SelectionDAG.cpp revision 7c29ae320a827facfbcc32b91d6d98c6b06e44ea
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Function.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/Intrinsics.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CallingConv.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineModuleInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetFrameInfo.h"
31#include "llvm/Target/TargetLowering.h"
32#include "llvm/Target/TargetOptions.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetIntrinsicInfo.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/ManagedStatic.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/Support/raw_ostream.h"
41#include "llvm/System/Mutex.h"
42#include "llvm/ADT/SetVector.h"
43#include "llvm/ADT/SmallPtrSet.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/SmallVector.h"
46#include "llvm/ADT/StringExtras.h"
47#include <algorithm>
48#include <cmath>
49using namespace llvm;
50
51/// makeVTList - Return an instance of the SDVTList struct initialized with the
52/// specified members.
53static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
54  SDVTList Res = {VTs, NumVTs};
55  return Res;
56}
57
58static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
59  switch (VT.getSimpleVT().SimpleTy) {
60  default: llvm_unreachable("Unknown FP format");
61  case MVT::f32:     return &APFloat::IEEEsingle;
62  case MVT::f64:     return &APFloat::IEEEdouble;
63  case MVT::f80:     return &APFloat::x87DoubleExtended;
64  case MVT::f128:    return &APFloat::IEEEquad;
65  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
66  }
67}
68
69SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
70
71//===----------------------------------------------------------------------===//
72//                              ConstantFPSDNode Class
73//===----------------------------------------------------------------------===//
74
75/// isExactlyValue - We don't rely on operator== working on double values, as
76/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
77/// As such, this method can be used to do an exact bit-for-bit comparison of
78/// two floating point values.
79bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
80  return getValueAPF().bitwiseIsEqual(V);
81}
82
83bool ConstantFPSDNode::isValueValidForType(EVT VT,
84                                           const APFloat& Val) {
85  assert(VT.isFloatingPoint() && "Can only convert between FP types");
86
87  // PPC long double cannot be converted to any other type.
88  if (VT == MVT::ppcf128 ||
89      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
90    return false;
91
92  // convert modifies in place, so make a copy.
93  APFloat Val2 = APFloat(Val);
94  bool losesInfo;
95  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
96                      &losesInfo);
97  return !losesInfo;
98}
99
100//===----------------------------------------------------------------------===//
101//                              ISD Namespace
102//===----------------------------------------------------------------------===//
103
104/// isBuildVectorAllOnes - Return true if the specified node is a
105/// BUILD_VECTOR where all of the elements are ~0 or undef.
106bool ISD::isBuildVectorAllOnes(const SDNode *N) {
107  // Look through a bit convert.
108  if (N->getOpcode() == ISD::BIT_CONVERT)
109    N = N->getOperand(0).getNode();
110
111  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
112
113  unsigned i = 0, e = N->getNumOperands();
114
115  // Skip over all of the undef values.
116  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
117    ++i;
118
119  // Do not accept an all-undef vector.
120  if (i == e) return false;
121
122  // Do not accept build_vectors that aren't all constants or which have non-~0
123  // elements.
124  SDValue NotZero = N->getOperand(i);
125  if (isa<ConstantSDNode>(NotZero)) {
126    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
127      return false;
128  } else if (isa<ConstantFPSDNode>(NotZero)) {
129    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
130                bitcastToAPInt().isAllOnesValue())
131      return false;
132  } else
133    return false;
134
135  // Okay, we have at least one ~0 value, check to see if the rest match or are
136  // undefs.
137  for (++i; i != e; ++i)
138    if (N->getOperand(i) != NotZero &&
139        N->getOperand(i).getOpcode() != ISD::UNDEF)
140      return false;
141  return true;
142}
143
144
145/// isBuildVectorAllZeros - Return true if the specified node is a
146/// BUILD_VECTOR where all of the elements are 0 or undef.
147bool ISD::isBuildVectorAllZeros(const SDNode *N) {
148  // Look through a bit convert.
149  if (N->getOpcode() == ISD::BIT_CONVERT)
150    N = N->getOperand(0).getNode();
151
152  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
153
154  unsigned i = 0, e = N->getNumOperands();
155
156  // Skip over all of the undef values.
157  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
158    ++i;
159
160  // Do not accept an all-undef vector.
161  if (i == e) return false;
162
163  // Do not accept build_vectors that aren't all constants or which have non-0
164  // elements.
165  SDValue Zero = N->getOperand(i);
166  if (isa<ConstantSDNode>(Zero)) {
167    if (!cast<ConstantSDNode>(Zero)->isNullValue())
168      return false;
169  } else if (isa<ConstantFPSDNode>(Zero)) {
170    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
171      return false;
172  } else
173    return false;
174
175  // Okay, we have at least one 0 value, check to see if the rest match or are
176  // undefs.
177  for (++i; i != e; ++i)
178    if (N->getOperand(i) != Zero &&
179        N->getOperand(i).getOpcode() != ISD::UNDEF)
180      return false;
181  return true;
182}
183
184/// isScalarToVector - Return true if the specified node is a
185/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
186/// element is not an undef.
187bool ISD::isScalarToVector(const SDNode *N) {
188  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
189    return true;
190
191  if (N->getOpcode() != ISD::BUILD_VECTOR)
192    return false;
193  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
194    return false;
195  unsigned NumElems = N->getNumOperands();
196  for (unsigned i = 1; i < NumElems; ++i) {
197    SDValue V = N->getOperand(i);
198    if (V.getOpcode() != ISD::UNDEF)
199      return false;
200  }
201  return true;
202}
203
204/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
205/// when given the operation for (X op Y).
206ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
207  // To perform this operation, we just need to swap the L and G bits of the
208  // operation.
209  unsigned OldL = (Operation >> 2) & 1;
210  unsigned OldG = (Operation >> 1) & 1;
211  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
212                       (OldL << 1) |       // New G bit
213                       (OldG << 2));       // New L bit.
214}
215
216/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
217/// 'op' is a valid SetCC operation.
218ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
219  unsigned Operation = Op;
220  if (isInteger)
221    Operation ^= 7;   // Flip L, G, E bits, but not U.
222  else
223    Operation ^= 15;  // Flip all of the condition bits.
224
225  if (Operation > ISD::SETTRUE2)
226    Operation &= ~8;  // Don't let N and U bits get set.
227
228  return ISD::CondCode(Operation);
229}
230
231
232/// isSignedOp - For an integer comparison, return 1 if the comparison is a
233/// signed operation and 2 if the result is an unsigned comparison.  Return zero
234/// if the operation does not depend on the sign of the input (setne and seteq).
235static int isSignedOp(ISD::CondCode Opcode) {
236  switch (Opcode) {
237  default: llvm_unreachable("Illegal integer setcc operation!");
238  case ISD::SETEQ:
239  case ISD::SETNE: return 0;
240  case ISD::SETLT:
241  case ISD::SETLE:
242  case ISD::SETGT:
243  case ISD::SETGE: return 1;
244  case ISD::SETULT:
245  case ISD::SETULE:
246  case ISD::SETUGT:
247  case ISD::SETUGE: return 2;
248  }
249}
250
251/// getSetCCOrOperation - Return the result of a logical OR between different
252/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
253/// returns SETCC_INVALID if it is not possible to represent the resultant
254/// comparison.
255ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
256                                       bool isInteger) {
257  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
258    // Cannot fold a signed integer setcc with an unsigned integer setcc.
259    return ISD::SETCC_INVALID;
260
261  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
262
263  // If the N and U bits get set then the resultant comparison DOES suddenly
264  // care about orderedness, and is true when ordered.
265  if (Op > ISD::SETTRUE2)
266    Op &= ~16;     // Clear the U bit if the N bit is set.
267
268  // Canonicalize illegal integer setcc's.
269  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
270    Op = ISD::SETNE;
271
272  return ISD::CondCode(Op);
273}
274
275/// getSetCCAndOperation - Return the result of a logical AND between different
276/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
277/// function returns zero if it is not possible to represent the resultant
278/// comparison.
279ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
280                                        bool isInteger) {
281  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
282    // Cannot fold a signed setcc with an unsigned setcc.
283    return ISD::SETCC_INVALID;
284
285  // Combine all of the condition bits.
286  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
287
288  // Canonicalize illegal integer setcc's.
289  if (isInteger) {
290    switch (Result) {
291    default: break;
292    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
293    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
294    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
295    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
296    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
297    }
298  }
299
300  return Result;
301}
302
303const TargetMachine &SelectionDAG::getTarget() const {
304  return MF->getTarget();
305}
306
307//===----------------------------------------------------------------------===//
308//                           SDNode Profile Support
309//===----------------------------------------------------------------------===//
310
311/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
312///
313static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
314  ID.AddInteger(OpC);
315}
316
317/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
318/// solely with their pointer.
319static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
320  ID.AddPointer(VTList.VTs);
321}
322
323/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
324///
325static void AddNodeIDOperands(FoldingSetNodeID &ID,
326                              const SDValue *Ops, unsigned NumOps) {
327  for (; NumOps; --NumOps, ++Ops) {
328    ID.AddPointer(Ops->getNode());
329    ID.AddInteger(Ops->getResNo());
330  }
331}
332
333/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
334///
335static void AddNodeIDOperands(FoldingSetNodeID &ID,
336                              const SDUse *Ops, unsigned NumOps) {
337  for (; NumOps; --NumOps, ++Ops) {
338    ID.AddPointer(Ops->getNode());
339    ID.AddInteger(Ops->getResNo());
340  }
341}
342
343static void AddNodeIDNode(FoldingSetNodeID &ID,
344                          unsigned short OpC, SDVTList VTList,
345                          const SDValue *OpList, unsigned N) {
346  AddNodeIDOpcode(ID, OpC);
347  AddNodeIDValueTypes(ID, VTList);
348  AddNodeIDOperands(ID, OpList, N);
349}
350
351/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
352/// the NodeID data.
353static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
354  switch (N->getOpcode()) {
355  case ISD::TargetExternalSymbol:
356  case ISD::ExternalSymbol:
357    llvm_unreachable("Should only be used on nodes with operands");
358  default: break;  // Normal nodes don't need extra info.
359  case ISD::TargetConstant:
360  case ISD::Constant:
361    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
362    break;
363  case ISD::TargetConstantFP:
364  case ISD::ConstantFP: {
365    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
366    break;
367  }
368  case ISD::TargetGlobalAddress:
369  case ISD::GlobalAddress:
370  case ISD::TargetGlobalTLSAddress:
371  case ISD::GlobalTLSAddress: {
372    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
373    ID.AddPointer(GA->getGlobal());
374    ID.AddInteger(GA->getOffset());
375    ID.AddInteger(GA->getTargetFlags());
376    break;
377  }
378  case ISD::BasicBlock:
379    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
380    break;
381  case ISD::Register:
382    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
383    break;
384
385  case ISD::SRCVALUE:
386    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
387    break;
388  case ISD::FrameIndex:
389  case ISD::TargetFrameIndex:
390    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
391    break;
392  case ISD::JumpTable:
393  case ISD::TargetJumpTable:
394    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
395    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
396    break;
397  case ISD::ConstantPool:
398  case ISD::TargetConstantPool: {
399    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
400    ID.AddInteger(CP->getAlignment());
401    ID.AddInteger(CP->getOffset());
402    if (CP->isMachineConstantPoolEntry())
403      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
404    else
405      ID.AddPointer(CP->getConstVal());
406    ID.AddInteger(CP->getTargetFlags());
407    break;
408  }
409  case ISD::LOAD: {
410    const LoadSDNode *LD = cast<LoadSDNode>(N);
411    ID.AddInteger(LD->getMemoryVT().getRawBits());
412    ID.AddInteger(LD->getRawSubclassData());
413    break;
414  }
415  case ISD::STORE: {
416    const StoreSDNode *ST = cast<StoreSDNode>(N);
417    ID.AddInteger(ST->getMemoryVT().getRawBits());
418    ID.AddInteger(ST->getRawSubclassData());
419    break;
420  }
421  case ISD::ATOMIC_CMP_SWAP:
422  case ISD::ATOMIC_SWAP:
423  case ISD::ATOMIC_LOAD_ADD:
424  case ISD::ATOMIC_LOAD_SUB:
425  case ISD::ATOMIC_LOAD_AND:
426  case ISD::ATOMIC_LOAD_OR:
427  case ISD::ATOMIC_LOAD_XOR:
428  case ISD::ATOMIC_LOAD_NAND:
429  case ISD::ATOMIC_LOAD_MIN:
430  case ISD::ATOMIC_LOAD_MAX:
431  case ISD::ATOMIC_LOAD_UMIN:
432  case ISD::ATOMIC_LOAD_UMAX: {
433    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
434    ID.AddInteger(AT->getMemoryVT().getRawBits());
435    ID.AddInteger(AT->getRawSubclassData());
436    break;
437  }
438  case ISD::VECTOR_SHUFFLE: {
439    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
440    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
441         i != e; ++i)
442      ID.AddInteger(SVN->getMaskElt(i));
443    break;
444  }
445  case ISD::TargetBlockAddress:
446  case ISD::BlockAddress: {
447    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
448    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
449    break;
450  }
451  } // end switch (N->getOpcode())
452}
453
454/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
455/// data.
456static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
457  AddNodeIDOpcode(ID, N->getOpcode());
458  // Add the return value info.
459  AddNodeIDValueTypes(ID, N->getVTList());
460  // Add the operand info.
461  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
462
463  // Handle SDNode leafs with special info.
464  AddNodeIDCustom(ID, N);
465}
466
467/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
468/// the CSE map that carries volatility, indexing mode, and
469/// extension/truncation information.
470///
471static inline unsigned
472encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile) {
473  assert((ConvType & 3) == ConvType &&
474         "ConvType may not require more than 2 bits!");
475  assert((AM & 7) == AM &&
476         "AM may not require more than 3 bits!");
477  return ConvType |
478         (AM << 2) |
479         (isVolatile << 5);
480}
481
482//===----------------------------------------------------------------------===//
483//                              SelectionDAG Class
484//===----------------------------------------------------------------------===//
485
486/// doNotCSE - Return true if CSE should not be performed for this node.
487static bool doNotCSE(SDNode *N) {
488  if (N->getValueType(0) == MVT::Flag)
489    return true; // Never CSE anything that produces a flag.
490
491  switch (N->getOpcode()) {
492  default: break;
493  case ISD::HANDLENODE:
494  case ISD::EH_LABEL:
495    return true;   // Never CSE these nodes.
496  }
497
498  // Check that remaining values produced are not flags.
499  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
500    if (N->getValueType(i) == MVT::Flag)
501      return true; // Never CSE anything that produces a flag.
502
503  return false;
504}
505
506/// RemoveDeadNodes - This method deletes all unreachable nodes in the
507/// SelectionDAG.
508void SelectionDAG::RemoveDeadNodes() {
509  // Create a dummy node (which is not added to allnodes), that adds a reference
510  // to the root node, preventing it from being deleted.
511  HandleSDNode Dummy(getRoot());
512
513  SmallVector<SDNode*, 128> DeadNodes;
514
515  // Add all obviously-dead nodes to the DeadNodes worklist.
516  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
517    if (I->use_empty())
518      DeadNodes.push_back(I);
519
520  RemoveDeadNodes(DeadNodes);
521
522  // If the root changed (e.g. it was a dead load, update the root).
523  setRoot(Dummy.getValue());
524}
525
526/// RemoveDeadNodes - This method deletes the unreachable nodes in the
527/// given list, and any nodes that become unreachable as a result.
528void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
529                                   DAGUpdateListener *UpdateListener) {
530
531  // Process the worklist, deleting the nodes and adding their uses to the
532  // worklist.
533  while (!DeadNodes.empty()) {
534    SDNode *N = DeadNodes.pop_back_val();
535
536    if (UpdateListener)
537      UpdateListener->NodeDeleted(N, 0);
538
539    // Take the node out of the appropriate CSE map.
540    RemoveNodeFromCSEMaps(N);
541
542    // Next, brutally remove the operand list.  This is safe to do, as there are
543    // no cycles in the graph.
544    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
545      SDUse &Use = *I++;
546      SDNode *Operand = Use.getNode();
547      Use.set(SDValue());
548
549      // Now that we removed this operand, see if there are no uses of it left.
550      if (Operand->use_empty())
551        DeadNodes.push_back(Operand);
552    }
553
554    DeallocateNode(N);
555  }
556}
557
558void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
559  SmallVector<SDNode*, 16> DeadNodes(1, N);
560  RemoveDeadNodes(DeadNodes, UpdateListener);
561}
562
563void SelectionDAG::DeleteNode(SDNode *N) {
564  // First take this out of the appropriate CSE map.
565  RemoveNodeFromCSEMaps(N);
566
567  // Finally, remove uses due to operands of this node, remove from the
568  // AllNodes list, and delete the node.
569  DeleteNodeNotInCSEMaps(N);
570}
571
572void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
573  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
574  assert(N->use_empty() && "Cannot delete a node that is not dead!");
575
576  // Drop all of the operands and decrement used node's use counts.
577  N->DropOperands();
578
579  DeallocateNode(N);
580}
581
582void SelectionDAG::DeallocateNode(SDNode *N) {
583  if (N->OperandsNeedDelete)
584    delete[] N->OperandList;
585
586  // Set the opcode to DELETED_NODE to help catch bugs when node
587  // memory is reallocated.
588  N->NodeType = ISD::DELETED_NODE;
589
590  NodeAllocator.Deallocate(AllNodes.remove(N));
591}
592
593/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
594/// correspond to it.  This is useful when we're about to delete or repurpose
595/// the node.  We don't want future request for structurally identical nodes
596/// to return N anymore.
597bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
598  bool Erased = false;
599  switch (N->getOpcode()) {
600  case ISD::EntryToken:
601    llvm_unreachable("EntryToken should not be in CSEMaps!");
602    return false;
603  case ISD::HANDLENODE: return false;  // noop.
604  case ISD::CONDCODE:
605    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
606           "Cond code doesn't exist!");
607    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
608    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
609    break;
610  case ISD::ExternalSymbol:
611    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
612    break;
613  case ISD::TargetExternalSymbol: {
614    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
615    Erased = TargetExternalSymbols.erase(
616               std::pair<std::string,unsigned char>(ESN->getSymbol(),
617                                                    ESN->getTargetFlags()));
618    break;
619  }
620  case ISD::VALUETYPE: {
621    EVT VT = cast<VTSDNode>(N)->getVT();
622    if (VT.isExtended()) {
623      Erased = ExtendedValueTypeNodes.erase(VT);
624    } else {
625      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
626      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
627    }
628    break;
629  }
630  default:
631    // Remove it from the CSE Map.
632    Erased = CSEMap.RemoveNode(N);
633    break;
634  }
635#ifndef NDEBUG
636  // Verify that the node was actually in one of the CSE maps, unless it has a
637  // flag result (which cannot be CSE'd) or is one of the special cases that are
638  // not subject to CSE.
639  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
640      !N->isMachineOpcode() && !doNotCSE(N)) {
641    N->dump(this);
642    errs() << "\n";
643    llvm_unreachable("Node is not in map!");
644  }
645#endif
646  return Erased;
647}
648
649/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
650/// maps and modified in place. Add it back to the CSE maps, unless an identical
651/// node already exists, in which case transfer all its users to the existing
652/// node. This transfer can potentially trigger recursive merging.
653///
654void
655SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
656                                       DAGUpdateListener *UpdateListener) {
657  // For node types that aren't CSE'd, just act as if no identical node
658  // already exists.
659  if (!doNotCSE(N)) {
660    SDNode *Existing = CSEMap.GetOrInsertNode(N);
661    if (Existing != N) {
662      // If there was already an existing matching node, use ReplaceAllUsesWith
663      // to replace the dead one with the existing one.  This can cause
664      // recursive merging of other unrelated nodes down the line.
665      ReplaceAllUsesWith(N, Existing, UpdateListener);
666
667      // N is now dead.  Inform the listener if it exists and delete it.
668      if (UpdateListener)
669        UpdateListener->NodeDeleted(N, Existing);
670      DeleteNodeNotInCSEMaps(N);
671      return;
672    }
673  }
674
675  // If the node doesn't already exist, we updated it.  Inform a listener if
676  // it exists.
677  if (UpdateListener)
678    UpdateListener->NodeUpdated(N);
679}
680
681/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
682/// were replaced with those specified.  If this node is never memoized,
683/// return null, otherwise return a pointer to the slot it would take.  If a
684/// node already exists with these operands, the slot will be non-null.
685SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
686                                           void *&InsertPos) {
687  if (doNotCSE(N))
688    return 0;
689
690  SDValue Ops[] = { Op };
691  FoldingSetNodeID ID;
692  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
693  AddNodeIDCustom(ID, N);
694  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
695}
696
697/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
698/// were replaced with those specified.  If this node is never memoized,
699/// return null, otherwise return a pointer to the slot it would take.  If a
700/// node already exists with these operands, the slot will be non-null.
701SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
702                                           SDValue Op1, SDValue Op2,
703                                           void *&InsertPos) {
704  if (doNotCSE(N))
705    return 0;
706
707  SDValue Ops[] = { Op1, Op2 };
708  FoldingSetNodeID ID;
709  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
710  AddNodeIDCustom(ID, N);
711  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
712}
713
714
715/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
716/// were replaced with those specified.  If this node is never memoized,
717/// return null, otherwise return a pointer to the slot it would take.  If a
718/// node already exists with these operands, the slot will be non-null.
719SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
720                                           const SDValue *Ops,unsigned NumOps,
721                                           void *&InsertPos) {
722  if (doNotCSE(N))
723    return 0;
724
725  FoldingSetNodeID ID;
726  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
727  AddNodeIDCustom(ID, N);
728  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
729}
730
731/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
732void SelectionDAG::VerifyNode(SDNode *N) {
733  switch (N->getOpcode()) {
734  default:
735    break;
736  case ISD::BUILD_PAIR: {
737    EVT VT = N->getValueType(0);
738    assert(N->getNumValues() == 1 && "Too many results!");
739    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
740           "Wrong return type!");
741    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
742    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
743           "Mismatched operand types!");
744    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
745           "Wrong operand type!");
746    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
747           "Wrong return type size");
748    break;
749  }
750  case ISD::BUILD_VECTOR: {
751    assert(N->getNumValues() == 1 && "Too many results!");
752    assert(N->getValueType(0).isVector() && "Wrong return type!");
753    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
754           "Wrong number of operands!");
755    EVT EltVT = N->getValueType(0).getVectorElementType();
756    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
757      assert((I->getValueType() == EltVT ||
758             (EltVT.isInteger() && I->getValueType().isInteger() &&
759              EltVT.bitsLE(I->getValueType()))) &&
760            "Wrong operand type!");
761    break;
762  }
763  }
764}
765
766/// getEVTAlignment - Compute the default alignment value for the
767/// given type.
768///
769unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
770  const Type *Ty = VT == MVT::iPTR ?
771                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
772                   VT.getTypeForEVT(*getContext());
773
774  return TLI.getTargetData()->getABITypeAlignment(Ty);
775}
776
777// EntryNode could meaningfully have debug info if we can find it...
778SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
779  : TLI(tli), FLI(fli), DW(0),
780    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
781    getVTList(MVT::Other)), Root(getEntryNode()) {
782  AllNodes.push_back(&EntryNode);
783}
784
785void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
786                        DwarfWriter *dw) {
787  MF = &mf;
788  MMI = mmi;
789  DW = dw;
790  Context = &mf.getFunction()->getContext();
791}
792
793SelectionDAG::~SelectionDAG() {
794  allnodes_clear();
795}
796
797void SelectionDAG::allnodes_clear() {
798  assert(&*AllNodes.begin() == &EntryNode);
799  AllNodes.remove(AllNodes.begin());
800  while (!AllNodes.empty())
801    DeallocateNode(AllNodes.begin());
802}
803
804void SelectionDAG::clear() {
805  allnodes_clear();
806  OperandAllocator.Reset();
807  CSEMap.clear();
808
809  ExtendedValueTypeNodes.clear();
810  ExternalSymbols.clear();
811  TargetExternalSymbols.clear();
812  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
813            static_cast<CondCodeSDNode*>(0));
814  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
815            static_cast<SDNode*>(0));
816
817  EntryNode.UseList = 0;
818  AllNodes.push_back(&EntryNode);
819  Root = getEntryNode();
820}
821
822SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
823  return VT.bitsGT(Op.getValueType()) ?
824    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
825    getNode(ISD::TRUNCATE, DL, VT, Op);
826}
827
828SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
829  return VT.bitsGT(Op.getValueType()) ?
830    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
831    getNode(ISD::TRUNCATE, DL, VT, Op);
832}
833
834SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
835  assert(!VT.isVector() &&
836         "getZeroExtendInReg should use the vector element type instead of "
837         "the vector type!");
838  if (Op.getValueType() == VT) return Op;
839  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
840  APInt Imm = APInt::getLowBitsSet(BitWidth,
841                                   VT.getSizeInBits());
842  return getNode(ISD::AND, DL, Op.getValueType(), Op,
843                 getConstant(Imm, Op.getValueType()));
844}
845
846/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
847///
848SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
849  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
850  SDValue NegOne =
851    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
852  return getNode(ISD::XOR, DL, VT, Val, NegOne);
853}
854
855SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
856  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
857  assert((EltVT.getSizeInBits() >= 64 ||
858         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
859         "getConstant with a uint64_t value that doesn't fit in the type!");
860  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
861}
862
863SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
864  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
865}
866
867SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
868  assert(VT.isInteger() && "Cannot create FP integer constant!");
869
870  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
871  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
872         "APInt size does not match type size!");
873
874  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
875  FoldingSetNodeID ID;
876  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
877  ID.AddPointer(&Val);
878  void *IP = 0;
879  SDNode *N = NULL;
880  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
881    if (!VT.isVector())
882      return SDValue(N, 0);
883  if (!N) {
884    N = NodeAllocator.Allocate<ConstantSDNode>();
885    new (N) ConstantSDNode(isT, &Val, EltVT);
886    CSEMap.InsertNode(N, IP);
887    AllNodes.push_back(N);
888  }
889
890  SDValue Result(N, 0);
891  if (VT.isVector()) {
892    SmallVector<SDValue, 8> Ops;
893    Ops.assign(VT.getVectorNumElements(), Result);
894    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
895                     VT, &Ops[0], Ops.size());
896  }
897  return Result;
898}
899
900SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
901  return getConstant(Val, TLI.getPointerTy(), isTarget);
902}
903
904
905SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
906  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
907}
908
909SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
910  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
911
912  EVT EltVT =
913    VT.isVector() ? VT.getVectorElementType() : VT;
914
915  // Do the map lookup using the actual bit pattern for the floating point
916  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
917  // we don't have issues with SNANs.
918  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
919  FoldingSetNodeID ID;
920  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
921  ID.AddPointer(&V);
922  void *IP = 0;
923  SDNode *N = NULL;
924  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
925    if (!VT.isVector())
926      return SDValue(N, 0);
927  if (!N) {
928    N = NodeAllocator.Allocate<ConstantFPSDNode>();
929    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
930    CSEMap.InsertNode(N, IP);
931    AllNodes.push_back(N);
932  }
933
934  SDValue Result(N, 0);
935  if (VT.isVector()) {
936    SmallVector<SDValue, 8> Ops;
937    Ops.assign(VT.getVectorNumElements(), Result);
938    // FIXME DebugLoc info might be appropriate here
939    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
940                     VT, &Ops[0], Ops.size());
941  }
942  return Result;
943}
944
945SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
946  EVT EltVT =
947    VT.isVector() ? VT.getVectorElementType() : VT;
948  if (EltVT==MVT::f32)
949    return getConstantFP(APFloat((float)Val), VT, isTarget);
950  else
951    return getConstantFP(APFloat(Val), VT, isTarget);
952}
953
954SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
955                                       EVT VT, int64_t Offset,
956                                       bool isTargetGA,
957                                       unsigned char TargetFlags) {
958  assert((TargetFlags == 0 || isTargetGA) &&
959         "Cannot set target flags on target-independent globals");
960
961  // Truncate (with sign-extension) the offset value to the pointer size.
962  EVT PTy = TLI.getPointerTy();
963  unsigned BitWidth = PTy.getSizeInBits();
964  if (BitWidth < 64)
965    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
966
967  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
968  if (!GVar) {
969    // If GV is an alias then use the aliasee for determining thread-localness.
970    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
971      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
972  }
973
974  unsigned Opc;
975  if (GVar && GVar->isThreadLocal())
976    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
977  else
978    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
979
980  FoldingSetNodeID ID;
981  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
982  ID.AddPointer(GV);
983  ID.AddInteger(Offset);
984  ID.AddInteger(TargetFlags);
985  void *IP = 0;
986  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
987    return SDValue(E, 0);
988  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
989  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
990  CSEMap.InsertNode(N, IP);
991  AllNodes.push_back(N);
992  return SDValue(N, 0);
993}
994
995SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
996  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
997  FoldingSetNodeID ID;
998  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
999  ID.AddInteger(FI);
1000  void *IP = 0;
1001  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1002    return SDValue(E, 0);
1003  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1004  new (N) FrameIndexSDNode(FI, VT, isTarget);
1005  CSEMap.InsertNode(N, IP);
1006  AllNodes.push_back(N);
1007  return SDValue(N, 0);
1008}
1009
1010SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1011                                   unsigned char TargetFlags) {
1012  assert((TargetFlags == 0 || isTarget) &&
1013         "Cannot set target flags on target-independent jump tables");
1014  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1015  FoldingSetNodeID ID;
1016  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1017  ID.AddInteger(JTI);
1018  ID.AddInteger(TargetFlags);
1019  void *IP = 0;
1020  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1021    return SDValue(E, 0);
1022  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1023  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1024  CSEMap.InsertNode(N, IP);
1025  AllNodes.push_back(N);
1026  return SDValue(N, 0);
1027}
1028
1029SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1030                                      unsigned Alignment, int Offset,
1031                                      bool isTarget,
1032                                      unsigned char TargetFlags) {
1033  assert((TargetFlags == 0 || isTarget) &&
1034         "Cannot set target flags on target-independent globals");
1035  if (Alignment == 0)
1036    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1037  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1038  FoldingSetNodeID ID;
1039  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1040  ID.AddInteger(Alignment);
1041  ID.AddInteger(Offset);
1042  ID.AddPointer(C);
1043  ID.AddInteger(TargetFlags);
1044  void *IP = 0;
1045  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1046    return SDValue(E, 0);
1047  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1048  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1049  CSEMap.InsertNode(N, IP);
1050  AllNodes.push_back(N);
1051  return SDValue(N, 0);
1052}
1053
1054
1055SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1056                                      unsigned Alignment, int Offset,
1057                                      bool isTarget,
1058                                      unsigned char TargetFlags) {
1059  assert((TargetFlags == 0 || isTarget) &&
1060         "Cannot set target flags on target-independent globals");
1061  if (Alignment == 0)
1062    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1063  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1064  FoldingSetNodeID ID;
1065  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1066  ID.AddInteger(Alignment);
1067  ID.AddInteger(Offset);
1068  C->AddSelectionDAGCSEId(ID);
1069  ID.AddInteger(TargetFlags);
1070  void *IP = 0;
1071  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1072    return SDValue(E, 0);
1073  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1074  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1075  CSEMap.InsertNode(N, IP);
1076  AllNodes.push_back(N);
1077  return SDValue(N, 0);
1078}
1079
1080SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1081  FoldingSetNodeID ID;
1082  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1083  ID.AddPointer(MBB);
1084  void *IP = 0;
1085  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1086    return SDValue(E, 0);
1087  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1088  new (N) BasicBlockSDNode(MBB);
1089  CSEMap.InsertNode(N, IP);
1090  AllNodes.push_back(N);
1091  return SDValue(N, 0);
1092}
1093
1094SDValue SelectionDAG::getValueType(EVT VT) {
1095  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1096      ValueTypeNodes.size())
1097    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1098
1099  SDNode *&N = VT.isExtended() ?
1100    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1101
1102  if (N) return SDValue(N, 0);
1103  N = NodeAllocator.Allocate<VTSDNode>();
1104  new (N) VTSDNode(VT);
1105  AllNodes.push_back(N);
1106  return SDValue(N, 0);
1107}
1108
1109SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1110  SDNode *&N = ExternalSymbols[Sym];
1111  if (N) return SDValue(N, 0);
1112  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1113  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1119                                              unsigned char TargetFlags) {
1120  SDNode *&N =
1121    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1122                                                               TargetFlags)];
1123  if (N) return SDValue(N, 0);
1124  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1125  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1126  AllNodes.push_back(N);
1127  return SDValue(N, 0);
1128}
1129
1130SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1131  if ((unsigned)Cond >= CondCodeNodes.size())
1132    CondCodeNodes.resize(Cond+1);
1133
1134  if (CondCodeNodes[Cond] == 0) {
1135    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1136    new (N) CondCodeSDNode(Cond);
1137    CondCodeNodes[Cond] = N;
1138    AllNodes.push_back(N);
1139  }
1140  return SDValue(CondCodeNodes[Cond], 0);
1141}
1142
1143// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1144// the shuffle mask M that point at N1 to point at N2, and indices that point
1145// N2 to point at N1.
1146static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1147  std::swap(N1, N2);
1148  int NElts = M.size();
1149  for (int i = 0; i != NElts; ++i) {
1150    if (M[i] >= NElts)
1151      M[i] -= NElts;
1152    else if (M[i] >= 0)
1153      M[i] += NElts;
1154  }
1155}
1156
1157SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1158                                       SDValue N2, const int *Mask) {
1159  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1160  assert(VT.isVector() && N1.getValueType().isVector() &&
1161         "Vector Shuffle VTs must be a vectors");
1162  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1163         && "Vector Shuffle VTs must have same element type");
1164
1165  // Canonicalize shuffle undef, undef -> undef
1166  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1167    return getUNDEF(VT);
1168
1169  // Validate that all indices in Mask are within the range of the elements
1170  // input to the shuffle.
1171  unsigned NElts = VT.getVectorNumElements();
1172  SmallVector<int, 8> MaskVec;
1173  for (unsigned i = 0; i != NElts; ++i) {
1174    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1175    MaskVec.push_back(Mask[i]);
1176  }
1177
1178  // Canonicalize shuffle v, v -> v, undef
1179  if (N1 == N2) {
1180    N2 = getUNDEF(VT);
1181    for (unsigned i = 0; i != NElts; ++i)
1182      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1183  }
1184
1185  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1186  if (N1.getOpcode() == ISD::UNDEF)
1187    commuteShuffle(N1, N2, MaskVec);
1188
1189  // Canonicalize all index into lhs, -> shuffle lhs, undef
1190  // Canonicalize all index into rhs, -> shuffle rhs, undef
1191  bool AllLHS = true, AllRHS = true;
1192  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1193  for (unsigned i = 0; i != NElts; ++i) {
1194    if (MaskVec[i] >= (int)NElts) {
1195      if (N2Undef)
1196        MaskVec[i] = -1;
1197      else
1198        AllLHS = false;
1199    } else if (MaskVec[i] >= 0) {
1200      AllRHS = false;
1201    }
1202  }
1203  if (AllLHS && AllRHS)
1204    return getUNDEF(VT);
1205  if (AllLHS && !N2Undef)
1206    N2 = getUNDEF(VT);
1207  if (AllRHS) {
1208    N1 = getUNDEF(VT);
1209    commuteShuffle(N1, N2, MaskVec);
1210  }
1211
1212  // If Identity shuffle, or all shuffle in to undef, return that node.
1213  bool AllUndef = true;
1214  bool Identity = true;
1215  for (unsigned i = 0; i != NElts; ++i) {
1216    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1217    if (MaskVec[i] >= 0) AllUndef = false;
1218  }
1219  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1220    return N1;
1221  if (AllUndef)
1222    return getUNDEF(VT);
1223
1224  FoldingSetNodeID ID;
1225  SDValue Ops[2] = { N1, N2 };
1226  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1227  for (unsigned i = 0; i != NElts; ++i)
1228    ID.AddInteger(MaskVec[i]);
1229
1230  void* IP = 0;
1231  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1232    return SDValue(E, 0);
1233
1234  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1235  // SDNode doesn't have access to it.  This memory will be "leaked" when
1236  // the node is deallocated, but recovered when the NodeAllocator is released.
1237  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1238  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1239
1240  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1241  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1242  CSEMap.InsertNode(N, IP);
1243  AllNodes.push_back(N);
1244  return SDValue(N, 0);
1245}
1246
1247SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1248                                       SDValue Val, SDValue DTy,
1249                                       SDValue STy, SDValue Rnd, SDValue Sat,
1250                                       ISD::CvtCode Code) {
1251  // If the src and dest types are the same and the conversion is between
1252  // integer types of the same sign or two floats, no conversion is necessary.
1253  if (DTy == STy &&
1254      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1255    return Val;
1256
1257  FoldingSetNodeID ID;
1258  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1259  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1260  void* IP = 0;
1261  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1262    return SDValue(E, 0);
1263  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1264  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1265  CSEMap.InsertNode(N, IP);
1266  AllNodes.push_back(N);
1267  return SDValue(N, 0);
1268}
1269
1270SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1271  FoldingSetNodeID ID;
1272  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1273  ID.AddInteger(RegNo);
1274  void *IP = 0;
1275  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1276    return SDValue(E, 0);
1277  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1278  new (N) RegisterSDNode(RegNo, VT);
1279  CSEMap.InsertNode(N, IP);
1280  AllNodes.push_back(N);
1281  return SDValue(N, 0);
1282}
1283
1284SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1285                               SDValue Root,
1286                               unsigned LabelID) {
1287  FoldingSetNodeID ID;
1288  SDValue Ops[] = { Root };
1289  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1290  ID.AddInteger(LabelID);
1291  void *IP = 0;
1292  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1293    return SDValue(E, 0);
1294  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1295  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1296  CSEMap.InsertNode(N, IP);
1297  AllNodes.push_back(N);
1298  return SDValue(N, 0);
1299}
1300
1301SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1302                                      bool isTarget,
1303                                      unsigned char TargetFlags) {
1304  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1305
1306  FoldingSetNodeID ID;
1307  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1308  ID.AddPointer(BA);
1309  ID.AddInteger(TargetFlags);
1310  void *IP = 0;
1311  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1312    return SDValue(E, 0);
1313  SDNode *N = NodeAllocator.Allocate<BlockAddressSDNode>();
1314  new (N) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1315  CSEMap.InsertNode(N, IP);
1316  AllNodes.push_back(N);
1317  return SDValue(N, 0);
1318}
1319
1320SDValue SelectionDAG::getSrcValue(const Value *V) {
1321  assert((!V || isa<PointerType>(V->getType())) &&
1322         "SrcValue is not a pointer?");
1323
1324  FoldingSetNodeID ID;
1325  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1326  ID.AddPointer(V);
1327
1328  void *IP = 0;
1329  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1330    return SDValue(E, 0);
1331
1332  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1333  new (N) SrcValueSDNode(V);
1334  CSEMap.InsertNode(N, IP);
1335  AllNodes.push_back(N);
1336  return SDValue(N, 0);
1337}
1338
1339/// getShiftAmountOperand - Return the specified value casted to
1340/// the target's desired shift amount type.
1341SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1342  EVT OpTy = Op.getValueType();
1343  MVT ShTy = TLI.getShiftAmountTy();
1344  if (OpTy == ShTy || OpTy.isVector()) return Op;
1345
1346  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1347  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1348}
1349
1350/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1351/// specified value type.
1352SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1353  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1354  unsigned ByteSize = VT.getStoreSize();
1355  const Type *Ty = VT.getTypeForEVT(*getContext());
1356  unsigned StackAlign =
1357  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1358
1359  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1360  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1361}
1362
1363/// CreateStackTemporary - Create a stack temporary suitable for holding
1364/// either of the specified value types.
1365SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1366  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1367                            VT2.getStoreSizeInBits())/8;
1368  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1369  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1370  const TargetData *TD = TLI.getTargetData();
1371  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1372                            TD->getPrefTypeAlignment(Ty2));
1373
1374  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1375  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1376  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1377}
1378
1379SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1380                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1381  // These setcc operations always fold.
1382  switch (Cond) {
1383  default: break;
1384  case ISD::SETFALSE:
1385  case ISD::SETFALSE2: return getConstant(0, VT);
1386  case ISD::SETTRUE:
1387  case ISD::SETTRUE2:  return getConstant(1, VT);
1388
1389  case ISD::SETOEQ:
1390  case ISD::SETOGT:
1391  case ISD::SETOGE:
1392  case ISD::SETOLT:
1393  case ISD::SETOLE:
1394  case ISD::SETONE:
1395  case ISD::SETO:
1396  case ISD::SETUO:
1397  case ISD::SETUEQ:
1398  case ISD::SETUNE:
1399    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1400    break;
1401  }
1402
1403  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1404    const APInt &C2 = N2C->getAPIntValue();
1405    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1406      const APInt &C1 = N1C->getAPIntValue();
1407
1408      switch (Cond) {
1409      default: llvm_unreachable("Unknown integer setcc!");
1410      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1411      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1412      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1413      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1414      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1415      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1416      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1417      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1418      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1419      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1420      }
1421    }
1422  }
1423  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1424    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1425      // No compile time operations on this type yet.
1426      if (N1C->getValueType(0) == MVT::ppcf128)
1427        return SDValue();
1428
1429      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1430      switch (Cond) {
1431      default: break;
1432      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1433                          return getUNDEF(VT);
1434                        // fall through
1435      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1436      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1437                          return getUNDEF(VT);
1438                        // fall through
1439      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1440                                           R==APFloat::cmpLessThan, VT);
1441      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1442                          return getUNDEF(VT);
1443                        // fall through
1444      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1445      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1446                          return getUNDEF(VT);
1447                        // fall through
1448      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1449      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1450                          return getUNDEF(VT);
1451                        // fall through
1452      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1453                                           R==APFloat::cmpEqual, VT);
1454      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1455                          return getUNDEF(VT);
1456                        // fall through
1457      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1458                                           R==APFloat::cmpEqual, VT);
1459      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1460      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1461      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1462                                           R==APFloat::cmpEqual, VT);
1463      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1464      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1465                                           R==APFloat::cmpLessThan, VT);
1466      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1467                                           R==APFloat::cmpUnordered, VT);
1468      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1469      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1470      }
1471    } else {
1472      // Ensure that the constant occurs on the RHS.
1473      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1474    }
1475  }
1476
1477  // Could not fold it.
1478  return SDValue();
1479}
1480
1481/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1482/// use this predicate to simplify operations downstream.
1483bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1484  // This predicate is not safe for vector operations.
1485  if (Op.getValueType().isVector())
1486    return false;
1487
1488  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1489  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1490}
1491
1492/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1493/// this predicate to simplify operations downstream.  Mask is known to be zero
1494/// for bits that V cannot have.
1495bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1496                                     unsigned Depth) const {
1497  APInt KnownZero, KnownOne;
1498  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1499  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1500  return (KnownZero & Mask) == Mask;
1501}
1502
1503/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1504/// known to be either zero or one and return them in the KnownZero/KnownOne
1505/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1506/// processing.
1507void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1508                                     APInt &KnownZero, APInt &KnownOne,
1509                                     unsigned Depth) const {
1510  unsigned BitWidth = Mask.getBitWidth();
1511  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1512         "Mask size mismatches value type size!");
1513
1514  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1515  if (Depth == 6 || Mask == 0)
1516    return;  // Limit search depth.
1517
1518  APInt KnownZero2, KnownOne2;
1519
1520  switch (Op.getOpcode()) {
1521  case ISD::Constant:
1522    // We know all of the bits for a constant!
1523    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1524    KnownZero = ~KnownOne & Mask;
1525    return;
1526  case ISD::AND:
1527    // If either the LHS or the RHS are Zero, the result is zero.
1528    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1529    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1530                      KnownZero2, KnownOne2, Depth+1);
1531    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1532    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1533
1534    // Output known-1 bits are only known if set in both the LHS & RHS.
1535    KnownOne &= KnownOne2;
1536    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1537    KnownZero |= KnownZero2;
1538    return;
1539  case ISD::OR:
1540    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1541    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1542                      KnownZero2, KnownOne2, Depth+1);
1543    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1544    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1545
1546    // Output known-0 bits are only known if clear in both the LHS & RHS.
1547    KnownZero &= KnownZero2;
1548    // Output known-1 are known to be set if set in either the LHS | RHS.
1549    KnownOne |= KnownOne2;
1550    return;
1551  case ISD::XOR: {
1552    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1553    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1554    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1555    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1556
1557    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1558    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1559    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1560    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1561    KnownZero = KnownZeroOut;
1562    return;
1563  }
1564  case ISD::MUL: {
1565    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1566    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1567    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1568    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1569    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1570
1571    // If low bits are zero in either operand, output low known-0 bits.
1572    // Also compute a conserative estimate for high known-0 bits.
1573    // More trickiness is possible, but this is sufficient for the
1574    // interesting case of alignment computation.
1575    KnownOne.clear();
1576    unsigned TrailZ = KnownZero.countTrailingOnes() +
1577                      KnownZero2.countTrailingOnes();
1578    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1579                               KnownZero2.countLeadingOnes(),
1580                               BitWidth) - BitWidth;
1581
1582    TrailZ = std::min(TrailZ, BitWidth);
1583    LeadZ = std::min(LeadZ, BitWidth);
1584    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1585                APInt::getHighBitsSet(BitWidth, LeadZ);
1586    KnownZero &= Mask;
1587    return;
1588  }
1589  case ISD::UDIV: {
1590    // For the purposes of computing leading zeros we can conservatively
1591    // treat a udiv as a logical right shift by the power of 2 known to
1592    // be less than the denominator.
1593    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1594    ComputeMaskedBits(Op.getOperand(0),
1595                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1596    unsigned LeadZ = KnownZero2.countLeadingOnes();
1597
1598    KnownOne2.clear();
1599    KnownZero2.clear();
1600    ComputeMaskedBits(Op.getOperand(1),
1601                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1602    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1603    if (RHSUnknownLeadingOnes != BitWidth)
1604      LeadZ = std::min(BitWidth,
1605                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1606
1607    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1608    return;
1609  }
1610  case ISD::SELECT:
1611    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1612    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1613    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1614    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1615
1616    // Only known if known in both the LHS and RHS.
1617    KnownOne &= KnownOne2;
1618    KnownZero &= KnownZero2;
1619    return;
1620  case ISD::SELECT_CC:
1621    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1622    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1623    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1624    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1625
1626    // Only known if known in both the LHS and RHS.
1627    KnownOne &= KnownOne2;
1628    KnownZero &= KnownZero2;
1629    return;
1630  case ISD::SADDO:
1631  case ISD::UADDO:
1632  case ISD::SSUBO:
1633  case ISD::USUBO:
1634  case ISD::SMULO:
1635  case ISD::UMULO:
1636    if (Op.getResNo() != 1)
1637      return;
1638    // The boolean result conforms to getBooleanContents.  Fall through.
1639  case ISD::SETCC:
1640    // If we know the result of a setcc has the top bits zero, use this info.
1641    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1642        BitWidth > 1)
1643      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1644    return;
1645  case ISD::SHL:
1646    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1647    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1648      unsigned ShAmt = SA->getZExtValue();
1649
1650      // If the shift count is an invalid immediate, don't do anything.
1651      if (ShAmt >= BitWidth)
1652        return;
1653
1654      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1655                        KnownZero, KnownOne, Depth+1);
1656      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1657      KnownZero <<= ShAmt;
1658      KnownOne  <<= ShAmt;
1659      // low bits known zero.
1660      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1661    }
1662    return;
1663  case ISD::SRL:
1664    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1665    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1666      unsigned ShAmt = SA->getZExtValue();
1667
1668      // If the shift count is an invalid immediate, don't do anything.
1669      if (ShAmt >= BitWidth)
1670        return;
1671
1672      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1673                        KnownZero, KnownOne, Depth+1);
1674      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1675      KnownZero = KnownZero.lshr(ShAmt);
1676      KnownOne  = KnownOne.lshr(ShAmt);
1677
1678      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1679      KnownZero |= HighBits;  // High bits known zero.
1680    }
1681    return;
1682  case ISD::SRA:
1683    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1684      unsigned ShAmt = SA->getZExtValue();
1685
1686      // If the shift count is an invalid immediate, don't do anything.
1687      if (ShAmt >= BitWidth)
1688        return;
1689
1690      APInt InDemandedMask = (Mask << ShAmt);
1691      // If any of the demanded bits are produced by the sign extension, we also
1692      // demand the input sign bit.
1693      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1694      if (HighBits.getBoolValue())
1695        InDemandedMask |= APInt::getSignBit(BitWidth);
1696
1697      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1698                        Depth+1);
1699      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1700      KnownZero = KnownZero.lshr(ShAmt);
1701      KnownOne  = KnownOne.lshr(ShAmt);
1702
1703      // Handle the sign bits.
1704      APInt SignBit = APInt::getSignBit(BitWidth);
1705      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1706
1707      if (KnownZero.intersects(SignBit)) {
1708        KnownZero |= HighBits;  // New bits are known zero.
1709      } else if (KnownOne.intersects(SignBit)) {
1710        KnownOne  |= HighBits;  // New bits are known one.
1711      }
1712    }
1713    return;
1714  case ISD::SIGN_EXTEND_INREG: {
1715    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1716    unsigned EBits = EVT.getSizeInBits();
1717
1718    // Sign extension.  Compute the demanded bits in the result that are not
1719    // present in the input.
1720    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1721
1722    APInt InSignBit = APInt::getSignBit(EBits);
1723    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1724
1725    // If the sign extended bits are demanded, we know that the sign
1726    // bit is demanded.
1727    InSignBit.zext(BitWidth);
1728    if (NewBits.getBoolValue())
1729      InputDemandedBits |= InSignBit;
1730
1731    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1732                      KnownZero, KnownOne, Depth+1);
1733    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1734
1735    // If the sign bit of the input is known set or clear, then we know the
1736    // top bits of the result.
1737    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1738      KnownZero |= NewBits;
1739      KnownOne  &= ~NewBits;
1740    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1741      KnownOne  |= NewBits;
1742      KnownZero &= ~NewBits;
1743    } else {                              // Input sign bit unknown
1744      KnownZero &= ~NewBits;
1745      KnownOne  &= ~NewBits;
1746    }
1747    return;
1748  }
1749  case ISD::CTTZ:
1750  case ISD::CTLZ:
1751  case ISD::CTPOP: {
1752    unsigned LowBits = Log2_32(BitWidth)+1;
1753    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1754    KnownOne.clear();
1755    return;
1756  }
1757  case ISD::LOAD: {
1758    if (ISD::isZEXTLoad(Op.getNode())) {
1759      LoadSDNode *LD = cast<LoadSDNode>(Op);
1760      EVT VT = LD->getMemoryVT();
1761      unsigned MemBits = VT.getSizeInBits();
1762      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1763    }
1764    return;
1765  }
1766  case ISD::ZERO_EXTEND: {
1767    EVT InVT = Op.getOperand(0).getValueType();
1768    unsigned InBits = InVT.getScalarType().getSizeInBits();
1769    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1770    APInt InMask    = Mask;
1771    InMask.trunc(InBits);
1772    KnownZero.trunc(InBits);
1773    KnownOne.trunc(InBits);
1774    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1775    KnownZero.zext(BitWidth);
1776    KnownOne.zext(BitWidth);
1777    KnownZero |= NewBits;
1778    return;
1779  }
1780  case ISD::SIGN_EXTEND: {
1781    EVT InVT = Op.getOperand(0).getValueType();
1782    unsigned InBits = InVT.getScalarType().getSizeInBits();
1783    APInt InSignBit = APInt::getSignBit(InBits);
1784    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1785    APInt InMask = Mask;
1786    InMask.trunc(InBits);
1787
1788    // If any of the sign extended bits are demanded, we know that the sign
1789    // bit is demanded. Temporarily set this bit in the mask for our callee.
1790    if (NewBits.getBoolValue())
1791      InMask |= InSignBit;
1792
1793    KnownZero.trunc(InBits);
1794    KnownOne.trunc(InBits);
1795    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1796
1797    // Note if the sign bit is known to be zero or one.
1798    bool SignBitKnownZero = KnownZero.isNegative();
1799    bool SignBitKnownOne  = KnownOne.isNegative();
1800    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1801           "Sign bit can't be known to be both zero and one!");
1802
1803    // If the sign bit wasn't actually demanded by our caller, we don't
1804    // want it set in the KnownZero and KnownOne result values. Reset the
1805    // mask and reapply it to the result values.
1806    InMask = Mask;
1807    InMask.trunc(InBits);
1808    KnownZero &= InMask;
1809    KnownOne  &= InMask;
1810
1811    KnownZero.zext(BitWidth);
1812    KnownOne.zext(BitWidth);
1813
1814    // If the sign bit is known zero or one, the top bits match.
1815    if (SignBitKnownZero)
1816      KnownZero |= NewBits;
1817    else if (SignBitKnownOne)
1818      KnownOne  |= NewBits;
1819    return;
1820  }
1821  case ISD::ANY_EXTEND: {
1822    EVT InVT = Op.getOperand(0).getValueType();
1823    unsigned InBits = InVT.getScalarType().getSizeInBits();
1824    APInt InMask = Mask;
1825    InMask.trunc(InBits);
1826    KnownZero.trunc(InBits);
1827    KnownOne.trunc(InBits);
1828    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1829    KnownZero.zext(BitWidth);
1830    KnownOne.zext(BitWidth);
1831    return;
1832  }
1833  case ISD::TRUNCATE: {
1834    EVT InVT = Op.getOperand(0).getValueType();
1835    unsigned InBits = InVT.getScalarType().getSizeInBits();
1836    APInt InMask = Mask;
1837    InMask.zext(InBits);
1838    KnownZero.zext(InBits);
1839    KnownOne.zext(InBits);
1840    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1841    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1842    KnownZero.trunc(BitWidth);
1843    KnownOne.trunc(BitWidth);
1844    break;
1845  }
1846  case ISD::AssertZext: {
1847    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1848    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1849    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1850                      KnownOne, Depth+1);
1851    KnownZero |= (~InMask) & Mask;
1852    return;
1853  }
1854  case ISD::FGETSIGN:
1855    // All bits are zero except the low bit.
1856    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1857    return;
1858
1859  case ISD::SUB: {
1860    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1861      // We know that the top bits of C-X are clear if X contains less bits
1862      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1863      // positive if we can prove that X is >= 0 and < 16.
1864      if (CLHS->getAPIntValue().isNonNegative()) {
1865        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1866        // NLZ can't be BitWidth with no sign bit
1867        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1868        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1869                          Depth+1);
1870
1871        // If all of the MaskV bits are known to be zero, then we know the
1872        // output top bits are zero, because we now know that the output is
1873        // from [0-C].
1874        if ((KnownZero2 & MaskV) == MaskV) {
1875          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1876          // Top bits known zero.
1877          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1878        }
1879      }
1880    }
1881  }
1882  // fall through
1883  case ISD::ADD: {
1884    // Output known-0 bits are known if clear or set in both the low clear bits
1885    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1886    // low 3 bits clear.
1887    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1888    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1889    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1890    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1891
1892    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1893    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1894    KnownZeroOut = std::min(KnownZeroOut,
1895                            KnownZero2.countTrailingOnes());
1896
1897    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1898    return;
1899  }
1900  case ISD::SREM:
1901    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1902      const APInt &RA = Rem->getAPIntValue();
1903      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1904        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1905        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1906        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1907
1908        // If the sign bit of the first operand is zero, the sign bit of
1909        // the result is zero. If the first operand has no one bits below
1910        // the second operand's single 1 bit, its sign will be zero.
1911        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1912          KnownZero2 |= ~LowBits;
1913
1914        KnownZero |= KnownZero2 & Mask;
1915
1916        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1917      }
1918    }
1919    return;
1920  case ISD::UREM: {
1921    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1922      const APInt &RA = Rem->getAPIntValue();
1923      if (RA.isPowerOf2()) {
1924        APInt LowBits = (RA - 1);
1925        APInt Mask2 = LowBits & Mask;
1926        KnownZero |= ~LowBits & Mask;
1927        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1928        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1929        break;
1930      }
1931    }
1932
1933    // Since the result is less than or equal to either operand, any leading
1934    // zero bits in either operand must also exist in the result.
1935    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1936    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1937                      Depth+1);
1938    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1939                      Depth+1);
1940
1941    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1942                                KnownZero2.countLeadingOnes());
1943    KnownOne.clear();
1944    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1945    return;
1946  }
1947  default:
1948    // Allow the target to implement this method for its nodes.
1949    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1950  case ISD::INTRINSIC_WO_CHAIN:
1951  case ISD::INTRINSIC_W_CHAIN:
1952  case ISD::INTRINSIC_VOID:
1953      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1954                                         Depth);
1955    }
1956    return;
1957  }
1958}
1959
1960/// ComputeNumSignBits - Return the number of times the sign bit of the
1961/// register is replicated into the other bits.  We know that at least 1 bit
1962/// is always equal to the sign bit (itself), but other cases can give us
1963/// information.  For example, immediately after an "SRA X, 2", we know that
1964/// the top 3 bits are all equal to each other, so we return 3.
1965unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1966  EVT VT = Op.getValueType();
1967  assert(VT.isInteger() && "Invalid VT!");
1968  unsigned VTBits = VT.getScalarType().getSizeInBits();
1969  unsigned Tmp, Tmp2;
1970  unsigned FirstAnswer = 1;
1971
1972  if (Depth == 6)
1973    return 1;  // Limit search depth.
1974
1975  switch (Op.getOpcode()) {
1976  default: break;
1977  case ISD::AssertSext:
1978    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1979    return VTBits-Tmp+1;
1980  case ISD::AssertZext:
1981    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1982    return VTBits-Tmp;
1983
1984  case ISD::Constant: {
1985    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1986    // If negative, return # leading ones.
1987    if (Val.isNegative())
1988      return Val.countLeadingOnes();
1989
1990    // Return # leading zeros.
1991    return Val.countLeadingZeros();
1992  }
1993
1994  case ISD::SIGN_EXTEND:
1995    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1996    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1997
1998  case ISD::SIGN_EXTEND_INREG:
1999    // Max of the input and what this extends.
2000    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2001    Tmp = VTBits-Tmp+1;
2002
2003    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2004    return std::max(Tmp, Tmp2);
2005
2006  case ISD::SRA:
2007    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2008    // SRA X, C   -> adds C sign bits.
2009    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2010      Tmp += C->getZExtValue();
2011      if (Tmp > VTBits) Tmp = VTBits;
2012    }
2013    return Tmp;
2014  case ISD::SHL:
2015    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2016      // shl destroys sign bits.
2017      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2018      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2019          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2020      return Tmp - C->getZExtValue();
2021    }
2022    break;
2023  case ISD::AND:
2024  case ISD::OR:
2025  case ISD::XOR:    // NOT is handled here.
2026    // Logical binary ops preserve the number of sign bits at the worst.
2027    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2028    if (Tmp != 1) {
2029      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2030      FirstAnswer = std::min(Tmp, Tmp2);
2031      // We computed what we know about the sign bits as our first
2032      // answer. Now proceed to the generic code that uses
2033      // ComputeMaskedBits, and pick whichever answer is better.
2034    }
2035    break;
2036
2037  case ISD::SELECT:
2038    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2039    if (Tmp == 1) return 1;  // Early out.
2040    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2041    return std::min(Tmp, Tmp2);
2042
2043  case ISD::SADDO:
2044  case ISD::UADDO:
2045  case ISD::SSUBO:
2046  case ISD::USUBO:
2047  case ISD::SMULO:
2048  case ISD::UMULO:
2049    if (Op.getResNo() != 1)
2050      break;
2051    // The boolean result conforms to getBooleanContents.  Fall through.
2052  case ISD::SETCC:
2053    // If setcc returns 0/-1, all bits are sign bits.
2054    if (TLI.getBooleanContents() ==
2055        TargetLowering::ZeroOrNegativeOneBooleanContent)
2056      return VTBits;
2057    break;
2058  case ISD::ROTL:
2059  case ISD::ROTR:
2060    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2061      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2062
2063      // Handle rotate right by N like a rotate left by 32-N.
2064      if (Op.getOpcode() == ISD::ROTR)
2065        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2066
2067      // If we aren't rotating out all of the known-in sign bits, return the
2068      // number that are left.  This handles rotl(sext(x), 1) for example.
2069      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2070      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2071    }
2072    break;
2073  case ISD::ADD:
2074    // Add can have at most one carry bit.  Thus we know that the output
2075    // is, at worst, one more bit than the inputs.
2076    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2077    if (Tmp == 1) return 1;  // Early out.
2078
2079    // Special case decrementing a value (ADD X, -1):
2080    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2081      if (CRHS->isAllOnesValue()) {
2082        APInt KnownZero, KnownOne;
2083        APInt Mask = APInt::getAllOnesValue(VTBits);
2084        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2085
2086        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2087        // sign bits set.
2088        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2089          return VTBits;
2090
2091        // If we are subtracting one from a positive number, there is no carry
2092        // out of the result.
2093        if (KnownZero.isNegative())
2094          return Tmp;
2095      }
2096
2097    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2098    if (Tmp2 == 1) return 1;
2099      return std::min(Tmp, Tmp2)-1;
2100    break;
2101
2102  case ISD::SUB:
2103    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2104    if (Tmp2 == 1) return 1;
2105
2106    // Handle NEG.
2107    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2108      if (CLHS->isNullValue()) {
2109        APInt KnownZero, KnownOne;
2110        APInt Mask = APInt::getAllOnesValue(VTBits);
2111        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2112        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2113        // sign bits set.
2114        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2115          return VTBits;
2116
2117        // If the input is known to be positive (the sign bit is known clear),
2118        // the output of the NEG has the same number of sign bits as the input.
2119        if (KnownZero.isNegative())
2120          return Tmp2;
2121
2122        // Otherwise, we treat this like a SUB.
2123      }
2124
2125    // Sub can have at most one carry bit.  Thus we know that the output
2126    // is, at worst, one more bit than the inputs.
2127    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2128    if (Tmp == 1) return 1;  // Early out.
2129      return std::min(Tmp, Tmp2)-1;
2130    break;
2131  case ISD::TRUNCATE:
2132    // FIXME: it's tricky to do anything useful for this, but it is an important
2133    // case for targets like X86.
2134    break;
2135  }
2136
2137  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2138  if (Op.getOpcode() == ISD::LOAD) {
2139    LoadSDNode *LD = cast<LoadSDNode>(Op);
2140    unsigned ExtType = LD->getExtensionType();
2141    switch (ExtType) {
2142    default: break;
2143    case ISD::SEXTLOAD:    // '17' bits known
2144      Tmp = LD->getMemoryVT().getSizeInBits();
2145      return VTBits-Tmp+1;
2146    case ISD::ZEXTLOAD:    // '16' bits known
2147      Tmp = LD->getMemoryVT().getSizeInBits();
2148      return VTBits-Tmp;
2149    }
2150  }
2151
2152  // Allow the target to implement this method for its nodes.
2153  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2154      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2155      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2156      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2157    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2158    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2159  }
2160
2161  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2162  // use this information.
2163  APInt KnownZero, KnownOne;
2164  APInt Mask = APInt::getAllOnesValue(VTBits);
2165  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2166
2167  if (KnownZero.isNegative()) {        // sign bit is 0
2168    Mask = KnownZero;
2169  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2170    Mask = KnownOne;
2171  } else {
2172    // Nothing known.
2173    return FirstAnswer;
2174  }
2175
2176  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2177  // the number of identical bits in the top of the input value.
2178  Mask = ~Mask;
2179  Mask <<= Mask.getBitWidth()-VTBits;
2180  // Return # leading zeros.  We use 'min' here in case Val was zero before
2181  // shifting.  We don't want to return '64' as for an i32 "0".
2182  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2183}
2184
2185bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2186  // If we're told that NaNs won't happen, assume they won't.
2187  if (FiniteOnlyFPMath())
2188    return true;
2189
2190  // If the value is a constant, we can obviously see if it is a NaN or not.
2191  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2192    return !C->getValueAPF().isNaN();
2193
2194  // TODO: Recognize more cases here.
2195
2196  return false;
2197}
2198
2199bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2200  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2201  if (!GA) return false;
2202  if (GA->getOffset() != 0) return false;
2203  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2204  if (!GV) return false;
2205  MachineModuleInfo *MMI = getMachineModuleInfo();
2206  return MMI && MMI->hasDebugInfo();
2207}
2208
2209
2210/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2211/// element of the result of the vector shuffle.
2212SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2213                                          unsigned i) {
2214  EVT VT = N->getValueType(0);
2215  DebugLoc dl = N->getDebugLoc();
2216  if (N->getMaskElt(i) < 0)
2217    return getUNDEF(VT.getVectorElementType());
2218  unsigned Index = N->getMaskElt(i);
2219  unsigned NumElems = VT.getVectorNumElements();
2220  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2221  Index %= NumElems;
2222
2223  if (V.getOpcode() == ISD::BIT_CONVERT) {
2224    V = V.getOperand(0);
2225    EVT VVT = V.getValueType();
2226    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2227      return SDValue();
2228  }
2229  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2230    return (Index == 0) ? V.getOperand(0)
2231                      : getUNDEF(VT.getVectorElementType());
2232  if (V.getOpcode() == ISD::BUILD_VECTOR)
2233    return V.getOperand(Index);
2234  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2235    return getShuffleScalarElt(SVN, Index);
2236  return SDValue();
2237}
2238
2239
2240/// getNode - Gets or creates the specified node.
2241///
2242SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2243  FoldingSetNodeID ID;
2244  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2245  void *IP = 0;
2246  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2247    return SDValue(E, 0);
2248  SDNode *N = NodeAllocator.Allocate<SDNode>();
2249  new (N) SDNode(Opcode, DL, getVTList(VT));
2250  CSEMap.InsertNode(N, IP);
2251
2252  AllNodes.push_back(N);
2253#ifndef NDEBUG
2254  VerifyNode(N);
2255#endif
2256  return SDValue(N, 0);
2257}
2258
2259SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2260                              EVT VT, SDValue Operand) {
2261  // Constant fold unary operations with an integer constant operand.
2262  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2263    const APInt &Val = C->getAPIntValue();
2264    unsigned BitWidth = VT.getSizeInBits();
2265    switch (Opcode) {
2266    default: break;
2267    case ISD::SIGN_EXTEND:
2268      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2269    case ISD::ANY_EXTEND:
2270    case ISD::ZERO_EXTEND:
2271    case ISD::TRUNCATE:
2272      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2273    case ISD::UINT_TO_FP:
2274    case ISD::SINT_TO_FP: {
2275      const uint64_t zero[] = {0, 0};
2276      // No compile time operations on this type.
2277      if (VT==MVT::ppcf128)
2278        break;
2279      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2280      (void)apf.convertFromAPInt(Val,
2281                                 Opcode==ISD::SINT_TO_FP,
2282                                 APFloat::rmNearestTiesToEven);
2283      return getConstantFP(apf, VT);
2284    }
2285    case ISD::BIT_CONVERT:
2286      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2287        return getConstantFP(Val.bitsToFloat(), VT);
2288      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2289        return getConstantFP(Val.bitsToDouble(), VT);
2290      break;
2291    case ISD::BSWAP:
2292      return getConstant(Val.byteSwap(), VT);
2293    case ISD::CTPOP:
2294      return getConstant(Val.countPopulation(), VT);
2295    case ISD::CTLZ:
2296      return getConstant(Val.countLeadingZeros(), VT);
2297    case ISD::CTTZ:
2298      return getConstant(Val.countTrailingZeros(), VT);
2299    }
2300  }
2301
2302  // Constant fold unary operations with a floating point constant operand.
2303  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2304    APFloat V = C->getValueAPF();    // make copy
2305    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2306      switch (Opcode) {
2307      case ISD::FNEG:
2308        V.changeSign();
2309        return getConstantFP(V, VT);
2310      case ISD::FABS:
2311        V.clearSign();
2312        return getConstantFP(V, VT);
2313      case ISD::FP_ROUND:
2314      case ISD::FP_EXTEND: {
2315        bool ignored;
2316        // This can return overflow, underflow, or inexact; we don't care.
2317        // FIXME need to be more flexible about rounding mode.
2318        (void)V.convert(*EVTToAPFloatSemantics(VT),
2319                        APFloat::rmNearestTiesToEven, &ignored);
2320        return getConstantFP(V, VT);
2321      }
2322      case ISD::FP_TO_SINT:
2323      case ISD::FP_TO_UINT: {
2324        integerPart x[2];
2325        bool ignored;
2326        assert(integerPartWidth >= 64);
2327        // FIXME need to be more flexible about rounding mode.
2328        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2329                              Opcode==ISD::FP_TO_SINT,
2330                              APFloat::rmTowardZero, &ignored);
2331        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2332          break;
2333        APInt api(VT.getSizeInBits(), 2, x);
2334        return getConstant(api, VT);
2335      }
2336      case ISD::BIT_CONVERT:
2337        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2338          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2339        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2340          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2341        break;
2342      }
2343    }
2344  }
2345
2346  unsigned OpOpcode = Operand.getNode()->getOpcode();
2347  switch (Opcode) {
2348  case ISD::TokenFactor:
2349  case ISD::MERGE_VALUES:
2350  case ISD::CONCAT_VECTORS:
2351    return Operand;         // Factor, merge or concat of one node?  No need.
2352  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2353  case ISD::FP_EXTEND:
2354    assert(VT.isFloatingPoint() &&
2355           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2356    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2357    if (Operand.getOpcode() == ISD::UNDEF)
2358      return getUNDEF(VT);
2359    break;
2360  case ISD::SIGN_EXTEND:
2361    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2362           "Invalid SIGN_EXTEND!");
2363    if (Operand.getValueType() == VT) return Operand;   // noop extension
2364    assert(Operand.getValueType().bitsLT(VT)
2365           && "Invalid sext node, dst < src!");
2366    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2367      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2368    break;
2369  case ISD::ZERO_EXTEND:
2370    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2371           "Invalid ZERO_EXTEND!");
2372    if (Operand.getValueType() == VT) return Operand;   // noop extension
2373    assert(Operand.getValueType().bitsLT(VT)
2374           && "Invalid zext node, dst < src!");
2375    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2376      return getNode(ISD::ZERO_EXTEND, DL, VT,
2377                     Operand.getNode()->getOperand(0));
2378    break;
2379  case ISD::ANY_EXTEND:
2380    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2381           "Invalid ANY_EXTEND!");
2382    if (Operand.getValueType() == VT) return Operand;   // noop extension
2383    assert(Operand.getValueType().bitsLT(VT)
2384           && "Invalid anyext node, dst < src!");
2385    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2386      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2387      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2388    break;
2389  case ISD::TRUNCATE:
2390    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2391           "Invalid TRUNCATE!");
2392    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2393    assert(Operand.getValueType().bitsGT(VT)
2394           && "Invalid truncate node, src < dst!");
2395    if (OpOpcode == ISD::TRUNCATE)
2396      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2397    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2398             OpOpcode == ISD::ANY_EXTEND) {
2399      // If the source is smaller than the dest, we still need an extend.
2400      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2401        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2402      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2403        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2404      else
2405        return Operand.getNode()->getOperand(0);
2406    }
2407    break;
2408  case ISD::BIT_CONVERT:
2409    // Basic sanity checking.
2410    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2411           && "Cannot BIT_CONVERT between types of different sizes!");
2412    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2413    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2414      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2415    if (OpOpcode == ISD::UNDEF)
2416      return getUNDEF(VT);
2417    break;
2418  case ISD::SCALAR_TO_VECTOR:
2419    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2420           (VT.getVectorElementType() == Operand.getValueType() ||
2421            (VT.getVectorElementType().isInteger() &&
2422             Operand.getValueType().isInteger() &&
2423             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2424           "Illegal SCALAR_TO_VECTOR node!");
2425    if (OpOpcode == ISD::UNDEF)
2426      return getUNDEF(VT);
2427    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2428    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2429        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2430        Operand.getConstantOperandVal(1) == 0 &&
2431        Operand.getOperand(0).getValueType() == VT)
2432      return Operand.getOperand(0);
2433    break;
2434  case ISD::FNEG:
2435    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2436    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2437      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2438                     Operand.getNode()->getOperand(0));
2439    if (OpOpcode == ISD::FNEG)  // --X -> X
2440      return Operand.getNode()->getOperand(0);
2441    break;
2442  case ISD::FABS:
2443    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2444      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2445    break;
2446  }
2447
2448  SDNode *N;
2449  SDVTList VTs = getVTList(VT);
2450  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2451    FoldingSetNodeID ID;
2452    SDValue Ops[1] = { Operand };
2453    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2454    void *IP = 0;
2455    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2456      return SDValue(E, 0);
2457    N = NodeAllocator.Allocate<UnarySDNode>();
2458    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2459    CSEMap.InsertNode(N, IP);
2460  } else {
2461    N = NodeAllocator.Allocate<UnarySDNode>();
2462    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2463  }
2464
2465  AllNodes.push_back(N);
2466#ifndef NDEBUG
2467  VerifyNode(N);
2468#endif
2469  return SDValue(N, 0);
2470}
2471
2472SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2473                                             EVT VT,
2474                                             ConstantSDNode *Cst1,
2475                                             ConstantSDNode *Cst2) {
2476  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2477
2478  switch (Opcode) {
2479  case ISD::ADD:  return getConstant(C1 + C2, VT);
2480  case ISD::SUB:  return getConstant(C1 - C2, VT);
2481  case ISD::MUL:  return getConstant(C1 * C2, VT);
2482  case ISD::UDIV:
2483    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2484    break;
2485  case ISD::UREM:
2486    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2487    break;
2488  case ISD::SDIV:
2489    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2490    break;
2491  case ISD::SREM:
2492    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2493    break;
2494  case ISD::AND:  return getConstant(C1 & C2, VT);
2495  case ISD::OR:   return getConstant(C1 | C2, VT);
2496  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2497  case ISD::SHL:  return getConstant(C1 << C2, VT);
2498  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2499  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2500  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2501  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2502  default: break;
2503  }
2504
2505  return SDValue();
2506}
2507
2508SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2509                              SDValue N1, SDValue N2) {
2510  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2511  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2512  switch (Opcode) {
2513  default: break;
2514  case ISD::TokenFactor:
2515    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2516           N2.getValueType() == MVT::Other && "Invalid token factor!");
2517    // Fold trivial token factors.
2518    if (N1.getOpcode() == ISD::EntryToken) return N2;
2519    if (N2.getOpcode() == ISD::EntryToken) return N1;
2520    if (N1 == N2) return N1;
2521    break;
2522  case ISD::CONCAT_VECTORS:
2523    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2524    // one big BUILD_VECTOR.
2525    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2526        N2.getOpcode() == ISD::BUILD_VECTOR) {
2527      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2528      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2529      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2530    }
2531    break;
2532  case ISD::AND:
2533    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2534           N1.getValueType() == VT && "Binary operator types must match!");
2535    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2536    // worth handling here.
2537    if (N2C && N2C->isNullValue())
2538      return N2;
2539    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2540      return N1;
2541    break;
2542  case ISD::OR:
2543  case ISD::XOR:
2544  case ISD::ADD:
2545  case ISD::SUB:
2546    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2547           N1.getValueType() == VT && "Binary operator types must match!");
2548    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2549    // it's worth handling here.
2550    if (N2C && N2C->isNullValue())
2551      return N1;
2552    break;
2553  case ISD::UDIV:
2554  case ISD::UREM:
2555  case ISD::MULHU:
2556  case ISD::MULHS:
2557  case ISD::MUL:
2558  case ISD::SDIV:
2559  case ISD::SREM:
2560    assert(VT.isInteger() && "This operator does not apply to FP types!");
2561    // fall through
2562  case ISD::FADD:
2563  case ISD::FSUB:
2564  case ISD::FMUL:
2565  case ISD::FDIV:
2566  case ISD::FREM:
2567    if (UnsafeFPMath) {
2568      if (Opcode == ISD::FADD) {
2569        // 0+x --> x
2570        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2571          if (CFP->getValueAPF().isZero())
2572            return N2;
2573        // x+0 --> x
2574        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2575          if (CFP->getValueAPF().isZero())
2576            return N1;
2577      } else if (Opcode == ISD::FSUB) {
2578        // x-0 --> x
2579        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2580          if (CFP->getValueAPF().isZero())
2581            return N1;
2582      }
2583    }
2584    assert(N1.getValueType() == N2.getValueType() &&
2585           N1.getValueType() == VT && "Binary operator types must match!");
2586    break;
2587  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2588    assert(N1.getValueType() == VT &&
2589           N1.getValueType().isFloatingPoint() &&
2590           N2.getValueType().isFloatingPoint() &&
2591           "Invalid FCOPYSIGN!");
2592    break;
2593  case ISD::SHL:
2594  case ISD::SRA:
2595  case ISD::SRL:
2596  case ISD::ROTL:
2597  case ISD::ROTR:
2598    assert(VT == N1.getValueType() &&
2599           "Shift operators return type must be the same as their first arg");
2600    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2601           "Shifts only work on integers");
2602
2603    // Always fold shifts of i1 values so the code generator doesn't need to
2604    // handle them.  Since we know the size of the shift has to be less than the
2605    // size of the value, the shift/rotate count is guaranteed to be zero.
2606    if (VT == MVT::i1)
2607      return N1;
2608    break;
2609  case ISD::FP_ROUND_INREG: {
2610    EVT EVT = cast<VTSDNode>(N2)->getVT();
2611    assert(VT == N1.getValueType() && "Not an inreg round!");
2612    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2613           "Cannot FP_ROUND_INREG integer types");
2614    assert(EVT.bitsLE(VT) && "Not rounding down!");
2615    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2616    break;
2617  }
2618  case ISD::FP_ROUND:
2619    assert(VT.isFloatingPoint() &&
2620           N1.getValueType().isFloatingPoint() &&
2621           VT.bitsLE(N1.getValueType()) &&
2622           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2623    if (N1.getValueType() == VT) return N1;  // noop conversion.
2624    break;
2625  case ISD::AssertSext:
2626  case ISD::AssertZext: {
2627    EVT EVT = cast<VTSDNode>(N2)->getVT();
2628    assert(VT == N1.getValueType() && "Not an inreg extend!");
2629    assert(VT.isInteger() && EVT.isInteger() &&
2630           "Cannot *_EXTEND_INREG FP types");
2631    assert(!EVT.isVector() &&
2632           "AssertSExt/AssertZExt type should be the vector element type "
2633           "rather than the vector type!");
2634    assert(EVT.bitsLE(VT) && "Not extending!");
2635    if (VT == EVT) return N1; // noop assertion.
2636    break;
2637  }
2638  case ISD::SIGN_EXTEND_INREG: {
2639    EVT EVT = cast<VTSDNode>(N2)->getVT();
2640    assert(VT == N1.getValueType() && "Not an inreg extend!");
2641    assert(VT.isInteger() && EVT.isInteger() &&
2642           "Cannot *_EXTEND_INREG FP types");
2643    assert(!EVT.isVector() &&
2644           "SIGN_EXTEND_INREG type should be the vector element type rather "
2645           "than the vector type!");
2646    assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
2647    if (EVT == VT) return N1;  // Not actually extending
2648
2649    if (N1C) {
2650      APInt Val = N1C->getAPIntValue();
2651      unsigned FromBits = EVT.getSizeInBits();
2652      Val <<= Val.getBitWidth()-FromBits;
2653      Val = Val.ashr(Val.getBitWidth()-FromBits);
2654      return getConstant(Val, VT);
2655    }
2656    break;
2657  }
2658  case ISD::EXTRACT_VECTOR_ELT:
2659    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2660    if (N1.getOpcode() == ISD::UNDEF)
2661      return getUNDEF(VT);
2662
2663    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2664    // expanding copies of large vectors from registers.
2665    if (N2C &&
2666        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2667        N1.getNumOperands() > 0) {
2668      unsigned Factor =
2669        N1.getOperand(0).getValueType().getVectorNumElements();
2670      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2671                     N1.getOperand(N2C->getZExtValue() / Factor),
2672                     getConstant(N2C->getZExtValue() % Factor,
2673                                 N2.getValueType()));
2674    }
2675
2676    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2677    // expanding large vector constants.
2678    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2679      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2680      EVT VEltTy = N1.getValueType().getVectorElementType();
2681      if (Elt.getValueType() != VEltTy) {
2682        // If the vector element type is not legal, the BUILD_VECTOR operands
2683        // are promoted and implicitly truncated.  Make that explicit here.
2684        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2685      }
2686      if (VT != VEltTy) {
2687        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2688        // result is implicitly extended.
2689        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2690      }
2691      return Elt;
2692    }
2693
2694    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2695    // operations are lowered to scalars.
2696    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2697      // If the indices are the same, return the inserted element.
2698      if (N1.getOperand(2) == N2)
2699        return N1.getOperand(1);
2700      // If the indices are known different, extract the element from
2701      // the original vector.
2702      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2703               isa<ConstantSDNode>(N2))
2704        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2705    }
2706    break;
2707  case ISD::EXTRACT_ELEMENT:
2708    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2709    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2710           (N1.getValueType().isInteger() == VT.isInteger()) &&
2711           "Wrong types for EXTRACT_ELEMENT!");
2712
2713    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2714    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2715    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2716    if (N1.getOpcode() == ISD::BUILD_PAIR)
2717      return N1.getOperand(N2C->getZExtValue());
2718
2719    // EXTRACT_ELEMENT of a constant int is also very common.
2720    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2721      unsigned ElementSize = VT.getSizeInBits();
2722      unsigned Shift = ElementSize * N2C->getZExtValue();
2723      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2724      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2725    }
2726    break;
2727  case ISD::EXTRACT_SUBVECTOR:
2728    if (N1.getValueType() == VT) // Trivial extraction.
2729      return N1;
2730    break;
2731  }
2732
2733  if (N1C) {
2734    if (N2C) {
2735      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2736      if (SV.getNode()) return SV;
2737    } else {      // Cannonicalize constant to RHS if commutative
2738      if (isCommutativeBinOp(Opcode)) {
2739        std::swap(N1C, N2C);
2740        std::swap(N1, N2);
2741      }
2742    }
2743  }
2744
2745  // Constant fold FP operations.
2746  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2747  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2748  if (N1CFP) {
2749    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2750      // Cannonicalize constant to RHS if commutative
2751      std::swap(N1CFP, N2CFP);
2752      std::swap(N1, N2);
2753    } else if (N2CFP && VT != MVT::ppcf128) {
2754      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2755      APFloat::opStatus s;
2756      switch (Opcode) {
2757      case ISD::FADD:
2758        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2759        if (s != APFloat::opInvalidOp)
2760          return getConstantFP(V1, VT);
2761        break;
2762      case ISD::FSUB:
2763        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2764        if (s!=APFloat::opInvalidOp)
2765          return getConstantFP(V1, VT);
2766        break;
2767      case ISD::FMUL:
2768        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2769        if (s!=APFloat::opInvalidOp)
2770          return getConstantFP(V1, VT);
2771        break;
2772      case ISD::FDIV:
2773        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2774        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2775          return getConstantFP(V1, VT);
2776        break;
2777      case ISD::FREM :
2778        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2779        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2780          return getConstantFP(V1, VT);
2781        break;
2782      case ISD::FCOPYSIGN:
2783        V1.copySign(V2);
2784        return getConstantFP(V1, VT);
2785      default: break;
2786      }
2787    }
2788  }
2789
2790  // Canonicalize an UNDEF to the RHS, even over a constant.
2791  if (N1.getOpcode() == ISD::UNDEF) {
2792    if (isCommutativeBinOp(Opcode)) {
2793      std::swap(N1, N2);
2794    } else {
2795      switch (Opcode) {
2796      case ISD::FP_ROUND_INREG:
2797      case ISD::SIGN_EXTEND_INREG:
2798      case ISD::SUB:
2799      case ISD::FSUB:
2800      case ISD::FDIV:
2801      case ISD::FREM:
2802      case ISD::SRA:
2803        return N1;     // fold op(undef, arg2) -> undef
2804      case ISD::UDIV:
2805      case ISD::SDIV:
2806      case ISD::UREM:
2807      case ISD::SREM:
2808      case ISD::SRL:
2809      case ISD::SHL:
2810        if (!VT.isVector())
2811          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2812        // For vectors, we can't easily build an all zero vector, just return
2813        // the LHS.
2814        return N2;
2815      }
2816    }
2817  }
2818
2819  // Fold a bunch of operators when the RHS is undef.
2820  if (N2.getOpcode() == ISD::UNDEF) {
2821    switch (Opcode) {
2822    case ISD::XOR:
2823      if (N1.getOpcode() == ISD::UNDEF)
2824        // Handle undef ^ undef -> 0 special case. This is a common
2825        // idiom (misuse).
2826        return getConstant(0, VT);
2827      // fallthrough
2828    case ISD::ADD:
2829    case ISD::ADDC:
2830    case ISD::ADDE:
2831    case ISD::SUB:
2832    case ISD::UDIV:
2833    case ISD::SDIV:
2834    case ISD::UREM:
2835    case ISD::SREM:
2836      return N2;       // fold op(arg1, undef) -> undef
2837    case ISD::FADD:
2838    case ISD::FSUB:
2839    case ISD::FMUL:
2840    case ISD::FDIV:
2841    case ISD::FREM:
2842      if (UnsafeFPMath)
2843        return N2;
2844      break;
2845    case ISD::MUL:
2846    case ISD::AND:
2847    case ISD::SRL:
2848    case ISD::SHL:
2849      if (!VT.isVector())
2850        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2851      // For vectors, we can't easily build an all zero vector, just return
2852      // the LHS.
2853      return N1;
2854    case ISD::OR:
2855      if (!VT.isVector())
2856        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2857      // For vectors, we can't easily build an all one vector, just return
2858      // the LHS.
2859      return N1;
2860    case ISD::SRA:
2861      return N1;
2862    }
2863  }
2864
2865  // Memoize this node if possible.
2866  SDNode *N;
2867  SDVTList VTs = getVTList(VT);
2868  if (VT != MVT::Flag) {
2869    SDValue Ops[] = { N1, N2 };
2870    FoldingSetNodeID ID;
2871    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2872    void *IP = 0;
2873    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2874      return SDValue(E, 0);
2875    N = NodeAllocator.Allocate<BinarySDNode>();
2876    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2877    CSEMap.InsertNode(N, IP);
2878  } else {
2879    N = NodeAllocator.Allocate<BinarySDNode>();
2880    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2881  }
2882
2883  AllNodes.push_back(N);
2884#ifndef NDEBUG
2885  VerifyNode(N);
2886#endif
2887  return SDValue(N, 0);
2888}
2889
2890SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2891                              SDValue N1, SDValue N2, SDValue N3) {
2892  // Perform various simplifications.
2893  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2894  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2895  switch (Opcode) {
2896  case ISD::CONCAT_VECTORS:
2897    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2898    // one big BUILD_VECTOR.
2899    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2900        N2.getOpcode() == ISD::BUILD_VECTOR &&
2901        N3.getOpcode() == ISD::BUILD_VECTOR) {
2902      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2903      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2904      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2905      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2906    }
2907    break;
2908  case ISD::SETCC: {
2909    // Use FoldSetCC to simplify SETCC's.
2910    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2911    if (Simp.getNode()) return Simp;
2912    break;
2913  }
2914  case ISD::SELECT:
2915    if (N1C) {
2916     if (N1C->getZExtValue())
2917        return N2;             // select true, X, Y -> X
2918      else
2919        return N3;             // select false, X, Y -> Y
2920    }
2921
2922    if (N2 == N3) return N2;   // select C, X, X -> X
2923    break;
2924  case ISD::BRCOND:
2925    if (N2C) {
2926      if (N2C->getZExtValue()) // Unconditional branch
2927        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2928      else
2929        return N1;         // Never-taken branch
2930    }
2931    break;
2932  case ISD::VECTOR_SHUFFLE:
2933    llvm_unreachable("should use getVectorShuffle constructor!");
2934    break;
2935  case ISD::BIT_CONVERT:
2936    // Fold bit_convert nodes from a type to themselves.
2937    if (N1.getValueType() == VT)
2938      return N1;
2939    break;
2940  }
2941
2942  // Memoize node if it doesn't produce a flag.
2943  SDNode *N;
2944  SDVTList VTs = getVTList(VT);
2945  if (VT != MVT::Flag) {
2946    SDValue Ops[] = { N1, N2, N3 };
2947    FoldingSetNodeID ID;
2948    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2949    void *IP = 0;
2950    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2951      return SDValue(E, 0);
2952    N = NodeAllocator.Allocate<TernarySDNode>();
2953    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2954    CSEMap.InsertNode(N, IP);
2955  } else {
2956    N = NodeAllocator.Allocate<TernarySDNode>();
2957    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2958  }
2959  AllNodes.push_back(N);
2960#ifndef NDEBUG
2961  VerifyNode(N);
2962#endif
2963  return SDValue(N, 0);
2964}
2965
2966SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2967                              SDValue N1, SDValue N2, SDValue N3,
2968                              SDValue N4) {
2969  SDValue Ops[] = { N1, N2, N3, N4 };
2970  return getNode(Opcode, DL, VT, Ops, 4);
2971}
2972
2973SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2974                              SDValue N1, SDValue N2, SDValue N3,
2975                              SDValue N4, SDValue N5) {
2976  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2977  return getNode(Opcode, DL, VT, Ops, 5);
2978}
2979
2980/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
2981/// the incoming stack arguments to be loaded from the stack.
2982SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
2983  SmallVector<SDValue, 8> ArgChains;
2984
2985  // Include the original chain at the beginning of the list. When this is
2986  // used by target LowerCall hooks, this helps legalize find the
2987  // CALLSEQ_BEGIN node.
2988  ArgChains.push_back(Chain);
2989
2990  // Add a chain value for each stack argument.
2991  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
2992       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
2993    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2994      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2995        if (FI->getIndex() < 0)
2996          ArgChains.push_back(SDValue(L, 1));
2997
2998  // Build a tokenfactor for all the chains.
2999  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3000                 &ArgChains[0], ArgChains.size());
3001}
3002
3003/// getMemsetValue - Vectorized representation of the memset value
3004/// operand.
3005static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3006                              DebugLoc dl) {
3007  unsigned NumBits = VT.isVector() ?
3008    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3009  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3010    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3011    unsigned Shift = 8;
3012    for (unsigned i = NumBits; i > 8; i >>= 1) {
3013      Val = (Val << Shift) | Val;
3014      Shift <<= 1;
3015    }
3016    if (VT.isInteger())
3017      return DAG.getConstant(Val, VT);
3018    return DAG.getConstantFP(APFloat(Val), VT);
3019  }
3020
3021  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3022  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3023  unsigned Shift = 8;
3024  for (unsigned i = NumBits; i > 8; i >>= 1) {
3025    Value = DAG.getNode(ISD::OR, dl, VT,
3026                        DAG.getNode(ISD::SHL, dl, VT, Value,
3027                                    DAG.getConstant(Shift,
3028                                                    TLI.getShiftAmountTy())),
3029                        Value);
3030    Shift <<= 1;
3031  }
3032
3033  return Value;
3034}
3035
3036/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3037/// used when a memcpy is turned into a memset when the source is a constant
3038/// string ptr.
3039static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3040                                  const TargetLowering &TLI,
3041                                  std::string &Str, unsigned Offset) {
3042  // Handle vector with all elements zero.
3043  if (Str.empty()) {
3044    if (VT.isInteger())
3045      return DAG.getConstant(0, VT);
3046    unsigned NumElts = VT.getVectorNumElements();
3047    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3048    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3049                       DAG.getConstant(0,
3050                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3051  }
3052
3053  assert(!VT.isVector() && "Can't handle vector type here!");
3054  unsigned NumBits = VT.getSizeInBits();
3055  unsigned MSB = NumBits / 8;
3056  uint64_t Val = 0;
3057  if (TLI.isLittleEndian())
3058    Offset = Offset + MSB - 1;
3059  for (unsigned i = 0; i != MSB; ++i) {
3060    Val = (Val << 8) | (unsigned char)Str[Offset];
3061    Offset += TLI.isLittleEndian() ? -1 : 1;
3062  }
3063  return DAG.getConstant(Val, VT);
3064}
3065
3066/// getMemBasePlusOffset - Returns base and offset node for the
3067///
3068static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3069                                      SelectionDAG &DAG) {
3070  EVT VT = Base.getValueType();
3071  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3072                     VT, Base, DAG.getConstant(Offset, VT));
3073}
3074
3075/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3076///
3077static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3078  unsigned SrcDelta = 0;
3079  GlobalAddressSDNode *G = NULL;
3080  if (Src.getOpcode() == ISD::GlobalAddress)
3081    G = cast<GlobalAddressSDNode>(Src);
3082  else if (Src.getOpcode() == ISD::ADD &&
3083           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3084           Src.getOperand(1).getOpcode() == ISD::Constant) {
3085    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3086    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3087  }
3088  if (!G)
3089    return false;
3090
3091  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3092  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3093    return true;
3094
3095  return false;
3096}
3097
3098/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3099/// to replace the memset / memcpy is below the threshold. It also returns the
3100/// types of the sequence of memory ops to perform memset / memcpy.
3101static
3102bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3103                              SDValue Dst, SDValue Src,
3104                              unsigned Limit, uint64_t Size, unsigned &Align,
3105                              std::string &Str, bool &isSrcStr,
3106                              SelectionDAG &DAG,
3107                              const TargetLowering &TLI) {
3108  isSrcStr = isMemSrcFromString(Src, Str);
3109  bool isSrcConst = isa<ConstantSDNode>(Src);
3110  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3111  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3112  if (VT != MVT::iAny) {
3113    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3114    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3115    // If source is a string constant, this will require an unaligned load.
3116    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3117      if (Dst.getOpcode() != ISD::FrameIndex) {
3118        // Can't change destination alignment. It requires a unaligned store.
3119        if (AllowUnalign)
3120          VT = MVT::iAny;
3121      } else {
3122        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3123        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3124        if (MFI->isFixedObjectIndex(FI)) {
3125          // Can't change destination alignment. It requires a unaligned store.
3126          if (AllowUnalign)
3127            VT = MVT::iAny;
3128        } else {
3129          // Give the stack frame object a larger alignment if needed.
3130          if (MFI->getObjectAlignment(FI) < NewAlign)
3131            MFI->setObjectAlignment(FI, NewAlign);
3132          Align = NewAlign;
3133        }
3134      }
3135    }
3136  }
3137
3138  if (VT == MVT::iAny) {
3139    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3140      VT = MVT::i64;
3141    } else {
3142      switch (Align & 7) {
3143      case 0:  VT = MVT::i64; break;
3144      case 4:  VT = MVT::i32; break;
3145      case 2:  VT = MVT::i16; break;
3146      default: VT = MVT::i8;  break;
3147      }
3148    }
3149
3150    MVT LVT = MVT::i64;
3151    while (!TLI.isTypeLegal(LVT))
3152      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3153    assert(LVT.isInteger());
3154
3155    if (VT.bitsGT(LVT))
3156      VT = LVT;
3157  }
3158
3159  unsigned NumMemOps = 0;
3160  while (Size != 0) {
3161    unsigned VTSize = VT.getSizeInBits() / 8;
3162    while (VTSize > Size) {
3163      // For now, only use non-vector load / store's for the left-over pieces.
3164      if (VT.isVector()) {
3165        VT = MVT::i64;
3166        while (!TLI.isTypeLegal(VT))
3167          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3168        VTSize = VT.getSizeInBits() / 8;
3169      } else {
3170        // This can result in a type that is not legal on the target, e.g.
3171        // 1 or 2 bytes on PPC.
3172        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3173        VTSize >>= 1;
3174      }
3175    }
3176
3177    if (++NumMemOps > Limit)
3178      return false;
3179    MemOps.push_back(VT);
3180    Size -= VTSize;
3181  }
3182
3183  return true;
3184}
3185
3186static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3187                                         SDValue Chain, SDValue Dst,
3188                                         SDValue Src, uint64_t Size,
3189                                         unsigned Align, bool AlwaysInline,
3190                                         const Value *DstSV, uint64_t DstSVOff,
3191                                         const Value *SrcSV, uint64_t SrcSVOff){
3192  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3193
3194  // Expand memcpy to a series of load and store ops if the size operand falls
3195  // below a certain threshold.
3196  std::vector<EVT> MemOps;
3197  uint64_t Limit = -1ULL;
3198  if (!AlwaysInline)
3199    Limit = TLI.getMaxStoresPerMemcpy();
3200  unsigned DstAlign = Align;  // Destination alignment can change.
3201  std::string Str;
3202  bool CopyFromStr;
3203  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3204                                Str, CopyFromStr, DAG, TLI))
3205    return SDValue();
3206
3207
3208  bool isZeroStr = CopyFromStr && Str.empty();
3209  SmallVector<SDValue, 8> OutChains;
3210  unsigned NumMemOps = MemOps.size();
3211  uint64_t SrcOff = 0, DstOff = 0;
3212  for (unsigned i = 0; i != NumMemOps; ++i) {
3213    EVT VT = MemOps[i];
3214    unsigned VTSize = VT.getSizeInBits() / 8;
3215    SDValue Value, Store;
3216
3217    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3218      // It's unlikely a store of a vector immediate can be done in a single
3219      // instruction. It would require a load from a constantpool first.
3220      // We also handle store a vector with all zero's.
3221      // FIXME: Handle other cases where store of vector immediate is done in
3222      // a single instruction.
3223      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3224      Store = DAG.getStore(Chain, dl, Value,
3225                           getMemBasePlusOffset(Dst, DstOff, DAG),
3226                           DstSV, DstSVOff + DstOff, false, DstAlign);
3227    } else {
3228      // The type might not be legal for the target.  This should only happen
3229      // if the type is smaller than a legal type, as on PPC, so the right
3230      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3231      // to Load/Store if NVT==VT.
3232      // FIXME does the case above also need this?
3233      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3234      assert(NVT.bitsGE(VT));
3235      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3236                             getMemBasePlusOffset(Src, SrcOff, DAG),
3237                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3238      Store = DAG.getTruncStore(Chain, dl, Value,
3239                             getMemBasePlusOffset(Dst, DstOff, DAG),
3240                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3241    }
3242    OutChains.push_back(Store);
3243    SrcOff += VTSize;
3244    DstOff += VTSize;
3245  }
3246
3247  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3248                     &OutChains[0], OutChains.size());
3249}
3250
3251static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3252                                          SDValue Chain, SDValue Dst,
3253                                          SDValue Src, uint64_t Size,
3254                                          unsigned Align, bool AlwaysInline,
3255                                          const Value *DstSV, uint64_t DstSVOff,
3256                                          const Value *SrcSV, uint64_t SrcSVOff){
3257  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3258
3259  // Expand memmove to a series of load and store ops if the size operand falls
3260  // below a certain threshold.
3261  std::vector<EVT> MemOps;
3262  uint64_t Limit = -1ULL;
3263  if (!AlwaysInline)
3264    Limit = TLI.getMaxStoresPerMemmove();
3265  unsigned DstAlign = Align;  // Destination alignment can change.
3266  std::string Str;
3267  bool CopyFromStr;
3268  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3269                                Str, CopyFromStr, DAG, TLI))
3270    return SDValue();
3271
3272  uint64_t SrcOff = 0, DstOff = 0;
3273
3274  SmallVector<SDValue, 8> LoadValues;
3275  SmallVector<SDValue, 8> LoadChains;
3276  SmallVector<SDValue, 8> OutChains;
3277  unsigned NumMemOps = MemOps.size();
3278  for (unsigned i = 0; i < NumMemOps; i++) {
3279    EVT VT = MemOps[i];
3280    unsigned VTSize = VT.getSizeInBits() / 8;
3281    SDValue Value, Store;
3282
3283    Value = DAG.getLoad(VT, dl, Chain,
3284                        getMemBasePlusOffset(Src, SrcOff, DAG),
3285                        SrcSV, SrcSVOff + SrcOff, false, Align);
3286    LoadValues.push_back(Value);
3287    LoadChains.push_back(Value.getValue(1));
3288    SrcOff += VTSize;
3289  }
3290  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3291                      &LoadChains[0], LoadChains.size());
3292  OutChains.clear();
3293  for (unsigned i = 0; i < NumMemOps; i++) {
3294    EVT VT = MemOps[i];
3295    unsigned VTSize = VT.getSizeInBits() / 8;
3296    SDValue Value, Store;
3297
3298    Store = DAG.getStore(Chain, dl, LoadValues[i],
3299                         getMemBasePlusOffset(Dst, DstOff, DAG),
3300                         DstSV, DstSVOff + DstOff, false, DstAlign);
3301    OutChains.push_back(Store);
3302    DstOff += VTSize;
3303  }
3304
3305  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3306                     &OutChains[0], OutChains.size());
3307}
3308
3309static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3310                                 SDValue Chain, SDValue Dst,
3311                                 SDValue Src, uint64_t Size,
3312                                 unsigned Align,
3313                                 const Value *DstSV, uint64_t DstSVOff) {
3314  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3315
3316  // Expand memset to a series of load/store ops if the size operand
3317  // falls below a certain threshold.
3318  std::vector<EVT> MemOps;
3319  std::string Str;
3320  bool CopyFromStr;
3321  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3322                                Size, Align, Str, CopyFromStr, DAG, TLI))
3323    return SDValue();
3324
3325  SmallVector<SDValue, 8> OutChains;
3326  uint64_t DstOff = 0;
3327
3328  unsigned NumMemOps = MemOps.size();
3329  for (unsigned i = 0; i < NumMemOps; i++) {
3330    EVT VT = MemOps[i];
3331    unsigned VTSize = VT.getSizeInBits() / 8;
3332    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3333    SDValue Store = DAG.getStore(Chain, dl, Value,
3334                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3335                                 DstSV, DstSVOff + DstOff);
3336    OutChains.push_back(Store);
3337    DstOff += VTSize;
3338  }
3339
3340  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3341                     &OutChains[0], OutChains.size());
3342}
3343
3344SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3345                                SDValue Src, SDValue Size,
3346                                unsigned Align, bool AlwaysInline,
3347                                const Value *DstSV, uint64_t DstSVOff,
3348                                const Value *SrcSV, uint64_t SrcSVOff) {
3349
3350  // Check to see if we should lower the memcpy to loads and stores first.
3351  // For cases within the target-specified limits, this is the best choice.
3352  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3353  if (ConstantSize) {
3354    // Memcpy with size zero? Just return the original chain.
3355    if (ConstantSize->isNullValue())
3356      return Chain;
3357
3358    SDValue Result =
3359      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3360                              ConstantSize->getZExtValue(),
3361                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3362    if (Result.getNode())
3363      return Result;
3364  }
3365
3366  // Then check to see if we should lower the memcpy with target-specific
3367  // code. If the target chooses to do this, this is the next best.
3368  SDValue Result =
3369    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3370                                AlwaysInline,
3371                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3372  if (Result.getNode())
3373    return Result;
3374
3375  // If we really need inline code and the target declined to provide it,
3376  // use a (potentially long) sequence of loads and stores.
3377  if (AlwaysInline) {
3378    assert(ConstantSize && "AlwaysInline requires a constant size!");
3379    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3380                                   ConstantSize->getZExtValue(), Align, true,
3381                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3382  }
3383
3384  // Emit a library call.
3385  TargetLowering::ArgListTy Args;
3386  TargetLowering::ArgListEntry Entry;
3387  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3388  Entry.Node = Dst; Args.push_back(Entry);
3389  Entry.Node = Src; Args.push_back(Entry);
3390  Entry.Node = Size; Args.push_back(Entry);
3391  // FIXME: pass in DebugLoc
3392  std::pair<SDValue,SDValue> CallResult =
3393    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3394                    false, false, false, false, 0,
3395                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3396                    /*isReturnValueUsed=*/false,
3397                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3398                                      TLI.getPointerTy()),
3399                    Args, *this, dl);
3400  return CallResult.second;
3401}
3402
3403SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3404                                 SDValue Src, SDValue Size,
3405                                 unsigned Align,
3406                                 const Value *DstSV, uint64_t DstSVOff,
3407                                 const Value *SrcSV, uint64_t SrcSVOff) {
3408
3409  // Check to see if we should lower the memmove to loads and stores first.
3410  // For cases within the target-specified limits, this is the best choice.
3411  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3412  if (ConstantSize) {
3413    // Memmove with size zero? Just return the original chain.
3414    if (ConstantSize->isNullValue())
3415      return Chain;
3416
3417    SDValue Result =
3418      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3419                               ConstantSize->getZExtValue(),
3420                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3421    if (Result.getNode())
3422      return Result;
3423  }
3424
3425  // Then check to see if we should lower the memmove with target-specific
3426  // code. If the target chooses to do this, this is the next best.
3427  SDValue Result =
3428    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3429                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3430  if (Result.getNode())
3431    return Result;
3432
3433  // Emit a library call.
3434  TargetLowering::ArgListTy Args;
3435  TargetLowering::ArgListEntry Entry;
3436  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3437  Entry.Node = Dst; Args.push_back(Entry);
3438  Entry.Node = Src; Args.push_back(Entry);
3439  Entry.Node = Size; Args.push_back(Entry);
3440  // FIXME:  pass in DebugLoc
3441  std::pair<SDValue,SDValue> CallResult =
3442    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3443                    false, false, false, false, 0,
3444                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3445                    /*isReturnValueUsed=*/false,
3446                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3447                                      TLI.getPointerTy()),
3448                    Args, *this, dl);
3449  return CallResult.second;
3450}
3451
3452SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3453                                SDValue Src, SDValue Size,
3454                                unsigned Align,
3455                                const Value *DstSV, uint64_t DstSVOff) {
3456
3457  // Check to see if we should lower the memset to stores first.
3458  // For cases within the target-specified limits, this is the best choice.
3459  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3460  if (ConstantSize) {
3461    // Memset with size zero? Just return the original chain.
3462    if (ConstantSize->isNullValue())
3463      return Chain;
3464
3465    SDValue Result =
3466      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3467                      Align, DstSV, DstSVOff);
3468    if (Result.getNode())
3469      return Result;
3470  }
3471
3472  // Then check to see if we should lower the memset with target-specific
3473  // code. If the target chooses to do this, this is the next best.
3474  SDValue Result =
3475    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3476                                DstSV, DstSVOff);
3477  if (Result.getNode())
3478    return Result;
3479
3480  // Emit a library call.
3481  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3482  TargetLowering::ArgListTy Args;
3483  TargetLowering::ArgListEntry Entry;
3484  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3485  Args.push_back(Entry);
3486  // Extend or truncate the argument to be an i32 value for the call.
3487  if (Src.getValueType().bitsGT(MVT::i32))
3488    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3489  else
3490    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3491  Entry.Node = Src;
3492  Entry.Ty = Type::getInt32Ty(*getContext());
3493  Entry.isSExt = true;
3494  Args.push_back(Entry);
3495  Entry.Node = Size;
3496  Entry.Ty = IntPtrTy;
3497  Entry.isSExt = false;
3498  Args.push_back(Entry);
3499  // FIXME: pass in DebugLoc
3500  std::pair<SDValue,SDValue> CallResult =
3501    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3502                    false, false, false, false, 0,
3503                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3504                    /*isReturnValueUsed=*/false,
3505                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3506                                      TLI.getPointerTy()),
3507                    Args, *this, dl);
3508  return CallResult.second;
3509}
3510
3511SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3512                                SDValue Chain,
3513                                SDValue Ptr, SDValue Cmp,
3514                                SDValue Swp, const Value* PtrVal,
3515                                unsigned Alignment) {
3516  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3517    Alignment = getEVTAlignment(MemVT);
3518
3519  // Check if the memory reference references a frame index
3520  if (!PtrVal)
3521    if (const FrameIndexSDNode *FI =
3522          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3523      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3524
3525  MachineFunction &MF = getMachineFunction();
3526  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3527
3528  // For now, atomics are considered to be volatile always.
3529  Flags |= MachineMemOperand::MOVolatile;
3530
3531  MachineMemOperand *MMO =
3532    MF.getMachineMemOperand(PtrVal, Flags, 0,
3533                            MemVT.getStoreSize(), Alignment);
3534
3535  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3536}
3537
3538SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3539                                SDValue Chain,
3540                                SDValue Ptr, SDValue Cmp,
3541                                SDValue Swp, MachineMemOperand *MMO) {
3542  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3543  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3544
3545  EVT VT = Cmp.getValueType();
3546
3547  SDVTList VTs = getVTList(VT, MVT::Other);
3548  FoldingSetNodeID ID;
3549  ID.AddInteger(MemVT.getRawBits());
3550  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3551  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3552  void* IP = 0;
3553  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3554    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3555    return SDValue(E, 0);
3556  }
3557  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3558  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3559  CSEMap.InsertNode(N, IP);
3560  AllNodes.push_back(N);
3561  return SDValue(N, 0);
3562}
3563
3564SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3565                                SDValue Chain,
3566                                SDValue Ptr, SDValue Val,
3567                                const Value* PtrVal,
3568                                unsigned Alignment) {
3569  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3570    Alignment = getEVTAlignment(MemVT);
3571
3572  // Check if the memory reference references a frame index
3573  if (!PtrVal)
3574    if (const FrameIndexSDNode *FI =
3575          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3576      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3577
3578  MachineFunction &MF = getMachineFunction();
3579  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3580
3581  // For now, atomics are considered to be volatile always.
3582  Flags |= MachineMemOperand::MOVolatile;
3583
3584  MachineMemOperand *MMO =
3585    MF.getMachineMemOperand(PtrVal, Flags, 0,
3586                            MemVT.getStoreSize(), Alignment);
3587
3588  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3589}
3590
3591SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3592                                SDValue Chain,
3593                                SDValue Ptr, SDValue Val,
3594                                MachineMemOperand *MMO) {
3595  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3596          Opcode == ISD::ATOMIC_LOAD_SUB ||
3597          Opcode == ISD::ATOMIC_LOAD_AND ||
3598          Opcode == ISD::ATOMIC_LOAD_OR ||
3599          Opcode == ISD::ATOMIC_LOAD_XOR ||
3600          Opcode == ISD::ATOMIC_LOAD_NAND ||
3601          Opcode == ISD::ATOMIC_LOAD_MIN ||
3602          Opcode == ISD::ATOMIC_LOAD_MAX ||
3603          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3604          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3605          Opcode == ISD::ATOMIC_SWAP) &&
3606         "Invalid Atomic Op");
3607
3608  EVT VT = Val.getValueType();
3609
3610  SDVTList VTs = getVTList(VT, MVT::Other);
3611  FoldingSetNodeID ID;
3612  ID.AddInteger(MemVT.getRawBits());
3613  SDValue Ops[] = {Chain, Ptr, Val};
3614  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3615  void* IP = 0;
3616  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3617    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3618    return SDValue(E, 0);
3619  }
3620  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3621  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3622  CSEMap.InsertNode(N, IP);
3623  AllNodes.push_back(N);
3624  return SDValue(N, 0);
3625}
3626
3627/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3628/// Allowed to return something different (and simpler) if Simplify is true.
3629SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3630                                     DebugLoc dl) {
3631  if (NumOps == 1)
3632    return Ops[0];
3633
3634  SmallVector<EVT, 4> VTs;
3635  VTs.reserve(NumOps);
3636  for (unsigned i = 0; i < NumOps; ++i)
3637    VTs.push_back(Ops[i].getValueType());
3638  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3639                 Ops, NumOps);
3640}
3641
3642SDValue
3643SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3644                                  const EVT *VTs, unsigned NumVTs,
3645                                  const SDValue *Ops, unsigned NumOps,
3646                                  EVT MemVT, const Value *srcValue, int SVOff,
3647                                  unsigned Align, bool Vol,
3648                                  bool ReadMem, bool WriteMem) {
3649  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3650                             MemVT, srcValue, SVOff, Align, Vol,
3651                             ReadMem, WriteMem);
3652}
3653
3654SDValue
3655SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3656                                  const SDValue *Ops, unsigned NumOps,
3657                                  EVT MemVT, const Value *srcValue, int SVOff,
3658                                  unsigned Align, bool Vol,
3659                                  bool ReadMem, bool WriteMem) {
3660  if (Align == 0)  // Ensure that codegen never sees alignment 0
3661    Align = getEVTAlignment(MemVT);
3662
3663  MachineFunction &MF = getMachineFunction();
3664  unsigned Flags = 0;
3665  if (WriteMem)
3666    Flags |= MachineMemOperand::MOStore;
3667  if (ReadMem)
3668    Flags |= MachineMemOperand::MOLoad;
3669  if (Vol)
3670    Flags |= MachineMemOperand::MOVolatile;
3671  MachineMemOperand *MMO =
3672    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3673                            MemVT.getStoreSize(), Align);
3674
3675  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3676}
3677
3678SDValue
3679SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3680                                  const SDValue *Ops, unsigned NumOps,
3681                                  EVT MemVT, MachineMemOperand *MMO) {
3682  assert((Opcode == ISD::INTRINSIC_VOID ||
3683          Opcode == ISD::INTRINSIC_W_CHAIN ||
3684          (Opcode <= INT_MAX &&
3685           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3686         "Opcode is not a memory-accessing opcode!");
3687
3688  // Memoize the node unless it returns a flag.
3689  MemIntrinsicSDNode *N;
3690  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3691    FoldingSetNodeID ID;
3692    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3693    void *IP = 0;
3694    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3695      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3696      return SDValue(E, 0);
3697    }
3698
3699    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3700    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3701    CSEMap.InsertNode(N, IP);
3702  } else {
3703    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3704    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3705  }
3706  AllNodes.push_back(N);
3707  return SDValue(N, 0);
3708}
3709
3710SDValue
3711SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3712                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3713                      SDValue Ptr, SDValue Offset,
3714                      const Value *SV, int SVOffset, EVT MemVT,
3715                      bool isVolatile, unsigned Alignment) {
3716  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3717    Alignment = getEVTAlignment(VT);
3718
3719  // Check if the memory reference references a frame index
3720  if (!SV)
3721    if (const FrameIndexSDNode *FI =
3722          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3723      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3724
3725  MachineFunction &MF = getMachineFunction();
3726  unsigned Flags = MachineMemOperand::MOLoad;
3727  if (isVolatile)
3728    Flags |= MachineMemOperand::MOVolatile;
3729  MachineMemOperand *MMO =
3730    MF.getMachineMemOperand(SV, Flags, SVOffset,
3731                            MemVT.getStoreSize(), Alignment);
3732  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3733}
3734
3735SDValue
3736SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3737                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3738                      SDValue Ptr, SDValue Offset, EVT MemVT,
3739                      MachineMemOperand *MMO) {
3740  if (VT == MemVT) {
3741    ExtType = ISD::NON_EXTLOAD;
3742  } else if (ExtType == ISD::NON_EXTLOAD) {
3743    assert(VT == MemVT && "Non-extending load from different memory type!");
3744  } else {
3745    // Extending load.
3746    if (VT.isVector())
3747      assert(MemVT.getVectorNumElements() == VT.getVectorNumElements() &&
3748             "Invalid vector extload!");
3749    else
3750      assert(MemVT.bitsLT(VT) &&
3751             "Should only be an extending load, not truncating!");
3752    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3753           "Cannot sign/zero extend a FP/Vector load!");
3754    assert(VT.isInteger() == MemVT.isInteger() &&
3755           "Cannot convert from FP to Int or Int -> FP!");
3756  }
3757
3758  bool Indexed = AM != ISD::UNINDEXED;
3759  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3760         "Unindexed load with an offset!");
3761
3762  SDVTList VTs = Indexed ?
3763    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3764  SDValue Ops[] = { Chain, Ptr, Offset };
3765  FoldingSetNodeID ID;
3766  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3767  ID.AddInteger(MemVT.getRawBits());
3768  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile()));
3769  void *IP = 0;
3770  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3771    cast<LoadSDNode>(E)->refineAlignment(MMO);
3772    return SDValue(E, 0);
3773  }
3774  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3775  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3776  CSEMap.InsertNode(N, IP);
3777  AllNodes.push_back(N);
3778  return SDValue(N, 0);
3779}
3780
3781SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3782                              SDValue Chain, SDValue Ptr,
3783                              const Value *SV, int SVOffset,
3784                              bool isVolatile, unsigned Alignment) {
3785  SDValue Undef = getUNDEF(Ptr.getValueType());
3786  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3787                 SV, SVOffset, VT, isVolatile, Alignment);
3788}
3789
3790SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3791                                 SDValue Chain, SDValue Ptr,
3792                                 const Value *SV,
3793                                 int SVOffset, EVT MemVT,
3794                                 bool isVolatile, unsigned Alignment) {
3795  SDValue Undef = getUNDEF(Ptr.getValueType());
3796  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3797                 SV, SVOffset, MemVT, isVolatile, Alignment);
3798}
3799
3800SDValue
3801SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3802                             SDValue Offset, ISD::MemIndexedMode AM) {
3803  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3804  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3805         "Load is already a indexed load!");
3806  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3807                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3808                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3809                 LD->isVolatile(), LD->getAlignment());
3810}
3811
3812SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3813                               SDValue Ptr, const Value *SV, int SVOffset,
3814                               bool isVolatile, unsigned Alignment) {
3815  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3816    Alignment = getEVTAlignment(Val.getValueType());
3817
3818  // Check if the memory reference references a frame index
3819  if (!SV)
3820    if (const FrameIndexSDNode *FI =
3821          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3822      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3823
3824  MachineFunction &MF = getMachineFunction();
3825  unsigned Flags = MachineMemOperand::MOStore;
3826  if (isVolatile)
3827    Flags |= MachineMemOperand::MOVolatile;
3828  MachineMemOperand *MMO =
3829    MF.getMachineMemOperand(SV, Flags, SVOffset,
3830                            Val.getValueType().getStoreSize(), Alignment);
3831
3832  return getStore(Chain, dl, Val, Ptr, MMO);
3833}
3834
3835SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3836                               SDValue Ptr, MachineMemOperand *MMO) {
3837  EVT VT = Val.getValueType();
3838  SDVTList VTs = getVTList(MVT::Other);
3839  SDValue Undef = getUNDEF(Ptr.getValueType());
3840  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3841  FoldingSetNodeID ID;
3842  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3843  ID.AddInteger(VT.getRawBits());
3844  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile()));
3845  void *IP = 0;
3846  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3847    cast<StoreSDNode>(E)->refineAlignment(MMO);
3848    return SDValue(E, 0);
3849  }
3850  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3851  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3852  CSEMap.InsertNode(N, IP);
3853  AllNodes.push_back(N);
3854  return SDValue(N, 0);
3855}
3856
3857SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3858                                    SDValue Ptr, const Value *SV,
3859                                    int SVOffset, EVT SVT,
3860                                    bool isVolatile, unsigned Alignment) {
3861  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3862    Alignment = getEVTAlignment(SVT);
3863
3864  // Check if the memory reference references a frame index
3865  if (!SV)
3866    if (const FrameIndexSDNode *FI =
3867          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3868      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3869
3870  MachineFunction &MF = getMachineFunction();
3871  unsigned Flags = MachineMemOperand::MOStore;
3872  if (isVolatile)
3873    Flags |= MachineMemOperand::MOVolatile;
3874  MachineMemOperand *MMO =
3875    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3876
3877  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3878}
3879
3880SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3881                                    SDValue Ptr, EVT SVT,
3882                                    MachineMemOperand *MMO) {
3883  EVT VT = Val.getValueType();
3884
3885  if (VT == SVT)
3886    return getStore(Chain, dl, Val, Ptr, MMO);
3887
3888  assert(VT.bitsGT(SVT) && "Not a truncation?");
3889  assert(VT.isInteger() == SVT.isInteger() &&
3890         "Can't do FP-INT conversion!");
3891
3892
3893  SDVTList VTs = getVTList(MVT::Other);
3894  SDValue Undef = getUNDEF(Ptr.getValueType());
3895  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3896  FoldingSetNodeID ID;
3897  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3898  ID.AddInteger(SVT.getRawBits());
3899  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile()));
3900  void *IP = 0;
3901  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3902    cast<StoreSDNode>(E)->refineAlignment(MMO);
3903    return SDValue(E, 0);
3904  }
3905  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3906  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
3907  CSEMap.InsertNode(N, IP);
3908  AllNodes.push_back(N);
3909  return SDValue(N, 0);
3910}
3911
3912SDValue
3913SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3914                              SDValue Offset, ISD::MemIndexedMode AM) {
3915  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3916  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3917         "Store is already a indexed store!");
3918  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3919  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3920  FoldingSetNodeID ID;
3921  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3922  ID.AddInteger(ST->getMemoryVT().getRawBits());
3923  ID.AddInteger(ST->getRawSubclassData());
3924  void *IP = 0;
3925  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3926    return SDValue(E, 0);
3927  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3928  new (N) StoreSDNode(Ops, dl, VTs, AM,
3929                      ST->isTruncatingStore(), ST->getMemoryVT(),
3930                      ST->getMemOperand());
3931  CSEMap.InsertNode(N, IP);
3932  AllNodes.push_back(N);
3933  return SDValue(N, 0);
3934}
3935
3936SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
3937                               SDValue Chain, SDValue Ptr,
3938                               SDValue SV) {
3939  SDValue Ops[] = { Chain, Ptr, SV };
3940  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3941}
3942
3943SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3944                              const SDUse *Ops, unsigned NumOps) {
3945  switch (NumOps) {
3946  case 0: return getNode(Opcode, DL, VT);
3947  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3948  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3949  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3950  default: break;
3951  }
3952
3953  // Copy from an SDUse array into an SDValue array for use with
3954  // the regular getNode logic.
3955  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3956  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3957}
3958
3959SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3960                              const SDValue *Ops, unsigned NumOps) {
3961  switch (NumOps) {
3962  case 0: return getNode(Opcode, DL, VT);
3963  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3964  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3965  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3966  default: break;
3967  }
3968
3969  switch (Opcode) {
3970  default: break;
3971  case ISD::SELECT_CC: {
3972    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3973    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3974           "LHS and RHS of condition must have same type!");
3975    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3976           "True and False arms of SelectCC must have same type!");
3977    assert(Ops[2].getValueType() == VT &&
3978           "select_cc node must be of same type as true and false value!");
3979    break;
3980  }
3981  case ISD::BR_CC: {
3982    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3983    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3984           "LHS/RHS of comparison should match types!");
3985    break;
3986  }
3987  }
3988
3989  // Memoize nodes.
3990  SDNode *N;
3991  SDVTList VTs = getVTList(VT);
3992
3993  if (VT != MVT::Flag) {
3994    FoldingSetNodeID ID;
3995    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3996    void *IP = 0;
3997
3998    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3999      return SDValue(E, 0);
4000
4001    N = NodeAllocator.Allocate<SDNode>();
4002    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4003    CSEMap.InsertNode(N, IP);
4004  } else {
4005    N = NodeAllocator.Allocate<SDNode>();
4006    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4007  }
4008
4009  AllNodes.push_back(N);
4010#ifndef NDEBUG
4011  VerifyNode(N);
4012#endif
4013  return SDValue(N, 0);
4014}
4015
4016SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4017                              const std::vector<EVT> &ResultTys,
4018                              const SDValue *Ops, unsigned NumOps) {
4019  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4020                 Ops, NumOps);
4021}
4022
4023SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4024                              const EVT *VTs, unsigned NumVTs,
4025                              const SDValue *Ops, unsigned NumOps) {
4026  if (NumVTs == 1)
4027    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4028  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4029}
4030
4031SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4032                              const SDValue *Ops, unsigned NumOps) {
4033  if (VTList.NumVTs == 1)
4034    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4035
4036#if 0
4037  switch (Opcode) {
4038  // FIXME: figure out how to safely handle things like
4039  // int foo(int x) { return 1 << (x & 255); }
4040  // int bar() { return foo(256); }
4041  case ISD::SRA_PARTS:
4042  case ISD::SRL_PARTS:
4043  case ISD::SHL_PARTS:
4044    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4045        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4046      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4047    else if (N3.getOpcode() == ISD::AND)
4048      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4049        // If the and is only masking out bits that cannot effect the shift,
4050        // eliminate the and.
4051        unsigned NumBits = VT.getSizeInBits()*2;
4052        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4053          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4054      }
4055    break;
4056  }
4057#endif
4058
4059  // Memoize the node unless it returns a flag.
4060  SDNode *N;
4061  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4062    FoldingSetNodeID ID;
4063    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4064    void *IP = 0;
4065    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4066      return SDValue(E, 0);
4067    if (NumOps == 1) {
4068      N = NodeAllocator.Allocate<UnarySDNode>();
4069      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4070    } else if (NumOps == 2) {
4071      N = NodeAllocator.Allocate<BinarySDNode>();
4072      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4073    } else if (NumOps == 3) {
4074      N = NodeAllocator.Allocate<TernarySDNode>();
4075      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4076    } else {
4077      N = NodeAllocator.Allocate<SDNode>();
4078      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4079    }
4080    CSEMap.InsertNode(N, IP);
4081  } else {
4082    if (NumOps == 1) {
4083      N = NodeAllocator.Allocate<UnarySDNode>();
4084      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4085    } else if (NumOps == 2) {
4086      N = NodeAllocator.Allocate<BinarySDNode>();
4087      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4088    } else if (NumOps == 3) {
4089      N = NodeAllocator.Allocate<TernarySDNode>();
4090      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4091    } else {
4092      N = NodeAllocator.Allocate<SDNode>();
4093      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4094    }
4095  }
4096  AllNodes.push_back(N);
4097#ifndef NDEBUG
4098  VerifyNode(N);
4099#endif
4100  return SDValue(N, 0);
4101}
4102
4103SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4104  return getNode(Opcode, DL, VTList, 0, 0);
4105}
4106
4107SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4108                              SDValue N1) {
4109  SDValue Ops[] = { N1 };
4110  return getNode(Opcode, DL, VTList, Ops, 1);
4111}
4112
4113SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4114                              SDValue N1, SDValue N2) {
4115  SDValue Ops[] = { N1, N2 };
4116  return getNode(Opcode, DL, VTList, Ops, 2);
4117}
4118
4119SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4120                              SDValue N1, SDValue N2, SDValue N3) {
4121  SDValue Ops[] = { N1, N2, N3 };
4122  return getNode(Opcode, DL, VTList, Ops, 3);
4123}
4124
4125SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4126                              SDValue N1, SDValue N2, SDValue N3,
4127                              SDValue N4) {
4128  SDValue Ops[] = { N1, N2, N3, N4 };
4129  return getNode(Opcode, DL, VTList, Ops, 4);
4130}
4131
4132SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4133                              SDValue N1, SDValue N2, SDValue N3,
4134                              SDValue N4, SDValue N5) {
4135  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4136  return getNode(Opcode, DL, VTList, Ops, 5);
4137}
4138
4139SDVTList SelectionDAG::getVTList(EVT VT) {
4140  return makeVTList(SDNode::getValueTypeList(VT), 1);
4141}
4142
4143SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4144  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4145       E = VTList.rend(); I != E; ++I)
4146    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4147      return *I;
4148
4149  EVT *Array = Allocator.Allocate<EVT>(2);
4150  Array[0] = VT1;
4151  Array[1] = VT2;
4152  SDVTList Result = makeVTList(Array, 2);
4153  VTList.push_back(Result);
4154  return Result;
4155}
4156
4157SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4158  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4159       E = VTList.rend(); I != E; ++I)
4160    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4161                          I->VTs[2] == VT3)
4162      return *I;
4163
4164  EVT *Array = Allocator.Allocate<EVT>(3);
4165  Array[0] = VT1;
4166  Array[1] = VT2;
4167  Array[2] = VT3;
4168  SDVTList Result = makeVTList(Array, 3);
4169  VTList.push_back(Result);
4170  return Result;
4171}
4172
4173SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4174  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4175       E = VTList.rend(); I != E; ++I)
4176    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4177                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4178      return *I;
4179
4180  EVT *Array = Allocator.Allocate<EVT>(4);
4181  Array[0] = VT1;
4182  Array[1] = VT2;
4183  Array[2] = VT3;
4184  Array[3] = VT4;
4185  SDVTList Result = makeVTList(Array, 4);
4186  VTList.push_back(Result);
4187  return Result;
4188}
4189
4190SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4191  switch (NumVTs) {
4192    case 0: llvm_unreachable("Cannot have nodes without results!");
4193    case 1: return getVTList(VTs[0]);
4194    case 2: return getVTList(VTs[0], VTs[1]);
4195    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4196    default: break;
4197  }
4198
4199  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4200       E = VTList.rend(); I != E; ++I) {
4201    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4202      continue;
4203
4204    bool NoMatch = false;
4205    for (unsigned i = 2; i != NumVTs; ++i)
4206      if (VTs[i] != I->VTs[i]) {
4207        NoMatch = true;
4208        break;
4209      }
4210    if (!NoMatch)
4211      return *I;
4212  }
4213
4214  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4215  std::copy(VTs, VTs+NumVTs, Array);
4216  SDVTList Result = makeVTList(Array, NumVTs);
4217  VTList.push_back(Result);
4218  return Result;
4219}
4220
4221
4222/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4223/// specified operands.  If the resultant node already exists in the DAG,
4224/// this does not modify the specified node, instead it returns the node that
4225/// already exists.  If the resultant node does not exist in the DAG, the
4226/// input node is returned.  As a degenerate case, if you specify the same
4227/// input operands as the node already has, the input node is returned.
4228SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4229  SDNode *N = InN.getNode();
4230  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4231
4232  // Check to see if there is no change.
4233  if (Op == N->getOperand(0)) return InN;
4234
4235  // See if the modified node already exists.
4236  void *InsertPos = 0;
4237  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4238    return SDValue(Existing, InN.getResNo());
4239
4240  // Nope it doesn't.  Remove the node from its current place in the maps.
4241  if (InsertPos)
4242    if (!RemoveNodeFromCSEMaps(N))
4243      InsertPos = 0;
4244
4245  // Now we update the operands.
4246  N->OperandList[0].set(Op);
4247
4248  // If this gets put into a CSE map, add it.
4249  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4250  return InN;
4251}
4252
4253SDValue SelectionDAG::
4254UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4255  SDNode *N = InN.getNode();
4256  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4257
4258  // Check to see if there is no change.
4259  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4260    return InN;   // No operands changed, just return the input node.
4261
4262  // See if the modified node already exists.
4263  void *InsertPos = 0;
4264  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4265    return SDValue(Existing, InN.getResNo());
4266
4267  // Nope it doesn't.  Remove the node from its current place in the maps.
4268  if (InsertPos)
4269    if (!RemoveNodeFromCSEMaps(N))
4270      InsertPos = 0;
4271
4272  // Now we update the operands.
4273  if (N->OperandList[0] != Op1)
4274    N->OperandList[0].set(Op1);
4275  if (N->OperandList[1] != Op2)
4276    N->OperandList[1].set(Op2);
4277
4278  // If this gets put into a CSE map, add it.
4279  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4280  return InN;
4281}
4282
4283SDValue SelectionDAG::
4284UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4285  SDValue Ops[] = { Op1, Op2, Op3 };
4286  return UpdateNodeOperands(N, Ops, 3);
4287}
4288
4289SDValue SelectionDAG::
4290UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4291                   SDValue Op3, SDValue Op4) {
4292  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4293  return UpdateNodeOperands(N, Ops, 4);
4294}
4295
4296SDValue SelectionDAG::
4297UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4298                   SDValue Op3, SDValue Op4, SDValue Op5) {
4299  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4300  return UpdateNodeOperands(N, Ops, 5);
4301}
4302
4303SDValue SelectionDAG::
4304UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4305  SDNode *N = InN.getNode();
4306  assert(N->getNumOperands() == NumOps &&
4307         "Update with wrong number of operands");
4308
4309  // Check to see if there is no change.
4310  bool AnyChange = false;
4311  for (unsigned i = 0; i != NumOps; ++i) {
4312    if (Ops[i] != N->getOperand(i)) {
4313      AnyChange = true;
4314      break;
4315    }
4316  }
4317
4318  // No operands changed, just return the input node.
4319  if (!AnyChange) return InN;
4320
4321  // See if the modified node already exists.
4322  void *InsertPos = 0;
4323  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4324    return SDValue(Existing, InN.getResNo());
4325
4326  // Nope it doesn't.  Remove the node from its current place in the maps.
4327  if (InsertPos)
4328    if (!RemoveNodeFromCSEMaps(N))
4329      InsertPos = 0;
4330
4331  // Now we update the operands.
4332  for (unsigned i = 0; i != NumOps; ++i)
4333    if (N->OperandList[i] != Ops[i])
4334      N->OperandList[i].set(Ops[i]);
4335
4336  // If this gets put into a CSE map, add it.
4337  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4338  return InN;
4339}
4340
4341/// DropOperands - Release the operands and set this node to have
4342/// zero operands.
4343void SDNode::DropOperands() {
4344  // Unlike the code in MorphNodeTo that does this, we don't need to
4345  // watch for dead nodes here.
4346  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4347    SDUse &Use = *I++;
4348    Use.set(SDValue());
4349  }
4350}
4351
4352/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4353/// machine opcode.
4354///
4355SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4356                                   EVT VT) {
4357  SDVTList VTs = getVTList(VT);
4358  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4359}
4360
4361SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4362                                   EVT VT, SDValue Op1) {
4363  SDVTList VTs = getVTList(VT);
4364  SDValue Ops[] = { Op1 };
4365  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4366}
4367
4368SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4369                                   EVT VT, SDValue Op1,
4370                                   SDValue Op2) {
4371  SDVTList VTs = getVTList(VT);
4372  SDValue Ops[] = { Op1, Op2 };
4373  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4374}
4375
4376SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4377                                   EVT VT, SDValue Op1,
4378                                   SDValue Op2, SDValue Op3) {
4379  SDVTList VTs = getVTList(VT);
4380  SDValue Ops[] = { Op1, Op2, Op3 };
4381  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4382}
4383
4384SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4385                                   EVT VT, const SDValue *Ops,
4386                                   unsigned NumOps) {
4387  SDVTList VTs = getVTList(VT);
4388  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4389}
4390
4391SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4392                                   EVT VT1, EVT VT2, const SDValue *Ops,
4393                                   unsigned NumOps) {
4394  SDVTList VTs = getVTList(VT1, VT2);
4395  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4396}
4397
4398SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4399                                   EVT VT1, EVT VT2) {
4400  SDVTList VTs = getVTList(VT1, VT2);
4401  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4402}
4403
4404SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4405                                   EVT VT1, EVT VT2, EVT VT3,
4406                                   const SDValue *Ops, unsigned NumOps) {
4407  SDVTList VTs = getVTList(VT1, VT2, VT3);
4408  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4409}
4410
4411SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4412                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4413                                   const SDValue *Ops, unsigned NumOps) {
4414  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4415  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4416}
4417
4418SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4419                                   EVT VT1, EVT VT2,
4420                                   SDValue Op1) {
4421  SDVTList VTs = getVTList(VT1, VT2);
4422  SDValue Ops[] = { Op1 };
4423  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4424}
4425
4426SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4427                                   EVT VT1, EVT VT2,
4428                                   SDValue Op1, SDValue Op2) {
4429  SDVTList VTs = getVTList(VT1, VT2);
4430  SDValue Ops[] = { Op1, Op2 };
4431  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4432}
4433
4434SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4435                                   EVT VT1, EVT VT2,
4436                                   SDValue Op1, SDValue Op2,
4437                                   SDValue Op3) {
4438  SDVTList VTs = getVTList(VT1, VT2);
4439  SDValue Ops[] = { Op1, Op2, Op3 };
4440  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4441}
4442
4443SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4444                                   EVT VT1, EVT VT2, EVT VT3,
4445                                   SDValue Op1, SDValue Op2,
4446                                   SDValue Op3) {
4447  SDVTList VTs = getVTList(VT1, VT2, VT3);
4448  SDValue Ops[] = { Op1, Op2, Op3 };
4449  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4450}
4451
4452SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4453                                   SDVTList VTs, const SDValue *Ops,
4454                                   unsigned NumOps) {
4455  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4456}
4457
4458SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4459                                  EVT VT) {
4460  SDVTList VTs = getVTList(VT);
4461  return MorphNodeTo(N, Opc, VTs, 0, 0);
4462}
4463
4464SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4465                                  EVT VT, SDValue Op1) {
4466  SDVTList VTs = getVTList(VT);
4467  SDValue Ops[] = { Op1 };
4468  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4469}
4470
4471SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4472                                  EVT VT, SDValue Op1,
4473                                  SDValue Op2) {
4474  SDVTList VTs = getVTList(VT);
4475  SDValue Ops[] = { Op1, Op2 };
4476  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4477}
4478
4479SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4480                                  EVT VT, SDValue Op1,
4481                                  SDValue Op2, SDValue Op3) {
4482  SDVTList VTs = getVTList(VT);
4483  SDValue Ops[] = { Op1, Op2, Op3 };
4484  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4485}
4486
4487SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4488                                  EVT VT, const SDValue *Ops,
4489                                  unsigned NumOps) {
4490  SDVTList VTs = getVTList(VT);
4491  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4492}
4493
4494SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4495                                  EVT VT1, EVT VT2, const SDValue *Ops,
4496                                  unsigned NumOps) {
4497  SDVTList VTs = getVTList(VT1, VT2);
4498  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4499}
4500
4501SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4502                                  EVT VT1, EVT VT2) {
4503  SDVTList VTs = getVTList(VT1, VT2);
4504  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4505}
4506
4507SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4508                                  EVT VT1, EVT VT2, EVT VT3,
4509                                  const SDValue *Ops, unsigned NumOps) {
4510  SDVTList VTs = getVTList(VT1, VT2, VT3);
4511  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4512}
4513
4514SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4515                                  EVT VT1, EVT VT2,
4516                                  SDValue Op1) {
4517  SDVTList VTs = getVTList(VT1, VT2);
4518  SDValue Ops[] = { Op1 };
4519  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4520}
4521
4522SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4523                                  EVT VT1, EVT VT2,
4524                                  SDValue Op1, SDValue Op2) {
4525  SDVTList VTs = getVTList(VT1, VT2);
4526  SDValue Ops[] = { Op1, Op2 };
4527  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4528}
4529
4530SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4531                                  EVT VT1, EVT VT2,
4532                                  SDValue Op1, SDValue Op2,
4533                                  SDValue Op3) {
4534  SDVTList VTs = getVTList(VT1, VT2);
4535  SDValue Ops[] = { Op1, Op2, Op3 };
4536  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4537}
4538
4539/// MorphNodeTo - These *mutate* the specified node to have the specified
4540/// return type, opcode, and operands.
4541///
4542/// Note that MorphNodeTo returns the resultant node.  If there is already a
4543/// node of the specified opcode and operands, it returns that node instead of
4544/// the current one.  Note that the DebugLoc need not be the same.
4545///
4546/// Using MorphNodeTo is faster than creating a new node and swapping it in
4547/// with ReplaceAllUsesWith both because it often avoids allocating a new
4548/// node, and because it doesn't require CSE recalculation for any of
4549/// the node's users.
4550///
4551SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4552                                  SDVTList VTs, const SDValue *Ops,
4553                                  unsigned NumOps) {
4554  // If an identical node already exists, use it.
4555  void *IP = 0;
4556  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4557    FoldingSetNodeID ID;
4558    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4559    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4560      return ON;
4561  }
4562
4563  if (!RemoveNodeFromCSEMaps(N))
4564    IP = 0;
4565
4566  // Start the morphing.
4567  N->NodeType = Opc;
4568  N->ValueList = VTs.VTs;
4569  N->NumValues = VTs.NumVTs;
4570
4571  // Clear the operands list, updating used nodes to remove this from their
4572  // use list.  Keep track of any operands that become dead as a result.
4573  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4574  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4575    SDUse &Use = *I++;
4576    SDNode *Used = Use.getNode();
4577    Use.set(SDValue());
4578    if (Used->use_empty())
4579      DeadNodeSet.insert(Used);
4580  }
4581
4582  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4583    // Initialize the memory references information.
4584    MN->setMemRefs(0, 0);
4585    // If NumOps is larger than the # of operands we can have in a
4586    // MachineSDNode, reallocate the operand list.
4587    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4588      if (MN->OperandsNeedDelete)
4589        delete[] MN->OperandList;
4590      if (NumOps > array_lengthof(MN->LocalOperands))
4591        // We're creating a final node that will live unmorphed for the
4592        // remainder of the current SelectionDAG iteration, so we can allocate
4593        // the operands directly out of a pool with no recycling metadata.
4594        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4595                        Ops, NumOps);
4596      else
4597        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4598      MN->OperandsNeedDelete = false;
4599    } else
4600      MN->InitOperands(MN->OperandList, Ops, NumOps);
4601  } else {
4602    // If NumOps is larger than the # of operands we currently have, reallocate
4603    // the operand list.
4604    if (NumOps > N->NumOperands) {
4605      if (N->OperandsNeedDelete)
4606        delete[] N->OperandList;
4607      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4608      N->OperandsNeedDelete = true;
4609    } else
4610      N->InitOperands(N->OperandList, Ops, NumOps);
4611  }
4612
4613  // Delete any nodes that are still dead after adding the uses for the
4614  // new operands.
4615  SmallVector<SDNode *, 16> DeadNodes;
4616  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4617       E = DeadNodeSet.end(); I != E; ++I)
4618    if ((*I)->use_empty())
4619      DeadNodes.push_back(*I);
4620  RemoveDeadNodes(DeadNodes);
4621
4622  if (IP)
4623    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4624  return N;
4625}
4626
4627
4628/// getMachineNode - These are used for target selectors to create a new node
4629/// with specified return type(s), MachineInstr opcode, and operands.
4630///
4631/// Note that getMachineNode returns the resultant node.  If there is already a
4632/// node of the specified opcode and operands, it returns that node instead of
4633/// the current one.
4634MachineSDNode *
4635SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4636  SDVTList VTs = getVTList(VT);
4637  return getMachineNode(Opcode, dl, VTs, 0, 0);
4638}
4639
4640MachineSDNode *
4641SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4642  SDVTList VTs = getVTList(VT);
4643  SDValue Ops[] = { Op1 };
4644  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4645}
4646
4647MachineSDNode *
4648SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4649                             SDValue Op1, SDValue Op2) {
4650  SDVTList VTs = getVTList(VT);
4651  SDValue Ops[] = { Op1, Op2 };
4652  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4653}
4654
4655MachineSDNode *
4656SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4657                             SDValue Op1, SDValue Op2, SDValue Op3) {
4658  SDVTList VTs = getVTList(VT);
4659  SDValue Ops[] = { Op1, Op2, Op3 };
4660  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4661}
4662
4663MachineSDNode *
4664SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4665                             const SDValue *Ops, unsigned NumOps) {
4666  SDVTList VTs = getVTList(VT);
4667  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4668}
4669
4670MachineSDNode *
4671SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4672  SDVTList VTs = getVTList(VT1, VT2);
4673  return getMachineNode(Opcode, dl, VTs, 0, 0);
4674}
4675
4676MachineSDNode *
4677SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4678                             EVT VT1, EVT VT2, SDValue Op1) {
4679  SDVTList VTs = getVTList(VT1, VT2);
4680  SDValue Ops[] = { Op1 };
4681  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4682}
4683
4684MachineSDNode *
4685SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4686                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4687  SDVTList VTs = getVTList(VT1, VT2);
4688  SDValue Ops[] = { Op1, Op2 };
4689  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4690}
4691
4692MachineSDNode *
4693SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4694                             EVT VT1, EVT VT2, SDValue Op1,
4695                             SDValue Op2, SDValue Op3) {
4696  SDVTList VTs = getVTList(VT1, VT2);
4697  SDValue Ops[] = { Op1, Op2, Op3 };
4698  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4699}
4700
4701MachineSDNode *
4702SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4703                             EVT VT1, EVT VT2,
4704                             const SDValue *Ops, unsigned NumOps) {
4705  SDVTList VTs = getVTList(VT1, VT2);
4706  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4707}
4708
4709MachineSDNode *
4710SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4711                             EVT VT1, EVT VT2, EVT VT3,
4712                             SDValue Op1, SDValue Op2) {
4713  SDVTList VTs = getVTList(VT1, VT2, VT3);
4714  SDValue Ops[] = { Op1, Op2 };
4715  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4716}
4717
4718MachineSDNode *
4719SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4720                             EVT VT1, EVT VT2, EVT VT3,
4721                             SDValue Op1, SDValue Op2, SDValue Op3) {
4722  SDVTList VTs = getVTList(VT1, VT2, VT3);
4723  SDValue Ops[] = { Op1, Op2, Op3 };
4724  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4725}
4726
4727MachineSDNode *
4728SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4729                             EVT VT1, EVT VT2, EVT VT3,
4730                             const SDValue *Ops, unsigned NumOps) {
4731  SDVTList VTs = getVTList(VT1, VT2, VT3);
4732  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4733}
4734
4735MachineSDNode *
4736SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4737                             EVT VT2, EVT VT3, EVT VT4,
4738                             const SDValue *Ops, unsigned NumOps) {
4739  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4740  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4741}
4742
4743MachineSDNode *
4744SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4745                             const std::vector<EVT> &ResultTys,
4746                             const SDValue *Ops, unsigned NumOps) {
4747  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4748  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4749}
4750
4751MachineSDNode *
4752SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4753                             const SDValue *Ops, unsigned NumOps) {
4754  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4755  MachineSDNode *N;
4756  void *IP;
4757
4758  if (DoCSE) {
4759    FoldingSetNodeID ID;
4760    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4761    IP = 0;
4762    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4763      return cast<MachineSDNode>(E);
4764  }
4765
4766  // Allocate a new MachineSDNode.
4767  N = NodeAllocator.Allocate<MachineSDNode>();
4768  new (N) MachineSDNode(~Opcode, DL, VTs);
4769
4770  // Initialize the operands list.
4771  if (NumOps > array_lengthof(N->LocalOperands))
4772    // We're creating a final node that will live unmorphed for the
4773    // remainder of the current SelectionDAG iteration, so we can allocate
4774    // the operands directly out of a pool with no recycling metadata.
4775    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4776                    Ops, NumOps);
4777  else
4778    N->InitOperands(N->LocalOperands, Ops, NumOps);
4779  N->OperandsNeedDelete = false;
4780
4781  if (DoCSE)
4782    CSEMap.InsertNode(N, IP);
4783
4784  AllNodes.push_back(N);
4785#ifndef NDEBUG
4786  VerifyNode(N);
4787#endif
4788  return N;
4789}
4790
4791/// getTargetExtractSubreg - A convenience function for creating
4792/// TargetInstrInfo::EXTRACT_SUBREG nodes.
4793SDValue
4794SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4795                                     SDValue Operand) {
4796  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4797  SDNode *Subreg = getMachineNode(TargetInstrInfo::EXTRACT_SUBREG, DL,
4798                                  VT, Operand, SRIdxVal);
4799  return SDValue(Subreg, 0);
4800}
4801
4802/// getTargetInsertSubreg - A convenience function for creating
4803/// TargetInstrInfo::INSERT_SUBREG nodes.
4804SDValue
4805SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4806                                    SDValue Operand, SDValue Subreg) {
4807  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4808  SDNode *Result = getMachineNode(TargetInstrInfo::INSERT_SUBREG, DL,
4809                                  VT, Operand, Subreg, SRIdxVal);
4810  return SDValue(Result, 0);
4811}
4812
4813/// getNodeIfExists - Get the specified node if it's already available, or
4814/// else return NULL.
4815SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4816                                      const SDValue *Ops, unsigned NumOps) {
4817  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4818    FoldingSetNodeID ID;
4819    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4820    void *IP = 0;
4821    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4822      return E;
4823  }
4824  return NULL;
4825}
4826
4827/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4828/// This can cause recursive merging of nodes in the DAG.
4829///
4830/// This version assumes From has a single result value.
4831///
4832void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4833                                      DAGUpdateListener *UpdateListener) {
4834  SDNode *From = FromN.getNode();
4835  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4836         "Cannot replace with this method!");
4837  assert(From != To.getNode() && "Cannot replace uses of with self");
4838
4839  // Iterate over all the existing uses of From. New uses will be added
4840  // to the beginning of the use list, which we avoid visiting.
4841  // This specifically avoids visiting uses of From that arise while the
4842  // replacement is happening, because any such uses would be the result
4843  // of CSE: If an existing node looks like From after one of its operands
4844  // is replaced by To, we don't want to replace of all its users with To
4845  // too. See PR3018 for more info.
4846  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4847  while (UI != UE) {
4848    SDNode *User = *UI;
4849
4850    // This node is about to morph, remove its old self from the CSE maps.
4851    RemoveNodeFromCSEMaps(User);
4852
4853    // A user can appear in a use list multiple times, and when this
4854    // happens the uses are usually next to each other in the list.
4855    // To help reduce the number of CSE recomputations, process all
4856    // the uses of this user that we can find this way.
4857    do {
4858      SDUse &Use = UI.getUse();
4859      ++UI;
4860      Use.set(To);
4861    } while (UI != UE && *UI == User);
4862
4863    // Now that we have modified User, add it back to the CSE maps.  If it
4864    // already exists there, recursively merge the results together.
4865    AddModifiedNodeToCSEMaps(User, UpdateListener);
4866  }
4867}
4868
4869/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4870/// This can cause recursive merging of nodes in the DAG.
4871///
4872/// This version assumes that for each value of From, there is a
4873/// corresponding value in To in the same position with the same type.
4874///
4875void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4876                                      DAGUpdateListener *UpdateListener) {
4877#ifndef NDEBUG
4878  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4879    assert((!From->hasAnyUseOfValue(i) ||
4880            From->getValueType(i) == To->getValueType(i)) &&
4881           "Cannot use this version of ReplaceAllUsesWith!");
4882#endif
4883
4884  // Handle the trivial case.
4885  if (From == To)
4886    return;
4887
4888  // Iterate over just the existing users of From. See the comments in
4889  // the ReplaceAllUsesWith above.
4890  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4891  while (UI != UE) {
4892    SDNode *User = *UI;
4893
4894    // This node is about to morph, remove its old self from the CSE maps.
4895    RemoveNodeFromCSEMaps(User);
4896
4897    // A user can appear in a use list multiple times, and when this
4898    // happens the uses are usually next to each other in the list.
4899    // To help reduce the number of CSE recomputations, process all
4900    // the uses of this user that we can find this way.
4901    do {
4902      SDUse &Use = UI.getUse();
4903      ++UI;
4904      Use.setNode(To);
4905    } while (UI != UE && *UI == User);
4906
4907    // Now that we have modified User, add it back to the CSE maps.  If it
4908    // already exists there, recursively merge the results together.
4909    AddModifiedNodeToCSEMaps(User, UpdateListener);
4910  }
4911}
4912
4913/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4914/// This can cause recursive merging of nodes in the DAG.
4915///
4916/// This version can replace From with any result values.  To must match the
4917/// number and types of values returned by From.
4918void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4919                                      const SDValue *To,
4920                                      DAGUpdateListener *UpdateListener) {
4921  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4922    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4923
4924  // Iterate over just the existing users of From. See the comments in
4925  // the ReplaceAllUsesWith above.
4926  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4927  while (UI != UE) {
4928    SDNode *User = *UI;
4929
4930    // This node is about to morph, remove its old self from the CSE maps.
4931    RemoveNodeFromCSEMaps(User);
4932
4933    // A user can appear in a use list multiple times, and when this
4934    // happens the uses are usually next to each other in the list.
4935    // To help reduce the number of CSE recomputations, process all
4936    // the uses of this user that we can find this way.
4937    do {
4938      SDUse &Use = UI.getUse();
4939      const SDValue &ToOp = To[Use.getResNo()];
4940      ++UI;
4941      Use.set(ToOp);
4942    } while (UI != UE && *UI == User);
4943
4944    // Now that we have modified User, add it back to the CSE maps.  If it
4945    // already exists there, recursively merge the results together.
4946    AddModifiedNodeToCSEMaps(User, UpdateListener);
4947  }
4948}
4949
4950/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4951/// uses of other values produced by From.getNode() alone.  The Deleted
4952/// vector is handled the same way as for ReplaceAllUsesWith.
4953void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4954                                             DAGUpdateListener *UpdateListener){
4955  // Handle the really simple, really trivial case efficiently.
4956  if (From == To) return;
4957
4958  // Handle the simple, trivial, case efficiently.
4959  if (From.getNode()->getNumValues() == 1) {
4960    ReplaceAllUsesWith(From, To, UpdateListener);
4961    return;
4962  }
4963
4964  // Iterate over just the existing users of From. See the comments in
4965  // the ReplaceAllUsesWith above.
4966  SDNode::use_iterator UI = From.getNode()->use_begin(),
4967                       UE = From.getNode()->use_end();
4968  while (UI != UE) {
4969    SDNode *User = *UI;
4970    bool UserRemovedFromCSEMaps = false;
4971
4972    // A user can appear in a use list multiple times, and when this
4973    // happens the uses are usually next to each other in the list.
4974    // To help reduce the number of CSE recomputations, process all
4975    // the uses of this user that we can find this way.
4976    do {
4977      SDUse &Use = UI.getUse();
4978
4979      // Skip uses of different values from the same node.
4980      if (Use.getResNo() != From.getResNo()) {
4981        ++UI;
4982        continue;
4983      }
4984
4985      // If this node hasn't been modified yet, it's still in the CSE maps,
4986      // so remove its old self from the CSE maps.
4987      if (!UserRemovedFromCSEMaps) {
4988        RemoveNodeFromCSEMaps(User);
4989        UserRemovedFromCSEMaps = true;
4990      }
4991
4992      ++UI;
4993      Use.set(To);
4994    } while (UI != UE && *UI == User);
4995
4996    // We are iterating over all uses of the From node, so if a use
4997    // doesn't use the specific value, no changes are made.
4998    if (!UserRemovedFromCSEMaps)
4999      continue;
5000
5001    // Now that we have modified User, add it back to the CSE maps.  If it
5002    // already exists there, recursively merge the results together.
5003    AddModifiedNodeToCSEMaps(User, UpdateListener);
5004  }
5005}
5006
5007namespace {
5008  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5009  /// to record information about a use.
5010  struct UseMemo {
5011    SDNode *User;
5012    unsigned Index;
5013    SDUse *Use;
5014  };
5015
5016  /// operator< - Sort Memos by User.
5017  bool operator<(const UseMemo &L, const UseMemo &R) {
5018    return (intptr_t)L.User < (intptr_t)R.User;
5019  }
5020}
5021
5022/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5023/// uses of other values produced by From.getNode() alone.  The same value
5024/// may appear in both the From and To list.  The Deleted vector is
5025/// handled the same way as for ReplaceAllUsesWith.
5026void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5027                                              const SDValue *To,
5028                                              unsigned Num,
5029                                              DAGUpdateListener *UpdateListener){
5030  // Handle the simple, trivial case efficiently.
5031  if (Num == 1)
5032    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5033
5034  // Read up all the uses and make records of them. This helps
5035  // processing new uses that are introduced during the
5036  // replacement process.
5037  SmallVector<UseMemo, 4> Uses;
5038  for (unsigned i = 0; i != Num; ++i) {
5039    unsigned FromResNo = From[i].getResNo();
5040    SDNode *FromNode = From[i].getNode();
5041    for (SDNode::use_iterator UI = FromNode->use_begin(),
5042         E = FromNode->use_end(); UI != E; ++UI) {
5043      SDUse &Use = UI.getUse();
5044      if (Use.getResNo() == FromResNo) {
5045        UseMemo Memo = { *UI, i, &Use };
5046        Uses.push_back(Memo);
5047      }
5048    }
5049  }
5050
5051  // Sort the uses, so that all the uses from a given User are together.
5052  std::sort(Uses.begin(), Uses.end());
5053
5054  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5055       UseIndex != UseIndexEnd; ) {
5056    // We know that this user uses some value of From.  If it is the right
5057    // value, update it.
5058    SDNode *User = Uses[UseIndex].User;
5059
5060    // This node is about to morph, remove its old self from the CSE maps.
5061    RemoveNodeFromCSEMaps(User);
5062
5063    // The Uses array is sorted, so all the uses for a given User
5064    // are next to each other in the list.
5065    // To help reduce the number of CSE recomputations, process all
5066    // the uses of this user that we can find this way.
5067    do {
5068      unsigned i = Uses[UseIndex].Index;
5069      SDUse &Use = *Uses[UseIndex].Use;
5070      ++UseIndex;
5071
5072      Use.set(To[i]);
5073    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5074
5075    // Now that we have modified User, add it back to the CSE maps.  If it
5076    // already exists there, recursively merge the results together.
5077    AddModifiedNodeToCSEMaps(User, UpdateListener);
5078  }
5079}
5080
5081/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5082/// based on their topological order. It returns the maximum id and a vector
5083/// of the SDNodes* in assigned order by reference.
5084unsigned SelectionDAG::AssignTopologicalOrder() {
5085
5086  unsigned DAGSize = 0;
5087
5088  // SortedPos tracks the progress of the algorithm. Nodes before it are
5089  // sorted, nodes after it are unsorted. When the algorithm completes
5090  // it is at the end of the list.
5091  allnodes_iterator SortedPos = allnodes_begin();
5092
5093  // Visit all the nodes. Move nodes with no operands to the front of
5094  // the list immediately. Annotate nodes that do have operands with their
5095  // operand count. Before we do this, the Node Id fields of the nodes
5096  // may contain arbitrary values. After, the Node Id fields for nodes
5097  // before SortedPos will contain the topological sort index, and the
5098  // Node Id fields for nodes At SortedPos and after will contain the
5099  // count of outstanding operands.
5100  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5101    SDNode *N = I++;
5102    unsigned Degree = N->getNumOperands();
5103    if (Degree == 0) {
5104      // A node with no uses, add it to the result array immediately.
5105      N->setNodeId(DAGSize++);
5106      allnodes_iterator Q = N;
5107      if (Q != SortedPos)
5108        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5109      ++SortedPos;
5110    } else {
5111      // Temporarily use the Node Id as scratch space for the degree count.
5112      N->setNodeId(Degree);
5113    }
5114  }
5115
5116  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5117  // such that by the time the end is reached all nodes will be sorted.
5118  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5119    SDNode *N = I;
5120    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5121         UI != UE; ++UI) {
5122      SDNode *P = *UI;
5123      unsigned Degree = P->getNodeId();
5124      --Degree;
5125      if (Degree == 0) {
5126        // All of P's operands are sorted, so P may sorted now.
5127        P->setNodeId(DAGSize++);
5128        if (P != SortedPos)
5129          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5130        ++SortedPos;
5131      } else {
5132        // Update P's outstanding operand count.
5133        P->setNodeId(Degree);
5134      }
5135    }
5136  }
5137
5138  assert(SortedPos == AllNodes.end() &&
5139         "Topological sort incomplete!");
5140  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5141         "First node in topological sort is not the entry token!");
5142  assert(AllNodes.front().getNodeId() == 0 &&
5143         "First node in topological sort has non-zero id!");
5144  assert(AllNodes.front().getNumOperands() == 0 &&
5145         "First node in topological sort has operands!");
5146  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5147         "Last node in topologic sort has unexpected id!");
5148  assert(AllNodes.back().use_empty() &&
5149         "Last node in topologic sort has users!");
5150  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5151  return DAGSize;
5152}
5153
5154
5155
5156//===----------------------------------------------------------------------===//
5157//                              SDNode Class
5158//===----------------------------------------------------------------------===//
5159
5160HandleSDNode::~HandleSDNode() {
5161  DropOperands();
5162}
5163
5164GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5165                                         EVT VT, int64_t o, unsigned char TF)
5166  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5167    Offset(o), TargetFlags(TF) {
5168  TheGlobal = const_cast<GlobalValue*>(GA);
5169}
5170
5171MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5172                     MachineMemOperand *mmo)
5173 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5174  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5175  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5176  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5177}
5178
5179MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5180                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5181                     MachineMemOperand *mmo)
5182   : SDNode(Opc, dl, VTs, Ops, NumOps),
5183     MemoryVT(memvt), MMO(mmo) {
5184  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5185  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5186  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5187}
5188
5189/// Profile - Gather unique data for the node.
5190///
5191void SDNode::Profile(FoldingSetNodeID &ID) const {
5192  AddNodeIDNode(ID, this);
5193}
5194
5195namespace {
5196  struct EVTArray {
5197    std::vector<EVT> VTs;
5198
5199    EVTArray() {
5200      VTs.reserve(MVT::LAST_VALUETYPE);
5201      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5202        VTs.push_back(MVT((MVT::SimpleValueType)i));
5203    }
5204  };
5205}
5206
5207static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5208static ManagedStatic<EVTArray> SimpleVTArray;
5209static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5210
5211/// getValueTypeList - Return a pointer to the specified value type.
5212///
5213const EVT *SDNode::getValueTypeList(EVT VT) {
5214  if (VT.isExtended()) {
5215    sys::SmartScopedLock<true> Lock(*VTMutex);
5216    return &(*EVTs->insert(VT).first);
5217  } else {
5218    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5219  }
5220}
5221
5222/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5223/// indicated value.  This method ignores uses of other values defined by this
5224/// operation.
5225bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5226  assert(Value < getNumValues() && "Bad value!");
5227
5228  // TODO: Only iterate over uses of a given value of the node
5229  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5230    if (UI.getUse().getResNo() == Value) {
5231      if (NUses == 0)
5232        return false;
5233      --NUses;
5234    }
5235  }
5236
5237  // Found exactly the right number of uses?
5238  return NUses == 0;
5239}
5240
5241
5242/// hasAnyUseOfValue - Return true if there are any use of the indicated
5243/// value. This method ignores uses of other values defined by this operation.
5244bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5245  assert(Value < getNumValues() && "Bad value!");
5246
5247  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5248    if (UI.getUse().getResNo() == Value)
5249      return true;
5250
5251  return false;
5252}
5253
5254
5255/// isOnlyUserOf - Return true if this node is the only use of N.
5256///
5257bool SDNode::isOnlyUserOf(SDNode *N) const {
5258  bool Seen = false;
5259  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5260    SDNode *User = *I;
5261    if (User == this)
5262      Seen = true;
5263    else
5264      return false;
5265  }
5266
5267  return Seen;
5268}
5269
5270/// isOperand - Return true if this node is an operand of N.
5271///
5272bool SDValue::isOperandOf(SDNode *N) const {
5273  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5274    if (*this == N->getOperand(i))
5275      return true;
5276  return false;
5277}
5278
5279bool SDNode::isOperandOf(SDNode *N) const {
5280  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5281    if (this == N->OperandList[i].getNode())
5282      return true;
5283  return false;
5284}
5285
5286/// reachesChainWithoutSideEffects - Return true if this operand (which must
5287/// be a chain) reaches the specified operand without crossing any
5288/// side-effecting instructions.  In practice, this looks through token
5289/// factors and non-volatile loads.  In order to remain efficient, this only
5290/// looks a couple of nodes in, it does not do an exhaustive search.
5291bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5292                                               unsigned Depth) const {
5293  if (*this == Dest) return true;
5294
5295  // Don't search too deeply, we just want to be able to see through
5296  // TokenFactor's etc.
5297  if (Depth == 0) return false;
5298
5299  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5300  // of the operands of the TF reach dest, then we can do the xform.
5301  if (getOpcode() == ISD::TokenFactor) {
5302    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5303      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5304        return true;
5305    return false;
5306  }
5307
5308  // Loads don't have side effects, look through them.
5309  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5310    if (!Ld->isVolatile())
5311      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5312  }
5313  return false;
5314}
5315
5316/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5317/// is either an operand of N or it can be reached by traversing up the operands.
5318/// NOTE: this is an expensive method. Use it carefully.
5319bool SDNode::isPredecessorOf(SDNode *N) const {
5320  SmallPtrSet<SDNode *, 32> Visited;
5321  SmallVector<SDNode *, 16> Worklist;
5322  Worklist.push_back(N);
5323
5324  do {
5325    N = Worklist.pop_back_val();
5326    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5327      SDNode *Op = N->getOperand(i).getNode();
5328      if (Op == this)
5329        return true;
5330      if (Visited.insert(Op))
5331        Worklist.push_back(Op);
5332    }
5333  } while (!Worklist.empty());
5334
5335  return false;
5336}
5337
5338uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5339  assert(Num < NumOperands && "Invalid child # of SDNode!");
5340  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5341}
5342
5343std::string SDNode::getOperationName(const SelectionDAG *G) const {
5344  switch (getOpcode()) {
5345  default:
5346    if (getOpcode() < ISD::BUILTIN_OP_END)
5347      return "<<Unknown DAG Node>>";
5348    if (isMachineOpcode()) {
5349      if (G)
5350        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5351          if (getMachineOpcode() < TII->getNumOpcodes())
5352            return TII->get(getMachineOpcode()).getName();
5353      return "<<Unknown Machine Node>>";
5354    }
5355    if (G) {
5356      const TargetLowering &TLI = G->getTargetLoweringInfo();
5357      const char *Name = TLI.getTargetNodeName(getOpcode());
5358      if (Name) return Name;
5359      return "<<Unknown Target Node>>";
5360    }
5361    return "<<Unknown Node>>";
5362
5363#ifndef NDEBUG
5364  case ISD::DELETED_NODE:
5365    return "<<Deleted Node!>>";
5366#endif
5367  case ISD::PREFETCH:      return "Prefetch";
5368  case ISD::MEMBARRIER:    return "MemBarrier";
5369  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5370  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5371  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5372  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5373  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5374  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5375  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5376  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5377  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5378  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5379  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5380  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5381  case ISD::PCMARKER:      return "PCMarker";
5382  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5383  case ISD::SRCVALUE:      return "SrcValue";
5384  case ISD::EntryToken:    return "EntryToken";
5385  case ISD::TokenFactor:   return "TokenFactor";
5386  case ISD::AssertSext:    return "AssertSext";
5387  case ISD::AssertZext:    return "AssertZext";
5388
5389  case ISD::BasicBlock:    return "BasicBlock";
5390  case ISD::VALUETYPE:     return "ValueType";
5391  case ISD::Register:      return "Register";
5392
5393  case ISD::Constant:      return "Constant";
5394  case ISD::ConstantFP:    return "ConstantFP";
5395  case ISD::GlobalAddress: return "GlobalAddress";
5396  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5397  case ISD::FrameIndex:    return "FrameIndex";
5398  case ISD::JumpTable:     return "JumpTable";
5399  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5400  case ISD::RETURNADDR: return "RETURNADDR";
5401  case ISD::FRAMEADDR: return "FRAMEADDR";
5402  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5403  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5404  case ISD::LSDAADDR: return "LSDAADDR";
5405  case ISD::EHSELECTION: return "EHSELECTION";
5406  case ISD::EH_RETURN: return "EH_RETURN";
5407  case ISD::ConstantPool:  return "ConstantPool";
5408  case ISD::ExternalSymbol: return "ExternalSymbol";
5409  case ISD::BlockAddress:  return "BlockAddress";
5410  case ISD::INTRINSIC_WO_CHAIN:
5411  case ISD::INTRINSIC_VOID:
5412  case ISD::INTRINSIC_W_CHAIN: {
5413    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5414    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5415    if (IID < Intrinsic::num_intrinsics)
5416      return Intrinsic::getName((Intrinsic::ID)IID);
5417    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5418      return TII->getName(IID);
5419    llvm_unreachable("Invalid intrinsic ID");
5420  }
5421
5422  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5423  case ISD::TargetConstant: return "TargetConstant";
5424  case ISD::TargetConstantFP:return "TargetConstantFP";
5425  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5426  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5427  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5428  case ISD::TargetJumpTable:  return "TargetJumpTable";
5429  case ISD::TargetConstantPool:  return "TargetConstantPool";
5430  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5431  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5432
5433  case ISD::CopyToReg:     return "CopyToReg";
5434  case ISD::CopyFromReg:   return "CopyFromReg";
5435  case ISD::UNDEF:         return "undef";
5436  case ISD::MERGE_VALUES:  return "merge_values";
5437  case ISD::INLINEASM:     return "inlineasm";
5438  case ISD::EH_LABEL:      return "eh_label";
5439  case ISD::HANDLENODE:    return "handlenode";
5440
5441  // Unary operators
5442  case ISD::FABS:   return "fabs";
5443  case ISD::FNEG:   return "fneg";
5444  case ISD::FSQRT:  return "fsqrt";
5445  case ISD::FSIN:   return "fsin";
5446  case ISD::FCOS:   return "fcos";
5447  case ISD::FPOWI:  return "fpowi";
5448  case ISD::FPOW:   return "fpow";
5449  case ISD::FTRUNC: return "ftrunc";
5450  case ISD::FFLOOR: return "ffloor";
5451  case ISD::FCEIL:  return "fceil";
5452  case ISD::FRINT:  return "frint";
5453  case ISD::FNEARBYINT: return "fnearbyint";
5454
5455  // Binary operators
5456  case ISD::ADD:    return "add";
5457  case ISD::SUB:    return "sub";
5458  case ISD::MUL:    return "mul";
5459  case ISD::MULHU:  return "mulhu";
5460  case ISD::MULHS:  return "mulhs";
5461  case ISD::SDIV:   return "sdiv";
5462  case ISD::UDIV:   return "udiv";
5463  case ISD::SREM:   return "srem";
5464  case ISD::UREM:   return "urem";
5465  case ISD::SMUL_LOHI:  return "smul_lohi";
5466  case ISD::UMUL_LOHI:  return "umul_lohi";
5467  case ISD::SDIVREM:    return "sdivrem";
5468  case ISD::UDIVREM:    return "udivrem";
5469  case ISD::AND:    return "and";
5470  case ISD::OR:     return "or";
5471  case ISD::XOR:    return "xor";
5472  case ISD::SHL:    return "shl";
5473  case ISD::SRA:    return "sra";
5474  case ISD::SRL:    return "srl";
5475  case ISD::ROTL:   return "rotl";
5476  case ISD::ROTR:   return "rotr";
5477  case ISD::FADD:   return "fadd";
5478  case ISD::FSUB:   return "fsub";
5479  case ISD::FMUL:   return "fmul";
5480  case ISD::FDIV:   return "fdiv";
5481  case ISD::FREM:   return "frem";
5482  case ISD::FCOPYSIGN: return "fcopysign";
5483  case ISD::FGETSIGN:  return "fgetsign";
5484
5485  case ISD::SETCC:       return "setcc";
5486  case ISD::VSETCC:      return "vsetcc";
5487  case ISD::SELECT:      return "select";
5488  case ISD::SELECT_CC:   return "select_cc";
5489  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5490  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5491  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5492  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5493  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5494  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5495  case ISD::CARRY_FALSE:         return "carry_false";
5496  case ISD::ADDC:        return "addc";
5497  case ISD::ADDE:        return "adde";
5498  case ISD::SADDO:       return "saddo";
5499  case ISD::UADDO:       return "uaddo";
5500  case ISD::SSUBO:       return "ssubo";
5501  case ISD::USUBO:       return "usubo";
5502  case ISD::SMULO:       return "smulo";
5503  case ISD::UMULO:       return "umulo";
5504  case ISD::SUBC:        return "subc";
5505  case ISD::SUBE:        return "sube";
5506  case ISD::SHL_PARTS:   return "shl_parts";
5507  case ISD::SRA_PARTS:   return "sra_parts";
5508  case ISD::SRL_PARTS:   return "srl_parts";
5509
5510  // Conversion operators.
5511  case ISD::SIGN_EXTEND: return "sign_extend";
5512  case ISD::ZERO_EXTEND: return "zero_extend";
5513  case ISD::ANY_EXTEND:  return "any_extend";
5514  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5515  case ISD::TRUNCATE:    return "truncate";
5516  case ISD::FP_ROUND:    return "fp_round";
5517  case ISD::FLT_ROUNDS_: return "flt_rounds";
5518  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5519  case ISD::FP_EXTEND:   return "fp_extend";
5520
5521  case ISD::SINT_TO_FP:  return "sint_to_fp";
5522  case ISD::UINT_TO_FP:  return "uint_to_fp";
5523  case ISD::FP_TO_SINT:  return "fp_to_sint";
5524  case ISD::FP_TO_UINT:  return "fp_to_uint";
5525  case ISD::BIT_CONVERT: return "bit_convert";
5526
5527  case ISD::CONVERT_RNDSAT: {
5528    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5529    default: llvm_unreachable("Unknown cvt code!");
5530    case ISD::CVT_FF:  return "cvt_ff";
5531    case ISD::CVT_FS:  return "cvt_fs";
5532    case ISD::CVT_FU:  return "cvt_fu";
5533    case ISD::CVT_SF:  return "cvt_sf";
5534    case ISD::CVT_UF:  return "cvt_uf";
5535    case ISD::CVT_SS:  return "cvt_ss";
5536    case ISD::CVT_SU:  return "cvt_su";
5537    case ISD::CVT_US:  return "cvt_us";
5538    case ISD::CVT_UU:  return "cvt_uu";
5539    }
5540  }
5541
5542    // Control flow instructions
5543  case ISD::BR:      return "br";
5544  case ISD::BRIND:   return "brind";
5545  case ISD::BR_JT:   return "br_jt";
5546  case ISD::BRCOND:  return "brcond";
5547  case ISD::BR_CC:   return "br_cc";
5548  case ISD::CALLSEQ_START:  return "callseq_start";
5549  case ISD::CALLSEQ_END:    return "callseq_end";
5550
5551    // Other operators
5552  case ISD::LOAD:               return "load";
5553  case ISD::STORE:              return "store";
5554  case ISD::VAARG:              return "vaarg";
5555  case ISD::VACOPY:             return "vacopy";
5556  case ISD::VAEND:              return "vaend";
5557  case ISD::VASTART:            return "vastart";
5558  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5559  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5560  case ISD::BUILD_PAIR:         return "build_pair";
5561  case ISD::STACKSAVE:          return "stacksave";
5562  case ISD::STACKRESTORE:       return "stackrestore";
5563  case ISD::TRAP:               return "trap";
5564
5565  // Bit manipulation
5566  case ISD::BSWAP:   return "bswap";
5567  case ISD::CTPOP:   return "ctpop";
5568  case ISD::CTTZ:    return "cttz";
5569  case ISD::CTLZ:    return "ctlz";
5570
5571  // Trampolines
5572  case ISD::TRAMPOLINE: return "trampoline";
5573
5574  case ISD::CONDCODE:
5575    switch (cast<CondCodeSDNode>(this)->get()) {
5576    default: llvm_unreachable("Unknown setcc condition!");
5577    case ISD::SETOEQ:  return "setoeq";
5578    case ISD::SETOGT:  return "setogt";
5579    case ISD::SETOGE:  return "setoge";
5580    case ISD::SETOLT:  return "setolt";
5581    case ISD::SETOLE:  return "setole";
5582    case ISD::SETONE:  return "setone";
5583
5584    case ISD::SETO:    return "seto";
5585    case ISD::SETUO:   return "setuo";
5586    case ISD::SETUEQ:  return "setue";
5587    case ISD::SETUGT:  return "setugt";
5588    case ISD::SETUGE:  return "setuge";
5589    case ISD::SETULT:  return "setult";
5590    case ISD::SETULE:  return "setule";
5591    case ISD::SETUNE:  return "setune";
5592
5593    case ISD::SETEQ:   return "seteq";
5594    case ISD::SETGT:   return "setgt";
5595    case ISD::SETGE:   return "setge";
5596    case ISD::SETLT:   return "setlt";
5597    case ISD::SETLE:   return "setle";
5598    case ISD::SETNE:   return "setne";
5599    }
5600  }
5601}
5602
5603const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5604  switch (AM) {
5605  default:
5606    return "";
5607  case ISD::PRE_INC:
5608    return "<pre-inc>";
5609  case ISD::PRE_DEC:
5610    return "<pre-dec>";
5611  case ISD::POST_INC:
5612    return "<post-inc>";
5613  case ISD::POST_DEC:
5614    return "<post-dec>";
5615  }
5616}
5617
5618std::string ISD::ArgFlagsTy::getArgFlagsString() {
5619  std::string S = "< ";
5620
5621  if (isZExt())
5622    S += "zext ";
5623  if (isSExt())
5624    S += "sext ";
5625  if (isInReg())
5626    S += "inreg ";
5627  if (isSRet())
5628    S += "sret ";
5629  if (isByVal())
5630    S += "byval ";
5631  if (isNest())
5632    S += "nest ";
5633  if (getByValAlign())
5634    S += "byval-align:" + utostr(getByValAlign()) + " ";
5635  if (getOrigAlign())
5636    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5637  if (getByValSize())
5638    S += "byval-size:" + utostr(getByValSize()) + " ";
5639  return S + ">";
5640}
5641
5642void SDNode::dump() const { dump(0); }
5643void SDNode::dump(const SelectionDAG *G) const {
5644  print(errs(), G);
5645}
5646
5647void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5648  OS << (void*)this << ": ";
5649
5650  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5651    if (i) OS << ",";
5652    if (getValueType(i) == MVT::Other)
5653      OS << "ch";
5654    else
5655      OS << getValueType(i).getEVTString();
5656  }
5657  OS << " = " << getOperationName(G);
5658}
5659
5660void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5661  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5662    if (!MN->memoperands_empty()) {
5663      OS << "<";
5664      OS << "Mem:";
5665      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5666           e = MN->memoperands_end(); i != e; ++i) {
5667        OS << **i;
5668        if (next(i) != e)
5669          OS << " ";
5670      }
5671      OS << ">";
5672    }
5673  } else if (const ShuffleVectorSDNode *SVN =
5674               dyn_cast<ShuffleVectorSDNode>(this)) {
5675    OS << "<";
5676    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5677      int Idx = SVN->getMaskElt(i);
5678      if (i) OS << ",";
5679      if (Idx < 0)
5680        OS << "u";
5681      else
5682        OS << Idx;
5683    }
5684    OS << ">";
5685  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5686    OS << '<' << CSDN->getAPIntValue() << '>';
5687  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5688    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5689      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5690    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5691      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5692    else {
5693      OS << "<APFloat(";
5694      CSDN->getValueAPF().bitcastToAPInt().dump();
5695      OS << ")>";
5696    }
5697  } else if (const GlobalAddressSDNode *GADN =
5698             dyn_cast<GlobalAddressSDNode>(this)) {
5699    int64_t offset = GADN->getOffset();
5700    OS << '<';
5701    WriteAsOperand(OS, GADN->getGlobal());
5702    OS << '>';
5703    if (offset > 0)
5704      OS << " + " << offset;
5705    else
5706      OS << " " << offset;
5707    if (unsigned int TF = GADN->getTargetFlags())
5708      OS << " [TF=" << TF << ']';
5709  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5710    OS << "<" << FIDN->getIndex() << ">";
5711  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5712    OS << "<" << JTDN->getIndex() << ">";
5713    if (unsigned int TF = JTDN->getTargetFlags())
5714      OS << " [TF=" << TF << ']';
5715  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5716    int offset = CP->getOffset();
5717    if (CP->isMachineConstantPoolEntry())
5718      OS << "<" << *CP->getMachineCPVal() << ">";
5719    else
5720      OS << "<" << *CP->getConstVal() << ">";
5721    if (offset > 0)
5722      OS << " + " << offset;
5723    else
5724      OS << " " << offset;
5725    if (unsigned int TF = CP->getTargetFlags())
5726      OS << " [TF=" << TF << ']';
5727  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5728    OS << "<";
5729    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5730    if (LBB)
5731      OS << LBB->getName() << " ";
5732    OS << (const void*)BBDN->getBasicBlock() << ">";
5733  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5734    if (G && R->getReg() &&
5735        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5736      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5737    } else {
5738      OS << " %reg" << R->getReg();
5739    }
5740  } else if (const ExternalSymbolSDNode *ES =
5741             dyn_cast<ExternalSymbolSDNode>(this)) {
5742    OS << "'" << ES->getSymbol() << "'";
5743    if (unsigned int TF = ES->getTargetFlags())
5744      OS << " [TF=" << TF << ']';
5745  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5746    if (M->getValue())
5747      OS << "<" << M->getValue() << ">";
5748    else
5749      OS << "<null>";
5750  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5751    OS << ":" << N->getVT().getEVTString();
5752  }
5753  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5754    OS << "<" << *LD->getMemOperand();
5755
5756    bool doExt = true;
5757    switch (LD->getExtensionType()) {
5758    default: doExt = false; break;
5759    case ISD::EXTLOAD: OS << ", anyext"; break;
5760    case ISD::SEXTLOAD: OS << ", sext"; break;
5761    case ISD::ZEXTLOAD: OS << ", zext"; break;
5762    }
5763    if (doExt)
5764      OS << " from " << LD->getMemoryVT().getEVTString();
5765
5766    const char *AM = getIndexedModeName(LD->getAddressingMode());
5767    if (*AM)
5768      OS << ", " << AM;
5769
5770    OS << ">";
5771  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5772    OS << "<" << *ST->getMemOperand();
5773
5774    if (ST->isTruncatingStore())
5775      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5776
5777    const char *AM = getIndexedModeName(ST->getAddressingMode());
5778    if (*AM)
5779      OS << ", " << AM;
5780
5781    OS << ">";
5782  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5783    OS << "<" << *M->getMemOperand() << ">";
5784  } else if (const BlockAddressSDNode *BA =
5785               dyn_cast<BlockAddressSDNode>(this)) {
5786    OS << "<";
5787    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5788    OS << ", ";
5789    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5790    OS << ">";
5791    if (unsigned int TF = BA->getTargetFlags())
5792      OS << " [TF=" << TF << ']';
5793  }
5794}
5795
5796void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5797  print_types(OS, G);
5798  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5799    if (i) OS << ", "; else OS << " ";
5800    OS << (void*)getOperand(i).getNode();
5801    if (unsigned RN = getOperand(i).getResNo())
5802      OS << ":" << RN;
5803  }
5804  print_details(OS, G);
5805}
5806
5807static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5808  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5809    if (N->getOperand(i).getNode()->hasOneUse())
5810      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5811    else
5812      errs() << "\n" << std::string(indent+2, ' ')
5813             << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5814
5815
5816  errs() << "\n";
5817  errs().indent(indent);
5818  N->dump(G);
5819}
5820
5821SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
5822  assert(N->getNumValues() == 1 &&
5823         "Can't unroll a vector with multiple results!");
5824
5825  EVT VT = N->getValueType(0);
5826  unsigned NE = VT.getVectorNumElements();
5827  EVT EltVT = VT.getVectorElementType();
5828  DebugLoc dl = N->getDebugLoc();
5829
5830  SmallVector<SDValue, 8> Scalars;
5831  SmallVector<SDValue, 4> Operands(N->getNumOperands());
5832
5833  // If ResNE is 0, fully unroll the vector op.
5834  if (ResNE == 0)
5835    ResNE = NE;
5836  else if (NE > ResNE)
5837    NE = ResNE;
5838
5839  unsigned i;
5840  for (i= 0; i != NE; ++i) {
5841    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
5842      SDValue Operand = N->getOperand(j);
5843      EVT OperandVT = Operand.getValueType();
5844      if (OperandVT.isVector()) {
5845        // A vector operand; extract a single element.
5846        EVT OperandEltVT = OperandVT.getVectorElementType();
5847        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
5848                              OperandEltVT,
5849                              Operand,
5850                              getConstant(i, MVT::i32));
5851      } else {
5852        // A scalar operand; just use it as is.
5853        Operands[j] = Operand;
5854      }
5855    }
5856
5857    switch (N->getOpcode()) {
5858    default:
5859      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
5860                                &Operands[0], Operands.size()));
5861      break;
5862    case ISD::SHL:
5863    case ISD::SRA:
5864    case ISD::SRL:
5865    case ISD::ROTL:
5866    case ISD::ROTR:
5867      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
5868                                getShiftAmountOperand(Operands[1])));
5869      break;
5870    }
5871  }
5872
5873  for (; i < ResNE; ++i)
5874    Scalars.push_back(getUNDEF(EltVT));
5875
5876  return getNode(ISD::BUILD_VECTOR, dl,
5877                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
5878                 &Scalars[0], Scalars.size());
5879}
5880
5881
5882/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
5883/// location that is 'Dist' units away from the location that the 'Base' load
5884/// is loading from.
5885bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
5886                                     unsigned Bytes, int Dist) const {
5887  if (LD->getChain() != Base->getChain())
5888    return false;
5889  EVT VT = LD->getValueType(0);
5890  if (VT.getSizeInBits() / 8 != Bytes)
5891    return false;
5892
5893  SDValue Loc = LD->getOperand(1);
5894  SDValue BaseLoc = Base->getOperand(1);
5895  if (Loc.getOpcode() == ISD::FrameIndex) {
5896    if (BaseLoc.getOpcode() != ISD::FrameIndex)
5897      return false;
5898    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
5899    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
5900    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5901    int FS  = MFI->getObjectSize(FI);
5902    int BFS = MFI->getObjectSize(BFI);
5903    if (FS != BFS || FS != (int)Bytes) return false;
5904    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
5905  }
5906  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
5907    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
5908    if (V && (V->getSExtValue() == Dist*Bytes))
5909      return true;
5910  }
5911
5912  GlobalValue *GV1 = NULL;
5913  GlobalValue *GV2 = NULL;
5914  int64_t Offset1 = 0;
5915  int64_t Offset2 = 0;
5916  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
5917  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
5918  if (isGA1 && isGA2 && GV1 == GV2)
5919    return Offset1 == (Offset2 + Dist*Bytes);
5920  return false;
5921}
5922
5923
5924/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
5925/// it cannot be inferred.
5926unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
5927  // If this is a GlobalAddress + cst, return the alignment.
5928  GlobalValue *GV;
5929  int64_t GVOffset = 0;
5930  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset))
5931    return MinAlign(GV->getAlignment(), GVOffset);
5932
5933  // If this is a direct reference to a stack slot, use information about the
5934  // stack slot's alignment.
5935  int FrameIdx = 1 << 31;
5936  int64_t FrameOffset = 0;
5937  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
5938    FrameIdx = FI->getIndex();
5939  } else if (Ptr.getOpcode() == ISD::ADD &&
5940             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
5941             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
5942    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5943    FrameOffset = Ptr.getConstantOperandVal(1);
5944  }
5945
5946  if (FrameIdx != (1 << 31)) {
5947    // FIXME: Handle FI+CST.
5948    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
5949    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
5950                                    FrameOffset);
5951    if (MFI.isFixedObjectIndex(FrameIdx)) {
5952      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
5953
5954      // The alignment of the frame index can be determined from its offset from
5955      // the incoming frame position.  If the frame object is at offset 32 and
5956      // the stack is guaranteed to be 16-byte aligned, then we know that the
5957      // object is 16-byte aligned.
5958      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
5959      unsigned Align = MinAlign(ObjectOffset, StackAlign);
5960
5961      // Finally, the frame object itself may have a known alignment.  Factor
5962      // the alignment + offset into a new alignment.  For example, if we know
5963      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
5964      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
5965      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
5966      return std::max(Align, FIInfoAlign);
5967    }
5968    return FIInfoAlign;
5969  }
5970
5971  return 0;
5972}
5973
5974void SelectionDAG::dump() const {
5975  errs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
5976
5977  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5978       I != E; ++I) {
5979    const SDNode *N = I;
5980    if (!N->hasOneUse() && N != getRoot().getNode())
5981      DumpNodes(N, 2, this);
5982  }
5983
5984  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5985
5986  errs() << "\n\n";
5987}
5988
5989void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5990  print_types(OS, G);
5991  print_details(OS, G);
5992}
5993
5994typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5995static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5996                       const SelectionDAG *G, VisitedSDNodeSet &once) {
5997  if (!once.insert(N))          // If we've been here before, return now.
5998    return;
5999  // Dump the current SDNode, but don't end the line yet.
6000  OS << std::string(indent, ' ');
6001  N->printr(OS, G);
6002  // Having printed this SDNode, walk the children:
6003  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6004    const SDNode *child = N->getOperand(i).getNode();
6005    if (i) OS << ",";
6006    OS << " ";
6007    if (child->getNumOperands() == 0) {
6008      // This child has no grandchildren; print it inline right here.
6009      child->printr(OS, G);
6010      once.insert(child);
6011    } else {          // Just the address.  FIXME: also print the child's opcode
6012      OS << (void*)child;
6013      if (unsigned RN = N->getOperand(i).getResNo())
6014        OS << ":" << RN;
6015    }
6016  }
6017  OS << "\n";
6018  // Dump children that have grandchildren on their own line(s).
6019  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6020    const SDNode *child = N->getOperand(i).getNode();
6021    DumpNodesr(OS, child, indent+2, G, once);
6022  }
6023}
6024
6025void SDNode::dumpr() const {
6026  VisitedSDNodeSet once;
6027  DumpNodesr(errs(), this, 0, 0, once);
6028}
6029
6030void SDNode::dumpr(const SelectionDAG *G) const {
6031  VisitedSDNodeSet once;
6032  DumpNodesr(errs(), this, 0, G, once);
6033}
6034
6035
6036// getAddressSpace - Return the address space this GlobalAddress belongs to.
6037unsigned GlobalAddressSDNode::getAddressSpace() const {
6038  return getGlobal()->getType()->getAddressSpace();
6039}
6040
6041
6042const Type *ConstantPoolSDNode::getType() const {
6043  if (isMachineConstantPoolEntry())
6044    return Val.MachineCPVal->getType();
6045  return Val.ConstVal->getType();
6046}
6047
6048bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6049                                        APInt &SplatUndef,
6050                                        unsigned &SplatBitSize,
6051                                        bool &HasAnyUndefs,
6052                                        unsigned MinSplatBits,
6053                                        bool isBigEndian) {
6054  EVT VT = getValueType(0);
6055  assert(VT.isVector() && "Expected a vector type");
6056  unsigned sz = VT.getSizeInBits();
6057  if (MinSplatBits > sz)
6058    return false;
6059
6060  SplatValue = APInt(sz, 0);
6061  SplatUndef = APInt(sz, 0);
6062
6063  // Get the bits.  Bits with undefined values (when the corresponding element
6064  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6065  // in SplatValue.  If any of the values are not constant, give up and return
6066  // false.
6067  unsigned int nOps = getNumOperands();
6068  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6069  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6070
6071  for (unsigned j = 0; j < nOps; ++j) {
6072    unsigned i = isBigEndian ? nOps-1-j : j;
6073    SDValue OpVal = getOperand(i);
6074    unsigned BitPos = j * EltBitSize;
6075
6076    if (OpVal.getOpcode() == ISD::UNDEF)
6077      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6078    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6079      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6080                     zextOrTrunc(sz) << BitPos);
6081    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6082      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6083     else
6084      return false;
6085  }
6086
6087  // The build_vector is all constants or undefs.  Find the smallest element
6088  // size that splats the vector.
6089
6090  HasAnyUndefs = (SplatUndef != 0);
6091  while (sz > 8) {
6092
6093    unsigned HalfSize = sz / 2;
6094    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6095    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6096    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6097    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6098
6099    // If the two halves do not match (ignoring undef bits), stop here.
6100    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6101        MinSplatBits > HalfSize)
6102      break;
6103
6104    SplatValue = HighValue | LowValue;
6105    SplatUndef = HighUndef & LowUndef;
6106
6107    sz = HalfSize;
6108  }
6109
6110  SplatBitSize = sz;
6111  return true;
6112}
6113
6114bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6115  // Find the first non-undef value in the shuffle mask.
6116  unsigned i, e;
6117  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6118    /* search */;
6119
6120  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6121
6122  // Make sure all remaining elements are either undef or the same as the first
6123  // non-undef value.
6124  for (int Idx = Mask[i]; i != e; ++i)
6125    if (Mask[i] >= 0 && Mask[i] != Idx)
6126      return false;
6127  return true;
6128}
6129
6130