SelectionDAG.cpp revision 71e8685633e7938ee752004cceedccbd0d850527
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/ADT/SetVector.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/SmallSet.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/ADT/StringExtras.h"
38#include <algorithm>
39#include <cmath>
40using namespace llvm;
41
42/// makeVTList - Return an instance of the SDVTList struct initialized with the
43/// specified members.
44static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
45  SDVTList Res = {VTs, NumVTs};
46  return Res;
47}
48
49static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
50  switch (VT.getSimpleVT()) {
51  default: assert(0 && "Unknown FP format");
52  case MVT::f32:     return &APFloat::IEEEsingle;
53  case MVT::f64:     return &APFloat::IEEEdouble;
54  case MVT::f80:     return &APFloat::x87DoubleExtended;
55  case MVT::f128:    return &APFloat::IEEEquad;
56  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
57  }
58}
59
60SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
61
62//===----------------------------------------------------------------------===//
63//                              ConstantFPSDNode Class
64//===----------------------------------------------------------------------===//
65
66/// isExactlyValue - We don't rely on operator== working on double values, as
67/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
68/// As such, this method can be used to do an exact bit-for-bit comparison of
69/// two floating point values.
70bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
71  return Value.bitwiseIsEqual(V);
72}
73
74bool ConstantFPSDNode::isValueValidForType(MVT VT,
75                                           const APFloat& Val) {
76  assert(VT.isFloatingPoint() && "Can only convert between FP types");
77
78  // PPC long double cannot be converted to any other type.
79  if (VT == MVT::ppcf128 ||
80      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
81    return false;
82
83  // convert modifies in place, so make a copy.
84  APFloat Val2 = APFloat(Val);
85  return Val2.convert(*MVTToAPFloatSemantics(VT),
86                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
87}
88
89//===----------------------------------------------------------------------===//
90//                              ISD Namespace
91//===----------------------------------------------------------------------===//
92
93/// isBuildVectorAllOnes - Return true if the specified node is a
94/// BUILD_VECTOR where all of the elements are ~0 or undef.
95bool ISD::isBuildVectorAllOnes(const SDNode *N) {
96  // Look through a bit convert.
97  if (N->getOpcode() == ISD::BIT_CONVERT)
98    N = N->getOperand(0).Val;
99
100  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
101
102  unsigned i = 0, e = N->getNumOperands();
103
104  // Skip over all of the undef values.
105  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
106    ++i;
107
108  // Do not accept an all-undef vector.
109  if (i == e) return false;
110
111  // Do not accept build_vectors that aren't all constants or which have non-~0
112  // elements.
113  SDOperand NotZero = N->getOperand(i);
114  if (isa<ConstantSDNode>(NotZero)) {
115    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
116      return false;
117  } else if (isa<ConstantFPSDNode>(NotZero)) {
118    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
119                convertToAPInt().isAllOnesValue())
120      return false;
121  } else
122    return false;
123
124  // Okay, we have at least one ~0 value, check to see if the rest match or are
125  // undefs.
126  for (++i; i != e; ++i)
127    if (N->getOperand(i) != NotZero &&
128        N->getOperand(i).getOpcode() != ISD::UNDEF)
129      return false;
130  return true;
131}
132
133
134/// isBuildVectorAllZeros - Return true if the specified node is a
135/// BUILD_VECTOR where all of the elements are 0 or undef.
136bool ISD::isBuildVectorAllZeros(const SDNode *N) {
137  // Look through a bit convert.
138  if (N->getOpcode() == ISD::BIT_CONVERT)
139    N = N->getOperand(0).Val;
140
141  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
142
143  unsigned i = 0, e = N->getNumOperands();
144
145  // Skip over all of the undef values.
146  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
147    ++i;
148
149  // Do not accept an all-undef vector.
150  if (i == e) return false;
151
152  // Do not accept build_vectors that aren't all constants or which have non-~0
153  // elements.
154  SDOperand Zero = N->getOperand(i);
155  if (isa<ConstantSDNode>(Zero)) {
156    if (!cast<ConstantSDNode>(Zero)->isNullValue())
157      return false;
158  } else if (isa<ConstantFPSDNode>(Zero)) {
159    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
160      return false;
161  } else
162    return false;
163
164  // Okay, we have at least one ~0 value, check to see if the rest match or are
165  // undefs.
166  for (++i; i != e; ++i)
167    if (N->getOperand(i) != Zero &&
168        N->getOperand(i).getOpcode() != ISD::UNDEF)
169      return false;
170  return true;
171}
172
173/// isScalarToVector - Return true if the specified node is a
174/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
175/// element is not an undef.
176bool ISD::isScalarToVector(const SDNode *N) {
177  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
178    return true;
179
180  if (N->getOpcode() != ISD::BUILD_VECTOR)
181    return false;
182  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
183    return false;
184  unsigned NumElems = N->getNumOperands();
185  for (unsigned i = 1; i < NumElems; ++i) {
186    SDOperand V = N->getOperand(i);
187    if (V.getOpcode() != ISD::UNDEF)
188      return false;
189  }
190  return true;
191}
192
193
194/// isDebugLabel - Return true if the specified node represents a debug
195/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
196bool ISD::isDebugLabel(const SDNode *N) {
197  SDOperand Zero;
198  if (N->getOpcode() == ISD::DBG_LABEL)
199    return true;
200  if (N->isTargetOpcode() &&
201      N->getTargetOpcode() == TargetInstrInfo::DBG_LABEL)
202    return true;
203  return false;
204}
205
206/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
207/// when given the operation for (X op Y).
208ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
209  // To perform this operation, we just need to swap the L and G bits of the
210  // operation.
211  unsigned OldL = (Operation >> 2) & 1;
212  unsigned OldG = (Operation >> 1) & 1;
213  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
214                       (OldL << 1) |       // New G bit
215                       (OldG << 2));        // New L bit.
216}
217
218/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
219/// 'op' is a valid SetCC operation.
220ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
221  unsigned Operation = Op;
222  if (isInteger)
223    Operation ^= 7;   // Flip L, G, E bits, but not U.
224  else
225    Operation ^= 15;  // Flip all of the condition bits.
226  if (Operation > ISD::SETTRUE2)
227    Operation &= ~8;     // Don't let N and U bits get set.
228  return ISD::CondCode(Operation);
229}
230
231
232/// isSignedOp - For an integer comparison, return 1 if the comparison is a
233/// signed operation and 2 if the result is an unsigned comparison.  Return zero
234/// if the operation does not depend on the sign of the input (setne and seteq).
235static int isSignedOp(ISD::CondCode Opcode) {
236  switch (Opcode) {
237  default: assert(0 && "Illegal integer setcc operation!");
238  case ISD::SETEQ:
239  case ISD::SETNE: return 0;
240  case ISD::SETLT:
241  case ISD::SETLE:
242  case ISD::SETGT:
243  case ISD::SETGE: return 1;
244  case ISD::SETULT:
245  case ISD::SETULE:
246  case ISD::SETUGT:
247  case ISD::SETUGE: return 2;
248  }
249}
250
251/// getSetCCOrOperation - Return the result of a logical OR between different
252/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
253/// returns SETCC_INVALID if it is not possible to represent the resultant
254/// comparison.
255ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
256                                       bool isInteger) {
257  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
258    // Cannot fold a signed integer setcc with an unsigned integer setcc.
259    return ISD::SETCC_INVALID;
260
261  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
262
263  // If the N and U bits get set then the resultant comparison DOES suddenly
264  // care about orderedness, and is true when ordered.
265  if (Op > ISD::SETTRUE2)
266    Op &= ~16;     // Clear the U bit if the N bit is set.
267
268  // Canonicalize illegal integer setcc's.
269  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
270    Op = ISD::SETNE;
271
272  return ISD::CondCode(Op);
273}
274
275/// getSetCCAndOperation - Return the result of a logical AND between different
276/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
277/// function returns zero if it is not possible to represent the resultant
278/// comparison.
279ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
280                                        bool isInteger) {
281  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
282    // Cannot fold a signed setcc with an unsigned setcc.
283    return ISD::SETCC_INVALID;
284
285  // Combine all of the condition bits.
286  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
287
288  // Canonicalize illegal integer setcc's.
289  if (isInteger) {
290    switch (Result) {
291    default: break;
292    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
293    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
294    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
295    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
296    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
297    }
298  }
299
300  return Result;
301}
302
303const TargetMachine &SelectionDAG::getTarget() const {
304  return TLI.getTargetMachine();
305}
306
307//===----------------------------------------------------------------------===//
308//                           SDNode Profile Support
309//===----------------------------------------------------------------------===//
310
311/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
312///
313static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
314  ID.AddInteger(OpC);
315}
316
317/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
318/// solely with their pointer.
319static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
320  ID.AddPointer(VTList.VTs);
321}
322
323/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
324///
325static void AddNodeIDOperands(FoldingSetNodeID &ID,
326                              const SDOperand *Ops, unsigned NumOps) {
327  for (; NumOps; --NumOps, ++Ops) {
328    ID.AddPointer(Ops->Val);
329    ID.AddInteger(Ops->ResNo);
330  }
331}
332
333/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
334///
335static void AddNodeIDOperands(FoldingSetNodeID &ID,
336                              const SDUse *Ops, unsigned NumOps) {
337  for (; NumOps; --NumOps, ++Ops) {
338    ID.AddPointer(Ops->getSDOperand().Val);
339    ID.AddInteger(Ops->getSDOperand().ResNo);
340  }
341}
342
343static void AddNodeIDNode(FoldingSetNodeID &ID,
344                          unsigned short OpC, SDVTList VTList,
345                          const SDOperand *OpList, unsigned N) {
346  AddNodeIDOpcode(ID, OpC);
347  AddNodeIDValueTypes(ID, VTList);
348  AddNodeIDOperands(ID, OpList, N);
349}
350
351
352/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
353/// data.
354static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
355  AddNodeIDOpcode(ID, N->getOpcode());
356  // Add the return value info.
357  AddNodeIDValueTypes(ID, N->getVTList());
358  // Add the operand info.
359  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
360
361  // Handle SDNode leafs with special info.
362  switch (N->getOpcode()) {
363  default: break;  // Normal nodes don't need extra info.
364  case ISD::ARG_FLAGS:
365    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
366    break;
367  case ISD::TargetConstant:
368  case ISD::Constant:
369    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
370    break;
371  case ISD::TargetConstantFP:
372  case ISD::ConstantFP: {
373    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
374    break;
375  }
376  case ISD::TargetGlobalAddress:
377  case ISD::GlobalAddress:
378  case ISD::TargetGlobalTLSAddress:
379  case ISD::GlobalTLSAddress: {
380    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
381    ID.AddPointer(GA->getGlobal());
382    ID.AddInteger(GA->getOffset());
383    break;
384  }
385  case ISD::BasicBlock:
386    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
387    break;
388  case ISD::Register:
389    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
390    break;
391  case ISD::DBG_STOPPOINT: {
392    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
393    ID.AddInteger(DSP->getLine());
394    ID.AddInteger(DSP->getColumn());
395    ID.AddPointer(DSP->getCompileUnit());
396    break;
397  }
398  case ISD::SRCVALUE:
399    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
400    break;
401  case ISD::MEMOPERAND: {
402    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
403    ID.AddPointer(MO.getValue());
404    ID.AddInteger(MO.getFlags());
405    ID.AddInteger(MO.getOffset());
406    ID.AddInteger(MO.getSize());
407    ID.AddInteger(MO.getAlignment());
408    break;
409  }
410  case ISD::FrameIndex:
411  case ISD::TargetFrameIndex:
412    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
413    break;
414  case ISD::JumpTable:
415  case ISD::TargetJumpTable:
416    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
417    break;
418  case ISD::ConstantPool:
419  case ISD::TargetConstantPool: {
420    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
421    ID.AddInteger(CP->getAlignment());
422    ID.AddInteger(CP->getOffset());
423    if (CP->isMachineConstantPoolEntry())
424      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
425    else
426      ID.AddPointer(CP->getConstVal());
427    break;
428  }
429  case ISD::LOAD: {
430    LoadSDNode *LD = cast<LoadSDNode>(N);
431    ID.AddInteger(LD->getAddressingMode());
432    ID.AddInteger(LD->getExtensionType());
433    ID.AddInteger(LD->getMemoryVT().getRawBits());
434    ID.AddInteger(LD->getAlignment());
435    ID.AddInteger(LD->isVolatile());
436    break;
437  }
438  case ISD::STORE: {
439    StoreSDNode *ST = cast<StoreSDNode>(N);
440    ID.AddInteger(ST->getAddressingMode());
441    ID.AddInteger(ST->isTruncatingStore());
442    ID.AddInteger(ST->getMemoryVT().getRawBits());
443    ID.AddInteger(ST->getAlignment());
444    ID.AddInteger(ST->isVolatile());
445    break;
446  }
447  case ISD::ATOMIC_CMP_SWAP:
448  case ISD::ATOMIC_LOAD_ADD:
449  case ISD::ATOMIC_SWAP:
450  case ISD::ATOMIC_LOAD_SUB:
451  case ISD::ATOMIC_LOAD_AND:
452  case ISD::ATOMIC_LOAD_OR:
453  case ISD::ATOMIC_LOAD_XOR:
454  case ISD::ATOMIC_LOAD_NAND:
455  case ISD::ATOMIC_LOAD_MIN:
456  case ISD::ATOMIC_LOAD_MAX:
457  case ISD::ATOMIC_LOAD_UMIN:
458  case ISD::ATOMIC_LOAD_UMAX: {
459    AtomicSDNode *AT = cast<AtomicSDNode>(N);
460    ID.AddInteger(AT->getAlignment());
461    ID.AddInteger(AT->isVolatile());
462    break;
463  }
464  } // end switch (N->getOpcode())
465}
466
467//===----------------------------------------------------------------------===//
468//                              SelectionDAG Class
469//===----------------------------------------------------------------------===//
470
471inline alist_traits<SDNode, LargestSDNode>::AllocatorType &
472SelectionDAG::getAllocator() {
473  return AllNodes.getTraits().Allocator;
474}
475
476/// RemoveDeadNodes - This method deletes all unreachable nodes in the
477/// SelectionDAG.
478void SelectionDAG::RemoveDeadNodes() {
479  // Create a dummy node (which is not added to allnodes), that adds a reference
480  // to the root node, preventing it from being deleted.
481  HandleSDNode Dummy(getRoot());
482
483  SmallVector<SDNode*, 128> DeadNodes;
484
485  // Add all obviously-dead nodes to the DeadNodes worklist.
486  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
487    if (I->use_empty())
488      DeadNodes.push_back(I);
489
490  RemoveDeadNodes(DeadNodes);
491
492  // If the root changed (e.g. it was a dead load, update the root).
493  setRoot(Dummy.getValue());
494}
495
496/// RemoveDeadNodes - This method deletes the unreachable nodes in the
497/// given list, and any nodes that become unreachable as a result.
498void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
499                                   DAGUpdateListener *UpdateListener) {
500
501  // Process the worklist, deleting the nodes and adding their uses to the
502  // worklist.
503  while (!DeadNodes.empty()) {
504    SDNode *N = DeadNodes.back();
505    DeadNodes.pop_back();
506
507    if (UpdateListener)
508      UpdateListener->NodeDeleted(N, 0);
509
510    // Take the node out of the appropriate CSE map.
511    RemoveNodeFromCSEMaps(N);
512
513    // Next, brutally remove the operand list.  This is safe to do, as there are
514    // no cycles in the graph.
515    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
516      SDNode *Operand = I->getVal();
517      Operand->removeUser(std::distance(N->op_begin(), I), N);
518
519      // Now that we removed this operand, see if there are no uses of it left.
520      if (Operand->use_empty())
521        DeadNodes.push_back(Operand);
522    }
523    if (N->OperandsNeedDelete) {
524      delete[] N->OperandList;
525    }
526    N->OperandList = 0;
527    N->NumOperands = 0;
528
529    // Finally, remove N itself.
530    AllNodes.erase(N);
531  }
532}
533
534void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
535  SmallVector<SDNode*, 16> DeadNodes;
536  DeadNodes.push_back(N);
537  RemoveDeadNodes(DeadNodes, UpdateListener);
538}
539
540void SelectionDAG::DeleteNode(SDNode *N) {
541  assert(N->use_empty() && "Cannot delete a node that is not dead!");
542
543  // First take this out of the appropriate CSE map.
544  RemoveNodeFromCSEMaps(N);
545
546  // Finally, remove uses due to operands of this node, remove from the
547  // AllNodes list, and delete the node.
548  DeleteNodeNotInCSEMaps(N);
549}
550
551void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
552
553  // Drop all of the operands and decrement used nodes use counts.
554  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
555    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
556  if (N->OperandsNeedDelete) {
557    delete[] N->OperandList;
558  }
559  N->OperandList = 0;
560  N->NumOperands = 0;
561
562  AllNodes.erase(N);
563}
564
565/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
566/// correspond to it.  This is useful when we're about to delete or repurpose
567/// the node.  We don't want future request for structurally identical nodes
568/// to return N anymore.
569void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
570  bool Erased = false;
571  switch (N->getOpcode()) {
572  case ISD::HANDLENODE: return;  // noop.
573  case ISD::CONDCODE:
574    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
575           "Cond code doesn't exist!");
576    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
577    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
578    break;
579  case ISD::ExternalSymbol:
580    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
581    break;
582  case ISD::TargetExternalSymbol:
583    Erased =
584      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
585    break;
586  case ISD::VALUETYPE: {
587    MVT VT = cast<VTSDNode>(N)->getVT();
588    if (VT.isExtended()) {
589      Erased = ExtendedValueTypeNodes.erase(VT);
590    } else {
591      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
592      ValueTypeNodes[VT.getSimpleVT()] = 0;
593    }
594    break;
595  }
596  default:
597    // Remove it from the CSE Map.
598    Erased = CSEMap.RemoveNode(N);
599    break;
600  }
601#ifndef NDEBUG
602  // Verify that the node was actually in one of the CSE maps, unless it has a
603  // flag result (which cannot be CSE'd) or is one of the special cases that are
604  // not subject to CSE.
605  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
606      !N->isTargetOpcode() &&
607      N->getOpcode() != ISD::DBG_LABEL &&
608      N->getOpcode() != ISD::DBG_STOPPOINT &&
609      N->getOpcode() != ISD::EH_LABEL &&
610      N->getOpcode() != ISD::DECLARE) {
611    N->dump(this);
612    cerr << "\n";
613    assert(0 && "Node is not in map!");
614  }
615#endif
616}
617
618/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
619/// has been taken out and modified in some way.  If the specified node already
620/// exists in the CSE maps, do not modify the maps, but return the existing node
621/// instead.  If it doesn't exist, add it and return null.
622///
623SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
624  assert(N->getNumOperands() && "This is a leaf node!");
625
626  if (N->getValueType(0) == MVT::Flag)
627    return 0;   // Never CSE anything that produces a flag.
628
629  switch (N->getOpcode()) {
630  default: break;
631  case ISD::HANDLENODE:
632  case ISD::DBG_LABEL:
633  case ISD::DBG_STOPPOINT:
634  case ISD::EH_LABEL:
635  case ISD::DECLARE:
636    return 0;    // Never add these nodes.
637  }
638
639  // Check that remaining values produced are not flags.
640  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
641    if (N->getValueType(i) == MVT::Flag)
642      return 0;   // Never CSE anything that produces a flag.
643
644  SDNode *New = CSEMap.GetOrInsertNode(N);
645  if (New != N) return New;  // Node already existed.
646  return 0;
647}
648
649/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
650/// were replaced with those specified.  If this node is never memoized,
651/// return null, otherwise return a pointer to the slot it would take.  If a
652/// node already exists with these operands, the slot will be non-null.
653SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
654                                           void *&InsertPos) {
655  if (N->getValueType(0) == MVT::Flag)
656    return 0;   // Never CSE anything that produces a flag.
657
658  switch (N->getOpcode()) {
659  default: break;
660  case ISD::HANDLENODE:
661  case ISD::DBG_LABEL:
662  case ISD::DBG_STOPPOINT:
663  case ISD::EH_LABEL:
664    return 0;    // Never add these nodes.
665  }
666
667  // Check that remaining values produced are not flags.
668  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
669    if (N->getValueType(i) == MVT::Flag)
670      return 0;   // Never CSE anything that produces a flag.
671
672  SDOperand Ops[] = { Op };
673  FoldingSetNodeID ID;
674  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
675  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
676}
677
678/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
679/// were replaced with those specified.  If this node is never memoized,
680/// return null, otherwise return a pointer to the slot it would take.  If a
681/// node already exists with these operands, the slot will be non-null.
682SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
683                                           SDOperand Op1, SDOperand Op2,
684                                           void *&InsertPos) {
685  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
686
687  // Check that remaining values produced are not flags.
688  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
689    if (N->getValueType(i) == MVT::Flag)
690      return 0;   // Never CSE anything that produces a flag.
691
692  SDOperand Ops[] = { Op1, Op2 };
693  FoldingSetNodeID ID;
694  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
695  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
696}
697
698
699/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
700/// were replaced with those specified.  If this node is never memoized,
701/// return null, otherwise return a pointer to the slot it would take.  If a
702/// node already exists with these operands, the slot will be non-null.
703SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
704                                           const SDOperand *Ops,unsigned NumOps,
705                                           void *&InsertPos) {
706  if (N->getValueType(0) == MVT::Flag)
707    return 0;   // Never CSE anything that produces a flag.
708
709  switch (N->getOpcode()) {
710  default: break;
711  case ISD::HANDLENODE:
712  case ISD::DBG_LABEL:
713  case ISD::DBG_STOPPOINT:
714  case ISD::EH_LABEL:
715  case ISD::DECLARE:
716    return 0;    // Never add these nodes.
717  }
718
719  // Check that remaining values produced are not flags.
720  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
721    if (N->getValueType(i) == MVT::Flag)
722      return 0;   // Never CSE anything that produces a flag.
723
724  FoldingSetNodeID ID;
725  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
726
727  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
728    ID.AddInteger(LD->getAddressingMode());
729    ID.AddInteger(LD->getExtensionType());
730    ID.AddInteger(LD->getMemoryVT().getRawBits());
731    ID.AddInteger(LD->getAlignment());
732    ID.AddInteger(LD->isVolatile());
733  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
734    ID.AddInteger(ST->getAddressingMode());
735    ID.AddInteger(ST->isTruncatingStore());
736    ID.AddInteger(ST->getMemoryVT().getRawBits());
737    ID.AddInteger(ST->getAlignment());
738    ID.AddInteger(ST->isVolatile());
739  }
740
741  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
742}
743
744
745SelectionDAG::~SelectionDAG() {
746  while (!AllNodes.empty()) {
747    SDNode *N = AllNodes.begin();
748    N->SetNextInBucket(0);
749    if (N->OperandsNeedDelete) {
750      delete [] N->OperandList;
751    }
752    N->OperandList = 0;
753    N->NumOperands = 0;
754    AllNodes.pop_front();
755  }
756}
757
758SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT VT) {
759  if (Op.getValueType() == VT) return Op;
760  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
761                                   VT.getSizeInBits());
762  return getNode(ISD::AND, Op.getValueType(), Op,
763                 getConstant(Imm, Op.getValueType()));
764}
765
766SDOperand SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
767  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
768  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
769}
770
771SDOperand SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
772  assert(VT.isInteger() && "Cannot create FP integer constant!");
773
774  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
775  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
776         "APInt size does not match type size!");
777
778  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
779  FoldingSetNodeID ID;
780  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
781  ID.Add(Val);
782  void *IP = 0;
783  SDNode *N = NULL;
784  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
785    if (!VT.isVector())
786      return SDOperand(N, 0);
787  if (!N) {
788    N = getAllocator().Allocate<ConstantSDNode>();
789    new (N) ConstantSDNode(isT, Val, EltVT);
790    CSEMap.InsertNode(N, IP);
791    AllNodes.push_back(N);
792  }
793
794  SDOperand Result(N, 0);
795  if (VT.isVector()) {
796    SmallVector<SDOperand, 8> Ops;
797    Ops.assign(VT.getVectorNumElements(), Result);
798    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
799  }
800  return Result;
801}
802
803SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
804  return getConstant(Val, TLI.getPointerTy(), isTarget);
805}
806
807
808SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
809  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
810
811  MVT EltVT =
812    VT.isVector() ? VT.getVectorElementType() : VT;
813
814  // Do the map lookup using the actual bit pattern for the floating point
815  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
816  // we don't have issues with SNANs.
817  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
818  FoldingSetNodeID ID;
819  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
820  ID.Add(V);
821  void *IP = 0;
822  SDNode *N = NULL;
823  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
824    if (!VT.isVector())
825      return SDOperand(N, 0);
826  if (!N) {
827    N = getAllocator().Allocate<ConstantFPSDNode>();
828    new (N) ConstantFPSDNode(isTarget, V, EltVT);
829    CSEMap.InsertNode(N, IP);
830    AllNodes.push_back(N);
831  }
832
833  SDOperand Result(N, 0);
834  if (VT.isVector()) {
835    SmallVector<SDOperand, 8> Ops;
836    Ops.assign(VT.getVectorNumElements(), Result);
837    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
838  }
839  return Result;
840}
841
842SDOperand SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
843  MVT EltVT =
844    VT.isVector() ? VT.getVectorElementType() : VT;
845  if (EltVT==MVT::f32)
846    return getConstantFP(APFloat((float)Val), VT, isTarget);
847  else
848    return getConstantFP(APFloat(Val), VT, isTarget);
849}
850
851SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
852                                         MVT VT, int Offset,
853                                         bool isTargetGA) {
854  unsigned Opc;
855
856  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
857  if (!GVar) {
858    // If GV is an alias then use the aliasee for determining thread-localness.
859    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
860      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
861  }
862
863  if (GVar && GVar->isThreadLocal())
864    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
865  else
866    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
867
868  FoldingSetNodeID ID;
869  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
870  ID.AddPointer(GV);
871  ID.AddInteger(Offset);
872  void *IP = 0;
873  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
874   return SDOperand(E, 0);
875  SDNode *N = getAllocator().Allocate<GlobalAddressSDNode>();
876  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
877  CSEMap.InsertNode(N, IP);
878  AllNodes.push_back(N);
879  return SDOperand(N, 0);
880}
881
882SDOperand SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
883  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
884  FoldingSetNodeID ID;
885  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
886  ID.AddInteger(FI);
887  void *IP = 0;
888  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
889    return SDOperand(E, 0);
890  SDNode *N = getAllocator().Allocate<FrameIndexSDNode>();
891  new (N) FrameIndexSDNode(FI, VT, isTarget);
892  CSEMap.InsertNode(N, IP);
893  AllNodes.push_back(N);
894  return SDOperand(N, 0);
895}
896
897SDOperand SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
898  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
899  FoldingSetNodeID ID;
900  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
901  ID.AddInteger(JTI);
902  void *IP = 0;
903  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
904    return SDOperand(E, 0);
905  SDNode *N = getAllocator().Allocate<JumpTableSDNode>();
906  new (N) JumpTableSDNode(JTI, VT, isTarget);
907  CSEMap.InsertNode(N, IP);
908  AllNodes.push_back(N);
909  return SDOperand(N, 0);
910}
911
912SDOperand SelectionDAG::getConstantPool(Constant *C, MVT VT,
913                                        unsigned Alignment, int Offset,
914                                        bool isTarget) {
915  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
916  FoldingSetNodeID ID;
917  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
918  ID.AddInteger(Alignment);
919  ID.AddInteger(Offset);
920  ID.AddPointer(C);
921  void *IP = 0;
922  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
923    return SDOperand(E, 0);
924  SDNode *N = getAllocator().Allocate<ConstantPoolSDNode>();
925  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
926  CSEMap.InsertNode(N, IP);
927  AllNodes.push_back(N);
928  return SDOperand(N, 0);
929}
930
931
932SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
933                                        unsigned Alignment, int Offset,
934                                        bool isTarget) {
935  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
936  FoldingSetNodeID ID;
937  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
938  ID.AddInteger(Alignment);
939  ID.AddInteger(Offset);
940  C->AddSelectionDAGCSEId(ID);
941  void *IP = 0;
942  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
943    return SDOperand(E, 0);
944  SDNode *N = getAllocator().Allocate<ConstantPoolSDNode>();
945  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
946  CSEMap.InsertNode(N, IP);
947  AllNodes.push_back(N);
948  return SDOperand(N, 0);
949}
950
951
952SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
953  FoldingSetNodeID ID;
954  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
955  ID.AddPointer(MBB);
956  void *IP = 0;
957  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
958    return SDOperand(E, 0);
959  SDNode *N = getAllocator().Allocate<BasicBlockSDNode>();
960  new (N) BasicBlockSDNode(MBB);
961  CSEMap.InsertNode(N, IP);
962  AllNodes.push_back(N);
963  return SDOperand(N, 0);
964}
965
966SDOperand SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
967  FoldingSetNodeID ID;
968  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
969  ID.AddInteger(Flags.getRawBits());
970  void *IP = 0;
971  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
972    return SDOperand(E, 0);
973  SDNode *N = getAllocator().Allocate<ARG_FLAGSSDNode>();
974  new (N) ARG_FLAGSSDNode(Flags);
975  CSEMap.InsertNode(N, IP);
976  AllNodes.push_back(N);
977  return SDOperand(N, 0);
978}
979
980SDOperand SelectionDAG::getValueType(MVT VT) {
981  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
982    ValueTypeNodes.resize(VT.getSimpleVT()+1);
983
984  SDNode *&N = VT.isExtended() ?
985    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
986
987  if (N) return SDOperand(N, 0);
988  N = getAllocator().Allocate<VTSDNode>();
989  new (N) VTSDNode(VT);
990  AllNodes.push_back(N);
991  return SDOperand(N, 0);
992}
993
994SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
995  SDNode *&N = ExternalSymbols[Sym];
996  if (N) return SDOperand(N, 0);
997  N = getAllocator().Allocate<ExternalSymbolSDNode>();
998  new (N) ExternalSymbolSDNode(false, Sym, VT);
999  AllNodes.push_back(N);
1000  return SDOperand(N, 0);
1001}
1002
1003SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1004  SDNode *&N = TargetExternalSymbols[Sym];
1005  if (N) return SDOperand(N, 0);
1006  N = getAllocator().Allocate<ExternalSymbolSDNode>();
1007  new (N) ExternalSymbolSDNode(true, Sym, VT);
1008  AllNodes.push_back(N);
1009  return SDOperand(N, 0);
1010}
1011
1012SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
1013  if ((unsigned)Cond >= CondCodeNodes.size())
1014    CondCodeNodes.resize(Cond+1);
1015
1016  if (CondCodeNodes[Cond] == 0) {
1017    CondCodeSDNode *N = getAllocator().Allocate<CondCodeSDNode>();
1018    new (N) CondCodeSDNode(Cond);
1019    CondCodeNodes[Cond] = N;
1020    AllNodes.push_back(N);
1021  }
1022  return SDOperand(CondCodeNodes[Cond], 0);
1023}
1024
1025SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1026  FoldingSetNodeID ID;
1027  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1028  ID.AddInteger(RegNo);
1029  void *IP = 0;
1030  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1031    return SDOperand(E, 0);
1032  SDNode *N = getAllocator().Allocate<RegisterSDNode>();
1033  new (N) RegisterSDNode(RegNo, VT);
1034  CSEMap.InsertNode(N, IP);
1035  AllNodes.push_back(N);
1036  return SDOperand(N, 0);
1037}
1038
1039SDOperand SelectionDAG::getDbgStopPoint(SDOperand Root,
1040                                        unsigned Line, unsigned Col,
1041                                        const CompileUnitDesc *CU) {
1042  SDNode *N = getAllocator().Allocate<DbgStopPointSDNode>();
1043  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1044  AllNodes.push_back(N);
1045  return SDOperand(N, 0);
1046}
1047
1048SDOperand SelectionDAG::getLabel(unsigned Opcode,
1049                                 SDOperand Root,
1050                                 unsigned LabelID) {
1051  FoldingSetNodeID ID;
1052  SDOperand Ops[] = { Root };
1053  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1054  ID.AddInteger(LabelID);
1055  void *IP = 0;
1056  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1057    return SDOperand(E, 0);
1058  SDNode *N = getAllocator().Allocate<LabelSDNode>();
1059  new (N) LabelSDNode(Opcode, Root, LabelID);
1060  CSEMap.InsertNode(N, IP);
1061  AllNodes.push_back(N);
1062  return SDOperand(N, 0);
1063}
1064
1065SDOperand SelectionDAG::getSrcValue(const Value *V) {
1066  assert((!V || isa<PointerType>(V->getType())) &&
1067         "SrcValue is not a pointer?");
1068
1069  FoldingSetNodeID ID;
1070  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1071  ID.AddPointer(V);
1072
1073  void *IP = 0;
1074  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1075    return SDOperand(E, 0);
1076
1077  SDNode *N = getAllocator().Allocate<SrcValueSDNode>();
1078  new (N) SrcValueSDNode(V);
1079  CSEMap.InsertNode(N, IP);
1080  AllNodes.push_back(N);
1081  return SDOperand(N, 0);
1082}
1083
1084SDOperand SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1085  const Value *v = MO.getValue();
1086  assert((!v || isa<PointerType>(v->getType())) &&
1087         "SrcValue is not a pointer?");
1088
1089  FoldingSetNodeID ID;
1090  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1091  ID.AddPointer(v);
1092  ID.AddInteger(MO.getFlags());
1093  ID.AddInteger(MO.getOffset());
1094  ID.AddInteger(MO.getSize());
1095  ID.AddInteger(MO.getAlignment());
1096
1097  void *IP = 0;
1098  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1099    return SDOperand(E, 0);
1100
1101  SDNode *N = getAllocator().Allocate<MemOperandSDNode>();
1102  new (N) MemOperandSDNode(MO);
1103  CSEMap.InsertNode(N, IP);
1104  AllNodes.push_back(N);
1105  return SDOperand(N, 0);
1106}
1107
1108/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1109/// specified value type.
1110SDOperand SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1111  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1112  unsigned ByteSize = VT.getSizeInBits()/8;
1113  const Type *Ty = VT.getTypeForMVT();
1114  unsigned StackAlign =
1115  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1116
1117  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1118  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1119}
1120
1121SDOperand SelectionDAG::FoldSetCC(MVT VT, SDOperand N1,
1122                                  SDOperand N2, ISD::CondCode Cond) {
1123  // These setcc operations always fold.
1124  switch (Cond) {
1125  default: break;
1126  case ISD::SETFALSE:
1127  case ISD::SETFALSE2: return getConstant(0, VT);
1128  case ISD::SETTRUE:
1129  case ISD::SETTRUE2:  return getConstant(1, VT);
1130
1131  case ISD::SETOEQ:
1132  case ISD::SETOGT:
1133  case ISD::SETOGE:
1134  case ISD::SETOLT:
1135  case ISD::SETOLE:
1136  case ISD::SETONE:
1137  case ISD::SETO:
1138  case ISD::SETUO:
1139  case ISD::SETUEQ:
1140  case ISD::SETUNE:
1141    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1142    break;
1143  }
1144
1145  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1146    const APInt &C2 = N2C->getAPIntValue();
1147    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1148      const APInt &C1 = N1C->getAPIntValue();
1149
1150      switch (Cond) {
1151      default: assert(0 && "Unknown integer setcc!");
1152      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1153      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1154      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1155      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1156      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1157      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1158      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1159      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1160      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1161      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1162      }
1163    }
1164  }
1165  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1166    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1167      // No compile time operations on this type yet.
1168      if (N1C->getValueType(0) == MVT::ppcf128)
1169        return SDOperand();
1170
1171      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1172      switch (Cond) {
1173      default: break;
1174      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1175                          return getNode(ISD::UNDEF, VT);
1176                        // fall through
1177      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1178      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1179                          return getNode(ISD::UNDEF, VT);
1180                        // fall through
1181      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1182                                           R==APFloat::cmpLessThan, VT);
1183      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1184                          return getNode(ISD::UNDEF, VT);
1185                        // fall through
1186      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1187      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1188                          return getNode(ISD::UNDEF, VT);
1189                        // fall through
1190      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1191      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1192                          return getNode(ISD::UNDEF, VT);
1193                        // fall through
1194      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1195                                           R==APFloat::cmpEqual, VT);
1196      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1197                          return getNode(ISD::UNDEF, VT);
1198                        // fall through
1199      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1200                                           R==APFloat::cmpEqual, VT);
1201      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1202      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1203      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1204                                           R==APFloat::cmpEqual, VT);
1205      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1206      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1207                                           R==APFloat::cmpLessThan, VT);
1208      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1209                                           R==APFloat::cmpUnordered, VT);
1210      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1211      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1212      }
1213    } else {
1214      // Ensure that the constant occurs on the RHS.
1215      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1216    }
1217  }
1218
1219  // Could not fold it.
1220  return SDOperand();
1221}
1222
1223/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1224/// use this predicate to simplify operations downstream.
1225bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1226  unsigned BitWidth = Op.getValueSizeInBits();
1227  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1228}
1229
1230/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1231/// this predicate to simplify operations downstream.  Mask is known to be zero
1232/// for bits that V cannot have.
1233bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1234                                     unsigned Depth) const {
1235  APInt KnownZero, KnownOne;
1236  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1237  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1238  return (KnownZero & Mask) == Mask;
1239}
1240
1241/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1242/// known to be either zero or one and return them in the KnownZero/KnownOne
1243/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1244/// processing.
1245void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1246                                     APInt &KnownZero, APInt &KnownOne,
1247                                     unsigned Depth) const {
1248  unsigned BitWidth = Mask.getBitWidth();
1249  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1250         "Mask size mismatches value type size!");
1251
1252  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1253  if (Depth == 6 || Mask == 0)
1254    return;  // Limit search depth.
1255
1256  APInt KnownZero2, KnownOne2;
1257
1258  switch (Op.getOpcode()) {
1259  case ISD::Constant:
1260    // We know all of the bits for a constant!
1261    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1262    KnownZero = ~KnownOne & Mask;
1263    return;
1264  case ISD::AND:
1265    // If either the LHS or the RHS are Zero, the result is zero.
1266    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1267    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1268                      KnownZero2, KnownOne2, Depth+1);
1269    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1270    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1271
1272    // Output known-1 bits are only known if set in both the LHS & RHS.
1273    KnownOne &= KnownOne2;
1274    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1275    KnownZero |= KnownZero2;
1276    return;
1277  case ISD::OR:
1278    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1279    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1280                      KnownZero2, KnownOne2, Depth+1);
1281    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1282    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1283
1284    // Output known-0 bits are only known if clear in both the LHS & RHS.
1285    KnownZero &= KnownZero2;
1286    // Output known-1 are known to be set if set in either the LHS | RHS.
1287    KnownOne |= KnownOne2;
1288    return;
1289  case ISD::XOR: {
1290    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1291    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1292    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1293    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1294
1295    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1296    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1297    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1298    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1299    KnownZero = KnownZeroOut;
1300    return;
1301  }
1302  case ISD::MUL: {
1303    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1304    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1305    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1306    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1307    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1308
1309    // If low bits are zero in either operand, output low known-0 bits.
1310    // Also compute a conserative estimate for high known-0 bits.
1311    // More trickiness is possible, but this is sufficient for the
1312    // interesting case of alignment computation.
1313    KnownOne.clear();
1314    unsigned TrailZ = KnownZero.countTrailingOnes() +
1315                      KnownZero2.countTrailingOnes();
1316    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1317                               KnownZero2.countLeadingOnes(),
1318                               BitWidth) - BitWidth;
1319
1320    TrailZ = std::min(TrailZ, BitWidth);
1321    LeadZ = std::min(LeadZ, BitWidth);
1322    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1323                APInt::getHighBitsSet(BitWidth, LeadZ);
1324    KnownZero &= Mask;
1325    return;
1326  }
1327  case ISD::UDIV: {
1328    // For the purposes of computing leading zeros we can conservatively
1329    // treat a udiv as a logical right shift by the power of 2 known to
1330    // be less than the denominator.
1331    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1332    ComputeMaskedBits(Op.getOperand(0),
1333                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1334    unsigned LeadZ = KnownZero2.countLeadingOnes();
1335
1336    KnownOne2.clear();
1337    KnownZero2.clear();
1338    ComputeMaskedBits(Op.getOperand(1),
1339                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1340    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1341    if (RHSUnknownLeadingOnes != BitWidth)
1342      LeadZ = std::min(BitWidth,
1343                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1344
1345    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1346    return;
1347  }
1348  case ISD::SELECT:
1349    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1350    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1351    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1352    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1353
1354    // Only known if known in both the LHS and RHS.
1355    KnownOne &= KnownOne2;
1356    KnownZero &= KnownZero2;
1357    return;
1358  case ISD::SELECT_CC:
1359    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1360    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1361    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1362    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1363
1364    // Only known if known in both the LHS and RHS.
1365    KnownOne &= KnownOne2;
1366    KnownZero &= KnownZero2;
1367    return;
1368  case ISD::SETCC:
1369    // If we know the result of a setcc has the top bits zero, use this info.
1370    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1371        BitWidth > 1)
1372      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1373    return;
1374  case ISD::SHL:
1375    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1376    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1377      unsigned ShAmt = SA->getValue();
1378
1379      // If the shift count is an invalid immediate, don't do anything.
1380      if (ShAmt >= BitWidth)
1381        return;
1382
1383      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1384                        KnownZero, KnownOne, Depth+1);
1385      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1386      KnownZero <<= ShAmt;
1387      KnownOne  <<= ShAmt;
1388      // low bits known zero.
1389      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1390    }
1391    return;
1392  case ISD::SRL:
1393    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1394    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1395      unsigned ShAmt = SA->getValue();
1396
1397      // If the shift count is an invalid immediate, don't do anything.
1398      if (ShAmt >= BitWidth)
1399        return;
1400
1401      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1402                        KnownZero, KnownOne, Depth+1);
1403      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1404      KnownZero = KnownZero.lshr(ShAmt);
1405      KnownOne  = KnownOne.lshr(ShAmt);
1406
1407      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1408      KnownZero |= HighBits;  // High bits known zero.
1409    }
1410    return;
1411  case ISD::SRA:
1412    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1413      unsigned ShAmt = SA->getValue();
1414
1415      // If the shift count is an invalid immediate, don't do anything.
1416      if (ShAmt >= BitWidth)
1417        return;
1418
1419      APInt InDemandedMask = (Mask << ShAmt);
1420      // If any of the demanded bits are produced by the sign extension, we also
1421      // demand the input sign bit.
1422      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1423      if (HighBits.getBoolValue())
1424        InDemandedMask |= APInt::getSignBit(BitWidth);
1425
1426      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1427                        Depth+1);
1428      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1429      KnownZero = KnownZero.lshr(ShAmt);
1430      KnownOne  = KnownOne.lshr(ShAmt);
1431
1432      // Handle the sign bits.
1433      APInt SignBit = APInt::getSignBit(BitWidth);
1434      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1435
1436      if (KnownZero.intersects(SignBit)) {
1437        KnownZero |= HighBits;  // New bits are known zero.
1438      } else if (KnownOne.intersects(SignBit)) {
1439        KnownOne  |= HighBits;  // New bits are known one.
1440      }
1441    }
1442    return;
1443  case ISD::SIGN_EXTEND_INREG: {
1444    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1445    unsigned EBits = EVT.getSizeInBits();
1446
1447    // Sign extension.  Compute the demanded bits in the result that are not
1448    // present in the input.
1449    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1450
1451    APInt InSignBit = APInt::getSignBit(EBits);
1452    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1453
1454    // If the sign extended bits are demanded, we know that the sign
1455    // bit is demanded.
1456    InSignBit.zext(BitWidth);
1457    if (NewBits.getBoolValue())
1458      InputDemandedBits |= InSignBit;
1459
1460    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1461                      KnownZero, KnownOne, Depth+1);
1462    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1463
1464    // If the sign bit of the input is known set or clear, then we know the
1465    // top bits of the result.
1466    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1467      KnownZero |= NewBits;
1468      KnownOne  &= ~NewBits;
1469    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1470      KnownOne  |= NewBits;
1471      KnownZero &= ~NewBits;
1472    } else {                              // Input sign bit unknown
1473      KnownZero &= ~NewBits;
1474      KnownOne  &= ~NewBits;
1475    }
1476    return;
1477  }
1478  case ISD::CTTZ:
1479  case ISD::CTLZ:
1480  case ISD::CTPOP: {
1481    unsigned LowBits = Log2_32(BitWidth)+1;
1482    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1483    KnownOne.clear();
1484    return;
1485  }
1486  case ISD::LOAD: {
1487    if (ISD::isZEXTLoad(Op.Val)) {
1488      LoadSDNode *LD = cast<LoadSDNode>(Op);
1489      MVT VT = LD->getMemoryVT();
1490      unsigned MemBits = VT.getSizeInBits();
1491      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1492    }
1493    return;
1494  }
1495  case ISD::ZERO_EXTEND: {
1496    MVT InVT = Op.getOperand(0).getValueType();
1497    unsigned InBits = InVT.getSizeInBits();
1498    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1499    APInt InMask    = Mask;
1500    InMask.trunc(InBits);
1501    KnownZero.trunc(InBits);
1502    KnownOne.trunc(InBits);
1503    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1504    KnownZero.zext(BitWidth);
1505    KnownOne.zext(BitWidth);
1506    KnownZero |= NewBits;
1507    return;
1508  }
1509  case ISD::SIGN_EXTEND: {
1510    MVT InVT = Op.getOperand(0).getValueType();
1511    unsigned InBits = InVT.getSizeInBits();
1512    APInt InSignBit = APInt::getSignBit(InBits);
1513    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1514    APInt InMask = Mask;
1515    InMask.trunc(InBits);
1516
1517    // If any of the sign extended bits are demanded, we know that the sign
1518    // bit is demanded. Temporarily set this bit in the mask for our callee.
1519    if (NewBits.getBoolValue())
1520      InMask |= InSignBit;
1521
1522    KnownZero.trunc(InBits);
1523    KnownOne.trunc(InBits);
1524    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1525
1526    // Note if the sign bit is known to be zero or one.
1527    bool SignBitKnownZero = KnownZero.isNegative();
1528    bool SignBitKnownOne  = KnownOne.isNegative();
1529    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1530           "Sign bit can't be known to be both zero and one!");
1531
1532    // If the sign bit wasn't actually demanded by our caller, we don't
1533    // want it set in the KnownZero and KnownOne result values. Reset the
1534    // mask and reapply it to the result values.
1535    InMask = Mask;
1536    InMask.trunc(InBits);
1537    KnownZero &= InMask;
1538    KnownOne  &= InMask;
1539
1540    KnownZero.zext(BitWidth);
1541    KnownOne.zext(BitWidth);
1542
1543    // If the sign bit is known zero or one, the top bits match.
1544    if (SignBitKnownZero)
1545      KnownZero |= NewBits;
1546    else if (SignBitKnownOne)
1547      KnownOne  |= NewBits;
1548    return;
1549  }
1550  case ISD::ANY_EXTEND: {
1551    MVT InVT = Op.getOperand(0).getValueType();
1552    unsigned InBits = InVT.getSizeInBits();
1553    APInt InMask = Mask;
1554    InMask.trunc(InBits);
1555    KnownZero.trunc(InBits);
1556    KnownOne.trunc(InBits);
1557    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1558    KnownZero.zext(BitWidth);
1559    KnownOne.zext(BitWidth);
1560    return;
1561  }
1562  case ISD::TRUNCATE: {
1563    MVT InVT = Op.getOperand(0).getValueType();
1564    unsigned InBits = InVT.getSizeInBits();
1565    APInt InMask = Mask;
1566    InMask.zext(InBits);
1567    KnownZero.zext(InBits);
1568    KnownOne.zext(InBits);
1569    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1570    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1571    KnownZero.trunc(BitWidth);
1572    KnownOne.trunc(BitWidth);
1573    break;
1574  }
1575  case ISD::AssertZext: {
1576    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1577    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1578    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1579                      KnownOne, Depth+1);
1580    KnownZero |= (~InMask) & Mask;
1581    return;
1582  }
1583  case ISD::FGETSIGN:
1584    // All bits are zero except the low bit.
1585    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1586    return;
1587
1588  case ISD::SUB: {
1589    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1590      // We know that the top bits of C-X are clear if X contains less bits
1591      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1592      // positive if we can prove that X is >= 0 and < 16.
1593      if (CLHS->getAPIntValue().isNonNegative()) {
1594        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1595        // NLZ can't be BitWidth with no sign bit
1596        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1597        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1598                          Depth+1);
1599
1600        // If all of the MaskV bits are known to be zero, then we know the
1601        // output top bits are zero, because we now know that the output is
1602        // from [0-C].
1603        if ((KnownZero2 & MaskV) == MaskV) {
1604          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1605          // Top bits known zero.
1606          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1607        }
1608      }
1609    }
1610  }
1611  // fall through
1612  case ISD::ADD: {
1613    // Output known-0 bits are known if clear or set in both the low clear bits
1614    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1615    // low 3 bits clear.
1616    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1617    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1618    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1619    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1620
1621    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1622    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1623    KnownZeroOut = std::min(KnownZeroOut,
1624                            KnownZero2.countTrailingOnes());
1625
1626    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1627    return;
1628  }
1629  case ISD::SREM:
1630    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1631      const APInt &RA = Rem->getAPIntValue();
1632      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1633        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1634        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1635        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1636
1637        // The sign of a remainder is equal to the sign of the first
1638        // operand (zero being positive).
1639        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1640          KnownZero2 |= ~LowBits;
1641        else if (KnownOne2[BitWidth-1])
1642          KnownOne2 |= ~LowBits;
1643
1644        KnownZero |= KnownZero2 & Mask;
1645        KnownOne |= KnownOne2 & Mask;
1646
1647        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1648      }
1649    }
1650    return;
1651  case ISD::UREM: {
1652    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1653      const APInt &RA = Rem->getAPIntValue();
1654      if (RA.isPowerOf2()) {
1655        APInt LowBits = (RA - 1);
1656        APInt Mask2 = LowBits & Mask;
1657        KnownZero |= ~LowBits & Mask;
1658        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1659        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1660        break;
1661      }
1662    }
1663
1664    // Since the result is less than or equal to either operand, any leading
1665    // zero bits in either operand must also exist in the result.
1666    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1667    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1668                      Depth+1);
1669    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1670                      Depth+1);
1671
1672    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1673                                KnownZero2.countLeadingOnes());
1674    KnownOne.clear();
1675    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1676    return;
1677  }
1678  default:
1679    // Allow the target to implement this method for its nodes.
1680    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1681  case ISD::INTRINSIC_WO_CHAIN:
1682  case ISD::INTRINSIC_W_CHAIN:
1683  case ISD::INTRINSIC_VOID:
1684      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1685    }
1686    return;
1687  }
1688}
1689
1690/// ComputeNumSignBits - Return the number of times the sign bit of the
1691/// register is replicated into the other bits.  We know that at least 1 bit
1692/// is always equal to the sign bit (itself), but other cases can give us
1693/// information.  For example, immediately after an "SRA X, 2", we know that
1694/// the top 3 bits are all equal to each other, so we return 3.
1695unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1696  MVT VT = Op.getValueType();
1697  assert(VT.isInteger() && "Invalid VT!");
1698  unsigned VTBits = VT.getSizeInBits();
1699  unsigned Tmp, Tmp2;
1700  unsigned FirstAnswer = 1;
1701
1702  if (Depth == 6)
1703    return 1;  // Limit search depth.
1704
1705  switch (Op.getOpcode()) {
1706  default: break;
1707  case ISD::AssertSext:
1708    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1709    return VTBits-Tmp+1;
1710  case ISD::AssertZext:
1711    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1712    return VTBits-Tmp;
1713
1714  case ISD::Constant: {
1715    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1716    // If negative, return # leading ones.
1717    if (Val.isNegative())
1718      return Val.countLeadingOnes();
1719
1720    // Return # leading zeros.
1721    return Val.countLeadingZeros();
1722  }
1723
1724  case ISD::SIGN_EXTEND:
1725    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1726    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1727
1728  case ISD::SIGN_EXTEND_INREG:
1729    // Max of the input and what this extends.
1730    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1731    Tmp = VTBits-Tmp+1;
1732
1733    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1734    return std::max(Tmp, Tmp2);
1735
1736  case ISD::SRA:
1737    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1738    // SRA X, C   -> adds C sign bits.
1739    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1740      Tmp += C->getValue();
1741      if (Tmp > VTBits) Tmp = VTBits;
1742    }
1743    return Tmp;
1744  case ISD::SHL:
1745    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1746      // shl destroys sign bits.
1747      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1748      if (C->getValue() >= VTBits ||      // Bad shift.
1749          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1750      return Tmp - C->getValue();
1751    }
1752    break;
1753  case ISD::AND:
1754  case ISD::OR:
1755  case ISD::XOR:    // NOT is handled here.
1756    // Logical binary ops preserve the number of sign bits at the worst.
1757    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1758    if (Tmp != 1) {
1759      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1760      FirstAnswer = std::min(Tmp, Tmp2);
1761      // We computed what we know about the sign bits as our first
1762      // answer. Now proceed to the generic code that uses
1763      // ComputeMaskedBits, and pick whichever answer is better.
1764    }
1765    break;
1766
1767  case ISD::SELECT:
1768    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1769    if (Tmp == 1) return 1;  // Early out.
1770    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1771    return std::min(Tmp, Tmp2);
1772
1773  case ISD::SETCC:
1774    // If setcc returns 0/-1, all bits are sign bits.
1775    if (TLI.getSetCCResultContents() ==
1776        TargetLowering::ZeroOrNegativeOneSetCCResult)
1777      return VTBits;
1778    break;
1779  case ISD::ROTL:
1780  case ISD::ROTR:
1781    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1782      unsigned RotAmt = C->getValue() & (VTBits-1);
1783
1784      // Handle rotate right by N like a rotate left by 32-N.
1785      if (Op.getOpcode() == ISD::ROTR)
1786        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1787
1788      // If we aren't rotating out all of the known-in sign bits, return the
1789      // number that are left.  This handles rotl(sext(x), 1) for example.
1790      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1791      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1792    }
1793    break;
1794  case ISD::ADD:
1795    // Add can have at most one carry bit.  Thus we know that the output
1796    // is, at worst, one more bit than the inputs.
1797    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1798    if (Tmp == 1) return 1;  // Early out.
1799
1800    // Special case decrementing a value (ADD X, -1):
1801    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1802      if (CRHS->isAllOnesValue()) {
1803        APInt KnownZero, KnownOne;
1804        APInt Mask = APInt::getAllOnesValue(VTBits);
1805        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1806
1807        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1808        // sign bits set.
1809        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1810          return VTBits;
1811
1812        // If we are subtracting one from a positive number, there is no carry
1813        // out of the result.
1814        if (KnownZero.isNegative())
1815          return Tmp;
1816      }
1817
1818    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1819    if (Tmp2 == 1) return 1;
1820      return std::min(Tmp, Tmp2)-1;
1821    break;
1822
1823  case ISD::SUB:
1824    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1825    if (Tmp2 == 1) return 1;
1826
1827    // Handle NEG.
1828    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1829      if (CLHS->isNullValue()) {
1830        APInt KnownZero, KnownOne;
1831        APInt Mask = APInt::getAllOnesValue(VTBits);
1832        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1833        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1834        // sign bits set.
1835        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1836          return VTBits;
1837
1838        // If the input is known to be positive (the sign bit is known clear),
1839        // the output of the NEG has the same number of sign bits as the input.
1840        if (KnownZero.isNegative())
1841          return Tmp2;
1842
1843        // Otherwise, we treat this like a SUB.
1844      }
1845
1846    // Sub can have at most one carry bit.  Thus we know that the output
1847    // is, at worst, one more bit than the inputs.
1848    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1849    if (Tmp == 1) return 1;  // Early out.
1850      return std::min(Tmp, Tmp2)-1;
1851    break;
1852  case ISD::TRUNCATE:
1853    // FIXME: it's tricky to do anything useful for this, but it is an important
1854    // case for targets like X86.
1855    break;
1856  }
1857
1858  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1859  if (Op.getOpcode() == ISD::LOAD) {
1860    LoadSDNode *LD = cast<LoadSDNode>(Op);
1861    unsigned ExtType = LD->getExtensionType();
1862    switch (ExtType) {
1863    default: break;
1864    case ISD::SEXTLOAD:    // '17' bits known
1865      Tmp = LD->getMemoryVT().getSizeInBits();
1866      return VTBits-Tmp+1;
1867    case ISD::ZEXTLOAD:    // '16' bits known
1868      Tmp = LD->getMemoryVT().getSizeInBits();
1869      return VTBits-Tmp;
1870    }
1871  }
1872
1873  // Allow the target to implement this method for its nodes.
1874  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1875      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1876      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1877      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1878    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1879    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1880  }
1881
1882  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1883  // use this information.
1884  APInt KnownZero, KnownOne;
1885  APInt Mask = APInt::getAllOnesValue(VTBits);
1886  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1887
1888  if (KnownZero.isNegative()) {        // sign bit is 0
1889    Mask = KnownZero;
1890  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1891    Mask = KnownOne;
1892  } else {
1893    // Nothing known.
1894    return FirstAnswer;
1895  }
1896
1897  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1898  // the number of identical bits in the top of the input value.
1899  Mask = ~Mask;
1900  Mask <<= Mask.getBitWidth()-VTBits;
1901  // Return # leading zeros.  We use 'min' here in case Val was zero before
1902  // shifting.  We don't want to return '64' as for an i32 "0".
1903  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
1904}
1905
1906
1907bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1908  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1909  if (!GA) return false;
1910  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1911  if (!GV) return false;
1912  MachineModuleInfo *MMI = getMachineModuleInfo();
1913  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1914}
1915
1916
1917/// getShuffleScalarElt - Returns the scalar element that will make up the ith
1918/// element of the result of the vector shuffle.
1919SDOperand SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
1920  MVT VT = N->getValueType(0);
1921  SDOperand PermMask = N->getOperand(2);
1922  SDOperand Idx = PermMask.getOperand(i);
1923  if (Idx.getOpcode() == ISD::UNDEF)
1924    return getNode(ISD::UNDEF, VT.getVectorElementType());
1925  unsigned Index = cast<ConstantSDNode>(Idx)->getValue();
1926  unsigned NumElems = PermMask.getNumOperands();
1927  SDOperand V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
1928  Index %= NumElems;
1929
1930  if (V.getOpcode() == ISD::BIT_CONVERT) {
1931    V = V.getOperand(0);
1932    if (V.getValueType().getVectorNumElements() != NumElems)
1933      return SDOperand();
1934  }
1935  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
1936    return (Index == 0) ? V.getOperand(0)
1937                      : getNode(ISD::UNDEF, VT.getVectorElementType());
1938  if (V.getOpcode() == ISD::BUILD_VECTOR)
1939    return V.getOperand(Index);
1940  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
1941    return getShuffleScalarElt(V.Val, Index);
1942  return SDOperand();
1943}
1944
1945
1946/// getNode - Gets or creates the specified node.
1947///
1948SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT) {
1949  FoldingSetNodeID ID;
1950  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1951  void *IP = 0;
1952  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1953    return SDOperand(E, 0);
1954  SDNode *N = getAllocator().Allocate<SDNode>();
1955  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
1956  CSEMap.InsertNode(N, IP);
1957
1958  AllNodes.push_back(N);
1959  return SDOperand(N, 0);
1960}
1961
1962SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT, SDOperand Operand) {
1963  // Constant fold unary operations with an integer constant operand.
1964  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1965    const APInt &Val = C->getAPIntValue();
1966    unsigned BitWidth = VT.getSizeInBits();
1967    switch (Opcode) {
1968    default: break;
1969    case ISD::SIGN_EXTEND:
1970      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1971    case ISD::ANY_EXTEND:
1972    case ISD::ZERO_EXTEND:
1973    case ISD::TRUNCATE:
1974      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1975    case ISD::UINT_TO_FP:
1976    case ISD::SINT_TO_FP: {
1977      const uint64_t zero[] = {0, 0};
1978      // No compile time operations on this type.
1979      if (VT==MVT::ppcf128)
1980        break;
1981      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1982      (void)apf.convertFromAPInt(Val,
1983                                 Opcode==ISD::SINT_TO_FP,
1984                                 APFloat::rmNearestTiesToEven);
1985      return getConstantFP(apf, VT);
1986    }
1987    case ISD::BIT_CONVERT:
1988      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1989        return getConstantFP(Val.bitsToFloat(), VT);
1990      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1991        return getConstantFP(Val.bitsToDouble(), VT);
1992      break;
1993    case ISD::BSWAP:
1994      return getConstant(Val.byteSwap(), VT);
1995    case ISD::CTPOP:
1996      return getConstant(Val.countPopulation(), VT);
1997    case ISD::CTLZ:
1998      return getConstant(Val.countLeadingZeros(), VT);
1999    case ISD::CTTZ:
2000      return getConstant(Val.countTrailingZeros(), VT);
2001    }
2002  }
2003
2004  // Constant fold unary operations with a floating point constant operand.
2005  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
2006    APFloat V = C->getValueAPF();    // make copy
2007    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2008      switch (Opcode) {
2009      case ISD::FNEG:
2010        V.changeSign();
2011        return getConstantFP(V, VT);
2012      case ISD::FABS:
2013        V.clearSign();
2014        return getConstantFP(V, VT);
2015      case ISD::FP_ROUND:
2016      case ISD::FP_EXTEND:
2017        // This can return overflow, underflow, or inexact; we don't care.
2018        // FIXME need to be more flexible about rounding mode.
2019        (void)V.convert(*MVTToAPFloatSemantics(VT),
2020                        APFloat::rmNearestTiesToEven);
2021        return getConstantFP(V, VT);
2022      case ISD::FP_TO_SINT:
2023      case ISD::FP_TO_UINT: {
2024        integerPart x;
2025        assert(integerPartWidth >= 64);
2026        // FIXME need to be more flexible about rounding mode.
2027        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2028                              Opcode==ISD::FP_TO_SINT,
2029                              APFloat::rmTowardZero);
2030        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2031          break;
2032        return getConstant(x, VT);
2033      }
2034      case ISD::BIT_CONVERT:
2035        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2036          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
2037        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2038          return getConstant(V.convertToAPInt().getZExtValue(), VT);
2039        break;
2040      }
2041    }
2042  }
2043
2044  unsigned OpOpcode = Operand.Val->getOpcode();
2045  switch (Opcode) {
2046  case ISD::TokenFactor:
2047    return Operand;         // Factor of one node?  No need.
2048  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2049  case ISD::FP_EXTEND:
2050    assert(VT.isFloatingPoint() &&
2051           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2052    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2053    if (Operand.getOpcode() == ISD::UNDEF)
2054      return getNode(ISD::UNDEF, VT);
2055    break;
2056  case ISD::SIGN_EXTEND:
2057    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2058           "Invalid SIGN_EXTEND!");
2059    if (Operand.getValueType() == VT) return Operand;   // noop extension
2060    assert(Operand.getValueType().bitsLT(VT)
2061           && "Invalid sext node, dst < src!");
2062    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2063      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2064    break;
2065  case ISD::ZERO_EXTEND:
2066    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2067           "Invalid ZERO_EXTEND!");
2068    if (Operand.getValueType() == VT) return Operand;   // noop extension
2069    assert(Operand.getValueType().bitsLT(VT)
2070           && "Invalid zext node, dst < src!");
2071    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2072      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
2073    break;
2074  case ISD::ANY_EXTEND:
2075    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2076           "Invalid ANY_EXTEND!");
2077    if (Operand.getValueType() == VT) return Operand;   // noop extension
2078    assert(Operand.getValueType().bitsLT(VT)
2079           && "Invalid anyext node, dst < src!");
2080    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2081      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2082      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2083    break;
2084  case ISD::TRUNCATE:
2085    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2086           "Invalid TRUNCATE!");
2087    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2088    assert(Operand.getValueType().bitsGT(VT)
2089           && "Invalid truncate node, src < dst!");
2090    if (OpOpcode == ISD::TRUNCATE)
2091      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2092    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2093             OpOpcode == ISD::ANY_EXTEND) {
2094      // If the source is smaller than the dest, we still need an extend.
2095      if (Operand.Val->getOperand(0).getValueType().bitsLT(VT))
2096        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2097      else if (Operand.Val->getOperand(0).getValueType().bitsGT(VT))
2098        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2099      else
2100        return Operand.Val->getOperand(0);
2101    }
2102    break;
2103  case ISD::BIT_CONVERT:
2104    // Basic sanity checking.
2105    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2106           && "Cannot BIT_CONVERT between types of different sizes!");
2107    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2108    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2109      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2110    if (OpOpcode == ISD::UNDEF)
2111      return getNode(ISD::UNDEF, VT);
2112    break;
2113  case ISD::SCALAR_TO_VECTOR:
2114    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2115           VT.getVectorElementType() == Operand.getValueType() &&
2116           "Illegal SCALAR_TO_VECTOR node!");
2117    if (OpOpcode == ISD::UNDEF)
2118      return getNode(ISD::UNDEF, VT);
2119    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2120    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2121        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2122        Operand.getConstantOperandVal(1) == 0 &&
2123        Operand.getOperand(0).getValueType() == VT)
2124      return Operand.getOperand(0);
2125    break;
2126  case ISD::FNEG:
2127    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2128      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
2129                     Operand.Val->getOperand(0));
2130    if (OpOpcode == ISD::FNEG)  // --X -> X
2131      return Operand.Val->getOperand(0);
2132    break;
2133  case ISD::FABS:
2134    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2135      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
2136    break;
2137  }
2138
2139  SDNode *N;
2140  SDVTList VTs = getVTList(VT);
2141  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2142    FoldingSetNodeID ID;
2143    SDOperand Ops[1] = { Operand };
2144    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2145    void *IP = 0;
2146    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2147      return SDOperand(E, 0);
2148    N = getAllocator().Allocate<UnarySDNode>();
2149    new (N) UnarySDNode(Opcode, VTs, Operand);
2150    CSEMap.InsertNode(N, IP);
2151  } else {
2152    N = getAllocator().Allocate<UnarySDNode>();
2153    new (N) UnarySDNode(Opcode, VTs, Operand);
2154  }
2155  AllNodes.push_back(N);
2156  return SDOperand(N, 0);
2157}
2158
2159
2160
2161SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2162                                SDOperand N1, SDOperand N2) {
2163  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2164  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2165  switch (Opcode) {
2166  default: break;
2167  case ISD::TokenFactor:
2168    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2169           N2.getValueType() == MVT::Other && "Invalid token factor!");
2170    // Fold trivial token factors.
2171    if (N1.getOpcode() == ISD::EntryToken) return N2;
2172    if (N2.getOpcode() == ISD::EntryToken) return N1;
2173    break;
2174  case ISD::AND:
2175    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2176           N1.getValueType() == VT && "Binary operator types must match!");
2177    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2178    // worth handling here.
2179    if (N2C && N2C->isNullValue())
2180      return N2;
2181    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2182      return N1;
2183    break;
2184  case ISD::OR:
2185  case ISD::XOR:
2186  case ISD::ADD:
2187  case ISD::SUB:
2188    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2189           N1.getValueType() == VT && "Binary operator types must match!");
2190    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2191    // it's worth handling here.
2192    if (N2C && N2C->isNullValue())
2193      return N1;
2194    break;
2195  case ISD::UDIV:
2196  case ISD::UREM:
2197  case ISD::MULHU:
2198  case ISD::MULHS:
2199    assert(VT.isInteger() && "This operator does not apply to FP types!");
2200    // fall through
2201  case ISD::MUL:
2202  case ISD::SDIV:
2203  case ISD::SREM:
2204  case ISD::FADD:
2205  case ISD::FSUB:
2206  case ISD::FMUL:
2207  case ISD::FDIV:
2208  case ISD::FREM:
2209    assert(N1.getValueType() == N2.getValueType() &&
2210           N1.getValueType() == VT && "Binary operator types must match!");
2211    break;
2212  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2213    assert(N1.getValueType() == VT &&
2214           N1.getValueType().isFloatingPoint() &&
2215           N2.getValueType().isFloatingPoint() &&
2216           "Invalid FCOPYSIGN!");
2217    break;
2218  case ISD::SHL:
2219  case ISD::SRA:
2220  case ISD::SRL:
2221  case ISD::ROTL:
2222  case ISD::ROTR:
2223    assert(VT == N1.getValueType() &&
2224           "Shift operators return type must be the same as their first arg");
2225    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2226           "Shifts only work on integers");
2227
2228    // Always fold shifts of i1 values so the code generator doesn't need to
2229    // handle them.  Since we know the size of the shift has to be less than the
2230    // size of the value, the shift/rotate count is guaranteed to be zero.
2231    if (VT == MVT::i1)
2232      return N1;
2233    break;
2234  case ISD::FP_ROUND_INREG: {
2235    MVT EVT = cast<VTSDNode>(N2)->getVT();
2236    assert(VT == N1.getValueType() && "Not an inreg round!");
2237    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2238           "Cannot FP_ROUND_INREG integer types");
2239    assert(EVT.bitsLE(VT) && "Not rounding down!");
2240    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2241    break;
2242  }
2243  case ISD::FP_ROUND:
2244    assert(VT.isFloatingPoint() &&
2245           N1.getValueType().isFloatingPoint() &&
2246           VT.bitsLE(N1.getValueType()) &&
2247           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2248    if (N1.getValueType() == VT) return N1;  // noop conversion.
2249    break;
2250  case ISD::AssertSext:
2251  case ISD::AssertZext: {
2252    MVT EVT = cast<VTSDNode>(N2)->getVT();
2253    assert(VT == N1.getValueType() && "Not an inreg extend!");
2254    assert(VT.isInteger() && EVT.isInteger() &&
2255           "Cannot *_EXTEND_INREG FP types");
2256    assert(EVT.bitsLE(VT) && "Not extending!");
2257    if (VT == EVT) return N1; // noop assertion.
2258    break;
2259  }
2260  case ISD::SIGN_EXTEND_INREG: {
2261    MVT EVT = cast<VTSDNode>(N2)->getVT();
2262    assert(VT == N1.getValueType() && "Not an inreg extend!");
2263    assert(VT.isInteger() && EVT.isInteger() &&
2264           "Cannot *_EXTEND_INREG FP types");
2265    assert(EVT.bitsLE(VT) && "Not extending!");
2266    if (EVT == VT) return N1;  // Not actually extending
2267
2268    if (N1C) {
2269      APInt Val = N1C->getAPIntValue();
2270      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2271      Val <<= Val.getBitWidth()-FromBits;
2272      Val = Val.ashr(Val.getBitWidth()-FromBits);
2273      return getConstant(Val, VT);
2274    }
2275    break;
2276  }
2277  case ISD::EXTRACT_VECTOR_ELT:
2278    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2279
2280    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2281    if (N1.getOpcode() == ISD::UNDEF)
2282      return getNode(ISD::UNDEF, VT);
2283
2284    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2285    // expanding copies of large vectors from registers.
2286    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2287        N1.getNumOperands() > 0) {
2288      unsigned Factor =
2289        N1.getOperand(0).getValueType().getVectorNumElements();
2290      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2291                     N1.getOperand(N2C->getValue() / Factor),
2292                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2293    }
2294
2295    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2296    // expanding large vector constants.
2297    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2298      return N1.getOperand(N2C->getValue());
2299
2300    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2301    // operations are lowered to scalars.
2302    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2303      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2304        if (IEC == N2C)
2305          return N1.getOperand(1);
2306        else
2307          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2308      }
2309    break;
2310  case ISD::EXTRACT_ELEMENT:
2311    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2312    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2313           (N1.getValueType().isInteger() == VT.isInteger()) &&
2314           "Wrong types for EXTRACT_ELEMENT!");
2315
2316    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2317    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2318    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2319    if (N1.getOpcode() == ISD::BUILD_PAIR)
2320      return N1.getOperand(N2C->getValue());
2321
2322    // EXTRACT_ELEMENT of a constant int is also very common.
2323    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2324      unsigned ElementSize = VT.getSizeInBits();
2325      unsigned Shift = ElementSize * N2C->getValue();
2326      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2327      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2328    }
2329    break;
2330  case ISD::EXTRACT_SUBVECTOR:
2331    if (N1.getValueType() == VT) // Trivial extraction.
2332      return N1;
2333    break;
2334  }
2335
2336  if (N1C) {
2337    if (N2C) {
2338      const APInt &C1 = N1C->getAPIntValue(), &C2 = N2C->getAPIntValue();
2339      switch (Opcode) {
2340      case ISD::ADD: return getConstant(C1 + C2, VT);
2341      case ISD::SUB: return getConstant(C1 - C2, VT);
2342      case ISD::MUL: return getConstant(C1 * C2, VT);
2343      case ISD::UDIV:
2344        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2345        break;
2346      case ISD::UREM :
2347        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2348        break;
2349      case ISD::SDIV :
2350        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2351        break;
2352      case ISD::SREM :
2353        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2354        break;
2355      case ISD::AND  : return getConstant(C1 & C2, VT);
2356      case ISD::OR   : return getConstant(C1 | C2, VT);
2357      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2358      case ISD::SHL  : return getConstant(C1 << C2, VT);
2359      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2360      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2361      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2362      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2363      default: break;
2364      }
2365    } else {      // Cannonicalize constant to RHS if commutative
2366      if (isCommutativeBinOp(Opcode)) {
2367        std::swap(N1C, N2C);
2368        std::swap(N1, N2);
2369      }
2370    }
2371  }
2372
2373  // Constant fold FP operations.
2374  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2375  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2376  if (N1CFP) {
2377    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2378      // Cannonicalize constant to RHS if commutative
2379      std::swap(N1CFP, N2CFP);
2380      std::swap(N1, N2);
2381    } else if (N2CFP && VT != MVT::ppcf128) {
2382      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2383      APFloat::opStatus s;
2384      switch (Opcode) {
2385      case ISD::FADD:
2386        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2387        if (s != APFloat::opInvalidOp)
2388          return getConstantFP(V1, VT);
2389        break;
2390      case ISD::FSUB:
2391        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2392        if (s!=APFloat::opInvalidOp)
2393          return getConstantFP(V1, VT);
2394        break;
2395      case ISD::FMUL:
2396        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2397        if (s!=APFloat::opInvalidOp)
2398          return getConstantFP(V1, VT);
2399        break;
2400      case ISD::FDIV:
2401        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2402        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2403          return getConstantFP(V1, VT);
2404        break;
2405      case ISD::FREM :
2406        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2407        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2408          return getConstantFP(V1, VT);
2409        break;
2410      case ISD::FCOPYSIGN:
2411        V1.copySign(V2);
2412        return getConstantFP(V1, VT);
2413      default: break;
2414      }
2415    }
2416  }
2417
2418  // Canonicalize an UNDEF to the RHS, even over a constant.
2419  if (N1.getOpcode() == ISD::UNDEF) {
2420    if (isCommutativeBinOp(Opcode)) {
2421      std::swap(N1, N2);
2422    } else {
2423      switch (Opcode) {
2424      case ISD::FP_ROUND_INREG:
2425      case ISD::SIGN_EXTEND_INREG:
2426      case ISD::SUB:
2427      case ISD::FSUB:
2428      case ISD::FDIV:
2429      case ISD::FREM:
2430      case ISD::SRA:
2431        return N1;     // fold op(undef, arg2) -> undef
2432      case ISD::UDIV:
2433      case ISD::SDIV:
2434      case ISD::UREM:
2435      case ISD::SREM:
2436      case ISD::SRL:
2437      case ISD::SHL:
2438        if (!VT.isVector())
2439          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2440        // For vectors, we can't easily build an all zero vector, just return
2441        // the LHS.
2442        return N2;
2443      }
2444    }
2445  }
2446
2447  // Fold a bunch of operators when the RHS is undef.
2448  if (N2.getOpcode() == ISD::UNDEF) {
2449    switch (Opcode) {
2450    case ISD::XOR:
2451      if (N1.getOpcode() == ISD::UNDEF)
2452        // Handle undef ^ undef -> 0 special case. This is a common
2453        // idiom (misuse).
2454        return getConstant(0, VT);
2455      // fallthrough
2456    case ISD::ADD:
2457    case ISD::ADDC:
2458    case ISD::ADDE:
2459    case ISD::SUB:
2460    case ISD::FADD:
2461    case ISD::FSUB:
2462    case ISD::FMUL:
2463    case ISD::FDIV:
2464    case ISD::FREM:
2465    case ISD::UDIV:
2466    case ISD::SDIV:
2467    case ISD::UREM:
2468    case ISD::SREM:
2469      return N2;       // fold op(arg1, undef) -> undef
2470    case ISD::MUL:
2471    case ISD::AND:
2472    case ISD::SRL:
2473    case ISD::SHL:
2474      if (!VT.isVector())
2475        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2476      // For vectors, we can't easily build an all zero vector, just return
2477      // the LHS.
2478      return N1;
2479    case ISD::OR:
2480      if (!VT.isVector())
2481        return getConstant(VT.getIntegerVTBitMask(), VT);
2482      // For vectors, we can't easily build an all one vector, just return
2483      // the LHS.
2484      return N1;
2485    case ISD::SRA:
2486      return N1;
2487    }
2488  }
2489
2490  // Memoize this node if possible.
2491  SDNode *N;
2492  SDVTList VTs = getVTList(VT);
2493  if (VT != MVT::Flag) {
2494    SDOperand Ops[] = { N1, N2 };
2495    FoldingSetNodeID ID;
2496    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2497    void *IP = 0;
2498    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2499      return SDOperand(E, 0);
2500    N = getAllocator().Allocate<BinarySDNode>();
2501    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2502    CSEMap.InsertNode(N, IP);
2503  } else {
2504    N = getAllocator().Allocate<BinarySDNode>();
2505    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2506  }
2507
2508  AllNodes.push_back(N);
2509  return SDOperand(N, 0);
2510}
2511
2512SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2513                                SDOperand N1, SDOperand N2, SDOperand N3) {
2514  // Perform various simplifications.
2515  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2516  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2517  switch (Opcode) {
2518  case ISD::SETCC: {
2519    // Use FoldSetCC to simplify SETCC's.
2520    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2521    if (Simp.Val) return Simp;
2522    break;
2523  }
2524  case ISD::SELECT:
2525    if (N1C) {
2526     if (N1C->getValue())
2527        return N2;             // select true, X, Y -> X
2528      else
2529        return N3;             // select false, X, Y -> Y
2530    }
2531
2532    if (N2 == N3) return N2;   // select C, X, X -> X
2533    break;
2534  case ISD::BRCOND:
2535    if (N2C) {
2536      if (N2C->getValue()) // Unconditional branch
2537        return getNode(ISD::BR, MVT::Other, N1, N3);
2538      else
2539        return N1;         // Never-taken branch
2540    }
2541    break;
2542  case ISD::VECTOR_SHUFFLE:
2543    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2544           VT.isVector() && N3.getValueType().isVector() &&
2545           N3.getOpcode() == ISD::BUILD_VECTOR &&
2546           VT.getVectorNumElements() == N3.getNumOperands() &&
2547           "Illegal VECTOR_SHUFFLE node!");
2548    break;
2549  case ISD::BIT_CONVERT:
2550    // Fold bit_convert nodes from a type to themselves.
2551    if (N1.getValueType() == VT)
2552      return N1;
2553    break;
2554  }
2555
2556  // Memoize node if it doesn't produce a flag.
2557  SDNode *N;
2558  SDVTList VTs = getVTList(VT);
2559  if (VT != MVT::Flag) {
2560    SDOperand Ops[] = { N1, N2, N3 };
2561    FoldingSetNodeID ID;
2562    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2563    void *IP = 0;
2564    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2565      return SDOperand(E, 0);
2566    N = getAllocator().Allocate<TernarySDNode>();
2567    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2568    CSEMap.InsertNode(N, IP);
2569  } else {
2570    N = getAllocator().Allocate<TernarySDNode>();
2571    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2572  }
2573  AllNodes.push_back(N);
2574  return SDOperand(N, 0);
2575}
2576
2577SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2578                                SDOperand N1, SDOperand N2, SDOperand N3,
2579                                SDOperand N4) {
2580  SDOperand Ops[] = { N1, N2, N3, N4 };
2581  return getNode(Opcode, VT, Ops, 4);
2582}
2583
2584SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2585                                SDOperand N1, SDOperand N2, SDOperand N3,
2586                                SDOperand N4, SDOperand N5) {
2587  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2588  return getNode(Opcode, VT, Ops, 5);
2589}
2590
2591/// getMemsetValue - Vectorized representation of the memset value
2592/// operand.
2593static SDOperand getMemsetValue(SDOperand Value, MVT VT, SelectionDAG &DAG) {
2594  unsigned NumBits = VT.isVector() ?
2595    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2596  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2597    APInt Val = APInt(NumBits, C->getValue() & 255);
2598    unsigned Shift = 8;
2599    for (unsigned i = NumBits; i > 8; i >>= 1) {
2600      Val = (Val << Shift) | Val;
2601      Shift <<= 1;
2602    }
2603    if (VT.isInteger())
2604      return DAG.getConstant(Val, VT);
2605    return DAG.getConstantFP(APFloat(Val), VT);
2606  }
2607
2608  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2609  unsigned Shift = 8;
2610  for (unsigned i = NumBits; i > 8; i >>= 1) {
2611    Value = DAG.getNode(ISD::OR, VT,
2612                        DAG.getNode(ISD::SHL, VT, Value,
2613                                    DAG.getConstant(Shift, MVT::i8)), Value);
2614    Shift <<= 1;
2615  }
2616
2617  return Value;
2618}
2619
2620/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2621/// used when a memcpy is turned into a memset when the source is a constant
2622/// string ptr.
2623static SDOperand getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2624                                    const TargetLowering &TLI,
2625                                    std::string &Str, unsigned Offset) {
2626  // Handle vector with all elements zero.
2627  if (Str.empty()) {
2628    if (VT.isInteger())
2629      return DAG.getConstant(0, VT);
2630    unsigned NumElts = VT.getVectorNumElements();
2631    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2632    return DAG.getNode(ISD::BIT_CONVERT, VT,
2633                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2634  }
2635
2636  assert(!VT.isVector() && "Can't handle vector type here!");
2637  unsigned NumBits = VT.getSizeInBits();
2638  unsigned MSB = NumBits / 8;
2639  uint64_t Val = 0;
2640  if (TLI.isLittleEndian())
2641    Offset = Offset + MSB - 1;
2642  for (unsigned i = 0; i != MSB; ++i) {
2643    Val = (Val << 8) | (unsigned char)Str[Offset];
2644    Offset += TLI.isLittleEndian() ? -1 : 1;
2645  }
2646  return DAG.getConstant(Val, VT);
2647}
2648
2649/// getMemBasePlusOffset - Returns base and offset node for the
2650///
2651static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2652                                      SelectionDAG &DAG) {
2653  MVT VT = Base.getValueType();
2654  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2655}
2656
2657/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2658///
2659static bool isMemSrcFromString(SDOperand Src, std::string &Str) {
2660  unsigned SrcDelta = 0;
2661  GlobalAddressSDNode *G = NULL;
2662  if (Src.getOpcode() == ISD::GlobalAddress)
2663    G = cast<GlobalAddressSDNode>(Src);
2664  else if (Src.getOpcode() == ISD::ADD &&
2665           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2666           Src.getOperand(1).getOpcode() == ISD::Constant) {
2667    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2668    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
2669  }
2670  if (!G)
2671    return false;
2672
2673  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2674  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2675    return true;
2676
2677  return false;
2678}
2679
2680/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2681/// to replace the memset / memcpy is below the threshold. It also returns the
2682/// types of the sequence of memory ops to perform memset / memcpy.
2683static
2684bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2685                              SDOperand Dst, SDOperand Src,
2686                              unsigned Limit, uint64_t Size, unsigned &Align,
2687                              std::string &Str, bool &isSrcStr,
2688                              SelectionDAG &DAG,
2689                              const TargetLowering &TLI) {
2690  isSrcStr = isMemSrcFromString(Src, Str);
2691  bool isSrcConst = isa<ConstantSDNode>(Src);
2692  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2693  MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2694  if (VT != MVT::iAny) {
2695    unsigned NewAlign = (unsigned)
2696      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2697    // If source is a string constant, this will require an unaligned load.
2698    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2699      if (Dst.getOpcode() != ISD::FrameIndex) {
2700        // Can't change destination alignment. It requires a unaligned store.
2701        if (AllowUnalign)
2702          VT = MVT::iAny;
2703      } else {
2704        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2705        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2706        if (MFI->isFixedObjectIndex(FI)) {
2707          // Can't change destination alignment. It requires a unaligned store.
2708          if (AllowUnalign)
2709            VT = MVT::iAny;
2710        } else {
2711          // Give the stack frame object a larger alignment if needed.
2712          if (MFI->getObjectAlignment(FI) < NewAlign)
2713            MFI->setObjectAlignment(FI, NewAlign);
2714          Align = NewAlign;
2715        }
2716      }
2717    }
2718  }
2719
2720  if (VT == MVT::iAny) {
2721    if (AllowUnalign) {
2722      VT = MVT::i64;
2723    } else {
2724      switch (Align & 7) {
2725      case 0:  VT = MVT::i64; break;
2726      case 4:  VT = MVT::i32; break;
2727      case 2:  VT = MVT::i16; break;
2728      default: VT = MVT::i8;  break;
2729      }
2730    }
2731
2732    MVT LVT = MVT::i64;
2733    while (!TLI.isTypeLegal(LVT))
2734      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2735    assert(LVT.isInteger());
2736
2737    if (VT.bitsGT(LVT))
2738      VT = LVT;
2739  }
2740
2741  unsigned NumMemOps = 0;
2742  while (Size != 0) {
2743    unsigned VTSize = VT.getSizeInBits() / 8;
2744    while (VTSize > Size) {
2745      // For now, only use non-vector load / store's for the left-over pieces.
2746      if (VT.isVector()) {
2747        VT = MVT::i64;
2748        while (!TLI.isTypeLegal(VT))
2749          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2750        VTSize = VT.getSizeInBits() / 8;
2751      } else {
2752        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2753        VTSize >>= 1;
2754      }
2755    }
2756
2757    if (++NumMemOps > Limit)
2758      return false;
2759    MemOps.push_back(VT);
2760    Size -= VTSize;
2761  }
2762
2763  return true;
2764}
2765
2766static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
2767                                         SDOperand Chain, SDOperand Dst,
2768                                         SDOperand Src, uint64_t Size,
2769                                         unsigned Align, bool AlwaysInline,
2770                                         const Value *DstSV, uint64_t DstSVOff,
2771                                         const Value *SrcSV, uint64_t SrcSVOff){
2772  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2773
2774  // Expand memcpy to a series of load and store ops if the size operand falls
2775  // below a certain threshold.
2776  std::vector<MVT> MemOps;
2777  uint64_t Limit = -1;
2778  if (!AlwaysInline)
2779    Limit = TLI.getMaxStoresPerMemcpy();
2780  unsigned DstAlign = Align;  // Destination alignment can change.
2781  std::string Str;
2782  bool CopyFromStr;
2783  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2784                                Str, CopyFromStr, DAG, TLI))
2785    return SDOperand();
2786
2787
2788  bool isZeroStr = CopyFromStr && Str.empty();
2789  SmallVector<SDOperand, 8> OutChains;
2790  unsigned NumMemOps = MemOps.size();
2791  uint64_t SrcOff = 0, DstOff = 0;
2792  for (unsigned i = 0; i < NumMemOps; i++) {
2793    MVT VT = MemOps[i];
2794    unsigned VTSize = VT.getSizeInBits() / 8;
2795    SDOperand Value, Store;
2796
2797    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2798      // It's unlikely a store of a vector immediate can be done in a single
2799      // instruction. It would require a load from a constantpool first.
2800      // We also handle store a vector with all zero's.
2801      // FIXME: Handle other cases where store of vector immediate is done in
2802      // a single instruction.
2803      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2804      Store = DAG.getStore(Chain, Value,
2805                           getMemBasePlusOffset(Dst, DstOff, DAG),
2806                           DstSV, DstSVOff + DstOff);
2807    } else {
2808      Value = DAG.getLoad(VT, Chain,
2809                          getMemBasePlusOffset(Src, SrcOff, DAG),
2810                          SrcSV, SrcSVOff + SrcOff, false, Align);
2811      Store = DAG.getStore(Chain, Value,
2812                           getMemBasePlusOffset(Dst, DstOff, DAG),
2813                           DstSV, DstSVOff + DstOff, false, DstAlign);
2814    }
2815    OutChains.push_back(Store);
2816    SrcOff += VTSize;
2817    DstOff += VTSize;
2818  }
2819
2820  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2821                     &OutChains[0], OutChains.size());
2822}
2823
2824static SDOperand getMemmoveLoadsAndStores(SelectionDAG &DAG,
2825                                          SDOperand Chain, SDOperand Dst,
2826                                          SDOperand Src, uint64_t Size,
2827                                          unsigned Align, bool AlwaysInline,
2828                                          const Value *DstSV, uint64_t DstSVOff,
2829                                          const Value *SrcSV, uint64_t SrcSVOff){
2830  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2831
2832  // Expand memmove to a series of load and store ops if the size operand falls
2833  // below a certain threshold.
2834  std::vector<MVT> MemOps;
2835  uint64_t Limit = -1;
2836  if (!AlwaysInline)
2837    Limit = TLI.getMaxStoresPerMemmove();
2838  unsigned DstAlign = Align;  // Destination alignment can change.
2839  std::string Str;
2840  bool CopyFromStr;
2841  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2842                                Str, CopyFromStr, DAG, TLI))
2843    return SDOperand();
2844
2845  uint64_t SrcOff = 0, DstOff = 0;
2846
2847  SmallVector<SDOperand, 8> LoadValues;
2848  SmallVector<SDOperand, 8> LoadChains;
2849  SmallVector<SDOperand, 8> OutChains;
2850  unsigned NumMemOps = MemOps.size();
2851  for (unsigned i = 0; i < NumMemOps; i++) {
2852    MVT VT = MemOps[i];
2853    unsigned VTSize = VT.getSizeInBits() / 8;
2854    SDOperand Value, Store;
2855
2856    Value = DAG.getLoad(VT, Chain,
2857                        getMemBasePlusOffset(Src, SrcOff, DAG),
2858                        SrcSV, SrcSVOff + SrcOff, false, Align);
2859    LoadValues.push_back(Value);
2860    LoadChains.push_back(Value.getValue(1));
2861    SrcOff += VTSize;
2862  }
2863  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2864                      &LoadChains[0], LoadChains.size());
2865  OutChains.clear();
2866  for (unsigned i = 0; i < NumMemOps; i++) {
2867    MVT VT = MemOps[i];
2868    unsigned VTSize = VT.getSizeInBits() / 8;
2869    SDOperand Value, Store;
2870
2871    Store = DAG.getStore(Chain, LoadValues[i],
2872                         getMemBasePlusOffset(Dst, DstOff, DAG),
2873                         DstSV, DstSVOff + DstOff, false, DstAlign);
2874    OutChains.push_back(Store);
2875    DstOff += VTSize;
2876  }
2877
2878  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2879                     &OutChains[0], OutChains.size());
2880}
2881
2882static SDOperand getMemsetStores(SelectionDAG &DAG,
2883                                 SDOperand Chain, SDOperand Dst,
2884                                 SDOperand Src, uint64_t Size,
2885                                 unsigned Align,
2886                                 const Value *DstSV, uint64_t DstSVOff) {
2887  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2888
2889  // Expand memset to a series of load/store ops if the size operand
2890  // falls below a certain threshold.
2891  std::vector<MVT> MemOps;
2892  std::string Str;
2893  bool CopyFromStr;
2894  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
2895                                Size, Align, Str, CopyFromStr, DAG, TLI))
2896    return SDOperand();
2897
2898  SmallVector<SDOperand, 8> OutChains;
2899  uint64_t DstOff = 0;
2900
2901  unsigned NumMemOps = MemOps.size();
2902  for (unsigned i = 0; i < NumMemOps; i++) {
2903    MVT VT = MemOps[i];
2904    unsigned VTSize = VT.getSizeInBits() / 8;
2905    SDOperand Value = getMemsetValue(Src, VT, DAG);
2906    SDOperand Store = DAG.getStore(Chain, Value,
2907                                   getMemBasePlusOffset(Dst, DstOff, DAG),
2908                                   DstSV, DstSVOff + DstOff);
2909    OutChains.push_back(Store);
2910    DstOff += VTSize;
2911  }
2912
2913  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2914                     &OutChains[0], OutChains.size());
2915}
2916
2917SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dst,
2918                                  SDOperand Src, SDOperand Size,
2919                                  unsigned Align, bool AlwaysInline,
2920                                  const Value *DstSV, uint64_t DstSVOff,
2921                                  const Value *SrcSV, uint64_t SrcSVOff) {
2922
2923  // Check to see if we should lower the memcpy to loads and stores first.
2924  // For cases within the target-specified limits, this is the best choice.
2925  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2926  if (ConstantSize) {
2927    // Memcpy with size zero? Just return the original chain.
2928    if (ConstantSize->isNullValue())
2929      return Chain;
2930
2931    SDOperand Result =
2932      getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2933                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2934    if (Result.Val)
2935      return Result;
2936  }
2937
2938  // Then check to see if we should lower the memcpy with target-specific
2939  // code. If the target chooses to do this, this is the next best.
2940  SDOperand Result =
2941    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
2942                                AlwaysInline,
2943                                DstSV, DstSVOff, SrcSV, SrcSVOff);
2944  if (Result.Val)
2945    return Result;
2946
2947  // If we really need inline code and the target declined to provide it,
2948  // use a (potentially long) sequence of loads and stores.
2949  if (AlwaysInline) {
2950    assert(ConstantSize && "AlwaysInline requires a constant size!");
2951    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
2952                                   ConstantSize->getValue(), Align, true,
2953                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
2954  }
2955
2956  // Emit a library call.
2957  TargetLowering::ArgListTy Args;
2958  TargetLowering::ArgListEntry Entry;
2959  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2960  Entry.Node = Dst; Args.push_back(Entry);
2961  Entry.Node = Src; Args.push_back(Entry);
2962  Entry.Node = Size; Args.push_back(Entry);
2963  std::pair<SDOperand,SDOperand> CallResult =
2964    TLI.LowerCallTo(Chain, Type::VoidTy,
2965                    false, false, false, CallingConv::C, false,
2966                    getExternalSymbol("memcpy", TLI.getPointerTy()),
2967                    Args, *this);
2968  return CallResult.second;
2969}
2970
2971SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dst,
2972                                   SDOperand Src, SDOperand Size,
2973                                   unsigned Align,
2974                                   const Value *DstSV, uint64_t DstSVOff,
2975                                   const Value *SrcSV, uint64_t SrcSVOff) {
2976
2977  // Check to see if we should lower the memmove to loads and stores first.
2978  // For cases within the target-specified limits, this is the best choice.
2979  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2980  if (ConstantSize) {
2981    // Memmove with size zero? Just return the original chain.
2982    if (ConstantSize->isNullValue())
2983      return Chain;
2984
2985    SDOperand Result =
2986      getMemmoveLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2987                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2988    if (Result.Val)
2989      return Result;
2990  }
2991
2992  // Then check to see if we should lower the memmove with target-specific
2993  // code. If the target chooses to do this, this is the next best.
2994  SDOperand Result =
2995    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
2996                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
2997  if (Result.Val)
2998    return Result;
2999
3000  // Emit a library call.
3001  TargetLowering::ArgListTy Args;
3002  TargetLowering::ArgListEntry Entry;
3003  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3004  Entry.Node = Dst; Args.push_back(Entry);
3005  Entry.Node = Src; Args.push_back(Entry);
3006  Entry.Node = Size; Args.push_back(Entry);
3007  std::pair<SDOperand,SDOperand> CallResult =
3008    TLI.LowerCallTo(Chain, Type::VoidTy,
3009                    false, false, false, CallingConv::C, false,
3010                    getExternalSymbol("memmove", TLI.getPointerTy()),
3011                    Args, *this);
3012  return CallResult.second;
3013}
3014
3015SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dst,
3016                                  SDOperand Src, SDOperand Size,
3017                                  unsigned Align,
3018                                  const Value *DstSV, uint64_t DstSVOff) {
3019
3020  // Check to see if we should lower the memset to stores first.
3021  // For cases within the target-specified limits, this is the best choice.
3022  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3023  if (ConstantSize) {
3024    // Memset with size zero? Just return the original chain.
3025    if (ConstantSize->isNullValue())
3026      return Chain;
3027
3028    SDOperand Result =
3029      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
3030                      DstSV, DstSVOff);
3031    if (Result.Val)
3032      return Result;
3033  }
3034
3035  // Then check to see if we should lower the memset with target-specific
3036  // code. If the target chooses to do this, this is the next best.
3037  SDOperand Result =
3038    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3039                                DstSV, DstSVOff);
3040  if (Result.Val)
3041    return Result;
3042
3043  // Emit a library call.
3044  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3045  TargetLowering::ArgListTy Args;
3046  TargetLowering::ArgListEntry Entry;
3047  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3048  Args.push_back(Entry);
3049  // Extend or truncate the argument to be an i32 value for the call.
3050  if (Src.getValueType().bitsGT(MVT::i32))
3051    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3052  else
3053    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3054  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3055  Args.push_back(Entry);
3056  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3057  Args.push_back(Entry);
3058  std::pair<SDOperand,SDOperand> CallResult =
3059    TLI.LowerCallTo(Chain, Type::VoidTy,
3060                    false, false, false, CallingConv::C, false,
3061                    getExternalSymbol("memset", TLI.getPointerTy()),
3062                    Args, *this);
3063  return CallResult.second;
3064}
3065
3066SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
3067                                  SDOperand Ptr, SDOperand Cmp,
3068                                  SDOperand Swp, const Value* PtrVal,
3069                                  unsigned Alignment) {
3070  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3071  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3072  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
3073  FoldingSetNodeID ID;
3074  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
3075  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3076  void* IP = 0;
3077  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3078    return SDOperand(E, 0);
3079  SDNode* N = getAllocator().Allocate<AtomicSDNode>();
3080  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3081  CSEMap.InsertNode(N, IP);
3082  AllNodes.push_back(N);
3083  return SDOperand(N, 0);
3084}
3085
3086SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
3087                                  SDOperand Ptr, SDOperand Val,
3088                                  const Value* PtrVal,
3089                                  unsigned Alignment) {
3090  assert((   Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB
3091          || Opcode == ISD::ATOMIC_SWAP || Opcode == ISD::ATOMIC_LOAD_AND
3092          || Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR
3093          || Opcode == ISD::ATOMIC_LOAD_NAND
3094          || Opcode == ISD::ATOMIC_LOAD_MIN || Opcode == ISD::ATOMIC_LOAD_MAX
3095          || Opcode == ISD::ATOMIC_LOAD_UMIN || Opcode == ISD::ATOMIC_LOAD_UMAX)
3096         && "Invalid Atomic Op");
3097  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
3098  FoldingSetNodeID ID;
3099  SDOperand Ops[] = {Chain, Ptr, Val};
3100  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3101  void* IP = 0;
3102  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3103    return SDOperand(E, 0);
3104  SDNode* N = getAllocator().Allocate<AtomicSDNode>();
3105  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3106  CSEMap.InsertNode(N, IP);
3107  AllNodes.push_back(N);
3108  return SDOperand(N, 0);
3109}
3110
3111/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3112/// Allowed to return something different (and simpler) if Simplify is true.
3113SDOperand SelectionDAG::getMergeValues(const SDOperand *Ops, unsigned NumOps,
3114                                       bool Simplify) {
3115  if (Simplify && NumOps == 1)
3116    return Ops[0];
3117
3118  SmallVector<MVT, 4> VTs;
3119  VTs.reserve(NumOps);
3120  for (unsigned i = 0; i < NumOps; ++i)
3121    VTs.push_back(Ops[i].getValueType());
3122  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3123}
3124
3125SDOperand
3126SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3127                      MVT VT, SDOperand Chain,
3128                      SDOperand Ptr, SDOperand Offset,
3129                      const Value *SV, int SVOffset, MVT EVT,
3130                      bool isVolatile, unsigned Alignment) {
3131  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3132    const Type *Ty = 0;
3133    if (VT != MVT::iPTR) {
3134      Ty = VT.getTypeForMVT();
3135    } else if (SV) {
3136      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3137      assert(PT && "Value for load must be a pointer");
3138      Ty = PT->getElementType();
3139    }
3140    assert(Ty && "Could not get type information for load");
3141    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3142  }
3143
3144  if (VT == EVT) {
3145    ExtType = ISD::NON_EXTLOAD;
3146  } else if (ExtType == ISD::NON_EXTLOAD) {
3147    assert(VT == EVT && "Non-extending load from different memory type!");
3148  } else {
3149    // Extending load.
3150    if (VT.isVector())
3151      assert(EVT == VT.getVectorElementType() && "Invalid vector extload!");
3152    else
3153      assert(EVT.bitsLT(VT) &&
3154             "Should only be an extending load, not truncating!");
3155    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3156           "Cannot sign/zero extend a FP/Vector load!");
3157    assert(VT.isInteger() == EVT.isInteger() &&
3158           "Cannot convert from FP to Int or Int -> FP!");
3159  }
3160
3161  bool Indexed = AM != ISD::UNINDEXED;
3162  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3163         "Unindexed load with an offset!");
3164
3165  SDVTList VTs = Indexed ?
3166    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3167  SDOperand Ops[] = { Chain, Ptr, Offset };
3168  FoldingSetNodeID ID;
3169  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3170  ID.AddInteger(AM);
3171  ID.AddInteger(ExtType);
3172  ID.AddInteger(EVT.getRawBits());
3173  ID.AddInteger(Alignment);
3174  ID.AddInteger(isVolatile);
3175  void *IP = 0;
3176  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3177    return SDOperand(E, 0);
3178  SDNode *N = getAllocator().Allocate<LoadSDNode>();
3179  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3180                     Alignment, isVolatile);
3181  CSEMap.InsertNode(N, IP);
3182  AllNodes.push_back(N);
3183  return SDOperand(N, 0);
3184}
3185
3186SDOperand SelectionDAG::getLoad(MVT VT,
3187                                SDOperand Chain, SDOperand Ptr,
3188                                const Value *SV, int SVOffset,
3189                                bool isVolatile, unsigned Alignment) {
3190  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3191  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3192                 SV, SVOffset, VT, isVolatile, Alignment);
3193}
3194
3195SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3196                                   SDOperand Chain, SDOperand Ptr,
3197                                   const Value *SV,
3198                                   int SVOffset, MVT EVT,
3199                                   bool isVolatile, unsigned Alignment) {
3200  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3201  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3202                 SV, SVOffset, EVT, isVolatile, Alignment);
3203}
3204
3205SDOperand
3206SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
3207                             SDOperand Offset, ISD::MemIndexedMode AM) {
3208  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3209  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3210         "Load is already a indexed load!");
3211  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3212                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3213                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3214                 LD->isVolatile(), LD->getAlignment());
3215}
3216
3217SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
3218                                 SDOperand Ptr, const Value *SV, int SVOffset,
3219                                 bool isVolatile, unsigned Alignment) {
3220  MVT VT = Val.getValueType();
3221
3222  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3223    const Type *Ty = 0;
3224    if (VT != MVT::iPTR) {
3225      Ty = VT.getTypeForMVT();
3226    } else if (SV) {
3227      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3228      assert(PT && "Value for store must be a pointer");
3229      Ty = PT->getElementType();
3230    }
3231    assert(Ty && "Could not get type information for store");
3232    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3233  }
3234  SDVTList VTs = getVTList(MVT::Other);
3235  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3236  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3237  FoldingSetNodeID ID;
3238  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3239  ID.AddInteger(ISD::UNINDEXED);
3240  ID.AddInteger(false);
3241  ID.AddInteger(VT.getRawBits());
3242  ID.AddInteger(Alignment);
3243  ID.AddInteger(isVolatile);
3244  void *IP = 0;
3245  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3246    return SDOperand(E, 0);
3247  SDNode *N = getAllocator().Allocate<StoreSDNode>();
3248  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3249                      VT, SV, SVOffset, Alignment, isVolatile);
3250  CSEMap.InsertNode(N, IP);
3251  AllNodes.push_back(N);
3252  return SDOperand(N, 0);
3253}
3254
3255SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
3256                                      SDOperand Ptr, const Value *SV,
3257                                      int SVOffset, MVT SVT,
3258                                      bool isVolatile, unsigned Alignment) {
3259  MVT VT = Val.getValueType();
3260
3261  if (VT == SVT)
3262    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3263
3264  assert(VT.bitsGT(SVT) && "Not a truncation?");
3265  assert(VT.isInteger() == SVT.isInteger() &&
3266         "Can't do FP-INT conversion!");
3267
3268  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3269    const Type *Ty = 0;
3270    if (VT != MVT::iPTR) {
3271      Ty = VT.getTypeForMVT();
3272    } else if (SV) {
3273      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3274      assert(PT && "Value for store must be a pointer");
3275      Ty = PT->getElementType();
3276    }
3277    assert(Ty && "Could not get type information for store");
3278    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3279  }
3280  SDVTList VTs = getVTList(MVT::Other);
3281  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3282  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3283  FoldingSetNodeID ID;
3284  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3285  ID.AddInteger(ISD::UNINDEXED);
3286  ID.AddInteger(1);
3287  ID.AddInteger(SVT.getRawBits());
3288  ID.AddInteger(Alignment);
3289  ID.AddInteger(isVolatile);
3290  void *IP = 0;
3291  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3292    return SDOperand(E, 0);
3293  SDNode *N = getAllocator().Allocate<StoreSDNode>();
3294  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3295                      SVT, SV, SVOffset, Alignment, isVolatile);
3296  CSEMap.InsertNode(N, IP);
3297  AllNodes.push_back(N);
3298  return SDOperand(N, 0);
3299}
3300
3301SDOperand
3302SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
3303                              SDOperand Offset, ISD::MemIndexedMode AM) {
3304  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3305  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3306         "Store is already a indexed store!");
3307  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3308  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3309  FoldingSetNodeID ID;
3310  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3311  ID.AddInteger(AM);
3312  ID.AddInteger(ST->isTruncatingStore());
3313  ID.AddInteger(ST->getMemoryVT().getRawBits());
3314  ID.AddInteger(ST->getAlignment());
3315  ID.AddInteger(ST->isVolatile());
3316  void *IP = 0;
3317  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3318    return SDOperand(E, 0);
3319  SDNode *N = getAllocator().Allocate<StoreSDNode>();
3320  new (N) StoreSDNode(Ops, VTs, AM,
3321                      ST->isTruncatingStore(), ST->getMemoryVT(),
3322                      ST->getSrcValue(), ST->getSrcValueOffset(),
3323                      ST->getAlignment(), ST->isVolatile());
3324  CSEMap.InsertNode(N, IP);
3325  AllNodes.push_back(N);
3326  return SDOperand(N, 0);
3327}
3328
3329SDOperand SelectionDAG::getVAArg(MVT VT,
3330                                 SDOperand Chain, SDOperand Ptr,
3331                                 SDOperand SV) {
3332  SDOperand Ops[] = { Chain, Ptr, SV };
3333  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3334}
3335
3336SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
3337                                const SDUse *Ops, unsigned NumOps) {
3338  switch (NumOps) {
3339  case 0: return getNode(Opcode, VT);
3340  case 1: return getNode(Opcode, VT, Ops[0].getSDOperand());
3341  case 2: return getNode(Opcode, VT, Ops[0].getSDOperand(),
3342                         Ops[1].getSDOperand());
3343  case 3: return getNode(Opcode, VT, Ops[0].getSDOperand(),
3344                         Ops[1].getSDOperand(), Ops[2].getSDOperand());
3345  default: break;
3346  }
3347
3348  // Copy from an SDUse array into an SDOperand array for use with
3349  // the regular getNode logic.
3350  SmallVector<SDOperand, 8> NewOps;
3351  NewOps.reserve(NumOps);
3352  for (unsigned i = 0; i != NumOps; ++i)
3353    NewOps.push_back(Ops[i].getSDOperand());
3354  return getNode(Opcode, VT, Ops, NumOps);
3355}
3356
3357SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
3358                                const SDOperand *Ops, unsigned NumOps) {
3359  switch (NumOps) {
3360  case 0: return getNode(Opcode, VT);
3361  case 1: return getNode(Opcode, VT, Ops[0]);
3362  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3363  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3364  default: break;
3365  }
3366
3367  switch (Opcode) {
3368  default: break;
3369  case ISD::SELECT_CC: {
3370    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3371    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3372           "LHS and RHS of condition must have same type!");
3373    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3374           "True and False arms of SelectCC must have same type!");
3375    assert(Ops[2].getValueType() == VT &&
3376           "select_cc node must be of same type as true and false value!");
3377    break;
3378  }
3379  case ISD::BR_CC: {
3380    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3381    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3382           "LHS/RHS of comparison should match types!");
3383    break;
3384  }
3385  }
3386
3387  // Memoize nodes.
3388  SDNode *N;
3389  SDVTList VTs = getVTList(VT);
3390  if (VT != MVT::Flag) {
3391    FoldingSetNodeID ID;
3392    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3393    void *IP = 0;
3394    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3395      return SDOperand(E, 0);
3396    N = getAllocator().Allocate<SDNode>();
3397    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3398    CSEMap.InsertNode(N, IP);
3399  } else {
3400    N = getAllocator().Allocate<SDNode>();
3401    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3402  }
3403  AllNodes.push_back(N);
3404  return SDOperand(N, 0);
3405}
3406
3407SDOperand SelectionDAG::getNode(unsigned Opcode,
3408                                std::vector<MVT> &ResultTys,
3409                                const SDOperand *Ops, unsigned NumOps) {
3410  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3411                 Ops, NumOps);
3412}
3413
3414SDOperand SelectionDAG::getNode(unsigned Opcode,
3415                                const MVT *VTs, unsigned NumVTs,
3416                                const SDOperand *Ops, unsigned NumOps) {
3417  if (NumVTs == 1)
3418    return getNode(Opcode, VTs[0], Ops, NumOps);
3419  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3420}
3421
3422SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3423                                const SDOperand *Ops, unsigned NumOps) {
3424  if (VTList.NumVTs == 1)
3425    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3426
3427  switch (Opcode) {
3428  // FIXME: figure out how to safely handle things like
3429  // int foo(int x) { return 1 << (x & 255); }
3430  // int bar() { return foo(256); }
3431#if 0
3432  case ISD::SRA_PARTS:
3433  case ISD::SRL_PARTS:
3434  case ISD::SHL_PARTS:
3435    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3436        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3437      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3438    else if (N3.getOpcode() == ISD::AND)
3439      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3440        // If the and is only masking out bits that cannot effect the shift,
3441        // eliminate the and.
3442        unsigned NumBits = VT.getSizeInBits()*2;
3443        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3444          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3445      }
3446    break;
3447#endif
3448  }
3449
3450  // Memoize the node unless it returns a flag.
3451  SDNode *N;
3452  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3453    FoldingSetNodeID ID;
3454    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3455    void *IP = 0;
3456    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3457      return SDOperand(E, 0);
3458    if (NumOps == 1) {
3459      N = getAllocator().Allocate<UnarySDNode>();
3460      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3461    } else if (NumOps == 2) {
3462      N = getAllocator().Allocate<BinarySDNode>();
3463      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3464    } else if (NumOps == 3) {
3465      N = getAllocator().Allocate<TernarySDNode>();
3466      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3467    } else {
3468      N = getAllocator().Allocate<SDNode>();
3469      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3470    }
3471    CSEMap.InsertNode(N, IP);
3472  } else {
3473    if (NumOps == 1) {
3474      N = getAllocator().Allocate<UnarySDNode>();
3475      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3476    } else if (NumOps == 2) {
3477      N = getAllocator().Allocate<BinarySDNode>();
3478      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3479    } else if (NumOps == 3) {
3480      N = getAllocator().Allocate<TernarySDNode>();
3481      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3482    } else {
3483      N = getAllocator().Allocate<SDNode>();
3484      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3485    }
3486  }
3487  AllNodes.push_back(N);
3488  return SDOperand(N, 0);
3489}
3490
3491SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3492  return getNode(Opcode, VTList, 0, 0);
3493}
3494
3495SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3496                                SDOperand N1) {
3497  SDOperand Ops[] = { N1 };
3498  return getNode(Opcode, VTList, Ops, 1);
3499}
3500
3501SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3502                                SDOperand N1, SDOperand N2) {
3503  SDOperand Ops[] = { N1, N2 };
3504  return getNode(Opcode, VTList, Ops, 2);
3505}
3506
3507SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3508                                SDOperand N1, SDOperand N2, SDOperand N3) {
3509  SDOperand Ops[] = { N1, N2, N3 };
3510  return getNode(Opcode, VTList, Ops, 3);
3511}
3512
3513SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3514                                SDOperand N1, SDOperand N2, SDOperand N3,
3515                                SDOperand N4) {
3516  SDOperand Ops[] = { N1, N2, N3, N4 };
3517  return getNode(Opcode, VTList, Ops, 4);
3518}
3519
3520SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3521                                SDOperand N1, SDOperand N2, SDOperand N3,
3522                                SDOperand N4, SDOperand N5) {
3523  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
3524  return getNode(Opcode, VTList, Ops, 5);
3525}
3526
3527SDVTList SelectionDAG::getVTList(MVT VT) {
3528  return makeVTList(SDNode::getValueTypeList(VT), 1);
3529}
3530
3531SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3532  for (std::list<std::vector<MVT> >::iterator I = VTList.begin(),
3533       E = VTList.end(); I != E; ++I) {
3534    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
3535      return makeVTList(&(*I)[0], 2);
3536  }
3537  std::vector<MVT> V;
3538  V.push_back(VT1);
3539  V.push_back(VT2);
3540  VTList.push_front(V);
3541  return makeVTList(&(*VTList.begin())[0], 2);
3542}
3543SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2,
3544                                 MVT VT3) {
3545  for (std::list<std::vector<MVT> >::iterator I = VTList.begin(),
3546       E = VTList.end(); I != E; ++I) {
3547    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
3548        (*I)[2] == VT3)
3549      return makeVTList(&(*I)[0], 3);
3550  }
3551  std::vector<MVT> V;
3552  V.push_back(VT1);
3553  V.push_back(VT2);
3554  V.push_back(VT3);
3555  VTList.push_front(V);
3556  return makeVTList(&(*VTList.begin())[0], 3);
3557}
3558
3559SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3560  switch (NumVTs) {
3561    case 0: assert(0 && "Cannot have nodes without results!");
3562    case 1: return getVTList(VTs[0]);
3563    case 2: return getVTList(VTs[0], VTs[1]);
3564    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3565    default: break;
3566  }
3567
3568  for (std::list<std::vector<MVT> >::iterator I = VTList.begin(),
3569       E = VTList.end(); I != E; ++I) {
3570    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
3571
3572    bool NoMatch = false;
3573    for (unsigned i = 2; i != NumVTs; ++i)
3574      if (VTs[i] != (*I)[i]) {
3575        NoMatch = true;
3576        break;
3577      }
3578    if (!NoMatch)
3579      return makeVTList(&*I->begin(), NumVTs);
3580  }
3581
3582  VTList.push_front(std::vector<MVT>(VTs, VTs+NumVTs));
3583  return makeVTList(&*VTList.begin()->begin(), NumVTs);
3584}
3585
3586
3587/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3588/// specified operands.  If the resultant node already exists in the DAG,
3589/// this does not modify the specified node, instead it returns the node that
3590/// already exists.  If the resultant node does not exist in the DAG, the
3591/// input node is returned.  As a degenerate case, if you specify the same
3592/// input operands as the node already has, the input node is returned.
3593SDOperand SelectionDAG::
3594UpdateNodeOperands(SDOperand InN, SDOperand Op) {
3595  SDNode *N = InN.Val;
3596  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3597
3598  // Check to see if there is no change.
3599  if (Op == N->getOperand(0)) return InN;
3600
3601  // See if the modified node already exists.
3602  void *InsertPos = 0;
3603  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3604    return SDOperand(Existing, InN.ResNo);
3605
3606  // Nope it doesn't.  Remove the node from it's current place in the maps.
3607  if (InsertPos)
3608    RemoveNodeFromCSEMaps(N);
3609
3610  // Now we update the operands.
3611  N->OperandList[0].getVal()->removeUser(0, N);
3612  N->OperandList[0] = Op;
3613  N->OperandList[0].setUser(N);
3614  Op.Val->addUser(0, N);
3615
3616  // If this gets put into a CSE map, add it.
3617  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3618  return InN;
3619}
3620
3621SDOperand SelectionDAG::
3622UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
3623  SDNode *N = InN.Val;
3624  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3625
3626  // Check to see if there is no change.
3627  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3628    return InN;   // No operands changed, just return the input node.
3629
3630  // See if the modified node already exists.
3631  void *InsertPos = 0;
3632  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3633    return SDOperand(Existing, InN.ResNo);
3634
3635  // Nope it doesn't.  Remove the node from it's current place in the maps.
3636  if (InsertPos)
3637    RemoveNodeFromCSEMaps(N);
3638
3639  // Now we update the operands.
3640  if (N->OperandList[0] != Op1) {
3641    N->OperandList[0].getVal()->removeUser(0, N);
3642    N->OperandList[0] = Op1;
3643    N->OperandList[0].setUser(N);
3644    Op1.Val->addUser(0, N);
3645  }
3646  if (N->OperandList[1] != Op2) {
3647    N->OperandList[1].getVal()->removeUser(1, N);
3648    N->OperandList[1] = Op2;
3649    N->OperandList[1].setUser(N);
3650    Op2.Val->addUser(1, N);
3651  }
3652
3653  // If this gets put into a CSE map, add it.
3654  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3655  return InN;
3656}
3657
3658SDOperand SelectionDAG::
3659UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
3660  SDOperand Ops[] = { Op1, Op2, Op3 };
3661  return UpdateNodeOperands(N, Ops, 3);
3662}
3663
3664SDOperand SelectionDAG::
3665UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3666                   SDOperand Op3, SDOperand Op4) {
3667  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
3668  return UpdateNodeOperands(N, Ops, 4);
3669}
3670
3671SDOperand SelectionDAG::
3672UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3673                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
3674  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3675  return UpdateNodeOperands(N, Ops, 5);
3676}
3677
3678SDOperand SelectionDAG::
3679UpdateNodeOperands(SDOperand InN, const SDOperand *Ops, unsigned NumOps) {
3680  SDNode *N = InN.Val;
3681  assert(N->getNumOperands() == NumOps &&
3682         "Update with wrong number of operands");
3683
3684  // Check to see if there is no change.
3685  bool AnyChange = false;
3686  for (unsigned i = 0; i != NumOps; ++i) {
3687    if (Ops[i] != N->getOperand(i)) {
3688      AnyChange = true;
3689      break;
3690    }
3691  }
3692
3693  // No operands changed, just return the input node.
3694  if (!AnyChange) return InN;
3695
3696  // See if the modified node already exists.
3697  void *InsertPos = 0;
3698  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3699    return SDOperand(Existing, InN.ResNo);
3700
3701  // Nope it doesn't.  Remove the node from its current place in the maps.
3702  if (InsertPos)
3703    RemoveNodeFromCSEMaps(N);
3704
3705  // Now we update the operands.
3706  for (unsigned i = 0; i != NumOps; ++i) {
3707    if (N->OperandList[i] != Ops[i]) {
3708      N->OperandList[i].getVal()->removeUser(i, N);
3709      N->OperandList[i] = Ops[i];
3710      N->OperandList[i].setUser(N);
3711      Ops[i].Val->addUser(i, N);
3712    }
3713  }
3714
3715  // If this gets put into a CSE map, add it.
3716  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3717  return InN;
3718}
3719
3720/// MorphNodeTo - This frees the operands of the current node, resets the
3721/// opcode, types, and operands to the specified value.  This should only be
3722/// used by the SelectionDAG class.
3723void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3724                         const SDOperand *Ops, unsigned NumOps,
3725                         SmallVectorImpl<SDNode *> &DeadNodes) {
3726  NodeType = Opc;
3727  ValueList = L.VTs;
3728  NumValues = L.NumVTs;
3729
3730  // Clear the operands list, updating used nodes to remove this from their
3731  // use list.  Keep track of any operands that become dead as a result.
3732  SmallPtrSet<SDNode*, 16> DeadNodeSet;
3733  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
3734    SDNode *N = I->getVal();
3735    N->removeUser(std::distance(op_begin(), I), this);
3736    if (N->use_empty())
3737      DeadNodeSet.insert(N);
3738  }
3739
3740  // If NumOps is larger than the # of operands we currently have, reallocate
3741  // the operand list.
3742  if (NumOps > NumOperands) {
3743    if (OperandsNeedDelete) {
3744      delete [] OperandList;
3745    }
3746    OperandList = new SDUse[NumOps];
3747    OperandsNeedDelete = true;
3748  }
3749
3750  // Assign the new operands.
3751  NumOperands = NumOps;
3752
3753  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3754    OperandList[i] = Ops[i];
3755    OperandList[i].setUser(this);
3756    SDNode *N = OperandList[i].getVal();
3757    N->addUser(i, this);
3758    ++N->UsesSize;
3759    DeadNodeSet.erase(N);
3760  }
3761
3762  // Clean up any nodes that are still dead after adding the uses for the
3763  // new operands.
3764  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
3765       E = DeadNodeSet.end(); I != E; ++I)
3766    DeadNodes.push_back(*I);
3767}
3768
3769/// DropOperands - Release the operands and set this node to have
3770/// zero operands.  This should only be used by HandleSDNode to clear
3771/// its operand list.
3772void SDNode::DropOperands() {
3773  assert(NodeType == ISD::HANDLENODE &&
3774         "DropOperands is for HANDLENODE only!");
3775
3776  // Unlike the code in MorphNodeTo that does this, we don't need to
3777  // watch for dead nodes here.
3778  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3779    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3780
3781  NumOperands = 0;
3782}
3783
3784/// SelectNodeTo - These are used for target selectors to *mutate* the
3785/// specified node to have the specified return type, Target opcode, and
3786/// operands.  Note that target opcodes are stored as
3787/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3788///
3789/// Note that SelectNodeTo returns the resultant node.  If there is already a
3790/// node of the specified opcode and operands, it returns that node instead of
3791/// the current one.
3792SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3793                                   MVT VT) {
3794  SDVTList VTs = getVTList(VT);
3795  return SelectNodeTo(N, TargetOpc, VTs, 0, 0);
3796}
3797
3798SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3799                                   MVT VT, SDOperand Op1) {
3800  SDVTList VTs = getVTList(VT);
3801  SDOperand Ops[] = { Op1 };
3802  return SelectNodeTo(N, TargetOpc, VTs, Ops, 1);
3803}
3804
3805SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3806                                   MVT VT, SDOperand Op1,
3807                                   SDOperand Op2) {
3808  SDVTList VTs = getVTList(VT);
3809  SDOperand Ops[] = { Op1, Op2 };
3810  return SelectNodeTo(N, TargetOpc, VTs, Ops, 2);
3811}
3812
3813SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3814                                   MVT VT, SDOperand Op1,
3815                                   SDOperand Op2, SDOperand Op3) {
3816  SDVTList VTs = getVTList(VT);
3817  SDOperand Ops[] = { Op1, Op2, Op3 };
3818  return SelectNodeTo(N, TargetOpc, VTs, Ops, 3);
3819}
3820
3821SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3822                                   MVT VT, const SDOperand *Ops,
3823                                   unsigned NumOps) {
3824  SDVTList VTs = getVTList(VT);
3825  return SelectNodeTo(N, TargetOpc, VTs, Ops, NumOps);
3826}
3827
3828SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3829                                   MVT VT1, MVT VT2, const SDOperand *Ops,
3830                                   unsigned NumOps) {
3831  SDVTList VTs = getVTList(VT1, VT2);
3832  return SelectNodeTo(N, TargetOpc, VTs, Ops, NumOps);
3833}
3834
3835SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3836                                   MVT VT1, MVT VT2) {
3837  SDVTList VTs = getVTList(VT1, VT2);
3838  return SelectNodeTo(N, TargetOpc, VTs, (SDOperand *)0, 0);
3839}
3840
3841SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3842                                   MVT VT1, MVT VT2, MVT VT3,
3843                                   const SDOperand *Ops, unsigned NumOps) {
3844  SDVTList VTs = getVTList(VT1, VT2, VT3);
3845  return SelectNodeTo(N, TargetOpc, VTs, Ops, NumOps);
3846}
3847
3848SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3849                                   MVT VT1, MVT VT2,
3850                                   SDOperand Op1) {
3851  SDVTList VTs = getVTList(VT1, VT2);
3852  SDOperand Ops[] = { Op1 };
3853  return SelectNodeTo(N, TargetOpc, VTs, Ops, 1);
3854}
3855
3856SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3857                                   MVT VT1, MVT VT2,
3858                                   SDOperand Op1, SDOperand Op2) {
3859  SDVTList VTs = getVTList(VT1, VT2);
3860  SDOperand Ops[] = { Op1, Op2 };
3861  return SelectNodeTo(N, TargetOpc, VTs, Ops, 2);
3862}
3863
3864SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3865                                   MVT VT1, MVT VT2,
3866                                   SDOperand Op1, SDOperand Op2,
3867                                   SDOperand Op3) {
3868  SDVTList VTs = getVTList(VT1, VT2);
3869  SDOperand Ops[] = { Op1, Op2, Op3 };
3870  return SelectNodeTo(N, TargetOpc, VTs, Ops, 3);
3871}
3872
3873SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3874                                   SDVTList VTs, const SDOperand *Ops,
3875                                   unsigned NumOps) {
3876  // If an identical node already exists, use it.
3877  FoldingSetNodeID ID;
3878  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3879  void *IP = 0;
3880  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3881    return ON;
3882
3883  RemoveNodeFromCSEMaps(N);
3884
3885  SmallVector<SDNode *, 16> DeadNodes;
3886  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps, DeadNodes);
3887  RemoveDeadNodes(DeadNodes);
3888
3889  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3890  return N;
3891}
3892
3893
3894/// getTargetNode - These are used for target selectors to create a new node
3895/// with specified return type(s), target opcode, and operands.
3896///
3897/// Note that getTargetNode returns the resultant node.  If there is already a
3898/// node of the specified opcode and operands, it returns that node instead of
3899/// the current one.
3900SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
3901  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3902}
3903SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDOperand Op1) {
3904  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3905}
3906SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
3907                                    SDOperand Op1, SDOperand Op2) {
3908  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3909}
3910SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
3911                                    SDOperand Op1, SDOperand Op2,
3912                                    SDOperand Op3) {
3913  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3914}
3915SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
3916                                    const SDOperand *Ops, unsigned NumOps) {
3917  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3918}
3919SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
3920  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3921  SDOperand Op;
3922  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3923}
3924SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3925                                    MVT VT2, SDOperand Op1) {
3926  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3927  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3928}
3929SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3930                                    MVT VT2, SDOperand Op1,
3931                                    SDOperand Op2) {
3932  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3933  SDOperand Ops[] = { Op1, Op2 };
3934  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3935}
3936SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3937                                    MVT VT2, SDOperand Op1,
3938                                    SDOperand Op2, SDOperand Op3) {
3939  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3940  SDOperand Ops[] = { Op1, Op2, Op3 };
3941  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3942}
3943SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
3944                                    const SDOperand *Ops, unsigned NumOps) {
3945  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3946  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3947}
3948SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
3949                                    SDOperand Op1, SDOperand Op2) {
3950  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
3951  SDOperand Ops[] = { Op1, Op2 };
3952  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3953}
3954SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
3955                                    SDOperand Op1, SDOperand Op2,
3956                                    SDOperand Op3) {
3957  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
3958  SDOperand Ops[] = { Op1, Op2, Op3 };
3959  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3960}
3961SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
3962                                    const SDOperand *Ops, unsigned NumOps) {
3963  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
3964  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3965}
3966SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3967                                    MVT VT2, MVT VT3, MVT VT4,
3968                                    const SDOperand *Ops, unsigned NumOps) {
3969  std::vector<MVT> VTList;
3970  VTList.push_back(VT1);
3971  VTList.push_back(VT2);
3972  VTList.push_back(VT3);
3973  VTList.push_back(VT4);
3974  const MVT *VTs = getNodeValueTypes(VTList);
3975  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3976}
3977SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3978                                    std::vector<MVT> &ResultTys,
3979                                    const SDOperand *Ops, unsigned NumOps) {
3980  const MVT *VTs = getNodeValueTypes(ResultTys);
3981  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3982                 Ops, NumOps).Val;
3983}
3984
3985/// getNodeIfExists - Get the specified node if it's already available, or
3986/// else return NULL.
3987SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
3988                                      const SDOperand *Ops, unsigned NumOps) {
3989  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3990    FoldingSetNodeID ID;
3991    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3992    void *IP = 0;
3993    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3994      return E;
3995  }
3996  return NULL;
3997}
3998
3999
4000/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4001/// This can cause recursive merging of nodes in the DAG.
4002///
4003/// This version assumes From has a single result value.
4004///
4005void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
4006                                      DAGUpdateListener *UpdateListener) {
4007  SDNode *From = FromN.Val;
4008  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
4009         "Cannot replace with this method!");
4010  assert(From != To.Val && "Cannot replace uses of with self");
4011
4012  while (!From->use_empty()) {
4013    SDNode::use_iterator UI = From->use_begin();
4014    SDNode *U = UI->getUser();
4015
4016    // This node is about to morph, remove its old self from the CSE maps.
4017    RemoveNodeFromCSEMaps(U);
4018    int operandNum = 0;
4019    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4020         I != E; ++I, ++operandNum)
4021      if (I->getVal() == From) {
4022        From->removeUser(operandNum, U);
4023        *I = To;
4024        I->setUser(U);
4025        To.Val->addUser(operandNum, U);
4026      }
4027
4028    // Now that we have modified U, add it back to the CSE maps.  If it already
4029    // exists there, recursively merge the results together.
4030    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4031      ReplaceAllUsesWith(U, Existing, UpdateListener);
4032      // U is now dead.  Inform the listener if it exists and delete it.
4033      if (UpdateListener)
4034        UpdateListener->NodeDeleted(U, Existing);
4035      DeleteNodeNotInCSEMaps(U);
4036    } else {
4037      // If the node doesn't already exist, we updated it.  Inform a listener if
4038      // it exists.
4039      if (UpdateListener)
4040        UpdateListener->NodeUpdated(U);
4041    }
4042  }
4043}
4044
4045/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4046/// This can cause recursive merging of nodes in the DAG.
4047///
4048/// This version assumes From/To have matching types and numbers of result
4049/// values.
4050///
4051void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4052                                      DAGUpdateListener *UpdateListener) {
4053  assert(From != To && "Cannot replace uses of with self");
4054  assert(From->getNumValues() == To->getNumValues() &&
4055         "Cannot use this version of ReplaceAllUsesWith!");
4056  if (From->getNumValues() == 1)   // If possible, use the faster version.
4057    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
4058                              UpdateListener);
4059
4060  while (!From->use_empty()) {
4061    SDNode::use_iterator UI = From->use_begin();
4062    SDNode *U = UI->getUser();
4063
4064    // This node is about to morph, remove its old self from the CSE maps.
4065    RemoveNodeFromCSEMaps(U);
4066    int operandNum = 0;
4067    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4068         I != E; ++I, ++operandNum)
4069      if (I->getVal() == From) {
4070        From->removeUser(operandNum, U);
4071        I->getVal() = To;
4072        To->addUser(operandNum, U);
4073      }
4074
4075    // Now that we have modified U, add it back to the CSE maps.  If it already
4076    // exists there, recursively merge the results together.
4077    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4078      ReplaceAllUsesWith(U, Existing, UpdateListener);
4079      // U is now dead.  Inform the listener if it exists and delete it.
4080      if (UpdateListener)
4081        UpdateListener->NodeDeleted(U, Existing);
4082      DeleteNodeNotInCSEMaps(U);
4083    } else {
4084      // If the node doesn't already exist, we updated it.  Inform a listener if
4085      // it exists.
4086      if (UpdateListener)
4087        UpdateListener->NodeUpdated(U);
4088    }
4089  }
4090}
4091
4092/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4093/// This can cause recursive merging of nodes in the DAG.
4094///
4095/// This version can replace From with any result values.  To must match the
4096/// number and types of values returned by From.
4097void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4098                                      const SDOperand *To,
4099                                      DAGUpdateListener *UpdateListener) {
4100  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4101    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
4102
4103  while (!From->use_empty()) {
4104    SDNode::use_iterator UI = From->use_begin();
4105    SDNode *U = UI->getUser();
4106
4107    // This node is about to morph, remove its old self from the CSE maps.
4108    RemoveNodeFromCSEMaps(U);
4109    int operandNum = 0;
4110    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4111         I != E; ++I, ++operandNum)
4112      if (I->getVal() == From) {
4113        const SDOperand &ToOp = To[I->getSDOperand().ResNo];
4114        From->removeUser(operandNum, U);
4115        *I = ToOp;
4116        I->setUser(U);
4117        ToOp.Val->addUser(operandNum, U);
4118      }
4119
4120    // Now that we have modified U, add it back to the CSE maps.  If it already
4121    // exists there, recursively merge the results together.
4122    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4123      ReplaceAllUsesWith(U, Existing, UpdateListener);
4124      // U is now dead.  Inform the listener if it exists and delete it.
4125      if (UpdateListener)
4126        UpdateListener->NodeDeleted(U, Existing);
4127      DeleteNodeNotInCSEMaps(U);
4128    } else {
4129      // If the node doesn't already exist, we updated it.  Inform a listener if
4130      // it exists.
4131      if (UpdateListener)
4132        UpdateListener->NodeUpdated(U);
4133    }
4134  }
4135}
4136
4137namespace {
4138  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
4139  /// any deleted nodes from the set passed into its constructor and recursively
4140  /// notifies another update listener if specified.
4141  class ChainedSetUpdaterListener :
4142  public SelectionDAG::DAGUpdateListener {
4143    SmallSetVector<SDNode*, 16> &Set;
4144    SelectionDAG::DAGUpdateListener *Chain;
4145  public:
4146    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
4147                              SelectionDAG::DAGUpdateListener *chain)
4148      : Set(set), Chain(chain) {}
4149
4150    virtual void NodeDeleted(SDNode *N, SDNode *E) {
4151      Set.remove(N);
4152      if (Chain) Chain->NodeDeleted(N, E);
4153    }
4154    virtual void NodeUpdated(SDNode *N) {
4155      if (Chain) Chain->NodeUpdated(N);
4156    }
4157  };
4158}
4159
4160/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4161/// uses of other values produced by From.Val alone.  The Deleted vector is
4162/// handled the same way as for ReplaceAllUsesWith.
4163void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
4164                                             DAGUpdateListener *UpdateListener){
4165  assert(From != To && "Cannot replace a value with itself");
4166
4167  // Handle the simple, trivial, case efficiently.
4168  if (From.Val->getNumValues() == 1) {
4169    ReplaceAllUsesWith(From, To, UpdateListener);
4170    return;
4171  }
4172
4173  if (From.use_empty()) return;
4174
4175  // Get all of the users of From.Val.  We want these in a nice,
4176  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4177  SmallSetVector<SDNode*, 16> Users;
4178  for (SDNode::use_iterator UI = From.Val->use_begin(),
4179      E = From.Val->use_end(); UI != E; ++UI) {
4180    SDNode *User = UI->getUser();
4181    Users.insert(User);
4182  }
4183
4184  // When one of the recursive merges deletes nodes from the graph, we need to
4185  // make sure that UpdateListener is notified *and* that the node is removed
4186  // from Users if present.  CSUL does this.
4187  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
4188
4189  while (!Users.empty()) {
4190    // We know that this user uses some value of From.  If it is the right
4191    // value, update it.
4192    SDNode *User = Users.back();
4193    Users.pop_back();
4194
4195    // Scan for an operand that matches From.
4196    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4197    for (; Op != E; ++Op)
4198      if (*Op == From) break;
4199
4200    // If there are no matches, the user must use some other result of From.
4201    if (Op == E) continue;
4202
4203    // Okay, we know this user needs to be updated.  Remove its old self
4204    // from the CSE maps.
4205    RemoveNodeFromCSEMaps(User);
4206
4207    // Update all operands that match "From" in case there are multiple uses.
4208    for (; Op != E; ++Op) {
4209      if (*Op == From) {
4210        From.Val->removeUser(Op-User->op_begin(), User);
4211        *Op = To;
4212        Op->setUser(User);
4213        To.Val->addUser(Op-User->op_begin(), User);
4214      }
4215    }
4216
4217    // Now that we have modified User, add it back to the CSE maps.  If it
4218    // already exists there, recursively merge the results together.
4219    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4220    if (!Existing) {
4221      if (UpdateListener) UpdateListener->NodeUpdated(User);
4222      continue;  // Continue on to next user.
4223    }
4224
4225    // If there was already an existing matching node, use ReplaceAllUsesWith
4226    // to replace the dead one with the existing one.  This can cause
4227    // recursive merging of other unrelated nodes down the line.  The merging
4228    // can cause deletion of nodes that used the old value.  To handle this, we
4229    // use CSUL to remove them from the Users set.
4230    ReplaceAllUsesWith(User, Existing, &CSUL);
4231
4232    // User is now dead.  Notify a listener if present.
4233    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4234    DeleteNodeNotInCSEMaps(User);
4235  }
4236}
4237
4238/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
4239/// their allnodes order. It returns the maximum id.
4240unsigned SelectionDAG::AssignNodeIds() {
4241  unsigned Id = 0;
4242  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
4243    SDNode *N = I;
4244    N->setNodeId(Id++);
4245  }
4246  return Id;
4247}
4248
4249/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4250/// based on their topological order. It returns the maximum id and a vector
4251/// of the SDNodes* in assigned order by reference.
4252unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
4253  unsigned DAGSize = AllNodes.size();
4254  std::vector<unsigned> InDegree(DAGSize);
4255  std::vector<SDNode*> Sources;
4256
4257  // Use a two pass approach to avoid using a std::map which is slow.
4258  unsigned Id = 0;
4259  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
4260    SDNode *N = I;
4261    N->setNodeId(Id++);
4262    unsigned Degree = N->use_size();
4263    InDegree[N->getNodeId()] = Degree;
4264    if (Degree == 0)
4265      Sources.push_back(N);
4266  }
4267
4268  TopOrder.clear();
4269  TopOrder.reserve(DAGSize);
4270  while (!Sources.empty()) {
4271    SDNode *N = Sources.back();
4272    Sources.pop_back();
4273    TopOrder.push_back(N);
4274    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
4275      SDNode *P = I->getVal();
4276      unsigned Degree = --InDegree[P->getNodeId()];
4277      if (Degree == 0)
4278        Sources.push_back(P);
4279    }
4280  }
4281
4282  // Second pass, assign the actual topological order as node ids.
4283  Id = 0;
4284  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
4285       TI != TE; ++TI)
4286    (*TI)->setNodeId(Id++);
4287
4288  return Id;
4289}
4290
4291
4292
4293//===----------------------------------------------------------------------===//
4294//                              SDNode Class
4295//===----------------------------------------------------------------------===//
4296
4297// Out-of-line virtual method to give class a home.
4298void SDNode::ANCHOR() {}
4299void UnarySDNode::ANCHOR() {}
4300void BinarySDNode::ANCHOR() {}
4301void TernarySDNode::ANCHOR() {}
4302void HandleSDNode::ANCHOR() {}
4303void ConstantSDNode::ANCHOR() {}
4304void ConstantFPSDNode::ANCHOR() {}
4305void GlobalAddressSDNode::ANCHOR() {}
4306void FrameIndexSDNode::ANCHOR() {}
4307void JumpTableSDNode::ANCHOR() {}
4308void ConstantPoolSDNode::ANCHOR() {}
4309void BasicBlockSDNode::ANCHOR() {}
4310void SrcValueSDNode::ANCHOR() {}
4311void MemOperandSDNode::ANCHOR() {}
4312void RegisterSDNode::ANCHOR() {}
4313void DbgStopPointSDNode::ANCHOR() {}
4314void LabelSDNode::ANCHOR() {}
4315void ExternalSymbolSDNode::ANCHOR() {}
4316void CondCodeSDNode::ANCHOR() {}
4317void ARG_FLAGSSDNode::ANCHOR() {}
4318void VTSDNode::ANCHOR() {}
4319void MemSDNode::ANCHOR() {}
4320void LoadSDNode::ANCHOR() {}
4321void StoreSDNode::ANCHOR() {}
4322void AtomicSDNode::ANCHOR() {}
4323
4324HandleSDNode::~HandleSDNode() {
4325  DropOperands();
4326}
4327
4328GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4329                                         MVT VT, int o)
4330  : SDNode(isa<GlobalVariable>(GA) &&
4331           cast<GlobalVariable>(GA)->isThreadLocal() ?
4332           // Thread Local
4333           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4334           // Non Thread Local
4335           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4336           getSDVTList(VT)), Offset(o) {
4337  TheGlobal = const_cast<GlobalValue*>(GA);
4338}
4339
4340/// getMemOperand - Return a MachineMemOperand object describing the memory
4341/// reference performed by this atomic.
4342MachineMemOperand AtomicSDNode::getMemOperand() const {
4343  int Size = (getValueType(0).getSizeInBits() + 7) >> 3;
4344  int Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4345  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4346
4347  // Check if the atomic references a frame index
4348  const FrameIndexSDNode *FI =
4349  dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4350  if (!getSrcValue() && FI)
4351    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
4352                             FI->getIndex(), Size, getAlignment());
4353  else
4354    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4355                             Size, getAlignment());
4356}
4357
4358/// getMemOperand - Return a MachineMemOperand object describing the memory
4359/// reference performed by this load or store.
4360MachineMemOperand LSBaseSDNode::getMemOperand() const {
4361  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4362  int Flags =
4363    getOpcode() == ISD::LOAD ? MachineMemOperand::MOLoad :
4364                               MachineMemOperand::MOStore;
4365  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4366
4367  // Check if the load references a frame index, and does not have
4368  // an SV attached.
4369  const FrameIndexSDNode *FI =
4370    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4371  if (!getSrcValue() && FI)
4372    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
4373                             FI->getIndex(), Size, getAlignment());
4374  else
4375    return MachineMemOperand(getSrcValue(), Flags,
4376                             getSrcValueOffset(), Size, getAlignment());
4377}
4378
4379/// Profile - Gather unique data for the node.
4380///
4381void SDNode::Profile(FoldingSetNodeID &ID) {
4382  AddNodeIDNode(ID, this);
4383}
4384
4385/// getValueTypeList - Return a pointer to the specified value type.
4386///
4387const MVT *SDNode::getValueTypeList(MVT VT) {
4388  if (VT.isExtended()) {
4389    static std::set<MVT, MVT::compareRawBits> EVTs;
4390    return &(*EVTs.insert(VT).first);
4391  } else {
4392    static MVT VTs[MVT::LAST_VALUETYPE];
4393    VTs[VT.getSimpleVT()] = VT;
4394    return &VTs[VT.getSimpleVT()];
4395  }
4396}
4397
4398/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4399/// indicated value.  This method ignores uses of other values defined by this
4400/// operation.
4401bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4402  assert(Value < getNumValues() && "Bad value!");
4403
4404  // If there is only one value, this is easy.
4405  if (getNumValues() == 1)
4406    return use_size() == NUses;
4407  if (use_size() < NUses) return false;
4408
4409  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4410
4411  SmallPtrSet<SDNode*, 32> UsersHandled;
4412
4413  // TODO: Only iterate over uses of a given value of the node
4414  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4415    if (*UI == TheValue) {
4416      if (NUses == 0)
4417        return false;
4418      --NUses;
4419    }
4420  }
4421
4422  // Found exactly the right number of uses?
4423  return NUses == 0;
4424}
4425
4426
4427/// hasAnyUseOfValue - Return true if there are any use of the indicated
4428/// value. This method ignores uses of other values defined by this operation.
4429bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4430  assert(Value < getNumValues() && "Bad value!");
4431
4432  if (use_empty()) return false;
4433
4434  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4435
4436  SmallPtrSet<SDNode*, 32> UsersHandled;
4437
4438  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4439    SDNode *User = UI->getUser();
4440    if (User->getNumOperands() == 1 ||
4441        UsersHandled.insert(User))     // First time we've seen this?
4442      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
4443        if (User->getOperand(i) == TheValue) {
4444          return true;
4445        }
4446  }
4447
4448  return false;
4449}
4450
4451
4452/// isOnlyUseOf - Return true if this node is the only use of N.
4453///
4454bool SDNode::isOnlyUseOf(SDNode *N) const {
4455  bool Seen = false;
4456  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4457    SDNode *User = I->getUser();
4458    if (User == this)
4459      Seen = true;
4460    else
4461      return false;
4462  }
4463
4464  return Seen;
4465}
4466
4467/// isOperand - Return true if this node is an operand of N.
4468///
4469bool SDOperand::isOperandOf(SDNode *N) const {
4470  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4471    if (*this == N->getOperand(i))
4472      return true;
4473  return false;
4474}
4475
4476bool SDNode::isOperandOf(SDNode *N) const {
4477  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4478    if (this == N->OperandList[i].getVal())
4479      return true;
4480  return false;
4481}
4482
4483/// reachesChainWithoutSideEffects - Return true if this operand (which must
4484/// be a chain) reaches the specified operand without crossing any
4485/// side-effecting instructions.  In practice, this looks through token
4486/// factors and non-volatile loads.  In order to remain efficient, this only
4487/// looks a couple of nodes in, it does not do an exhaustive search.
4488bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
4489                                               unsigned Depth) const {
4490  if (*this == Dest) return true;
4491
4492  // Don't search too deeply, we just want to be able to see through
4493  // TokenFactor's etc.
4494  if (Depth == 0) return false;
4495
4496  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4497  // of the operands of the TF reach dest, then we can do the xform.
4498  if (getOpcode() == ISD::TokenFactor) {
4499    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4500      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4501        return true;
4502    return false;
4503  }
4504
4505  // Loads don't have side effects, look through them.
4506  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4507    if (!Ld->isVolatile())
4508      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4509  }
4510  return false;
4511}
4512
4513
4514static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4515                            SmallPtrSet<SDNode *, 32> &Visited) {
4516  if (found || !Visited.insert(N))
4517    return;
4518
4519  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4520    SDNode *Op = N->getOperand(i).Val;
4521    if (Op == P) {
4522      found = true;
4523      return;
4524    }
4525    findPredecessor(Op, P, found, Visited);
4526  }
4527}
4528
4529/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4530/// is either an operand of N or it can be reached by recursively traversing
4531/// up the operands.
4532/// NOTE: this is an expensive method. Use it carefully.
4533bool SDNode::isPredecessorOf(SDNode *N) const {
4534  SmallPtrSet<SDNode *, 32> Visited;
4535  bool found = false;
4536  findPredecessor(N, this, found, Visited);
4537  return found;
4538}
4539
4540uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4541  assert(Num < NumOperands && "Invalid child # of SDNode!");
4542  return cast<ConstantSDNode>(OperandList[Num])->getValue();
4543}
4544
4545std::string SDNode::getOperationName(const SelectionDAG *G) const {
4546  switch (getOpcode()) {
4547  default:
4548    if (getOpcode() < ISD::BUILTIN_OP_END)
4549      return "<<Unknown DAG Node>>";
4550    else {
4551      if (G) {
4552        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4553          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
4554            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
4555
4556        TargetLowering &TLI = G->getTargetLoweringInfo();
4557        const char *Name =
4558          TLI.getTargetNodeName(getOpcode());
4559        if (Name) return Name;
4560      }
4561
4562      return "<<Unknown Target Node>>";
4563    }
4564
4565  case ISD::PREFETCH:      return "Prefetch";
4566  case ISD::MEMBARRIER:    return "MemBarrier";
4567  case ISD::ATOMIC_CMP_SWAP:  return "AtomicCmpSwap";
4568  case ISD::ATOMIC_LOAD_ADD:  return "AtomicLoadAdd";
4569  case ISD::ATOMIC_LOAD_SUB:  return "AtomicLoadSub";
4570  case ISD::ATOMIC_LOAD_AND:  return "AtomicLoadAnd";
4571  case ISD::ATOMIC_LOAD_OR:   return "AtomicLoadOr";
4572  case ISD::ATOMIC_LOAD_XOR:  return "AtomicLoadXor";
4573  case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
4574  case ISD::ATOMIC_LOAD_MIN:  return "AtomicLoadMin";
4575  case ISD::ATOMIC_LOAD_MAX:  return "AtomicLoadMax";
4576  case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
4577  case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
4578  case ISD::ATOMIC_SWAP:   return "AtomicSWAP";
4579  case ISD::PCMARKER:      return "PCMarker";
4580  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4581  case ISD::SRCVALUE:      return "SrcValue";
4582  case ISD::MEMOPERAND:    return "MemOperand";
4583  case ISD::EntryToken:    return "EntryToken";
4584  case ISD::TokenFactor:   return "TokenFactor";
4585  case ISD::AssertSext:    return "AssertSext";
4586  case ISD::AssertZext:    return "AssertZext";
4587
4588  case ISD::BasicBlock:    return "BasicBlock";
4589  case ISD::ARG_FLAGS:     return "ArgFlags";
4590  case ISD::VALUETYPE:     return "ValueType";
4591  case ISD::Register:      return "Register";
4592
4593  case ISD::Constant:      return "Constant";
4594  case ISD::ConstantFP:    return "ConstantFP";
4595  case ISD::GlobalAddress: return "GlobalAddress";
4596  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4597  case ISD::FrameIndex:    return "FrameIndex";
4598  case ISD::JumpTable:     return "JumpTable";
4599  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4600  case ISD::RETURNADDR: return "RETURNADDR";
4601  case ISD::FRAMEADDR: return "FRAMEADDR";
4602  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4603  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4604  case ISD::EHSELECTION: return "EHSELECTION";
4605  case ISD::EH_RETURN: return "EH_RETURN";
4606  case ISD::ConstantPool:  return "ConstantPool";
4607  case ISD::ExternalSymbol: return "ExternalSymbol";
4608  case ISD::INTRINSIC_WO_CHAIN: {
4609    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
4610    return Intrinsic::getName((Intrinsic::ID)IID);
4611  }
4612  case ISD::INTRINSIC_VOID:
4613  case ISD::INTRINSIC_W_CHAIN: {
4614    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
4615    return Intrinsic::getName((Intrinsic::ID)IID);
4616  }
4617
4618  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4619  case ISD::TargetConstant: return "TargetConstant";
4620  case ISD::TargetConstantFP:return "TargetConstantFP";
4621  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4622  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4623  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4624  case ISD::TargetJumpTable:  return "TargetJumpTable";
4625  case ISD::TargetConstantPool:  return "TargetConstantPool";
4626  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4627
4628  case ISD::CopyToReg:     return "CopyToReg";
4629  case ISD::CopyFromReg:   return "CopyFromReg";
4630  case ISD::UNDEF:         return "undef";
4631  case ISD::MERGE_VALUES:  return "merge_values";
4632  case ISD::INLINEASM:     return "inlineasm";
4633  case ISD::DBG_LABEL:     return "dbg_label";
4634  case ISD::EH_LABEL:      return "eh_label";
4635  case ISD::DECLARE:       return "declare";
4636  case ISD::HANDLENODE:    return "handlenode";
4637  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4638  case ISD::CALL:          return "call";
4639
4640  // Unary operators
4641  case ISD::FABS:   return "fabs";
4642  case ISD::FNEG:   return "fneg";
4643  case ISD::FSQRT:  return "fsqrt";
4644  case ISD::FSIN:   return "fsin";
4645  case ISD::FCOS:   return "fcos";
4646  case ISD::FPOWI:  return "fpowi";
4647  case ISD::FPOW:   return "fpow";
4648
4649  // Binary operators
4650  case ISD::ADD:    return "add";
4651  case ISD::SUB:    return "sub";
4652  case ISD::MUL:    return "mul";
4653  case ISD::MULHU:  return "mulhu";
4654  case ISD::MULHS:  return "mulhs";
4655  case ISD::SDIV:   return "sdiv";
4656  case ISD::UDIV:   return "udiv";
4657  case ISD::SREM:   return "srem";
4658  case ISD::UREM:   return "urem";
4659  case ISD::SMUL_LOHI:  return "smul_lohi";
4660  case ISD::UMUL_LOHI:  return "umul_lohi";
4661  case ISD::SDIVREM:    return "sdivrem";
4662  case ISD::UDIVREM:    return "divrem";
4663  case ISD::AND:    return "and";
4664  case ISD::OR:     return "or";
4665  case ISD::XOR:    return "xor";
4666  case ISD::SHL:    return "shl";
4667  case ISD::SRA:    return "sra";
4668  case ISD::SRL:    return "srl";
4669  case ISD::ROTL:   return "rotl";
4670  case ISD::ROTR:   return "rotr";
4671  case ISD::FADD:   return "fadd";
4672  case ISD::FSUB:   return "fsub";
4673  case ISD::FMUL:   return "fmul";
4674  case ISD::FDIV:   return "fdiv";
4675  case ISD::FREM:   return "frem";
4676  case ISD::FCOPYSIGN: return "fcopysign";
4677  case ISD::FGETSIGN:  return "fgetsign";
4678
4679  case ISD::SETCC:       return "setcc";
4680  case ISD::VSETCC:      return "vsetcc";
4681  case ISD::SELECT:      return "select";
4682  case ISD::SELECT_CC:   return "select_cc";
4683  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
4684  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
4685  case ISD::CONCAT_VECTORS:      return "concat_vectors";
4686  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
4687  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
4688  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
4689  case ISD::CARRY_FALSE:         return "carry_false";
4690  case ISD::ADDC:        return "addc";
4691  case ISD::ADDE:        return "adde";
4692  case ISD::SUBC:        return "subc";
4693  case ISD::SUBE:        return "sube";
4694  case ISD::SHL_PARTS:   return "shl_parts";
4695  case ISD::SRA_PARTS:   return "sra_parts";
4696  case ISD::SRL_PARTS:   return "srl_parts";
4697
4698  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
4699  case ISD::INSERT_SUBREG:      return "insert_subreg";
4700
4701  // Conversion operators.
4702  case ISD::SIGN_EXTEND: return "sign_extend";
4703  case ISD::ZERO_EXTEND: return "zero_extend";
4704  case ISD::ANY_EXTEND:  return "any_extend";
4705  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
4706  case ISD::TRUNCATE:    return "truncate";
4707  case ISD::FP_ROUND:    return "fp_round";
4708  case ISD::FLT_ROUNDS_: return "flt_rounds";
4709  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
4710  case ISD::FP_EXTEND:   return "fp_extend";
4711
4712  case ISD::SINT_TO_FP:  return "sint_to_fp";
4713  case ISD::UINT_TO_FP:  return "uint_to_fp";
4714  case ISD::FP_TO_SINT:  return "fp_to_sint";
4715  case ISD::FP_TO_UINT:  return "fp_to_uint";
4716  case ISD::BIT_CONVERT: return "bit_convert";
4717
4718    // Control flow instructions
4719  case ISD::BR:      return "br";
4720  case ISD::BRIND:   return "brind";
4721  case ISD::BR_JT:   return "br_jt";
4722  case ISD::BRCOND:  return "brcond";
4723  case ISD::BR_CC:   return "br_cc";
4724  case ISD::RET:     return "ret";
4725  case ISD::CALLSEQ_START:  return "callseq_start";
4726  case ISD::CALLSEQ_END:    return "callseq_end";
4727
4728    // Other operators
4729  case ISD::LOAD:               return "load";
4730  case ISD::STORE:              return "store";
4731  case ISD::VAARG:              return "vaarg";
4732  case ISD::VACOPY:             return "vacopy";
4733  case ISD::VAEND:              return "vaend";
4734  case ISD::VASTART:            return "vastart";
4735  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4736  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4737  case ISD::BUILD_PAIR:         return "build_pair";
4738  case ISD::STACKSAVE:          return "stacksave";
4739  case ISD::STACKRESTORE:       return "stackrestore";
4740  case ISD::TRAP:               return "trap";
4741
4742  // Bit manipulation
4743  case ISD::BSWAP:   return "bswap";
4744  case ISD::CTPOP:   return "ctpop";
4745  case ISD::CTTZ:    return "cttz";
4746  case ISD::CTLZ:    return "ctlz";
4747
4748  // Debug info
4749  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
4750  case ISD::DEBUG_LOC: return "debug_loc";
4751
4752  // Trampolines
4753  case ISD::TRAMPOLINE: return "trampoline";
4754
4755  case ISD::CONDCODE:
4756    switch (cast<CondCodeSDNode>(this)->get()) {
4757    default: assert(0 && "Unknown setcc condition!");
4758    case ISD::SETOEQ:  return "setoeq";
4759    case ISD::SETOGT:  return "setogt";
4760    case ISD::SETOGE:  return "setoge";
4761    case ISD::SETOLT:  return "setolt";
4762    case ISD::SETOLE:  return "setole";
4763    case ISD::SETONE:  return "setone";
4764
4765    case ISD::SETO:    return "seto";
4766    case ISD::SETUO:   return "setuo";
4767    case ISD::SETUEQ:  return "setue";
4768    case ISD::SETUGT:  return "setugt";
4769    case ISD::SETUGE:  return "setuge";
4770    case ISD::SETULT:  return "setult";
4771    case ISD::SETULE:  return "setule";
4772    case ISD::SETUNE:  return "setune";
4773
4774    case ISD::SETEQ:   return "seteq";
4775    case ISD::SETGT:   return "setgt";
4776    case ISD::SETGE:   return "setge";
4777    case ISD::SETLT:   return "setlt";
4778    case ISD::SETLE:   return "setle";
4779    case ISD::SETNE:   return "setne";
4780    }
4781  }
4782}
4783
4784const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4785  switch (AM) {
4786  default:
4787    return "";
4788  case ISD::PRE_INC:
4789    return "<pre-inc>";
4790  case ISD::PRE_DEC:
4791    return "<pre-dec>";
4792  case ISD::POST_INC:
4793    return "<post-inc>";
4794  case ISD::POST_DEC:
4795    return "<post-dec>";
4796  }
4797}
4798
4799std::string ISD::ArgFlagsTy::getArgFlagsString() {
4800  std::string S = "< ";
4801
4802  if (isZExt())
4803    S += "zext ";
4804  if (isSExt())
4805    S += "sext ";
4806  if (isInReg())
4807    S += "inreg ";
4808  if (isSRet())
4809    S += "sret ";
4810  if (isByVal())
4811    S += "byval ";
4812  if (isNest())
4813    S += "nest ";
4814  if (getByValAlign())
4815    S += "byval-align:" + utostr(getByValAlign()) + " ";
4816  if (getOrigAlign())
4817    S += "orig-align:" + utostr(getOrigAlign()) + " ";
4818  if (getByValSize())
4819    S += "byval-size:" + utostr(getByValSize()) + " ";
4820  return S + ">";
4821}
4822
4823void SDNode::dump() const { dump(0); }
4824void SDNode::dump(const SelectionDAG *G) const {
4825  cerr << (void*)this << ": ";
4826
4827  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4828    if (i) cerr << ",";
4829    if (getValueType(i) == MVT::Other)
4830      cerr << "ch";
4831    else
4832      cerr << getValueType(i).getMVTString();
4833  }
4834  cerr << " = " << getOperationName(G);
4835
4836  cerr << " ";
4837  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4838    if (i) cerr << ", ";
4839    cerr << (void*)getOperand(i).Val;
4840    if (unsigned RN = getOperand(i).ResNo)
4841      cerr << ":" << RN;
4842  }
4843
4844  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4845    SDNode *Mask = getOperand(2).Val;
4846    cerr << "<";
4847    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4848      if (i) cerr << ",";
4849      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4850        cerr << "u";
4851      else
4852        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4853    }
4854    cerr << ">";
4855  }
4856
4857  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4858    cerr << "<" << CSDN->getValue() << ">";
4859  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4860    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4861      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4862    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4863      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4864    else {
4865      cerr << "<APFloat(";
4866      CSDN->getValueAPF().convertToAPInt().dump();
4867      cerr << ")>";
4868    }
4869  } else if (const GlobalAddressSDNode *GADN =
4870             dyn_cast<GlobalAddressSDNode>(this)) {
4871    int offset = GADN->getOffset();
4872    cerr << "<";
4873    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4874    if (offset > 0)
4875      cerr << " + " << offset;
4876    else
4877      cerr << " " << offset;
4878  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4879    cerr << "<" << FIDN->getIndex() << ">";
4880  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4881    cerr << "<" << JTDN->getIndex() << ">";
4882  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4883    int offset = CP->getOffset();
4884    if (CP->isMachineConstantPoolEntry())
4885      cerr << "<" << *CP->getMachineCPVal() << ">";
4886    else
4887      cerr << "<" << *CP->getConstVal() << ">";
4888    if (offset > 0)
4889      cerr << " + " << offset;
4890    else
4891      cerr << " " << offset;
4892  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4893    cerr << "<";
4894    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4895    if (LBB)
4896      cerr << LBB->getName() << " ";
4897    cerr << (const void*)BBDN->getBasicBlock() << ">";
4898  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4899    if (G && R->getReg() &&
4900        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4901      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4902    } else {
4903      cerr << " #" << R->getReg();
4904    }
4905  } else if (const ExternalSymbolSDNode *ES =
4906             dyn_cast<ExternalSymbolSDNode>(this)) {
4907    cerr << "'" << ES->getSymbol() << "'";
4908  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4909    if (M->getValue())
4910      cerr << "<" << M->getValue() << ">";
4911    else
4912      cerr << "<null>";
4913  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4914    if (M->MO.getValue())
4915      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4916    else
4917      cerr << "<null:" << M->MO.getOffset() << ">";
4918  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
4919    cerr << N->getArgFlags().getArgFlagsString();
4920  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4921    cerr << ":" << N->getVT().getMVTString();
4922  }
4923  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4924    const Value *SrcValue = LD->getSrcValue();
4925    int SrcOffset = LD->getSrcValueOffset();
4926    cerr << " <";
4927    if (SrcValue)
4928      cerr << SrcValue;
4929    else
4930      cerr << "null";
4931    cerr << ":" << SrcOffset << ">";
4932
4933    bool doExt = true;
4934    switch (LD->getExtensionType()) {
4935    default: doExt = false; break;
4936    case ISD::EXTLOAD:
4937      cerr << " <anyext ";
4938      break;
4939    case ISD::SEXTLOAD:
4940      cerr << " <sext ";
4941      break;
4942    case ISD::ZEXTLOAD:
4943      cerr << " <zext ";
4944      break;
4945    }
4946    if (doExt)
4947      cerr << LD->getMemoryVT().getMVTString() << ">";
4948
4949    const char *AM = getIndexedModeName(LD->getAddressingMode());
4950    if (*AM)
4951      cerr << " " << AM;
4952    if (LD->isVolatile())
4953      cerr << " <volatile>";
4954    cerr << " alignment=" << LD->getAlignment();
4955  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4956    const Value *SrcValue = ST->getSrcValue();
4957    int SrcOffset = ST->getSrcValueOffset();
4958    cerr << " <";
4959    if (SrcValue)
4960      cerr << SrcValue;
4961    else
4962      cerr << "null";
4963    cerr << ":" << SrcOffset << ">";
4964
4965    if (ST->isTruncatingStore())
4966      cerr << " <trunc "
4967           << ST->getMemoryVT().getMVTString() << ">";
4968
4969    const char *AM = getIndexedModeName(ST->getAddressingMode());
4970    if (*AM)
4971      cerr << " " << AM;
4972    if (ST->isVolatile())
4973      cerr << " <volatile>";
4974    cerr << " alignment=" << ST->getAlignment();
4975  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
4976    const Value *SrcValue = AT->getSrcValue();
4977    int SrcOffset = AT->getSrcValueOffset();
4978    cerr << " <";
4979    if (SrcValue)
4980      cerr << SrcValue;
4981    else
4982      cerr << "null";
4983    cerr << ":" << SrcOffset << ">";
4984    if (AT->isVolatile())
4985      cerr << " <volatile>";
4986    cerr << " alignment=" << AT->getAlignment();
4987  }
4988}
4989
4990static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4991  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4992    if (N->getOperand(i).Val->hasOneUse())
4993      DumpNodes(N->getOperand(i).Val, indent+2, G);
4994    else
4995      cerr << "\n" << std::string(indent+2, ' ')
4996           << (void*)N->getOperand(i).Val << ": <multiple use>";
4997
4998
4999  cerr << "\n" << std::string(indent, ' ');
5000  N->dump(G);
5001}
5002
5003void SelectionDAG::dump() const {
5004  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5005  std::vector<const SDNode*> Nodes;
5006  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5007       I != E; ++I)
5008    Nodes.push_back(I);
5009
5010  std::sort(Nodes.begin(), Nodes.end());
5011
5012  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
5013    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
5014      DumpNodes(Nodes[i], 2, this);
5015  }
5016
5017  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
5018
5019  cerr << "\n\n";
5020}
5021
5022const Type *ConstantPoolSDNode::getType() const {
5023  if (isMachineConstantPoolEntry())
5024    return Val.MachineCPVal->getType();
5025  return Val.ConstVal->getType();
5026}
5027