SelectionDAG.cpp revision 7e04be6e4a44faffa7b5fb0d630b580214262a6d
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallSet.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/StringExtras.h"
40#include <algorithm>
41#include <cmath>
42using namespace llvm;
43
44/// makeVTList - Return an instance of the SDVTList struct initialized with the
45/// specified members.
46static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
47  SDVTList Res = {VTs, NumVTs};
48  return Res;
49}
50
51static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
52  switch (VT.getSimpleVT()) {
53  default: assert(0 && "Unknown FP format");
54  case MVT::f32:     return &APFloat::IEEEsingle;
55  case MVT::f64:     return &APFloat::IEEEdouble;
56  case MVT::f80:     return &APFloat::x87DoubleExtended;
57  case MVT::f128:    return &APFloat::IEEEquad;
58  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
59  }
60}
61
62SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
63
64//===----------------------------------------------------------------------===//
65//                              ConstantFPSDNode Class
66//===----------------------------------------------------------------------===//
67
68/// isExactlyValue - We don't rely on operator== working on double values, as
69/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
70/// As such, this method can be used to do an exact bit-for-bit comparison of
71/// two floating point values.
72bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
73  return getValueAPF().bitwiseIsEqual(V);
74}
75
76bool ConstantFPSDNode::isValueValidForType(MVT VT,
77                                           const APFloat& Val) {
78  assert(VT.isFloatingPoint() && "Can only convert between FP types");
79
80  // PPC long double cannot be converted to any other type.
81  if (VT == MVT::ppcf128 ||
82      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
83    return false;
84
85  // convert modifies in place, so make a copy.
86  APFloat Val2 = APFloat(Val);
87  bool losesInfo;
88  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
89                      &losesInfo);
90  return !losesInfo;
91}
92
93//===----------------------------------------------------------------------===//
94//                              ISD Namespace
95//===----------------------------------------------------------------------===//
96
97/// isBuildVectorAllOnes - Return true if the specified node is a
98/// BUILD_VECTOR where all of the elements are ~0 or undef.
99bool ISD::isBuildVectorAllOnes(const SDNode *N) {
100  // Look through a bit convert.
101  if (N->getOpcode() == ISD::BIT_CONVERT)
102    N = N->getOperand(0).getNode();
103
104  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
105
106  unsigned i = 0, e = N->getNumOperands();
107
108  // Skip over all of the undef values.
109  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
110    ++i;
111
112  // Do not accept an all-undef vector.
113  if (i == e) return false;
114
115  // Do not accept build_vectors that aren't all constants or which have non-~0
116  // elements.
117  SDValue NotZero = N->getOperand(i);
118  if (isa<ConstantSDNode>(NotZero)) {
119    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
120      return false;
121  } else if (isa<ConstantFPSDNode>(NotZero)) {
122    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
123                bitcastToAPInt().isAllOnesValue())
124      return false;
125  } else
126    return false;
127
128  // Okay, we have at least one ~0 value, check to see if the rest match or are
129  // undefs.
130  for (++i; i != e; ++i)
131    if (N->getOperand(i) != NotZero &&
132        N->getOperand(i).getOpcode() != ISD::UNDEF)
133      return false;
134  return true;
135}
136
137
138/// isBuildVectorAllZeros - Return true if the specified node is a
139/// BUILD_VECTOR where all of the elements are 0 or undef.
140bool ISD::isBuildVectorAllZeros(const SDNode *N) {
141  // Look through a bit convert.
142  if (N->getOpcode() == ISD::BIT_CONVERT)
143    N = N->getOperand(0).getNode();
144
145  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
146
147  unsigned i = 0, e = N->getNumOperands();
148
149  // Skip over all of the undef values.
150  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
151    ++i;
152
153  // Do not accept an all-undef vector.
154  if (i == e) return false;
155
156  // Do not accept build_vectors that aren't all constants or which have non-~0
157  // elements.
158  SDValue Zero = N->getOperand(i);
159  if (isa<ConstantSDNode>(Zero)) {
160    if (!cast<ConstantSDNode>(Zero)->isNullValue())
161      return false;
162  } else if (isa<ConstantFPSDNode>(Zero)) {
163    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
164      return false;
165  } else
166    return false;
167
168  // Okay, we have at least one ~0 value, check to see if the rest match or are
169  // undefs.
170  for (++i; i != e; ++i)
171    if (N->getOperand(i) != Zero &&
172        N->getOperand(i).getOpcode() != ISD::UNDEF)
173      return false;
174  return true;
175}
176
177/// isScalarToVector - Return true if the specified node is a
178/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
179/// element is not an undef.
180bool ISD::isScalarToVector(const SDNode *N) {
181  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
182    return true;
183
184  if (N->getOpcode() != ISD::BUILD_VECTOR)
185    return false;
186  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
187    return false;
188  unsigned NumElems = N->getNumOperands();
189  for (unsigned i = 1; i < NumElems; ++i) {
190    SDValue V = N->getOperand(i);
191    if (V.getOpcode() != ISD::UNDEF)
192      return false;
193  }
194  return true;
195}
196
197
198/// isDebugLabel - Return true if the specified node represents a debug
199/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
200bool ISD::isDebugLabel(const SDNode *N) {
201  SDValue Zero;
202  if (N->getOpcode() == ISD::DBG_LABEL)
203    return true;
204  if (N->isMachineOpcode() &&
205      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
206    return true;
207  return false;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: assert(0 && "Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309const TargetMachine &SelectionDAG::getTarget() const {
310  return MF->getTarget();
311}
312
313//===----------------------------------------------------------------------===//
314//                           SDNode Profile Support
315//===----------------------------------------------------------------------===//
316
317/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
318///
319static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
320  ID.AddInteger(OpC);
321}
322
323/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
324/// solely with their pointer.
325static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
326  ID.AddPointer(VTList.VTs);
327}
328
329/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
330///
331static void AddNodeIDOperands(FoldingSetNodeID &ID,
332                              const SDValue *Ops, unsigned NumOps) {
333  for (; NumOps; --NumOps, ++Ops) {
334    ID.AddPointer(Ops->getNode());
335    ID.AddInteger(Ops->getResNo());
336  }
337}
338
339/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
340///
341static void AddNodeIDOperands(FoldingSetNodeID &ID,
342                              const SDUse *Ops, unsigned NumOps) {
343  for (; NumOps; --NumOps, ++Ops) {
344    ID.AddPointer(Ops->getVal());
345    ID.AddInteger(Ops->getSDValue().getResNo());
346  }
347}
348
349static void AddNodeIDNode(FoldingSetNodeID &ID,
350                          unsigned short OpC, SDVTList VTList,
351                          const SDValue *OpList, unsigned N) {
352  AddNodeIDOpcode(ID, OpC);
353  AddNodeIDValueTypes(ID, VTList);
354  AddNodeIDOperands(ID, OpList, N);
355}
356
357/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
358/// the NodeID data.
359static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
360  switch (N->getOpcode()) {
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::ARG_FLAGS:
363    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
364    break;
365  case ISD::TargetConstant:
366  case ISD::Constant:
367    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
368    break;
369  case ISD::TargetConstantFP:
370  case ISD::ConstantFP: {
371    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
372    break;
373  }
374  case ISD::TargetGlobalAddress:
375  case ISD::GlobalAddress:
376  case ISD::TargetGlobalTLSAddress:
377  case ISD::GlobalTLSAddress: {
378    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
379    ID.AddPointer(GA->getGlobal());
380    ID.AddInteger(GA->getOffset());
381    break;
382  }
383  case ISD::BasicBlock:
384    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
385    break;
386  case ISD::Register:
387    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
388    break;
389  case ISD::DBG_STOPPOINT: {
390    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
391    ID.AddInteger(DSP->getLine());
392    ID.AddInteger(DSP->getColumn());
393    ID.AddPointer(DSP->getCompileUnit());
394    break;
395  }
396  case ISD::SRCVALUE:
397    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
398    break;
399  case ISD::MEMOPERAND: {
400    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
401    MO.Profile(ID);
402    break;
403  }
404  case ISD::FrameIndex:
405  case ISD::TargetFrameIndex:
406    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
407    break;
408  case ISD::JumpTable:
409  case ISD::TargetJumpTable:
410    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
411    break;
412  case ISD::ConstantPool:
413  case ISD::TargetConstantPool: {
414    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
415    ID.AddInteger(CP->getAlignment());
416    ID.AddInteger(CP->getOffset());
417    if (CP->isMachineConstantPoolEntry())
418      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
419    else
420      ID.AddPointer(CP->getConstVal());
421    break;
422  }
423  case ISD::CALL: {
424    const CallSDNode *Call = cast<CallSDNode>(N);
425    ID.AddInteger(Call->getCallingConv());
426    ID.AddInteger(Call->isVarArg());
427    break;
428  }
429  case ISD::LOAD: {
430    const LoadSDNode *LD = cast<LoadSDNode>(N);
431    ID.AddInteger(LD->getAddressingMode());
432    ID.AddInteger(LD->getExtensionType());
433    ID.AddInteger(LD->getMemoryVT().getRawBits());
434    ID.AddInteger(LD->getRawFlags());
435    break;
436  }
437  case ISD::STORE: {
438    const StoreSDNode *ST = cast<StoreSDNode>(N);
439    ID.AddInteger(ST->getAddressingMode());
440    ID.AddInteger(ST->isTruncatingStore());
441    ID.AddInteger(ST->getMemoryVT().getRawBits());
442    ID.AddInteger(ST->getRawFlags());
443    break;
444  }
445  case ISD::ATOMIC_CMP_SWAP_8:
446  case ISD::ATOMIC_SWAP_8:
447  case ISD::ATOMIC_LOAD_ADD_8:
448  case ISD::ATOMIC_LOAD_SUB_8:
449  case ISD::ATOMIC_LOAD_AND_8:
450  case ISD::ATOMIC_LOAD_OR_8:
451  case ISD::ATOMIC_LOAD_XOR_8:
452  case ISD::ATOMIC_LOAD_NAND_8:
453  case ISD::ATOMIC_LOAD_MIN_8:
454  case ISD::ATOMIC_LOAD_MAX_8:
455  case ISD::ATOMIC_LOAD_UMIN_8:
456  case ISD::ATOMIC_LOAD_UMAX_8:
457  case ISD::ATOMIC_CMP_SWAP_16:
458  case ISD::ATOMIC_SWAP_16:
459  case ISD::ATOMIC_LOAD_ADD_16:
460  case ISD::ATOMIC_LOAD_SUB_16:
461  case ISD::ATOMIC_LOAD_AND_16:
462  case ISD::ATOMIC_LOAD_OR_16:
463  case ISD::ATOMIC_LOAD_XOR_16:
464  case ISD::ATOMIC_LOAD_NAND_16:
465  case ISD::ATOMIC_LOAD_MIN_16:
466  case ISD::ATOMIC_LOAD_MAX_16:
467  case ISD::ATOMIC_LOAD_UMIN_16:
468  case ISD::ATOMIC_LOAD_UMAX_16:
469  case ISD::ATOMIC_CMP_SWAP_32:
470  case ISD::ATOMIC_SWAP_32:
471  case ISD::ATOMIC_LOAD_ADD_32:
472  case ISD::ATOMIC_LOAD_SUB_32:
473  case ISD::ATOMIC_LOAD_AND_32:
474  case ISD::ATOMIC_LOAD_OR_32:
475  case ISD::ATOMIC_LOAD_XOR_32:
476  case ISD::ATOMIC_LOAD_NAND_32:
477  case ISD::ATOMIC_LOAD_MIN_32:
478  case ISD::ATOMIC_LOAD_MAX_32:
479  case ISD::ATOMIC_LOAD_UMIN_32:
480  case ISD::ATOMIC_LOAD_UMAX_32:
481  case ISD::ATOMIC_CMP_SWAP_64:
482  case ISD::ATOMIC_SWAP_64:
483  case ISD::ATOMIC_LOAD_ADD_64:
484  case ISD::ATOMIC_LOAD_SUB_64:
485  case ISD::ATOMIC_LOAD_AND_64:
486  case ISD::ATOMIC_LOAD_OR_64:
487  case ISD::ATOMIC_LOAD_XOR_64:
488  case ISD::ATOMIC_LOAD_NAND_64:
489  case ISD::ATOMIC_LOAD_MIN_64:
490  case ISD::ATOMIC_LOAD_MAX_64:
491  case ISD::ATOMIC_LOAD_UMIN_64:
492  case ISD::ATOMIC_LOAD_UMAX_64: {
493    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
494    ID.AddInteger(AT->getRawFlags());
495    break;
496  }
497  } // end switch (N->getOpcode())
498}
499
500/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
501/// data.
502static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
503  AddNodeIDOpcode(ID, N->getOpcode());
504  // Add the return value info.
505  AddNodeIDValueTypes(ID, N->getVTList());
506  // Add the operand info.
507  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
508
509  // Handle SDNode leafs with special info.
510  AddNodeIDCustom(ID, N);
511}
512
513/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
514/// the CSE map that carries both alignment and volatility information.
515///
516static inline unsigned
517encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
518  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
519}
520
521//===----------------------------------------------------------------------===//
522//                              SelectionDAG Class
523//===----------------------------------------------------------------------===//
524
525/// doNotCSE - Return true if CSE should not be performed for this node.
526static bool doNotCSE(SDNode *N) {
527  if (N->getValueType(0) == MVT::Flag)
528    return true; // Never CSE anything that produces a flag.
529
530  switch (N->getOpcode()) {
531  default: break;
532  case ISD::HANDLENODE:
533  case ISD::DBG_LABEL:
534  case ISD::DBG_STOPPOINT:
535  case ISD::EH_LABEL:
536  case ISD::DECLARE:
537    return true;   // Never CSE these nodes.
538  }
539
540  // Check that remaining values produced are not flags.
541  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
542    if (N->getValueType(i) == MVT::Flag)
543      return true; // Never CSE anything that produces a flag.
544
545  return false;
546}
547
548/// RemoveDeadNodes - This method deletes all unreachable nodes in the
549/// SelectionDAG.
550void SelectionDAG::RemoveDeadNodes() {
551  // Create a dummy node (which is not added to allnodes), that adds a reference
552  // to the root node, preventing it from being deleted.
553  HandleSDNode Dummy(getRoot());
554
555  SmallVector<SDNode*, 128> DeadNodes;
556
557  // Add all obviously-dead nodes to the DeadNodes worklist.
558  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
559    if (I->use_empty())
560      DeadNodes.push_back(I);
561
562  RemoveDeadNodes(DeadNodes);
563
564  // If the root changed (e.g. it was a dead load, update the root).
565  setRoot(Dummy.getValue());
566}
567
568/// RemoveDeadNodes - This method deletes the unreachable nodes in the
569/// given list, and any nodes that become unreachable as a result.
570void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
571                                   DAGUpdateListener *UpdateListener) {
572
573  // Process the worklist, deleting the nodes and adding their uses to the
574  // worklist.
575  while (!DeadNodes.empty()) {
576    SDNode *N = DeadNodes.back();
577    DeadNodes.pop_back();
578
579    if (UpdateListener)
580      UpdateListener->NodeDeleted(N, 0);
581
582    // Take the node out of the appropriate CSE map.
583    RemoveNodeFromCSEMaps(N);
584
585    // Next, brutally remove the operand list.  This is safe to do, as there are
586    // no cycles in the graph.
587    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
588      SDNode *Operand = I->getVal();
589      Operand->removeUser(std::distance(N->op_begin(), I), N);
590
591      // Now that we removed this operand, see if there are no uses of it left.
592      if (Operand->use_empty())
593        DeadNodes.push_back(Operand);
594    }
595
596    if (N->OperandsNeedDelete)
597      delete[] N->OperandList;
598
599    N->OperandList = 0;
600    N->NumOperands = 0;
601
602    // Finally, remove N itself.
603    NodeAllocator.Deallocate(AllNodes.remove(N));
604  }
605}
606
607void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
608  SmallVector<SDNode*, 16> DeadNodes(1, N);
609  RemoveDeadNodes(DeadNodes, UpdateListener);
610}
611
612void SelectionDAG::DeleteNode(SDNode *N) {
613  assert(N->use_empty() && "Cannot delete a node that is not dead!");
614
615  // First take this out of the appropriate CSE map.
616  RemoveNodeFromCSEMaps(N);
617
618  // Finally, remove uses due to operands of this node, remove from the
619  // AllNodes list, and delete the node.
620  DeleteNodeNotInCSEMaps(N);
621}
622
623void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
624  // Drop all of the operands and decrement used node's use counts.
625  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
626    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
627
628  if (N->OperandsNeedDelete) {
629    delete[] N->OperandList;
630    N->OperandList = 0;
631  }
632
633  assert(N != AllNodes.begin());
634  NodeAllocator.Deallocate(AllNodes.remove(N));
635}
636
637/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
638/// correspond to it.  This is useful when we're about to delete or repurpose
639/// the node.  We don't want future request for structurally identical nodes
640/// to return N anymore.
641bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
642  bool Erased = false;
643  switch (N->getOpcode()) {
644  case ISD::EntryToken:
645    assert(0 && "EntryToken should not be in CSEMaps!");
646    return false;
647  case ISD::HANDLENODE: return false;  // noop.
648  case ISD::CONDCODE:
649    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
650           "Cond code doesn't exist!");
651    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
652    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
653    break;
654  case ISD::ExternalSymbol:
655    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
656    break;
657  case ISD::TargetExternalSymbol:
658    Erased =
659      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
660    break;
661  case ISD::VALUETYPE: {
662    MVT VT = cast<VTSDNode>(N)->getVT();
663    if (VT.isExtended()) {
664      Erased = ExtendedValueTypeNodes.erase(VT);
665    } else {
666      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
667      ValueTypeNodes[VT.getSimpleVT()] = 0;
668    }
669    break;
670  }
671  default:
672    // Remove it from the CSE Map.
673    Erased = CSEMap.RemoveNode(N);
674    break;
675  }
676#ifndef NDEBUG
677  // Verify that the node was actually in one of the CSE maps, unless it has a
678  // flag result (which cannot be CSE'd) or is one of the special cases that are
679  // not subject to CSE.
680  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
681      !N->isMachineOpcode() && !doNotCSE(N)) {
682    N->dump(this);
683    cerr << "\n";
684    assert(0 && "Node is not in map!");
685  }
686#endif
687  return Erased;
688}
689
690/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
691/// has been taken out and modified in some way.  If the specified node already
692/// exists in the CSE maps, do not modify the maps, but return the existing node
693/// instead.  If it doesn't exist, add it and return null.
694///
695SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
696  assert(N->getNumOperands() && "This is a leaf node!");
697
698  if (doNotCSE(N))
699    return 0;
700
701  SDNode *New = CSEMap.GetOrInsertNode(N);
702  if (New != N) return New;  // Node already existed.
703  return 0;
704}
705
706/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
707/// were replaced with those specified.  If this node is never memoized,
708/// return null, otherwise return a pointer to the slot it would take.  If a
709/// node already exists with these operands, the slot will be non-null.
710SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
711                                           void *&InsertPos) {
712  if (doNotCSE(N))
713    return 0;
714
715  SDValue Ops[] = { Op };
716  FoldingSetNodeID ID;
717  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
718  AddNodeIDCustom(ID, N);
719  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
720}
721
722/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
723/// were replaced with those specified.  If this node is never memoized,
724/// return null, otherwise return a pointer to the slot it would take.  If a
725/// node already exists with these operands, the slot will be non-null.
726SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
727                                           SDValue Op1, SDValue Op2,
728                                           void *&InsertPos) {
729  if (doNotCSE(N))
730    return 0;
731
732  SDValue Ops[] = { Op1, Op2 };
733  FoldingSetNodeID ID;
734  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
735  AddNodeIDCustom(ID, N);
736  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
737}
738
739
740/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
741/// were replaced with those specified.  If this node is never memoized,
742/// return null, otherwise return a pointer to the slot it would take.  If a
743/// node already exists with these operands, the slot will be non-null.
744SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
745                                           const SDValue *Ops,unsigned NumOps,
746                                           void *&InsertPos) {
747  if (doNotCSE(N))
748    return 0;
749
750  FoldingSetNodeID ID;
751  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
752  AddNodeIDCustom(ID, N);
753  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
754}
755
756/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
757void SelectionDAG::VerifyNode(SDNode *N) {
758  switch (N->getOpcode()) {
759  default:
760    break;
761  case ISD::BUILD_PAIR: {
762    MVT VT = N->getValueType(0);
763    assert(N->getNumValues() == 1 && "Too many results!");
764    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
765           "Wrong return type!");
766    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
767    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
768           "Mismatched operand types!");
769    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
770           "Wrong operand type!");
771    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
772           "Wrong return type size");
773    break;
774  }
775  case ISD::BUILD_VECTOR: {
776    assert(N->getNumValues() == 1 && "Too many results!");
777    assert(N->getValueType(0).isVector() && "Wrong return type!");
778    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
779           "Wrong number of operands!");
780    // FIXME: Change vector_shuffle to a variadic node with mask elements being
781    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
782    // operand, and it is not always possible to legalize it.  Turning off the
783    // following checks at least makes it possible to legalize most of the time.
784//    MVT EltVT = N->getValueType(0).getVectorElementType();
785//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
786//      assert(I->getSDValue().getValueType() == EltVT &&
787//             "Wrong operand type!");
788    break;
789  }
790  }
791}
792
793/// getMVTAlignment - Compute the default alignment value for the
794/// given type.
795///
796unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
797  const Type *Ty = VT == MVT::iPTR ?
798                   PointerType::get(Type::Int8Ty, 0) :
799                   VT.getTypeForMVT();
800
801  return TLI.getTargetData()->getABITypeAlignment(Ty);
802}
803
804SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
805  : TLI(tli), FLI(fli),
806    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
807    Root(getEntryNode()) {
808  AllNodes.push_back(&EntryNode);
809}
810
811void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
812  MF = &mf;
813  MMI = mmi;
814}
815
816SelectionDAG::~SelectionDAG() {
817  allnodes_clear();
818}
819
820void SelectionDAG::allnodes_clear() {
821  assert(&*AllNodes.begin() == &EntryNode);
822  AllNodes.remove(AllNodes.begin());
823  while (!AllNodes.empty()) {
824    SDNode *N = AllNodes.remove(AllNodes.begin());
825    N->SetNextInBucket(0);
826
827    if (N->OperandsNeedDelete) {
828      delete [] N->OperandList;
829      N->OperandList = 0;
830    }
831
832    NodeAllocator.Deallocate(N);
833  }
834}
835
836void SelectionDAG::clear() {
837  allnodes_clear();
838  OperandAllocator.Reset();
839  CSEMap.clear();
840
841  ExtendedValueTypeNodes.clear();
842  ExternalSymbols.clear();
843  TargetExternalSymbols.clear();
844  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
845            static_cast<CondCodeSDNode*>(0));
846  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
847            static_cast<SDNode*>(0));
848
849  EntryNode.Uses = 0;
850  AllNodes.push_back(&EntryNode);
851  Root = getEntryNode();
852}
853
854SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
855  if (Op.getValueType() == VT) return Op;
856  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
857                                   VT.getSizeInBits());
858  return getNode(ISD::AND, Op.getValueType(), Op,
859                 getConstant(Imm, Op.getValueType()));
860}
861
862SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
863  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
864  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
865}
866
867SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
868  return getConstant(*ConstantInt::get(Val), VT, isT);
869}
870
871SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
872  assert(VT.isInteger() && "Cannot create FP integer constant!");
873
874  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
875  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
876         "APInt size does not match type size!");
877
878  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
879  FoldingSetNodeID ID;
880  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
881  ID.AddPointer(&Val);
882  void *IP = 0;
883  SDNode *N = NULL;
884  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
885    if (!VT.isVector())
886      return SDValue(N, 0);
887  if (!N) {
888    N = NodeAllocator.Allocate<ConstantSDNode>();
889    new (N) ConstantSDNode(isT, &Val, EltVT);
890    CSEMap.InsertNode(N, IP);
891    AllNodes.push_back(N);
892  }
893
894  SDValue Result(N, 0);
895  if (VT.isVector()) {
896    SmallVector<SDValue, 8> Ops;
897    Ops.assign(VT.getVectorNumElements(), Result);
898    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
899  }
900  return Result;
901}
902
903SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
904  return getConstant(Val, TLI.getPointerTy(), isTarget);
905}
906
907
908SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
909  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
910}
911
912SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
913  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
914
915  MVT EltVT =
916    VT.isVector() ? VT.getVectorElementType() : VT;
917
918  // Do the map lookup using the actual bit pattern for the floating point
919  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
920  // we don't have issues with SNANs.
921  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
922  FoldingSetNodeID ID;
923  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
924  ID.AddPointer(&V);
925  void *IP = 0;
926  SDNode *N = NULL;
927  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
928    if (!VT.isVector())
929      return SDValue(N, 0);
930  if (!N) {
931    N = NodeAllocator.Allocate<ConstantFPSDNode>();
932    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
933    CSEMap.InsertNode(N, IP);
934    AllNodes.push_back(N);
935  }
936
937  SDValue Result(N, 0);
938  if (VT.isVector()) {
939    SmallVector<SDValue, 8> Ops;
940    Ops.assign(VT.getVectorNumElements(), Result);
941    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
942  }
943  return Result;
944}
945
946SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
947  MVT EltVT =
948    VT.isVector() ? VT.getVectorElementType() : VT;
949  if (EltVT==MVT::f32)
950    return getConstantFP(APFloat((float)Val), VT, isTarget);
951  else
952    return getConstantFP(APFloat(Val), VT, isTarget);
953}
954
955SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
956                                       MVT VT, int64_t Offset,
957                                       bool isTargetGA) {
958  unsigned Opc;
959
960  // Truncate (with sign-extension) the offset value to the pointer size.
961  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
962  if (BitWidth < 64)
963    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
964
965  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
966  if (!GVar) {
967    // If GV is an alias then use the aliasee for determining thread-localness.
968    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
969      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
970  }
971
972  if (GVar && GVar->isThreadLocal())
973    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
974  else
975    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
976
977  FoldingSetNodeID ID;
978  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
979  ID.AddPointer(GV);
980  ID.AddInteger(Offset);
981  void *IP = 0;
982  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
983   return SDValue(E, 0);
984  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
985  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
986  CSEMap.InsertNode(N, IP);
987  AllNodes.push_back(N);
988  return SDValue(N, 0);
989}
990
991SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
992  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
993  FoldingSetNodeID ID;
994  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
995  ID.AddInteger(FI);
996  void *IP = 0;
997  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
998    return SDValue(E, 0);
999  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1000  new (N) FrameIndexSDNode(FI, VT, isTarget);
1001  CSEMap.InsertNode(N, IP);
1002  AllNodes.push_back(N);
1003  return SDValue(N, 0);
1004}
1005
1006SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1007  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1008  FoldingSetNodeID ID;
1009  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1010  ID.AddInteger(JTI);
1011  void *IP = 0;
1012  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1013    return SDValue(E, 0);
1014  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1015  new (N) JumpTableSDNode(JTI, VT, isTarget);
1016  CSEMap.InsertNode(N, IP);
1017  AllNodes.push_back(N);
1018  return SDValue(N, 0);
1019}
1020
1021SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1022                                      unsigned Alignment, int Offset,
1023                                      bool isTarget) {
1024  if (Alignment == 0)
1025    Alignment =
1026      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1027  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1028  FoldingSetNodeID ID;
1029  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1030  ID.AddInteger(Alignment);
1031  ID.AddInteger(Offset);
1032  ID.AddPointer(C);
1033  void *IP = 0;
1034  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1035    return SDValue(E, 0);
1036  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1037  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1038  CSEMap.InsertNode(N, IP);
1039  AllNodes.push_back(N);
1040  return SDValue(N, 0);
1041}
1042
1043
1044SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1045                                      unsigned Alignment, int Offset,
1046                                      bool isTarget) {
1047  if (Alignment == 0)
1048    Alignment =
1049      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1050  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1051  FoldingSetNodeID ID;
1052  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1053  ID.AddInteger(Alignment);
1054  ID.AddInteger(Offset);
1055  C->AddSelectionDAGCSEId(ID);
1056  void *IP = 0;
1057  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1058    return SDValue(E, 0);
1059  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1060  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1061  CSEMap.InsertNode(N, IP);
1062  AllNodes.push_back(N);
1063  return SDValue(N, 0);
1064}
1065
1066
1067SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1068  FoldingSetNodeID ID;
1069  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1070  ID.AddPointer(MBB);
1071  void *IP = 0;
1072  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1073    return SDValue(E, 0);
1074  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1075  new (N) BasicBlockSDNode(MBB);
1076  CSEMap.InsertNode(N, IP);
1077  AllNodes.push_back(N);
1078  return SDValue(N, 0);
1079}
1080
1081SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1082  FoldingSetNodeID ID;
1083  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1084  ID.AddInteger(Flags.getRawBits());
1085  void *IP = 0;
1086  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1087    return SDValue(E, 0);
1088  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1089  new (N) ARG_FLAGSSDNode(Flags);
1090  CSEMap.InsertNode(N, IP);
1091  AllNodes.push_back(N);
1092  return SDValue(N, 0);
1093}
1094
1095SDValue SelectionDAG::getValueType(MVT VT) {
1096  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1097    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1098
1099  SDNode *&N = VT.isExtended() ?
1100    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1101
1102  if (N) return SDValue(N, 0);
1103  N = NodeAllocator.Allocate<VTSDNode>();
1104  new (N) VTSDNode(VT);
1105  AllNodes.push_back(N);
1106  return SDValue(N, 0);
1107}
1108
1109SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1110  SDNode *&N = ExternalSymbols[Sym];
1111  if (N) return SDValue(N, 0);
1112  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1113  new (N) ExternalSymbolSDNode(false, Sym, VT);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1119  SDNode *&N = TargetExternalSymbols[Sym];
1120  if (N) return SDValue(N, 0);
1121  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1122  new (N) ExternalSymbolSDNode(true, Sym, VT);
1123  AllNodes.push_back(N);
1124  return SDValue(N, 0);
1125}
1126
1127SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1128  if ((unsigned)Cond >= CondCodeNodes.size())
1129    CondCodeNodes.resize(Cond+1);
1130
1131  if (CondCodeNodes[Cond] == 0) {
1132    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1133    new (N) CondCodeSDNode(Cond);
1134    CondCodeNodes[Cond] = N;
1135    AllNodes.push_back(N);
1136  }
1137  return SDValue(CondCodeNodes[Cond], 0);
1138}
1139
1140SDValue SelectionDAG::getConvertRndSat(MVT VT, SDValue Val, SDValue DTy,
1141                                       SDValue STy, SDValue Rnd, SDValue Sat,
1142                                       ISD::CvtCode Code) {
1143  FoldingSetNodeID ID;
1144  void* IP = 0;
1145  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1146    return SDValue(E, 0);
1147  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1148  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1149  new (N) CvtRndSatSDNode(VT, Ops, 5, Code);
1150  CSEMap.InsertNode(N, IP);
1151  AllNodes.push_back(N);
1152  return SDValue(N, 0);
1153}
1154
1155SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1156  FoldingSetNodeID ID;
1157  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1158  ID.AddInteger(RegNo);
1159  void *IP = 0;
1160  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1161    return SDValue(E, 0);
1162  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1163  new (N) RegisterSDNode(RegNo, VT);
1164  CSEMap.InsertNode(N, IP);
1165  AllNodes.push_back(N);
1166  return SDValue(N, 0);
1167}
1168
1169SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1170                                        unsigned Line, unsigned Col,
1171                                        const CompileUnitDesc *CU) {
1172  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1173  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1174  AllNodes.push_back(N);
1175  return SDValue(N, 0);
1176}
1177
1178SDValue SelectionDAG::getLabel(unsigned Opcode,
1179                               SDValue Root,
1180                               unsigned LabelID) {
1181  FoldingSetNodeID ID;
1182  SDValue Ops[] = { Root };
1183  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1184  ID.AddInteger(LabelID);
1185  void *IP = 0;
1186  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1187    return SDValue(E, 0);
1188  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1189  new (N) LabelSDNode(Opcode, Root, LabelID);
1190  CSEMap.InsertNode(N, IP);
1191  AllNodes.push_back(N);
1192  return SDValue(N, 0);
1193}
1194
1195SDValue SelectionDAG::getSrcValue(const Value *V) {
1196  assert((!V || isa<PointerType>(V->getType())) &&
1197         "SrcValue is not a pointer?");
1198
1199  FoldingSetNodeID ID;
1200  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1201  ID.AddPointer(V);
1202
1203  void *IP = 0;
1204  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1205    return SDValue(E, 0);
1206
1207  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1208  new (N) SrcValueSDNode(V);
1209  CSEMap.InsertNode(N, IP);
1210  AllNodes.push_back(N);
1211  return SDValue(N, 0);
1212}
1213
1214SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1215#ifndef NDEBUG
1216  const Value *v = MO.getValue();
1217  assert((!v || isa<PointerType>(v->getType())) &&
1218         "SrcValue is not a pointer?");
1219#endif
1220
1221  FoldingSetNodeID ID;
1222  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1223  MO.Profile(ID);
1224
1225  void *IP = 0;
1226  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1227    return SDValue(E, 0);
1228
1229  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1230  new (N) MemOperandSDNode(MO);
1231  CSEMap.InsertNode(N, IP);
1232  AllNodes.push_back(N);
1233  return SDValue(N, 0);
1234}
1235
1236/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1237/// specified value type.
1238SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1239  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1240  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1241  const Type *Ty = VT.getTypeForMVT();
1242  unsigned StackAlign =
1243  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1244
1245  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1246  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1247}
1248
1249/// CreateStackTemporary - Create a stack temporary suitable for holding
1250/// either of the specified value types.
1251SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1252  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1253                            VT2.getStoreSizeInBits())/8;
1254  const Type *Ty1 = VT1.getTypeForMVT();
1255  const Type *Ty2 = VT2.getTypeForMVT();
1256  const TargetData *TD = TLI.getTargetData();
1257  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1258                            TD->getPrefTypeAlignment(Ty2));
1259
1260  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1261  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1262  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1263}
1264
1265SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1266                                SDValue N2, ISD::CondCode Cond) {
1267  // These setcc operations always fold.
1268  switch (Cond) {
1269  default: break;
1270  case ISD::SETFALSE:
1271  case ISD::SETFALSE2: return getConstant(0, VT);
1272  case ISD::SETTRUE:
1273  case ISD::SETTRUE2:  return getConstant(1, VT);
1274
1275  case ISD::SETOEQ:
1276  case ISD::SETOGT:
1277  case ISD::SETOGE:
1278  case ISD::SETOLT:
1279  case ISD::SETOLE:
1280  case ISD::SETONE:
1281  case ISD::SETO:
1282  case ISD::SETUO:
1283  case ISD::SETUEQ:
1284  case ISD::SETUNE:
1285    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1286    break;
1287  }
1288
1289  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1290    const APInt &C2 = N2C->getAPIntValue();
1291    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1292      const APInt &C1 = N1C->getAPIntValue();
1293
1294      switch (Cond) {
1295      default: assert(0 && "Unknown integer setcc!");
1296      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1297      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1298      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1299      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1300      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1301      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1302      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1303      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1304      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1305      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1306      }
1307    }
1308  }
1309  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1310    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1311      // No compile time operations on this type yet.
1312      if (N1C->getValueType(0) == MVT::ppcf128)
1313        return SDValue();
1314
1315      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1316      switch (Cond) {
1317      default: break;
1318      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1319                          return getNode(ISD::UNDEF, VT);
1320                        // fall through
1321      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1322      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1323                          return getNode(ISD::UNDEF, VT);
1324                        // fall through
1325      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1326                                           R==APFloat::cmpLessThan, VT);
1327      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1328                          return getNode(ISD::UNDEF, VT);
1329                        // fall through
1330      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1331      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1332                          return getNode(ISD::UNDEF, VT);
1333                        // fall through
1334      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1335      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1336                          return getNode(ISD::UNDEF, VT);
1337                        // fall through
1338      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1339                                           R==APFloat::cmpEqual, VT);
1340      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1341                          return getNode(ISD::UNDEF, VT);
1342                        // fall through
1343      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1344                                           R==APFloat::cmpEqual, VT);
1345      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1346      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1347      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1348                                           R==APFloat::cmpEqual, VT);
1349      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1350      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1351                                           R==APFloat::cmpLessThan, VT);
1352      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1353                                           R==APFloat::cmpUnordered, VT);
1354      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1355      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1356      }
1357    } else {
1358      // Ensure that the constant occurs on the RHS.
1359      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1360    }
1361  }
1362
1363  // Could not fold it.
1364  return SDValue();
1365}
1366
1367/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1368/// use this predicate to simplify operations downstream.
1369bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1370  unsigned BitWidth = Op.getValueSizeInBits();
1371  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1372}
1373
1374/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1375/// this predicate to simplify operations downstream.  Mask is known to be zero
1376/// for bits that V cannot have.
1377bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1378                                     unsigned Depth) const {
1379  APInt KnownZero, KnownOne;
1380  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1381  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1382  return (KnownZero & Mask) == Mask;
1383}
1384
1385/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1386/// known to be either zero or one and return them in the KnownZero/KnownOne
1387/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1388/// processing.
1389void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1390                                     APInt &KnownZero, APInt &KnownOne,
1391                                     unsigned Depth) const {
1392  unsigned BitWidth = Mask.getBitWidth();
1393  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1394         "Mask size mismatches value type size!");
1395
1396  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1397  if (Depth == 6 || Mask == 0)
1398    return;  // Limit search depth.
1399
1400  APInt KnownZero2, KnownOne2;
1401
1402  switch (Op.getOpcode()) {
1403  case ISD::Constant:
1404    // We know all of the bits for a constant!
1405    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1406    KnownZero = ~KnownOne & Mask;
1407    return;
1408  case ISD::AND:
1409    // If either the LHS or the RHS are Zero, the result is zero.
1410    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1411    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1412                      KnownZero2, KnownOne2, Depth+1);
1413    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1414    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1415
1416    // Output known-1 bits are only known if set in both the LHS & RHS.
1417    KnownOne &= KnownOne2;
1418    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1419    KnownZero |= KnownZero2;
1420    return;
1421  case ISD::OR:
1422    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1423    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1424                      KnownZero2, KnownOne2, Depth+1);
1425    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1426    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1427
1428    // Output known-0 bits are only known if clear in both the LHS & RHS.
1429    KnownZero &= KnownZero2;
1430    // Output known-1 are known to be set if set in either the LHS | RHS.
1431    KnownOne |= KnownOne2;
1432    return;
1433  case ISD::XOR: {
1434    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1435    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1436    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1437    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1438
1439    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1440    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1441    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1442    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1443    KnownZero = KnownZeroOut;
1444    return;
1445  }
1446  case ISD::MUL: {
1447    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1448    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1449    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1450    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1451    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1452
1453    // If low bits are zero in either operand, output low known-0 bits.
1454    // Also compute a conserative estimate for high known-0 bits.
1455    // More trickiness is possible, but this is sufficient for the
1456    // interesting case of alignment computation.
1457    KnownOne.clear();
1458    unsigned TrailZ = KnownZero.countTrailingOnes() +
1459                      KnownZero2.countTrailingOnes();
1460    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1461                               KnownZero2.countLeadingOnes(),
1462                               BitWidth) - BitWidth;
1463
1464    TrailZ = std::min(TrailZ, BitWidth);
1465    LeadZ = std::min(LeadZ, BitWidth);
1466    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1467                APInt::getHighBitsSet(BitWidth, LeadZ);
1468    KnownZero &= Mask;
1469    return;
1470  }
1471  case ISD::UDIV: {
1472    // For the purposes of computing leading zeros we can conservatively
1473    // treat a udiv as a logical right shift by the power of 2 known to
1474    // be less than the denominator.
1475    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1476    ComputeMaskedBits(Op.getOperand(0),
1477                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1478    unsigned LeadZ = KnownZero2.countLeadingOnes();
1479
1480    KnownOne2.clear();
1481    KnownZero2.clear();
1482    ComputeMaskedBits(Op.getOperand(1),
1483                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1484    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1485    if (RHSUnknownLeadingOnes != BitWidth)
1486      LeadZ = std::min(BitWidth,
1487                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1488
1489    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1490    return;
1491  }
1492  case ISD::SELECT:
1493    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1494    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1495    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1496    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1497
1498    // Only known if known in both the LHS and RHS.
1499    KnownOne &= KnownOne2;
1500    KnownZero &= KnownZero2;
1501    return;
1502  case ISD::SELECT_CC:
1503    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1504    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1505    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1506    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1507
1508    // Only known if known in both the LHS and RHS.
1509    KnownOne &= KnownOne2;
1510    KnownZero &= KnownZero2;
1511    return;
1512  case ISD::SADDO:
1513  case ISD::UADDO:
1514  case ISD::SSUBO:
1515  case ISD::USUBO:
1516  case ISD::SMULO:
1517  case ISD::UMULO:
1518    if (Op.getResNo() != 1)
1519      return;
1520    // The boolean result conforms to getBooleanContents.  Fall through.
1521  case ISD::SETCC:
1522    // If we know the result of a setcc has the top bits zero, use this info.
1523    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1524        BitWidth > 1)
1525      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1526    return;
1527  case ISD::SHL:
1528    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1529    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1530      unsigned ShAmt = SA->getZExtValue();
1531
1532      // If the shift count is an invalid immediate, don't do anything.
1533      if (ShAmt >= BitWidth)
1534        return;
1535
1536      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1537                        KnownZero, KnownOne, Depth+1);
1538      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1539      KnownZero <<= ShAmt;
1540      KnownOne  <<= ShAmt;
1541      // low bits known zero.
1542      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1543    }
1544    return;
1545  case ISD::SRL:
1546    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1547    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1548      unsigned ShAmt = SA->getZExtValue();
1549
1550      // If the shift count is an invalid immediate, don't do anything.
1551      if (ShAmt >= BitWidth)
1552        return;
1553
1554      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1555                        KnownZero, KnownOne, Depth+1);
1556      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1557      KnownZero = KnownZero.lshr(ShAmt);
1558      KnownOne  = KnownOne.lshr(ShAmt);
1559
1560      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1561      KnownZero |= HighBits;  // High bits known zero.
1562    }
1563    return;
1564  case ISD::SRA:
1565    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1566      unsigned ShAmt = SA->getZExtValue();
1567
1568      // If the shift count is an invalid immediate, don't do anything.
1569      if (ShAmt >= BitWidth)
1570        return;
1571
1572      APInt InDemandedMask = (Mask << ShAmt);
1573      // If any of the demanded bits are produced by the sign extension, we also
1574      // demand the input sign bit.
1575      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1576      if (HighBits.getBoolValue())
1577        InDemandedMask |= APInt::getSignBit(BitWidth);
1578
1579      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1580                        Depth+1);
1581      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1582      KnownZero = KnownZero.lshr(ShAmt);
1583      KnownOne  = KnownOne.lshr(ShAmt);
1584
1585      // Handle the sign bits.
1586      APInt SignBit = APInt::getSignBit(BitWidth);
1587      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1588
1589      if (KnownZero.intersects(SignBit)) {
1590        KnownZero |= HighBits;  // New bits are known zero.
1591      } else if (KnownOne.intersects(SignBit)) {
1592        KnownOne  |= HighBits;  // New bits are known one.
1593      }
1594    }
1595    return;
1596  case ISD::SIGN_EXTEND_INREG: {
1597    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1598    unsigned EBits = EVT.getSizeInBits();
1599
1600    // Sign extension.  Compute the demanded bits in the result that are not
1601    // present in the input.
1602    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1603
1604    APInt InSignBit = APInt::getSignBit(EBits);
1605    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1606
1607    // If the sign extended bits are demanded, we know that the sign
1608    // bit is demanded.
1609    InSignBit.zext(BitWidth);
1610    if (NewBits.getBoolValue())
1611      InputDemandedBits |= InSignBit;
1612
1613    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1614                      KnownZero, KnownOne, Depth+1);
1615    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1616
1617    // If the sign bit of the input is known set or clear, then we know the
1618    // top bits of the result.
1619    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1620      KnownZero |= NewBits;
1621      KnownOne  &= ~NewBits;
1622    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1623      KnownOne  |= NewBits;
1624      KnownZero &= ~NewBits;
1625    } else {                              // Input sign bit unknown
1626      KnownZero &= ~NewBits;
1627      KnownOne  &= ~NewBits;
1628    }
1629    return;
1630  }
1631  case ISD::CTTZ:
1632  case ISD::CTLZ:
1633  case ISD::CTPOP: {
1634    unsigned LowBits = Log2_32(BitWidth)+1;
1635    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1636    KnownOne.clear();
1637    return;
1638  }
1639  case ISD::LOAD: {
1640    if (ISD::isZEXTLoad(Op.getNode())) {
1641      LoadSDNode *LD = cast<LoadSDNode>(Op);
1642      MVT VT = LD->getMemoryVT();
1643      unsigned MemBits = VT.getSizeInBits();
1644      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1645    }
1646    return;
1647  }
1648  case ISD::ZERO_EXTEND: {
1649    MVT InVT = Op.getOperand(0).getValueType();
1650    unsigned InBits = InVT.getSizeInBits();
1651    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1652    APInt InMask    = Mask;
1653    InMask.trunc(InBits);
1654    KnownZero.trunc(InBits);
1655    KnownOne.trunc(InBits);
1656    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1657    KnownZero.zext(BitWidth);
1658    KnownOne.zext(BitWidth);
1659    KnownZero |= NewBits;
1660    return;
1661  }
1662  case ISD::SIGN_EXTEND: {
1663    MVT InVT = Op.getOperand(0).getValueType();
1664    unsigned InBits = InVT.getSizeInBits();
1665    APInt InSignBit = APInt::getSignBit(InBits);
1666    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1667    APInt InMask = Mask;
1668    InMask.trunc(InBits);
1669
1670    // If any of the sign extended bits are demanded, we know that the sign
1671    // bit is demanded. Temporarily set this bit in the mask for our callee.
1672    if (NewBits.getBoolValue())
1673      InMask |= InSignBit;
1674
1675    KnownZero.trunc(InBits);
1676    KnownOne.trunc(InBits);
1677    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1678
1679    // Note if the sign bit is known to be zero or one.
1680    bool SignBitKnownZero = KnownZero.isNegative();
1681    bool SignBitKnownOne  = KnownOne.isNegative();
1682    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1683           "Sign bit can't be known to be both zero and one!");
1684
1685    // If the sign bit wasn't actually demanded by our caller, we don't
1686    // want it set in the KnownZero and KnownOne result values. Reset the
1687    // mask and reapply it to the result values.
1688    InMask = Mask;
1689    InMask.trunc(InBits);
1690    KnownZero &= InMask;
1691    KnownOne  &= InMask;
1692
1693    KnownZero.zext(BitWidth);
1694    KnownOne.zext(BitWidth);
1695
1696    // If the sign bit is known zero or one, the top bits match.
1697    if (SignBitKnownZero)
1698      KnownZero |= NewBits;
1699    else if (SignBitKnownOne)
1700      KnownOne  |= NewBits;
1701    return;
1702  }
1703  case ISD::ANY_EXTEND: {
1704    MVT InVT = Op.getOperand(0).getValueType();
1705    unsigned InBits = InVT.getSizeInBits();
1706    APInt InMask = Mask;
1707    InMask.trunc(InBits);
1708    KnownZero.trunc(InBits);
1709    KnownOne.trunc(InBits);
1710    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1711    KnownZero.zext(BitWidth);
1712    KnownOne.zext(BitWidth);
1713    return;
1714  }
1715  case ISD::TRUNCATE: {
1716    MVT InVT = Op.getOperand(0).getValueType();
1717    unsigned InBits = InVT.getSizeInBits();
1718    APInt InMask = Mask;
1719    InMask.zext(InBits);
1720    KnownZero.zext(InBits);
1721    KnownOne.zext(InBits);
1722    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1723    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1724    KnownZero.trunc(BitWidth);
1725    KnownOne.trunc(BitWidth);
1726    break;
1727  }
1728  case ISD::AssertZext: {
1729    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1730    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1731    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1732                      KnownOne, Depth+1);
1733    KnownZero |= (~InMask) & Mask;
1734    return;
1735  }
1736  case ISD::FGETSIGN:
1737    // All bits are zero except the low bit.
1738    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1739    return;
1740
1741  case ISD::SUB: {
1742    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1743      // We know that the top bits of C-X are clear if X contains less bits
1744      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1745      // positive if we can prove that X is >= 0 and < 16.
1746      if (CLHS->getAPIntValue().isNonNegative()) {
1747        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1748        // NLZ can't be BitWidth with no sign bit
1749        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1750        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1751                          Depth+1);
1752
1753        // If all of the MaskV bits are known to be zero, then we know the
1754        // output top bits are zero, because we now know that the output is
1755        // from [0-C].
1756        if ((KnownZero2 & MaskV) == MaskV) {
1757          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1758          // Top bits known zero.
1759          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1760        }
1761      }
1762    }
1763  }
1764  // fall through
1765  case ISD::ADD: {
1766    // Output known-0 bits are known if clear or set in both the low clear bits
1767    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1768    // low 3 bits clear.
1769    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1770    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1771    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1772    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1773
1774    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1775    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1776    KnownZeroOut = std::min(KnownZeroOut,
1777                            KnownZero2.countTrailingOnes());
1778
1779    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1780    return;
1781  }
1782  case ISD::SREM:
1783    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1784      const APInt &RA = Rem->getAPIntValue();
1785      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1786        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1787        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1788        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1789
1790        // If the sign bit of the first operand is zero, the sign bit of
1791        // the result is zero. If the first operand has no one bits below
1792        // the second operand's single 1 bit, its sign will be zero.
1793        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1794          KnownZero2 |= ~LowBits;
1795
1796        KnownZero |= KnownZero2 & Mask;
1797
1798        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1799      }
1800    }
1801    return;
1802  case ISD::UREM: {
1803    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1804      const APInt &RA = Rem->getAPIntValue();
1805      if (RA.isPowerOf2()) {
1806        APInt LowBits = (RA - 1);
1807        APInt Mask2 = LowBits & Mask;
1808        KnownZero |= ~LowBits & Mask;
1809        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1810        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1811        break;
1812      }
1813    }
1814
1815    // Since the result is less than or equal to either operand, any leading
1816    // zero bits in either operand must also exist in the result.
1817    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1818    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1819                      Depth+1);
1820    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1821                      Depth+1);
1822
1823    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1824                                KnownZero2.countLeadingOnes());
1825    KnownOne.clear();
1826    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1827    return;
1828  }
1829  default:
1830    // Allow the target to implement this method for its nodes.
1831    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1832  case ISD::INTRINSIC_WO_CHAIN:
1833  case ISD::INTRINSIC_W_CHAIN:
1834  case ISD::INTRINSIC_VOID:
1835      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1836    }
1837    return;
1838  }
1839}
1840
1841/// ComputeNumSignBits - Return the number of times the sign bit of the
1842/// register is replicated into the other bits.  We know that at least 1 bit
1843/// is always equal to the sign bit (itself), but other cases can give us
1844/// information.  For example, immediately after an "SRA X, 2", we know that
1845/// the top 3 bits are all equal to each other, so we return 3.
1846unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1847  MVT VT = Op.getValueType();
1848  assert(VT.isInteger() && "Invalid VT!");
1849  unsigned VTBits = VT.getSizeInBits();
1850  unsigned Tmp, Tmp2;
1851  unsigned FirstAnswer = 1;
1852
1853  if (Depth == 6)
1854    return 1;  // Limit search depth.
1855
1856  switch (Op.getOpcode()) {
1857  default: break;
1858  case ISD::AssertSext:
1859    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1860    return VTBits-Tmp+1;
1861  case ISD::AssertZext:
1862    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1863    return VTBits-Tmp;
1864
1865  case ISD::Constant: {
1866    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1867    // If negative, return # leading ones.
1868    if (Val.isNegative())
1869      return Val.countLeadingOnes();
1870
1871    // Return # leading zeros.
1872    return Val.countLeadingZeros();
1873  }
1874
1875  case ISD::SIGN_EXTEND:
1876    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1877    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1878
1879  case ISD::SIGN_EXTEND_INREG:
1880    // Max of the input and what this extends.
1881    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1882    Tmp = VTBits-Tmp+1;
1883
1884    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1885    return std::max(Tmp, Tmp2);
1886
1887  case ISD::SRA:
1888    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1889    // SRA X, C   -> adds C sign bits.
1890    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1891      Tmp += C->getZExtValue();
1892      if (Tmp > VTBits) Tmp = VTBits;
1893    }
1894    return Tmp;
1895  case ISD::SHL:
1896    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1897      // shl destroys sign bits.
1898      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1899      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1900          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1901      return Tmp - C->getZExtValue();
1902    }
1903    break;
1904  case ISD::AND:
1905  case ISD::OR:
1906  case ISD::XOR:    // NOT is handled here.
1907    // Logical binary ops preserve the number of sign bits at the worst.
1908    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1909    if (Tmp != 1) {
1910      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1911      FirstAnswer = std::min(Tmp, Tmp2);
1912      // We computed what we know about the sign bits as our first
1913      // answer. Now proceed to the generic code that uses
1914      // ComputeMaskedBits, and pick whichever answer is better.
1915    }
1916    break;
1917
1918  case ISD::SELECT:
1919    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1920    if (Tmp == 1) return 1;  // Early out.
1921    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1922    return std::min(Tmp, Tmp2);
1923
1924  case ISD::SADDO:
1925  case ISD::UADDO:
1926  case ISD::SSUBO:
1927  case ISD::USUBO:
1928  case ISD::SMULO:
1929  case ISD::UMULO:
1930    if (Op.getResNo() != 1)
1931      break;
1932    // The boolean result conforms to getBooleanContents.  Fall through.
1933  case ISD::SETCC:
1934    // If setcc returns 0/-1, all bits are sign bits.
1935    if (TLI.getBooleanContents() ==
1936        TargetLowering::ZeroOrNegativeOneBooleanContent)
1937      return VTBits;
1938    break;
1939  case ISD::ROTL:
1940  case ISD::ROTR:
1941    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1942      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1943
1944      // Handle rotate right by N like a rotate left by 32-N.
1945      if (Op.getOpcode() == ISD::ROTR)
1946        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1947
1948      // If we aren't rotating out all of the known-in sign bits, return the
1949      // number that are left.  This handles rotl(sext(x), 1) for example.
1950      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1951      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1952    }
1953    break;
1954  case ISD::ADD:
1955    // Add can have at most one carry bit.  Thus we know that the output
1956    // is, at worst, one more bit than the inputs.
1957    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1958    if (Tmp == 1) return 1;  // Early out.
1959
1960    // Special case decrementing a value (ADD X, -1):
1961    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1962      if (CRHS->isAllOnesValue()) {
1963        APInt KnownZero, KnownOne;
1964        APInt Mask = APInt::getAllOnesValue(VTBits);
1965        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1966
1967        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1968        // sign bits set.
1969        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1970          return VTBits;
1971
1972        // If we are subtracting one from a positive number, there is no carry
1973        // out of the result.
1974        if (KnownZero.isNegative())
1975          return Tmp;
1976      }
1977
1978    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1979    if (Tmp2 == 1) return 1;
1980      return std::min(Tmp, Tmp2)-1;
1981    break;
1982
1983  case ISD::SUB:
1984    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1985    if (Tmp2 == 1) return 1;
1986
1987    // Handle NEG.
1988    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1989      if (CLHS->isNullValue()) {
1990        APInt KnownZero, KnownOne;
1991        APInt Mask = APInt::getAllOnesValue(VTBits);
1992        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1993        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1994        // sign bits set.
1995        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1996          return VTBits;
1997
1998        // If the input is known to be positive (the sign bit is known clear),
1999        // the output of the NEG has the same number of sign bits as the input.
2000        if (KnownZero.isNegative())
2001          return Tmp2;
2002
2003        // Otherwise, we treat this like a SUB.
2004      }
2005
2006    // Sub can have at most one carry bit.  Thus we know that the output
2007    // is, at worst, one more bit than the inputs.
2008    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2009    if (Tmp == 1) return 1;  // Early out.
2010      return std::min(Tmp, Tmp2)-1;
2011    break;
2012  case ISD::TRUNCATE:
2013    // FIXME: it's tricky to do anything useful for this, but it is an important
2014    // case for targets like X86.
2015    break;
2016  }
2017
2018  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2019  if (Op.getOpcode() == ISD::LOAD) {
2020    LoadSDNode *LD = cast<LoadSDNode>(Op);
2021    unsigned ExtType = LD->getExtensionType();
2022    switch (ExtType) {
2023    default: break;
2024    case ISD::SEXTLOAD:    // '17' bits known
2025      Tmp = LD->getMemoryVT().getSizeInBits();
2026      return VTBits-Tmp+1;
2027    case ISD::ZEXTLOAD:    // '16' bits known
2028      Tmp = LD->getMemoryVT().getSizeInBits();
2029      return VTBits-Tmp;
2030    }
2031  }
2032
2033  // Allow the target to implement this method for its nodes.
2034  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2035      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2036      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2037      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2038    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2039    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2040  }
2041
2042  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2043  // use this information.
2044  APInt KnownZero, KnownOne;
2045  APInt Mask = APInt::getAllOnesValue(VTBits);
2046  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2047
2048  if (KnownZero.isNegative()) {        // sign bit is 0
2049    Mask = KnownZero;
2050  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2051    Mask = KnownOne;
2052  } else {
2053    // Nothing known.
2054    return FirstAnswer;
2055  }
2056
2057  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2058  // the number of identical bits in the top of the input value.
2059  Mask = ~Mask;
2060  Mask <<= Mask.getBitWidth()-VTBits;
2061  // Return # leading zeros.  We use 'min' here in case Val was zero before
2062  // shifting.  We don't want to return '64' as for an i32 "0".
2063  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2064}
2065
2066
2067bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2068  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2069  if (!GA) return false;
2070  if (GA->getOffset() != 0) return false;
2071  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2072  if (!GV) return false;
2073  MachineModuleInfo *MMI = getMachineModuleInfo();
2074  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2075}
2076
2077
2078/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2079/// element of the result of the vector shuffle.
2080SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2081  MVT VT = N->getValueType(0);
2082  SDValue PermMask = N->getOperand(2);
2083  SDValue Idx = PermMask.getOperand(i);
2084  if (Idx.getOpcode() == ISD::UNDEF)
2085    return getNode(ISD::UNDEF, VT.getVectorElementType());
2086  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2087  unsigned NumElems = PermMask.getNumOperands();
2088  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2089  Index %= NumElems;
2090
2091  if (V.getOpcode() == ISD::BIT_CONVERT) {
2092    V = V.getOperand(0);
2093    MVT VVT = V.getValueType();
2094    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2095      return SDValue();
2096  }
2097  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2098    return (Index == 0) ? V.getOperand(0)
2099                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2100  if (V.getOpcode() == ISD::BUILD_VECTOR)
2101    return V.getOperand(Index);
2102  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2103    return getShuffleScalarElt(V.getNode(), Index);
2104  return SDValue();
2105}
2106
2107
2108/// getNode - Gets or creates the specified node.
2109///
2110SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2111  FoldingSetNodeID ID;
2112  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2113  void *IP = 0;
2114  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2115    return SDValue(E, 0);
2116  SDNode *N = NodeAllocator.Allocate<SDNode>();
2117  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2118  CSEMap.InsertNode(N, IP);
2119
2120  AllNodes.push_back(N);
2121#ifndef NDEBUG
2122  VerifyNode(N);
2123#endif
2124  return SDValue(N, 0);
2125}
2126
2127SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2128  // Constant fold unary operations with an integer constant operand.
2129  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2130    const APInt &Val = C->getAPIntValue();
2131    unsigned BitWidth = VT.getSizeInBits();
2132    switch (Opcode) {
2133    default: break;
2134    case ISD::SIGN_EXTEND:
2135      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2136    case ISD::ANY_EXTEND:
2137    case ISD::ZERO_EXTEND:
2138    case ISD::TRUNCATE:
2139      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2140    case ISD::UINT_TO_FP:
2141    case ISD::SINT_TO_FP: {
2142      const uint64_t zero[] = {0, 0};
2143      // No compile time operations on this type.
2144      if (VT==MVT::ppcf128)
2145        break;
2146      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2147      (void)apf.convertFromAPInt(Val,
2148                                 Opcode==ISD::SINT_TO_FP,
2149                                 APFloat::rmNearestTiesToEven);
2150      return getConstantFP(apf, VT);
2151    }
2152    case ISD::BIT_CONVERT:
2153      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2154        return getConstantFP(Val.bitsToFloat(), VT);
2155      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2156        return getConstantFP(Val.bitsToDouble(), VT);
2157      break;
2158    case ISD::BSWAP:
2159      return getConstant(Val.byteSwap(), VT);
2160    case ISD::CTPOP:
2161      return getConstant(Val.countPopulation(), VT);
2162    case ISD::CTLZ:
2163      return getConstant(Val.countLeadingZeros(), VT);
2164    case ISD::CTTZ:
2165      return getConstant(Val.countTrailingZeros(), VT);
2166    }
2167  }
2168
2169  // Constant fold unary operations with a floating point constant operand.
2170  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2171    APFloat V = C->getValueAPF();    // make copy
2172    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2173      switch (Opcode) {
2174      case ISD::FNEG:
2175        V.changeSign();
2176        return getConstantFP(V, VT);
2177      case ISD::FABS:
2178        V.clearSign();
2179        return getConstantFP(V, VT);
2180      case ISD::FP_ROUND:
2181      case ISD::FP_EXTEND: {
2182        bool ignored;
2183        // This can return overflow, underflow, or inexact; we don't care.
2184        // FIXME need to be more flexible about rounding mode.
2185        (void)V.convert(*MVTToAPFloatSemantics(VT),
2186                        APFloat::rmNearestTiesToEven, &ignored);
2187        return getConstantFP(V, VT);
2188      }
2189      case ISD::FP_TO_SINT:
2190      case ISD::FP_TO_UINT: {
2191        integerPart x;
2192        bool ignored;
2193        assert(integerPartWidth >= 64);
2194        // FIXME need to be more flexible about rounding mode.
2195        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2196                              Opcode==ISD::FP_TO_SINT,
2197                              APFloat::rmTowardZero, &ignored);
2198        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2199          break;
2200        return getConstant(x, VT);
2201      }
2202      case ISD::BIT_CONVERT:
2203        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2204          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2205        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2206          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2207        break;
2208      }
2209    }
2210  }
2211
2212  unsigned OpOpcode = Operand.getNode()->getOpcode();
2213  switch (Opcode) {
2214  case ISD::TokenFactor:
2215  case ISD::MERGE_VALUES:
2216  case ISD::CONCAT_VECTORS:
2217    return Operand;         // Factor, merge or concat of one node?  No need.
2218  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2219  case ISD::FP_EXTEND:
2220    assert(VT.isFloatingPoint() &&
2221           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2222    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2223    if (Operand.getOpcode() == ISD::UNDEF)
2224      return getNode(ISD::UNDEF, VT);
2225    break;
2226  case ISD::SIGN_EXTEND:
2227    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2228           "Invalid SIGN_EXTEND!");
2229    if (Operand.getValueType() == VT) return Operand;   // noop extension
2230    assert(Operand.getValueType().bitsLT(VT)
2231           && "Invalid sext node, dst < src!");
2232    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2233      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2234    break;
2235  case ISD::ZERO_EXTEND:
2236    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2237           "Invalid ZERO_EXTEND!");
2238    if (Operand.getValueType() == VT) return Operand;   // noop extension
2239    assert(Operand.getValueType().bitsLT(VT)
2240           && "Invalid zext node, dst < src!");
2241    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2242      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2243    break;
2244  case ISD::ANY_EXTEND:
2245    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2246           "Invalid ANY_EXTEND!");
2247    if (Operand.getValueType() == VT) return Operand;   // noop extension
2248    assert(Operand.getValueType().bitsLT(VT)
2249           && "Invalid anyext node, dst < src!");
2250    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2251      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2252      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2253    break;
2254  case ISD::TRUNCATE:
2255    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2256           "Invalid TRUNCATE!");
2257    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2258    assert(Operand.getValueType().bitsGT(VT)
2259           && "Invalid truncate node, src < dst!");
2260    if (OpOpcode == ISD::TRUNCATE)
2261      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2262    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2263             OpOpcode == ISD::ANY_EXTEND) {
2264      // If the source is smaller than the dest, we still need an extend.
2265      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2266        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2267      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2268        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2269      else
2270        return Operand.getNode()->getOperand(0);
2271    }
2272    break;
2273  case ISD::BIT_CONVERT:
2274    // Basic sanity checking.
2275    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2276           && "Cannot BIT_CONVERT between types of different sizes!");
2277    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2278    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2279      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2280    if (OpOpcode == ISD::UNDEF)
2281      return getNode(ISD::UNDEF, VT);
2282    break;
2283  case ISD::SCALAR_TO_VECTOR:
2284    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2285           VT.getVectorElementType() == Operand.getValueType() &&
2286           "Illegal SCALAR_TO_VECTOR node!");
2287    if (OpOpcode == ISD::UNDEF)
2288      return getNode(ISD::UNDEF, VT);
2289    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2290    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2291        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2292        Operand.getConstantOperandVal(1) == 0 &&
2293        Operand.getOperand(0).getValueType() == VT)
2294      return Operand.getOperand(0);
2295    break;
2296  case ISD::FNEG:
2297    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2298      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2299                     Operand.getNode()->getOperand(0));
2300    if (OpOpcode == ISD::FNEG)  // --X -> X
2301      return Operand.getNode()->getOperand(0);
2302    break;
2303  case ISD::FABS:
2304    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2305      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2306    break;
2307  }
2308
2309  SDNode *N;
2310  SDVTList VTs = getVTList(VT);
2311  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2312    FoldingSetNodeID ID;
2313    SDValue Ops[1] = { Operand };
2314    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2315    void *IP = 0;
2316    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2317      return SDValue(E, 0);
2318    N = NodeAllocator.Allocate<UnarySDNode>();
2319    new (N) UnarySDNode(Opcode, VTs, Operand);
2320    CSEMap.InsertNode(N, IP);
2321  } else {
2322    N = NodeAllocator.Allocate<UnarySDNode>();
2323    new (N) UnarySDNode(Opcode, VTs, Operand);
2324  }
2325
2326  AllNodes.push_back(N);
2327#ifndef NDEBUG
2328  VerifyNode(N);
2329#endif
2330  return SDValue(N, 0);
2331}
2332
2333SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2334                                             MVT VT,
2335                                             ConstantSDNode *Cst1,
2336                                             ConstantSDNode *Cst2) {
2337  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2338
2339  switch (Opcode) {
2340  case ISD::ADD:  return getConstant(C1 + C2, VT);
2341  case ISD::SUB:  return getConstant(C1 - C2, VT);
2342  case ISD::MUL:  return getConstant(C1 * C2, VT);
2343  case ISD::UDIV:
2344    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2345    break;
2346  case ISD::UREM:
2347    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2348    break;
2349  case ISD::SDIV:
2350    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2351    break;
2352  case ISD::SREM:
2353    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2354    break;
2355  case ISD::AND:  return getConstant(C1 & C2, VT);
2356  case ISD::OR:   return getConstant(C1 | C2, VT);
2357  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2358  case ISD::SHL:  return getConstant(C1 << C2, VT);
2359  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2360  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2361  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2362  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2363  default: break;
2364  }
2365
2366  return SDValue();
2367}
2368
2369SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2370                              SDValue N1, SDValue N2) {
2371  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2372  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2373  switch (Opcode) {
2374  default: break;
2375  case ISD::TokenFactor:
2376    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2377           N2.getValueType() == MVT::Other && "Invalid token factor!");
2378    // Fold trivial token factors.
2379    if (N1.getOpcode() == ISD::EntryToken) return N2;
2380    if (N2.getOpcode() == ISD::EntryToken) return N1;
2381    if (N1 == N2) return N1;
2382    break;
2383  case ISD::CONCAT_VECTORS:
2384    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2385    // one big BUILD_VECTOR.
2386    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2387        N2.getOpcode() == ISD::BUILD_VECTOR) {
2388      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2389      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2390      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2391    }
2392    break;
2393  case ISD::AND:
2394    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2395           N1.getValueType() == VT && "Binary operator types must match!");
2396    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2397    // worth handling here.
2398    if (N2C && N2C->isNullValue())
2399      return N2;
2400    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2401      return N1;
2402    break;
2403  case ISD::OR:
2404  case ISD::XOR:
2405  case ISD::ADD:
2406  case ISD::SUB:
2407    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2408           N1.getValueType() == VT && "Binary operator types must match!");
2409    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2410    // it's worth handling here.
2411    if (N2C && N2C->isNullValue())
2412      return N1;
2413    break;
2414  case ISD::UDIV:
2415  case ISD::UREM:
2416  case ISD::MULHU:
2417  case ISD::MULHS:
2418    assert(VT.isInteger() && "This operator does not apply to FP types!");
2419    // fall through
2420  case ISD::MUL:
2421  case ISD::SDIV:
2422  case ISD::SREM:
2423  case ISD::FADD:
2424  case ISD::FSUB:
2425  case ISD::FMUL:
2426  case ISD::FDIV:
2427  case ISD::FREM:
2428    assert(N1.getValueType() == N2.getValueType() &&
2429           N1.getValueType() == VT && "Binary operator types must match!");
2430    break;
2431  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2432    assert(N1.getValueType() == VT &&
2433           N1.getValueType().isFloatingPoint() &&
2434           N2.getValueType().isFloatingPoint() &&
2435           "Invalid FCOPYSIGN!");
2436    break;
2437  case ISD::SHL:
2438  case ISD::SRA:
2439  case ISD::SRL:
2440  case ISD::ROTL:
2441  case ISD::ROTR:
2442    assert(VT == N1.getValueType() &&
2443           "Shift operators return type must be the same as their first arg");
2444    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2445           "Shifts only work on integers");
2446    assert((N2.getValueType() == TLI.getShiftAmountTy() ||
2447            (N2.getValueType().isVector() && N2.getValueType().isInteger())) &&
2448           "Wrong type for shift amount");
2449
2450    // Always fold shifts of i1 values so the code generator doesn't need to
2451    // handle them.  Since we know the size of the shift has to be less than the
2452    // size of the value, the shift/rotate count is guaranteed to be zero.
2453    if (VT == MVT::i1)
2454      return N1;
2455    break;
2456  case ISD::FP_ROUND_INREG: {
2457    MVT EVT = cast<VTSDNode>(N2)->getVT();
2458    assert(VT == N1.getValueType() && "Not an inreg round!");
2459    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2460           "Cannot FP_ROUND_INREG integer types");
2461    assert(EVT.bitsLE(VT) && "Not rounding down!");
2462    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2463    break;
2464  }
2465  case ISD::FP_ROUND:
2466    assert(VT.isFloatingPoint() &&
2467           N1.getValueType().isFloatingPoint() &&
2468           VT.bitsLE(N1.getValueType()) &&
2469           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2470    if (N1.getValueType() == VT) return N1;  // noop conversion.
2471    break;
2472  case ISD::AssertSext:
2473  case ISD::AssertZext: {
2474    MVT EVT = cast<VTSDNode>(N2)->getVT();
2475    assert(VT == N1.getValueType() && "Not an inreg extend!");
2476    assert(VT.isInteger() && EVT.isInteger() &&
2477           "Cannot *_EXTEND_INREG FP types");
2478    assert(EVT.bitsLE(VT) && "Not extending!");
2479    if (VT == EVT) return N1; // noop assertion.
2480    break;
2481  }
2482  case ISD::SIGN_EXTEND_INREG: {
2483    MVT EVT = cast<VTSDNode>(N2)->getVT();
2484    assert(VT == N1.getValueType() && "Not an inreg extend!");
2485    assert(VT.isInteger() && EVT.isInteger() &&
2486           "Cannot *_EXTEND_INREG FP types");
2487    assert(EVT.bitsLE(VT) && "Not extending!");
2488    if (EVT == VT) return N1;  // Not actually extending
2489
2490    if (N1C) {
2491      APInt Val = N1C->getAPIntValue();
2492      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2493      Val <<= Val.getBitWidth()-FromBits;
2494      Val = Val.ashr(Val.getBitWidth()-FromBits);
2495      return getConstant(Val, VT);
2496    }
2497    break;
2498  }
2499  case ISD::EXTRACT_VECTOR_ELT:
2500    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2501    if (N1.getOpcode() == ISD::UNDEF)
2502      return getNode(ISD::UNDEF, VT);
2503
2504    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2505    // expanding copies of large vectors from registers.
2506    if (N2C &&
2507        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2508        N1.getNumOperands() > 0) {
2509      unsigned Factor =
2510        N1.getOperand(0).getValueType().getVectorNumElements();
2511      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2512                     N1.getOperand(N2C->getZExtValue() / Factor),
2513                     getConstant(N2C->getZExtValue() % Factor,
2514                                 N2.getValueType()));
2515    }
2516
2517    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2518    // expanding large vector constants.
2519    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2520      return N1.getOperand(N2C->getZExtValue());
2521
2522    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2523    // operations are lowered to scalars.
2524    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2525      if (N1.getOperand(2) == N2)
2526        return N1.getOperand(1);
2527      else
2528        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2529    }
2530    break;
2531  case ISD::EXTRACT_ELEMENT:
2532    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2533    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2534           (N1.getValueType().isInteger() == VT.isInteger()) &&
2535           "Wrong types for EXTRACT_ELEMENT!");
2536
2537    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2538    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2539    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2540    if (N1.getOpcode() == ISD::BUILD_PAIR)
2541      return N1.getOperand(N2C->getZExtValue());
2542
2543    // EXTRACT_ELEMENT of a constant int is also very common.
2544    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2545      unsigned ElementSize = VT.getSizeInBits();
2546      unsigned Shift = ElementSize * N2C->getZExtValue();
2547      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2548      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2549    }
2550    break;
2551  case ISD::EXTRACT_SUBVECTOR:
2552    if (N1.getValueType() == VT) // Trivial extraction.
2553      return N1;
2554    break;
2555  }
2556
2557  if (N1C) {
2558    if (N2C) {
2559      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2560      if (SV.getNode()) return SV;
2561    } else {      // Cannonicalize constant to RHS if commutative
2562      if (isCommutativeBinOp(Opcode)) {
2563        std::swap(N1C, N2C);
2564        std::swap(N1, N2);
2565      }
2566    }
2567  }
2568
2569  // Constant fold FP operations.
2570  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2571  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2572  if (N1CFP) {
2573    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2574      // Cannonicalize constant to RHS if commutative
2575      std::swap(N1CFP, N2CFP);
2576      std::swap(N1, N2);
2577    } else if (N2CFP && VT != MVT::ppcf128) {
2578      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2579      APFloat::opStatus s;
2580      switch (Opcode) {
2581      case ISD::FADD:
2582        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2583        if (s != APFloat::opInvalidOp)
2584          return getConstantFP(V1, VT);
2585        break;
2586      case ISD::FSUB:
2587        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2588        if (s!=APFloat::opInvalidOp)
2589          return getConstantFP(V1, VT);
2590        break;
2591      case ISD::FMUL:
2592        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2593        if (s!=APFloat::opInvalidOp)
2594          return getConstantFP(V1, VT);
2595        break;
2596      case ISD::FDIV:
2597        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2598        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2599          return getConstantFP(V1, VT);
2600        break;
2601      case ISD::FREM :
2602        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2603        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2604          return getConstantFP(V1, VT);
2605        break;
2606      case ISD::FCOPYSIGN:
2607        V1.copySign(V2);
2608        return getConstantFP(V1, VT);
2609      default: break;
2610      }
2611    }
2612  }
2613
2614  // Canonicalize an UNDEF to the RHS, even over a constant.
2615  if (N1.getOpcode() == ISD::UNDEF) {
2616    if (isCommutativeBinOp(Opcode)) {
2617      std::swap(N1, N2);
2618    } else {
2619      switch (Opcode) {
2620      case ISD::FP_ROUND_INREG:
2621      case ISD::SIGN_EXTEND_INREG:
2622      case ISD::SUB:
2623      case ISD::FSUB:
2624      case ISD::FDIV:
2625      case ISD::FREM:
2626      case ISD::SRA:
2627        return N1;     // fold op(undef, arg2) -> undef
2628      case ISD::UDIV:
2629      case ISD::SDIV:
2630      case ISD::UREM:
2631      case ISD::SREM:
2632      case ISD::SRL:
2633      case ISD::SHL:
2634        if (!VT.isVector())
2635          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2636        // For vectors, we can't easily build an all zero vector, just return
2637        // the LHS.
2638        return N2;
2639      }
2640    }
2641  }
2642
2643  // Fold a bunch of operators when the RHS is undef.
2644  if (N2.getOpcode() == ISD::UNDEF) {
2645    switch (Opcode) {
2646    case ISD::XOR:
2647      if (N1.getOpcode() == ISD::UNDEF)
2648        // Handle undef ^ undef -> 0 special case. This is a common
2649        // idiom (misuse).
2650        return getConstant(0, VT);
2651      // fallthrough
2652    case ISD::ADD:
2653    case ISD::ADDC:
2654    case ISD::ADDE:
2655    case ISD::SUB:
2656    case ISD::FADD:
2657    case ISD::FSUB:
2658    case ISD::FMUL:
2659    case ISD::FDIV:
2660    case ISD::FREM:
2661    case ISD::UDIV:
2662    case ISD::SDIV:
2663    case ISD::UREM:
2664    case ISD::SREM:
2665      return N2;       // fold op(arg1, undef) -> undef
2666    case ISD::MUL:
2667    case ISD::AND:
2668    case ISD::SRL:
2669    case ISD::SHL:
2670      if (!VT.isVector())
2671        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2672      // For vectors, we can't easily build an all zero vector, just return
2673      // the LHS.
2674      return N1;
2675    case ISD::OR:
2676      if (!VT.isVector())
2677        return getConstant(VT.getIntegerVTBitMask(), VT);
2678      // For vectors, we can't easily build an all one vector, just return
2679      // the LHS.
2680      return N1;
2681    case ISD::SRA:
2682      return N1;
2683    }
2684  }
2685
2686  // Memoize this node if possible.
2687  SDNode *N;
2688  SDVTList VTs = getVTList(VT);
2689  if (VT != MVT::Flag) {
2690    SDValue Ops[] = { N1, N2 };
2691    FoldingSetNodeID ID;
2692    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2693    void *IP = 0;
2694    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2695      return SDValue(E, 0);
2696    N = NodeAllocator.Allocate<BinarySDNode>();
2697    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2698    CSEMap.InsertNode(N, IP);
2699  } else {
2700    N = NodeAllocator.Allocate<BinarySDNode>();
2701    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2702  }
2703
2704  AllNodes.push_back(N);
2705#ifndef NDEBUG
2706  VerifyNode(N);
2707#endif
2708  return SDValue(N, 0);
2709}
2710
2711SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2712                              SDValue N1, SDValue N2, SDValue N3) {
2713  // Perform various simplifications.
2714  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2715  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2716  switch (Opcode) {
2717  case ISD::CONCAT_VECTORS:
2718    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2719    // one big BUILD_VECTOR.
2720    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2721        N2.getOpcode() == ISD::BUILD_VECTOR &&
2722        N3.getOpcode() == ISD::BUILD_VECTOR) {
2723      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2724      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2725      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2726      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2727    }
2728    break;
2729  case ISD::SETCC: {
2730    // Use FoldSetCC to simplify SETCC's.
2731    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2732    if (Simp.getNode()) return Simp;
2733    break;
2734  }
2735  case ISD::SELECT:
2736    if (N1C) {
2737     if (N1C->getZExtValue())
2738        return N2;             // select true, X, Y -> X
2739      else
2740        return N3;             // select false, X, Y -> Y
2741    }
2742
2743    if (N2 == N3) return N2;   // select C, X, X -> X
2744    break;
2745  case ISD::BRCOND:
2746    if (N2C) {
2747      if (N2C->getZExtValue()) // Unconditional branch
2748        return getNode(ISD::BR, MVT::Other, N1, N3);
2749      else
2750        return N1;         // Never-taken branch
2751    }
2752    break;
2753  case ISD::VECTOR_SHUFFLE:
2754    assert(N1.getValueType() == N2.getValueType() &&
2755           N1.getValueType().isVector() &&
2756           VT.isVector() && N3.getValueType().isVector() &&
2757           N3.getOpcode() == ISD::BUILD_VECTOR &&
2758           VT.getVectorNumElements() == N3.getNumOperands() &&
2759           "Illegal VECTOR_SHUFFLE node!");
2760    break;
2761  case ISD::BIT_CONVERT:
2762    // Fold bit_convert nodes from a type to themselves.
2763    if (N1.getValueType() == VT)
2764      return N1;
2765    break;
2766  }
2767
2768  // Memoize node if it doesn't produce a flag.
2769  SDNode *N;
2770  SDVTList VTs = getVTList(VT);
2771  if (VT != MVT::Flag) {
2772    SDValue Ops[] = { N1, N2, N3 };
2773    FoldingSetNodeID ID;
2774    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2775    void *IP = 0;
2776    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2777      return SDValue(E, 0);
2778    N = NodeAllocator.Allocate<TernarySDNode>();
2779    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2780    CSEMap.InsertNode(N, IP);
2781  } else {
2782    N = NodeAllocator.Allocate<TernarySDNode>();
2783    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2784  }
2785  AllNodes.push_back(N);
2786#ifndef NDEBUG
2787  VerifyNode(N);
2788#endif
2789  return SDValue(N, 0);
2790}
2791
2792SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2793                              SDValue N1, SDValue N2, SDValue N3,
2794                              SDValue N4) {
2795  SDValue Ops[] = { N1, N2, N3, N4 };
2796  return getNode(Opcode, VT, Ops, 4);
2797}
2798
2799SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2800                              SDValue N1, SDValue N2, SDValue N3,
2801                              SDValue N4, SDValue N5) {
2802  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2803  return getNode(Opcode, VT, Ops, 5);
2804}
2805
2806/// getMemsetValue - Vectorized representation of the memset value
2807/// operand.
2808static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2809  unsigned NumBits = VT.isVector() ?
2810    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2811  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2812    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2813    unsigned Shift = 8;
2814    for (unsigned i = NumBits; i > 8; i >>= 1) {
2815      Val = (Val << Shift) | Val;
2816      Shift <<= 1;
2817    }
2818    if (VT.isInteger())
2819      return DAG.getConstant(Val, VT);
2820    return DAG.getConstantFP(APFloat(Val), VT);
2821  }
2822
2823  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2824  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2825  unsigned Shift = 8;
2826  for (unsigned i = NumBits; i > 8; i >>= 1) {
2827    Value = DAG.getNode(ISD::OR, VT,
2828                        DAG.getNode(ISD::SHL, VT, Value,
2829                                    DAG.getConstant(Shift,
2830                                                    TLI.getShiftAmountTy())),
2831                        Value);
2832    Shift <<= 1;
2833  }
2834
2835  return Value;
2836}
2837
2838/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2839/// used when a memcpy is turned into a memset when the source is a constant
2840/// string ptr.
2841static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2842                                    const TargetLowering &TLI,
2843                                    std::string &Str, unsigned Offset) {
2844  // Handle vector with all elements zero.
2845  if (Str.empty()) {
2846    if (VT.isInteger())
2847      return DAG.getConstant(0, VT);
2848    unsigned NumElts = VT.getVectorNumElements();
2849    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2850    return DAG.getNode(ISD::BIT_CONVERT, VT,
2851                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2852  }
2853
2854  assert(!VT.isVector() && "Can't handle vector type here!");
2855  unsigned NumBits = VT.getSizeInBits();
2856  unsigned MSB = NumBits / 8;
2857  uint64_t Val = 0;
2858  if (TLI.isLittleEndian())
2859    Offset = Offset + MSB - 1;
2860  for (unsigned i = 0; i != MSB; ++i) {
2861    Val = (Val << 8) | (unsigned char)Str[Offset];
2862    Offset += TLI.isLittleEndian() ? -1 : 1;
2863  }
2864  return DAG.getConstant(Val, VT);
2865}
2866
2867/// getMemBasePlusOffset - Returns base and offset node for the
2868///
2869static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2870                                      SelectionDAG &DAG) {
2871  MVT VT = Base.getValueType();
2872  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2873}
2874
2875/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2876///
2877static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2878  unsigned SrcDelta = 0;
2879  GlobalAddressSDNode *G = NULL;
2880  if (Src.getOpcode() == ISD::GlobalAddress)
2881    G = cast<GlobalAddressSDNode>(Src);
2882  else if (Src.getOpcode() == ISD::ADD &&
2883           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2884           Src.getOperand(1).getOpcode() == ISD::Constant) {
2885    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2886    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2887  }
2888  if (!G)
2889    return false;
2890
2891  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2892  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2893    return true;
2894
2895  return false;
2896}
2897
2898/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2899/// to replace the memset / memcpy is below the threshold. It also returns the
2900/// types of the sequence of memory ops to perform memset / memcpy.
2901static
2902bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2903                              SDValue Dst, SDValue Src,
2904                              unsigned Limit, uint64_t Size, unsigned &Align,
2905                              std::string &Str, bool &isSrcStr,
2906                              SelectionDAG &DAG,
2907                              const TargetLowering &TLI) {
2908  isSrcStr = isMemSrcFromString(Src, Str);
2909  bool isSrcConst = isa<ConstantSDNode>(Src);
2910  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2911  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2912  if (VT != MVT::iAny) {
2913    unsigned NewAlign = (unsigned)
2914      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2915    // If source is a string constant, this will require an unaligned load.
2916    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2917      if (Dst.getOpcode() != ISD::FrameIndex) {
2918        // Can't change destination alignment. It requires a unaligned store.
2919        if (AllowUnalign)
2920          VT = MVT::iAny;
2921      } else {
2922        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2923        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2924        if (MFI->isFixedObjectIndex(FI)) {
2925          // Can't change destination alignment. It requires a unaligned store.
2926          if (AllowUnalign)
2927            VT = MVT::iAny;
2928        } else {
2929          // Give the stack frame object a larger alignment if needed.
2930          if (MFI->getObjectAlignment(FI) < NewAlign)
2931            MFI->setObjectAlignment(FI, NewAlign);
2932          Align = NewAlign;
2933        }
2934      }
2935    }
2936  }
2937
2938  if (VT == MVT::iAny) {
2939    if (AllowUnalign) {
2940      VT = MVT::i64;
2941    } else {
2942      switch (Align & 7) {
2943      case 0:  VT = MVT::i64; break;
2944      case 4:  VT = MVT::i32; break;
2945      case 2:  VT = MVT::i16; break;
2946      default: VT = MVT::i8;  break;
2947      }
2948    }
2949
2950    MVT LVT = MVT::i64;
2951    while (!TLI.isTypeLegal(LVT))
2952      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2953    assert(LVT.isInteger());
2954
2955    if (VT.bitsGT(LVT))
2956      VT = LVT;
2957  }
2958
2959  unsigned NumMemOps = 0;
2960  while (Size != 0) {
2961    unsigned VTSize = VT.getSizeInBits() / 8;
2962    while (VTSize > Size) {
2963      // For now, only use non-vector load / store's for the left-over pieces.
2964      if (VT.isVector()) {
2965        VT = MVT::i64;
2966        while (!TLI.isTypeLegal(VT))
2967          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2968        VTSize = VT.getSizeInBits() / 8;
2969      } else {
2970        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2971        VTSize >>= 1;
2972      }
2973    }
2974
2975    if (++NumMemOps > Limit)
2976      return false;
2977    MemOps.push_back(VT);
2978    Size -= VTSize;
2979  }
2980
2981  return true;
2982}
2983
2984static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2985                                         SDValue Chain, SDValue Dst,
2986                                         SDValue Src, uint64_t Size,
2987                                         unsigned Align, bool AlwaysInline,
2988                                         const Value *DstSV, uint64_t DstSVOff,
2989                                         const Value *SrcSV, uint64_t SrcSVOff){
2990  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2991
2992  // Expand memcpy to a series of load and store ops if the size operand falls
2993  // below a certain threshold.
2994  std::vector<MVT> MemOps;
2995  uint64_t Limit = -1ULL;
2996  if (!AlwaysInline)
2997    Limit = TLI.getMaxStoresPerMemcpy();
2998  unsigned DstAlign = Align;  // Destination alignment can change.
2999  std::string Str;
3000  bool CopyFromStr;
3001  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3002                                Str, CopyFromStr, DAG, TLI))
3003    return SDValue();
3004
3005
3006  bool isZeroStr = CopyFromStr && Str.empty();
3007  SmallVector<SDValue, 8> OutChains;
3008  unsigned NumMemOps = MemOps.size();
3009  uint64_t SrcOff = 0, DstOff = 0;
3010  for (unsigned i = 0; i < NumMemOps; i++) {
3011    MVT VT = MemOps[i];
3012    unsigned VTSize = VT.getSizeInBits() / 8;
3013    SDValue Value, Store;
3014
3015    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3016      // It's unlikely a store of a vector immediate can be done in a single
3017      // instruction. It would require a load from a constantpool first.
3018      // We also handle store a vector with all zero's.
3019      // FIXME: Handle other cases where store of vector immediate is done in
3020      // a single instruction.
3021      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
3022      Store = DAG.getStore(Chain, Value,
3023                           getMemBasePlusOffset(Dst, DstOff, DAG),
3024                           DstSV, DstSVOff + DstOff, false, DstAlign);
3025    } else {
3026      Value = DAG.getLoad(VT, Chain,
3027                          getMemBasePlusOffset(Src, SrcOff, DAG),
3028                          SrcSV, SrcSVOff + SrcOff, false, Align);
3029      Store = DAG.getStore(Chain, Value,
3030                           getMemBasePlusOffset(Dst, DstOff, DAG),
3031                           DstSV, DstSVOff + DstOff, false, DstAlign);
3032    }
3033    OutChains.push_back(Store);
3034    SrcOff += VTSize;
3035    DstOff += VTSize;
3036  }
3037
3038  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3039                     &OutChains[0], OutChains.size());
3040}
3041
3042static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
3043                                          SDValue Chain, SDValue Dst,
3044                                          SDValue Src, uint64_t Size,
3045                                          unsigned Align, bool AlwaysInline,
3046                                          const Value *DstSV, uint64_t DstSVOff,
3047                                          const Value *SrcSV, uint64_t SrcSVOff){
3048  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3049
3050  // Expand memmove to a series of load and store ops if the size operand falls
3051  // below a certain threshold.
3052  std::vector<MVT> MemOps;
3053  uint64_t Limit = -1ULL;
3054  if (!AlwaysInline)
3055    Limit = TLI.getMaxStoresPerMemmove();
3056  unsigned DstAlign = Align;  // Destination alignment can change.
3057  std::string Str;
3058  bool CopyFromStr;
3059  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3060                                Str, CopyFromStr, DAG, TLI))
3061    return SDValue();
3062
3063  uint64_t SrcOff = 0, DstOff = 0;
3064
3065  SmallVector<SDValue, 8> LoadValues;
3066  SmallVector<SDValue, 8> LoadChains;
3067  SmallVector<SDValue, 8> OutChains;
3068  unsigned NumMemOps = MemOps.size();
3069  for (unsigned i = 0; i < NumMemOps; i++) {
3070    MVT VT = MemOps[i];
3071    unsigned VTSize = VT.getSizeInBits() / 8;
3072    SDValue Value, Store;
3073
3074    Value = DAG.getLoad(VT, Chain,
3075                        getMemBasePlusOffset(Src, SrcOff, DAG),
3076                        SrcSV, SrcSVOff + SrcOff, false, Align);
3077    LoadValues.push_back(Value);
3078    LoadChains.push_back(Value.getValue(1));
3079    SrcOff += VTSize;
3080  }
3081  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3082                      &LoadChains[0], LoadChains.size());
3083  OutChains.clear();
3084  for (unsigned i = 0; i < NumMemOps; i++) {
3085    MVT VT = MemOps[i];
3086    unsigned VTSize = VT.getSizeInBits() / 8;
3087    SDValue Value, Store;
3088
3089    Store = DAG.getStore(Chain, LoadValues[i],
3090                         getMemBasePlusOffset(Dst, DstOff, DAG),
3091                         DstSV, DstSVOff + DstOff, false, DstAlign);
3092    OutChains.push_back(Store);
3093    DstOff += VTSize;
3094  }
3095
3096  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3097                     &OutChains[0], OutChains.size());
3098}
3099
3100static SDValue getMemsetStores(SelectionDAG &DAG,
3101                                 SDValue Chain, SDValue Dst,
3102                                 SDValue Src, uint64_t Size,
3103                                 unsigned Align,
3104                                 const Value *DstSV, uint64_t DstSVOff) {
3105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3106
3107  // Expand memset to a series of load/store ops if the size operand
3108  // falls below a certain threshold.
3109  std::vector<MVT> MemOps;
3110  std::string Str;
3111  bool CopyFromStr;
3112  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3113                                Size, Align, Str, CopyFromStr, DAG, TLI))
3114    return SDValue();
3115
3116  SmallVector<SDValue, 8> OutChains;
3117  uint64_t DstOff = 0;
3118
3119  unsigned NumMemOps = MemOps.size();
3120  for (unsigned i = 0; i < NumMemOps; i++) {
3121    MVT VT = MemOps[i];
3122    unsigned VTSize = VT.getSizeInBits() / 8;
3123    SDValue Value = getMemsetValue(Src, VT, DAG);
3124    SDValue Store = DAG.getStore(Chain, Value,
3125                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3126                                 DstSV, DstSVOff + DstOff);
3127    OutChains.push_back(Store);
3128    DstOff += VTSize;
3129  }
3130
3131  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3132                     &OutChains[0], OutChains.size());
3133}
3134
3135SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3136                                SDValue Src, SDValue Size,
3137                                unsigned Align, bool AlwaysInline,
3138                                const Value *DstSV, uint64_t DstSVOff,
3139                                const Value *SrcSV, uint64_t SrcSVOff) {
3140
3141  // Check to see if we should lower the memcpy to loads and stores first.
3142  // For cases within the target-specified limits, this is the best choice.
3143  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3144  if (ConstantSize) {
3145    // Memcpy with size zero? Just return the original chain.
3146    if (ConstantSize->isNullValue())
3147      return Chain;
3148
3149    SDValue Result =
3150      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3151                              ConstantSize->getZExtValue(),
3152                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3153    if (Result.getNode())
3154      return Result;
3155  }
3156
3157  // Then check to see if we should lower the memcpy with target-specific
3158  // code. If the target chooses to do this, this is the next best.
3159  SDValue Result =
3160    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3161                                AlwaysInline,
3162                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3163  if (Result.getNode())
3164    return Result;
3165
3166  // If we really need inline code and the target declined to provide it,
3167  // use a (potentially long) sequence of loads and stores.
3168  if (AlwaysInline) {
3169    assert(ConstantSize && "AlwaysInline requires a constant size!");
3170    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3171                                   ConstantSize->getZExtValue(), Align, true,
3172                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3173  }
3174
3175  // Emit a library call.
3176  TargetLowering::ArgListTy Args;
3177  TargetLowering::ArgListEntry Entry;
3178  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3179  Entry.Node = Dst; Args.push_back(Entry);
3180  Entry.Node = Src; Args.push_back(Entry);
3181  Entry.Node = Size; Args.push_back(Entry);
3182  std::pair<SDValue,SDValue> CallResult =
3183    TLI.LowerCallTo(Chain, Type::VoidTy,
3184                    false, false, false, false, CallingConv::C, false,
3185                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3186                    Args, *this);
3187  return CallResult.second;
3188}
3189
3190SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3191                                 SDValue Src, SDValue Size,
3192                                 unsigned Align,
3193                                 const Value *DstSV, uint64_t DstSVOff,
3194                                 const Value *SrcSV, uint64_t SrcSVOff) {
3195
3196  // Check to see if we should lower the memmove to loads and stores first.
3197  // For cases within the target-specified limits, this is the best choice.
3198  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3199  if (ConstantSize) {
3200    // Memmove with size zero? Just return the original chain.
3201    if (ConstantSize->isNullValue())
3202      return Chain;
3203
3204    SDValue Result =
3205      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3206                               ConstantSize->getZExtValue(),
3207                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3208    if (Result.getNode())
3209      return Result;
3210  }
3211
3212  // Then check to see if we should lower the memmove with target-specific
3213  // code. If the target chooses to do this, this is the next best.
3214  SDValue Result =
3215    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3216                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3217  if (Result.getNode())
3218    return Result;
3219
3220  // Emit a library call.
3221  TargetLowering::ArgListTy Args;
3222  TargetLowering::ArgListEntry Entry;
3223  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3224  Entry.Node = Dst; Args.push_back(Entry);
3225  Entry.Node = Src; Args.push_back(Entry);
3226  Entry.Node = Size; Args.push_back(Entry);
3227  std::pair<SDValue,SDValue> CallResult =
3228    TLI.LowerCallTo(Chain, Type::VoidTy,
3229                    false, false, false, false, CallingConv::C, false,
3230                    getExternalSymbol("memmove", TLI.getPointerTy()),
3231                    Args, *this);
3232  return CallResult.second;
3233}
3234
3235SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3236                                SDValue Src, SDValue Size,
3237                                unsigned Align,
3238                                const Value *DstSV, uint64_t DstSVOff) {
3239
3240  // Check to see if we should lower the memset to stores first.
3241  // For cases within the target-specified limits, this is the best choice.
3242  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3243  if (ConstantSize) {
3244    // Memset with size zero? Just return the original chain.
3245    if (ConstantSize->isNullValue())
3246      return Chain;
3247
3248    SDValue Result =
3249      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3250                      Align, DstSV, DstSVOff);
3251    if (Result.getNode())
3252      return Result;
3253  }
3254
3255  // Then check to see if we should lower the memset with target-specific
3256  // code. If the target chooses to do this, this is the next best.
3257  SDValue Result =
3258    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3259                                DstSV, DstSVOff);
3260  if (Result.getNode())
3261    return Result;
3262
3263  // Emit a library call.
3264  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3265  TargetLowering::ArgListTy Args;
3266  TargetLowering::ArgListEntry Entry;
3267  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3268  Args.push_back(Entry);
3269  // Extend or truncate the argument to be an i32 value for the call.
3270  if (Src.getValueType().bitsGT(MVT::i32))
3271    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3272  else
3273    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3274  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3275  Args.push_back(Entry);
3276  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3277  Args.push_back(Entry);
3278  std::pair<SDValue,SDValue> CallResult =
3279    TLI.LowerCallTo(Chain, Type::VoidTy,
3280                    false, false, false, false, CallingConv::C, false,
3281                    getExternalSymbol("memset", TLI.getPointerTy()),
3282                    Args, *this);
3283  return CallResult.second;
3284}
3285
3286SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3287                                SDValue Ptr, SDValue Cmp,
3288                                SDValue Swp, const Value* PtrVal,
3289                                unsigned Alignment) {
3290  assert((Opcode == ISD::ATOMIC_CMP_SWAP_8  ||
3291          Opcode == ISD::ATOMIC_CMP_SWAP_16 ||
3292          Opcode == ISD::ATOMIC_CMP_SWAP_32 ||
3293          Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op");
3294  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3295
3296  MVT VT = Cmp.getValueType();
3297
3298  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3299    Alignment = getMVTAlignment(VT);
3300
3301  SDVTList VTs = getVTList(VT, MVT::Other);
3302  FoldingSetNodeID ID;
3303  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3304  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3305  void* IP = 0;
3306  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3307    return SDValue(E, 0);
3308  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3309  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3310  CSEMap.InsertNode(N, IP);
3311  AllNodes.push_back(N);
3312  return SDValue(N, 0);
3313}
3314
3315SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3316                                SDValue Ptr, SDValue Val,
3317                                const Value* PtrVal,
3318                                unsigned Alignment) {
3319  assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 ||
3320          Opcode == ISD::ATOMIC_LOAD_SUB_8 ||
3321          Opcode == ISD::ATOMIC_LOAD_AND_8 ||
3322          Opcode == ISD::ATOMIC_LOAD_OR_8 ||
3323          Opcode == ISD::ATOMIC_LOAD_XOR_8 ||
3324          Opcode == ISD::ATOMIC_LOAD_NAND_8 ||
3325          Opcode == ISD::ATOMIC_LOAD_MIN_8 ||
3326          Opcode == ISD::ATOMIC_LOAD_MAX_8 ||
3327          Opcode == ISD::ATOMIC_LOAD_UMIN_8 ||
3328          Opcode == ISD::ATOMIC_LOAD_UMAX_8 ||
3329          Opcode == ISD::ATOMIC_SWAP_8 ||
3330          Opcode == ISD::ATOMIC_LOAD_ADD_16 ||
3331          Opcode == ISD::ATOMIC_LOAD_SUB_16 ||
3332          Opcode == ISD::ATOMIC_LOAD_AND_16 ||
3333          Opcode == ISD::ATOMIC_LOAD_OR_16 ||
3334          Opcode == ISD::ATOMIC_LOAD_XOR_16 ||
3335          Opcode == ISD::ATOMIC_LOAD_NAND_16 ||
3336          Opcode == ISD::ATOMIC_LOAD_MIN_16 ||
3337          Opcode == ISD::ATOMIC_LOAD_MAX_16 ||
3338          Opcode == ISD::ATOMIC_LOAD_UMIN_16 ||
3339          Opcode == ISD::ATOMIC_LOAD_UMAX_16 ||
3340          Opcode == ISD::ATOMIC_SWAP_16 ||
3341          Opcode == ISD::ATOMIC_LOAD_ADD_32 ||
3342          Opcode == ISD::ATOMIC_LOAD_SUB_32 ||
3343          Opcode == ISD::ATOMIC_LOAD_AND_32 ||
3344          Opcode == ISD::ATOMIC_LOAD_OR_32 ||
3345          Opcode == ISD::ATOMIC_LOAD_XOR_32 ||
3346          Opcode == ISD::ATOMIC_LOAD_NAND_32 ||
3347          Opcode == ISD::ATOMIC_LOAD_MIN_32 ||
3348          Opcode == ISD::ATOMIC_LOAD_MAX_32 ||
3349          Opcode == ISD::ATOMIC_LOAD_UMIN_32 ||
3350          Opcode == ISD::ATOMIC_LOAD_UMAX_32 ||
3351          Opcode == ISD::ATOMIC_SWAP_32 ||
3352          Opcode == ISD::ATOMIC_LOAD_ADD_64 ||
3353          Opcode == ISD::ATOMIC_LOAD_SUB_64 ||
3354          Opcode == ISD::ATOMIC_LOAD_AND_64 ||
3355          Opcode == ISD::ATOMIC_LOAD_OR_64 ||
3356          Opcode == ISD::ATOMIC_LOAD_XOR_64 ||
3357          Opcode == ISD::ATOMIC_LOAD_NAND_64 ||
3358          Opcode == ISD::ATOMIC_LOAD_MIN_64 ||
3359          Opcode == ISD::ATOMIC_LOAD_MAX_64 ||
3360          Opcode == ISD::ATOMIC_LOAD_UMIN_64 ||
3361          Opcode == ISD::ATOMIC_LOAD_UMAX_64 ||
3362          Opcode == ISD::ATOMIC_SWAP_64)        && "Invalid Atomic Op");
3363
3364  MVT VT = Val.getValueType();
3365
3366  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3367    Alignment = getMVTAlignment(VT);
3368
3369  SDVTList VTs = getVTList(VT, MVT::Other);
3370  FoldingSetNodeID ID;
3371  SDValue Ops[] = {Chain, Ptr, Val};
3372  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3373  void* IP = 0;
3374  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3375    return SDValue(E, 0);
3376  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3377  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3378  CSEMap.InsertNode(N, IP);
3379  AllNodes.push_back(N);
3380  return SDValue(N, 0);
3381}
3382
3383/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3384/// Allowed to return something different (and simpler) if Simplify is true.
3385SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps) {
3386  if (NumOps == 1)
3387    return Ops[0];
3388
3389  SmallVector<MVT, 4> VTs;
3390  VTs.reserve(NumOps);
3391  for (unsigned i = 0; i < NumOps; ++i)
3392    VTs.push_back(Ops[i].getValueType());
3393  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3394}
3395
3396SDValue
3397SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3398                                  const MVT *VTs, unsigned NumVTs,
3399                                  const SDValue *Ops, unsigned NumOps,
3400                                  MVT MemVT, const Value *srcValue, int SVOff,
3401                                  unsigned Align, bool Vol,
3402                                  bool ReadMem, bool WriteMem) {
3403  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3404                             MemVT, srcValue, SVOff, Align, Vol,
3405                             ReadMem, WriteMem);
3406}
3407
3408SDValue
3409SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3410                                  const SDValue *Ops, unsigned NumOps,
3411                                  MVT MemVT, const Value *srcValue, int SVOff,
3412                                  unsigned Align, bool Vol,
3413                                  bool ReadMem, bool WriteMem) {
3414  // Memoize the node unless it returns a flag.
3415  MemIntrinsicSDNode *N;
3416  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3417    FoldingSetNodeID ID;
3418    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3419    void *IP = 0;
3420    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3421      return SDValue(E, 0);
3422
3423    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3424    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3425                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3426    CSEMap.InsertNode(N, IP);
3427  } else {
3428    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3429    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3430                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3431  }
3432  AllNodes.push_back(N);
3433  return SDValue(N, 0);
3434}
3435
3436SDValue
3437SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3438                      bool IsInreg, SDVTList VTs,
3439                      const SDValue *Operands, unsigned NumOperands) {
3440  // Do not include isTailCall in the folding set profile.
3441  FoldingSetNodeID ID;
3442  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3443  ID.AddInteger(CallingConv);
3444  ID.AddInteger(IsVarArgs);
3445  void *IP = 0;
3446  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3447    // Instead of including isTailCall in the folding set, we just
3448    // set the flag of the existing node.
3449    if (!IsTailCall)
3450      cast<CallSDNode>(E)->setNotTailCall();
3451    return SDValue(E, 0);
3452  }
3453  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3454  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3455                     VTs, Operands, NumOperands);
3456  CSEMap.InsertNode(N, IP);
3457  AllNodes.push_back(N);
3458  return SDValue(N, 0);
3459}
3460
3461SDValue
3462SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3463                      MVT VT, SDValue Chain,
3464                      SDValue Ptr, SDValue Offset,
3465                      const Value *SV, int SVOffset, MVT EVT,
3466                      bool isVolatile, unsigned Alignment) {
3467  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3468    Alignment = getMVTAlignment(VT);
3469
3470  if (VT == EVT) {
3471    ExtType = ISD::NON_EXTLOAD;
3472  } else if (ExtType == ISD::NON_EXTLOAD) {
3473    assert(VT == EVT && "Non-extending load from different memory type!");
3474  } else {
3475    // Extending load.
3476    if (VT.isVector())
3477      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3478             "Invalid vector extload!");
3479    else
3480      assert(EVT.bitsLT(VT) &&
3481             "Should only be an extending load, not truncating!");
3482    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3483           "Cannot sign/zero extend a FP/Vector load!");
3484    assert(VT.isInteger() == EVT.isInteger() &&
3485           "Cannot convert from FP to Int or Int -> FP!");
3486  }
3487
3488  bool Indexed = AM != ISD::UNINDEXED;
3489  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3490         "Unindexed load with an offset!");
3491
3492  SDVTList VTs = Indexed ?
3493    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3494  SDValue Ops[] = { Chain, Ptr, Offset };
3495  FoldingSetNodeID ID;
3496  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3497  ID.AddInteger(AM);
3498  ID.AddInteger(ExtType);
3499  ID.AddInteger(EVT.getRawBits());
3500  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3501  void *IP = 0;
3502  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3503    return SDValue(E, 0);
3504  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3505  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3506                     Alignment, isVolatile);
3507  CSEMap.InsertNode(N, IP);
3508  AllNodes.push_back(N);
3509  return SDValue(N, 0);
3510}
3511
3512SDValue SelectionDAG::getLoad(MVT VT,
3513                              SDValue Chain, SDValue Ptr,
3514                              const Value *SV, int SVOffset,
3515                              bool isVolatile, unsigned Alignment) {
3516  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3517  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3518                 SV, SVOffset, VT, isVolatile, Alignment);
3519}
3520
3521SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3522                                 SDValue Chain, SDValue Ptr,
3523                                 const Value *SV,
3524                                 int SVOffset, MVT EVT,
3525                                 bool isVolatile, unsigned Alignment) {
3526  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3527  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3528                 SV, SVOffset, EVT, isVolatile, Alignment);
3529}
3530
3531SDValue
3532SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3533                             SDValue Offset, ISD::MemIndexedMode AM) {
3534  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3535  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3536         "Load is already a indexed load!");
3537  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3538                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3539                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3540                 LD->isVolatile(), LD->getAlignment());
3541}
3542
3543SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3544                               SDValue Ptr, const Value *SV, int SVOffset,
3545                               bool isVolatile, unsigned Alignment) {
3546  MVT VT = Val.getValueType();
3547
3548  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3549    Alignment = getMVTAlignment(VT);
3550
3551  SDVTList VTs = getVTList(MVT::Other);
3552  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3553  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3554  FoldingSetNodeID ID;
3555  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3556  ID.AddInteger(ISD::UNINDEXED);
3557  ID.AddInteger(false);
3558  ID.AddInteger(VT.getRawBits());
3559  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3560  void *IP = 0;
3561  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3562    return SDValue(E, 0);
3563  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3564  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3565                      VT, SV, SVOffset, Alignment, isVolatile);
3566  CSEMap.InsertNode(N, IP);
3567  AllNodes.push_back(N);
3568  return SDValue(N, 0);
3569}
3570
3571SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3572                                    SDValue Ptr, const Value *SV,
3573                                    int SVOffset, MVT SVT,
3574                                    bool isVolatile, unsigned Alignment) {
3575  MVT VT = Val.getValueType();
3576
3577  if (VT == SVT)
3578    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3579
3580  assert(VT.bitsGT(SVT) && "Not a truncation?");
3581  assert(VT.isInteger() == SVT.isInteger() &&
3582         "Can't do FP-INT conversion!");
3583
3584  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3585    Alignment = getMVTAlignment(VT);
3586
3587  SDVTList VTs = getVTList(MVT::Other);
3588  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3589  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3590  FoldingSetNodeID ID;
3591  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3592  ID.AddInteger(ISD::UNINDEXED);
3593  ID.AddInteger(1);
3594  ID.AddInteger(SVT.getRawBits());
3595  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3596  void *IP = 0;
3597  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3598    return SDValue(E, 0);
3599  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3600  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3601                      SVT, SV, SVOffset, Alignment, isVolatile);
3602  CSEMap.InsertNode(N, IP);
3603  AllNodes.push_back(N);
3604  return SDValue(N, 0);
3605}
3606
3607SDValue
3608SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3609                              SDValue Offset, ISD::MemIndexedMode AM) {
3610  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3611  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3612         "Store is already a indexed store!");
3613  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3614  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3615  FoldingSetNodeID ID;
3616  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3617  ID.AddInteger(AM);
3618  ID.AddInteger(ST->isTruncatingStore());
3619  ID.AddInteger(ST->getMemoryVT().getRawBits());
3620  ID.AddInteger(ST->getRawFlags());
3621  void *IP = 0;
3622  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3623    return SDValue(E, 0);
3624  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3625  new (N) StoreSDNode(Ops, VTs, AM,
3626                      ST->isTruncatingStore(), ST->getMemoryVT(),
3627                      ST->getSrcValue(), ST->getSrcValueOffset(),
3628                      ST->getAlignment(), ST->isVolatile());
3629  CSEMap.InsertNode(N, IP);
3630  AllNodes.push_back(N);
3631  return SDValue(N, 0);
3632}
3633
3634SDValue SelectionDAG::getVAArg(MVT VT,
3635                               SDValue Chain, SDValue Ptr,
3636                               SDValue SV) {
3637  SDValue Ops[] = { Chain, Ptr, SV };
3638  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3639}
3640
3641SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3642                              const SDUse *Ops, unsigned NumOps) {
3643  switch (NumOps) {
3644  case 0: return getNode(Opcode, VT);
3645  case 1: return getNode(Opcode, VT, Ops[0]);
3646  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3647  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3648  default: break;
3649  }
3650
3651  // Copy from an SDUse array into an SDValue array for use with
3652  // the regular getNode logic.
3653  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3654  return getNode(Opcode, VT, &NewOps[0], NumOps);
3655}
3656
3657SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3658                              const SDValue *Ops, unsigned NumOps) {
3659  switch (NumOps) {
3660  case 0: return getNode(Opcode, VT);
3661  case 1: return getNode(Opcode, VT, Ops[0]);
3662  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3663  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3664  default: break;
3665  }
3666
3667  switch (Opcode) {
3668  default: break;
3669  case ISD::SELECT_CC: {
3670    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3671    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3672           "LHS and RHS of condition must have same type!");
3673    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3674           "True and False arms of SelectCC must have same type!");
3675    assert(Ops[2].getValueType() == VT &&
3676           "select_cc node must be of same type as true and false value!");
3677    break;
3678  }
3679  case ISD::BR_CC: {
3680    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3681    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3682           "LHS/RHS of comparison should match types!");
3683    break;
3684  }
3685  }
3686
3687  // Memoize nodes.
3688  SDNode *N;
3689  SDVTList VTs = getVTList(VT);
3690  if (VT != MVT::Flag) {
3691    FoldingSetNodeID ID;
3692    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3693    void *IP = 0;
3694    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3695      return SDValue(E, 0);
3696    N = NodeAllocator.Allocate<SDNode>();
3697    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3698    CSEMap.InsertNode(N, IP);
3699  } else {
3700    N = NodeAllocator.Allocate<SDNode>();
3701    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3702  }
3703  AllNodes.push_back(N);
3704#ifndef NDEBUG
3705  VerifyNode(N);
3706#endif
3707  return SDValue(N, 0);
3708}
3709
3710SDValue SelectionDAG::getNode(unsigned Opcode,
3711                              const std::vector<MVT> &ResultTys,
3712                              const SDValue *Ops, unsigned NumOps) {
3713  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3714                 Ops, NumOps);
3715}
3716
3717SDValue SelectionDAG::getNode(unsigned Opcode,
3718                              const MVT *VTs, unsigned NumVTs,
3719                              const SDValue *Ops, unsigned NumOps) {
3720  if (NumVTs == 1)
3721    return getNode(Opcode, VTs[0], Ops, NumOps);
3722  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3723}
3724
3725SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3726                              const SDValue *Ops, unsigned NumOps) {
3727  if (VTList.NumVTs == 1)
3728    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3729
3730  switch (Opcode) {
3731  // FIXME: figure out how to safely handle things like
3732  // int foo(int x) { return 1 << (x & 255); }
3733  // int bar() { return foo(256); }
3734#if 0
3735  case ISD::SRA_PARTS:
3736  case ISD::SRL_PARTS:
3737  case ISD::SHL_PARTS:
3738    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3739        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3740      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3741    else if (N3.getOpcode() == ISD::AND)
3742      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3743        // If the and is only masking out bits that cannot effect the shift,
3744        // eliminate the and.
3745        unsigned NumBits = VT.getSizeInBits()*2;
3746        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3747          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3748      }
3749    break;
3750#endif
3751  }
3752
3753  // Memoize the node unless it returns a flag.
3754  SDNode *N;
3755  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3756    FoldingSetNodeID ID;
3757    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3758    void *IP = 0;
3759    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3760      return SDValue(E, 0);
3761    if (NumOps == 1) {
3762      N = NodeAllocator.Allocate<UnarySDNode>();
3763      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3764    } else if (NumOps == 2) {
3765      N = NodeAllocator.Allocate<BinarySDNode>();
3766      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3767    } else if (NumOps == 3) {
3768      N = NodeAllocator.Allocate<TernarySDNode>();
3769      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3770    } else {
3771      N = NodeAllocator.Allocate<SDNode>();
3772      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3773    }
3774    CSEMap.InsertNode(N, IP);
3775  } else {
3776    if (NumOps == 1) {
3777      N = NodeAllocator.Allocate<UnarySDNode>();
3778      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3779    } else if (NumOps == 2) {
3780      N = NodeAllocator.Allocate<BinarySDNode>();
3781      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3782    } else if (NumOps == 3) {
3783      N = NodeAllocator.Allocate<TernarySDNode>();
3784      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3785    } else {
3786      N = NodeAllocator.Allocate<SDNode>();
3787      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3788    }
3789  }
3790  AllNodes.push_back(N);
3791#ifndef NDEBUG
3792  VerifyNode(N);
3793#endif
3794  return SDValue(N, 0);
3795}
3796
3797SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3798  return getNode(Opcode, VTList, 0, 0);
3799}
3800
3801SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3802                                SDValue N1) {
3803  SDValue Ops[] = { N1 };
3804  return getNode(Opcode, VTList, Ops, 1);
3805}
3806
3807SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3808                              SDValue N1, SDValue N2) {
3809  SDValue Ops[] = { N1, N2 };
3810  return getNode(Opcode, VTList, Ops, 2);
3811}
3812
3813SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3814                              SDValue N1, SDValue N2, SDValue N3) {
3815  SDValue Ops[] = { N1, N2, N3 };
3816  return getNode(Opcode, VTList, Ops, 3);
3817}
3818
3819SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3820                              SDValue N1, SDValue N2, SDValue N3,
3821                              SDValue N4) {
3822  SDValue Ops[] = { N1, N2, N3, N4 };
3823  return getNode(Opcode, VTList, Ops, 4);
3824}
3825
3826SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3827                              SDValue N1, SDValue N2, SDValue N3,
3828                              SDValue N4, SDValue N5) {
3829  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3830  return getNode(Opcode, VTList, Ops, 5);
3831}
3832
3833SDVTList SelectionDAG::getVTList(MVT VT) {
3834  return makeVTList(SDNode::getValueTypeList(VT), 1);
3835}
3836
3837SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3838  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3839       E = VTList.rend(); I != E; ++I)
3840    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3841      return *I;
3842
3843  MVT *Array = Allocator.Allocate<MVT>(2);
3844  Array[0] = VT1;
3845  Array[1] = VT2;
3846  SDVTList Result = makeVTList(Array, 2);
3847  VTList.push_back(Result);
3848  return Result;
3849}
3850
3851SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3852  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3853       E = VTList.rend(); I != E; ++I)
3854    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3855                          I->VTs[2] == VT3)
3856      return *I;
3857
3858  MVT *Array = Allocator.Allocate<MVT>(3);
3859  Array[0] = VT1;
3860  Array[1] = VT2;
3861  Array[2] = VT3;
3862  SDVTList Result = makeVTList(Array, 3);
3863  VTList.push_back(Result);
3864  return Result;
3865}
3866
3867SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3868  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3869       E = VTList.rend(); I != E; ++I)
3870    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3871                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3872      return *I;
3873
3874  MVT *Array = Allocator.Allocate<MVT>(3);
3875  Array[0] = VT1;
3876  Array[1] = VT2;
3877  Array[2] = VT3;
3878  Array[3] = VT4;
3879  SDVTList Result = makeVTList(Array, 4);
3880  VTList.push_back(Result);
3881  return Result;
3882}
3883
3884SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3885  switch (NumVTs) {
3886    case 0: assert(0 && "Cannot have nodes without results!");
3887    case 1: return getVTList(VTs[0]);
3888    case 2: return getVTList(VTs[0], VTs[1]);
3889    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3890    default: break;
3891  }
3892
3893  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3894       E = VTList.rend(); I != E; ++I) {
3895    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3896      continue;
3897
3898    bool NoMatch = false;
3899    for (unsigned i = 2; i != NumVTs; ++i)
3900      if (VTs[i] != I->VTs[i]) {
3901        NoMatch = true;
3902        break;
3903      }
3904    if (!NoMatch)
3905      return *I;
3906  }
3907
3908  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3909  std::copy(VTs, VTs+NumVTs, Array);
3910  SDVTList Result = makeVTList(Array, NumVTs);
3911  VTList.push_back(Result);
3912  return Result;
3913}
3914
3915
3916/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3917/// specified operands.  If the resultant node already exists in the DAG,
3918/// this does not modify the specified node, instead it returns the node that
3919/// already exists.  If the resultant node does not exist in the DAG, the
3920/// input node is returned.  As a degenerate case, if you specify the same
3921/// input operands as the node already has, the input node is returned.
3922SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3923  SDNode *N = InN.getNode();
3924  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3925
3926  // Check to see if there is no change.
3927  if (Op == N->getOperand(0)) return InN;
3928
3929  // See if the modified node already exists.
3930  void *InsertPos = 0;
3931  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3932    return SDValue(Existing, InN.getResNo());
3933
3934  // Nope it doesn't.  Remove the node from its current place in the maps.
3935  if (InsertPos)
3936    if (!RemoveNodeFromCSEMaps(N))
3937      InsertPos = 0;
3938
3939  // Now we update the operands.
3940  N->OperandList[0].getVal()->removeUser(0, N);
3941  N->OperandList[0] = Op;
3942  N->OperandList[0].setUser(N);
3943  Op.getNode()->addUser(0, N);
3944
3945  // If this gets put into a CSE map, add it.
3946  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3947  return InN;
3948}
3949
3950SDValue SelectionDAG::
3951UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3952  SDNode *N = InN.getNode();
3953  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3954
3955  // Check to see if there is no change.
3956  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3957    return InN;   // No operands changed, just return the input node.
3958
3959  // See if the modified node already exists.
3960  void *InsertPos = 0;
3961  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3962    return SDValue(Existing, InN.getResNo());
3963
3964  // Nope it doesn't.  Remove the node from its current place in the maps.
3965  if (InsertPos)
3966    if (!RemoveNodeFromCSEMaps(N))
3967      InsertPos = 0;
3968
3969  // Now we update the operands.
3970  if (N->OperandList[0] != Op1) {
3971    N->OperandList[0].getVal()->removeUser(0, N);
3972    N->OperandList[0] = Op1;
3973    N->OperandList[0].setUser(N);
3974    Op1.getNode()->addUser(0, N);
3975  }
3976  if (N->OperandList[1] != Op2) {
3977    N->OperandList[1].getVal()->removeUser(1, N);
3978    N->OperandList[1] = Op2;
3979    N->OperandList[1].setUser(N);
3980    Op2.getNode()->addUser(1, N);
3981  }
3982
3983  // If this gets put into a CSE map, add it.
3984  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3985  return InN;
3986}
3987
3988SDValue SelectionDAG::
3989UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3990  SDValue Ops[] = { Op1, Op2, Op3 };
3991  return UpdateNodeOperands(N, Ops, 3);
3992}
3993
3994SDValue SelectionDAG::
3995UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3996                   SDValue Op3, SDValue Op4) {
3997  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3998  return UpdateNodeOperands(N, Ops, 4);
3999}
4000
4001SDValue SelectionDAG::
4002UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4003                   SDValue Op3, SDValue Op4, SDValue Op5) {
4004  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4005  return UpdateNodeOperands(N, Ops, 5);
4006}
4007
4008SDValue SelectionDAG::
4009UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4010  SDNode *N = InN.getNode();
4011  assert(N->getNumOperands() == NumOps &&
4012         "Update with wrong number of operands");
4013
4014  // Check to see if there is no change.
4015  bool AnyChange = false;
4016  for (unsigned i = 0; i != NumOps; ++i) {
4017    if (Ops[i] != N->getOperand(i)) {
4018      AnyChange = true;
4019      break;
4020    }
4021  }
4022
4023  // No operands changed, just return the input node.
4024  if (!AnyChange) return InN;
4025
4026  // See if the modified node already exists.
4027  void *InsertPos = 0;
4028  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4029    return SDValue(Existing, InN.getResNo());
4030
4031  // Nope it doesn't.  Remove the node from its current place in the maps.
4032  if (InsertPos)
4033    if (!RemoveNodeFromCSEMaps(N))
4034      InsertPos = 0;
4035
4036  // Now we update the operands.
4037  for (unsigned i = 0; i != NumOps; ++i) {
4038    if (N->OperandList[i] != Ops[i]) {
4039      N->OperandList[i].getVal()->removeUser(i, N);
4040      N->OperandList[i] = Ops[i];
4041      N->OperandList[i].setUser(N);
4042      Ops[i].getNode()->addUser(i, N);
4043    }
4044  }
4045
4046  // If this gets put into a CSE map, add it.
4047  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4048  return InN;
4049}
4050
4051/// DropOperands - Release the operands and set this node to have
4052/// zero operands.
4053void SDNode::DropOperands() {
4054  // Unlike the code in MorphNodeTo that does this, we don't need to
4055  // watch for dead nodes here.
4056  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
4057    I->getVal()->removeUser(std::distance(op_begin(), I), this);
4058
4059  NumOperands = 0;
4060}
4061
4062/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4063/// machine opcode.
4064///
4065SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4066                                   MVT VT) {
4067  SDVTList VTs = getVTList(VT);
4068  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4069}
4070
4071SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4072                                   MVT VT, SDValue Op1) {
4073  SDVTList VTs = getVTList(VT);
4074  SDValue Ops[] = { Op1 };
4075  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4076}
4077
4078SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4079                                   MVT VT, SDValue Op1,
4080                                   SDValue Op2) {
4081  SDVTList VTs = getVTList(VT);
4082  SDValue Ops[] = { Op1, Op2 };
4083  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4084}
4085
4086SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4087                                   MVT VT, SDValue Op1,
4088                                   SDValue Op2, SDValue Op3) {
4089  SDVTList VTs = getVTList(VT);
4090  SDValue Ops[] = { Op1, Op2, Op3 };
4091  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4092}
4093
4094SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4095                                   MVT VT, const SDValue *Ops,
4096                                   unsigned NumOps) {
4097  SDVTList VTs = getVTList(VT);
4098  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4099}
4100
4101SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4102                                   MVT VT1, MVT VT2, const SDValue *Ops,
4103                                   unsigned NumOps) {
4104  SDVTList VTs = getVTList(VT1, VT2);
4105  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4106}
4107
4108SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4109                                   MVT VT1, MVT VT2) {
4110  SDVTList VTs = getVTList(VT1, VT2);
4111  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4112}
4113
4114SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4115                                   MVT VT1, MVT VT2, MVT VT3,
4116                                   const SDValue *Ops, unsigned NumOps) {
4117  SDVTList VTs = getVTList(VT1, VT2, VT3);
4118  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4119}
4120
4121SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4122                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4123                                   const SDValue *Ops, unsigned NumOps) {
4124  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4125  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4126}
4127
4128SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4129                                   MVT VT1, MVT VT2,
4130                                   SDValue Op1) {
4131  SDVTList VTs = getVTList(VT1, VT2);
4132  SDValue Ops[] = { Op1 };
4133  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4134}
4135
4136SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4137                                   MVT VT1, MVT VT2,
4138                                   SDValue Op1, SDValue Op2) {
4139  SDVTList VTs = getVTList(VT1, VT2);
4140  SDValue Ops[] = { Op1, Op2 };
4141  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4142}
4143
4144SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4145                                   MVT VT1, MVT VT2,
4146                                   SDValue Op1, SDValue Op2,
4147                                   SDValue Op3) {
4148  SDVTList VTs = getVTList(VT1, VT2);
4149  SDValue Ops[] = { Op1, Op2, Op3 };
4150  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4151}
4152
4153SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4154                                   MVT VT1, MVT VT2, MVT VT3,
4155                                   SDValue Op1, SDValue Op2,
4156                                   SDValue Op3) {
4157  SDVTList VTs = getVTList(VT1, VT2, VT3);
4158  SDValue Ops[] = { Op1, Op2, Op3 };
4159  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4160}
4161
4162SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4163                                   SDVTList VTs, const SDValue *Ops,
4164                                   unsigned NumOps) {
4165  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4166}
4167
4168SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4169                                  MVT VT) {
4170  SDVTList VTs = getVTList(VT);
4171  return MorphNodeTo(N, Opc, VTs, 0, 0);
4172}
4173
4174SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4175                                  MVT VT, SDValue Op1) {
4176  SDVTList VTs = getVTList(VT);
4177  SDValue Ops[] = { Op1 };
4178  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4179}
4180
4181SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4182                                  MVT VT, SDValue Op1,
4183                                  SDValue Op2) {
4184  SDVTList VTs = getVTList(VT);
4185  SDValue Ops[] = { Op1, Op2 };
4186  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4187}
4188
4189SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4190                                  MVT VT, SDValue Op1,
4191                                  SDValue Op2, SDValue Op3) {
4192  SDVTList VTs = getVTList(VT);
4193  SDValue Ops[] = { Op1, Op2, Op3 };
4194  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4195}
4196
4197SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4198                                  MVT VT, const SDValue *Ops,
4199                                  unsigned NumOps) {
4200  SDVTList VTs = getVTList(VT);
4201  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4202}
4203
4204SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4205                                  MVT VT1, MVT VT2, const SDValue *Ops,
4206                                  unsigned NumOps) {
4207  SDVTList VTs = getVTList(VT1, VT2);
4208  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4209}
4210
4211SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4212                                  MVT VT1, MVT VT2) {
4213  SDVTList VTs = getVTList(VT1, VT2);
4214  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4215}
4216
4217SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4218                                  MVT VT1, MVT VT2, MVT VT3,
4219                                  const SDValue *Ops, unsigned NumOps) {
4220  SDVTList VTs = getVTList(VT1, VT2, VT3);
4221  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4222}
4223
4224SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4225                                  MVT VT1, MVT VT2,
4226                                  SDValue Op1) {
4227  SDVTList VTs = getVTList(VT1, VT2);
4228  SDValue Ops[] = { Op1 };
4229  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4230}
4231
4232SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4233                                  MVT VT1, MVT VT2,
4234                                  SDValue Op1, SDValue Op2) {
4235  SDVTList VTs = getVTList(VT1, VT2);
4236  SDValue Ops[] = { Op1, Op2 };
4237  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4238}
4239
4240SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4241                                  MVT VT1, MVT VT2,
4242                                  SDValue Op1, SDValue Op2,
4243                                  SDValue Op3) {
4244  SDVTList VTs = getVTList(VT1, VT2);
4245  SDValue Ops[] = { Op1, Op2, Op3 };
4246  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4247}
4248
4249/// MorphNodeTo - These *mutate* the specified node to have the specified
4250/// return type, opcode, and operands.
4251///
4252/// Note that MorphNodeTo returns the resultant node.  If there is already a
4253/// node of the specified opcode and operands, it returns that node instead of
4254/// the current one.
4255///
4256/// Using MorphNodeTo is faster than creating a new node and swapping it in
4257/// with ReplaceAllUsesWith both because it often avoids allocating a new
4258/// node, and because it doesn't require CSE recalculation for any of
4259/// the node's users.
4260///
4261SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4262                                  SDVTList VTs, const SDValue *Ops,
4263                                  unsigned NumOps) {
4264  // If an identical node already exists, use it.
4265  void *IP = 0;
4266  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4267    FoldingSetNodeID ID;
4268    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4269    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4270      return ON;
4271  }
4272
4273  if (!RemoveNodeFromCSEMaps(N))
4274    IP = 0;
4275
4276  // Start the morphing.
4277  N->NodeType = Opc;
4278  N->ValueList = VTs.VTs;
4279  N->NumValues = VTs.NumVTs;
4280
4281  // Clear the operands list, updating used nodes to remove this from their
4282  // use list.  Keep track of any operands that become dead as a result.
4283  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4284  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4285       I != E; ++I) {
4286    SDNode *Used = I->getVal();
4287    Used->removeUser(std::distance(B, I), N);
4288    if (Used->use_empty())
4289      DeadNodeSet.insert(Used);
4290  }
4291
4292  // If NumOps is larger than the # of operands we currently have, reallocate
4293  // the operand list.
4294  if (NumOps > N->NumOperands) {
4295    if (N->OperandsNeedDelete)
4296      delete[] N->OperandList;
4297
4298    if (N->isMachineOpcode()) {
4299      // We're creating a final node that will live unmorphed for the
4300      // remainder of the current SelectionDAG iteration, so we can allocate
4301      // the operands directly out of a pool with no recycling metadata.
4302      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4303      N->OperandsNeedDelete = false;
4304    } else {
4305      N->OperandList = new SDUse[NumOps];
4306      N->OperandsNeedDelete = true;
4307    }
4308  }
4309
4310  // Assign the new operands.
4311  N->NumOperands = NumOps;
4312  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4313    N->OperandList[i] = Ops[i];
4314    N->OperandList[i].setUser(N);
4315    SDNode *ToUse = N->OperandList[i].getVal();
4316    ToUse->addUser(i, N);
4317  }
4318
4319  // Delete any nodes that are still dead after adding the uses for the
4320  // new operands.
4321  SmallVector<SDNode *, 16> DeadNodes;
4322  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4323       E = DeadNodeSet.end(); I != E; ++I)
4324    if ((*I)->use_empty())
4325      DeadNodes.push_back(*I);
4326  RemoveDeadNodes(DeadNodes);
4327
4328  if (IP)
4329    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4330  return N;
4331}
4332
4333
4334/// getTargetNode - These are used for target selectors to create a new node
4335/// with specified return type(s), target opcode, and operands.
4336///
4337/// Note that getTargetNode returns the resultant node.  If there is already a
4338/// node of the specified opcode and operands, it returns that node instead of
4339/// the current one.
4340SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4341  return getNode(~Opcode, VT).getNode();
4342}
4343SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4344  return getNode(~Opcode, VT, Op1).getNode();
4345}
4346SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4347                                    SDValue Op1, SDValue Op2) {
4348  return getNode(~Opcode, VT, Op1, Op2).getNode();
4349}
4350SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4351                                    SDValue Op1, SDValue Op2,
4352                                    SDValue Op3) {
4353  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4354}
4355SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4356                                    const SDValue *Ops, unsigned NumOps) {
4357  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4358}
4359SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4360  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4361  SDValue Op;
4362  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4363}
4364SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4365                                    MVT VT2, SDValue Op1) {
4366  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4367  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4368}
4369SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4370                                    MVT VT2, SDValue Op1,
4371                                    SDValue Op2) {
4372  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4373  SDValue Ops[] = { Op1, Op2 };
4374  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4375}
4376SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4377                                    MVT VT2, SDValue Op1,
4378                                    SDValue Op2, SDValue Op3) {
4379  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4380  SDValue Ops[] = { Op1, Op2, Op3 };
4381  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4382}
4383SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4384                                    const SDValue *Ops, unsigned NumOps) {
4385  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4386  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4387}
4388SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4389                                    SDValue Op1, SDValue Op2) {
4390  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4391  SDValue Ops[] = { Op1, Op2 };
4392  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4393}
4394SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4395                                    SDValue Op1, SDValue Op2,
4396                                    SDValue Op3) {
4397  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4398  SDValue Ops[] = { Op1, Op2, Op3 };
4399  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4400}
4401SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4402                                    const SDValue *Ops, unsigned NumOps) {
4403  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4404  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4405}
4406SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4407                                    MVT VT2, MVT VT3, MVT VT4,
4408                                    const SDValue *Ops, unsigned NumOps) {
4409  std::vector<MVT> VTList;
4410  VTList.push_back(VT1);
4411  VTList.push_back(VT2);
4412  VTList.push_back(VT3);
4413  VTList.push_back(VT4);
4414  const MVT *VTs = getNodeValueTypes(VTList);
4415  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4416}
4417SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4418                                    const std::vector<MVT> &ResultTys,
4419                                    const SDValue *Ops, unsigned NumOps) {
4420  const MVT *VTs = getNodeValueTypes(ResultTys);
4421  return getNode(~Opcode, VTs, ResultTys.size(),
4422                 Ops, NumOps).getNode();
4423}
4424
4425/// getNodeIfExists - Get the specified node if it's already available, or
4426/// else return NULL.
4427SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4428                                      const SDValue *Ops, unsigned NumOps) {
4429  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4430    FoldingSetNodeID ID;
4431    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4432    void *IP = 0;
4433    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4434      return E;
4435  }
4436  return NULL;
4437}
4438
4439
4440/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4441/// This can cause recursive merging of nodes in the DAG.
4442///
4443/// This version assumes From has a single result value.
4444///
4445void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4446                                      DAGUpdateListener *UpdateListener) {
4447  SDNode *From = FromN.getNode();
4448  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4449         "Cannot replace with this method!");
4450  assert(From != To.getNode() && "Cannot replace uses of with self");
4451
4452  while (!From->use_empty()) {
4453    SDNode::use_iterator UI = From->use_begin();
4454    SDNode *U = *UI;
4455
4456    // This node is about to morph, remove its old self from the CSE maps.
4457    RemoveNodeFromCSEMaps(U);
4458    int operandNum = 0;
4459    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4460         I != E; ++I, ++operandNum)
4461      if (I->getVal() == From) {
4462        From->removeUser(operandNum, U);
4463        *I = To;
4464        I->setUser(U);
4465        To.getNode()->addUser(operandNum, U);
4466      }
4467
4468    // Now that we have modified U, add it back to the CSE maps.  If it already
4469    // exists there, recursively merge the results together.
4470    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4471      ReplaceAllUsesWith(U, Existing, UpdateListener);
4472      // U is now dead.  Inform the listener if it exists and delete it.
4473      if (UpdateListener)
4474        UpdateListener->NodeDeleted(U, Existing);
4475      DeleteNodeNotInCSEMaps(U);
4476    } else {
4477      // If the node doesn't already exist, we updated it.  Inform a listener if
4478      // it exists.
4479      if (UpdateListener)
4480        UpdateListener->NodeUpdated(U);
4481    }
4482  }
4483}
4484
4485/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4486/// This can cause recursive merging of nodes in the DAG.
4487///
4488/// This version assumes From/To have matching types and numbers of result
4489/// values.
4490///
4491void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4492                                      DAGUpdateListener *UpdateListener) {
4493  assert(From->getVTList().VTs == To->getVTList().VTs &&
4494         From->getNumValues() == To->getNumValues() &&
4495         "Cannot use this version of ReplaceAllUsesWith!");
4496
4497  // Handle the trivial case.
4498  if (From == To)
4499    return;
4500
4501  while (!From->use_empty()) {
4502    SDNode::use_iterator UI = From->use_begin();
4503    SDNode *U = *UI;
4504
4505    // This node is about to morph, remove its old self from the CSE maps.
4506    RemoveNodeFromCSEMaps(U);
4507    int operandNum = 0;
4508    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4509         I != E; ++I, ++operandNum)
4510      if (I->getVal() == From) {
4511        From->removeUser(operandNum, U);
4512        I->getSDValue().setNode(To);
4513        To->addUser(operandNum, U);
4514      }
4515
4516    // Now that we have modified U, add it back to the CSE maps.  If it already
4517    // exists there, recursively merge the results together.
4518    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4519      ReplaceAllUsesWith(U, Existing, UpdateListener);
4520      // U is now dead.  Inform the listener if it exists and delete it.
4521      if (UpdateListener)
4522        UpdateListener->NodeDeleted(U, Existing);
4523      DeleteNodeNotInCSEMaps(U);
4524    } else {
4525      // If the node doesn't already exist, we updated it.  Inform a listener if
4526      // it exists.
4527      if (UpdateListener)
4528        UpdateListener->NodeUpdated(U);
4529    }
4530  }
4531}
4532
4533/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4534/// This can cause recursive merging of nodes in the DAG.
4535///
4536/// This version can replace From with any result values.  To must match the
4537/// number and types of values returned by From.
4538void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4539                                      const SDValue *To,
4540                                      DAGUpdateListener *UpdateListener) {
4541  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4542    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4543
4544  while (!From->use_empty()) {
4545    SDNode::use_iterator UI = From->use_begin();
4546    SDNode *U = *UI;
4547
4548    // This node is about to morph, remove its old self from the CSE maps.
4549    RemoveNodeFromCSEMaps(U);
4550    int operandNum = 0;
4551    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4552         I != E; ++I, ++operandNum)
4553      if (I->getVal() == From) {
4554        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4555        From->removeUser(operandNum, U);
4556        *I = ToOp;
4557        I->setUser(U);
4558        ToOp.getNode()->addUser(operandNum, U);
4559      }
4560
4561    // Now that we have modified U, add it back to the CSE maps.  If it already
4562    // exists there, recursively merge the results together.
4563    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4564      ReplaceAllUsesWith(U, Existing, UpdateListener);
4565      // U is now dead.  Inform the listener if it exists and delete it.
4566      if (UpdateListener)
4567        UpdateListener->NodeDeleted(U, Existing);
4568      DeleteNodeNotInCSEMaps(U);
4569    } else {
4570      // If the node doesn't already exist, we updated it.  Inform a listener if
4571      // it exists.
4572      if (UpdateListener)
4573        UpdateListener->NodeUpdated(U);
4574    }
4575  }
4576}
4577
4578/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4579/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4580/// handled the same way as for ReplaceAllUsesWith.
4581void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4582                                             DAGUpdateListener *UpdateListener){
4583  // Handle the really simple, really trivial case efficiently.
4584  if (From == To) return;
4585
4586  // Handle the simple, trivial, case efficiently.
4587  if (From.getNode()->getNumValues() == 1) {
4588    ReplaceAllUsesWith(From, To, UpdateListener);
4589    return;
4590  }
4591
4592  // Get all of the users of From.getNode().  We want these in a nice,
4593  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4594  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4595
4596  while (!Users.empty()) {
4597    // We know that this user uses some value of From.  If it is the right
4598    // value, update it.
4599    SDNode *User = Users.back();
4600    Users.pop_back();
4601
4602    // Scan for an operand that matches From.
4603    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4604    for (; Op != E; ++Op)
4605      if (*Op == From) break;
4606
4607    // If there are no matches, the user must use some other result of From.
4608    if (Op == E) continue;
4609
4610    // Okay, we know this user needs to be updated.  Remove its old self
4611    // from the CSE maps.
4612    RemoveNodeFromCSEMaps(User);
4613
4614    // Update all operands that match "From" in case there are multiple uses.
4615    for (; Op != E; ++Op) {
4616      if (*Op == From) {
4617        From.getNode()->removeUser(Op-User->op_begin(), User);
4618        *Op = To;
4619        Op->setUser(User);
4620        To.getNode()->addUser(Op-User->op_begin(), User);
4621      }
4622    }
4623
4624    // Now that we have modified User, add it back to the CSE maps.  If it
4625    // already exists there, recursively merge the results together.
4626    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4627    if (!Existing) {
4628      if (UpdateListener) UpdateListener->NodeUpdated(User);
4629      continue;  // Continue on to next user.
4630    }
4631
4632    // If there was already an existing matching node, use ReplaceAllUsesWith
4633    // to replace the dead one with the existing one.  This can cause
4634    // recursive merging of other unrelated nodes down the line.
4635    ReplaceAllUsesWith(User, Existing, UpdateListener);
4636
4637    // User is now dead.  Notify a listener if present.
4638    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4639    DeleteNodeNotInCSEMaps(User);
4640  }
4641}
4642
4643/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4644/// uses of other values produced by From.getVal() alone.  The same value may
4645/// appear in both the From and To list.  The Deleted vector is
4646/// handled the same way as for ReplaceAllUsesWith.
4647void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4648                                              const SDValue *To,
4649                                              unsigned Num,
4650                                              DAGUpdateListener *UpdateListener){
4651  // Handle the simple, trivial case efficiently.
4652  if (Num == 1)
4653    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4654
4655  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4656  for (unsigned i = 0; i != Num; ++i)
4657    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4658         E = From[i].getNode()->use_end(); UI != E; ++UI)
4659      Users.push_back(std::make_pair(*UI, i));
4660
4661  while (!Users.empty()) {
4662    // We know that this user uses some value of From.  If it is the right
4663    // value, update it.
4664    SDNode *User = Users.back().first;
4665    unsigned i = Users.back().second;
4666    Users.pop_back();
4667
4668    // Scan for an operand that matches From.
4669    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4670    for (; Op != E; ++Op)
4671      if (*Op == From[i]) break;
4672
4673    // If there are no matches, the user must use some other result of From.
4674    if (Op == E) continue;
4675
4676    // Okay, we know this user needs to be updated.  Remove its old self
4677    // from the CSE maps.
4678    RemoveNodeFromCSEMaps(User);
4679
4680    // Update all operands that match "From" in case there are multiple uses.
4681    for (; Op != E; ++Op) {
4682      if (*Op == From[i]) {
4683        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4684        *Op = To[i];
4685        Op->setUser(User);
4686        To[i].getNode()->addUser(Op-User->op_begin(), User);
4687      }
4688    }
4689
4690    // Now that we have modified User, add it back to the CSE maps.  If it
4691    // already exists there, recursively merge the results together.
4692    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4693    if (!Existing) {
4694      if (UpdateListener) UpdateListener->NodeUpdated(User);
4695      continue;  // Continue on to next user.
4696    }
4697
4698    // If there was already an existing matching node, use ReplaceAllUsesWith
4699    // to replace the dead one with the existing one.  This can cause
4700    // recursive merging of other unrelated nodes down the line.
4701    ReplaceAllUsesWith(User, Existing, UpdateListener);
4702
4703    // User is now dead.  Notify a listener if present.
4704    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4705    DeleteNodeNotInCSEMaps(User);
4706  }
4707}
4708
4709/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4710/// based on their topological order. It returns the maximum id and a vector
4711/// of the SDNodes* in assigned order by reference.
4712unsigned SelectionDAG::AssignTopologicalOrder() {
4713
4714  unsigned DAGSize = 0;
4715
4716  // SortedPos tracks the progress of the algorithm. Nodes before it are
4717  // sorted, nodes after it are unsorted. When the algorithm completes
4718  // it is at the end of the list.
4719  allnodes_iterator SortedPos = allnodes_begin();
4720
4721  // Visit all the nodes. Move nodes with no operands to the front of
4722  // the list immediately. Annotate nodes that do have operands with their
4723  // operand count. Before we do this, the Node Id fields of the nodes
4724  // may contain arbitrary values. After, the Node Id fields for nodes
4725  // before SortedPos will contain the topological sort index, and the
4726  // Node Id fields for nodes At SortedPos and after will contain the
4727  // count of outstanding operands.
4728  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4729    SDNode *N = I++;
4730    unsigned Degree = N->getNumOperands();
4731    if (Degree == 0) {
4732      // A node with no uses, add it to the result array immediately.
4733      N->setNodeId(DAGSize++);
4734      allnodes_iterator Q = N;
4735      if (Q != SortedPos)
4736        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4737      ++SortedPos;
4738    } else {
4739      // Temporarily use the Node Id as scratch space for the degree count.
4740      N->setNodeId(Degree);
4741    }
4742  }
4743
4744  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4745  // such that by the time the end is reached all nodes will be sorted.
4746  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4747    SDNode *N = I;
4748    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4749         UI != UE; ++UI) {
4750      SDNode *P = *UI;
4751      unsigned Degree = P->getNodeId();
4752      --Degree;
4753      if (Degree == 0) {
4754        // All of P's operands are sorted, so P may sorted now.
4755        P->setNodeId(DAGSize++);
4756        if (P != SortedPos)
4757          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4758        ++SortedPos;
4759      } else {
4760        // Update P's outstanding operand count.
4761        P->setNodeId(Degree);
4762      }
4763    }
4764  }
4765
4766  assert(SortedPos == AllNodes.end() &&
4767         "Topological sort incomplete!");
4768  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4769         "First node in topological sort is not the entry token!");
4770  assert(AllNodes.front().getNodeId() == 0 &&
4771         "First node in topological sort has non-zero id!");
4772  assert(AllNodes.front().getNumOperands() == 0 &&
4773         "First node in topological sort has operands!");
4774  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4775         "Last node in topologic sort has unexpected id!");
4776  assert(AllNodes.back().use_empty() &&
4777         "Last node in topologic sort has users!");
4778  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4779  return DAGSize;
4780}
4781
4782
4783
4784//===----------------------------------------------------------------------===//
4785//                              SDNode Class
4786//===----------------------------------------------------------------------===//
4787
4788// Out-of-line virtual method to give class a home.
4789void SDNode::ANCHOR() {}
4790void UnarySDNode::ANCHOR() {}
4791void BinarySDNode::ANCHOR() {}
4792void TernarySDNode::ANCHOR() {}
4793void HandleSDNode::ANCHOR() {}
4794void ConstantSDNode::ANCHOR() {}
4795void ConstantFPSDNode::ANCHOR() {}
4796void GlobalAddressSDNode::ANCHOR() {}
4797void FrameIndexSDNode::ANCHOR() {}
4798void JumpTableSDNode::ANCHOR() {}
4799void ConstantPoolSDNode::ANCHOR() {}
4800void BasicBlockSDNode::ANCHOR() {}
4801void SrcValueSDNode::ANCHOR() {}
4802void MemOperandSDNode::ANCHOR() {}
4803void RegisterSDNode::ANCHOR() {}
4804void DbgStopPointSDNode::ANCHOR() {}
4805void LabelSDNode::ANCHOR() {}
4806void ExternalSymbolSDNode::ANCHOR() {}
4807void CondCodeSDNode::ANCHOR() {}
4808void ARG_FLAGSSDNode::ANCHOR() {}
4809void VTSDNode::ANCHOR() {}
4810void MemSDNode::ANCHOR() {}
4811void LoadSDNode::ANCHOR() {}
4812void StoreSDNode::ANCHOR() {}
4813void AtomicSDNode::ANCHOR() {}
4814void MemIntrinsicSDNode::ANCHOR() {}
4815void CallSDNode::ANCHOR() {}
4816void CvtRndSatSDNode::ANCHOR() {}
4817
4818HandleSDNode::~HandleSDNode() {
4819  DropOperands();
4820}
4821
4822GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4823                                         MVT VT, int64_t o)
4824  : SDNode(isa<GlobalVariable>(GA) &&
4825           cast<GlobalVariable>(GA)->isThreadLocal() ?
4826           // Thread Local
4827           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4828           // Non Thread Local
4829           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4830           getSDVTList(VT)), Offset(o) {
4831  TheGlobal = const_cast<GlobalValue*>(GA);
4832}
4833
4834MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4835                     const Value *srcValue, int SVO,
4836                     unsigned alignment, bool vol)
4837 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4838   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4839
4840  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4841  assert(getAlignment() == alignment && "Alignment representation error!");
4842  assert(isVolatile() == vol && "Volatile representation error!");
4843}
4844
4845MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4846                     unsigned NumOps, MVT memvt, const Value *srcValue,
4847                     int SVO, unsigned alignment, bool vol)
4848   : SDNode(Opc, VTs, Ops, NumOps),
4849     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4850     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
4851  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4852  assert(getAlignment() == alignment && "Alignment representation error!");
4853  assert(isVolatile() == vol && "Volatile representation error!");
4854}
4855
4856/// getMemOperand - Return a MachineMemOperand object describing the memory
4857/// reference performed by this memory reference.
4858MachineMemOperand MemSDNode::getMemOperand() const {
4859  int Flags = 0;
4860  if (isa<LoadSDNode>(this))
4861    Flags = MachineMemOperand::MOLoad;
4862  else if (isa<StoreSDNode>(this))
4863    Flags = MachineMemOperand::MOStore;
4864  else if (isa<AtomicSDNode>(this)) {
4865    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4866  }
4867  else {
4868    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4869    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4870    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4871    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4872  }
4873
4874  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4875  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4876
4877  // Check if the memory reference references a frame index
4878  const FrameIndexSDNode *FI =
4879  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4880  if (!getSrcValue() && FI)
4881    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4882                             Flags, 0, Size, getAlignment());
4883  else
4884    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4885                             Size, getAlignment());
4886}
4887
4888/// Profile - Gather unique data for the node.
4889///
4890void SDNode::Profile(FoldingSetNodeID &ID) const {
4891  AddNodeIDNode(ID, this);
4892}
4893
4894/// getValueTypeList - Return a pointer to the specified value type.
4895///
4896const MVT *SDNode::getValueTypeList(MVT VT) {
4897  if (VT.isExtended()) {
4898    static std::set<MVT, MVT::compareRawBits> EVTs;
4899    return &(*EVTs.insert(VT).first);
4900  } else {
4901    static MVT VTs[MVT::LAST_VALUETYPE];
4902    VTs[VT.getSimpleVT()] = VT;
4903    return &VTs[VT.getSimpleVT()];
4904  }
4905}
4906
4907/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4908/// indicated value.  This method ignores uses of other values defined by this
4909/// operation.
4910bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4911  assert(Value < getNumValues() && "Bad value!");
4912
4913  // TODO: Only iterate over uses of a given value of the node
4914  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4915    if (UI.getUse().getSDValue().getResNo() == Value) {
4916      if (NUses == 0)
4917        return false;
4918      --NUses;
4919    }
4920  }
4921
4922  // Found exactly the right number of uses?
4923  return NUses == 0;
4924}
4925
4926
4927/// hasAnyUseOfValue - Return true if there are any use of the indicated
4928/// value. This method ignores uses of other values defined by this operation.
4929bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4930  assert(Value < getNumValues() && "Bad value!");
4931
4932  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4933    if (UI.getUse().getSDValue().getResNo() == Value)
4934      return true;
4935
4936  return false;
4937}
4938
4939
4940/// isOnlyUserOf - Return true if this node is the only use of N.
4941///
4942bool SDNode::isOnlyUserOf(SDNode *N) const {
4943  bool Seen = false;
4944  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4945    SDNode *User = *I;
4946    if (User == this)
4947      Seen = true;
4948    else
4949      return false;
4950  }
4951
4952  return Seen;
4953}
4954
4955/// isOperand - Return true if this node is an operand of N.
4956///
4957bool SDValue::isOperandOf(SDNode *N) const {
4958  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4959    if (*this == N->getOperand(i))
4960      return true;
4961  return false;
4962}
4963
4964bool SDNode::isOperandOf(SDNode *N) const {
4965  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4966    if (this == N->OperandList[i].getVal())
4967      return true;
4968  return false;
4969}
4970
4971/// reachesChainWithoutSideEffects - Return true if this operand (which must
4972/// be a chain) reaches the specified operand without crossing any
4973/// side-effecting instructions.  In practice, this looks through token
4974/// factors and non-volatile loads.  In order to remain efficient, this only
4975/// looks a couple of nodes in, it does not do an exhaustive search.
4976bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4977                                               unsigned Depth) const {
4978  if (*this == Dest) return true;
4979
4980  // Don't search too deeply, we just want to be able to see through
4981  // TokenFactor's etc.
4982  if (Depth == 0) return false;
4983
4984  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4985  // of the operands of the TF reach dest, then we can do the xform.
4986  if (getOpcode() == ISD::TokenFactor) {
4987    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4988      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4989        return true;
4990    return false;
4991  }
4992
4993  // Loads don't have side effects, look through them.
4994  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4995    if (!Ld->isVolatile())
4996      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4997  }
4998  return false;
4999}
5000
5001
5002static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5003                            SmallPtrSet<SDNode *, 32> &Visited) {
5004  if (found || !Visited.insert(N))
5005    return;
5006
5007  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5008    SDNode *Op = N->getOperand(i).getNode();
5009    if (Op == P) {
5010      found = true;
5011      return;
5012    }
5013    findPredecessor(Op, P, found, Visited);
5014  }
5015}
5016
5017/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5018/// is either an operand of N or it can be reached by recursively traversing
5019/// up the operands.
5020/// NOTE: this is an expensive method. Use it carefully.
5021bool SDNode::isPredecessorOf(SDNode *N) const {
5022  SmallPtrSet<SDNode *, 32> Visited;
5023  bool found = false;
5024  findPredecessor(N, this, found, Visited);
5025  return found;
5026}
5027
5028uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5029  assert(Num < NumOperands && "Invalid child # of SDNode!");
5030  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5031}
5032
5033std::string SDNode::getOperationName(const SelectionDAG *G) const {
5034  switch (getOpcode()) {
5035  default:
5036    if (getOpcode() < ISD::BUILTIN_OP_END)
5037      return "<<Unknown DAG Node>>";
5038    if (isMachineOpcode()) {
5039      if (G)
5040        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5041          if (getMachineOpcode() < TII->getNumOpcodes())
5042            return TII->get(getMachineOpcode()).getName();
5043      return "<<Unknown Machine Node>>";
5044    }
5045    if (G) {
5046      TargetLowering &TLI = G->getTargetLoweringInfo();
5047      const char *Name = TLI.getTargetNodeName(getOpcode());
5048      if (Name) return Name;
5049      return "<<Unknown Target Node>>";
5050    }
5051    return "<<Unknown Node>>";
5052
5053#ifndef NDEBUG
5054  case ISD::DELETED_NODE:
5055    return "<<Deleted Node!>>";
5056#endif
5057  case ISD::PREFETCH:      return "Prefetch";
5058  case ISD::MEMBARRIER:    return "MemBarrier";
5059  case ISD::ATOMIC_CMP_SWAP_8:  return "AtomicCmpSwap8";
5060  case ISD::ATOMIC_SWAP_8:      return "AtomicSwap8";
5061  case ISD::ATOMIC_LOAD_ADD_8:  return "AtomicLoadAdd8";
5062  case ISD::ATOMIC_LOAD_SUB_8:  return "AtomicLoadSub8";
5063  case ISD::ATOMIC_LOAD_AND_8:  return "AtomicLoadAnd8";
5064  case ISD::ATOMIC_LOAD_OR_8:   return "AtomicLoadOr8";
5065  case ISD::ATOMIC_LOAD_XOR_8:  return "AtomicLoadXor8";
5066  case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8";
5067  case ISD::ATOMIC_LOAD_MIN_8:  return "AtomicLoadMin8";
5068  case ISD::ATOMIC_LOAD_MAX_8:  return "AtomicLoadMax8";
5069  case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8";
5070  case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8";
5071  case ISD::ATOMIC_CMP_SWAP_16:  return "AtomicCmpSwap16";
5072  case ISD::ATOMIC_SWAP_16:      return "AtomicSwap16";
5073  case ISD::ATOMIC_LOAD_ADD_16:  return "AtomicLoadAdd16";
5074  case ISD::ATOMIC_LOAD_SUB_16:  return "AtomicLoadSub16";
5075  case ISD::ATOMIC_LOAD_AND_16:  return "AtomicLoadAnd16";
5076  case ISD::ATOMIC_LOAD_OR_16:   return "AtomicLoadOr16";
5077  case ISD::ATOMIC_LOAD_XOR_16:  return "AtomicLoadXor16";
5078  case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16";
5079  case ISD::ATOMIC_LOAD_MIN_16:  return "AtomicLoadMin16";
5080  case ISD::ATOMIC_LOAD_MAX_16:  return "AtomicLoadMax16";
5081  case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16";
5082  case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16";
5083  case ISD::ATOMIC_CMP_SWAP_32:  return "AtomicCmpSwap32";
5084  case ISD::ATOMIC_SWAP_32:      return "AtomicSwap32";
5085  case ISD::ATOMIC_LOAD_ADD_32:  return "AtomicLoadAdd32";
5086  case ISD::ATOMIC_LOAD_SUB_32:  return "AtomicLoadSub32";
5087  case ISD::ATOMIC_LOAD_AND_32:  return "AtomicLoadAnd32";
5088  case ISD::ATOMIC_LOAD_OR_32:   return "AtomicLoadOr32";
5089  case ISD::ATOMIC_LOAD_XOR_32:  return "AtomicLoadXor32";
5090  case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32";
5091  case ISD::ATOMIC_LOAD_MIN_32:  return "AtomicLoadMin32";
5092  case ISD::ATOMIC_LOAD_MAX_32:  return "AtomicLoadMax32";
5093  case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32";
5094  case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32";
5095  case ISD::ATOMIC_CMP_SWAP_64:  return "AtomicCmpSwap64";
5096  case ISD::ATOMIC_SWAP_64:      return "AtomicSwap64";
5097  case ISD::ATOMIC_LOAD_ADD_64:  return "AtomicLoadAdd64";
5098  case ISD::ATOMIC_LOAD_SUB_64:  return "AtomicLoadSub64";
5099  case ISD::ATOMIC_LOAD_AND_64:  return "AtomicLoadAnd64";
5100  case ISD::ATOMIC_LOAD_OR_64:   return "AtomicLoadOr64";
5101  case ISD::ATOMIC_LOAD_XOR_64:  return "AtomicLoadXor64";
5102  case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64";
5103  case ISD::ATOMIC_LOAD_MIN_64:  return "AtomicLoadMin64";
5104  case ISD::ATOMIC_LOAD_MAX_64:  return "AtomicLoadMax64";
5105  case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64";
5106  case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64";
5107  case ISD::PCMARKER:      return "PCMarker";
5108  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5109  case ISD::SRCVALUE:      return "SrcValue";
5110  case ISD::MEMOPERAND:    return "MemOperand";
5111  case ISD::EntryToken:    return "EntryToken";
5112  case ISD::TokenFactor:   return "TokenFactor";
5113  case ISD::AssertSext:    return "AssertSext";
5114  case ISD::AssertZext:    return "AssertZext";
5115
5116  case ISD::BasicBlock:    return "BasicBlock";
5117  case ISD::ARG_FLAGS:     return "ArgFlags";
5118  case ISD::VALUETYPE:     return "ValueType";
5119  case ISD::Register:      return "Register";
5120
5121  case ISD::Constant:      return "Constant";
5122  case ISD::ConstantFP:    return "ConstantFP";
5123  case ISD::GlobalAddress: return "GlobalAddress";
5124  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5125  case ISD::FrameIndex:    return "FrameIndex";
5126  case ISD::JumpTable:     return "JumpTable";
5127  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5128  case ISD::RETURNADDR: return "RETURNADDR";
5129  case ISD::FRAMEADDR: return "FRAMEADDR";
5130  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5131  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5132  case ISD::EHSELECTION: return "EHSELECTION";
5133  case ISD::EH_RETURN: return "EH_RETURN";
5134  case ISD::ConstantPool:  return "ConstantPool";
5135  case ISD::ExternalSymbol: return "ExternalSymbol";
5136  case ISD::INTRINSIC_WO_CHAIN: {
5137    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5138    return Intrinsic::getName((Intrinsic::ID)IID);
5139  }
5140  case ISD::INTRINSIC_VOID:
5141  case ISD::INTRINSIC_W_CHAIN: {
5142    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5143    return Intrinsic::getName((Intrinsic::ID)IID);
5144  }
5145
5146  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5147  case ISD::TargetConstant: return "TargetConstant";
5148  case ISD::TargetConstantFP:return "TargetConstantFP";
5149  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5150  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5151  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5152  case ISD::TargetJumpTable:  return "TargetJumpTable";
5153  case ISD::TargetConstantPool:  return "TargetConstantPool";
5154  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5155
5156  case ISD::CopyToReg:     return "CopyToReg";
5157  case ISD::CopyFromReg:   return "CopyFromReg";
5158  case ISD::UNDEF:         return "undef";
5159  case ISD::MERGE_VALUES:  return "merge_values";
5160  case ISD::INLINEASM:     return "inlineasm";
5161  case ISD::DBG_LABEL:     return "dbg_label";
5162  case ISD::EH_LABEL:      return "eh_label";
5163  case ISD::DECLARE:       return "declare";
5164  case ISD::HANDLENODE:    return "handlenode";
5165  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5166  case ISD::CALL:          return "call";
5167
5168  // Unary operators
5169  case ISD::FABS:   return "fabs";
5170  case ISD::FNEG:   return "fneg";
5171  case ISD::FSQRT:  return "fsqrt";
5172  case ISD::FSIN:   return "fsin";
5173  case ISD::FCOS:   return "fcos";
5174  case ISD::FPOWI:  return "fpowi";
5175  case ISD::FPOW:   return "fpow";
5176  case ISD::FTRUNC: return "ftrunc";
5177  case ISD::FFLOOR: return "ffloor";
5178  case ISD::FCEIL:  return "fceil";
5179  case ISD::FRINT:  return "frint";
5180  case ISD::FNEARBYINT: return "fnearbyint";
5181
5182  // Binary operators
5183  case ISD::ADD:    return "add";
5184  case ISD::SUB:    return "sub";
5185  case ISD::MUL:    return "mul";
5186  case ISD::MULHU:  return "mulhu";
5187  case ISD::MULHS:  return "mulhs";
5188  case ISD::SDIV:   return "sdiv";
5189  case ISD::UDIV:   return "udiv";
5190  case ISD::SREM:   return "srem";
5191  case ISD::UREM:   return "urem";
5192  case ISD::SMUL_LOHI:  return "smul_lohi";
5193  case ISD::UMUL_LOHI:  return "umul_lohi";
5194  case ISD::SDIVREM:    return "sdivrem";
5195  case ISD::UDIVREM:    return "udivrem";
5196  case ISD::AND:    return "and";
5197  case ISD::OR:     return "or";
5198  case ISD::XOR:    return "xor";
5199  case ISD::SHL:    return "shl";
5200  case ISD::SRA:    return "sra";
5201  case ISD::SRL:    return "srl";
5202  case ISD::ROTL:   return "rotl";
5203  case ISD::ROTR:   return "rotr";
5204  case ISD::FADD:   return "fadd";
5205  case ISD::FSUB:   return "fsub";
5206  case ISD::FMUL:   return "fmul";
5207  case ISD::FDIV:   return "fdiv";
5208  case ISD::FREM:   return "frem";
5209  case ISD::FCOPYSIGN: return "fcopysign";
5210  case ISD::FGETSIGN:  return "fgetsign";
5211
5212  case ISD::SETCC:       return "setcc";
5213  case ISD::VSETCC:      return "vsetcc";
5214  case ISD::SELECT:      return "select";
5215  case ISD::SELECT_CC:   return "select_cc";
5216  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5217  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5218  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5219  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5220  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5221  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5222  case ISD::CARRY_FALSE:         return "carry_false";
5223  case ISD::ADDC:        return "addc";
5224  case ISD::ADDE:        return "adde";
5225  case ISD::SADDO:       return "saddo";
5226  case ISD::UADDO:       return "uaddo";
5227  case ISD::SSUBO:       return "ssubo";
5228  case ISD::USUBO:       return "usubo";
5229  case ISD::SMULO:       return "smulo";
5230  case ISD::UMULO:       return "umulo";
5231  case ISD::SUBC:        return "subc";
5232  case ISD::SUBE:        return "sube";
5233  case ISD::SHL_PARTS:   return "shl_parts";
5234  case ISD::SRA_PARTS:   return "sra_parts";
5235  case ISD::SRL_PARTS:   return "srl_parts";
5236
5237  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5238  case ISD::INSERT_SUBREG:      return "insert_subreg";
5239
5240  // Conversion operators.
5241  case ISD::SIGN_EXTEND: return "sign_extend";
5242  case ISD::ZERO_EXTEND: return "zero_extend";
5243  case ISD::ANY_EXTEND:  return "any_extend";
5244  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5245  case ISD::TRUNCATE:    return "truncate";
5246  case ISD::FP_ROUND:    return "fp_round";
5247  case ISD::FLT_ROUNDS_: return "flt_rounds";
5248  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5249  case ISD::FP_EXTEND:   return "fp_extend";
5250
5251  case ISD::SINT_TO_FP:  return "sint_to_fp";
5252  case ISD::UINT_TO_FP:  return "uint_to_fp";
5253  case ISD::FP_TO_SINT:  return "fp_to_sint";
5254  case ISD::FP_TO_UINT:  return "fp_to_uint";
5255  case ISD::BIT_CONVERT: return "bit_convert";
5256
5257  case ISD::CONVERT_RNDSAT: {
5258    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5259    default: assert(0 && "Unknown cvt code!");
5260    case ISD::CVT_FF:  return "cvt_ff";
5261    case ISD::CVT_FS:  return "cvt_fs";
5262    case ISD::CVT_FU:  return "cvt_fu";
5263    case ISD::CVT_SF:  return "cvt_sf";
5264    case ISD::CVT_UF:  return "cvt_uf";
5265    case ISD::CVT_SS:  return "cvt_ss";
5266    case ISD::CVT_SU:  return "cvt_su";
5267    case ISD::CVT_US:  return "cvt_us";
5268    case ISD::CVT_UU:  return "cvt_uu";
5269    }
5270  }
5271
5272    // Control flow instructions
5273  case ISD::BR:      return "br";
5274  case ISD::BRIND:   return "brind";
5275  case ISD::BR_JT:   return "br_jt";
5276  case ISD::BRCOND:  return "brcond";
5277  case ISD::BR_CC:   return "br_cc";
5278  case ISD::RET:     return "ret";
5279  case ISD::CALLSEQ_START:  return "callseq_start";
5280  case ISD::CALLSEQ_END:    return "callseq_end";
5281
5282    // Other operators
5283  case ISD::LOAD:               return "load";
5284  case ISD::STORE:              return "store";
5285  case ISD::VAARG:              return "vaarg";
5286  case ISD::VACOPY:             return "vacopy";
5287  case ISD::VAEND:              return "vaend";
5288  case ISD::VASTART:            return "vastart";
5289  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5290  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5291  case ISD::BUILD_PAIR:         return "build_pair";
5292  case ISD::STACKSAVE:          return "stacksave";
5293  case ISD::STACKRESTORE:       return "stackrestore";
5294  case ISD::TRAP:               return "trap";
5295
5296  // Bit manipulation
5297  case ISD::BSWAP:   return "bswap";
5298  case ISD::CTPOP:   return "ctpop";
5299  case ISD::CTTZ:    return "cttz";
5300  case ISD::CTLZ:    return "ctlz";
5301
5302  // Debug info
5303  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5304  case ISD::DEBUG_LOC: return "debug_loc";
5305
5306  // Trampolines
5307  case ISD::TRAMPOLINE: return "trampoline";
5308
5309  case ISD::CONDCODE:
5310    switch (cast<CondCodeSDNode>(this)->get()) {
5311    default: assert(0 && "Unknown setcc condition!");
5312    case ISD::SETOEQ:  return "setoeq";
5313    case ISD::SETOGT:  return "setogt";
5314    case ISD::SETOGE:  return "setoge";
5315    case ISD::SETOLT:  return "setolt";
5316    case ISD::SETOLE:  return "setole";
5317    case ISD::SETONE:  return "setone";
5318
5319    case ISD::SETO:    return "seto";
5320    case ISD::SETUO:   return "setuo";
5321    case ISD::SETUEQ:  return "setue";
5322    case ISD::SETUGT:  return "setugt";
5323    case ISD::SETUGE:  return "setuge";
5324    case ISD::SETULT:  return "setult";
5325    case ISD::SETULE:  return "setule";
5326    case ISD::SETUNE:  return "setune";
5327
5328    case ISD::SETEQ:   return "seteq";
5329    case ISD::SETGT:   return "setgt";
5330    case ISD::SETGE:   return "setge";
5331    case ISD::SETLT:   return "setlt";
5332    case ISD::SETLE:   return "setle";
5333    case ISD::SETNE:   return "setne";
5334    }
5335  }
5336}
5337
5338const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5339  switch (AM) {
5340  default:
5341    return "";
5342  case ISD::PRE_INC:
5343    return "<pre-inc>";
5344  case ISD::PRE_DEC:
5345    return "<pre-dec>";
5346  case ISD::POST_INC:
5347    return "<post-inc>";
5348  case ISD::POST_DEC:
5349    return "<post-dec>";
5350  }
5351}
5352
5353std::string ISD::ArgFlagsTy::getArgFlagsString() {
5354  std::string S = "< ";
5355
5356  if (isZExt())
5357    S += "zext ";
5358  if (isSExt())
5359    S += "sext ";
5360  if (isInReg())
5361    S += "inreg ";
5362  if (isSRet())
5363    S += "sret ";
5364  if (isByVal())
5365    S += "byval ";
5366  if (isNest())
5367    S += "nest ";
5368  if (getByValAlign())
5369    S += "byval-align:" + utostr(getByValAlign()) + " ";
5370  if (getOrigAlign())
5371    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5372  if (getByValSize())
5373    S += "byval-size:" + utostr(getByValSize()) + " ";
5374  return S + ">";
5375}
5376
5377void SDNode::dump() const { dump(0); }
5378void SDNode::dump(const SelectionDAG *G) const {
5379  print(errs(), G);
5380  errs().flush();
5381}
5382
5383void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5384  OS << (void*)this << ": ";
5385
5386  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5387    if (i) OS << ",";
5388    if (getValueType(i) == MVT::Other)
5389      OS << "ch";
5390    else
5391      OS << getValueType(i).getMVTString();
5392  }
5393  OS << " = " << getOperationName(G);
5394
5395  OS << " ";
5396  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5397    if (i) OS << ", ";
5398    OS << (void*)getOperand(i).getNode();
5399    if (unsigned RN = getOperand(i).getResNo())
5400      OS << ":" << RN;
5401  }
5402
5403  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5404    SDNode *Mask = getOperand(2).getNode();
5405    OS << "<";
5406    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5407      if (i) OS << ",";
5408      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5409        OS << "u";
5410      else
5411        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5412    }
5413    OS << ">";
5414  }
5415
5416  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5417    OS << '<' << CSDN->getAPIntValue() << '>';
5418  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5419    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5420      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5421    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5422      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5423    else {
5424      OS << "<APFloat(";
5425      CSDN->getValueAPF().bitcastToAPInt().dump();
5426      OS << ")>";
5427    }
5428  } else if (const GlobalAddressSDNode *GADN =
5429             dyn_cast<GlobalAddressSDNode>(this)) {
5430    int64_t offset = GADN->getOffset();
5431    OS << '<';
5432    WriteAsOperand(OS, GADN->getGlobal());
5433    OS << '>';
5434    if (offset > 0)
5435      OS << " + " << offset;
5436    else
5437      OS << " " << offset;
5438  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5439    OS << "<" << FIDN->getIndex() << ">";
5440  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5441    OS << "<" << JTDN->getIndex() << ">";
5442  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5443    int offset = CP->getOffset();
5444    if (CP->isMachineConstantPoolEntry())
5445      OS << "<" << *CP->getMachineCPVal() << ">";
5446    else
5447      OS << "<" << *CP->getConstVal() << ">";
5448    if (offset > 0)
5449      OS << " + " << offset;
5450    else
5451      OS << " " << offset;
5452  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5453    OS << "<";
5454    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5455    if (LBB)
5456      OS << LBB->getName() << " ";
5457    OS << (const void*)BBDN->getBasicBlock() << ">";
5458  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5459    if (G && R->getReg() &&
5460        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5461      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5462    } else {
5463      OS << " #" << R->getReg();
5464    }
5465  } else if (const ExternalSymbolSDNode *ES =
5466             dyn_cast<ExternalSymbolSDNode>(this)) {
5467    OS << "'" << ES->getSymbol() << "'";
5468  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5469    if (M->getValue())
5470      OS << "<" << M->getValue() << ">";
5471    else
5472      OS << "<null>";
5473  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5474    if (M->MO.getValue())
5475      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5476    else
5477      OS << "<null:" << M->MO.getOffset() << ">";
5478  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5479    OS << N->getArgFlags().getArgFlagsString();
5480  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5481    OS << ":" << N->getVT().getMVTString();
5482  }
5483  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5484    const Value *SrcValue = LD->getSrcValue();
5485    int SrcOffset = LD->getSrcValueOffset();
5486    OS << " <";
5487    if (SrcValue)
5488      OS << SrcValue;
5489    else
5490      OS << "null";
5491    OS << ":" << SrcOffset << ">";
5492
5493    bool doExt = true;
5494    switch (LD->getExtensionType()) {
5495    default: doExt = false; break;
5496    case ISD::EXTLOAD: OS << " <anyext "; break;
5497    case ISD::SEXTLOAD: OS << " <sext "; break;
5498    case ISD::ZEXTLOAD: OS << " <zext "; break;
5499    }
5500    if (doExt)
5501      OS << LD->getMemoryVT().getMVTString() << ">";
5502
5503    const char *AM = getIndexedModeName(LD->getAddressingMode());
5504    if (*AM)
5505      OS << " " << AM;
5506    if (LD->isVolatile())
5507      OS << " <volatile>";
5508    OS << " alignment=" << LD->getAlignment();
5509  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5510    const Value *SrcValue = ST->getSrcValue();
5511    int SrcOffset = ST->getSrcValueOffset();
5512    OS << " <";
5513    if (SrcValue)
5514      OS << SrcValue;
5515    else
5516      OS << "null";
5517    OS << ":" << SrcOffset << ">";
5518
5519    if (ST->isTruncatingStore())
5520      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5521
5522    const char *AM = getIndexedModeName(ST->getAddressingMode());
5523    if (*AM)
5524      OS << " " << AM;
5525    if (ST->isVolatile())
5526      OS << " <volatile>";
5527    OS << " alignment=" << ST->getAlignment();
5528  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5529    const Value *SrcValue = AT->getSrcValue();
5530    int SrcOffset = AT->getSrcValueOffset();
5531    OS << " <";
5532    if (SrcValue)
5533      OS << SrcValue;
5534    else
5535      OS << "null";
5536    OS << ":" << SrcOffset << ">";
5537    if (AT->isVolatile())
5538      OS << " <volatile>";
5539    OS << " alignment=" << AT->getAlignment();
5540  }
5541}
5542
5543static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5544  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5545    if (N->getOperand(i).getNode()->hasOneUse())
5546      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5547    else
5548      cerr << "\n" << std::string(indent+2, ' ')
5549           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5550
5551
5552  cerr << "\n" << std::string(indent, ' ');
5553  N->dump(G);
5554}
5555
5556void SelectionDAG::dump() const {
5557  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5558
5559  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5560       I != E; ++I) {
5561    const SDNode *N = I;
5562    if (!N->hasOneUse() && N != getRoot().getNode())
5563      DumpNodes(N, 2, this);
5564  }
5565
5566  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5567
5568  cerr << "\n\n";
5569}
5570
5571const Type *ConstantPoolSDNode::getType() const {
5572  if (isMachineConstantPoolEntry())
5573    return Val.MachineCPVal->getType();
5574  return Val.ConstVal->getType();
5575}
5576