SelectionDAG.cpp revision 7651fa4a7ed1c81abb004847af1eeb3beb9c88fd
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include <iostream>
25#include <set>
26#include <cmath>
27#include <algorithm>
28using namespace llvm;
29
30static bool isCommutativeBinOp(unsigned Opcode) {
31  switch (Opcode) {
32  case ISD::ADD:
33  case ISD::MUL:
34  case ISD::AND:
35  case ISD::OR:
36  case ISD::XOR: return true;
37  default: return false; // FIXME: Need commutative info for user ops!
38  }
39}
40
41static bool isAssociativeBinOp(unsigned Opcode) {
42  switch (Opcode) {
43  case ISD::ADD:
44  case ISD::MUL:
45  case ISD::AND:
46  case ISD::OR:
47  case ISD::XOR: return true;
48  default: return false; // FIXME: Need associative info for user ops!
49  }
50}
51
52// isInvertibleForFree - Return true if there is no cost to emitting the logical
53// inverse of this node.
54static bool isInvertibleForFree(SDOperand N) {
55  if (isa<ConstantSDNode>(N.Val)) return true;
56  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
57    return true;
58  return false;
59}
60
61//===----------------------------------------------------------------------===//
62//                              ConstantFPSDNode Class
63//===----------------------------------------------------------------------===//
64
65/// isExactlyValue - We don't rely on operator== working on double values, as
66/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
67/// As such, this method can be used to do an exact bit-for-bit comparison of
68/// two floating point values.
69bool ConstantFPSDNode::isExactlyValue(double V) const {
70  return DoubleToBits(V) == DoubleToBits(Value);
71}
72
73//===----------------------------------------------------------------------===//
74//                              ISD Class
75//===----------------------------------------------------------------------===//
76
77/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
78/// when given the operation for (X op Y).
79ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
80  // To perform this operation, we just need to swap the L and G bits of the
81  // operation.
82  unsigned OldL = (Operation >> 2) & 1;
83  unsigned OldG = (Operation >> 1) & 1;
84  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
85                       (OldL << 1) |       // New G bit
86                       (OldG << 2));        // New L bit.
87}
88
89/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
90/// 'op' is a valid SetCC operation.
91ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
92  unsigned Operation = Op;
93  if (isInteger)
94    Operation ^= 7;   // Flip L, G, E bits, but not U.
95  else
96    Operation ^= 15;  // Flip all of the condition bits.
97  if (Operation > ISD::SETTRUE2)
98    Operation &= ~8;     // Don't let N and U bits get set.
99  return ISD::CondCode(Operation);
100}
101
102
103/// isSignedOp - For an integer comparison, return 1 if the comparison is a
104/// signed operation and 2 if the result is an unsigned comparison.  Return zero
105/// if the operation does not depend on the sign of the input (setne and seteq).
106static int isSignedOp(ISD::CondCode Opcode) {
107  switch (Opcode) {
108  default: assert(0 && "Illegal integer setcc operation!");
109  case ISD::SETEQ:
110  case ISD::SETNE: return 0;
111  case ISD::SETLT:
112  case ISD::SETLE:
113  case ISD::SETGT:
114  case ISD::SETGE: return 1;
115  case ISD::SETULT:
116  case ISD::SETULE:
117  case ISD::SETUGT:
118  case ISD::SETUGE: return 2;
119  }
120}
121
122/// getSetCCOrOperation - Return the result of a logical OR between different
123/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
124/// returns SETCC_INVALID if it is not possible to represent the resultant
125/// comparison.
126ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
127                                       bool isInteger) {
128  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
129    // Cannot fold a signed integer setcc with an unsigned integer setcc.
130    return ISD::SETCC_INVALID;
131
132  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
133
134  // If the N and U bits get set then the resultant comparison DOES suddenly
135  // care about orderedness, and is true when ordered.
136  if (Op > ISD::SETTRUE2)
137    Op &= ~16;     // Clear the N bit.
138  return ISD::CondCode(Op);
139}
140
141/// getSetCCAndOperation - Return the result of a logical AND between different
142/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
143/// function returns zero if it is not possible to represent the resultant
144/// comparison.
145ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
146                                        bool isInteger) {
147  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
148    // Cannot fold a signed setcc with an unsigned setcc.
149    return ISD::SETCC_INVALID;
150
151  // Combine all of the condition bits.
152  return ISD::CondCode(Op1 & Op2);
153}
154
155const TargetMachine &SelectionDAG::getTarget() const {
156  return TLI.getTargetMachine();
157}
158
159//===----------------------------------------------------------------------===//
160//                              SelectionDAG Class
161//===----------------------------------------------------------------------===//
162
163/// RemoveDeadNodes - This method deletes all unreachable nodes in the
164/// SelectionDAG, including nodes (like loads) that have uses of their token
165/// chain but no other uses and no side effect.  If a node is passed in as an
166/// argument, it is used as the seed for node deletion.
167void SelectionDAG::RemoveDeadNodes(SDNode *N) {
168  std::set<SDNode*> AllNodeSet(AllNodes.begin(), AllNodes.end());
169
170  // Create a dummy node (which is not added to allnodes), that adds a reference
171  // to the root node, preventing it from being deleted.
172  SDNode *DummyNode = new SDNode(ISD::EntryToken, getRoot());
173
174  // If we have a hint to start from, use it.
175  if (N) DeleteNodeIfDead(N, &AllNodeSet);
176
177 Restart:
178  unsigned NumNodes = AllNodeSet.size();
179  for (std::set<SDNode*>::iterator I = AllNodeSet.begin(), E = AllNodeSet.end();
180       I != E; ++I) {
181    // Try to delete this node.
182    DeleteNodeIfDead(*I, &AllNodeSet);
183
184    // If we actually deleted any nodes, do not use invalid iterators in
185    // AllNodeSet.
186    if (AllNodeSet.size() != NumNodes)
187      goto Restart;
188  }
189
190  // Restore AllNodes.
191  if (AllNodes.size() != NumNodes)
192    AllNodes.assign(AllNodeSet.begin(), AllNodeSet.end());
193
194  // If the root changed (e.g. it was a dead load, update the root).
195  setRoot(DummyNode->getOperand(0));
196
197  // Now that we are done with the dummy node, delete it.
198  DummyNode->getOperand(0).Val->removeUser(DummyNode);
199  delete DummyNode;
200}
201
202
203void SelectionDAG::DeleteNodeIfDead(SDNode *N, void *NodeSet) {
204  if (!N->use_empty())
205    return;
206
207  // Okay, we really are going to delete this node.  First take this out of the
208  // appropriate CSE map.
209  RemoveNodeFromCSEMaps(N);
210
211  // Next, brutally remove the operand list.  This is safe to do, as there are
212  // no cycles in the graph.
213  while (!N->Operands.empty()) {
214    SDNode *O = N->Operands.back().Val;
215    N->Operands.pop_back();
216    O->removeUser(N);
217
218    // Now that we removed this operand, see if there are no uses of it left.
219    DeleteNodeIfDead(O, NodeSet);
220  }
221
222  // Remove the node from the nodes set and delete it.
223  std::set<SDNode*> &AllNodeSet = *(std::set<SDNode*>*)NodeSet;
224  AllNodeSet.erase(N);
225
226  // Now that the node is gone, check to see if any of the operands of this node
227  // are dead now.
228  delete N;
229}
230
231/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
232/// correspond to it.  This is useful when we're about to delete or repurpose
233/// the node.  We don't want future request for structurally identical nodes
234/// to return N anymore.
235void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
236  switch (N->getOpcode()) {
237  case ISD::Constant:
238    Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
239                                   N->getValueType(0)));
240    break;
241  case ISD::TargetConstant:
242    TargetConstants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
243                                         N->getValueType(0)));
244    break;
245  case ISD::ConstantFP: {
246    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
247    ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
248    break;
249  }
250  case ISD::CONDCODE:
251    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
252           "Cond code doesn't exist!");
253    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
254    break;
255  case ISD::GlobalAddress:
256    GlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
257    break;
258  case ISD::TargetGlobalAddress:
259    TargetGlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
260    break;
261  case ISD::FrameIndex:
262    FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
263    break;
264  case ISD::ConstantPool:
265    ConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->getIndex());
266    break;
267  case ISD::BasicBlock:
268    BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
269    break;
270  case ISD::ExternalSymbol:
271    ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
272    break;
273  case ISD::VALUETYPE:
274    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
275    break;
276  case ISD::Register:
277    RegNodes[cast<RegisterSDNode>(N)->getReg()] = 0;
278    break;
279  case ISD::SRCVALUE: {
280    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
281    ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
282    break;
283  }
284  case ISD::LOAD:
285    Loads.erase(std::make_pair(N->getOperand(1),
286                               std::make_pair(N->getOperand(0),
287                                              N->getValueType(0))));
288    break;
289  default:
290    if (N->getNumOperands() == 1)
291      UnaryOps.erase(std::make_pair(N->getOpcode(),
292                                    std::make_pair(N->getOperand(0),
293                                                   N->getValueType(0))));
294    else if (N->getNumOperands() == 2)
295      BinaryOps.erase(std::make_pair(N->getOpcode(),
296                                     std::make_pair(N->getOperand(0),
297                                                    N->getOperand(1))));
298    else if (N->getNumValues() == 1) {
299      std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
300      OneResultNodes.erase(std::make_pair(N->getOpcode(),
301                                          std::make_pair(N->getValueType(0),
302                                                         Ops)));
303    } else {
304      // Remove the node from the ArbitraryNodes map.
305      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
306      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
307      ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
308                                          std::make_pair(RV, Ops)));
309    }
310    break;
311  }
312}
313
314/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
315/// has been taken out and modified in some way.  If the specified node already
316/// exists in the CSE maps, do not modify the maps, but return the existing node
317/// instead.  If it doesn't exist, add it and return null.
318///
319SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
320  assert(N->getNumOperands() && "This is a leaf node!");
321  if (N->getOpcode() == ISD::LOAD) {
322    SDNode *&L = Loads[std::make_pair(N->getOperand(1),
323                                      std::make_pair(N->getOperand(0),
324                                                     N->getValueType(0)))];
325    if (L) return L;
326    L = N;
327  } else if (N->getNumOperands() == 1) {
328    SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
329                                         std::make_pair(N->getOperand(0),
330                                                        N->getValueType(0)))];
331    if (U) return U;
332    U = N;
333  } else if (N->getNumOperands() == 2) {
334    SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
335                                          std::make_pair(N->getOperand(0),
336                                                         N->getOperand(1)))];
337    if (B) return B;
338    B = N;
339  } else if (N->getNumValues() == 1) {
340    std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
341    SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
342                                  std::make_pair(N->getValueType(0), Ops))];
343    if (ORN) return ORN;
344    ORN = N;
345  } else {
346    // Remove the node from the ArbitraryNodes map.
347    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
348    std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
349    SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
350                                                std::make_pair(RV, Ops))];
351    if (AN) return AN;
352    AN = N;
353  }
354  return 0;
355
356}
357
358
359
360SelectionDAG::~SelectionDAG() {
361  for (unsigned i = 0, e = AllNodes.size(); i != e; ++i)
362    delete AllNodes[i];
363}
364
365SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
366  if (Op.getValueType() == VT) return Op;
367  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
368  return getNode(ISD::AND, Op.getValueType(), Op,
369                 getConstant(Imm, Op.getValueType()));
370}
371
372SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
373  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
374  // Mask out any bits that are not valid for this constant.
375  if (VT != MVT::i64)
376    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
377
378  SDNode *&N = Constants[std::make_pair(Val, VT)];
379  if (N) return SDOperand(N, 0);
380  N = new ConstantSDNode(false, Val, VT);
381  AllNodes.push_back(N);
382  return SDOperand(N, 0);
383}
384
385SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
386  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
387  // Mask out any bits that are not valid for this constant.
388  if (VT != MVT::i64)
389    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
390
391  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
392  if (N) return SDOperand(N, 0);
393  N = new ConstantSDNode(true, Val, VT);
394  AllNodes.push_back(N);
395  return SDOperand(N, 0);
396}
397
398SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
399  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
400  if (VT == MVT::f32)
401    Val = (float)Val;  // Mask out extra precision.
402
403  // Do the map lookup using the actual bit pattern for the floating point
404  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
405  // we don't have issues with SNANs.
406  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
407  if (N) return SDOperand(N, 0);
408  N = new ConstantFPSDNode(Val, VT);
409  AllNodes.push_back(N);
410  return SDOperand(N, 0);
411}
412
413
414
415SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
416                                         MVT::ValueType VT) {
417  SDNode *&N = GlobalValues[GV];
418  if (N) return SDOperand(N, 0);
419  N = new GlobalAddressSDNode(false, GV, VT);
420  AllNodes.push_back(N);
421  return SDOperand(N, 0);
422}
423
424SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
425                                               MVT::ValueType VT) {
426  SDNode *&N = TargetGlobalValues[GV];
427  if (N) return SDOperand(N, 0);
428  N = new GlobalAddressSDNode(true, GV, VT);
429  AllNodes.push_back(N);
430  return SDOperand(N, 0);
431}
432
433SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
434  SDNode *&N = FrameIndices[FI];
435  if (N) return SDOperand(N, 0);
436  N = new FrameIndexSDNode(FI, VT);
437  AllNodes.push_back(N);
438  return SDOperand(N, 0);
439}
440
441SDOperand SelectionDAG::getConstantPool(unsigned CPIdx, MVT::ValueType VT) {
442  SDNode *N = ConstantPoolIndices[CPIdx];
443  if (N) return SDOperand(N, 0);
444  N = new ConstantPoolSDNode(CPIdx, VT);
445  AllNodes.push_back(N);
446  return SDOperand(N, 0);
447}
448
449SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
450  SDNode *&N = BBNodes[MBB];
451  if (N) return SDOperand(N, 0);
452  N = new BasicBlockSDNode(MBB);
453  AllNodes.push_back(N);
454  return SDOperand(N, 0);
455}
456
457SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
458  if ((unsigned)VT >= ValueTypeNodes.size())
459    ValueTypeNodes.resize(VT+1);
460  if (ValueTypeNodes[VT] == 0) {
461    ValueTypeNodes[VT] = new VTSDNode(VT);
462    AllNodes.push_back(ValueTypeNodes[VT]);
463  }
464
465  return SDOperand(ValueTypeNodes[VT], 0);
466}
467
468SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
469  SDNode *&N = ExternalSymbols[Sym];
470  if (N) return SDOperand(N, 0);
471  N = new ExternalSymbolSDNode(Sym, VT);
472  AllNodes.push_back(N);
473  return SDOperand(N, 0);
474}
475
476SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
477  if ((unsigned)Cond >= CondCodeNodes.size())
478    CondCodeNodes.resize(Cond+1);
479
480  if (CondCodeNodes[Cond] == 0) {
481    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
482    AllNodes.push_back(CondCodeNodes[Cond]);
483  }
484  return SDOperand(CondCodeNodes[Cond], 0);
485}
486
487SDOperand SelectionDAG::getRegister(unsigned Reg, MVT::ValueType VT) {
488  if (Reg >= RegNodes.size())
489    RegNodes.resize(Reg+1);
490  RegisterSDNode *&Result = RegNodes[Reg];
491  if (Result) {
492    assert(Result->getValueType(0) == VT &&
493           "Inconsistent value types for machine registers");
494  } else {
495    Result = new RegisterSDNode(Reg, VT);
496    AllNodes.push_back(Result);
497  }
498  return SDOperand(Result, 0);
499}
500
501SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
502                                      SDOperand N2, ISD::CondCode Cond) {
503  // These setcc operations always fold.
504  switch (Cond) {
505  default: break;
506  case ISD::SETFALSE:
507  case ISD::SETFALSE2: return getConstant(0, VT);
508  case ISD::SETTRUE:
509  case ISD::SETTRUE2:  return getConstant(1, VT);
510  }
511
512  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
513    uint64_t C2 = N2C->getValue();
514    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
515      uint64_t C1 = N1C->getValue();
516
517      // Sign extend the operands if required
518      if (ISD::isSignedIntSetCC(Cond)) {
519        C1 = N1C->getSignExtended();
520        C2 = N2C->getSignExtended();
521      }
522
523      switch (Cond) {
524      default: assert(0 && "Unknown integer setcc!");
525      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
526      case ISD::SETNE:  return getConstant(C1 != C2, VT);
527      case ISD::SETULT: return getConstant(C1 <  C2, VT);
528      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
529      case ISD::SETULE: return getConstant(C1 <= C2, VT);
530      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
531      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
532      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
533      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
534      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
535      }
536    } else {
537      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
538      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
539        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
540
541        // If the comparison constant has bits in the upper part, the
542        // zero-extended value could never match.
543        if (C2 & (~0ULL << InSize)) {
544          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
545          switch (Cond) {
546          case ISD::SETUGT:
547          case ISD::SETUGE:
548          case ISD::SETEQ: return getConstant(0, VT);
549          case ISD::SETULT:
550          case ISD::SETULE:
551          case ISD::SETNE: return getConstant(1, VT);
552          case ISD::SETGT:
553          case ISD::SETGE:
554            // True if the sign bit of C2 is set.
555            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
556          case ISD::SETLT:
557          case ISD::SETLE:
558            // True if the sign bit of C2 isn't set.
559            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
560          default:
561            break;
562          }
563        }
564
565        // Otherwise, we can perform the comparison with the low bits.
566        switch (Cond) {
567        case ISD::SETEQ:
568        case ISD::SETNE:
569        case ISD::SETUGT:
570        case ISD::SETUGE:
571        case ISD::SETULT:
572        case ISD::SETULE:
573          return getSetCC(VT, N1.getOperand(0),
574                          getConstant(C2, N1.getOperand(0).getValueType()),
575                          Cond);
576        default:
577          break;   // todo, be more careful with signed comparisons
578        }
579      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
580                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
581        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
582        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
583        MVT::ValueType ExtDstTy = N1.getValueType();
584        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
585
586        // If the extended part has any inconsistent bits, it cannot ever
587        // compare equal.  In other words, they have to be all ones or all
588        // zeros.
589        uint64_t ExtBits =
590          (~0ULL >> 64-ExtSrcTyBits) & (~0ULL << (ExtDstTyBits-1));
591        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
592          return getConstant(Cond == ISD::SETNE, VT);
593
594        // Otherwise, make this a use of a zext.
595        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
596                        getConstant(C2 & (~0ULL >> 64-ExtSrcTyBits), ExtDstTy),
597                        Cond);
598      }
599
600      uint64_t MinVal, MaxVal;
601      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
602      if (ISD::isSignedIntSetCC(Cond)) {
603        MinVal = 1ULL << (OperandBitSize-1);
604        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
605          MaxVal = ~0ULL >> (65-OperandBitSize);
606        else
607          MaxVal = 0;
608      } else {
609        MinVal = 0;
610        MaxVal = ~0ULL >> (64-OperandBitSize);
611      }
612
613      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
614      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
615        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
616        --C2;                                          // X >= C1 --> X > (C1-1)
617        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
618                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
619      }
620
621      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
622        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
623        ++C2;                                          // X <= C1 --> X < (C1+1)
624        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
625                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
626      }
627
628      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
629        return getConstant(0, VT);      // X < MIN --> false
630
631      // Canonicalize setgt X, Min --> setne X, Min
632      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
633        return getSetCC(VT, N1, N2, ISD::SETNE);
634
635      // If we have setult X, 1, turn it into seteq X, 0
636      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
637        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
638                        ISD::SETEQ);
639      // If we have setugt X, Max-1, turn it into seteq X, Max
640      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
641        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
642                        ISD::SETEQ);
643
644      // If we have "setcc X, C1", check to see if we can shrink the immediate
645      // by changing cc.
646
647      // SETUGT X, SINTMAX  -> SETLT X, 0
648      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
649          C2 == (~0ULL >> (65-OperandBitSize)))
650        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
651
652      // FIXME: Implement the rest of these.
653
654
655      // Fold bit comparisons when we can.
656      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
657          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
658        if (ConstantSDNode *AndRHS =
659                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
660          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
661            // Perform the xform if the AND RHS is a single bit.
662            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
663              return getNode(ISD::SRL, VT, N1,
664                             getConstant(Log2_64(AndRHS->getValue()),
665                                                   TLI.getShiftAmountTy()));
666            }
667          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
668            // (X & 8) == 8  -->  (X & 8) >> 3
669            // Perform the xform if C2 is a single bit.
670            if ((C2 & (C2-1)) == 0) {
671              return getNode(ISD::SRL, VT, N1,
672                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
673            }
674          }
675        }
676    }
677  } else if (isa<ConstantSDNode>(N1.Val)) {
678      // Ensure that the constant occurs on the RHS.
679    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
680  }
681
682  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
683    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
684      double C1 = N1C->getValue(), C2 = N2C->getValue();
685
686      switch (Cond) {
687      default: break; // FIXME: Implement the rest of these!
688      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
689      case ISD::SETNE:  return getConstant(C1 != C2, VT);
690      case ISD::SETLT:  return getConstant(C1 < C2, VT);
691      case ISD::SETGT:  return getConstant(C1 > C2, VT);
692      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
693      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
694      }
695    } else {
696      // Ensure that the constant occurs on the RHS.
697      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
698    }
699
700  if (N1 == N2) {
701    // We can always fold X == Y for integer setcc's.
702    if (MVT::isInteger(N1.getValueType()))
703      return getConstant(ISD::isTrueWhenEqual(Cond), VT);
704    unsigned UOF = ISD::getUnorderedFlavor(Cond);
705    if (UOF == 2)   // FP operators that are undefined on NaNs.
706      return getConstant(ISD::isTrueWhenEqual(Cond), VT);
707    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
708      return getConstant(UOF, VT);
709    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
710    // if it is not already.
711    ISD::CondCode NewCond = UOF == 0 ? ISD::SETUO : ISD::SETO;
712    if (NewCond != Cond)
713      return getSetCC(VT, N1, N2, NewCond);
714  }
715
716  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
717      MVT::isInteger(N1.getValueType())) {
718    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
719        N1.getOpcode() == ISD::XOR) {
720      // Simplify (X+Y) == (X+Z) -->  Y == Z
721      if (N1.getOpcode() == N2.getOpcode()) {
722        if (N1.getOperand(0) == N2.getOperand(0))
723          return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond);
724        if (N1.getOperand(1) == N2.getOperand(1))
725          return getSetCC(VT, N1.getOperand(0), N2.getOperand(0), Cond);
726        if (isCommutativeBinOp(N1.getOpcode())) {
727          // If X op Y == Y op X, try other combinations.
728          if (N1.getOperand(0) == N2.getOperand(1))
729            return getSetCC(VT, N1.getOperand(1), N2.getOperand(0), Cond);
730          if (N1.getOperand(1) == N2.getOperand(0))
731            return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond);
732        }
733      }
734
735      // FIXME: move this stuff to the DAG Combiner when it exists!
736
737      // Simplify (X+Z) == X -->  Z == 0
738      if (N1.getOperand(0) == N2)
739        return getSetCC(VT, N1.getOperand(1),
740                        getConstant(0, N1.getValueType()), Cond);
741      if (N1.getOperand(1) == N2) {
742        if (isCommutativeBinOp(N1.getOpcode()))
743          return getSetCC(VT, N1.getOperand(0),
744                          getConstant(0, N1.getValueType()), Cond);
745        else {
746          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
747          // (Z-X) == X  --> Z == X<<1
748          return getSetCC(VT, N1.getOperand(0),
749                          getNode(ISD::SHL, N2.getValueType(),
750                                  N2, getConstant(1, TLI.getShiftAmountTy())),
751                          Cond);
752        }
753      }
754    }
755
756    if (N2.getOpcode() == ISD::ADD || N2.getOpcode() == ISD::SUB ||
757        N2.getOpcode() == ISD::XOR) {
758      // Simplify  X == (X+Z) -->  Z == 0
759      if (N2.getOperand(0) == N1) {
760        return getSetCC(VT, N2.getOperand(1),
761                        getConstant(0, N2.getValueType()), Cond);
762      } else if (N2.getOperand(1) == N1) {
763        if (isCommutativeBinOp(N2.getOpcode())) {
764          return getSetCC(VT, N2.getOperand(0),
765                          getConstant(0, N2.getValueType()), Cond);
766        } else {
767          assert(N2.getOpcode() == ISD::SUB && "Unexpected operation!");
768          // X == (Z-X)  --> X<<1 == Z
769          return getSetCC(VT, getNode(ISD::SHL, N2.getValueType(), N1,
770                                      getConstant(1, TLI.getShiftAmountTy())),
771                          N2.getOperand(0), Cond);
772        }
773      }
774    }
775  }
776
777  // Fold away ALL boolean setcc's.
778  if (N1.getValueType() == MVT::i1) {
779    switch (Cond) {
780    default: assert(0 && "Unknown integer setcc!");
781    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
782      N1 = getNode(ISD::XOR, MVT::i1,
783                   getNode(ISD::XOR, MVT::i1, N1, N2),
784                   getConstant(1, MVT::i1));
785      break;
786    case ISD::SETNE:  // X != Y   -->  (X^Y)
787      N1 = getNode(ISD::XOR, MVT::i1, N1, N2);
788      break;
789    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
790    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
791      N1 = getNode(ISD::AND, MVT::i1, N2,
792                   getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1)));
793      break;
794    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
795    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
796      N1 = getNode(ISD::AND, MVT::i1, N1,
797                   getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1)));
798      break;
799    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
800    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
801      N1 = getNode(ISD::OR, MVT::i1, N2,
802                   getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1)));
803      break;
804    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
805    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
806      N1 = getNode(ISD::OR, MVT::i1, N1,
807                   getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1)));
808      break;
809    }
810    if (VT != MVT::i1)
811      N1 = getNode(ISD::ZERO_EXTEND, VT, N1);
812    return N1;
813  }
814
815  // Could not fold it.
816  return SDOperand();
817}
818
819SDOperand SelectionDAG::SimplifySelectCC(SDOperand N1, SDOperand N2,
820                                         SDOperand N3, SDOperand N4,
821                                         ISD::CondCode CC) {
822  MVT::ValueType VT = N3.getValueType();
823  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
824  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
825  ConstantSDNode *N4C = dyn_cast<ConstantSDNode>(N4.Val);
826
827  // Check to see if we can simplify the select into an fabs node
828  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2)) {
829    // Allow either -0.0 or 0.0
830    if (CFP->getValue() == 0.0) {
831      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
832      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
833          N1 == N3 && N4.getOpcode() == ISD::FNEG &&
834          N1 == N4.getOperand(0))
835        return getNode(ISD::FABS, VT, N1);
836
837      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
838      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
839          N1 == N4 && N3.getOpcode() == ISD::FNEG &&
840          N3.getOperand(0) == N4)
841        return getNode(ISD::FABS, VT, N4);
842    }
843  }
844
845  // Check to see if we can perform the "gzip trick", transforming
846  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
847  if (N2C && N2C->isNullValue() && N4C && N4C->isNullValue() &&
848      MVT::isInteger(N1.getValueType()) &&
849      MVT::isInteger(N3.getValueType()) && CC == ISD::SETLT) {
850    MVT::ValueType XType = N1.getValueType();
851    MVT::ValueType AType = N3.getValueType();
852    if (XType >= AType) {
853      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
854      // single-bit constant.  FIXME: remove once the dag combiner
855      // exists.
856      if (N3C && ((N3C->getValue() & (N3C->getValue()-1)) == 0)) {
857        unsigned ShCtV = Log2_64(N3C->getValue());
858        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
859        SDOperand ShCt = getConstant(ShCtV, TLI.getShiftAmountTy());
860        SDOperand Shift = getNode(ISD::SRL, XType, N1, ShCt);
861        if (XType > AType)
862          Shift = getNode(ISD::TRUNCATE, AType, Shift);
863        return getNode(ISD::AND, AType, Shift, N3);
864      }
865      SDOperand Shift = getNode(ISD::SRA, XType, N1,
866                                getConstant(MVT::getSizeInBits(XType)-1,
867                                            TLI.getShiftAmountTy()));
868      if (XType > AType)
869        Shift = getNode(ISD::TRUNCATE, AType, Shift);
870      return getNode(ISD::AND, AType, Shift, N3);
871    }
872  }
873
874  // Check to see if this is the equivalent of setcc X, 0
875  if (N4C && N4C->isNullValue() && N3C && (N3C->getValue() == 1ULL)) {
876    MVT::ValueType XType = N1.getValueType();
877    if (TLI.getOperationAction(ISD::SETCC, TLI.getSetCCResultTy()) ==
878        TargetLowering::Legal) {
879      return getSetCC(TLI.getSetCCResultTy(), N1, N2, CC);
880    }
881    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
882    if (N2C && N2C->isNullValue() && CC == ISD::SETEQ &&
883        TLI.getOperationAction(ISD::CTLZ, XType) == TargetLowering::Legal) {
884      SDOperand Ctlz = getNode(ISD::CTLZ, XType, N1);
885      return getNode(ISD::SRL, XType, Ctlz,
886                     getConstant(Log2_32(MVT::getSizeInBits(XType)),
887                                 TLI.getShiftAmountTy()));
888    }
889    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
890    if (N2C && N2C->isNullValue() && CC == ISD::SETGT) {
891      SDOperand NegN1 = getNode(ISD::SUB, XType, getConstant(0, XType), N1);
892      SDOperand NotN1 = getNode(ISD::XOR, XType, N1, getConstant(~0ULL, XType));
893      return getNode(ISD::SRL, XType, getNode(ISD::AND, XType, NegN1, NotN1),
894                     getConstant(MVT::getSizeInBits(XType)-1,
895                                 TLI.getShiftAmountTy()));
896    }
897    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
898    if (N2C && N2C->isAllOnesValue() && CC == ISD::SETGT) {
899      SDOperand Sign = getNode(ISD::SRL, XType, N1,
900                               getConstant(MVT::getSizeInBits(XType)-1,
901                                           TLI.getShiftAmountTy()));
902      return getNode(ISD::XOR, XType, Sign, getConstant(1, XType));
903    }
904  }
905
906  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
907  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
908  if (N2C && N2C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
909      N1 == N4 && N3.getOpcode() == ISD::SUB && N1 == N3.getOperand(1)) {
910    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
911      MVT::ValueType XType = N1.getValueType();
912      if (SubC->isNullValue() && MVT::isInteger(XType)) {
913        SDOperand Shift = getNode(ISD::SRA, XType, N1,
914                                  getConstant(MVT::getSizeInBits(XType)-1,
915                                              TLI.getShiftAmountTy()));
916        return getNode(ISD::XOR, XType, getNode(ISD::ADD, XType, N1, Shift),
917                       Shift);
918      }
919    }
920  }
921
922  // Could not fold it.
923  return SDOperand();
924}
925
926/// getNode - Gets or creates the specified node.
927///
928SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
929  SDNode *N = new SDNode(Opcode, VT);
930  AllNodes.push_back(N);
931  return SDOperand(N, 0);
932}
933
934SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
935                                SDOperand Operand) {
936  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
937    uint64_t Val = C->getValue();
938    switch (Opcode) {
939    default: break;
940    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
941    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
942    case ISD::TRUNCATE:    return getConstant(Val, VT);
943    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
944    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
945    }
946  }
947
948  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
949    switch (Opcode) {
950    case ISD::FNEG:
951      return getConstantFP(-C->getValue(), VT);
952    case ISD::FP_ROUND:
953    case ISD::FP_EXTEND:
954      return getConstantFP(C->getValue(), VT);
955    case ISD::FP_TO_SINT:
956      return getConstant((int64_t)C->getValue(), VT);
957    case ISD::FP_TO_UINT:
958      return getConstant((uint64_t)C->getValue(), VT);
959    }
960
961  unsigned OpOpcode = Operand.Val->getOpcode();
962  switch (Opcode) {
963  case ISD::TokenFactor:
964    return Operand;         // Factor of one node?  No factor.
965  case ISD::SIGN_EXTEND:
966    if (Operand.getValueType() == VT) return Operand;   // noop extension
967    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
968      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
969    break;
970  case ISD::ZERO_EXTEND:
971    if (Operand.getValueType() == VT) return Operand;   // noop extension
972    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
973      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
974    break;
975  case ISD::TRUNCATE:
976    if (Operand.getValueType() == VT) return Operand;   // noop truncate
977    if (OpOpcode == ISD::TRUNCATE)
978      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
979    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND) {
980      // If the source is smaller than the dest, we still need an extend.
981      if (Operand.Val->getOperand(0).getValueType() < VT)
982        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
983      else if (Operand.Val->getOperand(0).getValueType() > VT)
984        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
985      else
986        return Operand.Val->getOperand(0);
987    }
988    break;
989  case ISD::FNEG:
990    if (OpOpcode == ISD::SUB)   // -(X-Y) -> (Y-X)
991      return getNode(ISD::SUB, VT, Operand.Val->getOperand(1),
992                     Operand.Val->getOperand(0));
993    if (OpOpcode == ISD::FNEG)  // --X -> X
994      return Operand.Val->getOperand(0);
995    break;
996  case ISD::FABS:
997    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
998      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
999    break;
1000  }
1001
1002  SDNode *&N = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1003  if (N) return SDOperand(N, 0);
1004  N = new SDNode(Opcode, Operand);
1005  N->setValueTypes(VT);
1006  AllNodes.push_back(N);
1007  return SDOperand(N, 0);
1008}
1009
1010/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1011/// this predicate to simplify operations downstream.  V and Mask are known to
1012/// be the same type.
1013static bool MaskedValueIsZero(const SDOperand &Op, uint64_t Mask,
1014                              const TargetLowering &TLI) {
1015  unsigned SrcBits;
1016  if (Mask == 0) return true;
1017
1018  // If we know the result of a setcc has the top bits zero, use this info.
1019  switch (Op.getOpcode()) {
1020  case ISD::Constant:
1021    return (cast<ConstantSDNode>(Op)->getValue() & Mask) == 0;
1022
1023  case ISD::SETCC:
1024    return ((Mask & 1) == 0) &&
1025           TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult;
1026
1027  case ISD::ZEXTLOAD:
1028    SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
1029    return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
1030  case ISD::ZERO_EXTEND:
1031    SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
1032    return MaskedValueIsZero(Op.getOperand(0),Mask & ((1ULL << SrcBits)-1),TLI);
1033
1034  case ISD::AND:
1035    // (X & C1) & C2 == 0   iff   C1 & C2 == 0.
1036    if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1037      return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask, TLI);
1038
1039    // FALL THROUGH
1040  case ISD::OR:
1041  case ISD::XOR:
1042    return MaskedValueIsZero(Op.getOperand(0), Mask, TLI) &&
1043           MaskedValueIsZero(Op.getOperand(1), Mask, TLI);
1044  case ISD::SELECT:
1045    return MaskedValueIsZero(Op.getOperand(1), Mask, TLI) &&
1046           MaskedValueIsZero(Op.getOperand(2), Mask, TLI);
1047  case ISD::SELECT_CC:
1048    return MaskedValueIsZero(Op.getOperand(2), Mask, TLI) &&
1049           MaskedValueIsZero(Op.getOperand(3), Mask, TLI);
1050  case ISD::SRL:
1051    // (ushr X, C1) & C2 == 0   iff  X & (C2 << C1) == 0
1052    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1053      uint64_t NewVal = Mask << ShAmt->getValue();
1054      SrcBits = MVT::getSizeInBits(Op.getValueType());
1055      if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1;
1056      return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
1057    }
1058    return false;
1059  case ISD::SHL:
1060    // (ushl X, C1) & C2 == 0   iff  X & (C2 >> C1) == 0
1061    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1062      uint64_t NewVal = Mask >> ShAmt->getValue();
1063      return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
1064    }
1065    return false;
1066  case ISD::CTTZ:
1067  case ISD::CTLZ:
1068  case ISD::CTPOP:
1069    // Bit counting instructions can not set the high bits of the result
1070    // register.  The max number of bits sets depends on the input.
1071    return (Mask & (MVT::getSizeInBits(Op.getValueType())*2-1)) == 0;
1072
1073    // TODO we could handle some SRA cases here.
1074  default: break;
1075  }
1076
1077  return false;
1078}
1079
1080
1081
1082SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1083                                SDOperand N1, SDOperand N2) {
1084#ifndef NDEBUG
1085  switch (Opcode) {
1086  case ISD::TokenFactor:
1087    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1088           N2.getValueType() == MVT::Other && "Invalid token factor!");
1089    break;
1090  case ISD::AND:
1091  case ISD::OR:
1092  case ISD::XOR:
1093  case ISD::UDIV:
1094  case ISD::UREM:
1095  case ISD::MULHU:
1096  case ISD::MULHS:
1097    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1098    // fall through
1099  case ISD::ADD:
1100  case ISD::SUB:
1101  case ISD::MUL:
1102  case ISD::SDIV:
1103  case ISD::SREM:
1104    assert(N1.getValueType() == N2.getValueType() &&
1105           N1.getValueType() == VT && "Binary operator types must match!");
1106    break;
1107
1108  case ISD::SHL:
1109  case ISD::SRA:
1110  case ISD::SRL:
1111    assert(VT == N1.getValueType() &&
1112           "Shift operators return type must be the same as their first arg");
1113    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1114           VT != MVT::i1 && "Shifts only work on integers");
1115    break;
1116  case ISD::FP_ROUND_INREG: {
1117    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1118    assert(VT == N1.getValueType() && "Not an inreg round!");
1119    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1120           "Cannot FP_ROUND_INREG integer types");
1121    assert(EVT <= VT && "Not rounding down!");
1122    break;
1123  }
1124  case ISD::SIGN_EXTEND_INREG: {
1125    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1126    assert(VT == N1.getValueType() && "Not an inreg extend!");
1127    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1128           "Cannot *_EXTEND_INREG FP types");
1129    assert(EVT <= VT && "Not extending!");
1130  }
1131
1132  default: break;
1133  }
1134#endif
1135
1136  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1137  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1138  if (N1C) {
1139    if (N2C) {
1140      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1141      switch (Opcode) {
1142      case ISD::ADD: return getConstant(C1 + C2, VT);
1143      case ISD::SUB: return getConstant(C1 - C2, VT);
1144      case ISD::MUL: return getConstant(C1 * C2, VT);
1145      case ISD::UDIV:
1146        if (C2) return getConstant(C1 / C2, VT);
1147        break;
1148      case ISD::UREM :
1149        if (C2) return getConstant(C1 % C2, VT);
1150        break;
1151      case ISD::SDIV :
1152        if (C2) return getConstant(N1C->getSignExtended() /
1153                                   N2C->getSignExtended(), VT);
1154        break;
1155      case ISD::SREM :
1156        if (C2) return getConstant(N1C->getSignExtended() %
1157                                   N2C->getSignExtended(), VT);
1158        break;
1159      case ISD::AND  : return getConstant(C1 & C2, VT);
1160      case ISD::OR   : return getConstant(C1 | C2, VT);
1161      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1162      case ISD::SHL  : return getConstant(C1 << (int)C2, VT);
1163      case ISD::SRL  : return getConstant(C1 >> (unsigned)C2, VT);
1164      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1165      default: break;
1166      }
1167
1168    } else {      // Cannonicalize constant to RHS if commutative
1169      if (isCommutativeBinOp(Opcode)) {
1170        std::swap(N1C, N2C);
1171        std::swap(N1, N2);
1172      }
1173    }
1174
1175    switch (Opcode) {
1176    default: break;
1177    case ISD::SHL:    // shl  0, X -> 0
1178      if (N1C->isNullValue()) return N1;
1179      break;
1180    case ISD::SRL:    // srl  0, X -> 0
1181      if (N1C->isNullValue()) return N1;
1182      break;
1183    case ISD::SRA:    // sra -1, X -> -1
1184      if (N1C->isAllOnesValue()) return N1;
1185      break;
1186    case ISD::SIGN_EXTEND_INREG:  // SIGN_EXTEND_INREG N1C, EVT
1187      // Extending a constant?  Just return the extended constant.
1188      SDOperand Tmp = getNode(ISD::TRUNCATE, cast<VTSDNode>(N2)->getVT(), N1);
1189      return getNode(ISD::SIGN_EXTEND, VT, Tmp);
1190    }
1191  }
1192
1193  if (N2C) {
1194    uint64_t C2 = N2C->getValue();
1195
1196    switch (Opcode) {
1197    case ISD::ADD:
1198      if (!C2) return N1;         // add X, 0 -> X
1199      break;
1200    case ISD::SUB:
1201      if (!C2) return N1;         // sub X, 0 -> X
1202      return getNode(ISD::ADD, VT, N1, getConstant(-C2, VT));
1203    case ISD::MUL:
1204      if (!C2) return N2;         // mul X, 0 -> 0
1205      if (N2C->isAllOnesValue()) // mul X, -1 -> 0-X
1206        return getNode(ISD::SUB, VT, getConstant(0, VT), N1);
1207
1208      // FIXME: Move this to the DAG combiner when it exists.
1209      if ((C2 & C2-1) == 0) {
1210        SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy());
1211        return getNode(ISD::SHL, VT, N1, ShAmt);
1212      }
1213      break;
1214
1215    case ISD::MULHU:
1216    case ISD::MULHS:
1217      if (!C2) return N2;         // mul X, 0 -> 0
1218
1219      if (C2 == 1)                // 0X*01 -> 0X  hi(0X) == 0
1220        return getConstant(0, VT);
1221
1222      // Many others could be handled here, including -1, powers of 2, etc.
1223      break;
1224
1225    case ISD::UDIV:
1226      // FIXME: Move this to the DAG combiner when it exists.
1227      if ((C2 & C2-1) == 0 && C2) {
1228        SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy());
1229        return getNode(ISD::SRL, VT, N1, ShAmt);
1230      }
1231      break;
1232
1233    case ISD::SHL:
1234    case ISD::SRL:
1235    case ISD::SRA:
1236      // If the shift amount is bigger than the size of the data, then all the
1237      // bits are shifted out.  Simplify to undef.
1238      if (C2 >= MVT::getSizeInBits(N1.getValueType())) {
1239        return getNode(ISD::UNDEF, N1.getValueType());
1240      }
1241      if (C2 == 0) return N1;
1242
1243      if (Opcode == ISD::SRA) {
1244        // If the sign bit is known to be zero, switch this to a SRL.
1245        if (MaskedValueIsZero(N1,
1246                              1ULL << (MVT::getSizeInBits(N1.getValueType())-1),
1247                              TLI))
1248          return getNode(ISD::SRL, N1.getValueType(), N1, N2);
1249      } else {
1250        // If the part left over is known to be zero, the whole thing is zero.
1251        uint64_t TypeMask = ~0ULL >> (64-MVT::getSizeInBits(N1.getValueType()));
1252        if (Opcode == ISD::SRL) {
1253          if (MaskedValueIsZero(N1, TypeMask << C2, TLI))
1254            return getConstant(0, N1.getValueType());
1255        } else if (Opcode == ISD::SHL) {
1256          if (MaskedValueIsZero(N1, TypeMask >> C2, TLI))
1257            return getConstant(0, N1.getValueType());
1258        }
1259      }
1260
1261      if (Opcode == ISD::SHL && N1.getNumOperands() == 2)
1262        if (ConstantSDNode *OpSA = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
1263          unsigned OpSAC = OpSA->getValue();
1264          if (N1.getOpcode() == ISD::SHL) {
1265            if (C2+OpSAC >= MVT::getSizeInBits(N1.getValueType()))
1266              return getConstant(0, N1.getValueType());
1267            return getNode(ISD::SHL, N1.getValueType(), N1.getOperand(0),
1268                           getConstant(C2+OpSAC, N2.getValueType()));
1269          } else if (N1.getOpcode() == ISD::SRL) {
1270            // (X >> C1) << C2:  if C2 > C1, ((X & ~0<<C1) << C2-C1)
1271            SDOperand Mask = getNode(ISD::AND, VT, N1.getOperand(0),
1272                                     getConstant(~0ULL << OpSAC, VT));
1273            if (C2 > OpSAC) {
1274              return getNode(ISD::SHL, VT, Mask,
1275                             getConstant(C2-OpSAC, N2.getValueType()));
1276            } else {
1277              // (X >> C1) << C2:  if C2 <= C1, ((X & ~0<<C1) >> C1-C2)
1278              return getNode(ISD::SRL, VT, Mask,
1279                             getConstant(OpSAC-C2, N2.getValueType()));
1280            }
1281          } else if (N1.getOpcode() == ISD::SRA) {
1282            // if C1 == C2, just mask out low bits.
1283            if (C2 == OpSAC)
1284              return getNode(ISD::AND, VT, N1.getOperand(0),
1285                             getConstant(~0ULL << C2, VT));
1286          }
1287        }
1288      break;
1289
1290    case ISD::AND:
1291      if (!C2) return N2;         // X and 0 -> 0
1292      if (N2C->isAllOnesValue())
1293        return N1;                // X and -1 -> X
1294
1295      if (MaskedValueIsZero(N1, C2, TLI))  // X and 0 -> 0
1296        return getConstant(0, VT);
1297
1298      {
1299        uint64_t NotC2 = ~C2;
1300        if (VT != MVT::i64)
1301          NotC2 &= (1ULL << MVT::getSizeInBits(VT))-1;
1302
1303        if (MaskedValueIsZero(N1, NotC2, TLI))
1304          return N1;                // if (X & ~C2) -> 0, the and is redundant
1305      }
1306
1307      // FIXME: Should add a corresponding version of this for
1308      // ZERO_EXTEND/SIGN_EXTEND by converting them to an ANY_EXTEND node which
1309      // we don't have yet.
1310
1311      // and (sign_extend_inreg x:16:32), 1 -> and x, 1
1312      if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
1313        // If we are masking out the part of our input that was extended, just
1314        // mask the input to the extension directly.
1315        unsigned ExtendBits =
1316          MVT::getSizeInBits(cast<VTSDNode>(N1.getOperand(1))->getVT());
1317        if ((C2 & (~0ULL << ExtendBits)) == 0)
1318          return getNode(ISD::AND, VT, N1.getOperand(0), N2);
1319      } else if (N1.getOpcode() == ISD::OR) {
1320        if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
1321          if ((ORI->getValue() & C2) == C2) {
1322            // If the 'or' is setting all of the bits that we are masking for,
1323            // we know the result of the AND will be the AND mask itself.
1324            return N2;
1325          }
1326      }
1327      break;
1328    case ISD::OR:
1329      if (!C2)return N1;          // X or 0 -> X
1330      if (N2C->isAllOnesValue())
1331        return N2;                // X or -1 -> -1
1332      break;
1333    case ISD::XOR:
1334      if (!C2) return N1;        // X xor 0 -> X
1335      if (N2C->isAllOnesValue()) {
1336        if (N1.Val->getOpcode() == ISD::SETCC){
1337          SDNode *SetCC = N1.Val;
1338          // !(X op Y) -> (X !op Y)
1339          bool isInteger = MVT::isInteger(SetCC->getOperand(0).getValueType());
1340          ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
1341          return getSetCC(SetCC->getValueType(0),
1342                          SetCC->getOperand(0), SetCC->getOperand(1),
1343                          ISD::getSetCCInverse(CC, isInteger));
1344        } else if (N1.getOpcode() == ISD::AND || N1.getOpcode() == ISD::OR) {
1345          SDNode *Op = N1.Val;
1346          // !(X or Y) -> (!X and !Y) iff X or Y are freely invertible
1347          // !(X and Y) -> (!X or !Y) iff X or Y are freely invertible
1348          SDOperand LHS = Op->getOperand(0), RHS = Op->getOperand(1);
1349          if (isInvertibleForFree(RHS) || isInvertibleForFree(LHS)) {
1350            LHS = getNode(ISD::XOR, VT, LHS, N2);  // RHS = ~LHS
1351            RHS = getNode(ISD::XOR, VT, RHS, N2);  // RHS = ~RHS
1352            if (Op->getOpcode() == ISD::AND)
1353              return getNode(ISD::OR, VT, LHS, RHS);
1354            return getNode(ISD::AND, VT, LHS, RHS);
1355          }
1356        }
1357        // X xor -1 -> not(x)  ?
1358      }
1359      break;
1360    }
1361
1362    // Reassociate ((X op C1) op C2) if possible.
1363    if (N1.getOpcode() == Opcode && isAssociativeBinOp(Opcode))
1364      if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N1.Val->getOperand(1)))
1365        return getNode(Opcode, VT, N1.Val->getOperand(0),
1366                       getNode(Opcode, VT, N2, N1.Val->getOperand(1)));
1367  }
1368
1369  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1370  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1371  if (N1CFP) {
1372    if (N2CFP) {
1373      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1374      switch (Opcode) {
1375      case ISD::ADD: return getConstantFP(C1 + C2, VT);
1376      case ISD::SUB: return getConstantFP(C1 - C2, VT);
1377      case ISD::MUL: return getConstantFP(C1 * C2, VT);
1378      case ISD::SDIV:
1379        if (C2) return getConstantFP(C1 / C2, VT);
1380        break;
1381      case ISD::SREM :
1382        if (C2) return getConstantFP(fmod(C1, C2), VT);
1383        break;
1384      default: break;
1385      }
1386
1387    } else {      // Cannonicalize constant to RHS if commutative
1388      if (isCommutativeBinOp(Opcode)) {
1389        std::swap(N1CFP, N2CFP);
1390        std::swap(N1, N2);
1391      }
1392    }
1393
1394    if (Opcode == ISD::FP_ROUND_INREG)
1395      return getNode(ISD::FP_EXTEND, VT,
1396                     getNode(ISD::FP_ROUND, cast<VTSDNode>(N2)->getVT(), N1));
1397  }
1398
1399  // Finally, fold operations that do not require constants.
1400  switch (Opcode) {
1401  case ISD::TokenFactor:
1402    if (N1.getOpcode() == ISD::EntryToken)
1403      return N2;
1404    if (N2.getOpcode() == ISD::EntryToken)
1405      return N1;
1406    break;
1407
1408  case ISD::AND:
1409  case ISD::OR:
1410    if (N1.Val->getOpcode() == ISD::SETCC && N2.Val->getOpcode() == ISD::SETCC){
1411      SDNode *LHS = N1.Val, *RHS = N2.Val;
1412      SDOperand LL = LHS->getOperand(0), RL = RHS->getOperand(0);
1413      SDOperand LR = LHS->getOperand(1), RR = RHS->getOperand(1);
1414      ISD::CondCode Op1 = cast<CondCodeSDNode>(LHS->getOperand(2))->get();
1415      ISD::CondCode Op2 = cast<CondCodeSDNode>(RHS->getOperand(2))->get();
1416
1417      if (LR == RR && isa<ConstantSDNode>(LR) &&
1418          Op2 == Op1 && MVT::isInteger(LL.getValueType())) {
1419        // (X != 0) | (Y != 0) -> (X|Y != 0)
1420        // (X == 0) & (Y == 0) -> (X|Y == 0)
1421        // (X <  0) | (Y <  0) -> (X|Y < 0)
1422        if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1423            ((Op2 == ISD::SETEQ && Opcode == ISD::AND) ||
1424             (Op2 == ISD::SETNE && Opcode == ISD::OR) ||
1425             (Op2 == ISD::SETLT && Opcode == ISD::OR)))
1426          return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL), LR,
1427                          Op2);
1428
1429        if (cast<ConstantSDNode>(LR)->isAllOnesValue()) {
1430          // (X == -1) & (Y == -1) -> (X&Y == -1)
1431          // (X != -1) | (Y != -1) -> (X&Y != -1)
1432          // (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1433          if ((Opcode == ISD::AND && Op2 == ISD::SETEQ) ||
1434              (Opcode == ISD::OR  && Op2 == ISD::SETNE) ||
1435              (Opcode == ISD::OR  && Op2 == ISD::SETGT))
1436            return getSetCC(VT, getNode(ISD::AND, LR.getValueType(), LL, RL),
1437                            LR, Op2);
1438          // (X >  -1) & (Y >  -1) -> (X|Y > -1)
1439          if (Opcode == ISD::AND && Op2 == ISD::SETGT)
1440            return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL),
1441                            LR, Op2);
1442        }
1443      }
1444
1445      // (X op1 Y) | (Y op2 X) -> (X op1 Y) | (X swapop2 Y)
1446      if (LL == RR && LR == RL) {
1447        Op2 = ISD::getSetCCSwappedOperands(Op2);
1448        goto MatchedBackwards;
1449      }
1450
1451      if (LL == RL && LR == RR) {
1452      MatchedBackwards:
1453        ISD::CondCode Result;
1454        bool isInteger = MVT::isInteger(LL.getValueType());
1455        if (Opcode == ISD::OR)
1456          Result = ISD::getSetCCOrOperation(Op1, Op2, isInteger);
1457        else
1458          Result = ISD::getSetCCAndOperation(Op1, Op2, isInteger);
1459
1460        if (Result != ISD::SETCC_INVALID)
1461          return getSetCC(LHS->getValueType(0), LL, LR, Result);
1462      }
1463    }
1464
1465    // and/or zext(a), zext(b) -> zext(and/or a, b)
1466    if (N1.getOpcode() == ISD::ZERO_EXTEND &&
1467        N2.getOpcode() == ISD::ZERO_EXTEND &&
1468        N1.getOperand(0).getValueType() == N2.getOperand(0).getValueType())
1469      return getNode(ISD::ZERO_EXTEND, VT,
1470                     getNode(Opcode, N1.getOperand(0).getValueType(),
1471                             N1.getOperand(0), N2.getOperand(0)));
1472    break;
1473  case ISD::XOR:
1474    if (N1 == N2) return getConstant(0, VT);  // xor X, Y -> 0
1475    break;
1476  case ISD::ADD:
1477    if (N2.getOpcode() == ISD::FNEG)          // (A+ (-B) -> A-B
1478      return getNode(ISD::SUB, VT, N1, N2.getOperand(0));
1479    if (N1.getOpcode() == ISD::FNEG)          // ((-A)+B) -> B-A
1480      return getNode(ISD::SUB, VT, N2, N1.getOperand(0));
1481    if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1482        cast<ConstantSDNode>(N1.getOperand(0))->getValue() == 0)
1483      return getNode(ISD::SUB, VT, N2, N1.getOperand(1)); // (0-A)+B -> B-A
1484    if (N2.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N2.getOperand(0)) &&
1485        cast<ConstantSDNode>(N2.getOperand(0))->getValue() == 0)
1486      return getNode(ISD::SUB, VT, N1, N2.getOperand(1)); // A+(0-B) -> A-B
1487    if (N2.getOpcode() == ISD::SUB && N1 == N2.Val->getOperand(1) &&
1488        !MVT::isFloatingPoint(N2.getValueType()))
1489      return N2.Val->getOperand(0); // A+(B-A) -> B
1490    break;
1491  case ISD::SUB:
1492    if (N1.getOpcode() == ISD::ADD) {
1493      if (N1.Val->getOperand(0) == N2 &&
1494          !MVT::isFloatingPoint(N2.getValueType()))
1495        return N1.Val->getOperand(1);         // (A+B)-A == B
1496      if (N1.Val->getOperand(1) == N2 &&
1497          !MVT::isFloatingPoint(N2.getValueType()))
1498        return N1.Val->getOperand(0);         // (A+B)-B == A
1499    }
1500    if (N2.getOpcode() == ISD::FNEG)          // (A- (-B) -> A+B
1501      return getNode(ISD::ADD, VT, N1, N2.getOperand(0));
1502    break;
1503  case ISD::FP_ROUND_INREG:
1504    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1505    break;
1506  case ISD::SIGN_EXTEND_INREG: {
1507    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1508    if (EVT == VT) return N1;  // Not actually extending
1509
1510    // If we are sign extending an extension, use the original source.
1511    if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG)
1512      if (cast<VTSDNode>(N1.getOperand(1))->getVT() <= EVT)
1513        return N1;
1514
1515    // If we are sign extending a sextload, return just the load.
1516    if (N1.getOpcode() == ISD::SEXTLOAD)
1517      if (cast<VTSDNode>(N1.getOperand(3))->getVT() <= EVT)
1518        return N1;
1519
1520    // If we are extending the result of a setcc, and we already know the
1521    // contents of the top bits, eliminate the extension.
1522    if (N1.getOpcode() == ISD::SETCC &&
1523        TLI.getSetCCResultContents() ==
1524                        TargetLowering::ZeroOrNegativeOneSetCCResult)
1525      return N1;
1526
1527    // If we are sign extending the result of an (and X, C) operation, and we
1528    // know the extended bits are zeros already, don't do the extend.
1529    if (N1.getOpcode() == ISD::AND)
1530      if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
1531        uint64_t Mask = N1C->getValue();
1532        unsigned NumBits = MVT::getSizeInBits(EVT);
1533        if ((Mask & (~0ULL << (NumBits-1))) == 0)
1534          return N1;
1535      }
1536    break;
1537  }
1538
1539  // FIXME: figure out how to safely handle things like
1540  // int foo(int x) { return 1 << (x & 255); }
1541  // int bar() { return foo(256); }
1542#if 0
1543  case ISD::SHL:
1544  case ISD::SRL:
1545  case ISD::SRA:
1546    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1547        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1548      return getNode(Opcode, VT, N1, N2.getOperand(0));
1549    else if (N2.getOpcode() == ISD::AND)
1550      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1551        // If the and is only masking out bits that cannot effect the shift,
1552        // eliminate the and.
1553        unsigned NumBits = MVT::getSizeInBits(VT);
1554        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1555          return getNode(Opcode, VT, N1, N2.getOperand(0));
1556      }
1557    break;
1558#endif
1559  }
1560
1561  // Memoize this node if possible.
1562  SDNode *N;
1563  if (Opcode != ISD::CALLSEQ_START && Opcode != ISD::CALLSEQ_END) {
1564    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1565    if (BON) return SDOperand(BON, 0);
1566
1567    BON = N = new SDNode(Opcode, N1, N2);
1568  } else {
1569    N = new SDNode(Opcode, N1, N2);
1570  }
1571
1572  N->setValueTypes(VT);
1573  AllNodes.push_back(N);
1574  return SDOperand(N, 0);
1575}
1576
1577// setAdjCallChain - This method changes the token chain of an
1578// CALLSEQ_START/END node to be the specified operand.
1579void SDNode::setAdjCallChain(SDOperand N) {
1580  assert(N.getValueType() == MVT::Other);
1581  assert((getOpcode() == ISD::CALLSEQ_START ||
1582          getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!");
1583
1584  Operands[0].Val->removeUser(this);
1585  Operands[0] = N;
1586  N.Val->Uses.push_back(this);
1587}
1588
1589
1590
1591SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1592                                SDOperand Chain, SDOperand Ptr,
1593                                SDOperand SV) {
1594  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1595  if (N) return SDOperand(N, 0);
1596  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1597
1598  // Loads have a token chain.
1599  N->setValueTypes(VT, MVT::Other);
1600  AllNodes.push_back(N);
1601  return SDOperand(N, 0);
1602}
1603
1604
1605SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1606                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1607                                   MVT::ValueType EVT) {
1608  std::vector<SDOperand> Ops;
1609  Ops.reserve(4);
1610  Ops.push_back(Chain);
1611  Ops.push_back(Ptr);
1612  Ops.push_back(SV);
1613  Ops.push_back(getValueType(EVT));
1614  std::vector<MVT::ValueType> VTs;
1615  VTs.reserve(2);
1616  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1617  return getNode(Opcode, VTs, Ops);
1618}
1619
1620SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1621                                SDOperand N1, SDOperand N2, SDOperand N3) {
1622  // Perform various simplifications.
1623  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1624  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1625  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1626  switch (Opcode) {
1627  case ISD::SETCC: {
1628    // Use SimplifySetCC  to simplify SETCC's.
1629    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1630    if (Simp.Val) return Simp;
1631    break;
1632  }
1633  case ISD::SELECT:
1634    if (N1C)
1635      if (N1C->getValue())
1636        return N2;             // select true, X, Y -> X
1637      else
1638        return N3;             // select false, X, Y -> Y
1639
1640    if (N2 == N3) return N2;   // select C, X, X -> X
1641
1642    if (VT == MVT::i1) {  // Boolean SELECT
1643      if (N2C) {
1644        if (N2C->getValue())   // select C, 1, X -> C | X
1645          return getNode(ISD::OR, VT, N1, N3);
1646        else                   // select C, 0, X -> ~C & X
1647          return getNode(ISD::AND, VT,
1648                         getNode(ISD::XOR, N1.getValueType(), N1,
1649                                 getConstant(1, N1.getValueType())), N3);
1650      } else if (N3C) {
1651        if (N3C->getValue())   // select C, X, 1 -> ~C | X
1652          return getNode(ISD::OR, VT,
1653                         getNode(ISD::XOR, N1.getValueType(), N1,
1654                                 getConstant(1, N1.getValueType())), N2);
1655        else                   // select C, X, 0 -> C & X
1656          return getNode(ISD::AND, VT, N1, N2);
1657      }
1658
1659      if (N1 == N2)   // X ? X : Y --> X ? 1 : Y --> X | Y
1660        return getNode(ISD::OR, VT, N1, N3);
1661      if (N1 == N3)   // X ? Y : X --> X ? Y : 0 --> X & Y
1662        return getNode(ISD::AND, VT, N1, N2);
1663    }
1664    if (N1.getOpcode() == ISD::SETCC) {
1665      SDOperand Simp = SimplifySelectCC(N1.getOperand(0), N1.getOperand(1), N2,
1666                             N3, cast<CondCodeSDNode>(N1.getOperand(2))->get());
1667      if (Simp.Val) return Simp;
1668    }
1669    break;
1670  case ISD::BRCOND:
1671    if (N2C)
1672      if (N2C->getValue()) // Unconditional branch
1673        return getNode(ISD::BR, MVT::Other, N1, N3);
1674      else
1675        return N1;         // Never-taken branch
1676    break;
1677  }
1678
1679  std::vector<SDOperand> Ops;
1680  Ops.reserve(3);
1681  Ops.push_back(N1);
1682  Ops.push_back(N2);
1683  Ops.push_back(N3);
1684
1685  // Memoize nodes.
1686  SDNode *&N = OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1687  if (N) return SDOperand(N, 0);
1688
1689  N = new SDNode(Opcode, N1, N2, N3);
1690  N->setValueTypes(VT);
1691  AllNodes.push_back(N);
1692  return SDOperand(N, 0);
1693}
1694
1695SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1696                                SDOperand N1, SDOperand N2, SDOperand N3,
1697                                SDOperand N4) {
1698  std::vector<SDOperand> Ops;
1699  Ops.reserve(4);
1700  Ops.push_back(N1);
1701  Ops.push_back(N2);
1702  Ops.push_back(N3);
1703  Ops.push_back(N4);
1704  return getNode(Opcode, VT, Ops);
1705}
1706
1707SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1708                                SDOperand N1, SDOperand N2, SDOperand N3,
1709                                SDOperand N4, SDOperand N5) {
1710  std::vector<SDOperand> Ops;
1711  Ops.reserve(5);
1712  Ops.push_back(N1);
1713  Ops.push_back(N2);
1714  Ops.push_back(N3);
1715  Ops.push_back(N4);
1716  Ops.push_back(N5);
1717  return getNode(Opcode, VT, Ops);
1718}
1719
1720
1721SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1722  assert((!V || isa<PointerType>(V->getType())) &&
1723         "SrcValue is not a pointer?");
1724  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1725  if (N) return SDOperand(N, 0);
1726
1727  N = new SrcValueSDNode(V, Offset);
1728  AllNodes.push_back(N);
1729  return SDOperand(N, 0);
1730}
1731
1732SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1733                                std::vector<SDOperand> &Ops) {
1734  switch (Ops.size()) {
1735  case 0: return getNode(Opcode, VT);
1736  case 1: return getNode(Opcode, VT, Ops[0]);
1737  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1738  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1739  default: break;
1740  }
1741
1742  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1743  switch (Opcode) {
1744  default: break;
1745  case ISD::BRCONDTWOWAY:
1746    if (N1C)
1747      if (N1C->getValue()) // Unconditional branch to true dest.
1748        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
1749      else                 // Unconditional branch to false dest.
1750        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
1751    break;
1752  case ISD::BRTWOWAY_CC:
1753    assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
1754    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1755           "LHS and RHS of comparison must have same type!");
1756    break;
1757  case ISD::TRUNCSTORE: {
1758    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1759    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1760#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1761    // If this is a truncating store of a constant, convert to the desired type
1762    // and store it instead.
1763    if (isa<Constant>(Ops[0])) {
1764      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1765      if (isa<Constant>(Op))
1766        N1 = Op;
1767    }
1768    // Also for ConstantFP?
1769#endif
1770    if (Ops[0].getValueType() == EVT)       // Normal store?
1771      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1772    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1773    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1774           "Can't do FP-INT conversion!");
1775    break;
1776  }
1777  case ISD::SELECT_CC: {
1778    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1779    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1780           "LHS and RHS of condition must have same type!");
1781    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1782           "True and False arms of SelectCC must have same type!");
1783    assert(Ops[2].getValueType() == VT &&
1784           "select_cc node must be of same type as true and false value!");
1785    SDOperand Simp = SimplifySelectCC(Ops[0], Ops[1], Ops[2], Ops[3],
1786                                      cast<CondCodeSDNode>(Ops[4])->get());
1787    if (Simp.Val) return Simp;
1788    break;
1789  }
1790  case ISD::BR_CC: {
1791    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1792    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1793           "LHS/RHS of comparison should match types!");
1794    // Use SimplifySetCC  to simplify SETCC's.
1795    SDOperand Simp = SimplifySetCC(MVT::i1, Ops[2], Ops[3],
1796                                   cast<CondCodeSDNode>(Ops[1])->get());
1797    if (Simp.Val) {
1798      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Simp)) {
1799        if (C->getValue() & 1) // Unconditional branch
1800          return getNode(ISD::BR, MVT::Other, Ops[0], Ops[4]);
1801        else
1802          return Ops[0];          // Unconditional Fall through
1803      } else if (Simp.Val->getOpcode() == ISD::SETCC) {
1804        Ops[2] = Simp.getOperand(0);
1805        Ops[3] = Simp.getOperand(1);
1806        Ops[1] = Simp.getOperand(2);
1807      }
1808    }
1809    break;
1810  }
1811  }
1812
1813  // Memoize nodes.
1814  SDNode *&N = OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1815  if (N) return SDOperand(N, 0);
1816  N = new SDNode(Opcode, Ops);
1817  N->setValueTypes(VT);
1818  AllNodes.push_back(N);
1819  return SDOperand(N, 0);
1820}
1821
1822SDOperand SelectionDAG::getNode(unsigned Opcode,
1823                                std::vector<MVT::ValueType> &ResultTys,
1824                                std::vector<SDOperand> &Ops) {
1825  if (ResultTys.size() == 1)
1826    return getNode(Opcode, ResultTys[0], Ops);
1827
1828  switch (Opcode) {
1829  case ISD::EXTLOAD:
1830  case ISD::SEXTLOAD:
1831  case ISD::ZEXTLOAD: {
1832    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1833    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1834    // If they are asking for an extending load from/to the same thing, return a
1835    // normal load.
1836    if (ResultTys[0] == EVT)
1837      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1838    assert(EVT < ResultTys[0] &&
1839           "Should only be an extending load, not truncating!");
1840    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1841           "Cannot sign/zero extend a FP load!");
1842    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1843           "Cannot convert from FP to Int or Int -> FP!");
1844    break;
1845  }
1846
1847  // FIXME: figure out how to safely handle things like
1848  // int foo(int x) { return 1 << (x & 255); }
1849  // int bar() { return foo(256); }
1850#if 0
1851  case ISD::SRA_PARTS:
1852  case ISD::SRL_PARTS:
1853  case ISD::SHL_PARTS:
1854    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1855        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1856      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1857    else if (N3.getOpcode() == ISD::AND)
1858      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1859        // If the and is only masking out bits that cannot effect the shift,
1860        // eliminate the and.
1861        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1862        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1863          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1864      }
1865    break;
1866#endif
1867  }
1868
1869  // Memoize the node.
1870  SDNode *&N = ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys,
1871                                                                    Ops))];
1872  if (N) return SDOperand(N, 0);
1873  N = new SDNode(Opcode, Ops);
1874  N->setValueTypes(ResultTys);
1875  AllNodes.push_back(N);
1876  return SDOperand(N, 0);
1877}
1878
1879
1880/// SelectNodeTo - These are used for target selectors to *mutate* the
1881/// specified node to have the specified return type, Target opcode, and
1882/// operands.  Note that target opcodes are stored as
1883/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1884void SelectionDAG::SelectNodeTo(SDNode *N, MVT::ValueType VT,
1885                                unsigned TargetOpc) {
1886  RemoveNodeFromCSEMaps(N);
1887  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1888  N->setValueTypes(VT);
1889}
1890void SelectionDAG::SelectNodeTo(SDNode *N, MVT::ValueType VT,
1891                                unsigned TargetOpc, SDOperand Op1) {
1892  RemoveNodeFromCSEMaps(N);
1893  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1894  N->setValueTypes(VT);
1895  N->setOperands(Op1);
1896}
1897void SelectionDAG::SelectNodeTo(SDNode *N, MVT::ValueType VT,
1898                                unsigned TargetOpc, SDOperand Op1,
1899                                SDOperand Op2) {
1900  RemoveNodeFromCSEMaps(N);
1901  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1902  N->setValueTypes(VT);
1903  N->setOperands(Op1, Op2);
1904}
1905void SelectionDAG::SelectNodeTo(SDNode *N,
1906                                MVT::ValueType VT1, MVT::ValueType VT2,
1907                                unsigned TargetOpc, SDOperand Op1,
1908                                SDOperand Op2) {
1909  RemoveNodeFromCSEMaps(N);
1910  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1911  N->setValueTypes(VT1, VT2);
1912  N->setOperands(Op1, Op2);
1913}
1914void SelectionDAG::SelectNodeTo(SDNode *N, MVT::ValueType VT,
1915                                unsigned TargetOpc, SDOperand Op1,
1916                                SDOperand Op2, SDOperand Op3) {
1917  RemoveNodeFromCSEMaps(N);
1918  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1919  N->setValueTypes(VT);
1920  N->setOperands(Op1, Op2, Op3);
1921}
1922void SelectionDAG::SelectNodeTo(SDNode *N, MVT::ValueType VT1,
1923                                MVT::ValueType VT2,
1924                                unsigned TargetOpc, SDOperand Op1,
1925                                SDOperand Op2, SDOperand Op3) {
1926  RemoveNodeFromCSEMaps(N);
1927  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1928  N->setValueTypes(VT1, VT2);
1929  N->setOperands(Op1, Op2, Op3);
1930}
1931
1932void SelectionDAG::SelectNodeTo(SDNode *N, MVT::ValueType VT,
1933                                unsigned TargetOpc, SDOperand Op1,
1934                                SDOperand Op2, SDOperand Op3, SDOperand Op4) {
1935  RemoveNodeFromCSEMaps(N);
1936  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1937  N->setValueTypes(VT);
1938  N->setOperands(Op1, Op2, Op3, Op4);
1939}
1940void SelectionDAG::SelectNodeTo(SDNode *N, MVT::ValueType VT,
1941                                unsigned TargetOpc, SDOperand Op1,
1942                                SDOperand Op2, SDOperand Op3, SDOperand Op4,
1943                                SDOperand Op5) {
1944  RemoveNodeFromCSEMaps(N);
1945  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1946  N->setValueTypes(VT);
1947  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1948}
1949
1950/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
1951/// This can cause recursive merging of nodes in the DAG.
1952///
1953void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
1954  assert(From != To && "Cannot replace uses of with self");
1955  while (!From->use_empty()) {
1956    // Process users until they are all gone.
1957    SDNode *U = *From->use_begin();
1958
1959    // This node is about to morph, remove its old self from the CSE maps.
1960    RemoveNodeFromCSEMaps(U);
1961
1962    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
1963      if (U->getOperand(i).Val == From) {
1964        assert(U->getOperand(i).getValueType() ==
1965               To->getValueType(U->getOperand(i).ResNo));
1966        From->removeUser(U);
1967        U->Operands[i].Val = To;
1968        To->addUser(U);
1969      }
1970
1971    // Now that we have modified U, add it back to the CSE maps.  If it already
1972    // exists there, recursively merge the results together.
1973    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U))
1974      ReplaceAllUsesWith(U, Existing);
1975      // U is now dead.
1976  }
1977}
1978
1979void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
1980                                      const std::vector<SDOperand> &To) {
1981  assert(From->getNumValues() == To.size() &&
1982         "Incorrect number of values to replace with!");
1983  if (To.size() == 1 && To[0].ResNo == 0) {
1984    // Degenerate case handled above.
1985    ReplaceAllUsesWith(From, To[0].Val);
1986    return;
1987  }
1988
1989  while (!From->use_empty()) {
1990    // Process users until they are all gone.
1991    SDNode *U = *From->use_begin();
1992
1993    // This node is about to morph, remove its old self from the CSE maps.
1994    RemoveNodeFromCSEMaps(U);
1995
1996    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
1997      if (U->getOperand(i).Val == From) {
1998        const SDOperand &ToOp = To[U->getOperand(i).ResNo];
1999        assert(U->getOperand(i).getValueType() == ToOp.getValueType());
2000        From->removeUser(U);
2001        U->Operands[i] = ToOp;
2002        ToOp.Val->addUser(U);
2003      }
2004
2005    // Now that we have modified U, add it back to the CSE maps.  If it already
2006    // exists there, recursively merge the results together.
2007    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U))
2008      ReplaceAllUsesWith(U, Existing);
2009    // U is now dead.
2010  }
2011}
2012
2013
2014//===----------------------------------------------------------------------===//
2015//                              SDNode Class
2016//===----------------------------------------------------------------------===//
2017
2018/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2019/// indicated value.  This method ignores uses of other values defined by this
2020/// operation.
2021bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) {
2022  assert(Value < getNumValues() && "Bad value!");
2023
2024  // If there is only one value, this is easy.
2025  if (getNumValues() == 1)
2026    return use_size() == NUses;
2027  if (Uses.size() < NUses) return false;
2028
2029  SDOperand TheValue(this, Value);
2030
2031  std::set<SDNode*> UsersHandled;
2032
2033  for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end();
2034       UI != E; ++UI) {
2035    SDNode *User = *UI;
2036    if (User->getNumOperands() == 1 ||
2037        UsersHandled.insert(User).second)     // First time we've seen this?
2038      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2039        if (User->getOperand(i) == TheValue) {
2040          if (NUses == 0)
2041            return false;   // too many uses
2042          --NUses;
2043        }
2044  }
2045
2046  // Found exactly the right number of uses?
2047  return NUses == 0;
2048}
2049
2050
2051const char *SDNode::getOperationName(const SelectionDAG *G) const {
2052  switch (getOpcode()) {
2053  default:
2054    if (getOpcode() < ISD::BUILTIN_OP_END)
2055      return "<<Unknown DAG Node>>";
2056    else {
2057      if (G)
2058        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2059          return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2060      return "<<Unknown Target Node>>";
2061    }
2062
2063  case ISD::PCMARKER:      return "PCMarker";
2064  case ISD::SRCVALUE:      return "SrcValue";
2065  case ISD::VALUETYPE:     return "ValueType";
2066  case ISD::EntryToken:    return "EntryToken";
2067  case ISD::TokenFactor:   return "TokenFactor";
2068  case ISD::Constant:      return "Constant";
2069  case ISD::TargetConstant: return "TargetConstant";
2070  case ISD::ConstantFP:    return "ConstantFP";
2071  case ISD::GlobalAddress: return "GlobalAddress";
2072  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2073  case ISD::FrameIndex:    return "FrameIndex";
2074  case ISD::BasicBlock:    return "BasicBlock";
2075  case ISD::Register:      return "Register";
2076  case ISD::ExternalSymbol: return "ExternalSymbol";
2077  case ISD::ConstantPool:  return "ConstantPoolIndex";
2078  case ISD::CopyToReg:     return "CopyToReg";
2079  case ISD::CopyFromReg:   return "CopyFromReg";
2080  case ISD::ImplicitDef:   return "ImplicitDef";
2081  case ISD::UNDEF:         return "undef";
2082
2083  // Unary operators
2084  case ISD::FABS:   return "fabs";
2085  case ISD::FNEG:   return "fneg";
2086  case ISD::FSQRT:  return "fsqrt";
2087  case ISD::FSIN:   return "fsin";
2088  case ISD::FCOS:   return "fcos";
2089
2090  // Binary operators
2091  case ISD::ADD:    return "add";
2092  case ISD::SUB:    return "sub";
2093  case ISD::MUL:    return "mul";
2094  case ISD::MULHU:  return "mulhu";
2095  case ISD::MULHS:  return "mulhs";
2096  case ISD::SDIV:   return "sdiv";
2097  case ISD::UDIV:   return "udiv";
2098  case ISD::SREM:   return "srem";
2099  case ISD::UREM:   return "urem";
2100  case ISD::AND:    return "and";
2101  case ISD::OR:     return "or";
2102  case ISD::XOR:    return "xor";
2103  case ISD::SHL:    return "shl";
2104  case ISD::SRA:    return "sra";
2105  case ISD::SRL:    return "srl";
2106
2107  case ISD::SETCC:       return "setcc";
2108  case ISD::SELECT:      return "select";
2109  case ISD::SELECT_CC:   return "select_cc";
2110  case ISD::ADD_PARTS:   return "add_parts";
2111  case ISD::SUB_PARTS:   return "sub_parts";
2112  case ISD::SHL_PARTS:   return "shl_parts";
2113  case ISD::SRA_PARTS:   return "sra_parts";
2114  case ISD::SRL_PARTS:   return "srl_parts";
2115
2116  // Conversion operators.
2117  case ISD::SIGN_EXTEND: return "sign_extend";
2118  case ISD::ZERO_EXTEND: return "zero_extend";
2119  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2120  case ISD::TRUNCATE:    return "truncate";
2121  case ISD::FP_ROUND:    return "fp_round";
2122  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2123  case ISD::FP_EXTEND:   return "fp_extend";
2124
2125  case ISD::SINT_TO_FP:  return "sint_to_fp";
2126  case ISD::UINT_TO_FP:  return "uint_to_fp";
2127  case ISD::FP_TO_SINT:  return "fp_to_sint";
2128  case ISD::FP_TO_UINT:  return "fp_to_uint";
2129
2130    // Control flow instructions
2131  case ISD::BR:      return "br";
2132  case ISD::BRCOND:  return "brcond";
2133  case ISD::BRCONDTWOWAY:  return "brcondtwoway";
2134  case ISD::BR_CC:  return "br_cc";
2135  case ISD::BRTWOWAY_CC:  return "brtwoway_cc";
2136  case ISD::RET:     return "ret";
2137  case ISD::CALL:    return "call";
2138  case ISD::TAILCALL:return "tailcall";
2139  case ISD::CALLSEQ_START:  return "callseq_start";
2140  case ISD::CALLSEQ_END:    return "callseq_end";
2141
2142    // Other operators
2143  case ISD::LOAD:    return "load";
2144  case ISD::STORE:   return "store";
2145  case ISD::EXTLOAD:    return "extload";
2146  case ISD::SEXTLOAD:   return "sextload";
2147  case ISD::ZEXTLOAD:   return "zextload";
2148  case ISD::TRUNCSTORE: return "truncstore";
2149
2150  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2151  case ISD::EXTRACT_ELEMENT: return "extract_element";
2152  case ISD::BUILD_PAIR: return "build_pair";
2153  case ISD::MEMSET:  return "memset";
2154  case ISD::MEMCPY:  return "memcpy";
2155  case ISD::MEMMOVE: return "memmove";
2156
2157  // Bit counting
2158  case ISD::CTPOP:   return "ctpop";
2159  case ISD::CTTZ:    return "cttz";
2160  case ISD::CTLZ:    return "ctlz";
2161
2162  // IO Intrinsics
2163  case ISD::READPORT: return "readport";
2164  case ISD::WRITEPORT: return "writeport";
2165  case ISD::READIO: return "readio";
2166  case ISD::WRITEIO: return "writeio";
2167
2168  case ISD::CONDCODE:
2169    switch (cast<CondCodeSDNode>(this)->get()) {
2170    default: assert(0 && "Unknown setcc condition!");
2171    case ISD::SETOEQ:  return "setoeq";
2172    case ISD::SETOGT:  return "setogt";
2173    case ISD::SETOGE:  return "setoge";
2174    case ISD::SETOLT:  return "setolt";
2175    case ISD::SETOLE:  return "setole";
2176    case ISD::SETONE:  return "setone";
2177
2178    case ISD::SETO:    return "seto";
2179    case ISD::SETUO:   return "setuo";
2180    case ISD::SETUEQ:  return "setue";
2181    case ISD::SETUGT:  return "setugt";
2182    case ISD::SETUGE:  return "setuge";
2183    case ISD::SETULT:  return "setult";
2184    case ISD::SETULE:  return "setule";
2185    case ISD::SETUNE:  return "setune";
2186
2187    case ISD::SETEQ:   return "seteq";
2188    case ISD::SETGT:   return "setgt";
2189    case ISD::SETGE:   return "setge";
2190    case ISD::SETLT:   return "setlt";
2191    case ISD::SETLE:   return "setle";
2192    case ISD::SETNE:   return "setne";
2193    }
2194  }
2195}
2196
2197void SDNode::dump() const { dump(0); }
2198void SDNode::dump(const SelectionDAG *G) const {
2199  std::cerr << (void*)this << ": ";
2200
2201  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2202    if (i) std::cerr << ",";
2203    if (getValueType(i) == MVT::Other)
2204      std::cerr << "ch";
2205    else
2206      std::cerr << MVT::getValueTypeString(getValueType(i));
2207  }
2208  std::cerr << " = " << getOperationName(G);
2209
2210  std::cerr << " ";
2211  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2212    if (i) std::cerr << ", ";
2213    std::cerr << (void*)getOperand(i).Val;
2214    if (unsigned RN = getOperand(i).ResNo)
2215      std::cerr << ":" << RN;
2216  }
2217
2218  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2219    std::cerr << "<" << CSDN->getValue() << ">";
2220  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2221    std::cerr << "<" << CSDN->getValue() << ">";
2222  } else if (const GlobalAddressSDNode *GADN =
2223             dyn_cast<GlobalAddressSDNode>(this)) {
2224    std::cerr << "<";
2225    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2226  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2227    std::cerr << "<" << FIDN->getIndex() << ">";
2228  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2229    std::cerr << "<" << CP->getIndex() << ">";
2230  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2231    std::cerr << "<";
2232    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2233    if (LBB)
2234      std::cerr << LBB->getName() << " ";
2235    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2236  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2237    if (G && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2238      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2239    } else {
2240      std::cerr << " #" << R->getReg();
2241    }
2242  } else if (const ExternalSymbolSDNode *ES =
2243             dyn_cast<ExternalSymbolSDNode>(this)) {
2244    std::cerr << "'" << ES->getSymbol() << "'";
2245  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2246    if (M->getValue())
2247      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2248    else
2249      std::cerr << "<null:" << M->getOffset() << ">";
2250  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2251    std::cerr << ":" << getValueTypeString(N->getVT());
2252  }
2253}
2254
2255static void DumpNodes(SDNode *N, unsigned indent, const SelectionDAG *G) {
2256  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2257    if (N->getOperand(i).Val->hasOneUse())
2258      DumpNodes(N->getOperand(i).Val, indent+2, G);
2259    else
2260      std::cerr << "\n" << std::string(indent+2, ' ')
2261                << (void*)N->getOperand(i).Val << ": <multiple use>";
2262
2263
2264  std::cerr << "\n" << std::string(indent, ' ');
2265  N->dump(G);
2266}
2267
2268void SelectionDAG::dump() const {
2269  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2270  std::vector<SDNode*> Nodes(AllNodes);
2271  std::sort(Nodes.begin(), Nodes.end());
2272
2273  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2274    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2275      DumpNodes(Nodes[i], 2, this);
2276  }
2277
2278  DumpNodes(getRoot().Val, 2, this);
2279
2280  std::cerr << "\n\n";
2281}
2282
2283