SelectionDAG.cpp revision 6c41ad8c9a93668c481436fc4a5e47e6f14776e7
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetSelectionDAGInfo.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetIntrinsicInfo.h"
40#include "llvm/Target/TargetMachine.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/ManagedStatic.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/System/Mutex.h"
48#include "llvm/ADT/SetVector.h"
49#include "llvm/ADT/SmallPtrSet.h"
50#include "llvm/ADT/SmallSet.h"
51#include "llvm/ADT/SmallVector.h"
52#include "llvm/ADT/StringExtras.h"
53#include <algorithm>
54#include <cmath>
55using namespace llvm;
56
57/// makeVTList - Return an instance of the SDVTList struct initialized with the
58/// specified members.
59static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
60  SDVTList Res = {VTs, NumVTs};
61  return Res;
62}
63
64static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
65  switch (VT.getSimpleVT().SimpleTy) {
66  default: llvm_unreachable("Unknown FP format");
67  case MVT::f32:     return &APFloat::IEEEsingle;
68  case MVT::f64:     return &APFloat::IEEEdouble;
69  case MVT::f80:     return &APFloat::x87DoubleExtended;
70  case MVT::f128:    return &APFloat::IEEEquad;
71  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
72  }
73}
74
75SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
76
77//===----------------------------------------------------------------------===//
78//                              ConstantFPSDNode Class
79//===----------------------------------------------------------------------===//
80
81/// isExactlyValue - We don't rely on operator== working on double values, as
82/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
83/// As such, this method can be used to do an exact bit-for-bit comparison of
84/// two floating point values.
85bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
86  return getValueAPF().bitwiseIsEqual(V);
87}
88
89bool ConstantFPSDNode::isValueValidForType(EVT VT,
90                                           const APFloat& Val) {
91  assert(VT.isFloatingPoint() && "Can only convert between FP types");
92
93  // PPC long double cannot be converted to any other type.
94  if (VT == MVT::ppcf128 ||
95      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
96    return false;
97
98  // convert modifies in place, so make a copy.
99  APFloat Val2 = APFloat(Val);
100  bool losesInfo;
101  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
102                      &losesInfo);
103  return !losesInfo;
104}
105
106//===----------------------------------------------------------------------===//
107//                              ISD Namespace
108//===----------------------------------------------------------------------===//
109
110/// isBuildVectorAllOnes - Return true if the specified node is a
111/// BUILD_VECTOR where all of the elements are ~0 or undef.
112bool ISD::isBuildVectorAllOnes(const SDNode *N) {
113  // Look through a bit convert.
114  if (N->getOpcode() == ISD::BIT_CONVERT)
115    N = N->getOperand(0).getNode();
116
117  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118
119  unsigned i = 0, e = N->getNumOperands();
120
121  // Skip over all of the undef values.
122  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
123    ++i;
124
125  // Do not accept an all-undef vector.
126  if (i == e) return false;
127
128  // Do not accept build_vectors that aren't all constants or which have non-~0
129  // elements.
130  SDValue NotZero = N->getOperand(i);
131  if (isa<ConstantSDNode>(NotZero)) {
132    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
133      return false;
134  } else if (isa<ConstantFPSDNode>(NotZero)) {
135    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
136                bitcastToAPInt().isAllOnesValue())
137      return false;
138  } else
139    return false;
140
141  // Okay, we have at least one ~0 value, check to see if the rest match or are
142  // undefs.
143  for (++i; i != e; ++i)
144    if (N->getOperand(i) != NotZero &&
145        N->getOperand(i).getOpcode() != ISD::UNDEF)
146      return false;
147  return true;
148}
149
150
151/// isBuildVectorAllZeros - Return true if the specified node is a
152/// BUILD_VECTOR where all of the elements are 0 or undef.
153bool ISD::isBuildVectorAllZeros(const SDNode *N) {
154  // Look through a bit convert.
155  if (N->getOpcode() == ISD::BIT_CONVERT)
156    N = N->getOperand(0).getNode();
157
158  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
159
160  unsigned i = 0, e = N->getNumOperands();
161
162  // Skip over all of the undef values.
163  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
164    ++i;
165
166  // Do not accept an all-undef vector.
167  if (i == e) return false;
168
169  // Do not accept build_vectors that aren't all constants or which have non-0
170  // elements.
171  SDValue Zero = N->getOperand(i);
172  if (isa<ConstantSDNode>(Zero)) {
173    if (!cast<ConstantSDNode>(Zero)->isNullValue())
174      return false;
175  } else if (isa<ConstantFPSDNode>(Zero)) {
176    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
177      return false;
178  } else
179    return false;
180
181  // Okay, we have at least one 0 value, check to see if the rest match or are
182  // undefs.
183  for (++i; i != e; ++i)
184    if (N->getOperand(i) != Zero &&
185        N->getOperand(i).getOpcode() != ISD::UNDEF)
186      return false;
187  return true;
188}
189
190/// isScalarToVector - Return true if the specified node is a
191/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
192/// element is not an undef.
193bool ISD::isScalarToVector(const SDNode *N) {
194  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
195    return true;
196
197  if (N->getOpcode() != ISD::BUILD_VECTOR)
198    return false;
199  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
200    return false;
201  unsigned NumElems = N->getNumOperands();
202  for (unsigned i = 1; i < NumElems; ++i) {
203    SDValue V = N->getOperand(i);
204    if (V.getOpcode() != ISD::UNDEF)
205      return false;
206  }
207  return true;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: llvm_unreachable("Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309//===----------------------------------------------------------------------===//
310//                           SDNode Profile Support
311//===----------------------------------------------------------------------===//
312
313/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
314///
315static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
316  ID.AddInteger(OpC);
317}
318
319/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
320/// solely with their pointer.
321static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
322  ID.AddPointer(VTList.VTs);
323}
324
325/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
326///
327static void AddNodeIDOperands(FoldingSetNodeID &ID,
328                              const SDValue *Ops, unsigned NumOps) {
329  for (; NumOps; --NumOps, ++Ops) {
330    ID.AddPointer(Ops->getNode());
331    ID.AddInteger(Ops->getResNo());
332  }
333}
334
335/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
336///
337static void AddNodeIDOperands(FoldingSetNodeID &ID,
338                              const SDUse *Ops, unsigned NumOps) {
339  for (; NumOps; --NumOps, ++Ops) {
340    ID.AddPointer(Ops->getNode());
341    ID.AddInteger(Ops->getResNo());
342  }
343}
344
345static void AddNodeIDNode(FoldingSetNodeID &ID,
346                          unsigned short OpC, SDVTList VTList,
347                          const SDValue *OpList, unsigned N) {
348  AddNodeIDOpcode(ID, OpC);
349  AddNodeIDValueTypes(ID, VTList);
350  AddNodeIDOperands(ID, OpList, N);
351}
352
353/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
354/// the NodeID data.
355static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
356  switch (N->getOpcode()) {
357  case ISD::TargetExternalSymbol:
358  case ISD::ExternalSymbol:
359    llvm_unreachable("Should only be used on nodes with operands");
360  default: break;  // Normal nodes don't need extra info.
361  case ISD::TargetConstant:
362  case ISD::Constant:
363    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
364    break;
365  case ISD::TargetConstantFP:
366  case ISD::ConstantFP: {
367    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
368    break;
369  }
370  case ISD::TargetGlobalAddress:
371  case ISD::GlobalAddress:
372  case ISD::TargetGlobalTLSAddress:
373  case ISD::GlobalTLSAddress: {
374    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
375    ID.AddPointer(GA->getGlobal());
376    ID.AddInteger(GA->getOffset());
377    ID.AddInteger(GA->getTargetFlags());
378    break;
379  }
380  case ISD::BasicBlock:
381    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
382    break;
383  case ISD::Register:
384    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
385    break;
386
387  case ISD::SRCVALUE:
388    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
389    break;
390  case ISD::FrameIndex:
391  case ISD::TargetFrameIndex:
392    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
393    break;
394  case ISD::JumpTable:
395  case ISD::TargetJumpTable:
396    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
398    break;
399  case ISD::ConstantPool:
400  case ISD::TargetConstantPool: {
401    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
402    ID.AddInteger(CP->getAlignment());
403    ID.AddInteger(CP->getOffset());
404    if (CP->isMachineConstantPoolEntry())
405      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
406    else
407      ID.AddPointer(CP->getConstVal());
408    ID.AddInteger(CP->getTargetFlags());
409    break;
410  }
411  case ISD::LOAD: {
412    const LoadSDNode *LD = cast<LoadSDNode>(N);
413    ID.AddInteger(LD->getMemoryVT().getRawBits());
414    ID.AddInteger(LD->getRawSubclassData());
415    break;
416  }
417  case ISD::STORE: {
418    const StoreSDNode *ST = cast<StoreSDNode>(N);
419    ID.AddInteger(ST->getMemoryVT().getRawBits());
420    ID.AddInteger(ST->getRawSubclassData());
421    break;
422  }
423  case ISD::ATOMIC_CMP_SWAP:
424  case ISD::ATOMIC_SWAP:
425  case ISD::ATOMIC_LOAD_ADD:
426  case ISD::ATOMIC_LOAD_SUB:
427  case ISD::ATOMIC_LOAD_AND:
428  case ISD::ATOMIC_LOAD_OR:
429  case ISD::ATOMIC_LOAD_XOR:
430  case ISD::ATOMIC_LOAD_NAND:
431  case ISD::ATOMIC_LOAD_MIN:
432  case ISD::ATOMIC_LOAD_MAX:
433  case ISD::ATOMIC_LOAD_UMIN:
434  case ISD::ATOMIC_LOAD_UMAX: {
435    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
436    ID.AddInteger(AT->getMemoryVT().getRawBits());
437    ID.AddInteger(AT->getRawSubclassData());
438    break;
439  }
440  case ISD::VECTOR_SHUFFLE: {
441    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
442    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
443         i != e; ++i)
444      ID.AddInteger(SVN->getMaskElt(i));
445    break;
446  }
447  case ISD::TargetBlockAddress:
448  case ISD::BlockAddress: {
449    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
450    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
451    break;
452  }
453  } // end switch (N->getOpcode())
454}
455
456/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
457/// data.
458static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
459  AddNodeIDOpcode(ID, N->getOpcode());
460  // Add the return value info.
461  AddNodeIDValueTypes(ID, N->getVTList());
462  // Add the operand info.
463  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
464
465  // Handle SDNode leafs with special info.
466  AddNodeIDCustom(ID, N);
467}
468
469/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
470/// the CSE map that carries volatility, temporalness, indexing mode, and
471/// extension/truncation information.
472///
473static inline unsigned
474encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
475                     bool isNonTemporal) {
476  assert((ConvType & 3) == ConvType &&
477         "ConvType may not require more than 2 bits!");
478  assert((AM & 7) == AM &&
479         "AM may not require more than 3 bits!");
480  return ConvType |
481         (AM << 2) |
482         (isVolatile << 5) |
483         (isNonTemporal << 6);
484}
485
486//===----------------------------------------------------------------------===//
487//                              SelectionDAG Class
488//===----------------------------------------------------------------------===//
489
490/// doNotCSE - Return true if CSE should not be performed for this node.
491static bool doNotCSE(SDNode *N) {
492  if (N->getValueType(0) == MVT::Flag)
493    return true; // Never CSE anything that produces a flag.
494
495  switch (N->getOpcode()) {
496  default: break;
497  case ISD::HANDLENODE:
498  case ISD::EH_LABEL:
499    return true;   // Never CSE these nodes.
500  }
501
502  // Check that remaining values produced are not flags.
503  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
504    if (N->getValueType(i) == MVT::Flag)
505      return true; // Never CSE anything that produces a flag.
506
507  return false;
508}
509
510/// RemoveDeadNodes - This method deletes all unreachable nodes in the
511/// SelectionDAG.
512void SelectionDAG::RemoveDeadNodes() {
513  // Create a dummy node (which is not added to allnodes), that adds a reference
514  // to the root node, preventing it from being deleted.
515  HandleSDNode Dummy(getRoot());
516
517  SmallVector<SDNode*, 128> DeadNodes;
518
519  // Add all obviously-dead nodes to the DeadNodes worklist.
520  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
521    if (I->use_empty())
522      DeadNodes.push_back(I);
523
524  RemoveDeadNodes(DeadNodes);
525
526  // If the root changed (e.g. it was a dead load, update the root).
527  setRoot(Dummy.getValue());
528}
529
530/// RemoveDeadNodes - This method deletes the unreachable nodes in the
531/// given list, and any nodes that become unreachable as a result.
532void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
533                                   DAGUpdateListener *UpdateListener) {
534
535  // Process the worklist, deleting the nodes and adding their uses to the
536  // worklist.
537  while (!DeadNodes.empty()) {
538    SDNode *N = DeadNodes.pop_back_val();
539
540    if (UpdateListener)
541      UpdateListener->NodeDeleted(N, 0);
542
543    // Take the node out of the appropriate CSE map.
544    RemoveNodeFromCSEMaps(N);
545
546    // Next, brutally remove the operand list.  This is safe to do, as there are
547    // no cycles in the graph.
548    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
549      SDUse &Use = *I++;
550      SDNode *Operand = Use.getNode();
551      Use.set(SDValue());
552
553      // Now that we removed this operand, see if there are no uses of it left.
554      if (Operand->use_empty())
555        DeadNodes.push_back(Operand);
556    }
557
558    DeallocateNode(N);
559  }
560}
561
562void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
563  SmallVector<SDNode*, 16> DeadNodes(1, N);
564  RemoveDeadNodes(DeadNodes, UpdateListener);
565}
566
567void SelectionDAG::DeleteNode(SDNode *N) {
568  // First take this out of the appropriate CSE map.
569  RemoveNodeFromCSEMaps(N);
570
571  // Finally, remove uses due to operands of this node, remove from the
572  // AllNodes list, and delete the node.
573  DeleteNodeNotInCSEMaps(N);
574}
575
576void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
577  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
578  assert(N->use_empty() && "Cannot delete a node that is not dead!");
579
580  // Drop all of the operands and decrement used node's use counts.
581  N->DropOperands();
582
583  DeallocateNode(N);
584}
585
586void SelectionDAG::DeallocateNode(SDNode *N) {
587  if (N->OperandsNeedDelete)
588    delete[] N->OperandList;
589
590  // Set the opcode to DELETED_NODE to help catch bugs when node
591  // memory is reallocated.
592  N->NodeType = ISD::DELETED_NODE;
593
594  NodeAllocator.Deallocate(AllNodes.remove(N));
595
596  // Remove the ordering of this node.
597  Ordering->remove(N);
598
599  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
600  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
601  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
602    DbgVals[i]->setIsInvalidated();
603}
604
605/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
606/// correspond to it.  This is useful when we're about to delete or repurpose
607/// the node.  We don't want future request for structurally identical nodes
608/// to return N anymore.
609bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
610  bool Erased = false;
611  switch (N->getOpcode()) {
612  case ISD::EntryToken:
613    llvm_unreachable("EntryToken should not be in CSEMaps!");
614    return false;
615  case ISD::HANDLENODE: return false;  // noop.
616  case ISD::CONDCODE:
617    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
618           "Cond code doesn't exist!");
619    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
620    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
621    break;
622  case ISD::ExternalSymbol:
623    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624    break;
625  case ISD::TargetExternalSymbol: {
626    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
627    Erased = TargetExternalSymbols.erase(
628               std::pair<std::string,unsigned char>(ESN->getSymbol(),
629                                                    ESN->getTargetFlags()));
630    break;
631  }
632  case ISD::VALUETYPE: {
633    EVT VT = cast<VTSDNode>(N)->getVT();
634    if (VT.isExtended()) {
635      Erased = ExtendedValueTypeNodes.erase(VT);
636    } else {
637      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
638      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
639    }
640    break;
641  }
642  default:
643    // Remove it from the CSE Map.
644    Erased = CSEMap.RemoveNode(N);
645    break;
646  }
647#ifndef NDEBUG
648  // Verify that the node was actually in one of the CSE maps, unless it has a
649  // flag result (which cannot be CSE'd) or is one of the special cases that are
650  // not subject to CSE.
651  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
652      !N->isMachineOpcode() && !doNotCSE(N)) {
653    N->dump(this);
654    dbgs() << "\n";
655    llvm_unreachable("Node is not in map!");
656  }
657#endif
658  return Erased;
659}
660
661/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662/// maps and modified in place. Add it back to the CSE maps, unless an identical
663/// node already exists, in which case transfer all its users to the existing
664/// node. This transfer can potentially trigger recursive merging.
665///
666void
667SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668                                       DAGUpdateListener *UpdateListener) {
669  // For node types that aren't CSE'd, just act as if no identical node
670  // already exists.
671  if (!doNotCSE(N)) {
672    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673    if (Existing != N) {
674      // If there was already an existing matching node, use ReplaceAllUsesWith
675      // to replace the dead one with the existing one.  This can cause
676      // recursive merging of other unrelated nodes down the line.
677      ReplaceAllUsesWith(N, Existing, UpdateListener);
678
679      // N is now dead.  Inform the listener if it exists and delete it.
680      if (UpdateListener)
681        UpdateListener->NodeDeleted(N, Existing);
682      DeleteNodeNotInCSEMaps(N);
683      return;
684    }
685  }
686
687  // If the node doesn't already exist, we updated it.  Inform a listener if
688  // it exists.
689  if (UpdateListener)
690    UpdateListener->NodeUpdated(N);
691}
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698                                           void *&InsertPos) {
699  if (doNotCSE(N))
700    return 0;
701
702  SDValue Ops[] = { Op };
703  FoldingSetNodeID ID;
704  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705  AddNodeIDCustom(ID, N);
706  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707  return Node;
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725  return Node;
726}
727
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                           const SDValue *Ops,unsigned NumOps,
735                                           void *&InsertPos) {
736  if (doNotCSE(N))
737    return 0;
738
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741  AddNodeIDCustom(ID, N);
742  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743  return Node;
744}
745
746/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
747void SelectionDAG::VerifyNode(SDNode *N) {
748  switch (N->getOpcode()) {
749  default:
750    break;
751  case ISD::BUILD_PAIR: {
752    EVT VT = N->getValueType(0);
753    assert(N->getNumValues() == 1 && "Too many results!");
754    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
755           "Wrong return type!");
756    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
757    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
758           "Mismatched operand types!");
759    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
760           "Wrong operand type!");
761    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
762           "Wrong return type size");
763    break;
764  }
765  case ISD::BUILD_VECTOR: {
766    assert(N->getNumValues() == 1 && "Too many results!");
767    assert(N->getValueType(0).isVector() && "Wrong return type!");
768    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
769           "Wrong number of operands!");
770    EVT EltVT = N->getValueType(0).getVectorElementType();
771    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
772      assert((I->getValueType() == EltVT ||
773             (EltVT.isInteger() && I->getValueType().isInteger() &&
774              EltVT.bitsLE(I->getValueType()))) &&
775            "Wrong operand type!");
776    break;
777  }
778  }
779}
780
781/// getEVTAlignment - Compute the default alignment value for the
782/// given type.
783///
784unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
785  const Type *Ty = VT == MVT::iPTR ?
786                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
787                   VT.getTypeForEVT(*getContext());
788
789  return TLI.getTargetData()->getABITypeAlignment(Ty);
790}
791
792// EntryNode could meaningfully have debug info if we can find it...
793SelectionDAG::SelectionDAG(const TargetMachine &tm)
794  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
795    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
796    Root(getEntryNode()), Ordering(0) {
797  AllNodes.push_back(&EntryNode);
798  Ordering = new SDNodeOrdering();
799  DbgInfo = new SDDbgInfo();
800}
801
802void SelectionDAG::init(MachineFunction &mf) {
803  MF = &mf;
804  Context = &mf.getFunction()->getContext();
805}
806
807SelectionDAG::~SelectionDAG() {
808  allnodes_clear();
809  delete Ordering;
810  DbgInfo->clear();
811  delete DbgInfo;
812}
813
814void SelectionDAG::allnodes_clear() {
815  assert(&*AllNodes.begin() == &EntryNode);
816  AllNodes.remove(AllNodes.begin());
817  while (!AllNodes.empty())
818    DeallocateNode(AllNodes.begin());
819}
820
821void SelectionDAG::clear() {
822  allnodes_clear();
823  OperandAllocator.Reset();
824  CSEMap.clear();
825
826  ExtendedValueTypeNodes.clear();
827  ExternalSymbols.clear();
828  TargetExternalSymbols.clear();
829  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
830            static_cast<CondCodeSDNode*>(0));
831  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
832            static_cast<SDNode*>(0));
833
834  EntryNode.UseList = 0;
835  AllNodes.push_back(&EntryNode);
836  Root = getEntryNode();
837  delete Ordering;
838  Ordering = new SDNodeOrdering();
839  DbgInfo->clear();
840  delete DbgInfo;
841  DbgInfo = new SDDbgInfo();
842}
843
844SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
845  return VT.bitsGT(Op.getValueType()) ?
846    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
847    getNode(ISD::TRUNCATE, DL, VT, Op);
848}
849
850SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
851  return VT.bitsGT(Op.getValueType()) ?
852    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
853    getNode(ISD::TRUNCATE, DL, VT, Op);
854}
855
856SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
857  assert(!VT.isVector() &&
858         "getZeroExtendInReg should use the vector element type instead of "
859         "the vector type!");
860  if (Op.getValueType() == VT) return Op;
861  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
862  APInt Imm = APInt::getLowBitsSet(BitWidth,
863                                   VT.getSizeInBits());
864  return getNode(ISD::AND, DL, Op.getValueType(), Op,
865                 getConstant(Imm, Op.getValueType()));
866}
867
868/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
869///
870SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
871  EVT EltVT = VT.getScalarType();
872  SDValue NegOne =
873    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
874  return getNode(ISD::XOR, DL, VT, Val, NegOne);
875}
876
877SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
878  EVT EltVT = VT.getScalarType();
879  assert((EltVT.getSizeInBits() >= 64 ||
880         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
881         "getConstant with a uint64_t value that doesn't fit in the type!");
882  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
883}
884
885SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
886  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
887}
888
889SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
890  assert(VT.isInteger() && "Cannot create FP integer constant!");
891
892  EVT EltVT = VT.getScalarType();
893  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
894         "APInt size does not match type size!");
895
896  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
897  FoldingSetNodeID ID;
898  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
899  ID.AddPointer(&Val);
900  void *IP = 0;
901  SDNode *N = NULL;
902  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
903    if (!VT.isVector())
904      return SDValue(N, 0);
905
906  if (!N) {
907    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
908    CSEMap.InsertNode(N, IP);
909    AllNodes.push_back(N);
910  }
911
912  SDValue Result(N, 0);
913  if (VT.isVector()) {
914    SmallVector<SDValue, 8> Ops;
915    Ops.assign(VT.getVectorNumElements(), Result);
916    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
917  }
918  return Result;
919}
920
921SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
922  return getConstant(Val, TLI.getPointerTy(), isTarget);
923}
924
925
926SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
927  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
928}
929
930SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
931  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
932
933  EVT EltVT = VT.getScalarType();
934
935  // Do the map lookup using the actual bit pattern for the floating point
936  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
937  // we don't have issues with SNANs.
938  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
939  FoldingSetNodeID ID;
940  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
941  ID.AddPointer(&V);
942  void *IP = 0;
943  SDNode *N = NULL;
944  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
945    if (!VT.isVector())
946      return SDValue(N, 0);
947
948  if (!N) {
949    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
950    CSEMap.InsertNode(N, IP);
951    AllNodes.push_back(N);
952  }
953
954  SDValue Result(N, 0);
955  if (VT.isVector()) {
956    SmallVector<SDValue, 8> Ops;
957    Ops.assign(VT.getVectorNumElements(), Result);
958    // FIXME DebugLoc info might be appropriate here
959    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
960  }
961  return Result;
962}
963
964SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
965  EVT EltVT = VT.getScalarType();
966  if (EltVT==MVT::f32)
967    return getConstantFP(APFloat((float)Val), VT, isTarget);
968  else if (EltVT==MVT::f64)
969    return getConstantFP(APFloat(Val), VT, isTarget);
970  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
971    bool ignored;
972    APFloat apf = APFloat(Val);
973    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
974                &ignored);
975    return getConstantFP(apf, VT, isTarget);
976  } else {
977    assert(0 && "Unsupported type in getConstantFP");
978    return SDValue();
979  }
980}
981
982SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
983                                       EVT VT, int64_t Offset,
984                                       bool isTargetGA,
985                                       unsigned char TargetFlags) {
986  assert((TargetFlags == 0 || isTargetGA) &&
987         "Cannot set target flags on target-independent globals");
988
989  // Truncate (with sign-extension) the offset value to the pointer size.
990  EVT PTy = TLI.getPointerTy();
991  unsigned BitWidth = PTy.getSizeInBits();
992  if (BitWidth < 64)
993    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
994
995  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
996  if (!GVar) {
997    // If GV is an alias then use the aliasee for determining thread-localness.
998    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
999      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1000  }
1001
1002  unsigned Opc;
1003  if (GVar && GVar->isThreadLocal())
1004    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1005  else
1006    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1007
1008  FoldingSetNodeID ID;
1009  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1010  ID.AddPointer(GV);
1011  ID.AddInteger(Offset);
1012  ID.AddInteger(TargetFlags);
1013  void *IP = 0;
1014  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1015    return SDValue(E, 0);
1016
1017  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1018                                                      Offset, TargetFlags);
1019  CSEMap.InsertNode(N, IP);
1020  AllNodes.push_back(N);
1021  return SDValue(N, 0);
1022}
1023
1024SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1025  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1026  FoldingSetNodeID ID;
1027  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1028  ID.AddInteger(FI);
1029  void *IP = 0;
1030  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1031    return SDValue(E, 0);
1032
1033  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1034  CSEMap.InsertNode(N, IP);
1035  AllNodes.push_back(N);
1036  return SDValue(N, 0);
1037}
1038
1039SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1040                                   unsigned char TargetFlags) {
1041  assert((TargetFlags == 0 || isTarget) &&
1042         "Cannot set target flags on target-independent jump tables");
1043  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1044  FoldingSetNodeID ID;
1045  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1046  ID.AddInteger(JTI);
1047  ID.AddInteger(TargetFlags);
1048  void *IP = 0;
1049  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1050    return SDValue(E, 0);
1051
1052  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1053                                                  TargetFlags);
1054  CSEMap.InsertNode(N, IP);
1055  AllNodes.push_back(N);
1056  return SDValue(N, 0);
1057}
1058
1059SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1060                                      unsigned Alignment, int Offset,
1061                                      bool isTarget,
1062                                      unsigned char TargetFlags) {
1063  assert((TargetFlags == 0 || isTarget) &&
1064         "Cannot set target flags on target-independent globals");
1065  if (Alignment == 0)
1066    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1067  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1068  FoldingSetNodeID ID;
1069  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1070  ID.AddInteger(Alignment);
1071  ID.AddInteger(Offset);
1072  ID.AddPointer(C);
1073  ID.AddInteger(TargetFlags);
1074  void *IP = 0;
1075  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1076    return SDValue(E, 0);
1077
1078  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1079                                                     Alignment, TargetFlags);
1080  CSEMap.InsertNode(N, IP);
1081  AllNodes.push_back(N);
1082  return SDValue(N, 0);
1083}
1084
1085
1086SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1087                                      unsigned Alignment, int Offset,
1088                                      bool isTarget,
1089                                      unsigned char TargetFlags) {
1090  assert((TargetFlags == 0 || isTarget) &&
1091         "Cannot set target flags on target-independent globals");
1092  if (Alignment == 0)
1093    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1094  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1095  FoldingSetNodeID ID;
1096  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1097  ID.AddInteger(Alignment);
1098  ID.AddInteger(Offset);
1099  C->AddSelectionDAGCSEId(ID);
1100  ID.AddInteger(TargetFlags);
1101  void *IP = 0;
1102  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1103    return SDValue(E, 0);
1104
1105  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1106                                                     Alignment, TargetFlags);
1107  CSEMap.InsertNode(N, IP);
1108  AllNodes.push_back(N);
1109  return SDValue(N, 0);
1110}
1111
1112SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1113  FoldingSetNodeID ID;
1114  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1115  ID.AddPointer(MBB);
1116  void *IP = 0;
1117  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1118    return SDValue(E, 0);
1119
1120  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1121  CSEMap.InsertNode(N, IP);
1122  AllNodes.push_back(N);
1123  return SDValue(N, 0);
1124}
1125
1126SDValue SelectionDAG::getValueType(EVT VT) {
1127  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1128      ValueTypeNodes.size())
1129    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1130
1131  SDNode *&N = VT.isExtended() ?
1132    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1133
1134  if (N) return SDValue(N, 0);
1135  N = new (NodeAllocator) VTSDNode(VT);
1136  AllNodes.push_back(N);
1137  return SDValue(N, 0);
1138}
1139
1140SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1141  SDNode *&N = ExternalSymbols[Sym];
1142  if (N) return SDValue(N, 0);
1143  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1144  AllNodes.push_back(N);
1145  return SDValue(N, 0);
1146}
1147
1148SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1149                                              unsigned char TargetFlags) {
1150  SDNode *&N =
1151    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1152                                                               TargetFlags)];
1153  if (N) return SDValue(N, 0);
1154  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1155  AllNodes.push_back(N);
1156  return SDValue(N, 0);
1157}
1158
1159SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1160  if ((unsigned)Cond >= CondCodeNodes.size())
1161    CondCodeNodes.resize(Cond+1);
1162
1163  if (CondCodeNodes[Cond] == 0) {
1164    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1165    CondCodeNodes[Cond] = N;
1166    AllNodes.push_back(N);
1167  }
1168
1169  return SDValue(CondCodeNodes[Cond], 0);
1170}
1171
1172// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1173// the shuffle mask M that point at N1 to point at N2, and indices that point
1174// N2 to point at N1.
1175static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1176  std::swap(N1, N2);
1177  int NElts = M.size();
1178  for (int i = 0; i != NElts; ++i) {
1179    if (M[i] >= NElts)
1180      M[i] -= NElts;
1181    else if (M[i] >= 0)
1182      M[i] += NElts;
1183  }
1184}
1185
1186SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1187                                       SDValue N2, const int *Mask) {
1188  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1189  assert(VT.isVector() && N1.getValueType().isVector() &&
1190         "Vector Shuffle VTs must be a vectors");
1191  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1192         && "Vector Shuffle VTs must have same element type");
1193
1194  // Canonicalize shuffle undef, undef -> undef
1195  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1196    return getUNDEF(VT);
1197
1198  // Validate that all indices in Mask are within the range of the elements
1199  // input to the shuffle.
1200  unsigned NElts = VT.getVectorNumElements();
1201  SmallVector<int, 8> MaskVec;
1202  for (unsigned i = 0; i != NElts; ++i) {
1203    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1204    MaskVec.push_back(Mask[i]);
1205  }
1206
1207  // Canonicalize shuffle v, v -> v, undef
1208  if (N1 == N2) {
1209    N2 = getUNDEF(VT);
1210    for (unsigned i = 0; i != NElts; ++i)
1211      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1212  }
1213
1214  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1215  if (N1.getOpcode() == ISD::UNDEF)
1216    commuteShuffle(N1, N2, MaskVec);
1217
1218  // Canonicalize all index into lhs, -> shuffle lhs, undef
1219  // Canonicalize all index into rhs, -> shuffle rhs, undef
1220  bool AllLHS = true, AllRHS = true;
1221  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1222  for (unsigned i = 0; i != NElts; ++i) {
1223    if (MaskVec[i] >= (int)NElts) {
1224      if (N2Undef)
1225        MaskVec[i] = -1;
1226      else
1227        AllLHS = false;
1228    } else if (MaskVec[i] >= 0) {
1229      AllRHS = false;
1230    }
1231  }
1232  if (AllLHS && AllRHS)
1233    return getUNDEF(VT);
1234  if (AllLHS && !N2Undef)
1235    N2 = getUNDEF(VT);
1236  if (AllRHS) {
1237    N1 = getUNDEF(VT);
1238    commuteShuffle(N1, N2, MaskVec);
1239  }
1240
1241  // If Identity shuffle, or all shuffle in to undef, return that node.
1242  bool AllUndef = true;
1243  bool Identity = true;
1244  for (unsigned i = 0; i != NElts; ++i) {
1245    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1246    if (MaskVec[i] >= 0) AllUndef = false;
1247  }
1248  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1249    return N1;
1250  if (AllUndef)
1251    return getUNDEF(VT);
1252
1253  FoldingSetNodeID ID;
1254  SDValue Ops[2] = { N1, N2 };
1255  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1256  for (unsigned i = 0; i != NElts; ++i)
1257    ID.AddInteger(MaskVec[i]);
1258
1259  void* IP = 0;
1260  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1261    return SDValue(E, 0);
1262
1263  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1264  // SDNode doesn't have access to it.  This memory will be "leaked" when
1265  // the node is deallocated, but recovered when the NodeAllocator is released.
1266  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1267  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1268
1269  ShuffleVectorSDNode *N =
1270    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1271  CSEMap.InsertNode(N, IP);
1272  AllNodes.push_back(N);
1273  return SDValue(N, 0);
1274}
1275
1276SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1277                                       SDValue Val, SDValue DTy,
1278                                       SDValue STy, SDValue Rnd, SDValue Sat,
1279                                       ISD::CvtCode Code) {
1280  // If the src and dest types are the same and the conversion is between
1281  // integer types of the same sign or two floats, no conversion is necessary.
1282  if (DTy == STy &&
1283      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1284    return Val;
1285
1286  FoldingSetNodeID ID;
1287  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1288  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1289  void* IP = 0;
1290  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1291    return SDValue(E, 0);
1292
1293  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1294                                                           Code);
1295  CSEMap.InsertNode(N, IP);
1296  AllNodes.push_back(N);
1297  return SDValue(N, 0);
1298}
1299
1300SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1301  FoldingSetNodeID ID;
1302  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1303  ID.AddInteger(RegNo);
1304  void *IP = 0;
1305  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1306    return SDValue(E, 0);
1307
1308  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1309  CSEMap.InsertNode(N, IP);
1310  AllNodes.push_back(N);
1311  return SDValue(N, 0);
1312}
1313
1314SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1315  FoldingSetNodeID ID;
1316  SDValue Ops[] = { Root };
1317  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1318  ID.AddPointer(Label);
1319  void *IP = 0;
1320  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1321    return SDValue(E, 0);
1322
1323  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1324  CSEMap.InsertNode(N, IP);
1325  AllNodes.push_back(N);
1326  return SDValue(N, 0);
1327}
1328
1329
1330SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1331                                      bool isTarget,
1332                                      unsigned char TargetFlags) {
1333  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1334
1335  FoldingSetNodeID ID;
1336  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1337  ID.AddPointer(BA);
1338  ID.AddInteger(TargetFlags);
1339  void *IP = 0;
1340  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1341    return SDValue(E, 0);
1342
1343  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1344  CSEMap.InsertNode(N, IP);
1345  AllNodes.push_back(N);
1346  return SDValue(N, 0);
1347}
1348
1349SDValue SelectionDAG::getSrcValue(const Value *V) {
1350  assert((!V || V->getType()->isPointerTy()) &&
1351         "SrcValue is not a pointer?");
1352
1353  FoldingSetNodeID ID;
1354  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1355  ID.AddPointer(V);
1356
1357  void *IP = 0;
1358  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1359    return SDValue(E, 0);
1360
1361  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1362  CSEMap.InsertNode(N, IP);
1363  AllNodes.push_back(N);
1364  return SDValue(N, 0);
1365}
1366
1367/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1368SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1369  FoldingSetNodeID ID;
1370  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1371  ID.AddPointer(MD);
1372
1373  void *IP = 0;
1374  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1375    return SDValue(E, 0);
1376
1377  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1378  CSEMap.InsertNode(N, IP);
1379  AllNodes.push_back(N);
1380  return SDValue(N, 0);
1381}
1382
1383
1384/// getShiftAmountOperand - Return the specified value casted to
1385/// the target's desired shift amount type.
1386SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1387  EVT OpTy = Op.getValueType();
1388  MVT ShTy = TLI.getShiftAmountTy();
1389  if (OpTy == ShTy || OpTy.isVector()) return Op;
1390
1391  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1392  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1393}
1394
1395/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1396/// specified value type.
1397SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1398  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1399  unsigned ByteSize = VT.getStoreSize();
1400  const Type *Ty = VT.getTypeForEVT(*getContext());
1401  unsigned StackAlign =
1402  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1403
1404  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1405  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1406}
1407
1408/// CreateStackTemporary - Create a stack temporary suitable for holding
1409/// either of the specified value types.
1410SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1411  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1412                            VT2.getStoreSizeInBits())/8;
1413  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1414  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1415  const TargetData *TD = TLI.getTargetData();
1416  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1417                            TD->getPrefTypeAlignment(Ty2));
1418
1419  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1420  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1421  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1422}
1423
1424SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1425                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1426  // These setcc operations always fold.
1427  switch (Cond) {
1428  default: break;
1429  case ISD::SETFALSE:
1430  case ISD::SETFALSE2: return getConstant(0, VT);
1431  case ISD::SETTRUE:
1432  case ISD::SETTRUE2:  return getConstant(1, VT);
1433
1434  case ISD::SETOEQ:
1435  case ISD::SETOGT:
1436  case ISD::SETOGE:
1437  case ISD::SETOLT:
1438  case ISD::SETOLE:
1439  case ISD::SETONE:
1440  case ISD::SETO:
1441  case ISD::SETUO:
1442  case ISD::SETUEQ:
1443  case ISD::SETUNE:
1444    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1445    break;
1446  }
1447
1448  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1449    const APInt &C2 = N2C->getAPIntValue();
1450    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1451      const APInt &C1 = N1C->getAPIntValue();
1452
1453      switch (Cond) {
1454      default: llvm_unreachable("Unknown integer setcc!");
1455      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1456      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1457      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1458      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1459      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1460      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1461      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1462      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1463      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1464      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1465      }
1466    }
1467  }
1468  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1469    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1470      // No compile time operations on this type yet.
1471      if (N1C->getValueType(0) == MVT::ppcf128)
1472        return SDValue();
1473
1474      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1475      switch (Cond) {
1476      default: break;
1477      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1478                          return getUNDEF(VT);
1479                        // fall through
1480      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1481      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1482                          return getUNDEF(VT);
1483                        // fall through
1484      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1485                                           R==APFloat::cmpLessThan, VT);
1486      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1487                          return getUNDEF(VT);
1488                        // fall through
1489      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1490      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1491                          return getUNDEF(VT);
1492                        // fall through
1493      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1494      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1495                          return getUNDEF(VT);
1496                        // fall through
1497      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1498                                           R==APFloat::cmpEqual, VT);
1499      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1500                          return getUNDEF(VT);
1501                        // fall through
1502      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1503                                           R==APFloat::cmpEqual, VT);
1504      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1505      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1506      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1507                                           R==APFloat::cmpEqual, VT);
1508      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1509      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1510                                           R==APFloat::cmpLessThan, VT);
1511      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1512                                           R==APFloat::cmpUnordered, VT);
1513      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1514      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1515      }
1516    } else {
1517      // Ensure that the constant occurs on the RHS.
1518      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1519    }
1520  }
1521
1522  // Could not fold it.
1523  return SDValue();
1524}
1525
1526/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1527/// use this predicate to simplify operations downstream.
1528bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1529  // This predicate is not safe for vector operations.
1530  if (Op.getValueType().isVector())
1531    return false;
1532
1533  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1534  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1535}
1536
1537/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1538/// this predicate to simplify operations downstream.  Mask is known to be zero
1539/// for bits that V cannot have.
1540bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1541                                     unsigned Depth) const {
1542  APInt KnownZero, KnownOne;
1543  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1544  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1545  return (KnownZero & Mask) == Mask;
1546}
1547
1548/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1549/// known to be either zero or one and return them in the KnownZero/KnownOne
1550/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1551/// processing.
1552void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1553                                     APInt &KnownZero, APInt &KnownOne,
1554                                     unsigned Depth) const {
1555  unsigned BitWidth = Mask.getBitWidth();
1556  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1557         "Mask size mismatches value type size!");
1558
1559  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1560  if (Depth == 6 || Mask == 0)
1561    return;  // Limit search depth.
1562
1563  APInt KnownZero2, KnownOne2;
1564
1565  switch (Op.getOpcode()) {
1566  case ISD::Constant:
1567    // We know all of the bits for a constant!
1568    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1569    KnownZero = ~KnownOne & Mask;
1570    return;
1571  case ISD::AND:
1572    // If either the LHS or the RHS are Zero, the result is zero.
1573    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1574    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1575                      KnownZero2, KnownOne2, Depth+1);
1576    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1577    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1578
1579    // Output known-1 bits are only known if set in both the LHS & RHS.
1580    KnownOne &= KnownOne2;
1581    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1582    KnownZero |= KnownZero2;
1583    return;
1584  case ISD::OR:
1585    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1586    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1587                      KnownZero2, KnownOne2, Depth+1);
1588    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1589    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1590
1591    // Output known-0 bits are only known if clear in both the LHS & RHS.
1592    KnownZero &= KnownZero2;
1593    // Output known-1 are known to be set if set in either the LHS | RHS.
1594    KnownOne |= KnownOne2;
1595    return;
1596  case ISD::XOR: {
1597    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1598    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1599    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1600    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1601
1602    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1603    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1604    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1605    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1606    KnownZero = KnownZeroOut;
1607    return;
1608  }
1609  case ISD::MUL: {
1610    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1611    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1612    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1613    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1614    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1615
1616    // If low bits are zero in either operand, output low known-0 bits.
1617    // Also compute a conserative estimate for high known-0 bits.
1618    // More trickiness is possible, but this is sufficient for the
1619    // interesting case of alignment computation.
1620    KnownOne.clear();
1621    unsigned TrailZ = KnownZero.countTrailingOnes() +
1622                      KnownZero2.countTrailingOnes();
1623    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1624                               KnownZero2.countLeadingOnes(),
1625                               BitWidth) - BitWidth;
1626
1627    TrailZ = std::min(TrailZ, BitWidth);
1628    LeadZ = std::min(LeadZ, BitWidth);
1629    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1630                APInt::getHighBitsSet(BitWidth, LeadZ);
1631    KnownZero &= Mask;
1632    return;
1633  }
1634  case ISD::UDIV: {
1635    // For the purposes of computing leading zeros we can conservatively
1636    // treat a udiv as a logical right shift by the power of 2 known to
1637    // be less than the denominator.
1638    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1639    ComputeMaskedBits(Op.getOperand(0),
1640                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1641    unsigned LeadZ = KnownZero2.countLeadingOnes();
1642
1643    KnownOne2.clear();
1644    KnownZero2.clear();
1645    ComputeMaskedBits(Op.getOperand(1),
1646                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1647    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1648    if (RHSUnknownLeadingOnes != BitWidth)
1649      LeadZ = std::min(BitWidth,
1650                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1651
1652    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1653    return;
1654  }
1655  case ISD::SELECT:
1656    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1657    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1658    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1659    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1660
1661    // Only known if known in both the LHS and RHS.
1662    KnownOne &= KnownOne2;
1663    KnownZero &= KnownZero2;
1664    return;
1665  case ISD::SELECT_CC:
1666    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1667    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1668    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1669    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1670
1671    // Only known if known in both the LHS and RHS.
1672    KnownOne &= KnownOne2;
1673    KnownZero &= KnownZero2;
1674    return;
1675  case ISD::SADDO:
1676  case ISD::UADDO:
1677  case ISD::SSUBO:
1678  case ISD::USUBO:
1679  case ISD::SMULO:
1680  case ISD::UMULO:
1681    if (Op.getResNo() != 1)
1682      return;
1683    // The boolean result conforms to getBooleanContents.  Fall through.
1684  case ISD::SETCC:
1685    // If we know the result of a setcc has the top bits zero, use this info.
1686    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1687        BitWidth > 1)
1688      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1689    return;
1690  case ISD::SHL:
1691    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1692    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1693      unsigned ShAmt = SA->getZExtValue();
1694
1695      // If the shift count is an invalid immediate, don't do anything.
1696      if (ShAmt >= BitWidth)
1697        return;
1698
1699      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1700                        KnownZero, KnownOne, Depth+1);
1701      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1702      KnownZero <<= ShAmt;
1703      KnownOne  <<= ShAmt;
1704      // low bits known zero.
1705      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1706    }
1707    return;
1708  case ISD::SRL:
1709    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1710    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1711      unsigned ShAmt = SA->getZExtValue();
1712
1713      // If the shift count is an invalid immediate, don't do anything.
1714      if (ShAmt >= BitWidth)
1715        return;
1716
1717      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1718                        KnownZero, KnownOne, Depth+1);
1719      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1720      KnownZero = KnownZero.lshr(ShAmt);
1721      KnownOne  = KnownOne.lshr(ShAmt);
1722
1723      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1724      KnownZero |= HighBits;  // High bits known zero.
1725    }
1726    return;
1727  case ISD::SRA:
1728    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1729      unsigned ShAmt = SA->getZExtValue();
1730
1731      // If the shift count is an invalid immediate, don't do anything.
1732      if (ShAmt >= BitWidth)
1733        return;
1734
1735      APInt InDemandedMask = (Mask << ShAmt);
1736      // If any of the demanded bits are produced by the sign extension, we also
1737      // demand the input sign bit.
1738      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1739      if (HighBits.getBoolValue())
1740        InDemandedMask |= APInt::getSignBit(BitWidth);
1741
1742      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1743                        Depth+1);
1744      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1745      KnownZero = KnownZero.lshr(ShAmt);
1746      KnownOne  = KnownOne.lshr(ShAmt);
1747
1748      // Handle the sign bits.
1749      APInt SignBit = APInt::getSignBit(BitWidth);
1750      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1751
1752      if (KnownZero.intersects(SignBit)) {
1753        KnownZero |= HighBits;  // New bits are known zero.
1754      } else if (KnownOne.intersects(SignBit)) {
1755        KnownOne  |= HighBits;  // New bits are known one.
1756      }
1757    }
1758    return;
1759  case ISD::SIGN_EXTEND_INREG: {
1760    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1761    unsigned EBits = EVT.getScalarType().getSizeInBits();
1762
1763    // Sign extension.  Compute the demanded bits in the result that are not
1764    // present in the input.
1765    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1766
1767    APInt InSignBit = APInt::getSignBit(EBits);
1768    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1769
1770    // If the sign extended bits are demanded, we know that the sign
1771    // bit is demanded.
1772    InSignBit.zext(BitWidth);
1773    if (NewBits.getBoolValue())
1774      InputDemandedBits |= InSignBit;
1775
1776    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1777                      KnownZero, KnownOne, Depth+1);
1778    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1779
1780    // If the sign bit of the input is known set or clear, then we know the
1781    // top bits of the result.
1782    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1783      KnownZero |= NewBits;
1784      KnownOne  &= ~NewBits;
1785    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1786      KnownOne  |= NewBits;
1787      KnownZero &= ~NewBits;
1788    } else {                              // Input sign bit unknown
1789      KnownZero &= ~NewBits;
1790      KnownOne  &= ~NewBits;
1791    }
1792    return;
1793  }
1794  case ISD::CTTZ:
1795  case ISD::CTLZ:
1796  case ISD::CTPOP: {
1797    unsigned LowBits = Log2_32(BitWidth)+1;
1798    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1799    KnownOne.clear();
1800    return;
1801  }
1802  case ISD::LOAD: {
1803    if (ISD::isZEXTLoad(Op.getNode())) {
1804      LoadSDNode *LD = cast<LoadSDNode>(Op);
1805      EVT VT = LD->getMemoryVT();
1806      unsigned MemBits = VT.getScalarType().getSizeInBits();
1807      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1808    }
1809    return;
1810  }
1811  case ISD::ZERO_EXTEND: {
1812    EVT InVT = Op.getOperand(0).getValueType();
1813    unsigned InBits = InVT.getScalarType().getSizeInBits();
1814    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1815    APInt InMask    = Mask;
1816    InMask.trunc(InBits);
1817    KnownZero.trunc(InBits);
1818    KnownOne.trunc(InBits);
1819    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1820    KnownZero.zext(BitWidth);
1821    KnownOne.zext(BitWidth);
1822    KnownZero |= NewBits;
1823    return;
1824  }
1825  case ISD::SIGN_EXTEND: {
1826    EVT InVT = Op.getOperand(0).getValueType();
1827    unsigned InBits = InVT.getScalarType().getSizeInBits();
1828    APInt InSignBit = APInt::getSignBit(InBits);
1829    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1830    APInt InMask = Mask;
1831    InMask.trunc(InBits);
1832
1833    // If any of the sign extended bits are demanded, we know that the sign
1834    // bit is demanded. Temporarily set this bit in the mask for our callee.
1835    if (NewBits.getBoolValue())
1836      InMask |= InSignBit;
1837
1838    KnownZero.trunc(InBits);
1839    KnownOne.trunc(InBits);
1840    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1841
1842    // Note if the sign bit is known to be zero or one.
1843    bool SignBitKnownZero = KnownZero.isNegative();
1844    bool SignBitKnownOne  = KnownOne.isNegative();
1845    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1846           "Sign bit can't be known to be both zero and one!");
1847
1848    // If the sign bit wasn't actually demanded by our caller, we don't
1849    // want it set in the KnownZero and KnownOne result values. Reset the
1850    // mask and reapply it to the result values.
1851    InMask = Mask;
1852    InMask.trunc(InBits);
1853    KnownZero &= InMask;
1854    KnownOne  &= InMask;
1855
1856    KnownZero.zext(BitWidth);
1857    KnownOne.zext(BitWidth);
1858
1859    // If the sign bit is known zero or one, the top bits match.
1860    if (SignBitKnownZero)
1861      KnownZero |= NewBits;
1862    else if (SignBitKnownOne)
1863      KnownOne  |= NewBits;
1864    return;
1865  }
1866  case ISD::ANY_EXTEND: {
1867    EVT InVT = Op.getOperand(0).getValueType();
1868    unsigned InBits = InVT.getScalarType().getSizeInBits();
1869    APInt InMask = Mask;
1870    InMask.trunc(InBits);
1871    KnownZero.trunc(InBits);
1872    KnownOne.trunc(InBits);
1873    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1874    KnownZero.zext(BitWidth);
1875    KnownOne.zext(BitWidth);
1876    return;
1877  }
1878  case ISD::TRUNCATE: {
1879    EVT InVT = Op.getOperand(0).getValueType();
1880    unsigned InBits = InVT.getScalarType().getSizeInBits();
1881    APInt InMask = Mask;
1882    InMask.zext(InBits);
1883    KnownZero.zext(InBits);
1884    KnownOne.zext(InBits);
1885    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1886    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1887    KnownZero.trunc(BitWidth);
1888    KnownOne.trunc(BitWidth);
1889    break;
1890  }
1891  case ISD::AssertZext: {
1892    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1893    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1894    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1895                      KnownOne, Depth+1);
1896    KnownZero |= (~InMask) & Mask;
1897    return;
1898  }
1899  case ISD::FGETSIGN:
1900    // All bits are zero except the low bit.
1901    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1902    return;
1903
1904  case ISD::SUB: {
1905    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1906      // We know that the top bits of C-X are clear if X contains less bits
1907      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1908      // positive if we can prove that X is >= 0 and < 16.
1909      if (CLHS->getAPIntValue().isNonNegative()) {
1910        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1911        // NLZ can't be BitWidth with no sign bit
1912        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1913        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1914                          Depth+1);
1915
1916        // If all of the MaskV bits are known to be zero, then we know the
1917        // output top bits are zero, because we now know that the output is
1918        // from [0-C].
1919        if ((KnownZero2 & MaskV) == MaskV) {
1920          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1921          // Top bits known zero.
1922          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1923        }
1924      }
1925    }
1926  }
1927  // fall through
1928  case ISD::ADD: {
1929    // Output known-0 bits are known if clear or set in both the low clear bits
1930    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1931    // low 3 bits clear.
1932    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1933                                       BitWidth - Mask.countLeadingZeros());
1934    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1935    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1936    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1937
1938    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1939    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1940    KnownZeroOut = std::min(KnownZeroOut,
1941                            KnownZero2.countTrailingOnes());
1942
1943    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1944    return;
1945  }
1946  case ISD::SREM:
1947    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1948      const APInt &RA = Rem->getAPIntValue().abs();
1949      if (RA.isPowerOf2()) {
1950        APInt LowBits = RA - 1;
1951        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1952        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1953
1954        // The low bits of the first operand are unchanged by the srem.
1955        KnownZero = KnownZero2 & LowBits;
1956        KnownOne = KnownOne2 & LowBits;
1957
1958        // If the first operand is non-negative or has all low bits zero, then
1959        // the upper bits are all zero.
1960        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1961          KnownZero |= ~LowBits;
1962
1963        // If the first operand is negative and not all low bits are zero, then
1964        // the upper bits are all one.
1965        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1966          KnownOne |= ~LowBits;
1967
1968        KnownZero &= Mask;
1969        KnownOne &= Mask;
1970
1971        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1972      }
1973    }
1974    return;
1975  case ISD::UREM: {
1976    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1977      const APInt &RA = Rem->getAPIntValue();
1978      if (RA.isPowerOf2()) {
1979        APInt LowBits = (RA - 1);
1980        APInt Mask2 = LowBits & Mask;
1981        KnownZero |= ~LowBits & Mask;
1982        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1983        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1984        break;
1985      }
1986    }
1987
1988    // Since the result is less than or equal to either operand, any leading
1989    // zero bits in either operand must also exist in the result.
1990    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1991    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1992                      Depth+1);
1993    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1994                      Depth+1);
1995
1996    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1997                                KnownZero2.countLeadingOnes());
1998    KnownOne.clear();
1999    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2000    return;
2001  }
2002  default:
2003    // Allow the target to implement this method for its nodes.
2004    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2005  case ISD::INTRINSIC_WO_CHAIN:
2006  case ISD::INTRINSIC_W_CHAIN:
2007  case ISD::INTRINSIC_VOID:
2008      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2009                                         Depth);
2010    }
2011    return;
2012  }
2013}
2014
2015/// ComputeNumSignBits - Return the number of times the sign bit of the
2016/// register is replicated into the other bits.  We know that at least 1 bit
2017/// is always equal to the sign bit (itself), but other cases can give us
2018/// information.  For example, immediately after an "SRA X, 2", we know that
2019/// the top 3 bits are all equal to each other, so we return 3.
2020unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2021  EVT VT = Op.getValueType();
2022  assert(VT.isInteger() && "Invalid VT!");
2023  unsigned VTBits = VT.getScalarType().getSizeInBits();
2024  unsigned Tmp, Tmp2;
2025  unsigned FirstAnswer = 1;
2026
2027  if (Depth == 6)
2028    return 1;  // Limit search depth.
2029
2030  switch (Op.getOpcode()) {
2031  default: break;
2032  case ISD::AssertSext:
2033    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2034    return VTBits-Tmp+1;
2035  case ISD::AssertZext:
2036    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2037    return VTBits-Tmp;
2038
2039  case ISD::Constant: {
2040    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2041    // If negative, return # leading ones.
2042    if (Val.isNegative())
2043      return Val.countLeadingOnes();
2044
2045    // Return # leading zeros.
2046    return Val.countLeadingZeros();
2047  }
2048
2049  case ISD::SIGN_EXTEND:
2050    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2051    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2052
2053  case ISD::SIGN_EXTEND_INREG:
2054    // Max of the input and what this extends.
2055    Tmp =
2056      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2057    Tmp = VTBits-Tmp+1;
2058
2059    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2060    return std::max(Tmp, Tmp2);
2061
2062  case ISD::SRA:
2063    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2064    // SRA X, C   -> adds C sign bits.
2065    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2066      Tmp += C->getZExtValue();
2067      if (Tmp > VTBits) Tmp = VTBits;
2068    }
2069    return Tmp;
2070  case ISD::SHL:
2071    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2072      // shl destroys sign bits.
2073      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2074      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2075          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2076      return Tmp - C->getZExtValue();
2077    }
2078    break;
2079  case ISD::AND:
2080  case ISD::OR:
2081  case ISD::XOR:    // NOT is handled here.
2082    // Logical binary ops preserve the number of sign bits at the worst.
2083    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2084    if (Tmp != 1) {
2085      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2086      FirstAnswer = std::min(Tmp, Tmp2);
2087      // We computed what we know about the sign bits as our first
2088      // answer. Now proceed to the generic code that uses
2089      // ComputeMaskedBits, and pick whichever answer is better.
2090    }
2091    break;
2092
2093  case ISD::SELECT:
2094    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2095    if (Tmp == 1) return 1;  // Early out.
2096    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2097    return std::min(Tmp, Tmp2);
2098
2099  case ISD::SADDO:
2100  case ISD::UADDO:
2101  case ISD::SSUBO:
2102  case ISD::USUBO:
2103  case ISD::SMULO:
2104  case ISD::UMULO:
2105    if (Op.getResNo() != 1)
2106      break;
2107    // The boolean result conforms to getBooleanContents.  Fall through.
2108  case ISD::SETCC:
2109    // If setcc returns 0/-1, all bits are sign bits.
2110    if (TLI.getBooleanContents() ==
2111        TargetLowering::ZeroOrNegativeOneBooleanContent)
2112      return VTBits;
2113    break;
2114  case ISD::ROTL:
2115  case ISD::ROTR:
2116    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2117      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2118
2119      // Handle rotate right by N like a rotate left by 32-N.
2120      if (Op.getOpcode() == ISD::ROTR)
2121        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2122
2123      // If we aren't rotating out all of the known-in sign bits, return the
2124      // number that are left.  This handles rotl(sext(x), 1) for example.
2125      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2126      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2127    }
2128    break;
2129  case ISD::ADD:
2130    // Add can have at most one carry bit.  Thus we know that the output
2131    // is, at worst, one more bit than the inputs.
2132    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2133    if (Tmp == 1) return 1;  // Early out.
2134
2135    // Special case decrementing a value (ADD X, -1):
2136    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2137      if (CRHS->isAllOnesValue()) {
2138        APInt KnownZero, KnownOne;
2139        APInt Mask = APInt::getAllOnesValue(VTBits);
2140        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2141
2142        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2143        // sign bits set.
2144        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2145          return VTBits;
2146
2147        // If we are subtracting one from a positive number, there is no carry
2148        // out of the result.
2149        if (KnownZero.isNegative())
2150          return Tmp;
2151      }
2152
2153    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2154    if (Tmp2 == 1) return 1;
2155      return std::min(Tmp, Tmp2)-1;
2156    break;
2157
2158  case ISD::SUB:
2159    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2160    if (Tmp2 == 1) return 1;
2161
2162    // Handle NEG.
2163    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2164      if (CLHS->isNullValue()) {
2165        APInt KnownZero, KnownOne;
2166        APInt Mask = APInt::getAllOnesValue(VTBits);
2167        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2168        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2169        // sign bits set.
2170        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2171          return VTBits;
2172
2173        // If the input is known to be positive (the sign bit is known clear),
2174        // the output of the NEG has the same number of sign bits as the input.
2175        if (KnownZero.isNegative())
2176          return Tmp2;
2177
2178        // Otherwise, we treat this like a SUB.
2179      }
2180
2181    // Sub can have at most one carry bit.  Thus we know that the output
2182    // is, at worst, one more bit than the inputs.
2183    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2184    if (Tmp == 1) return 1;  // Early out.
2185      return std::min(Tmp, Tmp2)-1;
2186    break;
2187  case ISD::TRUNCATE:
2188    // FIXME: it's tricky to do anything useful for this, but it is an important
2189    // case for targets like X86.
2190    break;
2191  }
2192
2193  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2194  if (Op.getOpcode() == ISD::LOAD) {
2195    LoadSDNode *LD = cast<LoadSDNode>(Op);
2196    unsigned ExtType = LD->getExtensionType();
2197    switch (ExtType) {
2198    default: break;
2199    case ISD::SEXTLOAD:    // '17' bits known
2200      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2201      return VTBits-Tmp+1;
2202    case ISD::ZEXTLOAD:    // '16' bits known
2203      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2204      return VTBits-Tmp;
2205    }
2206  }
2207
2208  // Allow the target to implement this method for its nodes.
2209  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2210      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2211      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2212      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2213    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2214    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2215  }
2216
2217  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2218  // use this information.
2219  APInt KnownZero, KnownOne;
2220  APInt Mask = APInt::getAllOnesValue(VTBits);
2221  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2222
2223  if (KnownZero.isNegative()) {        // sign bit is 0
2224    Mask = KnownZero;
2225  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2226    Mask = KnownOne;
2227  } else {
2228    // Nothing known.
2229    return FirstAnswer;
2230  }
2231
2232  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2233  // the number of identical bits in the top of the input value.
2234  Mask = ~Mask;
2235  Mask <<= Mask.getBitWidth()-VTBits;
2236  // Return # leading zeros.  We use 'min' here in case Val was zero before
2237  // shifting.  We don't want to return '64' as for an i32 "0".
2238  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2239}
2240
2241bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2242  // If we're told that NaNs won't happen, assume they won't.
2243  if (FiniteOnlyFPMath())
2244    return true;
2245
2246  // If the value is a constant, we can obviously see if it is a NaN or not.
2247  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2248    return !C->getValueAPF().isNaN();
2249
2250  // TODO: Recognize more cases here.
2251
2252  return false;
2253}
2254
2255bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2256  // If the value is a constant, we can obviously see if it is a zero or not.
2257  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2258    return !C->isZero();
2259
2260  // TODO: Recognize more cases here.
2261
2262  return false;
2263}
2264
2265bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2266  // Check the obvious case.
2267  if (A == B) return true;
2268
2269  // For for negative and positive zero.
2270  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2271    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2272      if (CA->isZero() && CB->isZero()) return true;
2273
2274  // Otherwise they may not be equal.
2275  return false;
2276}
2277
2278bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2279  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2280  if (!GA) return false;
2281  if (GA->getOffset() != 0) return false;
2282  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2283  if (!GV) return false;
2284  return MF->getMMI().hasDebugInfo();
2285}
2286
2287
2288/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2289/// element of the result of the vector shuffle.
2290SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2291                                          unsigned i) {
2292  EVT VT = N->getValueType(0);
2293  DebugLoc dl = N->getDebugLoc();
2294  if (N->getMaskElt(i) < 0)
2295    return getUNDEF(VT.getVectorElementType());
2296  unsigned Index = N->getMaskElt(i);
2297  unsigned NumElems = VT.getVectorNumElements();
2298  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2299  Index %= NumElems;
2300
2301  if (V.getOpcode() == ISD::BIT_CONVERT) {
2302    V = V.getOperand(0);
2303    EVT VVT = V.getValueType();
2304    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2305      return SDValue();
2306  }
2307  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2308    return (Index == 0) ? V.getOperand(0)
2309                      : getUNDEF(VT.getVectorElementType());
2310  if (V.getOpcode() == ISD::BUILD_VECTOR)
2311    return V.getOperand(Index);
2312  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2313    return getShuffleScalarElt(SVN, Index);
2314  return SDValue();
2315}
2316
2317
2318/// getNode - Gets or creates the specified node.
2319///
2320SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2321  FoldingSetNodeID ID;
2322  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2323  void *IP = 0;
2324  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2325    return SDValue(E, 0);
2326
2327  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2328  CSEMap.InsertNode(N, IP);
2329
2330  AllNodes.push_back(N);
2331#ifndef NDEBUG
2332  VerifyNode(N);
2333#endif
2334  return SDValue(N, 0);
2335}
2336
2337SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2338                              EVT VT, SDValue Operand) {
2339  // Constant fold unary operations with an integer constant operand.
2340  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2341    const APInt &Val = C->getAPIntValue();
2342    switch (Opcode) {
2343    default: break;
2344    case ISD::SIGN_EXTEND:
2345      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2346    case ISD::ANY_EXTEND:
2347    case ISD::ZERO_EXTEND:
2348    case ISD::TRUNCATE:
2349      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2350    case ISD::UINT_TO_FP:
2351    case ISD::SINT_TO_FP: {
2352      const uint64_t zero[] = {0, 0};
2353      // No compile time operations on ppcf128.
2354      if (VT == MVT::ppcf128) break;
2355      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2356      (void)apf.convertFromAPInt(Val,
2357                                 Opcode==ISD::SINT_TO_FP,
2358                                 APFloat::rmNearestTiesToEven);
2359      return getConstantFP(apf, VT);
2360    }
2361    case ISD::BIT_CONVERT:
2362      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2363        return getConstantFP(Val.bitsToFloat(), VT);
2364      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2365        return getConstantFP(Val.bitsToDouble(), VT);
2366      break;
2367    case ISD::BSWAP:
2368      return getConstant(Val.byteSwap(), VT);
2369    case ISD::CTPOP:
2370      return getConstant(Val.countPopulation(), VT);
2371    case ISD::CTLZ:
2372      return getConstant(Val.countLeadingZeros(), VT);
2373    case ISD::CTTZ:
2374      return getConstant(Val.countTrailingZeros(), VT);
2375    }
2376  }
2377
2378  // Constant fold unary operations with a floating point constant operand.
2379  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2380    APFloat V = C->getValueAPF();    // make copy
2381    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2382      switch (Opcode) {
2383      case ISD::FNEG:
2384        V.changeSign();
2385        return getConstantFP(V, VT);
2386      case ISD::FABS:
2387        V.clearSign();
2388        return getConstantFP(V, VT);
2389      case ISD::FP_ROUND:
2390      case ISD::FP_EXTEND: {
2391        bool ignored;
2392        // This can return overflow, underflow, or inexact; we don't care.
2393        // FIXME need to be more flexible about rounding mode.
2394        (void)V.convert(*EVTToAPFloatSemantics(VT),
2395                        APFloat::rmNearestTiesToEven, &ignored);
2396        return getConstantFP(V, VT);
2397      }
2398      case ISD::FP_TO_SINT:
2399      case ISD::FP_TO_UINT: {
2400        integerPart x[2];
2401        bool ignored;
2402        assert(integerPartWidth >= 64);
2403        // FIXME need to be more flexible about rounding mode.
2404        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2405                              Opcode==ISD::FP_TO_SINT,
2406                              APFloat::rmTowardZero, &ignored);
2407        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2408          break;
2409        APInt api(VT.getSizeInBits(), 2, x);
2410        return getConstant(api, VT);
2411      }
2412      case ISD::BIT_CONVERT:
2413        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2414          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2415        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2416          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2417        break;
2418      }
2419    }
2420  }
2421
2422  unsigned OpOpcode = Operand.getNode()->getOpcode();
2423  switch (Opcode) {
2424  case ISD::TokenFactor:
2425  case ISD::MERGE_VALUES:
2426  case ISD::CONCAT_VECTORS:
2427    return Operand;         // Factor, merge or concat of one node?  No need.
2428  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2429  case ISD::FP_EXTEND:
2430    assert(VT.isFloatingPoint() &&
2431           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2432    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2433    assert((!VT.isVector() ||
2434            VT.getVectorNumElements() ==
2435            Operand.getValueType().getVectorNumElements()) &&
2436           "Vector element count mismatch!");
2437    if (Operand.getOpcode() == ISD::UNDEF)
2438      return getUNDEF(VT);
2439    break;
2440  case ISD::SIGN_EXTEND:
2441    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2442           "Invalid SIGN_EXTEND!");
2443    if (Operand.getValueType() == VT) return Operand;   // noop extension
2444    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2445           "Invalid sext node, dst < src!");
2446    assert((!VT.isVector() ||
2447            VT.getVectorNumElements() ==
2448            Operand.getValueType().getVectorNumElements()) &&
2449           "Vector element count mismatch!");
2450    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2451      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2452    break;
2453  case ISD::ZERO_EXTEND:
2454    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2455           "Invalid ZERO_EXTEND!");
2456    if (Operand.getValueType() == VT) return Operand;   // noop extension
2457    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2458           "Invalid zext node, dst < src!");
2459    assert((!VT.isVector() ||
2460            VT.getVectorNumElements() ==
2461            Operand.getValueType().getVectorNumElements()) &&
2462           "Vector element count mismatch!");
2463    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2464      return getNode(ISD::ZERO_EXTEND, DL, VT,
2465                     Operand.getNode()->getOperand(0));
2466    break;
2467  case ISD::ANY_EXTEND:
2468    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2469           "Invalid ANY_EXTEND!");
2470    if (Operand.getValueType() == VT) return Operand;   // noop extension
2471    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2472           "Invalid anyext node, dst < src!");
2473    assert((!VT.isVector() ||
2474            VT.getVectorNumElements() ==
2475            Operand.getValueType().getVectorNumElements()) &&
2476           "Vector element count mismatch!");
2477    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2478      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2479      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2480    break;
2481  case ISD::TRUNCATE:
2482    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2483           "Invalid TRUNCATE!");
2484    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2485    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2486           "Invalid truncate node, src < dst!");
2487    assert((!VT.isVector() ||
2488            VT.getVectorNumElements() ==
2489            Operand.getValueType().getVectorNumElements()) &&
2490           "Vector element count mismatch!");
2491    if (OpOpcode == ISD::TRUNCATE)
2492      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2493    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2494             OpOpcode == ISD::ANY_EXTEND) {
2495      // If the source is smaller than the dest, we still need an extend.
2496      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2497            .bitsLT(VT.getScalarType()))
2498        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2499      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2500        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2501      else
2502        return Operand.getNode()->getOperand(0);
2503    }
2504    break;
2505  case ISD::BIT_CONVERT:
2506    // Basic sanity checking.
2507    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2508           && "Cannot BIT_CONVERT between types of different sizes!");
2509    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2510    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2511      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2512    if (OpOpcode == ISD::UNDEF)
2513      return getUNDEF(VT);
2514    break;
2515  case ISD::SCALAR_TO_VECTOR:
2516    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2517           (VT.getVectorElementType() == Operand.getValueType() ||
2518            (VT.getVectorElementType().isInteger() &&
2519             Operand.getValueType().isInteger() &&
2520             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2521           "Illegal SCALAR_TO_VECTOR node!");
2522    if (OpOpcode == ISD::UNDEF)
2523      return getUNDEF(VT);
2524    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2525    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2526        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2527        Operand.getConstantOperandVal(1) == 0 &&
2528        Operand.getOperand(0).getValueType() == VT)
2529      return Operand.getOperand(0);
2530    break;
2531  case ISD::FNEG:
2532    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2533    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2534      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2535                     Operand.getNode()->getOperand(0));
2536    if (OpOpcode == ISD::FNEG)  // --X -> X
2537      return Operand.getNode()->getOperand(0);
2538    break;
2539  case ISD::FABS:
2540    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2541      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2542    break;
2543  }
2544
2545  SDNode *N;
2546  SDVTList VTs = getVTList(VT);
2547  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2548    FoldingSetNodeID ID;
2549    SDValue Ops[1] = { Operand };
2550    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2551    void *IP = 0;
2552    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2553      return SDValue(E, 0);
2554
2555    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2556    CSEMap.InsertNode(N, IP);
2557  } else {
2558    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2559  }
2560
2561  AllNodes.push_back(N);
2562#ifndef NDEBUG
2563  VerifyNode(N);
2564#endif
2565  return SDValue(N, 0);
2566}
2567
2568SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2569                                             EVT VT,
2570                                             ConstantSDNode *Cst1,
2571                                             ConstantSDNode *Cst2) {
2572  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2573
2574  switch (Opcode) {
2575  case ISD::ADD:  return getConstant(C1 + C2, VT);
2576  case ISD::SUB:  return getConstant(C1 - C2, VT);
2577  case ISD::MUL:  return getConstant(C1 * C2, VT);
2578  case ISD::UDIV:
2579    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2580    break;
2581  case ISD::UREM:
2582    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2583    break;
2584  case ISD::SDIV:
2585    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2586    break;
2587  case ISD::SREM:
2588    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2589    break;
2590  case ISD::AND:  return getConstant(C1 & C2, VT);
2591  case ISD::OR:   return getConstant(C1 | C2, VT);
2592  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2593  case ISD::SHL:  return getConstant(C1 << C2, VT);
2594  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2595  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2596  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2597  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2598  default: break;
2599  }
2600
2601  return SDValue();
2602}
2603
2604SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2605                              SDValue N1, SDValue N2) {
2606  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2607  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2608  switch (Opcode) {
2609  default: break;
2610  case ISD::TokenFactor:
2611    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2612           N2.getValueType() == MVT::Other && "Invalid token factor!");
2613    // Fold trivial token factors.
2614    if (N1.getOpcode() == ISD::EntryToken) return N2;
2615    if (N2.getOpcode() == ISD::EntryToken) return N1;
2616    if (N1 == N2) return N1;
2617    break;
2618  case ISD::CONCAT_VECTORS:
2619    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2620    // one big BUILD_VECTOR.
2621    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2622        N2.getOpcode() == ISD::BUILD_VECTOR) {
2623      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2624      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2625      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2626    }
2627    break;
2628  case ISD::AND:
2629    assert(VT.isInteger() && "This operator does not apply to FP types!");
2630    assert(N1.getValueType() == N2.getValueType() &&
2631           N1.getValueType() == VT && "Binary operator types must match!");
2632    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2633    // worth handling here.
2634    if (N2C && N2C->isNullValue())
2635      return N2;
2636    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2637      return N1;
2638    break;
2639  case ISD::OR:
2640  case ISD::XOR:
2641  case ISD::ADD:
2642  case ISD::SUB:
2643    assert(VT.isInteger() && "This operator does not apply to FP types!");
2644    assert(N1.getValueType() == N2.getValueType() &&
2645           N1.getValueType() == VT && "Binary operator types must match!");
2646    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2647    // it's worth handling here.
2648    if (N2C && N2C->isNullValue())
2649      return N1;
2650    break;
2651  case ISD::UDIV:
2652  case ISD::UREM:
2653  case ISD::MULHU:
2654  case ISD::MULHS:
2655  case ISD::MUL:
2656  case ISD::SDIV:
2657  case ISD::SREM:
2658    assert(VT.isInteger() && "This operator does not apply to FP types!");
2659    assert(N1.getValueType() == N2.getValueType() &&
2660           N1.getValueType() == VT && "Binary operator types must match!");
2661    break;
2662  case ISD::FADD:
2663  case ISD::FSUB:
2664  case ISD::FMUL:
2665  case ISD::FDIV:
2666  case ISD::FREM:
2667    if (UnsafeFPMath) {
2668      if (Opcode == ISD::FADD) {
2669        // 0+x --> x
2670        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2671          if (CFP->getValueAPF().isZero())
2672            return N2;
2673        // x+0 --> x
2674        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2675          if (CFP->getValueAPF().isZero())
2676            return N1;
2677      } else if (Opcode == ISD::FSUB) {
2678        // x-0 --> x
2679        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2680          if (CFP->getValueAPF().isZero())
2681            return N1;
2682      }
2683    }
2684    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2685    assert(N1.getValueType() == N2.getValueType() &&
2686           N1.getValueType() == VT && "Binary operator types must match!");
2687    break;
2688  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2689    assert(N1.getValueType() == VT &&
2690           N1.getValueType().isFloatingPoint() &&
2691           N2.getValueType().isFloatingPoint() &&
2692           "Invalid FCOPYSIGN!");
2693    break;
2694  case ISD::SHL:
2695  case ISD::SRA:
2696  case ISD::SRL:
2697  case ISD::ROTL:
2698  case ISD::ROTR:
2699    assert(VT == N1.getValueType() &&
2700           "Shift operators return type must be the same as their first arg");
2701    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2702           "Shifts only work on integers");
2703
2704    // Always fold shifts of i1 values so the code generator doesn't need to
2705    // handle them.  Since we know the size of the shift has to be less than the
2706    // size of the value, the shift/rotate count is guaranteed to be zero.
2707    if (VT == MVT::i1)
2708      return N1;
2709    if (N2C && N2C->isNullValue())
2710      return N1;
2711    break;
2712  case ISD::FP_ROUND_INREG: {
2713    EVT EVT = cast<VTSDNode>(N2)->getVT();
2714    assert(VT == N1.getValueType() && "Not an inreg round!");
2715    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2716           "Cannot FP_ROUND_INREG integer types");
2717    assert(EVT.isVector() == VT.isVector() &&
2718           "FP_ROUND_INREG type should be vector iff the operand "
2719           "type is vector!");
2720    assert((!EVT.isVector() ||
2721            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2722           "Vector element counts must match in FP_ROUND_INREG");
2723    assert(EVT.bitsLE(VT) && "Not rounding down!");
2724    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2725    break;
2726  }
2727  case ISD::FP_ROUND:
2728    assert(VT.isFloatingPoint() &&
2729           N1.getValueType().isFloatingPoint() &&
2730           VT.bitsLE(N1.getValueType()) &&
2731           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2732    if (N1.getValueType() == VT) return N1;  // noop conversion.
2733    break;
2734  case ISD::AssertSext:
2735  case ISD::AssertZext: {
2736    EVT EVT = cast<VTSDNode>(N2)->getVT();
2737    assert(VT == N1.getValueType() && "Not an inreg extend!");
2738    assert(VT.isInteger() && EVT.isInteger() &&
2739           "Cannot *_EXTEND_INREG FP types");
2740    assert(!EVT.isVector() &&
2741           "AssertSExt/AssertZExt type should be the vector element type "
2742           "rather than the vector type!");
2743    assert(EVT.bitsLE(VT) && "Not extending!");
2744    if (VT == EVT) return N1; // noop assertion.
2745    break;
2746  }
2747  case ISD::SIGN_EXTEND_INREG: {
2748    EVT EVT = cast<VTSDNode>(N2)->getVT();
2749    assert(VT == N1.getValueType() && "Not an inreg extend!");
2750    assert(VT.isInteger() && EVT.isInteger() &&
2751           "Cannot *_EXTEND_INREG FP types");
2752    assert(EVT.isVector() == VT.isVector() &&
2753           "SIGN_EXTEND_INREG type should be vector iff the operand "
2754           "type is vector!");
2755    assert((!EVT.isVector() ||
2756            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2757           "Vector element counts must match in SIGN_EXTEND_INREG");
2758    assert(EVT.bitsLE(VT) && "Not extending!");
2759    if (EVT == VT) return N1;  // Not actually extending
2760
2761    if (N1C) {
2762      APInt Val = N1C->getAPIntValue();
2763      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2764      Val <<= Val.getBitWidth()-FromBits;
2765      Val = Val.ashr(Val.getBitWidth()-FromBits);
2766      return getConstant(Val, VT);
2767    }
2768    break;
2769  }
2770  case ISD::EXTRACT_VECTOR_ELT:
2771    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2772    if (N1.getOpcode() == ISD::UNDEF)
2773      return getUNDEF(VT);
2774
2775    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2776    // expanding copies of large vectors from registers.
2777    if (N2C &&
2778        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2779        N1.getNumOperands() > 0) {
2780      unsigned Factor =
2781        N1.getOperand(0).getValueType().getVectorNumElements();
2782      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2783                     N1.getOperand(N2C->getZExtValue() / Factor),
2784                     getConstant(N2C->getZExtValue() % Factor,
2785                                 N2.getValueType()));
2786    }
2787
2788    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2789    // expanding large vector constants.
2790    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2791      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2792      EVT VEltTy = N1.getValueType().getVectorElementType();
2793      if (Elt.getValueType() != VEltTy) {
2794        // If the vector element type is not legal, the BUILD_VECTOR operands
2795        // are promoted and implicitly truncated.  Make that explicit here.
2796        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2797      }
2798      if (VT != VEltTy) {
2799        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2800        // result is implicitly extended.
2801        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2802      }
2803      return Elt;
2804    }
2805
2806    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2807    // operations are lowered to scalars.
2808    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2809      // If the indices are the same, return the inserted element else
2810      // if the indices are known different, extract the element from
2811      // the original vector.
2812      SDValue N1Op2 = N1.getOperand(2);
2813      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2814
2815      if (N1Op2C && N2C) {
2816        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2817          if (VT == N1.getOperand(1).getValueType())
2818            return N1.getOperand(1);
2819          else
2820            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2821        }
2822
2823        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2824      }
2825    }
2826    break;
2827  case ISD::EXTRACT_ELEMENT:
2828    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2829    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2830           (N1.getValueType().isInteger() == VT.isInteger()) &&
2831           "Wrong types for EXTRACT_ELEMENT!");
2832
2833    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2834    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2835    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2836    if (N1.getOpcode() == ISD::BUILD_PAIR)
2837      return N1.getOperand(N2C->getZExtValue());
2838
2839    // EXTRACT_ELEMENT of a constant int is also very common.
2840    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2841      unsigned ElementSize = VT.getSizeInBits();
2842      unsigned Shift = ElementSize * N2C->getZExtValue();
2843      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2844      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2845    }
2846    break;
2847  case ISD::EXTRACT_SUBVECTOR:
2848    if (N1.getValueType() == VT) // Trivial extraction.
2849      return N1;
2850    break;
2851  }
2852
2853  if (N1C) {
2854    if (N2C) {
2855      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2856      if (SV.getNode()) return SV;
2857    } else {      // Cannonicalize constant to RHS if commutative
2858      if (isCommutativeBinOp(Opcode)) {
2859        std::swap(N1C, N2C);
2860        std::swap(N1, N2);
2861      }
2862    }
2863  }
2864
2865  // Constant fold FP operations.
2866  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2867  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2868  if (N1CFP) {
2869    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2870      // Cannonicalize constant to RHS if commutative
2871      std::swap(N1CFP, N2CFP);
2872      std::swap(N1, N2);
2873    } else if (N2CFP && VT != MVT::ppcf128) {
2874      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2875      APFloat::opStatus s;
2876      switch (Opcode) {
2877      case ISD::FADD:
2878        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2879        if (s != APFloat::opInvalidOp)
2880          return getConstantFP(V1, VT);
2881        break;
2882      case ISD::FSUB:
2883        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2884        if (s!=APFloat::opInvalidOp)
2885          return getConstantFP(V1, VT);
2886        break;
2887      case ISD::FMUL:
2888        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2889        if (s!=APFloat::opInvalidOp)
2890          return getConstantFP(V1, VT);
2891        break;
2892      case ISD::FDIV:
2893        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2894        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2895          return getConstantFP(V1, VT);
2896        break;
2897      case ISD::FREM :
2898        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2899        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2900          return getConstantFP(V1, VT);
2901        break;
2902      case ISD::FCOPYSIGN:
2903        V1.copySign(V2);
2904        return getConstantFP(V1, VT);
2905      default: break;
2906      }
2907    }
2908  }
2909
2910  // Canonicalize an UNDEF to the RHS, even over a constant.
2911  if (N1.getOpcode() == ISD::UNDEF) {
2912    if (isCommutativeBinOp(Opcode)) {
2913      std::swap(N1, N2);
2914    } else {
2915      switch (Opcode) {
2916      case ISD::FP_ROUND_INREG:
2917      case ISD::SIGN_EXTEND_INREG:
2918      case ISD::SUB:
2919      case ISD::FSUB:
2920      case ISD::FDIV:
2921      case ISD::FREM:
2922      case ISD::SRA:
2923        return N1;     // fold op(undef, arg2) -> undef
2924      case ISD::UDIV:
2925      case ISD::SDIV:
2926      case ISD::UREM:
2927      case ISD::SREM:
2928      case ISD::SRL:
2929      case ISD::SHL:
2930        if (!VT.isVector())
2931          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2932        // For vectors, we can't easily build an all zero vector, just return
2933        // the LHS.
2934        return N2;
2935      }
2936    }
2937  }
2938
2939  // Fold a bunch of operators when the RHS is undef.
2940  if (N2.getOpcode() == ISD::UNDEF) {
2941    switch (Opcode) {
2942    case ISD::XOR:
2943      if (N1.getOpcode() == ISD::UNDEF)
2944        // Handle undef ^ undef -> 0 special case. This is a common
2945        // idiom (misuse).
2946        return getConstant(0, VT);
2947      // fallthrough
2948    case ISD::ADD:
2949    case ISD::ADDC:
2950    case ISD::ADDE:
2951    case ISD::SUB:
2952    case ISD::UDIV:
2953    case ISD::SDIV:
2954    case ISD::UREM:
2955    case ISD::SREM:
2956      return N2;       // fold op(arg1, undef) -> undef
2957    case ISD::FADD:
2958    case ISD::FSUB:
2959    case ISD::FMUL:
2960    case ISD::FDIV:
2961    case ISD::FREM:
2962      if (UnsafeFPMath)
2963        return N2;
2964      break;
2965    case ISD::MUL:
2966    case ISD::AND:
2967    case ISD::SRL:
2968    case ISD::SHL:
2969      if (!VT.isVector())
2970        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2971      // For vectors, we can't easily build an all zero vector, just return
2972      // the LHS.
2973      return N1;
2974    case ISD::OR:
2975      if (!VT.isVector())
2976        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2977      // For vectors, we can't easily build an all one vector, just return
2978      // the LHS.
2979      return N1;
2980    case ISD::SRA:
2981      return N1;
2982    }
2983  }
2984
2985  // Memoize this node if possible.
2986  SDNode *N;
2987  SDVTList VTs = getVTList(VT);
2988  if (VT != MVT::Flag) {
2989    SDValue Ops[] = { N1, N2 };
2990    FoldingSetNodeID ID;
2991    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2992    void *IP = 0;
2993    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2994      return SDValue(E, 0);
2995
2996    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2997    CSEMap.InsertNode(N, IP);
2998  } else {
2999    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3000  }
3001
3002  AllNodes.push_back(N);
3003#ifndef NDEBUG
3004  VerifyNode(N);
3005#endif
3006  return SDValue(N, 0);
3007}
3008
3009SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3010                              SDValue N1, SDValue N2, SDValue N3) {
3011  // Perform various simplifications.
3012  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3013  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
3014  switch (Opcode) {
3015  case ISD::CONCAT_VECTORS:
3016    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3017    // one big BUILD_VECTOR.
3018    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3019        N2.getOpcode() == ISD::BUILD_VECTOR &&
3020        N3.getOpcode() == ISD::BUILD_VECTOR) {
3021      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
3022      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
3023      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
3024      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3025    }
3026    break;
3027  case ISD::SETCC: {
3028    // Use FoldSetCC to simplify SETCC's.
3029    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3030    if (Simp.getNode()) return Simp;
3031    break;
3032  }
3033  case ISD::SELECT:
3034    if (N1C) {
3035     if (N1C->getZExtValue())
3036        return N2;             // select true, X, Y -> X
3037      else
3038        return N3;             // select false, X, Y -> Y
3039    }
3040
3041    if (N2 == N3) return N2;   // select C, X, X -> X
3042    break;
3043  case ISD::BRCOND:
3044    if (N2C) {
3045      if (N2C->getZExtValue()) // Unconditional branch
3046        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3047      else
3048        return N1;         // Never-taken branch
3049    }
3050    break;
3051  case ISD::VECTOR_SHUFFLE:
3052    llvm_unreachable("should use getVectorShuffle constructor!");
3053    break;
3054  case ISD::BIT_CONVERT:
3055    // Fold bit_convert nodes from a type to themselves.
3056    if (N1.getValueType() == VT)
3057      return N1;
3058    break;
3059  }
3060
3061  // Memoize node if it doesn't produce a flag.
3062  SDNode *N;
3063  SDVTList VTs = getVTList(VT);
3064  if (VT != MVT::Flag) {
3065    SDValue Ops[] = { N1, N2, N3 };
3066    FoldingSetNodeID ID;
3067    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3068    void *IP = 0;
3069    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3070      return SDValue(E, 0);
3071
3072    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3073    CSEMap.InsertNode(N, IP);
3074  } else {
3075    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3076  }
3077
3078  AllNodes.push_back(N);
3079#ifndef NDEBUG
3080  VerifyNode(N);
3081#endif
3082  return SDValue(N, 0);
3083}
3084
3085SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3086                              SDValue N1, SDValue N2, SDValue N3,
3087                              SDValue N4) {
3088  SDValue Ops[] = { N1, N2, N3, N4 };
3089  return getNode(Opcode, DL, VT, Ops, 4);
3090}
3091
3092SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3093                              SDValue N1, SDValue N2, SDValue N3,
3094                              SDValue N4, SDValue N5) {
3095  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3096  return getNode(Opcode, DL, VT, Ops, 5);
3097}
3098
3099/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3100/// the incoming stack arguments to be loaded from the stack.
3101SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3102  SmallVector<SDValue, 8> ArgChains;
3103
3104  // Include the original chain at the beginning of the list. When this is
3105  // used by target LowerCall hooks, this helps legalize find the
3106  // CALLSEQ_BEGIN node.
3107  ArgChains.push_back(Chain);
3108
3109  // Add a chain value for each stack argument.
3110  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3111       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3112    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3113      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3114        if (FI->getIndex() < 0)
3115          ArgChains.push_back(SDValue(L, 1));
3116
3117  // Build a tokenfactor for all the chains.
3118  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3119                 &ArgChains[0], ArgChains.size());
3120}
3121
3122/// getMemsetValue - Vectorized representation of the memset value
3123/// operand.
3124static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3125                              DebugLoc dl) {
3126  assert(Value.getOpcode() != ISD::UNDEF);
3127
3128  unsigned NumBits = VT.getScalarType().getSizeInBits();
3129  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3130    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3131    unsigned Shift = 8;
3132    for (unsigned i = NumBits; i > 8; i >>= 1) {
3133      Val = (Val << Shift) | Val;
3134      Shift <<= 1;
3135    }
3136    if (VT.isInteger())
3137      return DAG.getConstant(Val, VT);
3138    return DAG.getConstantFP(APFloat(Val), VT);
3139  }
3140
3141  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3142  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3143  unsigned Shift = 8;
3144  for (unsigned i = NumBits; i > 8; i >>= 1) {
3145    Value = DAG.getNode(ISD::OR, dl, VT,
3146                        DAG.getNode(ISD::SHL, dl, VT, Value,
3147                                    DAG.getConstant(Shift,
3148                                                    TLI.getShiftAmountTy())),
3149                        Value);
3150    Shift <<= 1;
3151  }
3152
3153  return Value;
3154}
3155
3156/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3157/// used when a memcpy is turned into a memset when the source is a constant
3158/// string ptr.
3159static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3160                                  const TargetLowering &TLI,
3161                                  std::string &Str, unsigned Offset) {
3162  // Handle vector with all elements zero.
3163  if (Str.empty()) {
3164    if (VT.isInteger())
3165      return DAG.getConstant(0, VT);
3166    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3167             VT.getSimpleVT().SimpleTy == MVT::f64)
3168      return DAG.getConstantFP(0.0, VT);
3169    else if (VT.isVector()) {
3170      unsigned NumElts = VT.getVectorNumElements();
3171      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3172      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3173                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3174                                                             EltVT, NumElts)));
3175    } else
3176      llvm_unreachable("Expected type!");
3177  }
3178
3179  assert(!VT.isVector() && "Can't handle vector type here!");
3180  unsigned NumBits = VT.getSizeInBits();
3181  unsigned MSB = NumBits / 8;
3182  uint64_t Val = 0;
3183  if (TLI.isLittleEndian())
3184    Offset = Offset + MSB - 1;
3185  for (unsigned i = 0; i != MSB; ++i) {
3186    Val = (Val << 8) | (unsigned char)Str[Offset];
3187    Offset += TLI.isLittleEndian() ? -1 : 1;
3188  }
3189  return DAG.getConstant(Val, VT);
3190}
3191
3192/// getMemBasePlusOffset - Returns base and offset node for the
3193///
3194static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3195                                      SelectionDAG &DAG) {
3196  EVT VT = Base.getValueType();
3197  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3198                     VT, Base, DAG.getConstant(Offset, VT));
3199}
3200
3201/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3202///
3203static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3204  unsigned SrcDelta = 0;
3205  GlobalAddressSDNode *G = NULL;
3206  if (Src.getOpcode() == ISD::GlobalAddress)
3207    G = cast<GlobalAddressSDNode>(Src);
3208  else if (Src.getOpcode() == ISD::ADD &&
3209           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3210           Src.getOperand(1).getOpcode() == ISD::Constant) {
3211    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3212    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3213  }
3214  if (!G)
3215    return false;
3216
3217  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3218  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3219    return true;
3220
3221  return false;
3222}
3223
3224/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3225/// to replace the memset / memcpy. Return true if the number of memory ops
3226/// is below the threshold. It returns the types of the sequence of
3227/// memory ops to perform memset / memcpy by reference.
3228static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3229                                     unsigned Limit, uint64_t Size,
3230                                     unsigned DstAlign, unsigned SrcAlign,
3231                                     bool NonScalarIntSafe,
3232                                     bool MemcpyStrSrc,
3233                                     SelectionDAG &DAG,
3234                                     const TargetLowering &TLI) {
3235  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3236         "Expecting memcpy / memset source to meet alignment requirement!");
3237  // If 'SrcAlign' is zero, that means the memory operation does not need load
3238  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3239  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3240  // specified alignment of the memory operation. If it is zero, that means
3241  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3242  // indicates whether the memcpy source is constant so it does not need to be
3243  // loaded.
3244  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3245                                   NonScalarIntSafe, MemcpyStrSrc,
3246                                   DAG.getMachineFunction());
3247
3248  if (VT == MVT::Other) {
3249    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3250        TLI.allowsUnalignedMemoryAccesses(VT)) {
3251      VT = TLI.getPointerTy();
3252    } else {
3253      switch (DstAlign & 7) {
3254      case 0:  VT = MVT::i64; break;
3255      case 4:  VT = MVT::i32; break;
3256      case 2:  VT = MVT::i16; break;
3257      default: VT = MVT::i8;  break;
3258      }
3259    }
3260
3261    MVT LVT = MVT::i64;
3262    while (!TLI.isTypeLegal(LVT))
3263      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3264    assert(LVT.isInteger());
3265
3266    if (VT.bitsGT(LVT))
3267      VT = LVT;
3268  }
3269
3270  // If we're optimizing for size, and there is a limit, bump the maximum number
3271  // of operations inserted down to 4.  This is a wild guess that approximates
3272  // the size of a call to memcpy or memset (3 arguments + call).
3273  if (Limit != ~0U) {
3274    const Function *F = DAG.getMachineFunction().getFunction();
3275    if (F->hasFnAttr(Attribute::OptimizeForSize))
3276      Limit = 4;
3277  }
3278
3279  unsigned NumMemOps = 0;
3280  while (Size != 0) {
3281    unsigned VTSize = VT.getSizeInBits() / 8;
3282    while (VTSize > Size) {
3283      // For now, only use non-vector load / store's for the left-over pieces.
3284      if (VT.isVector() || VT.isFloatingPoint()) {
3285        VT = MVT::i64;
3286        while (!TLI.isTypeLegal(VT))
3287          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3288        VTSize = VT.getSizeInBits() / 8;
3289      } else {
3290        // This can result in a type that is not legal on the target, e.g.
3291        // 1 or 2 bytes on PPC.
3292        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3293        VTSize >>= 1;
3294      }
3295    }
3296
3297    if (++NumMemOps > Limit)
3298      return false;
3299    MemOps.push_back(VT);
3300    Size -= VTSize;
3301  }
3302
3303  return true;
3304}
3305
3306static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3307                                       SDValue Chain, SDValue Dst,
3308                                       SDValue Src, uint64_t Size,
3309                                       unsigned Align, bool isVol,
3310                                       bool AlwaysInline,
3311                                       const Value *DstSV, uint64_t DstSVOff,
3312                                       const Value *SrcSV, uint64_t SrcSVOff) {
3313  // Turn a memcpy of undef to nop.
3314  if (Src.getOpcode() == ISD::UNDEF)
3315    return Chain;
3316
3317  // Expand memcpy to a series of load and store ops if the size operand falls
3318  // below a certain threshold.
3319  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3320  std::vector<EVT> MemOps;
3321  bool DstAlignCanChange = false;
3322  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3323  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3324  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3325    DstAlignCanChange = true;
3326  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3327  if (Align > SrcAlign)
3328    SrcAlign = Align;
3329  std::string Str;
3330  bool CopyFromStr = isMemSrcFromString(Src, Str);
3331  bool isZeroStr = CopyFromStr && Str.empty();
3332  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy();
3333
3334  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3335                                (DstAlignCanChange ? 0 : Align),
3336                                (isZeroStr ? 0 : SrcAlign),
3337                                true, CopyFromStr, DAG, TLI))
3338    return SDValue();
3339
3340  if (DstAlignCanChange) {
3341    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3342    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3343    if (NewAlign > Align) {
3344      // Give the stack frame object a larger alignment if needed.
3345      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3346        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3347      Align = NewAlign;
3348    }
3349  }
3350
3351  SmallVector<SDValue, 8> OutChains;
3352  unsigned NumMemOps = MemOps.size();
3353  uint64_t SrcOff = 0, DstOff = 0;
3354  for (unsigned i = 0; i != NumMemOps; ++i) {
3355    EVT VT = MemOps[i];
3356    unsigned VTSize = VT.getSizeInBits() / 8;
3357    SDValue Value, Store;
3358
3359    if (CopyFromStr &&
3360        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3361      // It's unlikely a store of a vector immediate can be done in a single
3362      // instruction. It would require a load from a constantpool first.
3363      // We only handle zero vectors here.
3364      // FIXME: Handle other cases where store of vector immediate is done in
3365      // a single instruction.
3366      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3367      Store = DAG.getStore(Chain, dl, Value,
3368                           getMemBasePlusOffset(Dst, DstOff, DAG),
3369                           DstSV, DstSVOff + DstOff, isVol, false, Align);
3370    } else {
3371      // The type might not be legal for the target.  This should only happen
3372      // if the type is smaller than a legal type, as on PPC, so the right
3373      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3374      // to Load/Store if NVT==VT.
3375      // FIXME does the case above also need this?
3376      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3377      assert(NVT.bitsGE(VT));
3378      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3379                             getMemBasePlusOffset(Src, SrcOff, DAG),
3380                             SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3381                             MinAlign(SrcAlign, SrcOff));
3382      Store = DAG.getTruncStore(Chain, dl, Value,
3383                                getMemBasePlusOffset(Dst, DstOff, DAG),
3384                                DstSV, DstSVOff + DstOff, VT, isVol, false,
3385                                Align);
3386    }
3387    OutChains.push_back(Store);
3388    SrcOff += VTSize;
3389    DstOff += VTSize;
3390  }
3391
3392  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3393                     &OutChains[0], OutChains.size());
3394}
3395
3396static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3397                                        SDValue Chain, SDValue Dst,
3398                                        SDValue Src, uint64_t Size,
3399                                        unsigned Align,  bool isVol,
3400                                        bool AlwaysInline,
3401                                        const Value *DstSV, uint64_t DstSVOff,
3402                                        const Value *SrcSV, uint64_t SrcSVOff) {
3403  // Turn a memmove of undef to nop.
3404  if (Src.getOpcode() == ISD::UNDEF)
3405    return Chain;
3406
3407  // Expand memmove to a series of load and store ops if the size operand falls
3408  // below a certain threshold.
3409  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3410  std::vector<EVT> MemOps;
3411  bool DstAlignCanChange = false;
3412  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3413  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3414  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3415    DstAlignCanChange = true;
3416  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3417  if (Align > SrcAlign)
3418    SrcAlign = Align;
3419  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove();
3420
3421  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3422                                (DstAlignCanChange ? 0 : Align),
3423                                SrcAlign, true, false, DAG, TLI))
3424    return SDValue();
3425
3426  if (DstAlignCanChange) {
3427    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3428    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3429    if (NewAlign > Align) {
3430      // Give the stack frame object a larger alignment if needed.
3431      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3432        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3433      Align = NewAlign;
3434    }
3435  }
3436
3437  uint64_t SrcOff = 0, DstOff = 0;
3438  SmallVector<SDValue, 8> LoadValues;
3439  SmallVector<SDValue, 8> LoadChains;
3440  SmallVector<SDValue, 8> OutChains;
3441  unsigned NumMemOps = MemOps.size();
3442  for (unsigned i = 0; i < NumMemOps; i++) {
3443    EVT VT = MemOps[i];
3444    unsigned VTSize = VT.getSizeInBits() / 8;
3445    SDValue Value, Store;
3446
3447    Value = DAG.getLoad(VT, dl, Chain,
3448                        getMemBasePlusOffset(Src, SrcOff, DAG),
3449                        SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3450    LoadValues.push_back(Value);
3451    LoadChains.push_back(Value.getValue(1));
3452    SrcOff += VTSize;
3453  }
3454  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3455                      &LoadChains[0], LoadChains.size());
3456  OutChains.clear();
3457  for (unsigned i = 0; i < NumMemOps; i++) {
3458    EVT VT = MemOps[i];
3459    unsigned VTSize = VT.getSizeInBits() / 8;
3460    SDValue Value, Store;
3461
3462    Store = DAG.getStore(Chain, dl, LoadValues[i],
3463                         getMemBasePlusOffset(Dst, DstOff, DAG),
3464                         DstSV, DstSVOff + DstOff, isVol, false, Align);
3465    OutChains.push_back(Store);
3466    DstOff += VTSize;
3467  }
3468
3469  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3470                     &OutChains[0], OutChains.size());
3471}
3472
3473static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3474                               SDValue Chain, SDValue Dst,
3475                               SDValue Src, uint64_t Size,
3476                               unsigned Align, bool isVol,
3477                               const Value *DstSV, uint64_t DstSVOff) {
3478  // Turn a memset of undef to nop.
3479  if (Src.getOpcode() == ISD::UNDEF)
3480    return Chain;
3481
3482  // Expand memset to a series of load/store ops if the size operand
3483  // falls below a certain threshold.
3484  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3485  std::vector<EVT> MemOps;
3486  bool DstAlignCanChange = false;
3487  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3488  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3489  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3490    DstAlignCanChange = true;
3491  bool NonScalarIntSafe =
3492    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3493  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3494                                Size, (DstAlignCanChange ? 0 : Align), 0,
3495                                NonScalarIntSafe, false, DAG, TLI))
3496    return SDValue();
3497
3498  if (DstAlignCanChange) {
3499    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3500    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3501    if (NewAlign > Align) {
3502      // Give the stack frame object a larger alignment if needed.
3503      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3504        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3505      Align = NewAlign;
3506    }
3507  }
3508
3509  SmallVector<SDValue, 8> OutChains;
3510  uint64_t DstOff = 0;
3511  unsigned NumMemOps = MemOps.size();
3512  for (unsigned i = 0; i < NumMemOps; i++) {
3513    EVT VT = MemOps[i];
3514    unsigned VTSize = VT.getSizeInBits() / 8;
3515    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3516    SDValue Store = DAG.getStore(Chain, dl, Value,
3517                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3518                                 DstSV, DstSVOff + DstOff, isVol, false, 0);
3519    OutChains.push_back(Store);
3520    DstOff += VTSize;
3521  }
3522
3523  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3524                     &OutChains[0], OutChains.size());
3525}
3526
3527SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3528                                SDValue Src, SDValue Size,
3529                                unsigned Align, bool isVol, bool AlwaysInline,
3530                                const Value *DstSV, uint64_t DstSVOff,
3531                                const Value *SrcSV, uint64_t SrcSVOff) {
3532
3533  // Check to see if we should lower the memcpy to loads and stores first.
3534  // For cases within the target-specified limits, this is the best choice.
3535  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3536  if (ConstantSize) {
3537    // Memcpy with size zero? Just return the original chain.
3538    if (ConstantSize->isNullValue())
3539      return Chain;
3540
3541    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3542                                             ConstantSize->getZExtValue(),Align,
3543                                isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3544    if (Result.getNode())
3545      return Result;
3546  }
3547
3548  // Then check to see if we should lower the memcpy with target-specific
3549  // code. If the target chooses to do this, this is the next best.
3550  SDValue Result =
3551    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3552                                isVol, AlwaysInline,
3553                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3554  if (Result.getNode())
3555    return Result;
3556
3557  // If we really need inline code and the target declined to provide it,
3558  // use a (potentially long) sequence of loads and stores.
3559  if (AlwaysInline) {
3560    assert(ConstantSize && "AlwaysInline requires a constant size!");
3561    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3562                                   ConstantSize->getZExtValue(), Align, isVol,
3563                                   true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3564  }
3565
3566  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3567  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3568  // respect volatile, so they may do things like read or write memory
3569  // beyond the given memory regions. But fixing this isn't easy, and most
3570  // people don't care.
3571
3572  // Emit a library call.
3573  TargetLowering::ArgListTy Args;
3574  TargetLowering::ArgListEntry Entry;
3575  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3576  Entry.Node = Dst; Args.push_back(Entry);
3577  Entry.Node = Src; Args.push_back(Entry);
3578  Entry.Node = Size; Args.push_back(Entry);
3579  // FIXME: pass in DebugLoc
3580  std::pair<SDValue,SDValue> CallResult =
3581    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3582                    false, false, false, false, 0,
3583                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3584                    /*isReturnValueUsed=*/false,
3585                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3586                                      TLI.getPointerTy()),
3587                    Args, *this, dl);
3588  return CallResult.second;
3589}
3590
3591SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3592                                 SDValue Src, SDValue Size,
3593                                 unsigned Align, bool isVol,
3594                                 const Value *DstSV, uint64_t DstSVOff,
3595                                 const Value *SrcSV, uint64_t SrcSVOff) {
3596
3597  // Check to see if we should lower the memmove to loads and stores first.
3598  // For cases within the target-specified limits, this is the best choice.
3599  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3600  if (ConstantSize) {
3601    // Memmove with size zero? Just return the original chain.
3602    if (ConstantSize->isNullValue())
3603      return Chain;
3604
3605    SDValue Result =
3606      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3607                               ConstantSize->getZExtValue(), Align, isVol,
3608                               false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3609    if (Result.getNode())
3610      return Result;
3611  }
3612
3613  // Then check to see if we should lower the memmove with target-specific
3614  // code. If the target chooses to do this, this is the next best.
3615  SDValue Result =
3616    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3617                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3618  if (Result.getNode())
3619    return Result;
3620
3621  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3622  // not be safe.  See memcpy above for more details.
3623
3624  // Emit a library call.
3625  TargetLowering::ArgListTy Args;
3626  TargetLowering::ArgListEntry Entry;
3627  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3628  Entry.Node = Dst; Args.push_back(Entry);
3629  Entry.Node = Src; Args.push_back(Entry);
3630  Entry.Node = Size; Args.push_back(Entry);
3631  // FIXME:  pass in DebugLoc
3632  std::pair<SDValue,SDValue> CallResult =
3633    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3634                    false, false, false, false, 0,
3635                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3636                    /*isReturnValueUsed=*/false,
3637                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3638                                      TLI.getPointerTy()),
3639                    Args, *this, dl);
3640  return CallResult.second;
3641}
3642
3643SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3644                                SDValue Src, SDValue Size,
3645                                unsigned Align, bool isVol,
3646                                const Value *DstSV, uint64_t DstSVOff) {
3647
3648  // Check to see if we should lower the memset to stores first.
3649  // For cases within the target-specified limits, this is the best choice.
3650  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3651  if (ConstantSize) {
3652    // Memset with size zero? Just return the original chain.
3653    if (ConstantSize->isNullValue())
3654      return Chain;
3655
3656    SDValue Result =
3657      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3658                      Align, isVol, DstSV, DstSVOff);
3659
3660    if (Result.getNode())
3661      return Result;
3662  }
3663
3664  // Then check to see if we should lower the memset with target-specific
3665  // code. If the target chooses to do this, this is the next best.
3666  SDValue Result =
3667    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3668                                DstSV, DstSVOff);
3669  if (Result.getNode())
3670    return Result;
3671
3672  // Emit a library call.
3673  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3674  TargetLowering::ArgListTy Args;
3675  TargetLowering::ArgListEntry Entry;
3676  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3677  Args.push_back(Entry);
3678  // Extend or truncate the argument to be an i32 value for the call.
3679  if (Src.getValueType().bitsGT(MVT::i32))
3680    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3681  else
3682    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3683  Entry.Node = Src;
3684  Entry.Ty = Type::getInt32Ty(*getContext());
3685  Entry.isSExt = true;
3686  Args.push_back(Entry);
3687  Entry.Node = Size;
3688  Entry.Ty = IntPtrTy;
3689  Entry.isSExt = false;
3690  Args.push_back(Entry);
3691  // FIXME: pass in DebugLoc
3692  std::pair<SDValue,SDValue> CallResult =
3693    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3694                    false, false, false, false, 0,
3695                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3696                    /*isReturnValueUsed=*/false,
3697                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3698                                      TLI.getPointerTy()),
3699                    Args, *this, dl);
3700  return CallResult.second;
3701}
3702
3703SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3704                                SDValue Chain,
3705                                SDValue Ptr, SDValue Cmp,
3706                                SDValue Swp, const Value* PtrVal,
3707                                unsigned Alignment) {
3708  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3709    Alignment = getEVTAlignment(MemVT);
3710
3711  // Check if the memory reference references a frame index
3712  if (!PtrVal)
3713    if (const FrameIndexSDNode *FI =
3714          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3715      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3716
3717  MachineFunction &MF = getMachineFunction();
3718  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3719
3720  // For now, atomics are considered to be volatile always.
3721  Flags |= MachineMemOperand::MOVolatile;
3722
3723  MachineMemOperand *MMO =
3724    MF.getMachineMemOperand(PtrVal, Flags, 0,
3725                            MemVT.getStoreSize(), Alignment);
3726
3727  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3728}
3729
3730SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3731                                SDValue Chain,
3732                                SDValue Ptr, SDValue Cmp,
3733                                SDValue Swp, MachineMemOperand *MMO) {
3734  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3735  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3736
3737  EVT VT = Cmp.getValueType();
3738
3739  SDVTList VTs = getVTList(VT, MVT::Other);
3740  FoldingSetNodeID ID;
3741  ID.AddInteger(MemVT.getRawBits());
3742  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3743  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3744  void* IP = 0;
3745  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3746    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3747    return SDValue(E, 0);
3748  }
3749  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3750                                               Ptr, Cmp, Swp, MMO);
3751  CSEMap.InsertNode(N, IP);
3752  AllNodes.push_back(N);
3753  return SDValue(N, 0);
3754}
3755
3756SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3757                                SDValue Chain,
3758                                SDValue Ptr, SDValue Val,
3759                                const Value* PtrVal,
3760                                unsigned Alignment) {
3761  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3762    Alignment = getEVTAlignment(MemVT);
3763
3764  // Check if the memory reference references a frame index
3765  if (!PtrVal)
3766    if (const FrameIndexSDNode *FI =
3767          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3768      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3769
3770  MachineFunction &MF = getMachineFunction();
3771  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3772
3773  // For now, atomics are considered to be volatile always.
3774  Flags |= MachineMemOperand::MOVolatile;
3775
3776  MachineMemOperand *MMO =
3777    MF.getMachineMemOperand(PtrVal, Flags, 0,
3778                            MemVT.getStoreSize(), Alignment);
3779
3780  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3781}
3782
3783SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3784                                SDValue Chain,
3785                                SDValue Ptr, SDValue Val,
3786                                MachineMemOperand *MMO) {
3787  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3788          Opcode == ISD::ATOMIC_LOAD_SUB ||
3789          Opcode == ISD::ATOMIC_LOAD_AND ||
3790          Opcode == ISD::ATOMIC_LOAD_OR ||
3791          Opcode == ISD::ATOMIC_LOAD_XOR ||
3792          Opcode == ISD::ATOMIC_LOAD_NAND ||
3793          Opcode == ISD::ATOMIC_LOAD_MIN ||
3794          Opcode == ISD::ATOMIC_LOAD_MAX ||
3795          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3796          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3797          Opcode == ISD::ATOMIC_SWAP) &&
3798         "Invalid Atomic Op");
3799
3800  EVT VT = Val.getValueType();
3801
3802  SDVTList VTs = getVTList(VT, MVT::Other);
3803  FoldingSetNodeID ID;
3804  ID.AddInteger(MemVT.getRawBits());
3805  SDValue Ops[] = {Chain, Ptr, Val};
3806  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3807  void* IP = 0;
3808  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3809    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3810    return SDValue(E, 0);
3811  }
3812  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3813                                               Ptr, Val, MMO);
3814  CSEMap.InsertNode(N, IP);
3815  AllNodes.push_back(N);
3816  return SDValue(N, 0);
3817}
3818
3819/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3820/// Allowed to return something different (and simpler) if Simplify is true.
3821SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3822                                     DebugLoc dl) {
3823  if (NumOps == 1)
3824    return Ops[0];
3825
3826  SmallVector<EVT, 4> VTs;
3827  VTs.reserve(NumOps);
3828  for (unsigned i = 0; i < NumOps; ++i)
3829    VTs.push_back(Ops[i].getValueType());
3830  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3831                 Ops, NumOps);
3832}
3833
3834SDValue
3835SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3836                                  const EVT *VTs, unsigned NumVTs,
3837                                  const SDValue *Ops, unsigned NumOps,
3838                                  EVT MemVT, const Value *srcValue, int SVOff,
3839                                  unsigned Align, bool Vol,
3840                                  bool ReadMem, bool WriteMem) {
3841  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3842                             MemVT, srcValue, SVOff, Align, Vol,
3843                             ReadMem, WriteMem);
3844}
3845
3846SDValue
3847SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3848                                  const SDValue *Ops, unsigned NumOps,
3849                                  EVT MemVT, const Value *srcValue, int SVOff,
3850                                  unsigned Align, bool Vol,
3851                                  bool ReadMem, bool WriteMem) {
3852  if (Align == 0)  // Ensure that codegen never sees alignment 0
3853    Align = getEVTAlignment(MemVT);
3854
3855  MachineFunction &MF = getMachineFunction();
3856  unsigned Flags = 0;
3857  if (WriteMem)
3858    Flags |= MachineMemOperand::MOStore;
3859  if (ReadMem)
3860    Flags |= MachineMemOperand::MOLoad;
3861  if (Vol)
3862    Flags |= MachineMemOperand::MOVolatile;
3863  MachineMemOperand *MMO =
3864    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3865                            MemVT.getStoreSize(), Align);
3866
3867  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3868}
3869
3870SDValue
3871SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3872                                  const SDValue *Ops, unsigned NumOps,
3873                                  EVT MemVT, MachineMemOperand *MMO) {
3874  assert((Opcode == ISD::INTRINSIC_VOID ||
3875          Opcode == ISD::INTRINSIC_W_CHAIN ||
3876          (Opcode <= INT_MAX &&
3877           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3878         "Opcode is not a memory-accessing opcode!");
3879
3880  // Memoize the node unless it returns a flag.
3881  MemIntrinsicSDNode *N;
3882  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3883    FoldingSetNodeID ID;
3884    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3885    void *IP = 0;
3886    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3887      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3888      return SDValue(E, 0);
3889    }
3890
3891    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3892                                               MemVT, MMO);
3893    CSEMap.InsertNode(N, IP);
3894  } else {
3895    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3896                                               MemVT, MMO);
3897  }
3898  AllNodes.push_back(N);
3899  return SDValue(N, 0);
3900}
3901
3902SDValue
3903SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3904                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3905                      SDValue Ptr, SDValue Offset,
3906                      const Value *SV, int SVOffset, EVT MemVT,
3907                      bool isVolatile, bool isNonTemporal,
3908                      unsigned Alignment) {
3909  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3910    Alignment = getEVTAlignment(VT);
3911
3912  // Check if the memory reference references a frame index
3913  if (!SV)
3914    if (const FrameIndexSDNode *FI =
3915          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3916      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3917
3918  MachineFunction &MF = getMachineFunction();
3919  unsigned Flags = MachineMemOperand::MOLoad;
3920  if (isVolatile)
3921    Flags |= MachineMemOperand::MOVolatile;
3922  if (isNonTemporal)
3923    Flags |= MachineMemOperand::MONonTemporal;
3924  MachineMemOperand *MMO =
3925    MF.getMachineMemOperand(SV, Flags, SVOffset,
3926                            MemVT.getStoreSize(), Alignment);
3927  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3928}
3929
3930SDValue
3931SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3932                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3933                      SDValue Ptr, SDValue Offset, EVT MemVT,
3934                      MachineMemOperand *MMO) {
3935  if (VT == MemVT) {
3936    ExtType = ISD::NON_EXTLOAD;
3937  } else if (ExtType == ISD::NON_EXTLOAD) {
3938    assert(VT == MemVT && "Non-extending load from different memory type!");
3939  } else {
3940    // Extending load.
3941    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3942           "Should only be an extending load, not truncating!");
3943    assert(VT.isInteger() == MemVT.isInteger() &&
3944           "Cannot convert from FP to Int or Int -> FP!");
3945    assert(VT.isVector() == MemVT.isVector() &&
3946           "Cannot use trunc store to convert to or from a vector!");
3947    assert((!VT.isVector() ||
3948            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3949           "Cannot use trunc store to change the number of vector elements!");
3950  }
3951
3952  bool Indexed = AM != ISD::UNINDEXED;
3953  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3954         "Unindexed load with an offset!");
3955
3956  SDVTList VTs = Indexed ?
3957    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3958  SDValue Ops[] = { Chain, Ptr, Offset };
3959  FoldingSetNodeID ID;
3960  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3961  ID.AddInteger(MemVT.getRawBits());
3962  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3963                                     MMO->isNonTemporal()));
3964  void *IP = 0;
3965  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3966    cast<LoadSDNode>(E)->refineAlignment(MMO);
3967    return SDValue(E, 0);
3968  }
3969  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3970                                             MemVT, MMO);
3971  CSEMap.InsertNode(N, IP);
3972  AllNodes.push_back(N);
3973  return SDValue(N, 0);
3974}
3975
3976SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3977                              SDValue Chain, SDValue Ptr,
3978                              const Value *SV, int SVOffset,
3979                              bool isVolatile, bool isNonTemporal,
3980                              unsigned Alignment) {
3981  SDValue Undef = getUNDEF(Ptr.getValueType());
3982  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3983                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3984}
3985
3986SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3987                                 SDValue Chain, SDValue Ptr,
3988                                 const Value *SV,
3989                                 int SVOffset, EVT MemVT,
3990                                 bool isVolatile, bool isNonTemporal,
3991                                 unsigned Alignment) {
3992  SDValue Undef = getUNDEF(Ptr.getValueType());
3993  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3994                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3995}
3996
3997SDValue
3998SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3999                             SDValue Offset, ISD::MemIndexedMode AM) {
4000  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4001  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4002         "Load is already a indexed load!");
4003  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
4004                 LD->getChain(), Base, Offset, LD->getSrcValue(),
4005                 LD->getSrcValueOffset(), LD->getMemoryVT(),
4006                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4007}
4008
4009SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4010                               SDValue Ptr, const Value *SV, int SVOffset,
4011                               bool isVolatile, bool isNonTemporal,
4012                               unsigned Alignment) {
4013  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4014    Alignment = getEVTAlignment(Val.getValueType());
4015
4016  // Check if the memory reference references a frame index
4017  if (!SV)
4018    if (const FrameIndexSDNode *FI =
4019          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4020      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4021
4022  MachineFunction &MF = getMachineFunction();
4023  unsigned Flags = MachineMemOperand::MOStore;
4024  if (isVolatile)
4025    Flags |= MachineMemOperand::MOVolatile;
4026  if (isNonTemporal)
4027    Flags |= MachineMemOperand::MONonTemporal;
4028  MachineMemOperand *MMO =
4029    MF.getMachineMemOperand(SV, Flags, SVOffset,
4030                            Val.getValueType().getStoreSize(), Alignment);
4031
4032  return getStore(Chain, dl, Val, Ptr, MMO);
4033}
4034
4035SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4036                               SDValue Ptr, MachineMemOperand *MMO) {
4037  EVT VT = Val.getValueType();
4038  SDVTList VTs = getVTList(MVT::Other);
4039  SDValue Undef = getUNDEF(Ptr.getValueType());
4040  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4041  FoldingSetNodeID ID;
4042  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4043  ID.AddInteger(VT.getRawBits());
4044  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4045                                     MMO->isNonTemporal()));
4046  void *IP = 0;
4047  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4048    cast<StoreSDNode>(E)->refineAlignment(MMO);
4049    return SDValue(E, 0);
4050  }
4051  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4052                                              false, VT, MMO);
4053  CSEMap.InsertNode(N, IP);
4054  AllNodes.push_back(N);
4055  return SDValue(N, 0);
4056}
4057
4058SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4059                                    SDValue Ptr, const Value *SV,
4060                                    int SVOffset, EVT SVT,
4061                                    bool isVolatile, bool isNonTemporal,
4062                                    unsigned Alignment) {
4063  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4064    Alignment = getEVTAlignment(SVT);
4065
4066  // Check if the memory reference references a frame index
4067  if (!SV)
4068    if (const FrameIndexSDNode *FI =
4069          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4070      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4071
4072  MachineFunction &MF = getMachineFunction();
4073  unsigned Flags = MachineMemOperand::MOStore;
4074  if (isVolatile)
4075    Flags |= MachineMemOperand::MOVolatile;
4076  if (isNonTemporal)
4077    Flags |= MachineMemOperand::MONonTemporal;
4078  MachineMemOperand *MMO =
4079    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4080
4081  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4082}
4083
4084SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4085                                    SDValue Ptr, EVT SVT,
4086                                    MachineMemOperand *MMO) {
4087  EVT VT = Val.getValueType();
4088
4089  if (VT == SVT)
4090    return getStore(Chain, dl, Val, Ptr, MMO);
4091
4092  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4093         "Should only be a truncating store, not extending!");
4094  assert(VT.isInteger() == SVT.isInteger() &&
4095         "Can't do FP-INT conversion!");
4096  assert(VT.isVector() == SVT.isVector() &&
4097         "Cannot use trunc store to convert to or from a vector!");
4098  assert((!VT.isVector() ||
4099          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4100         "Cannot use trunc store to change the number of vector elements!");
4101
4102  SDVTList VTs = getVTList(MVT::Other);
4103  SDValue Undef = getUNDEF(Ptr.getValueType());
4104  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4105  FoldingSetNodeID ID;
4106  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4107  ID.AddInteger(SVT.getRawBits());
4108  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4109                                     MMO->isNonTemporal()));
4110  void *IP = 0;
4111  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4112    cast<StoreSDNode>(E)->refineAlignment(MMO);
4113    return SDValue(E, 0);
4114  }
4115  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4116                                              true, SVT, MMO);
4117  CSEMap.InsertNode(N, IP);
4118  AllNodes.push_back(N);
4119  return SDValue(N, 0);
4120}
4121
4122SDValue
4123SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4124                              SDValue Offset, ISD::MemIndexedMode AM) {
4125  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4126  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4127         "Store is already a indexed store!");
4128  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4129  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4130  FoldingSetNodeID ID;
4131  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4132  ID.AddInteger(ST->getMemoryVT().getRawBits());
4133  ID.AddInteger(ST->getRawSubclassData());
4134  void *IP = 0;
4135  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4136    return SDValue(E, 0);
4137
4138  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4139                                              ST->isTruncatingStore(),
4140                                              ST->getMemoryVT(),
4141                                              ST->getMemOperand());
4142  CSEMap.InsertNode(N, IP);
4143  AllNodes.push_back(N);
4144  return SDValue(N, 0);
4145}
4146
4147SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4148                               SDValue Chain, SDValue Ptr,
4149                               SDValue SV) {
4150  SDValue Ops[] = { Chain, Ptr, SV };
4151  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4152}
4153
4154SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4155                              const SDUse *Ops, unsigned NumOps) {
4156  switch (NumOps) {
4157  case 0: return getNode(Opcode, DL, VT);
4158  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4159  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4160  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4161  default: break;
4162  }
4163
4164  // Copy from an SDUse array into an SDValue array for use with
4165  // the regular getNode logic.
4166  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4167  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4168}
4169
4170SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4171                              const SDValue *Ops, unsigned NumOps) {
4172  switch (NumOps) {
4173  case 0: return getNode(Opcode, DL, VT);
4174  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4175  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4176  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4177  default: break;
4178  }
4179
4180  switch (Opcode) {
4181  default: break;
4182  case ISD::SELECT_CC: {
4183    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4184    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4185           "LHS and RHS of condition must have same type!");
4186    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4187           "True and False arms of SelectCC must have same type!");
4188    assert(Ops[2].getValueType() == VT &&
4189           "select_cc node must be of same type as true and false value!");
4190    break;
4191  }
4192  case ISD::BR_CC: {
4193    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4194    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4195           "LHS/RHS of comparison should match types!");
4196    break;
4197  }
4198  }
4199
4200  // Memoize nodes.
4201  SDNode *N;
4202  SDVTList VTs = getVTList(VT);
4203
4204  if (VT != MVT::Flag) {
4205    FoldingSetNodeID ID;
4206    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4207    void *IP = 0;
4208
4209    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4210      return SDValue(E, 0);
4211
4212    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4213    CSEMap.InsertNode(N, IP);
4214  } else {
4215    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4216  }
4217
4218  AllNodes.push_back(N);
4219#ifndef NDEBUG
4220  VerifyNode(N);
4221#endif
4222  return SDValue(N, 0);
4223}
4224
4225SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4226                              const std::vector<EVT> &ResultTys,
4227                              const SDValue *Ops, unsigned NumOps) {
4228  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4229                 Ops, NumOps);
4230}
4231
4232SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4233                              const EVT *VTs, unsigned NumVTs,
4234                              const SDValue *Ops, unsigned NumOps) {
4235  if (NumVTs == 1)
4236    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4237  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4238}
4239
4240SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4241                              const SDValue *Ops, unsigned NumOps) {
4242  if (VTList.NumVTs == 1)
4243    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4244
4245#if 0
4246  switch (Opcode) {
4247  // FIXME: figure out how to safely handle things like
4248  // int foo(int x) { return 1 << (x & 255); }
4249  // int bar() { return foo(256); }
4250  case ISD::SRA_PARTS:
4251  case ISD::SRL_PARTS:
4252  case ISD::SHL_PARTS:
4253    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4254        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4255      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4256    else if (N3.getOpcode() == ISD::AND)
4257      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4258        // If the and is only masking out bits that cannot effect the shift,
4259        // eliminate the and.
4260        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4261        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4262          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4263      }
4264    break;
4265  }
4266#endif
4267
4268  // Memoize the node unless it returns a flag.
4269  SDNode *N;
4270  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4271    FoldingSetNodeID ID;
4272    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4273    void *IP = 0;
4274    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4275      return SDValue(E, 0);
4276
4277    if (NumOps == 1) {
4278      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4279    } else if (NumOps == 2) {
4280      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4281    } else if (NumOps == 3) {
4282      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4283                                            Ops[2]);
4284    } else {
4285      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4286    }
4287    CSEMap.InsertNode(N, IP);
4288  } else {
4289    if (NumOps == 1) {
4290      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4291    } else if (NumOps == 2) {
4292      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4293    } else if (NumOps == 3) {
4294      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4295                                            Ops[2]);
4296    } else {
4297      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4298    }
4299  }
4300  AllNodes.push_back(N);
4301#ifndef NDEBUG
4302  VerifyNode(N);
4303#endif
4304  return SDValue(N, 0);
4305}
4306
4307SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4308  return getNode(Opcode, DL, VTList, 0, 0);
4309}
4310
4311SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4312                              SDValue N1) {
4313  SDValue Ops[] = { N1 };
4314  return getNode(Opcode, DL, VTList, Ops, 1);
4315}
4316
4317SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4318                              SDValue N1, SDValue N2) {
4319  SDValue Ops[] = { N1, N2 };
4320  return getNode(Opcode, DL, VTList, Ops, 2);
4321}
4322
4323SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4324                              SDValue N1, SDValue N2, SDValue N3) {
4325  SDValue Ops[] = { N1, N2, N3 };
4326  return getNode(Opcode, DL, VTList, Ops, 3);
4327}
4328
4329SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4330                              SDValue N1, SDValue N2, SDValue N3,
4331                              SDValue N4) {
4332  SDValue Ops[] = { N1, N2, N3, N4 };
4333  return getNode(Opcode, DL, VTList, Ops, 4);
4334}
4335
4336SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4337                              SDValue N1, SDValue N2, SDValue N3,
4338                              SDValue N4, SDValue N5) {
4339  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4340  return getNode(Opcode, DL, VTList, Ops, 5);
4341}
4342
4343SDVTList SelectionDAG::getVTList(EVT VT) {
4344  return makeVTList(SDNode::getValueTypeList(VT), 1);
4345}
4346
4347SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4348  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4349       E = VTList.rend(); I != E; ++I)
4350    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4351      return *I;
4352
4353  EVT *Array = Allocator.Allocate<EVT>(2);
4354  Array[0] = VT1;
4355  Array[1] = VT2;
4356  SDVTList Result = makeVTList(Array, 2);
4357  VTList.push_back(Result);
4358  return Result;
4359}
4360
4361SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4362  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4363       E = VTList.rend(); I != E; ++I)
4364    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4365                          I->VTs[2] == VT3)
4366      return *I;
4367
4368  EVT *Array = Allocator.Allocate<EVT>(3);
4369  Array[0] = VT1;
4370  Array[1] = VT2;
4371  Array[2] = VT3;
4372  SDVTList Result = makeVTList(Array, 3);
4373  VTList.push_back(Result);
4374  return Result;
4375}
4376
4377SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4378  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4379       E = VTList.rend(); I != E; ++I)
4380    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4381                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4382      return *I;
4383
4384  EVT *Array = Allocator.Allocate<EVT>(4);
4385  Array[0] = VT1;
4386  Array[1] = VT2;
4387  Array[2] = VT3;
4388  Array[3] = VT4;
4389  SDVTList Result = makeVTList(Array, 4);
4390  VTList.push_back(Result);
4391  return Result;
4392}
4393
4394SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4395  switch (NumVTs) {
4396    case 0: llvm_unreachable("Cannot have nodes without results!");
4397    case 1: return getVTList(VTs[0]);
4398    case 2: return getVTList(VTs[0], VTs[1]);
4399    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4400    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4401    default: break;
4402  }
4403
4404  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4405       E = VTList.rend(); I != E; ++I) {
4406    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4407      continue;
4408
4409    bool NoMatch = false;
4410    for (unsigned i = 2; i != NumVTs; ++i)
4411      if (VTs[i] != I->VTs[i]) {
4412        NoMatch = true;
4413        break;
4414      }
4415    if (!NoMatch)
4416      return *I;
4417  }
4418
4419  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4420  std::copy(VTs, VTs+NumVTs, Array);
4421  SDVTList Result = makeVTList(Array, NumVTs);
4422  VTList.push_back(Result);
4423  return Result;
4424}
4425
4426
4427/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4428/// specified operands.  If the resultant node already exists in the DAG,
4429/// this does not modify the specified node, instead it returns the node that
4430/// already exists.  If the resultant node does not exist in the DAG, the
4431/// input node is returned.  As a degenerate case, if you specify the same
4432/// input operands as the node already has, the input node is returned.
4433SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4434  SDNode *N = InN.getNode();
4435  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4436
4437  // Check to see if there is no change.
4438  if (Op == N->getOperand(0)) return InN;
4439
4440  // See if the modified node already exists.
4441  void *InsertPos = 0;
4442  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4443    return SDValue(Existing, InN.getResNo());
4444
4445  // Nope it doesn't.  Remove the node from its current place in the maps.
4446  if (InsertPos)
4447    if (!RemoveNodeFromCSEMaps(N))
4448      InsertPos = 0;
4449
4450  // Now we update the operands.
4451  N->OperandList[0].set(Op);
4452
4453  // If this gets put into a CSE map, add it.
4454  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4455  return InN;
4456}
4457
4458SDValue SelectionDAG::
4459UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4460  SDNode *N = InN.getNode();
4461  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4462
4463  // Check to see if there is no change.
4464  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4465    return InN;   // No operands changed, just return the input node.
4466
4467  // See if the modified node already exists.
4468  void *InsertPos = 0;
4469  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4470    return SDValue(Existing, InN.getResNo());
4471
4472  // Nope it doesn't.  Remove the node from its current place in the maps.
4473  if (InsertPos)
4474    if (!RemoveNodeFromCSEMaps(N))
4475      InsertPos = 0;
4476
4477  // Now we update the operands.
4478  if (N->OperandList[0] != Op1)
4479    N->OperandList[0].set(Op1);
4480  if (N->OperandList[1] != Op2)
4481    N->OperandList[1].set(Op2);
4482
4483  // If this gets put into a CSE map, add it.
4484  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4485  return InN;
4486}
4487
4488SDValue SelectionDAG::
4489UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4490  SDValue Ops[] = { Op1, Op2, Op3 };
4491  return UpdateNodeOperands(N, Ops, 3);
4492}
4493
4494SDValue SelectionDAG::
4495UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4496                   SDValue Op3, SDValue Op4) {
4497  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4498  return UpdateNodeOperands(N, Ops, 4);
4499}
4500
4501SDValue SelectionDAG::
4502UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4503                   SDValue Op3, SDValue Op4, SDValue Op5) {
4504  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4505  return UpdateNodeOperands(N, Ops, 5);
4506}
4507
4508SDValue SelectionDAG::
4509UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4510  SDNode *N = InN.getNode();
4511  assert(N->getNumOperands() == NumOps &&
4512         "Update with wrong number of operands");
4513
4514  // Check to see if there is no change.
4515  bool AnyChange = false;
4516  for (unsigned i = 0; i != NumOps; ++i) {
4517    if (Ops[i] != N->getOperand(i)) {
4518      AnyChange = true;
4519      break;
4520    }
4521  }
4522
4523  // No operands changed, just return the input node.
4524  if (!AnyChange) return InN;
4525
4526  // See if the modified node already exists.
4527  void *InsertPos = 0;
4528  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4529    return SDValue(Existing, InN.getResNo());
4530
4531  // Nope it doesn't.  Remove the node from its current place in the maps.
4532  if (InsertPos)
4533    if (!RemoveNodeFromCSEMaps(N))
4534      InsertPos = 0;
4535
4536  // Now we update the operands.
4537  for (unsigned i = 0; i != NumOps; ++i)
4538    if (N->OperandList[i] != Ops[i])
4539      N->OperandList[i].set(Ops[i]);
4540
4541  // If this gets put into a CSE map, add it.
4542  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4543  return InN;
4544}
4545
4546/// DropOperands - Release the operands and set this node to have
4547/// zero operands.
4548void SDNode::DropOperands() {
4549  // Unlike the code in MorphNodeTo that does this, we don't need to
4550  // watch for dead nodes here.
4551  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4552    SDUse &Use = *I++;
4553    Use.set(SDValue());
4554  }
4555}
4556
4557/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4558/// machine opcode.
4559///
4560SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4561                                   EVT VT) {
4562  SDVTList VTs = getVTList(VT);
4563  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4564}
4565
4566SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4567                                   EVT VT, SDValue Op1) {
4568  SDVTList VTs = getVTList(VT);
4569  SDValue Ops[] = { Op1 };
4570  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4571}
4572
4573SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4574                                   EVT VT, SDValue Op1,
4575                                   SDValue Op2) {
4576  SDVTList VTs = getVTList(VT);
4577  SDValue Ops[] = { Op1, Op2 };
4578  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4579}
4580
4581SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4582                                   EVT VT, SDValue Op1,
4583                                   SDValue Op2, SDValue Op3) {
4584  SDVTList VTs = getVTList(VT);
4585  SDValue Ops[] = { Op1, Op2, Op3 };
4586  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4587}
4588
4589SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4590                                   EVT VT, const SDValue *Ops,
4591                                   unsigned NumOps) {
4592  SDVTList VTs = getVTList(VT);
4593  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4594}
4595
4596SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4597                                   EVT VT1, EVT VT2, const SDValue *Ops,
4598                                   unsigned NumOps) {
4599  SDVTList VTs = getVTList(VT1, VT2);
4600  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4601}
4602
4603SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4604                                   EVT VT1, EVT VT2) {
4605  SDVTList VTs = getVTList(VT1, VT2);
4606  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4607}
4608
4609SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4610                                   EVT VT1, EVT VT2, EVT VT3,
4611                                   const SDValue *Ops, unsigned NumOps) {
4612  SDVTList VTs = getVTList(VT1, VT2, VT3);
4613  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4614}
4615
4616SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4617                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4618                                   const SDValue *Ops, unsigned NumOps) {
4619  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4620  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4621}
4622
4623SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4624                                   EVT VT1, EVT VT2,
4625                                   SDValue Op1) {
4626  SDVTList VTs = getVTList(VT1, VT2);
4627  SDValue Ops[] = { Op1 };
4628  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4629}
4630
4631SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4632                                   EVT VT1, EVT VT2,
4633                                   SDValue Op1, SDValue Op2) {
4634  SDVTList VTs = getVTList(VT1, VT2);
4635  SDValue Ops[] = { Op1, Op2 };
4636  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4637}
4638
4639SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4640                                   EVT VT1, EVT VT2,
4641                                   SDValue Op1, SDValue Op2,
4642                                   SDValue Op3) {
4643  SDVTList VTs = getVTList(VT1, VT2);
4644  SDValue Ops[] = { Op1, Op2, Op3 };
4645  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4646}
4647
4648SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4649                                   EVT VT1, EVT VT2, EVT VT3,
4650                                   SDValue Op1, SDValue Op2,
4651                                   SDValue Op3) {
4652  SDVTList VTs = getVTList(VT1, VT2, VT3);
4653  SDValue Ops[] = { Op1, Op2, Op3 };
4654  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4655}
4656
4657SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4658                                   SDVTList VTs, const SDValue *Ops,
4659                                   unsigned NumOps) {
4660  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4661  // Reset the NodeID to -1.
4662  N->setNodeId(-1);
4663  return N;
4664}
4665
4666/// MorphNodeTo - This *mutates* the specified node to have the specified
4667/// return type, opcode, and operands.
4668///
4669/// Note that MorphNodeTo returns the resultant node.  If there is already a
4670/// node of the specified opcode and operands, it returns that node instead of
4671/// the current one.  Note that the DebugLoc need not be the same.
4672///
4673/// Using MorphNodeTo is faster than creating a new node and swapping it in
4674/// with ReplaceAllUsesWith both because it often avoids allocating a new
4675/// node, and because it doesn't require CSE recalculation for any of
4676/// the node's users.
4677///
4678SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4679                                  SDVTList VTs, const SDValue *Ops,
4680                                  unsigned NumOps) {
4681  // If an identical node already exists, use it.
4682  void *IP = 0;
4683  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4684    FoldingSetNodeID ID;
4685    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4686    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4687      return ON;
4688  }
4689
4690  if (!RemoveNodeFromCSEMaps(N))
4691    IP = 0;
4692
4693  // Start the morphing.
4694  N->NodeType = Opc;
4695  N->ValueList = VTs.VTs;
4696  N->NumValues = VTs.NumVTs;
4697
4698  // Clear the operands list, updating used nodes to remove this from their
4699  // use list.  Keep track of any operands that become dead as a result.
4700  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4701  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4702    SDUse &Use = *I++;
4703    SDNode *Used = Use.getNode();
4704    Use.set(SDValue());
4705    if (Used->use_empty())
4706      DeadNodeSet.insert(Used);
4707  }
4708
4709  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4710    // Initialize the memory references information.
4711    MN->setMemRefs(0, 0);
4712    // If NumOps is larger than the # of operands we can have in a
4713    // MachineSDNode, reallocate the operand list.
4714    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4715      if (MN->OperandsNeedDelete)
4716        delete[] MN->OperandList;
4717      if (NumOps > array_lengthof(MN->LocalOperands))
4718        // We're creating a final node that will live unmorphed for the
4719        // remainder of the current SelectionDAG iteration, so we can allocate
4720        // the operands directly out of a pool with no recycling metadata.
4721        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4722                         Ops, NumOps);
4723      else
4724        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4725      MN->OperandsNeedDelete = false;
4726    } else
4727      MN->InitOperands(MN->OperandList, Ops, NumOps);
4728  } else {
4729    // If NumOps is larger than the # of operands we currently have, reallocate
4730    // the operand list.
4731    if (NumOps > N->NumOperands) {
4732      if (N->OperandsNeedDelete)
4733        delete[] N->OperandList;
4734      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4735      N->OperandsNeedDelete = true;
4736    } else
4737      N->InitOperands(N->OperandList, Ops, NumOps);
4738  }
4739
4740  // Delete any nodes that are still dead after adding the uses for the
4741  // new operands.
4742  if (!DeadNodeSet.empty()) {
4743    SmallVector<SDNode *, 16> DeadNodes;
4744    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4745         E = DeadNodeSet.end(); I != E; ++I)
4746      if ((*I)->use_empty())
4747        DeadNodes.push_back(*I);
4748    RemoveDeadNodes(DeadNodes);
4749  }
4750
4751  if (IP)
4752    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4753  return N;
4754}
4755
4756
4757/// getMachineNode - These are used for target selectors to create a new node
4758/// with specified return type(s), MachineInstr opcode, and operands.
4759///
4760/// Note that getMachineNode returns the resultant node.  If there is already a
4761/// node of the specified opcode and operands, it returns that node instead of
4762/// the current one.
4763MachineSDNode *
4764SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4765  SDVTList VTs = getVTList(VT);
4766  return getMachineNode(Opcode, dl, VTs, 0, 0);
4767}
4768
4769MachineSDNode *
4770SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4771  SDVTList VTs = getVTList(VT);
4772  SDValue Ops[] = { Op1 };
4773  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4774}
4775
4776MachineSDNode *
4777SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4778                             SDValue Op1, SDValue Op2) {
4779  SDVTList VTs = getVTList(VT);
4780  SDValue Ops[] = { Op1, Op2 };
4781  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4782}
4783
4784MachineSDNode *
4785SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4786                             SDValue Op1, SDValue Op2, SDValue Op3) {
4787  SDVTList VTs = getVTList(VT);
4788  SDValue Ops[] = { Op1, Op2, Op3 };
4789  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4790}
4791
4792MachineSDNode *
4793SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4794                             const SDValue *Ops, unsigned NumOps) {
4795  SDVTList VTs = getVTList(VT);
4796  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4797}
4798
4799MachineSDNode *
4800SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4801  SDVTList VTs = getVTList(VT1, VT2);
4802  return getMachineNode(Opcode, dl, VTs, 0, 0);
4803}
4804
4805MachineSDNode *
4806SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4807                             EVT VT1, EVT VT2, SDValue Op1) {
4808  SDVTList VTs = getVTList(VT1, VT2);
4809  SDValue Ops[] = { Op1 };
4810  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4811}
4812
4813MachineSDNode *
4814SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4815                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4816  SDVTList VTs = getVTList(VT1, VT2);
4817  SDValue Ops[] = { Op1, Op2 };
4818  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4819}
4820
4821MachineSDNode *
4822SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4823                             EVT VT1, EVT VT2, SDValue Op1,
4824                             SDValue Op2, SDValue Op3) {
4825  SDVTList VTs = getVTList(VT1, VT2);
4826  SDValue Ops[] = { Op1, Op2, Op3 };
4827  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4828}
4829
4830MachineSDNode *
4831SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4832                             EVT VT1, EVT VT2,
4833                             const SDValue *Ops, unsigned NumOps) {
4834  SDVTList VTs = getVTList(VT1, VT2);
4835  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4836}
4837
4838MachineSDNode *
4839SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4840                             EVT VT1, EVT VT2, EVT VT3,
4841                             SDValue Op1, SDValue Op2) {
4842  SDVTList VTs = getVTList(VT1, VT2, VT3);
4843  SDValue Ops[] = { Op1, Op2 };
4844  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4845}
4846
4847MachineSDNode *
4848SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4849                             EVT VT1, EVT VT2, EVT VT3,
4850                             SDValue Op1, SDValue Op2, SDValue Op3) {
4851  SDVTList VTs = getVTList(VT1, VT2, VT3);
4852  SDValue Ops[] = { Op1, Op2, Op3 };
4853  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4854}
4855
4856MachineSDNode *
4857SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4858                             EVT VT1, EVT VT2, EVT VT3,
4859                             const SDValue *Ops, unsigned NumOps) {
4860  SDVTList VTs = getVTList(VT1, VT2, VT3);
4861  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4862}
4863
4864MachineSDNode *
4865SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4866                             EVT VT2, EVT VT3, EVT VT4,
4867                             const SDValue *Ops, unsigned NumOps) {
4868  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4869  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4870}
4871
4872MachineSDNode *
4873SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4874                             const std::vector<EVT> &ResultTys,
4875                             const SDValue *Ops, unsigned NumOps) {
4876  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4877  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4878}
4879
4880MachineSDNode *
4881SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4882                             const SDValue *Ops, unsigned NumOps) {
4883  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4884  MachineSDNode *N;
4885  void *IP;
4886
4887  if (DoCSE) {
4888    FoldingSetNodeID ID;
4889    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4890    IP = 0;
4891    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4892      return cast<MachineSDNode>(E);
4893  }
4894
4895  // Allocate a new MachineSDNode.
4896  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4897
4898  // Initialize the operands list.
4899  if (NumOps > array_lengthof(N->LocalOperands))
4900    // We're creating a final node that will live unmorphed for the
4901    // remainder of the current SelectionDAG iteration, so we can allocate
4902    // the operands directly out of a pool with no recycling metadata.
4903    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4904                    Ops, NumOps);
4905  else
4906    N->InitOperands(N->LocalOperands, Ops, NumOps);
4907  N->OperandsNeedDelete = false;
4908
4909  if (DoCSE)
4910    CSEMap.InsertNode(N, IP);
4911
4912  AllNodes.push_back(N);
4913#ifndef NDEBUG
4914  VerifyNode(N);
4915#endif
4916  return N;
4917}
4918
4919/// getTargetExtractSubreg - A convenience function for creating
4920/// TargetOpcode::EXTRACT_SUBREG nodes.
4921SDValue
4922SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4923                                     SDValue Operand) {
4924  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4925  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4926                                  VT, Operand, SRIdxVal);
4927  return SDValue(Subreg, 0);
4928}
4929
4930/// getTargetInsertSubreg - A convenience function for creating
4931/// TargetOpcode::INSERT_SUBREG nodes.
4932SDValue
4933SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4934                                    SDValue Operand, SDValue Subreg) {
4935  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4936  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4937                                  VT, Operand, Subreg, SRIdxVal);
4938  return SDValue(Result, 0);
4939}
4940
4941/// getNodeIfExists - Get the specified node if it's already available, or
4942/// else return NULL.
4943SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4944                                      const SDValue *Ops, unsigned NumOps) {
4945  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4946    FoldingSetNodeID ID;
4947    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4948    void *IP = 0;
4949    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4950      return E;
4951  }
4952  return NULL;
4953}
4954
4955/// getDbgValue - Creates a SDDbgValue node.
4956///
4957SDDbgValue *
4958SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4959                          DebugLoc DL, unsigned O) {
4960  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4961}
4962
4963SDDbgValue *
4964SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4965                          DebugLoc DL, unsigned O) {
4966  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4967}
4968
4969SDDbgValue *
4970SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4971                          DebugLoc DL, unsigned O) {
4972  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4973}
4974
4975namespace {
4976
4977/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4978/// pointed to by a use iterator is deleted, increment the use iterator
4979/// so that it doesn't dangle.
4980///
4981/// This class also manages a "downlink" DAGUpdateListener, to forward
4982/// messages to ReplaceAllUsesWith's callers.
4983///
4984class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4985  SelectionDAG::DAGUpdateListener *DownLink;
4986  SDNode::use_iterator &UI;
4987  SDNode::use_iterator &UE;
4988
4989  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4990    // Increment the iterator as needed.
4991    while (UI != UE && N == *UI)
4992      ++UI;
4993
4994    // Then forward the message.
4995    if (DownLink) DownLink->NodeDeleted(N, E);
4996  }
4997
4998  virtual void NodeUpdated(SDNode *N) {
4999    // Just forward the message.
5000    if (DownLink) DownLink->NodeUpdated(N);
5001  }
5002
5003public:
5004  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5005                     SDNode::use_iterator &ui,
5006                     SDNode::use_iterator &ue)
5007    : DownLink(dl), UI(ui), UE(ue) {}
5008};
5009
5010}
5011
5012/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5013/// This can cause recursive merging of nodes in the DAG.
5014///
5015/// This version assumes From has a single result value.
5016///
5017void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5018                                      DAGUpdateListener *UpdateListener) {
5019  SDNode *From = FromN.getNode();
5020  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5021         "Cannot replace with this method!");
5022  assert(From != To.getNode() && "Cannot replace uses of with self");
5023
5024  // Iterate over all the existing uses of From. New uses will be added
5025  // to the beginning of the use list, which we avoid visiting.
5026  // This specifically avoids visiting uses of From that arise while the
5027  // replacement is happening, because any such uses would be the result
5028  // of CSE: If an existing node looks like From after one of its operands
5029  // is replaced by To, we don't want to replace of all its users with To
5030  // too. See PR3018 for more info.
5031  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5032  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5033  while (UI != UE) {
5034    SDNode *User = *UI;
5035
5036    // This node is about to morph, remove its old self from the CSE maps.
5037    RemoveNodeFromCSEMaps(User);
5038
5039    // A user can appear in a use list multiple times, and when this
5040    // happens the uses are usually next to each other in the list.
5041    // To help reduce the number of CSE recomputations, process all
5042    // the uses of this user that we can find this way.
5043    do {
5044      SDUse &Use = UI.getUse();
5045      ++UI;
5046      Use.set(To);
5047    } while (UI != UE && *UI == User);
5048
5049    // Now that we have modified User, add it back to the CSE maps.  If it
5050    // already exists there, recursively merge the results together.
5051    AddModifiedNodeToCSEMaps(User, &Listener);
5052  }
5053}
5054
5055/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5056/// This can cause recursive merging of nodes in the DAG.
5057///
5058/// This version assumes that for each value of From, there is a
5059/// corresponding value in To in the same position with the same type.
5060///
5061void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5062                                      DAGUpdateListener *UpdateListener) {
5063#ifndef NDEBUG
5064  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5065    assert((!From->hasAnyUseOfValue(i) ||
5066            From->getValueType(i) == To->getValueType(i)) &&
5067           "Cannot use this version of ReplaceAllUsesWith!");
5068#endif
5069
5070  // Handle the trivial case.
5071  if (From == To)
5072    return;
5073
5074  // Iterate over just the existing users of From. See the comments in
5075  // the ReplaceAllUsesWith above.
5076  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5077  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5078  while (UI != UE) {
5079    SDNode *User = *UI;
5080
5081    // This node is about to morph, remove its old self from the CSE maps.
5082    RemoveNodeFromCSEMaps(User);
5083
5084    // A user can appear in a use list multiple times, and when this
5085    // happens the uses are usually next to each other in the list.
5086    // To help reduce the number of CSE recomputations, process all
5087    // the uses of this user that we can find this way.
5088    do {
5089      SDUse &Use = UI.getUse();
5090      ++UI;
5091      Use.setNode(To);
5092    } while (UI != UE && *UI == User);
5093
5094    // Now that we have modified User, add it back to the CSE maps.  If it
5095    // already exists there, recursively merge the results together.
5096    AddModifiedNodeToCSEMaps(User, &Listener);
5097  }
5098}
5099
5100/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5101/// This can cause recursive merging of nodes in the DAG.
5102///
5103/// This version can replace From with any result values.  To must match the
5104/// number and types of values returned by From.
5105void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5106                                      const SDValue *To,
5107                                      DAGUpdateListener *UpdateListener) {
5108  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5109    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5110
5111  // Iterate over just the existing users of From. See the comments in
5112  // the ReplaceAllUsesWith above.
5113  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5114  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5115  while (UI != UE) {
5116    SDNode *User = *UI;
5117
5118    // This node is about to morph, remove its old self from the CSE maps.
5119    RemoveNodeFromCSEMaps(User);
5120
5121    // A user can appear in a use list multiple times, and when this
5122    // happens the uses are usually next to each other in the list.
5123    // To help reduce the number of CSE recomputations, process all
5124    // the uses of this user that we can find this way.
5125    do {
5126      SDUse &Use = UI.getUse();
5127      const SDValue &ToOp = To[Use.getResNo()];
5128      ++UI;
5129      Use.set(ToOp);
5130    } while (UI != UE && *UI == User);
5131
5132    // Now that we have modified User, add it back to the CSE maps.  If it
5133    // already exists there, recursively merge the results together.
5134    AddModifiedNodeToCSEMaps(User, &Listener);
5135  }
5136}
5137
5138/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5139/// uses of other values produced by From.getNode() alone.  The Deleted
5140/// vector is handled the same way as for ReplaceAllUsesWith.
5141void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5142                                             DAGUpdateListener *UpdateListener){
5143  // Handle the really simple, really trivial case efficiently.
5144  if (From == To) return;
5145
5146  // Handle the simple, trivial, case efficiently.
5147  if (From.getNode()->getNumValues() == 1) {
5148    ReplaceAllUsesWith(From, To, UpdateListener);
5149    return;
5150  }
5151
5152  // Iterate over just the existing users of From. See the comments in
5153  // the ReplaceAllUsesWith above.
5154  SDNode::use_iterator UI = From.getNode()->use_begin(),
5155                       UE = From.getNode()->use_end();
5156  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5157  while (UI != UE) {
5158    SDNode *User = *UI;
5159    bool UserRemovedFromCSEMaps = false;
5160
5161    // A user can appear in a use list multiple times, and when this
5162    // happens the uses are usually next to each other in the list.
5163    // To help reduce the number of CSE recomputations, process all
5164    // the uses of this user that we can find this way.
5165    do {
5166      SDUse &Use = UI.getUse();
5167
5168      // Skip uses of different values from the same node.
5169      if (Use.getResNo() != From.getResNo()) {
5170        ++UI;
5171        continue;
5172      }
5173
5174      // If this node hasn't been modified yet, it's still in the CSE maps,
5175      // so remove its old self from the CSE maps.
5176      if (!UserRemovedFromCSEMaps) {
5177        RemoveNodeFromCSEMaps(User);
5178        UserRemovedFromCSEMaps = true;
5179      }
5180
5181      ++UI;
5182      Use.set(To);
5183    } while (UI != UE && *UI == User);
5184
5185    // We are iterating over all uses of the From node, so if a use
5186    // doesn't use the specific value, no changes are made.
5187    if (!UserRemovedFromCSEMaps)
5188      continue;
5189
5190    // Now that we have modified User, add it back to the CSE maps.  If it
5191    // already exists there, recursively merge the results together.
5192    AddModifiedNodeToCSEMaps(User, &Listener);
5193  }
5194}
5195
5196namespace {
5197  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5198  /// to record information about a use.
5199  struct UseMemo {
5200    SDNode *User;
5201    unsigned Index;
5202    SDUse *Use;
5203  };
5204
5205  /// operator< - Sort Memos by User.
5206  bool operator<(const UseMemo &L, const UseMemo &R) {
5207    return (intptr_t)L.User < (intptr_t)R.User;
5208  }
5209}
5210
5211/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5212/// uses of other values produced by From.getNode() alone.  The same value
5213/// may appear in both the From and To list.  The Deleted vector is
5214/// handled the same way as for ReplaceAllUsesWith.
5215void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5216                                              const SDValue *To,
5217                                              unsigned Num,
5218                                              DAGUpdateListener *UpdateListener){
5219  // Handle the simple, trivial case efficiently.
5220  if (Num == 1)
5221    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5222
5223  // Read up all the uses and make records of them. This helps
5224  // processing new uses that are introduced during the
5225  // replacement process.
5226  SmallVector<UseMemo, 4> Uses;
5227  for (unsigned i = 0; i != Num; ++i) {
5228    unsigned FromResNo = From[i].getResNo();
5229    SDNode *FromNode = From[i].getNode();
5230    for (SDNode::use_iterator UI = FromNode->use_begin(),
5231         E = FromNode->use_end(); UI != E; ++UI) {
5232      SDUse &Use = UI.getUse();
5233      if (Use.getResNo() == FromResNo) {
5234        UseMemo Memo = { *UI, i, &Use };
5235        Uses.push_back(Memo);
5236      }
5237    }
5238  }
5239
5240  // Sort the uses, so that all the uses from a given User are together.
5241  std::sort(Uses.begin(), Uses.end());
5242
5243  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5244       UseIndex != UseIndexEnd; ) {
5245    // We know that this user uses some value of From.  If it is the right
5246    // value, update it.
5247    SDNode *User = Uses[UseIndex].User;
5248
5249    // This node is about to morph, remove its old self from the CSE maps.
5250    RemoveNodeFromCSEMaps(User);
5251
5252    // The Uses array is sorted, so all the uses for a given User
5253    // are next to each other in the list.
5254    // To help reduce the number of CSE recomputations, process all
5255    // the uses of this user that we can find this way.
5256    do {
5257      unsigned i = Uses[UseIndex].Index;
5258      SDUse &Use = *Uses[UseIndex].Use;
5259      ++UseIndex;
5260
5261      Use.set(To[i]);
5262    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5263
5264    // Now that we have modified User, add it back to the CSE maps.  If it
5265    // already exists there, recursively merge the results together.
5266    AddModifiedNodeToCSEMaps(User, UpdateListener);
5267  }
5268}
5269
5270/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5271/// based on their topological order. It returns the maximum id and a vector
5272/// of the SDNodes* in assigned order by reference.
5273unsigned SelectionDAG::AssignTopologicalOrder() {
5274
5275  unsigned DAGSize = 0;
5276
5277  // SortedPos tracks the progress of the algorithm. Nodes before it are
5278  // sorted, nodes after it are unsorted. When the algorithm completes
5279  // it is at the end of the list.
5280  allnodes_iterator SortedPos = allnodes_begin();
5281
5282  // Visit all the nodes. Move nodes with no operands to the front of
5283  // the list immediately. Annotate nodes that do have operands with their
5284  // operand count. Before we do this, the Node Id fields of the nodes
5285  // may contain arbitrary values. After, the Node Id fields for nodes
5286  // before SortedPos will contain the topological sort index, and the
5287  // Node Id fields for nodes At SortedPos and after will contain the
5288  // count of outstanding operands.
5289  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5290    SDNode *N = I++;
5291    checkForCycles(N);
5292    unsigned Degree = N->getNumOperands();
5293    if (Degree == 0) {
5294      // A node with no uses, add it to the result array immediately.
5295      N->setNodeId(DAGSize++);
5296      allnodes_iterator Q = N;
5297      if (Q != SortedPos)
5298        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5299      assert(SortedPos != AllNodes.end() && "Overran node list");
5300      ++SortedPos;
5301    } else {
5302      // Temporarily use the Node Id as scratch space for the degree count.
5303      N->setNodeId(Degree);
5304    }
5305  }
5306
5307  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5308  // such that by the time the end is reached all nodes will be sorted.
5309  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5310    SDNode *N = I;
5311    checkForCycles(N);
5312    // N is in sorted position, so all its uses have one less operand
5313    // that needs to be sorted.
5314    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5315         UI != UE; ++UI) {
5316      SDNode *P = *UI;
5317      unsigned Degree = P->getNodeId();
5318      assert(Degree != 0 && "Invalid node degree");
5319      --Degree;
5320      if (Degree == 0) {
5321        // All of P's operands are sorted, so P may sorted now.
5322        P->setNodeId(DAGSize++);
5323        if (P != SortedPos)
5324          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5325        assert(SortedPos != AllNodes.end() && "Overran node list");
5326        ++SortedPos;
5327      } else {
5328        // Update P's outstanding operand count.
5329        P->setNodeId(Degree);
5330      }
5331    }
5332    if (I == SortedPos) {
5333#ifndef NDEBUG
5334      SDNode *S = ++I;
5335      dbgs() << "Overran sorted position:\n";
5336      S->dumprFull();
5337#endif
5338      llvm_unreachable(0);
5339    }
5340  }
5341
5342  assert(SortedPos == AllNodes.end() &&
5343         "Topological sort incomplete!");
5344  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5345         "First node in topological sort is not the entry token!");
5346  assert(AllNodes.front().getNodeId() == 0 &&
5347         "First node in topological sort has non-zero id!");
5348  assert(AllNodes.front().getNumOperands() == 0 &&
5349         "First node in topological sort has operands!");
5350  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5351         "Last node in topologic sort has unexpected id!");
5352  assert(AllNodes.back().use_empty() &&
5353         "Last node in topologic sort has users!");
5354  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5355  return DAGSize;
5356}
5357
5358/// AssignOrdering - Assign an order to the SDNode.
5359void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5360  assert(SD && "Trying to assign an order to a null node!");
5361  Ordering->add(SD, Order);
5362}
5363
5364/// GetOrdering - Get the order for the SDNode.
5365unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5366  assert(SD && "Trying to get the order of a null node!");
5367  return Ordering->getOrder(SD);
5368}
5369
5370/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5371/// value is produced by SD.
5372void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5373  DbgInfo->add(DB, SD, isParameter);
5374  if (SD)
5375    SD->setHasDebugValue(true);
5376}
5377
5378//===----------------------------------------------------------------------===//
5379//                              SDNode Class
5380//===----------------------------------------------------------------------===//
5381
5382HandleSDNode::~HandleSDNode() {
5383  DropOperands();
5384}
5385
5386GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5387                                         EVT VT, int64_t o, unsigned char TF)
5388  : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5389  TheGlobal = GA;
5390}
5391
5392MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5393                     MachineMemOperand *mmo)
5394 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5395  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5396                                      MMO->isNonTemporal());
5397  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5398  assert(isNonTemporal() == MMO->isNonTemporal() &&
5399         "Non-temporal encoding error!");
5400  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5401}
5402
5403MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5404                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5405                     MachineMemOperand *mmo)
5406   : SDNode(Opc, dl, VTs, Ops, NumOps),
5407     MemoryVT(memvt), MMO(mmo) {
5408  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5409                                      MMO->isNonTemporal());
5410  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5411  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5412}
5413
5414/// Profile - Gather unique data for the node.
5415///
5416void SDNode::Profile(FoldingSetNodeID &ID) const {
5417  AddNodeIDNode(ID, this);
5418}
5419
5420namespace {
5421  struct EVTArray {
5422    std::vector<EVT> VTs;
5423
5424    EVTArray() {
5425      VTs.reserve(MVT::LAST_VALUETYPE);
5426      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5427        VTs.push_back(MVT((MVT::SimpleValueType)i));
5428    }
5429  };
5430}
5431
5432static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5433static ManagedStatic<EVTArray> SimpleVTArray;
5434static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5435
5436/// getValueTypeList - Return a pointer to the specified value type.
5437///
5438const EVT *SDNode::getValueTypeList(EVT VT) {
5439  if (VT.isExtended()) {
5440    sys::SmartScopedLock<true> Lock(*VTMutex);
5441    return &(*EVTs->insert(VT).first);
5442  } else {
5443    assert(VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
5444           "Value type out of range!");
5445    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5446  }
5447}
5448
5449/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5450/// indicated value.  This method ignores uses of other values defined by this
5451/// operation.
5452bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5453  assert(Value < getNumValues() && "Bad value!");
5454
5455  // TODO: Only iterate over uses of a given value of the node
5456  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5457    if (UI.getUse().getResNo() == Value) {
5458      if (NUses == 0)
5459        return false;
5460      --NUses;
5461    }
5462  }
5463
5464  // Found exactly the right number of uses?
5465  return NUses == 0;
5466}
5467
5468
5469/// hasAnyUseOfValue - Return true if there are any use of the indicated
5470/// value. This method ignores uses of other values defined by this operation.
5471bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5472  assert(Value < getNumValues() && "Bad value!");
5473
5474  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5475    if (UI.getUse().getResNo() == Value)
5476      return true;
5477
5478  return false;
5479}
5480
5481
5482/// isOnlyUserOf - Return true if this node is the only use of N.
5483///
5484bool SDNode::isOnlyUserOf(SDNode *N) const {
5485  bool Seen = false;
5486  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5487    SDNode *User = *I;
5488    if (User == this)
5489      Seen = true;
5490    else
5491      return false;
5492  }
5493
5494  return Seen;
5495}
5496
5497/// isOperand - Return true if this node is an operand of N.
5498///
5499bool SDValue::isOperandOf(SDNode *N) const {
5500  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5501    if (*this == N->getOperand(i))
5502      return true;
5503  return false;
5504}
5505
5506bool SDNode::isOperandOf(SDNode *N) const {
5507  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5508    if (this == N->OperandList[i].getNode())
5509      return true;
5510  return false;
5511}
5512
5513/// reachesChainWithoutSideEffects - Return true if this operand (which must
5514/// be a chain) reaches the specified operand without crossing any
5515/// side-effecting instructions.  In practice, this looks through token
5516/// factors and non-volatile loads.  In order to remain efficient, this only
5517/// looks a couple of nodes in, it does not do an exhaustive search.
5518bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5519                                               unsigned Depth) const {
5520  if (*this == Dest) return true;
5521
5522  // Don't search too deeply, we just want to be able to see through
5523  // TokenFactor's etc.
5524  if (Depth == 0) return false;
5525
5526  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5527  // of the operands of the TF reach dest, then we can do the xform.
5528  if (getOpcode() == ISD::TokenFactor) {
5529    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5530      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5531        return true;
5532    return false;
5533  }
5534
5535  // Loads don't have side effects, look through them.
5536  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5537    if (!Ld->isVolatile())
5538      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5539  }
5540  return false;
5541}
5542
5543/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5544/// is either an operand of N or it can be reached by traversing up the operands.
5545/// NOTE: this is an expensive method. Use it carefully.
5546bool SDNode::isPredecessorOf(SDNode *N) const {
5547  SmallPtrSet<SDNode *, 32> Visited;
5548  SmallVector<SDNode *, 16> Worklist;
5549  Worklist.push_back(N);
5550
5551  do {
5552    N = Worklist.pop_back_val();
5553    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5554      SDNode *Op = N->getOperand(i).getNode();
5555      if (Op == this)
5556        return true;
5557      if (Visited.insert(Op))
5558        Worklist.push_back(Op);
5559    }
5560  } while (!Worklist.empty());
5561
5562  return false;
5563}
5564
5565uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5566  assert(Num < NumOperands && "Invalid child # of SDNode!");
5567  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5568}
5569
5570std::string SDNode::getOperationName(const SelectionDAG *G) const {
5571  switch (getOpcode()) {
5572  default:
5573    if (getOpcode() < ISD::BUILTIN_OP_END)
5574      return "<<Unknown DAG Node>>";
5575    if (isMachineOpcode()) {
5576      if (G)
5577        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5578          if (getMachineOpcode() < TII->getNumOpcodes())
5579            return TII->get(getMachineOpcode()).getName();
5580      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5581    }
5582    if (G) {
5583      const TargetLowering &TLI = G->getTargetLoweringInfo();
5584      const char *Name = TLI.getTargetNodeName(getOpcode());
5585      if (Name) return Name;
5586      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5587    }
5588    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5589
5590#ifndef NDEBUG
5591  case ISD::DELETED_NODE:
5592    return "<<Deleted Node!>>";
5593#endif
5594  case ISD::PREFETCH:      return "Prefetch";
5595  case ISD::MEMBARRIER:    return "MemBarrier";
5596  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5597  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5598  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5599  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5600  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5601  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5602  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5603  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5604  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5605  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5606  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5607  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5608  case ISD::PCMARKER:      return "PCMarker";
5609  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5610  case ISD::SRCVALUE:      return "SrcValue";
5611  case ISD::MDNODE_SDNODE: return "MDNode";
5612  case ISD::EntryToken:    return "EntryToken";
5613  case ISD::TokenFactor:   return "TokenFactor";
5614  case ISD::AssertSext:    return "AssertSext";
5615  case ISD::AssertZext:    return "AssertZext";
5616
5617  case ISD::BasicBlock:    return "BasicBlock";
5618  case ISD::VALUETYPE:     return "ValueType";
5619  case ISD::Register:      return "Register";
5620
5621  case ISD::Constant:      return "Constant";
5622  case ISD::ConstantFP:    return "ConstantFP";
5623  case ISD::GlobalAddress: return "GlobalAddress";
5624  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5625  case ISD::FrameIndex:    return "FrameIndex";
5626  case ISD::JumpTable:     return "JumpTable";
5627  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5628  case ISD::RETURNADDR: return "RETURNADDR";
5629  case ISD::FRAMEADDR: return "FRAMEADDR";
5630  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5631  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5632  case ISD::LSDAADDR: return "LSDAADDR";
5633  case ISD::EHSELECTION: return "EHSELECTION";
5634  case ISD::EH_RETURN: return "EH_RETURN";
5635  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5636  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5637  case ISD::ConstantPool:  return "ConstantPool";
5638  case ISD::ExternalSymbol: return "ExternalSymbol";
5639  case ISD::BlockAddress:  return "BlockAddress";
5640  case ISD::INTRINSIC_WO_CHAIN:
5641  case ISD::INTRINSIC_VOID:
5642  case ISD::INTRINSIC_W_CHAIN: {
5643    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5644    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5645    if (IID < Intrinsic::num_intrinsics)
5646      return Intrinsic::getName((Intrinsic::ID)IID);
5647    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5648      return TII->getName(IID);
5649    llvm_unreachable("Invalid intrinsic ID");
5650  }
5651
5652  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5653  case ISD::TargetConstant: return "TargetConstant";
5654  case ISD::TargetConstantFP:return "TargetConstantFP";
5655  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5656  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5657  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5658  case ISD::TargetJumpTable:  return "TargetJumpTable";
5659  case ISD::TargetConstantPool:  return "TargetConstantPool";
5660  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5661  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5662
5663  case ISD::CopyToReg:     return "CopyToReg";
5664  case ISD::CopyFromReg:   return "CopyFromReg";
5665  case ISD::UNDEF:         return "undef";
5666  case ISD::MERGE_VALUES:  return "merge_values";
5667  case ISD::INLINEASM:     return "inlineasm";
5668  case ISD::EH_LABEL:      return "eh_label";
5669  case ISD::HANDLENODE:    return "handlenode";
5670
5671  // Unary operators
5672  case ISD::FABS:   return "fabs";
5673  case ISD::FNEG:   return "fneg";
5674  case ISD::FSQRT:  return "fsqrt";
5675  case ISD::FSIN:   return "fsin";
5676  case ISD::FCOS:   return "fcos";
5677  case ISD::FPOWI:  return "fpowi";
5678  case ISD::FPOW:   return "fpow";
5679  case ISD::FTRUNC: return "ftrunc";
5680  case ISD::FFLOOR: return "ffloor";
5681  case ISD::FCEIL:  return "fceil";
5682  case ISD::FRINT:  return "frint";
5683  case ISD::FNEARBYINT: return "fnearbyint";
5684
5685  // Binary operators
5686  case ISD::ADD:    return "add";
5687  case ISD::SUB:    return "sub";
5688  case ISD::MUL:    return "mul";
5689  case ISD::MULHU:  return "mulhu";
5690  case ISD::MULHS:  return "mulhs";
5691  case ISD::SDIV:   return "sdiv";
5692  case ISD::UDIV:   return "udiv";
5693  case ISD::SREM:   return "srem";
5694  case ISD::UREM:   return "urem";
5695  case ISD::SMUL_LOHI:  return "smul_lohi";
5696  case ISD::UMUL_LOHI:  return "umul_lohi";
5697  case ISD::SDIVREM:    return "sdivrem";
5698  case ISD::UDIVREM:    return "udivrem";
5699  case ISD::AND:    return "and";
5700  case ISD::OR:     return "or";
5701  case ISD::XOR:    return "xor";
5702  case ISD::SHL:    return "shl";
5703  case ISD::SRA:    return "sra";
5704  case ISD::SRL:    return "srl";
5705  case ISD::ROTL:   return "rotl";
5706  case ISD::ROTR:   return "rotr";
5707  case ISD::FADD:   return "fadd";
5708  case ISD::FSUB:   return "fsub";
5709  case ISD::FMUL:   return "fmul";
5710  case ISD::FDIV:   return "fdiv";
5711  case ISD::FREM:   return "frem";
5712  case ISD::FCOPYSIGN: return "fcopysign";
5713  case ISD::FGETSIGN:  return "fgetsign";
5714
5715  case ISD::SETCC:       return "setcc";
5716  case ISD::VSETCC:      return "vsetcc";
5717  case ISD::SELECT:      return "select";
5718  case ISD::SELECT_CC:   return "select_cc";
5719  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5720  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5721  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5722  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5723  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5724  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5725  case ISD::CARRY_FALSE:         return "carry_false";
5726  case ISD::ADDC:        return "addc";
5727  case ISD::ADDE:        return "adde";
5728  case ISD::SADDO:       return "saddo";
5729  case ISD::UADDO:       return "uaddo";
5730  case ISD::SSUBO:       return "ssubo";
5731  case ISD::USUBO:       return "usubo";
5732  case ISD::SMULO:       return "smulo";
5733  case ISD::UMULO:       return "umulo";
5734  case ISD::SUBC:        return "subc";
5735  case ISD::SUBE:        return "sube";
5736  case ISD::SHL_PARTS:   return "shl_parts";
5737  case ISD::SRA_PARTS:   return "sra_parts";
5738  case ISD::SRL_PARTS:   return "srl_parts";
5739
5740  // Conversion operators.
5741  case ISD::SIGN_EXTEND: return "sign_extend";
5742  case ISD::ZERO_EXTEND: return "zero_extend";
5743  case ISD::ANY_EXTEND:  return "any_extend";
5744  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5745  case ISD::TRUNCATE:    return "truncate";
5746  case ISD::FP_ROUND:    return "fp_round";
5747  case ISD::FLT_ROUNDS_: return "flt_rounds";
5748  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5749  case ISD::FP_EXTEND:   return "fp_extend";
5750
5751  case ISD::SINT_TO_FP:  return "sint_to_fp";
5752  case ISD::UINT_TO_FP:  return "uint_to_fp";
5753  case ISD::FP_TO_SINT:  return "fp_to_sint";
5754  case ISD::FP_TO_UINT:  return "fp_to_uint";
5755  case ISD::BIT_CONVERT: return "bit_convert";
5756  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5757  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5758
5759  case ISD::CONVERT_RNDSAT: {
5760    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5761    default: llvm_unreachable("Unknown cvt code!");
5762    case ISD::CVT_FF:  return "cvt_ff";
5763    case ISD::CVT_FS:  return "cvt_fs";
5764    case ISD::CVT_FU:  return "cvt_fu";
5765    case ISD::CVT_SF:  return "cvt_sf";
5766    case ISD::CVT_UF:  return "cvt_uf";
5767    case ISD::CVT_SS:  return "cvt_ss";
5768    case ISD::CVT_SU:  return "cvt_su";
5769    case ISD::CVT_US:  return "cvt_us";
5770    case ISD::CVT_UU:  return "cvt_uu";
5771    }
5772  }
5773
5774    // Control flow instructions
5775  case ISD::BR:      return "br";
5776  case ISD::BRIND:   return "brind";
5777  case ISD::BR_JT:   return "br_jt";
5778  case ISD::BRCOND:  return "brcond";
5779  case ISD::BR_CC:   return "br_cc";
5780  case ISD::CALLSEQ_START:  return "callseq_start";
5781  case ISD::CALLSEQ_END:    return "callseq_end";
5782
5783    // Other operators
5784  case ISD::LOAD:               return "load";
5785  case ISD::STORE:              return "store";
5786  case ISD::VAARG:              return "vaarg";
5787  case ISD::VACOPY:             return "vacopy";
5788  case ISD::VAEND:              return "vaend";
5789  case ISD::VASTART:            return "vastart";
5790  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5791  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5792  case ISD::BUILD_PAIR:         return "build_pair";
5793  case ISD::STACKSAVE:          return "stacksave";
5794  case ISD::STACKRESTORE:       return "stackrestore";
5795  case ISD::TRAP:               return "trap";
5796
5797  // Bit manipulation
5798  case ISD::BSWAP:   return "bswap";
5799  case ISD::CTPOP:   return "ctpop";
5800  case ISD::CTTZ:    return "cttz";
5801  case ISD::CTLZ:    return "ctlz";
5802
5803  // Trampolines
5804  case ISD::TRAMPOLINE: return "trampoline";
5805
5806  case ISD::CONDCODE:
5807    switch (cast<CondCodeSDNode>(this)->get()) {
5808    default: llvm_unreachable("Unknown setcc condition!");
5809    case ISD::SETOEQ:  return "setoeq";
5810    case ISD::SETOGT:  return "setogt";
5811    case ISD::SETOGE:  return "setoge";
5812    case ISD::SETOLT:  return "setolt";
5813    case ISD::SETOLE:  return "setole";
5814    case ISD::SETONE:  return "setone";
5815
5816    case ISD::SETO:    return "seto";
5817    case ISD::SETUO:   return "setuo";
5818    case ISD::SETUEQ:  return "setue";
5819    case ISD::SETUGT:  return "setugt";
5820    case ISD::SETUGE:  return "setuge";
5821    case ISD::SETULT:  return "setult";
5822    case ISD::SETULE:  return "setule";
5823    case ISD::SETUNE:  return "setune";
5824
5825    case ISD::SETEQ:   return "seteq";
5826    case ISD::SETGT:   return "setgt";
5827    case ISD::SETGE:   return "setge";
5828    case ISD::SETLT:   return "setlt";
5829    case ISD::SETLE:   return "setle";
5830    case ISD::SETNE:   return "setne";
5831    }
5832  }
5833}
5834
5835const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5836  switch (AM) {
5837  default:
5838    return "";
5839  case ISD::PRE_INC:
5840    return "<pre-inc>";
5841  case ISD::PRE_DEC:
5842    return "<pre-dec>";
5843  case ISD::POST_INC:
5844    return "<post-inc>";
5845  case ISD::POST_DEC:
5846    return "<post-dec>";
5847  }
5848}
5849
5850std::string ISD::ArgFlagsTy::getArgFlagsString() {
5851  std::string S = "< ";
5852
5853  if (isZExt())
5854    S += "zext ";
5855  if (isSExt())
5856    S += "sext ";
5857  if (isInReg())
5858    S += "inreg ";
5859  if (isSRet())
5860    S += "sret ";
5861  if (isByVal())
5862    S += "byval ";
5863  if (isNest())
5864    S += "nest ";
5865  if (getByValAlign())
5866    S += "byval-align:" + utostr(getByValAlign()) + " ";
5867  if (getOrigAlign())
5868    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5869  if (getByValSize())
5870    S += "byval-size:" + utostr(getByValSize()) + " ";
5871  return S + ">";
5872}
5873
5874void SDNode::dump() const { dump(0); }
5875void SDNode::dump(const SelectionDAG *G) const {
5876  print(dbgs(), G);
5877}
5878
5879void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5880  OS << (void*)this << ": ";
5881
5882  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5883    if (i) OS << ",";
5884    if (getValueType(i) == MVT::Other)
5885      OS << "ch";
5886    else
5887      OS << getValueType(i).getEVTString();
5888  }
5889  OS << " = " << getOperationName(G);
5890}
5891
5892void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5893  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5894    if (!MN->memoperands_empty()) {
5895      OS << "<";
5896      OS << "Mem:";
5897      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5898           e = MN->memoperands_end(); i != e; ++i) {
5899        OS << **i;
5900        if (next(i) != e)
5901          OS << " ";
5902      }
5903      OS << ">";
5904    }
5905  } else if (const ShuffleVectorSDNode *SVN =
5906               dyn_cast<ShuffleVectorSDNode>(this)) {
5907    OS << "<";
5908    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5909      int Idx = SVN->getMaskElt(i);
5910      if (i) OS << ",";
5911      if (Idx < 0)
5912        OS << "u";
5913      else
5914        OS << Idx;
5915    }
5916    OS << ">";
5917  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5918    OS << '<' << CSDN->getAPIntValue() << '>';
5919  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5920    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5921      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5922    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5923      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5924    else {
5925      OS << "<APFloat(";
5926      CSDN->getValueAPF().bitcastToAPInt().dump();
5927      OS << ")>";
5928    }
5929  } else if (const GlobalAddressSDNode *GADN =
5930             dyn_cast<GlobalAddressSDNode>(this)) {
5931    int64_t offset = GADN->getOffset();
5932    OS << '<';
5933    WriteAsOperand(OS, GADN->getGlobal());
5934    OS << '>';
5935    if (offset > 0)
5936      OS << " + " << offset;
5937    else
5938      OS << " " << offset;
5939    if (unsigned int TF = GADN->getTargetFlags())
5940      OS << " [TF=" << TF << ']';
5941  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5942    OS << "<" << FIDN->getIndex() << ">";
5943  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5944    OS << "<" << JTDN->getIndex() << ">";
5945    if (unsigned int TF = JTDN->getTargetFlags())
5946      OS << " [TF=" << TF << ']';
5947  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5948    int offset = CP->getOffset();
5949    if (CP->isMachineConstantPoolEntry())
5950      OS << "<" << *CP->getMachineCPVal() << ">";
5951    else
5952      OS << "<" << *CP->getConstVal() << ">";
5953    if (offset > 0)
5954      OS << " + " << offset;
5955    else
5956      OS << " " << offset;
5957    if (unsigned int TF = CP->getTargetFlags())
5958      OS << " [TF=" << TF << ']';
5959  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5960    OS << "<";
5961    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5962    if (LBB)
5963      OS << LBB->getName() << " ";
5964    OS << (const void*)BBDN->getBasicBlock() << ">";
5965  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5966    if (G && R->getReg() &&
5967        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5968      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5969    } else {
5970      OS << " %reg" << R->getReg();
5971    }
5972  } else if (const ExternalSymbolSDNode *ES =
5973             dyn_cast<ExternalSymbolSDNode>(this)) {
5974    OS << "'" << ES->getSymbol() << "'";
5975    if (unsigned int TF = ES->getTargetFlags())
5976      OS << " [TF=" << TF << ']';
5977  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5978    if (M->getValue())
5979      OS << "<" << M->getValue() << ">";
5980    else
5981      OS << "<null>";
5982  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
5983    if (MD->getMD())
5984      OS << "<" << MD->getMD() << ">";
5985    else
5986      OS << "<null>";
5987  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5988    OS << ":" << N->getVT().getEVTString();
5989  }
5990  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5991    OS << "<" << *LD->getMemOperand();
5992
5993    bool doExt = true;
5994    switch (LD->getExtensionType()) {
5995    default: doExt = false; break;
5996    case ISD::EXTLOAD: OS << ", anyext"; break;
5997    case ISD::SEXTLOAD: OS << ", sext"; break;
5998    case ISD::ZEXTLOAD: OS << ", zext"; break;
5999    }
6000    if (doExt)
6001      OS << " from " << LD->getMemoryVT().getEVTString();
6002
6003    const char *AM = getIndexedModeName(LD->getAddressingMode());
6004    if (*AM)
6005      OS << ", " << AM;
6006
6007    OS << ">";
6008  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6009    OS << "<" << *ST->getMemOperand();
6010
6011    if (ST->isTruncatingStore())
6012      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6013
6014    const char *AM = getIndexedModeName(ST->getAddressingMode());
6015    if (*AM)
6016      OS << ", " << AM;
6017
6018    OS << ">";
6019  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6020    OS << "<" << *M->getMemOperand() << ">";
6021  } else if (const BlockAddressSDNode *BA =
6022               dyn_cast<BlockAddressSDNode>(this)) {
6023    OS << "<";
6024    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6025    OS << ", ";
6026    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6027    OS << ">";
6028    if (unsigned int TF = BA->getTargetFlags())
6029      OS << " [TF=" << TF << ']';
6030  }
6031
6032  if (G)
6033    if (unsigned Order = G->GetOrdering(this))
6034      OS << " [ORD=" << Order << ']';
6035
6036  if (getNodeId() != -1)
6037    OS << " [ID=" << getNodeId() << ']';
6038
6039  DebugLoc dl = getDebugLoc();
6040  if (G && !dl.isUnknown()) {
6041    DIScope
6042      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6043    OS << " dbg:";
6044    // Omit the directory, since it's usually long and uninteresting.
6045    if (Scope.Verify())
6046      OS << Scope.getFilename();
6047    else
6048      OS << "<unknown>";
6049    OS << ':' << dl.getLine();
6050    if (dl.getCol() != 0)
6051      OS << ':' << dl.getCol();
6052  }
6053}
6054
6055void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6056  print_types(OS, G);
6057  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6058    if (i) OS << ", "; else OS << " ";
6059    OS << (void*)getOperand(i).getNode();
6060    if (unsigned RN = getOperand(i).getResNo())
6061      OS << ":" << RN;
6062  }
6063  print_details(OS, G);
6064}
6065
6066static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6067                                  const SelectionDAG *G, unsigned depth,
6068                                  unsigned indent)
6069{
6070  if (depth == 0)
6071    return;
6072
6073  OS.indent(indent);
6074
6075  N->print(OS, G);
6076
6077  if (depth < 1)
6078    return;
6079
6080  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6081    OS << '\n';
6082    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6083  }
6084}
6085
6086void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6087                            unsigned depth) const {
6088  printrWithDepthHelper(OS, this, G, depth, 0);
6089}
6090
6091void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6092  // Don't print impossibly deep things.
6093  printrWithDepth(OS, G, 100);
6094}
6095
6096void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6097  printrWithDepth(dbgs(), G, depth);
6098}
6099
6100void SDNode::dumprFull(const SelectionDAG *G) const {
6101  // Don't print impossibly deep things.
6102  dumprWithDepth(G, 100);
6103}
6104
6105static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6106  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6107    if (N->getOperand(i).getNode()->hasOneUse())
6108      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6109    else
6110      dbgs() << "\n" << std::string(indent+2, ' ')
6111           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6112
6113
6114  dbgs() << "\n";
6115  dbgs().indent(indent);
6116  N->dump(G);
6117}
6118
6119SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6120  assert(N->getNumValues() == 1 &&
6121         "Can't unroll a vector with multiple results!");
6122
6123  EVT VT = N->getValueType(0);
6124  unsigned NE = VT.getVectorNumElements();
6125  EVT EltVT = VT.getVectorElementType();
6126  DebugLoc dl = N->getDebugLoc();
6127
6128  SmallVector<SDValue, 8> Scalars;
6129  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6130
6131  // If ResNE is 0, fully unroll the vector op.
6132  if (ResNE == 0)
6133    ResNE = NE;
6134  else if (NE > ResNE)
6135    NE = ResNE;
6136
6137  unsigned i;
6138  for (i= 0; i != NE; ++i) {
6139    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6140      SDValue Operand = N->getOperand(j);
6141      EVT OperandVT = Operand.getValueType();
6142      if (OperandVT.isVector()) {
6143        // A vector operand; extract a single element.
6144        EVT OperandEltVT = OperandVT.getVectorElementType();
6145        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6146                              OperandEltVT,
6147                              Operand,
6148                              getConstant(i, MVT::i32));
6149      } else {
6150        // A scalar operand; just use it as is.
6151        Operands[j] = Operand;
6152      }
6153    }
6154
6155    switch (N->getOpcode()) {
6156    default:
6157      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6158                                &Operands[0], Operands.size()));
6159      break;
6160    case ISD::SHL:
6161    case ISD::SRA:
6162    case ISD::SRL:
6163    case ISD::ROTL:
6164    case ISD::ROTR:
6165      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6166                                getShiftAmountOperand(Operands[1])));
6167      break;
6168    case ISD::SIGN_EXTEND_INREG:
6169    case ISD::FP_ROUND_INREG: {
6170      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6171      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6172                                Operands[0],
6173                                getValueType(ExtVT)));
6174    }
6175    }
6176  }
6177
6178  for (; i < ResNE; ++i)
6179    Scalars.push_back(getUNDEF(EltVT));
6180
6181  return getNode(ISD::BUILD_VECTOR, dl,
6182                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6183                 &Scalars[0], Scalars.size());
6184}
6185
6186
6187/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6188/// location that is 'Dist' units away from the location that the 'Base' load
6189/// is loading from.
6190bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6191                                     unsigned Bytes, int Dist) const {
6192  if (LD->getChain() != Base->getChain())
6193    return false;
6194  EVT VT = LD->getValueType(0);
6195  if (VT.getSizeInBits() / 8 != Bytes)
6196    return false;
6197
6198  SDValue Loc = LD->getOperand(1);
6199  SDValue BaseLoc = Base->getOperand(1);
6200  if (Loc.getOpcode() == ISD::FrameIndex) {
6201    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6202      return false;
6203    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6204    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6205    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6206    int FS  = MFI->getObjectSize(FI);
6207    int BFS = MFI->getObjectSize(BFI);
6208    if (FS != BFS || FS != (int)Bytes) return false;
6209    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6210  }
6211  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6212    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6213    if (V && (V->getSExtValue() == Dist*Bytes))
6214      return true;
6215  }
6216
6217  const GlobalValue *GV1 = NULL;
6218  const GlobalValue *GV2 = NULL;
6219  int64_t Offset1 = 0;
6220  int64_t Offset2 = 0;
6221  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6222  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6223  if (isGA1 && isGA2 && GV1 == GV2)
6224    return Offset1 == (Offset2 + Dist*Bytes);
6225  return false;
6226}
6227
6228
6229/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6230/// it cannot be inferred.
6231unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6232  // If this is a GlobalAddress + cst, return the alignment.
6233  const GlobalValue *GV;
6234  int64_t GVOffset = 0;
6235  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6236    // If GV has specified alignment, then use it. Otherwise, use the preferred
6237    // alignment.
6238    unsigned Align = GV->getAlignment();
6239    if (!Align) {
6240      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6241        if (GVar->hasInitializer()) {
6242          const TargetData *TD = TLI.getTargetData();
6243          Align = TD->getPreferredAlignment(GVar);
6244        }
6245      }
6246    }
6247    return MinAlign(Align, GVOffset);
6248  }
6249
6250  // If this is a direct reference to a stack slot, use information about the
6251  // stack slot's alignment.
6252  int FrameIdx = 1 << 31;
6253  int64_t FrameOffset = 0;
6254  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6255    FrameIdx = FI->getIndex();
6256  } else if (Ptr.getOpcode() == ISD::ADD &&
6257             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6258             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6259    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6260    FrameOffset = Ptr.getConstantOperandVal(1);
6261  }
6262
6263  if (FrameIdx != (1 << 31)) {
6264    // FIXME: Handle FI+CST.
6265    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6266    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6267                                    FrameOffset);
6268    if (MFI.isFixedObjectIndex(FrameIdx)) {
6269      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6270
6271      // The alignment of the frame index can be determined from its offset from
6272      // the incoming frame position.  If the frame object is at offset 32 and
6273      // the stack is guaranteed to be 16-byte aligned, then we know that the
6274      // object is 16-byte aligned.
6275      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6276      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6277
6278      // Finally, the frame object itself may have a known alignment.  Factor
6279      // the alignment + offset into a new alignment.  For example, if we know
6280      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6281      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6282      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6283      return std::max(Align, FIInfoAlign);
6284    }
6285    return FIInfoAlign;
6286  }
6287
6288  return 0;
6289}
6290
6291void SelectionDAG::dump() const {
6292  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6293
6294  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6295       I != E; ++I) {
6296    const SDNode *N = I;
6297    if (!N->hasOneUse() && N != getRoot().getNode())
6298      DumpNodes(N, 2, this);
6299  }
6300
6301  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6302
6303  dbgs() << "\n\n";
6304}
6305
6306void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6307  print_types(OS, G);
6308  print_details(OS, G);
6309}
6310
6311typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6312static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6313                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6314  if (!once.insert(N))          // If we've been here before, return now.
6315    return;
6316
6317  // Dump the current SDNode, but don't end the line yet.
6318  OS << std::string(indent, ' ');
6319  N->printr(OS, G);
6320
6321  // Having printed this SDNode, walk the children:
6322  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6323    const SDNode *child = N->getOperand(i).getNode();
6324
6325    if (i) OS << ",";
6326    OS << " ";
6327
6328    if (child->getNumOperands() == 0) {
6329      // This child has no grandchildren; print it inline right here.
6330      child->printr(OS, G);
6331      once.insert(child);
6332    } else {         // Just the address. FIXME: also print the child's opcode.
6333      OS << (void*)child;
6334      if (unsigned RN = N->getOperand(i).getResNo())
6335        OS << ":" << RN;
6336    }
6337  }
6338
6339  OS << "\n";
6340
6341  // Dump children that have grandchildren on their own line(s).
6342  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6343    const SDNode *child = N->getOperand(i).getNode();
6344    DumpNodesr(OS, child, indent+2, G, once);
6345  }
6346}
6347
6348void SDNode::dumpr() const {
6349  VisitedSDNodeSet once;
6350  DumpNodesr(dbgs(), this, 0, 0, once);
6351}
6352
6353void SDNode::dumpr(const SelectionDAG *G) const {
6354  VisitedSDNodeSet once;
6355  DumpNodesr(dbgs(), this, 0, G, once);
6356}
6357
6358
6359// getAddressSpace - Return the address space this GlobalAddress belongs to.
6360unsigned GlobalAddressSDNode::getAddressSpace() const {
6361  return getGlobal()->getType()->getAddressSpace();
6362}
6363
6364
6365const Type *ConstantPoolSDNode::getType() const {
6366  if (isMachineConstantPoolEntry())
6367    return Val.MachineCPVal->getType();
6368  return Val.ConstVal->getType();
6369}
6370
6371bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6372                                        APInt &SplatUndef,
6373                                        unsigned &SplatBitSize,
6374                                        bool &HasAnyUndefs,
6375                                        unsigned MinSplatBits,
6376                                        bool isBigEndian) {
6377  EVT VT = getValueType(0);
6378  assert(VT.isVector() && "Expected a vector type");
6379  unsigned sz = VT.getSizeInBits();
6380  if (MinSplatBits > sz)
6381    return false;
6382
6383  SplatValue = APInt(sz, 0);
6384  SplatUndef = APInt(sz, 0);
6385
6386  // Get the bits.  Bits with undefined values (when the corresponding element
6387  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6388  // in SplatValue.  If any of the values are not constant, give up and return
6389  // false.
6390  unsigned int nOps = getNumOperands();
6391  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6392  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6393
6394  for (unsigned j = 0; j < nOps; ++j) {
6395    unsigned i = isBigEndian ? nOps-1-j : j;
6396    SDValue OpVal = getOperand(i);
6397    unsigned BitPos = j * EltBitSize;
6398
6399    if (OpVal.getOpcode() == ISD::UNDEF)
6400      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6401    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6402      SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6403                    zextOrTrunc(sz) << BitPos;
6404    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6405      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6406     else
6407      return false;
6408  }
6409
6410  // The build_vector is all constants or undefs.  Find the smallest element
6411  // size that splats the vector.
6412
6413  HasAnyUndefs = (SplatUndef != 0);
6414  while (sz > 8) {
6415
6416    unsigned HalfSize = sz / 2;
6417    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6418    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6419    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6420    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6421
6422    // If the two halves do not match (ignoring undef bits), stop here.
6423    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6424        MinSplatBits > HalfSize)
6425      break;
6426
6427    SplatValue = HighValue | LowValue;
6428    SplatUndef = HighUndef & LowUndef;
6429
6430    sz = HalfSize;
6431  }
6432
6433  SplatBitSize = sz;
6434  return true;
6435}
6436
6437bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6438  // Find the first non-undef value in the shuffle mask.
6439  unsigned i, e;
6440  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6441    /* search */;
6442
6443  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6444
6445  // Make sure all remaining elements are either undef or the same as the first
6446  // non-undef value.
6447  for (int Idx = Mask[i]; i != e; ++i)
6448    if (Mask[i] >= 0 && Mask[i] != Idx)
6449      return false;
6450  return true;
6451}
6452
6453#ifdef XDEBUG
6454static void checkForCyclesHelper(const SDNode *N,
6455                                 SmallPtrSet<const SDNode*, 32> &Visited,
6456                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6457  // If this node has already been checked, don't check it again.
6458  if (Checked.count(N))
6459    return;
6460
6461  // If a node has already been visited on this depth-first walk, reject it as
6462  // a cycle.
6463  if (!Visited.insert(N)) {
6464    dbgs() << "Offending node:\n";
6465    N->dumprFull();
6466    errs() << "Detected cycle in SelectionDAG\n";
6467    abort();
6468  }
6469
6470  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6471    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6472
6473  Checked.insert(N);
6474  Visited.erase(N);
6475}
6476#endif
6477
6478void llvm::checkForCycles(const llvm::SDNode *N) {
6479#ifdef XDEBUG
6480  assert(N && "Checking nonexistant SDNode");
6481  SmallPtrSet<const SDNode*, 32> visited;
6482  SmallPtrSet<const SDNode*, 32> checked;
6483  checkForCyclesHelper(N, visited, checked);
6484#endif
6485}
6486
6487void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6488  checkForCycles(DAG->getRoot().getNode());
6489}
6490