SelectionDAG.cpp revision 7ffdd43aca7b74e449b88905738ac5815005071c
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Function.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/Intrinsics.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CallingConv.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineModuleInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetOptions.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/ManagedStatic.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/System/Mutex.h"
40#include "llvm/ADT/SetVector.h"
41#include "llvm/ADT/SmallPtrSet.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/StringExtras.h"
45#include <algorithm>
46#include <cmath>
47using namespace llvm;
48
49/// makeVTList - Return an instance of the SDVTList struct initialized with the
50/// specified members.
51static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
52  SDVTList Res = {VTs, NumVTs};
53  return Res;
54}
55
56static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
57  switch (VT.getSimpleVT().SimpleTy) {
58  default: llvm_unreachable("Unknown FP format");
59  case MVT::f32:     return &APFloat::IEEEsingle;
60  case MVT::f64:     return &APFloat::IEEEdouble;
61  case MVT::f80:     return &APFloat::x87DoubleExtended;
62  case MVT::f128:    return &APFloat::IEEEquad;
63  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
64  }
65}
66
67SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
68
69//===----------------------------------------------------------------------===//
70//                              ConstantFPSDNode Class
71//===----------------------------------------------------------------------===//
72
73/// isExactlyValue - We don't rely on operator== working on double values, as
74/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
75/// As such, this method can be used to do an exact bit-for-bit comparison of
76/// two floating point values.
77bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
78  return getValueAPF().bitwiseIsEqual(V);
79}
80
81bool ConstantFPSDNode::isValueValidForType(EVT VT,
82                                           const APFloat& Val) {
83  assert(VT.isFloatingPoint() && "Can only convert between FP types");
84
85  // PPC long double cannot be converted to any other type.
86  if (VT == MVT::ppcf128 ||
87      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
88    return false;
89
90  // convert modifies in place, so make a copy.
91  APFloat Val2 = APFloat(Val);
92  bool losesInfo;
93  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
94                      &losesInfo);
95  return !losesInfo;
96}
97
98//===----------------------------------------------------------------------===//
99//                              ISD Namespace
100//===----------------------------------------------------------------------===//
101
102/// isBuildVectorAllOnes - Return true if the specified node is a
103/// BUILD_VECTOR where all of the elements are ~0 or undef.
104bool ISD::isBuildVectorAllOnes(const SDNode *N) {
105  // Look through a bit convert.
106  if (N->getOpcode() == ISD::BIT_CONVERT)
107    N = N->getOperand(0).getNode();
108
109  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
110
111  unsigned i = 0, e = N->getNumOperands();
112
113  // Skip over all of the undef values.
114  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
115    ++i;
116
117  // Do not accept an all-undef vector.
118  if (i == e) return false;
119
120  // Do not accept build_vectors that aren't all constants or which have non-~0
121  // elements.
122  SDValue NotZero = N->getOperand(i);
123  if (isa<ConstantSDNode>(NotZero)) {
124    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
125      return false;
126  } else if (isa<ConstantFPSDNode>(NotZero)) {
127    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
128                bitcastToAPInt().isAllOnesValue())
129      return false;
130  } else
131    return false;
132
133  // Okay, we have at least one ~0 value, check to see if the rest match or are
134  // undefs.
135  for (++i; i != e; ++i)
136    if (N->getOperand(i) != NotZero &&
137        N->getOperand(i).getOpcode() != ISD::UNDEF)
138      return false;
139  return true;
140}
141
142
143/// isBuildVectorAllZeros - Return true if the specified node is a
144/// BUILD_VECTOR where all of the elements are 0 or undef.
145bool ISD::isBuildVectorAllZeros(const SDNode *N) {
146  // Look through a bit convert.
147  if (N->getOpcode() == ISD::BIT_CONVERT)
148    N = N->getOperand(0).getNode();
149
150  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
151
152  unsigned i = 0, e = N->getNumOperands();
153
154  // Skip over all of the undef values.
155  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
156    ++i;
157
158  // Do not accept an all-undef vector.
159  if (i == e) return false;
160
161  // Do not accept build_vectors that aren't all constants or which have non-0
162  // elements.
163  SDValue Zero = N->getOperand(i);
164  if (isa<ConstantSDNode>(Zero)) {
165    if (!cast<ConstantSDNode>(Zero)->isNullValue())
166      return false;
167  } else if (isa<ConstantFPSDNode>(Zero)) {
168    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
169      return false;
170  } else
171    return false;
172
173  // Okay, we have at least one 0 value, check to see if the rest match or are
174  // undefs.
175  for (++i; i != e; ++i)
176    if (N->getOperand(i) != Zero &&
177        N->getOperand(i).getOpcode() != ISD::UNDEF)
178      return false;
179  return true;
180}
181
182/// isScalarToVector - Return true if the specified node is a
183/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
184/// element is not an undef.
185bool ISD::isScalarToVector(const SDNode *N) {
186  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
187    return true;
188
189  if (N->getOpcode() != ISD::BUILD_VECTOR)
190    return false;
191  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
192    return false;
193  unsigned NumElems = N->getNumOperands();
194  for (unsigned i = 1; i < NumElems; ++i) {
195    SDValue V = N->getOperand(i);
196    if (V.getOpcode() != ISD::UNDEF)
197      return false;
198  }
199  return true;
200}
201
202
203/// isDebugLabel - Return true if the specified node represents a debug
204/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
205bool ISD::isDebugLabel(const SDNode *N) {
206  SDValue Zero;
207  if (N->getOpcode() == ISD::DBG_LABEL)
208    return true;
209  if (N->isMachineOpcode() &&
210      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
211    return true;
212  return false;
213}
214
215/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
216/// when given the operation for (X op Y).
217ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
218  // To perform this operation, we just need to swap the L and G bits of the
219  // operation.
220  unsigned OldL = (Operation >> 2) & 1;
221  unsigned OldG = (Operation >> 1) & 1;
222  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
223                       (OldL << 1) |       // New G bit
224                       (OldG << 2));       // New L bit.
225}
226
227/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
228/// 'op' is a valid SetCC operation.
229ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
230  unsigned Operation = Op;
231  if (isInteger)
232    Operation ^= 7;   // Flip L, G, E bits, but not U.
233  else
234    Operation ^= 15;  // Flip all of the condition bits.
235
236  if (Operation > ISD::SETTRUE2)
237    Operation &= ~8;  // Don't let N and U bits get set.
238
239  return ISD::CondCode(Operation);
240}
241
242
243/// isSignedOp - For an integer comparison, return 1 if the comparison is a
244/// signed operation and 2 if the result is an unsigned comparison.  Return zero
245/// if the operation does not depend on the sign of the input (setne and seteq).
246static int isSignedOp(ISD::CondCode Opcode) {
247  switch (Opcode) {
248  default: llvm_unreachable("Illegal integer setcc operation!");
249  case ISD::SETEQ:
250  case ISD::SETNE: return 0;
251  case ISD::SETLT:
252  case ISD::SETLE:
253  case ISD::SETGT:
254  case ISD::SETGE: return 1;
255  case ISD::SETULT:
256  case ISD::SETULE:
257  case ISD::SETUGT:
258  case ISD::SETUGE: return 2;
259  }
260}
261
262/// getSetCCOrOperation - Return the result of a logical OR between different
263/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
264/// returns SETCC_INVALID if it is not possible to represent the resultant
265/// comparison.
266ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
267                                       bool isInteger) {
268  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
269    // Cannot fold a signed integer setcc with an unsigned integer setcc.
270    return ISD::SETCC_INVALID;
271
272  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
273
274  // If the N and U bits get set then the resultant comparison DOES suddenly
275  // care about orderedness, and is true when ordered.
276  if (Op > ISD::SETTRUE2)
277    Op &= ~16;     // Clear the U bit if the N bit is set.
278
279  // Canonicalize illegal integer setcc's.
280  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
281    Op = ISD::SETNE;
282
283  return ISD::CondCode(Op);
284}
285
286/// getSetCCAndOperation - Return the result of a logical AND between different
287/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
288/// function returns zero if it is not possible to represent the resultant
289/// comparison.
290ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
291                                        bool isInteger) {
292  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
293    // Cannot fold a signed setcc with an unsigned setcc.
294    return ISD::SETCC_INVALID;
295
296  // Combine all of the condition bits.
297  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
298
299  // Canonicalize illegal integer setcc's.
300  if (isInteger) {
301    switch (Result) {
302    default: break;
303    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
304    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
305    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
306    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
307    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
308    }
309  }
310
311  return Result;
312}
313
314const TargetMachine &SelectionDAG::getTarget() const {
315  return MF->getTarget();
316}
317
318//===----------------------------------------------------------------------===//
319//                           SDNode Profile Support
320//===----------------------------------------------------------------------===//
321
322/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
323///
324static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
325  ID.AddInteger(OpC);
326}
327
328/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
329/// solely with their pointer.
330static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
331  ID.AddPointer(VTList.VTs);
332}
333
334/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
335///
336static void AddNodeIDOperands(FoldingSetNodeID &ID,
337                              const SDValue *Ops, unsigned NumOps) {
338  for (; NumOps; --NumOps, ++Ops) {
339    ID.AddPointer(Ops->getNode());
340    ID.AddInteger(Ops->getResNo());
341  }
342}
343
344/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
345///
346static void AddNodeIDOperands(FoldingSetNodeID &ID,
347                              const SDUse *Ops, unsigned NumOps) {
348  for (; NumOps; --NumOps, ++Ops) {
349    ID.AddPointer(Ops->getNode());
350    ID.AddInteger(Ops->getResNo());
351  }
352}
353
354static void AddNodeIDNode(FoldingSetNodeID &ID,
355                          unsigned short OpC, SDVTList VTList,
356                          const SDValue *OpList, unsigned N) {
357  AddNodeIDOpcode(ID, OpC);
358  AddNodeIDValueTypes(ID, VTList);
359  AddNodeIDOperands(ID, OpList, N);
360}
361
362/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
363/// the NodeID data.
364static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
365  switch (N->getOpcode()) {
366  case ISD::TargetExternalSymbol:
367  case ISD::ExternalSymbol:
368    llvm_unreachable("Should only be used on nodes with operands");
369  default: break;  // Normal nodes don't need extra info.
370  case ISD::TargetConstant:
371  case ISD::Constant:
372    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
373    break;
374  case ISD::TargetConstantFP:
375  case ISD::ConstantFP: {
376    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
377    break;
378  }
379  case ISD::TargetGlobalAddress:
380  case ISD::GlobalAddress:
381  case ISD::TargetGlobalTLSAddress:
382  case ISD::GlobalTLSAddress: {
383    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
384    ID.AddPointer(GA->getGlobal());
385    ID.AddInteger(GA->getOffset());
386    ID.AddInteger(GA->getTargetFlags());
387    break;
388  }
389  case ISD::BasicBlock:
390    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
391    break;
392  case ISD::Register:
393    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
394    break;
395  case ISD::DBG_STOPPOINT: {
396    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
397    ID.AddInteger(DSP->getLine());
398    ID.AddInteger(DSP->getColumn());
399    ID.AddPointer(DSP->getCompileUnit());
400    break;
401  }
402  case ISD::SRCVALUE:
403    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
404    break;
405  case ISD::MEMOPERAND: {
406    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
407    MO.Profile(ID);
408    break;
409  }
410  case ISD::FrameIndex:
411  case ISD::TargetFrameIndex:
412    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
413    break;
414  case ISD::JumpTable:
415  case ISD::TargetJumpTable:
416    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
417    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
418    break;
419  case ISD::ConstantPool:
420  case ISD::TargetConstantPool: {
421    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
422    ID.AddInteger(CP->getAlignment());
423    ID.AddInteger(CP->getOffset());
424    if (CP->isMachineConstantPoolEntry())
425      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
426    else
427      ID.AddPointer(CP->getConstVal());
428    ID.AddInteger(CP->getTargetFlags());
429    break;
430  }
431  case ISD::LOAD: {
432    const LoadSDNode *LD = cast<LoadSDNode>(N);
433    ID.AddInteger(LD->getMemoryVT().getRawBits());
434    ID.AddInteger(LD->getRawSubclassData());
435    break;
436  }
437  case ISD::STORE: {
438    const StoreSDNode *ST = cast<StoreSDNode>(N);
439    ID.AddInteger(ST->getMemoryVT().getRawBits());
440    ID.AddInteger(ST->getRawSubclassData());
441    break;
442  }
443  case ISD::ATOMIC_CMP_SWAP:
444  case ISD::ATOMIC_SWAP:
445  case ISD::ATOMIC_LOAD_ADD:
446  case ISD::ATOMIC_LOAD_SUB:
447  case ISD::ATOMIC_LOAD_AND:
448  case ISD::ATOMIC_LOAD_OR:
449  case ISD::ATOMIC_LOAD_XOR:
450  case ISD::ATOMIC_LOAD_NAND:
451  case ISD::ATOMIC_LOAD_MIN:
452  case ISD::ATOMIC_LOAD_MAX:
453  case ISD::ATOMIC_LOAD_UMIN:
454  case ISD::ATOMIC_LOAD_UMAX: {
455    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
456    ID.AddInteger(AT->getMemoryVT().getRawBits());
457    ID.AddInteger(AT->getRawSubclassData());
458    break;
459  }
460  case ISD::VECTOR_SHUFFLE: {
461    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
462    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
463         i != e; ++i)
464      ID.AddInteger(SVN->getMaskElt(i));
465    break;
466  }
467  } // end switch (N->getOpcode())
468}
469
470/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
471/// data.
472static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
473  AddNodeIDOpcode(ID, N->getOpcode());
474  // Add the return value info.
475  AddNodeIDValueTypes(ID, N->getVTList());
476  // Add the operand info.
477  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
478
479  // Handle SDNode leafs with special info.
480  AddNodeIDCustom(ID, N);
481}
482
483/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
484/// the CSE map that carries alignment, volatility, indexing mode, and
485/// extension/truncation information.
486///
487static inline unsigned
488encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
489                     bool isVolatile, unsigned Alignment) {
490  assert((ConvType & 3) == ConvType &&
491         "ConvType may not require more than 2 bits!");
492  assert((AM & 7) == AM &&
493         "AM may not require more than 3 bits!");
494  return ConvType |
495         (AM << 2) |
496         (isVolatile << 5) |
497         ((Log2_32(Alignment) + 1) << 6);
498}
499
500//===----------------------------------------------------------------------===//
501//                              SelectionDAG Class
502//===----------------------------------------------------------------------===//
503
504/// doNotCSE - Return true if CSE should not be performed for this node.
505static bool doNotCSE(SDNode *N) {
506  if (N->getValueType(0) == MVT::Flag)
507    return true; // Never CSE anything that produces a flag.
508
509  switch (N->getOpcode()) {
510  default: break;
511  case ISD::HANDLENODE:
512  case ISD::DBG_LABEL:
513  case ISD::DBG_STOPPOINT:
514  case ISD::EH_LABEL:
515  case ISD::DECLARE:
516    return true;   // Never CSE these nodes.
517  }
518
519  // Check that remaining values produced are not flags.
520  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
521    if (N->getValueType(i) == MVT::Flag)
522      return true; // Never CSE anything that produces a flag.
523
524  return false;
525}
526
527/// RemoveDeadNodes - This method deletes all unreachable nodes in the
528/// SelectionDAG.
529void SelectionDAG::RemoveDeadNodes() {
530  // Create a dummy node (which is not added to allnodes), that adds a reference
531  // to the root node, preventing it from being deleted.
532  HandleSDNode Dummy(getRoot());
533
534  SmallVector<SDNode*, 128> DeadNodes;
535
536  // Add all obviously-dead nodes to the DeadNodes worklist.
537  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
538    if (I->use_empty())
539      DeadNodes.push_back(I);
540
541  RemoveDeadNodes(DeadNodes);
542
543  // If the root changed (e.g. it was a dead load, update the root).
544  setRoot(Dummy.getValue());
545}
546
547/// RemoveDeadNodes - This method deletes the unreachable nodes in the
548/// given list, and any nodes that become unreachable as a result.
549void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
550                                   DAGUpdateListener *UpdateListener) {
551
552  // Process the worklist, deleting the nodes and adding their uses to the
553  // worklist.
554  while (!DeadNodes.empty()) {
555    SDNode *N = DeadNodes.pop_back_val();
556
557    if (UpdateListener)
558      UpdateListener->NodeDeleted(N, 0);
559
560    // Take the node out of the appropriate CSE map.
561    RemoveNodeFromCSEMaps(N);
562
563    // Next, brutally remove the operand list.  This is safe to do, as there are
564    // no cycles in the graph.
565    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
566      SDUse &Use = *I++;
567      SDNode *Operand = Use.getNode();
568      Use.set(SDValue());
569
570      // Now that we removed this operand, see if there are no uses of it left.
571      if (Operand->use_empty())
572        DeadNodes.push_back(Operand);
573    }
574
575    DeallocateNode(N);
576  }
577}
578
579void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
580  SmallVector<SDNode*, 16> DeadNodes(1, N);
581  RemoveDeadNodes(DeadNodes, UpdateListener);
582}
583
584void SelectionDAG::DeleteNode(SDNode *N) {
585  // First take this out of the appropriate CSE map.
586  RemoveNodeFromCSEMaps(N);
587
588  // Finally, remove uses due to operands of this node, remove from the
589  // AllNodes list, and delete the node.
590  DeleteNodeNotInCSEMaps(N);
591}
592
593void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
594  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
595  assert(N->use_empty() && "Cannot delete a node that is not dead!");
596
597  // Drop all of the operands and decrement used node's use counts.
598  N->DropOperands();
599
600  DeallocateNode(N);
601}
602
603void SelectionDAG::DeallocateNode(SDNode *N) {
604  if (N->OperandsNeedDelete)
605    delete[] N->OperandList;
606
607  // Set the opcode to DELETED_NODE to help catch bugs when node
608  // memory is reallocated.
609  N->NodeType = ISD::DELETED_NODE;
610
611  NodeAllocator.Deallocate(AllNodes.remove(N));
612}
613
614/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
615/// correspond to it.  This is useful when we're about to delete or repurpose
616/// the node.  We don't want future request for structurally identical nodes
617/// to return N anymore.
618bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
619  bool Erased = false;
620  switch (N->getOpcode()) {
621  case ISD::EntryToken:
622    llvm_unreachable("EntryToken should not be in CSEMaps!");
623    return false;
624  case ISD::HANDLENODE: return false;  // noop.
625  case ISD::CONDCODE:
626    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
627           "Cond code doesn't exist!");
628    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
629    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
630    break;
631  case ISD::ExternalSymbol:
632    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
633    break;
634  case ISD::TargetExternalSymbol: {
635    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
636    Erased = TargetExternalSymbols.erase(
637               std::pair<std::string,unsigned char>(ESN->getSymbol(),
638                                                    ESN->getTargetFlags()));
639    break;
640  }
641  case ISD::VALUETYPE: {
642    EVT VT = cast<VTSDNode>(N)->getVT();
643    if (VT.isExtended()) {
644      Erased = ExtendedValueTypeNodes.erase(VT);
645    } else {
646      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
647      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
648    }
649    break;
650  }
651  default:
652    // Remove it from the CSE Map.
653    Erased = CSEMap.RemoveNode(N);
654    break;
655  }
656#ifndef NDEBUG
657  // Verify that the node was actually in one of the CSE maps, unless it has a
658  // flag result (which cannot be CSE'd) or is one of the special cases that are
659  // not subject to CSE.
660  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
661      !N->isMachineOpcode() && !doNotCSE(N)) {
662    N->dump(this);
663    cerr << "\n";
664    llvm_unreachable("Node is not in map!");
665  }
666#endif
667  return Erased;
668}
669
670/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
671/// maps and modified in place. Add it back to the CSE maps, unless an identical
672/// node already exists, in which case transfer all its users to the existing
673/// node. This transfer can potentially trigger recursive merging.
674///
675void
676SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
677                                       DAGUpdateListener *UpdateListener) {
678  // For node types that aren't CSE'd, just act as if no identical node
679  // already exists.
680  if (!doNotCSE(N)) {
681    SDNode *Existing = CSEMap.GetOrInsertNode(N);
682    if (Existing != N) {
683      // If there was already an existing matching node, use ReplaceAllUsesWith
684      // to replace the dead one with the existing one.  This can cause
685      // recursive merging of other unrelated nodes down the line.
686      ReplaceAllUsesWith(N, Existing, UpdateListener);
687
688      // N is now dead.  Inform the listener if it exists and delete it.
689      if (UpdateListener)
690        UpdateListener->NodeDeleted(N, Existing);
691      DeleteNodeNotInCSEMaps(N);
692      return;
693    }
694  }
695
696  // If the node doesn't already exist, we updated it.  Inform a listener if
697  // it exists.
698  if (UpdateListener)
699    UpdateListener->NodeUpdated(N);
700}
701
702/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
703/// were replaced with those specified.  If this node is never memoized,
704/// return null, otherwise return a pointer to the slot it would take.  If a
705/// node already exists with these operands, the slot will be non-null.
706SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
707                                           void *&InsertPos) {
708  if (doNotCSE(N))
709    return 0;
710
711  SDValue Ops[] = { Op };
712  FoldingSetNodeID ID;
713  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
714  AddNodeIDCustom(ID, N);
715  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
716}
717
718/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
719/// were replaced with those specified.  If this node is never memoized,
720/// return null, otherwise return a pointer to the slot it would take.  If a
721/// node already exists with these operands, the slot will be non-null.
722SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
723                                           SDValue Op1, SDValue Op2,
724                                           void *&InsertPos) {
725  if (doNotCSE(N))
726    return 0;
727
728  SDValue Ops[] = { Op1, Op2 };
729  FoldingSetNodeID ID;
730  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
731  AddNodeIDCustom(ID, N);
732  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
733}
734
735
736/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
737/// were replaced with those specified.  If this node is never memoized,
738/// return null, otherwise return a pointer to the slot it would take.  If a
739/// node already exists with these operands, the slot will be non-null.
740SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
741                                           const SDValue *Ops,unsigned NumOps,
742                                           void *&InsertPos) {
743  if (doNotCSE(N))
744    return 0;
745
746  FoldingSetNodeID ID;
747  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
748  AddNodeIDCustom(ID, N);
749  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
750}
751
752/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
753void SelectionDAG::VerifyNode(SDNode *N) {
754  switch (N->getOpcode()) {
755  default:
756    break;
757  case ISD::BUILD_PAIR: {
758    EVT VT = N->getValueType(0);
759    assert(N->getNumValues() == 1 && "Too many results!");
760    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
761           "Wrong return type!");
762    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
763    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
764           "Mismatched operand types!");
765    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
766           "Wrong operand type!");
767    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
768           "Wrong return type size");
769    break;
770  }
771  case ISD::BUILD_VECTOR: {
772    assert(N->getNumValues() == 1 && "Too many results!");
773    assert(N->getValueType(0).isVector() && "Wrong return type!");
774    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
775           "Wrong number of operands!");
776    EVT EltVT = N->getValueType(0).getVectorElementType();
777    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
778      assert((I->getValueType() == EltVT ||
779             (EltVT.isInteger() && I->getValueType().isInteger() &&
780              EltVT.bitsLE(I->getValueType()))) &&
781            "Wrong operand type!");
782    break;
783  }
784  }
785}
786
787/// getEVTAlignment - Compute the default alignment value for the
788/// given type.
789///
790unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
791  const Type *Ty = VT == MVT::iPTR ?
792                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
793                   VT.getTypeForEVT(*getContext());
794
795  return TLI.getTargetData()->getABITypeAlignment(Ty);
796}
797
798// EntryNode could meaningfully have debug info if we can find it...
799SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
800  : TLI(tli), FLI(fli), DW(0),
801    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
802    getVTList(MVT::Other)), Root(getEntryNode()) {
803  AllNodes.push_back(&EntryNode);
804}
805
806void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
807                        DwarfWriter *dw) {
808  MF = &mf;
809  MMI = mmi;
810  DW = dw;
811  Context = &mf.getFunction()->getContext();
812}
813
814SelectionDAG::~SelectionDAG() {
815  allnodes_clear();
816}
817
818void SelectionDAG::allnodes_clear() {
819  assert(&*AllNodes.begin() == &EntryNode);
820  AllNodes.remove(AllNodes.begin());
821  while (!AllNodes.empty())
822    DeallocateNode(AllNodes.begin());
823}
824
825void SelectionDAG::clear() {
826  allnodes_clear();
827  OperandAllocator.Reset();
828  CSEMap.clear();
829
830  ExtendedValueTypeNodes.clear();
831  ExternalSymbols.clear();
832  TargetExternalSymbols.clear();
833  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
834            static_cast<CondCodeSDNode*>(0));
835  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
836            static_cast<SDNode*>(0));
837
838  EntryNode.UseList = 0;
839  AllNodes.push_back(&EntryNode);
840  Root = getEntryNode();
841}
842
843SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
844  if (Op.getValueType() == VT) return Op;
845  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
846                                   VT.getSizeInBits());
847  return getNode(ISD::AND, DL, Op.getValueType(), Op,
848                 getConstant(Imm, Op.getValueType()));
849}
850
851/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
852///
853SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
854  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
855  SDValue NegOne =
856    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
857  return getNode(ISD::XOR, DL, VT, Val, NegOne);
858}
859
860SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
861  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
862  assert((EltVT.getSizeInBits() >= 64 ||
863         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
864         "getConstant with a uint64_t value that doesn't fit in the type!");
865  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
866}
867
868SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
869  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
870}
871
872SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
873  assert(VT.isInteger() && "Cannot create FP integer constant!");
874
875  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
876  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
877         "APInt size does not match type size!");
878
879  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
880  FoldingSetNodeID ID;
881  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
882  ID.AddPointer(&Val);
883  void *IP = 0;
884  SDNode *N = NULL;
885  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
886    if (!VT.isVector())
887      return SDValue(N, 0);
888  if (!N) {
889    N = NodeAllocator.Allocate<ConstantSDNode>();
890    new (N) ConstantSDNode(isT, &Val, EltVT);
891    CSEMap.InsertNode(N, IP);
892    AllNodes.push_back(N);
893  }
894
895  SDValue Result(N, 0);
896  if (VT.isVector()) {
897    SmallVector<SDValue, 8> Ops;
898    Ops.assign(VT.getVectorNumElements(), Result);
899    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
900                     VT, &Ops[0], Ops.size());
901  }
902  return Result;
903}
904
905SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
906  return getConstant(Val, TLI.getPointerTy(), isTarget);
907}
908
909
910SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
911  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
912}
913
914SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
915  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
916
917  EVT EltVT =
918    VT.isVector() ? VT.getVectorElementType() : VT;
919
920  // Do the map lookup using the actual bit pattern for the floating point
921  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
922  // we don't have issues with SNANs.
923  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
924  FoldingSetNodeID ID;
925  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
926  ID.AddPointer(&V);
927  void *IP = 0;
928  SDNode *N = NULL;
929  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
930    if (!VT.isVector())
931      return SDValue(N, 0);
932  if (!N) {
933    N = NodeAllocator.Allocate<ConstantFPSDNode>();
934    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
935    CSEMap.InsertNode(N, IP);
936    AllNodes.push_back(N);
937  }
938
939  SDValue Result(N, 0);
940  if (VT.isVector()) {
941    SmallVector<SDValue, 8> Ops;
942    Ops.assign(VT.getVectorNumElements(), Result);
943    // FIXME DebugLoc info might be appropriate here
944    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
945                     VT, &Ops[0], Ops.size());
946  }
947  return Result;
948}
949
950SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
951  EVT EltVT =
952    VT.isVector() ? VT.getVectorElementType() : VT;
953  if (EltVT==MVT::f32)
954    return getConstantFP(APFloat((float)Val), VT, isTarget);
955  else
956    return getConstantFP(APFloat(Val), VT, isTarget);
957}
958
959SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
960                                       EVT VT, int64_t Offset,
961                                       bool isTargetGA,
962                                       unsigned char TargetFlags) {
963  assert((TargetFlags == 0 || isTargetGA) &&
964         "Cannot set target flags on target-independent globals");
965
966  // Truncate (with sign-extension) the offset value to the pointer size.
967  EVT PTy = TLI.getPointerTy();
968  unsigned BitWidth = PTy.getSizeInBits();
969  if (BitWidth < 64)
970    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
971
972  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
973  if (!GVar) {
974    // If GV is an alias then use the aliasee for determining thread-localness.
975    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
976      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
977  }
978
979  unsigned Opc;
980  if (GVar && GVar->isThreadLocal())
981    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
982  else
983    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
984
985  FoldingSetNodeID ID;
986  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
987  ID.AddPointer(GV);
988  ID.AddInteger(Offset);
989  ID.AddInteger(TargetFlags);
990  void *IP = 0;
991  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
992    return SDValue(E, 0);
993  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
994  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
995  CSEMap.InsertNode(N, IP);
996  AllNodes.push_back(N);
997  return SDValue(N, 0);
998}
999
1000SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1001  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1002  FoldingSetNodeID ID;
1003  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1004  ID.AddInteger(FI);
1005  void *IP = 0;
1006  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1007    return SDValue(E, 0);
1008  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1009  new (N) FrameIndexSDNode(FI, VT, isTarget);
1010  CSEMap.InsertNode(N, IP);
1011  AllNodes.push_back(N);
1012  return SDValue(N, 0);
1013}
1014
1015SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1016                                   unsigned char TargetFlags) {
1017  assert((TargetFlags == 0 || isTarget) &&
1018         "Cannot set target flags on target-independent jump tables");
1019  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1020  FoldingSetNodeID ID;
1021  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1022  ID.AddInteger(JTI);
1023  ID.AddInteger(TargetFlags);
1024  void *IP = 0;
1025  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1026    return SDValue(E, 0);
1027  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1028  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1029  CSEMap.InsertNode(N, IP);
1030  AllNodes.push_back(N);
1031  return SDValue(N, 0);
1032}
1033
1034SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1035                                      unsigned Alignment, int Offset,
1036                                      bool isTarget,
1037                                      unsigned char TargetFlags) {
1038  assert((TargetFlags == 0 || isTarget) &&
1039         "Cannot set target flags on target-independent globals");
1040  if (Alignment == 0)
1041    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1042  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1043  FoldingSetNodeID ID;
1044  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1045  ID.AddInteger(Alignment);
1046  ID.AddInteger(Offset);
1047  ID.AddPointer(C);
1048  ID.AddInteger(TargetFlags);
1049  void *IP = 0;
1050  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1051    return SDValue(E, 0);
1052  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1053  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1054  CSEMap.InsertNode(N, IP);
1055  AllNodes.push_back(N);
1056  return SDValue(N, 0);
1057}
1058
1059
1060SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1061                                      unsigned Alignment, int Offset,
1062                                      bool isTarget,
1063                                      unsigned char TargetFlags) {
1064  assert((TargetFlags == 0 || isTarget) &&
1065         "Cannot set target flags on target-independent globals");
1066  if (Alignment == 0)
1067    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1068  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1069  FoldingSetNodeID ID;
1070  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1071  ID.AddInteger(Alignment);
1072  ID.AddInteger(Offset);
1073  C->AddSelectionDAGCSEId(ID);
1074  ID.AddInteger(TargetFlags);
1075  void *IP = 0;
1076  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1077    return SDValue(E, 0);
1078  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1079  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1080  CSEMap.InsertNode(N, IP);
1081  AllNodes.push_back(N);
1082  return SDValue(N, 0);
1083}
1084
1085SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1086  FoldingSetNodeID ID;
1087  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1088  ID.AddPointer(MBB);
1089  void *IP = 0;
1090  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1091    return SDValue(E, 0);
1092  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1093  new (N) BasicBlockSDNode(MBB);
1094  CSEMap.InsertNode(N, IP);
1095  AllNodes.push_back(N);
1096  return SDValue(N, 0);
1097}
1098
1099SDValue SelectionDAG::getValueType(EVT VT) {
1100  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1101      ValueTypeNodes.size())
1102    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1103
1104  SDNode *&N = VT.isExtended() ?
1105    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1106
1107  if (N) return SDValue(N, 0);
1108  N = NodeAllocator.Allocate<VTSDNode>();
1109  new (N) VTSDNode(VT);
1110  AllNodes.push_back(N);
1111  return SDValue(N, 0);
1112}
1113
1114SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1115  SDNode *&N = ExternalSymbols[Sym];
1116  if (N) return SDValue(N, 0);
1117  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1118  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1119  AllNodes.push_back(N);
1120  return SDValue(N, 0);
1121}
1122
1123SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1124                                              unsigned char TargetFlags) {
1125  SDNode *&N =
1126    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1127                                                               TargetFlags)];
1128  if (N) return SDValue(N, 0);
1129  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1130  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1131  AllNodes.push_back(N);
1132  return SDValue(N, 0);
1133}
1134
1135SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1136  if ((unsigned)Cond >= CondCodeNodes.size())
1137    CondCodeNodes.resize(Cond+1);
1138
1139  if (CondCodeNodes[Cond] == 0) {
1140    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1141    new (N) CondCodeSDNode(Cond);
1142    CondCodeNodes[Cond] = N;
1143    AllNodes.push_back(N);
1144  }
1145  return SDValue(CondCodeNodes[Cond], 0);
1146}
1147
1148// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1149// the shuffle mask M that point at N1 to point at N2, and indices that point
1150// N2 to point at N1.
1151static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1152  std::swap(N1, N2);
1153  int NElts = M.size();
1154  for (int i = 0; i != NElts; ++i) {
1155    if (M[i] >= NElts)
1156      M[i] -= NElts;
1157    else if (M[i] >= 0)
1158      M[i] += NElts;
1159  }
1160}
1161
1162SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1163                                       SDValue N2, const int *Mask) {
1164  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1165  assert(VT.isVector() && N1.getValueType().isVector() &&
1166         "Vector Shuffle VTs must be a vectors");
1167  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1168         && "Vector Shuffle VTs must have same element type");
1169
1170  // Canonicalize shuffle undef, undef -> undef
1171  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1172    return getUNDEF(VT);
1173
1174  // Validate that all indices in Mask are within the range of the elements
1175  // input to the shuffle.
1176  unsigned NElts = VT.getVectorNumElements();
1177  SmallVector<int, 8> MaskVec;
1178  for (unsigned i = 0; i != NElts; ++i) {
1179    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1180    MaskVec.push_back(Mask[i]);
1181  }
1182
1183  // Canonicalize shuffle v, v -> v, undef
1184  if (N1 == N2) {
1185    N2 = getUNDEF(VT);
1186    for (unsigned i = 0; i != NElts; ++i)
1187      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1188  }
1189
1190  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1191  if (N1.getOpcode() == ISD::UNDEF)
1192    commuteShuffle(N1, N2, MaskVec);
1193
1194  // Canonicalize all index into lhs, -> shuffle lhs, undef
1195  // Canonicalize all index into rhs, -> shuffle rhs, undef
1196  bool AllLHS = true, AllRHS = true;
1197  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1198  for (unsigned i = 0; i != NElts; ++i) {
1199    if (MaskVec[i] >= (int)NElts) {
1200      if (N2Undef)
1201        MaskVec[i] = -1;
1202      else
1203        AllLHS = false;
1204    } else if (MaskVec[i] >= 0) {
1205      AllRHS = false;
1206    }
1207  }
1208  if (AllLHS && AllRHS)
1209    return getUNDEF(VT);
1210  if (AllLHS && !N2Undef)
1211    N2 = getUNDEF(VT);
1212  if (AllRHS) {
1213    N1 = getUNDEF(VT);
1214    commuteShuffle(N1, N2, MaskVec);
1215  }
1216
1217  // If Identity shuffle, or all shuffle in to undef, return that node.
1218  bool AllUndef = true;
1219  bool Identity = true;
1220  for (unsigned i = 0; i != NElts; ++i) {
1221    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1222    if (MaskVec[i] >= 0) AllUndef = false;
1223  }
1224  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1225    return N1;
1226  if (AllUndef)
1227    return getUNDEF(VT);
1228
1229  FoldingSetNodeID ID;
1230  SDValue Ops[2] = { N1, N2 };
1231  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1232  for (unsigned i = 0; i != NElts; ++i)
1233    ID.AddInteger(MaskVec[i]);
1234
1235  void* IP = 0;
1236  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1237    return SDValue(E, 0);
1238
1239  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1240  // SDNode doesn't have access to it.  This memory will be "leaked" when
1241  // the node is deallocated, but recovered when the NodeAllocator is released.
1242  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1243  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1244
1245  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1246  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1247  CSEMap.InsertNode(N, IP);
1248  AllNodes.push_back(N);
1249  return SDValue(N, 0);
1250}
1251
1252SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1253                                       SDValue Val, SDValue DTy,
1254                                       SDValue STy, SDValue Rnd, SDValue Sat,
1255                                       ISD::CvtCode Code) {
1256  // If the src and dest types are the same and the conversion is between
1257  // integer types of the same sign or two floats, no conversion is necessary.
1258  if (DTy == STy &&
1259      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1260    return Val;
1261
1262  FoldingSetNodeID ID;
1263  void* IP = 0;
1264  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1265    return SDValue(E, 0);
1266  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1267  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1268  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1269  CSEMap.InsertNode(N, IP);
1270  AllNodes.push_back(N);
1271  return SDValue(N, 0);
1272}
1273
1274SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1275  FoldingSetNodeID ID;
1276  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1277  ID.AddInteger(RegNo);
1278  void *IP = 0;
1279  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1280    return SDValue(E, 0);
1281  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1282  new (N) RegisterSDNode(RegNo, VT);
1283  CSEMap.InsertNode(N, IP);
1284  AllNodes.push_back(N);
1285  return SDValue(N, 0);
1286}
1287
1288SDValue SelectionDAG::getDbgStopPoint(DebugLoc DL, SDValue Root,
1289                                      unsigned Line, unsigned Col,
1290                                      Value *CU) {
1291  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1292  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1293  N->setDebugLoc(DL);
1294  AllNodes.push_back(N);
1295  return SDValue(N, 0);
1296}
1297
1298SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1299                               SDValue Root,
1300                               unsigned LabelID) {
1301  FoldingSetNodeID ID;
1302  SDValue Ops[] = { Root };
1303  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1304  ID.AddInteger(LabelID);
1305  void *IP = 0;
1306  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1307    return SDValue(E, 0);
1308  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1309  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1310  CSEMap.InsertNode(N, IP);
1311  AllNodes.push_back(N);
1312  return SDValue(N, 0);
1313}
1314
1315SDValue SelectionDAG::getSrcValue(const Value *V) {
1316  assert((!V || isa<PointerType>(V->getType())) &&
1317         "SrcValue is not a pointer?");
1318
1319  FoldingSetNodeID ID;
1320  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1321  ID.AddPointer(V);
1322
1323  void *IP = 0;
1324  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1325    return SDValue(E, 0);
1326
1327  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1328  new (N) SrcValueSDNode(V);
1329  CSEMap.InsertNode(N, IP);
1330  AllNodes.push_back(N);
1331  return SDValue(N, 0);
1332}
1333
1334SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1335#ifndef NDEBUG
1336  const Value *v = MO.getValue();
1337  assert((!v || isa<PointerType>(v->getType())) &&
1338         "SrcValue is not a pointer?");
1339#endif
1340
1341  FoldingSetNodeID ID;
1342  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1343  MO.Profile(ID);
1344
1345  void *IP = 0;
1346  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1347    return SDValue(E, 0);
1348
1349  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1350  new (N) MemOperandSDNode(MO);
1351  CSEMap.InsertNode(N, IP);
1352  AllNodes.push_back(N);
1353  return SDValue(N, 0);
1354}
1355
1356/// getShiftAmountOperand - Return the specified value casted to
1357/// the target's desired shift amount type.
1358SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1359  EVT OpTy = Op.getValueType();
1360  MVT ShTy = TLI.getShiftAmountTy();
1361  if (OpTy == ShTy || OpTy.isVector()) return Op;
1362
1363  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1364  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1365}
1366
1367/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1368/// specified value type.
1369SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1370  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1371  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1372  const Type *Ty = VT.getTypeForEVT(*getContext());
1373  unsigned StackAlign =
1374  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1375
1376  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1377  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1378}
1379
1380/// CreateStackTemporary - Create a stack temporary suitable for holding
1381/// either of the specified value types.
1382SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1383  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1384                            VT2.getStoreSizeInBits())/8;
1385  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1386  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1387  const TargetData *TD = TLI.getTargetData();
1388  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1389                            TD->getPrefTypeAlignment(Ty2));
1390
1391  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1392  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1393  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1394}
1395
1396SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1397                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1398  // These setcc operations always fold.
1399  switch (Cond) {
1400  default: break;
1401  case ISD::SETFALSE:
1402  case ISD::SETFALSE2: return getConstant(0, VT);
1403  case ISD::SETTRUE:
1404  case ISD::SETTRUE2:  return getConstant(1, VT);
1405
1406  case ISD::SETOEQ:
1407  case ISD::SETOGT:
1408  case ISD::SETOGE:
1409  case ISD::SETOLT:
1410  case ISD::SETOLE:
1411  case ISD::SETONE:
1412  case ISD::SETO:
1413  case ISD::SETUO:
1414  case ISD::SETUEQ:
1415  case ISD::SETUNE:
1416    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1417    break;
1418  }
1419
1420  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1421    const APInt &C2 = N2C->getAPIntValue();
1422    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1423      const APInt &C1 = N1C->getAPIntValue();
1424
1425      switch (Cond) {
1426      default: llvm_unreachable("Unknown integer setcc!");
1427      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1428      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1429      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1430      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1431      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1432      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1433      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1434      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1435      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1436      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1437      }
1438    }
1439  }
1440  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1441    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1442      // No compile time operations on this type yet.
1443      if (N1C->getValueType(0) == MVT::ppcf128)
1444        return SDValue();
1445
1446      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1447      switch (Cond) {
1448      default: break;
1449      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1450                          return getUNDEF(VT);
1451                        // fall through
1452      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1453      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1454                          return getUNDEF(VT);
1455                        // fall through
1456      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1457                                           R==APFloat::cmpLessThan, VT);
1458      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1459                          return getUNDEF(VT);
1460                        // fall through
1461      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1462      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1463                          return getUNDEF(VT);
1464                        // fall through
1465      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1466      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1467                          return getUNDEF(VT);
1468                        // fall through
1469      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1470                                           R==APFloat::cmpEqual, VT);
1471      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1472                          return getUNDEF(VT);
1473                        // fall through
1474      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1475                                           R==APFloat::cmpEqual, VT);
1476      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1477      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1478      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1479                                           R==APFloat::cmpEqual, VT);
1480      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1481      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1482                                           R==APFloat::cmpLessThan, VT);
1483      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1484                                           R==APFloat::cmpUnordered, VT);
1485      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1486      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1487      }
1488    } else {
1489      // Ensure that the constant occurs on the RHS.
1490      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1491    }
1492  }
1493
1494  // Could not fold it.
1495  return SDValue();
1496}
1497
1498/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1499/// use this predicate to simplify operations downstream.
1500bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1501  // This predicate is not safe for vector operations.
1502  if (Op.getValueType().isVector())
1503    return false;
1504
1505  unsigned BitWidth = Op.getValueSizeInBits();
1506  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1507}
1508
1509/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1510/// this predicate to simplify operations downstream.  Mask is known to be zero
1511/// for bits that V cannot have.
1512bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1513                                     unsigned Depth) const {
1514  APInt KnownZero, KnownOne;
1515  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1516  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1517  return (KnownZero & Mask) == Mask;
1518}
1519
1520/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1521/// known to be either zero or one and return them in the KnownZero/KnownOne
1522/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1523/// processing.
1524void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1525                                     APInt &KnownZero, APInt &KnownOne,
1526                                     unsigned Depth) const {
1527  unsigned BitWidth = Mask.getBitWidth();
1528  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1529         "Mask size mismatches value type size!");
1530
1531  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1532  if (Depth == 6 || Mask == 0)
1533    return;  // Limit search depth.
1534
1535  APInt KnownZero2, KnownOne2;
1536
1537  switch (Op.getOpcode()) {
1538  case ISD::Constant:
1539    // We know all of the bits for a constant!
1540    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1541    KnownZero = ~KnownOne & Mask;
1542    return;
1543  case ISD::AND:
1544    // If either the LHS or the RHS are Zero, the result is zero.
1545    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1546    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1547                      KnownZero2, KnownOne2, Depth+1);
1548    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1549    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1550
1551    // Output known-1 bits are only known if set in both the LHS & RHS.
1552    KnownOne &= KnownOne2;
1553    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1554    KnownZero |= KnownZero2;
1555    return;
1556  case ISD::OR:
1557    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1558    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1559                      KnownZero2, KnownOne2, Depth+1);
1560    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1561    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1562
1563    // Output known-0 bits are only known if clear in both the LHS & RHS.
1564    KnownZero &= KnownZero2;
1565    // Output known-1 are known to be set if set in either the LHS | RHS.
1566    KnownOne |= KnownOne2;
1567    return;
1568  case ISD::XOR: {
1569    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1570    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1571    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1572    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1573
1574    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1575    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1576    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1577    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1578    KnownZero = KnownZeroOut;
1579    return;
1580  }
1581  case ISD::MUL: {
1582    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1583    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1584    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1585    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1586    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1587
1588    // If low bits are zero in either operand, output low known-0 bits.
1589    // Also compute a conserative estimate for high known-0 bits.
1590    // More trickiness is possible, but this is sufficient for the
1591    // interesting case of alignment computation.
1592    KnownOne.clear();
1593    unsigned TrailZ = KnownZero.countTrailingOnes() +
1594                      KnownZero2.countTrailingOnes();
1595    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1596                               KnownZero2.countLeadingOnes(),
1597                               BitWidth) - BitWidth;
1598
1599    TrailZ = std::min(TrailZ, BitWidth);
1600    LeadZ = std::min(LeadZ, BitWidth);
1601    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1602                APInt::getHighBitsSet(BitWidth, LeadZ);
1603    KnownZero &= Mask;
1604    return;
1605  }
1606  case ISD::UDIV: {
1607    // For the purposes of computing leading zeros we can conservatively
1608    // treat a udiv as a logical right shift by the power of 2 known to
1609    // be less than the denominator.
1610    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1611    ComputeMaskedBits(Op.getOperand(0),
1612                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1613    unsigned LeadZ = KnownZero2.countLeadingOnes();
1614
1615    KnownOne2.clear();
1616    KnownZero2.clear();
1617    ComputeMaskedBits(Op.getOperand(1),
1618                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1619    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1620    if (RHSUnknownLeadingOnes != BitWidth)
1621      LeadZ = std::min(BitWidth,
1622                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1623
1624    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1625    return;
1626  }
1627  case ISD::SELECT:
1628    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1629    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1630    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1631    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1632
1633    // Only known if known in both the LHS and RHS.
1634    KnownOne &= KnownOne2;
1635    KnownZero &= KnownZero2;
1636    return;
1637  case ISD::SELECT_CC:
1638    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1639    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1640    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1641    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1642
1643    // Only known if known in both the LHS and RHS.
1644    KnownOne &= KnownOne2;
1645    KnownZero &= KnownZero2;
1646    return;
1647  case ISD::SADDO:
1648  case ISD::UADDO:
1649  case ISD::SSUBO:
1650  case ISD::USUBO:
1651  case ISD::SMULO:
1652  case ISD::UMULO:
1653    if (Op.getResNo() != 1)
1654      return;
1655    // The boolean result conforms to getBooleanContents.  Fall through.
1656  case ISD::SETCC:
1657    // If we know the result of a setcc has the top bits zero, use this info.
1658    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1659        BitWidth > 1)
1660      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1661    return;
1662  case ISD::SHL:
1663    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1664    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1665      unsigned ShAmt = SA->getZExtValue();
1666
1667      // If the shift count is an invalid immediate, don't do anything.
1668      if (ShAmt >= BitWidth)
1669        return;
1670
1671      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1672                        KnownZero, KnownOne, Depth+1);
1673      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1674      KnownZero <<= ShAmt;
1675      KnownOne  <<= ShAmt;
1676      // low bits known zero.
1677      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1678    }
1679    return;
1680  case ISD::SRL:
1681    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1682    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1683      unsigned ShAmt = SA->getZExtValue();
1684
1685      // If the shift count is an invalid immediate, don't do anything.
1686      if (ShAmt >= BitWidth)
1687        return;
1688
1689      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1690                        KnownZero, KnownOne, Depth+1);
1691      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1692      KnownZero = KnownZero.lshr(ShAmt);
1693      KnownOne  = KnownOne.lshr(ShAmt);
1694
1695      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1696      KnownZero |= HighBits;  // High bits known zero.
1697    }
1698    return;
1699  case ISD::SRA:
1700    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1701      unsigned ShAmt = SA->getZExtValue();
1702
1703      // If the shift count is an invalid immediate, don't do anything.
1704      if (ShAmt >= BitWidth)
1705        return;
1706
1707      APInt InDemandedMask = (Mask << ShAmt);
1708      // If any of the demanded bits are produced by the sign extension, we also
1709      // demand the input sign bit.
1710      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1711      if (HighBits.getBoolValue())
1712        InDemandedMask |= APInt::getSignBit(BitWidth);
1713
1714      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1715                        Depth+1);
1716      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1717      KnownZero = KnownZero.lshr(ShAmt);
1718      KnownOne  = KnownOne.lshr(ShAmt);
1719
1720      // Handle the sign bits.
1721      APInt SignBit = APInt::getSignBit(BitWidth);
1722      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1723
1724      if (KnownZero.intersects(SignBit)) {
1725        KnownZero |= HighBits;  // New bits are known zero.
1726      } else if (KnownOne.intersects(SignBit)) {
1727        KnownOne  |= HighBits;  // New bits are known one.
1728      }
1729    }
1730    return;
1731  case ISD::SIGN_EXTEND_INREG: {
1732    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1733    unsigned EBits = EVT.getSizeInBits();
1734
1735    // Sign extension.  Compute the demanded bits in the result that are not
1736    // present in the input.
1737    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1738
1739    APInt InSignBit = APInt::getSignBit(EBits);
1740    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1741
1742    // If the sign extended bits are demanded, we know that the sign
1743    // bit is demanded.
1744    InSignBit.zext(BitWidth);
1745    if (NewBits.getBoolValue())
1746      InputDemandedBits |= InSignBit;
1747
1748    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1749                      KnownZero, KnownOne, Depth+1);
1750    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1751
1752    // If the sign bit of the input is known set or clear, then we know the
1753    // top bits of the result.
1754    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1755      KnownZero |= NewBits;
1756      KnownOne  &= ~NewBits;
1757    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1758      KnownOne  |= NewBits;
1759      KnownZero &= ~NewBits;
1760    } else {                              // Input sign bit unknown
1761      KnownZero &= ~NewBits;
1762      KnownOne  &= ~NewBits;
1763    }
1764    return;
1765  }
1766  case ISD::CTTZ:
1767  case ISD::CTLZ:
1768  case ISD::CTPOP: {
1769    unsigned LowBits = Log2_32(BitWidth)+1;
1770    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1771    KnownOne.clear();
1772    return;
1773  }
1774  case ISD::LOAD: {
1775    if (ISD::isZEXTLoad(Op.getNode())) {
1776      LoadSDNode *LD = cast<LoadSDNode>(Op);
1777      EVT VT = LD->getMemoryVT();
1778      unsigned MemBits = VT.getSizeInBits();
1779      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1780    }
1781    return;
1782  }
1783  case ISD::ZERO_EXTEND: {
1784    EVT InVT = Op.getOperand(0).getValueType();
1785    unsigned InBits = InVT.getSizeInBits();
1786    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1787    APInt InMask    = Mask;
1788    InMask.trunc(InBits);
1789    KnownZero.trunc(InBits);
1790    KnownOne.trunc(InBits);
1791    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1792    KnownZero.zext(BitWidth);
1793    KnownOne.zext(BitWidth);
1794    KnownZero |= NewBits;
1795    return;
1796  }
1797  case ISD::SIGN_EXTEND: {
1798    EVT InVT = Op.getOperand(0).getValueType();
1799    unsigned InBits = InVT.getSizeInBits();
1800    APInt InSignBit = APInt::getSignBit(InBits);
1801    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1802    APInt InMask = Mask;
1803    InMask.trunc(InBits);
1804
1805    // If any of the sign extended bits are demanded, we know that the sign
1806    // bit is demanded. Temporarily set this bit in the mask for our callee.
1807    if (NewBits.getBoolValue())
1808      InMask |= InSignBit;
1809
1810    KnownZero.trunc(InBits);
1811    KnownOne.trunc(InBits);
1812    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1813
1814    // Note if the sign bit is known to be zero or one.
1815    bool SignBitKnownZero = KnownZero.isNegative();
1816    bool SignBitKnownOne  = KnownOne.isNegative();
1817    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1818           "Sign bit can't be known to be both zero and one!");
1819
1820    // If the sign bit wasn't actually demanded by our caller, we don't
1821    // want it set in the KnownZero and KnownOne result values. Reset the
1822    // mask and reapply it to the result values.
1823    InMask = Mask;
1824    InMask.trunc(InBits);
1825    KnownZero &= InMask;
1826    KnownOne  &= InMask;
1827
1828    KnownZero.zext(BitWidth);
1829    KnownOne.zext(BitWidth);
1830
1831    // If the sign bit is known zero or one, the top bits match.
1832    if (SignBitKnownZero)
1833      KnownZero |= NewBits;
1834    else if (SignBitKnownOne)
1835      KnownOne  |= NewBits;
1836    return;
1837  }
1838  case ISD::ANY_EXTEND: {
1839    EVT InVT = Op.getOperand(0).getValueType();
1840    unsigned InBits = InVT.getSizeInBits();
1841    APInt InMask = Mask;
1842    InMask.trunc(InBits);
1843    KnownZero.trunc(InBits);
1844    KnownOne.trunc(InBits);
1845    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1846    KnownZero.zext(BitWidth);
1847    KnownOne.zext(BitWidth);
1848    return;
1849  }
1850  case ISD::TRUNCATE: {
1851    EVT InVT = Op.getOperand(0).getValueType();
1852    unsigned InBits = InVT.getSizeInBits();
1853    APInt InMask = Mask;
1854    InMask.zext(InBits);
1855    KnownZero.zext(InBits);
1856    KnownOne.zext(InBits);
1857    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1858    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1859    KnownZero.trunc(BitWidth);
1860    KnownOne.trunc(BitWidth);
1861    break;
1862  }
1863  case ISD::AssertZext: {
1864    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1865    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1866    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1867                      KnownOne, Depth+1);
1868    KnownZero |= (~InMask) & Mask;
1869    return;
1870  }
1871  case ISD::FGETSIGN:
1872    // All bits are zero except the low bit.
1873    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1874    return;
1875
1876  case ISD::SUB: {
1877    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1878      // We know that the top bits of C-X are clear if X contains less bits
1879      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1880      // positive if we can prove that X is >= 0 and < 16.
1881      if (CLHS->getAPIntValue().isNonNegative()) {
1882        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1883        // NLZ can't be BitWidth with no sign bit
1884        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1885        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1886                          Depth+1);
1887
1888        // If all of the MaskV bits are known to be zero, then we know the
1889        // output top bits are zero, because we now know that the output is
1890        // from [0-C].
1891        if ((KnownZero2 & MaskV) == MaskV) {
1892          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1893          // Top bits known zero.
1894          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1895        }
1896      }
1897    }
1898  }
1899  // fall through
1900  case ISD::ADD: {
1901    // Output known-0 bits are known if clear or set in both the low clear bits
1902    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1903    // low 3 bits clear.
1904    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1905    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1906    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1907    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1908
1909    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1910    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1911    KnownZeroOut = std::min(KnownZeroOut,
1912                            KnownZero2.countTrailingOnes());
1913
1914    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1915    return;
1916  }
1917  case ISD::SREM:
1918    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1919      const APInt &RA = Rem->getAPIntValue();
1920      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1921        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1922        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1923        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1924
1925        // If the sign bit of the first operand is zero, the sign bit of
1926        // the result is zero. If the first operand has no one bits below
1927        // the second operand's single 1 bit, its sign will be zero.
1928        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1929          KnownZero2 |= ~LowBits;
1930
1931        KnownZero |= KnownZero2 & Mask;
1932
1933        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1934      }
1935    }
1936    return;
1937  case ISD::UREM: {
1938    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1939      const APInt &RA = Rem->getAPIntValue();
1940      if (RA.isPowerOf2()) {
1941        APInt LowBits = (RA - 1);
1942        APInt Mask2 = LowBits & Mask;
1943        KnownZero |= ~LowBits & Mask;
1944        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1945        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1946        break;
1947      }
1948    }
1949
1950    // Since the result is less than or equal to either operand, any leading
1951    // zero bits in either operand must also exist in the result.
1952    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1953    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1954                      Depth+1);
1955    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1956                      Depth+1);
1957
1958    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1959                                KnownZero2.countLeadingOnes());
1960    KnownOne.clear();
1961    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1962    return;
1963  }
1964  default:
1965    // Allow the target to implement this method for its nodes.
1966    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1967  case ISD::INTRINSIC_WO_CHAIN:
1968  case ISD::INTRINSIC_W_CHAIN:
1969  case ISD::INTRINSIC_VOID:
1970      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1971                                         Depth);
1972    }
1973    return;
1974  }
1975}
1976
1977/// ComputeNumSignBits - Return the number of times the sign bit of the
1978/// register is replicated into the other bits.  We know that at least 1 bit
1979/// is always equal to the sign bit (itself), but other cases can give us
1980/// information.  For example, immediately after an "SRA X, 2", we know that
1981/// the top 3 bits are all equal to each other, so we return 3.
1982unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1983  EVT VT = Op.getValueType();
1984  assert(VT.isInteger() && "Invalid VT!");
1985  unsigned VTBits = VT.getSizeInBits();
1986  unsigned Tmp, Tmp2;
1987  unsigned FirstAnswer = 1;
1988
1989  if (Depth == 6)
1990    return 1;  // Limit search depth.
1991
1992  switch (Op.getOpcode()) {
1993  default: break;
1994  case ISD::AssertSext:
1995    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1996    return VTBits-Tmp+1;
1997  case ISD::AssertZext:
1998    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1999    return VTBits-Tmp;
2000
2001  case ISD::Constant: {
2002    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2003    // If negative, return # leading ones.
2004    if (Val.isNegative())
2005      return Val.countLeadingOnes();
2006
2007    // Return # leading zeros.
2008    return Val.countLeadingZeros();
2009  }
2010
2011  case ISD::SIGN_EXTEND:
2012    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
2013    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2014
2015  case ISD::SIGN_EXTEND_INREG:
2016    // Max of the input and what this extends.
2017    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2018    Tmp = VTBits-Tmp+1;
2019
2020    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2021    return std::max(Tmp, Tmp2);
2022
2023  case ISD::SRA:
2024    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2025    // SRA X, C   -> adds C sign bits.
2026    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2027      Tmp += C->getZExtValue();
2028      if (Tmp > VTBits) Tmp = VTBits;
2029    }
2030    return Tmp;
2031  case ISD::SHL:
2032    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2033      // shl destroys sign bits.
2034      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2035      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2036          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2037      return Tmp - C->getZExtValue();
2038    }
2039    break;
2040  case ISD::AND:
2041  case ISD::OR:
2042  case ISD::XOR:    // NOT is handled here.
2043    // Logical binary ops preserve the number of sign bits at the worst.
2044    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2045    if (Tmp != 1) {
2046      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2047      FirstAnswer = std::min(Tmp, Tmp2);
2048      // We computed what we know about the sign bits as our first
2049      // answer. Now proceed to the generic code that uses
2050      // ComputeMaskedBits, and pick whichever answer is better.
2051    }
2052    break;
2053
2054  case ISD::SELECT:
2055    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2056    if (Tmp == 1) return 1;  // Early out.
2057    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2058    return std::min(Tmp, Tmp2);
2059
2060  case ISD::SADDO:
2061  case ISD::UADDO:
2062  case ISD::SSUBO:
2063  case ISD::USUBO:
2064  case ISD::SMULO:
2065  case ISD::UMULO:
2066    if (Op.getResNo() != 1)
2067      break;
2068    // The boolean result conforms to getBooleanContents.  Fall through.
2069  case ISD::SETCC:
2070    // If setcc returns 0/-1, all bits are sign bits.
2071    if (TLI.getBooleanContents() ==
2072        TargetLowering::ZeroOrNegativeOneBooleanContent)
2073      return VTBits;
2074    break;
2075  case ISD::ROTL:
2076  case ISD::ROTR:
2077    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2078      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2079
2080      // Handle rotate right by N like a rotate left by 32-N.
2081      if (Op.getOpcode() == ISD::ROTR)
2082        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2083
2084      // If we aren't rotating out all of the known-in sign bits, return the
2085      // number that are left.  This handles rotl(sext(x), 1) for example.
2086      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2087      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2088    }
2089    break;
2090  case ISD::ADD:
2091    // Add can have at most one carry bit.  Thus we know that the output
2092    // is, at worst, one more bit than the inputs.
2093    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2094    if (Tmp == 1) return 1;  // Early out.
2095
2096    // Special case decrementing a value (ADD X, -1):
2097    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2098      if (CRHS->isAllOnesValue()) {
2099        APInt KnownZero, KnownOne;
2100        APInt Mask = APInt::getAllOnesValue(VTBits);
2101        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2102
2103        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2104        // sign bits set.
2105        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2106          return VTBits;
2107
2108        // If we are subtracting one from a positive number, there is no carry
2109        // out of the result.
2110        if (KnownZero.isNegative())
2111          return Tmp;
2112      }
2113
2114    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2115    if (Tmp2 == 1) return 1;
2116      return std::min(Tmp, Tmp2)-1;
2117    break;
2118
2119  case ISD::SUB:
2120    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2121    if (Tmp2 == 1) return 1;
2122
2123    // Handle NEG.
2124    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2125      if (CLHS->isNullValue()) {
2126        APInt KnownZero, KnownOne;
2127        APInt Mask = APInt::getAllOnesValue(VTBits);
2128        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2129        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2130        // sign bits set.
2131        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2132          return VTBits;
2133
2134        // If the input is known to be positive (the sign bit is known clear),
2135        // the output of the NEG has the same number of sign bits as the input.
2136        if (KnownZero.isNegative())
2137          return Tmp2;
2138
2139        // Otherwise, we treat this like a SUB.
2140      }
2141
2142    // Sub can have at most one carry bit.  Thus we know that the output
2143    // is, at worst, one more bit than the inputs.
2144    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2145    if (Tmp == 1) return 1;  // Early out.
2146      return std::min(Tmp, Tmp2)-1;
2147    break;
2148  case ISD::TRUNCATE:
2149    // FIXME: it's tricky to do anything useful for this, but it is an important
2150    // case for targets like X86.
2151    break;
2152  }
2153
2154  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2155  if (Op.getOpcode() == ISD::LOAD) {
2156    LoadSDNode *LD = cast<LoadSDNode>(Op);
2157    unsigned ExtType = LD->getExtensionType();
2158    switch (ExtType) {
2159    default: break;
2160    case ISD::SEXTLOAD:    // '17' bits known
2161      Tmp = LD->getMemoryVT().getSizeInBits();
2162      return VTBits-Tmp+1;
2163    case ISD::ZEXTLOAD:    // '16' bits known
2164      Tmp = LD->getMemoryVT().getSizeInBits();
2165      return VTBits-Tmp;
2166    }
2167  }
2168
2169  // Allow the target to implement this method for its nodes.
2170  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2171      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2172      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2173      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2174    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2175    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2176  }
2177
2178  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2179  // use this information.
2180  APInt KnownZero, KnownOne;
2181  APInt Mask = APInt::getAllOnesValue(VTBits);
2182  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2183
2184  if (KnownZero.isNegative()) {        // sign bit is 0
2185    Mask = KnownZero;
2186  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2187    Mask = KnownOne;
2188  } else {
2189    // Nothing known.
2190    return FirstAnswer;
2191  }
2192
2193  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2194  // the number of identical bits in the top of the input value.
2195  Mask = ~Mask;
2196  Mask <<= Mask.getBitWidth()-VTBits;
2197  // Return # leading zeros.  We use 'min' here in case Val was zero before
2198  // shifting.  We don't want to return '64' as for an i32 "0".
2199  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2200}
2201
2202
2203bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2204  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2205  if (!GA) return false;
2206  if (GA->getOffset() != 0) return false;
2207  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2208  if (!GV) return false;
2209  MachineModuleInfo *MMI = getMachineModuleInfo();
2210  return MMI && MMI->hasDebugInfo();
2211}
2212
2213
2214/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2215/// element of the result of the vector shuffle.
2216SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2217                                          unsigned i) {
2218  EVT VT = N->getValueType(0);
2219  DebugLoc dl = N->getDebugLoc();
2220  if (N->getMaskElt(i) < 0)
2221    return getUNDEF(VT.getVectorElementType());
2222  unsigned Index = N->getMaskElt(i);
2223  unsigned NumElems = VT.getVectorNumElements();
2224  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2225  Index %= NumElems;
2226
2227  if (V.getOpcode() == ISD::BIT_CONVERT) {
2228    V = V.getOperand(0);
2229    EVT VVT = V.getValueType();
2230    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2231      return SDValue();
2232  }
2233  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2234    return (Index == 0) ? V.getOperand(0)
2235                      : getUNDEF(VT.getVectorElementType());
2236  if (V.getOpcode() == ISD::BUILD_VECTOR)
2237    return V.getOperand(Index);
2238  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2239    return getShuffleScalarElt(SVN, Index);
2240  return SDValue();
2241}
2242
2243
2244/// getNode - Gets or creates the specified node.
2245///
2246SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2247  FoldingSetNodeID ID;
2248  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2249  void *IP = 0;
2250  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2251    return SDValue(E, 0);
2252  SDNode *N = NodeAllocator.Allocate<SDNode>();
2253  new (N) SDNode(Opcode, DL, getVTList(VT));
2254  CSEMap.InsertNode(N, IP);
2255
2256  AllNodes.push_back(N);
2257#ifndef NDEBUG
2258  VerifyNode(N);
2259#endif
2260  return SDValue(N, 0);
2261}
2262
2263SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2264                              EVT VT, SDValue Operand) {
2265  // Constant fold unary operations with an integer constant operand.
2266  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2267    const APInt &Val = C->getAPIntValue();
2268    unsigned BitWidth = VT.getSizeInBits();
2269    switch (Opcode) {
2270    default: break;
2271    case ISD::SIGN_EXTEND:
2272      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2273    case ISD::ANY_EXTEND:
2274    case ISD::ZERO_EXTEND:
2275    case ISD::TRUNCATE:
2276      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2277    case ISD::UINT_TO_FP:
2278    case ISD::SINT_TO_FP: {
2279      const uint64_t zero[] = {0, 0};
2280      // No compile time operations on this type.
2281      if (VT==MVT::ppcf128)
2282        break;
2283      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2284      (void)apf.convertFromAPInt(Val,
2285                                 Opcode==ISD::SINT_TO_FP,
2286                                 APFloat::rmNearestTiesToEven);
2287      return getConstantFP(apf, VT);
2288    }
2289    case ISD::BIT_CONVERT:
2290      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2291        return getConstantFP(Val.bitsToFloat(), VT);
2292      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2293        return getConstantFP(Val.bitsToDouble(), VT);
2294      break;
2295    case ISD::BSWAP:
2296      return getConstant(Val.byteSwap(), VT);
2297    case ISD::CTPOP:
2298      return getConstant(Val.countPopulation(), VT);
2299    case ISD::CTLZ:
2300      return getConstant(Val.countLeadingZeros(), VT);
2301    case ISD::CTTZ:
2302      return getConstant(Val.countTrailingZeros(), VT);
2303    }
2304  }
2305
2306  // Constant fold unary operations with a floating point constant operand.
2307  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2308    APFloat V = C->getValueAPF();    // make copy
2309    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2310      switch (Opcode) {
2311      case ISD::FNEG:
2312        V.changeSign();
2313        return getConstantFP(V, VT);
2314      case ISD::FABS:
2315        V.clearSign();
2316        return getConstantFP(V, VT);
2317      case ISD::FP_ROUND:
2318      case ISD::FP_EXTEND: {
2319        bool ignored;
2320        // This can return overflow, underflow, or inexact; we don't care.
2321        // FIXME need to be more flexible about rounding mode.
2322        (void)V.convert(*EVTToAPFloatSemantics(VT),
2323                        APFloat::rmNearestTiesToEven, &ignored);
2324        return getConstantFP(V, VT);
2325      }
2326      case ISD::FP_TO_SINT:
2327      case ISD::FP_TO_UINT: {
2328        integerPart x[2];
2329        bool ignored;
2330        assert(integerPartWidth >= 64);
2331        // FIXME need to be more flexible about rounding mode.
2332        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2333                              Opcode==ISD::FP_TO_SINT,
2334                              APFloat::rmTowardZero, &ignored);
2335        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2336          break;
2337        APInt api(VT.getSizeInBits(), 2, x);
2338        return getConstant(api, VT);
2339      }
2340      case ISD::BIT_CONVERT:
2341        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2342          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2343        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2344          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2345        break;
2346      }
2347    }
2348  }
2349
2350  unsigned OpOpcode = Operand.getNode()->getOpcode();
2351  switch (Opcode) {
2352  case ISD::TokenFactor:
2353  case ISD::MERGE_VALUES:
2354  case ISD::CONCAT_VECTORS:
2355    return Operand;         // Factor, merge or concat of one node?  No need.
2356  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2357  case ISD::FP_EXTEND:
2358    assert(VT.isFloatingPoint() &&
2359           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2360    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2361    if (Operand.getOpcode() == ISD::UNDEF)
2362      return getUNDEF(VT);
2363    break;
2364  case ISD::SIGN_EXTEND:
2365    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2366           "Invalid SIGN_EXTEND!");
2367    if (Operand.getValueType() == VT) return Operand;   // noop extension
2368    assert(Operand.getValueType().bitsLT(VT)
2369           && "Invalid sext node, dst < src!");
2370    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2371      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2372    break;
2373  case ISD::ZERO_EXTEND:
2374    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2375           "Invalid ZERO_EXTEND!");
2376    if (Operand.getValueType() == VT) return Operand;   // noop extension
2377    assert(Operand.getValueType().bitsLT(VT)
2378           && "Invalid zext node, dst < src!");
2379    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2380      return getNode(ISD::ZERO_EXTEND, DL, VT,
2381                     Operand.getNode()->getOperand(0));
2382    break;
2383  case ISD::ANY_EXTEND:
2384    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2385           "Invalid ANY_EXTEND!");
2386    if (Operand.getValueType() == VT) return Operand;   // noop extension
2387    assert(Operand.getValueType().bitsLT(VT)
2388           && "Invalid anyext node, dst < src!");
2389    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2390      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2391      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2392    break;
2393  case ISD::TRUNCATE:
2394    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2395           "Invalid TRUNCATE!");
2396    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2397    assert(Operand.getValueType().bitsGT(VT)
2398           && "Invalid truncate node, src < dst!");
2399    if (OpOpcode == ISD::TRUNCATE)
2400      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2401    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2402             OpOpcode == ISD::ANY_EXTEND) {
2403      // If the source is smaller than the dest, we still need an extend.
2404      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2405        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2406      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2407        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2408      else
2409        return Operand.getNode()->getOperand(0);
2410    }
2411    break;
2412  case ISD::BIT_CONVERT:
2413    // Basic sanity checking.
2414    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2415           && "Cannot BIT_CONVERT between types of different sizes!");
2416    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2417    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2418      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2419    if (OpOpcode == ISD::UNDEF)
2420      return getUNDEF(VT);
2421    break;
2422  case ISD::SCALAR_TO_VECTOR:
2423    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2424           (VT.getVectorElementType() == Operand.getValueType() ||
2425            (VT.getVectorElementType().isInteger() &&
2426             Operand.getValueType().isInteger() &&
2427             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2428           "Illegal SCALAR_TO_VECTOR node!");
2429    if (OpOpcode == ISD::UNDEF)
2430      return getUNDEF(VT);
2431    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2432    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2433        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2434        Operand.getConstantOperandVal(1) == 0 &&
2435        Operand.getOperand(0).getValueType() == VT)
2436      return Operand.getOperand(0);
2437    break;
2438  case ISD::FNEG:
2439    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2440    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2441      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2442                     Operand.getNode()->getOperand(0));
2443    if (OpOpcode == ISD::FNEG)  // --X -> X
2444      return Operand.getNode()->getOperand(0);
2445    break;
2446  case ISD::FABS:
2447    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2448      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2449    break;
2450  }
2451
2452  SDNode *N;
2453  SDVTList VTs = getVTList(VT);
2454  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2455    FoldingSetNodeID ID;
2456    SDValue Ops[1] = { Operand };
2457    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2458    void *IP = 0;
2459    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2460      return SDValue(E, 0);
2461    N = NodeAllocator.Allocate<UnarySDNode>();
2462    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2463    CSEMap.InsertNode(N, IP);
2464  } else {
2465    N = NodeAllocator.Allocate<UnarySDNode>();
2466    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2467  }
2468
2469  AllNodes.push_back(N);
2470#ifndef NDEBUG
2471  VerifyNode(N);
2472#endif
2473  return SDValue(N, 0);
2474}
2475
2476SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2477                                             EVT VT,
2478                                             ConstantSDNode *Cst1,
2479                                             ConstantSDNode *Cst2) {
2480  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2481
2482  switch (Opcode) {
2483  case ISD::ADD:  return getConstant(C1 + C2, VT);
2484  case ISD::SUB:  return getConstant(C1 - C2, VT);
2485  case ISD::MUL:  return getConstant(C1 * C2, VT);
2486  case ISD::UDIV:
2487    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2488    break;
2489  case ISD::UREM:
2490    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2491    break;
2492  case ISD::SDIV:
2493    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2494    break;
2495  case ISD::SREM:
2496    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2497    break;
2498  case ISD::AND:  return getConstant(C1 & C2, VT);
2499  case ISD::OR:   return getConstant(C1 | C2, VT);
2500  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2501  case ISD::SHL:  return getConstant(C1 << C2, VT);
2502  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2503  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2504  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2505  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2506  default: break;
2507  }
2508
2509  return SDValue();
2510}
2511
2512SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2513                              SDValue N1, SDValue N2) {
2514  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2515  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2516  switch (Opcode) {
2517  default: break;
2518  case ISD::TokenFactor:
2519    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2520           N2.getValueType() == MVT::Other && "Invalid token factor!");
2521    // Fold trivial token factors.
2522    if (N1.getOpcode() == ISD::EntryToken) return N2;
2523    if (N2.getOpcode() == ISD::EntryToken) return N1;
2524    if (N1 == N2) return N1;
2525    break;
2526  case ISD::CONCAT_VECTORS:
2527    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2528    // one big BUILD_VECTOR.
2529    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2530        N2.getOpcode() == ISD::BUILD_VECTOR) {
2531      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2532      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2533      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2534    }
2535    break;
2536  case ISD::AND:
2537    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2538           N1.getValueType() == VT && "Binary operator types must match!");
2539    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2540    // worth handling here.
2541    if (N2C && N2C->isNullValue())
2542      return N2;
2543    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2544      return N1;
2545    break;
2546  case ISD::OR:
2547  case ISD::XOR:
2548  case ISD::ADD:
2549  case ISD::SUB:
2550    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2551           N1.getValueType() == VT && "Binary operator types must match!");
2552    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2553    // it's worth handling here.
2554    if (N2C && N2C->isNullValue())
2555      return N1;
2556    break;
2557  case ISD::UDIV:
2558  case ISD::UREM:
2559  case ISD::MULHU:
2560  case ISD::MULHS:
2561  case ISD::MUL:
2562  case ISD::SDIV:
2563  case ISD::SREM:
2564    assert(VT.isInteger() && "This operator does not apply to FP types!");
2565    // fall through
2566  case ISD::FADD:
2567  case ISD::FSUB:
2568  case ISD::FMUL:
2569  case ISD::FDIV:
2570  case ISD::FREM:
2571    if (UnsafeFPMath) {
2572      if (Opcode == ISD::FADD) {
2573        // 0+x --> x
2574        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2575          if (CFP->getValueAPF().isZero())
2576            return N2;
2577        // x+0 --> x
2578        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2579          if (CFP->getValueAPF().isZero())
2580            return N1;
2581      } else if (Opcode == ISD::FSUB) {
2582        // x-0 --> x
2583        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2584          if (CFP->getValueAPF().isZero())
2585            return N1;
2586      }
2587    }
2588    assert(N1.getValueType() == N2.getValueType() &&
2589           N1.getValueType() == VT && "Binary operator types must match!");
2590    break;
2591  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2592    assert(N1.getValueType() == VT &&
2593           N1.getValueType().isFloatingPoint() &&
2594           N2.getValueType().isFloatingPoint() &&
2595           "Invalid FCOPYSIGN!");
2596    break;
2597  case ISD::SHL:
2598  case ISD::SRA:
2599  case ISD::SRL:
2600  case ISD::ROTL:
2601  case ISD::ROTR:
2602    assert(VT == N1.getValueType() &&
2603           "Shift operators return type must be the same as their first arg");
2604    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2605           "Shifts only work on integers");
2606
2607    // Always fold shifts of i1 values so the code generator doesn't need to
2608    // handle them.  Since we know the size of the shift has to be less than the
2609    // size of the value, the shift/rotate count is guaranteed to be zero.
2610    if (VT == MVT::i1)
2611      return N1;
2612    break;
2613  case ISD::FP_ROUND_INREG: {
2614    EVT EVT = cast<VTSDNode>(N2)->getVT();
2615    assert(VT == N1.getValueType() && "Not an inreg round!");
2616    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2617           "Cannot FP_ROUND_INREG integer types");
2618    assert(EVT.bitsLE(VT) && "Not rounding down!");
2619    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2620    break;
2621  }
2622  case ISD::FP_ROUND:
2623    assert(VT.isFloatingPoint() &&
2624           N1.getValueType().isFloatingPoint() &&
2625           VT.bitsLE(N1.getValueType()) &&
2626           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2627    if (N1.getValueType() == VT) return N1;  // noop conversion.
2628    break;
2629  case ISD::AssertSext:
2630  case ISD::AssertZext: {
2631    EVT EVT = cast<VTSDNode>(N2)->getVT();
2632    assert(VT == N1.getValueType() && "Not an inreg extend!");
2633    assert(VT.isInteger() && EVT.isInteger() &&
2634           "Cannot *_EXTEND_INREG FP types");
2635    assert(EVT.bitsLE(VT) && "Not extending!");
2636    if (VT == EVT) return N1; // noop assertion.
2637    break;
2638  }
2639  case ISD::SIGN_EXTEND_INREG: {
2640    EVT EVT = cast<VTSDNode>(N2)->getVT();
2641    assert(VT == N1.getValueType() && "Not an inreg extend!");
2642    assert(VT.isInteger() && EVT.isInteger() &&
2643           "Cannot *_EXTEND_INREG FP types");
2644    assert(EVT.bitsLE(VT) && "Not extending!");
2645    if (EVT == VT) return N1;  // Not actually extending
2646
2647    if (N1C) {
2648      APInt Val = N1C->getAPIntValue();
2649      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2650      Val <<= Val.getBitWidth()-FromBits;
2651      Val = Val.ashr(Val.getBitWidth()-FromBits);
2652      return getConstant(Val, VT);
2653    }
2654    break;
2655  }
2656  case ISD::EXTRACT_VECTOR_ELT:
2657    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2658    if (N1.getOpcode() == ISD::UNDEF)
2659      return getUNDEF(VT);
2660
2661    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2662    // expanding copies of large vectors from registers.
2663    if (N2C &&
2664        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2665        N1.getNumOperands() > 0) {
2666      unsigned Factor =
2667        N1.getOperand(0).getValueType().getVectorNumElements();
2668      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2669                     N1.getOperand(N2C->getZExtValue() / Factor),
2670                     getConstant(N2C->getZExtValue() % Factor,
2671                                 N2.getValueType()));
2672    }
2673
2674    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2675    // expanding large vector constants.
2676    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2677      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2678      EVT VEltTy = N1.getValueType().getVectorElementType();
2679      if (Elt.getValueType() != VEltTy) {
2680        // If the vector element type is not legal, the BUILD_VECTOR operands
2681        // are promoted and implicitly truncated.  Make that explicit here.
2682        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2683      }
2684      if (VT != VEltTy) {
2685        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2686        // result is implicitly extended.
2687        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2688      }
2689      return Elt;
2690    }
2691
2692    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2693    // operations are lowered to scalars.
2694    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2695      // If the indices are the same, return the inserted element.
2696      if (N1.getOperand(2) == N2)
2697        return N1.getOperand(1);
2698      // If the indices are known different, extract the element from
2699      // the original vector.
2700      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2701               isa<ConstantSDNode>(N2))
2702        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2703    }
2704    break;
2705  case ISD::EXTRACT_ELEMENT:
2706    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2707    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2708           (N1.getValueType().isInteger() == VT.isInteger()) &&
2709           "Wrong types for EXTRACT_ELEMENT!");
2710
2711    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2712    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2713    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2714    if (N1.getOpcode() == ISD::BUILD_PAIR)
2715      return N1.getOperand(N2C->getZExtValue());
2716
2717    // EXTRACT_ELEMENT of a constant int is also very common.
2718    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2719      unsigned ElementSize = VT.getSizeInBits();
2720      unsigned Shift = ElementSize * N2C->getZExtValue();
2721      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2722      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2723    }
2724    break;
2725  case ISD::EXTRACT_SUBVECTOR:
2726    if (N1.getValueType() == VT) // Trivial extraction.
2727      return N1;
2728    break;
2729  }
2730
2731  if (N1C) {
2732    if (N2C) {
2733      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2734      if (SV.getNode()) return SV;
2735    } else {      // Cannonicalize constant to RHS if commutative
2736      if (isCommutativeBinOp(Opcode)) {
2737        std::swap(N1C, N2C);
2738        std::swap(N1, N2);
2739      }
2740    }
2741  }
2742
2743  // Constant fold FP operations.
2744  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2745  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2746  if (N1CFP) {
2747    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2748      // Cannonicalize constant to RHS if commutative
2749      std::swap(N1CFP, N2CFP);
2750      std::swap(N1, N2);
2751    } else if (N2CFP && VT != MVT::ppcf128) {
2752      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2753      APFloat::opStatus s;
2754      switch (Opcode) {
2755      case ISD::FADD:
2756        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2757        if (s != APFloat::opInvalidOp)
2758          return getConstantFP(V1, VT);
2759        break;
2760      case ISD::FSUB:
2761        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2762        if (s!=APFloat::opInvalidOp)
2763          return getConstantFP(V1, VT);
2764        break;
2765      case ISD::FMUL:
2766        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2767        if (s!=APFloat::opInvalidOp)
2768          return getConstantFP(V1, VT);
2769        break;
2770      case ISD::FDIV:
2771        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2772        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2773          return getConstantFP(V1, VT);
2774        break;
2775      case ISD::FREM :
2776        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2777        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2778          return getConstantFP(V1, VT);
2779        break;
2780      case ISD::FCOPYSIGN:
2781        V1.copySign(V2);
2782        return getConstantFP(V1, VT);
2783      default: break;
2784      }
2785    }
2786  }
2787
2788  // Canonicalize an UNDEF to the RHS, even over a constant.
2789  if (N1.getOpcode() == ISD::UNDEF) {
2790    if (isCommutativeBinOp(Opcode)) {
2791      std::swap(N1, N2);
2792    } else {
2793      switch (Opcode) {
2794      case ISD::FP_ROUND_INREG:
2795      case ISD::SIGN_EXTEND_INREG:
2796      case ISD::SUB:
2797      case ISD::FSUB:
2798      case ISD::FDIV:
2799      case ISD::FREM:
2800      case ISD::SRA:
2801        return N1;     // fold op(undef, arg2) -> undef
2802      case ISD::UDIV:
2803      case ISD::SDIV:
2804      case ISD::UREM:
2805      case ISD::SREM:
2806      case ISD::SRL:
2807      case ISD::SHL:
2808        if (!VT.isVector())
2809          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2810        // For vectors, we can't easily build an all zero vector, just return
2811        // the LHS.
2812        return N2;
2813      }
2814    }
2815  }
2816
2817  // Fold a bunch of operators when the RHS is undef.
2818  if (N2.getOpcode() == ISD::UNDEF) {
2819    switch (Opcode) {
2820    case ISD::XOR:
2821      if (N1.getOpcode() == ISD::UNDEF)
2822        // Handle undef ^ undef -> 0 special case. This is a common
2823        // idiom (misuse).
2824        return getConstant(0, VT);
2825      // fallthrough
2826    case ISD::ADD:
2827    case ISD::ADDC:
2828    case ISD::ADDE:
2829    case ISD::SUB:
2830    case ISD::UDIV:
2831    case ISD::SDIV:
2832    case ISD::UREM:
2833    case ISD::SREM:
2834      return N2;       // fold op(arg1, undef) -> undef
2835    case ISD::FADD:
2836    case ISD::FSUB:
2837    case ISD::FMUL:
2838    case ISD::FDIV:
2839    case ISD::FREM:
2840      if (UnsafeFPMath)
2841        return N2;
2842      break;
2843    case ISD::MUL:
2844    case ISD::AND:
2845    case ISD::SRL:
2846    case ISD::SHL:
2847      if (!VT.isVector())
2848        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2849      // For vectors, we can't easily build an all zero vector, just return
2850      // the LHS.
2851      return N1;
2852    case ISD::OR:
2853      if (!VT.isVector())
2854        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2855      // For vectors, we can't easily build an all one vector, just return
2856      // the LHS.
2857      return N1;
2858    case ISD::SRA:
2859      return N1;
2860    }
2861  }
2862
2863  // Memoize this node if possible.
2864  SDNode *N;
2865  SDVTList VTs = getVTList(VT);
2866  if (VT != MVT::Flag) {
2867    SDValue Ops[] = { N1, N2 };
2868    FoldingSetNodeID ID;
2869    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2870    void *IP = 0;
2871    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2872      return SDValue(E, 0);
2873    N = NodeAllocator.Allocate<BinarySDNode>();
2874    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2875    CSEMap.InsertNode(N, IP);
2876  } else {
2877    N = NodeAllocator.Allocate<BinarySDNode>();
2878    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2879  }
2880
2881  AllNodes.push_back(N);
2882#ifndef NDEBUG
2883  VerifyNode(N);
2884#endif
2885  return SDValue(N, 0);
2886}
2887
2888SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2889                              SDValue N1, SDValue N2, SDValue N3) {
2890  // Perform various simplifications.
2891  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2892  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2893  switch (Opcode) {
2894  case ISD::CONCAT_VECTORS:
2895    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2896    // one big BUILD_VECTOR.
2897    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2898        N2.getOpcode() == ISD::BUILD_VECTOR &&
2899        N3.getOpcode() == ISD::BUILD_VECTOR) {
2900      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2901      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2902      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2903      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2904    }
2905    break;
2906  case ISD::SETCC: {
2907    // Use FoldSetCC to simplify SETCC's.
2908    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2909    if (Simp.getNode()) return Simp;
2910    break;
2911  }
2912  case ISD::SELECT:
2913    if (N1C) {
2914     if (N1C->getZExtValue())
2915        return N2;             // select true, X, Y -> X
2916      else
2917        return N3;             // select false, X, Y -> Y
2918    }
2919
2920    if (N2 == N3) return N2;   // select C, X, X -> X
2921    break;
2922  case ISD::BRCOND:
2923    if (N2C) {
2924      if (N2C->getZExtValue()) // Unconditional branch
2925        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2926      else
2927        return N1;         // Never-taken branch
2928    }
2929    break;
2930  case ISD::VECTOR_SHUFFLE:
2931    llvm_unreachable("should use getVectorShuffle constructor!");
2932    break;
2933  case ISD::BIT_CONVERT:
2934    // Fold bit_convert nodes from a type to themselves.
2935    if (N1.getValueType() == VT)
2936      return N1;
2937    break;
2938  }
2939
2940  // Memoize node if it doesn't produce a flag.
2941  SDNode *N;
2942  SDVTList VTs = getVTList(VT);
2943  if (VT != MVT::Flag) {
2944    SDValue Ops[] = { N1, N2, N3 };
2945    FoldingSetNodeID ID;
2946    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2947    void *IP = 0;
2948    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2949      return SDValue(E, 0);
2950    N = NodeAllocator.Allocate<TernarySDNode>();
2951    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2952    CSEMap.InsertNode(N, IP);
2953  } else {
2954    N = NodeAllocator.Allocate<TernarySDNode>();
2955    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2956  }
2957  AllNodes.push_back(N);
2958#ifndef NDEBUG
2959  VerifyNode(N);
2960#endif
2961  return SDValue(N, 0);
2962}
2963
2964SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2965                              SDValue N1, SDValue N2, SDValue N3,
2966                              SDValue N4) {
2967  SDValue Ops[] = { N1, N2, N3, N4 };
2968  return getNode(Opcode, DL, VT, Ops, 4);
2969}
2970
2971SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2972                              SDValue N1, SDValue N2, SDValue N3,
2973                              SDValue N4, SDValue N5) {
2974  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2975  return getNode(Opcode, DL, VT, Ops, 5);
2976}
2977
2978/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
2979/// the incoming stack arguments to be loaded from the stack.
2980SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
2981  SmallVector<SDValue, 8> ArgChains;
2982
2983  // Include the original chain at the beginning of the list. When this is
2984  // used by target LowerCall hooks, this helps legalize find the
2985  // CALLSEQ_BEGIN node.
2986  ArgChains.push_back(Chain);
2987
2988  // Add a chain value for each stack argument.
2989  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
2990       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
2991    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2992      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2993        if (FI->getIndex() < 0)
2994          ArgChains.push_back(SDValue(L, 1));
2995
2996  // Build a tokenfactor for all the chains.
2997  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
2998                 &ArgChains[0], ArgChains.size());
2999}
3000
3001/// getMemsetValue - Vectorized representation of the memset value
3002/// operand.
3003static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3004                              DebugLoc dl) {
3005  unsigned NumBits = VT.isVector() ?
3006    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3007  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3008    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3009    unsigned Shift = 8;
3010    for (unsigned i = NumBits; i > 8; i >>= 1) {
3011      Val = (Val << Shift) | Val;
3012      Shift <<= 1;
3013    }
3014    if (VT.isInteger())
3015      return DAG.getConstant(Val, VT);
3016    return DAG.getConstantFP(APFloat(Val), VT);
3017  }
3018
3019  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3020  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3021  unsigned Shift = 8;
3022  for (unsigned i = NumBits; i > 8; i >>= 1) {
3023    Value = DAG.getNode(ISD::OR, dl, VT,
3024                        DAG.getNode(ISD::SHL, dl, VT, Value,
3025                                    DAG.getConstant(Shift,
3026                                                    TLI.getShiftAmountTy())),
3027                        Value);
3028    Shift <<= 1;
3029  }
3030
3031  return Value;
3032}
3033
3034/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3035/// used when a memcpy is turned into a memset when the source is a constant
3036/// string ptr.
3037static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3038                                    const TargetLowering &TLI,
3039                                    std::string &Str, unsigned Offset) {
3040  // Handle vector with all elements zero.
3041  if (Str.empty()) {
3042    if (VT.isInteger())
3043      return DAG.getConstant(0, VT);
3044    unsigned NumElts = VT.getVectorNumElements();
3045    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3046    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3047                       DAG.getConstant(0,
3048                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3049  }
3050
3051  assert(!VT.isVector() && "Can't handle vector type here!");
3052  unsigned NumBits = VT.getSizeInBits();
3053  unsigned MSB = NumBits / 8;
3054  uint64_t Val = 0;
3055  if (TLI.isLittleEndian())
3056    Offset = Offset + MSB - 1;
3057  for (unsigned i = 0; i != MSB; ++i) {
3058    Val = (Val << 8) | (unsigned char)Str[Offset];
3059    Offset += TLI.isLittleEndian() ? -1 : 1;
3060  }
3061  return DAG.getConstant(Val, VT);
3062}
3063
3064/// getMemBasePlusOffset - Returns base and offset node for the
3065///
3066static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3067                                      SelectionDAG &DAG) {
3068  EVT VT = Base.getValueType();
3069  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3070                     VT, Base, DAG.getConstant(Offset, VT));
3071}
3072
3073/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3074///
3075static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3076  unsigned SrcDelta = 0;
3077  GlobalAddressSDNode *G = NULL;
3078  if (Src.getOpcode() == ISD::GlobalAddress)
3079    G = cast<GlobalAddressSDNode>(Src);
3080  else if (Src.getOpcode() == ISD::ADD &&
3081           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3082           Src.getOperand(1).getOpcode() == ISD::Constant) {
3083    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3084    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3085  }
3086  if (!G)
3087    return false;
3088
3089  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3090  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3091    return true;
3092
3093  return false;
3094}
3095
3096/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3097/// to replace the memset / memcpy is below the threshold. It also returns the
3098/// types of the sequence of memory ops to perform memset / memcpy.
3099static
3100bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3101                              SDValue Dst, SDValue Src,
3102                              unsigned Limit, uint64_t Size, unsigned &Align,
3103                              std::string &Str, bool &isSrcStr,
3104                              SelectionDAG &DAG,
3105                              const TargetLowering &TLI) {
3106  isSrcStr = isMemSrcFromString(Src, Str);
3107  bool isSrcConst = isa<ConstantSDNode>(Src);
3108  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3109  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3110  if (VT != MVT::iAny) {
3111    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3112    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3113    // If source is a string constant, this will require an unaligned load.
3114    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3115      if (Dst.getOpcode() != ISD::FrameIndex) {
3116        // Can't change destination alignment. It requires a unaligned store.
3117        if (AllowUnalign)
3118          VT = MVT::iAny;
3119      } else {
3120        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3121        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3122        if (MFI->isFixedObjectIndex(FI)) {
3123          // Can't change destination alignment. It requires a unaligned store.
3124          if (AllowUnalign)
3125            VT = MVT::iAny;
3126        } else {
3127          // Give the stack frame object a larger alignment if needed.
3128          if (MFI->getObjectAlignment(FI) < NewAlign)
3129            MFI->setObjectAlignment(FI, NewAlign);
3130          Align = NewAlign;
3131        }
3132      }
3133    }
3134  }
3135
3136  if (VT == MVT::iAny) {
3137    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3138      VT = MVT::i64;
3139    } else {
3140      switch (Align & 7) {
3141      case 0:  VT = MVT::i64; break;
3142      case 4:  VT = MVT::i32; break;
3143      case 2:  VT = MVT::i16; break;
3144      default: VT = MVT::i8;  break;
3145      }
3146    }
3147
3148    MVT LVT = MVT::i64;
3149    while (!TLI.isTypeLegal(LVT))
3150      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3151    assert(LVT.isInteger());
3152
3153    if (VT.bitsGT(LVT))
3154      VT = LVT;
3155  }
3156
3157  unsigned NumMemOps = 0;
3158  while (Size != 0) {
3159    unsigned VTSize = VT.getSizeInBits() / 8;
3160    while (VTSize > Size) {
3161      // For now, only use non-vector load / store's for the left-over pieces.
3162      if (VT.isVector()) {
3163        VT = MVT::i64;
3164        while (!TLI.isTypeLegal(VT))
3165          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3166        VTSize = VT.getSizeInBits() / 8;
3167      } else {
3168        // This can result in a type that is not legal on the target, e.g.
3169        // 1 or 2 bytes on PPC.
3170        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3171        VTSize >>= 1;
3172      }
3173    }
3174
3175    if (++NumMemOps > Limit)
3176      return false;
3177    MemOps.push_back(VT);
3178    Size -= VTSize;
3179  }
3180
3181  return true;
3182}
3183
3184static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3185                                         SDValue Chain, SDValue Dst,
3186                                         SDValue Src, uint64_t Size,
3187                                         unsigned Align, bool AlwaysInline,
3188                                         const Value *DstSV, uint64_t DstSVOff,
3189                                         const Value *SrcSV, uint64_t SrcSVOff){
3190  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3191
3192  // Expand memcpy to a series of load and store ops if the size operand falls
3193  // below a certain threshold.
3194  std::vector<EVT> MemOps;
3195  uint64_t Limit = -1ULL;
3196  if (!AlwaysInline)
3197    Limit = TLI.getMaxStoresPerMemcpy();
3198  unsigned DstAlign = Align;  // Destination alignment can change.
3199  std::string Str;
3200  bool CopyFromStr;
3201  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3202                                Str, CopyFromStr, DAG, TLI))
3203    return SDValue();
3204
3205
3206  bool isZeroStr = CopyFromStr && Str.empty();
3207  SmallVector<SDValue, 8> OutChains;
3208  unsigned NumMemOps = MemOps.size();
3209  uint64_t SrcOff = 0, DstOff = 0;
3210  for (unsigned i = 0; i < NumMemOps; i++) {
3211    EVT VT = MemOps[i];
3212    unsigned VTSize = VT.getSizeInBits() / 8;
3213    SDValue Value, Store;
3214
3215    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3216      // It's unlikely a store of a vector immediate can be done in a single
3217      // instruction. It would require a load from a constantpool first.
3218      // We also handle store a vector with all zero's.
3219      // FIXME: Handle other cases where store of vector immediate is done in
3220      // a single instruction.
3221      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3222      Store = DAG.getStore(Chain, dl, Value,
3223                           getMemBasePlusOffset(Dst, DstOff, DAG),
3224                           DstSV, DstSVOff + DstOff, false, DstAlign);
3225    } else {
3226      // The type might not be legal for the target.  This should only happen
3227      // if the type is smaller than a legal type, as on PPC, so the right
3228      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3229      // to Load/Store if NVT==VT.
3230      // FIXME does the case above also need this?
3231      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3232      assert(NVT.bitsGE(VT));
3233      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3234                             getMemBasePlusOffset(Src, SrcOff, DAG),
3235                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3236      Store = DAG.getTruncStore(Chain, dl, Value,
3237                             getMemBasePlusOffset(Dst, DstOff, DAG),
3238                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3239    }
3240    OutChains.push_back(Store);
3241    SrcOff += VTSize;
3242    DstOff += VTSize;
3243  }
3244
3245  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3246                     &OutChains[0], OutChains.size());
3247}
3248
3249static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3250                                          SDValue Chain, SDValue Dst,
3251                                          SDValue Src, uint64_t Size,
3252                                          unsigned Align, bool AlwaysInline,
3253                                          const Value *DstSV, uint64_t DstSVOff,
3254                                          const Value *SrcSV, uint64_t SrcSVOff){
3255  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3256
3257  // Expand memmove to a series of load and store ops if the size operand falls
3258  // below a certain threshold.
3259  std::vector<EVT> MemOps;
3260  uint64_t Limit = -1ULL;
3261  if (!AlwaysInline)
3262    Limit = TLI.getMaxStoresPerMemmove();
3263  unsigned DstAlign = Align;  // Destination alignment can change.
3264  std::string Str;
3265  bool CopyFromStr;
3266  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3267                                Str, CopyFromStr, DAG, TLI))
3268    return SDValue();
3269
3270  uint64_t SrcOff = 0, DstOff = 0;
3271
3272  SmallVector<SDValue, 8> LoadValues;
3273  SmallVector<SDValue, 8> LoadChains;
3274  SmallVector<SDValue, 8> OutChains;
3275  unsigned NumMemOps = MemOps.size();
3276  for (unsigned i = 0; i < NumMemOps; i++) {
3277    EVT VT = MemOps[i];
3278    unsigned VTSize = VT.getSizeInBits() / 8;
3279    SDValue Value, Store;
3280
3281    Value = DAG.getLoad(VT, dl, Chain,
3282                        getMemBasePlusOffset(Src, SrcOff, DAG),
3283                        SrcSV, SrcSVOff + SrcOff, false, Align);
3284    LoadValues.push_back(Value);
3285    LoadChains.push_back(Value.getValue(1));
3286    SrcOff += VTSize;
3287  }
3288  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3289                      &LoadChains[0], LoadChains.size());
3290  OutChains.clear();
3291  for (unsigned i = 0; i < NumMemOps; i++) {
3292    EVT VT = MemOps[i];
3293    unsigned VTSize = VT.getSizeInBits() / 8;
3294    SDValue Value, Store;
3295
3296    Store = DAG.getStore(Chain, dl, LoadValues[i],
3297                         getMemBasePlusOffset(Dst, DstOff, DAG),
3298                         DstSV, DstSVOff + DstOff, false, DstAlign);
3299    OutChains.push_back(Store);
3300    DstOff += VTSize;
3301  }
3302
3303  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3304                     &OutChains[0], OutChains.size());
3305}
3306
3307static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3308                                 SDValue Chain, SDValue Dst,
3309                                 SDValue Src, uint64_t Size,
3310                                 unsigned Align,
3311                                 const Value *DstSV, uint64_t DstSVOff) {
3312  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3313
3314  // Expand memset to a series of load/store ops if the size operand
3315  // falls below a certain threshold.
3316  std::vector<EVT> MemOps;
3317  std::string Str;
3318  bool CopyFromStr;
3319  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3320                                Size, Align, Str, CopyFromStr, DAG, TLI))
3321    return SDValue();
3322
3323  SmallVector<SDValue, 8> OutChains;
3324  uint64_t DstOff = 0;
3325
3326  unsigned NumMemOps = MemOps.size();
3327  for (unsigned i = 0; i < NumMemOps; i++) {
3328    EVT VT = MemOps[i];
3329    unsigned VTSize = VT.getSizeInBits() / 8;
3330    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3331    SDValue Store = DAG.getStore(Chain, dl, Value,
3332                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3333                                 DstSV, DstSVOff + DstOff);
3334    OutChains.push_back(Store);
3335    DstOff += VTSize;
3336  }
3337
3338  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3339                     &OutChains[0], OutChains.size());
3340}
3341
3342SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3343                                SDValue Src, SDValue Size,
3344                                unsigned Align, bool AlwaysInline,
3345                                const Value *DstSV, uint64_t DstSVOff,
3346                                const Value *SrcSV, uint64_t SrcSVOff) {
3347
3348  // Check to see if we should lower the memcpy to loads and stores first.
3349  // For cases within the target-specified limits, this is the best choice.
3350  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3351  if (ConstantSize) {
3352    // Memcpy with size zero? Just return the original chain.
3353    if (ConstantSize->isNullValue())
3354      return Chain;
3355
3356    SDValue Result =
3357      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3358                              ConstantSize->getZExtValue(),
3359                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3360    if (Result.getNode())
3361      return Result;
3362  }
3363
3364  // Then check to see if we should lower the memcpy with target-specific
3365  // code. If the target chooses to do this, this is the next best.
3366  SDValue Result =
3367    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3368                                AlwaysInline,
3369                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3370  if (Result.getNode())
3371    return Result;
3372
3373  // If we really need inline code and the target declined to provide it,
3374  // use a (potentially long) sequence of loads and stores.
3375  if (AlwaysInline) {
3376    assert(ConstantSize && "AlwaysInline requires a constant size!");
3377    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3378                                   ConstantSize->getZExtValue(), Align, true,
3379                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3380  }
3381
3382  // Emit a library call.
3383  TargetLowering::ArgListTy Args;
3384  TargetLowering::ArgListEntry Entry;
3385  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3386  Entry.Node = Dst; Args.push_back(Entry);
3387  Entry.Node = Src; Args.push_back(Entry);
3388  Entry.Node = Size; Args.push_back(Entry);
3389  // FIXME: pass in DebugLoc
3390  std::pair<SDValue,SDValue> CallResult =
3391    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3392                    false, false, false, false, 0,
3393                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3394                    /*isReturnValueUsed=*/false,
3395                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3396                                      TLI.getPointerTy()),
3397                    Args, *this, dl);
3398  return CallResult.second;
3399}
3400
3401SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3402                                 SDValue Src, SDValue Size,
3403                                 unsigned Align,
3404                                 const Value *DstSV, uint64_t DstSVOff,
3405                                 const Value *SrcSV, uint64_t SrcSVOff) {
3406
3407  // Check to see if we should lower the memmove to loads and stores first.
3408  // For cases within the target-specified limits, this is the best choice.
3409  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3410  if (ConstantSize) {
3411    // Memmove with size zero? Just return the original chain.
3412    if (ConstantSize->isNullValue())
3413      return Chain;
3414
3415    SDValue Result =
3416      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3417                               ConstantSize->getZExtValue(),
3418                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3419    if (Result.getNode())
3420      return Result;
3421  }
3422
3423  // Then check to see if we should lower the memmove with target-specific
3424  // code. If the target chooses to do this, this is the next best.
3425  SDValue Result =
3426    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3427                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3428  if (Result.getNode())
3429    return Result;
3430
3431  // Emit a library call.
3432  TargetLowering::ArgListTy Args;
3433  TargetLowering::ArgListEntry Entry;
3434  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3435  Entry.Node = Dst; Args.push_back(Entry);
3436  Entry.Node = Src; Args.push_back(Entry);
3437  Entry.Node = Size; Args.push_back(Entry);
3438  // FIXME:  pass in DebugLoc
3439  std::pair<SDValue,SDValue> CallResult =
3440    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3441                    false, false, false, false, 0,
3442                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3443                    /*isReturnValueUsed=*/false,
3444                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3445                                      TLI.getPointerTy()),
3446                    Args, *this, dl);
3447  return CallResult.second;
3448}
3449
3450SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3451                                SDValue Src, SDValue Size,
3452                                unsigned Align,
3453                                const Value *DstSV, uint64_t DstSVOff) {
3454
3455  // Check to see if we should lower the memset to stores first.
3456  // For cases within the target-specified limits, this is the best choice.
3457  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3458  if (ConstantSize) {
3459    // Memset with size zero? Just return the original chain.
3460    if (ConstantSize->isNullValue())
3461      return Chain;
3462
3463    SDValue Result =
3464      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3465                      Align, DstSV, DstSVOff);
3466    if (Result.getNode())
3467      return Result;
3468  }
3469
3470  // Then check to see if we should lower the memset with target-specific
3471  // code. If the target chooses to do this, this is the next best.
3472  SDValue Result =
3473    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3474                                DstSV, DstSVOff);
3475  if (Result.getNode())
3476    return Result;
3477
3478  // Emit a library call.
3479  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3480  TargetLowering::ArgListTy Args;
3481  TargetLowering::ArgListEntry Entry;
3482  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3483  Args.push_back(Entry);
3484  // Extend or truncate the argument to be an i32 value for the call.
3485  if (Src.getValueType().bitsGT(MVT::i32))
3486    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3487  else
3488    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3489  Entry.Node = Src;
3490  Entry.Ty = Type::getInt32Ty(*getContext());
3491  Entry.isSExt = true;
3492  Args.push_back(Entry);
3493  Entry.Node = Size;
3494  Entry.Ty = IntPtrTy;
3495  Entry.isSExt = false;
3496  Args.push_back(Entry);
3497  // FIXME: pass in DebugLoc
3498  std::pair<SDValue,SDValue> CallResult =
3499    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3500                    false, false, false, false, 0,
3501                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3502                    /*isReturnValueUsed=*/false,
3503                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3504                                      TLI.getPointerTy()),
3505                    Args, *this, dl);
3506  return CallResult.second;
3507}
3508
3509SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3510                                SDValue Chain,
3511                                SDValue Ptr, SDValue Cmp,
3512                                SDValue Swp, const Value* PtrVal,
3513                                unsigned Alignment) {
3514  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3515  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3516
3517  EVT VT = Cmp.getValueType();
3518
3519  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3520    Alignment = getEVTAlignment(MemVT);
3521
3522  SDVTList VTs = getVTList(VT, MVT::Other);
3523  FoldingSetNodeID ID;
3524  ID.AddInteger(MemVT.getRawBits());
3525  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3526  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3527  void* IP = 0;
3528  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3529    return SDValue(E, 0);
3530  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3531  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3532                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3533  CSEMap.InsertNode(N, IP);
3534  AllNodes.push_back(N);
3535  return SDValue(N, 0);
3536}
3537
3538SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3539                                SDValue Chain,
3540                                SDValue Ptr, SDValue Val,
3541                                const Value* PtrVal,
3542                                unsigned Alignment) {
3543  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3544          Opcode == ISD::ATOMIC_LOAD_SUB ||
3545          Opcode == ISD::ATOMIC_LOAD_AND ||
3546          Opcode == ISD::ATOMIC_LOAD_OR ||
3547          Opcode == ISD::ATOMIC_LOAD_XOR ||
3548          Opcode == ISD::ATOMIC_LOAD_NAND ||
3549          Opcode == ISD::ATOMIC_LOAD_MIN ||
3550          Opcode == ISD::ATOMIC_LOAD_MAX ||
3551          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3552          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3553          Opcode == ISD::ATOMIC_SWAP) &&
3554         "Invalid Atomic Op");
3555
3556  EVT VT = Val.getValueType();
3557
3558  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3559    Alignment = getEVTAlignment(MemVT);
3560
3561  SDVTList VTs = getVTList(VT, MVT::Other);
3562  FoldingSetNodeID ID;
3563  ID.AddInteger(MemVT.getRawBits());
3564  SDValue Ops[] = {Chain, Ptr, Val};
3565  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3566  void* IP = 0;
3567  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3568    return SDValue(E, 0);
3569  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3570  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3571                       Chain, Ptr, Val, PtrVal, Alignment);
3572  CSEMap.InsertNode(N, IP);
3573  AllNodes.push_back(N);
3574  return SDValue(N, 0);
3575}
3576
3577/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3578/// Allowed to return something different (and simpler) if Simplify is true.
3579SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3580                                     DebugLoc dl) {
3581  if (NumOps == 1)
3582    return Ops[0];
3583
3584  SmallVector<EVT, 4> VTs;
3585  VTs.reserve(NumOps);
3586  for (unsigned i = 0; i < NumOps; ++i)
3587    VTs.push_back(Ops[i].getValueType());
3588  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3589                 Ops, NumOps);
3590}
3591
3592SDValue
3593SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3594                                  const EVT *VTs, unsigned NumVTs,
3595                                  const SDValue *Ops, unsigned NumOps,
3596                                  EVT MemVT, const Value *srcValue, int SVOff,
3597                                  unsigned Align, bool Vol,
3598                                  bool ReadMem, bool WriteMem) {
3599  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3600                             MemVT, srcValue, SVOff, Align, Vol,
3601                             ReadMem, WriteMem);
3602}
3603
3604SDValue
3605SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3606                                  const SDValue *Ops, unsigned NumOps,
3607                                  EVT MemVT, const Value *srcValue, int SVOff,
3608                                  unsigned Align, bool Vol,
3609                                  bool ReadMem, bool WriteMem) {
3610  // Memoize the node unless it returns a flag.
3611  MemIntrinsicSDNode *N;
3612  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3613    FoldingSetNodeID ID;
3614    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3615    void *IP = 0;
3616    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3617      return SDValue(E, 0);
3618
3619    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3620    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3621                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3622    CSEMap.InsertNode(N, IP);
3623  } else {
3624    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3625    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3626                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3627  }
3628  AllNodes.push_back(N);
3629  return SDValue(N, 0);
3630}
3631
3632SDValue
3633SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3634                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3635                      SDValue Ptr, SDValue Offset,
3636                      const Value *SV, int SVOffset, EVT EVT,
3637                      bool isVolatile, unsigned Alignment) {
3638  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3639    Alignment = getEVTAlignment(VT);
3640
3641  if (VT == EVT) {
3642    ExtType = ISD::NON_EXTLOAD;
3643  } else if (ExtType == ISD::NON_EXTLOAD) {
3644    assert(VT == EVT && "Non-extending load from different memory type!");
3645  } else {
3646    // Extending load.
3647    if (VT.isVector())
3648      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3649             "Invalid vector extload!");
3650    else
3651      assert(EVT.bitsLT(VT) &&
3652             "Should only be an extending load, not truncating!");
3653    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3654           "Cannot sign/zero extend a FP/Vector load!");
3655    assert(VT.isInteger() == EVT.isInteger() &&
3656           "Cannot convert from FP to Int or Int -> FP!");
3657  }
3658
3659  bool Indexed = AM != ISD::UNINDEXED;
3660  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3661         "Unindexed load with an offset!");
3662
3663  SDVTList VTs = Indexed ?
3664    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3665  SDValue Ops[] = { Chain, Ptr, Offset };
3666  FoldingSetNodeID ID;
3667  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3668  ID.AddInteger(EVT.getRawBits());
3669  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3670  void *IP = 0;
3671  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3672    return SDValue(E, 0);
3673  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3674  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3675                     Alignment, isVolatile);
3676  CSEMap.InsertNode(N, IP);
3677  AllNodes.push_back(N);
3678  return SDValue(N, 0);
3679}
3680
3681SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3682                              SDValue Chain, SDValue Ptr,
3683                              const Value *SV, int SVOffset,
3684                              bool isVolatile, unsigned Alignment) {
3685  SDValue Undef = getUNDEF(Ptr.getValueType());
3686  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3687                 SV, SVOffset, VT, isVolatile, Alignment);
3688}
3689
3690SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3691                                 SDValue Chain, SDValue Ptr,
3692                                 const Value *SV,
3693                                 int SVOffset, EVT EVT,
3694                                 bool isVolatile, unsigned Alignment) {
3695  SDValue Undef = getUNDEF(Ptr.getValueType());
3696  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3697                 SV, SVOffset, EVT, isVolatile, Alignment);
3698}
3699
3700SDValue
3701SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3702                             SDValue Offset, ISD::MemIndexedMode AM) {
3703  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3704  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3705         "Load is already a indexed load!");
3706  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3707                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3708                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3709                 LD->isVolatile(), LD->getAlignment());
3710}
3711
3712SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3713                               SDValue Ptr, const Value *SV, int SVOffset,
3714                               bool isVolatile, unsigned Alignment) {
3715  EVT VT = Val.getValueType();
3716
3717  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3718    Alignment = getEVTAlignment(VT);
3719
3720  SDVTList VTs = getVTList(MVT::Other);
3721  SDValue Undef = getUNDEF(Ptr.getValueType());
3722  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3723  FoldingSetNodeID ID;
3724  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3725  ID.AddInteger(VT.getRawBits());
3726  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3727                                     isVolatile, Alignment));
3728  void *IP = 0;
3729  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3730    return SDValue(E, 0);
3731  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3732  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3733                      VT, SV, SVOffset, Alignment, isVolatile);
3734  CSEMap.InsertNode(N, IP);
3735  AllNodes.push_back(N);
3736  return SDValue(N, 0);
3737}
3738
3739SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3740                                    SDValue Ptr, const Value *SV,
3741                                    int SVOffset, EVT SVT,
3742                                    bool isVolatile, unsigned Alignment) {
3743  EVT VT = Val.getValueType();
3744
3745  if (VT == SVT)
3746    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3747
3748  assert(VT.bitsGT(SVT) && "Not a truncation?");
3749  assert(VT.isInteger() == SVT.isInteger() &&
3750         "Can't do FP-INT conversion!");
3751
3752  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3753    Alignment = getEVTAlignment(VT);
3754
3755  SDVTList VTs = getVTList(MVT::Other);
3756  SDValue Undef = getUNDEF(Ptr.getValueType());
3757  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3758  FoldingSetNodeID ID;
3759  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3760  ID.AddInteger(SVT.getRawBits());
3761  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3762                                     isVolatile, Alignment));
3763  void *IP = 0;
3764  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3765    return SDValue(E, 0);
3766  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3767  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3768                      SVT, SV, SVOffset, Alignment, isVolatile);
3769  CSEMap.InsertNode(N, IP);
3770  AllNodes.push_back(N);
3771  return SDValue(N, 0);
3772}
3773
3774SDValue
3775SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3776                              SDValue Offset, ISD::MemIndexedMode AM) {
3777  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3778  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3779         "Store is already a indexed store!");
3780  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3781  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3782  FoldingSetNodeID ID;
3783  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3784  ID.AddInteger(ST->getMemoryVT().getRawBits());
3785  ID.AddInteger(ST->getRawSubclassData());
3786  void *IP = 0;
3787  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3788    return SDValue(E, 0);
3789  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3790  new (N) StoreSDNode(Ops, dl, VTs, AM,
3791                      ST->isTruncatingStore(), ST->getMemoryVT(),
3792                      ST->getSrcValue(), ST->getSrcValueOffset(),
3793                      ST->getAlignment(), ST->isVolatile());
3794  CSEMap.InsertNode(N, IP);
3795  AllNodes.push_back(N);
3796  return SDValue(N, 0);
3797}
3798
3799SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
3800                               SDValue Chain, SDValue Ptr,
3801                               SDValue SV) {
3802  SDValue Ops[] = { Chain, Ptr, SV };
3803  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3804}
3805
3806SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3807                              const SDUse *Ops, unsigned NumOps) {
3808  switch (NumOps) {
3809  case 0: return getNode(Opcode, DL, VT);
3810  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3811  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3812  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3813  default: break;
3814  }
3815
3816  // Copy from an SDUse array into an SDValue array for use with
3817  // the regular getNode logic.
3818  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3819  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3820}
3821
3822SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3823                              const SDValue *Ops, unsigned NumOps) {
3824  switch (NumOps) {
3825  case 0: return getNode(Opcode, DL, VT);
3826  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3827  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3828  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3829  default: break;
3830  }
3831
3832  switch (Opcode) {
3833  default: break;
3834  case ISD::SELECT_CC: {
3835    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3836    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3837           "LHS and RHS of condition must have same type!");
3838    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3839           "True and False arms of SelectCC must have same type!");
3840    assert(Ops[2].getValueType() == VT &&
3841           "select_cc node must be of same type as true and false value!");
3842    break;
3843  }
3844  case ISD::BR_CC: {
3845    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3846    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3847           "LHS/RHS of comparison should match types!");
3848    break;
3849  }
3850  }
3851
3852  // Memoize nodes.
3853  SDNode *N;
3854  SDVTList VTs = getVTList(VT);
3855
3856  if (VT != MVT::Flag) {
3857    FoldingSetNodeID ID;
3858    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3859    void *IP = 0;
3860
3861    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3862      return SDValue(E, 0);
3863
3864    N = NodeAllocator.Allocate<SDNode>();
3865    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3866    CSEMap.InsertNode(N, IP);
3867  } else {
3868    N = NodeAllocator.Allocate<SDNode>();
3869    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3870  }
3871
3872  AllNodes.push_back(N);
3873#ifndef NDEBUG
3874  VerifyNode(N);
3875#endif
3876  return SDValue(N, 0);
3877}
3878
3879SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3880                              const std::vector<EVT> &ResultTys,
3881                              const SDValue *Ops, unsigned NumOps) {
3882  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
3883                 Ops, NumOps);
3884}
3885
3886SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3887                              const EVT *VTs, unsigned NumVTs,
3888                              const SDValue *Ops, unsigned NumOps) {
3889  if (NumVTs == 1)
3890    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3891  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3892}
3893
3894SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3895                              const SDValue *Ops, unsigned NumOps) {
3896  if (VTList.NumVTs == 1)
3897    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3898
3899#if 0
3900  switch (Opcode) {
3901  // FIXME: figure out how to safely handle things like
3902  // int foo(int x) { return 1 << (x & 255); }
3903  // int bar() { return foo(256); }
3904  case ISD::SRA_PARTS:
3905  case ISD::SRL_PARTS:
3906  case ISD::SHL_PARTS:
3907    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3908        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3909      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3910    else if (N3.getOpcode() == ISD::AND)
3911      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3912        // If the and is only masking out bits that cannot effect the shift,
3913        // eliminate the and.
3914        unsigned NumBits = VT.getSizeInBits()*2;
3915        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3916          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3917      }
3918    break;
3919  }
3920#endif
3921
3922  // Memoize the node unless it returns a flag.
3923  SDNode *N;
3924  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3925    FoldingSetNodeID ID;
3926    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3927    void *IP = 0;
3928    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3929      return SDValue(E, 0);
3930    if (NumOps == 1) {
3931      N = NodeAllocator.Allocate<UnarySDNode>();
3932      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3933    } else if (NumOps == 2) {
3934      N = NodeAllocator.Allocate<BinarySDNode>();
3935      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3936    } else if (NumOps == 3) {
3937      N = NodeAllocator.Allocate<TernarySDNode>();
3938      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3939    } else {
3940      N = NodeAllocator.Allocate<SDNode>();
3941      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3942    }
3943    CSEMap.InsertNode(N, IP);
3944  } else {
3945    if (NumOps == 1) {
3946      N = NodeAllocator.Allocate<UnarySDNode>();
3947      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3948    } else if (NumOps == 2) {
3949      N = NodeAllocator.Allocate<BinarySDNode>();
3950      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3951    } else if (NumOps == 3) {
3952      N = NodeAllocator.Allocate<TernarySDNode>();
3953      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3954    } else {
3955      N = NodeAllocator.Allocate<SDNode>();
3956      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3957    }
3958  }
3959  AllNodes.push_back(N);
3960#ifndef NDEBUG
3961  VerifyNode(N);
3962#endif
3963  return SDValue(N, 0);
3964}
3965
3966SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3967  return getNode(Opcode, DL, VTList, 0, 0);
3968}
3969
3970SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3971                              SDValue N1) {
3972  SDValue Ops[] = { N1 };
3973  return getNode(Opcode, DL, VTList, Ops, 1);
3974}
3975
3976SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3977                              SDValue N1, SDValue N2) {
3978  SDValue Ops[] = { N1, N2 };
3979  return getNode(Opcode, DL, VTList, Ops, 2);
3980}
3981
3982SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3983                              SDValue N1, SDValue N2, SDValue N3) {
3984  SDValue Ops[] = { N1, N2, N3 };
3985  return getNode(Opcode, DL, VTList, Ops, 3);
3986}
3987
3988SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3989                              SDValue N1, SDValue N2, SDValue N3,
3990                              SDValue N4) {
3991  SDValue Ops[] = { N1, N2, N3, N4 };
3992  return getNode(Opcode, DL, VTList, Ops, 4);
3993}
3994
3995SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3996                              SDValue N1, SDValue N2, SDValue N3,
3997                              SDValue N4, SDValue N5) {
3998  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3999  return getNode(Opcode, DL, VTList, Ops, 5);
4000}
4001
4002SDVTList SelectionDAG::getVTList(EVT VT) {
4003  return makeVTList(SDNode::getValueTypeList(VT), 1);
4004}
4005
4006SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4007  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4008       E = VTList.rend(); I != E; ++I)
4009    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4010      return *I;
4011
4012  EVT *Array = Allocator.Allocate<EVT>(2);
4013  Array[0] = VT1;
4014  Array[1] = VT2;
4015  SDVTList Result = makeVTList(Array, 2);
4016  VTList.push_back(Result);
4017  return Result;
4018}
4019
4020SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4021  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4022       E = VTList.rend(); I != E; ++I)
4023    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4024                          I->VTs[2] == VT3)
4025      return *I;
4026
4027  EVT *Array = Allocator.Allocate<EVT>(3);
4028  Array[0] = VT1;
4029  Array[1] = VT2;
4030  Array[2] = VT3;
4031  SDVTList Result = makeVTList(Array, 3);
4032  VTList.push_back(Result);
4033  return Result;
4034}
4035
4036SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4037  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4038       E = VTList.rend(); I != E; ++I)
4039    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4040                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4041      return *I;
4042
4043  EVT *Array = Allocator.Allocate<EVT>(3);
4044  Array[0] = VT1;
4045  Array[1] = VT2;
4046  Array[2] = VT3;
4047  Array[3] = VT4;
4048  SDVTList Result = makeVTList(Array, 4);
4049  VTList.push_back(Result);
4050  return Result;
4051}
4052
4053SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4054  switch (NumVTs) {
4055    case 0: llvm_unreachable("Cannot have nodes without results!");
4056    case 1: return getVTList(VTs[0]);
4057    case 2: return getVTList(VTs[0], VTs[1]);
4058    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4059    default: break;
4060  }
4061
4062  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4063       E = VTList.rend(); I != E; ++I) {
4064    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4065      continue;
4066
4067    bool NoMatch = false;
4068    for (unsigned i = 2; i != NumVTs; ++i)
4069      if (VTs[i] != I->VTs[i]) {
4070        NoMatch = true;
4071        break;
4072      }
4073    if (!NoMatch)
4074      return *I;
4075  }
4076
4077  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4078  std::copy(VTs, VTs+NumVTs, Array);
4079  SDVTList Result = makeVTList(Array, NumVTs);
4080  VTList.push_back(Result);
4081  return Result;
4082}
4083
4084
4085/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4086/// specified operands.  If the resultant node already exists in the DAG,
4087/// this does not modify the specified node, instead it returns the node that
4088/// already exists.  If the resultant node does not exist in the DAG, the
4089/// input node is returned.  As a degenerate case, if you specify the same
4090/// input operands as the node already has, the input node is returned.
4091SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4092  SDNode *N = InN.getNode();
4093  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4094
4095  // Check to see if there is no change.
4096  if (Op == N->getOperand(0)) return InN;
4097
4098  // See if the modified node already exists.
4099  void *InsertPos = 0;
4100  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4101    return SDValue(Existing, InN.getResNo());
4102
4103  // Nope it doesn't.  Remove the node from its current place in the maps.
4104  if (InsertPos)
4105    if (!RemoveNodeFromCSEMaps(N))
4106      InsertPos = 0;
4107
4108  // Now we update the operands.
4109  N->OperandList[0].set(Op);
4110
4111  // If this gets put into a CSE map, add it.
4112  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4113  return InN;
4114}
4115
4116SDValue SelectionDAG::
4117UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4118  SDNode *N = InN.getNode();
4119  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4120
4121  // Check to see if there is no change.
4122  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4123    return InN;   // No operands changed, just return the input node.
4124
4125  // See if the modified node already exists.
4126  void *InsertPos = 0;
4127  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4128    return SDValue(Existing, InN.getResNo());
4129
4130  // Nope it doesn't.  Remove the node from its current place in the maps.
4131  if (InsertPos)
4132    if (!RemoveNodeFromCSEMaps(N))
4133      InsertPos = 0;
4134
4135  // Now we update the operands.
4136  if (N->OperandList[0] != Op1)
4137    N->OperandList[0].set(Op1);
4138  if (N->OperandList[1] != Op2)
4139    N->OperandList[1].set(Op2);
4140
4141  // If this gets put into a CSE map, add it.
4142  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4143  return InN;
4144}
4145
4146SDValue SelectionDAG::
4147UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4148  SDValue Ops[] = { Op1, Op2, Op3 };
4149  return UpdateNodeOperands(N, Ops, 3);
4150}
4151
4152SDValue SelectionDAG::
4153UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4154                   SDValue Op3, SDValue Op4) {
4155  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4156  return UpdateNodeOperands(N, Ops, 4);
4157}
4158
4159SDValue SelectionDAG::
4160UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4161                   SDValue Op3, SDValue Op4, SDValue Op5) {
4162  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4163  return UpdateNodeOperands(N, Ops, 5);
4164}
4165
4166SDValue SelectionDAG::
4167UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4168  SDNode *N = InN.getNode();
4169  assert(N->getNumOperands() == NumOps &&
4170         "Update with wrong number of operands");
4171
4172  // Check to see if there is no change.
4173  bool AnyChange = false;
4174  for (unsigned i = 0; i != NumOps; ++i) {
4175    if (Ops[i] != N->getOperand(i)) {
4176      AnyChange = true;
4177      break;
4178    }
4179  }
4180
4181  // No operands changed, just return the input node.
4182  if (!AnyChange) return InN;
4183
4184  // See if the modified node already exists.
4185  void *InsertPos = 0;
4186  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4187    return SDValue(Existing, InN.getResNo());
4188
4189  // Nope it doesn't.  Remove the node from its current place in the maps.
4190  if (InsertPos)
4191    if (!RemoveNodeFromCSEMaps(N))
4192      InsertPos = 0;
4193
4194  // Now we update the operands.
4195  for (unsigned i = 0; i != NumOps; ++i)
4196    if (N->OperandList[i] != Ops[i])
4197      N->OperandList[i].set(Ops[i]);
4198
4199  // If this gets put into a CSE map, add it.
4200  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4201  return InN;
4202}
4203
4204/// DropOperands - Release the operands and set this node to have
4205/// zero operands.
4206void SDNode::DropOperands() {
4207  // Unlike the code in MorphNodeTo that does this, we don't need to
4208  // watch for dead nodes here.
4209  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4210    SDUse &Use = *I++;
4211    Use.set(SDValue());
4212  }
4213}
4214
4215/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4216/// machine opcode.
4217///
4218SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4219                                   EVT VT) {
4220  SDVTList VTs = getVTList(VT);
4221  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4222}
4223
4224SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4225                                   EVT VT, SDValue Op1) {
4226  SDVTList VTs = getVTList(VT);
4227  SDValue Ops[] = { Op1 };
4228  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4229}
4230
4231SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4232                                   EVT VT, SDValue Op1,
4233                                   SDValue Op2) {
4234  SDVTList VTs = getVTList(VT);
4235  SDValue Ops[] = { Op1, Op2 };
4236  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4237}
4238
4239SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4240                                   EVT VT, SDValue Op1,
4241                                   SDValue Op2, SDValue Op3) {
4242  SDVTList VTs = getVTList(VT);
4243  SDValue Ops[] = { Op1, Op2, Op3 };
4244  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4245}
4246
4247SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4248                                   EVT VT, const SDValue *Ops,
4249                                   unsigned NumOps) {
4250  SDVTList VTs = getVTList(VT);
4251  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4252}
4253
4254SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4255                                   EVT VT1, EVT VT2, const SDValue *Ops,
4256                                   unsigned NumOps) {
4257  SDVTList VTs = getVTList(VT1, VT2);
4258  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4259}
4260
4261SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4262                                   EVT VT1, EVT VT2) {
4263  SDVTList VTs = getVTList(VT1, VT2);
4264  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4265}
4266
4267SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4268                                   EVT VT1, EVT VT2, EVT VT3,
4269                                   const SDValue *Ops, unsigned NumOps) {
4270  SDVTList VTs = getVTList(VT1, VT2, VT3);
4271  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4272}
4273
4274SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4275                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4276                                   const SDValue *Ops, unsigned NumOps) {
4277  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4278  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4279}
4280
4281SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4282                                   EVT VT1, EVT VT2,
4283                                   SDValue Op1) {
4284  SDVTList VTs = getVTList(VT1, VT2);
4285  SDValue Ops[] = { Op1 };
4286  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4287}
4288
4289SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4290                                   EVT VT1, EVT VT2,
4291                                   SDValue Op1, SDValue Op2) {
4292  SDVTList VTs = getVTList(VT1, VT2);
4293  SDValue Ops[] = { Op1, Op2 };
4294  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4295}
4296
4297SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4298                                   EVT VT1, EVT VT2,
4299                                   SDValue Op1, SDValue Op2,
4300                                   SDValue Op3) {
4301  SDVTList VTs = getVTList(VT1, VT2);
4302  SDValue Ops[] = { Op1, Op2, Op3 };
4303  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4304}
4305
4306SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4307                                   EVT VT1, EVT VT2, EVT VT3,
4308                                   SDValue Op1, SDValue Op2,
4309                                   SDValue Op3) {
4310  SDVTList VTs = getVTList(VT1, VT2, VT3);
4311  SDValue Ops[] = { Op1, Op2, Op3 };
4312  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4313}
4314
4315SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4316                                   SDVTList VTs, const SDValue *Ops,
4317                                   unsigned NumOps) {
4318  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4319}
4320
4321SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4322                                  EVT VT) {
4323  SDVTList VTs = getVTList(VT);
4324  return MorphNodeTo(N, Opc, VTs, 0, 0);
4325}
4326
4327SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4328                                  EVT VT, SDValue Op1) {
4329  SDVTList VTs = getVTList(VT);
4330  SDValue Ops[] = { Op1 };
4331  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4332}
4333
4334SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4335                                  EVT VT, SDValue Op1,
4336                                  SDValue Op2) {
4337  SDVTList VTs = getVTList(VT);
4338  SDValue Ops[] = { Op1, Op2 };
4339  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4340}
4341
4342SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4343                                  EVT VT, SDValue Op1,
4344                                  SDValue Op2, SDValue Op3) {
4345  SDVTList VTs = getVTList(VT);
4346  SDValue Ops[] = { Op1, Op2, Op3 };
4347  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4348}
4349
4350SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4351                                  EVT VT, const SDValue *Ops,
4352                                  unsigned NumOps) {
4353  SDVTList VTs = getVTList(VT);
4354  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4355}
4356
4357SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4358                                  EVT VT1, EVT VT2, const SDValue *Ops,
4359                                  unsigned NumOps) {
4360  SDVTList VTs = getVTList(VT1, VT2);
4361  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4362}
4363
4364SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4365                                  EVT VT1, EVT VT2) {
4366  SDVTList VTs = getVTList(VT1, VT2);
4367  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4368}
4369
4370SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4371                                  EVT VT1, EVT VT2, EVT VT3,
4372                                  const SDValue *Ops, unsigned NumOps) {
4373  SDVTList VTs = getVTList(VT1, VT2, VT3);
4374  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4375}
4376
4377SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4378                                  EVT VT1, EVT VT2,
4379                                  SDValue Op1) {
4380  SDVTList VTs = getVTList(VT1, VT2);
4381  SDValue Ops[] = { Op1 };
4382  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4383}
4384
4385SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4386                                  EVT VT1, EVT VT2,
4387                                  SDValue Op1, SDValue Op2) {
4388  SDVTList VTs = getVTList(VT1, VT2);
4389  SDValue Ops[] = { Op1, Op2 };
4390  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4391}
4392
4393SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4394                                  EVT VT1, EVT VT2,
4395                                  SDValue Op1, SDValue Op2,
4396                                  SDValue Op3) {
4397  SDVTList VTs = getVTList(VT1, VT2);
4398  SDValue Ops[] = { Op1, Op2, Op3 };
4399  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4400}
4401
4402/// MorphNodeTo - These *mutate* the specified node to have the specified
4403/// return type, opcode, and operands.
4404///
4405/// Note that MorphNodeTo returns the resultant node.  If there is already a
4406/// node of the specified opcode and operands, it returns that node instead of
4407/// the current one.  Note that the DebugLoc need not be the same.
4408///
4409/// Using MorphNodeTo is faster than creating a new node and swapping it in
4410/// with ReplaceAllUsesWith both because it often avoids allocating a new
4411/// node, and because it doesn't require CSE recalculation for any of
4412/// the node's users.
4413///
4414SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4415                                  SDVTList VTs, const SDValue *Ops,
4416                                  unsigned NumOps) {
4417  // If an identical node already exists, use it.
4418  void *IP = 0;
4419  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4420    FoldingSetNodeID ID;
4421    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4422    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4423      return ON;
4424  }
4425
4426  if (!RemoveNodeFromCSEMaps(N))
4427    IP = 0;
4428
4429  // Start the morphing.
4430  N->NodeType = Opc;
4431  N->ValueList = VTs.VTs;
4432  N->NumValues = VTs.NumVTs;
4433
4434  // Clear the operands list, updating used nodes to remove this from their
4435  // use list.  Keep track of any operands that become dead as a result.
4436  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4437  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4438    SDUse &Use = *I++;
4439    SDNode *Used = Use.getNode();
4440    Use.set(SDValue());
4441    if (Used->use_empty())
4442      DeadNodeSet.insert(Used);
4443  }
4444
4445  // If NumOps is larger than the # of operands we currently have, reallocate
4446  // the operand list.
4447  if (NumOps > N->NumOperands) {
4448    if (N->OperandsNeedDelete)
4449      delete[] N->OperandList;
4450
4451    if (N->isMachineOpcode()) {
4452      // We're creating a final node that will live unmorphed for the
4453      // remainder of the current SelectionDAG iteration, so we can allocate
4454      // the operands directly out of a pool with no recycling metadata.
4455      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4456      N->OperandsNeedDelete = false;
4457    } else {
4458      N->OperandList = new SDUse[NumOps];
4459      N->OperandsNeedDelete = true;
4460    }
4461  }
4462
4463  // Assign the new operands.
4464  N->NumOperands = NumOps;
4465  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4466    N->OperandList[i].setUser(N);
4467    N->OperandList[i].setInitial(Ops[i]);
4468  }
4469
4470  // Delete any nodes that are still dead after adding the uses for the
4471  // new operands.
4472  SmallVector<SDNode *, 16> DeadNodes;
4473  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4474       E = DeadNodeSet.end(); I != E; ++I)
4475    if ((*I)->use_empty())
4476      DeadNodes.push_back(*I);
4477  RemoveDeadNodes(DeadNodes);
4478
4479  if (IP)
4480    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4481  return N;
4482}
4483
4484
4485/// getTargetNode - These are used for target selectors to create a new node
4486/// with specified return type(s), target opcode, and operands.
4487///
4488/// Note that getTargetNode returns the resultant node.  If there is already a
4489/// node of the specified opcode and operands, it returns that node instead of
4490/// the current one.
4491SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4492  return getNode(~Opcode, dl, VT).getNode();
4493}
4494
4495SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT,
4496                                    SDValue Op1) {
4497  return getNode(~Opcode, dl, VT, Op1).getNode();
4498}
4499
4500SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT,
4501                                    SDValue Op1, SDValue Op2) {
4502  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4503}
4504
4505SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT,
4506                                    SDValue Op1, SDValue Op2,
4507                                    SDValue Op3) {
4508  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4509}
4510
4511SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT,
4512                                    const SDValue *Ops, unsigned NumOps) {
4513  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4514}
4515
4516SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4517                                    EVT VT1, EVT VT2) {
4518  SDVTList VTs = getVTList(VT1, VT2);
4519  SDValue Op;
4520  return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
4521}
4522
4523SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4524                                    EVT VT2, SDValue Op1) {
4525  SDVTList VTs = getVTList(VT1, VT2);
4526  return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
4527}
4528
4529SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4530                                    EVT VT2, SDValue Op1,
4531                                    SDValue Op2) {
4532  SDVTList VTs = getVTList(VT1, VT2);
4533  SDValue Ops[] = { Op1, Op2 };
4534  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4535}
4536
4537SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4538                                    EVT VT2, SDValue Op1,
4539                                    SDValue Op2, SDValue Op3) {
4540  SDVTList VTs = getVTList(VT1, VT2);
4541  SDValue Ops[] = { Op1, Op2, Op3 };
4542  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4543}
4544
4545SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4546                                    EVT VT1, EVT VT2,
4547                                    const SDValue *Ops, unsigned NumOps) {
4548  SDVTList VTs = getVTList(VT1, VT2);
4549  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4550}
4551
4552SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4553                                    EVT VT1, EVT VT2, EVT VT3,
4554                                    SDValue Op1, SDValue Op2) {
4555  SDVTList VTs = getVTList(VT1, VT2, VT3);
4556  SDValue Ops[] = { Op1, Op2 };
4557  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4558}
4559
4560SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4561                                    EVT VT1, EVT VT2, EVT VT3,
4562                                    SDValue Op1, SDValue Op2,
4563                                    SDValue Op3) {
4564  SDVTList VTs = getVTList(VT1, VT2, VT3);
4565  SDValue Ops[] = { Op1, Op2, Op3 };
4566  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4567}
4568
4569SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4570                                    EVT VT1, EVT VT2, EVT VT3,
4571                                    const SDValue *Ops, unsigned NumOps) {
4572  SDVTList VTs = getVTList(VT1, VT2, VT3);
4573  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4574}
4575
4576SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4577                                    EVT VT2, EVT VT3, EVT VT4,
4578                                    const SDValue *Ops, unsigned NumOps) {
4579  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4580  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4581}
4582
4583SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4584                                    const std::vector<EVT> &ResultTys,
4585                                    const SDValue *Ops, unsigned NumOps) {
4586  return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
4587}
4588
4589/// getTargetExtractSubreg - A convenience function for creating
4590/// TargetInstrInfo::EXTRACT_SUBREG nodes.
4591SDValue
4592SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4593                                     SDValue Operand) {
4594  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4595  SDNode *Subreg = getTargetNode(TargetInstrInfo::EXTRACT_SUBREG, DL,
4596                                 VT, Operand, SRIdxVal);
4597  return SDValue(Subreg, 0);
4598}
4599
4600/// getNodeIfExists - Get the specified node if it's already available, or
4601/// else return NULL.
4602SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4603                                      const SDValue *Ops, unsigned NumOps) {
4604  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4605    FoldingSetNodeID ID;
4606    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4607    void *IP = 0;
4608    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4609      return E;
4610  }
4611  return NULL;
4612}
4613
4614/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4615/// This can cause recursive merging of nodes in the DAG.
4616///
4617/// This version assumes From has a single result value.
4618///
4619void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4620                                      DAGUpdateListener *UpdateListener) {
4621  SDNode *From = FromN.getNode();
4622  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4623         "Cannot replace with this method!");
4624  assert(From != To.getNode() && "Cannot replace uses of with self");
4625
4626  // Iterate over all the existing uses of From. New uses will be added
4627  // to the beginning of the use list, which we avoid visiting.
4628  // This specifically avoids visiting uses of From that arise while the
4629  // replacement is happening, because any such uses would be the result
4630  // of CSE: If an existing node looks like From after one of its operands
4631  // is replaced by To, we don't want to replace of all its users with To
4632  // too. See PR3018 for more info.
4633  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4634  while (UI != UE) {
4635    SDNode *User = *UI;
4636
4637    // This node is about to morph, remove its old self from the CSE maps.
4638    RemoveNodeFromCSEMaps(User);
4639
4640    // A user can appear in a use list multiple times, and when this
4641    // happens the uses are usually next to each other in the list.
4642    // To help reduce the number of CSE recomputations, process all
4643    // the uses of this user that we can find this way.
4644    do {
4645      SDUse &Use = UI.getUse();
4646      ++UI;
4647      Use.set(To);
4648    } while (UI != UE && *UI == User);
4649
4650    // Now that we have modified User, add it back to the CSE maps.  If it
4651    // already exists there, recursively merge the results together.
4652    AddModifiedNodeToCSEMaps(User, UpdateListener);
4653  }
4654}
4655
4656/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4657/// This can cause recursive merging of nodes in the DAG.
4658///
4659/// This version assumes that for each value of From, there is a
4660/// corresponding value in To in the same position with the same type.
4661///
4662void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4663                                      DAGUpdateListener *UpdateListener) {
4664#ifndef NDEBUG
4665  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4666    assert((!From->hasAnyUseOfValue(i) ||
4667            From->getValueType(i) == To->getValueType(i)) &&
4668           "Cannot use this version of ReplaceAllUsesWith!");
4669#endif
4670
4671  // Handle the trivial case.
4672  if (From == To)
4673    return;
4674
4675  // Iterate over just the existing users of From. See the comments in
4676  // the ReplaceAllUsesWith above.
4677  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4678  while (UI != UE) {
4679    SDNode *User = *UI;
4680
4681    // This node is about to morph, remove its old self from the CSE maps.
4682    RemoveNodeFromCSEMaps(User);
4683
4684    // A user can appear in a use list multiple times, and when this
4685    // happens the uses are usually next to each other in the list.
4686    // To help reduce the number of CSE recomputations, process all
4687    // the uses of this user that we can find this way.
4688    do {
4689      SDUse &Use = UI.getUse();
4690      ++UI;
4691      Use.setNode(To);
4692    } while (UI != UE && *UI == User);
4693
4694    // Now that we have modified User, add it back to the CSE maps.  If it
4695    // already exists there, recursively merge the results together.
4696    AddModifiedNodeToCSEMaps(User, UpdateListener);
4697  }
4698}
4699
4700/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4701/// This can cause recursive merging of nodes in the DAG.
4702///
4703/// This version can replace From with any result values.  To must match the
4704/// number and types of values returned by From.
4705void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4706                                      const SDValue *To,
4707                                      DAGUpdateListener *UpdateListener) {
4708  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4709    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4710
4711  // Iterate over just the existing users of From. See the comments in
4712  // the ReplaceAllUsesWith above.
4713  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4714  while (UI != UE) {
4715    SDNode *User = *UI;
4716
4717    // This node is about to morph, remove its old self from the CSE maps.
4718    RemoveNodeFromCSEMaps(User);
4719
4720    // A user can appear in a use list multiple times, and when this
4721    // happens the uses are usually next to each other in the list.
4722    // To help reduce the number of CSE recomputations, process all
4723    // the uses of this user that we can find this way.
4724    do {
4725      SDUse &Use = UI.getUse();
4726      const SDValue &ToOp = To[Use.getResNo()];
4727      ++UI;
4728      Use.set(ToOp);
4729    } while (UI != UE && *UI == User);
4730
4731    // Now that we have modified User, add it back to the CSE maps.  If it
4732    // already exists there, recursively merge the results together.
4733    AddModifiedNodeToCSEMaps(User, UpdateListener);
4734  }
4735}
4736
4737/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4738/// uses of other values produced by From.getNode() alone.  The Deleted
4739/// vector is handled the same way as for ReplaceAllUsesWith.
4740void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4741                                             DAGUpdateListener *UpdateListener){
4742  // Handle the really simple, really trivial case efficiently.
4743  if (From == To) return;
4744
4745  // Handle the simple, trivial, case efficiently.
4746  if (From.getNode()->getNumValues() == 1) {
4747    ReplaceAllUsesWith(From, To, UpdateListener);
4748    return;
4749  }
4750
4751  // Iterate over just the existing users of From. See the comments in
4752  // the ReplaceAllUsesWith above.
4753  SDNode::use_iterator UI = From.getNode()->use_begin(),
4754                       UE = From.getNode()->use_end();
4755  while (UI != UE) {
4756    SDNode *User = *UI;
4757    bool UserRemovedFromCSEMaps = false;
4758
4759    // A user can appear in a use list multiple times, and when this
4760    // happens the uses are usually next to each other in the list.
4761    // To help reduce the number of CSE recomputations, process all
4762    // the uses of this user that we can find this way.
4763    do {
4764      SDUse &Use = UI.getUse();
4765
4766      // Skip uses of different values from the same node.
4767      if (Use.getResNo() != From.getResNo()) {
4768        ++UI;
4769        continue;
4770      }
4771
4772      // If this node hasn't been modified yet, it's still in the CSE maps,
4773      // so remove its old self from the CSE maps.
4774      if (!UserRemovedFromCSEMaps) {
4775        RemoveNodeFromCSEMaps(User);
4776        UserRemovedFromCSEMaps = true;
4777      }
4778
4779      ++UI;
4780      Use.set(To);
4781    } while (UI != UE && *UI == User);
4782
4783    // We are iterating over all uses of the From node, so if a use
4784    // doesn't use the specific value, no changes are made.
4785    if (!UserRemovedFromCSEMaps)
4786      continue;
4787
4788    // Now that we have modified User, add it back to the CSE maps.  If it
4789    // already exists there, recursively merge the results together.
4790    AddModifiedNodeToCSEMaps(User, UpdateListener);
4791  }
4792}
4793
4794namespace {
4795  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4796  /// to record information about a use.
4797  struct UseMemo {
4798    SDNode *User;
4799    unsigned Index;
4800    SDUse *Use;
4801  };
4802
4803  /// operator< - Sort Memos by User.
4804  bool operator<(const UseMemo &L, const UseMemo &R) {
4805    return (intptr_t)L.User < (intptr_t)R.User;
4806  }
4807}
4808
4809/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4810/// uses of other values produced by From.getNode() alone.  The same value
4811/// may appear in both the From and To list.  The Deleted vector is
4812/// handled the same way as for ReplaceAllUsesWith.
4813void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4814                                              const SDValue *To,
4815                                              unsigned Num,
4816                                              DAGUpdateListener *UpdateListener){
4817  // Handle the simple, trivial case efficiently.
4818  if (Num == 1)
4819    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4820
4821  // Read up all the uses and make records of them. This helps
4822  // processing new uses that are introduced during the
4823  // replacement process.
4824  SmallVector<UseMemo, 4> Uses;
4825  for (unsigned i = 0; i != Num; ++i) {
4826    unsigned FromResNo = From[i].getResNo();
4827    SDNode *FromNode = From[i].getNode();
4828    for (SDNode::use_iterator UI = FromNode->use_begin(),
4829         E = FromNode->use_end(); UI != E; ++UI) {
4830      SDUse &Use = UI.getUse();
4831      if (Use.getResNo() == FromResNo) {
4832        UseMemo Memo = { *UI, i, &Use };
4833        Uses.push_back(Memo);
4834      }
4835    }
4836  }
4837
4838  // Sort the uses, so that all the uses from a given User are together.
4839  std::sort(Uses.begin(), Uses.end());
4840
4841  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4842       UseIndex != UseIndexEnd; ) {
4843    // We know that this user uses some value of From.  If it is the right
4844    // value, update it.
4845    SDNode *User = Uses[UseIndex].User;
4846
4847    // This node is about to morph, remove its old self from the CSE maps.
4848    RemoveNodeFromCSEMaps(User);
4849
4850    // The Uses array is sorted, so all the uses for a given User
4851    // are next to each other in the list.
4852    // To help reduce the number of CSE recomputations, process all
4853    // the uses of this user that we can find this way.
4854    do {
4855      unsigned i = Uses[UseIndex].Index;
4856      SDUse &Use = *Uses[UseIndex].Use;
4857      ++UseIndex;
4858
4859      Use.set(To[i]);
4860    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4861
4862    // Now that we have modified User, add it back to the CSE maps.  If it
4863    // already exists there, recursively merge the results together.
4864    AddModifiedNodeToCSEMaps(User, UpdateListener);
4865  }
4866}
4867
4868/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4869/// based on their topological order. It returns the maximum id and a vector
4870/// of the SDNodes* in assigned order by reference.
4871unsigned SelectionDAG::AssignTopologicalOrder() {
4872
4873  unsigned DAGSize = 0;
4874
4875  // SortedPos tracks the progress of the algorithm. Nodes before it are
4876  // sorted, nodes after it are unsorted. When the algorithm completes
4877  // it is at the end of the list.
4878  allnodes_iterator SortedPos = allnodes_begin();
4879
4880  // Visit all the nodes. Move nodes with no operands to the front of
4881  // the list immediately. Annotate nodes that do have operands with their
4882  // operand count. Before we do this, the Node Id fields of the nodes
4883  // may contain arbitrary values. After, the Node Id fields for nodes
4884  // before SortedPos will contain the topological sort index, and the
4885  // Node Id fields for nodes At SortedPos and after will contain the
4886  // count of outstanding operands.
4887  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4888    SDNode *N = I++;
4889    unsigned Degree = N->getNumOperands();
4890    if (Degree == 0) {
4891      // A node with no uses, add it to the result array immediately.
4892      N->setNodeId(DAGSize++);
4893      allnodes_iterator Q = N;
4894      if (Q != SortedPos)
4895        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4896      ++SortedPos;
4897    } else {
4898      // Temporarily use the Node Id as scratch space for the degree count.
4899      N->setNodeId(Degree);
4900    }
4901  }
4902
4903  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4904  // such that by the time the end is reached all nodes will be sorted.
4905  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4906    SDNode *N = I;
4907    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4908         UI != UE; ++UI) {
4909      SDNode *P = *UI;
4910      unsigned Degree = P->getNodeId();
4911      --Degree;
4912      if (Degree == 0) {
4913        // All of P's operands are sorted, so P may sorted now.
4914        P->setNodeId(DAGSize++);
4915        if (P != SortedPos)
4916          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4917        ++SortedPos;
4918      } else {
4919        // Update P's outstanding operand count.
4920        P->setNodeId(Degree);
4921      }
4922    }
4923  }
4924
4925  assert(SortedPos == AllNodes.end() &&
4926         "Topological sort incomplete!");
4927  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4928         "First node in topological sort is not the entry token!");
4929  assert(AllNodes.front().getNodeId() == 0 &&
4930         "First node in topological sort has non-zero id!");
4931  assert(AllNodes.front().getNumOperands() == 0 &&
4932         "First node in topological sort has operands!");
4933  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4934         "Last node in topologic sort has unexpected id!");
4935  assert(AllNodes.back().use_empty() &&
4936         "Last node in topologic sort has users!");
4937  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4938  return DAGSize;
4939}
4940
4941
4942
4943//===----------------------------------------------------------------------===//
4944//                              SDNode Class
4945//===----------------------------------------------------------------------===//
4946
4947HandleSDNode::~HandleSDNode() {
4948  DropOperands();
4949}
4950
4951GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
4952                                         EVT VT, int64_t o, unsigned char TF)
4953  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
4954    Offset(o), TargetFlags(TF) {
4955  TheGlobal = const_cast<GlobalValue*>(GA);
4956}
4957
4958MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
4959                     const Value *srcValue, int SVO,
4960                     unsigned alignment, bool vol)
4961 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4962  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4963  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4964  assert(getAlignment() == alignment && "Alignment representation error!");
4965  assert(isVolatile() == vol && "Volatile representation error!");
4966}
4967
4968MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4969                     const SDValue *Ops,
4970                     unsigned NumOps, EVT memvt, const Value *srcValue,
4971                     int SVO, unsigned alignment, bool vol)
4972   : SDNode(Opc, dl, VTs, Ops, NumOps),
4973     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4974  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4975  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4976  assert(getAlignment() == alignment && "Alignment representation error!");
4977  assert(isVolatile() == vol && "Volatile representation error!");
4978}
4979
4980/// getMemOperand - Return a MachineMemOperand object describing the memory
4981/// reference performed by this memory reference.
4982MachineMemOperand MemSDNode::getMemOperand() const {
4983  int Flags = 0;
4984  if (isa<LoadSDNode>(this))
4985    Flags = MachineMemOperand::MOLoad;
4986  else if (isa<StoreSDNode>(this))
4987    Flags = MachineMemOperand::MOStore;
4988  else if (isa<AtomicSDNode>(this)) {
4989    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4990  }
4991  else {
4992    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4993    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4994    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4995    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4996  }
4997
4998  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4999  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
5000
5001  // Check if the memory reference references a frame index
5002  const FrameIndexSDNode *FI =
5003  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
5004  if (!getSrcValue() && FI)
5005    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
5006                             Flags, 0, Size, getAlignment());
5007  else
5008    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
5009                             Size, getAlignment());
5010}
5011
5012/// Profile - Gather unique data for the node.
5013///
5014void SDNode::Profile(FoldingSetNodeID &ID) const {
5015  AddNodeIDNode(ID, this);
5016}
5017
5018static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5019static EVT VTs[MVT::LAST_VALUETYPE];
5020static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5021
5022/// getValueTypeList - Return a pointer to the specified value type.
5023///
5024const EVT *SDNode::getValueTypeList(EVT VT) {
5025  sys::SmartScopedLock<true> Lock(*VTMutex);
5026  if (VT.isExtended()) {
5027    return &(*EVTs->insert(VT).first);
5028  } else {
5029    VTs[VT.getSimpleVT().SimpleTy] = VT;
5030    return &VTs[VT.getSimpleVT().SimpleTy];
5031  }
5032}
5033
5034/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5035/// indicated value.  This method ignores uses of other values defined by this
5036/// operation.
5037bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5038  assert(Value < getNumValues() && "Bad value!");
5039
5040  // TODO: Only iterate over uses of a given value of the node
5041  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5042    if (UI.getUse().getResNo() == Value) {
5043      if (NUses == 0)
5044        return false;
5045      --NUses;
5046    }
5047  }
5048
5049  // Found exactly the right number of uses?
5050  return NUses == 0;
5051}
5052
5053
5054/// hasAnyUseOfValue - Return true if there are any use of the indicated
5055/// value. This method ignores uses of other values defined by this operation.
5056bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5057  assert(Value < getNumValues() && "Bad value!");
5058
5059  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5060    if (UI.getUse().getResNo() == Value)
5061      return true;
5062
5063  return false;
5064}
5065
5066
5067/// isOnlyUserOf - Return true if this node is the only use of N.
5068///
5069bool SDNode::isOnlyUserOf(SDNode *N) const {
5070  bool Seen = false;
5071  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5072    SDNode *User = *I;
5073    if (User == this)
5074      Seen = true;
5075    else
5076      return false;
5077  }
5078
5079  return Seen;
5080}
5081
5082/// isOperand - Return true if this node is an operand of N.
5083///
5084bool SDValue::isOperandOf(SDNode *N) const {
5085  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5086    if (*this == N->getOperand(i))
5087      return true;
5088  return false;
5089}
5090
5091bool SDNode::isOperandOf(SDNode *N) const {
5092  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5093    if (this == N->OperandList[i].getNode())
5094      return true;
5095  return false;
5096}
5097
5098/// reachesChainWithoutSideEffects - Return true if this operand (which must
5099/// be a chain) reaches the specified operand without crossing any
5100/// side-effecting instructions.  In practice, this looks through token
5101/// factors and non-volatile loads.  In order to remain efficient, this only
5102/// looks a couple of nodes in, it does not do an exhaustive search.
5103bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5104                                               unsigned Depth) const {
5105  if (*this == Dest) return true;
5106
5107  // Don't search too deeply, we just want to be able to see through
5108  // TokenFactor's etc.
5109  if (Depth == 0) return false;
5110
5111  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5112  // of the operands of the TF reach dest, then we can do the xform.
5113  if (getOpcode() == ISD::TokenFactor) {
5114    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5115      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5116        return true;
5117    return false;
5118  }
5119
5120  // Loads don't have side effects, look through them.
5121  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5122    if (!Ld->isVolatile())
5123      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5124  }
5125  return false;
5126}
5127
5128
5129static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5130                            SmallPtrSet<SDNode *, 32> &Visited) {
5131  if (found || !Visited.insert(N))
5132    return;
5133
5134  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5135    SDNode *Op = N->getOperand(i).getNode();
5136    if (Op == P) {
5137      found = true;
5138      return;
5139    }
5140    findPredecessor(Op, P, found, Visited);
5141  }
5142}
5143
5144/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5145/// is either an operand of N or it can be reached by recursively traversing
5146/// up the operands.
5147/// NOTE: this is an expensive method. Use it carefully.
5148bool SDNode::isPredecessorOf(SDNode *N) const {
5149  SmallPtrSet<SDNode *, 32> Visited;
5150  bool found = false;
5151  findPredecessor(N, this, found, Visited);
5152  return found;
5153}
5154
5155uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5156  assert(Num < NumOperands && "Invalid child # of SDNode!");
5157  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5158}
5159
5160std::string SDNode::getOperationName(const SelectionDAG *G) const {
5161  switch (getOpcode()) {
5162  default:
5163    if (getOpcode() < ISD::BUILTIN_OP_END)
5164      return "<<Unknown DAG Node>>";
5165    if (isMachineOpcode()) {
5166      if (G)
5167        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5168          if (getMachineOpcode() < TII->getNumOpcodes())
5169            return TII->get(getMachineOpcode()).getName();
5170      return "<<Unknown Machine Node>>";
5171    }
5172    if (G) {
5173      const TargetLowering &TLI = G->getTargetLoweringInfo();
5174      const char *Name = TLI.getTargetNodeName(getOpcode());
5175      if (Name) return Name;
5176      return "<<Unknown Target Node>>";
5177    }
5178    return "<<Unknown Node>>";
5179
5180#ifndef NDEBUG
5181  case ISD::DELETED_NODE:
5182    return "<<Deleted Node!>>";
5183#endif
5184  case ISD::PREFETCH:      return "Prefetch";
5185  case ISD::MEMBARRIER:    return "MemBarrier";
5186  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5187  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5188  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5189  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5190  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5191  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5192  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5193  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5194  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5195  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5196  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5197  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5198  case ISD::PCMARKER:      return "PCMarker";
5199  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5200  case ISD::SRCVALUE:      return "SrcValue";
5201  case ISD::MEMOPERAND:    return "MemOperand";
5202  case ISD::EntryToken:    return "EntryToken";
5203  case ISD::TokenFactor:   return "TokenFactor";
5204  case ISD::AssertSext:    return "AssertSext";
5205  case ISD::AssertZext:    return "AssertZext";
5206
5207  case ISD::BasicBlock:    return "BasicBlock";
5208  case ISD::VALUETYPE:     return "ValueType";
5209  case ISD::Register:      return "Register";
5210
5211  case ISD::Constant:      return "Constant";
5212  case ISD::ConstantFP:    return "ConstantFP";
5213  case ISD::GlobalAddress: return "GlobalAddress";
5214  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5215  case ISD::FrameIndex:    return "FrameIndex";
5216  case ISD::JumpTable:     return "JumpTable";
5217  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5218  case ISD::RETURNADDR: return "RETURNADDR";
5219  case ISD::FRAMEADDR: return "FRAMEADDR";
5220  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5221  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5222  case ISD::LSDAADDR: return "LSDAADDR";
5223  case ISD::EHSELECTION: return "EHSELECTION";
5224  case ISD::EH_RETURN: return "EH_RETURN";
5225  case ISD::ConstantPool:  return "ConstantPool";
5226  case ISD::ExternalSymbol: return "ExternalSymbol";
5227  case ISD::INTRINSIC_WO_CHAIN: {
5228    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5229    return Intrinsic::getName((Intrinsic::ID)IID);
5230  }
5231  case ISD::INTRINSIC_VOID:
5232  case ISD::INTRINSIC_W_CHAIN: {
5233    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5234    return Intrinsic::getName((Intrinsic::ID)IID);
5235  }
5236
5237  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5238  case ISD::TargetConstant: return "TargetConstant";
5239  case ISD::TargetConstantFP:return "TargetConstantFP";
5240  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5241  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5242  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5243  case ISD::TargetJumpTable:  return "TargetJumpTable";
5244  case ISD::TargetConstantPool:  return "TargetConstantPool";
5245  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5246
5247  case ISD::CopyToReg:     return "CopyToReg";
5248  case ISD::CopyFromReg:   return "CopyFromReg";
5249  case ISD::UNDEF:         return "undef";
5250  case ISD::MERGE_VALUES:  return "merge_values";
5251  case ISD::INLINEASM:     return "inlineasm";
5252  case ISD::DBG_LABEL:     return "dbg_label";
5253  case ISD::EH_LABEL:      return "eh_label";
5254  case ISD::DECLARE:       return "declare";
5255  case ISD::HANDLENODE:    return "handlenode";
5256
5257  // Unary operators
5258  case ISD::FABS:   return "fabs";
5259  case ISD::FNEG:   return "fneg";
5260  case ISD::FSQRT:  return "fsqrt";
5261  case ISD::FSIN:   return "fsin";
5262  case ISD::FCOS:   return "fcos";
5263  case ISD::FPOWI:  return "fpowi";
5264  case ISD::FPOW:   return "fpow";
5265  case ISD::FTRUNC: return "ftrunc";
5266  case ISD::FFLOOR: return "ffloor";
5267  case ISD::FCEIL:  return "fceil";
5268  case ISD::FRINT:  return "frint";
5269  case ISD::FNEARBYINT: return "fnearbyint";
5270
5271  // Binary operators
5272  case ISD::ADD:    return "add";
5273  case ISD::SUB:    return "sub";
5274  case ISD::MUL:    return "mul";
5275  case ISD::MULHU:  return "mulhu";
5276  case ISD::MULHS:  return "mulhs";
5277  case ISD::SDIV:   return "sdiv";
5278  case ISD::UDIV:   return "udiv";
5279  case ISD::SREM:   return "srem";
5280  case ISD::UREM:   return "urem";
5281  case ISD::SMUL_LOHI:  return "smul_lohi";
5282  case ISD::UMUL_LOHI:  return "umul_lohi";
5283  case ISD::SDIVREM:    return "sdivrem";
5284  case ISD::UDIVREM:    return "udivrem";
5285  case ISD::AND:    return "and";
5286  case ISD::OR:     return "or";
5287  case ISD::XOR:    return "xor";
5288  case ISD::SHL:    return "shl";
5289  case ISD::SRA:    return "sra";
5290  case ISD::SRL:    return "srl";
5291  case ISD::ROTL:   return "rotl";
5292  case ISD::ROTR:   return "rotr";
5293  case ISD::FADD:   return "fadd";
5294  case ISD::FSUB:   return "fsub";
5295  case ISD::FMUL:   return "fmul";
5296  case ISD::FDIV:   return "fdiv";
5297  case ISD::FREM:   return "frem";
5298  case ISD::FCOPYSIGN: return "fcopysign";
5299  case ISD::FGETSIGN:  return "fgetsign";
5300
5301  case ISD::SETCC:       return "setcc";
5302  case ISD::VSETCC:      return "vsetcc";
5303  case ISD::SELECT:      return "select";
5304  case ISD::SELECT_CC:   return "select_cc";
5305  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5306  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5307  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5308  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5309  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5310  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5311  case ISD::CARRY_FALSE:         return "carry_false";
5312  case ISD::ADDC:        return "addc";
5313  case ISD::ADDE:        return "adde";
5314  case ISD::SADDO:       return "saddo";
5315  case ISD::UADDO:       return "uaddo";
5316  case ISD::SSUBO:       return "ssubo";
5317  case ISD::USUBO:       return "usubo";
5318  case ISD::SMULO:       return "smulo";
5319  case ISD::UMULO:       return "umulo";
5320  case ISD::SUBC:        return "subc";
5321  case ISD::SUBE:        return "sube";
5322  case ISD::SHL_PARTS:   return "shl_parts";
5323  case ISD::SRA_PARTS:   return "sra_parts";
5324  case ISD::SRL_PARTS:   return "srl_parts";
5325
5326  // Conversion operators.
5327  case ISD::SIGN_EXTEND: return "sign_extend";
5328  case ISD::ZERO_EXTEND: return "zero_extend";
5329  case ISD::ANY_EXTEND:  return "any_extend";
5330  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5331  case ISD::TRUNCATE:    return "truncate";
5332  case ISD::FP_ROUND:    return "fp_round";
5333  case ISD::FLT_ROUNDS_: return "flt_rounds";
5334  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5335  case ISD::FP_EXTEND:   return "fp_extend";
5336
5337  case ISD::SINT_TO_FP:  return "sint_to_fp";
5338  case ISD::UINT_TO_FP:  return "uint_to_fp";
5339  case ISD::FP_TO_SINT:  return "fp_to_sint";
5340  case ISD::FP_TO_UINT:  return "fp_to_uint";
5341  case ISD::BIT_CONVERT: return "bit_convert";
5342
5343  case ISD::CONVERT_RNDSAT: {
5344    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5345    default: llvm_unreachable("Unknown cvt code!");
5346    case ISD::CVT_FF:  return "cvt_ff";
5347    case ISD::CVT_FS:  return "cvt_fs";
5348    case ISD::CVT_FU:  return "cvt_fu";
5349    case ISD::CVT_SF:  return "cvt_sf";
5350    case ISD::CVT_UF:  return "cvt_uf";
5351    case ISD::CVT_SS:  return "cvt_ss";
5352    case ISD::CVT_SU:  return "cvt_su";
5353    case ISD::CVT_US:  return "cvt_us";
5354    case ISD::CVT_UU:  return "cvt_uu";
5355    }
5356  }
5357
5358    // Control flow instructions
5359  case ISD::BR:      return "br";
5360  case ISD::BRIND:   return "brind";
5361  case ISD::BR_JT:   return "br_jt";
5362  case ISD::BRCOND:  return "brcond";
5363  case ISD::BR_CC:   return "br_cc";
5364  case ISD::CALLSEQ_START:  return "callseq_start";
5365  case ISD::CALLSEQ_END:    return "callseq_end";
5366
5367    // Other operators
5368  case ISD::LOAD:               return "load";
5369  case ISD::STORE:              return "store";
5370  case ISD::VAARG:              return "vaarg";
5371  case ISD::VACOPY:             return "vacopy";
5372  case ISD::VAEND:              return "vaend";
5373  case ISD::VASTART:            return "vastart";
5374  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5375  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5376  case ISD::BUILD_PAIR:         return "build_pair";
5377  case ISD::STACKSAVE:          return "stacksave";
5378  case ISD::STACKRESTORE:       return "stackrestore";
5379  case ISD::TRAP:               return "trap";
5380
5381  // Bit manipulation
5382  case ISD::BSWAP:   return "bswap";
5383  case ISD::CTPOP:   return "ctpop";
5384  case ISD::CTTZ:    return "cttz";
5385  case ISD::CTLZ:    return "ctlz";
5386
5387  // Debug info
5388  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5389  case ISD::DEBUG_LOC: return "debug_loc";
5390
5391  // Trampolines
5392  case ISD::TRAMPOLINE: return "trampoline";
5393
5394  case ISD::CONDCODE:
5395    switch (cast<CondCodeSDNode>(this)->get()) {
5396    default: llvm_unreachable("Unknown setcc condition!");
5397    case ISD::SETOEQ:  return "setoeq";
5398    case ISD::SETOGT:  return "setogt";
5399    case ISD::SETOGE:  return "setoge";
5400    case ISD::SETOLT:  return "setolt";
5401    case ISD::SETOLE:  return "setole";
5402    case ISD::SETONE:  return "setone";
5403
5404    case ISD::SETO:    return "seto";
5405    case ISD::SETUO:   return "setuo";
5406    case ISD::SETUEQ:  return "setue";
5407    case ISD::SETUGT:  return "setugt";
5408    case ISD::SETUGE:  return "setuge";
5409    case ISD::SETULT:  return "setult";
5410    case ISD::SETULE:  return "setule";
5411    case ISD::SETUNE:  return "setune";
5412
5413    case ISD::SETEQ:   return "seteq";
5414    case ISD::SETGT:   return "setgt";
5415    case ISD::SETGE:   return "setge";
5416    case ISD::SETLT:   return "setlt";
5417    case ISD::SETLE:   return "setle";
5418    case ISD::SETNE:   return "setne";
5419    }
5420  }
5421}
5422
5423const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5424  switch (AM) {
5425  default:
5426    return "";
5427  case ISD::PRE_INC:
5428    return "<pre-inc>";
5429  case ISD::PRE_DEC:
5430    return "<pre-dec>";
5431  case ISD::POST_INC:
5432    return "<post-inc>";
5433  case ISD::POST_DEC:
5434    return "<post-dec>";
5435  }
5436}
5437
5438std::string ISD::ArgFlagsTy::getArgFlagsString() {
5439  std::string S = "< ";
5440
5441  if (isZExt())
5442    S += "zext ";
5443  if (isSExt())
5444    S += "sext ";
5445  if (isInReg())
5446    S += "inreg ";
5447  if (isSRet())
5448    S += "sret ";
5449  if (isByVal())
5450    S += "byval ";
5451  if (isNest())
5452    S += "nest ";
5453  if (getByValAlign())
5454    S += "byval-align:" + utostr(getByValAlign()) + " ";
5455  if (getOrigAlign())
5456    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5457  if (getByValSize())
5458    S += "byval-size:" + utostr(getByValSize()) + " ";
5459  return S + ">";
5460}
5461
5462void SDNode::dump() const { dump(0); }
5463void SDNode::dump(const SelectionDAG *G) const {
5464  print(errs(), G);
5465}
5466
5467void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5468  OS << (void*)this << ": ";
5469
5470  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5471    if (i) OS << ",";
5472    if (getValueType(i) == MVT::Other)
5473      OS << "ch";
5474    else
5475      OS << getValueType(i).getEVTString();
5476  }
5477  OS << " = " << getOperationName(G);
5478}
5479
5480void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5481  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5482    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(this);
5483    OS << "<";
5484    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5485      int Idx = SVN->getMaskElt(i);
5486      if (i) OS << ",";
5487      if (Idx < 0)
5488        OS << "u";
5489      else
5490        OS << Idx;
5491    }
5492    OS << ">";
5493  }
5494
5495  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5496    OS << '<' << CSDN->getAPIntValue() << '>';
5497  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5498    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5499      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5500    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5501      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5502    else {
5503      OS << "<APFloat(";
5504      CSDN->getValueAPF().bitcastToAPInt().dump();
5505      OS << ")>";
5506    }
5507  } else if (const GlobalAddressSDNode *GADN =
5508             dyn_cast<GlobalAddressSDNode>(this)) {
5509    int64_t offset = GADN->getOffset();
5510    OS << '<';
5511    WriteAsOperand(OS, GADN->getGlobal());
5512    OS << '>';
5513    if (offset > 0)
5514      OS << " + " << offset;
5515    else
5516      OS << " " << offset;
5517    if (unsigned int TF = GADN->getTargetFlags())
5518      OS << " [TF=" << TF << ']';
5519  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5520    OS << "<" << FIDN->getIndex() << ">";
5521  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5522    OS << "<" << JTDN->getIndex() << ">";
5523    if (unsigned int TF = JTDN->getTargetFlags())
5524      OS << " [TF=" << TF << ']';
5525  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5526    int offset = CP->getOffset();
5527    if (CP->isMachineConstantPoolEntry())
5528      OS << "<" << *CP->getMachineCPVal() << ">";
5529    else
5530      OS << "<" << *CP->getConstVal() << ">";
5531    if (offset > 0)
5532      OS << " + " << offset;
5533    else
5534      OS << " " << offset;
5535    if (unsigned int TF = CP->getTargetFlags())
5536      OS << " [TF=" << TF << ']';
5537  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5538    OS << "<";
5539    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5540    if (LBB)
5541      OS << LBB->getName() << " ";
5542    OS << (const void*)BBDN->getBasicBlock() << ">";
5543  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5544    if (G && R->getReg() &&
5545        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5546      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5547    } else {
5548      OS << " #" << R->getReg();
5549    }
5550  } else if (const ExternalSymbolSDNode *ES =
5551             dyn_cast<ExternalSymbolSDNode>(this)) {
5552    OS << "'" << ES->getSymbol() << "'";
5553    if (unsigned int TF = ES->getTargetFlags())
5554      OS << " [TF=" << TF << ']';
5555  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5556    if (M->getValue())
5557      OS << "<" << M->getValue() << ">";
5558    else
5559      OS << "<null>";
5560  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5561    if (M->MO.getValue())
5562      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5563    else
5564      OS << "<null:" << M->MO.getOffset() << ">";
5565  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5566    OS << ":" << N->getVT().getEVTString();
5567  }
5568  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5569    const Value *SrcValue = LD->getSrcValue();
5570    int SrcOffset = LD->getSrcValueOffset();
5571    OS << " <";
5572    if (SrcValue)
5573      OS << SrcValue;
5574    else
5575      OS << "null";
5576    OS << ":" << SrcOffset << ">";
5577
5578    bool doExt = true;
5579    switch (LD->getExtensionType()) {
5580    default: doExt = false; break;
5581    case ISD::EXTLOAD: OS << " <anyext "; break;
5582    case ISD::SEXTLOAD: OS << " <sext "; break;
5583    case ISD::ZEXTLOAD: OS << " <zext "; break;
5584    }
5585    if (doExt)
5586      OS << LD->getMemoryVT().getEVTString() << ">";
5587
5588    const char *AM = getIndexedModeName(LD->getAddressingMode());
5589    if (*AM)
5590      OS << " " << AM;
5591    if (LD->isVolatile())
5592      OS << " <volatile>";
5593    OS << " alignment=" << LD->getAlignment();
5594  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5595    const Value *SrcValue = ST->getSrcValue();
5596    int SrcOffset = ST->getSrcValueOffset();
5597    OS << " <";
5598    if (SrcValue)
5599      OS << SrcValue;
5600    else
5601      OS << "null";
5602    OS << ":" << SrcOffset << ">";
5603
5604    if (ST->isTruncatingStore())
5605      OS << " <trunc " << ST->getMemoryVT().getEVTString() << ">";
5606
5607    const char *AM = getIndexedModeName(ST->getAddressingMode());
5608    if (*AM)
5609      OS << " " << AM;
5610    if (ST->isVolatile())
5611      OS << " <volatile>";
5612    OS << " alignment=" << ST->getAlignment();
5613  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5614    const Value *SrcValue = AT->getSrcValue();
5615    int SrcOffset = AT->getSrcValueOffset();
5616    OS << " <";
5617    if (SrcValue)
5618      OS << SrcValue;
5619    else
5620      OS << "null";
5621    OS << ":" << SrcOffset << ">";
5622    if (AT->isVolatile())
5623      OS << " <volatile>";
5624    OS << " alignment=" << AT->getAlignment();
5625  }
5626}
5627
5628void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5629  print_types(OS, G);
5630  OS << " ";
5631  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5632    if (i) OS << ", ";
5633    OS << (void*)getOperand(i).getNode();
5634    if (unsigned RN = getOperand(i).getResNo())
5635      OS << ":" << RN;
5636  }
5637  print_details(OS, G);
5638}
5639
5640static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5641  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5642    if (N->getOperand(i).getNode()->hasOneUse())
5643      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5644    else
5645      cerr << "\n" << std::string(indent+2, ' ')
5646           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5647
5648
5649  cerr << "\n" << std::string(indent, ' ');
5650  N->dump(G);
5651}
5652
5653void SelectionDAG::dump() const {
5654  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5655
5656  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5657       I != E; ++I) {
5658    const SDNode *N = I;
5659    if (!N->hasOneUse() && N != getRoot().getNode())
5660      DumpNodes(N, 2, this);
5661  }
5662
5663  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5664
5665  cerr << "\n\n";
5666}
5667
5668void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5669  print_types(OS, G);
5670  print_details(OS, G);
5671}
5672
5673typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5674static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5675                       const SelectionDAG *G, VisitedSDNodeSet &once) {
5676  if (!once.insert(N))          // If we've been here before, return now.
5677    return;
5678  // Dump the current SDNode, but don't end the line yet.
5679  OS << std::string(indent, ' ');
5680  N->printr(OS, G);
5681  // Having printed this SDNode, walk the children:
5682  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5683    const SDNode *child = N->getOperand(i).getNode();
5684    if (i) OS << ",";
5685    OS << " ";
5686    if (child->getNumOperands() == 0) {
5687      // This child has no grandchildren; print it inline right here.
5688      child->printr(OS, G);
5689      once.insert(child);
5690    } else {          // Just the address.  FIXME: also print the child's opcode
5691      OS << (void*)child;
5692      if (unsigned RN = N->getOperand(i).getResNo())
5693        OS << ":" << RN;
5694    }
5695  }
5696  OS << "\n";
5697  // Dump children that have grandchildren on their own line(s).
5698  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5699    const SDNode *child = N->getOperand(i).getNode();
5700    DumpNodesr(OS, child, indent+2, G, once);
5701  }
5702}
5703
5704void SDNode::dumpr() const {
5705  VisitedSDNodeSet once;
5706  DumpNodesr(errs(), this, 0, 0, once);
5707}
5708
5709
5710// getAddressSpace - Return the address space this GlobalAddress belongs to.
5711unsigned GlobalAddressSDNode::getAddressSpace() const {
5712  return getGlobal()->getType()->getAddressSpace();
5713}
5714
5715
5716const Type *ConstantPoolSDNode::getType() const {
5717  if (isMachineConstantPoolEntry())
5718    return Val.MachineCPVal->getType();
5719  return Val.ConstVal->getType();
5720}
5721
5722bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5723                                        APInt &SplatUndef,
5724                                        unsigned &SplatBitSize,
5725                                        bool &HasAnyUndefs,
5726                                        unsigned MinSplatBits) {
5727  EVT VT = getValueType(0);
5728  assert(VT.isVector() && "Expected a vector type");
5729  unsigned sz = VT.getSizeInBits();
5730  if (MinSplatBits > sz)
5731    return false;
5732
5733  SplatValue = APInt(sz, 0);
5734  SplatUndef = APInt(sz, 0);
5735
5736  // Get the bits.  Bits with undefined values (when the corresponding element
5737  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5738  // in SplatValue.  If any of the values are not constant, give up and return
5739  // false.
5740  unsigned int nOps = getNumOperands();
5741  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5742  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5743  for (unsigned i = 0; i < nOps; ++i) {
5744    SDValue OpVal = getOperand(i);
5745    unsigned BitPos = i * EltBitSize;
5746
5747    if (OpVal.getOpcode() == ISD::UNDEF)
5748      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5749    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5750      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5751                     zextOrTrunc(sz) << BitPos);
5752    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5753      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5754     else
5755      return false;
5756  }
5757
5758  // The build_vector is all constants or undefs.  Find the smallest element
5759  // size that splats the vector.
5760
5761  HasAnyUndefs = (SplatUndef != 0);
5762  while (sz > 8) {
5763
5764    unsigned HalfSize = sz / 2;
5765    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5766    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5767    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5768    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5769
5770    // If the two halves do not match (ignoring undef bits), stop here.
5771    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5772        MinSplatBits > HalfSize)
5773      break;
5774
5775    SplatValue = HighValue | LowValue;
5776    SplatUndef = HighUndef & LowUndef;
5777
5778    sz = HalfSize;
5779  }
5780
5781  SplatBitSize = sz;
5782  return true;
5783}
5784
5785bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
5786  // Find the first non-undef value in the shuffle mask.
5787  unsigned i, e;
5788  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
5789    /* search */;
5790
5791  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
5792
5793  // Make sure all remaining elements are either undef or the same as the first
5794  // non-undef value.
5795  for (int Idx = Mask[i]; i != e; ++i)
5796    if (Mask[i] >= 0 && Mask[i] != Idx)
5797      return false;
5798  return true;
5799}
5800