SelectionDAG.cpp revision 809ec110885ad7cc820889d789b06aaa3ea7358f
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/ADT/StringExtras.h"
25#include <iostream>
26#include <set>
27#include <cmath>
28#include <algorithm>
29using namespace llvm;
30
31static bool isCommutativeBinOp(unsigned Opcode) {
32  switch (Opcode) {
33  case ISD::ADD:
34  case ISD::MUL:
35  case ISD::MULHU:
36  case ISD::MULHS:
37  case ISD::FADD:
38  case ISD::FMUL:
39  case ISD::AND:
40  case ISD::OR:
41  case ISD::XOR: return true;
42  default: return false; // FIXME: Need commutative info for user ops!
43  }
44}
45
46static bool isAssociativeBinOp(unsigned Opcode) {
47  switch (Opcode) {
48  case ISD::ADD:
49  case ISD::MUL:
50  case ISD::AND:
51  case ISD::OR:
52  case ISD::XOR: return true;
53  default: return false; // FIXME: Need associative info for user ops!
54  }
55}
56
57// isInvertibleForFree - Return true if there is no cost to emitting the logical
58// inverse of this node.
59static bool isInvertibleForFree(SDOperand N) {
60  if (isa<ConstantSDNode>(N.Val)) return true;
61  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
62    return true;
63  return false;
64}
65
66//===----------------------------------------------------------------------===//
67//                              ConstantFPSDNode Class
68//===----------------------------------------------------------------------===//
69
70/// isExactlyValue - We don't rely on operator== working on double values, as
71/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
72/// As such, this method can be used to do an exact bit-for-bit comparison of
73/// two floating point values.
74bool ConstantFPSDNode::isExactlyValue(double V) const {
75  return DoubleToBits(V) == DoubleToBits(Value);
76}
77
78//===----------------------------------------------------------------------===//
79//                              ISD Class
80//===----------------------------------------------------------------------===//
81
82/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
83/// when given the operation for (X op Y).
84ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
85  // To perform this operation, we just need to swap the L and G bits of the
86  // operation.
87  unsigned OldL = (Operation >> 2) & 1;
88  unsigned OldG = (Operation >> 1) & 1;
89  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
90                       (OldL << 1) |       // New G bit
91                       (OldG << 2));        // New L bit.
92}
93
94/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
95/// 'op' is a valid SetCC operation.
96ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
97  unsigned Operation = Op;
98  if (isInteger)
99    Operation ^= 7;   // Flip L, G, E bits, but not U.
100  else
101    Operation ^= 15;  // Flip all of the condition bits.
102  if (Operation > ISD::SETTRUE2)
103    Operation &= ~8;     // Don't let N and U bits get set.
104  return ISD::CondCode(Operation);
105}
106
107
108/// isSignedOp - For an integer comparison, return 1 if the comparison is a
109/// signed operation and 2 if the result is an unsigned comparison.  Return zero
110/// if the operation does not depend on the sign of the input (setne and seteq).
111static int isSignedOp(ISD::CondCode Opcode) {
112  switch (Opcode) {
113  default: assert(0 && "Illegal integer setcc operation!");
114  case ISD::SETEQ:
115  case ISD::SETNE: return 0;
116  case ISD::SETLT:
117  case ISD::SETLE:
118  case ISD::SETGT:
119  case ISD::SETGE: return 1;
120  case ISD::SETULT:
121  case ISD::SETULE:
122  case ISD::SETUGT:
123  case ISD::SETUGE: return 2;
124  }
125}
126
127/// getSetCCOrOperation - Return the result of a logical OR between different
128/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
129/// returns SETCC_INVALID if it is not possible to represent the resultant
130/// comparison.
131ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
132                                       bool isInteger) {
133  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
134    // Cannot fold a signed integer setcc with an unsigned integer setcc.
135    return ISD::SETCC_INVALID;
136
137  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
138
139  // If the N and U bits get set then the resultant comparison DOES suddenly
140  // care about orderedness, and is true when ordered.
141  if (Op > ISD::SETTRUE2)
142    Op &= ~16;     // Clear the N bit.
143  return ISD::CondCode(Op);
144}
145
146/// getSetCCAndOperation - Return the result of a logical AND between different
147/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
148/// function returns zero if it is not possible to represent the resultant
149/// comparison.
150ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
151                                        bool isInteger) {
152  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
153    // Cannot fold a signed setcc with an unsigned setcc.
154    return ISD::SETCC_INVALID;
155
156  // Combine all of the condition bits.
157  return ISD::CondCode(Op1 & Op2);
158}
159
160const TargetMachine &SelectionDAG::getTarget() const {
161  return TLI.getTargetMachine();
162}
163
164//===----------------------------------------------------------------------===//
165//                              SelectionDAG Class
166//===----------------------------------------------------------------------===//
167
168/// RemoveDeadNodes - This method deletes all unreachable nodes in the
169/// SelectionDAG, including nodes (like loads) that have uses of their token
170/// chain but no other uses and no side effect.  If a node is passed in as an
171/// argument, it is used as the seed for node deletion.
172void SelectionDAG::RemoveDeadNodes(SDNode *N) {
173  // Create a dummy node (which is not added to allnodes), that adds a reference
174  // to the root node, preventing it from being deleted.
175  HandleSDNode Dummy(getRoot());
176
177  bool MadeChange = false;
178
179  // If we have a hint to start from, use it.
180  if (N && N->use_empty()) {
181    DestroyDeadNode(N);
182    MadeChange = true;
183  }
184
185  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
186    if (I->use_empty() && I->getOpcode() != 65535) {
187      // Node is dead, recursively delete newly dead uses.
188      DestroyDeadNode(I);
189      MadeChange = true;
190    }
191
192  // Walk the nodes list, removing the nodes we've marked as dead.
193  if (MadeChange) {
194    for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ) {
195      SDNode *N = I++;
196      if (N->use_empty())
197        AllNodes.erase(N);
198    }
199  }
200
201  // If the root changed (e.g. it was a dead load, update the root).
202  setRoot(Dummy.getValue());
203}
204
205/// DestroyDeadNode - We know that N is dead.  Nuke it from the CSE maps for the
206/// graph.  If it is the last user of any of its operands, recursively process
207/// them the same way.
208///
209void SelectionDAG::DestroyDeadNode(SDNode *N) {
210  // Okay, we really are going to delete this node.  First take this out of the
211  // appropriate CSE map.
212  RemoveNodeFromCSEMaps(N);
213
214  // Next, brutally remove the operand list.  This is safe to do, as there are
215  // no cycles in the graph.
216  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
217    SDNode *O = I->Val;
218    O->removeUser(N);
219
220    // Now that we removed this operand, see if there are no uses of it left.
221    if (O->use_empty())
222      DestroyDeadNode(O);
223  }
224  delete[] N->OperandList;
225  N->OperandList = 0;
226  N->NumOperands = 0;
227
228  // Mark the node as dead.
229  N->MorphNodeTo(65535);
230}
231
232void SelectionDAG::DeleteNode(SDNode *N) {
233  assert(N->use_empty() && "Cannot delete a node that is not dead!");
234
235  // First take this out of the appropriate CSE map.
236  RemoveNodeFromCSEMaps(N);
237
238  // Finally, remove uses due to operands of this node, remove from the
239  // AllNodes list, and delete the node.
240  DeleteNodeNotInCSEMaps(N);
241}
242
243void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
244
245  // Remove it from the AllNodes list.
246  AllNodes.remove(N);
247
248  // Drop all of the operands and decrement used nodes use counts.
249  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
250    I->Val->removeUser(N);
251  delete[] N->OperandList;
252  N->OperandList = 0;
253  N->NumOperands = 0;
254
255  delete N;
256}
257
258/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
259/// correspond to it.  This is useful when we're about to delete or repurpose
260/// the node.  We don't want future request for structurally identical nodes
261/// to return N anymore.
262void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
263  bool Erased = false;
264  switch (N->getOpcode()) {
265  case ISD::HANDLENODE: return;  // noop.
266  case ISD::Constant:
267    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
268                                            N->getValueType(0)));
269    break;
270  case ISD::TargetConstant:
271    Erased = TargetConstants.erase(std::make_pair(
272                                    cast<ConstantSDNode>(N)->getValue(),
273                                                  N->getValueType(0)));
274    break;
275  case ISD::ConstantFP: {
276    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
277    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
278    break;
279  }
280  case ISD::STRING:
281    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
282    break;
283  case ISD::CONDCODE:
284    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
285           "Cond code doesn't exist!");
286    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
287    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
288    break;
289  case ISD::GlobalAddress: {
290    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
291    Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(),
292                                               GN->getOffset()));
293    break;
294  }
295  case ISD::TargetGlobalAddress: {
296    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
297    Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(),
298                                                    GN->getOffset()));
299    break;
300  }
301  case ISD::FrameIndex:
302    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
303    break;
304  case ISD::TargetFrameIndex:
305    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
306    break;
307  case ISD::ConstantPool:
308    Erased = ConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
309    break;
310  case ISD::TargetConstantPool:
311    Erased =TargetConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
312    break;
313  case ISD::BasicBlock:
314    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
315    break;
316  case ISD::ExternalSymbol:
317    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
318    break;
319  case ISD::TargetExternalSymbol:
320    Erased =
321      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
322    break;
323  case ISD::VALUETYPE:
324    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
325    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
326    break;
327  case ISD::Register:
328    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
329                                           N->getValueType(0)));
330    break;
331  case ISD::SRCVALUE: {
332    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
333    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
334    break;
335  }
336  case ISD::LOAD:
337    Erased = Loads.erase(std::make_pair(N->getOperand(1),
338                                        std::make_pair(N->getOperand(0),
339                                                       N->getValueType(0))));
340    break;
341  default:
342    if (N->getNumValues() == 1) {
343      if (N->getNumOperands() == 0) {
344        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
345                                                 N->getValueType(0)));
346      } else if (N->getNumOperands() == 1) {
347        Erased =
348          UnaryOps.erase(std::make_pair(N->getOpcode(),
349                                        std::make_pair(N->getOperand(0),
350                                                       N->getValueType(0))));
351      } else if (N->getNumOperands() == 2) {
352        Erased =
353          BinaryOps.erase(std::make_pair(N->getOpcode(),
354                                         std::make_pair(N->getOperand(0),
355                                                        N->getOperand(1))));
356      } else {
357        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
358        Erased =
359          OneResultNodes.erase(std::make_pair(N->getOpcode(),
360                                              std::make_pair(N->getValueType(0),
361                                                             Ops)));
362      }
363    } else {
364      // Remove the node from the ArbitraryNodes map.
365      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
366      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
367      Erased =
368        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
369                                            std::make_pair(RV, Ops)));
370    }
371    break;
372  }
373#ifndef NDEBUG
374  // Verify that the node was actually in one of the CSE maps, unless it has a
375  // flag result (which cannot be CSE'd) or is one of the special cases that are
376  // not subject to CSE.
377  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
378      N->getOpcode() != ISD::CALLSEQ_START &&
379      N->getOpcode() != ISD::CALLSEQ_END && !N->isTargetOpcode()) {
380
381    N->dump();
382    assert(0 && "Node is not in map!");
383  }
384#endif
385}
386
387/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
388/// has been taken out and modified in some way.  If the specified node already
389/// exists in the CSE maps, do not modify the maps, but return the existing node
390/// instead.  If it doesn't exist, add it and return null.
391///
392SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
393  assert(N->getNumOperands() && "This is a leaf node!");
394  if (N->getOpcode() == ISD::CALLSEQ_START ||
395      N->getOpcode() == ISD::CALLSEQ_END ||
396      N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
397    return 0;    // Never add these nodes.
398
399  // Check that remaining values produced are not flags.
400  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
401    if (N->getValueType(i) == MVT::Flag)
402      return 0;   // Never CSE anything that produces a flag.
403
404  if (N->getNumValues() == 1) {
405    if (N->getNumOperands() == 1) {
406      SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
407                                           std::make_pair(N->getOperand(0),
408                                                          N->getValueType(0)))];
409      if (U) return U;
410      U = N;
411    } else if (N->getNumOperands() == 2) {
412      SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
413                                            std::make_pair(N->getOperand(0),
414                                                           N->getOperand(1)))];
415      if (B) return B;
416      B = N;
417    } else {
418      std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
419      SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
420                                      std::make_pair(N->getValueType(0), Ops))];
421      if (ORN) return ORN;
422      ORN = N;
423    }
424  } else {
425    if (N->getOpcode() == ISD::LOAD) {
426      SDNode *&L = Loads[std::make_pair(N->getOperand(1),
427                                        std::make_pair(N->getOperand(0),
428                                                       N->getValueType(0)))];
429      if (L) return L;
430      L = N;
431    } else {
432      // Remove the node from the ArbitraryNodes map.
433      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
434      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
435      SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
436                                                  std::make_pair(RV, Ops))];
437      if (AN) return AN;
438      AN = N;
439    }
440  }
441  return 0;
442}
443
444/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
445/// were replaced with those specified.  If this node is never memoized,
446/// return null, otherwise return a pointer to the slot it would take.  If a
447/// node already exists with these operands, the slot will be non-null.
448SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op) {
449  if (N->getOpcode() == ISD::CALLSEQ_START ||
450      N->getOpcode() == ISD::CALLSEQ_END ||
451      N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
452    return 0;    // Never add these nodes.
453
454  // Check that remaining values produced are not flags.
455  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
456    if (N->getValueType(i) == MVT::Flag)
457      return 0;   // Never CSE anything that produces a flag.
458
459  if (N->getNumValues() == 1) {
460    return &UnaryOps[std::make_pair(N->getOpcode(),
461                                    std::make_pair(Op, N->getValueType(0)))];
462  } else {
463    // Remove the node from the ArbitraryNodes map.
464    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
465    std::vector<SDOperand> Ops;
466    Ops.push_back(Op);
467    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
468                                          std::make_pair(RV, Ops))];
469  }
470  return 0;
471}
472
473/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
474/// were replaced with those specified.  If this node is never memoized,
475/// return null, otherwise return a pointer to the slot it would take.  If a
476/// node already exists with these operands, the slot will be non-null.
477SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
478                                            SDOperand Op1, SDOperand Op2) {
479  if (N->getOpcode() == ISD::CALLSEQ_START ||
480      N->getOpcode() == ISD::CALLSEQ_END ||
481      N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
482    return 0;    // Never add these nodes.
483
484  // Check that remaining values produced are not flags.
485  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
486    if (N->getValueType(i) == MVT::Flag)
487      return 0;   // Never CSE anything that produces a flag.
488
489  if (N->getNumValues() == 1) {
490    return &BinaryOps[std::make_pair(N->getOpcode(),
491                                     std::make_pair(Op1, Op2))];
492  } else {
493    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
494    std::vector<SDOperand> Ops;
495    Ops.push_back(Op1);
496    Ops.push_back(Op2);
497    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
498                                          std::make_pair(RV, Ops))];
499  }
500  return 0;
501}
502
503
504/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
505/// were replaced with those specified.  If this node is never memoized,
506/// return null, otherwise return a pointer to the slot it would take.  If a
507/// node already exists with these operands, the slot will be non-null.
508SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
509                                            const std::vector<SDOperand> &Ops) {
510  if (N->getOpcode() == ISD::CALLSEQ_START ||
511      N->getOpcode() == ISD::CALLSEQ_END ||
512      N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
513    return 0;    // Never add these nodes.
514
515  // Check that remaining values produced are not flags.
516  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
517    if (N->getValueType(i) == MVT::Flag)
518      return 0;   // Never CSE anything that produces a flag.
519
520  if (N->getNumValues() == 1) {
521    if (N->getNumOperands() == 1) {
522      return &UnaryOps[std::make_pair(N->getOpcode(),
523                                      std::make_pair(Ops[0],
524                                                     N->getValueType(0)))];
525    } else if (N->getNumOperands() == 2) {
526      return &BinaryOps[std::make_pair(N->getOpcode(),
527                                       std::make_pair(Ops[0], Ops[1]))];
528    } else {
529      return &OneResultNodes[std::make_pair(N->getOpcode(),
530                                            std::make_pair(N->getValueType(0),
531                                                           Ops))];
532    }
533  } else {
534    if (N->getOpcode() == ISD::LOAD) {
535      return &Loads[std::make_pair(Ops[1],
536                                   std::make_pair(Ops[0], N->getValueType(0)))];
537    } else {
538      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
539      return &ArbitraryNodes[std::make_pair(N->getOpcode(),
540                                            std::make_pair(RV, Ops))];
541    }
542  }
543  return 0;
544}
545
546
547SelectionDAG::~SelectionDAG() {
548  while (!AllNodes.empty()) {
549    SDNode *N = AllNodes.begin();
550    delete [] N->OperandList;
551    N->OperandList = 0;
552    N->NumOperands = 0;
553    AllNodes.pop_front();
554  }
555}
556
557SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
558  if (Op.getValueType() == VT) return Op;
559  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
560  return getNode(ISD::AND, Op.getValueType(), Op,
561                 getConstant(Imm, Op.getValueType()));
562}
563
564SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
565  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
566  // Mask out any bits that are not valid for this constant.
567  if (VT != MVT::i64)
568    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
569
570  SDNode *&N = Constants[std::make_pair(Val, VT)];
571  if (N) return SDOperand(N, 0);
572  N = new ConstantSDNode(false, Val, VT);
573  AllNodes.push_back(N);
574  return SDOperand(N, 0);
575}
576
577SDOperand SelectionDAG::getString(const std::string &Val) {
578  StringSDNode *&N = StringNodes[Val];
579  if (!N) {
580    N = new StringSDNode(Val);
581    AllNodes.push_back(N);
582  }
583  return SDOperand(N, 0);
584}
585
586SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
587  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
588  // Mask out any bits that are not valid for this constant.
589  if (VT != MVT::i64)
590    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
591
592  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
593  if (N) return SDOperand(N, 0);
594  N = new ConstantSDNode(true, Val, VT);
595  AllNodes.push_back(N);
596  return SDOperand(N, 0);
597}
598
599SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
600  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
601  if (VT == MVT::f32)
602    Val = (float)Val;  // Mask out extra precision.
603
604  // Do the map lookup using the actual bit pattern for the floating point
605  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
606  // we don't have issues with SNANs.
607  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
608  if (N) return SDOperand(N, 0);
609  N = new ConstantFPSDNode(Val, VT);
610  AllNodes.push_back(N);
611  return SDOperand(N, 0);
612}
613
614SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
615                                         MVT::ValueType VT, int offset) {
616  SDNode *&N = GlobalValues[std::make_pair(GV, offset)];
617  if (N) return SDOperand(N, 0);
618  N = new GlobalAddressSDNode(false, GV, VT, offset);
619  AllNodes.push_back(N);
620  return SDOperand(N, 0);
621}
622
623SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
624                                               MVT::ValueType VT, int offset) {
625  SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)];
626  if (N) return SDOperand(N, 0);
627  N = new GlobalAddressSDNode(true, GV, VT, offset);
628  AllNodes.push_back(N);
629  return SDOperand(N, 0);
630}
631
632SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
633  SDNode *&N = FrameIndices[FI];
634  if (N) return SDOperand(N, 0);
635  N = new FrameIndexSDNode(FI, VT, false);
636  AllNodes.push_back(N);
637  return SDOperand(N, 0);
638}
639
640SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
641  SDNode *&N = TargetFrameIndices[FI];
642  if (N) return SDOperand(N, 0);
643  N = new FrameIndexSDNode(FI, VT, true);
644  AllNodes.push_back(N);
645  return SDOperand(N, 0);
646}
647
648SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT) {
649  SDNode *&N = ConstantPoolIndices[C];
650  if (N) return SDOperand(N, 0);
651  N = new ConstantPoolSDNode(C, VT, false);
652  AllNodes.push_back(N);
653  return SDOperand(N, 0);
654}
655
656SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT) {
657  SDNode *&N = TargetConstantPoolIndices[C];
658  if (N) return SDOperand(N, 0);
659  N = new ConstantPoolSDNode(C, VT, true);
660  AllNodes.push_back(N);
661  return SDOperand(N, 0);
662}
663
664SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
665  SDNode *&N = BBNodes[MBB];
666  if (N) return SDOperand(N, 0);
667  N = new BasicBlockSDNode(MBB);
668  AllNodes.push_back(N);
669  return SDOperand(N, 0);
670}
671
672SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
673  if ((unsigned)VT >= ValueTypeNodes.size())
674    ValueTypeNodes.resize(VT+1);
675  if (ValueTypeNodes[VT] == 0) {
676    ValueTypeNodes[VT] = new VTSDNode(VT);
677    AllNodes.push_back(ValueTypeNodes[VT]);
678  }
679
680  return SDOperand(ValueTypeNodes[VT], 0);
681}
682
683SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
684  SDNode *&N = ExternalSymbols[Sym];
685  if (N) return SDOperand(N, 0);
686  N = new ExternalSymbolSDNode(false, Sym, VT);
687  AllNodes.push_back(N);
688  return SDOperand(N, 0);
689}
690
691SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
692                                                MVT::ValueType VT) {
693  SDNode *&N = TargetExternalSymbols[Sym];
694  if (N) return SDOperand(N, 0);
695  N = new ExternalSymbolSDNode(true, Sym, VT);
696  AllNodes.push_back(N);
697  return SDOperand(N, 0);
698}
699
700SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
701  if ((unsigned)Cond >= CondCodeNodes.size())
702    CondCodeNodes.resize(Cond+1);
703
704  if (CondCodeNodes[Cond] == 0) {
705    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
706    AllNodes.push_back(CondCodeNodes[Cond]);
707  }
708  return SDOperand(CondCodeNodes[Cond], 0);
709}
710
711SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
712  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
713  if (!Reg) {
714    Reg = new RegisterSDNode(RegNo, VT);
715    AllNodes.push_back(Reg);
716  }
717  return SDOperand(Reg, 0);
718}
719
720SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
721                                      SDOperand N2, ISD::CondCode Cond) {
722  // These setcc operations always fold.
723  switch (Cond) {
724  default: break;
725  case ISD::SETFALSE:
726  case ISD::SETFALSE2: return getConstant(0, VT);
727  case ISD::SETTRUE:
728  case ISD::SETTRUE2:  return getConstant(1, VT);
729  }
730
731  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
732    uint64_t C2 = N2C->getValue();
733    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
734      uint64_t C1 = N1C->getValue();
735
736      // Sign extend the operands if required
737      if (ISD::isSignedIntSetCC(Cond)) {
738        C1 = N1C->getSignExtended();
739        C2 = N2C->getSignExtended();
740      }
741
742      switch (Cond) {
743      default: assert(0 && "Unknown integer setcc!");
744      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
745      case ISD::SETNE:  return getConstant(C1 != C2, VT);
746      case ISD::SETULT: return getConstant(C1 <  C2, VT);
747      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
748      case ISD::SETULE: return getConstant(C1 <= C2, VT);
749      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
750      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
751      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
752      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
753      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
754      }
755    } else {
756      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
757      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
758        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
759
760        // If the comparison constant has bits in the upper part, the
761        // zero-extended value could never match.
762        if (C2 & (~0ULL << InSize)) {
763          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
764          switch (Cond) {
765          case ISD::SETUGT:
766          case ISD::SETUGE:
767          case ISD::SETEQ: return getConstant(0, VT);
768          case ISD::SETULT:
769          case ISD::SETULE:
770          case ISD::SETNE: return getConstant(1, VT);
771          case ISD::SETGT:
772          case ISD::SETGE:
773            // True if the sign bit of C2 is set.
774            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
775          case ISD::SETLT:
776          case ISD::SETLE:
777            // True if the sign bit of C2 isn't set.
778            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
779          default:
780            break;
781          }
782        }
783
784        // Otherwise, we can perform the comparison with the low bits.
785        switch (Cond) {
786        case ISD::SETEQ:
787        case ISD::SETNE:
788        case ISD::SETUGT:
789        case ISD::SETUGE:
790        case ISD::SETULT:
791        case ISD::SETULE:
792          return getSetCC(VT, N1.getOperand(0),
793                          getConstant(C2, N1.getOperand(0).getValueType()),
794                          Cond);
795        default:
796          break;   // todo, be more careful with signed comparisons
797        }
798      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
799                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
800        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
801        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
802        MVT::ValueType ExtDstTy = N1.getValueType();
803        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
804
805        // If the extended part has any inconsistent bits, it cannot ever
806        // compare equal.  In other words, they have to be all ones or all
807        // zeros.
808        uint64_t ExtBits =
809          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
810        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
811          return getConstant(Cond == ISD::SETNE, VT);
812
813        // Otherwise, make this a use of a zext.
814        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
815                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
816                        Cond);
817      }
818
819      uint64_t MinVal, MaxVal;
820      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
821      if (ISD::isSignedIntSetCC(Cond)) {
822        MinVal = 1ULL << (OperandBitSize-1);
823        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
824          MaxVal = ~0ULL >> (65-OperandBitSize);
825        else
826          MaxVal = 0;
827      } else {
828        MinVal = 0;
829        MaxVal = ~0ULL >> (64-OperandBitSize);
830      }
831
832      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
833      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
834        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
835        --C2;                                          // X >= C1 --> X > (C1-1)
836        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
837                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
838      }
839
840      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
841        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
842        ++C2;                                          // X <= C1 --> X < (C1+1)
843        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
844                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
845      }
846
847      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
848        return getConstant(0, VT);      // X < MIN --> false
849
850      // Canonicalize setgt X, Min --> setne X, Min
851      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
852        return getSetCC(VT, N1, N2, ISD::SETNE);
853
854      // If we have setult X, 1, turn it into seteq X, 0
855      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
856        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
857                        ISD::SETEQ);
858      // If we have setugt X, Max-1, turn it into seteq X, Max
859      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
860        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
861                        ISD::SETEQ);
862
863      // If we have "setcc X, C1", check to see if we can shrink the immediate
864      // by changing cc.
865
866      // SETUGT X, SINTMAX  -> SETLT X, 0
867      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
868          C2 == (~0ULL >> (65-OperandBitSize)))
869        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
870
871      // FIXME: Implement the rest of these.
872
873
874      // Fold bit comparisons when we can.
875      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
876          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
877        if (ConstantSDNode *AndRHS =
878                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
879          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
880            // Perform the xform if the AND RHS is a single bit.
881            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
882              return getNode(ISD::SRL, VT, N1,
883                             getConstant(Log2_64(AndRHS->getValue()),
884                                                   TLI.getShiftAmountTy()));
885            }
886          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
887            // (X & 8) == 8  -->  (X & 8) >> 3
888            // Perform the xform if C2 is a single bit.
889            if ((C2 & (C2-1)) == 0) {
890              return getNode(ISD::SRL, VT, N1,
891                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
892            }
893          }
894        }
895    }
896  } else if (isa<ConstantSDNode>(N1.Val)) {
897      // Ensure that the constant occurs on the RHS.
898    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
899  }
900
901  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
902    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
903      double C1 = N1C->getValue(), C2 = N2C->getValue();
904
905      switch (Cond) {
906      default: break; // FIXME: Implement the rest of these!
907      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
908      case ISD::SETNE:  return getConstant(C1 != C2, VT);
909      case ISD::SETLT:  return getConstant(C1 < C2, VT);
910      case ISD::SETGT:  return getConstant(C1 > C2, VT);
911      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
912      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
913      }
914    } else {
915      // Ensure that the constant occurs on the RHS.
916      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
917    }
918
919  // Could not fold it.
920  return SDOperand();
921}
922
923/// getNode - Gets or creates the specified node.
924///
925SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
926  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
927  if (!N) {
928    N = new SDNode(Opcode, VT);
929    AllNodes.push_back(N);
930  }
931  return SDOperand(N, 0);
932}
933
934SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
935                                SDOperand Operand) {
936  unsigned Tmp1;
937  // Constant fold unary operations with an integer constant operand.
938  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
939    uint64_t Val = C->getValue();
940    switch (Opcode) {
941    default: break;
942    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
943    case ISD::ANY_EXTEND:
944    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
945    case ISD::TRUNCATE:    return getConstant(Val, VT);
946    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
947    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
948    case ISD::BIT_CONVERT:
949      if (VT == MVT::f32) {
950        assert(C->getValueType(0) == MVT::i32 && "Invalid bit_convert!");
951        return getConstantFP(BitsToFloat(Val), VT);
952      } else if (VT == MVT::f64) {
953        assert(C->getValueType(0) == MVT::i64 && "Invalid bit_convert!");
954        return getConstantFP(BitsToDouble(Val), VT);
955      }
956      break;
957    case ISD::BSWAP:
958      switch(VT) {
959      default: assert(0 && "Invalid bswap!"); break;
960      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
961      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
962      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
963      }
964      break;
965    case ISD::CTPOP:
966      switch(VT) {
967      default: assert(0 && "Invalid ctpop!"); break;
968      case MVT::i1: return getConstant(Val != 0, VT);
969      case MVT::i8:
970        Tmp1 = (unsigned)Val & 0xFF;
971        return getConstant(CountPopulation_32(Tmp1), VT);
972      case MVT::i16:
973        Tmp1 = (unsigned)Val & 0xFFFF;
974        return getConstant(CountPopulation_32(Tmp1), VT);
975      case MVT::i32:
976        return getConstant(CountPopulation_32((unsigned)Val), VT);
977      case MVT::i64:
978        return getConstant(CountPopulation_64(Val), VT);
979      }
980    case ISD::CTLZ:
981      switch(VT) {
982      default: assert(0 && "Invalid ctlz!"); break;
983      case MVT::i1: return getConstant(Val == 0, VT);
984      case MVT::i8:
985        Tmp1 = (unsigned)Val & 0xFF;
986        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
987      case MVT::i16:
988        Tmp1 = (unsigned)Val & 0xFFFF;
989        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
990      case MVT::i32:
991        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
992      case MVT::i64:
993        return getConstant(CountLeadingZeros_64(Val), VT);
994      }
995    case ISD::CTTZ:
996      switch(VT) {
997      default: assert(0 && "Invalid cttz!"); break;
998      case MVT::i1: return getConstant(Val == 0, VT);
999      case MVT::i8:
1000        Tmp1 = (unsigned)Val | 0x100;
1001        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1002      case MVT::i16:
1003        Tmp1 = (unsigned)Val | 0x10000;
1004        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1005      case MVT::i32:
1006        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1007      case MVT::i64:
1008        return getConstant(CountTrailingZeros_64(Val), VT);
1009      }
1010    }
1011  }
1012
1013  // Constant fold unary operations with an floating point constant operand.
1014  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1015    switch (Opcode) {
1016    case ISD::FNEG:
1017      return getConstantFP(-C->getValue(), VT);
1018    case ISD::FABS:
1019      return getConstantFP(fabs(C->getValue()), VT);
1020    case ISD::FP_ROUND:
1021    case ISD::FP_EXTEND:
1022      return getConstantFP(C->getValue(), VT);
1023    case ISD::FP_TO_SINT:
1024      return getConstant((int64_t)C->getValue(), VT);
1025    case ISD::FP_TO_UINT:
1026      return getConstant((uint64_t)C->getValue(), VT);
1027    case ISD::BIT_CONVERT:
1028      if (VT == MVT::i32) {
1029        assert(C->getValueType(0) == MVT::f32 && "Invalid bit_convert!");
1030        return getConstant(FloatToBits(C->getValue()), VT);
1031      } else if (VT == MVT::i64) {
1032        assert(C->getValueType(0) == MVT::f64 && "Invalid bit_convert!");
1033        return getConstant(DoubleToBits(C->getValue()), VT);
1034      }
1035      break;
1036    }
1037
1038  unsigned OpOpcode = Operand.Val->getOpcode();
1039  switch (Opcode) {
1040  case ISD::TokenFactor:
1041    return Operand;         // Factor of one node?  No factor.
1042  case ISD::SIGN_EXTEND:
1043    if (Operand.getValueType() == VT) return Operand;   // noop extension
1044    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1045      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1046    break;
1047  case ISD::ZERO_EXTEND:
1048    if (Operand.getValueType() == VT) return Operand;   // noop extension
1049    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1050      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1051    break;
1052  case ISD::ANY_EXTEND:
1053    if (Operand.getValueType() == VT) return Operand;   // noop extension
1054    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1055      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1056      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1057    break;
1058  case ISD::TRUNCATE:
1059    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1060    if (OpOpcode == ISD::TRUNCATE)
1061      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1062    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1063             OpOpcode == ISD::ANY_EXTEND) {
1064      // If the source is smaller than the dest, we still need an extend.
1065      if (Operand.Val->getOperand(0).getValueType() < VT)
1066        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1067      else if (Operand.Val->getOperand(0).getValueType() > VT)
1068        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1069      else
1070        return Operand.Val->getOperand(0);
1071    }
1072    break;
1073  case ISD::BIT_CONVERT:
1074    // Basic sanity checking.
1075    assert(MVT::getSizeInBits(VT)==MVT::getSizeInBits(Operand.getValueType()) &&
1076           "Cannot BIT_CONVERT between two different types!");
1077    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1078    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1079      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1080    break;
1081  case ISD::FNEG:
1082    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1083      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1084                     Operand.Val->getOperand(0));
1085    if (OpOpcode == ISD::FNEG)  // --X -> X
1086      return Operand.Val->getOperand(0);
1087    break;
1088  case ISD::FABS:
1089    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1090      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1091    break;
1092  }
1093
1094  SDNode *N;
1095  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1096    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1097    if (E) return SDOperand(E, 0);
1098    E = N = new SDNode(Opcode, Operand);
1099  } else {
1100    N = new SDNode(Opcode, Operand);
1101  }
1102  N->setValueTypes(VT);
1103  AllNodes.push_back(N);
1104  return SDOperand(N, 0);
1105}
1106
1107
1108
1109SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1110                                SDOperand N1, SDOperand N2) {
1111#ifndef NDEBUG
1112  switch (Opcode) {
1113  case ISD::TokenFactor:
1114    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1115           N2.getValueType() == MVT::Other && "Invalid token factor!");
1116    break;
1117  case ISD::AND:
1118  case ISD::OR:
1119  case ISD::XOR:
1120  case ISD::UDIV:
1121  case ISD::UREM:
1122  case ISD::MULHU:
1123  case ISD::MULHS:
1124    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1125    // fall through
1126  case ISD::ADD:
1127  case ISD::SUB:
1128  case ISD::MUL:
1129  case ISD::SDIV:
1130  case ISD::SREM:
1131    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1132    // fall through.
1133  case ISD::FADD:
1134  case ISD::FSUB:
1135  case ISD::FMUL:
1136  case ISD::FDIV:
1137  case ISD::FREM:
1138    assert(N1.getValueType() == N2.getValueType() &&
1139           N1.getValueType() == VT && "Binary operator types must match!");
1140    break;
1141
1142  case ISD::SHL:
1143  case ISD::SRA:
1144  case ISD::SRL:
1145  case ISD::ROTL:
1146  case ISD::ROTR:
1147    assert(VT == N1.getValueType() &&
1148           "Shift operators return type must be the same as their first arg");
1149    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1150           VT != MVT::i1 && "Shifts only work on integers");
1151    break;
1152  case ISD::FP_ROUND_INREG: {
1153    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1154    assert(VT == N1.getValueType() && "Not an inreg round!");
1155    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1156           "Cannot FP_ROUND_INREG integer types");
1157    assert(EVT <= VT && "Not rounding down!");
1158    break;
1159  }
1160  case ISD::AssertSext:
1161  case ISD::AssertZext:
1162  case ISD::SIGN_EXTEND_INREG: {
1163    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1164    assert(VT == N1.getValueType() && "Not an inreg extend!");
1165    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1166           "Cannot *_EXTEND_INREG FP types");
1167    assert(EVT <= VT && "Not extending!");
1168  }
1169
1170  default: break;
1171  }
1172#endif
1173
1174  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1175  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1176  if (N1C) {
1177    if (N2C) {
1178      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1179      switch (Opcode) {
1180      case ISD::ADD: return getConstant(C1 + C2, VT);
1181      case ISD::SUB: return getConstant(C1 - C2, VT);
1182      case ISD::MUL: return getConstant(C1 * C2, VT);
1183      case ISD::UDIV:
1184        if (C2) return getConstant(C1 / C2, VT);
1185        break;
1186      case ISD::UREM :
1187        if (C2) return getConstant(C1 % C2, VT);
1188        break;
1189      case ISD::SDIV :
1190        if (C2) return getConstant(N1C->getSignExtended() /
1191                                   N2C->getSignExtended(), VT);
1192        break;
1193      case ISD::SREM :
1194        if (C2) return getConstant(N1C->getSignExtended() %
1195                                   N2C->getSignExtended(), VT);
1196        break;
1197      case ISD::AND  : return getConstant(C1 & C2, VT);
1198      case ISD::OR   : return getConstant(C1 | C2, VT);
1199      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1200      case ISD::SHL  : return getConstant(C1 << C2, VT);
1201      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1202      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1203      case ISD::ROTL :
1204        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1205                           VT);
1206      case ISD::ROTR :
1207        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1208                           VT);
1209      default: break;
1210      }
1211    } else {      // Cannonicalize constant to RHS if commutative
1212      if (isCommutativeBinOp(Opcode)) {
1213        std::swap(N1C, N2C);
1214        std::swap(N1, N2);
1215      }
1216    }
1217  }
1218
1219  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1220  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1221  if (N1CFP) {
1222    if (N2CFP) {
1223      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1224      switch (Opcode) {
1225      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1226      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1227      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1228      case ISD::FDIV:
1229        if (C2) return getConstantFP(C1 / C2, VT);
1230        break;
1231      case ISD::FREM :
1232        if (C2) return getConstantFP(fmod(C1, C2), VT);
1233        break;
1234      default: break;
1235      }
1236    } else {      // Cannonicalize constant to RHS if commutative
1237      if (isCommutativeBinOp(Opcode)) {
1238        std::swap(N1CFP, N2CFP);
1239        std::swap(N1, N2);
1240      }
1241    }
1242  }
1243
1244  // Finally, fold operations that do not require constants.
1245  switch (Opcode) {
1246  case ISD::FP_ROUND_INREG:
1247    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1248    break;
1249  case ISD::SIGN_EXTEND_INREG: {
1250    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1251    if (EVT == VT) return N1;  // Not actually extending
1252    break;
1253  }
1254
1255  // FIXME: figure out how to safely handle things like
1256  // int foo(int x) { return 1 << (x & 255); }
1257  // int bar() { return foo(256); }
1258#if 0
1259  case ISD::SHL:
1260  case ISD::SRL:
1261  case ISD::SRA:
1262    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1263        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1264      return getNode(Opcode, VT, N1, N2.getOperand(0));
1265    else if (N2.getOpcode() == ISD::AND)
1266      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1267        // If the and is only masking out bits that cannot effect the shift,
1268        // eliminate the and.
1269        unsigned NumBits = MVT::getSizeInBits(VT);
1270        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1271          return getNode(Opcode, VT, N1, N2.getOperand(0));
1272      }
1273    break;
1274#endif
1275  }
1276
1277  // Memoize this node if possible.
1278  SDNode *N;
1279  if (Opcode != ISD::CALLSEQ_START && Opcode != ISD::CALLSEQ_END &&
1280      VT != MVT::Flag) {
1281    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1282    if (BON) return SDOperand(BON, 0);
1283
1284    BON = N = new SDNode(Opcode, N1, N2);
1285  } else {
1286    N = new SDNode(Opcode, N1, N2);
1287  }
1288
1289  N->setValueTypes(VT);
1290  AllNodes.push_back(N);
1291  return SDOperand(N, 0);
1292}
1293
1294SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1295                                SDOperand N1, SDOperand N2, SDOperand N3) {
1296  // Perform various simplifications.
1297  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1298  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1299  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1300  switch (Opcode) {
1301  case ISD::SETCC: {
1302    // Use SimplifySetCC  to simplify SETCC's.
1303    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1304    if (Simp.Val) return Simp;
1305    break;
1306  }
1307  case ISD::SELECT:
1308    if (N1C)
1309      if (N1C->getValue())
1310        return N2;             // select true, X, Y -> X
1311      else
1312        return N3;             // select false, X, Y -> Y
1313
1314    if (N2 == N3) return N2;   // select C, X, X -> X
1315    break;
1316  case ISD::BRCOND:
1317    if (N2C)
1318      if (N2C->getValue()) // Unconditional branch
1319        return getNode(ISD::BR, MVT::Other, N1, N3);
1320      else
1321        return N1;         // Never-taken branch
1322    break;
1323  }
1324
1325  std::vector<SDOperand> Ops;
1326  Ops.reserve(3);
1327  Ops.push_back(N1);
1328  Ops.push_back(N2);
1329  Ops.push_back(N3);
1330
1331  // Memoize node if it doesn't produce a flag.
1332  SDNode *N;
1333  if (VT != MVT::Flag) {
1334    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1335    if (E) return SDOperand(E, 0);
1336    E = N = new SDNode(Opcode, N1, N2, N3);
1337  } else {
1338    N = new SDNode(Opcode, N1, N2, N3);
1339  }
1340  N->setValueTypes(VT);
1341  AllNodes.push_back(N);
1342  return SDOperand(N, 0);
1343}
1344
1345SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1346                                SDOperand N1, SDOperand N2, SDOperand N3,
1347                                SDOperand N4) {
1348  std::vector<SDOperand> Ops;
1349  Ops.reserve(4);
1350  Ops.push_back(N1);
1351  Ops.push_back(N2);
1352  Ops.push_back(N3);
1353  Ops.push_back(N4);
1354  return getNode(Opcode, VT, Ops);
1355}
1356
1357SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1358                                SDOperand N1, SDOperand N2, SDOperand N3,
1359                                SDOperand N4, SDOperand N5) {
1360  std::vector<SDOperand> Ops;
1361  Ops.reserve(5);
1362  Ops.push_back(N1);
1363  Ops.push_back(N2);
1364  Ops.push_back(N3);
1365  Ops.push_back(N4);
1366  Ops.push_back(N5);
1367  return getNode(Opcode, VT, Ops);
1368}
1369
1370// setAdjCallChain - This method changes the token chain of an
1371// CALLSEQ_START/END node to be the specified operand.
1372void SDNode::setAdjCallChain(SDOperand N) {
1373  assert(N.getValueType() == MVT::Other);
1374  assert((getOpcode() == ISD::CALLSEQ_START ||
1375          getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!");
1376
1377  OperandList[0].Val->removeUser(this);
1378  OperandList[0] = N;
1379  OperandList[0].Val->Uses.push_back(this);
1380}
1381
1382// setAdjCallFlag - This method changes the flag input of an
1383// CALLSEQ_START/END node to be the specified operand.
1384void SDNode::setAdjCallFlag(SDOperand N) {
1385  assert(N.getValueType() == MVT::Flag);
1386  assert((getOpcode() == ISD::CALLSEQ_START ||
1387          getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!");
1388
1389  SDOperand &FlagOp = OperandList[getNumOperands()-1];
1390  assert(FlagOp.getValueType() == MVT::Flag);
1391  FlagOp.Val->removeUser(this);
1392  FlagOp = N;
1393  FlagOp.Val->Uses.push_back(this);
1394}
1395
1396
1397SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1398                                SDOperand Chain, SDOperand Ptr,
1399                                SDOperand SV) {
1400  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1401  if (N) return SDOperand(N, 0);
1402  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1403
1404  // Loads have a token chain.
1405  setNodeValueTypes(N, VT, MVT::Other);
1406  AllNodes.push_back(N);
1407  return SDOperand(N, 0);
1408}
1409
1410SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1411                                   SDOperand Chain, SDOperand Ptr,
1412                                   SDOperand SV) {
1413  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, EVT))];
1414  if (N) return SDOperand(N, 0);
1415  std::vector<SDOperand> Ops;
1416  Ops.reserve(5);
1417  Ops.push_back(Chain);
1418  Ops.push_back(Ptr);
1419  Ops.push_back(getConstant(Count, MVT::i32));
1420  Ops.push_back(getValueType(EVT));
1421  Ops.push_back(SV);
1422  std::vector<MVT::ValueType> VTs;
1423  VTs.reserve(2);
1424  VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other);  // Add token chain.
1425  return getNode(ISD::VLOAD, VTs, Ops);
1426}
1427
1428SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1429                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1430                                   MVT::ValueType EVT) {
1431  std::vector<SDOperand> Ops;
1432  Ops.reserve(4);
1433  Ops.push_back(Chain);
1434  Ops.push_back(Ptr);
1435  Ops.push_back(SV);
1436  Ops.push_back(getValueType(EVT));
1437  std::vector<MVT::ValueType> VTs;
1438  VTs.reserve(2);
1439  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1440  return getNode(Opcode, VTs, Ops);
1441}
1442
1443SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1444  assert((!V || isa<PointerType>(V->getType())) &&
1445         "SrcValue is not a pointer?");
1446  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1447  if (N) return SDOperand(N, 0);
1448
1449  N = new SrcValueSDNode(V, Offset);
1450  AllNodes.push_back(N);
1451  return SDOperand(N, 0);
1452}
1453
1454SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1455                                 SDOperand Chain, SDOperand Ptr,
1456                                 SDOperand SV) {
1457  std::vector<SDOperand> Ops;
1458  Ops.reserve(3);
1459  Ops.push_back(Chain);
1460  Ops.push_back(Ptr);
1461  Ops.push_back(SV);
1462  std::vector<MVT::ValueType> VTs;
1463  VTs.reserve(2);
1464  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1465  return getNode(ISD::VAARG, VTs, Ops);
1466}
1467
1468SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1469                                std::vector<SDOperand> &Ops) {
1470  switch (Ops.size()) {
1471  case 0: return getNode(Opcode, VT);
1472  case 1: return getNode(Opcode, VT, Ops[0]);
1473  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1474  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1475  default: break;
1476  }
1477
1478  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1479  switch (Opcode) {
1480  default: break;
1481  case ISD::BRCONDTWOWAY:
1482    if (N1C)
1483      if (N1C->getValue()) // Unconditional branch to true dest.
1484        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
1485      else                 // Unconditional branch to false dest.
1486        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
1487    break;
1488  case ISD::BRTWOWAY_CC:
1489    assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
1490    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1491           "LHS and RHS of comparison must have same type!");
1492    break;
1493  case ISD::TRUNCSTORE: {
1494    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1495    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1496#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1497    // If this is a truncating store of a constant, convert to the desired type
1498    // and store it instead.
1499    if (isa<Constant>(Ops[0])) {
1500      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1501      if (isa<Constant>(Op))
1502        N1 = Op;
1503    }
1504    // Also for ConstantFP?
1505#endif
1506    if (Ops[0].getValueType() == EVT)       // Normal store?
1507      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1508    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1509    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1510           "Can't do FP-INT conversion!");
1511    break;
1512  }
1513  case ISD::SELECT_CC: {
1514    assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
1515    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1516           "LHS and RHS of condition must have same type!");
1517    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1518           "True and False arms of SelectCC must have same type!");
1519    assert(Ops[2].getValueType() == VT &&
1520           "select_cc node must be of same type as true and false value!");
1521    break;
1522  }
1523  case ISD::BR_CC: {
1524    assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
1525    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1526           "LHS/RHS of comparison should match types!");
1527    break;
1528  }
1529  }
1530
1531  // Memoize nodes.
1532  SDNode *N;
1533  if (VT != MVT::Flag) {
1534    SDNode *&E =
1535      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1536    if (E) return SDOperand(E, 0);
1537    E = N = new SDNode(Opcode, Ops);
1538  } else {
1539    N = new SDNode(Opcode, Ops);
1540  }
1541  N->setValueTypes(VT);
1542  AllNodes.push_back(N);
1543  return SDOperand(N, 0);
1544}
1545
1546SDOperand SelectionDAG::getNode(unsigned Opcode,
1547                                std::vector<MVT::ValueType> &ResultTys,
1548                                std::vector<SDOperand> &Ops) {
1549  if (ResultTys.size() == 1)
1550    return getNode(Opcode, ResultTys[0], Ops);
1551
1552  switch (Opcode) {
1553  case ISD::EXTLOAD:
1554  case ISD::SEXTLOAD:
1555  case ISD::ZEXTLOAD: {
1556    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1557    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1558    // If they are asking for an extending load from/to the same thing, return a
1559    // normal load.
1560    if (ResultTys[0] == EVT)
1561      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1562    assert(EVT < ResultTys[0] &&
1563           "Should only be an extending load, not truncating!");
1564    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1565           "Cannot sign/zero extend a FP load!");
1566    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1567           "Cannot convert from FP to Int or Int -> FP!");
1568    break;
1569  }
1570
1571  // FIXME: figure out how to safely handle things like
1572  // int foo(int x) { return 1 << (x & 255); }
1573  // int bar() { return foo(256); }
1574#if 0
1575  case ISD::SRA_PARTS:
1576  case ISD::SRL_PARTS:
1577  case ISD::SHL_PARTS:
1578    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1579        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1580      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1581    else if (N3.getOpcode() == ISD::AND)
1582      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1583        // If the and is only masking out bits that cannot effect the shift,
1584        // eliminate the and.
1585        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1586        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1587          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1588      }
1589    break;
1590#endif
1591  }
1592
1593  // Memoize the node unless it returns a flag.
1594  SDNode *N;
1595  if (ResultTys.back() != MVT::Flag) {
1596    SDNode *&E =
1597      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
1598    if (E) return SDOperand(E, 0);
1599    E = N = new SDNode(Opcode, Ops);
1600  } else {
1601    N = new SDNode(Opcode, Ops);
1602  }
1603  setNodeValueTypes(N, ResultTys);
1604  AllNodes.push_back(N);
1605  return SDOperand(N, 0);
1606}
1607
1608void SelectionDAG::setNodeValueTypes(SDNode *N,
1609                                     std::vector<MVT::ValueType> &RetVals) {
1610  switch (RetVals.size()) {
1611  case 0: return;
1612  case 1: N->setValueTypes(RetVals[0]); return;
1613  case 2: setNodeValueTypes(N, RetVals[0], RetVals[1]); return;
1614  default: break;
1615  }
1616
1617  std::list<std::vector<MVT::ValueType> >::iterator I =
1618    std::find(VTList.begin(), VTList.end(), RetVals);
1619  if (I == VTList.end()) {
1620    VTList.push_front(RetVals);
1621    I = VTList.begin();
1622  }
1623
1624  N->setValueTypes(&(*I)[0], I->size());
1625}
1626
1627void SelectionDAG::setNodeValueTypes(SDNode *N, MVT::ValueType VT1,
1628                                     MVT::ValueType VT2) {
1629  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1630       E = VTList.end(); I != E; ++I) {
1631    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) {
1632      N->setValueTypes(&(*I)[0], 2);
1633      return;
1634    }
1635  }
1636  std::vector<MVT::ValueType> V;
1637  V.push_back(VT1);
1638  V.push_back(VT2);
1639  VTList.push_front(V);
1640  N->setValueTypes(&(*VTList.begin())[0], 2);
1641}
1642
1643/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1644/// specified operands.  If the resultant node already exists in the DAG,
1645/// this does not modify the specified node, instead it returns the node that
1646/// already exists.  If the resultant node does not exist in the DAG, the
1647/// input node is returned.  As a degenerate case, if you specify the same
1648/// input operands as the node already has, the input node is returned.
1649SDOperand SelectionDAG::
1650UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1651  SDNode *N = InN.Val;
1652  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1653
1654  // Check to see if there is no change.
1655  if (Op == N->getOperand(0)) return InN;
1656
1657  // See if the modified node already exists.
1658  SDNode **NewSlot = FindModifiedNodeSlot(N, Op);
1659  if (NewSlot && *NewSlot)
1660    return SDOperand(*NewSlot, InN.ResNo);
1661
1662  // Nope it doesn't.  Remove the node from it's current place in the maps.
1663  if (NewSlot)
1664    RemoveNodeFromCSEMaps(N);
1665
1666  // Now we update the operands.
1667  N->OperandList[0].Val->removeUser(N);
1668  Op.Val->addUser(N);
1669  N->OperandList[0] = Op;
1670
1671  // If this gets put into a CSE map, add it.
1672  if (NewSlot) *NewSlot = N;
1673  return InN;
1674}
1675
1676SDOperand SelectionDAG::
1677UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1678  SDNode *N = InN.Val;
1679  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1680
1681  // Check to see if there is no change.
1682  bool AnyChange = false;
1683  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1684    return InN;   // No operands changed, just return the input node.
1685
1686  // See if the modified node already exists.
1687  SDNode **NewSlot = FindModifiedNodeSlot(N, Op1, Op2);
1688  if (NewSlot && *NewSlot)
1689    return SDOperand(*NewSlot, InN.ResNo);
1690
1691  // Nope it doesn't.  Remove the node from it's current place in the maps.
1692  if (NewSlot)
1693    RemoveNodeFromCSEMaps(N);
1694
1695  // Now we update the operands.
1696  if (N->OperandList[0] != Op1) {
1697    N->OperandList[0].Val->removeUser(N);
1698    Op1.Val->addUser(N);
1699    N->OperandList[0] = Op1;
1700  }
1701  if (N->OperandList[1] != Op2) {
1702    N->OperandList[1].Val->removeUser(N);
1703    Op2.Val->addUser(N);
1704    N->OperandList[1] = Op2;
1705  }
1706
1707  // If this gets put into a CSE map, add it.
1708  if (NewSlot) *NewSlot = N;
1709  return InN;
1710}
1711
1712SDOperand SelectionDAG::
1713UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1714  std::vector<SDOperand> Ops;
1715  Ops.push_back(Op1);
1716  Ops.push_back(Op2);
1717  Ops.push_back(Op3);
1718  return UpdateNodeOperands(N, Ops);
1719}
1720
1721SDOperand SelectionDAG::
1722UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1723                   SDOperand Op3, SDOperand Op4) {
1724  std::vector<SDOperand> Ops;
1725  Ops.push_back(Op1);
1726  Ops.push_back(Op2);
1727  Ops.push_back(Op3);
1728  Ops.push_back(Op4);
1729  return UpdateNodeOperands(N, Ops);
1730}
1731
1732SDOperand SelectionDAG::
1733UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1734                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1735  std::vector<SDOperand> Ops;
1736  Ops.push_back(Op1);
1737  Ops.push_back(Op2);
1738  Ops.push_back(Op3);
1739  Ops.push_back(Op4);
1740  Ops.push_back(Op5);
1741  return UpdateNodeOperands(N, Ops);
1742}
1743
1744
1745SDOperand SelectionDAG::
1746UpdateNodeOperands(SDOperand InN, const std::vector<SDOperand> &Ops) {
1747  SDNode *N = InN.Val;
1748  assert(N->getNumOperands() == Ops.size() &&
1749         "Update with wrong number of operands");
1750
1751  // Check to see if there is no change.
1752  unsigned NumOps = Ops.size();
1753  bool AnyChange = false;
1754  for (unsigned i = 0; i != NumOps; ++i) {
1755    if (Ops[i] != N->getOperand(i)) {
1756      AnyChange = true;
1757      break;
1758    }
1759  }
1760
1761  // No operands changed, just return the input node.
1762  if (!AnyChange) return InN;
1763
1764  // See if the modified node already exists.
1765  SDNode **NewSlot = FindModifiedNodeSlot(N, Ops);
1766  if (NewSlot && *NewSlot)
1767    return SDOperand(*NewSlot, InN.ResNo);
1768
1769  // Nope it doesn't.  Remove the node from it's current place in the maps.
1770  if (NewSlot)
1771    RemoveNodeFromCSEMaps(N);
1772
1773  // Now we update the operands.
1774  for (unsigned i = 0; i != NumOps; ++i) {
1775    if (N->OperandList[i] != Ops[i]) {
1776      N->OperandList[i].Val->removeUser(N);
1777      Ops[i].Val->addUser(N);
1778      N->OperandList[i] = Ops[i];
1779    }
1780  }
1781
1782  // If this gets put into a CSE map, add it.
1783  if (NewSlot) *NewSlot = N;
1784  return InN;
1785}
1786
1787
1788
1789
1790/// SelectNodeTo - These are used for target selectors to *mutate* the
1791/// specified node to have the specified return type, Target opcode, and
1792/// operands.  Note that target opcodes are stored as
1793/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1794///
1795/// Note that SelectNodeTo returns the resultant node.  If there is already a
1796/// node of the specified opcode and operands, it returns that node instead of
1797/// the current one.
1798SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1799                                     MVT::ValueType VT) {
1800  // If an identical node already exists, use it.
1801  SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)];
1802  if (ON) return SDOperand(ON, 0);
1803
1804  RemoveNodeFromCSEMaps(N);
1805
1806  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1807  N->setValueTypes(VT);
1808
1809  ON = N;   // Memoize the new node.
1810  return SDOperand(N, 0);
1811}
1812
1813SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1814                                     MVT::ValueType VT, SDOperand Op1) {
1815  // If an identical node already exists, use it.
1816  SDNode *&ON = UnaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1817                                        std::make_pair(Op1, VT))];
1818  if (ON) return SDOperand(ON, 0);
1819
1820  RemoveNodeFromCSEMaps(N);
1821  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1822  N->setValueTypes(VT);
1823  N->setOperands(Op1);
1824
1825  ON = N;   // Memoize the new node.
1826  return SDOperand(N, 0);
1827}
1828
1829SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1830                                     MVT::ValueType VT, SDOperand Op1,
1831                                     SDOperand Op2) {
1832  // If an identical node already exists, use it.
1833  SDNode *&ON = BinaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1834                                         std::make_pair(Op1, Op2))];
1835  if (ON) return SDOperand(ON, 0);
1836
1837  RemoveNodeFromCSEMaps(N);
1838  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1839  N->setValueTypes(VT);
1840  N->setOperands(Op1, Op2);
1841
1842  ON = N;   // Memoize the new node.
1843  return SDOperand(N, 0);
1844}
1845
1846SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1847                                     MVT::ValueType VT, SDOperand Op1,
1848                                     SDOperand Op2, SDOperand Op3) {
1849  // If an identical node already exists, use it.
1850  std::vector<SDOperand> OpList;
1851  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1852  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1853                                              std::make_pair(VT, OpList))];
1854  if (ON) return SDOperand(ON, 0);
1855
1856  RemoveNodeFromCSEMaps(N);
1857  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1858  N->setValueTypes(VT);
1859  N->setOperands(Op1, Op2, Op3);
1860
1861  ON = N;   // Memoize the new node.
1862  return SDOperand(N, 0);
1863}
1864
1865SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1866                                     MVT::ValueType VT, SDOperand Op1,
1867                                     SDOperand Op2, SDOperand Op3,
1868                                     SDOperand Op4) {
1869  // If an identical node already exists, use it.
1870  std::vector<SDOperand> OpList;
1871  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1872  OpList.push_back(Op4);
1873  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1874                                              std::make_pair(VT, OpList))];
1875  if (ON) return SDOperand(ON, 0);
1876
1877  RemoveNodeFromCSEMaps(N);
1878  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1879  N->setValueTypes(VT);
1880  N->setOperands(Op1, Op2, Op3, Op4);
1881
1882  ON = N;   // Memoize the new node.
1883  return SDOperand(N, 0);
1884}
1885
1886SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1887                                     MVT::ValueType VT, SDOperand Op1,
1888                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1889                                     SDOperand Op5) {
1890  // If an identical node already exists, use it.
1891  std::vector<SDOperand> OpList;
1892  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1893  OpList.push_back(Op4); OpList.push_back(Op5);
1894  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1895                                              std::make_pair(VT, OpList))];
1896  if (ON) return SDOperand(ON, 0);
1897
1898  RemoveNodeFromCSEMaps(N);
1899  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1900  N->setValueTypes(VT);
1901  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1902
1903  ON = N;   // Memoize the new node.
1904  return SDOperand(N, 0);
1905}
1906
1907SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1908                                     MVT::ValueType VT, SDOperand Op1,
1909                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1910                                     SDOperand Op5, SDOperand Op6) {
1911  // If an identical node already exists, use it.
1912  std::vector<SDOperand> OpList;
1913  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1914  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1915  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1916                                              std::make_pair(VT, OpList))];
1917  if (ON) return SDOperand(ON, 0);
1918
1919  RemoveNodeFromCSEMaps(N);
1920  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1921  N->setValueTypes(VT);
1922  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
1923
1924  ON = N;   // Memoize the new node.
1925  return SDOperand(N, 0);
1926}
1927
1928SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1929                                     MVT::ValueType VT, SDOperand Op1,
1930                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1931                                     SDOperand Op5, SDOperand Op6,
1932				     SDOperand Op7) {
1933  // If an identical node already exists, use it.
1934  std::vector<SDOperand> OpList;
1935  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1936  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1937  OpList.push_back(Op7);
1938  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1939                                              std::make_pair(VT, OpList))];
1940  if (ON) return SDOperand(ON, 0);
1941
1942  RemoveNodeFromCSEMaps(N);
1943  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1944  N->setValueTypes(VT);
1945  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7);
1946
1947  ON = N;   // Memoize the new node.
1948  return SDOperand(N, 0);
1949}
1950SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1951                                     MVT::ValueType VT, SDOperand Op1,
1952                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1953                                     SDOperand Op5, SDOperand Op6,
1954				     SDOperand Op7, SDOperand Op8) {
1955  // If an identical node already exists, use it.
1956  std::vector<SDOperand> OpList;
1957  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1958  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1959  OpList.push_back(Op7); OpList.push_back(Op8);
1960  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1961                                              std::make_pair(VT, OpList))];
1962  if (ON) return SDOperand(ON, 0);
1963
1964  RemoveNodeFromCSEMaps(N);
1965  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1966  N->setValueTypes(VT);
1967  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8);
1968
1969  ON = N;   // Memoize the new node.
1970  return SDOperand(N, 0);
1971}
1972
1973SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1974                                     MVT::ValueType VT1, MVT::ValueType VT2,
1975                                     SDOperand Op1, SDOperand Op2) {
1976  // If an identical node already exists, use it.
1977  std::vector<SDOperand> OpList;
1978  OpList.push_back(Op1); OpList.push_back(Op2);
1979  std::vector<MVT::ValueType> VTList;
1980  VTList.push_back(VT1); VTList.push_back(VT2);
1981  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1982                                              std::make_pair(VTList, OpList))];
1983  if (ON) return SDOperand(ON, 0);
1984
1985  RemoveNodeFromCSEMaps(N);
1986  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1987  setNodeValueTypes(N, VT1, VT2);
1988  N->setOperands(Op1, Op2);
1989
1990  ON = N;   // Memoize the new node.
1991  return SDOperand(N, 0);
1992}
1993
1994SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1995                                     MVT::ValueType VT1, MVT::ValueType VT2,
1996                                     SDOperand Op1, SDOperand Op2,
1997                                     SDOperand Op3) {
1998  // If an identical node already exists, use it.
1999  std::vector<SDOperand> OpList;
2000  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2001  std::vector<MVT::ValueType> VTList;
2002  VTList.push_back(VT1); VTList.push_back(VT2);
2003  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2004                                              std::make_pair(VTList, OpList))];
2005  if (ON) return SDOperand(ON, 0);
2006
2007  RemoveNodeFromCSEMaps(N);
2008  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2009  setNodeValueTypes(N, VT1, VT2);
2010  N->setOperands(Op1, Op2, Op3);
2011
2012  ON = N;   // Memoize the new node.
2013  return SDOperand(N, 0);
2014}
2015
2016SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2017                                     MVT::ValueType VT1, MVT::ValueType VT2,
2018                                     SDOperand Op1, SDOperand Op2,
2019                                     SDOperand Op3, SDOperand Op4) {
2020  // If an identical node already exists, use it.
2021  std::vector<SDOperand> OpList;
2022  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2023  OpList.push_back(Op4);
2024  std::vector<MVT::ValueType> VTList;
2025  VTList.push_back(VT1); VTList.push_back(VT2);
2026  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2027                                              std::make_pair(VTList, OpList))];
2028  if (ON) return SDOperand(ON, 0);
2029
2030  RemoveNodeFromCSEMaps(N);
2031  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2032  setNodeValueTypes(N, VT1, VT2);
2033  N->setOperands(Op1, Op2, Op3, Op4);
2034
2035  ON = N;   // Memoize the new node.
2036  return SDOperand(N, 0);
2037}
2038
2039SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2040                                     MVT::ValueType VT1, MVT::ValueType VT2,
2041                                     SDOperand Op1, SDOperand Op2,
2042                                     SDOperand Op3, SDOperand Op4,
2043                                     SDOperand Op5) {
2044  // If an identical node already exists, use it.
2045  std::vector<SDOperand> OpList;
2046  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2047  OpList.push_back(Op4); OpList.push_back(Op5);
2048  std::vector<MVT::ValueType> VTList;
2049  VTList.push_back(VT1); VTList.push_back(VT2);
2050  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2051                                              std::make_pair(VTList, OpList))];
2052  if (ON) return SDOperand(ON, 0);
2053
2054  RemoveNodeFromCSEMaps(N);
2055  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2056  setNodeValueTypes(N, VT1, VT2);
2057  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2058
2059  ON = N;   // Memoize the new node.
2060  return SDOperand(N, 0);
2061}
2062
2063// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2064/// This can cause recursive merging of nodes in the DAG.
2065///
2066/// This version assumes From/To have a single result value.
2067///
2068void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2069                                      std::vector<SDNode*> *Deleted) {
2070  SDNode *From = FromN.Val, *To = ToN.Val;
2071  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2072         "Cannot replace with this method!");
2073  assert(From != To && "Cannot replace uses of with self");
2074
2075  while (!From->use_empty()) {
2076    // Process users until they are all gone.
2077    SDNode *U = *From->use_begin();
2078
2079    // This node is about to morph, remove its old self from the CSE maps.
2080    RemoveNodeFromCSEMaps(U);
2081
2082    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2083         I != E; ++I)
2084      if (I->Val == From) {
2085        From->removeUser(U);
2086        I->Val = To;
2087        To->addUser(U);
2088      }
2089
2090    // Now that we have modified U, add it back to the CSE maps.  If it already
2091    // exists there, recursively merge the results together.
2092    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2093      ReplaceAllUsesWith(U, Existing, Deleted);
2094      // U is now dead.
2095      if (Deleted) Deleted->push_back(U);
2096      DeleteNodeNotInCSEMaps(U);
2097    }
2098  }
2099}
2100
2101/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2102/// This can cause recursive merging of nodes in the DAG.
2103///
2104/// This version assumes From/To have matching types and numbers of result
2105/// values.
2106///
2107void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2108                                      std::vector<SDNode*> *Deleted) {
2109  assert(From != To && "Cannot replace uses of with self");
2110  assert(From->getNumValues() == To->getNumValues() &&
2111         "Cannot use this version of ReplaceAllUsesWith!");
2112  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2113    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2114    return;
2115  }
2116
2117  while (!From->use_empty()) {
2118    // Process users until they are all gone.
2119    SDNode *U = *From->use_begin();
2120
2121    // This node is about to morph, remove its old self from the CSE maps.
2122    RemoveNodeFromCSEMaps(U);
2123
2124    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2125         I != E; ++I)
2126      if (I->Val == From) {
2127        From->removeUser(U);
2128        I->Val = To;
2129        To->addUser(U);
2130      }
2131
2132    // Now that we have modified U, add it back to the CSE maps.  If it already
2133    // exists there, recursively merge the results together.
2134    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2135      ReplaceAllUsesWith(U, Existing, Deleted);
2136      // U is now dead.
2137      if (Deleted) Deleted->push_back(U);
2138      DeleteNodeNotInCSEMaps(U);
2139    }
2140  }
2141}
2142
2143/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2144/// This can cause recursive merging of nodes in the DAG.
2145///
2146/// This version can replace From with any result values.  To must match the
2147/// number and types of values returned by From.
2148void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2149                                      const std::vector<SDOperand> &To,
2150                                      std::vector<SDNode*> *Deleted) {
2151  assert(From->getNumValues() == To.size() &&
2152         "Incorrect number of values to replace with!");
2153  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
2154    // Degenerate case handled above.
2155    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2156    return;
2157  }
2158
2159  while (!From->use_empty()) {
2160    // Process users until they are all gone.
2161    SDNode *U = *From->use_begin();
2162
2163    // This node is about to morph, remove its old self from the CSE maps.
2164    RemoveNodeFromCSEMaps(U);
2165
2166    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2167         I != E; ++I)
2168      if (I->Val == From) {
2169        const SDOperand &ToOp = To[I->ResNo];
2170        From->removeUser(U);
2171        *I = ToOp;
2172        ToOp.Val->addUser(U);
2173      }
2174
2175    // Now that we have modified U, add it back to the CSE maps.  If it already
2176    // exists there, recursively merge the results together.
2177    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2178      ReplaceAllUsesWith(U, Existing, Deleted);
2179      // U is now dead.
2180      if (Deleted) Deleted->push_back(U);
2181      DeleteNodeNotInCSEMaps(U);
2182    }
2183  }
2184}
2185
2186
2187//===----------------------------------------------------------------------===//
2188//                              SDNode Class
2189//===----------------------------------------------------------------------===//
2190
2191
2192/// getValueTypeList - Return a pointer to the specified value type.
2193///
2194MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2195  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2196  VTs[VT] = VT;
2197  return &VTs[VT];
2198}
2199
2200/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2201/// indicated value.  This method ignores uses of other values defined by this
2202/// operation.
2203bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) {
2204  assert(Value < getNumValues() && "Bad value!");
2205
2206  // If there is only one value, this is easy.
2207  if (getNumValues() == 1)
2208    return use_size() == NUses;
2209  if (Uses.size() < NUses) return false;
2210
2211  SDOperand TheValue(this, Value);
2212
2213  std::set<SDNode*> UsersHandled;
2214
2215  for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end();
2216       UI != E; ++UI) {
2217    SDNode *User = *UI;
2218    if (User->getNumOperands() == 1 ||
2219        UsersHandled.insert(User).second)     // First time we've seen this?
2220      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2221        if (User->getOperand(i) == TheValue) {
2222          if (NUses == 0)
2223            return false;   // too many uses
2224          --NUses;
2225        }
2226  }
2227
2228  // Found exactly the right number of uses?
2229  return NUses == 0;
2230}
2231
2232
2233const char *SDNode::getOperationName(const SelectionDAG *G) const {
2234  switch (getOpcode()) {
2235  default:
2236    if (getOpcode() < ISD::BUILTIN_OP_END)
2237      return "<<Unknown DAG Node>>";
2238    else {
2239      if (G) {
2240        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2241          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2242            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2243
2244        TargetLowering &TLI = G->getTargetLoweringInfo();
2245        const char *Name =
2246          TLI.getTargetNodeName(getOpcode());
2247        if (Name) return Name;
2248      }
2249
2250      return "<<Unknown Target Node>>";
2251    }
2252
2253  case ISD::PCMARKER:      return "PCMarker";
2254  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2255  case ISD::SRCVALUE:      return "SrcValue";
2256  case ISD::VALUETYPE:     return "ValueType";
2257  case ISD::STRING:        return "String";
2258  case ISD::EntryToken:    return "EntryToken";
2259  case ISD::TokenFactor:   return "TokenFactor";
2260  case ISD::AssertSext:    return "AssertSext";
2261  case ISD::AssertZext:    return "AssertZext";
2262  case ISD::Constant:      return "Constant";
2263  case ISD::TargetConstant: return "TargetConstant";
2264  case ISD::ConstantFP:    return "ConstantFP";
2265  case ISD::ConstantVec:   return "ConstantVec";
2266  case ISD::GlobalAddress: return "GlobalAddress";
2267  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2268  case ISD::FrameIndex:    return "FrameIndex";
2269  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2270  case ISD::BasicBlock:    return "BasicBlock";
2271  case ISD::Register:      return "Register";
2272  case ISD::ExternalSymbol: return "ExternalSymbol";
2273  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2274  case ISD::ConstantPool:  return "ConstantPool";
2275  case ISD::TargetConstantPool:  return "TargetConstantPool";
2276  case ISD::CopyToReg:     return "CopyToReg";
2277  case ISD::CopyFromReg:   return "CopyFromReg";
2278  case ISD::UNDEF:         return "undef";
2279  case ISD::MERGE_VALUES:  return "mergevalues";
2280  case ISD::INLINEASM:     return "inlineasm";
2281
2282  // Unary operators
2283  case ISD::FABS:   return "fabs";
2284  case ISD::FNEG:   return "fneg";
2285  case ISD::FSQRT:  return "fsqrt";
2286  case ISD::FSIN:   return "fsin";
2287  case ISD::FCOS:   return "fcos";
2288
2289  // Binary operators
2290  case ISD::ADD:    return "add";
2291  case ISD::SUB:    return "sub";
2292  case ISD::MUL:    return "mul";
2293  case ISD::MULHU:  return "mulhu";
2294  case ISD::MULHS:  return "mulhs";
2295  case ISD::SDIV:   return "sdiv";
2296  case ISD::UDIV:   return "udiv";
2297  case ISD::SREM:   return "srem";
2298  case ISD::UREM:   return "urem";
2299  case ISD::AND:    return "and";
2300  case ISD::OR:     return "or";
2301  case ISD::XOR:    return "xor";
2302  case ISD::SHL:    return "shl";
2303  case ISD::SRA:    return "sra";
2304  case ISD::SRL:    return "srl";
2305  case ISD::ROTL:   return "rotl";
2306  case ISD::ROTR:   return "rotr";
2307  case ISD::FADD:   return "fadd";
2308  case ISD::FSUB:   return "fsub";
2309  case ISD::FMUL:   return "fmul";
2310  case ISD::FDIV:   return "fdiv";
2311  case ISD::FREM:   return "frem";
2312  case ISD::VADD:   return "vadd";
2313  case ISD::VSUB:   return "vsub";
2314  case ISD::VMUL:   return "vmul";
2315
2316  case ISD::SETCC:       return "setcc";
2317  case ISD::SELECT:      return "select";
2318  case ISD::SELECT_CC:   return "select_cc";
2319  case ISD::ADD_PARTS:   return "add_parts";
2320  case ISD::SUB_PARTS:   return "sub_parts";
2321  case ISD::SHL_PARTS:   return "shl_parts";
2322  case ISD::SRA_PARTS:   return "sra_parts";
2323  case ISD::SRL_PARTS:   return "srl_parts";
2324
2325  // Conversion operators.
2326  case ISD::SIGN_EXTEND: return "sign_extend";
2327  case ISD::ZERO_EXTEND: return "zero_extend";
2328  case ISD::ANY_EXTEND:  return "any_extend";
2329  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2330  case ISD::TRUNCATE:    return "truncate";
2331  case ISD::FP_ROUND:    return "fp_round";
2332  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2333  case ISD::FP_EXTEND:   return "fp_extend";
2334
2335  case ISD::SINT_TO_FP:  return "sint_to_fp";
2336  case ISD::UINT_TO_FP:  return "uint_to_fp";
2337  case ISD::FP_TO_SINT:  return "fp_to_sint";
2338  case ISD::FP_TO_UINT:  return "fp_to_uint";
2339  case ISD::BIT_CONVERT: return "bit_convert";
2340
2341    // Control flow instructions
2342  case ISD::BR:      return "br";
2343  case ISD::BRCOND:  return "brcond";
2344  case ISD::BRCONDTWOWAY:  return "brcondtwoway";
2345  case ISD::BR_CC:  return "br_cc";
2346  case ISD::BRTWOWAY_CC:  return "brtwoway_cc";
2347  case ISD::RET:     return "ret";
2348  case ISD::CALLSEQ_START:  return "callseq_start";
2349  case ISD::CALLSEQ_END:    return "callseq_end";
2350
2351    // Other operators
2352  case ISD::LOAD:               return "load";
2353  case ISD::STORE:              return "store";
2354  case ISD::VLOAD:              return "vload";
2355  case ISD::EXTLOAD:            return "extload";
2356  case ISD::SEXTLOAD:           return "sextload";
2357  case ISD::ZEXTLOAD:           return "zextload";
2358  case ISD::TRUNCSTORE:         return "truncstore";
2359  case ISD::VAARG:              return "vaarg";
2360  case ISD::VACOPY:             return "vacopy";
2361  case ISD::VAEND:              return "vaend";
2362  case ISD::VASTART:            return "vastart";
2363  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2364  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2365  case ISD::BUILD_PAIR:         return "build_pair";
2366  case ISD::STACKSAVE:          return "stacksave";
2367  case ISD::STACKRESTORE:       return "stackrestore";
2368
2369  // Block memory operations.
2370  case ISD::MEMSET:  return "memset";
2371  case ISD::MEMCPY:  return "memcpy";
2372  case ISD::MEMMOVE: return "memmove";
2373
2374  // Bit manipulation
2375  case ISD::BSWAP:   return "bswap";
2376  case ISD::CTPOP:   return "ctpop";
2377  case ISD::CTTZ:    return "cttz";
2378  case ISD::CTLZ:    return "ctlz";
2379
2380  // IO Intrinsics
2381  case ISD::READPORT: return "readport";
2382  case ISD::WRITEPORT: return "writeport";
2383  case ISD::READIO: return "readio";
2384  case ISD::WRITEIO: return "writeio";
2385
2386  // Debug info
2387  case ISD::LOCATION: return "location";
2388  case ISD::DEBUG_LOC: return "debug_loc";
2389  case ISD::DEBUG_LABEL: return "debug_label";
2390
2391  case ISD::CONDCODE:
2392    switch (cast<CondCodeSDNode>(this)->get()) {
2393    default: assert(0 && "Unknown setcc condition!");
2394    case ISD::SETOEQ:  return "setoeq";
2395    case ISD::SETOGT:  return "setogt";
2396    case ISD::SETOGE:  return "setoge";
2397    case ISD::SETOLT:  return "setolt";
2398    case ISD::SETOLE:  return "setole";
2399    case ISD::SETONE:  return "setone";
2400
2401    case ISD::SETO:    return "seto";
2402    case ISD::SETUO:   return "setuo";
2403    case ISD::SETUEQ:  return "setue";
2404    case ISD::SETUGT:  return "setugt";
2405    case ISD::SETUGE:  return "setuge";
2406    case ISD::SETULT:  return "setult";
2407    case ISD::SETULE:  return "setule";
2408    case ISD::SETUNE:  return "setune";
2409
2410    case ISD::SETEQ:   return "seteq";
2411    case ISD::SETGT:   return "setgt";
2412    case ISD::SETGE:   return "setge";
2413    case ISD::SETLT:   return "setlt";
2414    case ISD::SETLE:   return "setle";
2415    case ISD::SETNE:   return "setne";
2416    }
2417  }
2418}
2419
2420void SDNode::dump() const { dump(0); }
2421void SDNode::dump(const SelectionDAG *G) const {
2422  std::cerr << (void*)this << ": ";
2423
2424  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2425    if (i) std::cerr << ",";
2426    if (getValueType(i) == MVT::Other)
2427      std::cerr << "ch";
2428    else
2429      std::cerr << MVT::getValueTypeString(getValueType(i));
2430  }
2431  std::cerr << " = " << getOperationName(G);
2432
2433  std::cerr << " ";
2434  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2435    if (i) std::cerr << ", ";
2436    std::cerr << (void*)getOperand(i).Val;
2437    if (unsigned RN = getOperand(i).ResNo)
2438      std::cerr << ":" << RN;
2439  }
2440
2441  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2442    std::cerr << "<" << CSDN->getValue() << ">";
2443  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2444    std::cerr << "<" << CSDN->getValue() << ">";
2445  } else if (const GlobalAddressSDNode *GADN =
2446             dyn_cast<GlobalAddressSDNode>(this)) {
2447    int offset = GADN->getOffset();
2448    std::cerr << "<";
2449    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2450    if (offset > 0)
2451      std::cerr << " + " << offset;
2452    else
2453      std::cerr << " " << offset;
2454  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2455    std::cerr << "<" << FIDN->getIndex() << ">";
2456  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2457    std::cerr << "<" << *CP->get() << ">";
2458  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2459    std::cerr << "<";
2460    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2461    if (LBB)
2462      std::cerr << LBB->getName() << " ";
2463    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2464  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2465    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2466      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2467    } else {
2468      std::cerr << " #" << R->getReg();
2469    }
2470  } else if (const ExternalSymbolSDNode *ES =
2471             dyn_cast<ExternalSymbolSDNode>(this)) {
2472    std::cerr << "'" << ES->getSymbol() << "'";
2473  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2474    if (M->getValue())
2475      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2476    else
2477      std::cerr << "<null:" << M->getOffset() << ">";
2478  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2479    std::cerr << ":" << getValueTypeString(N->getVT());
2480  }
2481}
2482
2483static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2484  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2485    if (N->getOperand(i).Val->hasOneUse())
2486      DumpNodes(N->getOperand(i).Val, indent+2, G);
2487    else
2488      std::cerr << "\n" << std::string(indent+2, ' ')
2489                << (void*)N->getOperand(i).Val << ": <multiple use>";
2490
2491
2492  std::cerr << "\n" << std::string(indent, ' ');
2493  N->dump(G);
2494}
2495
2496void SelectionDAG::dump() const {
2497  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2498  std::vector<const SDNode*> Nodes;
2499  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2500       I != E; ++I)
2501    Nodes.push_back(I);
2502
2503  std::sort(Nodes.begin(), Nodes.end());
2504
2505  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2506    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2507      DumpNodes(Nodes[i], 2, this);
2508  }
2509
2510  DumpNodes(getRoot().Val, 2, this);
2511
2512  std::cerr << "\n\n";
2513}
2514
2515