SelectionDAG.cpp revision 7123ef7585122d114673a67b8c0fdc86f6e0f901
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/ManagedStatic.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/System/Mutex.h"
38#include "llvm/ADT/SetVector.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/SmallSet.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/StringExtras.h"
43#include <algorithm>
44#include <cmath>
45using namespace llvm;
46
47/// makeVTList - Return an instance of the SDVTList struct initialized with the
48/// specified members.
49static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
50  SDVTList Res = {VTs, NumVTs};
51  return Res;
52}
53
54static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
55  switch (VT.getSimpleVT()) {
56  default: assert(0 && "Unknown FP format");
57  case MVT::f32:     return &APFloat::IEEEsingle;
58  case MVT::f64:     return &APFloat::IEEEdouble;
59  case MVT::f80:     return &APFloat::x87DoubleExtended;
60  case MVT::f128:    return &APFloat::IEEEquad;
61  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
62  }
63}
64
65SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
66
67//===----------------------------------------------------------------------===//
68//                              ConstantFPSDNode Class
69//===----------------------------------------------------------------------===//
70
71/// isExactlyValue - We don't rely on operator== working on double values, as
72/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
73/// As such, this method can be used to do an exact bit-for-bit comparison of
74/// two floating point values.
75bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
76  return getValueAPF().bitwiseIsEqual(V);
77}
78
79bool ConstantFPSDNode::isValueValidForType(MVT VT,
80                                           const APFloat& Val) {
81  assert(VT.isFloatingPoint() && "Can only convert between FP types");
82
83  // PPC long double cannot be converted to any other type.
84  if (VT == MVT::ppcf128 ||
85      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
86    return false;
87
88  // convert modifies in place, so make a copy.
89  APFloat Val2 = APFloat(Val);
90  bool losesInfo;
91  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
92                      &losesInfo);
93  return !losesInfo;
94}
95
96//===----------------------------------------------------------------------===//
97//                              ISD Namespace
98//===----------------------------------------------------------------------===//
99
100/// isBuildVectorAllOnes - Return true if the specified node is a
101/// BUILD_VECTOR where all of the elements are ~0 or undef.
102bool ISD::isBuildVectorAllOnes(const SDNode *N) {
103  // Look through a bit convert.
104  if (N->getOpcode() == ISD::BIT_CONVERT)
105    N = N->getOperand(0).getNode();
106
107  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
108
109  unsigned i = 0, e = N->getNumOperands();
110
111  // Skip over all of the undef values.
112  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
113    ++i;
114
115  // Do not accept an all-undef vector.
116  if (i == e) return false;
117
118  // Do not accept build_vectors that aren't all constants or which have non-~0
119  // elements.
120  SDValue NotZero = N->getOperand(i);
121  if (isa<ConstantSDNode>(NotZero)) {
122    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
123      return false;
124  } else if (isa<ConstantFPSDNode>(NotZero)) {
125    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
126                bitcastToAPInt().isAllOnesValue())
127      return false;
128  } else
129    return false;
130
131  // Okay, we have at least one ~0 value, check to see if the rest match or are
132  // undefs.
133  for (++i; i != e; ++i)
134    if (N->getOperand(i) != NotZero &&
135        N->getOperand(i).getOpcode() != ISD::UNDEF)
136      return false;
137  return true;
138}
139
140
141/// isBuildVectorAllZeros - Return true if the specified node is a
142/// BUILD_VECTOR where all of the elements are 0 or undef.
143bool ISD::isBuildVectorAllZeros(const SDNode *N) {
144  // Look through a bit convert.
145  if (N->getOpcode() == ISD::BIT_CONVERT)
146    N = N->getOperand(0).getNode();
147
148  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
149
150  unsigned i = 0, e = N->getNumOperands();
151
152  // Skip over all of the undef values.
153  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
154    ++i;
155
156  // Do not accept an all-undef vector.
157  if (i == e) return false;
158
159  // Do not accept build_vectors that aren't all constants or which have non-0
160  // elements.
161  SDValue Zero = N->getOperand(i);
162  if (isa<ConstantSDNode>(Zero)) {
163    if (!cast<ConstantSDNode>(Zero)->isNullValue())
164      return false;
165  } else if (isa<ConstantFPSDNode>(Zero)) {
166    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
167      return false;
168  } else
169    return false;
170
171  // Okay, we have at least one 0 value, check to see if the rest match or are
172  // undefs.
173  for (++i; i != e; ++i)
174    if (N->getOperand(i) != Zero &&
175        N->getOperand(i).getOpcode() != ISD::UNDEF)
176      return false;
177  return true;
178}
179
180/// isScalarToVector - Return true if the specified node is a
181/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
182/// element is not an undef.
183bool ISD::isScalarToVector(const SDNode *N) {
184  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
185    return true;
186
187  if (N->getOpcode() != ISD::BUILD_VECTOR)
188    return false;
189  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
190    return false;
191  unsigned NumElems = N->getNumOperands();
192  for (unsigned i = 1; i < NumElems; ++i) {
193    SDValue V = N->getOperand(i);
194    if (V.getOpcode() != ISD::UNDEF)
195      return false;
196  }
197  return true;
198}
199
200
201/// isDebugLabel - Return true if the specified node represents a debug
202/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
203bool ISD::isDebugLabel(const SDNode *N) {
204  SDValue Zero;
205  if (N->getOpcode() == ISD::DBG_LABEL)
206    return true;
207  if (N->isMachineOpcode() &&
208      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
209    return true;
210  return false;
211}
212
213/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
214/// when given the operation for (X op Y).
215ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
216  // To perform this operation, we just need to swap the L and G bits of the
217  // operation.
218  unsigned OldL = (Operation >> 2) & 1;
219  unsigned OldG = (Operation >> 1) & 1;
220  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
221                       (OldL << 1) |       // New G bit
222                       (OldG << 2));       // New L bit.
223}
224
225/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
226/// 'op' is a valid SetCC operation.
227ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
228  unsigned Operation = Op;
229  if (isInteger)
230    Operation ^= 7;   // Flip L, G, E bits, but not U.
231  else
232    Operation ^= 15;  // Flip all of the condition bits.
233
234  if (Operation > ISD::SETTRUE2)
235    Operation &= ~8;  // Don't let N and U bits get set.
236
237  return ISD::CondCode(Operation);
238}
239
240
241/// isSignedOp - For an integer comparison, return 1 if the comparison is a
242/// signed operation and 2 if the result is an unsigned comparison.  Return zero
243/// if the operation does not depend on the sign of the input (setne and seteq).
244static int isSignedOp(ISD::CondCode Opcode) {
245  switch (Opcode) {
246  default: assert(0 && "Illegal integer setcc operation!");
247  case ISD::SETEQ:
248  case ISD::SETNE: return 0;
249  case ISD::SETLT:
250  case ISD::SETLE:
251  case ISD::SETGT:
252  case ISD::SETGE: return 1;
253  case ISD::SETULT:
254  case ISD::SETULE:
255  case ISD::SETUGT:
256  case ISD::SETUGE: return 2;
257  }
258}
259
260/// getSetCCOrOperation - Return the result of a logical OR between different
261/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
262/// returns SETCC_INVALID if it is not possible to represent the resultant
263/// comparison.
264ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
265                                       bool isInteger) {
266  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
267    // Cannot fold a signed integer setcc with an unsigned integer setcc.
268    return ISD::SETCC_INVALID;
269
270  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
271
272  // If the N and U bits get set then the resultant comparison DOES suddenly
273  // care about orderedness, and is true when ordered.
274  if (Op > ISD::SETTRUE2)
275    Op &= ~16;     // Clear the U bit if the N bit is set.
276
277  // Canonicalize illegal integer setcc's.
278  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
279    Op = ISD::SETNE;
280
281  return ISD::CondCode(Op);
282}
283
284/// getSetCCAndOperation - Return the result of a logical AND between different
285/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
286/// function returns zero if it is not possible to represent the resultant
287/// comparison.
288ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
289                                        bool isInteger) {
290  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
291    // Cannot fold a signed setcc with an unsigned setcc.
292    return ISD::SETCC_INVALID;
293
294  // Combine all of the condition bits.
295  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
296
297  // Canonicalize illegal integer setcc's.
298  if (isInteger) {
299    switch (Result) {
300    default: break;
301    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
302    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
303    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
304    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
305    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
306    }
307  }
308
309  return Result;
310}
311
312const TargetMachine &SelectionDAG::getTarget() const {
313  return MF->getTarget();
314}
315
316//===----------------------------------------------------------------------===//
317//                           SDNode Profile Support
318//===----------------------------------------------------------------------===//
319
320/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
321///
322static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
323  ID.AddInteger(OpC);
324}
325
326/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
327/// solely with their pointer.
328static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
329  ID.AddPointer(VTList.VTs);
330}
331
332/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
333///
334static void AddNodeIDOperands(FoldingSetNodeID &ID,
335                              const SDValue *Ops, unsigned NumOps) {
336  for (; NumOps; --NumOps, ++Ops) {
337    ID.AddPointer(Ops->getNode());
338    ID.AddInteger(Ops->getResNo());
339  }
340}
341
342/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
343///
344static void AddNodeIDOperands(FoldingSetNodeID &ID,
345                              const SDUse *Ops, unsigned NumOps) {
346  for (; NumOps; --NumOps, ++Ops) {
347    ID.AddPointer(Ops->getNode());
348    ID.AddInteger(Ops->getResNo());
349  }
350}
351
352static void AddNodeIDNode(FoldingSetNodeID &ID,
353                          unsigned short OpC, SDVTList VTList,
354                          const SDValue *OpList, unsigned N) {
355  AddNodeIDOpcode(ID, OpC);
356  AddNodeIDValueTypes(ID, VTList);
357  AddNodeIDOperands(ID, OpList, N);
358}
359
360/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
361/// the NodeID data.
362static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
363  switch (N->getOpcode()) {
364  case ISD::TargetExternalSymbol:
365  case ISD::ExternalSymbol:
366    assert(0 && "Should only be used on nodes with operands");
367  default: break;  // Normal nodes don't need extra info.
368  case ISD::ARG_FLAGS:
369    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
370    break;
371  case ISD::TargetConstant:
372  case ISD::Constant:
373    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
374    break;
375  case ISD::TargetConstantFP:
376  case ISD::ConstantFP: {
377    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
378    break;
379  }
380  case ISD::TargetGlobalAddress:
381  case ISD::GlobalAddress:
382  case ISD::TargetGlobalTLSAddress:
383  case ISD::GlobalTLSAddress: {
384    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
385    ID.AddPointer(GA->getGlobal());
386    ID.AddInteger(GA->getOffset());
387    ID.AddInteger(GA->getTargetFlags());
388    break;
389  }
390  case ISD::BasicBlock:
391    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
392    break;
393  case ISD::Register:
394    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
395    break;
396  case ISD::DBG_STOPPOINT: {
397    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
398    ID.AddInteger(DSP->getLine());
399    ID.AddInteger(DSP->getColumn());
400    ID.AddPointer(DSP->getCompileUnit());
401    break;
402  }
403  case ISD::SRCVALUE:
404    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
405    break;
406  case ISD::MEMOPERAND: {
407    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
408    MO.Profile(ID);
409    break;
410  }
411  case ISD::FrameIndex:
412  case ISD::TargetFrameIndex:
413    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
414    break;
415  case ISD::JumpTable:
416  case ISD::TargetJumpTable:
417    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
418    break;
419  case ISD::ConstantPool:
420  case ISD::TargetConstantPool: {
421    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
422    ID.AddInteger(CP->getAlignment());
423    ID.AddInteger(CP->getOffset());
424    if (CP->isMachineConstantPoolEntry())
425      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
426    else
427      ID.AddPointer(CP->getConstVal());
428    break;
429  }
430  case ISD::CALL: {
431    const CallSDNode *Call = cast<CallSDNode>(N);
432    ID.AddInteger(Call->getCallingConv());
433    ID.AddInteger(Call->isVarArg());
434    break;
435  }
436  case ISD::LOAD: {
437    const LoadSDNode *LD = cast<LoadSDNode>(N);
438    ID.AddInteger(LD->getMemoryVT().getRawBits());
439    ID.AddInteger(LD->getRawSubclassData());
440    break;
441  }
442  case ISD::STORE: {
443    const StoreSDNode *ST = cast<StoreSDNode>(N);
444    ID.AddInteger(ST->getMemoryVT().getRawBits());
445    ID.AddInteger(ST->getRawSubclassData());
446    break;
447  }
448  case ISD::ATOMIC_CMP_SWAP:
449  case ISD::ATOMIC_SWAP:
450  case ISD::ATOMIC_LOAD_ADD:
451  case ISD::ATOMIC_LOAD_SUB:
452  case ISD::ATOMIC_LOAD_AND:
453  case ISD::ATOMIC_LOAD_OR:
454  case ISD::ATOMIC_LOAD_XOR:
455  case ISD::ATOMIC_LOAD_NAND:
456  case ISD::ATOMIC_LOAD_MIN:
457  case ISD::ATOMIC_LOAD_MAX:
458  case ISD::ATOMIC_LOAD_UMIN:
459  case ISD::ATOMIC_LOAD_UMAX: {
460    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
461    ID.AddInteger(AT->getMemoryVT().getRawBits());
462    ID.AddInteger(AT->getRawSubclassData());
463    break;
464  }
465  case ISD::VECTOR_SHUFFLE: {
466    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
467    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
468         i != e; ++i)
469      ID.AddInteger(SVN->getMaskElt(i));
470    break;
471  }
472  } // end switch (N->getOpcode())
473}
474
475/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
476/// data.
477static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
478  AddNodeIDOpcode(ID, N->getOpcode());
479  // Add the return value info.
480  AddNodeIDValueTypes(ID, N->getVTList());
481  // Add the operand info.
482  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
483
484  // Handle SDNode leafs with special info.
485  AddNodeIDCustom(ID, N);
486}
487
488/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
489/// the CSE map that carries alignment, volatility, indexing mode, and
490/// extension/truncation information.
491///
492static inline unsigned
493encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
494                     bool isVolatile, unsigned Alignment) {
495  assert((ConvType & 3) == ConvType &&
496         "ConvType may not require more than 2 bits!");
497  assert((AM & 7) == AM &&
498         "AM may not require more than 3 bits!");
499  return ConvType |
500         (AM << 2) |
501         (isVolatile << 5) |
502         ((Log2_32(Alignment) + 1) << 6);
503}
504
505//===----------------------------------------------------------------------===//
506//                              SelectionDAG Class
507//===----------------------------------------------------------------------===//
508
509/// doNotCSE - Return true if CSE should not be performed for this node.
510static bool doNotCSE(SDNode *N) {
511  if (N->getValueType(0) == MVT::Flag)
512    return true; // Never CSE anything that produces a flag.
513
514  switch (N->getOpcode()) {
515  default: break;
516  case ISD::HANDLENODE:
517  case ISD::DBG_LABEL:
518  case ISD::DBG_STOPPOINT:
519  case ISD::EH_LABEL:
520  case ISD::DECLARE:
521    return true;   // Never CSE these nodes.
522  }
523
524  // Check that remaining values produced are not flags.
525  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
526    if (N->getValueType(i) == MVT::Flag)
527      return true; // Never CSE anything that produces a flag.
528
529  return false;
530}
531
532/// RemoveDeadNodes - This method deletes all unreachable nodes in the
533/// SelectionDAG.
534void SelectionDAG::RemoveDeadNodes() {
535  // Create a dummy node (which is not added to allnodes), that adds a reference
536  // to the root node, preventing it from being deleted.
537  HandleSDNode Dummy(getRoot());
538
539  SmallVector<SDNode*, 128> DeadNodes;
540
541  // Add all obviously-dead nodes to the DeadNodes worklist.
542  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
543    if (I->use_empty())
544      DeadNodes.push_back(I);
545
546  RemoveDeadNodes(DeadNodes);
547
548  // If the root changed (e.g. it was a dead load, update the root).
549  setRoot(Dummy.getValue());
550}
551
552/// RemoveDeadNodes - This method deletes the unreachable nodes in the
553/// given list, and any nodes that become unreachable as a result.
554void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
555                                   DAGUpdateListener *UpdateListener) {
556
557  // Process the worklist, deleting the nodes and adding their uses to the
558  // worklist.
559  while (!DeadNodes.empty()) {
560    SDNode *N = DeadNodes.pop_back_val();
561
562    if (UpdateListener)
563      UpdateListener->NodeDeleted(N, 0);
564
565    // Take the node out of the appropriate CSE map.
566    RemoveNodeFromCSEMaps(N);
567
568    // Next, brutally remove the operand list.  This is safe to do, as there are
569    // no cycles in the graph.
570    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
571      SDUse &Use = *I++;
572      SDNode *Operand = Use.getNode();
573      Use.set(SDValue());
574
575      // Now that we removed this operand, see if there are no uses of it left.
576      if (Operand->use_empty())
577        DeadNodes.push_back(Operand);
578    }
579
580    DeallocateNode(N);
581  }
582}
583
584void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
585  SmallVector<SDNode*, 16> DeadNodes(1, N);
586  RemoveDeadNodes(DeadNodes, UpdateListener);
587}
588
589void SelectionDAG::DeleteNode(SDNode *N) {
590  // First take this out of the appropriate CSE map.
591  RemoveNodeFromCSEMaps(N);
592
593  // Finally, remove uses due to operands of this node, remove from the
594  // AllNodes list, and delete the node.
595  DeleteNodeNotInCSEMaps(N);
596}
597
598void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
599  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
600  assert(N->use_empty() && "Cannot delete a node that is not dead!");
601
602  // Drop all of the operands and decrement used node's use counts.
603  N->DropOperands();
604
605  DeallocateNode(N);
606}
607
608void SelectionDAG::DeallocateNode(SDNode *N) {
609  if (N->OperandsNeedDelete)
610    delete[] N->OperandList;
611
612  // Set the opcode to DELETED_NODE to help catch bugs when node
613  // memory is reallocated.
614  N->NodeType = ISD::DELETED_NODE;
615
616  NodeAllocator.Deallocate(AllNodes.remove(N));
617}
618
619/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
620/// correspond to it.  This is useful when we're about to delete or repurpose
621/// the node.  We don't want future request for structurally identical nodes
622/// to return N anymore.
623bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
624  bool Erased = false;
625  switch (N->getOpcode()) {
626  case ISD::EntryToken:
627    assert(0 && "EntryToken should not be in CSEMaps!");
628    return false;
629  case ISD::HANDLENODE: return false;  // noop.
630  case ISD::CONDCODE:
631    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
632           "Cond code doesn't exist!");
633    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
634    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
635    break;
636  case ISD::ExternalSymbol:
637    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
638    break;
639  case ISD::TargetExternalSymbol: {
640    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
641    Erased = TargetExternalSymbols.erase(
642               std::pair<std::string,unsigned char>(ESN->getSymbol(),
643                                                    ESN->getTargetFlags()));
644    break;
645  }
646  case ISD::VALUETYPE: {
647    MVT VT = cast<VTSDNode>(N)->getVT();
648    if (VT.isExtended()) {
649      Erased = ExtendedValueTypeNodes.erase(VT);
650    } else {
651      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
652      ValueTypeNodes[VT.getSimpleVT()] = 0;
653    }
654    break;
655  }
656  default:
657    // Remove it from the CSE Map.
658    Erased = CSEMap.RemoveNode(N);
659    break;
660  }
661#ifndef NDEBUG
662  // Verify that the node was actually in one of the CSE maps, unless it has a
663  // flag result (which cannot be CSE'd) or is one of the special cases that are
664  // not subject to CSE.
665  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
666      !N->isMachineOpcode() && !doNotCSE(N)) {
667    N->dump(this);
668    cerr << "\n";
669    assert(0 && "Node is not in map!");
670  }
671#endif
672  return Erased;
673}
674
675/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
676/// maps and modified in place. Add it back to the CSE maps, unless an identical
677/// node already exists, in which case transfer all its users to the existing
678/// node. This transfer can potentially trigger recursive merging.
679///
680void
681SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
682                                       DAGUpdateListener *UpdateListener) {
683  // For node types that aren't CSE'd, just act as if no identical node
684  // already exists.
685  if (!doNotCSE(N)) {
686    SDNode *Existing = CSEMap.GetOrInsertNode(N);
687    if (Existing != N) {
688      // If there was already an existing matching node, use ReplaceAllUsesWith
689      // to replace the dead one with the existing one.  This can cause
690      // recursive merging of other unrelated nodes down the line.
691      ReplaceAllUsesWith(N, Existing, UpdateListener);
692
693      // N is now dead.  Inform the listener if it exists and delete it.
694      if (UpdateListener)
695        UpdateListener->NodeDeleted(N, Existing);
696      DeleteNodeNotInCSEMaps(N);
697      return;
698    }
699  }
700
701  // If the node doesn't already exist, we updated it.  Inform a listener if
702  // it exists.
703  if (UpdateListener)
704    UpdateListener->NodeUpdated(N);
705}
706
707/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
708/// were replaced with those specified.  If this node is never memoized,
709/// return null, otherwise return a pointer to the slot it would take.  If a
710/// node already exists with these operands, the slot will be non-null.
711SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
712                                           void *&InsertPos) {
713  if (doNotCSE(N))
714    return 0;
715
716  SDValue Ops[] = { Op };
717  FoldingSetNodeID ID;
718  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
719  AddNodeIDCustom(ID, N);
720  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
721}
722
723/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
724/// were replaced with those specified.  If this node is never memoized,
725/// return null, otherwise return a pointer to the slot it would take.  If a
726/// node already exists with these operands, the slot will be non-null.
727SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
728                                           SDValue Op1, SDValue Op2,
729                                           void *&InsertPos) {
730  if (doNotCSE(N))
731    return 0;
732
733  SDValue Ops[] = { Op1, Op2 };
734  FoldingSetNodeID ID;
735  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
736  AddNodeIDCustom(ID, N);
737  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
738}
739
740
741/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
742/// were replaced with those specified.  If this node is never memoized,
743/// return null, otherwise return a pointer to the slot it would take.  If a
744/// node already exists with these operands, the slot will be non-null.
745SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
746                                           const SDValue *Ops,unsigned NumOps,
747                                           void *&InsertPos) {
748  if (doNotCSE(N))
749    return 0;
750
751  FoldingSetNodeID ID;
752  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
753  AddNodeIDCustom(ID, N);
754  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
755}
756
757/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
758void SelectionDAG::VerifyNode(SDNode *N) {
759  switch (N->getOpcode()) {
760  default:
761    break;
762  case ISD::BUILD_PAIR: {
763    MVT VT = N->getValueType(0);
764    assert(N->getNumValues() == 1 && "Too many results!");
765    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
766           "Wrong return type!");
767    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
768    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
769           "Mismatched operand types!");
770    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
771           "Wrong operand type!");
772    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
773           "Wrong return type size");
774    break;
775  }
776  case ISD::BUILD_VECTOR: {
777    assert(N->getNumValues() == 1 && "Too many results!");
778    assert(N->getValueType(0).isVector() && "Wrong return type!");
779    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
780           "Wrong number of operands!");
781    MVT EltVT = N->getValueType(0).getVectorElementType();
782    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
783      assert((I->getValueType() == EltVT ||
784             (EltVT.isInteger() && I->getValueType().isInteger() &&
785              EltVT.bitsLE(I->getValueType()))) &&
786            "Wrong operand type!");
787    break;
788  }
789  }
790}
791
792/// getMVTAlignment - Compute the default alignment value for the
793/// given type.
794///
795unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
796  const Type *Ty = VT == MVT::iPTR ?
797                   PointerType::get(Type::Int8Ty, 0) :
798                   VT.getTypeForMVT();
799
800  return TLI.getTargetData()->getABITypeAlignment(Ty);
801}
802
803// EntryNode could meaningfully have debug info if we can find it...
804SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
805  : TLI(tli), FLI(fli), DW(0),
806    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
807    getVTList(MVT::Other)), Root(getEntryNode()) {
808  AllNodes.push_back(&EntryNode);
809}
810
811void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
812                        DwarfWriter *dw) {
813  MF = &mf;
814  MMI = mmi;
815  DW = dw;
816}
817
818SelectionDAG::~SelectionDAG() {
819  allnodes_clear();
820}
821
822void SelectionDAG::allnodes_clear() {
823  assert(&*AllNodes.begin() == &EntryNode);
824  AllNodes.remove(AllNodes.begin());
825  while (!AllNodes.empty())
826    DeallocateNode(AllNodes.begin());
827}
828
829void SelectionDAG::clear() {
830  allnodes_clear();
831  OperandAllocator.Reset();
832  CSEMap.clear();
833
834  ExtendedValueTypeNodes.clear();
835  ExternalSymbols.clear();
836  TargetExternalSymbols.clear();
837  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
838            static_cast<CondCodeSDNode*>(0));
839  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
840            static_cast<SDNode*>(0));
841
842  EntryNode.UseList = 0;
843  AllNodes.push_back(&EntryNode);
844  Root = getEntryNode();
845}
846
847SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
848  if (Op.getValueType() == VT) return Op;
849  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
850                                   VT.getSizeInBits());
851  return getNode(ISD::AND, DL, Op.getValueType(), Op,
852                 getConstant(Imm, Op.getValueType()));
853}
854
855/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
856///
857SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
858  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
859  SDValue NegOne =
860    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
861  return getNode(ISD::XOR, DL, VT, Val, NegOne);
862}
863
864SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
865  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
866  assert((EltVT.getSizeInBits() >= 64 ||
867         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
868         "getConstant with a uint64_t value that doesn't fit in the type!");
869  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
870}
871
872SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
873  return getConstant(*ConstantInt::get(Val), VT, isT);
874}
875
876SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
877  assert(VT.isInteger() && "Cannot create FP integer constant!");
878
879  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
880  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
881         "APInt size does not match type size!");
882
883  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
884  FoldingSetNodeID ID;
885  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
886  ID.AddPointer(&Val);
887  void *IP = 0;
888  SDNode *N = NULL;
889  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
890    if (!VT.isVector())
891      return SDValue(N, 0);
892  if (!N) {
893    N = NodeAllocator.Allocate<ConstantSDNode>();
894    new (N) ConstantSDNode(isT, &Val, EltVT);
895    CSEMap.InsertNode(N, IP);
896    AllNodes.push_back(N);
897  }
898
899  SDValue Result(N, 0);
900  if (VT.isVector()) {
901    SmallVector<SDValue, 8> Ops;
902    Ops.assign(VT.getVectorNumElements(), Result);
903    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
904                     VT, &Ops[0], Ops.size());
905  }
906  return Result;
907}
908
909SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
910  return getConstant(Val, TLI.getPointerTy(), isTarget);
911}
912
913
914SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
915  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
916}
917
918SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
919  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
920
921  MVT EltVT =
922    VT.isVector() ? VT.getVectorElementType() : VT;
923
924  // Do the map lookup using the actual bit pattern for the floating point
925  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
926  // we don't have issues with SNANs.
927  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
928  FoldingSetNodeID ID;
929  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
930  ID.AddPointer(&V);
931  void *IP = 0;
932  SDNode *N = NULL;
933  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
934    if (!VT.isVector())
935      return SDValue(N, 0);
936  if (!N) {
937    N = NodeAllocator.Allocate<ConstantFPSDNode>();
938    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
939    CSEMap.InsertNode(N, IP);
940    AllNodes.push_back(N);
941  }
942
943  SDValue Result(N, 0);
944  if (VT.isVector()) {
945    SmallVector<SDValue, 8> Ops;
946    Ops.assign(VT.getVectorNumElements(), Result);
947    // FIXME DebugLoc info might be appropriate here
948    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
949                     VT, &Ops[0], Ops.size());
950  }
951  return Result;
952}
953
954SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
955  MVT EltVT =
956    VT.isVector() ? VT.getVectorElementType() : VT;
957  if (EltVT==MVT::f32)
958    return getConstantFP(APFloat((float)Val), VT, isTarget);
959  else
960    return getConstantFP(APFloat(Val), VT, isTarget);
961}
962
963SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
964                                       MVT VT, int64_t Offset,
965                                       bool isTargetGA,
966                                       unsigned char TargetFlags) {
967  assert((TargetFlags == 0 || isTargetGA) &&
968         "Cannot set target flags on target-independent globals");
969
970  // Truncate (with sign-extension) the offset value to the pointer size.
971  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
972  if (BitWidth < 64)
973    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
974
975  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
976  if (!GVar) {
977    // If GV is an alias then use the aliasee for determining thread-localness.
978    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
979      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
980  }
981
982  unsigned Opc;
983  if (GVar && GVar->isThreadLocal())
984    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
985  else
986    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
987
988  FoldingSetNodeID ID;
989  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
990  ID.AddPointer(GV);
991  ID.AddInteger(Offset);
992  ID.AddInteger(TargetFlags);
993  void *IP = 0;
994  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
995    return SDValue(E, 0);
996  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
997  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset, TargetFlags);
998  CSEMap.InsertNode(N, IP);
999  AllNodes.push_back(N);
1000  return SDValue(N, 0);
1001}
1002
1003SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
1004  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1005  FoldingSetNodeID ID;
1006  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1007  ID.AddInteger(FI);
1008  void *IP = 0;
1009  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1010    return SDValue(E, 0);
1011  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1012  new (N) FrameIndexSDNode(FI, VT, isTarget);
1013  CSEMap.InsertNode(N, IP);
1014  AllNodes.push_back(N);
1015  return SDValue(N, 0);
1016}
1017
1018SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1019  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1020  FoldingSetNodeID ID;
1021  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1022  ID.AddInteger(JTI);
1023  void *IP = 0;
1024  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1025    return SDValue(E, 0);
1026  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1027  new (N) JumpTableSDNode(JTI, VT, isTarget);
1028  CSEMap.InsertNode(N, IP);
1029  AllNodes.push_back(N);
1030  return SDValue(N, 0);
1031}
1032
1033SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1034                                      unsigned Alignment, int Offset,
1035                                      bool isTarget) {
1036  if (Alignment == 0)
1037    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1038  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1039  FoldingSetNodeID ID;
1040  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1041  ID.AddInteger(Alignment);
1042  ID.AddInteger(Offset);
1043  ID.AddPointer(C);
1044  void *IP = 0;
1045  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1046    return SDValue(E, 0);
1047  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1048  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1049  CSEMap.InsertNode(N, IP);
1050  AllNodes.push_back(N);
1051  return SDValue(N, 0);
1052}
1053
1054
1055SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1056                                      unsigned Alignment, int Offset,
1057                                      bool isTarget) {
1058  if (Alignment == 0)
1059    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1060  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1061  FoldingSetNodeID ID;
1062  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1063  ID.AddInteger(Alignment);
1064  ID.AddInteger(Offset);
1065  C->AddSelectionDAGCSEId(ID);
1066  void *IP = 0;
1067  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1068    return SDValue(E, 0);
1069  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1070  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1071  CSEMap.InsertNode(N, IP);
1072  AllNodes.push_back(N);
1073  return SDValue(N, 0);
1074}
1075
1076SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1077  FoldingSetNodeID ID;
1078  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1079  ID.AddPointer(MBB);
1080  void *IP = 0;
1081  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1082    return SDValue(E, 0);
1083  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1084  new (N) BasicBlockSDNode(MBB);
1085  CSEMap.InsertNode(N, IP);
1086  AllNodes.push_back(N);
1087  return SDValue(N, 0);
1088}
1089
1090SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1091  FoldingSetNodeID ID;
1092  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1093  ID.AddInteger(Flags.getRawBits());
1094  void *IP = 0;
1095  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1096    return SDValue(E, 0);
1097  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1098  new (N) ARG_FLAGSSDNode(Flags);
1099  CSEMap.InsertNode(N, IP);
1100  AllNodes.push_back(N);
1101  return SDValue(N, 0);
1102}
1103
1104SDValue SelectionDAG::getValueType(MVT VT) {
1105  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1106    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1107
1108  SDNode *&N = VT.isExtended() ?
1109    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1110
1111  if (N) return SDValue(N, 0);
1112  N = NodeAllocator.Allocate<VTSDNode>();
1113  new (N) VTSDNode(VT);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1119  SDNode *&N = ExternalSymbols[Sym];
1120  if (N) return SDValue(N, 0);
1121  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1122  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1123  AllNodes.push_back(N);
1124  return SDValue(N, 0);
1125}
1126
1127SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT,
1128                                              unsigned char TargetFlags) {
1129  SDNode *&N =
1130    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1131                                                               TargetFlags)];
1132  if (N) return SDValue(N, 0);
1133  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1134  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1135  AllNodes.push_back(N);
1136  return SDValue(N, 0);
1137}
1138
1139SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1140  if ((unsigned)Cond >= CondCodeNodes.size())
1141    CondCodeNodes.resize(Cond+1);
1142
1143  if (CondCodeNodes[Cond] == 0) {
1144    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1145    new (N) CondCodeSDNode(Cond);
1146    CondCodeNodes[Cond] = N;
1147    AllNodes.push_back(N);
1148  }
1149  return SDValue(CondCodeNodes[Cond], 0);
1150}
1151
1152// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1153// the shuffle mask M that point at N1 to point at N2, and indices that point
1154// N2 to point at N1.
1155static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1156  std::swap(N1, N2);
1157  int NElts = M.size();
1158  for (int i = 0; i != NElts; ++i) {
1159    if (M[i] >= NElts)
1160      M[i] -= NElts;
1161    else if (M[i] >= 0)
1162      M[i] += NElts;
1163  }
1164}
1165
1166SDValue SelectionDAG::getVectorShuffle(MVT VT, DebugLoc dl, SDValue N1,
1167                                       SDValue N2, const int *Mask) {
1168  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1169  assert(VT.isVector() && N1.getValueType().isVector() &&
1170         "Vector Shuffle VTs must be a vectors");
1171  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1172         && "Vector Shuffle VTs must have same element type");
1173
1174  // Canonicalize shuffle undef, undef -> undef
1175  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1176    return N1;
1177
1178  // Validate that all indices in Mask are within the range of the elements
1179  // input to the shuffle.
1180  unsigned NElts = VT.getVectorNumElements();
1181  SmallVector<int, 8> MaskVec;
1182  for (unsigned i = 0; i != NElts; ++i) {
1183    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1184    MaskVec.push_back(Mask[i]);
1185  }
1186
1187  // Canonicalize shuffle v, v -> v, undef
1188  if (N1 == N2) {
1189    N2 = getUNDEF(VT);
1190    for (unsigned i = 0; i != NElts; ++i)
1191      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1192  }
1193
1194  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1195  if (N1.getOpcode() == ISD::UNDEF)
1196    commuteShuffle(N1, N2, MaskVec);
1197
1198  // Canonicalize all index into lhs, -> shuffle lhs, undef
1199  // Canonicalize all index into rhs, -> shuffle rhs, undef
1200  bool AllLHS = true, AllRHS = true;
1201  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1202  for (unsigned i = 0; i != NElts; ++i) {
1203    if (MaskVec[i] >= (int)NElts) {
1204      if (N2Undef)
1205        MaskVec[i] = -1;
1206      else
1207        AllLHS = false;
1208    } else if (MaskVec[i] >= 0) {
1209      AllRHS = false;
1210    }
1211  }
1212  if (AllLHS && AllRHS)
1213    return getUNDEF(VT);
1214  if (AllLHS && !N2Undef)
1215    N2 = getUNDEF(VT);
1216  if (AllRHS) {
1217    N1 = getUNDEF(VT);
1218    commuteShuffle(N1, N2, MaskVec);
1219  }
1220
1221  // If Identity shuffle, or all shuffle in to undef, return that node.
1222  bool AllUndef = true;
1223  bool Identity = true;
1224  for (unsigned i = 0; i != NElts; ++i) {
1225    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1226    if (MaskVec[i] >= 0) AllUndef = false;
1227  }
1228  if (Identity)
1229    return N1;
1230  if (AllUndef)
1231    return getUNDEF(VT);
1232
1233  FoldingSetNodeID ID;
1234  SDValue Ops[2] = { N1, N2 };
1235  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1236  for (unsigned i = 0; i != NElts; ++i)
1237    ID.AddInteger(MaskVec[i]);
1238
1239  void* IP = 0;
1240  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1241    return SDValue(E, 0);
1242
1243  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1244  // SDNode doesn't have access to it.  This memory will be "leaked" when
1245  // the node is deallocated, but recovered when the NodeAllocator is released.
1246  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1247  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1248
1249  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1250  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1251  CSEMap.InsertNode(N, IP);
1252  AllNodes.push_back(N);
1253  return SDValue(N, 0);
1254}
1255
1256SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1257                                       SDValue Val, SDValue DTy,
1258                                       SDValue STy, SDValue Rnd, SDValue Sat,
1259                                       ISD::CvtCode Code) {
1260  // If the src and dest types are the same and the conversion is between
1261  // integer types of the same sign or two floats, no conversion is necessary.
1262  if (DTy == STy &&
1263      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1264    return Val;
1265
1266  FoldingSetNodeID ID;
1267  void* IP = 0;
1268  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1269    return SDValue(E, 0);
1270  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1271  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1272  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1273  CSEMap.InsertNode(N, IP);
1274  AllNodes.push_back(N);
1275  return SDValue(N, 0);
1276}
1277
1278SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1279  FoldingSetNodeID ID;
1280  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1281  ID.AddInteger(RegNo);
1282  void *IP = 0;
1283  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1284    return SDValue(E, 0);
1285  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1286  new (N) RegisterSDNode(RegNo, VT);
1287  CSEMap.InsertNode(N, IP);
1288  AllNodes.push_back(N);
1289  return SDValue(N, 0);
1290}
1291
1292SDValue SelectionDAG::getDbgStopPoint(DebugLoc DL, SDValue Root,
1293                                      unsigned Line, unsigned Col,
1294                                      Value *CU) {
1295  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1296  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1297  N->setDebugLoc(DL);
1298  AllNodes.push_back(N);
1299  return SDValue(N, 0);
1300}
1301
1302SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1303                               SDValue Root,
1304                               unsigned LabelID) {
1305  FoldingSetNodeID ID;
1306  SDValue Ops[] = { Root };
1307  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1308  ID.AddInteger(LabelID);
1309  void *IP = 0;
1310  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1311    return SDValue(E, 0);
1312  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1313  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1314  CSEMap.InsertNode(N, IP);
1315  AllNodes.push_back(N);
1316  return SDValue(N, 0);
1317}
1318
1319SDValue SelectionDAG::getSrcValue(const Value *V) {
1320  assert((!V || isa<PointerType>(V->getType())) &&
1321         "SrcValue is not a pointer?");
1322
1323  FoldingSetNodeID ID;
1324  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1325  ID.AddPointer(V);
1326
1327  void *IP = 0;
1328  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1329    return SDValue(E, 0);
1330
1331  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1332  new (N) SrcValueSDNode(V);
1333  CSEMap.InsertNode(N, IP);
1334  AllNodes.push_back(N);
1335  return SDValue(N, 0);
1336}
1337
1338SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1339#ifndef NDEBUG
1340  const Value *v = MO.getValue();
1341  assert((!v || isa<PointerType>(v->getType())) &&
1342         "SrcValue is not a pointer?");
1343#endif
1344
1345  FoldingSetNodeID ID;
1346  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1347  MO.Profile(ID);
1348
1349  void *IP = 0;
1350  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1351    return SDValue(E, 0);
1352
1353  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1354  new (N) MemOperandSDNode(MO);
1355  CSEMap.InsertNode(N, IP);
1356  AllNodes.push_back(N);
1357  return SDValue(N, 0);
1358}
1359
1360/// getShiftAmountOperand - Return the specified value casted to
1361/// the target's desired shift amount type.
1362SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1363  MVT OpTy = Op.getValueType();
1364  MVT ShTy = TLI.getShiftAmountTy();
1365  if (OpTy == ShTy || OpTy.isVector()) return Op;
1366
1367  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1368  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1369}
1370
1371/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1372/// specified value type.
1373SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1374  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1375  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1376  const Type *Ty = VT.getTypeForMVT();
1377  unsigned StackAlign =
1378  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1379
1380  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1381  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1382}
1383
1384/// CreateStackTemporary - Create a stack temporary suitable for holding
1385/// either of the specified value types.
1386SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1387  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1388                            VT2.getStoreSizeInBits())/8;
1389  const Type *Ty1 = VT1.getTypeForMVT();
1390  const Type *Ty2 = VT2.getTypeForMVT();
1391  const TargetData *TD = TLI.getTargetData();
1392  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1393                            TD->getPrefTypeAlignment(Ty2));
1394
1395  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1396  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1397  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1398}
1399
1400SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1401                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1402  // These setcc operations always fold.
1403  switch (Cond) {
1404  default: break;
1405  case ISD::SETFALSE:
1406  case ISD::SETFALSE2: return getConstant(0, VT);
1407  case ISD::SETTRUE:
1408  case ISD::SETTRUE2:  return getConstant(1, VT);
1409
1410  case ISD::SETOEQ:
1411  case ISD::SETOGT:
1412  case ISD::SETOGE:
1413  case ISD::SETOLT:
1414  case ISD::SETOLE:
1415  case ISD::SETONE:
1416  case ISD::SETO:
1417  case ISD::SETUO:
1418  case ISD::SETUEQ:
1419  case ISD::SETUNE:
1420    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1421    break;
1422  }
1423
1424  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1425    const APInt &C2 = N2C->getAPIntValue();
1426    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1427      const APInt &C1 = N1C->getAPIntValue();
1428
1429      switch (Cond) {
1430      default: assert(0 && "Unknown integer setcc!");
1431      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1432      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1433      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1434      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1435      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1436      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1437      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1438      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1439      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1440      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1441      }
1442    }
1443  }
1444  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1445    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1446      // No compile time operations on this type yet.
1447      if (N1C->getValueType(0) == MVT::ppcf128)
1448        return SDValue();
1449
1450      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1451      switch (Cond) {
1452      default: break;
1453      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1454                          return getUNDEF(VT);
1455                        // fall through
1456      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1457      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1458                          return getUNDEF(VT);
1459                        // fall through
1460      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1461                                           R==APFloat::cmpLessThan, VT);
1462      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1463                          return getUNDEF(VT);
1464                        // fall through
1465      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1466      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1467                          return getUNDEF(VT);
1468                        // fall through
1469      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1470      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1471                          return getUNDEF(VT);
1472                        // fall through
1473      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1474                                           R==APFloat::cmpEqual, VT);
1475      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1476                          return getUNDEF(VT);
1477                        // fall through
1478      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1479                                           R==APFloat::cmpEqual, VT);
1480      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1481      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1482      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1483                                           R==APFloat::cmpEqual, VT);
1484      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1485      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1486                                           R==APFloat::cmpLessThan, VT);
1487      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1488                                           R==APFloat::cmpUnordered, VT);
1489      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1490      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1491      }
1492    } else {
1493      // Ensure that the constant occurs on the RHS.
1494      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1495    }
1496  }
1497
1498  // Could not fold it.
1499  return SDValue();
1500}
1501
1502/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1503/// use this predicate to simplify operations downstream.
1504bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1505  unsigned BitWidth = Op.getValueSizeInBits();
1506  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1507}
1508
1509/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1510/// this predicate to simplify operations downstream.  Mask is known to be zero
1511/// for bits that V cannot have.
1512bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1513                                     unsigned Depth) const {
1514  APInt KnownZero, KnownOne;
1515  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1516  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1517  return (KnownZero & Mask) == Mask;
1518}
1519
1520/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1521/// known to be either zero or one and return them in the KnownZero/KnownOne
1522/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1523/// processing.
1524void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1525                                     APInt &KnownZero, APInt &KnownOne,
1526                                     unsigned Depth) const {
1527  unsigned BitWidth = Mask.getBitWidth();
1528  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1529         "Mask size mismatches value type size!");
1530
1531  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1532  if (Depth == 6 || Mask == 0)
1533    return;  // Limit search depth.
1534
1535  APInt KnownZero2, KnownOne2;
1536
1537  switch (Op.getOpcode()) {
1538  case ISD::Constant:
1539    // We know all of the bits for a constant!
1540    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1541    KnownZero = ~KnownOne & Mask;
1542    return;
1543  case ISD::AND:
1544    // If either the LHS or the RHS are Zero, the result is zero.
1545    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1546    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1547                      KnownZero2, KnownOne2, Depth+1);
1548    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1549    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1550
1551    // Output known-1 bits are only known if set in both the LHS & RHS.
1552    KnownOne &= KnownOne2;
1553    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1554    KnownZero |= KnownZero2;
1555    return;
1556  case ISD::OR:
1557    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1558    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1559                      KnownZero2, KnownOne2, Depth+1);
1560    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1561    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1562
1563    // Output known-0 bits are only known if clear in both the LHS & RHS.
1564    KnownZero &= KnownZero2;
1565    // Output known-1 are known to be set if set in either the LHS | RHS.
1566    KnownOne |= KnownOne2;
1567    return;
1568  case ISD::XOR: {
1569    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1570    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1571    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1572    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1573
1574    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1575    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1576    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1577    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1578    KnownZero = KnownZeroOut;
1579    return;
1580  }
1581  case ISD::MUL: {
1582    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1583    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1584    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1585    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1586    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1587
1588    // If low bits are zero in either operand, output low known-0 bits.
1589    // Also compute a conserative estimate for high known-0 bits.
1590    // More trickiness is possible, but this is sufficient for the
1591    // interesting case of alignment computation.
1592    KnownOne.clear();
1593    unsigned TrailZ = KnownZero.countTrailingOnes() +
1594                      KnownZero2.countTrailingOnes();
1595    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1596                               KnownZero2.countLeadingOnes(),
1597                               BitWidth) - BitWidth;
1598
1599    TrailZ = std::min(TrailZ, BitWidth);
1600    LeadZ = std::min(LeadZ, BitWidth);
1601    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1602                APInt::getHighBitsSet(BitWidth, LeadZ);
1603    KnownZero &= Mask;
1604    return;
1605  }
1606  case ISD::UDIV: {
1607    // For the purposes of computing leading zeros we can conservatively
1608    // treat a udiv as a logical right shift by the power of 2 known to
1609    // be less than the denominator.
1610    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1611    ComputeMaskedBits(Op.getOperand(0),
1612                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1613    unsigned LeadZ = KnownZero2.countLeadingOnes();
1614
1615    KnownOne2.clear();
1616    KnownZero2.clear();
1617    ComputeMaskedBits(Op.getOperand(1),
1618                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1619    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1620    if (RHSUnknownLeadingOnes != BitWidth)
1621      LeadZ = std::min(BitWidth,
1622                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1623
1624    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1625    return;
1626  }
1627  case ISD::SELECT:
1628    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1629    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1630    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1631    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1632
1633    // Only known if known in both the LHS and RHS.
1634    KnownOne &= KnownOne2;
1635    KnownZero &= KnownZero2;
1636    return;
1637  case ISD::SELECT_CC:
1638    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1639    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1640    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1641    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1642
1643    // Only known if known in both the LHS and RHS.
1644    KnownOne &= KnownOne2;
1645    KnownZero &= KnownZero2;
1646    return;
1647  case ISD::SADDO:
1648  case ISD::UADDO:
1649  case ISD::SSUBO:
1650  case ISD::USUBO:
1651  case ISD::SMULO:
1652  case ISD::UMULO:
1653    if (Op.getResNo() != 1)
1654      return;
1655    // The boolean result conforms to getBooleanContents.  Fall through.
1656  case ISD::SETCC:
1657    // If we know the result of a setcc has the top bits zero, use this info.
1658    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1659        BitWidth > 1)
1660      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1661    return;
1662  case ISD::SHL:
1663    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1664    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1665      unsigned ShAmt = SA->getZExtValue();
1666
1667      // If the shift count is an invalid immediate, don't do anything.
1668      if (ShAmt >= BitWidth)
1669        return;
1670
1671      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1672                        KnownZero, KnownOne, Depth+1);
1673      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1674      KnownZero <<= ShAmt;
1675      KnownOne  <<= ShAmt;
1676      // low bits known zero.
1677      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1678    }
1679    return;
1680  case ISD::SRL:
1681    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1682    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1683      unsigned ShAmt = SA->getZExtValue();
1684
1685      // If the shift count is an invalid immediate, don't do anything.
1686      if (ShAmt >= BitWidth)
1687        return;
1688
1689      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1690                        KnownZero, KnownOne, Depth+1);
1691      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1692      KnownZero = KnownZero.lshr(ShAmt);
1693      KnownOne  = KnownOne.lshr(ShAmt);
1694
1695      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1696      KnownZero |= HighBits;  // High bits known zero.
1697    }
1698    return;
1699  case ISD::SRA:
1700    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1701      unsigned ShAmt = SA->getZExtValue();
1702
1703      // If the shift count is an invalid immediate, don't do anything.
1704      if (ShAmt >= BitWidth)
1705        return;
1706
1707      APInt InDemandedMask = (Mask << ShAmt);
1708      // If any of the demanded bits are produced by the sign extension, we also
1709      // demand the input sign bit.
1710      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1711      if (HighBits.getBoolValue())
1712        InDemandedMask |= APInt::getSignBit(BitWidth);
1713
1714      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1715                        Depth+1);
1716      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1717      KnownZero = KnownZero.lshr(ShAmt);
1718      KnownOne  = KnownOne.lshr(ShAmt);
1719
1720      // Handle the sign bits.
1721      APInt SignBit = APInt::getSignBit(BitWidth);
1722      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1723
1724      if (KnownZero.intersects(SignBit)) {
1725        KnownZero |= HighBits;  // New bits are known zero.
1726      } else if (KnownOne.intersects(SignBit)) {
1727        KnownOne  |= HighBits;  // New bits are known one.
1728      }
1729    }
1730    return;
1731  case ISD::SIGN_EXTEND_INREG: {
1732    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1733    unsigned EBits = EVT.getSizeInBits();
1734
1735    // Sign extension.  Compute the demanded bits in the result that are not
1736    // present in the input.
1737    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1738
1739    APInt InSignBit = APInt::getSignBit(EBits);
1740    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1741
1742    // If the sign extended bits are demanded, we know that the sign
1743    // bit is demanded.
1744    InSignBit.zext(BitWidth);
1745    if (NewBits.getBoolValue())
1746      InputDemandedBits |= InSignBit;
1747
1748    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1749                      KnownZero, KnownOne, Depth+1);
1750    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1751
1752    // If the sign bit of the input is known set or clear, then we know the
1753    // top bits of the result.
1754    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1755      KnownZero |= NewBits;
1756      KnownOne  &= ~NewBits;
1757    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1758      KnownOne  |= NewBits;
1759      KnownZero &= ~NewBits;
1760    } else {                              // Input sign bit unknown
1761      KnownZero &= ~NewBits;
1762      KnownOne  &= ~NewBits;
1763    }
1764    return;
1765  }
1766  case ISD::CTTZ:
1767  case ISD::CTLZ:
1768  case ISD::CTPOP: {
1769    unsigned LowBits = Log2_32(BitWidth)+1;
1770    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1771    KnownOne.clear();
1772    return;
1773  }
1774  case ISD::LOAD: {
1775    if (ISD::isZEXTLoad(Op.getNode())) {
1776      LoadSDNode *LD = cast<LoadSDNode>(Op);
1777      MVT VT = LD->getMemoryVT();
1778      unsigned MemBits = VT.getSizeInBits();
1779      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1780    }
1781    return;
1782  }
1783  case ISD::ZERO_EXTEND: {
1784    MVT InVT = Op.getOperand(0).getValueType();
1785    unsigned InBits = InVT.getSizeInBits();
1786    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1787    APInt InMask    = Mask;
1788    InMask.trunc(InBits);
1789    KnownZero.trunc(InBits);
1790    KnownOne.trunc(InBits);
1791    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1792    KnownZero.zext(BitWidth);
1793    KnownOne.zext(BitWidth);
1794    KnownZero |= NewBits;
1795    return;
1796  }
1797  case ISD::SIGN_EXTEND: {
1798    MVT InVT = Op.getOperand(0).getValueType();
1799    unsigned InBits = InVT.getSizeInBits();
1800    APInt InSignBit = APInt::getSignBit(InBits);
1801    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1802    APInt InMask = Mask;
1803    InMask.trunc(InBits);
1804
1805    // If any of the sign extended bits are demanded, we know that the sign
1806    // bit is demanded. Temporarily set this bit in the mask for our callee.
1807    if (NewBits.getBoolValue())
1808      InMask |= InSignBit;
1809
1810    KnownZero.trunc(InBits);
1811    KnownOne.trunc(InBits);
1812    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1813
1814    // Note if the sign bit is known to be zero or one.
1815    bool SignBitKnownZero = KnownZero.isNegative();
1816    bool SignBitKnownOne  = KnownOne.isNegative();
1817    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1818           "Sign bit can't be known to be both zero and one!");
1819
1820    // If the sign bit wasn't actually demanded by our caller, we don't
1821    // want it set in the KnownZero and KnownOne result values. Reset the
1822    // mask and reapply it to the result values.
1823    InMask = Mask;
1824    InMask.trunc(InBits);
1825    KnownZero &= InMask;
1826    KnownOne  &= InMask;
1827
1828    KnownZero.zext(BitWidth);
1829    KnownOne.zext(BitWidth);
1830
1831    // If the sign bit is known zero or one, the top bits match.
1832    if (SignBitKnownZero)
1833      KnownZero |= NewBits;
1834    else if (SignBitKnownOne)
1835      KnownOne  |= NewBits;
1836    return;
1837  }
1838  case ISD::ANY_EXTEND: {
1839    MVT InVT = Op.getOperand(0).getValueType();
1840    unsigned InBits = InVT.getSizeInBits();
1841    APInt InMask = Mask;
1842    InMask.trunc(InBits);
1843    KnownZero.trunc(InBits);
1844    KnownOne.trunc(InBits);
1845    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1846    KnownZero.zext(BitWidth);
1847    KnownOne.zext(BitWidth);
1848    return;
1849  }
1850  case ISD::TRUNCATE: {
1851    MVT InVT = Op.getOperand(0).getValueType();
1852    unsigned InBits = InVT.getSizeInBits();
1853    APInt InMask = Mask;
1854    InMask.zext(InBits);
1855    KnownZero.zext(InBits);
1856    KnownOne.zext(InBits);
1857    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1858    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1859    KnownZero.trunc(BitWidth);
1860    KnownOne.trunc(BitWidth);
1861    break;
1862  }
1863  case ISD::AssertZext: {
1864    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1865    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1866    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1867                      KnownOne, Depth+1);
1868    KnownZero |= (~InMask) & Mask;
1869    return;
1870  }
1871  case ISD::FGETSIGN:
1872    // All bits are zero except the low bit.
1873    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1874    return;
1875
1876  case ISD::SUB: {
1877    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1878      // We know that the top bits of C-X are clear if X contains less bits
1879      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1880      // positive if we can prove that X is >= 0 and < 16.
1881      if (CLHS->getAPIntValue().isNonNegative()) {
1882        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1883        // NLZ can't be BitWidth with no sign bit
1884        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1885        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1886                          Depth+1);
1887
1888        // If all of the MaskV bits are known to be zero, then we know the
1889        // output top bits are zero, because we now know that the output is
1890        // from [0-C].
1891        if ((KnownZero2 & MaskV) == MaskV) {
1892          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1893          // Top bits known zero.
1894          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1895        }
1896      }
1897    }
1898  }
1899  // fall through
1900  case ISD::ADD: {
1901    // Output known-0 bits are known if clear or set in both the low clear bits
1902    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1903    // low 3 bits clear.
1904    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1905    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1906    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1907    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1908
1909    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1910    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1911    KnownZeroOut = std::min(KnownZeroOut,
1912                            KnownZero2.countTrailingOnes());
1913
1914    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1915    return;
1916  }
1917  case ISD::SREM:
1918    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1919      const APInt &RA = Rem->getAPIntValue();
1920      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1921        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1922        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1923        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1924
1925        // If the sign bit of the first operand is zero, the sign bit of
1926        // the result is zero. If the first operand has no one bits below
1927        // the second operand's single 1 bit, its sign will be zero.
1928        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1929          KnownZero2 |= ~LowBits;
1930
1931        KnownZero |= KnownZero2 & Mask;
1932
1933        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1934      }
1935    }
1936    return;
1937  case ISD::UREM: {
1938    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1939      const APInt &RA = Rem->getAPIntValue();
1940      if (RA.isPowerOf2()) {
1941        APInt LowBits = (RA - 1);
1942        APInt Mask2 = LowBits & Mask;
1943        KnownZero |= ~LowBits & Mask;
1944        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1945        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1946        break;
1947      }
1948    }
1949
1950    // Since the result is less than or equal to either operand, any leading
1951    // zero bits in either operand must also exist in the result.
1952    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1953    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1954                      Depth+1);
1955    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1956                      Depth+1);
1957
1958    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1959                                KnownZero2.countLeadingOnes());
1960    KnownOne.clear();
1961    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1962    return;
1963  }
1964  default:
1965    // Allow the target to implement this method for its nodes.
1966    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1967  case ISD::INTRINSIC_WO_CHAIN:
1968  case ISD::INTRINSIC_W_CHAIN:
1969  case ISD::INTRINSIC_VOID:
1970      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1971    }
1972    return;
1973  }
1974}
1975
1976/// ComputeNumSignBits - Return the number of times the sign bit of the
1977/// register is replicated into the other bits.  We know that at least 1 bit
1978/// is always equal to the sign bit (itself), but other cases can give us
1979/// information.  For example, immediately after an "SRA X, 2", we know that
1980/// the top 3 bits are all equal to each other, so we return 3.
1981unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1982  MVT VT = Op.getValueType();
1983  assert(VT.isInteger() && "Invalid VT!");
1984  unsigned VTBits = VT.getSizeInBits();
1985  unsigned Tmp, Tmp2;
1986  unsigned FirstAnswer = 1;
1987
1988  if (Depth == 6)
1989    return 1;  // Limit search depth.
1990
1991  switch (Op.getOpcode()) {
1992  default: break;
1993  case ISD::AssertSext:
1994    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1995    return VTBits-Tmp+1;
1996  case ISD::AssertZext:
1997    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1998    return VTBits-Tmp;
1999
2000  case ISD::Constant: {
2001    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2002    // If negative, return # leading ones.
2003    if (Val.isNegative())
2004      return Val.countLeadingOnes();
2005
2006    // Return # leading zeros.
2007    return Val.countLeadingZeros();
2008  }
2009
2010  case ISD::SIGN_EXTEND:
2011    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
2012    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2013
2014  case ISD::SIGN_EXTEND_INREG:
2015    // Max of the input and what this extends.
2016    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2017    Tmp = VTBits-Tmp+1;
2018
2019    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2020    return std::max(Tmp, Tmp2);
2021
2022  case ISD::SRA:
2023    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2024    // SRA X, C   -> adds C sign bits.
2025    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2026      Tmp += C->getZExtValue();
2027      if (Tmp > VTBits) Tmp = VTBits;
2028    }
2029    return Tmp;
2030  case ISD::SHL:
2031    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2032      // shl destroys sign bits.
2033      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2034      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2035          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2036      return Tmp - C->getZExtValue();
2037    }
2038    break;
2039  case ISD::AND:
2040  case ISD::OR:
2041  case ISD::XOR:    // NOT is handled here.
2042    // Logical binary ops preserve the number of sign bits at the worst.
2043    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2044    if (Tmp != 1) {
2045      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2046      FirstAnswer = std::min(Tmp, Tmp2);
2047      // We computed what we know about the sign bits as our first
2048      // answer. Now proceed to the generic code that uses
2049      // ComputeMaskedBits, and pick whichever answer is better.
2050    }
2051    break;
2052
2053  case ISD::SELECT:
2054    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2055    if (Tmp == 1) return 1;  // Early out.
2056    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2057    return std::min(Tmp, Tmp2);
2058
2059  case ISD::SADDO:
2060  case ISD::UADDO:
2061  case ISD::SSUBO:
2062  case ISD::USUBO:
2063  case ISD::SMULO:
2064  case ISD::UMULO:
2065    if (Op.getResNo() != 1)
2066      break;
2067    // The boolean result conforms to getBooleanContents.  Fall through.
2068  case ISD::SETCC:
2069    // If setcc returns 0/-1, all bits are sign bits.
2070    if (TLI.getBooleanContents() ==
2071        TargetLowering::ZeroOrNegativeOneBooleanContent)
2072      return VTBits;
2073    break;
2074  case ISD::ROTL:
2075  case ISD::ROTR:
2076    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2077      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2078
2079      // Handle rotate right by N like a rotate left by 32-N.
2080      if (Op.getOpcode() == ISD::ROTR)
2081        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2082
2083      // If we aren't rotating out all of the known-in sign bits, return the
2084      // number that are left.  This handles rotl(sext(x), 1) for example.
2085      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2086      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2087    }
2088    break;
2089  case ISD::ADD:
2090    // Add can have at most one carry bit.  Thus we know that the output
2091    // is, at worst, one more bit than the inputs.
2092    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2093    if (Tmp == 1) return 1;  // Early out.
2094
2095    // Special case decrementing a value (ADD X, -1):
2096    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2097      if (CRHS->isAllOnesValue()) {
2098        APInt KnownZero, KnownOne;
2099        APInt Mask = APInt::getAllOnesValue(VTBits);
2100        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2101
2102        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2103        // sign bits set.
2104        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2105          return VTBits;
2106
2107        // If we are subtracting one from a positive number, there is no carry
2108        // out of the result.
2109        if (KnownZero.isNegative())
2110          return Tmp;
2111      }
2112
2113    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2114    if (Tmp2 == 1) return 1;
2115      return std::min(Tmp, Tmp2)-1;
2116    break;
2117
2118  case ISD::SUB:
2119    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2120    if (Tmp2 == 1) return 1;
2121
2122    // Handle NEG.
2123    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2124      if (CLHS->isNullValue()) {
2125        APInt KnownZero, KnownOne;
2126        APInt Mask = APInt::getAllOnesValue(VTBits);
2127        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2128        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2129        // sign bits set.
2130        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2131          return VTBits;
2132
2133        // If the input is known to be positive (the sign bit is known clear),
2134        // the output of the NEG has the same number of sign bits as the input.
2135        if (KnownZero.isNegative())
2136          return Tmp2;
2137
2138        // Otherwise, we treat this like a SUB.
2139      }
2140
2141    // Sub can have at most one carry bit.  Thus we know that the output
2142    // is, at worst, one more bit than the inputs.
2143    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2144    if (Tmp == 1) return 1;  // Early out.
2145      return std::min(Tmp, Tmp2)-1;
2146    break;
2147  case ISD::TRUNCATE:
2148    // FIXME: it's tricky to do anything useful for this, but it is an important
2149    // case for targets like X86.
2150    break;
2151  }
2152
2153  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2154  if (Op.getOpcode() == ISD::LOAD) {
2155    LoadSDNode *LD = cast<LoadSDNode>(Op);
2156    unsigned ExtType = LD->getExtensionType();
2157    switch (ExtType) {
2158    default: break;
2159    case ISD::SEXTLOAD:    // '17' bits known
2160      Tmp = LD->getMemoryVT().getSizeInBits();
2161      return VTBits-Tmp+1;
2162    case ISD::ZEXTLOAD:    // '16' bits known
2163      Tmp = LD->getMemoryVT().getSizeInBits();
2164      return VTBits-Tmp;
2165    }
2166  }
2167
2168  // Allow the target to implement this method for its nodes.
2169  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2170      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2171      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2172      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2173    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2174    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2175  }
2176
2177  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2178  // use this information.
2179  APInt KnownZero, KnownOne;
2180  APInt Mask = APInt::getAllOnesValue(VTBits);
2181  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2182
2183  if (KnownZero.isNegative()) {        // sign bit is 0
2184    Mask = KnownZero;
2185  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2186    Mask = KnownOne;
2187  } else {
2188    // Nothing known.
2189    return FirstAnswer;
2190  }
2191
2192  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2193  // the number of identical bits in the top of the input value.
2194  Mask = ~Mask;
2195  Mask <<= Mask.getBitWidth()-VTBits;
2196  // Return # leading zeros.  We use 'min' here in case Val was zero before
2197  // shifting.  We don't want to return '64' as for an i32 "0".
2198  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2199}
2200
2201
2202bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2203  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2204  if (!GA) return false;
2205  if (GA->getOffset() != 0) return false;
2206  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2207  if (!GV) return false;
2208  MachineModuleInfo *MMI = getMachineModuleInfo();
2209  return MMI && MMI->hasDebugInfo();
2210}
2211
2212
2213/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2214/// element of the result of the vector shuffle.
2215SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2216                                          unsigned i) {
2217  MVT VT = N->getValueType(0);
2218  DebugLoc dl = N->getDebugLoc();
2219  if (N->getMaskElt(i) < 0)
2220    return getUNDEF(VT.getVectorElementType());
2221  unsigned Index = N->getMaskElt(i);
2222  unsigned NumElems = VT.getVectorNumElements();
2223  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2224  Index %= NumElems;
2225
2226  if (V.getOpcode() == ISD::BIT_CONVERT) {
2227    V = V.getOperand(0);
2228    MVT VVT = V.getValueType();
2229    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2230      return SDValue();
2231  }
2232  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2233    return (Index == 0) ? V.getOperand(0)
2234                      : getUNDEF(VT.getVectorElementType());
2235  if (V.getOpcode() == ISD::BUILD_VECTOR)
2236    return V.getOperand(Index);
2237  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2238    return getShuffleScalarElt(SVN, Index);
2239  return SDValue();
2240}
2241
2242
2243/// getNode - Gets or creates the specified node.
2244///
2245SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2246  FoldingSetNodeID ID;
2247  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2248  void *IP = 0;
2249  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2250    return SDValue(E, 0);
2251  SDNode *N = NodeAllocator.Allocate<SDNode>();
2252  new (N) SDNode(Opcode, DL, getVTList(VT));
2253  CSEMap.InsertNode(N, IP);
2254
2255  AllNodes.push_back(N);
2256#ifndef NDEBUG
2257  VerifyNode(N);
2258#endif
2259  return SDValue(N, 0);
2260}
2261
2262SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2263                              MVT VT, SDValue Operand) {
2264  // Constant fold unary operations with an integer constant operand.
2265  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2266    const APInt &Val = C->getAPIntValue();
2267    unsigned BitWidth = VT.getSizeInBits();
2268    switch (Opcode) {
2269    default: break;
2270    case ISD::SIGN_EXTEND:
2271      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2272    case ISD::ANY_EXTEND:
2273    case ISD::ZERO_EXTEND:
2274    case ISD::TRUNCATE:
2275      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2276    case ISD::UINT_TO_FP:
2277    case ISD::SINT_TO_FP: {
2278      const uint64_t zero[] = {0, 0};
2279      // No compile time operations on this type.
2280      if (VT==MVT::ppcf128)
2281        break;
2282      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2283      (void)apf.convertFromAPInt(Val,
2284                                 Opcode==ISD::SINT_TO_FP,
2285                                 APFloat::rmNearestTiesToEven);
2286      return getConstantFP(apf, VT);
2287    }
2288    case ISD::BIT_CONVERT:
2289      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2290        return getConstantFP(Val.bitsToFloat(), VT);
2291      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2292        return getConstantFP(Val.bitsToDouble(), VT);
2293      break;
2294    case ISD::BSWAP:
2295      return getConstant(Val.byteSwap(), VT);
2296    case ISD::CTPOP:
2297      return getConstant(Val.countPopulation(), VT);
2298    case ISD::CTLZ:
2299      return getConstant(Val.countLeadingZeros(), VT);
2300    case ISD::CTTZ:
2301      return getConstant(Val.countTrailingZeros(), VT);
2302    }
2303  }
2304
2305  // Constant fold unary operations with a floating point constant operand.
2306  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2307    APFloat V = C->getValueAPF();    // make copy
2308    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2309      switch (Opcode) {
2310      case ISD::FNEG:
2311        V.changeSign();
2312        return getConstantFP(V, VT);
2313      case ISD::FABS:
2314        V.clearSign();
2315        return getConstantFP(V, VT);
2316      case ISD::FP_ROUND:
2317      case ISD::FP_EXTEND: {
2318        bool ignored;
2319        // This can return overflow, underflow, or inexact; we don't care.
2320        // FIXME need to be more flexible about rounding mode.
2321        (void)V.convert(*MVTToAPFloatSemantics(VT),
2322                        APFloat::rmNearestTiesToEven, &ignored);
2323        return getConstantFP(V, VT);
2324      }
2325      case ISD::FP_TO_SINT:
2326      case ISD::FP_TO_UINT: {
2327        integerPart x[2];
2328        bool ignored;
2329        assert(integerPartWidth >= 64);
2330        // FIXME need to be more flexible about rounding mode.
2331        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2332                              Opcode==ISD::FP_TO_SINT,
2333                              APFloat::rmTowardZero, &ignored);
2334        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2335          break;
2336        APInt api(VT.getSizeInBits(), 2, x);
2337        return getConstant(api, VT);
2338      }
2339      case ISD::BIT_CONVERT:
2340        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2341          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2342        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2343          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2344        break;
2345      }
2346    }
2347  }
2348
2349  unsigned OpOpcode = Operand.getNode()->getOpcode();
2350  switch (Opcode) {
2351  case ISD::TokenFactor:
2352  case ISD::MERGE_VALUES:
2353  case ISD::CONCAT_VECTORS:
2354    return Operand;         // Factor, merge or concat of one node?  No need.
2355  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2356  case ISD::FP_EXTEND:
2357    assert(VT.isFloatingPoint() &&
2358           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2359    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2360    if (Operand.getOpcode() == ISD::UNDEF)
2361      return getUNDEF(VT);
2362    break;
2363  case ISD::SIGN_EXTEND:
2364    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2365           "Invalid SIGN_EXTEND!");
2366    if (Operand.getValueType() == VT) return Operand;   // noop extension
2367    assert(Operand.getValueType().bitsLT(VT)
2368           && "Invalid sext node, dst < src!");
2369    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2370      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2371    break;
2372  case ISD::ZERO_EXTEND:
2373    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2374           "Invalid ZERO_EXTEND!");
2375    if (Operand.getValueType() == VT) return Operand;   // noop extension
2376    assert(Operand.getValueType().bitsLT(VT)
2377           && "Invalid zext node, dst < src!");
2378    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2379      return getNode(ISD::ZERO_EXTEND, DL, VT,
2380                     Operand.getNode()->getOperand(0));
2381    break;
2382  case ISD::ANY_EXTEND:
2383    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2384           "Invalid ANY_EXTEND!");
2385    if (Operand.getValueType() == VT) return Operand;   // noop extension
2386    assert(Operand.getValueType().bitsLT(VT)
2387           && "Invalid anyext node, dst < src!");
2388    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2389      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2390      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2391    break;
2392  case ISD::TRUNCATE:
2393    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2394           "Invalid TRUNCATE!");
2395    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2396    assert(Operand.getValueType().bitsGT(VT)
2397           && "Invalid truncate node, src < dst!");
2398    if (OpOpcode == ISD::TRUNCATE)
2399      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2400    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2401             OpOpcode == ISD::ANY_EXTEND) {
2402      // If the source is smaller than the dest, we still need an extend.
2403      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2404        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2405      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2406        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2407      else
2408        return Operand.getNode()->getOperand(0);
2409    }
2410    break;
2411  case ISD::BIT_CONVERT:
2412    // Basic sanity checking.
2413    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2414           && "Cannot BIT_CONVERT between types of different sizes!");
2415    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2416    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2417      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2418    if (OpOpcode == ISD::UNDEF)
2419      return getUNDEF(VT);
2420    break;
2421  case ISD::SCALAR_TO_VECTOR:
2422    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2423           (VT.getVectorElementType() == Operand.getValueType() ||
2424            (VT.getVectorElementType().isInteger() &&
2425             Operand.getValueType().isInteger() &&
2426             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2427           "Illegal SCALAR_TO_VECTOR node!");
2428    if (OpOpcode == ISD::UNDEF)
2429      return getUNDEF(VT);
2430    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2431    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2432        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2433        Operand.getConstantOperandVal(1) == 0 &&
2434        Operand.getOperand(0).getValueType() == VT)
2435      return Operand.getOperand(0);
2436    break;
2437  case ISD::FNEG:
2438    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2439    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2440      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2441                     Operand.getNode()->getOperand(0));
2442    if (OpOpcode == ISD::FNEG)  // --X -> X
2443      return Operand.getNode()->getOperand(0);
2444    break;
2445  case ISD::FABS:
2446    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2447      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2448    break;
2449  }
2450
2451  SDNode *N;
2452  SDVTList VTs = getVTList(VT);
2453  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2454    FoldingSetNodeID ID;
2455    SDValue Ops[1] = { Operand };
2456    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2457    void *IP = 0;
2458    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2459      return SDValue(E, 0);
2460    N = NodeAllocator.Allocate<UnarySDNode>();
2461    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2462    CSEMap.InsertNode(N, IP);
2463  } else {
2464    N = NodeAllocator.Allocate<UnarySDNode>();
2465    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2466  }
2467
2468  AllNodes.push_back(N);
2469#ifndef NDEBUG
2470  VerifyNode(N);
2471#endif
2472  return SDValue(N, 0);
2473}
2474
2475SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2476                                             MVT VT,
2477                                             ConstantSDNode *Cst1,
2478                                             ConstantSDNode *Cst2) {
2479  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2480
2481  switch (Opcode) {
2482  case ISD::ADD:  return getConstant(C1 + C2, VT);
2483  case ISD::SUB:  return getConstant(C1 - C2, VT);
2484  case ISD::MUL:  return getConstant(C1 * C2, VT);
2485  case ISD::UDIV:
2486    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2487    break;
2488  case ISD::UREM:
2489    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2490    break;
2491  case ISD::SDIV:
2492    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2493    break;
2494  case ISD::SREM:
2495    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2496    break;
2497  case ISD::AND:  return getConstant(C1 & C2, VT);
2498  case ISD::OR:   return getConstant(C1 | C2, VT);
2499  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2500  case ISD::SHL:  return getConstant(C1 << C2, VT);
2501  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2502  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2503  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2504  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2505  default: break;
2506  }
2507
2508  return SDValue();
2509}
2510
2511SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2512                              SDValue N1, SDValue N2) {
2513  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2514  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2515  switch (Opcode) {
2516  default: break;
2517  case ISD::TokenFactor:
2518    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2519           N2.getValueType() == MVT::Other && "Invalid token factor!");
2520    // Fold trivial token factors.
2521    if (N1.getOpcode() == ISD::EntryToken) return N2;
2522    if (N2.getOpcode() == ISD::EntryToken) return N1;
2523    if (N1 == N2) return N1;
2524    break;
2525  case ISD::CONCAT_VECTORS:
2526    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2527    // one big BUILD_VECTOR.
2528    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2529        N2.getOpcode() == ISD::BUILD_VECTOR) {
2530      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2531      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2532      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2533    }
2534    break;
2535  case ISD::AND:
2536    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2537           N1.getValueType() == VT && "Binary operator types must match!");
2538    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2539    // worth handling here.
2540    if (N2C && N2C->isNullValue())
2541      return N2;
2542    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2543      return N1;
2544    break;
2545  case ISD::OR:
2546  case ISD::XOR:
2547  case ISD::ADD:
2548  case ISD::SUB:
2549    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2550           N1.getValueType() == VT && "Binary operator types must match!");
2551    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2552    // it's worth handling here.
2553    if (N2C && N2C->isNullValue())
2554      return N1;
2555    break;
2556  case ISD::UDIV:
2557  case ISD::UREM:
2558  case ISD::MULHU:
2559  case ISD::MULHS:
2560  case ISD::MUL:
2561  case ISD::SDIV:
2562  case ISD::SREM:
2563    assert(VT.isInteger() && "This operator does not apply to FP types!");
2564    // fall through
2565  case ISD::FADD:
2566  case ISD::FSUB:
2567  case ISD::FMUL:
2568  case ISD::FDIV:
2569  case ISD::FREM:
2570    if (UnsafeFPMath) {
2571      if (Opcode == ISD::FADD) {
2572        // 0+x --> x
2573        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2574          if (CFP->getValueAPF().isZero())
2575            return N2;
2576        // x+0 --> x
2577        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2578          if (CFP->getValueAPF().isZero())
2579            return N1;
2580      } else if (Opcode == ISD::FSUB) {
2581        // x-0 --> x
2582        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2583          if (CFP->getValueAPF().isZero())
2584            return N1;
2585      }
2586    }
2587    assert(N1.getValueType() == N2.getValueType() &&
2588           N1.getValueType() == VT && "Binary operator types must match!");
2589    break;
2590  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2591    assert(N1.getValueType() == VT &&
2592           N1.getValueType().isFloatingPoint() &&
2593           N2.getValueType().isFloatingPoint() &&
2594           "Invalid FCOPYSIGN!");
2595    break;
2596  case ISD::SHL:
2597  case ISD::SRA:
2598  case ISD::SRL:
2599  case ISD::ROTL:
2600  case ISD::ROTR:
2601    assert(VT == N1.getValueType() &&
2602           "Shift operators return type must be the same as their first arg");
2603    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2604           "Shifts only work on integers");
2605
2606    // Always fold shifts of i1 values so the code generator doesn't need to
2607    // handle them.  Since we know the size of the shift has to be less than the
2608    // size of the value, the shift/rotate count is guaranteed to be zero.
2609    if (VT == MVT::i1)
2610      return N1;
2611    break;
2612  case ISD::FP_ROUND_INREG: {
2613    MVT EVT = cast<VTSDNode>(N2)->getVT();
2614    assert(VT == N1.getValueType() && "Not an inreg round!");
2615    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2616           "Cannot FP_ROUND_INREG integer types");
2617    assert(EVT.bitsLE(VT) && "Not rounding down!");
2618    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2619    break;
2620  }
2621  case ISD::FP_ROUND:
2622    assert(VT.isFloatingPoint() &&
2623           N1.getValueType().isFloatingPoint() &&
2624           VT.bitsLE(N1.getValueType()) &&
2625           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2626    if (N1.getValueType() == VT) return N1;  // noop conversion.
2627    break;
2628  case ISD::AssertSext:
2629  case ISD::AssertZext: {
2630    MVT EVT = cast<VTSDNode>(N2)->getVT();
2631    assert(VT == N1.getValueType() && "Not an inreg extend!");
2632    assert(VT.isInteger() && EVT.isInteger() &&
2633           "Cannot *_EXTEND_INREG FP types");
2634    assert(EVT.bitsLE(VT) && "Not extending!");
2635    if (VT == EVT) return N1; // noop assertion.
2636    break;
2637  }
2638  case ISD::SIGN_EXTEND_INREG: {
2639    MVT EVT = cast<VTSDNode>(N2)->getVT();
2640    assert(VT == N1.getValueType() && "Not an inreg extend!");
2641    assert(VT.isInteger() && EVT.isInteger() &&
2642           "Cannot *_EXTEND_INREG FP types");
2643    assert(EVT.bitsLE(VT) && "Not extending!");
2644    if (EVT == VT) return N1;  // Not actually extending
2645
2646    if (N1C) {
2647      APInt Val = N1C->getAPIntValue();
2648      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2649      Val <<= Val.getBitWidth()-FromBits;
2650      Val = Val.ashr(Val.getBitWidth()-FromBits);
2651      return getConstant(Val, VT);
2652    }
2653    break;
2654  }
2655  case ISD::EXTRACT_VECTOR_ELT:
2656    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2657    if (N1.getOpcode() == ISD::UNDEF)
2658      return getUNDEF(VT);
2659
2660    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2661    // expanding copies of large vectors from registers.
2662    if (N2C &&
2663        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2664        N1.getNumOperands() > 0) {
2665      unsigned Factor =
2666        N1.getOperand(0).getValueType().getVectorNumElements();
2667      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2668                     N1.getOperand(N2C->getZExtValue() / Factor),
2669                     getConstant(N2C->getZExtValue() % Factor,
2670                                 N2.getValueType()));
2671    }
2672
2673    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2674    // expanding large vector constants.
2675    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2676      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2677      if (Elt.getValueType() != VT) {
2678        // If the vector element type is not legal, the BUILD_VECTOR operands
2679        // are promoted and implicitly truncated.  Make that explicit here.
2680        assert(VT.isInteger() && Elt.getValueType().isInteger() &&
2681               VT.bitsLE(Elt.getValueType()) &&
2682               "Bad type for BUILD_VECTOR operand");
2683        Elt = getNode(ISD::TRUNCATE, DL, VT, Elt);
2684      }
2685      return Elt;
2686    }
2687
2688    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2689    // operations are lowered to scalars.
2690    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2691      // If the indices are the same, return the inserted element.
2692      if (N1.getOperand(2) == N2)
2693        return N1.getOperand(1);
2694      // If the indices are known different, extract the element from
2695      // the original vector.
2696      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2697               isa<ConstantSDNode>(N2))
2698        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2699    }
2700    break;
2701  case ISD::EXTRACT_ELEMENT:
2702    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2703    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2704           (N1.getValueType().isInteger() == VT.isInteger()) &&
2705           "Wrong types for EXTRACT_ELEMENT!");
2706
2707    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2708    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2709    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2710    if (N1.getOpcode() == ISD::BUILD_PAIR)
2711      return N1.getOperand(N2C->getZExtValue());
2712
2713    // EXTRACT_ELEMENT of a constant int is also very common.
2714    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2715      unsigned ElementSize = VT.getSizeInBits();
2716      unsigned Shift = ElementSize * N2C->getZExtValue();
2717      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2718      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2719    }
2720    break;
2721  case ISD::EXTRACT_SUBVECTOR:
2722    if (N1.getValueType() == VT) // Trivial extraction.
2723      return N1;
2724    break;
2725  }
2726
2727  if (N1C) {
2728    if (N2C) {
2729      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2730      if (SV.getNode()) return SV;
2731    } else {      // Cannonicalize constant to RHS if commutative
2732      if (isCommutativeBinOp(Opcode)) {
2733        std::swap(N1C, N2C);
2734        std::swap(N1, N2);
2735      }
2736    }
2737  }
2738
2739  // Constant fold FP operations.
2740  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2741  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2742  if (N1CFP) {
2743    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2744      // Cannonicalize constant to RHS if commutative
2745      std::swap(N1CFP, N2CFP);
2746      std::swap(N1, N2);
2747    } else if (N2CFP && VT != MVT::ppcf128) {
2748      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2749      APFloat::opStatus s;
2750      switch (Opcode) {
2751      case ISD::FADD:
2752        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2753        if (s != APFloat::opInvalidOp)
2754          return getConstantFP(V1, VT);
2755        break;
2756      case ISD::FSUB:
2757        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2758        if (s!=APFloat::opInvalidOp)
2759          return getConstantFP(V1, VT);
2760        break;
2761      case ISD::FMUL:
2762        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2763        if (s!=APFloat::opInvalidOp)
2764          return getConstantFP(V1, VT);
2765        break;
2766      case ISD::FDIV:
2767        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2768        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2769          return getConstantFP(V1, VT);
2770        break;
2771      case ISD::FREM :
2772        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2773        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2774          return getConstantFP(V1, VT);
2775        break;
2776      case ISD::FCOPYSIGN:
2777        V1.copySign(V2);
2778        return getConstantFP(V1, VT);
2779      default: break;
2780      }
2781    }
2782  }
2783
2784  // Canonicalize an UNDEF to the RHS, even over a constant.
2785  if (N1.getOpcode() == ISD::UNDEF) {
2786    if (isCommutativeBinOp(Opcode)) {
2787      std::swap(N1, N2);
2788    } else {
2789      switch (Opcode) {
2790      case ISD::FP_ROUND_INREG:
2791      case ISD::SIGN_EXTEND_INREG:
2792      case ISD::SUB:
2793      case ISD::FSUB:
2794      case ISD::FDIV:
2795      case ISD::FREM:
2796      case ISD::SRA:
2797        return N1;     // fold op(undef, arg2) -> undef
2798      case ISD::UDIV:
2799      case ISD::SDIV:
2800      case ISD::UREM:
2801      case ISD::SREM:
2802      case ISD::SRL:
2803      case ISD::SHL:
2804        if (!VT.isVector())
2805          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2806        // For vectors, we can't easily build an all zero vector, just return
2807        // the LHS.
2808        return N2;
2809      }
2810    }
2811  }
2812
2813  // Fold a bunch of operators when the RHS is undef.
2814  if (N2.getOpcode() == ISD::UNDEF) {
2815    switch (Opcode) {
2816    case ISD::XOR:
2817      if (N1.getOpcode() == ISD::UNDEF)
2818        // Handle undef ^ undef -> 0 special case. This is a common
2819        // idiom (misuse).
2820        return getConstant(0, VT);
2821      // fallthrough
2822    case ISD::ADD:
2823    case ISD::ADDC:
2824    case ISD::ADDE:
2825    case ISD::SUB:
2826    case ISD::UDIV:
2827    case ISD::SDIV:
2828    case ISD::UREM:
2829    case ISD::SREM:
2830      return N2;       // fold op(arg1, undef) -> undef
2831    case ISD::FADD:
2832    case ISD::FSUB:
2833    case ISD::FMUL:
2834    case ISD::FDIV:
2835    case ISD::FREM:
2836      if (UnsafeFPMath)
2837        return N2;
2838      break;
2839    case ISD::MUL:
2840    case ISD::AND:
2841    case ISD::SRL:
2842    case ISD::SHL:
2843      if (!VT.isVector())
2844        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2845      // For vectors, we can't easily build an all zero vector, just return
2846      // the LHS.
2847      return N1;
2848    case ISD::OR:
2849      if (!VT.isVector())
2850        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2851      // For vectors, we can't easily build an all one vector, just return
2852      // the LHS.
2853      return N1;
2854    case ISD::SRA:
2855      return N1;
2856    }
2857  }
2858
2859  // Memoize this node if possible.
2860  SDNode *N;
2861  SDVTList VTs = getVTList(VT);
2862  if (VT != MVT::Flag) {
2863    SDValue Ops[] = { N1, N2 };
2864    FoldingSetNodeID ID;
2865    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2866    void *IP = 0;
2867    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2868      return SDValue(E, 0);
2869    N = NodeAllocator.Allocate<BinarySDNode>();
2870    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2871    CSEMap.InsertNode(N, IP);
2872  } else {
2873    N = NodeAllocator.Allocate<BinarySDNode>();
2874    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2875  }
2876
2877  AllNodes.push_back(N);
2878#ifndef NDEBUG
2879  VerifyNode(N);
2880#endif
2881  return SDValue(N, 0);
2882}
2883
2884SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2885                              SDValue N1, SDValue N2, SDValue N3) {
2886  // Perform various simplifications.
2887  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2888  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2889  switch (Opcode) {
2890  case ISD::CONCAT_VECTORS:
2891    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2892    // one big BUILD_VECTOR.
2893    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2894        N2.getOpcode() == ISD::BUILD_VECTOR &&
2895        N3.getOpcode() == ISD::BUILD_VECTOR) {
2896      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2897      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2898      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2899      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2900    }
2901    break;
2902  case ISD::SETCC: {
2903    // Use FoldSetCC to simplify SETCC's.
2904    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2905    if (Simp.getNode()) return Simp;
2906    break;
2907  }
2908  case ISD::SELECT:
2909    if (N1C) {
2910     if (N1C->getZExtValue())
2911        return N2;             // select true, X, Y -> X
2912      else
2913        return N3;             // select false, X, Y -> Y
2914    }
2915
2916    if (N2 == N3) return N2;   // select C, X, X -> X
2917    break;
2918  case ISD::BRCOND:
2919    if (N2C) {
2920      if (N2C->getZExtValue()) // Unconditional branch
2921        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2922      else
2923        return N1;         // Never-taken branch
2924    }
2925    break;
2926  case ISD::VECTOR_SHUFFLE:
2927    assert(0 && "should use getVectorShuffle constructor!");
2928    break;
2929  case ISD::BIT_CONVERT:
2930    // Fold bit_convert nodes from a type to themselves.
2931    if (N1.getValueType() == VT)
2932      return N1;
2933    break;
2934  }
2935
2936  // Memoize node if it doesn't produce a flag.
2937  SDNode *N;
2938  SDVTList VTs = getVTList(VT);
2939  if (VT != MVT::Flag) {
2940    SDValue Ops[] = { N1, N2, N3 };
2941    FoldingSetNodeID ID;
2942    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2943    void *IP = 0;
2944    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2945      return SDValue(E, 0);
2946    N = NodeAllocator.Allocate<TernarySDNode>();
2947    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2948    CSEMap.InsertNode(N, IP);
2949  } else {
2950    N = NodeAllocator.Allocate<TernarySDNode>();
2951    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2952  }
2953  AllNodes.push_back(N);
2954#ifndef NDEBUG
2955  VerifyNode(N);
2956#endif
2957  return SDValue(N, 0);
2958}
2959
2960SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2961                              SDValue N1, SDValue N2, SDValue N3,
2962                              SDValue N4) {
2963  SDValue Ops[] = { N1, N2, N3, N4 };
2964  return getNode(Opcode, DL, VT, Ops, 4);
2965}
2966
2967SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2968                              SDValue N1, SDValue N2, SDValue N3,
2969                              SDValue N4, SDValue N5) {
2970  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2971  return getNode(Opcode, DL, VT, Ops, 5);
2972}
2973
2974/// getMemsetValue - Vectorized representation of the memset value
2975/// operand.
2976static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2977                              DebugLoc dl) {
2978  unsigned NumBits = VT.isVector() ?
2979    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2980  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2981    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2982    unsigned Shift = 8;
2983    for (unsigned i = NumBits; i > 8; i >>= 1) {
2984      Val = (Val << Shift) | Val;
2985      Shift <<= 1;
2986    }
2987    if (VT.isInteger())
2988      return DAG.getConstant(Val, VT);
2989    return DAG.getConstantFP(APFloat(Val), VT);
2990  }
2991
2992  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2993  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
2994  unsigned Shift = 8;
2995  for (unsigned i = NumBits; i > 8; i >>= 1) {
2996    Value = DAG.getNode(ISD::OR, dl, VT,
2997                        DAG.getNode(ISD::SHL, dl, VT, Value,
2998                                    DAG.getConstant(Shift,
2999                                                    TLI.getShiftAmountTy())),
3000                        Value);
3001    Shift <<= 1;
3002  }
3003
3004  return Value;
3005}
3006
3007/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3008/// used when a memcpy is turned into a memset when the source is a constant
3009/// string ptr.
3010static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
3011                                    const TargetLowering &TLI,
3012                                    std::string &Str, unsigned Offset) {
3013  // Handle vector with all elements zero.
3014  if (Str.empty()) {
3015    if (VT.isInteger())
3016      return DAG.getConstant(0, VT);
3017    unsigned NumElts = VT.getVectorNumElements();
3018    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3019    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3020                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
3021  }
3022
3023  assert(!VT.isVector() && "Can't handle vector type here!");
3024  unsigned NumBits = VT.getSizeInBits();
3025  unsigned MSB = NumBits / 8;
3026  uint64_t Val = 0;
3027  if (TLI.isLittleEndian())
3028    Offset = Offset + MSB - 1;
3029  for (unsigned i = 0; i != MSB; ++i) {
3030    Val = (Val << 8) | (unsigned char)Str[Offset];
3031    Offset += TLI.isLittleEndian() ? -1 : 1;
3032  }
3033  return DAG.getConstant(Val, VT);
3034}
3035
3036/// getMemBasePlusOffset - Returns base and offset node for the
3037///
3038static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3039                                      SelectionDAG &DAG) {
3040  MVT VT = Base.getValueType();
3041  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3042                     VT, Base, DAG.getConstant(Offset, VT));
3043}
3044
3045/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3046///
3047static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3048  unsigned SrcDelta = 0;
3049  GlobalAddressSDNode *G = NULL;
3050  if (Src.getOpcode() == ISD::GlobalAddress)
3051    G = cast<GlobalAddressSDNode>(Src);
3052  else if (Src.getOpcode() == ISD::ADD &&
3053           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3054           Src.getOperand(1).getOpcode() == ISD::Constant) {
3055    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3056    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3057  }
3058  if (!G)
3059    return false;
3060
3061  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3062  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3063    return true;
3064
3065  return false;
3066}
3067
3068/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3069/// to replace the memset / memcpy is below the threshold. It also returns the
3070/// types of the sequence of memory ops to perform memset / memcpy.
3071static
3072bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
3073                              SDValue Dst, SDValue Src,
3074                              unsigned Limit, uint64_t Size, unsigned &Align,
3075                              std::string &Str, bool &isSrcStr,
3076                              SelectionDAG &DAG,
3077                              const TargetLowering &TLI) {
3078  isSrcStr = isMemSrcFromString(Src, Str);
3079  bool isSrcConst = isa<ConstantSDNode>(Src);
3080  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
3081  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3082  if (VT != MVT::iAny) {
3083    unsigned NewAlign = (unsigned)
3084      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
3085    // If source is a string constant, this will require an unaligned load.
3086    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3087      if (Dst.getOpcode() != ISD::FrameIndex) {
3088        // Can't change destination alignment. It requires a unaligned store.
3089        if (AllowUnalign)
3090          VT = MVT::iAny;
3091      } else {
3092        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3093        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3094        if (MFI->isFixedObjectIndex(FI)) {
3095          // Can't change destination alignment. It requires a unaligned store.
3096          if (AllowUnalign)
3097            VT = MVT::iAny;
3098        } else {
3099          // Give the stack frame object a larger alignment if needed.
3100          if (MFI->getObjectAlignment(FI) < NewAlign)
3101            MFI->setObjectAlignment(FI, NewAlign);
3102          Align = NewAlign;
3103        }
3104      }
3105    }
3106  }
3107
3108  if (VT == MVT::iAny) {
3109    if (AllowUnalign) {
3110      VT = MVT::i64;
3111    } else {
3112      switch (Align & 7) {
3113      case 0:  VT = MVT::i64; break;
3114      case 4:  VT = MVT::i32; break;
3115      case 2:  VT = MVT::i16; break;
3116      default: VT = MVT::i8;  break;
3117      }
3118    }
3119
3120    MVT LVT = MVT::i64;
3121    while (!TLI.isTypeLegal(LVT))
3122      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3123    assert(LVT.isInteger());
3124
3125    if (VT.bitsGT(LVT))
3126      VT = LVT;
3127  }
3128
3129  unsigned NumMemOps = 0;
3130  while (Size != 0) {
3131    unsigned VTSize = VT.getSizeInBits() / 8;
3132    while (VTSize > Size) {
3133      // For now, only use non-vector load / store's for the left-over pieces.
3134      if (VT.isVector()) {
3135        VT = MVT::i64;
3136        while (!TLI.isTypeLegal(VT))
3137          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3138        VTSize = VT.getSizeInBits() / 8;
3139      } else {
3140        // This can result in a type that is not legal on the target, e.g.
3141        // 1 or 2 bytes on PPC.
3142        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3143        VTSize >>= 1;
3144      }
3145    }
3146
3147    if (++NumMemOps > Limit)
3148      return false;
3149    MemOps.push_back(VT);
3150    Size -= VTSize;
3151  }
3152
3153  return true;
3154}
3155
3156static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3157                                         SDValue Chain, SDValue Dst,
3158                                         SDValue Src, uint64_t Size,
3159                                         unsigned Align, bool AlwaysInline,
3160                                         const Value *DstSV, uint64_t DstSVOff,
3161                                         const Value *SrcSV, uint64_t SrcSVOff){
3162  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3163
3164  // Expand memcpy to a series of load and store ops if the size operand falls
3165  // below a certain threshold.
3166  std::vector<MVT> MemOps;
3167  uint64_t Limit = -1ULL;
3168  if (!AlwaysInline)
3169    Limit = TLI.getMaxStoresPerMemcpy();
3170  unsigned DstAlign = Align;  // Destination alignment can change.
3171  std::string Str;
3172  bool CopyFromStr;
3173  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3174                                Str, CopyFromStr, DAG, TLI))
3175    return SDValue();
3176
3177
3178  bool isZeroStr = CopyFromStr && Str.empty();
3179  SmallVector<SDValue, 8> OutChains;
3180  unsigned NumMemOps = MemOps.size();
3181  uint64_t SrcOff = 0, DstOff = 0;
3182  for (unsigned i = 0; i < NumMemOps; i++) {
3183    MVT VT = MemOps[i];
3184    unsigned VTSize = VT.getSizeInBits() / 8;
3185    SDValue Value, Store;
3186
3187    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3188      // It's unlikely a store of a vector immediate can be done in a single
3189      // instruction. It would require a load from a constantpool first.
3190      // We also handle store a vector with all zero's.
3191      // FIXME: Handle other cases where store of vector immediate is done in
3192      // a single instruction.
3193      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3194      Store = DAG.getStore(Chain, dl, Value,
3195                           getMemBasePlusOffset(Dst, DstOff, DAG),
3196                           DstSV, DstSVOff + DstOff, false, DstAlign);
3197    } else {
3198      // The type might not be legal for the target.  This should only happen
3199      // if the type is smaller than a legal type, as on PPC, so the right
3200      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3201      // to Load/Store if NVT==VT.
3202      // FIXME does the case above also need this?
3203      MVT NVT = TLI.getTypeToTransformTo(VT);
3204      assert(NVT.bitsGE(VT));
3205      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3206                             getMemBasePlusOffset(Src, SrcOff, DAG),
3207                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3208      Store = DAG.getTruncStore(Chain, dl, Value,
3209                             getMemBasePlusOffset(Dst, DstOff, DAG),
3210                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3211    }
3212    OutChains.push_back(Store);
3213    SrcOff += VTSize;
3214    DstOff += VTSize;
3215  }
3216
3217  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3218                     &OutChains[0], OutChains.size());
3219}
3220
3221static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3222                                          SDValue Chain, SDValue Dst,
3223                                          SDValue Src, uint64_t Size,
3224                                          unsigned Align, bool AlwaysInline,
3225                                          const Value *DstSV, uint64_t DstSVOff,
3226                                          const Value *SrcSV, uint64_t SrcSVOff){
3227  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3228
3229  // Expand memmove to a series of load and store ops if the size operand falls
3230  // below a certain threshold.
3231  std::vector<MVT> MemOps;
3232  uint64_t Limit = -1ULL;
3233  if (!AlwaysInline)
3234    Limit = TLI.getMaxStoresPerMemmove();
3235  unsigned DstAlign = Align;  // Destination alignment can change.
3236  std::string Str;
3237  bool CopyFromStr;
3238  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3239                                Str, CopyFromStr, DAG, TLI))
3240    return SDValue();
3241
3242  uint64_t SrcOff = 0, DstOff = 0;
3243
3244  SmallVector<SDValue, 8> LoadValues;
3245  SmallVector<SDValue, 8> LoadChains;
3246  SmallVector<SDValue, 8> OutChains;
3247  unsigned NumMemOps = MemOps.size();
3248  for (unsigned i = 0; i < NumMemOps; i++) {
3249    MVT VT = MemOps[i];
3250    unsigned VTSize = VT.getSizeInBits() / 8;
3251    SDValue Value, Store;
3252
3253    Value = DAG.getLoad(VT, dl, Chain,
3254                        getMemBasePlusOffset(Src, SrcOff, DAG),
3255                        SrcSV, SrcSVOff + SrcOff, false, Align);
3256    LoadValues.push_back(Value);
3257    LoadChains.push_back(Value.getValue(1));
3258    SrcOff += VTSize;
3259  }
3260  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3261                      &LoadChains[0], LoadChains.size());
3262  OutChains.clear();
3263  for (unsigned i = 0; i < NumMemOps; i++) {
3264    MVT VT = MemOps[i];
3265    unsigned VTSize = VT.getSizeInBits() / 8;
3266    SDValue Value, Store;
3267
3268    Store = DAG.getStore(Chain, dl, LoadValues[i],
3269                         getMemBasePlusOffset(Dst, DstOff, DAG),
3270                         DstSV, DstSVOff + DstOff, false, DstAlign);
3271    OutChains.push_back(Store);
3272    DstOff += VTSize;
3273  }
3274
3275  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3276                     &OutChains[0], OutChains.size());
3277}
3278
3279static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3280                                 SDValue Chain, SDValue Dst,
3281                                 SDValue Src, uint64_t Size,
3282                                 unsigned Align,
3283                                 const Value *DstSV, uint64_t DstSVOff) {
3284  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3285
3286  // Expand memset to a series of load/store ops if the size operand
3287  // falls below a certain threshold.
3288  std::vector<MVT> MemOps;
3289  std::string Str;
3290  bool CopyFromStr;
3291  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3292                                Size, Align, Str, CopyFromStr, DAG, TLI))
3293    return SDValue();
3294
3295  SmallVector<SDValue, 8> OutChains;
3296  uint64_t DstOff = 0;
3297
3298  unsigned NumMemOps = MemOps.size();
3299  for (unsigned i = 0; i < NumMemOps; i++) {
3300    MVT VT = MemOps[i];
3301    unsigned VTSize = VT.getSizeInBits() / 8;
3302    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3303    SDValue Store = DAG.getStore(Chain, dl, Value,
3304                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3305                                 DstSV, DstSVOff + DstOff);
3306    OutChains.push_back(Store);
3307    DstOff += VTSize;
3308  }
3309
3310  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3311                     &OutChains[0], OutChains.size());
3312}
3313
3314SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3315                                SDValue Src, SDValue Size,
3316                                unsigned Align, bool AlwaysInline,
3317                                const Value *DstSV, uint64_t DstSVOff,
3318                                const Value *SrcSV, uint64_t SrcSVOff) {
3319
3320  // Check to see if we should lower the memcpy to loads and stores first.
3321  // For cases within the target-specified limits, this is the best choice.
3322  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3323  if (ConstantSize) {
3324    // Memcpy with size zero? Just return the original chain.
3325    if (ConstantSize->isNullValue())
3326      return Chain;
3327
3328    SDValue Result =
3329      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3330                              ConstantSize->getZExtValue(),
3331                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3332    if (Result.getNode())
3333      return Result;
3334  }
3335
3336  // Then check to see if we should lower the memcpy with target-specific
3337  // code. If the target chooses to do this, this is the next best.
3338  SDValue Result =
3339    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3340                                AlwaysInline,
3341                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3342  if (Result.getNode())
3343    return Result;
3344
3345  // If we really need inline code and the target declined to provide it,
3346  // use a (potentially long) sequence of loads and stores.
3347  if (AlwaysInline) {
3348    assert(ConstantSize && "AlwaysInline requires a constant size!");
3349    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3350                                   ConstantSize->getZExtValue(), Align, true,
3351                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3352  }
3353
3354  // Emit a library call.
3355  TargetLowering::ArgListTy Args;
3356  TargetLowering::ArgListEntry Entry;
3357  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3358  Entry.Node = Dst; Args.push_back(Entry);
3359  Entry.Node = Src; Args.push_back(Entry);
3360  Entry.Node = Size; Args.push_back(Entry);
3361  // FIXME: pass in DebugLoc
3362  std::pair<SDValue,SDValue> CallResult =
3363    TLI.LowerCallTo(Chain, Type::VoidTy,
3364                    false, false, false, false, CallingConv::C, false,
3365                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3366                    Args, *this, dl);
3367  return CallResult.second;
3368}
3369
3370SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3371                                 SDValue Src, SDValue Size,
3372                                 unsigned Align,
3373                                 const Value *DstSV, uint64_t DstSVOff,
3374                                 const Value *SrcSV, uint64_t SrcSVOff) {
3375
3376  // Check to see if we should lower the memmove to loads and stores first.
3377  // For cases within the target-specified limits, this is the best choice.
3378  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3379  if (ConstantSize) {
3380    // Memmove with size zero? Just return the original chain.
3381    if (ConstantSize->isNullValue())
3382      return Chain;
3383
3384    SDValue Result =
3385      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3386                               ConstantSize->getZExtValue(),
3387                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3388    if (Result.getNode())
3389      return Result;
3390  }
3391
3392  // Then check to see if we should lower the memmove with target-specific
3393  // code. If the target chooses to do this, this is the next best.
3394  SDValue Result =
3395    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3396                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3397  if (Result.getNode())
3398    return Result;
3399
3400  // Emit a library call.
3401  TargetLowering::ArgListTy Args;
3402  TargetLowering::ArgListEntry Entry;
3403  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3404  Entry.Node = Dst; Args.push_back(Entry);
3405  Entry.Node = Src; Args.push_back(Entry);
3406  Entry.Node = Size; Args.push_back(Entry);
3407  // FIXME:  pass in DebugLoc
3408  std::pair<SDValue,SDValue> CallResult =
3409    TLI.LowerCallTo(Chain, Type::VoidTy,
3410                    false, false, false, false, CallingConv::C, false,
3411                    getExternalSymbol("memmove", TLI.getPointerTy()),
3412                    Args, *this, dl);
3413  return CallResult.second;
3414}
3415
3416SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3417                                SDValue Src, SDValue Size,
3418                                unsigned Align,
3419                                const Value *DstSV, uint64_t DstSVOff) {
3420
3421  // Check to see if we should lower the memset to stores first.
3422  // For cases within the target-specified limits, this is the best choice.
3423  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3424  if (ConstantSize) {
3425    // Memset with size zero? Just return the original chain.
3426    if (ConstantSize->isNullValue())
3427      return Chain;
3428
3429    SDValue Result =
3430      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3431                      Align, DstSV, DstSVOff);
3432    if (Result.getNode())
3433      return Result;
3434  }
3435
3436  // Then check to see if we should lower the memset with target-specific
3437  // code. If the target chooses to do this, this is the next best.
3438  SDValue Result =
3439    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3440                                DstSV, DstSVOff);
3441  if (Result.getNode())
3442    return Result;
3443
3444  // Emit a library call.
3445  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3446  TargetLowering::ArgListTy Args;
3447  TargetLowering::ArgListEntry Entry;
3448  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3449  Args.push_back(Entry);
3450  // Extend or truncate the argument to be an i32 value for the call.
3451  if (Src.getValueType().bitsGT(MVT::i32))
3452    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3453  else
3454    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3455  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3456  Args.push_back(Entry);
3457  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3458  Args.push_back(Entry);
3459  // FIXME: pass in DebugLoc
3460  std::pair<SDValue,SDValue> CallResult =
3461    TLI.LowerCallTo(Chain, Type::VoidTy,
3462                    false, false, false, false, CallingConv::C, false,
3463                    getExternalSymbol("memset", TLI.getPointerTy()),
3464                    Args, *this, dl);
3465  return CallResult.second;
3466}
3467
3468SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3469                                SDValue Chain,
3470                                SDValue Ptr, SDValue Cmp,
3471                                SDValue Swp, const Value* PtrVal,
3472                                unsigned Alignment) {
3473  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3474  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3475
3476  MVT VT = Cmp.getValueType();
3477
3478  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3479    Alignment = getMVTAlignment(MemVT);
3480
3481  SDVTList VTs = getVTList(VT, MVT::Other);
3482  FoldingSetNodeID ID;
3483  ID.AddInteger(MemVT.getRawBits());
3484  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3485  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3486  void* IP = 0;
3487  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3488    return SDValue(E, 0);
3489  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3490  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3491                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3492  CSEMap.InsertNode(N, IP);
3493  AllNodes.push_back(N);
3494  return SDValue(N, 0);
3495}
3496
3497SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3498                                SDValue Chain,
3499                                SDValue Ptr, SDValue Val,
3500                                const Value* PtrVal,
3501                                unsigned Alignment) {
3502  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3503          Opcode == ISD::ATOMIC_LOAD_SUB ||
3504          Opcode == ISD::ATOMIC_LOAD_AND ||
3505          Opcode == ISD::ATOMIC_LOAD_OR ||
3506          Opcode == ISD::ATOMIC_LOAD_XOR ||
3507          Opcode == ISD::ATOMIC_LOAD_NAND ||
3508          Opcode == ISD::ATOMIC_LOAD_MIN ||
3509          Opcode == ISD::ATOMIC_LOAD_MAX ||
3510          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3511          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3512          Opcode == ISD::ATOMIC_SWAP) &&
3513         "Invalid Atomic Op");
3514
3515  MVT VT = Val.getValueType();
3516
3517  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3518    Alignment = getMVTAlignment(MemVT);
3519
3520  SDVTList VTs = getVTList(VT, MVT::Other);
3521  FoldingSetNodeID ID;
3522  ID.AddInteger(MemVT.getRawBits());
3523  SDValue Ops[] = {Chain, Ptr, Val};
3524  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3525  void* IP = 0;
3526  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3527    return SDValue(E, 0);
3528  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3529  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3530                       Chain, Ptr, Val, PtrVal, Alignment);
3531  CSEMap.InsertNode(N, IP);
3532  AllNodes.push_back(N);
3533  return SDValue(N, 0);
3534}
3535
3536/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3537/// Allowed to return something different (and simpler) if Simplify is true.
3538SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3539                                     DebugLoc dl) {
3540  if (NumOps == 1)
3541    return Ops[0];
3542
3543  SmallVector<MVT, 4> VTs;
3544  VTs.reserve(NumOps);
3545  for (unsigned i = 0; i < NumOps; ++i)
3546    VTs.push_back(Ops[i].getValueType());
3547  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3548                 Ops, NumOps);
3549}
3550
3551SDValue
3552SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3553                                  const MVT *VTs, unsigned NumVTs,
3554                                  const SDValue *Ops, unsigned NumOps,
3555                                  MVT MemVT, const Value *srcValue, int SVOff,
3556                                  unsigned Align, bool Vol,
3557                                  bool ReadMem, bool WriteMem) {
3558  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3559                             MemVT, srcValue, SVOff, Align, Vol,
3560                             ReadMem, WriteMem);
3561}
3562
3563SDValue
3564SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3565                                  const SDValue *Ops, unsigned NumOps,
3566                                  MVT MemVT, const Value *srcValue, int SVOff,
3567                                  unsigned Align, bool Vol,
3568                                  bool ReadMem, bool WriteMem) {
3569  // Memoize the node unless it returns a flag.
3570  MemIntrinsicSDNode *N;
3571  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3572    FoldingSetNodeID ID;
3573    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3574    void *IP = 0;
3575    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3576      return SDValue(E, 0);
3577
3578    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3579    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3580                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3581    CSEMap.InsertNode(N, IP);
3582  } else {
3583    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3584    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3585                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3586  }
3587  AllNodes.push_back(N);
3588  return SDValue(N, 0);
3589}
3590
3591SDValue
3592SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3593                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3594                      const SDValue *Operands, unsigned NumOperands) {
3595  // Do not include isTailCall in the folding set profile.
3596  FoldingSetNodeID ID;
3597  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3598  ID.AddInteger(CallingConv);
3599  ID.AddInteger(IsVarArgs);
3600  void *IP = 0;
3601  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3602    // Instead of including isTailCall in the folding set, we just
3603    // set the flag of the existing node.
3604    if (!IsTailCall)
3605      cast<CallSDNode>(E)->setNotTailCall();
3606    return SDValue(E, 0);
3607  }
3608  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3609  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3610                     VTs, Operands, NumOperands);
3611  CSEMap.InsertNode(N, IP);
3612  AllNodes.push_back(N);
3613  return SDValue(N, 0);
3614}
3615
3616SDValue
3617SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3618                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3619                      SDValue Ptr, SDValue Offset,
3620                      const Value *SV, int SVOffset, MVT EVT,
3621                      bool isVolatile, unsigned Alignment) {
3622  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3623    Alignment = getMVTAlignment(VT);
3624
3625  if (VT == EVT) {
3626    ExtType = ISD::NON_EXTLOAD;
3627  } else if (ExtType == ISD::NON_EXTLOAD) {
3628    assert(VT == EVT && "Non-extending load from different memory type!");
3629  } else {
3630    // Extending load.
3631    if (VT.isVector())
3632      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3633             "Invalid vector extload!");
3634    else
3635      assert(EVT.bitsLT(VT) &&
3636             "Should only be an extending load, not truncating!");
3637    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3638           "Cannot sign/zero extend a FP/Vector load!");
3639    assert(VT.isInteger() == EVT.isInteger() &&
3640           "Cannot convert from FP to Int or Int -> FP!");
3641  }
3642
3643  bool Indexed = AM != ISD::UNINDEXED;
3644  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3645         "Unindexed load with an offset!");
3646
3647  SDVTList VTs = Indexed ?
3648    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3649  SDValue Ops[] = { Chain, Ptr, Offset };
3650  FoldingSetNodeID ID;
3651  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3652  ID.AddInteger(EVT.getRawBits());
3653  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3654  void *IP = 0;
3655  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3656    return SDValue(E, 0);
3657  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3658  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3659                     Alignment, isVolatile);
3660  CSEMap.InsertNode(N, IP);
3661  AllNodes.push_back(N);
3662  return SDValue(N, 0);
3663}
3664
3665SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3666                              SDValue Chain, SDValue Ptr,
3667                              const Value *SV, int SVOffset,
3668                              bool isVolatile, unsigned Alignment) {
3669  SDValue Undef = getUNDEF(Ptr.getValueType());
3670  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3671                 SV, SVOffset, VT, isVolatile, Alignment);
3672}
3673
3674SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3675                                 SDValue Chain, SDValue Ptr,
3676                                 const Value *SV,
3677                                 int SVOffset, MVT EVT,
3678                                 bool isVolatile, unsigned Alignment) {
3679  SDValue Undef = getUNDEF(Ptr.getValueType());
3680  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3681                 SV, SVOffset, EVT, isVolatile, Alignment);
3682}
3683
3684SDValue
3685SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3686                             SDValue Offset, ISD::MemIndexedMode AM) {
3687  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3688  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3689         "Load is already a indexed load!");
3690  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3691                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3692                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3693                 LD->isVolatile(), LD->getAlignment());
3694}
3695
3696SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3697                               SDValue Ptr, const Value *SV, int SVOffset,
3698                               bool isVolatile, unsigned Alignment) {
3699  MVT VT = Val.getValueType();
3700
3701  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3702    Alignment = getMVTAlignment(VT);
3703
3704  SDVTList VTs = getVTList(MVT::Other);
3705  SDValue Undef = getUNDEF(Ptr.getValueType());
3706  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3707  FoldingSetNodeID ID;
3708  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3709  ID.AddInteger(VT.getRawBits());
3710  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3711                                     isVolatile, Alignment));
3712  void *IP = 0;
3713  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3714    return SDValue(E, 0);
3715  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3716  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3717                      VT, SV, SVOffset, Alignment, isVolatile);
3718  CSEMap.InsertNode(N, IP);
3719  AllNodes.push_back(N);
3720  return SDValue(N, 0);
3721}
3722
3723SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3724                                    SDValue Ptr, const Value *SV,
3725                                    int SVOffset, MVT SVT,
3726                                    bool isVolatile, unsigned Alignment) {
3727  MVT VT = Val.getValueType();
3728
3729  if (VT == SVT)
3730    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3731
3732  assert(VT.bitsGT(SVT) && "Not a truncation?");
3733  assert(VT.isInteger() == SVT.isInteger() &&
3734         "Can't do FP-INT conversion!");
3735
3736  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3737    Alignment = getMVTAlignment(VT);
3738
3739  SDVTList VTs = getVTList(MVT::Other);
3740  SDValue Undef = getUNDEF(Ptr.getValueType());
3741  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3742  FoldingSetNodeID ID;
3743  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3744  ID.AddInteger(SVT.getRawBits());
3745  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3746                                     isVolatile, Alignment));
3747  void *IP = 0;
3748  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3749    return SDValue(E, 0);
3750  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3751  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3752                      SVT, SV, SVOffset, Alignment, isVolatile);
3753  CSEMap.InsertNode(N, IP);
3754  AllNodes.push_back(N);
3755  return SDValue(N, 0);
3756}
3757
3758SDValue
3759SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3760                              SDValue Offset, ISD::MemIndexedMode AM) {
3761  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3762  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3763         "Store is already a indexed store!");
3764  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3765  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3766  FoldingSetNodeID ID;
3767  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3768  ID.AddInteger(ST->getMemoryVT().getRawBits());
3769  ID.AddInteger(ST->getRawSubclassData());
3770  void *IP = 0;
3771  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3772    return SDValue(E, 0);
3773  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3774  new (N) StoreSDNode(Ops, dl, VTs, AM,
3775                      ST->isTruncatingStore(), ST->getMemoryVT(),
3776                      ST->getSrcValue(), ST->getSrcValueOffset(),
3777                      ST->getAlignment(), ST->isVolatile());
3778  CSEMap.InsertNode(N, IP);
3779  AllNodes.push_back(N);
3780  return SDValue(N, 0);
3781}
3782
3783SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3784                               SDValue Chain, SDValue Ptr,
3785                               SDValue SV) {
3786  SDValue Ops[] = { Chain, Ptr, SV };
3787  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3788}
3789
3790SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3791                              const SDUse *Ops, unsigned NumOps) {
3792  switch (NumOps) {
3793  case 0: return getNode(Opcode, DL, VT);
3794  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3795  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3796  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3797  default: break;
3798  }
3799
3800  // Copy from an SDUse array into an SDValue array for use with
3801  // the regular getNode logic.
3802  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3803  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3804}
3805
3806SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3807                              const SDValue *Ops, unsigned NumOps) {
3808  switch (NumOps) {
3809  case 0: return getNode(Opcode, DL, VT);
3810  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3811  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3812  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3813  default: break;
3814  }
3815
3816  switch (Opcode) {
3817  default: break;
3818  case ISD::SELECT_CC: {
3819    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3820    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3821           "LHS and RHS of condition must have same type!");
3822    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3823           "True and False arms of SelectCC must have same type!");
3824    assert(Ops[2].getValueType() == VT &&
3825           "select_cc node must be of same type as true and false value!");
3826    break;
3827  }
3828  case ISD::BR_CC: {
3829    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3830    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3831           "LHS/RHS of comparison should match types!");
3832    break;
3833  }
3834  }
3835
3836  // Memoize nodes.
3837  SDNode *N;
3838  SDVTList VTs = getVTList(VT);
3839
3840  if (VT != MVT::Flag) {
3841    FoldingSetNodeID ID;
3842    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3843    void *IP = 0;
3844
3845    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3846      return SDValue(E, 0);
3847
3848    N = NodeAllocator.Allocate<SDNode>();
3849    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3850    CSEMap.InsertNode(N, IP);
3851  } else {
3852    N = NodeAllocator.Allocate<SDNode>();
3853    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3854  }
3855
3856  AllNodes.push_back(N);
3857#ifndef NDEBUG
3858  VerifyNode(N);
3859#endif
3860  return SDValue(N, 0);
3861}
3862
3863SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3864                              const std::vector<MVT> &ResultTys,
3865                              const SDValue *Ops, unsigned NumOps) {
3866  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
3867                 Ops, NumOps);
3868}
3869
3870SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3871                              const MVT *VTs, unsigned NumVTs,
3872                              const SDValue *Ops, unsigned NumOps) {
3873  if (NumVTs == 1)
3874    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3875  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3876}
3877
3878SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3879                              const SDValue *Ops, unsigned NumOps) {
3880  if (VTList.NumVTs == 1)
3881    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3882
3883  switch (Opcode) {
3884  // FIXME: figure out how to safely handle things like
3885  // int foo(int x) { return 1 << (x & 255); }
3886  // int bar() { return foo(256); }
3887#if 0
3888  case ISD::SRA_PARTS:
3889  case ISD::SRL_PARTS:
3890  case ISD::SHL_PARTS:
3891    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3892        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3893      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3894    else if (N3.getOpcode() == ISD::AND)
3895      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3896        // If the and is only masking out bits that cannot effect the shift,
3897        // eliminate the and.
3898        unsigned NumBits = VT.getSizeInBits()*2;
3899        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3900          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3901      }
3902    break;
3903#endif
3904  }
3905
3906  // Memoize the node unless it returns a flag.
3907  SDNode *N;
3908  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3909    FoldingSetNodeID ID;
3910    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3911    void *IP = 0;
3912    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3913      return SDValue(E, 0);
3914    if (NumOps == 1) {
3915      N = NodeAllocator.Allocate<UnarySDNode>();
3916      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3917    } else if (NumOps == 2) {
3918      N = NodeAllocator.Allocate<BinarySDNode>();
3919      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3920    } else if (NumOps == 3) {
3921      N = NodeAllocator.Allocate<TernarySDNode>();
3922      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3923    } else {
3924      N = NodeAllocator.Allocate<SDNode>();
3925      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3926    }
3927    CSEMap.InsertNode(N, IP);
3928  } else {
3929    if (NumOps == 1) {
3930      N = NodeAllocator.Allocate<UnarySDNode>();
3931      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3932    } else if (NumOps == 2) {
3933      N = NodeAllocator.Allocate<BinarySDNode>();
3934      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3935    } else if (NumOps == 3) {
3936      N = NodeAllocator.Allocate<TernarySDNode>();
3937      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3938    } else {
3939      N = NodeAllocator.Allocate<SDNode>();
3940      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3941    }
3942  }
3943  AllNodes.push_back(N);
3944#ifndef NDEBUG
3945  VerifyNode(N);
3946#endif
3947  return SDValue(N, 0);
3948}
3949
3950SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3951  return getNode(Opcode, DL, VTList, 0, 0);
3952}
3953
3954SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3955                              SDValue N1) {
3956  SDValue Ops[] = { N1 };
3957  return getNode(Opcode, DL, VTList, Ops, 1);
3958}
3959
3960SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3961                              SDValue N1, SDValue N2) {
3962  SDValue Ops[] = { N1, N2 };
3963  return getNode(Opcode, DL, VTList, Ops, 2);
3964}
3965
3966SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3967                              SDValue N1, SDValue N2, SDValue N3) {
3968  SDValue Ops[] = { N1, N2, N3 };
3969  return getNode(Opcode, DL, VTList, Ops, 3);
3970}
3971
3972SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3973                              SDValue N1, SDValue N2, SDValue N3,
3974                              SDValue N4) {
3975  SDValue Ops[] = { N1, N2, N3, N4 };
3976  return getNode(Opcode, DL, VTList, Ops, 4);
3977}
3978
3979SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3980                              SDValue N1, SDValue N2, SDValue N3,
3981                              SDValue N4, SDValue N5) {
3982  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3983  return getNode(Opcode, DL, VTList, Ops, 5);
3984}
3985
3986SDVTList SelectionDAG::getVTList(MVT VT) {
3987  return makeVTList(SDNode::getValueTypeList(VT), 1);
3988}
3989
3990SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3991  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3992       E = VTList.rend(); I != E; ++I)
3993    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3994      return *I;
3995
3996  MVT *Array = Allocator.Allocate<MVT>(2);
3997  Array[0] = VT1;
3998  Array[1] = VT2;
3999  SDVTList Result = makeVTList(Array, 2);
4000  VTList.push_back(Result);
4001  return Result;
4002}
4003
4004SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
4005  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4006       E = VTList.rend(); I != E; ++I)
4007    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4008                          I->VTs[2] == VT3)
4009      return *I;
4010
4011  MVT *Array = Allocator.Allocate<MVT>(3);
4012  Array[0] = VT1;
4013  Array[1] = VT2;
4014  Array[2] = VT3;
4015  SDVTList Result = makeVTList(Array, 3);
4016  VTList.push_back(Result);
4017  return Result;
4018}
4019
4020SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
4021  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4022       E = VTList.rend(); I != E; ++I)
4023    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4024                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4025      return *I;
4026
4027  MVT *Array = Allocator.Allocate<MVT>(3);
4028  Array[0] = VT1;
4029  Array[1] = VT2;
4030  Array[2] = VT3;
4031  Array[3] = VT4;
4032  SDVTList Result = makeVTList(Array, 4);
4033  VTList.push_back(Result);
4034  return Result;
4035}
4036
4037SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
4038  switch (NumVTs) {
4039    case 0: assert(0 && "Cannot have nodes without results!");
4040    case 1: return getVTList(VTs[0]);
4041    case 2: return getVTList(VTs[0], VTs[1]);
4042    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4043    default: break;
4044  }
4045
4046  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4047       E = VTList.rend(); I != E; ++I) {
4048    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4049      continue;
4050
4051    bool NoMatch = false;
4052    for (unsigned i = 2; i != NumVTs; ++i)
4053      if (VTs[i] != I->VTs[i]) {
4054        NoMatch = true;
4055        break;
4056      }
4057    if (!NoMatch)
4058      return *I;
4059  }
4060
4061  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
4062  std::copy(VTs, VTs+NumVTs, Array);
4063  SDVTList Result = makeVTList(Array, NumVTs);
4064  VTList.push_back(Result);
4065  return Result;
4066}
4067
4068
4069/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4070/// specified operands.  If the resultant node already exists in the DAG,
4071/// this does not modify the specified node, instead it returns the node that
4072/// already exists.  If the resultant node does not exist in the DAG, the
4073/// input node is returned.  As a degenerate case, if you specify the same
4074/// input operands as the node already has, the input node is returned.
4075SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4076  SDNode *N = InN.getNode();
4077  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4078
4079  // Check to see if there is no change.
4080  if (Op == N->getOperand(0)) return InN;
4081
4082  // See if the modified node already exists.
4083  void *InsertPos = 0;
4084  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4085    return SDValue(Existing, InN.getResNo());
4086
4087  // Nope it doesn't.  Remove the node from its current place in the maps.
4088  if (InsertPos)
4089    if (!RemoveNodeFromCSEMaps(N))
4090      InsertPos = 0;
4091
4092  // Now we update the operands.
4093  N->OperandList[0].set(Op);
4094
4095  // If this gets put into a CSE map, add it.
4096  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4097  return InN;
4098}
4099
4100SDValue SelectionDAG::
4101UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4102  SDNode *N = InN.getNode();
4103  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4104
4105  // Check to see if there is no change.
4106  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4107    return InN;   // No operands changed, just return the input node.
4108
4109  // See if the modified node already exists.
4110  void *InsertPos = 0;
4111  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4112    return SDValue(Existing, InN.getResNo());
4113
4114  // Nope it doesn't.  Remove the node from its current place in the maps.
4115  if (InsertPos)
4116    if (!RemoveNodeFromCSEMaps(N))
4117      InsertPos = 0;
4118
4119  // Now we update the operands.
4120  if (N->OperandList[0] != Op1)
4121    N->OperandList[0].set(Op1);
4122  if (N->OperandList[1] != Op2)
4123    N->OperandList[1].set(Op2);
4124
4125  // If this gets put into a CSE map, add it.
4126  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4127  return InN;
4128}
4129
4130SDValue SelectionDAG::
4131UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4132  SDValue Ops[] = { Op1, Op2, Op3 };
4133  return UpdateNodeOperands(N, Ops, 3);
4134}
4135
4136SDValue SelectionDAG::
4137UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4138                   SDValue Op3, SDValue Op4) {
4139  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4140  return UpdateNodeOperands(N, Ops, 4);
4141}
4142
4143SDValue SelectionDAG::
4144UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4145                   SDValue Op3, SDValue Op4, SDValue Op5) {
4146  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4147  return UpdateNodeOperands(N, Ops, 5);
4148}
4149
4150SDValue SelectionDAG::
4151UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4152  SDNode *N = InN.getNode();
4153  assert(N->getNumOperands() == NumOps &&
4154         "Update with wrong number of operands");
4155
4156  // Check to see if there is no change.
4157  bool AnyChange = false;
4158  for (unsigned i = 0; i != NumOps; ++i) {
4159    if (Ops[i] != N->getOperand(i)) {
4160      AnyChange = true;
4161      break;
4162    }
4163  }
4164
4165  // No operands changed, just return the input node.
4166  if (!AnyChange) return InN;
4167
4168  // See if the modified node already exists.
4169  void *InsertPos = 0;
4170  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4171    return SDValue(Existing, InN.getResNo());
4172
4173  // Nope it doesn't.  Remove the node from its current place in the maps.
4174  if (InsertPos)
4175    if (!RemoveNodeFromCSEMaps(N))
4176      InsertPos = 0;
4177
4178  // Now we update the operands.
4179  for (unsigned i = 0; i != NumOps; ++i)
4180    if (N->OperandList[i] != Ops[i])
4181      N->OperandList[i].set(Ops[i]);
4182
4183  // If this gets put into a CSE map, add it.
4184  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4185  return InN;
4186}
4187
4188/// DropOperands - Release the operands and set this node to have
4189/// zero operands.
4190void SDNode::DropOperands() {
4191  // Unlike the code in MorphNodeTo that does this, we don't need to
4192  // watch for dead nodes here.
4193  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4194    SDUse &Use = *I++;
4195    Use.set(SDValue());
4196  }
4197}
4198
4199/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4200/// machine opcode.
4201///
4202SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4203                                   MVT VT) {
4204  SDVTList VTs = getVTList(VT);
4205  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4206}
4207
4208SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4209                                   MVT VT, SDValue Op1) {
4210  SDVTList VTs = getVTList(VT);
4211  SDValue Ops[] = { Op1 };
4212  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4213}
4214
4215SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4216                                   MVT VT, SDValue Op1,
4217                                   SDValue Op2) {
4218  SDVTList VTs = getVTList(VT);
4219  SDValue Ops[] = { Op1, Op2 };
4220  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4221}
4222
4223SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4224                                   MVT VT, SDValue Op1,
4225                                   SDValue Op2, SDValue Op3) {
4226  SDVTList VTs = getVTList(VT);
4227  SDValue Ops[] = { Op1, Op2, Op3 };
4228  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4229}
4230
4231SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4232                                   MVT VT, const SDValue *Ops,
4233                                   unsigned NumOps) {
4234  SDVTList VTs = getVTList(VT);
4235  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4236}
4237
4238SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4239                                   MVT VT1, MVT VT2, const SDValue *Ops,
4240                                   unsigned NumOps) {
4241  SDVTList VTs = getVTList(VT1, VT2);
4242  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4243}
4244
4245SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4246                                   MVT VT1, MVT VT2) {
4247  SDVTList VTs = getVTList(VT1, VT2);
4248  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4249}
4250
4251SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4252                                   MVT VT1, MVT VT2, MVT VT3,
4253                                   const SDValue *Ops, unsigned NumOps) {
4254  SDVTList VTs = getVTList(VT1, VT2, VT3);
4255  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4256}
4257
4258SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4259                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4260                                   const SDValue *Ops, unsigned NumOps) {
4261  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4262  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4263}
4264
4265SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4266                                   MVT VT1, MVT VT2,
4267                                   SDValue Op1) {
4268  SDVTList VTs = getVTList(VT1, VT2);
4269  SDValue Ops[] = { Op1 };
4270  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4271}
4272
4273SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4274                                   MVT VT1, MVT VT2,
4275                                   SDValue Op1, SDValue Op2) {
4276  SDVTList VTs = getVTList(VT1, VT2);
4277  SDValue Ops[] = { Op1, Op2 };
4278  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4279}
4280
4281SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4282                                   MVT VT1, MVT VT2,
4283                                   SDValue Op1, SDValue Op2,
4284                                   SDValue Op3) {
4285  SDVTList VTs = getVTList(VT1, VT2);
4286  SDValue Ops[] = { Op1, Op2, Op3 };
4287  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4288}
4289
4290SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4291                                   MVT VT1, MVT VT2, MVT VT3,
4292                                   SDValue Op1, SDValue Op2,
4293                                   SDValue Op3) {
4294  SDVTList VTs = getVTList(VT1, VT2, VT3);
4295  SDValue Ops[] = { Op1, Op2, Op3 };
4296  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4297}
4298
4299SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4300                                   SDVTList VTs, const SDValue *Ops,
4301                                   unsigned NumOps) {
4302  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4303}
4304
4305SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4306                                  MVT VT) {
4307  SDVTList VTs = getVTList(VT);
4308  return MorphNodeTo(N, Opc, VTs, 0, 0);
4309}
4310
4311SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4312                                  MVT VT, SDValue Op1) {
4313  SDVTList VTs = getVTList(VT);
4314  SDValue Ops[] = { Op1 };
4315  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4316}
4317
4318SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4319                                  MVT VT, SDValue Op1,
4320                                  SDValue Op2) {
4321  SDVTList VTs = getVTList(VT);
4322  SDValue Ops[] = { Op1, Op2 };
4323  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4324}
4325
4326SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4327                                  MVT VT, SDValue Op1,
4328                                  SDValue Op2, SDValue Op3) {
4329  SDVTList VTs = getVTList(VT);
4330  SDValue Ops[] = { Op1, Op2, Op3 };
4331  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4332}
4333
4334SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4335                                  MVT VT, const SDValue *Ops,
4336                                  unsigned NumOps) {
4337  SDVTList VTs = getVTList(VT);
4338  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4339}
4340
4341SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4342                                  MVT VT1, MVT VT2, const SDValue *Ops,
4343                                  unsigned NumOps) {
4344  SDVTList VTs = getVTList(VT1, VT2);
4345  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4346}
4347
4348SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4349                                  MVT VT1, MVT VT2) {
4350  SDVTList VTs = getVTList(VT1, VT2);
4351  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4352}
4353
4354SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4355                                  MVT VT1, MVT VT2, MVT VT3,
4356                                  const SDValue *Ops, unsigned NumOps) {
4357  SDVTList VTs = getVTList(VT1, VT2, VT3);
4358  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4359}
4360
4361SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4362                                  MVT VT1, MVT VT2,
4363                                  SDValue Op1) {
4364  SDVTList VTs = getVTList(VT1, VT2);
4365  SDValue Ops[] = { Op1 };
4366  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4367}
4368
4369SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4370                                  MVT VT1, MVT VT2,
4371                                  SDValue Op1, SDValue Op2) {
4372  SDVTList VTs = getVTList(VT1, VT2);
4373  SDValue Ops[] = { Op1, Op2 };
4374  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4375}
4376
4377SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4378                                  MVT VT1, MVT VT2,
4379                                  SDValue Op1, SDValue Op2,
4380                                  SDValue Op3) {
4381  SDVTList VTs = getVTList(VT1, VT2);
4382  SDValue Ops[] = { Op1, Op2, Op3 };
4383  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4384}
4385
4386/// MorphNodeTo - These *mutate* the specified node to have the specified
4387/// return type, opcode, and operands.
4388///
4389/// Note that MorphNodeTo returns the resultant node.  If there is already a
4390/// node of the specified opcode and operands, it returns that node instead of
4391/// the current one.  Note that the DebugLoc need not be the same.
4392///
4393/// Using MorphNodeTo is faster than creating a new node and swapping it in
4394/// with ReplaceAllUsesWith both because it often avoids allocating a new
4395/// node, and because it doesn't require CSE recalculation for any of
4396/// the node's users.
4397///
4398SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4399                                  SDVTList VTs, const SDValue *Ops,
4400                                  unsigned NumOps) {
4401  // If an identical node already exists, use it.
4402  void *IP = 0;
4403  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4404    FoldingSetNodeID ID;
4405    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4406    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4407      return ON;
4408  }
4409
4410  if (!RemoveNodeFromCSEMaps(N))
4411    IP = 0;
4412
4413  // Start the morphing.
4414  N->NodeType = Opc;
4415  N->ValueList = VTs.VTs;
4416  N->NumValues = VTs.NumVTs;
4417
4418  // Clear the operands list, updating used nodes to remove this from their
4419  // use list.  Keep track of any operands that become dead as a result.
4420  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4421  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4422    SDUse &Use = *I++;
4423    SDNode *Used = Use.getNode();
4424    Use.set(SDValue());
4425    if (Used->use_empty())
4426      DeadNodeSet.insert(Used);
4427  }
4428
4429  // If NumOps is larger than the # of operands we currently have, reallocate
4430  // the operand list.
4431  if (NumOps > N->NumOperands) {
4432    if (N->OperandsNeedDelete)
4433      delete[] N->OperandList;
4434
4435    if (N->isMachineOpcode()) {
4436      // We're creating a final node that will live unmorphed for the
4437      // remainder of the current SelectionDAG iteration, so we can allocate
4438      // the operands directly out of a pool with no recycling metadata.
4439      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4440      N->OperandsNeedDelete = false;
4441    } else {
4442      N->OperandList = new SDUse[NumOps];
4443      N->OperandsNeedDelete = true;
4444    }
4445  }
4446
4447  // Assign the new operands.
4448  N->NumOperands = NumOps;
4449  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4450    N->OperandList[i].setUser(N);
4451    N->OperandList[i].setInitial(Ops[i]);
4452  }
4453
4454  // Delete any nodes that are still dead after adding the uses for the
4455  // new operands.
4456  SmallVector<SDNode *, 16> DeadNodes;
4457  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4458       E = DeadNodeSet.end(); I != E; ++I)
4459    if ((*I)->use_empty())
4460      DeadNodes.push_back(*I);
4461  RemoveDeadNodes(DeadNodes);
4462
4463  if (IP)
4464    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4465  return N;
4466}
4467
4468
4469/// getTargetNode - These are used for target selectors to create a new node
4470/// with specified return type(s), target opcode, and operands.
4471///
4472/// Note that getTargetNode returns the resultant node.  If there is already a
4473/// node of the specified opcode and operands, it returns that node instead of
4474/// the current one.
4475SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4476  return getNode(~Opcode, dl, VT).getNode();
4477}
4478
4479SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4480                                    SDValue Op1) {
4481  return getNode(~Opcode, dl, VT, Op1).getNode();
4482}
4483
4484SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4485                                    SDValue Op1, SDValue Op2) {
4486  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4487}
4488
4489SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4490                                    SDValue Op1, SDValue Op2,
4491                                    SDValue Op3) {
4492  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4493}
4494
4495SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4496                                    const SDValue *Ops, unsigned NumOps) {
4497  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4498}
4499
4500SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4501                                    MVT VT1, MVT VT2) {
4502  SDVTList VTs = getVTList(VT1, VT2);
4503  SDValue Op;
4504  return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
4505}
4506
4507SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4508                                    MVT VT2, SDValue Op1) {
4509  SDVTList VTs = getVTList(VT1, VT2);
4510  return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
4511}
4512
4513SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4514                                    MVT VT2, SDValue Op1,
4515                                    SDValue Op2) {
4516  SDVTList VTs = getVTList(VT1, VT2);
4517  SDValue Ops[] = { Op1, Op2 };
4518  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4519}
4520
4521SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4522                                    MVT VT2, SDValue Op1,
4523                                    SDValue Op2, SDValue Op3) {
4524  SDVTList VTs = getVTList(VT1, VT2);
4525  SDValue Ops[] = { Op1, Op2, Op3 };
4526  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4527}
4528
4529SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4530                                    MVT VT1, MVT VT2,
4531                                    const SDValue *Ops, unsigned NumOps) {
4532  SDVTList VTs = getVTList(VT1, VT2);
4533  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4534}
4535
4536SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4537                                    MVT VT1, MVT VT2, MVT VT3,
4538                                    SDValue Op1, SDValue Op2) {
4539  SDVTList VTs = getVTList(VT1, VT2, VT3);
4540  SDValue Ops[] = { Op1, Op2 };
4541  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4542}
4543
4544SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4545                                    MVT VT1, MVT VT2, MVT VT3,
4546                                    SDValue Op1, SDValue Op2,
4547                                    SDValue Op3) {
4548  SDVTList VTs = getVTList(VT1, VT2, VT3);
4549  SDValue Ops[] = { Op1, Op2, Op3 };
4550  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4551}
4552
4553SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4554                                    MVT VT1, MVT VT2, MVT VT3,
4555                                    const SDValue *Ops, unsigned NumOps) {
4556  SDVTList VTs = getVTList(VT1, VT2, VT3);
4557  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4558}
4559
4560SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4561                                    MVT VT2, MVT VT3, MVT VT4,
4562                                    const SDValue *Ops, unsigned NumOps) {
4563  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4564  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4565}
4566
4567SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4568                                    const std::vector<MVT> &ResultTys,
4569                                    const SDValue *Ops, unsigned NumOps) {
4570  return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
4571}
4572
4573/// getNodeIfExists - Get the specified node if it's already available, or
4574/// else return NULL.
4575SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4576                                      const SDValue *Ops, unsigned NumOps) {
4577  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4578    FoldingSetNodeID ID;
4579    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4580    void *IP = 0;
4581    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4582      return E;
4583  }
4584  return NULL;
4585}
4586
4587/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4588/// This can cause recursive merging of nodes in the DAG.
4589///
4590/// This version assumes From has a single result value.
4591///
4592void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4593                                      DAGUpdateListener *UpdateListener) {
4594  SDNode *From = FromN.getNode();
4595  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4596         "Cannot replace with this method!");
4597  assert(From != To.getNode() && "Cannot replace uses of with self");
4598
4599  // Iterate over all the existing uses of From. New uses will be added
4600  // to the beginning of the use list, which we avoid visiting.
4601  // This specifically avoids visiting uses of From that arise while the
4602  // replacement is happening, because any such uses would be the result
4603  // of CSE: If an existing node looks like From after one of its operands
4604  // is replaced by To, we don't want to replace of all its users with To
4605  // too. See PR3018 for more info.
4606  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4607  while (UI != UE) {
4608    SDNode *User = *UI;
4609
4610    // This node is about to morph, remove its old self from the CSE maps.
4611    RemoveNodeFromCSEMaps(User);
4612
4613    // A user can appear in a use list multiple times, and when this
4614    // happens the uses are usually next to each other in the list.
4615    // To help reduce the number of CSE recomputations, process all
4616    // the uses of this user that we can find this way.
4617    do {
4618      SDUse &Use = UI.getUse();
4619      ++UI;
4620      Use.set(To);
4621    } while (UI != UE && *UI == User);
4622
4623    // Now that we have modified User, add it back to the CSE maps.  If it
4624    // already exists there, recursively merge the results together.
4625    AddModifiedNodeToCSEMaps(User, UpdateListener);
4626  }
4627}
4628
4629/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4630/// This can cause recursive merging of nodes in the DAG.
4631///
4632/// This version assumes that for each value of From, there is a
4633/// corresponding value in To in the same position with the same type.
4634///
4635void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4636                                      DAGUpdateListener *UpdateListener) {
4637#ifndef NDEBUG
4638  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4639    assert((!From->hasAnyUseOfValue(i) ||
4640            From->getValueType(i) == To->getValueType(i)) &&
4641           "Cannot use this version of ReplaceAllUsesWith!");
4642#endif
4643
4644  // Handle the trivial case.
4645  if (From == To)
4646    return;
4647
4648  // Iterate over just the existing users of From. See the comments in
4649  // the ReplaceAllUsesWith above.
4650  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4651  while (UI != UE) {
4652    SDNode *User = *UI;
4653
4654    // This node is about to morph, remove its old self from the CSE maps.
4655    RemoveNodeFromCSEMaps(User);
4656
4657    // A user can appear in a use list multiple times, and when this
4658    // happens the uses are usually next to each other in the list.
4659    // To help reduce the number of CSE recomputations, process all
4660    // the uses of this user that we can find this way.
4661    do {
4662      SDUse &Use = UI.getUse();
4663      ++UI;
4664      Use.setNode(To);
4665    } while (UI != UE && *UI == User);
4666
4667    // Now that we have modified User, add it back to the CSE maps.  If it
4668    // already exists there, recursively merge the results together.
4669    AddModifiedNodeToCSEMaps(User, UpdateListener);
4670  }
4671}
4672
4673/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4674/// This can cause recursive merging of nodes in the DAG.
4675///
4676/// This version can replace From with any result values.  To must match the
4677/// number and types of values returned by From.
4678void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4679                                      const SDValue *To,
4680                                      DAGUpdateListener *UpdateListener) {
4681  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4682    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4683
4684  // Iterate over just the existing users of From. See the comments in
4685  // the ReplaceAllUsesWith above.
4686  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4687  while (UI != UE) {
4688    SDNode *User = *UI;
4689
4690    // This node is about to morph, remove its old self from the CSE maps.
4691    RemoveNodeFromCSEMaps(User);
4692
4693    // A user can appear in a use list multiple times, and when this
4694    // happens the uses are usually next to each other in the list.
4695    // To help reduce the number of CSE recomputations, process all
4696    // the uses of this user that we can find this way.
4697    do {
4698      SDUse &Use = UI.getUse();
4699      const SDValue &ToOp = To[Use.getResNo()];
4700      ++UI;
4701      Use.set(ToOp);
4702    } while (UI != UE && *UI == User);
4703
4704    // Now that we have modified User, add it back to the CSE maps.  If it
4705    // already exists there, recursively merge the results together.
4706    AddModifiedNodeToCSEMaps(User, UpdateListener);
4707  }
4708}
4709
4710/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4711/// uses of other values produced by From.getNode() alone.  The Deleted
4712/// vector is handled the same way as for ReplaceAllUsesWith.
4713void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4714                                             DAGUpdateListener *UpdateListener){
4715  // Handle the really simple, really trivial case efficiently.
4716  if (From == To) return;
4717
4718  // Handle the simple, trivial, case efficiently.
4719  if (From.getNode()->getNumValues() == 1) {
4720    ReplaceAllUsesWith(From, To, UpdateListener);
4721    return;
4722  }
4723
4724  // Iterate over just the existing users of From. See the comments in
4725  // the ReplaceAllUsesWith above.
4726  SDNode::use_iterator UI = From.getNode()->use_begin(),
4727                       UE = From.getNode()->use_end();
4728  while (UI != UE) {
4729    SDNode *User = *UI;
4730    bool UserRemovedFromCSEMaps = false;
4731
4732    // A user can appear in a use list multiple times, and when this
4733    // happens the uses are usually next to each other in the list.
4734    // To help reduce the number of CSE recomputations, process all
4735    // the uses of this user that we can find this way.
4736    do {
4737      SDUse &Use = UI.getUse();
4738
4739      // Skip uses of different values from the same node.
4740      if (Use.getResNo() != From.getResNo()) {
4741        ++UI;
4742        continue;
4743      }
4744
4745      // If this node hasn't been modified yet, it's still in the CSE maps,
4746      // so remove its old self from the CSE maps.
4747      if (!UserRemovedFromCSEMaps) {
4748        RemoveNodeFromCSEMaps(User);
4749        UserRemovedFromCSEMaps = true;
4750      }
4751
4752      ++UI;
4753      Use.set(To);
4754    } while (UI != UE && *UI == User);
4755
4756    // We are iterating over all uses of the From node, so if a use
4757    // doesn't use the specific value, no changes are made.
4758    if (!UserRemovedFromCSEMaps)
4759      continue;
4760
4761    // Now that we have modified User, add it back to the CSE maps.  If it
4762    // already exists there, recursively merge the results together.
4763    AddModifiedNodeToCSEMaps(User, UpdateListener);
4764  }
4765}
4766
4767namespace {
4768  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4769  /// to record information about a use.
4770  struct UseMemo {
4771    SDNode *User;
4772    unsigned Index;
4773    SDUse *Use;
4774  };
4775
4776  /// operator< - Sort Memos by User.
4777  bool operator<(const UseMemo &L, const UseMemo &R) {
4778    return (intptr_t)L.User < (intptr_t)R.User;
4779  }
4780}
4781
4782/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4783/// uses of other values produced by From.getNode() alone.  The same value
4784/// may appear in both the From and To list.  The Deleted vector is
4785/// handled the same way as for ReplaceAllUsesWith.
4786void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4787                                              const SDValue *To,
4788                                              unsigned Num,
4789                                              DAGUpdateListener *UpdateListener){
4790  // Handle the simple, trivial case efficiently.
4791  if (Num == 1)
4792    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4793
4794  // Read up all the uses and make records of them. This helps
4795  // processing new uses that are introduced during the
4796  // replacement process.
4797  SmallVector<UseMemo, 4> Uses;
4798  for (unsigned i = 0; i != Num; ++i) {
4799    unsigned FromResNo = From[i].getResNo();
4800    SDNode *FromNode = From[i].getNode();
4801    for (SDNode::use_iterator UI = FromNode->use_begin(),
4802         E = FromNode->use_end(); UI != E; ++UI) {
4803      SDUse &Use = UI.getUse();
4804      if (Use.getResNo() == FromResNo) {
4805        UseMemo Memo = { *UI, i, &Use };
4806        Uses.push_back(Memo);
4807      }
4808    }
4809  }
4810
4811  // Sort the uses, so that all the uses from a given User are together.
4812  std::sort(Uses.begin(), Uses.end());
4813
4814  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4815       UseIndex != UseIndexEnd; ) {
4816    // We know that this user uses some value of From.  If it is the right
4817    // value, update it.
4818    SDNode *User = Uses[UseIndex].User;
4819
4820    // This node is about to morph, remove its old self from the CSE maps.
4821    RemoveNodeFromCSEMaps(User);
4822
4823    // The Uses array is sorted, so all the uses for a given User
4824    // are next to each other in the list.
4825    // To help reduce the number of CSE recomputations, process all
4826    // the uses of this user that we can find this way.
4827    do {
4828      unsigned i = Uses[UseIndex].Index;
4829      SDUse &Use = *Uses[UseIndex].Use;
4830      ++UseIndex;
4831
4832      Use.set(To[i]);
4833    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4834
4835    // Now that we have modified User, add it back to the CSE maps.  If it
4836    // already exists there, recursively merge the results together.
4837    AddModifiedNodeToCSEMaps(User, UpdateListener);
4838  }
4839}
4840
4841/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4842/// based on their topological order. It returns the maximum id and a vector
4843/// of the SDNodes* in assigned order by reference.
4844unsigned SelectionDAG::AssignTopologicalOrder() {
4845
4846  unsigned DAGSize = 0;
4847
4848  // SortedPos tracks the progress of the algorithm. Nodes before it are
4849  // sorted, nodes after it are unsorted. When the algorithm completes
4850  // it is at the end of the list.
4851  allnodes_iterator SortedPos = allnodes_begin();
4852
4853  // Visit all the nodes. Move nodes with no operands to the front of
4854  // the list immediately. Annotate nodes that do have operands with their
4855  // operand count. Before we do this, the Node Id fields of the nodes
4856  // may contain arbitrary values. After, the Node Id fields for nodes
4857  // before SortedPos will contain the topological sort index, and the
4858  // Node Id fields for nodes At SortedPos and after will contain the
4859  // count of outstanding operands.
4860  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4861    SDNode *N = I++;
4862    unsigned Degree = N->getNumOperands();
4863    if (Degree == 0) {
4864      // A node with no uses, add it to the result array immediately.
4865      N->setNodeId(DAGSize++);
4866      allnodes_iterator Q = N;
4867      if (Q != SortedPos)
4868        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4869      ++SortedPos;
4870    } else {
4871      // Temporarily use the Node Id as scratch space for the degree count.
4872      N->setNodeId(Degree);
4873    }
4874  }
4875
4876  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4877  // such that by the time the end is reached all nodes will be sorted.
4878  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4879    SDNode *N = I;
4880    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4881         UI != UE; ++UI) {
4882      SDNode *P = *UI;
4883      unsigned Degree = P->getNodeId();
4884      --Degree;
4885      if (Degree == 0) {
4886        // All of P's operands are sorted, so P may sorted now.
4887        P->setNodeId(DAGSize++);
4888        if (P != SortedPos)
4889          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4890        ++SortedPos;
4891      } else {
4892        // Update P's outstanding operand count.
4893        P->setNodeId(Degree);
4894      }
4895    }
4896  }
4897
4898  assert(SortedPos == AllNodes.end() &&
4899         "Topological sort incomplete!");
4900  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4901         "First node in topological sort is not the entry token!");
4902  assert(AllNodes.front().getNodeId() == 0 &&
4903         "First node in topological sort has non-zero id!");
4904  assert(AllNodes.front().getNumOperands() == 0 &&
4905         "First node in topological sort has operands!");
4906  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4907         "Last node in topologic sort has unexpected id!");
4908  assert(AllNodes.back().use_empty() &&
4909         "Last node in topologic sort has users!");
4910  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4911  return DAGSize;
4912}
4913
4914
4915
4916//===----------------------------------------------------------------------===//
4917//                              SDNode Class
4918//===----------------------------------------------------------------------===//
4919
4920HandleSDNode::~HandleSDNode() {
4921  DropOperands();
4922}
4923
4924GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4925                                         MVT VT, int64_t o, unsigned char TF)
4926  : SDNode(isa<GlobalVariable>(GA) &&
4927           cast<GlobalVariable>(GA)->isThreadLocal() ?
4928           // Thread Local
4929           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4930           // Non Thread Local
4931           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4932           DebugLoc::getUnknownLoc(), getSDVTList(VT)),
4933    Offset(o), TargetFlags(TF) {
4934  TheGlobal = const_cast<GlobalValue*>(GA);
4935}
4936
4937MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4938                     const Value *srcValue, int SVO,
4939                     unsigned alignment, bool vol)
4940 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4941  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4942  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4943  assert(getAlignment() == alignment && "Alignment representation error!");
4944  assert(isVolatile() == vol && "Volatile representation error!");
4945}
4946
4947MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4948                     const SDValue *Ops,
4949                     unsigned NumOps, MVT memvt, const Value *srcValue,
4950                     int SVO, unsigned alignment, bool vol)
4951   : SDNode(Opc, dl, VTs, Ops, NumOps),
4952     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4953  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4954  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4955  assert(getAlignment() == alignment && "Alignment representation error!");
4956  assert(isVolatile() == vol && "Volatile representation error!");
4957}
4958
4959/// getMemOperand - Return a MachineMemOperand object describing the memory
4960/// reference performed by this memory reference.
4961MachineMemOperand MemSDNode::getMemOperand() const {
4962  int Flags = 0;
4963  if (isa<LoadSDNode>(this))
4964    Flags = MachineMemOperand::MOLoad;
4965  else if (isa<StoreSDNode>(this))
4966    Flags = MachineMemOperand::MOStore;
4967  else if (isa<AtomicSDNode>(this)) {
4968    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4969  }
4970  else {
4971    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4972    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4973    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4974    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4975  }
4976
4977  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4978  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4979
4980  // Check if the memory reference references a frame index
4981  const FrameIndexSDNode *FI =
4982  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4983  if (!getSrcValue() && FI)
4984    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4985                             Flags, 0, Size, getAlignment());
4986  else
4987    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4988                             Size, getAlignment());
4989}
4990
4991/// Profile - Gather unique data for the node.
4992///
4993void SDNode::Profile(FoldingSetNodeID &ID) const {
4994  AddNodeIDNode(ID, this);
4995}
4996
4997static ManagedStatic<std::set<MVT, MVT::compareRawBits> > EVTs;
4998static MVT VTs[MVT::LAST_VALUETYPE];
4999static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5000
5001/// getValueTypeList - Return a pointer to the specified value type.
5002///
5003const MVT *SDNode::getValueTypeList(MVT VT) {
5004  sys::SmartScopedLock<true> Lock(&*VTMutex);
5005  if (VT.isExtended()) {
5006    return &(*EVTs->insert(VT).first);
5007  } else {
5008    VTs[VT.getSimpleVT()] = VT;
5009    return &VTs[VT.getSimpleVT()];
5010  }
5011}
5012
5013/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5014/// indicated value.  This method ignores uses of other values defined by this
5015/// operation.
5016bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5017  assert(Value < getNumValues() && "Bad value!");
5018
5019  // TODO: Only iterate over uses of a given value of the node
5020  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5021    if (UI.getUse().getResNo() == Value) {
5022      if (NUses == 0)
5023        return false;
5024      --NUses;
5025    }
5026  }
5027
5028  // Found exactly the right number of uses?
5029  return NUses == 0;
5030}
5031
5032
5033/// hasAnyUseOfValue - Return true if there are any use of the indicated
5034/// value. This method ignores uses of other values defined by this operation.
5035bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5036  assert(Value < getNumValues() && "Bad value!");
5037
5038  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5039    if (UI.getUse().getResNo() == Value)
5040      return true;
5041
5042  return false;
5043}
5044
5045
5046/// isOnlyUserOf - Return true if this node is the only use of N.
5047///
5048bool SDNode::isOnlyUserOf(SDNode *N) const {
5049  bool Seen = false;
5050  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5051    SDNode *User = *I;
5052    if (User == this)
5053      Seen = true;
5054    else
5055      return false;
5056  }
5057
5058  return Seen;
5059}
5060
5061/// isOperand - Return true if this node is an operand of N.
5062///
5063bool SDValue::isOperandOf(SDNode *N) const {
5064  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5065    if (*this == N->getOperand(i))
5066      return true;
5067  return false;
5068}
5069
5070bool SDNode::isOperandOf(SDNode *N) const {
5071  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5072    if (this == N->OperandList[i].getNode())
5073      return true;
5074  return false;
5075}
5076
5077/// reachesChainWithoutSideEffects - Return true if this operand (which must
5078/// be a chain) reaches the specified operand without crossing any
5079/// side-effecting instructions.  In practice, this looks through token
5080/// factors and non-volatile loads.  In order to remain efficient, this only
5081/// looks a couple of nodes in, it does not do an exhaustive search.
5082bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5083                                               unsigned Depth) const {
5084  if (*this == Dest) return true;
5085
5086  // Don't search too deeply, we just want to be able to see through
5087  // TokenFactor's etc.
5088  if (Depth == 0) return false;
5089
5090  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5091  // of the operands of the TF reach dest, then we can do the xform.
5092  if (getOpcode() == ISD::TokenFactor) {
5093    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5094      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5095        return true;
5096    return false;
5097  }
5098
5099  // Loads don't have side effects, look through them.
5100  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5101    if (!Ld->isVolatile())
5102      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5103  }
5104  return false;
5105}
5106
5107
5108static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5109                            SmallPtrSet<SDNode *, 32> &Visited) {
5110  if (found || !Visited.insert(N))
5111    return;
5112
5113  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5114    SDNode *Op = N->getOperand(i).getNode();
5115    if (Op == P) {
5116      found = true;
5117      return;
5118    }
5119    findPredecessor(Op, P, found, Visited);
5120  }
5121}
5122
5123/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5124/// is either an operand of N or it can be reached by recursively traversing
5125/// up the operands.
5126/// NOTE: this is an expensive method. Use it carefully.
5127bool SDNode::isPredecessorOf(SDNode *N) const {
5128  SmallPtrSet<SDNode *, 32> Visited;
5129  bool found = false;
5130  findPredecessor(N, this, found, Visited);
5131  return found;
5132}
5133
5134uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5135  assert(Num < NumOperands && "Invalid child # of SDNode!");
5136  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5137}
5138
5139std::string SDNode::getOperationName(const SelectionDAG *G) const {
5140  switch (getOpcode()) {
5141  default:
5142    if (getOpcode() < ISD::BUILTIN_OP_END)
5143      return "<<Unknown DAG Node>>";
5144    if (isMachineOpcode()) {
5145      if (G)
5146        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5147          if (getMachineOpcode() < TII->getNumOpcodes())
5148            return TII->get(getMachineOpcode()).getName();
5149      return "<<Unknown Machine Node>>";
5150    }
5151    if (G) {
5152      const TargetLowering &TLI = G->getTargetLoweringInfo();
5153      const char *Name = TLI.getTargetNodeName(getOpcode());
5154      if (Name) return Name;
5155      return "<<Unknown Target Node>>";
5156    }
5157    return "<<Unknown Node>>";
5158
5159#ifndef NDEBUG
5160  case ISD::DELETED_NODE:
5161    return "<<Deleted Node!>>";
5162#endif
5163  case ISD::PREFETCH:      return "Prefetch";
5164  case ISD::MEMBARRIER:    return "MemBarrier";
5165  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5166  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5167  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5168  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5169  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5170  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5171  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5172  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5173  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5174  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5175  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5176  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5177  case ISD::PCMARKER:      return "PCMarker";
5178  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5179  case ISD::SRCVALUE:      return "SrcValue";
5180  case ISD::MEMOPERAND:    return "MemOperand";
5181  case ISD::EntryToken:    return "EntryToken";
5182  case ISD::TokenFactor:   return "TokenFactor";
5183  case ISD::AssertSext:    return "AssertSext";
5184  case ISD::AssertZext:    return "AssertZext";
5185
5186  case ISD::BasicBlock:    return "BasicBlock";
5187  case ISD::ARG_FLAGS:     return "ArgFlags";
5188  case ISD::VALUETYPE:     return "ValueType";
5189  case ISD::Register:      return "Register";
5190
5191  case ISD::Constant:      return "Constant";
5192  case ISD::ConstantFP:    return "ConstantFP";
5193  case ISD::GlobalAddress: return "GlobalAddress";
5194  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5195  case ISD::FrameIndex:    return "FrameIndex";
5196  case ISD::JumpTable:     return "JumpTable";
5197  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5198  case ISD::RETURNADDR: return "RETURNADDR";
5199  case ISD::FRAMEADDR: return "FRAMEADDR";
5200  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5201  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5202  case ISD::EHSELECTION: return "EHSELECTION";
5203  case ISD::EH_RETURN: return "EH_RETURN";
5204  case ISD::ConstantPool:  return "ConstantPool";
5205  case ISD::ExternalSymbol: return "ExternalSymbol";
5206  case ISD::INTRINSIC_WO_CHAIN: {
5207    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5208    return Intrinsic::getName((Intrinsic::ID)IID);
5209  }
5210  case ISD::INTRINSIC_VOID:
5211  case ISD::INTRINSIC_W_CHAIN: {
5212    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5213    return Intrinsic::getName((Intrinsic::ID)IID);
5214  }
5215
5216  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5217  case ISD::TargetConstant: return "TargetConstant";
5218  case ISD::TargetConstantFP:return "TargetConstantFP";
5219  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5220  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5221  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5222  case ISD::TargetJumpTable:  return "TargetJumpTable";
5223  case ISD::TargetConstantPool:  return "TargetConstantPool";
5224  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5225
5226  case ISD::CopyToReg:     return "CopyToReg";
5227  case ISD::CopyFromReg:   return "CopyFromReg";
5228  case ISD::UNDEF:         return "undef";
5229  case ISD::MERGE_VALUES:  return "merge_values";
5230  case ISD::INLINEASM:     return "inlineasm";
5231  case ISD::DBG_LABEL:     return "dbg_label";
5232  case ISD::EH_LABEL:      return "eh_label";
5233  case ISD::DECLARE:       return "declare";
5234  case ISD::HANDLENODE:    return "handlenode";
5235  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5236  case ISD::CALL:          return "call";
5237
5238  // Unary operators
5239  case ISD::FABS:   return "fabs";
5240  case ISD::FNEG:   return "fneg";
5241  case ISD::FSQRT:  return "fsqrt";
5242  case ISD::FSIN:   return "fsin";
5243  case ISD::FCOS:   return "fcos";
5244  case ISD::FPOWI:  return "fpowi";
5245  case ISD::FPOW:   return "fpow";
5246  case ISD::FTRUNC: return "ftrunc";
5247  case ISD::FFLOOR: return "ffloor";
5248  case ISD::FCEIL:  return "fceil";
5249  case ISD::FRINT:  return "frint";
5250  case ISD::FNEARBYINT: return "fnearbyint";
5251
5252  // Binary operators
5253  case ISD::ADD:    return "add";
5254  case ISD::SUB:    return "sub";
5255  case ISD::MUL:    return "mul";
5256  case ISD::MULHU:  return "mulhu";
5257  case ISD::MULHS:  return "mulhs";
5258  case ISD::SDIV:   return "sdiv";
5259  case ISD::UDIV:   return "udiv";
5260  case ISD::SREM:   return "srem";
5261  case ISD::UREM:   return "urem";
5262  case ISD::SMUL_LOHI:  return "smul_lohi";
5263  case ISD::UMUL_LOHI:  return "umul_lohi";
5264  case ISD::SDIVREM:    return "sdivrem";
5265  case ISD::UDIVREM:    return "udivrem";
5266  case ISD::AND:    return "and";
5267  case ISD::OR:     return "or";
5268  case ISD::XOR:    return "xor";
5269  case ISD::SHL:    return "shl";
5270  case ISD::SRA:    return "sra";
5271  case ISD::SRL:    return "srl";
5272  case ISD::ROTL:   return "rotl";
5273  case ISD::ROTR:   return "rotr";
5274  case ISD::FADD:   return "fadd";
5275  case ISD::FSUB:   return "fsub";
5276  case ISD::FMUL:   return "fmul";
5277  case ISD::FDIV:   return "fdiv";
5278  case ISD::FREM:   return "frem";
5279  case ISD::FCOPYSIGN: return "fcopysign";
5280  case ISD::FGETSIGN:  return "fgetsign";
5281
5282  case ISD::SETCC:       return "setcc";
5283  case ISD::VSETCC:      return "vsetcc";
5284  case ISD::SELECT:      return "select";
5285  case ISD::SELECT_CC:   return "select_cc";
5286  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5287  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5288  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5289  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5290  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5291  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5292  case ISD::CARRY_FALSE:         return "carry_false";
5293  case ISD::ADDC:        return "addc";
5294  case ISD::ADDE:        return "adde";
5295  case ISD::SADDO:       return "saddo";
5296  case ISD::UADDO:       return "uaddo";
5297  case ISD::SSUBO:       return "ssubo";
5298  case ISD::USUBO:       return "usubo";
5299  case ISD::SMULO:       return "smulo";
5300  case ISD::UMULO:       return "umulo";
5301  case ISD::SUBC:        return "subc";
5302  case ISD::SUBE:        return "sube";
5303  case ISD::SHL_PARTS:   return "shl_parts";
5304  case ISD::SRA_PARTS:   return "sra_parts";
5305  case ISD::SRL_PARTS:   return "srl_parts";
5306
5307  // Conversion operators.
5308  case ISD::SIGN_EXTEND: return "sign_extend";
5309  case ISD::ZERO_EXTEND: return "zero_extend";
5310  case ISD::ANY_EXTEND:  return "any_extend";
5311  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5312  case ISD::TRUNCATE:    return "truncate";
5313  case ISD::FP_ROUND:    return "fp_round";
5314  case ISD::FLT_ROUNDS_: return "flt_rounds";
5315  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5316  case ISD::FP_EXTEND:   return "fp_extend";
5317
5318  case ISD::SINT_TO_FP:  return "sint_to_fp";
5319  case ISD::UINT_TO_FP:  return "uint_to_fp";
5320  case ISD::FP_TO_SINT:  return "fp_to_sint";
5321  case ISD::FP_TO_UINT:  return "fp_to_uint";
5322  case ISD::BIT_CONVERT: return "bit_convert";
5323
5324  case ISD::CONVERT_RNDSAT: {
5325    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5326    default: assert(0 && "Unknown cvt code!");
5327    case ISD::CVT_FF:  return "cvt_ff";
5328    case ISD::CVT_FS:  return "cvt_fs";
5329    case ISD::CVT_FU:  return "cvt_fu";
5330    case ISD::CVT_SF:  return "cvt_sf";
5331    case ISD::CVT_UF:  return "cvt_uf";
5332    case ISD::CVT_SS:  return "cvt_ss";
5333    case ISD::CVT_SU:  return "cvt_su";
5334    case ISD::CVT_US:  return "cvt_us";
5335    case ISD::CVT_UU:  return "cvt_uu";
5336    }
5337  }
5338
5339    // Control flow instructions
5340  case ISD::BR:      return "br";
5341  case ISD::BRIND:   return "brind";
5342  case ISD::BR_JT:   return "br_jt";
5343  case ISD::BRCOND:  return "brcond";
5344  case ISD::BR_CC:   return "br_cc";
5345  case ISD::RET:     return "ret";
5346  case ISD::CALLSEQ_START:  return "callseq_start";
5347  case ISD::CALLSEQ_END:    return "callseq_end";
5348
5349    // Other operators
5350  case ISD::LOAD:               return "load";
5351  case ISD::STORE:              return "store";
5352  case ISD::VAARG:              return "vaarg";
5353  case ISD::VACOPY:             return "vacopy";
5354  case ISD::VAEND:              return "vaend";
5355  case ISD::VASTART:            return "vastart";
5356  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5357  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5358  case ISD::BUILD_PAIR:         return "build_pair";
5359  case ISD::STACKSAVE:          return "stacksave";
5360  case ISD::STACKRESTORE:       return "stackrestore";
5361  case ISD::TRAP:               return "trap";
5362
5363  // Bit manipulation
5364  case ISD::BSWAP:   return "bswap";
5365  case ISD::CTPOP:   return "ctpop";
5366  case ISD::CTTZ:    return "cttz";
5367  case ISD::CTLZ:    return "ctlz";
5368
5369  // Debug info
5370  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5371  case ISD::DEBUG_LOC: return "debug_loc";
5372
5373  // Trampolines
5374  case ISD::TRAMPOLINE: return "trampoline";
5375
5376  case ISD::CONDCODE:
5377    switch (cast<CondCodeSDNode>(this)->get()) {
5378    default: assert(0 && "Unknown setcc condition!");
5379    case ISD::SETOEQ:  return "setoeq";
5380    case ISD::SETOGT:  return "setogt";
5381    case ISD::SETOGE:  return "setoge";
5382    case ISD::SETOLT:  return "setolt";
5383    case ISD::SETOLE:  return "setole";
5384    case ISD::SETONE:  return "setone";
5385
5386    case ISD::SETO:    return "seto";
5387    case ISD::SETUO:   return "setuo";
5388    case ISD::SETUEQ:  return "setue";
5389    case ISD::SETUGT:  return "setugt";
5390    case ISD::SETUGE:  return "setuge";
5391    case ISD::SETULT:  return "setult";
5392    case ISD::SETULE:  return "setule";
5393    case ISD::SETUNE:  return "setune";
5394
5395    case ISD::SETEQ:   return "seteq";
5396    case ISD::SETGT:   return "setgt";
5397    case ISD::SETGE:   return "setge";
5398    case ISD::SETLT:   return "setlt";
5399    case ISD::SETLE:   return "setle";
5400    case ISD::SETNE:   return "setne";
5401    }
5402  }
5403}
5404
5405const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5406  switch (AM) {
5407  default:
5408    return "";
5409  case ISD::PRE_INC:
5410    return "<pre-inc>";
5411  case ISD::PRE_DEC:
5412    return "<pre-dec>";
5413  case ISD::POST_INC:
5414    return "<post-inc>";
5415  case ISD::POST_DEC:
5416    return "<post-dec>";
5417  }
5418}
5419
5420std::string ISD::ArgFlagsTy::getArgFlagsString() {
5421  std::string S = "< ";
5422
5423  if (isZExt())
5424    S += "zext ";
5425  if (isSExt())
5426    S += "sext ";
5427  if (isInReg())
5428    S += "inreg ";
5429  if (isSRet())
5430    S += "sret ";
5431  if (isByVal())
5432    S += "byval ";
5433  if (isNest())
5434    S += "nest ";
5435  if (getByValAlign())
5436    S += "byval-align:" + utostr(getByValAlign()) + " ";
5437  if (getOrigAlign())
5438    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5439  if (getByValSize())
5440    S += "byval-size:" + utostr(getByValSize()) + " ";
5441  return S + ">";
5442}
5443
5444void SDNode::dump() const { dump(0); }
5445void SDNode::dump(const SelectionDAG *G) const {
5446  print(errs(), G);
5447}
5448
5449void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5450  OS << (void*)this << ": ";
5451
5452  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5453    if (i) OS << ",";
5454    if (getValueType(i) == MVT::Other)
5455      OS << "ch";
5456    else
5457      OS << getValueType(i).getMVTString();
5458  }
5459  OS << " = " << getOperationName(G);
5460}
5461
5462void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5463  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5464    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(this);
5465    OS << "<";
5466    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5467      int Idx = SVN->getMaskElt(i);
5468      if (i) OS << ",";
5469      if (Idx < 0)
5470        OS << "u";
5471      else
5472        OS << Idx;
5473    }
5474    OS << ">";
5475  }
5476
5477  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5478    OS << '<' << CSDN->getAPIntValue() << '>';
5479  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5480    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5481      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5482    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5483      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5484    else {
5485      OS << "<APFloat(";
5486      CSDN->getValueAPF().bitcastToAPInt().dump();
5487      OS << ")>";
5488    }
5489  } else if (const GlobalAddressSDNode *GADN =
5490             dyn_cast<GlobalAddressSDNode>(this)) {
5491    int64_t offset = GADN->getOffset();
5492    OS << '<';
5493    WriteAsOperand(OS, GADN->getGlobal());
5494    OS << '>';
5495    if (offset > 0)
5496      OS << " + " << offset;
5497    else
5498      OS << " " << offset;
5499    if (unsigned char TF = GADN->getTargetFlags())
5500      OS << " [TF=" << TF << ']';
5501  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5502    OS << "<" << FIDN->getIndex() << ">";
5503  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5504    OS << "<" << JTDN->getIndex() << ">";
5505  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5506    int offset = CP->getOffset();
5507    if (CP->isMachineConstantPoolEntry())
5508      OS << "<" << *CP->getMachineCPVal() << ">";
5509    else
5510      OS << "<" << *CP->getConstVal() << ">";
5511    if (offset > 0)
5512      OS << " + " << offset;
5513    else
5514      OS << " " << offset;
5515  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5516    OS << "<";
5517    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5518    if (LBB)
5519      OS << LBB->getName() << " ";
5520    OS << (const void*)BBDN->getBasicBlock() << ">";
5521  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5522    if (G && R->getReg() &&
5523        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5524      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5525    } else {
5526      OS << " #" << R->getReg();
5527    }
5528  } else if (const ExternalSymbolSDNode *ES =
5529             dyn_cast<ExternalSymbolSDNode>(this)) {
5530    OS << "'" << ES->getSymbol() << "'";
5531    if (unsigned char TF = GADN->getTargetFlags())
5532      OS << " [TF=" << TF << ']';
5533  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5534    if (M->getValue())
5535      OS << "<" << M->getValue() << ">";
5536    else
5537      OS << "<null>";
5538  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5539    if (M->MO.getValue())
5540      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5541    else
5542      OS << "<null:" << M->MO.getOffset() << ">";
5543  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5544    OS << N->getArgFlags().getArgFlagsString();
5545  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5546    OS << ":" << N->getVT().getMVTString();
5547  }
5548  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5549    const Value *SrcValue = LD->getSrcValue();
5550    int SrcOffset = LD->getSrcValueOffset();
5551    OS << " <";
5552    if (SrcValue)
5553      OS << SrcValue;
5554    else
5555      OS << "null";
5556    OS << ":" << SrcOffset << ">";
5557
5558    bool doExt = true;
5559    switch (LD->getExtensionType()) {
5560    default: doExt = false; break;
5561    case ISD::EXTLOAD: OS << " <anyext "; break;
5562    case ISD::SEXTLOAD: OS << " <sext "; break;
5563    case ISD::ZEXTLOAD: OS << " <zext "; break;
5564    }
5565    if (doExt)
5566      OS << LD->getMemoryVT().getMVTString() << ">";
5567
5568    const char *AM = getIndexedModeName(LD->getAddressingMode());
5569    if (*AM)
5570      OS << " " << AM;
5571    if (LD->isVolatile())
5572      OS << " <volatile>";
5573    OS << " alignment=" << LD->getAlignment();
5574  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5575    const Value *SrcValue = ST->getSrcValue();
5576    int SrcOffset = ST->getSrcValueOffset();
5577    OS << " <";
5578    if (SrcValue)
5579      OS << SrcValue;
5580    else
5581      OS << "null";
5582    OS << ":" << SrcOffset << ">";
5583
5584    if (ST->isTruncatingStore())
5585      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5586
5587    const char *AM = getIndexedModeName(ST->getAddressingMode());
5588    if (*AM)
5589      OS << " " << AM;
5590    if (ST->isVolatile())
5591      OS << " <volatile>";
5592    OS << " alignment=" << ST->getAlignment();
5593  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5594    const Value *SrcValue = AT->getSrcValue();
5595    int SrcOffset = AT->getSrcValueOffset();
5596    OS << " <";
5597    if (SrcValue)
5598      OS << SrcValue;
5599    else
5600      OS << "null";
5601    OS << ":" << SrcOffset << ">";
5602    if (AT->isVolatile())
5603      OS << " <volatile>";
5604    OS << " alignment=" << AT->getAlignment();
5605  }
5606}
5607
5608void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5609  print_types(OS, G);
5610  OS << " ";
5611  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5612    if (i) OS << ", ";
5613    OS << (void*)getOperand(i).getNode();
5614    if (unsigned RN = getOperand(i).getResNo())
5615      OS << ":" << RN;
5616  }
5617  print_details(OS, G);
5618}
5619
5620static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5621  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5622    if (N->getOperand(i).getNode()->hasOneUse())
5623      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5624    else
5625      cerr << "\n" << std::string(indent+2, ' ')
5626           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5627
5628
5629  cerr << "\n" << std::string(indent, ' ');
5630  N->dump(G);
5631}
5632
5633void SelectionDAG::dump() const {
5634  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5635
5636  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5637       I != E; ++I) {
5638    const SDNode *N = I;
5639    if (!N->hasOneUse() && N != getRoot().getNode())
5640      DumpNodes(N, 2, this);
5641  }
5642
5643  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5644
5645  cerr << "\n\n";
5646}
5647
5648void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5649  print_types(OS, G);
5650  print_details(OS, G);
5651}
5652
5653typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5654static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5655                       const SelectionDAG *G, VisitedSDNodeSet &once) {
5656  if (!once.insert(N))          // If we've been here before, return now.
5657    return;
5658  // Dump the current SDNode, but don't end the line yet.
5659  OS << std::string(indent, ' ');
5660  N->printr(OS, G);
5661  // Having printed this SDNode, walk the children:
5662  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5663    const SDNode *child = N->getOperand(i).getNode();
5664    if (i) OS << ",";
5665    OS << " ";
5666    if (child->getNumOperands() == 0) {
5667      // This child has no grandchildren; print it inline right here.
5668      child->printr(OS, G);
5669      once.insert(child);
5670    } else {          // Just the address.  FIXME: also print the child's opcode
5671      OS << (void*)child;
5672      if (unsigned RN = N->getOperand(i).getResNo())
5673        OS << ":" << RN;
5674    }
5675  }
5676  OS << "\n";
5677  // Dump children that have grandchildren on their own line(s).
5678  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5679    const SDNode *child = N->getOperand(i).getNode();
5680    DumpNodesr(OS, child, indent+2, G, once);
5681  }
5682}
5683
5684void SDNode::dumpr() const {
5685  VisitedSDNodeSet once;
5686  DumpNodesr(errs(), this, 0, 0, once);
5687}
5688
5689
5690// getAddressSpace - Return the address space this GlobalAddress belongs to.
5691unsigned GlobalAddressSDNode::getAddressSpace() const {
5692  return getGlobal()->getType()->getAddressSpace();
5693}
5694
5695
5696const Type *ConstantPoolSDNode::getType() const {
5697  if (isMachineConstantPoolEntry())
5698    return Val.MachineCPVal->getType();
5699  return Val.ConstVal->getType();
5700}
5701
5702bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5703                                        APInt &SplatUndef,
5704                                        unsigned &SplatBitSize,
5705                                        bool &HasAnyUndefs,
5706                                        unsigned MinSplatBits) {
5707  MVT VT = getValueType(0);
5708  assert(VT.isVector() && "Expected a vector type");
5709  unsigned sz = VT.getSizeInBits();
5710  if (MinSplatBits > sz)
5711    return false;
5712
5713  SplatValue = APInt(sz, 0);
5714  SplatUndef = APInt(sz, 0);
5715
5716  // Get the bits.  Bits with undefined values (when the corresponding element
5717  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5718  // in SplatValue.  If any of the values are not constant, give up and return
5719  // false.
5720  unsigned int nOps = getNumOperands();
5721  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5722  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5723  for (unsigned i = 0; i < nOps; ++i) {
5724    SDValue OpVal = getOperand(i);
5725    unsigned BitPos = i * EltBitSize;
5726
5727    if (OpVal.getOpcode() == ISD::UNDEF)
5728      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5729    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5730      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5731                     zextOrTrunc(sz) << BitPos);
5732    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5733      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5734     else
5735      return false;
5736  }
5737
5738  // The build_vector is all constants or undefs.  Find the smallest element
5739  // size that splats the vector.
5740
5741  HasAnyUndefs = (SplatUndef != 0);
5742  while (sz > 8) {
5743
5744    unsigned HalfSize = sz / 2;
5745    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5746    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5747    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5748    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5749
5750    // If the two halves do not match (ignoring undef bits), stop here.
5751    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5752        MinSplatBits > HalfSize)
5753      break;
5754
5755    SplatValue = HighValue | LowValue;
5756    SplatUndef = HighUndef & LowUndef;
5757
5758    sz = HalfSize;
5759  }
5760
5761  SplatBitSize = sz;
5762  return true;
5763}
5764
5765bool ShuffleVectorSDNode::isSplatMask(const int *Mask, MVT VT) {
5766  // Find the first non-undef value in the shuffle mask.
5767  unsigned i, e;
5768  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
5769    /* search */;
5770
5771  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
5772
5773  // Make sure all remaining elements are either undef or the same as the first
5774  // non-undef value.
5775  for (int Idx = Mask[i]; i != e; ++i)
5776    if (Mask[i] >= 0 && Mask[i] != Idx)
5777      return false;
5778  return true;
5779}
5780