SelectionDAG.cpp revision 7cf11b4ab248d6ab7fb0d9df0b72baf158201abe
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/ADT/StringExtras.h"
25#include <iostream>
26#include <set>
27#include <cmath>
28#include <algorithm>
29using namespace llvm;
30
31static bool isCommutativeBinOp(unsigned Opcode) {
32  switch (Opcode) {
33  case ISD::ADD:
34  case ISD::MUL:
35  case ISD::MULHU:
36  case ISD::MULHS:
37  case ISD::FADD:
38  case ISD::FMUL:
39  case ISD::AND:
40  case ISD::OR:
41  case ISD::XOR: return true;
42  default: return false; // FIXME: Need commutative info for user ops!
43  }
44}
45
46static bool isAssociativeBinOp(unsigned Opcode) {
47  switch (Opcode) {
48  case ISD::ADD:
49  case ISD::MUL:
50  case ISD::AND:
51  case ISD::OR:
52  case ISD::XOR: return true;
53  default: return false; // FIXME: Need associative info for user ops!
54  }
55}
56
57// isInvertibleForFree - Return true if there is no cost to emitting the logical
58// inverse of this node.
59static bool isInvertibleForFree(SDOperand N) {
60  if (isa<ConstantSDNode>(N.Val)) return true;
61  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
62    return true;
63  return false;
64}
65
66//===----------------------------------------------------------------------===//
67//                              ConstantFPSDNode Class
68//===----------------------------------------------------------------------===//
69
70/// isExactlyValue - We don't rely on operator== working on double values, as
71/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
72/// As such, this method can be used to do an exact bit-for-bit comparison of
73/// two floating point values.
74bool ConstantFPSDNode::isExactlyValue(double V) const {
75  return DoubleToBits(V) == DoubleToBits(Value);
76}
77
78//===----------------------------------------------------------------------===//
79//                              ISD Class
80//===----------------------------------------------------------------------===//
81
82/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
83/// when given the operation for (X op Y).
84ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
85  // To perform this operation, we just need to swap the L and G bits of the
86  // operation.
87  unsigned OldL = (Operation >> 2) & 1;
88  unsigned OldG = (Operation >> 1) & 1;
89  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
90                       (OldL << 1) |       // New G bit
91                       (OldG << 2));        // New L bit.
92}
93
94/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
95/// 'op' is a valid SetCC operation.
96ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
97  unsigned Operation = Op;
98  if (isInteger)
99    Operation ^= 7;   // Flip L, G, E bits, but not U.
100  else
101    Operation ^= 15;  // Flip all of the condition bits.
102  if (Operation > ISD::SETTRUE2)
103    Operation &= ~8;     // Don't let N and U bits get set.
104  return ISD::CondCode(Operation);
105}
106
107
108/// isSignedOp - For an integer comparison, return 1 if the comparison is a
109/// signed operation and 2 if the result is an unsigned comparison.  Return zero
110/// if the operation does not depend on the sign of the input (setne and seteq).
111static int isSignedOp(ISD::CondCode Opcode) {
112  switch (Opcode) {
113  default: assert(0 && "Illegal integer setcc operation!");
114  case ISD::SETEQ:
115  case ISD::SETNE: return 0;
116  case ISD::SETLT:
117  case ISD::SETLE:
118  case ISD::SETGT:
119  case ISD::SETGE: return 1;
120  case ISD::SETULT:
121  case ISD::SETULE:
122  case ISD::SETUGT:
123  case ISD::SETUGE: return 2;
124  }
125}
126
127/// getSetCCOrOperation - Return the result of a logical OR between different
128/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
129/// returns SETCC_INVALID if it is not possible to represent the resultant
130/// comparison.
131ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
132                                       bool isInteger) {
133  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
134    // Cannot fold a signed integer setcc with an unsigned integer setcc.
135    return ISD::SETCC_INVALID;
136
137  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
138
139  // If the N and U bits get set then the resultant comparison DOES suddenly
140  // care about orderedness, and is true when ordered.
141  if (Op > ISD::SETTRUE2)
142    Op &= ~16;     // Clear the N bit.
143  return ISD::CondCode(Op);
144}
145
146/// getSetCCAndOperation - Return the result of a logical AND between different
147/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
148/// function returns zero if it is not possible to represent the resultant
149/// comparison.
150ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
151                                        bool isInteger) {
152  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
153    // Cannot fold a signed setcc with an unsigned setcc.
154    return ISD::SETCC_INVALID;
155
156  // Combine all of the condition bits.
157  return ISD::CondCode(Op1 & Op2);
158}
159
160const TargetMachine &SelectionDAG::getTarget() const {
161  return TLI.getTargetMachine();
162}
163
164//===----------------------------------------------------------------------===//
165//                              SelectionDAG Class
166//===----------------------------------------------------------------------===//
167
168/// RemoveDeadNodes - This method deletes all unreachable nodes in the
169/// SelectionDAG, including nodes (like loads) that have uses of their token
170/// chain but no other uses and no side effect.  If a node is passed in as an
171/// argument, it is used as the seed for node deletion.
172void SelectionDAG::RemoveDeadNodes(SDNode *N) {
173  // Create a dummy node (which is not added to allnodes), that adds a reference
174  // to the root node, preventing it from being deleted.
175  HandleSDNode Dummy(getRoot());
176
177  bool MadeChange = false;
178
179  // If we have a hint to start from, use it.
180  if (N && N->use_empty()) {
181    DestroyDeadNode(N);
182    MadeChange = true;
183  }
184
185  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
186    if (I->use_empty() && I->getOpcode() != 65535) {
187      // Node is dead, recursively delete newly dead uses.
188      DestroyDeadNode(I);
189      MadeChange = true;
190    }
191
192  // Walk the nodes list, removing the nodes we've marked as dead.
193  if (MadeChange) {
194    for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ) {
195      SDNode *N = I++;
196      if (N->use_empty())
197        AllNodes.erase(N);
198    }
199  }
200
201  // If the root changed (e.g. it was a dead load, update the root).
202  setRoot(Dummy.getValue());
203}
204
205/// DestroyDeadNode - We know that N is dead.  Nuke it from the CSE maps for the
206/// graph.  If it is the last user of any of its operands, recursively process
207/// them the same way.
208///
209void SelectionDAG::DestroyDeadNode(SDNode *N) {
210  // Okay, we really are going to delete this node.  First take this out of the
211  // appropriate CSE map.
212  RemoveNodeFromCSEMaps(N);
213
214  // Next, brutally remove the operand list.  This is safe to do, as there are
215  // no cycles in the graph.
216  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
217    SDNode *O = I->Val;
218    O->removeUser(N);
219
220    // Now that we removed this operand, see if there are no uses of it left.
221    if (O->use_empty())
222      DestroyDeadNode(O);
223  }
224  delete[] N->OperandList;
225  N->OperandList = 0;
226  N->NumOperands = 0;
227
228  // Mark the node as dead.
229  N->MorphNodeTo(65535);
230}
231
232void SelectionDAG::DeleteNode(SDNode *N) {
233  assert(N->use_empty() && "Cannot delete a node that is not dead!");
234
235  // First take this out of the appropriate CSE map.
236  RemoveNodeFromCSEMaps(N);
237
238  // Finally, remove uses due to operands of this node, remove from the
239  // AllNodes list, and delete the node.
240  DeleteNodeNotInCSEMaps(N);
241}
242
243void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
244
245  // Remove it from the AllNodes list.
246  AllNodes.remove(N);
247
248  // Drop all of the operands and decrement used nodes use counts.
249  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
250    I->Val->removeUser(N);
251  delete[] N->OperandList;
252  N->OperandList = 0;
253  N->NumOperands = 0;
254
255  delete N;
256}
257
258/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
259/// correspond to it.  This is useful when we're about to delete or repurpose
260/// the node.  We don't want future request for structurally identical nodes
261/// to return N anymore.
262void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
263  bool Erased = false;
264  switch (N->getOpcode()) {
265  case ISD::HANDLENODE: return;  // noop.
266  case ISD::Constant:
267    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
268                                            N->getValueType(0)));
269    break;
270  case ISD::TargetConstant:
271    Erased = TargetConstants.erase(std::make_pair(
272                                    cast<ConstantSDNode>(N)->getValue(),
273                                                  N->getValueType(0)));
274    break;
275  case ISD::ConstantFP: {
276    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
277    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
278    break;
279  }
280  case ISD::STRING:
281    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
282    break;
283  case ISD::CONDCODE:
284    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
285           "Cond code doesn't exist!");
286    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
287    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
288    break;
289  case ISD::GlobalAddress: {
290    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
291    Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(),
292                                               GN->getOffset()));
293    break;
294  }
295  case ISD::TargetGlobalAddress: {
296    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
297    Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(),
298                                                    GN->getOffset()));
299    break;
300  }
301  case ISD::FrameIndex:
302    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
303    break;
304  case ISD::TargetFrameIndex:
305    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
306    break;
307  case ISD::ConstantPool:
308    Erased = ConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
309    break;
310  case ISD::TargetConstantPool:
311    Erased =TargetConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
312    break;
313  case ISD::BasicBlock:
314    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
315    break;
316  case ISD::ExternalSymbol:
317    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
318    break;
319  case ISD::TargetExternalSymbol:
320    Erased = TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
321    break;
322  case ISD::VALUETYPE:
323    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
324    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
325    break;
326  case ISD::Register:
327    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
328                                           N->getValueType(0)));
329    break;
330  case ISD::SRCVALUE: {
331    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
332    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
333    break;
334  }
335  case ISD::LOAD:
336    Erased = Loads.erase(std::make_pair(N->getOperand(1),
337                                        std::make_pair(N->getOperand(0),
338                                                       N->getValueType(0))));
339    break;
340  default:
341    if (N->getNumValues() == 1) {
342      if (N->getNumOperands() == 0) {
343        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
344                                                 N->getValueType(0)));
345      } else if (N->getNumOperands() == 1) {
346        Erased =
347          UnaryOps.erase(std::make_pair(N->getOpcode(),
348                                        std::make_pair(N->getOperand(0),
349                                                       N->getValueType(0))));
350      } else if (N->getNumOperands() == 2) {
351        Erased =
352          BinaryOps.erase(std::make_pair(N->getOpcode(),
353                                         std::make_pair(N->getOperand(0),
354                                                        N->getOperand(1))));
355      } else {
356        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
357        Erased =
358          OneResultNodes.erase(std::make_pair(N->getOpcode(),
359                                              std::make_pair(N->getValueType(0),
360                                                             Ops)));
361      }
362    } else {
363      // Remove the node from the ArbitraryNodes map.
364      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
365      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
366      Erased =
367        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
368                                            std::make_pair(RV, Ops)));
369    }
370    break;
371  }
372#ifndef NDEBUG
373  // Verify that the node was actually in one of the CSE maps, unless it has a
374  // flag result (which cannot be CSE'd) or is one of the special cases that are
375  // not subject to CSE.
376  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
377      N->getOpcode() != ISD::CALL && N->getOpcode() != ISD::CALLSEQ_START &&
378      N->getOpcode() != ISD::CALLSEQ_END && !N->isTargetOpcode()) {
379
380    N->dump();
381    assert(0 && "Node is not in map!");
382  }
383#endif
384}
385
386/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
387/// has been taken out and modified in some way.  If the specified node already
388/// exists in the CSE maps, do not modify the maps, but return the existing node
389/// instead.  If it doesn't exist, add it and return null.
390///
391SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
392  assert(N->getNumOperands() && "This is a leaf node!");
393  if (N->getOpcode() == ISD::CALLSEQ_START ||
394      N->getOpcode() == ISD::CALLSEQ_END ||
395      N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
396    return 0;    // Never add these nodes.
397
398  // Check that remaining values produced are not flags.
399  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
400    if (N->getValueType(i) == MVT::Flag)
401      return 0;   // Never CSE anything that produces a flag.
402
403  if (N->getNumValues() == 1) {
404    if (N->getNumOperands() == 1) {
405      SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
406                                           std::make_pair(N->getOperand(0),
407                                                          N->getValueType(0)))];
408      if (U) return U;
409      U = N;
410    } else if (N->getNumOperands() == 2) {
411      SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
412                                            std::make_pair(N->getOperand(0),
413                                                           N->getOperand(1)))];
414      if (B) return B;
415      B = N;
416    } else {
417      std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
418      SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
419                                                   std::make_pair(N->getValueType(0), Ops))];
420      if (ORN) return ORN;
421      ORN = N;
422    }
423  } else {
424    if (N->getOpcode() == ISD::LOAD) {
425      SDNode *&L = Loads[std::make_pair(N->getOperand(1),
426                                        std::make_pair(N->getOperand(0),
427                                                       N->getValueType(0)))];
428      if (L) return L;
429      L = N;
430    } else {
431      // Remove the node from the ArbitraryNodes map.
432      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
433      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
434      SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
435                                                  std::make_pair(RV, Ops))];
436      if (AN) return AN;
437      AN = N;
438    }
439  }
440  return 0;
441}
442
443
444
445SelectionDAG::~SelectionDAG() {
446  while (!AllNodes.empty()) {
447    SDNode *N = AllNodes.begin();
448    delete [] N->OperandList;
449    N->OperandList = 0;
450    N->NumOperands = 0;
451    AllNodes.pop_front();
452  }
453}
454
455SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
456  if (Op.getValueType() == VT) return Op;
457  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
458  return getNode(ISD::AND, Op.getValueType(), Op,
459                 getConstant(Imm, Op.getValueType()));
460}
461
462SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
463  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
464  // Mask out any bits that are not valid for this constant.
465  if (VT != MVT::i64)
466    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
467
468  SDNode *&N = Constants[std::make_pair(Val, VT)];
469  if (N) return SDOperand(N, 0);
470  N = new ConstantSDNode(false, Val, VT);
471  AllNodes.push_back(N);
472  return SDOperand(N, 0);
473}
474
475SDOperand SelectionDAG::getString(const std::string &Val) {
476  StringSDNode *&N = StringNodes[Val];
477  if (!N) {
478    N = new StringSDNode(Val);
479    AllNodes.push_back(N);
480  }
481  return SDOperand(N, 0);
482}
483
484SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
485  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
486  // Mask out any bits that are not valid for this constant.
487  if (VT != MVT::i64)
488    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
489
490  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
491  if (N) return SDOperand(N, 0);
492  N = new ConstantSDNode(true, Val, VT);
493  AllNodes.push_back(N);
494  return SDOperand(N, 0);
495}
496
497SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
498  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
499  if (VT == MVT::f32)
500    Val = (float)Val;  // Mask out extra precision.
501
502  // Do the map lookup using the actual bit pattern for the floating point
503  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
504  // we don't have issues with SNANs.
505  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
506  if (N) return SDOperand(N, 0);
507  N = new ConstantFPSDNode(Val, VT);
508  AllNodes.push_back(N);
509  return SDOperand(N, 0);
510}
511
512SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
513                                         MVT::ValueType VT, int offset) {
514  SDNode *&N = GlobalValues[std::make_pair(GV, offset)];
515  if (N) return SDOperand(N, 0);
516  N = new GlobalAddressSDNode(false, GV, VT, offset);
517  AllNodes.push_back(N);
518  return SDOperand(N, 0);
519}
520
521SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
522                                               MVT::ValueType VT, int offset) {
523  SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)];
524  if (N) return SDOperand(N, 0);
525  N = new GlobalAddressSDNode(true, GV, VT, offset);
526  AllNodes.push_back(N);
527  return SDOperand(N, 0);
528}
529
530SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
531  SDNode *&N = FrameIndices[FI];
532  if (N) return SDOperand(N, 0);
533  N = new FrameIndexSDNode(FI, VT, false);
534  AllNodes.push_back(N);
535  return SDOperand(N, 0);
536}
537
538SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
539  SDNode *&N = TargetFrameIndices[FI];
540  if (N) return SDOperand(N, 0);
541  N = new FrameIndexSDNode(FI, VT, true);
542  AllNodes.push_back(N);
543  return SDOperand(N, 0);
544}
545
546SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT) {
547  SDNode *&N = ConstantPoolIndices[C];
548  if (N) return SDOperand(N, 0);
549  N = new ConstantPoolSDNode(C, VT, false);
550  AllNodes.push_back(N);
551  return SDOperand(N, 0);
552}
553
554SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT) {
555  SDNode *&N = TargetConstantPoolIndices[C];
556  if (N) return SDOperand(N, 0);
557  N = new ConstantPoolSDNode(C, VT, true);
558  AllNodes.push_back(N);
559  return SDOperand(N, 0);
560}
561
562SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
563  SDNode *&N = BBNodes[MBB];
564  if (N) return SDOperand(N, 0);
565  N = new BasicBlockSDNode(MBB);
566  AllNodes.push_back(N);
567  return SDOperand(N, 0);
568}
569
570SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
571  if ((unsigned)VT >= ValueTypeNodes.size())
572    ValueTypeNodes.resize(VT+1);
573  if (ValueTypeNodes[VT] == 0) {
574    ValueTypeNodes[VT] = new VTSDNode(VT);
575    AllNodes.push_back(ValueTypeNodes[VT]);
576  }
577
578  return SDOperand(ValueTypeNodes[VT], 0);
579}
580
581SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
582  SDNode *&N = ExternalSymbols[Sym];
583  if (N) return SDOperand(N, 0);
584  N = new ExternalSymbolSDNode(false, Sym, VT);
585  AllNodes.push_back(N);
586  return SDOperand(N, 0);
587}
588
589SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT::ValueType VT) {
590  SDNode *&N = TargetExternalSymbols[Sym];
591  if (N) return SDOperand(N, 0);
592  N = new ExternalSymbolSDNode(true, Sym, VT);
593  AllNodes.push_back(N);
594  return SDOperand(N, 0);
595}
596
597SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
598  if ((unsigned)Cond >= CondCodeNodes.size())
599    CondCodeNodes.resize(Cond+1);
600
601  if (CondCodeNodes[Cond] == 0) {
602    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
603    AllNodes.push_back(CondCodeNodes[Cond]);
604  }
605  return SDOperand(CondCodeNodes[Cond], 0);
606}
607
608SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
609  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
610  if (!Reg) {
611    Reg = new RegisterSDNode(RegNo, VT);
612    AllNodes.push_back(Reg);
613  }
614  return SDOperand(Reg, 0);
615}
616
617SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
618                                      SDOperand N2, ISD::CondCode Cond) {
619  // These setcc operations always fold.
620  switch (Cond) {
621  default: break;
622  case ISD::SETFALSE:
623  case ISD::SETFALSE2: return getConstant(0, VT);
624  case ISD::SETTRUE:
625  case ISD::SETTRUE2:  return getConstant(1, VT);
626  }
627
628  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
629    uint64_t C2 = N2C->getValue();
630    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
631      uint64_t C1 = N1C->getValue();
632
633      // Sign extend the operands if required
634      if (ISD::isSignedIntSetCC(Cond)) {
635        C1 = N1C->getSignExtended();
636        C2 = N2C->getSignExtended();
637      }
638
639      switch (Cond) {
640      default: assert(0 && "Unknown integer setcc!");
641      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
642      case ISD::SETNE:  return getConstant(C1 != C2, VT);
643      case ISD::SETULT: return getConstant(C1 <  C2, VT);
644      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
645      case ISD::SETULE: return getConstant(C1 <= C2, VT);
646      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
647      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
648      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
649      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
650      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
651      }
652    } else {
653      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
654      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
655        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
656
657        // If the comparison constant has bits in the upper part, the
658        // zero-extended value could never match.
659        if (C2 & (~0ULL << InSize)) {
660          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
661          switch (Cond) {
662          case ISD::SETUGT:
663          case ISD::SETUGE:
664          case ISD::SETEQ: return getConstant(0, VT);
665          case ISD::SETULT:
666          case ISD::SETULE:
667          case ISD::SETNE: return getConstant(1, VT);
668          case ISD::SETGT:
669          case ISD::SETGE:
670            // True if the sign bit of C2 is set.
671            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
672          case ISD::SETLT:
673          case ISD::SETLE:
674            // True if the sign bit of C2 isn't set.
675            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
676          default:
677            break;
678          }
679        }
680
681        // Otherwise, we can perform the comparison with the low bits.
682        switch (Cond) {
683        case ISD::SETEQ:
684        case ISD::SETNE:
685        case ISD::SETUGT:
686        case ISD::SETUGE:
687        case ISD::SETULT:
688        case ISD::SETULE:
689          return getSetCC(VT, N1.getOperand(0),
690                          getConstant(C2, N1.getOperand(0).getValueType()),
691                          Cond);
692        default:
693          break;   // todo, be more careful with signed comparisons
694        }
695      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
696                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
697        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
698        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
699        MVT::ValueType ExtDstTy = N1.getValueType();
700        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
701
702        // If the extended part has any inconsistent bits, it cannot ever
703        // compare equal.  In other words, they have to be all ones or all
704        // zeros.
705        uint64_t ExtBits =
706          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
707        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
708          return getConstant(Cond == ISD::SETNE, VT);
709
710        // Otherwise, make this a use of a zext.
711        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
712                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
713                        Cond);
714      }
715
716      uint64_t MinVal, MaxVal;
717      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
718      if (ISD::isSignedIntSetCC(Cond)) {
719        MinVal = 1ULL << (OperandBitSize-1);
720        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
721          MaxVal = ~0ULL >> (65-OperandBitSize);
722        else
723          MaxVal = 0;
724      } else {
725        MinVal = 0;
726        MaxVal = ~0ULL >> (64-OperandBitSize);
727      }
728
729      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
730      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
731        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
732        --C2;                                          // X >= C1 --> X > (C1-1)
733        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
734                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
735      }
736
737      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
738        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
739        ++C2;                                          // X <= C1 --> X < (C1+1)
740        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
741                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
742      }
743
744      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
745        return getConstant(0, VT);      // X < MIN --> false
746
747      // Canonicalize setgt X, Min --> setne X, Min
748      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
749        return getSetCC(VT, N1, N2, ISD::SETNE);
750
751      // If we have setult X, 1, turn it into seteq X, 0
752      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
753        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
754                        ISD::SETEQ);
755      // If we have setugt X, Max-1, turn it into seteq X, Max
756      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
757        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
758                        ISD::SETEQ);
759
760      // If we have "setcc X, C1", check to see if we can shrink the immediate
761      // by changing cc.
762
763      // SETUGT X, SINTMAX  -> SETLT X, 0
764      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
765          C2 == (~0ULL >> (65-OperandBitSize)))
766        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
767
768      // FIXME: Implement the rest of these.
769
770
771      // Fold bit comparisons when we can.
772      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
773          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
774        if (ConstantSDNode *AndRHS =
775                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
776          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
777            // Perform the xform if the AND RHS is a single bit.
778            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
779              return getNode(ISD::SRL, VT, N1,
780                             getConstant(Log2_64(AndRHS->getValue()),
781                                                   TLI.getShiftAmountTy()));
782            }
783          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
784            // (X & 8) == 8  -->  (X & 8) >> 3
785            // Perform the xform if C2 is a single bit.
786            if ((C2 & (C2-1)) == 0) {
787              return getNode(ISD::SRL, VT, N1,
788                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
789            }
790          }
791        }
792    }
793  } else if (isa<ConstantSDNode>(N1.Val)) {
794      // Ensure that the constant occurs on the RHS.
795    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
796  }
797
798  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
799    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
800      double C1 = N1C->getValue(), C2 = N2C->getValue();
801
802      switch (Cond) {
803      default: break; // FIXME: Implement the rest of these!
804      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
805      case ISD::SETNE:  return getConstant(C1 != C2, VT);
806      case ISD::SETLT:  return getConstant(C1 < C2, VT);
807      case ISD::SETGT:  return getConstant(C1 > C2, VT);
808      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
809      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
810      }
811    } else {
812      // Ensure that the constant occurs on the RHS.
813      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
814    }
815
816  // Could not fold it.
817  return SDOperand();
818}
819
820/// getNode - Gets or creates the specified node.
821///
822SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
823  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
824  if (!N) {
825    N = new SDNode(Opcode, VT);
826    AllNodes.push_back(N);
827  }
828  return SDOperand(N, 0);
829}
830
831SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
832                                SDOperand Operand) {
833  unsigned Tmp1;
834  // Constant fold unary operations with an integer constant operand.
835  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
836    uint64_t Val = C->getValue();
837    switch (Opcode) {
838    default: break;
839    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
840    case ISD::ANY_EXTEND:
841    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
842    case ISD::TRUNCATE:    return getConstant(Val, VT);
843    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
844    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
845    case ISD::BIT_CONVERT:
846      if (VT == MVT::f32) {
847        assert(C->getValueType(0) == MVT::i32 && "Invalid bit_convert!");
848        return getConstantFP(BitsToFloat(Val), VT);
849      } else if (VT == MVT::f64) {
850        assert(C->getValueType(0) == MVT::i64 && "Invalid bit_convert!");
851        return getConstantFP(BitsToDouble(Val), VT);
852      }
853      break;
854    case ISD::BSWAP:
855      switch(VT) {
856      default: assert(0 && "Invalid bswap!"); break;
857      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
858      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
859      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
860      }
861      break;
862    case ISD::CTPOP:
863      switch(VT) {
864      default: assert(0 && "Invalid ctpop!"); break;
865      case MVT::i1: return getConstant(Val != 0, VT);
866      case MVT::i8:
867        Tmp1 = (unsigned)Val & 0xFF;
868        return getConstant(CountPopulation_32(Tmp1), VT);
869      case MVT::i16:
870        Tmp1 = (unsigned)Val & 0xFFFF;
871        return getConstant(CountPopulation_32(Tmp1), VT);
872      case MVT::i32:
873        return getConstant(CountPopulation_32((unsigned)Val), VT);
874      case MVT::i64:
875        return getConstant(CountPopulation_64(Val), VT);
876      }
877    case ISD::CTLZ:
878      switch(VT) {
879      default: assert(0 && "Invalid ctlz!"); break;
880      case MVT::i1: return getConstant(Val == 0, VT);
881      case MVT::i8:
882        Tmp1 = (unsigned)Val & 0xFF;
883        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
884      case MVT::i16:
885        Tmp1 = (unsigned)Val & 0xFFFF;
886        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
887      case MVT::i32:
888        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
889      case MVT::i64:
890        return getConstant(CountLeadingZeros_64(Val), VT);
891      }
892    case ISD::CTTZ:
893      switch(VT) {
894      default: assert(0 && "Invalid cttz!"); break;
895      case MVT::i1: return getConstant(Val == 0, VT);
896      case MVT::i8:
897        Tmp1 = (unsigned)Val | 0x100;
898        return getConstant(CountTrailingZeros_32(Tmp1), VT);
899      case MVT::i16:
900        Tmp1 = (unsigned)Val | 0x10000;
901        return getConstant(CountTrailingZeros_32(Tmp1), VT);
902      case MVT::i32:
903        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
904      case MVT::i64:
905        return getConstant(CountTrailingZeros_64(Val), VT);
906      }
907    }
908  }
909
910  // Constant fold unary operations with an floating point constant operand.
911  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
912    switch (Opcode) {
913    case ISD::FNEG:
914      return getConstantFP(-C->getValue(), VT);
915    case ISD::FABS:
916      return getConstantFP(fabs(C->getValue()), VT);
917    case ISD::FP_ROUND:
918    case ISD::FP_EXTEND:
919      return getConstantFP(C->getValue(), VT);
920    case ISD::FP_TO_SINT:
921      return getConstant((int64_t)C->getValue(), VT);
922    case ISD::FP_TO_UINT:
923      return getConstant((uint64_t)C->getValue(), VT);
924    case ISD::BIT_CONVERT:
925      if (VT == MVT::i32) {
926        assert(C->getValueType(0) == MVT::f32 && "Invalid bit_convert!");
927        return getConstant(FloatToBits(C->getValue()), VT);
928      } else if (VT == MVT::i64) {
929        assert(C->getValueType(0) == MVT::f64 && "Invalid bit_convert!");
930        return getConstant(DoubleToBits(C->getValue()), VT);
931      }
932      break;
933    }
934
935  unsigned OpOpcode = Operand.Val->getOpcode();
936  switch (Opcode) {
937  case ISD::TokenFactor:
938    return Operand;         // Factor of one node?  No factor.
939  case ISD::SIGN_EXTEND:
940    if (Operand.getValueType() == VT) return Operand;   // noop extension
941    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
942      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
943    break;
944  case ISD::ZERO_EXTEND:
945    if (Operand.getValueType() == VT) return Operand;   // noop extension
946    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
947      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
948    break;
949  case ISD::ANY_EXTEND:
950    if (Operand.getValueType() == VT) return Operand;   // noop extension
951    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
952      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
953      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
954    break;
955  case ISD::TRUNCATE:
956    if (Operand.getValueType() == VT) return Operand;   // noop truncate
957    if (OpOpcode == ISD::TRUNCATE)
958      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
959    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
960             OpOpcode == ISD::ANY_EXTEND) {
961      // If the source is smaller than the dest, we still need an extend.
962      if (Operand.Val->getOperand(0).getValueType() < VT)
963        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
964      else if (Operand.Val->getOperand(0).getValueType() > VT)
965        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
966      else
967        return Operand.Val->getOperand(0);
968    }
969    break;
970  case ISD::BIT_CONVERT:
971    // Basic sanity checking.
972    assert(MVT::getSizeInBits(VT)==MVT::getSizeInBits(Operand.getValueType()) &&
973           "Cannot BIT_CONVERT between two different types!");
974    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
975    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
976      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
977    break;
978  case ISD::FNEG:
979    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
980      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
981                     Operand.Val->getOperand(0));
982    if (OpOpcode == ISD::FNEG)  // --X -> X
983      return Operand.Val->getOperand(0);
984    break;
985  case ISD::FABS:
986    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
987      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
988    break;
989  }
990
991  SDNode *N;
992  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
993    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
994    if (E) return SDOperand(E, 0);
995    E = N = new SDNode(Opcode, Operand);
996  } else {
997    N = new SDNode(Opcode, Operand);
998  }
999  N->setValueTypes(VT);
1000  AllNodes.push_back(N);
1001  return SDOperand(N, 0);
1002}
1003
1004
1005
1006SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1007                                SDOperand N1, SDOperand N2) {
1008#ifndef NDEBUG
1009  switch (Opcode) {
1010  case ISD::TokenFactor:
1011    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1012           N2.getValueType() == MVT::Other && "Invalid token factor!");
1013    break;
1014  case ISD::AND:
1015  case ISD::OR:
1016  case ISD::XOR:
1017  case ISD::UDIV:
1018  case ISD::UREM:
1019  case ISD::MULHU:
1020  case ISD::MULHS:
1021    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1022    // fall through
1023  case ISD::ADD:
1024  case ISD::SUB:
1025  case ISD::MUL:
1026  case ISD::SDIV:
1027  case ISD::SREM:
1028    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1029    // fall through.
1030  case ISD::FADD:
1031  case ISD::FSUB:
1032  case ISD::FMUL:
1033  case ISD::FDIV:
1034  case ISD::FREM:
1035    assert(N1.getValueType() == N2.getValueType() &&
1036           N1.getValueType() == VT && "Binary operator types must match!");
1037    break;
1038
1039  case ISD::SHL:
1040  case ISD::SRA:
1041  case ISD::SRL:
1042  case ISD::ROTL:
1043  case ISD::ROTR:
1044    assert(VT == N1.getValueType() &&
1045           "Shift operators return type must be the same as their first arg");
1046    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1047           VT != MVT::i1 && "Shifts only work on integers");
1048    break;
1049  case ISD::FP_ROUND_INREG: {
1050    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1051    assert(VT == N1.getValueType() && "Not an inreg round!");
1052    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1053           "Cannot FP_ROUND_INREG integer types");
1054    assert(EVT <= VT && "Not rounding down!");
1055    break;
1056  }
1057  case ISD::AssertSext:
1058  case ISD::AssertZext:
1059  case ISD::SIGN_EXTEND_INREG: {
1060    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1061    assert(VT == N1.getValueType() && "Not an inreg extend!");
1062    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1063           "Cannot *_EXTEND_INREG FP types");
1064    assert(EVT <= VT && "Not extending!");
1065  }
1066
1067  default: break;
1068  }
1069#endif
1070
1071  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1072  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1073  if (N1C) {
1074    if (N2C) {
1075      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1076      switch (Opcode) {
1077      case ISD::ADD: return getConstant(C1 + C2, VT);
1078      case ISD::SUB: return getConstant(C1 - C2, VT);
1079      case ISD::MUL: return getConstant(C1 * C2, VT);
1080      case ISD::UDIV:
1081        if (C2) return getConstant(C1 / C2, VT);
1082        break;
1083      case ISD::UREM :
1084        if (C2) return getConstant(C1 % C2, VT);
1085        break;
1086      case ISD::SDIV :
1087        if (C2) return getConstant(N1C->getSignExtended() /
1088                                   N2C->getSignExtended(), VT);
1089        break;
1090      case ISD::SREM :
1091        if (C2) return getConstant(N1C->getSignExtended() %
1092                                   N2C->getSignExtended(), VT);
1093        break;
1094      case ISD::AND  : return getConstant(C1 & C2, VT);
1095      case ISD::OR   : return getConstant(C1 | C2, VT);
1096      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1097      case ISD::SHL  : return getConstant(C1 << C2, VT);
1098      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1099      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1100      case ISD::ROTL :
1101        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1102                           VT);
1103      case ISD::ROTR :
1104        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1105                           VT);
1106      default: break;
1107      }
1108    } else {      // Cannonicalize constant to RHS if commutative
1109      if (isCommutativeBinOp(Opcode)) {
1110        std::swap(N1C, N2C);
1111        std::swap(N1, N2);
1112      }
1113    }
1114  }
1115
1116  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1117  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1118  if (N1CFP) {
1119    if (N2CFP) {
1120      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1121      switch (Opcode) {
1122      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1123      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1124      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1125      case ISD::FDIV:
1126        if (C2) return getConstantFP(C1 / C2, VT);
1127        break;
1128      case ISD::FREM :
1129        if (C2) return getConstantFP(fmod(C1, C2), VT);
1130        break;
1131      default: break;
1132      }
1133    } else {      // Cannonicalize constant to RHS if commutative
1134      if (isCommutativeBinOp(Opcode)) {
1135        std::swap(N1CFP, N2CFP);
1136        std::swap(N1, N2);
1137      }
1138    }
1139  }
1140
1141  // Finally, fold operations that do not require constants.
1142  switch (Opcode) {
1143  case ISD::FP_ROUND_INREG:
1144    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1145    break;
1146  case ISD::SIGN_EXTEND_INREG: {
1147    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1148    if (EVT == VT) return N1;  // Not actually extending
1149    break;
1150  }
1151
1152  // FIXME: figure out how to safely handle things like
1153  // int foo(int x) { return 1 << (x & 255); }
1154  // int bar() { return foo(256); }
1155#if 0
1156  case ISD::SHL:
1157  case ISD::SRL:
1158  case ISD::SRA:
1159    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1160        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1161      return getNode(Opcode, VT, N1, N2.getOperand(0));
1162    else if (N2.getOpcode() == ISD::AND)
1163      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1164        // If the and is only masking out bits that cannot effect the shift,
1165        // eliminate the and.
1166        unsigned NumBits = MVT::getSizeInBits(VT);
1167        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1168          return getNode(Opcode, VT, N1, N2.getOperand(0));
1169      }
1170    break;
1171#endif
1172  }
1173
1174  // Memoize this node if possible.
1175  SDNode *N;
1176  if (Opcode != ISD::CALLSEQ_START && Opcode != ISD::CALLSEQ_END &&
1177      VT != MVT::Flag) {
1178    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1179    if (BON) return SDOperand(BON, 0);
1180
1181    BON = N = new SDNode(Opcode, N1, N2);
1182  } else {
1183    N = new SDNode(Opcode, N1, N2);
1184  }
1185
1186  N->setValueTypes(VT);
1187  AllNodes.push_back(N);
1188  return SDOperand(N, 0);
1189}
1190
1191SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1192                                SDOperand N1, SDOperand N2, SDOperand N3) {
1193  // Perform various simplifications.
1194  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1195  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1196  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1197  switch (Opcode) {
1198  case ISD::SETCC: {
1199    // Use SimplifySetCC  to simplify SETCC's.
1200    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1201    if (Simp.Val) return Simp;
1202    break;
1203  }
1204  case ISD::SELECT:
1205    if (N1C)
1206      if (N1C->getValue())
1207        return N2;             // select true, X, Y -> X
1208      else
1209        return N3;             // select false, X, Y -> Y
1210
1211    if (N2 == N3) return N2;   // select C, X, X -> X
1212    break;
1213  case ISD::BRCOND:
1214    if (N2C)
1215      if (N2C->getValue()) // Unconditional branch
1216        return getNode(ISD::BR, MVT::Other, N1, N3);
1217      else
1218        return N1;         // Never-taken branch
1219    break;
1220  }
1221
1222  std::vector<SDOperand> Ops;
1223  Ops.reserve(3);
1224  Ops.push_back(N1);
1225  Ops.push_back(N2);
1226  Ops.push_back(N3);
1227
1228  // Memoize node if it doesn't produce a flag.
1229  SDNode *N;
1230  if (VT != MVT::Flag) {
1231    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1232    if (E) return SDOperand(E, 0);
1233    E = N = new SDNode(Opcode, N1, N2, N3);
1234  } else {
1235    N = new SDNode(Opcode, N1, N2, N3);
1236  }
1237  N->setValueTypes(VT);
1238  AllNodes.push_back(N);
1239  return SDOperand(N, 0);
1240}
1241
1242SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1243                                SDOperand N1, SDOperand N2, SDOperand N3,
1244                                SDOperand N4) {
1245  std::vector<SDOperand> Ops;
1246  Ops.reserve(4);
1247  Ops.push_back(N1);
1248  Ops.push_back(N2);
1249  Ops.push_back(N3);
1250  Ops.push_back(N4);
1251  return getNode(Opcode, VT, Ops);
1252}
1253
1254SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1255                                SDOperand N1, SDOperand N2, SDOperand N3,
1256                                SDOperand N4, SDOperand N5) {
1257  std::vector<SDOperand> Ops;
1258  Ops.reserve(5);
1259  Ops.push_back(N1);
1260  Ops.push_back(N2);
1261  Ops.push_back(N3);
1262  Ops.push_back(N4);
1263  Ops.push_back(N5);
1264  return getNode(Opcode, VT, Ops);
1265}
1266
1267// setAdjCallChain - This method changes the token chain of an
1268// CALLSEQ_START/END node to be the specified operand.
1269void SDNode::setAdjCallChain(SDOperand N) {
1270  assert(N.getValueType() == MVT::Other);
1271  assert((getOpcode() == ISD::CALLSEQ_START ||
1272          getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!");
1273
1274  OperandList[0].Val->removeUser(this);
1275  OperandList[0] = N;
1276  OperandList[0].Val->Uses.push_back(this);
1277}
1278
1279
1280
1281SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1282                                SDOperand Chain, SDOperand Ptr,
1283                                SDOperand SV) {
1284  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1285  if (N) return SDOperand(N, 0);
1286  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1287
1288  // Loads have a token chain.
1289  setNodeValueTypes(N, VT, MVT::Other);
1290  AllNodes.push_back(N);
1291  return SDOperand(N, 0);
1292}
1293
1294SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1295                                   SDOperand Chain, SDOperand Ptr,
1296                                   SDOperand SV) {
1297  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, EVT))];
1298  if (N) return SDOperand(N, 0);
1299  std::vector<SDOperand> Ops;
1300  Ops.reserve(5);
1301  Ops.push_back(Chain);
1302  Ops.push_back(Ptr);
1303  Ops.push_back(getConstant(Count, MVT::i32));
1304  Ops.push_back(getValueType(EVT));
1305  Ops.push_back(SV);
1306  std::vector<MVT::ValueType> VTs;
1307  VTs.reserve(2);
1308  VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other);  // Add token chain.
1309  return getNode(ISD::VLOAD, VTs, Ops);
1310}
1311
1312SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1313                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1314                                   MVT::ValueType EVT) {
1315  std::vector<SDOperand> Ops;
1316  Ops.reserve(4);
1317  Ops.push_back(Chain);
1318  Ops.push_back(Ptr);
1319  Ops.push_back(SV);
1320  Ops.push_back(getValueType(EVT));
1321  std::vector<MVT::ValueType> VTs;
1322  VTs.reserve(2);
1323  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1324  return getNode(Opcode, VTs, Ops);
1325}
1326
1327SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1328  assert((!V || isa<PointerType>(V->getType())) &&
1329         "SrcValue is not a pointer?");
1330  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1331  if (N) return SDOperand(N, 0);
1332
1333  N = new SrcValueSDNode(V, Offset);
1334  AllNodes.push_back(N);
1335  return SDOperand(N, 0);
1336}
1337
1338SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1339                                std::vector<SDOperand> &Ops) {
1340  switch (Ops.size()) {
1341  case 0: return getNode(Opcode, VT);
1342  case 1: return getNode(Opcode, VT, Ops[0]);
1343  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1344  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1345  default: break;
1346  }
1347
1348  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1349  switch (Opcode) {
1350  default: break;
1351  case ISD::BRCONDTWOWAY:
1352    if (N1C)
1353      if (N1C->getValue()) // Unconditional branch to true dest.
1354        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
1355      else                 // Unconditional branch to false dest.
1356        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
1357    break;
1358  case ISD::BRTWOWAY_CC:
1359    assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
1360    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1361           "LHS and RHS of comparison must have same type!");
1362    break;
1363  case ISD::TRUNCSTORE: {
1364    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1365    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1366#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1367    // If this is a truncating store of a constant, convert to the desired type
1368    // and store it instead.
1369    if (isa<Constant>(Ops[0])) {
1370      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1371      if (isa<Constant>(Op))
1372        N1 = Op;
1373    }
1374    // Also for ConstantFP?
1375#endif
1376    if (Ops[0].getValueType() == EVT)       // Normal store?
1377      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1378    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1379    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1380           "Can't do FP-INT conversion!");
1381    break;
1382  }
1383  case ISD::SELECT_CC: {
1384    assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
1385    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1386           "LHS and RHS of condition must have same type!");
1387    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1388           "True and False arms of SelectCC must have same type!");
1389    assert(Ops[2].getValueType() == VT &&
1390           "select_cc node must be of same type as true and false value!");
1391    break;
1392  }
1393  case ISD::BR_CC: {
1394    assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
1395    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1396           "LHS/RHS of comparison should match types!");
1397    break;
1398  }
1399  }
1400
1401  // Memoize nodes.
1402  SDNode *N;
1403  if (VT != MVT::Flag) {
1404    SDNode *&E =
1405      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1406    if (E) return SDOperand(E, 0);
1407    E = N = new SDNode(Opcode, Ops);
1408  } else {
1409    N = new SDNode(Opcode, Ops);
1410  }
1411  N->setValueTypes(VT);
1412  AllNodes.push_back(N);
1413  return SDOperand(N, 0);
1414}
1415
1416SDOperand SelectionDAG::getNode(unsigned Opcode,
1417                                std::vector<MVT::ValueType> &ResultTys,
1418                                std::vector<SDOperand> &Ops) {
1419  if (ResultTys.size() == 1)
1420    return getNode(Opcode, ResultTys[0], Ops);
1421
1422  switch (Opcode) {
1423  case ISD::EXTLOAD:
1424  case ISD::SEXTLOAD:
1425  case ISD::ZEXTLOAD: {
1426    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1427    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1428    // If they are asking for an extending load from/to the same thing, return a
1429    // normal load.
1430    if (ResultTys[0] == EVT)
1431      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1432    assert(EVT < ResultTys[0] &&
1433           "Should only be an extending load, not truncating!");
1434    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1435           "Cannot sign/zero extend a FP load!");
1436    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1437           "Cannot convert from FP to Int or Int -> FP!");
1438    break;
1439  }
1440
1441  // FIXME: figure out how to safely handle things like
1442  // int foo(int x) { return 1 << (x & 255); }
1443  // int bar() { return foo(256); }
1444#if 0
1445  case ISD::SRA_PARTS:
1446  case ISD::SRL_PARTS:
1447  case ISD::SHL_PARTS:
1448    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1449        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1450      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1451    else if (N3.getOpcode() == ISD::AND)
1452      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1453        // If the and is only masking out bits that cannot effect the shift,
1454        // eliminate the and.
1455        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1456        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1457          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1458      }
1459    break;
1460#endif
1461  }
1462
1463  // Memoize the node unless it returns a flag.
1464  SDNode *N;
1465  if (ResultTys.back() != MVT::Flag) {
1466    SDNode *&E =
1467      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
1468    if (E) return SDOperand(E, 0);
1469    E = N = new SDNode(Opcode, Ops);
1470  } else {
1471    N = new SDNode(Opcode, Ops);
1472  }
1473  setNodeValueTypes(N, ResultTys);
1474  AllNodes.push_back(N);
1475  return SDOperand(N, 0);
1476}
1477
1478void SelectionDAG::setNodeValueTypes(SDNode *N,
1479                                     std::vector<MVT::ValueType> &RetVals) {
1480  switch (RetVals.size()) {
1481  case 0: return;
1482  case 1: N->setValueTypes(RetVals[0]); return;
1483  case 2: setNodeValueTypes(N, RetVals[0], RetVals[1]); return;
1484  default: break;
1485  }
1486
1487  std::list<std::vector<MVT::ValueType> >::iterator I =
1488    std::find(VTList.begin(), VTList.end(), RetVals);
1489  if (I == VTList.end()) {
1490    VTList.push_front(RetVals);
1491    I = VTList.begin();
1492  }
1493
1494  N->setValueTypes(&(*I)[0], I->size());
1495}
1496
1497void SelectionDAG::setNodeValueTypes(SDNode *N, MVT::ValueType VT1,
1498                                     MVT::ValueType VT2) {
1499  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1500       E = VTList.end(); I != E; ++I) {
1501    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) {
1502      N->setValueTypes(&(*I)[0], 2);
1503      return;
1504    }
1505  }
1506  std::vector<MVT::ValueType> V;
1507  V.push_back(VT1);
1508  V.push_back(VT2);
1509  VTList.push_front(V);
1510  N->setValueTypes(&(*VTList.begin())[0], 2);
1511}
1512
1513
1514/// SelectNodeTo - These are used for target selectors to *mutate* the
1515/// specified node to have the specified return type, Target opcode, and
1516/// operands.  Note that target opcodes are stored as
1517/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1518///
1519/// Note that SelectNodeTo returns the resultant node.  If there is already a
1520/// node of the specified opcode and operands, it returns that node instead of
1521/// the current one.
1522SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1523                                     MVT::ValueType VT) {
1524  // If an identical node already exists, use it.
1525  SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)];
1526  if (ON) return SDOperand(ON, 0);
1527
1528  RemoveNodeFromCSEMaps(N);
1529
1530  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1531  N->setValueTypes(VT);
1532
1533  ON = N;   // Memoize the new node.
1534  return SDOperand(N, 0);
1535}
1536
1537SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1538                                     MVT::ValueType VT, SDOperand Op1) {
1539  // If an identical node already exists, use it.
1540  SDNode *&ON = UnaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1541                                        std::make_pair(Op1, VT))];
1542  if (ON) return SDOperand(ON, 0);
1543
1544  RemoveNodeFromCSEMaps(N);
1545  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1546  N->setValueTypes(VT);
1547  N->setOperands(Op1);
1548
1549  ON = N;   // Memoize the new node.
1550  return SDOperand(N, 0);
1551}
1552
1553SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1554                                     MVT::ValueType VT, SDOperand Op1,
1555                                     SDOperand Op2) {
1556  // If an identical node already exists, use it.
1557  SDNode *&ON = BinaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1558                                         std::make_pair(Op1, Op2))];
1559  if (ON) return SDOperand(ON, 0);
1560
1561  RemoveNodeFromCSEMaps(N);
1562  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1563  N->setValueTypes(VT);
1564  N->setOperands(Op1, Op2);
1565
1566  ON = N;   // Memoize the new node.
1567  return SDOperand(N, 0);
1568}
1569
1570SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1571                                     MVT::ValueType VT, SDOperand Op1,
1572                                     SDOperand Op2, SDOperand Op3) {
1573  // If an identical node already exists, use it.
1574  std::vector<SDOperand> OpList;
1575  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1576  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1577                                              std::make_pair(VT, OpList))];
1578  if (ON) return SDOperand(ON, 0);
1579
1580  RemoveNodeFromCSEMaps(N);
1581  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1582  N->setValueTypes(VT);
1583  N->setOperands(Op1, Op2, Op3);
1584
1585  ON = N;   // Memoize the new node.
1586  return SDOperand(N, 0);
1587}
1588
1589SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1590                                     MVT::ValueType VT, SDOperand Op1,
1591                                     SDOperand Op2, SDOperand Op3,
1592                                     SDOperand Op4) {
1593  // If an identical node already exists, use it.
1594  std::vector<SDOperand> OpList;
1595  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1596  OpList.push_back(Op4);
1597  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1598                                              std::make_pair(VT, OpList))];
1599  if (ON) return SDOperand(ON, 0);
1600
1601  RemoveNodeFromCSEMaps(N);
1602  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1603  N->setValueTypes(VT);
1604  N->setOperands(Op1, Op2, Op3, Op4);
1605
1606  ON = N;   // Memoize the new node.
1607  return SDOperand(N, 0);
1608}
1609
1610SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1611                                     MVT::ValueType VT, SDOperand Op1,
1612                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1613                                     SDOperand Op5) {
1614  // If an identical node already exists, use it.
1615  std::vector<SDOperand> OpList;
1616  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1617  OpList.push_back(Op4); OpList.push_back(Op5);
1618  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1619                                              std::make_pair(VT, OpList))];
1620  if (ON) return SDOperand(ON, 0);
1621
1622  RemoveNodeFromCSEMaps(N);
1623  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1624  N->setValueTypes(VT);
1625  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1626
1627  ON = N;   // Memoize the new node.
1628  return SDOperand(N, 0);
1629}
1630
1631SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1632                                     MVT::ValueType VT, SDOperand Op1,
1633                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1634                                     SDOperand Op5, SDOperand Op6) {
1635  // If an identical node already exists, use it.
1636  std::vector<SDOperand> OpList;
1637  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1638  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1639  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1640                                              std::make_pair(VT, OpList))];
1641  if (ON) return SDOperand(ON, 0);
1642
1643  RemoveNodeFromCSEMaps(N);
1644  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1645  N->setValueTypes(VT);
1646  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
1647
1648  ON = N;   // Memoize the new node.
1649  return SDOperand(N, 0);
1650}
1651
1652SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1653                                     MVT::ValueType VT, SDOperand Op1,
1654                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1655                                     SDOperand Op5, SDOperand Op6,
1656				     SDOperand Op7) {
1657  // If an identical node already exists, use it.
1658  std::vector<SDOperand> OpList;
1659  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1660  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1661  OpList.push_back(Op7);
1662  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1663                                              std::make_pair(VT, OpList))];
1664  if (ON) return SDOperand(ON, 0);
1665
1666  RemoveNodeFromCSEMaps(N);
1667  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1668  N->setValueTypes(VT);
1669  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7);
1670
1671  ON = N;   // Memoize the new node.
1672  return SDOperand(N, 0);
1673}
1674SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1675                                     MVT::ValueType VT, SDOperand Op1,
1676                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1677                                     SDOperand Op5, SDOperand Op6,
1678				     SDOperand Op7, SDOperand Op8) {
1679  // If an identical node already exists, use it.
1680  std::vector<SDOperand> OpList;
1681  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1682  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1683  OpList.push_back(Op7); OpList.push_back(Op8);
1684  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1685                                              std::make_pair(VT, OpList))];
1686  if (ON) return SDOperand(ON, 0);
1687
1688  RemoveNodeFromCSEMaps(N);
1689  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1690  N->setValueTypes(VT);
1691  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8);
1692
1693  ON = N;   // Memoize the new node.
1694  return SDOperand(N, 0);
1695}
1696
1697SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1698                                     MVT::ValueType VT1, MVT::ValueType VT2,
1699                                     SDOperand Op1, SDOperand Op2) {
1700  // If an identical node already exists, use it.
1701  std::vector<SDOperand> OpList;
1702  OpList.push_back(Op1); OpList.push_back(Op2);
1703  std::vector<MVT::ValueType> VTList;
1704  VTList.push_back(VT1); VTList.push_back(VT2);
1705  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1706                                              std::make_pair(VTList, OpList))];
1707  if (ON) return SDOperand(ON, 0);
1708
1709  RemoveNodeFromCSEMaps(N);
1710  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1711  setNodeValueTypes(N, VT1, VT2);
1712  N->setOperands(Op1, Op2);
1713
1714  ON = N;   // Memoize the new node.
1715  return SDOperand(N, 0);
1716}
1717
1718SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1719                                     MVT::ValueType VT1, MVT::ValueType VT2,
1720                                     SDOperand Op1, SDOperand Op2,
1721                                     SDOperand Op3) {
1722  // If an identical node already exists, use it.
1723  std::vector<SDOperand> OpList;
1724  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1725  std::vector<MVT::ValueType> VTList;
1726  VTList.push_back(VT1); VTList.push_back(VT2);
1727  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1728                                              std::make_pair(VTList, OpList))];
1729  if (ON) return SDOperand(ON, 0);
1730
1731  RemoveNodeFromCSEMaps(N);
1732  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1733  setNodeValueTypes(N, VT1, VT2);
1734  N->setOperands(Op1, Op2, Op3);
1735
1736  ON = N;   // Memoize the new node.
1737  return SDOperand(N, 0);
1738}
1739
1740SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1741                                     MVT::ValueType VT1, MVT::ValueType VT2,
1742                                     SDOperand Op1, SDOperand Op2,
1743                                     SDOperand Op3, SDOperand Op4) {
1744  // If an identical node already exists, use it.
1745  std::vector<SDOperand> OpList;
1746  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1747  OpList.push_back(Op4);
1748  std::vector<MVT::ValueType> VTList;
1749  VTList.push_back(VT1); VTList.push_back(VT2);
1750  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1751                                              std::make_pair(VTList, OpList))];
1752  if (ON) return SDOperand(ON, 0);
1753
1754  RemoveNodeFromCSEMaps(N);
1755  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1756  setNodeValueTypes(N, VT1, VT2);
1757  N->setOperands(Op1, Op2, Op3, Op4);
1758
1759  ON = N;   // Memoize the new node.
1760  return SDOperand(N, 0);
1761}
1762
1763SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1764                                     MVT::ValueType VT1, MVT::ValueType VT2,
1765                                     SDOperand Op1, SDOperand Op2,
1766                                     SDOperand Op3, SDOperand Op4,
1767                                     SDOperand Op5) {
1768  // If an identical node already exists, use it.
1769  std::vector<SDOperand> OpList;
1770  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1771  OpList.push_back(Op4); OpList.push_back(Op5);
1772  std::vector<MVT::ValueType> VTList;
1773  VTList.push_back(VT1); VTList.push_back(VT2);
1774  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1775                                              std::make_pair(VTList, OpList))];
1776  if (ON) return SDOperand(ON, 0);
1777
1778  RemoveNodeFromCSEMaps(N);
1779  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1780  setNodeValueTypes(N, VT1, VT2);
1781  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1782
1783  ON = N;   // Memoize the new node.
1784  return SDOperand(N, 0);
1785}
1786
1787// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
1788/// This can cause recursive merging of nodes in the DAG.
1789///
1790/// This version assumes From/To have a single result value.
1791///
1792void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
1793                                      std::vector<SDNode*> *Deleted) {
1794  SDNode *From = FromN.Val, *To = ToN.Val;
1795  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
1796         "Cannot replace with this method!");
1797  assert(From != To && "Cannot replace uses of with self");
1798
1799  while (!From->use_empty()) {
1800    // Process users until they are all gone.
1801    SDNode *U = *From->use_begin();
1802
1803    // This node is about to morph, remove its old self from the CSE maps.
1804    RemoveNodeFromCSEMaps(U);
1805
1806    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
1807         I != E; ++I)
1808      if (I->Val == From) {
1809        From->removeUser(U);
1810        I->Val = To;
1811        To->addUser(U);
1812      }
1813
1814    // Now that we have modified U, add it back to the CSE maps.  If it already
1815    // exists there, recursively merge the results together.
1816    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
1817      ReplaceAllUsesWith(U, Existing, Deleted);
1818      // U is now dead.
1819      if (Deleted) Deleted->push_back(U);
1820      DeleteNodeNotInCSEMaps(U);
1821    }
1822  }
1823}
1824
1825/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
1826/// This can cause recursive merging of nodes in the DAG.
1827///
1828/// This version assumes From/To have matching types and numbers of result
1829/// values.
1830///
1831void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
1832                                      std::vector<SDNode*> *Deleted) {
1833  assert(From != To && "Cannot replace uses of with self");
1834  assert(From->getNumValues() == To->getNumValues() &&
1835         "Cannot use this version of ReplaceAllUsesWith!");
1836  if (From->getNumValues() == 1) {  // If possible, use the faster version.
1837    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
1838    return;
1839  }
1840
1841  while (!From->use_empty()) {
1842    // Process users until they are all gone.
1843    SDNode *U = *From->use_begin();
1844
1845    // This node is about to morph, remove its old self from the CSE maps.
1846    RemoveNodeFromCSEMaps(U);
1847
1848    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
1849         I != E; ++I)
1850      if (I->Val == From) {
1851        From->removeUser(U);
1852        I->Val = To;
1853        To->addUser(U);
1854      }
1855
1856    // Now that we have modified U, add it back to the CSE maps.  If it already
1857    // exists there, recursively merge the results together.
1858    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
1859      ReplaceAllUsesWith(U, Existing, Deleted);
1860      // U is now dead.
1861      if (Deleted) Deleted->push_back(U);
1862      DeleteNodeNotInCSEMaps(U);
1863    }
1864  }
1865}
1866
1867/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
1868/// This can cause recursive merging of nodes in the DAG.
1869///
1870/// This version can replace From with any result values.  To must match the
1871/// number and types of values returned by From.
1872void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
1873                                      const std::vector<SDOperand> &To,
1874                                      std::vector<SDNode*> *Deleted) {
1875  assert(From->getNumValues() == To.size() &&
1876         "Incorrect number of values to replace with!");
1877  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
1878    // Degenerate case handled above.
1879    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
1880    return;
1881  }
1882
1883  while (!From->use_empty()) {
1884    // Process users until they are all gone.
1885    SDNode *U = *From->use_begin();
1886
1887    // This node is about to morph, remove its old self from the CSE maps.
1888    RemoveNodeFromCSEMaps(U);
1889
1890    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
1891         I != E; ++I)
1892      if (I->Val == From) {
1893        const SDOperand &ToOp = To[I->ResNo];
1894        From->removeUser(U);
1895        *I = ToOp;
1896        ToOp.Val->addUser(U);
1897      }
1898
1899    // Now that we have modified U, add it back to the CSE maps.  If it already
1900    // exists there, recursively merge the results together.
1901    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
1902      ReplaceAllUsesWith(U, Existing, Deleted);
1903      // U is now dead.
1904      if (Deleted) Deleted->push_back(U);
1905      DeleteNodeNotInCSEMaps(U);
1906    }
1907  }
1908}
1909
1910
1911//===----------------------------------------------------------------------===//
1912//                              SDNode Class
1913//===----------------------------------------------------------------------===//
1914
1915
1916/// getValueTypeList - Return a pointer to the specified value type.
1917///
1918MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
1919  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
1920  VTs[VT] = VT;
1921  return &VTs[VT];
1922}
1923
1924/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1925/// indicated value.  This method ignores uses of other values defined by this
1926/// operation.
1927bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) {
1928  assert(Value < getNumValues() && "Bad value!");
1929
1930  // If there is only one value, this is easy.
1931  if (getNumValues() == 1)
1932    return use_size() == NUses;
1933  if (Uses.size() < NUses) return false;
1934
1935  SDOperand TheValue(this, Value);
1936
1937  std::set<SDNode*> UsersHandled;
1938
1939  for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end();
1940       UI != E; ++UI) {
1941    SDNode *User = *UI;
1942    if (User->getNumOperands() == 1 ||
1943        UsersHandled.insert(User).second)     // First time we've seen this?
1944      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
1945        if (User->getOperand(i) == TheValue) {
1946          if (NUses == 0)
1947            return false;   // too many uses
1948          --NUses;
1949        }
1950  }
1951
1952  // Found exactly the right number of uses?
1953  return NUses == 0;
1954}
1955
1956
1957const char *SDNode::getOperationName(const SelectionDAG *G) const {
1958  switch (getOpcode()) {
1959  default:
1960    if (getOpcode() < ISD::BUILTIN_OP_END)
1961      return "<<Unknown DAG Node>>";
1962    else {
1963      if (G) {
1964        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
1965          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
1966            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
1967
1968        TargetLowering &TLI = G->getTargetLoweringInfo();
1969        const char *Name =
1970          TLI.getTargetNodeName(getOpcode());
1971        if (Name) return Name;
1972      }
1973
1974      return "<<Unknown Target Node>>";
1975    }
1976
1977  case ISD::PCMARKER:      return "PCMarker";
1978  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
1979  case ISD::SRCVALUE:      return "SrcValue";
1980  case ISD::VALUETYPE:     return "ValueType";
1981  case ISD::STRING:        return "String";
1982  case ISD::EntryToken:    return "EntryToken";
1983  case ISD::TokenFactor:   return "TokenFactor";
1984  case ISD::AssertSext:    return "AssertSext";
1985  case ISD::AssertZext:    return "AssertZext";
1986  case ISD::Constant:      return "Constant";
1987  case ISD::TargetConstant: return "TargetConstant";
1988  case ISD::ConstantFP:    return "ConstantFP";
1989  case ISD::ConstantVec:   return "ConstantVec";
1990  case ISD::GlobalAddress: return "GlobalAddress";
1991  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
1992  case ISD::FrameIndex:    return "FrameIndex";
1993  case ISD::TargetFrameIndex: return "TargetFrameIndex";
1994  case ISD::BasicBlock:    return "BasicBlock";
1995  case ISD::Register:      return "Register";
1996  case ISD::ExternalSymbol: return "ExternalSymbol";
1997  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
1998  case ISD::ConstantPool:  return "ConstantPool";
1999  case ISD::TargetConstantPool:  return "TargetConstantPool";
2000  case ISD::CopyToReg:     return "CopyToReg";
2001  case ISD::CopyFromReg:   return "CopyFromReg";
2002  case ISD::UNDEF:         return "undef";
2003  case ISD::MERGE_VALUES:  return "mergevalues";
2004
2005  // Unary operators
2006  case ISD::FABS:   return "fabs";
2007  case ISD::FNEG:   return "fneg";
2008  case ISD::FSQRT:  return "fsqrt";
2009  case ISD::FSIN:   return "fsin";
2010  case ISD::FCOS:   return "fcos";
2011
2012  // Binary operators
2013  case ISD::ADD:    return "add";
2014  case ISD::SUB:    return "sub";
2015  case ISD::MUL:    return "mul";
2016  case ISD::MULHU:  return "mulhu";
2017  case ISD::MULHS:  return "mulhs";
2018  case ISD::SDIV:   return "sdiv";
2019  case ISD::UDIV:   return "udiv";
2020  case ISD::SREM:   return "srem";
2021  case ISD::UREM:   return "urem";
2022  case ISD::AND:    return "and";
2023  case ISD::OR:     return "or";
2024  case ISD::XOR:    return "xor";
2025  case ISD::SHL:    return "shl";
2026  case ISD::SRA:    return "sra";
2027  case ISD::SRL:    return "srl";
2028  case ISD::ROTL:   return "rotl";
2029  case ISD::ROTR:   return "rotr";
2030  case ISD::FADD:   return "fadd";
2031  case ISD::FSUB:   return "fsub";
2032  case ISD::FMUL:   return "fmul";
2033  case ISD::FDIV:   return "fdiv";
2034  case ISD::FREM:   return "frem";
2035  case ISD::VADD:   return "vadd";
2036  case ISD::VSUB:   return "vsub";
2037  case ISD::VMUL:   return "vmul";
2038
2039  case ISD::SETCC:       return "setcc";
2040  case ISD::SELECT:      return "select";
2041  case ISD::SELECT_CC:   return "select_cc";
2042  case ISD::ADD_PARTS:   return "add_parts";
2043  case ISD::SUB_PARTS:   return "sub_parts";
2044  case ISD::SHL_PARTS:   return "shl_parts";
2045  case ISD::SRA_PARTS:   return "sra_parts";
2046  case ISD::SRL_PARTS:   return "srl_parts";
2047
2048  // Conversion operators.
2049  case ISD::SIGN_EXTEND: return "sign_extend";
2050  case ISD::ZERO_EXTEND: return "zero_extend";
2051  case ISD::ANY_EXTEND:  return "any_extend";
2052  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2053  case ISD::TRUNCATE:    return "truncate";
2054  case ISD::FP_ROUND:    return "fp_round";
2055  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2056  case ISD::FP_EXTEND:   return "fp_extend";
2057
2058  case ISD::SINT_TO_FP:  return "sint_to_fp";
2059  case ISD::UINT_TO_FP:  return "uint_to_fp";
2060  case ISD::FP_TO_SINT:  return "fp_to_sint";
2061  case ISD::FP_TO_UINT:  return "fp_to_uint";
2062  case ISD::BIT_CONVERT: return "bit_convert";
2063
2064    // Control flow instructions
2065  case ISD::BR:      return "br";
2066  case ISD::BRCOND:  return "brcond";
2067  case ISD::BRCONDTWOWAY:  return "brcondtwoway";
2068  case ISD::BR_CC:  return "br_cc";
2069  case ISD::BRTWOWAY_CC:  return "brtwoway_cc";
2070  case ISD::RET:     return "ret";
2071  case ISD::CALL:    return "call";
2072  case ISD::TAILCALL:return "tailcall";
2073  case ISD::CALLSEQ_START:  return "callseq_start";
2074  case ISD::CALLSEQ_END:    return "callseq_end";
2075
2076    // Other operators
2077  case ISD::LOAD:    return "load";
2078  case ISD::STORE:   return "store";
2079  case ISD::VLOAD:   return "vload";
2080  case ISD::EXTLOAD:    return "extload";
2081  case ISD::SEXTLOAD:   return "sextload";
2082  case ISD::ZEXTLOAD:   return "zextload";
2083  case ISD::TRUNCSTORE: return "truncstore";
2084
2085  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2086  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2087  case ISD::BUILD_PAIR:         return "build_pair";
2088  case ISD::STACKSAVE:          return "stacksave";
2089  case ISD::STACKRESTORE:       return "stackrestore";
2090
2091  // Block memory operations.
2092  case ISD::MEMSET:  return "memset";
2093  case ISD::MEMCPY:  return "memcpy";
2094  case ISD::MEMMOVE: return "memmove";
2095
2096  // Bit manipulation
2097  case ISD::BSWAP:   return "bswap";
2098  case ISD::CTPOP:   return "ctpop";
2099  case ISD::CTTZ:    return "cttz";
2100  case ISD::CTLZ:    return "ctlz";
2101
2102  // IO Intrinsics
2103  case ISD::READPORT: return "readport";
2104  case ISD::WRITEPORT: return "writeport";
2105  case ISD::READIO: return "readio";
2106  case ISD::WRITEIO: return "writeio";
2107
2108  // Debug info
2109  case ISD::LOCATION: return "location";
2110  case ISD::DEBUG_LOC: return "debug_loc";
2111  case ISD::DEBUG_LABEL: return "debug_label";
2112
2113  case ISD::CONDCODE:
2114    switch (cast<CondCodeSDNode>(this)->get()) {
2115    default: assert(0 && "Unknown setcc condition!");
2116    case ISD::SETOEQ:  return "setoeq";
2117    case ISD::SETOGT:  return "setogt";
2118    case ISD::SETOGE:  return "setoge";
2119    case ISD::SETOLT:  return "setolt";
2120    case ISD::SETOLE:  return "setole";
2121    case ISD::SETONE:  return "setone";
2122
2123    case ISD::SETO:    return "seto";
2124    case ISD::SETUO:   return "setuo";
2125    case ISD::SETUEQ:  return "setue";
2126    case ISD::SETUGT:  return "setugt";
2127    case ISD::SETUGE:  return "setuge";
2128    case ISD::SETULT:  return "setult";
2129    case ISD::SETULE:  return "setule";
2130    case ISD::SETUNE:  return "setune";
2131
2132    case ISD::SETEQ:   return "seteq";
2133    case ISD::SETGT:   return "setgt";
2134    case ISD::SETGE:   return "setge";
2135    case ISD::SETLT:   return "setlt";
2136    case ISD::SETLE:   return "setle";
2137    case ISD::SETNE:   return "setne";
2138    }
2139  }
2140}
2141
2142void SDNode::dump() const { dump(0); }
2143void SDNode::dump(const SelectionDAG *G) const {
2144  std::cerr << (void*)this << ": ";
2145
2146  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2147    if (i) std::cerr << ",";
2148    if (getValueType(i) == MVT::Other)
2149      std::cerr << "ch";
2150    else
2151      std::cerr << MVT::getValueTypeString(getValueType(i));
2152  }
2153  std::cerr << " = " << getOperationName(G);
2154
2155  std::cerr << " ";
2156  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2157    if (i) std::cerr << ", ";
2158    std::cerr << (void*)getOperand(i).Val;
2159    if (unsigned RN = getOperand(i).ResNo)
2160      std::cerr << ":" << RN;
2161  }
2162
2163  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2164    std::cerr << "<" << CSDN->getValue() << ">";
2165  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2166    std::cerr << "<" << CSDN->getValue() << ">";
2167  } else if (const GlobalAddressSDNode *GADN =
2168             dyn_cast<GlobalAddressSDNode>(this)) {
2169    int offset = GADN->getOffset();
2170    std::cerr << "<";
2171    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2172    if (offset > 0)
2173      std::cerr << " + " << offset;
2174    else
2175      std::cerr << " " << offset;
2176  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2177    std::cerr << "<" << FIDN->getIndex() << ">";
2178  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2179    std::cerr << "<" << *CP->get() << ">";
2180  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2181    std::cerr << "<";
2182    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2183    if (LBB)
2184      std::cerr << LBB->getName() << " ";
2185    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2186  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2187    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2188      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2189    } else {
2190      std::cerr << " #" << R->getReg();
2191    }
2192  } else if (const ExternalSymbolSDNode *ES =
2193             dyn_cast<ExternalSymbolSDNode>(this)) {
2194    std::cerr << "'" << ES->getSymbol() << "'";
2195  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2196    if (M->getValue())
2197      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2198    else
2199      std::cerr << "<null:" << M->getOffset() << ">";
2200  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2201    std::cerr << ":" << getValueTypeString(N->getVT());
2202  }
2203}
2204
2205static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2206  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2207    if (N->getOperand(i).Val->hasOneUse())
2208      DumpNodes(N->getOperand(i).Val, indent+2, G);
2209    else
2210      std::cerr << "\n" << std::string(indent+2, ' ')
2211                << (void*)N->getOperand(i).Val << ": <multiple use>";
2212
2213
2214  std::cerr << "\n" << std::string(indent, ' ');
2215  N->dump(G);
2216}
2217
2218void SelectionDAG::dump() const {
2219  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2220  std::vector<const SDNode*> Nodes;
2221  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2222       I != E; ++I)
2223    Nodes.push_back(I);
2224
2225  std::sort(Nodes.begin(), Nodes.end());
2226
2227  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2228    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2229      DumpNodes(Nodes[i], 2, this);
2230  }
2231
2232  DumpNodes(getRoot().Val, 2, this);
2233
2234  std::cerr << "\n\n";
2235}
2236
2237