD::FDIV:   return "fdiv";
5702  case ISD::FREM:   return "frem";
5703  case ISD::FCOPYSIGN: return "fcopysign";
5704  case ISD::FGETSIGN:  return "fgetsign";
5705
5706  case ISD::SETCC:       return "setcc";
5707  case ISD::VSETCC:      return "vsetcc";
5708  case ISD::SELECT:      return "select";
5709  case ISD::SELECT_CC:   return "select_cc";
5710  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5711  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5712  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5713  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5714  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5715  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5716  case ISD::CARRY_FALSE:         return "carry_false";
5717  case ISD::ADDC:        return "addc";
5718  case ISD::ADDE:        return "adde";
5719  case ISD::SADDO:       return "saddo";
5720  case ISD::UADDO:       return "uaddo";
5721  case ISD::SSUBO:       return "ssubo";
5722  case ISD::USUBO:       return "usubo";
5723  case ISD::SMULO:       return "smulo";
5724  case ISD::UMULO:       return "umulo";
5725  case ISD::SUBC:        return "subc";
5726  case ISD::SUBE:        return "sube";
5727  case ISD::SHL_PARTS:   return "shl_parts";
5728  case ISD::SRA_PARTS:   return "sra_parts";
5729  case ISD::SRL_PARTS:   return "srl_parts";
5730
5731  // Conversion operators.
5732  case ISD::SIGN_EXTEND: return "sign_extend";
5733  case ISD::ZERO_EXTEND: return "zero_extend";
5734  case ISD::ANY_EXTEND:  return "any_extend";
5735  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5736  case ISD::TRUNCATE:    return "truncate";
5737  case ISD::FP_ROUND:    return "fp_round";
5738  case ISD::FLT_ROUNDS_: return "flt_rounds";
5739  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5740  case ISD::FP_EXTEND:   return "fp_extend";
5741
5742  case ISD::SINT_TO_FP:  return "sint_to_fp";
5743  case ISD::UINT_TO_FP:  return "uint_to_fp";
5744  case ISD::FP_TO_SINT:  return "fp_to_sint";
5745  case ISD::FP_TO_UINT:  return "fp_to_uint";
5746  case ISD::BIT_CONVERT: return "bit_convert";
5747  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5748  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5749
5750  case ISD::CONVERT_RNDSAT: {
5751    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5752    default: llvm_unreachable("Unknown cvt code!");
5753    case ISD::CVT_FF:  return "cvt_ff";
5754    case ISD::CVT_FS:  return "cvt_fs";
5755    case ISD::CVT_FU:  return "cvt_fu";
5756    case ISD::CVT_SF:  return "cvt_sf";
5757    case ISD::CVT_UF:  return "cvt_uf";
5758    case ISD::CVT_SS:  return "cvt_ss";
5759    case ISD::CVT_SU:  return "cvt_su";
5760    case ISD::CVT_US:  return "cvt_us";
5761    case ISD::CVT_UU:  return "cvt_uu";
5762    }
5763  }
5764
5765    // Control flow instructions
5766  case ISD::BR:      return "br";
5767  case ISD::BRIND:   return "brind";
5768  case ISD::BR_JT:   return "br_jt";
5769  case ISD::BRCOND:  return "brcond";
5770  case ISD::BR_CC:   return "br_cc";
5771  case ISD::CALLSEQ_START:  return "callseq_start";
5772  case ISD::CALLSEQ_END:    return "callseq_end";
5773
5774    // Other operators
5775  case ISD::LOAD:               return "load";
5776  case ISD::STORE:              return "store";
5777  case ISD::VAARG:              return "vaarg";
5778  case ISD::VACOPY:             return "vacopy";
5779  case ISD::VAEND:              return "vaend";
5780  case ISD::VASTART:            return "vastart";
5781  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5782  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5783  case ISD::BUILD_PAIR:         return "build_pair";
5784  case ISD::STACKSAVE:          return "stacksave";
5785  case ISD::STACKRESTORE:       return "stackrestore";
5786  case ISD::TRAP:               return "trap";
5787
5788  // Bit manipulation
5789  case ISD::BSWAP:   return "bswap";
5790  case ISD::CTPOP:   return "ctpop";
5791  case ISD::CTTZ:    return "cttz";
5792  case ISD::CTLZ:    return "ctlz";
5793
5794  // Trampolines
5795  case ISD::TRAMPOLINE: return "trampoline";
5796
5797  case ISD::CONDCODE:
5798    switch (cast<CondCodeSDNode>(this)->get()) {
5799    default: llvm_unreachable("Unknown setcc condition!");
5800    case ISD::SETOEQ:  return "setoeq";
5801    case ISD::SETOGT:  return "setogt";
5802    case ISD::SETOGE:  return "setoge";
5803    case ISD::SETOLT:  return "setolt";
5804    case ISD::SETOLE:  return "setole";
5805    case ISD::SETONE:  return "setone";
5806
5807    case ISD::SETO:    return "seto";
5808    case ISD::SETUO:   return "setuo";
5809    case ISD::SETUEQ:  return "setue";
5810    case ISD::SETUGT:  return "setugt";
5811    case ISD::SETUGE:  return "setuge";
5812    case ISD::SETULT:  return "setult";
5813    case ISD::SETULE:  return "setule";
5814    case ISD::SETUNE:  return "setune";
5815
5816    case ISD::SETEQ:   return "seteq";
5817    case ISD::SETGT:   return "setgt";
5818    case ISD::SETGE:   return "setge";
5819    case ISD::SETLT:   return "setlt";
5820    case ISD::SETLE:   return "setle";
5821    case ISD::SETNE:   return "setne";
5822    }
5823  }
5824}
5825
5826const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5827  switch (AM) {
5828  default:
5829    return "";
5830  case ISD::PRE_INC:
5831    return "<pre-inc>";
5832  case ISD::PRE_DEC:
5833    return "<pre-dec>";
5834  case ISD::POST_INC:
5835    return "<post-inc>";
5836  case ISD::POST_DEC:
5837    return "<post-dec>";
5838  }
5839}
5840
5841std::string ISD::ArgFlagsTy::getArgFlagsString() {
5842  std::string S = "< ";
5843
5844  if (isZExt())
5845    S += "zext ";
5846  if (isSExt())
5847    S += "sext ";
5848  if (isInReg())
5849    S += "inreg ";
5850  if (isSRet())
5851    S += "sret ";
5852  if (isByVal())
5853    S += "byval ";
5854  if (isNest())
5855    S += "nest ";
5856  if (getByValAlign())
5857    S += "byval-align:" + utostr(getByValAlign()) + " ";
5858  if (getOrigAlign())
5859    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5860  if (getByValSize())
5861    S += "byval-size:" + utostr(getByValSize()) + " ";
5862  return S + ">";
5863}
5864
5865void SDNode::dump() const { dump(0); }
5866void SDNode::dump(const SelectionDAG *G) const {
5867  print(dbgs(), G);
5868}
5869
5870void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5871  OS << (void*)this << ": ";
5872
5873  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5874    if (i) OS << ",";
5875    if (getValueType(i) == MVT::Other)
5876      OS << "ch";
5877    else
5878      OS << getValueType(i).getEVTString();
5879  }
5880  OS << " = " << getOperationName(G);
5881}
5882
5883void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5884  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5885    if (!MN->memoperands_empty()) {
5886      OS << "<";
5887      OS << "Mem:";
5888      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5889           e = MN->memoperands_end(); i != e; ++i) {
5890        OS << **i;
5891        if (next(i) != e)
5892          OS << " ";
5893      }
5894      OS << ">";
5895    }
5896  } else if (const ShuffleVectorSDNode *SVN =
5897               dyn_cast<ShuffleVectorSDNode>(this)) {
5898    OS << "<";
5899    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5900      int Idx = SVN->getMaskElt(i);
5901      if (i) OS << ",";
5902      if (Idx < 0)
5903        OS << "u";
5904      else
5905        OS << Idx;
5906    }
5907    OS << ">";
5908  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5909    OS << '<' << CSDN->getAPIntValue() << '>';
5910  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5911    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5912      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5913    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5914      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5915    else {
5916      OS << "<APFloat(";
5917      CSDN->getValueAPF().bitcastToAPInt().dump();
5918      OS << ")>";
5919    }
5920  } else if (const GlobalAddressSDNode *GADN =
5921             dyn_cast<GlobalAddressSDNode>(this)) {
5922    int64_t offset = GADN->getOffset();
5923    OS << '<';
5924    WriteAsOperand(OS, GADN->getGlobal());
5925    OS << '>';
5926    if (offset > 0)
5927      OS << " + " << offset;
5928    else
5929      OS << " " << offset;
5930    if (unsigned int TF = GADN->getTargetFlags())
5931      OS << " [TF=" << TF << ']';
5932  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5933    OS << "<" << FIDN->getIndex() << ">";
5934  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5935    OS << "<" << JTDN->getIndex() << ">";
5936    if (unsigned int TF = JTDN->getTargetFlags())
5937      OS << " [TF=" << TF << ']';
5938  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5939    int offset = CP->getOffset();
5940    if (CP->isMachineConstantPoolEntry())
5941      OS << "<" << *CP->getMachineCPVal() << ">";
5942    else
5943      OS << "<" << *CP->getConstVal() << ">";
5944    if (offset > 0)
5945      OS << " + " << offset;
5946    else
5947      OS << " " << offset;
5948    if (unsigned int TF = CP->getTargetFlags())
5949      OS << " [TF=" << TF << ']';
5950  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5951    OS << "<";
5952    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5953    if (LBB)
5954      OS << LBB->getName() << " ";
5955    OS << (const void*)BBDN->getBasicBlock() << ">";
5956  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5957    if (G && R->getReg() &&
5958        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5959      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5960    } else {
5961      OS << " %reg" << R->getReg();
5962    }
5963  } else if (const ExternalSymbolSDNode *ES =
5964             dyn_cast<ExternalSymbolSDNode>(this)) {
5965    OS << "'" << ES->getSymbol() << "'";
5966    if (unsigned int TF = ES->getTargetFlags())
5967      OS << " [TF=" << TF << ']';
5968  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5969    if (M->getValue())
5970      OS << "<" << M->getValue() << ">";
5971    else
5972      OS << "<null>";
5973  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
5974    if (MD->getMD())
5975      OS << "<" << MD->getMD() << ">";
5976    else
5977      OS << "<null>";
5978  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5979    OS << ":" << N->getVT().getEVTString();
5980  }
5981  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5982    OS << "<" << *LD->getMemOperand();
5983
5984    bool doExt = true;
5985    switch (LD->getExtensionType()) {
5986    default: doExt = false; break;
5987    case ISD::EXTLOAD: OS << ", anyext"; break;
5988    case ISD::SEXTLOAD: OS << ", sext"; break;
5989    case ISD::ZEXTLOAD: OS << ", zext"; break;
5990    }
5991    if (doExt)
5992      OS << " from " << LD->getMemoryVT().getEVTString();
5993
5994    const char *AM = getIndexedModeName(LD->getAddressingMode());
5995    if (*AM)
5996      OS << ", " << AM;
5997
5998    OS << ">";
5999  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6000    OS << "<" << *ST->getMemOperand();
6001
6002    if (ST->isTruncatingStore())
6003      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6004
6005    const char *AM = getIndexedModeName(ST->getAddressingMode());
6006    if (*AM)
6007      OS << ", " << AM;
6008
6009    OS << ">";
6010  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6011    OS << "<" << *M->getMemOperand() << ">";
6012  } else if (const BlockAddressSDNode *BA =
6013               dyn_cast<BlockAddressSDNode>(this)) {
6014    OS << "<";
6015    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6016    OS << ", ";
6017    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6018    OS << ">";
6019    if (unsigned int TF = BA->getTargetFlags())
6020      OS << " [TF=" << TF << ']';
6021  }
6022
6023  if (G)
6024    if (unsigned Order = G->GetOrdering(this))
6025      OS << " [ORD=" << Order << ']';
6026
6027  if (getNodeId() != -1)
6028    OS << " [ID=" << getNodeId() << ']';
6029
6030  DebugLoc dl = getDebugLoc();
6031  if (G && !dl.isUnknown()) {
6032    DIScope
6033      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6034    OS << " dbg:";
6035    // Omit the directory, since it's usually long and uninteresting.
6036    if (Scope.Verify())
6037      OS << Scope.getFilename();
6038    else
6039      OS << "<unknown>";
6040    OS << ':' << dl.getLine();
6041    if (dl.getCol() != 0)
6042      OS << ':' << dl.getCol();
6043  }
6044}
6045
6046void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6047  print_types(OS, G);
6048  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6049    if (i) OS << ", "; else OS << " ";
6050    OS << (void*)getOperand(i).getNode();
6051    if (unsigned RN = getOperand(i).getResNo())
6052      OS << ":" << RN;
6053  }
6054  print_details(OS, G);
6055}
6056
6057static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6058                                  const SelectionDAG *G, unsigned depth,
6059                                  unsigned indent)
6060{
6061  if (depth == 0)
6062    return;
6063
6064  OS.indent(indent);
6065
6066  N->print(OS, G);
6067
6068  if (depth < 1)
6069    return;
6070
6071  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6072    OS << '\n';
6073    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6074  }
6075}
6076
6077void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6078                            unsigned depth) const {
6079  printrWithDepthHelper(OS, this, G, depth, 0);
6080}
6081
6082void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6083  // Don't print impossibly deep things.
6084  printrWithDepth(OS, G, 100);
6085}
6086
6087void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6088  printrWithDepth(dbgs(), G, depth);
6089}
6090
6091void SDNode::dumprFull(const SelectionDAG *G) const {
6092  // Don't print impossibly deep things.
6093  dumprWithDepth(G, 100);
6094}
6095
6096static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6097  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6098    if (N->getOperand(i).getNode()->hasOneUse())
6099      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6100    else
6101      dbgs() << "\n" << std::string(indent+2, ' ')
6102           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6103
6104
6105  dbgs() << "\n";
6106  dbgs().indent(indent);
6107  N->dump(G);
6108}
6109
6110SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6111  assert(N->getNumValues() == 1 &&
6112         "Can't unroll a vector with multiple results!");
6113
6114  EVT VT = N->getValueType(0);
6115  unsigned NE = VT.getVectorNumElements();
6116  EVT EltVT = VT.getVectorElementType();
6117  DebugLoc dl = N->getDebugLoc();
6118
6119  SmallVector<SDValue, 8> Scalars;
6120  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6121
6122  // If ResNE is 0, fully unroll the vector op.
6123  if (ResNE == 0)
6124    ResNE = NE;
6125  else if (NE > ResNE)
6126    NE = ResNE;
6127
6128  unsigned i;
6129  for (i= 0; i != NE; ++i) {
6130    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6131      SDValue Operand = N->getOperand(j);
6132      EVT OperandVT = Operand.getValueType();
6133      if (OperandVT.isVector()) {
6134        // A vector operand; extract a single element.
6135        EVT OperandEltVT = OperandVT.getVectorElementType();
6136        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6137                              OperandEltVT,
6138                              Operand,
6139                              getConstant(i, MVT::i32));
6140      } else {
6141        // A scalar operand; just use it as is.
6142        Operands[j] = Operand;
6143      }
6144    }
6145
6146    switch (N->getOpcode()) {
6147    default:
6148      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6149                                &Operands[0], Operands.size()));
6150      break;
6151    case ISD::SHL:
6152    case ISD::SRA:
6153    case ISD::SRL:
6154    case ISD::ROTL:
6155    case ISD::ROTR:
6156      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6157                                getShiftAmountOperand(Operands[1])));
6158      break;
6159    case ISD::SIGN_EXTEND_INREG:
6160    case ISD::FP_ROUND_INREG: {
6161      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6162      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6163                                Operands[0],
6164                                getValueType(ExtVT)));
6165    }
6166    }
6167  }
6168
6169  for (; i < ResNE; ++i)
6170    Scalars.push_back(getUNDEF(EltVT));
6171
6172  return getNode(ISD::BUILD_VECTOR, dl,
6173                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6174                 &Scalars[0], Scalars.size());
6175}
6176
6177
6178/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6179/// location that is 'Dist' units away from the location that the 'Base' load
6180/// is loading from.
6181bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6182                                     unsigned Bytes, int Dist) const {
6183  if (LD->getChain() != Base->getChain())
6184    return false;
6185  EVT VT = LD->getValueType(0);
6186  if (VT.getSizeInBits() / 8 != Bytes)
6187    return false;
6188
6189  SDValue Loc = LD->getOperand(1);
6190  SDValue BaseLoc = Base->getOperand(1);
6191  if (Loc.getOpcode() == ISD::FrameIndex) {
6192    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6193      return false;
6194    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6195    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6196    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6197    int FS  = MFI->getObjectSize(FI);
6198    int BFS = MFI->getObjectSize(BFI);
6199    if (FS != BFS || FS != (int)Bytes) return false;
6200    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6201  }
6202  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6203    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6204    if (V && (V->getSExtValue() == Dist*Bytes))
6205      return true;
6206  }
6207
6208  const GlobalValue *GV1 = NULL;
6209  const GlobalValue *GV2 = NULL;
6210  int64_t Offset1 = 0;
6211  int64_t Offset2 = 0;
6212  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6213  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6214  if (isGA1 && isGA2 && GV1 == GV2)
6215    return Offset1 == (Offset2 + Dist*Bytes);
6216  return false;
6217}
6218
6219
6220/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6221/// it cannot be inferred.
6222unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6223  // If this is a GlobalAddress + cst, return the alignment.
6224  const GlobalValue *GV;
6225  int64_t GVOffset = 0;
6226  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6227    // If GV has specified alignment, then use it. Otherwise, use the preferred
6228    // alignment.
6229    unsigned Align = GV->getAlignment();
6230    if (!Align) {
6231      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6232        if (GVar->hasInitializer()) {
6233          const TargetData *TD = TLI.getTargetData();
6234          Align = TD->getPreferredAlignment(GVar);
6235        }
6236      }
6237    }
6238    return MinAlign(Align, GVOffset);
6239  }
6240
6241  // If this is a direct reference to a stack slot, use information about the
6242  // stack slot's alignment.
6243  int FrameIdx = 1 << 31;
6244  int64_t FrameOffset = 0;
6245  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6246    FrameIdx = FI->getIndex();
6247  } else if (Ptr.getOpcode() == ISD::ADD &&
6248             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6249             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6250    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6251    FrameOffset = Ptr.getConstantOperandVal(1);
6252  }
6253
6254  if (FrameIdx != (1 << 31)) {
6255    // FIXME: Handle FI+CST.
6256    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6257    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6258                                    FrameOffset);
6259    if (MFI.isFixedObjectIndex(FrameIdx)) {
6260      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6261
6262      // The alignment of the frame index can be determined from its offset from
6263      // the incoming frame position.  If the frame object is at offset 32 and
6264      // the stack is guaranteed to be 16-byte aligned, then we know that the
6265      // object is 16-byte aligned.
6266      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6267      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6268
6269      // Finally, the frame object itself may have a known alignment.  Factor
6270      // the alignment + offset into a new alignment.  For example, if we know
6271      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6272      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6273      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6274      return std::max(Align, FIInfoAlign);
6275    }
6276    return FIInfoAlign;
6277  }
6278
6279  return 0;
6280}
6281
6282void SelectionDAG::dump() const {
6283  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6284
6285  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6286       I != E; ++I) {
6287    const SDNode *N = I;
6288    if (!N->hasOneUse() && N != getRoot().getNode())
6289      DumpNodes(N, 2, this);
6290  }
6291
6292  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6293
6294  dbgs() << "\n\n";
6295}
6296
6297void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6298  print_types(OS, G);
6299  print_details(OS, G);
6300}
6301
6302typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6303static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6304                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6305  if (!once.insert(N))          // If we've been here before, return now.
6306    return;
6307
6308  // Dump the current SDNode, but don't end the line yet.
6309  OS << std::string(indent, ' ');
6310  N->printr(OS, G);
6311
6312  // Having printed this SDNode, walk the children:
6313  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6314    const SDNode *child = N->getOperand(i).getNode();
6315
6316    if (i) OS << ",";
6317    OS << " ";
6318
6319    if (child->getNumOperands() == 0) {
6320      // This child has no grandchildren; print it inline right here.
6321      child->printr(OS, G);
6322      once.insert(child);
6323    } else {         // Just the address. FIXME: also print the child's opcode.
6324      OS << (void*)child;
6325      if (unsigned RN = N->getOperand(i).getResNo())
6326        OS << ":" << RN;
6327    }
6328  }
6329
6330  OS << "\n";
6331
6332  // Dump children that have grandchildren on their own line(s).
6333  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6334    const SDNode *child = N->getOperand(i).getNode();
6335    DumpNodesr(OS, child, indent+2, G, once);
6336  }
6337}
6338
6339void SDNode::dumpr() const {
6340  VisitedSDNodeSet once;
6341  DumpNodesr(dbgs(), this, 0, 0, once);
6342}
6343
6344void SDNode::dumpr(const SelectionDAG *G) const {
6345  VisitedSDNodeSet once;
6346  DumpNodesr(dbgs(), this, 0, G, once);
6347}
6348
6349
6350// getAddressSpace - Return the address space this GlobalAddress belongs to.
6351unsigned GlobalAddressSDNode::getAddressSpace() const {
6352  return getGlobal()->getType()->getAddressSpace();
6353}
6354
6355
6356const Type *ConstantPoolSDNode::getType() const {
6357  if (isMachineConstantPoolEntry())
6358    return Val.MachineCPVal->getType();
6359  return Val.ConstVal->getType();
6360}
6361
6362bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6363                                        APInt &SplatUndef,
6364                                        unsigned &SplatBitSize,
6365                                        bool &HasAnyUndefs,
6366                                        unsigned MinSplatBits,
6367                                        bool isBigEndian) {
6368  EVT VT = getValueType(0);
6369  assert(VT.isVector() && "Expected a vector type");
6370  unsigned sz = VT.getSizeInBits();
6371  if (MinSplatBits > sz)
6372    return false;
6373
6374  SplatValue = APInt(sz, 0);
6375  SplatUndef = APInt(sz, 0);
6376
6377  // Get the bits.  Bits with undefined values (when the corresponding element
6378  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6379  // in SplatValue.  If any of the values are not constant, give up and return
6380  // false.
6381  unsigned int nOps = getNumOperands();
6382  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6383  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6384
6385  for (unsigned j = 0; j < nOps; ++j) {
6386    unsigned i = isBigEndian ? nOps-1-j : j;
6387    SDValue OpVal = getOperand(i);
6388    unsigned BitPos = j * EltBitSize;
6389
6390    if (OpVal.getOpcode() == ISD::UNDEF)
6391      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6392    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6393      SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6394                    zextOrTrunc(sz) << BitPos;
6395    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6396      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6397     else
6398      return false;
6399  }
6400
6401  // The build_vector is all constants or undefs.  Find the smallest element
6402  // size that splats the vector.
6403
6404  HasAnyUndefs = (SplatUndef != 0);
6405  while (sz > 8) {
6406
6407    unsigned HalfSize = sz / 2;
6408    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6409    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6410    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6411    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6412
6413    // If the two halves do not match (ignoring undef bits), stop here.
6414    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6415        MinSplatBits > HalfSize)
6416      break;
6417
6418    SplatValue = HighValue | LowValue;
6419    SplatUndef = HighUndef & LowUndef;
6420
6421    sz = HalfSize;
6422  }
6423
6424  SplatBitSize = sz;
6425  return true;
6426}
6427
6428bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6429  // Find the first non-undef value in the shuffle mask.
6430  unsigned i, e;
6431  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6432    /* search */;
6433
6434  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6435
6436  // Make sure all remaining elements are either undef or the same as the first
6437  // non-undef value.
6438  for (int Idx = Mask[i]; i != e; ++i)
6439    if (Mask[i] >= 0 && Mask[i] != Idx)
6440      return false;
6441  return true;
6442}
6443
6444#ifdef XDEBUG
6445static void checkForCyclesHelper(const SDNode *N,
6446                                 SmallPtrSet<const SDNode*, 32> &Visited,
6447                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6448  // If this node has already been checked, don't check it again.
6449  if (Checked.count(N))
6450    return;
6451
6452  // If a node has already been visited on this depth-first walk, reject it as
6453  // a cycle.
6454  if (!Visited.insert(N)) {
6455    dbgs() << "Offending node:\n";
6456    N->dumprFull();
6457    errs() << "Detected cycle in SelectionDAG\n";
6458    abort();
6459  }
6460
6461  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6462    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6463
6464  Checked.insert(N);
6465  Visited.erase(N);
6466}
6467#endif
6468
6469void llvm::checkForCycles(const llvm::SDNode *N) {
6470#ifdef XDEBUG
6471  assert(N && "Checking nonexistant SDNode");
6472  SmallPtrSet<const SDNode*, 32> visited;
6473  SmallPtrSet<const SDNode*, 32> checked;
6474  checkForCyclesHelper(N, visited, checked);
6475#endif
6476}
6477
6478void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6479  checkForCycles(DAG->getRoot().getNode());
6480}
6481