SelectionDAG.cpp revision 6b61cd185eeb90bec93f042535594132ae1f0f41
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/ManagedStatic.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/System/Mutex.h"
38#include "llvm/ADT/SetVector.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/SmallSet.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/StringExtras.h"
43#include <algorithm>
44#include <cmath>
45using namespace llvm;
46
47/// makeVTList - Return an instance of the SDVTList struct initialized with the
48/// specified members.
49static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
50  SDVTList Res = {VTs, NumVTs};
51  return Res;
52}
53
54static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
55  switch (VT.getSimpleVT()) {
56  default: assert(0 && "Unknown FP format");
57  case MVT::f32:     return &APFloat::IEEEsingle;
58  case MVT::f64:     return &APFloat::IEEEdouble;
59  case MVT::f80:     return &APFloat::x87DoubleExtended;
60  case MVT::f128:    return &APFloat::IEEEquad;
61  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
62  }
63}
64
65SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
66
67//===----------------------------------------------------------------------===//
68//                              ConstantFPSDNode Class
69//===----------------------------------------------------------------------===//
70
71/// isExactlyValue - We don't rely on operator== working on double values, as
72/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
73/// As such, this method can be used to do an exact bit-for-bit comparison of
74/// two floating point values.
75bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
76  return getValueAPF().bitwiseIsEqual(V);
77}
78
79bool ConstantFPSDNode::isValueValidForType(MVT VT,
80                                           const APFloat& Val) {
81  assert(VT.isFloatingPoint() && "Can only convert between FP types");
82
83  // PPC long double cannot be converted to any other type.
84  if (VT == MVT::ppcf128 ||
85      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
86    return false;
87
88  // convert modifies in place, so make a copy.
89  APFloat Val2 = APFloat(Val);
90  bool losesInfo;
91  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
92                      &losesInfo);
93  return !losesInfo;
94}
95
96//===----------------------------------------------------------------------===//
97//                              ISD Namespace
98//===----------------------------------------------------------------------===//
99
100/// isBuildVectorAllOnes - Return true if the specified node is a
101/// BUILD_VECTOR where all of the elements are ~0 or undef.
102bool ISD::isBuildVectorAllOnes(const SDNode *N) {
103  // Look through a bit convert.
104  if (N->getOpcode() == ISD::BIT_CONVERT)
105    N = N->getOperand(0).getNode();
106
107  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
108
109  unsigned i = 0, e = N->getNumOperands();
110
111  // Skip over all of the undef values.
112  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
113    ++i;
114
115  // Do not accept an all-undef vector.
116  if (i == e) return false;
117
118  // Do not accept build_vectors that aren't all constants or which have non-~0
119  // elements.
120  SDValue NotZero = N->getOperand(i);
121  if (isa<ConstantSDNode>(NotZero)) {
122    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
123      return false;
124  } else if (isa<ConstantFPSDNode>(NotZero)) {
125    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
126                bitcastToAPInt().isAllOnesValue())
127      return false;
128  } else
129    return false;
130
131  // Okay, we have at least one ~0 value, check to see if the rest match or are
132  // undefs.
133  for (++i; i != e; ++i)
134    if (N->getOperand(i) != NotZero &&
135        N->getOperand(i).getOpcode() != ISD::UNDEF)
136      return false;
137  return true;
138}
139
140
141/// isBuildVectorAllZeros - Return true if the specified node is a
142/// BUILD_VECTOR where all of the elements are 0 or undef.
143bool ISD::isBuildVectorAllZeros(const SDNode *N) {
144  // Look through a bit convert.
145  if (N->getOpcode() == ISD::BIT_CONVERT)
146    N = N->getOperand(0).getNode();
147
148  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
149
150  unsigned i = 0, e = N->getNumOperands();
151
152  // Skip over all of the undef values.
153  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
154    ++i;
155
156  // Do not accept an all-undef vector.
157  if (i == e) return false;
158
159  // Do not accept build_vectors that aren't all constants or which have non-0
160  // elements.
161  SDValue Zero = N->getOperand(i);
162  if (isa<ConstantSDNode>(Zero)) {
163    if (!cast<ConstantSDNode>(Zero)->isNullValue())
164      return false;
165  } else if (isa<ConstantFPSDNode>(Zero)) {
166    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
167      return false;
168  } else
169    return false;
170
171  // Okay, we have at least one 0 value, check to see if the rest match or are
172  // undefs.
173  for (++i; i != e; ++i)
174    if (N->getOperand(i) != Zero &&
175        N->getOperand(i).getOpcode() != ISD::UNDEF)
176      return false;
177  return true;
178}
179
180/// isScalarToVector - Return true if the specified node is a
181/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
182/// element is not an undef.
183bool ISD::isScalarToVector(const SDNode *N) {
184  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
185    return true;
186
187  if (N->getOpcode() != ISD::BUILD_VECTOR)
188    return false;
189  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
190    return false;
191  unsigned NumElems = N->getNumOperands();
192  for (unsigned i = 1; i < NumElems; ++i) {
193    SDValue V = N->getOperand(i);
194    if (V.getOpcode() != ISD::UNDEF)
195      return false;
196  }
197  return true;
198}
199
200
201/// isDebugLabel - Return true if the specified node represents a debug
202/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
203bool ISD::isDebugLabel(const SDNode *N) {
204  SDValue Zero;
205  if (N->getOpcode() == ISD::DBG_LABEL)
206    return true;
207  if (N->isMachineOpcode() &&
208      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
209    return true;
210  return false;
211}
212
213/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
214/// when given the operation for (X op Y).
215ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
216  // To perform this operation, we just need to swap the L and G bits of the
217  // operation.
218  unsigned OldL = (Operation >> 2) & 1;
219  unsigned OldG = (Operation >> 1) & 1;
220  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
221                       (OldL << 1) |       // New G bit
222                       (OldG << 2));       // New L bit.
223}
224
225/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
226/// 'op' is a valid SetCC operation.
227ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
228  unsigned Operation = Op;
229  if (isInteger)
230    Operation ^= 7;   // Flip L, G, E bits, but not U.
231  else
232    Operation ^= 15;  // Flip all of the condition bits.
233
234  if (Operation > ISD::SETTRUE2)
235    Operation &= ~8;  // Don't let N and U bits get set.
236
237  return ISD::CondCode(Operation);
238}
239
240
241/// isSignedOp - For an integer comparison, return 1 if the comparison is a
242/// signed operation and 2 if the result is an unsigned comparison.  Return zero
243/// if the operation does not depend on the sign of the input (setne and seteq).
244static int isSignedOp(ISD::CondCode Opcode) {
245  switch (Opcode) {
246  default: assert(0 && "Illegal integer setcc operation!");
247  case ISD::SETEQ:
248  case ISD::SETNE: return 0;
249  case ISD::SETLT:
250  case ISD::SETLE:
251  case ISD::SETGT:
252  case ISD::SETGE: return 1;
253  case ISD::SETULT:
254  case ISD::SETULE:
255  case ISD::SETUGT:
256  case ISD::SETUGE: return 2;
257  }
258}
259
260/// getSetCCOrOperation - Return the result of a logical OR between different
261/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
262/// returns SETCC_INVALID if it is not possible to represent the resultant
263/// comparison.
264ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
265                                       bool isInteger) {
266  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
267    // Cannot fold a signed integer setcc with an unsigned integer setcc.
268    return ISD::SETCC_INVALID;
269
270  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
271
272  // If the N and U bits get set then the resultant comparison DOES suddenly
273  // care about orderedness, and is true when ordered.
274  if (Op > ISD::SETTRUE2)
275    Op &= ~16;     // Clear the U bit if the N bit is set.
276
277  // Canonicalize illegal integer setcc's.
278  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
279    Op = ISD::SETNE;
280
281  return ISD::CondCode(Op);
282}
283
284/// getSetCCAndOperation - Return the result of a logical AND between different
285/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
286/// function returns zero if it is not possible to represent the resultant
287/// comparison.
288ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
289                                        bool isInteger) {
290  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
291    // Cannot fold a signed setcc with an unsigned setcc.
292    return ISD::SETCC_INVALID;
293
294  // Combine all of the condition bits.
295  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
296
297  // Canonicalize illegal integer setcc's.
298  if (isInteger) {
299    switch (Result) {
300    default: break;
301    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
302    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
303    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
304    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
305    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
306    }
307  }
308
309  return Result;
310}
311
312const TargetMachine &SelectionDAG::getTarget() const {
313  return MF->getTarget();
314}
315
316//===----------------------------------------------------------------------===//
317//                           SDNode Profile Support
318//===----------------------------------------------------------------------===//
319
320/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
321///
322static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
323  ID.AddInteger(OpC);
324}
325
326/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
327/// solely with their pointer.
328static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
329  ID.AddPointer(VTList.VTs);
330}
331
332/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
333///
334static void AddNodeIDOperands(FoldingSetNodeID &ID,
335                              const SDValue *Ops, unsigned NumOps) {
336  for (; NumOps; --NumOps, ++Ops) {
337    ID.AddPointer(Ops->getNode());
338    ID.AddInteger(Ops->getResNo());
339  }
340}
341
342/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
343///
344static void AddNodeIDOperands(FoldingSetNodeID &ID,
345                              const SDUse *Ops, unsigned NumOps) {
346  for (; NumOps; --NumOps, ++Ops) {
347    ID.AddPointer(Ops->getNode());
348    ID.AddInteger(Ops->getResNo());
349  }
350}
351
352static void AddNodeIDNode(FoldingSetNodeID &ID,
353                          unsigned short OpC, SDVTList VTList,
354                          const SDValue *OpList, unsigned N) {
355  AddNodeIDOpcode(ID, OpC);
356  AddNodeIDValueTypes(ID, VTList);
357  AddNodeIDOperands(ID, OpList, N);
358}
359
360/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
361/// the NodeID data.
362static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
363  switch (N->getOpcode()) {
364  case ISD::TargetExternalSymbol:
365  case ISD::ExternalSymbol:
366    assert(0 && "Should only be used on nodes with operands");
367  default: break;  // Normal nodes don't need extra info.
368  case ISD::ARG_FLAGS:
369    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
370    break;
371  case ISD::TargetConstant:
372  case ISD::Constant:
373    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
374    break;
375  case ISD::TargetConstantFP:
376  case ISD::ConstantFP: {
377    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
378    break;
379  }
380  case ISD::TargetGlobalAddress:
381  case ISD::GlobalAddress:
382  case ISD::TargetGlobalTLSAddress:
383  case ISD::GlobalTLSAddress: {
384    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
385    ID.AddPointer(GA->getGlobal());
386    ID.AddInteger(GA->getOffset());
387    ID.AddInteger(GA->getTargetFlags());
388    break;
389  }
390  case ISD::BasicBlock:
391    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
392    break;
393  case ISD::Register:
394    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
395    break;
396  case ISD::DBG_STOPPOINT: {
397    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
398    ID.AddInteger(DSP->getLine());
399    ID.AddInteger(DSP->getColumn());
400    ID.AddPointer(DSP->getCompileUnit());
401    break;
402  }
403  case ISD::SRCVALUE:
404    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
405    break;
406  case ISD::MEMOPERAND: {
407    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
408    MO.Profile(ID);
409    break;
410  }
411  case ISD::FrameIndex:
412  case ISD::TargetFrameIndex:
413    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
414    break;
415  case ISD::JumpTable:
416  case ISD::TargetJumpTable:
417    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
418    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
419    break;
420  case ISD::ConstantPool:
421  case ISD::TargetConstantPool: {
422    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
423    ID.AddInteger(CP->getAlignment());
424    ID.AddInteger(CP->getOffset());
425    if (CP->isMachineConstantPoolEntry())
426      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
427    else
428      ID.AddPointer(CP->getConstVal());
429    ID.AddInteger(CP->getTargetFlags());
430    break;
431  }
432  case ISD::CALL: {
433    const CallSDNode *Call = cast<CallSDNode>(N);
434    ID.AddInteger(Call->getCallingConv());
435    ID.AddInteger(Call->isVarArg());
436    break;
437  }
438  case ISD::LOAD: {
439    const LoadSDNode *LD = cast<LoadSDNode>(N);
440    ID.AddInteger(LD->getMemoryVT().getRawBits());
441    ID.AddInteger(LD->getRawSubclassData());
442    break;
443  }
444  case ISD::STORE: {
445    const StoreSDNode *ST = cast<StoreSDNode>(N);
446    ID.AddInteger(ST->getMemoryVT().getRawBits());
447    ID.AddInteger(ST->getRawSubclassData());
448    break;
449  }
450  case ISD::ATOMIC_CMP_SWAP:
451  case ISD::ATOMIC_SWAP:
452  case ISD::ATOMIC_LOAD_ADD:
453  case ISD::ATOMIC_LOAD_SUB:
454  case ISD::ATOMIC_LOAD_AND:
455  case ISD::ATOMIC_LOAD_OR:
456  case ISD::ATOMIC_LOAD_XOR:
457  case ISD::ATOMIC_LOAD_NAND:
458  case ISD::ATOMIC_LOAD_MIN:
459  case ISD::ATOMIC_LOAD_MAX:
460  case ISD::ATOMIC_LOAD_UMIN:
461  case ISD::ATOMIC_LOAD_UMAX: {
462    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
463    ID.AddInteger(AT->getMemoryVT().getRawBits());
464    ID.AddInteger(AT->getRawSubclassData());
465    break;
466  }
467  case ISD::VECTOR_SHUFFLE: {
468    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
469    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
470         i != e; ++i)
471      ID.AddInteger(SVN->getMaskElt(i));
472    break;
473  }
474  } // end switch (N->getOpcode())
475}
476
477/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
478/// data.
479static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
480  AddNodeIDOpcode(ID, N->getOpcode());
481  // Add the return value info.
482  AddNodeIDValueTypes(ID, N->getVTList());
483  // Add the operand info.
484  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
485
486  // Handle SDNode leafs with special info.
487  AddNodeIDCustom(ID, N);
488}
489
490/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
491/// the CSE map that carries alignment, volatility, indexing mode, and
492/// extension/truncation information.
493///
494static inline unsigned
495encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
496                     bool isVolatile, unsigned Alignment) {
497  assert((ConvType & 3) == ConvType &&
498         "ConvType may not require more than 2 bits!");
499  assert((AM & 7) == AM &&
500         "AM may not require more than 3 bits!");
501  return ConvType |
502         (AM << 2) |
503         (isVolatile << 5) |
504         ((Log2_32(Alignment) + 1) << 6);
505}
506
507//===----------------------------------------------------------------------===//
508//                              SelectionDAG Class
509//===----------------------------------------------------------------------===//
510
511/// doNotCSE - Return true if CSE should not be performed for this node.
512static bool doNotCSE(SDNode *N) {
513  if (N->getValueType(0) == MVT::Flag)
514    return true; // Never CSE anything that produces a flag.
515
516  switch (N->getOpcode()) {
517  default: break;
518  case ISD::HANDLENODE:
519  case ISD::DBG_LABEL:
520  case ISD::DBG_STOPPOINT:
521  case ISD::EH_LABEL:
522  case ISD::DECLARE:
523    return true;   // Never CSE these nodes.
524  }
525
526  // Check that remaining values produced are not flags.
527  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
528    if (N->getValueType(i) == MVT::Flag)
529      return true; // Never CSE anything that produces a flag.
530
531  return false;
532}
533
534/// RemoveDeadNodes - This method deletes all unreachable nodes in the
535/// SelectionDAG.
536void SelectionDAG::RemoveDeadNodes() {
537  // Create a dummy node (which is not added to allnodes), that adds a reference
538  // to the root node, preventing it from being deleted.
539  HandleSDNode Dummy(getRoot());
540
541  SmallVector<SDNode*, 128> DeadNodes;
542
543  // Add all obviously-dead nodes to the DeadNodes worklist.
544  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
545    if (I->use_empty())
546      DeadNodes.push_back(I);
547
548  RemoveDeadNodes(DeadNodes);
549
550  // If the root changed (e.g. it was a dead load, update the root).
551  setRoot(Dummy.getValue());
552}
553
554/// RemoveDeadNodes - This method deletes the unreachable nodes in the
555/// given list, and any nodes that become unreachable as a result.
556void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
557                                   DAGUpdateListener *UpdateListener) {
558
559  // Process the worklist, deleting the nodes and adding their uses to the
560  // worklist.
561  while (!DeadNodes.empty()) {
562    SDNode *N = DeadNodes.pop_back_val();
563
564    if (UpdateListener)
565      UpdateListener->NodeDeleted(N, 0);
566
567    // Take the node out of the appropriate CSE map.
568    RemoveNodeFromCSEMaps(N);
569
570    // Next, brutally remove the operand list.  This is safe to do, as there are
571    // no cycles in the graph.
572    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
573      SDUse &Use = *I++;
574      SDNode *Operand = Use.getNode();
575      Use.set(SDValue());
576
577      // Now that we removed this operand, see if there are no uses of it left.
578      if (Operand->use_empty())
579        DeadNodes.push_back(Operand);
580    }
581
582    DeallocateNode(N);
583  }
584}
585
586void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
587  SmallVector<SDNode*, 16> DeadNodes(1, N);
588  RemoveDeadNodes(DeadNodes, UpdateListener);
589}
590
591void SelectionDAG::DeleteNode(SDNode *N) {
592  // First take this out of the appropriate CSE map.
593  RemoveNodeFromCSEMaps(N);
594
595  // Finally, remove uses due to operands of this node, remove from the
596  // AllNodes list, and delete the node.
597  DeleteNodeNotInCSEMaps(N);
598}
599
600void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
601  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
602  assert(N->use_empty() && "Cannot delete a node that is not dead!");
603
604  // Drop all of the operands and decrement used node's use counts.
605  N->DropOperands();
606
607  DeallocateNode(N);
608}
609
610void SelectionDAG::DeallocateNode(SDNode *N) {
611  if (N->OperandsNeedDelete)
612    delete[] N->OperandList;
613
614  // Set the opcode to DELETED_NODE to help catch bugs when node
615  // memory is reallocated.
616  N->NodeType = ISD::DELETED_NODE;
617
618  NodeAllocator.Deallocate(AllNodes.remove(N));
619}
620
621/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
622/// correspond to it.  This is useful when we're about to delete or repurpose
623/// the node.  We don't want future request for structurally identical nodes
624/// to return N anymore.
625bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
626  bool Erased = false;
627  switch (N->getOpcode()) {
628  case ISD::EntryToken:
629    assert(0 && "EntryToken should not be in CSEMaps!");
630    return false;
631  case ISD::HANDLENODE: return false;  // noop.
632  case ISD::CONDCODE:
633    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
634           "Cond code doesn't exist!");
635    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
636    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
637    break;
638  case ISD::ExternalSymbol:
639    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
640    break;
641  case ISD::TargetExternalSymbol: {
642    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
643    Erased = TargetExternalSymbols.erase(
644               std::pair<std::string,unsigned char>(ESN->getSymbol(),
645                                                    ESN->getTargetFlags()));
646    break;
647  }
648  case ISD::VALUETYPE: {
649    MVT VT = cast<VTSDNode>(N)->getVT();
650    if (VT.isExtended()) {
651      Erased = ExtendedValueTypeNodes.erase(VT);
652    } else {
653      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
654      ValueTypeNodes[VT.getSimpleVT()] = 0;
655    }
656    break;
657  }
658  default:
659    // Remove it from the CSE Map.
660    Erased = CSEMap.RemoveNode(N);
661    break;
662  }
663#ifndef NDEBUG
664  // Verify that the node was actually in one of the CSE maps, unless it has a
665  // flag result (which cannot be CSE'd) or is one of the special cases that are
666  // not subject to CSE.
667  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
668      !N->isMachineOpcode() && !doNotCSE(N)) {
669    N->dump(this);
670    cerr << "\n";
671    assert(0 && "Node is not in map!");
672  }
673#endif
674  return Erased;
675}
676
677/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
678/// maps and modified in place. Add it back to the CSE maps, unless an identical
679/// node already exists, in which case transfer all its users to the existing
680/// node. This transfer can potentially trigger recursive merging.
681///
682void
683SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
684                                       DAGUpdateListener *UpdateListener) {
685  // For node types that aren't CSE'd, just act as if no identical node
686  // already exists.
687  if (!doNotCSE(N)) {
688    SDNode *Existing = CSEMap.GetOrInsertNode(N);
689    if (Existing != N) {
690      // If there was already an existing matching node, use ReplaceAllUsesWith
691      // to replace the dead one with the existing one.  This can cause
692      // recursive merging of other unrelated nodes down the line.
693      ReplaceAllUsesWith(N, Existing, UpdateListener);
694
695      // N is now dead.  Inform the listener if it exists and delete it.
696      if (UpdateListener)
697        UpdateListener->NodeDeleted(N, Existing);
698      DeleteNodeNotInCSEMaps(N);
699      return;
700    }
701  }
702
703  // If the node doesn't already exist, we updated it.  Inform a listener if
704  // it exists.
705  if (UpdateListener)
706    UpdateListener->NodeUpdated(N);
707}
708
709/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
710/// were replaced with those specified.  If this node is never memoized,
711/// return null, otherwise return a pointer to the slot it would take.  If a
712/// node already exists with these operands, the slot will be non-null.
713SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
714                                           void *&InsertPos) {
715  if (doNotCSE(N))
716    return 0;
717
718  SDValue Ops[] = { Op };
719  FoldingSetNodeID ID;
720  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
721  AddNodeIDCustom(ID, N);
722  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
723}
724
725/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726/// were replaced with those specified.  If this node is never memoized,
727/// return null, otherwise return a pointer to the slot it would take.  If a
728/// node already exists with these operands, the slot will be non-null.
729SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730                                           SDValue Op1, SDValue Op2,
731                                           void *&InsertPos) {
732  if (doNotCSE(N))
733    return 0;
734
735  SDValue Ops[] = { Op1, Op2 };
736  FoldingSetNodeID ID;
737  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
738  AddNodeIDCustom(ID, N);
739  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
740}
741
742
743/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
744/// were replaced with those specified.  If this node is never memoized,
745/// return null, otherwise return a pointer to the slot it would take.  If a
746/// node already exists with these operands, the slot will be non-null.
747SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
748                                           const SDValue *Ops,unsigned NumOps,
749                                           void *&InsertPos) {
750  if (doNotCSE(N))
751    return 0;
752
753  FoldingSetNodeID ID;
754  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
755  AddNodeIDCustom(ID, N);
756  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
757}
758
759/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
760void SelectionDAG::VerifyNode(SDNode *N) {
761  switch (N->getOpcode()) {
762  default:
763    break;
764  case ISD::BUILD_PAIR: {
765    MVT VT = N->getValueType(0);
766    assert(N->getNumValues() == 1 && "Too many results!");
767    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
768           "Wrong return type!");
769    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
770    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
771           "Mismatched operand types!");
772    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
773           "Wrong operand type!");
774    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
775           "Wrong return type size");
776    break;
777  }
778  case ISD::BUILD_VECTOR: {
779    assert(N->getNumValues() == 1 && "Too many results!");
780    assert(N->getValueType(0).isVector() && "Wrong return type!");
781    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
782           "Wrong number of operands!");
783    MVT EltVT = N->getValueType(0).getVectorElementType();
784    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
785      assert((I->getValueType() == EltVT ||
786             (EltVT.isInteger() && I->getValueType().isInteger() &&
787              EltVT.bitsLE(I->getValueType()))) &&
788            "Wrong operand type!");
789    break;
790  }
791  }
792}
793
794/// getMVTAlignment - Compute the default alignment value for the
795/// given type.
796///
797unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
798  const Type *Ty = VT == MVT::iPTR ?
799                   PointerType::get(Type::Int8Ty, 0) :
800                   VT.getTypeForMVT();
801
802  return TLI.getTargetData()->getABITypeAlignment(Ty);
803}
804
805// EntryNode could meaningfully have debug info if we can find it...
806SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
807  : TLI(tli), FLI(fli), DW(0),
808    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
809    getVTList(MVT::Other)), Root(getEntryNode()) {
810  AllNodes.push_back(&EntryNode);
811}
812
813void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
814                        DwarfWriter *dw) {
815  MF = &mf;
816  MMI = mmi;
817  DW = dw;
818}
819
820SelectionDAG::~SelectionDAG() {
821  allnodes_clear();
822}
823
824void SelectionDAG::allnodes_clear() {
825  assert(&*AllNodes.begin() == &EntryNode);
826  AllNodes.remove(AllNodes.begin());
827  while (!AllNodes.empty())
828    DeallocateNode(AllNodes.begin());
829}
830
831void SelectionDAG::clear() {
832  allnodes_clear();
833  OperandAllocator.Reset();
834  CSEMap.clear();
835
836  ExtendedValueTypeNodes.clear();
837  ExternalSymbols.clear();
838  TargetExternalSymbols.clear();
839  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
840            static_cast<CondCodeSDNode*>(0));
841  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
842            static_cast<SDNode*>(0));
843
844  EntryNode.UseList = 0;
845  AllNodes.push_back(&EntryNode);
846  Root = getEntryNode();
847}
848
849SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
850  if (Op.getValueType() == VT) return Op;
851  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
852                                   VT.getSizeInBits());
853  return getNode(ISD::AND, DL, Op.getValueType(), Op,
854                 getConstant(Imm, Op.getValueType()));
855}
856
857/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
858///
859SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
860  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
861  SDValue NegOne =
862    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
863  return getNode(ISD::XOR, DL, VT, Val, NegOne);
864}
865
866SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
867  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
868  assert((EltVT.getSizeInBits() >= 64 ||
869         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
870         "getConstant with a uint64_t value that doesn't fit in the type!");
871  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
872}
873
874SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
875  return getConstant(*ConstantInt::get(Val), VT, isT);
876}
877
878SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
879  assert(VT.isInteger() && "Cannot create FP integer constant!");
880
881  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
882  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
883         "APInt size does not match type size!");
884
885  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
886  FoldingSetNodeID ID;
887  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
888  ID.AddPointer(&Val);
889  void *IP = 0;
890  SDNode *N = NULL;
891  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
892    if (!VT.isVector())
893      return SDValue(N, 0);
894  if (!N) {
895    N = NodeAllocator.Allocate<ConstantSDNode>();
896    new (N) ConstantSDNode(isT, &Val, EltVT);
897    CSEMap.InsertNode(N, IP);
898    AllNodes.push_back(N);
899  }
900
901  SDValue Result(N, 0);
902  if (VT.isVector()) {
903    SmallVector<SDValue, 8> Ops;
904    Ops.assign(VT.getVectorNumElements(), Result);
905    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
906                     VT, &Ops[0], Ops.size());
907  }
908  return Result;
909}
910
911SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
912  return getConstant(Val, TLI.getPointerTy(), isTarget);
913}
914
915
916SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
917  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
918}
919
920SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
921  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
922
923  MVT EltVT =
924    VT.isVector() ? VT.getVectorElementType() : VT;
925
926  // Do the map lookup using the actual bit pattern for the floating point
927  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
928  // we don't have issues with SNANs.
929  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
930  FoldingSetNodeID ID;
931  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
932  ID.AddPointer(&V);
933  void *IP = 0;
934  SDNode *N = NULL;
935  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
936    if (!VT.isVector())
937      return SDValue(N, 0);
938  if (!N) {
939    N = NodeAllocator.Allocate<ConstantFPSDNode>();
940    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
941    CSEMap.InsertNode(N, IP);
942    AllNodes.push_back(N);
943  }
944
945  SDValue Result(N, 0);
946  if (VT.isVector()) {
947    SmallVector<SDValue, 8> Ops;
948    Ops.assign(VT.getVectorNumElements(), Result);
949    // FIXME DebugLoc info might be appropriate here
950    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
951                     VT, &Ops[0], Ops.size());
952  }
953  return Result;
954}
955
956SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
957  MVT EltVT =
958    VT.isVector() ? VT.getVectorElementType() : VT;
959  if (EltVT==MVT::f32)
960    return getConstantFP(APFloat((float)Val), VT, isTarget);
961  else
962    return getConstantFP(APFloat(Val), VT, isTarget);
963}
964
965SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
966                                       MVT VT, int64_t Offset,
967                                       bool isTargetGA,
968                                       unsigned char TargetFlags) {
969  assert((TargetFlags == 0 || isTargetGA) &&
970         "Cannot set target flags on target-independent globals");
971
972  // Truncate (with sign-extension) the offset value to the pointer size.
973  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
974  if (BitWidth < 64)
975    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
976
977  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
978  if (!GVar) {
979    // If GV is an alias then use the aliasee for determining thread-localness.
980    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
981      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
982  }
983
984  unsigned Opc;
985  if (GVar && GVar->isThreadLocal())
986    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
987  else
988    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
989
990  FoldingSetNodeID ID;
991  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
992  ID.AddPointer(GV);
993  ID.AddInteger(Offset);
994  ID.AddInteger(TargetFlags);
995  void *IP = 0;
996  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
997    return SDValue(E, 0);
998  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
999  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1000  CSEMap.InsertNode(N, IP);
1001  AllNodes.push_back(N);
1002  return SDValue(N, 0);
1003}
1004
1005SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
1006  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1007  FoldingSetNodeID ID;
1008  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1009  ID.AddInteger(FI);
1010  void *IP = 0;
1011  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1012    return SDValue(E, 0);
1013  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1014  new (N) FrameIndexSDNode(FI, VT, isTarget);
1015  CSEMap.InsertNode(N, IP);
1016  AllNodes.push_back(N);
1017  return SDValue(N, 0);
1018}
1019
1020SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget,
1021                                   unsigned char TargetFlags) {
1022  assert((TargetFlags == 0 || isTarget) &&
1023         "Cannot set target flags on target-independent jump tables");
1024  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1025  FoldingSetNodeID ID;
1026  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1027  ID.AddInteger(JTI);
1028  ID.AddInteger(TargetFlags);
1029  void *IP = 0;
1030  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1031    return SDValue(E, 0);
1032  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1033  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1034  CSEMap.InsertNode(N, IP);
1035  AllNodes.push_back(N);
1036  return SDValue(N, 0);
1037}
1038
1039SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1040                                      unsigned Alignment, int Offset,
1041                                      bool isTarget,
1042                                      unsigned char TargetFlags) {
1043  assert((TargetFlags == 0 || isTarget) &&
1044         "Cannot set target flags on target-independent globals");
1045  if (Alignment == 0)
1046    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1047  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1048  FoldingSetNodeID ID;
1049  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1050  ID.AddInteger(Alignment);
1051  ID.AddInteger(Offset);
1052  ID.AddPointer(C);
1053  ID.AddInteger(TargetFlags);
1054  void *IP = 0;
1055  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1056    return SDValue(E, 0);
1057  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1058  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1059  CSEMap.InsertNode(N, IP);
1060  AllNodes.push_back(N);
1061  return SDValue(N, 0);
1062}
1063
1064
1065SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1066                                      unsigned Alignment, int Offset,
1067                                      bool isTarget,
1068                                      unsigned char TargetFlags) {
1069  assert((TargetFlags == 0 || isTarget) &&
1070         "Cannot set target flags on target-independent globals");
1071  if (Alignment == 0)
1072    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1073  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1074  FoldingSetNodeID ID;
1075  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1076  ID.AddInteger(Alignment);
1077  ID.AddInteger(Offset);
1078  C->AddSelectionDAGCSEId(ID);
1079  ID.AddInteger(TargetFlags);
1080  void *IP = 0;
1081  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1082    return SDValue(E, 0);
1083  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1084  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1085  CSEMap.InsertNode(N, IP);
1086  AllNodes.push_back(N);
1087  return SDValue(N, 0);
1088}
1089
1090SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1091  FoldingSetNodeID ID;
1092  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1093  ID.AddPointer(MBB);
1094  void *IP = 0;
1095  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1096    return SDValue(E, 0);
1097  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1098  new (N) BasicBlockSDNode(MBB);
1099  CSEMap.InsertNode(N, IP);
1100  AllNodes.push_back(N);
1101  return SDValue(N, 0);
1102}
1103
1104SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1105  FoldingSetNodeID ID;
1106  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1107  ID.AddInteger(Flags.getRawBits());
1108  void *IP = 0;
1109  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1110    return SDValue(E, 0);
1111  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1112  new (N) ARG_FLAGSSDNode(Flags);
1113  CSEMap.InsertNode(N, IP);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getValueType(MVT VT) {
1119  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1120    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1121
1122  SDNode *&N = VT.isExtended() ?
1123    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1124
1125  if (N) return SDValue(N, 0);
1126  N = NodeAllocator.Allocate<VTSDNode>();
1127  new (N) VTSDNode(VT);
1128  AllNodes.push_back(N);
1129  return SDValue(N, 0);
1130}
1131
1132SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1133  SDNode *&N = ExternalSymbols[Sym];
1134  if (N) return SDValue(N, 0);
1135  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1136  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1137  AllNodes.push_back(N);
1138  return SDValue(N, 0);
1139}
1140
1141SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT,
1142                                              unsigned char TargetFlags) {
1143  SDNode *&N =
1144    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1145                                                               TargetFlags)];
1146  if (N) return SDValue(N, 0);
1147  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1148  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1149  AllNodes.push_back(N);
1150  return SDValue(N, 0);
1151}
1152
1153SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1154  if ((unsigned)Cond >= CondCodeNodes.size())
1155    CondCodeNodes.resize(Cond+1);
1156
1157  if (CondCodeNodes[Cond] == 0) {
1158    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1159    new (N) CondCodeSDNode(Cond);
1160    CondCodeNodes[Cond] = N;
1161    AllNodes.push_back(N);
1162  }
1163  return SDValue(CondCodeNodes[Cond], 0);
1164}
1165
1166// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1167// the shuffle mask M that point at N1 to point at N2, and indices that point
1168// N2 to point at N1.
1169static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1170  std::swap(N1, N2);
1171  int NElts = M.size();
1172  for (int i = 0; i != NElts; ++i) {
1173    if (M[i] >= NElts)
1174      M[i] -= NElts;
1175    else if (M[i] >= 0)
1176      M[i] += NElts;
1177  }
1178}
1179
1180SDValue SelectionDAG::getVectorShuffle(MVT VT, DebugLoc dl, SDValue N1,
1181                                       SDValue N2, const int *Mask) {
1182  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1183  assert(VT.isVector() && N1.getValueType().isVector() &&
1184         "Vector Shuffle VTs must be a vectors");
1185  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1186         && "Vector Shuffle VTs must have same element type");
1187
1188  // Canonicalize shuffle undef, undef -> undef
1189  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1190    return N1;
1191
1192  // Validate that all indices in Mask are within the range of the elements
1193  // input to the shuffle.
1194  unsigned NElts = VT.getVectorNumElements();
1195  SmallVector<int, 8> MaskVec;
1196  for (unsigned i = 0; i != NElts; ++i) {
1197    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1198    MaskVec.push_back(Mask[i]);
1199  }
1200
1201  // Canonicalize shuffle v, v -> v, undef
1202  if (N1 == N2) {
1203    N2 = getUNDEF(VT);
1204    for (unsigned i = 0; i != NElts; ++i)
1205      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1206  }
1207
1208  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1209  if (N1.getOpcode() == ISD::UNDEF)
1210    commuteShuffle(N1, N2, MaskVec);
1211
1212  // Canonicalize all index into lhs, -> shuffle lhs, undef
1213  // Canonicalize all index into rhs, -> shuffle rhs, undef
1214  bool AllLHS = true, AllRHS = true;
1215  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1216  for (unsigned i = 0; i != NElts; ++i) {
1217    if (MaskVec[i] >= (int)NElts) {
1218      if (N2Undef)
1219        MaskVec[i] = -1;
1220      else
1221        AllLHS = false;
1222    } else if (MaskVec[i] >= 0) {
1223      AllRHS = false;
1224    }
1225  }
1226  if (AllLHS && AllRHS)
1227    return getUNDEF(VT);
1228  if (AllLHS && !N2Undef)
1229    N2 = getUNDEF(VT);
1230  if (AllRHS) {
1231    N1 = getUNDEF(VT);
1232    commuteShuffle(N1, N2, MaskVec);
1233  }
1234
1235  // If Identity shuffle, or all shuffle in to undef, return that node.
1236  bool AllUndef = true;
1237  bool Identity = true;
1238  for (unsigned i = 0; i != NElts; ++i) {
1239    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1240    if (MaskVec[i] >= 0) AllUndef = false;
1241  }
1242  if (Identity)
1243    return N1;
1244  if (AllUndef)
1245    return getUNDEF(VT);
1246
1247  FoldingSetNodeID ID;
1248  SDValue Ops[2] = { N1, N2 };
1249  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1250  for (unsigned i = 0; i != NElts; ++i)
1251    ID.AddInteger(MaskVec[i]);
1252
1253  void* IP = 0;
1254  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1255    return SDValue(E, 0);
1256
1257  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1258  // SDNode doesn't have access to it.  This memory will be "leaked" when
1259  // the node is deallocated, but recovered when the NodeAllocator is released.
1260  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1261  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1262
1263  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1264  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1265  CSEMap.InsertNode(N, IP);
1266  AllNodes.push_back(N);
1267  return SDValue(N, 0);
1268}
1269
1270SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1271                                       SDValue Val, SDValue DTy,
1272                                       SDValue STy, SDValue Rnd, SDValue Sat,
1273                                       ISD::CvtCode Code) {
1274  // If the src and dest types are the same and the conversion is between
1275  // integer types of the same sign or two floats, no conversion is necessary.
1276  if (DTy == STy &&
1277      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1278    return Val;
1279
1280  FoldingSetNodeID ID;
1281  void* IP = 0;
1282  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1283    return SDValue(E, 0);
1284  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1285  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1286  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1287  CSEMap.InsertNode(N, IP);
1288  AllNodes.push_back(N);
1289  return SDValue(N, 0);
1290}
1291
1292SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1293  FoldingSetNodeID ID;
1294  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1295  ID.AddInteger(RegNo);
1296  void *IP = 0;
1297  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1298    return SDValue(E, 0);
1299  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1300  new (N) RegisterSDNode(RegNo, VT);
1301  CSEMap.InsertNode(N, IP);
1302  AllNodes.push_back(N);
1303  return SDValue(N, 0);
1304}
1305
1306SDValue SelectionDAG::getDbgStopPoint(DebugLoc DL, SDValue Root,
1307                                      unsigned Line, unsigned Col,
1308                                      Value *CU) {
1309  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1310  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1311  N->setDebugLoc(DL);
1312  AllNodes.push_back(N);
1313  return SDValue(N, 0);
1314}
1315
1316SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1317                               SDValue Root,
1318                               unsigned LabelID) {
1319  FoldingSetNodeID ID;
1320  SDValue Ops[] = { Root };
1321  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1322  ID.AddInteger(LabelID);
1323  void *IP = 0;
1324  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1325    return SDValue(E, 0);
1326  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1327  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1328  CSEMap.InsertNode(N, IP);
1329  AllNodes.push_back(N);
1330  return SDValue(N, 0);
1331}
1332
1333SDValue SelectionDAG::getSrcValue(const Value *V) {
1334  assert((!V || isa<PointerType>(V->getType())) &&
1335         "SrcValue is not a pointer?");
1336
1337  FoldingSetNodeID ID;
1338  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1339  ID.AddPointer(V);
1340
1341  void *IP = 0;
1342  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1343    return SDValue(E, 0);
1344
1345  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1346  new (N) SrcValueSDNode(V);
1347  CSEMap.InsertNode(N, IP);
1348  AllNodes.push_back(N);
1349  return SDValue(N, 0);
1350}
1351
1352SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1353#ifndef NDEBUG
1354  const Value *v = MO.getValue();
1355  assert((!v || isa<PointerType>(v->getType())) &&
1356         "SrcValue is not a pointer?");
1357#endif
1358
1359  FoldingSetNodeID ID;
1360  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1361  MO.Profile(ID);
1362
1363  void *IP = 0;
1364  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1365    return SDValue(E, 0);
1366
1367  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1368  new (N) MemOperandSDNode(MO);
1369  CSEMap.InsertNode(N, IP);
1370  AllNodes.push_back(N);
1371  return SDValue(N, 0);
1372}
1373
1374/// getShiftAmountOperand - Return the specified value casted to
1375/// the target's desired shift amount type.
1376SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1377  MVT OpTy = Op.getValueType();
1378  MVT ShTy = TLI.getShiftAmountTy();
1379  if (OpTy == ShTy || OpTy.isVector()) return Op;
1380
1381  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1382  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1383}
1384
1385/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1386/// specified value type.
1387SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1388  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1389  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1390  const Type *Ty = VT.getTypeForMVT();
1391  unsigned StackAlign =
1392  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1393
1394  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1395  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1396}
1397
1398/// CreateStackTemporary - Create a stack temporary suitable for holding
1399/// either of the specified value types.
1400SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1401  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1402                            VT2.getStoreSizeInBits())/8;
1403  const Type *Ty1 = VT1.getTypeForMVT();
1404  const Type *Ty2 = VT2.getTypeForMVT();
1405  const TargetData *TD = TLI.getTargetData();
1406  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1407                            TD->getPrefTypeAlignment(Ty2));
1408
1409  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1410  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1411  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1412}
1413
1414SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1415                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1416  // These setcc operations always fold.
1417  switch (Cond) {
1418  default: break;
1419  case ISD::SETFALSE:
1420  case ISD::SETFALSE2: return getConstant(0, VT);
1421  case ISD::SETTRUE:
1422  case ISD::SETTRUE2:  return getConstant(1, VT);
1423
1424  case ISD::SETOEQ:
1425  case ISD::SETOGT:
1426  case ISD::SETOGE:
1427  case ISD::SETOLT:
1428  case ISD::SETOLE:
1429  case ISD::SETONE:
1430  case ISD::SETO:
1431  case ISD::SETUO:
1432  case ISD::SETUEQ:
1433  case ISD::SETUNE:
1434    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1435    break;
1436  }
1437
1438  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1439    const APInt &C2 = N2C->getAPIntValue();
1440    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1441      const APInt &C1 = N1C->getAPIntValue();
1442
1443      switch (Cond) {
1444      default: assert(0 && "Unknown integer setcc!");
1445      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1446      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1447      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1448      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1449      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1450      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1451      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1452      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1453      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1454      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1455      }
1456    }
1457  }
1458  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1459    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1460      // No compile time operations on this type yet.
1461      if (N1C->getValueType(0) == MVT::ppcf128)
1462        return SDValue();
1463
1464      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1465      switch (Cond) {
1466      default: break;
1467      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1468                          return getUNDEF(VT);
1469                        // fall through
1470      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1471      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1472                          return getUNDEF(VT);
1473                        // fall through
1474      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1475                                           R==APFloat::cmpLessThan, VT);
1476      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1477                          return getUNDEF(VT);
1478                        // fall through
1479      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1480      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1481                          return getUNDEF(VT);
1482                        // fall through
1483      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1484      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1485                          return getUNDEF(VT);
1486                        // fall through
1487      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1488                                           R==APFloat::cmpEqual, VT);
1489      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1490                          return getUNDEF(VT);
1491                        // fall through
1492      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1493                                           R==APFloat::cmpEqual, VT);
1494      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1495      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1496      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1497                                           R==APFloat::cmpEqual, VT);
1498      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1499      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1500                                           R==APFloat::cmpLessThan, VT);
1501      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1502                                           R==APFloat::cmpUnordered, VT);
1503      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1504      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1505      }
1506    } else {
1507      // Ensure that the constant occurs on the RHS.
1508      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1509    }
1510  }
1511
1512  // Could not fold it.
1513  return SDValue();
1514}
1515
1516/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1517/// use this predicate to simplify operations downstream.
1518bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1519  unsigned BitWidth = Op.getValueSizeInBits();
1520  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1521}
1522
1523/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1524/// this predicate to simplify operations downstream.  Mask is known to be zero
1525/// for bits that V cannot have.
1526bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1527                                     unsigned Depth) const {
1528  APInt KnownZero, KnownOne;
1529  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1530  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1531  return (KnownZero & Mask) == Mask;
1532}
1533
1534/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1535/// known to be either zero or one and return them in the KnownZero/KnownOne
1536/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1537/// processing.
1538void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1539                                     APInt &KnownZero, APInt &KnownOne,
1540                                     unsigned Depth) const {
1541  unsigned BitWidth = Mask.getBitWidth();
1542  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1543         "Mask size mismatches value type size!");
1544
1545  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1546  if (Depth == 6 || Mask == 0)
1547    return;  // Limit search depth.
1548
1549  APInt KnownZero2, KnownOne2;
1550
1551  switch (Op.getOpcode()) {
1552  case ISD::Constant:
1553    // We know all of the bits for a constant!
1554    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1555    KnownZero = ~KnownOne & Mask;
1556    return;
1557  case ISD::AND:
1558    // If either the LHS or the RHS are Zero, the result is zero.
1559    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1560    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1561                      KnownZero2, KnownOne2, Depth+1);
1562    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1563    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1564
1565    // Output known-1 bits are only known if set in both the LHS & RHS.
1566    KnownOne &= KnownOne2;
1567    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1568    KnownZero |= KnownZero2;
1569    return;
1570  case ISD::OR:
1571    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1572    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1573                      KnownZero2, KnownOne2, Depth+1);
1574    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1575    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1576
1577    // Output known-0 bits are only known if clear in both the LHS & RHS.
1578    KnownZero &= KnownZero2;
1579    // Output known-1 are known to be set if set in either the LHS | RHS.
1580    KnownOne |= KnownOne2;
1581    return;
1582  case ISD::XOR: {
1583    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1584    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1585    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1586    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1587
1588    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1589    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1590    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1591    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1592    KnownZero = KnownZeroOut;
1593    return;
1594  }
1595  case ISD::MUL: {
1596    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1597    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1598    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1599    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1600    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1601
1602    // If low bits are zero in either operand, output low known-0 bits.
1603    // Also compute a conserative estimate for high known-0 bits.
1604    // More trickiness is possible, but this is sufficient for the
1605    // interesting case of alignment computation.
1606    KnownOne.clear();
1607    unsigned TrailZ = KnownZero.countTrailingOnes() +
1608                      KnownZero2.countTrailingOnes();
1609    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1610                               KnownZero2.countLeadingOnes(),
1611                               BitWidth) - BitWidth;
1612
1613    TrailZ = std::min(TrailZ, BitWidth);
1614    LeadZ = std::min(LeadZ, BitWidth);
1615    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1616                APInt::getHighBitsSet(BitWidth, LeadZ);
1617    KnownZero &= Mask;
1618    return;
1619  }
1620  case ISD::UDIV: {
1621    // For the purposes of computing leading zeros we can conservatively
1622    // treat a udiv as a logical right shift by the power of 2 known to
1623    // be less than the denominator.
1624    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1625    ComputeMaskedBits(Op.getOperand(0),
1626                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1627    unsigned LeadZ = KnownZero2.countLeadingOnes();
1628
1629    KnownOne2.clear();
1630    KnownZero2.clear();
1631    ComputeMaskedBits(Op.getOperand(1),
1632                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1633    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1634    if (RHSUnknownLeadingOnes != BitWidth)
1635      LeadZ = std::min(BitWidth,
1636                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1637
1638    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1639    return;
1640  }
1641  case ISD::SELECT:
1642    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1643    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1644    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1645    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1646
1647    // Only known if known in both the LHS and RHS.
1648    KnownOne &= KnownOne2;
1649    KnownZero &= KnownZero2;
1650    return;
1651  case ISD::SELECT_CC:
1652    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1653    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1654    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1655    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1656
1657    // Only known if known in both the LHS and RHS.
1658    KnownOne &= KnownOne2;
1659    KnownZero &= KnownZero2;
1660    return;
1661  case ISD::SADDO:
1662  case ISD::UADDO:
1663  case ISD::SSUBO:
1664  case ISD::USUBO:
1665  case ISD::SMULO:
1666  case ISD::UMULO:
1667    if (Op.getResNo() != 1)
1668      return;
1669    // The boolean result conforms to getBooleanContents.  Fall through.
1670  case ISD::SETCC:
1671    // If we know the result of a setcc has the top bits zero, use this info.
1672    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1673        BitWidth > 1)
1674      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1675    return;
1676  case ISD::SHL:
1677    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1678    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1679      unsigned ShAmt = SA->getZExtValue();
1680
1681      // If the shift count is an invalid immediate, don't do anything.
1682      if (ShAmt >= BitWidth)
1683        return;
1684
1685      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1686                        KnownZero, KnownOne, Depth+1);
1687      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1688      KnownZero <<= ShAmt;
1689      KnownOne  <<= ShAmt;
1690      // low bits known zero.
1691      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1692    }
1693    return;
1694  case ISD::SRL:
1695    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1696    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1697      unsigned ShAmt = SA->getZExtValue();
1698
1699      // If the shift count is an invalid immediate, don't do anything.
1700      if (ShAmt >= BitWidth)
1701        return;
1702
1703      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1704                        KnownZero, KnownOne, Depth+1);
1705      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1706      KnownZero = KnownZero.lshr(ShAmt);
1707      KnownOne  = KnownOne.lshr(ShAmt);
1708
1709      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1710      KnownZero |= HighBits;  // High bits known zero.
1711    }
1712    return;
1713  case ISD::SRA:
1714    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1715      unsigned ShAmt = SA->getZExtValue();
1716
1717      // If the shift count is an invalid immediate, don't do anything.
1718      if (ShAmt >= BitWidth)
1719        return;
1720
1721      APInt InDemandedMask = (Mask << ShAmt);
1722      // If any of the demanded bits are produced by the sign extension, we also
1723      // demand the input sign bit.
1724      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1725      if (HighBits.getBoolValue())
1726        InDemandedMask |= APInt::getSignBit(BitWidth);
1727
1728      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1729                        Depth+1);
1730      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1731      KnownZero = KnownZero.lshr(ShAmt);
1732      KnownOne  = KnownOne.lshr(ShAmt);
1733
1734      // Handle the sign bits.
1735      APInt SignBit = APInt::getSignBit(BitWidth);
1736      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1737
1738      if (KnownZero.intersects(SignBit)) {
1739        KnownZero |= HighBits;  // New bits are known zero.
1740      } else if (KnownOne.intersects(SignBit)) {
1741        KnownOne  |= HighBits;  // New bits are known one.
1742      }
1743    }
1744    return;
1745  case ISD::SIGN_EXTEND_INREG: {
1746    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1747    unsigned EBits = EVT.getSizeInBits();
1748
1749    // Sign extension.  Compute the demanded bits in the result that are not
1750    // present in the input.
1751    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1752
1753    APInt InSignBit = APInt::getSignBit(EBits);
1754    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1755
1756    // If the sign extended bits are demanded, we know that the sign
1757    // bit is demanded.
1758    InSignBit.zext(BitWidth);
1759    if (NewBits.getBoolValue())
1760      InputDemandedBits |= InSignBit;
1761
1762    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1763                      KnownZero, KnownOne, Depth+1);
1764    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1765
1766    // If the sign bit of the input is known set or clear, then we know the
1767    // top bits of the result.
1768    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1769      KnownZero |= NewBits;
1770      KnownOne  &= ~NewBits;
1771    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1772      KnownOne  |= NewBits;
1773      KnownZero &= ~NewBits;
1774    } else {                              // Input sign bit unknown
1775      KnownZero &= ~NewBits;
1776      KnownOne  &= ~NewBits;
1777    }
1778    return;
1779  }
1780  case ISD::CTTZ:
1781  case ISD::CTLZ:
1782  case ISD::CTPOP: {
1783    unsigned LowBits = Log2_32(BitWidth)+1;
1784    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1785    KnownOne.clear();
1786    return;
1787  }
1788  case ISD::LOAD: {
1789    if (ISD::isZEXTLoad(Op.getNode())) {
1790      LoadSDNode *LD = cast<LoadSDNode>(Op);
1791      MVT VT = LD->getMemoryVT();
1792      unsigned MemBits = VT.getSizeInBits();
1793      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1794    }
1795    return;
1796  }
1797  case ISD::ZERO_EXTEND: {
1798    MVT InVT = Op.getOperand(0).getValueType();
1799    unsigned InBits = InVT.getSizeInBits();
1800    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1801    APInt InMask    = Mask;
1802    InMask.trunc(InBits);
1803    KnownZero.trunc(InBits);
1804    KnownOne.trunc(InBits);
1805    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1806    KnownZero.zext(BitWidth);
1807    KnownOne.zext(BitWidth);
1808    KnownZero |= NewBits;
1809    return;
1810  }
1811  case ISD::SIGN_EXTEND: {
1812    MVT InVT = Op.getOperand(0).getValueType();
1813    unsigned InBits = InVT.getSizeInBits();
1814    APInt InSignBit = APInt::getSignBit(InBits);
1815    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1816    APInt InMask = Mask;
1817    InMask.trunc(InBits);
1818
1819    // If any of the sign extended bits are demanded, we know that the sign
1820    // bit is demanded. Temporarily set this bit in the mask for our callee.
1821    if (NewBits.getBoolValue())
1822      InMask |= InSignBit;
1823
1824    KnownZero.trunc(InBits);
1825    KnownOne.trunc(InBits);
1826    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1827
1828    // Note if the sign bit is known to be zero or one.
1829    bool SignBitKnownZero = KnownZero.isNegative();
1830    bool SignBitKnownOne  = KnownOne.isNegative();
1831    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1832           "Sign bit can't be known to be both zero and one!");
1833
1834    // If the sign bit wasn't actually demanded by our caller, we don't
1835    // want it set in the KnownZero and KnownOne result values. Reset the
1836    // mask and reapply it to the result values.
1837    InMask = Mask;
1838    InMask.trunc(InBits);
1839    KnownZero &= InMask;
1840    KnownOne  &= InMask;
1841
1842    KnownZero.zext(BitWidth);
1843    KnownOne.zext(BitWidth);
1844
1845    // If the sign bit is known zero or one, the top bits match.
1846    if (SignBitKnownZero)
1847      KnownZero |= NewBits;
1848    else if (SignBitKnownOne)
1849      KnownOne  |= NewBits;
1850    return;
1851  }
1852  case ISD::ANY_EXTEND: {
1853    MVT InVT = Op.getOperand(0).getValueType();
1854    unsigned InBits = InVT.getSizeInBits();
1855    APInt InMask = Mask;
1856    InMask.trunc(InBits);
1857    KnownZero.trunc(InBits);
1858    KnownOne.trunc(InBits);
1859    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1860    KnownZero.zext(BitWidth);
1861    KnownOne.zext(BitWidth);
1862    return;
1863  }
1864  case ISD::TRUNCATE: {
1865    MVT InVT = Op.getOperand(0).getValueType();
1866    unsigned InBits = InVT.getSizeInBits();
1867    APInt InMask = Mask;
1868    InMask.zext(InBits);
1869    KnownZero.zext(InBits);
1870    KnownOne.zext(InBits);
1871    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1872    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1873    KnownZero.trunc(BitWidth);
1874    KnownOne.trunc(BitWidth);
1875    break;
1876  }
1877  case ISD::AssertZext: {
1878    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1879    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1880    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1881                      KnownOne, Depth+1);
1882    KnownZero |= (~InMask) & Mask;
1883    return;
1884  }
1885  case ISD::FGETSIGN:
1886    // All bits are zero except the low bit.
1887    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1888    return;
1889
1890  case ISD::SUB: {
1891    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1892      // We know that the top bits of C-X are clear if X contains less bits
1893      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1894      // positive if we can prove that X is >= 0 and < 16.
1895      if (CLHS->getAPIntValue().isNonNegative()) {
1896        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1897        // NLZ can't be BitWidth with no sign bit
1898        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1899        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1900                          Depth+1);
1901
1902        // If all of the MaskV bits are known to be zero, then we know the
1903        // output top bits are zero, because we now know that the output is
1904        // from [0-C].
1905        if ((KnownZero2 & MaskV) == MaskV) {
1906          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1907          // Top bits known zero.
1908          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1909        }
1910      }
1911    }
1912  }
1913  // fall through
1914  case ISD::ADD: {
1915    // Output known-0 bits are known if clear or set in both the low clear bits
1916    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1917    // low 3 bits clear.
1918    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1919    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1920    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1921    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1922
1923    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1924    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1925    KnownZeroOut = std::min(KnownZeroOut,
1926                            KnownZero2.countTrailingOnes());
1927
1928    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1929    return;
1930  }
1931  case ISD::SREM:
1932    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1933      const APInt &RA = Rem->getAPIntValue();
1934      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1935        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1936        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1937        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1938
1939        // If the sign bit of the first operand is zero, the sign bit of
1940        // the result is zero. If the first operand has no one bits below
1941        // the second operand's single 1 bit, its sign will be zero.
1942        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1943          KnownZero2 |= ~LowBits;
1944
1945        KnownZero |= KnownZero2 & Mask;
1946
1947        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1948      }
1949    }
1950    return;
1951  case ISD::UREM: {
1952    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1953      const APInt &RA = Rem->getAPIntValue();
1954      if (RA.isPowerOf2()) {
1955        APInt LowBits = (RA - 1);
1956        APInt Mask2 = LowBits & Mask;
1957        KnownZero |= ~LowBits & Mask;
1958        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1959        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1960        break;
1961      }
1962    }
1963
1964    // Since the result is less than or equal to either operand, any leading
1965    // zero bits in either operand must also exist in the result.
1966    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1967    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1968                      Depth+1);
1969    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1970                      Depth+1);
1971
1972    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1973                                KnownZero2.countLeadingOnes());
1974    KnownOne.clear();
1975    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1976    return;
1977  }
1978  default:
1979    // Allow the target to implement this method for its nodes.
1980    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1981  case ISD::INTRINSIC_WO_CHAIN:
1982  case ISD::INTRINSIC_W_CHAIN:
1983  case ISD::INTRINSIC_VOID:
1984      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1985    }
1986    return;
1987  }
1988}
1989
1990/// ComputeNumSignBits - Return the number of times the sign bit of the
1991/// register is replicated into the other bits.  We know that at least 1 bit
1992/// is always equal to the sign bit (itself), but other cases can give us
1993/// information.  For example, immediately after an "SRA X, 2", we know that
1994/// the top 3 bits are all equal to each other, so we return 3.
1995unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1996  MVT VT = Op.getValueType();
1997  assert(VT.isInteger() && "Invalid VT!");
1998  unsigned VTBits = VT.getSizeInBits();
1999  unsigned Tmp, Tmp2;
2000  unsigned FirstAnswer = 1;
2001
2002  if (Depth == 6)
2003    return 1;  // Limit search depth.
2004
2005  switch (Op.getOpcode()) {
2006  default: break;
2007  case ISD::AssertSext:
2008    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2009    return VTBits-Tmp+1;
2010  case ISD::AssertZext:
2011    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2012    return VTBits-Tmp;
2013
2014  case ISD::Constant: {
2015    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2016    // If negative, return # leading ones.
2017    if (Val.isNegative())
2018      return Val.countLeadingOnes();
2019
2020    // Return # leading zeros.
2021    return Val.countLeadingZeros();
2022  }
2023
2024  case ISD::SIGN_EXTEND:
2025    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
2026    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2027
2028  case ISD::SIGN_EXTEND_INREG:
2029    // Max of the input and what this extends.
2030    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2031    Tmp = VTBits-Tmp+1;
2032
2033    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2034    return std::max(Tmp, Tmp2);
2035
2036  case ISD::SRA:
2037    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2038    // SRA X, C   -> adds C sign bits.
2039    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2040      Tmp += C->getZExtValue();
2041      if (Tmp > VTBits) Tmp = VTBits;
2042    }
2043    return Tmp;
2044  case ISD::SHL:
2045    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2046      // shl destroys sign bits.
2047      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2048      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2049          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2050      return Tmp - C->getZExtValue();
2051    }
2052    break;
2053  case ISD::AND:
2054  case ISD::OR:
2055  case ISD::XOR:    // NOT is handled here.
2056    // Logical binary ops preserve the number of sign bits at the worst.
2057    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2058    if (Tmp != 1) {
2059      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2060      FirstAnswer = std::min(Tmp, Tmp2);
2061      // We computed what we know about the sign bits as our first
2062      // answer. Now proceed to the generic code that uses
2063      // ComputeMaskedBits, and pick whichever answer is better.
2064    }
2065    break;
2066
2067  case ISD::SELECT:
2068    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2069    if (Tmp == 1) return 1;  // Early out.
2070    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2071    return std::min(Tmp, Tmp2);
2072
2073  case ISD::SADDO:
2074  case ISD::UADDO:
2075  case ISD::SSUBO:
2076  case ISD::USUBO:
2077  case ISD::SMULO:
2078  case ISD::UMULO:
2079    if (Op.getResNo() != 1)
2080      break;
2081    // The boolean result conforms to getBooleanContents.  Fall through.
2082  case ISD::SETCC:
2083    // If setcc returns 0/-1, all bits are sign bits.
2084    if (TLI.getBooleanContents() ==
2085        TargetLowering::ZeroOrNegativeOneBooleanContent)
2086      return VTBits;
2087    break;
2088  case ISD::ROTL:
2089  case ISD::ROTR:
2090    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2091      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2092
2093      // Handle rotate right by N like a rotate left by 32-N.
2094      if (Op.getOpcode() == ISD::ROTR)
2095        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2096
2097      // If we aren't rotating out all of the known-in sign bits, return the
2098      // number that are left.  This handles rotl(sext(x), 1) for example.
2099      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2100      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2101    }
2102    break;
2103  case ISD::ADD:
2104    // Add can have at most one carry bit.  Thus we know that the output
2105    // is, at worst, one more bit than the inputs.
2106    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2107    if (Tmp == 1) return 1;  // Early out.
2108
2109    // Special case decrementing a value (ADD X, -1):
2110    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2111      if (CRHS->isAllOnesValue()) {
2112        APInt KnownZero, KnownOne;
2113        APInt Mask = APInt::getAllOnesValue(VTBits);
2114        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2115
2116        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2117        // sign bits set.
2118        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2119          return VTBits;
2120
2121        // If we are subtracting one from a positive number, there is no carry
2122        // out of the result.
2123        if (KnownZero.isNegative())
2124          return Tmp;
2125      }
2126
2127    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2128    if (Tmp2 == 1) return 1;
2129      return std::min(Tmp, Tmp2)-1;
2130    break;
2131
2132  case ISD::SUB:
2133    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2134    if (Tmp2 == 1) return 1;
2135
2136    // Handle NEG.
2137    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2138      if (CLHS->isNullValue()) {
2139        APInt KnownZero, KnownOne;
2140        APInt Mask = APInt::getAllOnesValue(VTBits);
2141        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2142        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2143        // sign bits set.
2144        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2145          return VTBits;
2146
2147        // If the input is known to be positive (the sign bit is known clear),
2148        // the output of the NEG has the same number of sign bits as the input.
2149        if (KnownZero.isNegative())
2150          return Tmp2;
2151
2152        // Otherwise, we treat this like a SUB.
2153      }
2154
2155    // Sub can have at most one carry bit.  Thus we know that the output
2156    // is, at worst, one more bit than the inputs.
2157    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2158    if (Tmp == 1) return 1;  // Early out.
2159      return std::min(Tmp, Tmp2)-1;
2160    break;
2161  case ISD::TRUNCATE:
2162    // FIXME: it's tricky to do anything useful for this, but it is an important
2163    // case for targets like X86.
2164    break;
2165  }
2166
2167  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2168  if (Op.getOpcode() == ISD::LOAD) {
2169    LoadSDNode *LD = cast<LoadSDNode>(Op);
2170    unsigned ExtType = LD->getExtensionType();
2171    switch (ExtType) {
2172    default: break;
2173    case ISD::SEXTLOAD:    // '17' bits known
2174      Tmp = LD->getMemoryVT().getSizeInBits();
2175      return VTBits-Tmp+1;
2176    case ISD::ZEXTLOAD:    // '16' bits known
2177      Tmp = LD->getMemoryVT().getSizeInBits();
2178      return VTBits-Tmp;
2179    }
2180  }
2181
2182  // Allow the target to implement this method for its nodes.
2183  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2184      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2185      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2186      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2187    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2188    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2189  }
2190
2191  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2192  // use this information.
2193  APInt KnownZero, KnownOne;
2194  APInt Mask = APInt::getAllOnesValue(VTBits);
2195  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2196
2197  if (KnownZero.isNegative()) {        // sign bit is 0
2198    Mask = KnownZero;
2199  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2200    Mask = KnownOne;
2201  } else {
2202    // Nothing known.
2203    return FirstAnswer;
2204  }
2205
2206  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2207  // the number of identical bits in the top of the input value.
2208  Mask = ~Mask;
2209  Mask <<= Mask.getBitWidth()-VTBits;
2210  // Return # leading zeros.  We use 'min' here in case Val was zero before
2211  // shifting.  We don't want to return '64' as for an i32 "0".
2212  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2213}
2214
2215
2216bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2217  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2218  if (!GA) return false;
2219  if (GA->getOffset() != 0) return false;
2220  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2221  if (!GV) return false;
2222  MachineModuleInfo *MMI = getMachineModuleInfo();
2223  return MMI && MMI->hasDebugInfo();
2224}
2225
2226
2227/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2228/// element of the result of the vector shuffle.
2229SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2230                                          unsigned i) {
2231  MVT VT = N->getValueType(0);
2232  DebugLoc dl = N->getDebugLoc();
2233  if (N->getMaskElt(i) < 0)
2234    return getUNDEF(VT.getVectorElementType());
2235  unsigned Index = N->getMaskElt(i);
2236  unsigned NumElems = VT.getVectorNumElements();
2237  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2238  Index %= NumElems;
2239
2240  if (V.getOpcode() == ISD::BIT_CONVERT) {
2241    V = V.getOperand(0);
2242    MVT VVT = V.getValueType();
2243    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2244      return SDValue();
2245  }
2246  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2247    return (Index == 0) ? V.getOperand(0)
2248                      : getUNDEF(VT.getVectorElementType());
2249  if (V.getOpcode() == ISD::BUILD_VECTOR)
2250    return V.getOperand(Index);
2251  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2252    return getShuffleScalarElt(SVN, Index);
2253  return SDValue();
2254}
2255
2256
2257/// getNode - Gets or creates the specified node.
2258///
2259SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2260  FoldingSetNodeID ID;
2261  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2262  void *IP = 0;
2263  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2264    return SDValue(E, 0);
2265  SDNode *N = NodeAllocator.Allocate<SDNode>();
2266  new (N) SDNode(Opcode, DL, getVTList(VT));
2267  CSEMap.InsertNode(N, IP);
2268
2269  AllNodes.push_back(N);
2270#ifndef NDEBUG
2271  VerifyNode(N);
2272#endif
2273  return SDValue(N, 0);
2274}
2275
2276SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2277                              MVT VT, SDValue Operand) {
2278  // Constant fold unary operations with an integer constant operand.
2279  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2280    const APInt &Val = C->getAPIntValue();
2281    unsigned BitWidth = VT.getSizeInBits();
2282    switch (Opcode) {
2283    default: break;
2284    case ISD::SIGN_EXTEND:
2285      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2286    case ISD::ANY_EXTEND:
2287    case ISD::ZERO_EXTEND:
2288    case ISD::TRUNCATE:
2289      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2290    case ISD::UINT_TO_FP:
2291    case ISD::SINT_TO_FP: {
2292      const uint64_t zero[] = {0, 0};
2293      // No compile time operations on this type.
2294      if (VT==MVT::ppcf128)
2295        break;
2296      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2297      (void)apf.convertFromAPInt(Val,
2298                                 Opcode==ISD::SINT_TO_FP,
2299                                 APFloat::rmNearestTiesToEven);
2300      return getConstantFP(apf, VT);
2301    }
2302    case ISD::BIT_CONVERT:
2303      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2304        return getConstantFP(Val.bitsToFloat(), VT);
2305      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2306        return getConstantFP(Val.bitsToDouble(), VT);
2307      break;
2308    case ISD::BSWAP:
2309      return getConstant(Val.byteSwap(), VT);
2310    case ISD::CTPOP:
2311      return getConstant(Val.countPopulation(), VT);
2312    case ISD::CTLZ:
2313      return getConstant(Val.countLeadingZeros(), VT);
2314    case ISD::CTTZ:
2315      return getConstant(Val.countTrailingZeros(), VT);
2316    }
2317  }
2318
2319  // Constant fold unary operations with a floating point constant operand.
2320  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2321    APFloat V = C->getValueAPF();    // make copy
2322    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2323      switch (Opcode) {
2324      case ISD::FNEG:
2325        V.changeSign();
2326        return getConstantFP(V, VT);
2327      case ISD::FABS:
2328        V.clearSign();
2329        return getConstantFP(V, VT);
2330      case ISD::FP_ROUND:
2331      case ISD::FP_EXTEND: {
2332        bool ignored;
2333        // This can return overflow, underflow, or inexact; we don't care.
2334        // FIXME need to be more flexible about rounding mode.
2335        (void)V.convert(*MVTToAPFloatSemantics(VT),
2336                        APFloat::rmNearestTiesToEven, &ignored);
2337        return getConstantFP(V, VT);
2338      }
2339      case ISD::FP_TO_SINT:
2340      case ISD::FP_TO_UINT: {
2341        integerPart x[2];
2342        bool ignored;
2343        assert(integerPartWidth >= 64);
2344        // FIXME need to be more flexible about rounding mode.
2345        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2346                              Opcode==ISD::FP_TO_SINT,
2347                              APFloat::rmTowardZero, &ignored);
2348        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2349          break;
2350        APInt api(VT.getSizeInBits(), 2, x);
2351        return getConstant(api, VT);
2352      }
2353      case ISD::BIT_CONVERT:
2354        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2355          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2356        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2357          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2358        break;
2359      }
2360    }
2361  }
2362
2363  unsigned OpOpcode = Operand.getNode()->getOpcode();
2364  switch (Opcode) {
2365  case ISD::TokenFactor:
2366  case ISD::MERGE_VALUES:
2367  case ISD::CONCAT_VECTORS:
2368    return Operand;         // Factor, merge or concat of one node?  No need.
2369  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2370  case ISD::FP_EXTEND:
2371    assert(VT.isFloatingPoint() &&
2372           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2373    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2374    if (Operand.getOpcode() == ISD::UNDEF)
2375      return getUNDEF(VT);
2376    break;
2377  case ISD::SIGN_EXTEND:
2378    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2379           "Invalid SIGN_EXTEND!");
2380    if (Operand.getValueType() == VT) return Operand;   // noop extension
2381    assert(Operand.getValueType().bitsLT(VT)
2382           && "Invalid sext node, dst < src!");
2383    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2384      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2385    break;
2386  case ISD::ZERO_EXTEND:
2387    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2388           "Invalid ZERO_EXTEND!");
2389    if (Operand.getValueType() == VT) return Operand;   // noop extension
2390    assert(Operand.getValueType().bitsLT(VT)
2391           && "Invalid zext node, dst < src!");
2392    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2393      return getNode(ISD::ZERO_EXTEND, DL, VT,
2394                     Operand.getNode()->getOperand(0));
2395    break;
2396  case ISD::ANY_EXTEND:
2397    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2398           "Invalid ANY_EXTEND!");
2399    if (Operand.getValueType() == VT) return Operand;   // noop extension
2400    assert(Operand.getValueType().bitsLT(VT)
2401           && "Invalid anyext node, dst < src!");
2402    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2403      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2404      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2405    break;
2406  case ISD::TRUNCATE:
2407    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2408           "Invalid TRUNCATE!");
2409    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2410    assert(Operand.getValueType().bitsGT(VT)
2411           && "Invalid truncate node, src < dst!");
2412    if (OpOpcode == ISD::TRUNCATE)
2413      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2414    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2415             OpOpcode == ISD::ANY_EXTEND) {
2416      // If the source is smaller than the dest, we still need an extend.
2417      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2418        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2419      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2420        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2421      else
2422        return Operand.getNode()->getOperand(0);
2423    }
2424    break;
2425  case ISD::BIT_CONVERT:
2426    // Basic sanity checking.
2427    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2428           && "Cannot BIT_CONVERT between types of different sizes!");
2429    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2430    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2431      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2432    if (OpOpcode == ISD::UNDEF)
2433      return getUNDEF(VT);
2434    break;
2435  case ISD::SCALAR_TO_VECTOR:
2436    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2437           (VT.getVectorElementType() == Operand.getValueType() ||
2438            (VT.getVectorElementType().isInteger() &&
2439             Operand.getValueType().isInteger() &&
2440             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2441           "Illegal SCALAR_TO_VECTOR node!");
2442    if (OpOpcode == ISD::UNDEF)
2443      return getUNDEF(VT);
2444    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2445    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2446        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2447        Operand.getConstantOperandVal(1) == 0 &&
2448        Operand.getOperand(0).getValueType() == VT)
2449      return Operand.getOperand(0);
2450    break;
2451  case ISD::FNEG:
2452    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2453    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2454      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2455                     Operand.getNode()->getOperand(0));
2456    if (OpOpcode == ISD::FNEG)  // --X -> X
2457      return Operand.getNode()->getOperand(0);
2458    break;
2459  case ISD::FABS:
2460    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2461      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2462    break;
2463  }
2464
2465  SDNode *N;
2466  SDVTList VTs = getVTList(VT);
2467  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2468    FoldingSetNodeID ID;
2469    SDValue Ops[1] = { Operand };
2470    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2471    void *IP = 0;
2472    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2473      return SDValue(E, 0);
2474    N = NodeAllocator.Allocate<UnarySDNode>();
2475    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2476    CSEMap.InsertNode(N, IP);
2477  } else {
2478    N = NodeAllocator.Allocate<UnarySDNode>();
2479    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2480  }
2481
2482  AllNodes.push_back(N);
2483#ifndef NDEBUG
2484  VerifyNode(N);
2485#endif
2486  return SDValue(N, 0);
2487}
2488
2489SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2490                                             MVT VT,
2491                                             ConstantSDNode *Cst1,
2492                                             ConstantSDNode *Cst2) {
2493  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2494
2495  switch (Opcode) {
2496  case ISD::ADD:  return getConstant(C1 + C2, VT);
2497  case ISD::SUB:  return getConstant(C1 - C2, VT);
2498  case ISD::MUL:  return getConstant(C1 * C2, VT);
2499  case ISD::UDIV:
2500    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2501    break;
2502  case ISD::UREM:
2503    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2504    break;
2505  case ISD::SDIV:
2506    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2507    break;
2508  case ISD::SREM:
2509    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2510    break;
2511  case ISD::AND:  return getConstant(C1 & C2, VT);
2512  case ISD::OR:   return getConstant(C1 | C2, VT);
2513  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2514  case ISD::SHL:  return getConstant(C1 << C2, VT);
2515  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2516  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2517  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2518  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2519  default: break;
2520  }
2521
2522  return SDValue();
2523}
2524
2525SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2526                              SDValue N1, SDValue N2) {
2527  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2528  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2529  switch (Opcode) {
2530  default: break;
2531  case ISD::TokenFactor:
2532    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2533           N2.getValueType() == MVT::Other && "Invalid token factor!");
2534    // Fold trivial token factors.
2535    if (N1.getOpcode() == ISD::EntryToken) return N2;
2536    if (N2.getOpcode() == ISD::EntryToken) return N1;
2537    if (N1 == N2) return N1;
2538    break;
2539  case ISD::CONCAT_VECTORS:
2540    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2541    // one big BUILD_VECTOR.
2542    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2543        N2.getOpcode() == ISD::BUILD_VECTOR) {
2544      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2545      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2546      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2547    }
2548    break;
2549  case ISD::AND:
2550    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2551           N1.getValueType() == VT && "Binary operator types must match!");
2552    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2553    // worth handling here.
2554    if (N2C && N2C->isNullValue())
2555      return N2;
2556    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2557      return N1;
2558    break;
2559  case ISD::OR:
2560  case ISD::XOR:
2561  case ISD::ADD:
2562  case ISD::SUB:
2563    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2564           N1.getValueType() == VT && "Binary operator types must match!");
2565    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2566    // it's worth handling here.
2567    if (N2C && N2C->isNullValue())
2568      return N1;
2569    break;
2570  case ISD::UDIV:
2571  case ISD::UREM:
2572  case ISD::MULHU:
2573  case ISD::MULHS:
2574  case ISD::MUL:
2575  case ISD::SDIV:
2576  case ISD::SREM:
2577    assert(VT.isInteger() && "This operator does not apply to FP types!");
2578    // fall through
2579  case ISD::FADD:
2580  case ISD::FSUB:
2581  case ISD::FMUL:
2582  case ISD::FDIV:
2583  case ISD::FREM:
2584    if (UnsafeFPMath) {
2585      if (Opcode == ISD::FADD) {
2586        // 0+x --> x
2587        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2588          if (CFP->getValueAPF().isZero())
2589            return N2;
2590        // x+0 --> x
2591        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2592          if (CFP->getValueAPF().isZero())
2593            return N1;
2594      } else if (Opcode == ISD::FSUB) {
2595        // x-0 --> x
2596        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2597          if (CFP->getValueAPF().isZero())
2598            return N1;
2599      }
2600    }
2601    assert(N1.getValueType() == N2.getValueType() &&
2602           N1.getValueType() == VT && "Binary operator types must match!");
2603    break;
2604  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2605    assert(N1.getValueType() == VT &&
2606           N1.getValueType().isFloatingPoint() &&
2607           N2.getValueType().isFloatingPoint() &&
2608           "Invalid FCOPYSIGN!");
2609    break;
2610  case ISD::SHL:
2611  case ISD::SRA:
2612  case ISD::SRL:
2613  case ISD::ROTL:
2614  case ISD::ROTR:
2615    assert(VT == N1.getValueType() &&
2616           "Shift operators return type must be the same as their first arg");
2617    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2618           "Shifts only work on integers");
2619
2620    // Always fold shifts of i1 values so the code generator doesn't need to
2621    // handle them.  Since we know the size of the shift has to be less than the
2622    // size of the value, the shift/rotate count is guaranteed to be zero.
2623    if (VT == MVT::i1)
2624      return N1;
2625    break;
2626  case ISD::FP_ROUND_INREG: {
2627    MVT EVT = cast<VTSDNode>(N2)->getVT();
2628    assert(VT == N1.getValueType() && "Not an inreg round!");
2629    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2630           "Cannot FP_ROUND_INREG integer types");
2631    assert(EVT.bitsLE(VT) && "Not rounding down!");
2632    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2633    break;
2634  }
2635  case ISD::FP_ROUND:
2636    assert(VT.isFloatingPoint() &&
2637           N1.getValueType().isFloatingPoint() &&
2638           VT.bitsLE(N1.getValueType()) &&
2639           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2640    if (N1.getValueType() == VT) return N1;  // noop conversion.
2641    break;
2642  case ISD::AssertSext:
2643  case ISD::AssertZext: {
2644    MVT EVT = cast<VTSDNode>(N2)->getVT();
2645    assert(VT == N1.getValueType() && "Not an inreg extend!");
2646    assert(VT.isInteger() && EVT.isInteger() &&
2647           "Cannot *_EXTEND_INREG FP types");
2648    assert(EVT.bitsLE(VT) && "Not extending!");
2649    if (VT == EVT) return N1; // noop assertion.
2650    break;
2651  }
2652  case ISD::SIGN_EXTEND_INREG: {
2653    MVT EVT = cast<VTSDNode>(N2)->getVT();
2654    assert(VT == N1.getValueType() && "Not an inreg extend!");
2655    assert(VT.isInteger() && EVT.isInteger() &&
2656           "Cannot *_EXTEND_INREG FP types");
2657    assert(EVT.bitsLE(VT) && "Not extending!");
2658    if (EVT == VT) return N1;  // Not actually extending
2659
2660    if (N1C) {
2661      APInt Val = N1C->getAPIntValue();
2662      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2663      Val <<= Val.getBitWidth()-FromBits;
2664      Val = Val.ashr(Val.getBitWidth()-FromBits);
2665      return getConstant(Val, VT);
2666    }
2667    break;
2668  }
2669  case ISD::EXTRACT_VECTOR_ELT:
2670    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2671    if (N1.getOpcode() == ISD::UNDEF)
2672      return getUNDEF(VT);
2673
2674    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2675    // expanding copies of large vectors from registers.
2676    if (N2C &&
2677        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2678        N1.getNumOperands() > 0) {
2679      unsigned Factor =
2680        N1.getOperand(0).getValueType().getVectorNumElements();
2681      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2682                     N1.getOperand(N2C->getZExtValue() / Factor),
2683                     getConstant(N2C->getZExtValue() % Factor,
2684                                 N2.getValueType()));
2685    }
2686
2687    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2688    // expanding large vector constants.
2689    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2690      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2691      if (Elt.getValueType() != VT) {
2692        // If the vector element type is not legal, the BUILD_VECTOR operands
2693        // are promoted and implicitly truncated.  Make that explicit here.
2694        assert(VT.isInteger() && Elt.getValueType().isInteger() &&
2695               VT.bitsLE(Elt.getValueType()) &&
2696               "Bad type for BUILD_VECTOR operand");
2697        Elt = getNode(ISD::TRUNCATE, DL, VT, Elt);
2698      }
2699      return Elt;
2700    }
2701
2702    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2703    // operations are lowered to scalars.
2704    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2705      // If the indices are the same, return the inserted element.
2706      if (N1.getOperand(2) == N2)
2707        return N1.getOperand(1);
2708      // If the indices are known different, extract the element from
2709      // the original vector.
2710      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2711               isa<ConstantSDNode>(N2))
2712        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2713    }
2714    break;
2715  case ISD::EXTRACT_ELEMENT:
2716    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2717    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2718           (N1.getValueType().isInteger() == VT.isInteger()) &&
2719           "Wrong types for EXTRACT_ELEMENT!");
2720
2721    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2722    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2723    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2724    if (N1.getOpcode() == ISD::BUILD_PAIR)
2725      return N1.getOperand(N2C->getZExtValue());
2726
2727    // EXTRACT_ELEMENT of a constant int is also very common.
2728    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2729      unsigned ElementSize = VT.getSizeInBits();
2730      unsigned Shift = ElementSize * N2C->getZExtValue();
2731      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2732      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2733    }
2734    break;
2735  case ISD::EXTRACT_SUBVECTOR:
2736    if (N1.getValueType() == VT) // Trivial extraction.
2737      return N1;
2738    break;
2739  }
2740
2741  if (N1C) {
2742    if (N2C) {
2743      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2744      if (SV.getNode()) return SV;
2745    } else {      // Cannonicalize constant to RHS if commutative
2746      if (isCommutativeBinOp(Opcode)) {
2747        std::swap(N1C, N2C);
2748        std::swap(N1, N2);
2749      }
2750    }
2751  }
2752
2753  // Constant fold FP operations.
2754  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2755  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2756  if (N1CFP) {
2757    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2758      // Cannonicalize constant to RHS if commutative
2759      std::swap(N1CFP, N2CFP);
2760      std::swap(N1, N2);
2761    } else if (N2CFP && VT != MVT::ppcf128) {
2762      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2763      APFloat::opStatus s;
2764      switch (Opcode) {
2765      case ISD::FADD:
2766        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2767        if (s != APFloat::opInvalidOp)
2768          return getConstantFP(V1, VT);
2769        break;
2770      case ISD::FSUB:
2771        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2772        if (s!=APFloat::opInvalidOp)
2773          return getConstantFP(V1, VT);
2774        break;
2775      case ISD::FMUL:
2776        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2777        if (s!=APFloat::opInvalidOp)
2778          return getConstantFP(V1, VT);
2779        break;
2780      case ISD::FDIV:
2781        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2782        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2783          return getConstantFP(V1, VT);
2784        break;
2785      case ISD::FREM :
2786        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2787        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2788          return getConstantFP(V1, VT);
2789        break;
2790      case ISD::FCOPYSIGN:
2791        V1.copySign(V2);
2792        return getConstantFP(V1, VT);
2793      default: break;
2794      }
2795    }
2796  }
2797
2798  // Canonicalize an UNDEF to the RHS, even over a constant.
2799  if (N1.getOpcode() == ISD::UNDEF) {
2800    if (isCommutativeBinOp(Opcode)) {
2801      std::swap(N1, N2);
2802    } else {
2803      switch (Opcode) {
2804      case ISD::FP_ROUND_INREG:
2805      case ISD::SIGN_EXTEND_INREG:
2806      case ISD::SUB:
2807      case ISD::FSUB:
2808      case ISD::FDIV:
2809      case ISD::FREM:
2810      case ISD::SRA:
2811        return N1;     // fold op(undef, arg2) -> undef
2812      case ISD::UDIV:
2813      case ISD::SDIV:
2814      case ISD::UREM:
2815      case ISD::SREM:
2816      case ISD::SRL:
2817      case ISD::SHL:
2818        if (!VT.isVector())
2819          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2820        // For vectors, we can't easily build an all zero vector, just return
2821        // the LHS.
2822        return N2;
2823      }
2824    }
2825  }
2826
2827  // Fold a bunch of operators when the RHS is undef.
2828  if (N2.getOpcode() == ISD::UNDEF) {
2829    switch (Opcode) {
2830    case ISD::XOR:
2831      if (N1.getOpcode() == ISD::UNDEF)
2832        // Handle undef ^ undef -> 0 special case. This is a common
2833        // idiom (misuse).
2834        return getConstant(0, VT);
2835      // fallthrough
2836    case ISD::ADD:
2837    case ISD::ADDC:
2838    case ISD::ADDE:
2839    case ISD::SUB:
2840    case ISD::UDIV:
2841    case ISD::SDIV:
2842    case ISD::UREM:
2843    case ISD::SREM:
2844      return N2;       // fold op(arg1, undef) -> undef
2845    case ISD::FADD:
2846    case ISD::FSUB:
2847    case ISD::FMUL:
2848    case ISD::FDIV:
2849    case ISD::FREM:
2850      if (UnsafeFPMath)
2851        return N2;
2852      break;
2853    case ISD::MUL:
2854    case ISD::AND:
2855    case ISD::SRL:
2856    case ISD::SHL:
2857      if (!VT.isVector())
2858        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2859      // For vectors, we can't easily build an all zero vector, just return
2860      // the LHS.
2861      return N1;
2862    case ISD::OR:
2863      if (!VT.isVector())
2864        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2865      // For vectors, we can't easily build an all one vector, just return
2866      // the LHS.
2867      return N1;
2868    case ISD::SRA:
2869      return N1;
2870    }
2871  }
2872
2873  // Memoize this node if possible.
2874  SDNode *N;
2875  SDVTList VTs = getVTList(VT);
2876  if (VT != MVT::Flag) {
2877    SDValue Ops[] = { N1, N2 };
2878    FoldingSetNodeID ID;
2879    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2880    void *IP = 0;
2881    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2882      return SDValue(E, 0);
2883    N = NodeAllocator.Allocate<BinarySDNode>();
2884    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2885    CSEMap.InsertNode(N, IP);
2886  } else {
2887    N = NodeAllocator.Allocate<BinarySDNode>();
2888    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2889  }
2890
2891  AllNodes.push_back(N);
2892#ifndef NDEBUG
2893  VerifyNode(N);
2894#endif
2895  return SDValue(N, 0);
2896}
2897
2898SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2899                              SDValue N1, SDValue N2, SDValue N3) {
2900  // Perform various simplifications.
2901  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2902  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2903  switch (Opcode) {
2904  case ISD::CONCAT_VECTORS:
2905    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2906    // one big BUILD_VECTOR.
2907    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2908        N2.getOpcode() == ISD::BUILD_VECTOR &&
2909        N3.getOpcode() == ISD::BUILD_VECTOR) {
2910      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2911      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2912      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2913      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2914    }
2915    break;
2916  case ISD::SETCC: {
2917    // Use FoldSetCC to simplify SETCC's.
2918    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2919    if (Simp.getNode()) return Simp;
2920    break;
2921  }
2922  case ISD::SELECT:
2923    if (N1C) {
2924     if (N1C->getZExtValue())
2925        return N2;             // select true, X, Y -> X
2926      else
2927        return N3;             // select false, X, Y -> Y
2928    }
2929
2930    if (N2 == N3) return N2;   // select C, X, X -> X
2931    break;
2932  case ISD::BRCOND:
2933    if (N2C) {
2934      if (N2C->getZExtValue()) // Unconditional branch
2935        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2936      else
2937        return N1;         // Never-taken branch
2938    }
2939    break;
2940  case ISD::VECTOR_SHUFFLE:
2941    assert(0 && "should use getVectorShuffle constructor!");
2942    break;
2943  case ISD::BIT_CONVERT:
2944    // Fold bit_convert nodes from a type to themselves.
2945    if (N1.getValueType() == VT)
2946      return N1;
2947    break;
2948  }
2949
2950  // Memoize node if it doesn't produce a flag.
2951  SDNode *N;
2952  SDVTList VTs = getVTList(VT);
2953  if (VT != MVT::Flag) {
2954    SDValue Ops[] = { N1, N2, N3 };
2955    FoldingSetNodeID ID;
2956    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2957    void *IP = 0;
2958    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2959      return SDValue(E, 0);
2960    N = NodeAllocator.Allocate<TernarySDNode>();
2961    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2962    CSEMap.InsertNode(N, IP);
2963  } else {
2964    N = NodeAllocator.Allocate<TernarySDNode>();
2965    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2966  }
2967  AllNodes.push_back(N);
2968#ifndef NDEBUG
2969  VerifyNode(N);
2970#endif
2971  return SDValue(N, 0);
2972}
2973
2974SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2975                              SDValue N1, SDValue N2, SDValue N3,
2976                              SDValue N4) {
2977  SDValue Ops[] = { N1, N2, N3, N4 };
2978  return getNode(Opcode, DL, VT, Ops, 4);
2979}
2980
2981SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2982                              SDValue N1, SDValue N2, SDValue N3,
2983                              SDValue N4, SDValue N5) {
2984  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2985  return getNode(Opcode, DL, VT, Ops, 5);
2986}
2987
2988/// getMemsetValue - Vectorized representation of the memset value
2989/// operand.
2990static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2991                              DebugLoc dl) {
2992  unsigned NumBits = VT.isVector() ?
2993    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2994  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2995    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2996    unsigned Shift = 8;
2997    for (unsigned i = NumBits; i > 8; i >>= 1) {
2998      Val = (Val << Shift) | Val;
2999      Shift <<= 1;
3000    }
3001    if (VT.isInteger())
3002      return DAG.getConstant(Val, VT);
3003    return DAG.getConstantFP(APFloat(Val), VT);
3004  }
3005
3006  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3007  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3008  unsigned Shift = 8;
3009  for (unsigned i = NumBits; i > 8; i >>= 1) {
3010    Value = DAG.getNode(ISD::OR, dl, VT,
3011                        DAG.getNode(ISD::SHL, dl, VT, Value,
3012                                    DAG.getConstant(Shift,
3013                                                    TLI.getShiftAmountTy())),
3014                        Value);
3015    Shift <<= 1;
3016  }
3017
3018  return Value;
3019}
3020
3021/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3022/// used when a memcpy is turned into a memset when the source is a constant
3023/// string ptr.
3024static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
3025                                    const TargetLowering &TLI,
3026                                    std::string &Str, unsigned Offset) {
3027  // Handle vector with all elements zero.
3028  if (Str.empty()) {
3029    if (VT.isInteger())
3030      return DAG.getConstant(0, VT);
3031    unsigned NumElts = VT.getVectorNumElements();
3032    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3033    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3034                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
3035  }
3036
3037  assert(!VT.isVector() && "Can't handle vector type here!");
3038  unsigned NumBits = VT.getSizeInBits();
3039  unsigned MSB = NumBits / 8;
3040  uint64_t Val = 0;
3041  if (TLI.isLittleEndian())
3042    Offset = Offset + MSB - 1;
3043  for (unsigned i = 0; i != MSB; ++i) {
3044    Val = (Val << 8) | (unsigned char)Str[Offset];
3045    Offset += TLI.isLittleEndian() ? -1 : 1;
3046  }
3047  return DAG.getConstant(Val, VT);
3048}
3049
3050/// getMemBasePlusOffset - Returns base and offset node for the
3051///
3052static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3053                                      SelectionDAG &DAG) {
3054  MVT VT = Base.getValueType();
3055  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3056                     VT, Base, DAG.getConstant(Offset, VT));
3057}
3058
3059/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3060///
3061static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3062  unsigned SrcDelta = 0;
3063  GlobalAddressSDNode *G = NULL;
3064  if (Src.getOpcode() == ISD::GlobalAddress)
3065    G = cast<GlobalAddressSDNode>(Src);
3066  else if (Src.getOpcode() == ISD::ADD &&
3067           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3068           Src.getOperand(1).getOpcode() == ISD::Constant) {
3069    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3070    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3071  }
3072  if (!G)
3073    return false;
3074
3075  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3076  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3077    return true;
3078
3079  return false;
3080}
3081
3082/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3083/// to replace the memset / memcpy is below the threshold. It also returns the
3084/// types of the sequence of memory ops to perform memset / memcpy.
3085static
3086bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
3087                              SDValue Dst, SDValue Src,
3088                              unsigned Limit, uint64_t Size, unsigned &Align,
3089                              std::string &Str, bool &isSrcStr,
3090                              SelectionDAG &DAG,
3091                              const TargetLowering &TLI) {
3092  isSrcStr = isMemSrcFromString(Src, Str);
3093  bool isSrcConst = isa<ConstantSDNode>(Src);
3094  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
3095  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3096  if (VT != MVT::iAny) {
3097    unsigned NewAlign = (unsigned)
3098      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
3099    // If source is a string constant, this will require an unaligned load.
3100    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3101      if (Dst.getOpcode() != ISD::FrameIndex) {
3102        // Can't change destination alignment. It requires a unaligned store.
3103        if (AllowUnalign)
3104          VT = MVT::iAny;
3105      } else {
3106        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3107        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3108        if (MFI->isFixedObjectIndex(FI)) {
3109          // Can't change destination alignment. It requires a unaligned store.
3110          if (AllowUnalign)
3111            VT = MVT::iAny;
3112        } else {
3113          // Give the stack frame object a larger alignment if needed.
3114          if (MFI->getObjectAlignment(FI) < NewAlign)
3115            MFI->setObjectAlignment(FI, NewAlign);
3116          Align = NewAlign;
3117        }
3118      }
3119    }
3120  }
3121
3122  if (VT == MVT::iAny) {
3123    if (AllowUnalign) {
3124      VT = MVT::i64;
3125    } else {
3126      switch (Align & 7) {
3127      case 0:  VT = MVT::i64; break;
3128      case 4:  VT = MVT::i32; break;
3129      case 2:  VT = MVT::i16; break;
3130      default: VT = MVT::i8;  break;
3131      }
3132    }
3133
3134    MVT LVT = MVT::i64;
3135    while (!TLI.isTypeLegal(LVT))
3136      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3137    assert(LVT.isInteger());
3138
3139    if (VT.bitsGT(LVT))
3140      VT = LVT;
3141  }
3142
3143  unsigned NumMemOps = 0;
3144  while (Size != 0) {
3145    unsigned VTSize = VT.getSizeInBits() / 8;
3146    while (VTSize > Size) {
3147      // For now, only use non-vector load / store's for the left-over pieces.
3148      if (VT.isVector()) {
3149        VT = MVT::i64;
3150        while (!TLI.isTypeLegal(VT))
3151          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3152        VTSize = VT.getSizeInBits() / 8;
3153      } else {
3154        // This can result in a type that is not legal on the target, e.g.
3155        // 1 or 2 bytes on PPC.
3156        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3157        VTSize >>= 1;
3158      }
3159    }
3160
3161    if (++NumMemOps > Limit)
3162      return false;
3163    MemOps.push_back(VT);
3164    Size -= VTSize;
3165  }
3166
3167  return true;
3168}
3169
3170static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3171                                         SDValue Chain, SDValue Dst,
3172                                         SDValue Src, uint64_t Size,
3173                                         unsigned Align, bool AlwaysInline,
3174                                         const Value *DstSV, uint64_t DstSVOff,
3175                                         const Value *SrcSV, uint64_t SrcSVOff){
3176  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3177
3178  // Expand memcpy to a series of load and store ops if the size operand falls
3179  // below a certain threshold.
3180  std::vector<MVT> MemOps;
3181  uint64_t Limit = -1ULL;
3182  if (!AlwaysInline)
3183    Limit = TLI.getMaxStoresPerMemcpy();
3184  unsigned DstAlign = Align;  // Destination alignment can change.
3185  std::string Str;
3186  bool CopyFromStr;
3187  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3188                                Str, CopyFromStr, DAG, TLI))
3189    return SDValue();
3190
3191
3192  bool isZeroStr = CopyFromStr && Str.empty();
3193  SmallVector<SDValue, 8> OutChains;
3194  unsigned NumMemOps = MemOps.size();
3195  uint64_t SrcOff = 0, DstOff = 0;
3196  for (unsigned i = 0; i < NumMemOps; i++) {
3197    MVT VT = MemOps[i];
3198    unsigned VTSize = VT.getSizeInBits() / 8;
3199    SDValue Value, Store;
3200
3201    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3202      // It's unlikely a store of a vector immediate can be done in a single
3203      // instruction. It would require a load from a constantpool first.
3204      // We also handle store a vector with all zero's.
3205      // FIXME: Handle other cases where store of vector immediate is done in
3206      // a single instruction.
3207      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3208      Store = DAG.getStore(Chain, dl, Value,
3209                           getMemBasePlusOffset(Dst, DstOff, DAG),
3210                           DstSV, DstSVOff + DstOff, false, DstAlign);
3211    } else {
3212      // The type might not be legal for the target.  This should only happen
3213      // if the type is smaller than a legal type, as on PPC, so the right
3214      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3215      // to Load/Store if NVT==VT.
3216      // FIXME does the case above also need this?
3217      MVT NVT = TLI.getTypeToTransformTo(VT);
3218      assert(NVT.bitsGE(VT));
3219      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3220                             getMemBasePlusOffset(Src, SrcOff, DAG),
3221                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3222      Store = DAG.getTruncStore(Chain, dl, Value,
3223                             getMemBasePlusOffset(Dst, DstOff, DAG),
3224                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3225    }
3226    OutChains.push_back(Store);
3227    SrcOff += VTSize;
3228    DstOff += VTSize;
3229  }
3230
3231  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3232                     &OutChains[0], OutChains.size());
3233}
3234
3235static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3236                                          SDValue Chain, SDValue Dst,
3237                                          SDValue Src, uint64_t Size,
3238                                          unsigned Align, bool AlwaysInline,
3239                                          const Value *DstSV, uint64_t DstSVOff,
3240                                          const Value *SrcSV, uint64_t SrcSVOff){
3241  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3242
3243  // Expand memmove to a series of load and store ops if the size operand falls
3244  // below a certain threshold.
3245  std::vector<MVT> MemOps;
3246  uint64_t Limit = -1ULL;
3247  if (!AlwaysInline)
3248    Limit = TLI.getMaxStoresPerMemmove();
3249  unsigned DstAlign = Align;  // Destination alignment can change.
3250  std::string Str;
3251  bool CopyFromStr;
3252  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3253                                Str, CopyFromStr, DAG, TLI))
3254    return SDValue();
3255
3256  uint64_t SrcOff = 0, DstOff = 0;
3257
3258  SmallVector<SDValue, 8> LoadValues;
3259  SmallVector<SDValue, 8> LoadChains;
3260  SmallVector<SDValue, 8> OutChains;
3261  unsigned NumMemOps = MemOps.size();
3262  for (unsigned i = 0; i < NumMemOps; i++) {
3263    MVT VT = MemOps[i];
3264    unsigned VTSize = VT.getSizeInBits() / 8;
3265    SDValue Value, Store;
3266
3267    Value = DAG.getLoad(VT, dl, Chain,
3268                        getMemBasePlusOffset(Src, SrcOff, DAG),
3269                        SrcSV, SrcSVOff + SrcOff, false, Align);
3270    LoadValues.push_back(Value);
3271    LoadChains.push_back(Value.getValue(1));
3272    SrcOff += VTSize;
3273  }
3274  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3275                      &LoadChains[0], LoadChains.size());
3276  OutChains.clear();
3277  for (unsigned i = 0; i < NumMemOps; i++) {
3278    MVT VT = MemOps[i];
3279    unsigned VTSize = VT.getSizeInBits() / 8;
3280    SDValue Value, Store;
3281
3282    Store = DAG.getStore(Chain, dl, LoadValues[i],
3283                         getMemBasePlusOffset(Dst, DstOff, DAG),
3284                         DstSV, DstSVOff + DstOff, false, DstAlign);
3285    OutChains.push_back(Store);
3286    DstOff += VTSize;
3287  }
3288
3289  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3290                     &OutChains[0], OutChains.size());
3291}
3292
3293static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3294                                 SDValue Chain, SDValue Dst,
3295                                 SDValue Src, uint64_t Size,
3296                                 unsigned Align,
3297                                 const Value *DstSV, uint64_t DstSVOff) {
3298  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3299
3300  // Expand memset to a series of load/store ops if the size operand
3301  // falls below a certain threshold.
3302  std::vector<MVT> MemOps;
3303  std::string Str;
3304  bool CopyFromStr;
3305  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3306                                Size, Align, Str, CopyFromStr, DAG, TLI))
3307    return SDValue();
3308
3309  SmallVector<SDValue, 8> OutChains;
3310  uint64_t DstOff = 0;
3311
3312  unsigned NumMemOps = MemOps.size();
3313  for (unsigned i = 0; i < NumMemOps; i++) {
3314    MVT VT = MemOps[i];
3315    unsigned VTSize = VT.getSizeInBits() / 8;
3316    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3317    SDValue Store = DAG.getStore(Chain, dl, Value,
3318                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3319                                 DstSV, DstSVOff + DstOff);
3320    OutChains.push_back(Store);
3321    DstOff += VTSize;
3322  }
3323
3324  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3325                     &OutChains[0], OutChains.size());
3326}
3327
3328SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3329                                SDValue Src, SDValue Size,
3330                                unsigned Align, bool AlwaysInline,
3331                                const Value *DstSV, uint64_t DstSVOff,
3332                                const Value *SrcSV, uint64_t SrcSVOff) {
3333
3334  // Check to see if we should lower the memcpy to loads and stores first.
3335  // For cases within the target-specified limits, this is the best choice.
3336  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3337  if (ConstantSize) {
3338    // Memcpy with size zero? Just return the original chain.
3339    if (ConstantSize->isNullValue())
3340      return Chain;
3341
3342    SDValue Result =
3343      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3344                              ConstantSize->getZExtValue(),
3345                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3346    if (Result.getNode())
3347      return Result;
3348  }
3349
3350  // Then check to see if we should lower the memcpy with target-specific
3351  // code. If the target chooses to do this, this is the next best.
3352  SDValue Result =
3353    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3354                                AlwaysInline,
3355                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3356  if (Result.getNode())
3357    return Result;
3358
3359  // If we really need inline code and the target declined to provide it,
3360  // use a (potentially long) sequence of loads and stores.
3361  if (AlwaysInline) {
3362    assert(ConstantSize && "AlwaysInline requires a constant size!");
3363    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3364                                   ConstantSize->getZExtValue(), Align, true,
3365                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3366  }
3367
3368  // Emit a library call.
3369  TargetLowering::ArgListTy Args;
3370  TargetLowering::ArgListEntry Entry;
3371  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3372  Entry.Node = Dst; Args.push_back(Entry);
3373  Entry.Node = Src; Args.push_back(Entry);
3374  Entry.Node = Size; Args.push_back(Entry);
3375  // FIXME: pass in DebugLoc
3376  std::pair<SDValue,SDValue> CallResult =
3377    TLI.LowerCallTo(Chain, Type::VoidTy,
3378                    false, false, false, false, 0, CallingConv::C, false,
3379                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3380                    Args, *this, dl);
3381  return CallResult.second;
3382}
3383
3384SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3385                                 SDValue Src, SDValue Size,
3386                                 unsigned Align,
3387                                 const Value *DstSV, uint64_t DstSVOff,
3388                                 const Value *SrcSV, uint64_t SrcSVOff) {
3389
3390  // Check to see if we should lower the memmove to loads and stores first.
3391  // For cases within the target-specified limits, this is the best choice.
3392  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3393  if (ConstantSize) {
3394    // Memmove with size zero? Just return the original chain.
3395    if (ConstantSize->isNullValue())
3396      return Chain;
3397
3398    SDValue Result =
3399      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3400                               ConstantSize->getZExtValue(),
3401                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3402    if (Result.getNode())
3403      return Result;
3404  }
3405
3406  // Then check to see if we should lower the memmove with target-specific
3407  // code. If the target chooses to do this, this is the next best.
3408  SDValue Result =
3409    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3410                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3411  if (Result.getNode())
3412    return Result;
3413
3414  // Emit a library call.
3415  TargetLowering::ArgListTy Args;
3416  TargetLowering::ArgListEntry Entry;
3417  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3418  Entry.Node = Dst; Args.push_back(Entry);
3419  Entry.Node = Src; Args.push_back(Entry);
3420  Entry.Node = Size; Args.push_back(Entry);
3421  // FIXME:  pass in DebugLoc
3422  std::pair<SDValue,SDValue> CallResult =
3423    TLI.LowerCallTo(Chain, Type::VoidTy,
3424                    false, false, false, false, 0, CallingConv::C, false,
3425                    getExternalSymbol("memmove", TLI.getPointerTy()),
3426                    Args, *this, dl);
3427  return CallResult.second;
3428}
3429
3430SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3431                                SDValue Src, SDValue Size,
3432                                unsigned Align,
3433                                const Value *DstSV, uint64_t DstSVOff) {
3434
3435  // Check to see if we should lower the memset to stores first.
3436  // For cases within the target-specified limits, this is the best choice.
3437  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3438  if (ConstantSize) {
3439    // Memset with size zero? Just return the original chain.
3440    if (ConstantSize->isNullValue())
3441      return Chain;
3442
3443    SDValue Result =
3444      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3445                      Align, DstSV, DstSVOff);
3446    if (Result.getNode())
3447      return Result;
3448  }
3449
3450  // Then check to see if we should lower the memset with target-specific
3451  // code. If the target chooses to do this, this is the next best.
3452  SDValue Result =
3453    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3454                                DstSV, DstSVOff);
3455  if (Result.getNode())
3456    return Result;
3457
3458  // Emit a library call.
3459  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3460  TargetLowering::ArgListTy Args;
3461  TargetLowering::ArgListEntry Entry;
3462  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3463  Args.push_back(Entry);
3464  // Extend or truncate the argument to be an i32 value for the call.
3465  if (Src.getValueType().bitsGT(MVT::i32))
3466    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3467  else
3468    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3469  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3470  Args.push_back(Entry);
3471  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3472  Args.push_back(Entry);
3473  // FIXME: pass in DebugLoc
3474  std::pair<SDValue,SDValue> CallResult =
3475    TLI.LowerCallTo(Chain, Type::VoidTy,
3476                    false, false, false, false, 0, CallingConv::C, false,
3477                    getExternalSymbol("memset", TLI.getPointerTy()),
3478                    Args, *this, dl);
3479  return CallResult.second;
3480}
3481
3482SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3483                                SDValue Chain,
3484                                SDValue Ptr, SDValue Cmp,
3485                                SDValue Swp, const Value* PtrVal,
3486                                unsigned Alignment) {
3487  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3488  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3489
3490  MVT VT = Cmp.getValueType();
3491
3492  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3493    Alignment = getMVTAlignment(MemVT);
3494
3495  SDVTList VTs = getVTList(VT, MVT::Other);
3496  FoldingSetNodeID ID;
3497  ID.AddInteger(MemVT.getRawBits());
3498  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3499  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3500  void* IP = 0;
3501  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3502    return SDValue(E, 0);
3503  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3504  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3505                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3506  CSEMap.InsertNode(N, IP);
3507  AllNodes.push_back(N);
3508  return SDValue(N, 0);
3509}
3510
3511SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3512                                SDValue Chain,
3513                                SDValue Ptr, SDValue Val,
3514                                const Value* PtrVal,
3515                                unsigned Alignment) {
3516  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3517          Opcode == ISD::ATOMIC_LOAD_SUB ||
3518          Opcode == ISD::ATOMIC_LOAD_AND ||
3519          Opcode == ISD::ATOMIC_LOAD_OR ||
3520          Opcode == ISD::ATOMIC_LOAD_XOR ||
3521          Opcode == ISD::ATOMIC_LOAD_NAND ||
3522          Opcode == ISD::ATOMIC_LOAD_MIN ||
3523          Opcode == ISD::ATOMIC_LOAD_MAX ||
3524          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3525          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3526          Opcode == ISD::ATOMIC_SWAP) &&
3527         "Invalid Atomic Op");
3528
3529  MVT VT = Val.getValueType();
3530
3531  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3532    Alignment = getMVTAlignment(MemVT);
3533
3534  SDVTList VTs = getVTList(VT, MVT::Other);
3535  FoldingSetNodeID ID;
3536  ID.AddInteger(MemVT.getRawBits());
3537  SDValue Ops[] = {Chain, Ptr, Val};
3538  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3539  void* IP = 0;
3540  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3541    return SDValue(E, 0);
3542  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3543  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3544                       Chain, Ptr, Val, PtrVal, Alignment);
3545  CSEMap.InsertNode(N, IP);
3546  AllNodes.push_back(N);
3547  return SDValue(N, 0);
3548}
3549
3550/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3551/// Allowed to return something different (and simpler) if Simplify is true.
3552SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3553                                     DebugLoc dl) {
3554  if (NumOps == 1)
3555    return Ops[0];
3556
3557  SmallVector<MVT, 4> VTs;
3558  VTs.reserve(NumOps);
3559  for (unsigned i = 0; i < NumOps; ++i)
3560    VTs.push_back(Ops[i].getValueType());
3561  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3562                 Ops, NumOps);
3563}
3564
3565SDValue
3566SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3567                                  const MVT *VTs, unsigned NumVTs,
3568                                  const SDValue *Ops, unsigned NumOps,
3569                                  MVT MemVT, const Value *srcValue, int SVOff,
3570                                  unsigned Align, bool Vol,
3571                                  bool ReadMem, bool WriteMem) {
3572  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3573                             MemVT, srcValue, SVOff, Align, Vol,
3574                             ReadMem, WriteMem);
3575}
3576
3577SDValue
3578SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3579                                  const SDValue *Ops, unsigned NumOps,
3580                                  MVT MemVT, const Value *srcValue, int SVOff,
3581                                  unsigned Align, bool Vol,
3582                                  bool ReadMem, bool WriteMem) {
3583  // Memoize the node unless it returns a flag.
3584  MemIntrinsicSDNode *N;
3585  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3586    FoldingSetNodeID ID;
3587    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3588    void *IP = 0;
3589    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3590      return SDValue(E, 0);
3591
3592    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3593    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3594                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3595    CSEMap.InsertNode(N, IP);
3596  } else {
3597    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3598    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3599                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3600  }
3601  AllNodes.push_back(N);
3602  return SDValue(N, 0);
3603}
3604
3605SDValue
3606SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3607                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3608                      const SDValue *Operands, unsigned NumOperands,
3609                      unsigned NumFixedArgs) {
3610  // Do not include isTailCall in the folding set profile.
3611  FoldingSetNodeID ID;
3612  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3613  ID.AddInteger(CallingConv);
3614  ID.AddInteger(IsVarArgs);
3615  void *IP = 0;
3616  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3617    // Instead of including isTailCall in the folding set, we just
3618    // set the flag of the existing node.
3619    if (!IsTailCall)
3620      cast<CallSDNode>(E)->setNotTailCall();
3621    return SDValue(E, 0);
3622  }
3623  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3624  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3625                     VTs, Operands, NumOperands, NumFixedArgs);
3626  CSEMap.InsertNode(N, IP);
3627  AllNodes.push_back(N);
3628  return SDValue(N, 0);
3629}
3630
3631SDValue
3632SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3633                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3634                      SDValue Ptr, SDValue Offset,
3635                      const Value *SV, int SVOffset, MVT EVT,
3636                      bool isVolatile, unsigned Alignment) {
3637  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3638    Alignment = getMVTAlignment(VT);
3639
3640  if (VT == EVT) {
3641    ExtType = ISD::NON_EXTLOAD;
3642  } else if (ExtType == ISD::NON_EXTLOAD) {
3643    assert(VT == EVT && "Non-extending load from different memory type!");
3644  } else {
3645    // Extending load.
3646    if (VT.isVector())
3647      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3648             "Invalid vector extload!");
3649    else
3650      assert(EVT.bitsLT(VT) &&
3651             "Should only be an extending load, not truncating!");
3652    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3653           "Cannot sign/zero extend a FP/Vector load!");
3654    assert(VT.isInteger() == EVT.isInteger() &&
3655           "Cannot convert from FP to Int or Int -> FP!");
3656  }
3657
3658  bool Indexed = AM != ISD::UNINDEXED;
3659  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3660         "Unindexed load with an offset!");
3661
3662  SDVTList VTs = Indexed ?
3663    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3664  SDValue Ops[] = { Chain, Ptr, Offset };
3665  FoldingSetNodeID ID;
3666  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3667  ID.AddInteger(EVT.getRawBits());
3668  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3669  void *IP = 0;
3670  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3671    return SDValue(E, 0);
3672  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3673  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3674                     Alignment, isVolatile);
3675  CSEMap.InsertNode(N, IP);
3676  AllNodes.push_back(N);
3677  return SDValue(N, 0);
3678}
3679
3680SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3681                              SDValue Chain, SDValue Ptr,
3682                              const Value *SV, int SVOffset,
3683                              bool isVolatile, unsigned Alignment) {
3684  SDValue Undef = getUNDEF(Ptr.getValueType());
3685  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3686                 SV, SVOffset, VT, isVolatile, Alignment);
3687}
3688
3689SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3690                                 SDValue Chain, SDValue Ptr,
3691                                 const Value *SV,
3692                                 int SVOffset, MVT EVT,
3693                                 bool isVolatile, unsigned Alignment) {
3694  SDValue Undef = getUNDEF(Ptr.getValueType());
3695  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3696                 SV, SVOffset, EVT, isVolatile, Alignment);
3697}
3698
3699SDValue
3700SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3701                             SDValue Offset, ISD::MemIndexedMode AM) {
3702  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3703  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3704         "Load is already a indexed load!");
3705  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3706                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3707                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3708                 LD->isVolatile(), LD->getAlignment());
3709}
3710
3711SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3712                               SDValue Ptr, const Value *SV, int SVOffset,
3713                               bool isVolatile, unsigned Alignment) {
3714  MVT VT = Val.getValueType();
3715
3716  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3717    Alignment = getMVTAlignment(VT);
3718
3719  SDVTList VTs = getVTList(MVT::Other);
3720  SDValue Undef = getUNDEF(Ptr.getValueType());
3721  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3722  FoldingSetNodeID ID;
3723  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3724  ID.AddInteger(VT.getRawBits());
3725  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3726                                     isVolatile, Alignment));
3727  void *IP = 0;
3728  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3729    return SDValue(E, 0);
3730  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3731  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3732                      VT, SV, SVOffset, Alignment, isVolatile);
3733  CSEMap.InsertNode(N, IP);
3734  AllNodes.push_back(N);
3735  return SDValue(N, 0);
3736}
3737
3738SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3739                                    SDValue Ptr, const Value *SV,
3740                                    int SVOffset, MVT SVT,
3741                                    bool isVolatile, unsigned Alignment) {
3742  MVT VT = Val.getValueType();
3743
3744  if (VT == SVT)
3745    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3746
3747  assert(VT.bitsGT(SVT) && "Not a truncation?");
3748  assert(VT.isInteger() == SVT.isInteger() &&
3749         "Can't do FP-INT conversion!");
3750
3751  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3752    Alignment = getMVTAlignment(VT);
3753
3754  SDVTList VTs = getVTList(MVT::Other);
3755  SDValue Undef = getUNDEF(Ptr.getValueType());
3756  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3757  FoldingSetNodeID ID;
3758  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3759  ID.AddInteger(SVT.getRawBits());
3760  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3761                                     isVolatile, Alignment));
3762  void *IP = 0;
3763  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3764    return SDValue(E, 0);
3765  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3766  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3767                      SVT, SV, SVOffset, Alignment, isVolatile);
3768  CSEMap.InsertNode(N, IP);
3769  AllNodes.push_back(N);
3770  return SDValue(N, 0);
3771}
3772
3773SDValue
3774SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3775                              SDValue Offset, ISD::MemIndexedMode AM) {
3776  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3777  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3778         "Store is already a indexed store!");
3779  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3780  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3781  FoldingSetNodeID ID;
3782  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3783  ID.AddInteger(ST->getMemoryVT().getRawBits());
3784  ID.AddInteger(ST->getRawSubclassData());
3785  void *IP = 0;
3786  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3787    return SDValue(E, 0);
3788  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3789  new (N) StoreSDNode(Ops, dl, VTs, AM,
3790                      ST->isTruncatingStore(), ST->getMemoryVT(),
3791                      ST->getSrcValue(), ST->getSrcValueOffset(),
3792                      ST->getAlignment(), ST->isVolatile());
3793  CSEMap.InsertNode(N, IP);
3794  AllNodes.push_back(N);
3795  return SDValue(N, 0);
3796}
3797
3798SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3799                               SDValue Chain, SDValue Ptr,
3800                               SDValue SV) {
3801  SDValue Ops[] = { Chain, Ptr, SV };
3802  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3803}
3804
3805SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3806                              const SDUse *Ops, unsigned NumOps) {
3807  switch (NumOps) {
3808  case 0: return getNode(Opcode, DL, VT);
3809  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3810  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3811  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3812  default: break;
3813  }
3814
3815  // Copy from an SDUse array into an SDValue array for use with
3816  // the regular getNode logic.
3817  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3818  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3819}
3820
3821SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3822                              const SDValue *Ops, unsigned NumOps) {
3823  switch (NumOps) {
3824  case 0: return getNode(Opcode, DL, VT);
3825  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3826  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3827  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3828  default: break;
3829  }
3830
3831  switch (Opcode) {
3832  default: break;
3833  case ISD::SELECT_CC: {
3834    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3835    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3836           "LHS and RHS of condition must have same type!");
3837    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3838           "True and False arms of SelectCC must have same type!");
3839    assert(Ops[2].getValueType() == VT &&
3840           "select_cc node must be of same type as true and false value!");
3841    break;
3842  }
3843  case ISD::BR_CC: {
3844    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3845    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3846           "LHS/RHS of comparison should match types!");
3847    break;
3848  }
3849  }
3850
3851  // Memoize nodes.
3852  SDNode *N;
3853  SDVTList VTs = getVTList(VT);
3854
3855  if (VT != MVT::Flag) {
3856    FoldingSetNodeID ID;
3857    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3858    void *IP = 0;
3859
3860    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3861      return SDValue(E, 0);
3862
3863    N = NodeAllocator.Allocate<SDNode>();
3864    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3865    CSEMap.InsertNode(N, IP);
3866  } else {
3867    N = NodeAllocator.Allocate<SDNode>();
3868    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3869  }
3870
3871  AllNodes.push_back(N);
3872#ifndef NDEBUG
3873  VerifyNode(N);
3874#endif
3875  return SDValue(N, 0);
3876}
3877
3878SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3879                              const std::vector<MVT> &ResultTys,
3880                              const SDValue *Ops, unsigned NumOps) {
3881  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
3882                 Ops, NumOps);
3883}
3884
3885SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3886                              const MVT *VTs, unsigned NumVTs,
3887                              const SDValue *Ops, unsigned NumOps) {
3888  if (NumVTs == 1)
3889    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3890  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3891}
3892
3893SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3894                              const SDValue *Ops, unsigned NumOps) {
3895  if (VTList.NumVTs == 1)
3896    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3897
3898  switch (Opcode) {
3899  // FIXME: figure out how to safely handle things like
3900  // int foo(int x) { return 1 << (x & 255); }
3901  // int bar() { return foo(256); }
3902#if 0
3903  case ISD::SRA_PARTS:
3904  case ISD::SRL_PARTS:
3905  case ISD::SHL_PARTS:
3906    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3907        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3908      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3909    else if (N3.getOpcode() == ISD::AND)
3910      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3911        // If the and is only masking out bits that cannot effect the shift,
3912        // eliminate the and.
3913        unsigned NumBits = VT.getSizeInBits()*2;
3914        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3915          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3916      }
3917    break;
3918#endif
3919  }
3920
3921  // Memoize the node unless it returns a flag.
3922  SDNode *N;
3923  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3924    FoldingSetNodeID ID;
3925    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3926    void *IP = 0;
3927    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3928      return SDValue(E, 0);
3929    if (NumOps == 1) {
3930      N = NodeAllocator.Allocate<UnarySDNode>();
3931      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3932    } else if (NumOps == 2) {
3933      N = NodeAllocator.Allocate<BinarySDNode>();
3934      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3935    } else if (NumOps == 3) {
3936      N = NodeAllocator.Allocate<TernarySDNode>();
3937      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3938    } else {
3939      N = NodeAllocator.Allocate<SDNode>();
3940      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3941    }
3942    CSEMap.InsertNode(N, IP);
3943  } else {
3944    if (NumOps == 1) {
3945      N = NodeAllocator.Allocate<UnarySDNode>();
3946      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3947    } else if (NumOps == 2) {
3948      N = NodeAllocator.Allocate<BinarySDNode>();
3949      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3950    } else if (NumOps == 3) {
3951      N = NodeAllocator.Allocate<TernarySDNode>();
3952      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3953    } else {
3954      N = NodeAllocator.Allocate<SDNode>();
3955      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3956    }
3957  }
3958  AllNodes.push_back(N);
3959#ifndef NDEBUG
3960  VerifyNode(N);
3961#endif
3962  return SDValue(N, 0);
3963}
3964
3965SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3966  return getNode(Opcode, DL, VTList, 0, 0);
3967}
3968
3969SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3970                              SDValue N1) {
3971  SDValue Ops[] = { N1 };
3972  return getNode(Opcode, DL, VTList, Ops, 1);
3973}
3974
3975SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3976                              SDValue N1, SDValue N2) {
3977  SDValue Ops[] = { N1, N2 };
3978  return getNode(Opcode, DL, VTList, Ops, 2);
3979}
3980
3981SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3982                              SDValue N1, SDValue N2, SDValue N3) {
3983  SDValue Ops[] = { N1, N2, N3 };
3984  return getNode(Opcode, DL, VTList, Ops, 3);
3985}
3986
3987SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3988                              SDValue N1, SDValue N2, SDValue N3,
3989                              SDValue N4) {
3990  SDValue Ops[] = { N1, N2, N3, N4 };
3991  return getNode(Opcode, DL, VTList, Ops, 4);
3992}
3993
3994SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3995                              SDValue N1, SDValue N2, SDValue N3,
3996                              SDValue N4, SDValue N5) {
3997  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3998  return getNode(Opcode, DL, VTList, Ops, 5);
3999}
4000
4001SDVTList SelectionDAG::getVTList(MVT VT) {
4002  return makeVTList(SDNode::getValueTypeList(VT), 1);
4003}
4004
4005SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
4006  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4007       E = VTList.rend(); I != E; ++I)
4008    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4009      return *I;
4010
4011  MVT *Array = Allocator.Allocate<MVT>(2);
4012  Array[0] = VT1;
4013  Array[1] = VT2;
4014  SDVTList Result = makeVTList(Array, 2);
4015  VTList.push_back(Result);
4016  return Result;
4017}
4018
4019SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
4020  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4021       E = VTList.rend(); I != E; ++I)
4022    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4023                          I->VTs[2] == VT3)
4024      return *I;
4025
4026  MVT *Array = Allocator.Allocate<MVT>(3);
4027  Array[0] = VT1;
4028  Array[1] = VT2;
4029  Array[2] = VT3;
4030  SDVTList Result = makeVTList(Array, 3);
4031  VTList.push_back(Result);
4032  return Result;
4033}
4034
4035SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
4036  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4037       E = VTList.rend(); I != E; ++I)
4038    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4039                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4040      return *I;
4041
4042  MVT *Array = Allocator.Allocate<MVT>(3);
4043  Array[0] = VT1;
4044  Array[1] = VT2;
4045  Array[2] = VT3;
4046  Array[3] = VT4;
4047  SDVTList Result = makeVTList(Array, 4);
4048  VTList.push_back(Result);
4049  return Result;
4050}
4051
4052SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
4053  switch (NumVTs) {
4054    case 0: assert(0 && "Cannot have nodes without results!");
4055    case 1: return getVTList(VTs[0]);
4056    case 2: return getVTList(VTs[0], VTs[1]);
4057    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4058    default: break;
4059  }
4060
4061  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4062       E = VTList.rend(); I != E; ++I) {
4063    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4064      continue;
4065
4066    bool NoMatch = false;
4067    for (unsigned i = 2; i != NumVTs; ++i)
4068      if (VTs[i] != I->VTs[i]) {
4069        NoMatch = true;
4070        break;
4071      }
4072    if (!NoMatch)
4073      return *I;
4074  }
4075
4076  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
4077  std::copy(VTs, VTs+NumVTs, Array);
4078  SDVTList Result = makeVTList(Array, NumVTs);
4079  VTList.push_back(Result);
4080  return Result;
4081}
4082
4083
4084/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4085/// specified operands.  If the resultant node already exists in the DAG,
4086/// this does not modify the specified node, instead it returns the node that
4087/// already exists.  If the resultant node does not exist in the DAG, the
4088/// input node is returned.  As a degenerate case, if you specify the same
4089/// input operands as the node already has, the input node is returned.
4090SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4091  SDNode *N = InN.getNode();
4092  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4093
4094  // Check to see if there is no change.
4095  if (Op == N->getOperand(0)) return InN;
4096
4097  // See if the modified node already exists.
4098  void *InsertPos = 0;
4099  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4100    return SDValue(Existing, InN.getResNo());
4101
4102  // Nope it doesn't.  Remove the node from its current place in the maps.
4103  if (InsertPos)
4104    if (!RemoveNodeFromCSEMaps(N))
4105      InsertPos = 0;
4106
4107  // Now we update the operands.
4108  N->OperandList[0].set(Op);
4109
4110  // If this gets put into a CSE map, add it.
4111  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4112  return InN;
4113}
4114
4115SDValue SelectionDAG::
4116UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4117  SDNode *N = InN.getNode();
4118  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4119
4120  // Check to see if there is no change.
4121  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4122    return InN;   // No operands changed, just return the input node.
4123
4124  // See if the modified node already exists.
4125  void *InsertPos = 0;
4126  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4127    return SDValue(Existing, InN.getResNo());
4128
4129  // Nope it doesn't.  Remove the node from its current place in the maps.
4130  if (InsertPos)
4131    if (!RemoveNodeFromCSEMaps(N))
4132      InsertPos = 0;
4133
4134  // Now we update the operands.
4135  if (N->OperandList[0] != Op1)
4136    N->OperandList[0].set(Op1);
4137  if (N->OperandList[1] != Op2)
4138    N->OperandList[1].set(Op2);
4139
4140  // If this gets put into a CSE map, add it.
4141  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4142  return InN;
4143}
4144
4145SDValue SelectionDAG::
4146UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4147  SDValue Ops[] = { Op1, Op2, Op3 };
4148  return UpdateNodeOperands(N, Ops, 3);
4149}
4150
4151SDValue SelectionDAG::
4152UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4153                   SDValue Op3, SDValue Op4) {
4154  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4155  return UpdateNodeOperands(N, Ops, 4);
4156}
4157
4158SDValue SelectionDAG::
4159UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4160                   SDValue Op3, SDValue Op4, SDValue Op5) {
4161  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4162  return UpdateNodeOperands(N, Ops, 5);
4163}
4164
4165SDValue SelectionDAG::
4166UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4167  SDNode *N = InN.getNode();
4168  assert(N->getNumOperands() == NumOps &&
4169         "Update with wrong number of operands");
4170
4171  // Check to see if there is no change.
4172  bool AnyChange = false;
4173  for (unsigned i = 0; i != NumOps; ++i) {
4174    if (Ops[i] != N->getOperand(i)) {
4175      AnyChange = true;
4176      break;
4177    }
4178  }
4179
4180  // No operands changed, just return the input node.
4181  if (!AnyChange) return InN;
4182
4183  // See if the modified node already exists.
4184  void *InsertPos = 0;
4185  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4186    return SDValue(Existing, InN.getResNo());
4187
4188  // Nope it doesn't.  Remove the node from its current place in the maps.
4189  if (InsertPos)
4190    if (!RemoveNodeFromCSEMaps(N))
4191      InsertPos = 0;
4192
4193  // Now we update the operands.
4194  for (unsigned i = 0; i != NumOps; ++i)
4195    if (N->OperandList[i] != Ops[i])
4196      N->OperandList[i].set(Ops[i]);
4197
4198  // If this gets put into a CSE map, add it.
4199  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4200  return InN;
4201}
4202
4203/// DropOperands - Release the operands and set this node to have
4204/// zero operands.
4205void SDNode::DropOperands() {
4206  // Unlike the code in MorphNodeTo that does this, we don't need to
4207  // watch for dead nodes here.
4208  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4209    SDUse &Use = *I++;
4210    Use.set(SDValue());
4211  }
4212}
4213
4214/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4215/// machine opcode.
4216///
4217SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4218                                   MVT VT) {
4219  SDVTList VTs = getVTList(VT);
4220  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4221}
4222
4223SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4224                                   MVT VT, SDValue Op1) {
4225  SDVTList VTs = getVTList(VT);
4226  SDValue Ops[] = { Op1 };
4227  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4228}
4229
4230SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4231                                   MVT VT, SDValue Op1,
4232                                   SDValue Op2) {
4233  SDVTList VTs = getVTList(VT);
4234  SDValue Ops[] = { Op1, Op2 };
4235  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4236}
4237
4238SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4239                                   MVT VT, SDValue Op1,
4240                                   SDValue Op2, SDValue Op3) {
4241  SDVTList VTs = getVTList(VT);
4242  SDValue Ops[] = { Op1, Op2, Op3 };
4243  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4244}
4245
4246SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4247                                   MVT VT, const SDValue *Ops,
4248                                   unsigned NumOps) {
4249  SDVTList VTs = getVTList(VT);
4250  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4251}
4252
4253SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4254                                   MVT VT1, MVT VT2, const SDValue *Ops,
4255                                   unsigned NumOps) {
4256  SDVTList VTs = getVTList(VT1, VT2);
4257  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4258}
4259
4260SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4261                                   MVT VT1, MVT VT2) {
4262  SDVTList VTs = getVTList(VT1, VT2);
4263  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4264}
4265
4266SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4267                                   MVT VT1, MVT VT2, MVT VT3,
4268                                   const SDValue *Ops, unsigned NumOps) {
4269  SDVTList VTs = getVTList(VT1, VT2, VT3);
4270  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4271}
4272
4273SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4274                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4275                                   const SDValue *Ops, unsigned NumOps) {
4276  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4277  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4278}
4279
4280SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4281                                   MVT VT1, MVT VT2,
4282                                   SDValue Op1) {
4283  SDVTList VTs = getVTList(VT1, VT2);
4284  SDValue Ops[] = { Op1 };
4285  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4286}
4287
4288SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4289                                   MVT VT1, MVT VT2,
4290                                   SDValue Op1, SDValue Op2) {
4291  SDVTList VTs = getVTList(VT1, VT2);
4292  SDValue Ops[] = { Op1, Op2 };
4293  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4294}
4295
4296SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4297                                   MVT VT1, MVT VT2,
4298                                   SDValue Op1, SDValue Op2,
4299                                   SDValue Op3) {
4300  SDVTList VTs = getVTList(VT1, VT2);
4301  SDValue Ops[] = { Op1, Op2, Op3 };
4302  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4303}
4304
4305SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4306                                   MVT VT1, MVT VT2, MVT VT3,
4307                                   SDValue Op1, SDValue Op2,
4308                                   SDValue Op3) {
4309  SDVTList VTs = getVTList(VT1, VT2, VT3);
4310  SDValue Ops[] = { Op1, Op2, Op3 };
4311  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4312}
4313
4314SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4315                                   SDVTList VTs, const SDValue *Ops,
4316                                   unsigned NumOps) {
4317  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4318}
4319
4320SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4321                                  MVT VT) {
4322  SDVTList VTs = getVTList(VT);
4323  return MorphNodeTo(N, Opc, VTs, 0, 0);
4324}
4325
4326SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4327                                  MVT VT, SDValue Op1) {
4328  SDVTList VTs = getVTList(VT);
4329  SDValue Ops[] = { Op1 };
4330  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4331}
4332
4333SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4334                                  MVT VT, SDValue Op1,
4335                                  SDValue Op2) {
4336  SDVTList VTs = getVTList(VT);
4337  SDValue Ops[] = { Op1, Op2 };
4338  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4339}
4340
4341SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4342                                  MVT VT, SDValue Op1,
4343                                  SDValue Op2, SDValue Op3) {
4344  SDVTList VTs = getVTList(VT);
4345  SDValue Ops[] = { Op1, Op2, Op3 };
4346  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4347}
4348
4349SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4350                                  MVT VT, const SDValue *Ops,
4351                                  unsigned NumOps) {
4352  SDVTList VTs = getVTList(VT);
4353  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4354}
4355
4356SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4357                                  MVT VT1, MVT VT2, const SDValue *Ops,
4358                                  unsigned NumOps) {
4359  SDVTList VTs = getVTList(VT1, VT2);
4360  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4361}
4362
4363SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4364                                  MVT VT1, MVT VT2) {
4365  SDVTList VTs = getVTList(VT1, VT2);
4366  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4367}
4368
4369SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4370                                  MVT VT1, MVT VT2, MVT VT3,
4371                                  const SDValue *Ops, unsigned NumOps) {
4372  SDVTList VTs = getVTList(VT1, VT2, VT3);
4373  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4374}
4375
4376SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4377                                  MVT VT1, MVT VT2,
4378                                  SDValue Op1) {
4379  SDVTList VTs = getVTList(VT1, VT2);
4380  SDValue Ops[] = { Op1 };
4381  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4382}
4383
4384SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4385                                  MVT VT1, MVT VT2,
4386                                  SDValue Op1, SDValue Op2) {
4387  SDVTList VTs = getVTList(VT1, VT2);
4388  SDValue Ops[] = { Op1, Op2 };
4389  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4390}
4391
4392SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4393                                  MVT VT1, MVT VT2,
4394                                  SDValue Op1, SDValue Op2,
4395                                  SDValue Op3) {
4396  SDVTList VTs = getVTList(VT1, VT2);
4397  SDValue Ops[] = { Op1, Op2, Op3 };
4398  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4399}
4400
4401/// MorphNodeTo - These *mutate* the specified node to have the specified
4402/// return type, opcode, and operands.
4403///
4404/// Note that MorphNodeTo returns the resultant node.  If there is already a
4405/// node of the specified opcode and operands, it returns that node instead of
4406/// the current one.  Note that the DebugLoc need not be the same.
4407///
4408/// Using MorphNodeTo is faster than creating a new node and swapping it in
4409/// with ReplaceAllUsesWith both because it often avoids allocating a new
4410/// node, and because it doesn't require CSE recalculation for any of
4411/// the node's users.
4412///
4413SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4414                                  SDVTList VTs, const SDValue *Ops,
4415                                  unsigned NumOps) {
4416  // If an identical node already exists, use it.
4417  void *IP = 0;
4418  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4419    FoldingSetNodeID ID;
4420    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4421    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4422      return ON;
4423  }
4424
4425  if (!RemoveNodeFromCSEMaps(N))
4426    IP = 0;
4427
4428  // Start the morphing.
4429  N->NodeType = Opc;
4430  N->ValueList = VTs.VTs;
4431  N->NumValues = VTs.NumVTs;
4432
4433  // Clear the operands list, updating used nodes to remove this from their
4434  // use list.  Keep track of any operands that become dead as a result.
4435  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4436  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4437    SDUse &Use = *I++;
4438    SDNode *Used = Use.getNode();
4439    Use.set(SDValue());
4440    if (Used->use_empty())
4441      DeadNodeSet.insert(Used);
4442  }
4443
4444  // If NumOps is larger than the # of operands we currently have, reallocate
4445  // the operand list.
4446  if (NumOps > N->NumOperands) {
4447    if (N->OperandsNeedDelete)
4448      delete[] N->OperandList;
4449
4450    if (N->isMachineOpcode()) {
4451      // We're creating a final node that will live unmorphed for the
4452      // remainder of the current SelectionDAG iteration, so we can allocate
4453      // the operands directly out of a pool with no recycling metadata.
4454      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4455      N->OperandsNeedDelete = false;
4456    } else {
4457      N->OperandList = new SDUse[NumOps];
4458      N->OperandsNeedDelete = true;
4459    }
4460  }
4461
4462  // Assign the new operands.
4463  N->NumOperands = NumOps;
4464  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4465    N->OperandList[i].setUser(N);
4466    N->OperandList[i].setInitial(Ops[i]);
4467  }
4468
4469  // Delete any nodes that are still dead after adding the uses for the
4470  // new operands.
4471  SmallVector<SDNode *, 16> DeadNodes;
4472  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4473       E = DeadNodeSet.end(); I != E; ++I)
4474    if ((*I)->use_empty())
4475      DeadNodes.push_back(*I);
4476  RemoveDeadNodes(DeadNodes);
4477
4478  if (IP)
4479    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4480  return N;
4481}
4482
4483
4484/// getTargetNode - These are used for target selectors to create a new node
4485/// with specified return type(s), target opcode, and operands.
4486///
4487/// Note that getTargetNode returns the resultant node.  If there is already a
4488/// node of the specified opcode and operands, it returns that node instead of
4489/// the current one.
4490SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4491  return getNode(~Opcode, dl, VT).getNode();
4492}
4493
4494SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4495                                    SDValue Op1) {
4496  return getNode(~Opcode, dl, VT, Op1).getNode();
4497}
4498
4499SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4500                                    SDValue Op1, SDValue Op2) {
4501  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4502}
4503
4504SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4505                                    SDValue Op1, SDValue Op2,
4506                                    SDValue Op3) {
4507  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4508}
4509
4510SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4511                                    const SDValue *Ops, unsigned NumOps) {
4512  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4513}
4514
4515SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4516                                    MVT VT1, MVT VT2) {
4517  SDVTList VTs = getVTList(VT1, VT2);
4518  SDValue Op;
4519  return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
4520}
4521
4522SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4523                                    MVT VT2, SDValue Op1) {
4524  SDVTList VTs = getVTList(VT1, VT2);
4525  return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
4526}
4527
4528SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4529                                    MVT VT2, SDValue Op1,
4530                                    SDValue Op2) {
4531  SDVTList VTs = getVTList(VT1, VT2);
4532  SDValue Ops[] = { Op1, Op2 };
4533  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4534}
4535
4536SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4537                                    MVT VT2, SDValue Op1,
4538                                    SDValue Op2, SDValue Op3) {
4539  SDVTList VTs = getVTList(VT1, VT2);
4540  SDValue Ops[] = { Op1, Op2, Op3 };
4541  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4542}
4543
4544SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4545                                    MVT VT1, MVT VT2,
4546                                    const SDValue *Ops, unsigned NumOps) {
4547  SDVTList VTs = getVTList(VT1, VT2);
4548  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4549}
4550
4551SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4552                                    MVT VT1, MVT VT2, MVT VT3,
4553                                    SDValue Op1, SDValue Op2) {
4554  SDVTList VTs = getVTList(VT1, VT2, VT3);
4555  SDValue Ops[] = { Op1, Op2 };
4556  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4557}
4558
4559SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4560                                    MVT VT1, MVT VT2, MVT VT3,
4561                                    SDValue Op1, SDValue Op2,
4562                                    SDValue Op3) {
4563  SDVTList VTs = getVTList(VT1, VT2, VT3);
4564  SDValue Ops[] = { Op1, Op2, Op3 };
4565  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4566}
4567
4568SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4569                                    MVT VT1, MVT VT2, MVT VT3,
4570                                    const SDValue *Ops, unsigned NumOps) {
4571  SDVTList VTs = getVTList(VT1, VT2, VT3);
4572  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4573}
4574
4575SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4576                                    MVT VT2, MVT VT3, MVT VT4,
4577                                    const SDValue *Ops, unsigned NumOps) {
4578  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4579  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4580}
4581
4582SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4583                                    const std::vector<MVT> &ResultTys,
4584                                    const SDValue *Ops, unsigned NumOps) {
4585  return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
4586}
4587
4588/// getNodeIfExists - Get the specified node if it's already available, or
4589/// else return NULL.
4590SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4591                                      const SDValue *Ops, unsigned NumOps) {
4592  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4593    FoldingSetNodeID ID;
4594    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4595    void *IP = 0;
4596    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4597      return E;
4598  }
4599  return NULL;
4600}
4601
4602/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4603/// This can cause recursive merging of nodes in the DAG.
4604///
4605/// This version assumes From has a single result value.
4606///
4607void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4608                                      DAGUpdateListener *UpdateListener) {
4609  SDNode *From = FromN.getNode();
4610  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4611         "Cannot replace with this method!");
4612  assert(From != To.getNode() && "Cannot replace uses of with self");
4613
4614  // Iterate over all the existing uses of From. New uses will be added
4615  // to the beginning of the use list, which we avoid visiting.
4616  // This specifically avoids visiting uses of From that arise while the
4617  // replacement is happening, because any such uses would be the result
4618  // of CSE: If an existing node looks like From after one of its operands
4619  // is replaced by To, we don't want to replace of all its users with To
4620  // too. See PR3018 for more info.
4621  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4622  while (UI != UE) {
4623    SDNode *User = *UI;
4624
4625    // This node is about to morph, remove its old self from the CSE maps.
4626    RemoveNodeFromCSEMaps(User);
4627
4628    // A user can appear in a use list multiple times, and when this
4629    // happens the uses are usually next to each other in the list.
4630    // To help reduce the number of CSE recomputations, process all
4631    // the uses of this user that we can find this way.
4632    do {
4633      SDUse &Use = UI.getUse();
4634      ++UI;
4635      Use.set(To);
4636    } while (UI != UE && *UI == User);
4637
4638    // Now that we have modified User, add it back to the CSE maps.  If it
4639    // already exists there, recursively merge the results together.
4640    AddModifiedNodeToCSEMaps(User, UpdateListener);
4641  }
4642}
4643
4644/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4645/// This can cause recursive merging of nodes in the DAG.
4646///
4647/// This version assumes that for each value of From, there is a
4648/// corresponding value in To in the same position with the same type.
4649///
4650void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4651                                      DAGUpdateListener *UpdateListener) {
4652#ifndef NDEBUG
4653  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4654    assert((!From->hasAnyUseOfValue(i) ||
4655            From->getValueType(i) == To->getValueType(i)) &&
4656           "Cannot use this version of ReplaceAllUsesWith!");
4657#endif
4658
4659  // Handle the trivial case.
4660  if (From == To)
4661    return;
4662
4663  // Iterate over just the existing users of From. See the comments in
4664  // the ReplaceAllUsesWith above.
4665  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4666  while (UI != UE) {
4667    SDNode *User = *UI;
4668
4669    // This node is about to morph, remove its old self from the CSE maps.
4670    RemoveNodeFromCSEMaps(User);
4671
4672    // A user can appear in a use list multiple times, and when this
4673    // happens the uses are usually next to each other in the list.
4674    // To help reduce the number of CSE recomputations, process all
4675    // the uses of this user that we can find this way.
4676    do {
4677      SDUse &Use = UI.getUse();
4678      ++UI;
4679      Use.setNode(To);
4680    } while (UI != UE && *UI == User);
4681
4682    // Now that we have modified User, add it back to the CSE maps.  If it
4683    // already exists there, recursively merge the results together.
4684    AddModifiedNodeToCSEMaps(User, UpdateListener);
4685  }
4686}
4687
4688/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4689/// This can cause recursive merging of nodes in the DAG.
4690///
4691/// This version can replace From with any result values.  To must match the
4692/// number and types of values returned by From.
4693void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4694                                      const SDValue *To,
4695                                      DAGUpdateListener *UpdateListener) {
4696  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4697    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4698
4699  // Iterate over just the existing users of From. See the comments in
4700  // the ReplaceAllUsesWith above.
4701  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4702  while (UI != UE) {
4703    SDNode *User = *UI;
4704
4705    // This node is about to morph, remove its old self from the CSE maps.
4706    RemoveNodeFromCSEMaps(User);
4707
4708    // A user can appear in a use list multiple times, and when this
4709    // happens the uses are usually next to each other in the list.
4710    // To help reduce the number of CSE recomputations, process all
4711    // the uses of this user that we can find this way.
4712    do {
4713      SDUse &Use = UI.getUse();
4714      const SDValue &ToOp = To[Use.getResNo()];
4715      ++UI;
4716      Use.set(ToOp);
4717    } while (UI != UE && *UI == User);
4718
4719    // Now that we have modified User, add it back to the CSE maps.  If it
4720    // already exists there, recursively merge the results together.
4721    AddModifiedNodeToCSEMaps(User, UpdateListener);
4722  }
4723}
4724
4725/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4726/// uses of other values produced by From.getNode() alone.  The Deleted
4727/// vector is handled the same way as for ReplaceAllUsesWith.
4728void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4729                                             DAGUpdateListener *UpdateListener){
4730  // Handle the really simple, really trivial case efficiently.
4731  if (From == To) return;
4732
4733  // Handle the simple, trivial, case efficiently.
4734  if (From.getNode()->getNumValues() == 1) {
4735    ReplaceAllUsesWith(From, To, UpdateListener);
4736    return;
4737  }
4738
4739  // Iterate over just the existing users of From. See the comments in
4740  // the ReplaceAllUsesWith above.
4741  SDNode::use_iterator UI = From.getNode()->use_begin(),
4742                       UE = From.getNode()->use_end();
4743  while (UI != UE) {
4744    SDNode *User = *UI;
4745    bool UserRemovedFromCSEMaps = false;
4746
4747    // A user can appear in a use list multiple times, and when this
4748    // happens the uses are usually next to each other in the list.
4749    // To help reduce the number of CSE recomputations, process all
4750    // the uses of this user that we can find this way.
4751    do {
4752      SDUse &Use = UI.getUse();
4753
4754      // Skip uses of different values from the same node.
4755      if (Use.getResNo() != From.getResNo()) {
4756        ++UI;
4757        continue;
4758      }
4759
4760      // If this node hasn't been modified yet, it's still in the CSE maps,
4761      // so remove its old self from the CSE maps.
4762      if (!UserRemovedFromCSEMaps) {
4763        RemoveNodeFromCSEMaps(User);
4764        UserRemovedFromCSEMaps = true;
4765      }
4766
4767      ++UI;
4768      Use.set(To);
4769    } while (UI != UE && *UI == User);
4770
4771    // We are iterating over all uses of the From node, so if a use
4772    // doesn't use the specific value, no changes are made.
4773    if (!UserRemovedFromCSEMaps)
4774      continue;
4775
4776    // Now that we have modified User, add it back to the CSE maps.  If it
4777    // already exists there, recursively merge the results together.
4778    AddModifiedNodeToCSEMaps(User, UpdateListener);
4779  }
4780}
4781
4782namespace {
4783  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4784  /// to record information about a use.
4785  struct UseMemo {
4786    SDNode *User;
4787    unsigned Index;
4788    SDUse *Use;
4789  };
4790
4791  /// operator< - Sort Memos by User.
4792  bool operator<(const UseMemo &L, const UseMemo &R) {
4793    return (intptr_t)L.User < (intptr_t)R.User;
4794  }
4795}
4796
4797/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4798/// uses of other values produced by From.getNode() alone.  The same value
4799/// may appear in both the From and To list.  The Deleted vector is
4800/// handled the same way as for ReplaceAllUsesWith.
4801void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4802                                              const SDValue *To,
4803                                              unsigned Num,
4804                                              DAGUpdateListener *UpdateListener){
4805  // Handle the simple, trivial case efficiently.
4806  if (Num == 1)
4807    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4808
4809  // Read up all the uses and make records of them. This helps
4810  // processing new uses that are introduced during the
4811  // replacement process.
4812  SmallVector<UseMemo, 4> Uses;
4813  for (unsigned i = 0; i != Num; ++i) {
4814    unsigned FromResNo = From[i].getResNo();
4815    SDNode *FromNode = From[i].getNode();
4816    for (SDNode::use_iterator UI = FromNode->use_begin(),
4817         E = FromNode->use_end(); UI != E; ++UI) {
4818      SDUse &Use = UI.getUse();
4819      if (Use.getResNo() == FromResNo) {
4820        UseMemo Memo = { *UI, i, &Use };
4821        Uses.push_back(Memo);
4822      }
4823    }
4824  }
4825
4826  // Sort the uses, so that all the uses from a given User are together.
4827  std::sort(Uses.begin(), Uses.end());
4828
4829  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4830       UseIndex != UseIndexEnd; ) {
4831    // We know that this user uses some value of From.  If it is the right
4832    // value, update it.
4833    SDNode *User = Uses[UseIndex].User;
4834
4835    // This node is about to morph, remove its old self from the CSE maps.
4836    RemoveNodeFromCSEMaps(User);
4837
4838    // The Uses array is sorted, so all the uses for a given User
4839    // are next to each other in the list.
4840    // To help reduce the number of CSE recomputations, process all
4841    // the uses of this user that we can find this way.
4842    do {
4843      unsigned i = Uses[UseIndex].Index;
4844      SDUse &Use = *Uses[UseIndex].Use;
4845      ++UseIndex;
4846
4847      Use.set(To[i]);
4848    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4849
4850    // Now that we have modified User, add it back to the CSE maps.  If it
4851    // already exists there, recursively merge the results together.
4852    AddModifiedNodeToCSEMaps(User, UpdateListener);
4853  }
4854}
4855
4856/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4857/// based on their topological order. It returns the maximum id and a vector
4858/// of the SDNodes* in assigned order by reference.
4859unsigned SelectionDAG::AssignTopologicalOrder() {
4860
4861  unsigned DAGSize = 0;
4862
4863  // SortedPos tracks the progress of the algorithm. Nodes before it are
4864  // sorted, nodes after it are unsorted. When the algorithm completes
4865  // it is at the end of the list.
4866  allnodes_iterator SortedPos = allnodes_begin();
4867
4868  // Visit all the nodes. Move nodes with no operands to the front of
4869  // the list immediately. Annotate nodes that do have operands with their
4870  // operand count. Before we do this, the Node Id fields of the nodes
4871  // may contain arbitrary values. After, the Node Id fields for nodes
4872  // before SortedPos will contain the topological sort index, and the
4873  // Node Id fields for nodes At SortedPos and after will contain the
4874  // count of outstanding operands.
4875  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4876    SDNode *N = I++;
4877    unsigned Degree = N->getNumOperands();
4878    if (Degree == 0) {
4879      // A node with no uses, add it to the result array immediately.
4880      N->setNodeId(DAGSize++);
4881      allnodes_iterator Q = N;
4882      if (Q != SortedPos)
4883        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4884      ++SortedPos;
4885    } else {
4886      // Temporarily use the Node Id as scratch space for the degree count.
4887      N->setNodeId(Degree);
4888    }
4889  }
4890
4891  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4892  // such that by the time the end is reached all nodes will be sorted.
4893  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4894    SDNode *N = I;
4895    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4896         UI != UE; ++UI) {
4897      SDNode *P = *UI;
4898      unsigned Degree = P->getNodeId();
4899      --Degree;
4900      if (Degree == 0) {
4901        // All of P's operands are sorted, so P may sorted now.
4902        P->setNodeId(DAGSize++);
4903        if (P != SortedPos)
4904          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4905        ++SortedPos;
4906      } else {
4907        // Update P's outstanding operand count.
4908        P->setNodeId(Degree);
4909      }
4910    }
4911  }
4912
4913  assert(SortedPos == AllNodes.end() &&
4914         "Topological sort incomplete!");
4915  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4916         "First node in topological sort is not the entry token!");
4917  assert(AllNodes.front().getNodeId() == 0 &&
4918         "First node in topological sort has non-zero id!");
4919  assert(AllNodes.front().getNumOperands() == 0 &&
4920         "First node in topological sort has operands!");
4921  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4922         "Last node in topologic sort has unexpected id!");
4923  assert(AllNodes.back().use_empty() &&
4924         "Last node in topologic sort has users!");
4925  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4926  return DAGSize;
4927}
4928
4929
4930
4931//===----------------------------------------------------------------------===//
4932//                              SDNode Class
4933//===----------------------------------------------------------------------===//
4934
4935HandleSDNode::~HandleSDNode() {
4936  DropOperands();
4937}
4938
4939GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
4940                                         MVT VT, int64_t o, unsigned char TF)
4941  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
4942    Offset(o), TargetFlags(TF) {
4943  TheGlobal = const_cast<GlobalValue*>(GA);
4944}
4945
4946MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4947                     const Value *srcValue, int SVO,
4948                     unsigned alignment, bool vol)
4949 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4950  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4951  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4952  assert(getAlignment() == alignment && "Alignment representation error!");
4953  assert(isVolatile() == vol && "Volatile representation error!");
4954}
4955
4956MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4957                     const SDValue *Ops,
4958                     unsigned NumOps, MVT memvt, const Value *srcValue,
4959                     int SVO, unsigned alignment, bool vol)
4960   : SDNode(Opc, dl, VTs, Ops, NumOps),
4961     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4962  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4963  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4964  assert(getAlignment() == alignment && "Alignment representation error!");
4965  assert(isVolatile() == vol && "Volatile representation error!");
4966}
4967
4968/// getMemOperand - Return a MachineMemOperand object describing the memory
4969/// reference performed by this memory reference.
4970MachineMemOperand MemSDNode::getMemOperand() const {
4971  int Flags = 0;
4972  if (isa<LoadSDNode>(this))
4973    Flags = MachineMemOperand::MOLoad;
4974  else if (isa<StoreSDNode>(this))
4975    Flags = MachineMemOperand::MOStore;
4976  else if (isa<AtomicSDNode>(this)) {
4977    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4978  }
4979  else {
4980    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4981    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4982    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4983    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4984  }
4985
4986  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4987  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4988
4989  // Check if the memory reference references a frame index
4990  const FrameIndexSDNode *FI =
4991  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4992  if (!getSrcValue() && FI)
4993    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4994                             Flags, 0, Size, getAlignment());
4995  else
4996    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4997                             Size, getAlignment());
4998}
4999
5000/// Profile - Gather unique data for the node.
5001///
5002void SDNode::Profile(FoldingSetNodeID &ID) const {
5003  AddNodeIDNode(ID, this);
5004}
5005
5006static ManagedStatic<std::set<MVT, MVT::compareRawBits> > EVTs;
5007static MVT VTs[MVT::LAST_VALUETYPE];
5008static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5009
5010/// getValueTypeList - Return a pointer to the specified value type.
5011///
5012const MVT *SDNode::getValueTypeList(MVT VT) {
5013  sys::SmartScopedLock<true> Lock(&*VTMutex);
5014  if (VT.isExtended()) {
5015    return &(*EVTs->insert(VT).first);
5016  } else {
5017    VTs[VT.getSimpleVT()] = VT;
5018    return &VTs[VT.getSimpleVT()];
5019  }
5020}
5021
5022/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5023/// indicated value.  This method ignores uses of other values defined by this
5024/// operation.
5025bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5026  assert(Value < getNumValues() && "Bad value!");
5027
5028  // TODO: Only iterate over uses of a given value of the node
5029  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5030    if (UI.getUse().getResNo() == Value) {
5031      if (NUses == 0)
5032        return false;
5033      --NUses;
5034    }
5035  }
5036
5037  // Found exactly the right number of uses?
5038  return NUses == 0;
5039}
5040
5041
5042/// hasAnyUseOfValue - Return true if there are any use of the indicated
5043/// value. This method ignores uses of other values defined by this operation.
5044bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5045  assert(Value < getNumValues() && "Bad value!");
5046
5047  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5048    if (UI.getUse().getResNo() == Value)
5049      return true;
5050
5051  return false;
5052}
5053
5054
5055/// isOnlyUserOf - Return true if this node is the only use of N.
5056///
5057bool SDNode::isOnlyUserOf(SDNode *N) const {
5058  bool Seen = false;
5059  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5060    SDNode *User = *I;
5061    if (User == this)
5062      Seen = true;
5063    else
5064      return false;
5065  }
5066
5067  return Seen;
5068}
5069
5070/// isOperand - Return true if this node is an operand of N.
5071///
5072bool SDValue::isOperandOf(SDNode *N) const {
5073  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5074    if (*this == N->getOperand(i))
5075      return true;
5076  return false;
5077}
5078
5079bool SDNode::isOperandOf(SDNode *N) const {
5080  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5081    if (this == N->OperandList[i].getNode())
5082      return true;
5083  return false;
5084}
5085
5086/// reachesChainWithoutSideEffects - Return true if this operand (which must
5087/// be a chain) reaches the specified operand without crossing any
5088/// side-effecting instructions.  In practice, this looks through token
5089/// factors and non-volatile loads.  In order to remain efficient, this only
5090/// looks a couple of nodes in, it does not do an exhaustive search.
5091bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5092                                               unsigned Depth) const {
5093  if (*this == Dest) return true;
5094
5095  // Don't search too deeply, we just want to be able to see through
5096  // TokenFactor's etc.
5097  if (Depth == 0) return false;
5098
5099  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5100  // of the operands of the TF reach dest, then we can do the xform.
5101  if (getOpcode() == ISD::TokenFactor) {
5102    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5103      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5104        return true;
5105    return false;
5106  }
5107
5108  // Loads don't have side effects, look through them.
5109  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5110    if (!Ld->isVolatile())
5111      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5112  }
5113  return false;
5114}
5115
5116
5117static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5118                            SmallPtrSet<SDNode *, 32> &Visited) {
5119  if (found || !Visited.insert(N))
5120    return;
5121
5122  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5123    SDNode *Op = N->getOperand(i).getNode();
5124    if (Op == P) {
5125      found = true;
5126      return;
5127    }
5128    findPredecessor(Op, P, found, Visited);
5129  }
5130}
5131
5132/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5133/// is either an operand of N or it can be reached by recursively traversing
5134/// up the operands.
5135/// NOTE: this is an expensive method. Use it carefully.
5136bool SDNode::isPredecessorOf(SDNode *N) const {
5137  SmallPtrSet<SDNode *, 32> Visited;
5138  bool found = false;
5139  findPredecessor(N, this, found, Visited);
5140  return found;
5141}
5142
5143uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5144  assert(Num < NumOperands && "Invalid child # of SDNode!");
5145  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5146}
5147
5148std::string SDNode::getOperationName(const SelectionDAG *G) const {
5149  switch (getOpcode()) {
5150  default:
5151    if (getOpcode() < ISD::BUILTIN_OP_END)
5152      return "<<Unknown DAG Node>>";
5153    if (isMachineOpcode()) {
5154      if (G)
5155        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5156          if (getMachineOpcode() < TII->getNumOpcodes())
5157            return TII->get(getMachineOpcode()).getName();
5158      return "<<Unknown Machine Node>>";
5159    }
5160    if (G) {
5161      const TargetLowering &TLI = G->getTargetLoweringInfo();
5162      const char *Name = TLI.getTargetNodeName(getOpcode());
5163      if (Name) return Name;
5164      return "<<Unknown Target Node>>";
5165    }
5166    return "<<Unknown Node>>";
5167
5168#ifndef NDEBUG
5169  case ISD::DELETED_NODE:
5170    return "<<Deleted Node!>>";
5171#endif
5172  case ISD::PREFETCH:      return "Prefetch";
5173  case ISD::MEMBARRIER:    return "MemBarrier";
5174  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5175  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5176  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5177  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5178  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5179  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5180  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5181  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5182  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5183  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5184  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5185  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5186  case ISD::PCMARKER:      return "PCMarker";
5187  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5188  case ISD::SRCVALUE:      return "SrcValue";
5189  case ISD::MEMOPERAND:    return "MemOperand";
5190  case ISD::EntryToken:    return "EntryToken";
5191  case ISD::TokenFactor:   return "TokenFactor";
5192  case ISD::AssertSext:    return "AssertSext";
5193  case ISD::AssertZext:    return "AssertZext";
5194
5195  case ISD::BasicBlock:    return "BasicBlock";
5196  case ISD::ARG_FLAGS:     return "ArgFlags";
5197  case ISD::VALUETYPE:     return "ValueType";
5198  case ISD::Register:      return "Register";
5199
5200  case ISD::Constant:      return "Constant";
5201  case ISD::ConstantFP:    return "ConstantFP";
5202  case ISD::GlobalAddress: return "GlobalAddress";
5203  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5204  case ISD::FrameIndex:    return "FrameIndex";
5205  case ISD::JumpTable:     return "JumpTable";
5206  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5207  case ISD::RETURNADDR: return "RETURNADDR";
5208  case ISD::FRAMEADDR: return "FRAMEADDR";
5209  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5210  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5211  case ISD::EHSELECTION: return "EHSELECTION";
5212  case ISD::EH_RETURN: return "EH_RETURN";
5213  case ISD::ConstantPool:  return "ConstantPool";
5214  case ISD::ExternalSymbol: return "ExternalSymbol";
5215  case ISD::INTRINSIC_WO_CHAIN: {
5216    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5217    return Intrinsic::getName((Intrinsic::ID)IID);
5218  }
5219  case ISD::INTRINSIC_VOID:
5220  case ISD::INTRINSIC_W_CHAIN: {
5221    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5222    return Intrinsic::getName((Intrinsic::ID)IID);
5223  }
5224
5225  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5226  case ISD::TargetConstant: return "TargetConstant";
5227  case ISD::TargetConstantFP:return "TargetConstantFP";
5228  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5229  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5230  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5231  case ISD::TargetJumpTable:  return "TargetJumpTable";
5232  case ISD::TargetConstantPool:  return "TargetConstantPool";
5233  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5234
5235  case ISD::CopyToReg:     return "CopyToReg";
5236  case ISD::CopyFromReg:   return "CopyFromReg";
5237  case ISD::UNDEF:         return "undef";
5238  case ISD::MERGE_VALUES:  return "merge_values";
5239  case ISD::INLINEASM:     return "inlineasm";
5240  case ISD::DBG_LABEL:     return "dbg_label";
5241  case ISD::EH_LABEL:      return "eh_label";
5242  case ISD::DECLARE:       return "declare";
5243  case ISD::HANDLENODE:    return "handlenode";
5244  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5245  case ISD::CALL:          return "call";
5246
5247  // Unary operators
5248  case ISD::FABS:   return "fabs";
5249  case ISD::FNEG:   return "fneg";
5250  case ISD::FSQRT:  return "fsqrt";
5251  case ISD::FSIN:   return "fsin";
5252  case ISD::FCOS:   return "fcos";
5253  case ISD::FPOWI:  return "fpowi";
5254  case ISD::FPOW:   return "fpow";
5255  case ISD::FTRUNC: return "ftrunc";
5256  case ISD::FFLOOR: return "ffloor";
5257  case ISD::FCEIL:  return "fceil";
5258  case ISD::FRINT:  return "frint";
5259  case ISD::FNEARBYINT: return "fnearbyint";
5260
5261  // Binary operators
5262  case ISD::ADD:    return "add";
5263  case ISD::SUB:    return "sub";
5264  case ISD::MUL:    return "mul";
5265  case ISD::MULHU:  return "mulhu";
5266  case ISD::MULHS:  return "mulhs";
5267  case ISD::SDIV:   return "sdiv";
5268  case ISD::UDIV:   return "udiv";
5269  case ISD::SREM:   return "srem";
5270  case ISD::UREM:   return "urem";
5271  case ISD::SMUL_LOHI:  return "smul_lohi";
5272  case ISD::UMUL_LOHI:  return "umul_lohi";
5273  case ISD::SDIVREM:    return "sdivrem";
5274  case ISD::UDIVREM:    return "udivrem";
5275  case ISD::AND:    return "and";
5276  case ISD::OR:     return "or";
5277  case ISD::XOR:    return "xor";
5278  case ISD::SHL:    return "shl";
5279  case ISD::SRA:    return "sra";
5280  case ISD::SRL:    return "srl";
5281  case ISD::ROTL:   return "rotl";
5282  case ISD::ROTR:   return "rotr";
5283  case ISD::FADD:   return "fadd";
5284  case ISD::FSUB:   return "fsub";
5285  case ISD::FMUL:   return "fmul";
5286  case ISD::FDIV:   return "fdiv";
5287  case ISD::FREM:   return "frem";
5288  case ISD::FCOPYSIGN: return "fcopysign";
5289  case ISD::FGETSIGN:  return "fgetsign";
5290
5291  case ISD::SETCC:       return "setcc";
5292  case ISD::VSETCC:      return "vsetcc";
5293  case ISD::SELECT:      return "select";
5294  case ISD::SELECT_CC:   return "select_cc";
5295  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5296  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5297  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5298  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5299  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5300  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5301  case ISD::CARRY_FALSE:         return "carry_false";
5302  case ISD::ADDC:        return "addc";
5303  case ISD::ADDE:        return "adde";
5304  case ISD::SADDO:       return "saddo";
5305  case ISD::UADDO:       return "uaddo";
5306  case ISD::SSUBO:       return "ssubo";
5307  case ISD::USUBO:       return "usubo";
5308  case ISD::SMULO:       return "smulo";
5309  case ISD::UMULO:       return "umulo";
5310  case ISD::SUBC:        return "subc";
5311  case ISD::SUBE:        return "sube";
5312  case ISD::SHL_PARTS:   return "shl_parts";
5313  case ISD::SRA_PARTS:   return "sra_parts";
5314  case ISD::SRL_PARTS:   return "srl_parts";
5315
5316  // Conversion operators.
5317  case ISD::SIGN_EXTEND: return "sign_extend";
5318  case ISD::ZERO_EXTEND: return "zero_extend";
5319  case ISD::ANY_EXTEND:  return "any_extend";
5320  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5321  case ISD::TRUNCATE:    return "truncate";
5322  case ISD::FP_ROUND:    return "fp_round";
5323  case ISD::FLT_ROUNDS_: return "flt_rounds";
5324  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5325  case ISD::FP_EXTEND:   return "fp_extend";
5326
5327  case ISD::SINT_TO_FP:  return "sint_to_fp";
5328  case ISD::UINT_TO_FP:  return "uint_to_fp";
5329  case ISD::FP_TO_SINT:  return "fp_to_sint";
5330  case ISD::FP_TO_UINT:  return "fp_to_uint";
5331  case ISD::BIT_CONVERT: return "bit_convert";
5332
5333  case ISD::CONVERT_RNDSAT: {
5334    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5335    default: assert(0 && "Unknown cvt code!");
5336    case ISD::CVT_FF:  return "cvt_ff";
5337    case ISD::CVT_FS:  return "cvt_fs";
5338    case ISD::CVT_FU:  return "cvt_fu";
5339    case ISD::CVT_SF:  return "cvt_sf";
5340    case ISD::CVT_UF:  return "cvt_uf";
5341    case ISD::CVT_SS:  return "cvt_ss";
5342    case ISD::CVT_SU:  return "cvt_su";
5343    case ISD::CVT_US:  return "cvt_us";
5344    case ISD::CVT_UU:  return "cvt_uu";
5345    }
5346  }
5347
5348    // Control flow instructions
5349  case ISD::BR:      return "br";
5350  case ISD::BRIND:   return "brind";
5351  case ISD::BR_JT:   return "br_jt";
5352  case ISD::BRCOND:  return "brcond";
5353  case ISD::BR_CC:   return "br_cc";
5354  case ISD::RET:     return "ret";
5355  case ISD::CALLSEQ_START:  return "callseq_start";
5356  case ISD::CALLSEQ_END:    return "callseq_end";
5357
5358    // Other operators
5359  case ISD::LOAD:               return "load";
5360  case ISD::STORE:              return "store";
5361  case ISD::VAARG:              return "vaarg";
5362  case ISD::VACOPY:             return "vacopy";
5363  case ISD::VAEND:              return "vaend";
5364  case ISD::VASTART:            return "vastart";
5365  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5366  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5367  case ISD::BUILD_PAIR:         return "build_pair";
5368  case ISD::STACKSAVE:          return "stacksave";
5369  case ISD::STACKRESTORE:       return "stackrestore";
5370  case ISD::TRAP:               return "trap";
5371
5372  // Bit manipulation
5373  case ISD::BSWAP:   return "bswap";
5374  case ISD::CTPOP:   return "ctpop";
5375  case ISD::CTTZ:    return "cttz";
5376  case ISD::CTLZ:    return "ctlz";
5377
5378  // Debug info
5379  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5380  case ISD::DEBUG_LOC: return "debug_loc";
5381
5382  // Trampolines
5383  case ISD::TRAMPOLINE: return "trampoline";
5384
5385  case ISD::CONDCODE:
5386    switch (cast<CondCodeSDNode>(this)->get()) {
5387    default: assert(0 && "Unknown setcc condition!");
5388    case ISD::SETOEQ:  return "setoeq";
5389    case ISD::SETOGT:  return "setogt";
5390    case ISD::SETOGE:  return "setoge";
5391    case ISD::SETOLT:  return "setolt";
5392    case ISD::SETOLE:  return "setole";
5393    case ISD::SETONE:  return "setone";
5394
5395    case ISD::SETO:    return "seto";
5396    case ISD::SETUO:   return "setuo";
5397    case ISD::SETUEQ:  return "setue";
5398    case ISD::SETUGT:  return "setugt";
5399    case ISD::SETUGE:  return "setuge";
5400    case ISD::SETULT:  return "setult";
5401    case ISD::SETULE:  return "setule";
5402    case ISD::SETUNE:  return "setune";
5403
5404    case ISD::SETEQ:   return "seteq";
5405    case ISD::SETGT:   return "setgt";
5406    case ISD::SETGE:   return "setge";
5407    case ISD::SETLT:   return "setlt";
5408    case ISD::SETLE:   return "setle";
5409    case ISD::SETNE:   return "setne";
5410    }
5411  }
5412}
5413
5414const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5415  switch (AM) {
5416  default:
5417    return "";
5418  case ISD::PRE_INC:
5419    return "<pre-inc>";
5420  case ISD::PRE_DEC:
5421    return "<pre-dec>";
5422  case ISD::POST_INC:
5423    return "<post-inc>";
5424  case ISD::POST_DEC:
5425    return "<post-dec>";
5426  }
5427}
5428
5429std::string ISD::ArgFlagsTy::getArgFlagsString() {
5430  std::string S = "< ";
5431
5432  if (isZExt())
5433    S += "zext ";
5434  if (isSExt())
5435    S += "sext ";
5436  if (isInReg())
5437    S += "inreg ";
5438  if (isSRet())
5439    S += "sret ";
5440  if (isByVal())
5441    S += "byval ";
5442  if (isNest())
5443    S += "nest ";
5444  if (getByValAlign())
5445    S += "byval-align:" + utostr(getByValAlign()) + " ";
5446  if (getOrigAlign())
5447    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5448  if (getByValSize())
5449    S += "byval-size:" + utostr(getByValSize()) + " ";
5450  return S + ">";
5451}
5452
5453void SDNode::dump() const { dump(0); }
5454void SDNode::dump(const SelectionDAG *G) const {
5455  print(errs(), G);
5456}
5457
5458void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5459  OS << (void*)this << ": ";
5460
5461  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5462    if (i) OS << ",";
5463    if (getValueType(i) == MVT::Other)
5464      OS << "ch";
5465    else
5466      OS << getValueType(i).getMVTString();
5467  }
5468  OS << " = " << getOperationName(G);
5469}
5470
5471void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5472  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5473    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(this);
5474    OS << "<";
5475    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5476      int Idx = SVN->getMaskElt(i);
5477      if (i) OS << ",";
5478      if (Idx < 0)
5479        OS << "u";
5480      else
5481        OS << Idx;
5482    }
5483    OS << ">";
5484  }
5485
5486  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5487    OS << '<' << CSDN->getAPIntValue() << '>';
5488  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5489    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5490      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5491    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5492      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5493    else {
5494      OS << "<APFloat(";
5495      CSDN->getValueAPF().bitcastToAPInt().dump();
5496      OS << ")>";
5497    }
5498  } else if (const GlobalAddressSDNode *GADN =
5499             dyn_cast<GlobalAddressSDNode>(this)) {
5500    int64_t offset = GADN->getOffset();
5501    OS << '<';
5502    WriteAsOperand(OS, GADN->getGlobal());
5503    OS << '>';
5504    if (offset > 0)
5505      OS << " + " << offset;
5506    else
5507      OS << " " << offset;
5508    if (unsigned char TF = GADN->getTargetFlags())
5509      OS << " [TF=" << TF << ']';
5510  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5511    OS << "<" << FIDN->getIndex() << ">";
5512  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5513    OS << "<" << JTDN->getIndex() << ">";
5514    if (unsigned char TF = JTDN->getTargetFlags())
5515      OS << " [TF=" << TF << ']';
5516  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5517    int offset = CP->getOffset();
5518    if (CP->isMachineConstantPoolEntry())
5519      OS << "<" << *CP->getMachineCPVal() << ">";
5520    else
5521      OS << "<" << *CP->getConstVal() << ">";
5522    if (offset > 0)
5523      OS << " + " << offset;
5524    else
5525      OS << " " << offset;
5526    if (unsigned char TF = CP->getTargetFlags())
5527      OS << " [TF=" << TF << ']';
5528  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5529    OS << "<";
5530    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5531    if (LBB)
5532      OS << LBB->getName() << " ";
5533    OS << (const void*)BBDN->getBasicBlock() << ">";
5534  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5535    if (G && R->getReg() &&
5536        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5537      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5538    } else {
5539      OS << " #" << R->getReg();
5540    }
5541  } else if (const ExternalSymbolSDNode *ES =
5542             dyn_cast<ExternalSymbolSDNode>(this)) {
5543    OS << "'" << ES->getSymbol() << "'";
5544    if (unsigned char TF = ES->getTargetFlags())
5545      OS << " [TF=" << TF << ']';
5546  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5547    if (M->getValue())
5548      OS << "<" << M->getValue() << ">";
5549    else
5550      OS << "<null>";
5551  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5552    if (M->MO.getValue())
5553      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5554    else
5555      OS << "<null:" << M->MO.getOffset() << ">";
5556  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5557    OS << N->getArgFlags().getArgFlagsString();
5558  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5559    OS << ":" << N->getVT().getMVTString();
5560  }
5561  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5562    const Value *SrcValue = LD->getSrcValue();
5563    int SrcOffset = LD->getSrcValueOffset();
5564    OS << " <";
5565    if (SrcValue)
5566      OS << SrcValue;
5567    else
5568      OS << "null";
5569    OS << ":" << SrcOffset << ">";
5570
5571    bool doExt = true;
5572    switch (LD->getExtensionType()) {
5573    default: doExt = false; break;
5574    case ISD::EXTLOAD: OS << " <anyext "; break;
5575    case ISD::SEXTLOAD: OS << " <sext "; break;
5576    case ISD::ZEXTLOAD: OS << " <zext "; break;
5577    }
5578    if (doExt)
5579      OS << LD->getMemoryVT().getMVTString() << ">";
5580
5581    const char *AM = getIndexedModeName(LD->getAddressingMode());
5582    if (*AM)
5583      OS << " " << AM;
5584    if (LD->isVolatile())
5585      OS << " <volatile>";
5586    OS << " alignment=" << LD->getAlignment();
5587  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5588    const Value *SrcValue = ST->getSrcValue();
5589    int SrcOffset = ST->getSrcValueOffset();
5590    OS << " <";
5591    if (SrcValue)
5592      OS << SrcValue;
5593    else
5594      OS << "null";
5595    OS << ":" << SrcOffset << ">";
5596
5597    if (ST->isTruncatingStore())
5598      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5599
5600    const char *AM = getIndexedModeName(ST->getAddressingMode());
5601    if (*AM)
5602      OS << " " << AM;
5603    if (ST->isVolatile())
5604      OS << " <volatile>";
5605    OS << " alignment=" << ST->getAlignment();
5606  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5607    const Value *SrcValue = AT->getSrcValue();
5608    int SrcOffset = AT->getSrcValueOffset();
5609    OS << " <";
5610    if (SrcValue)
5611      OS << SrcValue;
5612    else
5613      OS << "null";
5614    OS << ":" << SrcOffset << ">";
5615    if (AT->isVolatile())
5616      OS << " <volatile>";
5617    OS << " alignment=" << AT->getAlignment();
5618  }
5619}
5620
5621void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5622  print_types(OS, G);
5623  OS << " ";
5624  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5625    if (i) OS << ", ";
5626    OS << (void*)getOperand(i).getNode();
5627    if (unsigned RN = getOperand(i).getResNo())
5628      OS << ":" << RN;
5629  }
5630  print_details(OS, G);
5631}
5632
5633static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5634  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5635    if (N->getOperand(i).getNode()->hasOneUse())
5636      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5637    else
5638      cerr << "\n" << std::string(indent+2, ' ')
5639           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5640
5641
5642  cerr << "\n" << std::string(indent, ' ');
5643  N->dump(G);
5644}
5645
5646void SelectionDAG::dump() const {
5647  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5648
5649  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5650       I != E; ++I) {
5651    const SDNode *N = I;
5652    if (!N->hasOneUse() && N != getRoot().getNode())
5653      DumpNodes(N, 2, this);
5654  }
5655
5656  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5657
5658  cerr << "\n\n";
5659}
5660
5661void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5662  print_types(OS, G);
5663  print_details(OS, G);
5664}
5665
5666typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5667static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5668                       const SelectionDAG *G, VisitedSDNodeSet &once) {
5669  if (!once.insert(N))          // If we've been here before, return now.
5670    return;
5671  // Dump the current SDNode, but don't end the line yet.
5672  OS << std::string(indent, ' ');
5673  N->printr(OS, G);
5674  // Having printed this SDNode, walk the children:
5675  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5676    const SDNode *child = N->getOperand(i).getNode();
5677    if (i) OS << ",";
5678    OS << " ";
5679    if (child->getNumOperands() == 0) {
5680      // This child has no grandchildren; print it inline right here.
5681      child->printr(OS, G);
5682      once.insert(child);
5683    } else {          // Just the address.  FIXME: also print the child's opcode
5684      OS << (void*)child;
5685      if (unsigned RN = N->getOperand(i).getResNo())
5686        OS << ":" << RN;
5687    }
5688  }
5689  OS << "\n";
5690  // Dump children that have grandchildren on their own line(s).
5691  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5692    const SDNode *child = N->getOperand(i).getNode();
5693    DumpNodesr(OS, child, indent+2, G, once);
5694  }
5695}
5696
5697void SDNode::dumpr() const {
5698  VisitedSDNodeSet once;
5699  DumpNodesr(errs(), this, 0, 0, once);
5700}
5701
5702
5703// getAddressSpace - Return the address space this GlobalAddress belongs to.
5704unsigned GlobalAddressSDNode::getAddressSpace() const {
5705  return getGlobal()->getType()->getAddressSpace();
5706}
5707
5708
5709const Type *ConstantPoolSDNode::getType() const {
5710  if (isMachineConstantPoolEntry())
5711    return Val.MachineCPVal->getType();
5712  return Val.ConstVal->getType();
5713}
5714
5715bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5716                                        APInt &SplatUndef,
5717                                        unsigned &SplatBitSize,
5718                                        bool &HasAnyUndefs,
5719                                        unsigned MinSplatBits) {
5720  MVT VT = getValueType(0);
5721  assert(VT.isVector() && "Expected a vector type");
5722  unsigned sz = VT.getSizeInBits();
5723  if (MinSplatBits > sz)
5724    return false;
5725
5726  SplatValue = APInt(sz, 0);
5727  SplatUndef = APInt(sz, 0);
5728
5729  // Get the bits.  Bits with undefined values (when the corresponding element
5730  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5731  // in SplatValue.  If any of the values are not constant, give up and return
5732  // false.
5733  unsigned int nOps = getNumOperands();
5734  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5735  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5736  for (unsigned i = 0; i < nOps; ++i) {
5737    SDValue OpVal = getOperand(i);
5738    unsigned BitPos = i * EltBitSize;
5739
5740    if (OpVal.getOpcode() == ISD::UNDEF)
5741      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5742    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5743      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5744                     zextOrTrunc(sz) << BitPos);
5745    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5746      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5747     else
5748      return false;
5749  }
5750
5751  // The build_vector is all constants or undefs.  Find the smallest element
5752  // size that splats the vector.
5753
5754  HasAnyUndefs = (SplatUndef != 0);
5755  while (sz > 8) {
5756
5757    unsigned HalfSize = sz / 2;
5758    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5759    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5760    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5761    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5762
5763    // If the two halves do not match (ignoring undef bits), stop here.
5764    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5765        MinSplatBits > HalfSize)
5766      break;
5767
5768    SplatValue = HighValue | LowValue;
5769    SplatUndef = HighUndef & LowUndef;
5770
5771    sz = HalfSize;
5772  }
5773
5774  SplatBitSize = sz;
5775  return true;
5776}
5777
5778bool ShuffleVectorSDNode::isSplatMask(const int *Mask, MVT VT) {
5779  // Find the first non-undef value in the shuffle mask.
5780  unsigned i, e;
5781  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
5782    /* search */;
5783
5784  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
5785
5786  // Make sure all remaining elements are either undef or the same as the first
5787  // non-undef value.
5788  for (int Idx = Mask[i]; i != e; ++i)
5789    if (Mask[i] >= 0 && Mask[i] != Idx)
5790      return false;
5791  return true;
5792}
5793