SelectionDAG.cpp revision 86098bd6a63d2cdf0c9be9ef3151bd2728281fd7
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/ADT/SetVector.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallSet.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/StringExtras.h"
39#include <algorithm>
40#include <cmath>
41using namespace llvm;
42
43/// makeVTList - Return an instance of the SDVTList struct initialized with the
44/// specified members.
45static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
46  SDVTList Res = {VTs, NumVTs};
47  return Res;
48}
49
50static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
51  switch (VT.getSimpleVT()) {
52  default: assert(0 && "Unknown FP format");
53  case MVT::f32:     return &APFloat::IEEEsingle;
54  case MVT::f64:     return &APFloat::IEEEdouble;
55  case MVT::f80:     return &APFloat::x87DoubleExtended;
56  case MVT::f128:    return &APFloat::IEEEquad;
57  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
58  }
59}
60
61SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
62
63//===----------------------------------------------------------------------===//
64//                              ConstantFPSDNode Class
65//===----------------------------------------------------------------------===//
66
67/// isExactlyValue - We don't rely on operator== working on double values, as
68/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
69/// As such, this method can be used to do an exact bit-for-bit comparison of
70/// two floating point values.
71bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
72  return getValueAPF().bitwiseIsEqual(V);
73}
74
75bool ConstantFPSDNode::isValueValidForType(MVT VT,
76                                           const APFloat& Val) {
77  assert(VT.isFloatingPoint() && "Can only convert between FP types");
78
79  // PPC long double cannot be converted to any other type.
80  if (VT == MVT::ppcf128 ||
81      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
82    return false;
83
84  // convert modifies in place, so make a copy.
85  APFloat Val2 = APFloat(Val);
86  return Val2.convert(*MVTToAPFloatSemantics(VT),
87                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
88}
89
90//===----------------------------------------------------------------------===//
91//                              ISD Namespace
92//===----------------------------------------------------------------------===//
93
94/// isBuildVectorAllOnes - Return true if the specified node is a
95/// BUILD_VECTOR where all of the elements are ~0 or undef.
96bool ISD::isBuildVectorAllOnes(const SDNode *N) {
97  // Look through a bit convert.
98  if (N->getOpcode() == ISD::BIT_CONVERT)
99    N = N->getOperand(0).getNode();
100
101  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
102
103  unsigned i = 0, e = N->getNumOperands();
104
105  // Skip over all of the undef values.
106  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
107    ++i;
108
109  // Do not accept an all-undef vector.
110  if (i == e) return false;
111
112  // Do not accept build_vectors that aren't all constants or which have non-~0
113  // elements.
114  SDValue NotZero = N->getOperand(i);
115  if (isa<ConstantSDNode>(NotZero)) {
116    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
117      return false;
118  } else if (isa<ConstantFPSDNode>(NotZero)) {
119    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
120                convertToAPInt().isAllOnesValue())
121      return false;
122  } else
123    return false;
124
125  // Okay, we have at least one ~0 value, check to see if the rest match or are
126  // undefs.
127  for (++i; i != e; ++i)
128    if (N->getOperand(i) != NotZero &&
129        N->getOperand(i).getOpcode() != ISD::UNDEF)
130      return false;
131  return true;
132}
133
134
135/// isBuildVectorAllZeros - Return true if the specified node is a
136/// BUILD_VECTOR where all of the elements are 0 or undef.
137bool ISD::isBuildVectorAllZeros(const SDNode *N) {
138  // Look through a bit convert.
139  if (N->getOpcode() == ISD::BIT_CONVERT)
140    N = N->getOperand(0).getNode();
141
142  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
143
144  unsigned i = 0, e = N->getNumOperands();
145
146  // Skip over all of the undef values.
147  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
148    ++i;
149
150  // Do not accept an all-undef vector.
151  if (i == e) return false;
152
153  // Do not accept build_vectors that aren't all constants or which have non-~0
154  // elements.
155  SDValue Zero = N->getOperand(i);
156  if (isa<ConstantSDNode>(Zero)) {
157    if (!cast<ConstantSDNode>(Zero)->isNullValue())
158      return false;
159  } else if (isa<ConstantFPSDNode>(Zero)) {
160    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
161      return false;
162  } else
163    return false;
164
165  // Okay, we have at least one ~0 value, check to see if the rest match or are
166  // undefs.
167  for (++i; i != e; ++i)
168    if (N->getOperand(i) != Zero &&
169        N->getOperand(i).getOpcode() != ISD::UNDEF)
170      return false;
171  return true;
172}
173
174/// isScalarToVector - Return true if the specified node is a
175/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
176/// element is not an undef.
177bool ISD::isScalarToVector(const SDNode *N) {
178  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
179    return true;
180
181  if (N->getOpcode() != ISD::BUILD_VECTOR)
182    return false;
183  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
184    return false;
185  unsigned NumElems = N->getNumOperands();
186  for (unsigned i = 1; i < NumElems; ++i) {
187    SDValue V = N->getOperand(i);
188    if (V.getOpcode() != ISD::UNDEF)
189      return false;
190  }
191  return true;
192}
193
194
195/// isDebugLabel - Return true if the specified node represents a debug
196/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
197bool ISD::isDebugLabel(const SDNode *N) {
198  SDValue Zero;
199  if (N->getOpcode() == ISD::DBG_LABEL)
200    return true;
201  if (N->isMachineOpcode() &&
202      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
203    return true;
204  return false;
205}
206
207/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
208/// when given the operation for (X op Y).
209ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
210  // To perform this operation, we just need to swap the L and G bits of the
211  // operation.
212  unsigned OldL = (Operation >> 2) & 1;
213  unsigned OldG = (Operation >> 1) & 1;
214  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
215                       (OldL << 1) |       // New G bit
216                       (OldG << 2));        // New L bit.
217}
218
219/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
220/// 'op' is a valid SetCC operation.
221ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
222  unsigned Operation = Op;
223  if (isInteger)
224    Operation ^= 7;   // Flip L, G, E bits, but not U.
225  else
226    Operation ^= 15;  // Flip all of the condition bits.
227  if (Operation > ISD::SETTRUE2)
228    Operation &= ~8;     // Don't let N and U bits get set.
229  return ISD::CondCode(Operation);
230}
231
232
233/// isSignedOp - For an integer comparison, return 1 if the comparison is a
234/// signed operation and 2 if the result is an unsigned comparison.  Return zero
235/// if the operation does not depend on the sign of the input (setne and seteq).
236static int isSignedOp(ISD::CondCode Opcode) {
237  switch (Opcode) {
238  default: assert(0 && "Illegal integer setcc operation!");
239  case ISD::SETEQ:
240  case ISD::SETNE: return 0;
241  case ISD::SETLT:
242  case ISD::SETLE:
243  case ISD::SETGT:
244  case ISD::SETGE: return 1;
245  case ISD::SETULT:
246  case ISD::SETULE:
247  case ISD::SETUGT:
248  case ISD::SETUGE: return 2;
249  }
250}
251
252/// getSetCCOrOperation - Return the result of a logical OR between different
253/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
254/// returns SETCC_INVALID if it is not possible to represent the resultant
255/// comparison.
256ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
257                                       bool isInteger) {
258  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
259    // Cannot fold a signed integer setcc with an unsigned integer setcc.
260    return ISD::SETCC_INVALID;
261
262  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
263
264  // If the N and U bits get set then the resultant comparison DOES suddenly
265  // care about orderedness, and is true when ordered.
266  if (Op > ISD::SETTRUE2)
267    Op &= ~16;     // Clear the U bit if the N bit is set.
268
269  // Canonicalize illegal integer setcc's.
270  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
271    Op = ISD::SETNE;
272
273  return ISD::CondCode(Op);
274}
275
276/// getSetCCAndOperation - Return the result of a logical AND between different
277/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
278/// function returns zero if it is not possible to represent the resultant
279/// comparison.
280ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
281                                        bool isInteger) {
282  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
283    // Cannot fold a signed setcc with an unsigned setcc.
284    return ISD::SETCC_INVALID;
285
286  // Combine all of the condition bits.
287  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
288
289  // Canonicalize illegal integer setcc's.
290  if (isInteger) {
291    switch (Result) {
292    default: break;
293    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
294    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
295    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
296    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
297    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
298    }
299  }
300
301  return Result;
302}
303
304const TargetMachine &SelectionDAG::getTarget() const {
305  return MF->getTarget();
306}
307
308//===----------------------------------------------------------------------===//
309//                           SDNode Profile Support
310//===----------------------------------------------------------------------===//
311
312/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
313///
314static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
315  ID.AddInteger(OpC);
316}
317
318/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
319/// solely with their pointer.
320static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
321  ID.AddPointer(VTList.VTs);
322}
323
324/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
325///
326static void AddNodeIDOperands(FoldingSetNodeID &ID,
327                              const SDValue *Ops, unsigned NumOps) {
328  for (; NumOps; --NumOps, ++Ops) {
329    ID.AddPointer(Ops->getNode());
330    ID.AddInteger(Ops->getResNo());
331  }
332}
333
334/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
335///
336static void AddNodeIDOperands(FoldingSetNodeID &ID,
337                              const SDUse *Ops, unsigned NumOps) {
338  for (; NumOps; --NumOps, ++Ops) {
339    ID.AddPointer(Ops->getVal());
340    ID.AddInteger(Ops->getSDValue().getResNo());
341  }
342}
343
344static void AddNodeIDNode(FoldingSetNodeID &ID,
345                          unsigned short OpC, SDVTList VTList,
346                          const SDValue *OpList, unsigned N) {
347  AddNodeIDOpcode(ID, OpC);
348  AddNodeIDValueTypes(ID, VTList);
349  AddNodeIDOperands(ID, OpList, N);
350}
351
352
353/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
354/// data.
355static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
356  AddNodeIDOpcode(ID, N->getOpcode());
357  // Add the return value info.
358  AddNodeIDValueTypes(ID, N->getVTList());
359  // Add the operand info.
360  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
361
362  // Handle SDNode leafs with special info.
363  switch (N->getOpcode()) {
364  default: break;  // Normal nodes don't need extra info.
365  case ISD::ARG_FLAGS:
366    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
367    break;
368  case ISD::TargetConstant:
369  case ISD::Constant:
370    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
371    break;
372  case ISD::TargetConstantFP:
373  case ISD::ConstantFP: {
374    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
375    break;
376  }
377  case ISD::TargetGlobalAddress:
378  case ISD::GlobalAddress:
379  case ISD::TargetGlobalTLSAddress:
380  case ISD::GlobalTLSAddress: {
381    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
382    ID.AddPointer(GA->getGlobal());
383    ID.AddInteger(GA->getOffset());
384    break;
385  }
386  case ISD::BasicBlock:
387    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
388    break;
389  case ISD::Register:
390    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
391    break;
392  case ISD::DBG_STOPPOINT: {
393    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
394    ID.AddInteger(DSP->getLine());
395    ID.AddInteger(DSP->getColumn());
396    ID.AddPointer(DSP->getCompileUnit());
397    break;
398  }
399  case ISD::SRCVALUE:
400    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
401    break;
402  case ISD::MEMOPERAND: {
403    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
404    MO.Profile(ID);
405    break;
406  }
407  case ISD::FrameIndex:
408  case ISD::TargetFrameIndex:
409    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
410    break;
411  case ISD::JumpTable:
412  case ISD::TargetJumpTable:
413    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
414    break;
415  case ISD::ConstantPool:
416  case ISD::TargetConstantPool: {
417    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
418    ID.AddInteger(CP->getAlignment());
419    ID.AddInteger(CP->getOffset());
420    if (CP->isMachineConstantPoolEntry())
421      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
422    else
423      ID.AddPointer(CP->getConstVal());
424    break;
425  }
426  case ISD::CALL: {
427    const CallSDNode *Call = cast<CallSDNode>(N);
428    ID.AddInteger(Call->getCallingConv());
429    ID.AddInteger(Call->isVarArg());
430    break;
431  }
432  case ISD::LOAD: {
433    const LoadSDNode *LD = cast<LoadSDNode>(N);
434    ID.AddInteger(LD->getAddressingMode());
435    ID.AddInteger(LD->getExtensionType());
436    ID.AddInteger(LD->getMemoryVT().getRawBits());
437    ID.AddInteger(LD->getRawFlags());
438    break;
439  }
440  case ISD::STORE: {
441    const StoreSDNode *ST = cast<StoreSDNode>(N);
442    ID.AddInteger(ST->getAddressingMode());
443    ID.AddInteger(ST->isTruncatingStore());
444    ID.AddInteger(ST->getMemoryVT().getRawBits());
445    ID.AddInteger(ST->getRawFlags());
446    break;
447  }
448  case ISD::ATOMIC_CMP_SWAP_8:
449  case ISD::ATOMIC_SWAP_8:
450  case ISD::ATOMIC_LOAD_ADD_8:
451  case ISD::ATOMIC_LOAD_SUB_8:
452  case ISD::ATOMIC_LOAD_AND_8:
453  case ISD::ATOMIC_LOAD_OR_8:
454  case ISD::ATOMIC_LOAD_XOR_8:
455  case ISD::ATOMIC_LOAD_NAND_8:
456  case ISD::ATOMIC_LOAD_MIN_8:
457  case ISD::ATOMIC_LOAD_MAX_8:
458  case ISD::ATOMIC_LOAD_UMIN_8:
459  case ISD::ATOMIC_LOAD_UMAX_8:
460  case ISD::ATOMIC_CMP_SWAP_16:
461  case ISD::ATOMIC_SWAP_16:
462  case ISD::ATOMIC_LOAD_ADD_16:
463  case ISD::ATOMIC_LOAD_SUB_16:
464  case ISD::ATOMIC_LOAD_AND_16:
465  case ISD::ATOMIC_LOAD_OR_16:
466  case ISD::ATOMIC_LOAD_XOR_16:
467  case ISD::ATOMIC_LOAD_NAND_16:
468  case ISD::ATOMIC_LOAD_MIN_16:
469  case ISD::ATOMIC_LOAD_MAX_16:
470  case ISD::ATOMIC_LOAD_UMIN_16:
471  case ISD::ATOMIC_LOAD_UMAX_16:
472  case ISD::ATOMIC_CMP_SWAP_32:
473  case ISD::ATOMIC_SWAP_32:
474  case ISD::ATOMIC_LOAD_ADD_32:
475  case ISD::ATOMIC_LOAD_SUB_32:
476  case ISD::ATOMIC_LOAD_AND_32:
477  case ISD::ATOMIC_LOAD_OR_32:
478  case ISD::ATOMIC_LOAD_XOR_32:
479  case ISD::ATOMIC_LOAD_NAND_32:
480  case ISD::ATOMIC_LOAD_MIN_32:
481  case ISD::ATOMIC_LOAD_MAX_32:
482  case ISD::ATOMIC_LOAD_UMIN_32:
483  case ISD::ATOMIC_LOAD_UMAX_32:
484  case ISD::ATOMIC_CMP_SWAP_64:
485  case ISD::ATOMIC_SWAP_64:
486  case ISD::ATOMIC_LOAD_ADD_64:
487  case ISD::ATOMIC_LOAD_SUB_64:
488  case ISD::ATOMIC_LOAD_AND_64:
489  case ISD::ATOMIC_LOAD_OR_64:
490  case ISD::ATOMIC_LOAD_XOR_64:
491  case ISD::ATOMIC_LOAD_NAND_64:
492  case ISD::ATOMIC_LOAD_MIN_64:
493  case ISD::ATOMIC_LOAD_MAX_64:
494  case ISD::ATOMIC_LOAD_UMIN_64:
495  case ISD::ATOMIC_LOAD_UMAX_64: {
496    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
497    ID.AddInteger(AT->getRawFlags());
498    break;
499  }
500  } // end switch (N->getOpcode())
501}
502
503/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
504/// the CSE map that carries both alignment and volatility information.
505///
506static unsigned encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
507  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
508}
509
510//===----------------------------------------------------------------------===//
511//                              SelectionDAG Class
512//===----------------------------------------------------------------------===//
513
514/// RemoveDeadNodes - This method deletes all unreachable nodes in the
515/// SelectionDAG.
516void SelectionDAG::RemoveDeadNodes() {
517  // Create a dummy node (which is not added to allnodes), that adds a reference
518  // to the root node, preventing it from being deleted.
519  HandleSDNode Dummy(getRoot());
520
521  SmallVector<SDNode*, 128> DeadNodes;
522
523  // Add all obviously-dead nodes to the DeadNodes worklist.
524  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
525    if (I->use_empty())
526      DeadNodes.push_back(I);
527
528  RemoveDeadNodes(DeadNodes);
529
530  // If the root changed (e.g. it was a dead load, update the root).
531  setRoot(Dummy.getValue());
532}
533
534/// RemoveDeadNodes - This method deletes the unreachable nodes in the
535/// given list, and any nodes that become unreachable as a result.
536void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
537                                   DAGUpdateListener *UpdateListener) {
538
539  // Process the worklist, deleting the nodes and adding their uses to the
540  // worklist.
541  while (!DeadNodes.empty()) {
542    SDNode *N = DeadNodes.back();
543    DeadNodes.pop_back();
544
545    if (UpdateListener)
546      UpdateListener->NodeDeleted(N, 0);
547
548    // Take the node out of the appropriate CSE map.
549    RemoveNodeFromCSEMaps(N);
550
551    // Next, brutally remove the operand list.  This is safe to do, as there are
552    // no cycles in the graph.
553    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
554      SDNode *Operand = I->getVal();
555      Operand->removeUser(std::distance(N->op_begin(), I), N);
556
557      // Now that we removed this operand, see if there are no uses of it left.
558      if (Operand->use_empty())
559        DeadNodes.push_back(Operand);
560    }
561    if (N->OperandsNeedDelete) {
562      delete[] N->OperandList;
563    }
564    N->OperandList = 0;
565    N->NumOperands = 0;
566
567    // Finally, remove N itself.
568    NodeAllocator.Deallocate(AllNodes.remove(N));
569  }
570}
571
572void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
573  SmallVector<SDNode*, 16> DeadNodes(1, N);
574  RemoveDeadNodes(DeadNodes, UpdateListener);
575}
576
577void SelectionDAG::DeleteNode(SDNode *N) {
578  assert(N->use_empty() && "Cannot delete a node that is not dead!");
579
580  // First take this out of the appropriate CSE map.
581  RemoveNodeFromCSEMaps(N);
582
583  // Finally, remove uses due to operands of this node, remove from the
584  // AllNodes list, and delete the node.
585  DeleteNodeNotInCSEMaps(N);
586}
587
588void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
589
590  // Drop all of the operands and decrement used nodes use counts.
591  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
592    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
593  if (N->OperandsNeedDelete)
594    delete[] N->OperandList;
595
596  assert(N != AllNodes.begin());
597  NodeAllocator.Deallocate(AllNodes.remove(N));
598}
599
600/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
601/// correspond to it.  This is useful when we're about to delete or repurpose
602/// the node.  We don't want future request for structurally identical nodes
603/// to return N anymore.
604bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
605  bool Erased = false;
606  switch (N->getOpcode()) {
607  case ISD::EntryToken:
608    assert(0 && "EntryToken should not be in CSEMaps!");
609    return false;
610  case ISD::HANDLENODE: return false;  // noop.
611  case ISD::CONDCODE:
612    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
613           "Cond code doesn't exist!");
614    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
615    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
616    break;
617  case ISD::ExternalSymbol:
618    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
619    break;
620  case ISD::TargetExternalSymbol:
621    Erased =
622      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
623    break;
624  case ISD::VALUETYPE: {
625    MVT VT = cast<VTSDNode>(N)->getVT();
626    if (VT.isExtended()) {
627      Erased = ExtendedValueTypeNodes.erase(VT);
628    } else {
629      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
630      ValueTypeNodes[VT.getSimpleVT()] = 0;
631    }
632    break;
633  }
634  default:
635    // Remove it from the CSE Map.
636    Erased = CSEMap.RemoveNode(N);
637    break;
638  }
639#ifndef NDEBUG
640  // Verify that the node was actually in one of the CSE maps, unless it has a
641  // flag result (which cannot be CSE'd) or is one of the special cases that are
642  // not subject to CSE.
643  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
644      !N->isMachineOpcode() &&
645      N->getOpcode() != ISD::DBG_LABEL &&
646      N->getOpcode() != ISD::DBG_STOPPOINT &&
647      N->getOpcode() != ISD::EH_LABEL &&
648      N->getOpcode() != ISD::DECLARE) {
649    N->dump(this);
650    cerr << "\n";
651    assert(0 && "Node is not in map!");
652  }
653#endif
654  return Erased;
655}
656
657/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
658/// has been taken out and modified in some way.  If the specified node already
659/// exists in the CSE maps, do not modify the maps, but return the existing node
660/// instead.  If it doesn't exist, add it and return null.
661///
662SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
663  assert(N->getNumOperands() && "This is a leaf node!");
664
665  if (N->getValueType(0) == MVT::Flag)
666    return 0;   // Never CSE anything that produces a flag.
667
668  switch (N->getOpcode()) {
669  default: break;
670  case ISD::HANDLENODE:
671  case ISD::DBG_LABEL:
672  case ISD::DBG_STOPPOINT:
673  case ISD::EH_LABEL:
674  case ISD::DECLARE:
675    return 0;    // Never add these nodes.
676  }
677
678  // Check that remaining values produced are not flags.
679  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
680    if (N->getValueType(i) == MVT::Flag)
681      return 0;   // Never CSE anything that produces a flag.
682
683  SDNode *New = CSEMap.GetOrInsertNode(N);
684  if (New != N) return New;  // Node already existed.
685  return 0;
686}
687
688/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
689/// were replaced with those specified.  If this node is never memoized,
690/// return null, otherwise return a pointer to the slot it would take.  If a
691/// node already exists with these operands, the slot will be non-null.
692SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
693                                           void *&InsertPos) {
694  if (N->getValueType(0) == MVT::Flag)
695    return 0;   // Never CSE anything that produces a flag.
696
697  switch (N->getOpcode()) {
698  default: break;
699  case ISD::HANDLENODE:
700  case ISD::DBG_LABEL:
701  case ISD::DBG_STOPPOINT:
702  case ISD::EH_LABEL:
703    return 0;    // Never add these nodes.
704  }
705
706  // Check that remaining values produced are not flags.
707  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
708    if (N->getValueType(i) == MVT::Flag)
709      return 0;   // Never CSE anything that produces a flag.
710
711  SDValue Ops[] = { Op };
712  FoldingSetNodeID ID;
713  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
714  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
715}
716
717/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
718/// were replaced with those specified.  If this node is never memoized,
719/// return null, otherwise return a pointer to the slot it would take.  If a
720/// node already exists with these operands, the slot will be non-null.
721SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
722                                           SDValue Op1, SDValue Op2,
723                                           void *&InsertPos) {
724  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
725
726  // Check that remaining values produced are not flags.
727  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
728    if (N->getValueType(i) == MVT::Flag)
729      return 0;   // Never CSE anything that produces a flag.
730
731  SDValue Ops[] = { Op1, Op2 };
732  FoldingSetNodeID ID;
733  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
734  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
735}
736
737
738/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
739/// were replaced with those specified.  If this node is never memoized,
740/// return null, otherwise return a pointer to the slot it would take.  If a
741/// node already exists with these operands, the slot will be non-null.
742SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
743                                           const SDValue *Ops,unsigned NumOps,
744                                           void *&InsertPos) {
745  if (N->getValueType(0) == MVT::Flag)
746    return 0;   // Never CSE anything that produces a flag.
747
748  switch (N->getOpcode()) {
749  default: break;
750  case ISD::HANDLENODE:
751  case ISD::DBG_LABEL:
752  case ISD::DBG_STOPPOINT:
753  case ISD::EH_LABEL:
754  case ISD::DECLARE:
755    return 0;    // Never add these nodes.
756  }
757
758  // Check that remaining values produced are not flags.
759  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
760    if (N->getValueType(i) == MVT::Flag)
761      return 0;   // Never CSE anything that produces a flag.
762
763  FoldingSetNodeID ID;
764  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
765
766  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
767    ID.AddInteger(LD->getAddressingMode());
768    ID.AddInteger(LD->getExtensionType());
769    ID.AddInteger(LD->getMemoryVT().getRawBits());
770    ID.AddInteger(LD->getRawFlags());
771  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
772    ID.AddInteger(ST->getAddressingMode());
773    ID.AddInteger(ST->isTruncatingStore());
774    ID.AddInteger(ST->getMemoryVT().getRawBits());
775    ID.AddInteger(ST->getRawFlags());
776  }
777
778  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
779}
780
781/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
782void SelectionDAG::VerifyNode(SDNode *N) {
783  switch (N->getOpcode()) {
784  default:
785    break;
786  case ISD::BUILD_VECTOR: {
787    assert(N->getNumValues() == 1 && "Too many results for BUILD_VECTOR!");
788    assert(N->getValueType(0).isVector() && "Wrong BUILD_VECTOR return type!");
789    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
790           "Wrong number of BUILD_VECTOR operands!");
791    MVT EltVT = N->getValueType(0).getVectorElementType();
792    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
793      assert(I->getSDValue().getValueType() == EltVT &&
794             "Wrong BUILD_VECTOR operand type!");
795    break;
796  }
797  }
798}
799
800/// getMVTAlignment - Compute the default alignment value for the
801/// given type.
802///
803unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
804  const Type *Ty = VT == MVT::iPTR ?
805                   PointerType::get(Type::Int8Ty, 0) :
806                   VT.getTypeForMVT();
807
808  return TLI.getTargetData()->getABITypeAlignment(Ty);
809}
810
811SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
812  : TLI(tli), FLI(fli),
813    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
814    Root(getEntryNode()) {
815  AllNodes.push_back(&EntryNode);
816}
817
818void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
819  MF = &mf;
820  MMI = mmi;
821}
822
823SelectionDAG::~SelectionDAG() {
824  allnodes_clear();
825}
826
827void SelectionDAG::allnodes_clear() {
828  assert(&*AllNodes.begin() == &EntryNode);
829  AllNodes.remove(AllNodes.begin());
830  while (!AllNodes.empty()) {
831    SDNode *N = AllNodes.remove(AllNodes.begin());
832    N->SetNextInBucket(0);
833    if (N->OperandsNeedDelete)
834      delete [] N->OperandList;
835    NodeAllocator.Deallocate(N);
836  }
837}
838
839void SelectionDAG::clear() {
840  allnodes_clear();
841  OperandAllocator.Reset();
842  CSEMap.clear();
843
844  ExtendedValueTypeNodes.clear();
845  ExternalSymbols.clear();
846  TargetExternalSymbols.clear();
847  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
848            static_cast<CondCodeSDNode*>(0));
849  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
850            static_cast<SDNode*>(0));
851
852  EntryNode.Uses = 0;
853  AllNodes.push_back(&EntryNode);
854  Root = getEntryNode();
855}
856
857SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
858  if (Op.getValueType() == VT) return Op;
859  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
860                                   VT.getSizeInBits());
861  return getNode(ISD::AND, Op.getValueType(), Op,
862                 getConstant(Imm, Op.getValueType()));
863}
864
865SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
866  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
867  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
868}
869
870SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
871  return getConstant(*ConstantInt::get(Val), VT, isT);
872}
873
874SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
875  assert(VT.isInteger() && "Cannot create FP integer constant!");
876
877  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
878  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
879         "APInt size does not match type size!");
880
881  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
882  FoldingSetNodeID ID;
883  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
884  ID.AddPointer(&Val);
885  void *IP = 0;
886  SDNode *N = NULL;
887  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
888    if (!VT.isVector())
889      return SDValue(N, 0);
890  if (!N) {
891    N = NodeAllocator.Allocate<ConstantSDNode>();
892    new (N) ConstantSDNode(isT, &Val, EltVT);
893    CSEMap.InsertNode(N, IP);
894    AllNodes.push_back(N);
895  }
896
897  SDValue Result(N, 0);
898  if (VT.isVector()) {
899    SmallVector<SDValue, 8> Ops;
900    Ops.assign(VT.getVectorNumElements(), Result);
901    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
902  }
903  return Result;
904}
905
906SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
907  return getConstant(Val, TLI.getPointerTy(), isTarget);
908}
909
910
911SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
912  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
913}
914
915SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
916  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
917
918  MVT EltVT =
919    VT.isVector() ? VT.getVectorElementType() : VT;
920
921  // Do the map lookup using the actual bit pattern for the floating point
922  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
923  // we don't have issues with SNANs.
924  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
925  FoldingSetNodeID ID;
926  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
927  ID.AddPointer(&V);
928  void *IP = 0;
929  SDNode *N = NULL;
930  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
931    if (!VT.isVector())
932      return SDValue(N, 0);
933  if (!N) {
934    N = NodeAllocator.Allocate<ConstantFPSDNode>();
935    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
936    CSEMap.InsertNode(N, IP);
937    AllNodes.push_back(N);
938  }
939
940  SDValue Result(N, 0);
941  if (VT.isVector()) {
942    SmallVector<SDValue, 8> Ops;
943    Ops.assign(VT.getVectorNumElements(), Result);
944    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
945  }
946  return Result;
947}
948
949SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
950  MVT EltVT =
951    VT.isVector() ? VT.getVectorElementType() : VT;
952  if (EltVT==MVT::f32)
953    return getConstantFP(APFloat((float)Val), VT, isTarget);
954  else
955    return getConstantFP(APFloat(Val), VT, isTarget);
956}
957
958SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
959                                       MVT VT, int Offset,
960                                       bool isTargetGA) {
961  unsigned Opc;
962
963  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
964  if (!GVar) {
965    // If GV is an alias then use the aliasee for determining thread-localness.
966    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
967      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
968  }
969
970  if (GVar && GVar->isThreadLocal())
971    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
972  else
973    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
974
975  FoldingSetNodeID ID;
976  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
977  ID.AddPointer(GV);
978  ID.AddInteger(Offset);
979  void *IP = 0;
980  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
981   return SDValue(E, 0);
982  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
983  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
984  CSEMap.InsertNode(N, IP);
985  AllNodes.push_back(N);
986  return SDValue(N, 0);
987}
988
989SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
990  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
991  FoldingSetNodeID ID;
992  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
993  ID.AddInteger(FI);
994  void *IP = 0;
995  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
996    return SDValue(E, 0);
997  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
998  new (N) FrameIndexSDNode(FI, VT, isTarget);
999  CSEMap.InsertNode(N, IP);
1000  AllNodes.push_back(N);
1001  return SDValue(N, 0);
1002}
1003
1004SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1005  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1006  FoldingSetNodeID ID;
1007  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1008  ID.AddInteger(JTI);
1009  void *IP = 0;
1010  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1011    return SDValue(E, 0);
1012  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1013  new (N) JumpTableSDNode(JTI, VT, isTarget);
1014  CSEMap.InsertNode(N, IP);
1015  AllNodes.push_back(N);
1016  return SDValue(N, 0);
1017}
1018
1019SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1020                                      unsigned Alignment, int Offset,
1021                                      bool isTarget) {
1022  if (Alignment == 0)
1023    Alignment =
1024      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1025  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1026  FoldingSetNodeID ID;
1027  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1028  ID.AddInteger(Alignment);
1029  ID.AddInteger(Offset);
1030  ID.AddPointer(C);
1031  void *IP = 0;
1032  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1033    return SDValue(E, 0);
1034  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1035  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1036  CSEMap.InsertNode(N, IP);
1037  AllNodes.push_back(N);
1038  return SDValue(N, 0);
1039}
1040
1041
1042SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1043                                      unsigned Alignment, int Offset,
1044                                      bool isTarget) {
1045  if (Alignment == 0)
1046    Alignment =
1047      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1048  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1049  FoldingSetNodeID ID;
1050  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1051  ID.AddInteger(Alignment);
1052  ID.AddInteger(Offset);
1053  C->AddSelectionDAGCSEId(ID);
1054  void *IP = 0;
1055  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1056    return SDValue(E, 0);
1057  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1058  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1059  CSEMap.InsertNode(N, IP);
1060  AllNodes.push_back(N);
1061  return SDValue(N, 0);
1062}
1063
1064
1065SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1066  FoldingSetNodeID ID;
1067  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1068  ID.AddPointer(MBB);
1069  void *IP = 0;
1070  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1071    return SDValue(E, 0);
1072  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1073  new (N) BasicBlockSDNode(MBB);
1074  CSEMap.InsertNode(N, IP);
1075  AllNodes.push_back(N);
1076  return SDValue(N, 0);
1077}
1078
1079SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1080  FoldingSetNodeID ID;
1081  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1082  ID.AddInteger(Flags.getRawBits());
1083  void *IP = 0;
1084  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1085    return SDValue(E, 0);
1086  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1087  new (N) ARG_FLAGSSDNode(Flags);
1088  CSEMap.InsertNode(N, IP);
1089  AllNodes.push_back(N);
1090  return SDValue(N, 0);
1091}
1092
1093SDValue SelectionDAG::getValueType(MVT VT) {
1094  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1095    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1096
1097  SDNode *&N = VT.isExtended() ?
1098    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1099
1100  if (N) return SDValue(N, 0);
1101  N = NodeAllocator.Allocate<VTSDNode>();
1102  new (N) VTSDNode(VT);
1103  AllNodes.push_back(N);
1104  return SDValue(N, 0);
1105}
1106
1107SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1108  SDNode *&N = ExternalSymbols[Sym];
1109  if (N) return SDValue(N, 0);
1110  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1111  new (N) ExternalSymbolSDNode(false, Sym, VT);
1112  AllNodes.push_back(N);
1113  return SDValue(N, 0);
1114}
1115
1116SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1117  SDNode *&N = TargetExternalSymbols[Sym];
1118  if (N) return SDValue(N, 0);
1119  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1120  new (N) ExternalSymbolSDNode(true, Sym, VT);
1121  AllNodes.push_back(N);
1122  return SDValue(N, 0);
1123}
1124
1125SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1126  if ((unsigned)Cond >= CondCodeNodes.size())
1127    CondCodeNodes.resize(Cond+1);
1128
1129  if (CondCodeNodes[Cond] == 0) {
1130    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1131    new (N) CondCodeSDNode(Cond);
1132    CondCodeNodes[Cond] = N;
1133    AllNodes.push_back(N);
1134  }
1135  return SDValue(CondCodeNodes[Cond], 0);
1136}
1137
1138SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1139  FoldingSetNodeID ID;
1140  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1141  ID.AddInteger(RegNo);
1142  void *IP = 0;
1143  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1144    return SDValue(E, 0);
1145  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1146  new (N) RegisterSDNode(RegNo, VT);
1147  CSEMap.InsertNode(N, IP);
1148  AllNodes.push_back(N);
1149  return SDValue(N, 0);
1150}
1151
1152SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1153                                        unsigned Line, unsigned Col,
1154                                        const CompileUnitDesc *CU) {
1155  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1156  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1157  AllNodes.push_back(N);
1158  return SDValue(N, 0);
1159}
1160
1161SDValue SelectionDAG::getLabel(unsigned Opcode,
1162                               SDValue Root,
1163                               unsigned LabelID) {
1164  FoldingSetNodeID ID;
1165  SDValue Ops[] = { Root };
1166  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1167  ID.AddInteger(LabelID);
1168  void *IP = 0;
1169  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1170    return SDValue(E, 0);
1171  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1172  new (N) LabelSDNode(Opcode, Root, LabelID);
1173  CSEMap.InsertNode(N, IP);
1174  AllNodes.push_back(N);
1175  return SDValue(N, 0);
1176}
1177
1178SDValue SelectionDAG::getSrcValue(const Value *V) {
1179  assert((!V || isa<PointerType>(V->getType())) &&
1180         "SrcValue is not a pointer?");
1181
1182  FoldingSetNodeID ID;
1183  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1184  ID.AddPointer(V);
1185
1186  void *IP = 0;
1187  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1188    return SDValue(E, 0);
1189
1190  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1191  new (N) SrcValueSDNode(V);
1192  CSEMap.InsertNode(N, IP);
1193  AllNodes.push_back(N);
1194  return SDValue(N, 0);
1195}
1196
1197SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1198  const Value *v = MO.getValue();
1199  assert((!v || isa<PointerType>(v->getType())) &&
1200         "SrcValue is not a pointer?");
1201
1202  FoldingSetNodeID ID;
1203  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1204  MO.Profile(ID);
1205
1206  void *IP = 0;
1207  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1208    return SDValue(E, 0);
1209
1210  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1211  new (N) MemOperandSDNode(MO);
1212  CSEMap.InsertNode(N, IP);
1213  AllNodes.push_back(N);
1214  return SDValue(N, 0);
1215}
1216
1217/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1218/// specified value type.
1219SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1220  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1221  unsigned ByteSize = VT.getSizeInBits()/8;
1222  const Type *Ty = VT.getTypeForMVT();
1223  unsigned StackAlign =
1224  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1225
1226  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1227  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1228}
1229
1230SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1231                                SDValue N2, ISD::CondCode Cond) {
1232  // These setcc operations always fold.
1233  switch (Cond) {
1234  default: break;
1235  case ISD::SETFALSE:
1236  case ISD::SETFALSE2: return getConstant(0, VT);
1237  case ISD::SETTRUE:
1238  case ISD::SETTRUE2:  return getConstant(1, VT);
1239
1240  case ISD::SETOEQ:
1241  case ISD::SETOGT:
1242  case ISD::SETOGE:
1243  case ISD::SETOLT:
1244  case ISD::SETOLE:
1245  case ISD::SETONE:
1246  case ISD::SETO:
1247  case ISD::SETUO:
1248  case ISD::SETUEQ:
1249  case ISD::SETUNE:
1250    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1251    break;
1252  }
1253
1254  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1255    const APInt &C2 = N2C->getAPIntValue();
1256    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1257      const APInt &C1 = N1C->getAPIntValue();
1258
1259      switch (Cond) {
1260      default: assert(0 && "Unknown integer setcc!");
1261      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1262      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1263      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1264      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1265      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1266      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1267      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1268      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1269      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1270      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1271      }
1272    }
1273  }
1274  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1275    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1276      // No compile time operations on this type yet.
1277      if (N1C->getValueType(0) == MVT::ppcf128)
1278        return SDValue();
1279
1280      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1281      switch (Cond) {
1282      default: break;
1283      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1284                          return getNode(ISD::UNDEF, VT);
1285                        // fall through
1286      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1287      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1288                          return getNode(ISD::UNDEF, VT);
1289                        // fall through
1290      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1291                                           R==APFloat::cmpLessThan, VT);
1292      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1293                          return getNode(ISD::UNDEF, VT);
1294                        // fall through
1295      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1296      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1297                          return getNode(ISD::UNDEF, VT);
1298                        // fall through
1299      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1300      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1301                          return getNode(ISD::UNDEF, VT);
1302                        // fall through
1303      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1304                                           R==APFloat::cmpEqual, VT);
1305      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1306                          return getNode(ISD::UNDEF, VT);
1307                        // fall through
1308      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1309                                           R==APFloat::cmpEqual, VT);
1310      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1311      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1312      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1313                                           R==APFloat::cmpEqual, VT);
1314      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1315      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1316                                           R==APFloat::cmpLessThan, VT);
1317      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1318                                           R==APFloat::cmpUnordered, VT);
1319      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1320      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1321      }
1322    } else {
1323      // Ensure that the constant occurs on the RHS.
1324      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1325    }
1326  }
1327
1328  // Could not fold it.
1329  return SDValue();
1330}
1331
1332/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1333/// use this predicate to simplify operations downstream.
1334bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1335  unsigned BitWidth = Op.getValueSizeInBits();
1336  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1337}
1338
1339/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1340/// this predicate to simplify operations downstream.  Mask is known to be zero
1341/// for bits that V cannot have.
1342bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1343                                     unsigned Depth) const {
1344  APInt KnownZero, KnownOne;
1345  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1346  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1347  return (KnownZero & Mask) == Mask;
1348}
1349
1350/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1351/// known to be either zero or one and return them in the KnownZero/KnownOne
1352/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1353/// processing.
1354void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1355                                     APInt &KnownZero, APInt &KnownOne,
1356                                     unsigned Depth) const {
1357  unsigned BitWidth = Mask.getBitWidth();
1358  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1359         "Mask size mismatches value type size!");
1360
1361  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1362  if (Depth == 6 || Mask == 0)
1363    return;  // Limit search depth.
1364
1365  APInt KnownZero2, KnownOne2;
1366
1367  switch (Op.getOpcode()) {
1368  case ISD::Constant:
1369    // We know all of the bits for a constant!
1370    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1371    KnownZero = ~KnownOne & Mask;
1372    return;
1373  case ISD::AND:
1374    // If either the LHS or the RHS are Zero, the result is zero.
1375    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1376    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1377                      KnownZero2, KnownOne2, Depth+1);
1378    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1379    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1380
1381    // Output known-1 bits are only known if set in both the LHS & RHS.
1382    KnownOne &= KnownOne2;
1383    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1384    KnownZero |= KnownZero2;
1385    return;
1386  case ISD::OR:
1387    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1388    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1389                      KnownZero2, KnownOne2, Depth+1);
1390    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1391    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1392
1393    // Output known-0 bits are only known if clear in both the LHS & RHS.
1394    KnownZero &= KnownZero2;
1395    // Output known-1 are known to be set if set in either the LHS | RHS.
1396    KnownOne |= KnownOne2;
1397    return;
1398  case ISD::XOR: {
1399    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1400    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1401    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1402    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1403
1404    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1405    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1406    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1407    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1408    KnownZero = KnownZeroOut;
1409    return;
1410  }
1411  case ISD::MUL: {
1412    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1413    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1414    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1415    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1416    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1417
1418    // If low bits are zero in either operand, output low known-0 bits.
1419    // Also compute a conserative estimate for high known-0 bits.
1420    // More trickiness is possible, but this is sufficient for the
1421    // interesting case of alignment computation.
1422    KnownOne.clear();
1423    unsigned TrailZ = KnownZero.countTrailingOnes() +
1424                      KnownZero2.countTrailingOnes();
1425    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1426                               KnownZero2.countLeadingOnes(),
1427                               BitWidth) - BitWidth;
1428
1429    TrailZ = std::min(TrailZ, BitWidth);
1430    LeadZ = std::min(LeadZ, BitWidth);
1431    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1432                APInt::getHighBitsSet(BitWidth, LeadZ);
1433    KnownZero &= Mask;
1434    return;
1435  }
1436  case ISD::UDIV: {
1437    // For the purposes of computing leading zeros we can conservatively
1438    // treat a udiv as a logical right shift by the power of 2 known to
1439    // be less than the denominator.
1440    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1441    ComputeMaskedBits(Op.getOperand(0),
1442                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1443    unsigned LeadZ = KnownZero2.countLeadingOnes();
1444
1445    KnownOne2.clear();
1446    KnownZero2.clear();
1447    ComputeMaskedBits(Op.getOperand(1),
1448                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1449    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1450    if (RHSUnknownLeadingOnes != BitWidth)
1451      LeadZ = std::min(BitWidth,
1452                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1453
1454    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1455    return;
1456  }
1457  case ISD::SELECT:
1458    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1459    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1460    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1461    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1462
1463    // Only known if known in both the LHS and RHS.
1464    KnownOne &= KnownOne2;
1465    KnownZero &= KnownZero2;
1466    return;
1467  case ISD::SELECT_CC:
1468    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1469    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1470    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1471    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1472
1473    // Only known if known in both the LHS and RHS.
1474    KnownOne &= KnownOne2;
1475    KnownZero &= KnownZero2;
1476    return;
1477  case ISD::SETCC:
1478    // If we know the result of a setcc has the top bits zero, use this info.
1479    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1480        BitWidth > 1)
1481      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1482    return;
1483  case ISD::SHL:
1484    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1485    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1486      unsigned ShAmt = SA->getZExtValue();
1487
1488      // If the shift count is an invalid immediate, don't do anything.
1489      if (ShAmt >= BitWidth)
1490        return;
1491
1492      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1493                        KnownZero, KnownOne, Depth+1);
1494      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1495      KnownZero <<= ShAmt;
1496      KnownOne  <<= ShAmt;
1497      // low bits known zero.
1498      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1499    }
1500    return;
1501  case ISD::SRL:
1502    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1503    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1504      unsigned ShAmt = SA->getZExtValue();
1505
1506      // If the shift count is an invalid immediate, don't do anything.
1507      if (ShAmt >= BitWidth)
1508        return;
1509
1510      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1511                        KnownZero, KnownOne, Depth+1);
1512      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1513      KnownZero = KnownZero.lshr(ShAmt);
1514      KnownOne  = KnownOne.lshr(ShAmt);
1515
1516      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1517      KnownZero |= HighBits;  // High bits known zero.
1518    }
1519    return;
1520  case ISD::SRA:
1521    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1522      unsigned ShAmt = SA->getZExtValue();
1523
1524      // If the shift count is an invalid immediate, don't do anything.
1525      if (ShAmt >= BitWidth)
1526        return;
1527
1528      APInt InDemandedMask = (Mask << ShAmt);
1529      // If any of the demanded bits are produced by the sign extension, we also
1530      // demand the input sign bit.
1531      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1532      if (HighBits.getBoolValue())
1533        InDemandedMask |= APInt::getSignBit(BitWidth);
1534
1535      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1536                        Depth+1);
1537      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1538      KnownZero = KnownZero.lshr(ShAmt);
1539      KnownOne  = KnownOne.lshr(ShAmt);
1540
1541      // Handle the sign bits.
1542      APInt SignBit = APInt::getSignBit(BitWidth);
1543      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1544
1545      if (KnownZero.intersects(SignBit)) {
1546        KnownZero |= HighBits;  // New bits are known zero.
1547      } else if (KnownOne.intersects(SignBit)) {
1548        KnownOne  |= HighBits;  // New bits are known one.
1549      }
1550    }
1551    return;
1552  case ISD::SIGN_EXTEND_INREG: {
1553    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1554    unsigned EBits = EVT.getSizeInBits();
1555
1556    // Sign extension.  Compute the demanded bits in the result that are not
1557    // present in the input.
1558    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1559
1560    APInt InSignBit = APInt::getSignBit(EBits);
1561    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1562
1563    // If the sign extended bits are demanded, we know that the sign
1564    // bit is demanded.
1565    InSignBit.zext(BitWidth);
1566    if (NewBits.getBoolValue())
1567      InputDemandedBits |= InSignBit;
1568
1569    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1570                      KnownZero, KnownOne, Depth+1);
1571    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1572
1573    // If the sign bit of the input is known set or clear, then we know the
1574    // top bits of the result.
1575    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1576      KnownZero |= NewBits;
1577      KnownOne  &= ~NewBits;
1578    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1579      KnownOne  |= NewBits;
1580      KnownZero &= ~NewBits;
1581    } else {                              // Input sign bit unknown
1582      KnownZero &= ~NewBits;
1583      KnownOne  &= ~NewBits;
1584    }
1585    return;
1586  }
1587  case ISD::CTTZ:
1588  case ISD::CTLZ:
1589  case ISD::CTPOP: {
1590    unsigned LowBits = Log2_32(BitWidth)+1;
1591    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1592    KnownOne.clear();
1593    return;
1594  }
1595  case ISD::LOAD: {
1596    if (ISD::isZEXTLoad(Op.getNode())) {
1597      LoadSDNode *LD = cast<LoadSDNode>(Op);
1598      MVT VT = LD->getMemoryVT();
1599      unsigned MemBits = VT.getSizeInBits();
1600      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1601    }
1602    return;
1603  }
1604  case ISD::ZERO_EXTEND: {
1605    MVT InVT = Op.getOperand(0).getValueType();
1606    unsigned InBits = InVT.getSizeInBits();
1607    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1608    APInt InMask    = Mask;
1609    InMask.trunc(InBits);
1610    KnownZero.trunc(InBits);
1611    KnownOne.trunc(InBits);
1612    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1613    KnownZero.zext(BitWidth);
1614    KnownOne.zext(BitWidth);
1615    KnownZero |= NewBits;
1616    return;
1617  }
1618  case ISD::SIGN_EXTEND: {
1619    MVT InVT = Op.getOperand(0).getValueType();
1620    unsigned InBits = InVT.getSizeInBits();
1621    APInt InSignBit = APInt::getSignBit(InBits);
1622    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1623    APInt InMask = Mask;
1624    InMask.trunc(InBits);
1625
1626    // If any of the sign extended bits are demanded, we know that the sign
1627    // bit is demanded. Temporarily set this bit in the mask for our callee.
1628    if (NewBits.getBoolValue())
1629      InMask |= InSignBit;
1630
1631    KnownZero.trunc(InBits);
1632    KnownOne.trunc(InBits);
1633    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1634
1635    // Note if the sign bit is known to be zero or one.
1636    bool SignBitKnownZero = KnownZero.isNegative();
1637    bool SignBitKnownOne  = KnownOne.isNegative();
1638    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1639           "Sign bit can't be known to be both zero and one!");
1640
1641    // If the sign bit wasn't actually demanded by our caller, we don't
1642    // want it set in the KnownZero and KnownOne result values. Reset the
1643    // mask and reapply it to the result values.
1644    InMask = Mask;
1645    InMask.trunc(InBits);
1646    KnownZero &= InMask;
1647    KnownOne  &= InMask;
1648
1649    KnownZero.zext(BitWidth);
1650    KnownOne.zext(BitWidth);
1651
1652    // If the sign bit is known zero or one, the top bits match.
1653    if (SignBitKnownZero)
1654      KnownZero |= NewBits;
1655    else if (SignBitKnownOne)
1656      KnownOne  |= NewBits;
1657    return;
1658  }
1659  case ISD::ANY_EXTEND: {
1660    MVT InVT = Op.getOperand(0).getValueType();
1661    unsigned InBits = InVT.getSizeInBits();
1662    APInt InMask = Mask;
1663    InMask.trunc(InBits);
1664    KnownZero.trunc(InBits);
1665    KnownOne.trunc(InBits);
1666    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1667    KnownZero.zext(BitWidth);
1668    KnownOne.zext(BitWidth);
1669    return;
1670  }
1671  case ISD::TRUNCATE: {
1672    MVT InVT = Op.getOperand(0).getValueType();
1673    unsigned InBits = InVT.getSizeInBits();
1674    APInt InMask = Mask;
1675    InMask.zext(InBits);
1676    KnownZero.zext(InBits);
1677    KnownOne.zext(InBits);
1678    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1679    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1680    KnownZero.trunc(BitWidth);
1681    KnownOne.trunc(BitWidth);
1682    break;
1683  }
1684  case ISD::AssertZext: {
1685    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1686    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1687    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1688                      KnownOne, Depth+1);
1689    KnownZero |= (~InMask) & Mask;
1690    return;
1691  }
1692  case ISD::FGETSIGN:
1693    // All bits are zero except the low bit.
1694    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1695    return;
1696
1697  case ISD::SUB: {
1698    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1699      // We know that the top bits of C-X are clear if X contains less bits
1700      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1701      // positive if we can prove that X is >= 0 and < 16.
1702      if (CLHS->getAPIntValue().isNonNegative()) {
1703        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1704        // NLZ can't be BitWidth with no sign bit
1705        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1706        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1707                          Depth+1);
1708
1709        // If all of the MaskV bits are known to be zero, then we know the
1710        // output top bits are zero, because we now know that the output is
1711        // from [0-C].
1712        if ((KnownZero2 & MaskV) == MaskV) {
1713          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1714          // Top bits known zero.
1715          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1716        }
1717      }
1718    }
1719  }
1720  // fall through
1721  case ISD::ADD: {
1722    // Output known-0 bits are known if clear or set in both the low clear bits
1723    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1724    // low 3 bits clear.
1725    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1726    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1727    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1728    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1729
1730    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1731    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1732    KnownZeroOut = std::min(KnownZeroOut,
1733                            KnownZero2.countTrailingOnes());
1734
1735    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1736    return;
1737  }
1738  case ISD::SREM:
1739    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1740      const APInt &RA = Rem->getAPIntValue();
1741      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1742        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1743        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1744        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1745
1746        // If the sign bit of the first operand is zero, the sign bit of
1747        // the result is zero. If the first operand has no one bits below
1748        // the second operand's single 1 bit, its sign will be zero.
1749        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1750          KnownZero2 |= ~LowBits;
1751
1752        KnownZero |= KnownZero2 & Mask;
1753
1754        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1755      }
1756    }
1757    return;
1758  case ISD::UREM: {
1759    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1760      const APInt &RA = Rem->getAPIntValue();
1761      if (RA.isPowerOf2()) {
1762        APInt LowBits = (RA - 1);
1763        APInt Mask2 = LowBits & Mask;
1764        KnownZero |= ~LowBits & Mask;
1765        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1766        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1767        break;
1768      }
1769    }
1770
1771    // Since the result is less than or equal to either operand, any leading
1772    // zero bits in either operand must also exist in the result.
1773    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1774    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1775                      Depth+1);
1776    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1777                      Depth+1);
1778
1779    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1780                                KnownZero2.countLeadingOnes());
1781    KnownOne.clear();
1782    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1783    return;
1784  }
1785  default:
1786    // Allow the target to implement this method for its nodes.
1787    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1788  case ISD::INTRINSIC_WO_CHAIN:
1789  case ISD::INTRINSIC_W_CHAIN:
1790  case ISD::INTRINSIC_VOID:
1791      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1792    }
1793    return;
1794  }
1795}
1796
1797/// ComputeNumSignBits - Return the number of times the sign bit of the
1798/// register is replicated into the other bits.  We know that at least 1 bit
1799/// is always equal to the sign bit (itself), but other cases can give us
1800/// information.  For example, immediately after an "SRA X, 2", we know that
1801/// the top 3 bits are all equal to each other, so we return 3.
1802unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1803  MVT VT = Op.getValueType();
1804  assert(VT.isInteger() && "Invalid VT!");
1805  unsigned VTBits = VT.getSizeInBits();
1806  unsigned Tmp, Tmp2;
1807  unsigned FirstAnswer = 1;
1808
1809  if (Depth == 6)
1810    return 1;  // Limit search depth.
1811
1812  switch (Op.getOpcode()) {
1813  default: break;
1814  case ISD::AssertSext:
1815    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1816    return VTBits-Tmp+1;
1817  case ISD::AssertZext:
1818    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1819    return VTBits-Tmp;
1820
1821  case ISD::Constant: {
1822    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1823    // If negative, return # leading ones.
1824    if (Val.isNegative())
1825      return Val.countLeadingOnes();
1826
1827    // Return # leading zeros.
1828    return Val.countLeadingZeros();
1829  }
1830
1831  case ISD::SIGN_EXTEND:
1832    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1833    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1834
1835  case ISD::SIGN_EXTEND_INREG:
1836    // Max of the input and what this extends.
1837    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1838    Tmp = VTBits-Tmp+1;
1839
1840    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1841    return std::max(Tmp, Tmp2);
1842
1843  case ISD::SRA:
1844    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1845    // SRA X, C   -> adds C sign bits.
1846    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1847      Tmp += C->getZExtValue();
1848      if (Tmp > VTBits) Tmp = VTBits;
1849    }
1850    return Tmp;
1851  case ISD::SHL:
1852    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1853      // shl destroys sign bits.
1854      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1855      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1856          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1857      return Tmp - C->getZExtValue();
1858    }
1859    break;
1860  case ISD::AND:
1861  case ISD::OR:
1862  case ISD::XOR:    // NOT is handled here.
1863    // Logical binary ops preserve the number of sign bits at the worst.
1864    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1865    if (Tmp != 1) {
1866      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1867      FirstAnswer = std::min(Tmp, Tmp2);
1868      // We computed what we know about the sign bits as our first
1869      // answer. Now proceed to the generic code that uses
1870      // ComputeMaskedBits, and pick whichever answer is better.
1871    }
1872    break;
1873
1874  case ISD::SELECT:
1875    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1876    if (Tmp == 1) return 1;  // Early out.
1877    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1878    return std::min(Tmp, Tmp2);
1879
1880  case ISD::SETCC:
1881    // If setcc returns 0/-1, all bits are sign bits.
1882    if (TLI.getSetCCResultContents() ==
1883        TargetLowering::ZeroOrNegativeOneSetCCResult)
1884      return VTBits;
1885    break;
1886  case ISD::ROTL:
1887  case ISD::ROTR:
1888    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1889      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1890
1891      // Handle rotate right by N like a rotate left by 32-N.
1892      if (Op.getOpcode() == ISD::ROTR)
1893        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1894
1895      // If we aren't rotating out all of the known-in sign bits, return the
1896      // number that are left.  This handles rotl(sext(x), 1) for example.
1897      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1898      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1899    }
1900    break;
1901  case ISD::ADD:
1902    // Add can have at most one carry bit.  Thus we know that the output
1903    // is, at worst, one more bit than the inputs.
1904    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1905    if (Tmp == 1) return 1;  // Early out.
1906
1907    // Special case decrementing a value (ADD X, -1):
1908    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1909      if (CRHS->isAllOnesValue()) {
1910        APInt KnownZero, KnownOne;
1911        APInt Mask = APInt::getAllOnesValue(VTBits);
1912        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1913
1914        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1915        // sign bits set.
1916        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1917          return VTBits;
1918
1919        // If we are subtracting one from a positive number, there is no carry
1920        // out of the result.
1921        if (KnownZero.isNegative())
1922          return Tmp;
1923      }
1924
1925    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1926    if (Tmp2 == 1) return 1;
1927      return std::min(Tmp, Tmp2)-1;
1928    break;
1929
1930  case ISD::SUB:
1931    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1932    if (Tmp2 == 1) return 1;
1933
1934    // Handle NEG.
1935    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1936      if (CLHS->isNullValue()) {
1937        APInt KnownZero, KnownOne;
1938        APInt Mask = APInt::getAllOnesValue(VTBits);
1939        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1940        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1941        // sign bits set.
1942        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1943          return VTBits;
1944
1945        // If the input is known to be positive (the sign bit is known clear),
1946        // the output of the NEG has the same number of sign bits as the input.
1947        if (KnownZero.isNegative())
1948          return Tmp2;
1949
1950        // Otherwise, we treat this like a SUB.
1951      }
1952
1953    // Sub can have at most one carry bit.  Thus we know that the output
1954    // is, at worst, one more bit than the inputs.
1955    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1956    if (Tmp == 1) return 1;  // Early out.
1957      return std::min(Tmp, Tmp2)-1;
1958    break;
1959  case ISD::TRUNCATE:
1960    // FIXME: it's tricky to do anything useful for this, but it is an important
1961    // case for targets like X86.
1962    break;
1963  }
1964
1965  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1966  if (Op.getOpcode() == ISD::LOAD) {
1967    LoadSDNode *LD = cast<LoadSDNode>(Op);
1968    unsigned ExtType = LD->getExtensionType();
1969    switch (ExtType) {
1970    default: break;
1971    case ISD::SEXTLOAD:    // '17' bits known
1972      Tmp = LD->getMemoryVT().getSizeInBits();
1973      return VTBits-Tmp+1;
1974    case ISD::ZEXTLOAD:    // '16' bits known
1975      Tmp = LD->getMemoryVT().getSizeInBits();
1976      return VTBits-Tmp;
1977    }
1978  }
1979
1980  // Allow the target to implement this method for its nodes.
1981  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1982      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1983      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1984      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1985    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1986    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1987  }
1988
1989  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1990  // use this information.
1991  APInt KnownZero, KnownOne;
1992  APInt Mask = APInt::getAllOnesValue(VTBits);
1993  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1994
1995  if (KnownZero.isNegative()) {        // sign bit is 0
1996    Mask = KnownZero;
1997  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1998    Mask = KnownOne;
1999  } else {
2000    // Nothing known.
2001    return FirstAnswer;
2002  }
2003
2004  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2005  // the number of identical bits in the top of the input value.
2006  Mask = ~Mask;
2007  Mask <<= Mask.getBitWidth()-VTBits;
2008  // Return # leading zeros.  We use 'min' here in case Val was zero before
2009  // shifting.  We don't want to return '64' as for an i32 "0".
2010  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2011}
2012
2013
2014bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2015  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2016  if (!GA) return false;
2017  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2018  if (!GV) return false;
2019  MachineModuleInfo *MMI = getMachineModuleInfo();
2020  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2021}
2022
2023
2024/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2025/// element of the result of the vector shuffle.
2026SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2027  MVT VT = N->getValueType(0);
2028  SDValue PermMask = N->getOperand(2);
2029  SDValue Idx = PermMask.getOperand(i);
2030  if (Idx.getOpcode() == ISD::UNDEF)
2031    return getNode(ISD::UNDEF, VT.getVectorElementType());
2032  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2033  unsigned NumElems = PermMask.getNumOperands();
2034  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2035  Index %= NumElems;
2036
2037  if (V.getOpcode() == ISD::BIT_CONVERT) {
2038    V = V.getOperand(0);
2039    if (V.getValueType().getVectorNumElements() != NumElems)
2040      return SDValue();
2041  }
2042  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2043    return (Index == 0) ? V.getOperand(0)
2044                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2045  if (V.getOpcode() == ISD::BUILD_VECTOR)
2046    return V.getOperand(Index);
2047  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2048    return getShuffleScalarElt(V.getNode(), Index);
2049  return SDValue();
2050}
2051
2052
2053/// getNode - Gets or creates the specified node.
2054///
2055SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2056  FoldingSetNodeID ID;
2057  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2058  void *IP = 0;
2059  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2060    return SDValue(E, 0);
2061  SDNode *N = NodeAllocator.Allocate<SDNode>();
2062  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2063  CSEMap.InsertNode(N, IP);
2064
2065  AllNodes.push_back(N);
2066#ifndef NDEBUG
2067  VerifyNode(N);
2068#endif
2069  return SDValue(N, 0);
2070}
2071
2072SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2073  // Constant fold unary operations with an integer constant operand.
2074  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2075    const APInt &Val = C->getAPIntValue();
2076    unsigned BitWidth = VT.getSizeInBits();
2077    switch (Opcode) {
2078    default: break;
2079    case ISD::SIGN_EXTEND:
2080      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2081    case ISD::ANY_EXTEND:
2082    case ISD::ZERO_EXTEND:
2083    case ISD::TRUNCATE:
2084      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2085    case ISD::UINT_TO_FP:
2086    case ISD::SINT_TO_FP: {
2087      const uint64_t zero[] = {0, 0};
2088      // No compile time operations on this type.
2089      if (VT==MVT::ppcf128)
2090        break;
2091      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2092      (void)apf.convertFromAPInt(Val,
2093                                 Opcode==ISD::SINT_TO_FP,
2094                                 APFloat::rmNearestTiesToEven);
2095      return getConstantFP(apf, VT);
2096    }
2097    case ISD::BIT_CONVERT:
2098      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2099        return getConstantFP(Val.bitsToFloat(), VT);
2100      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2101        return getConstantFP(Val.bitsToDouble(), VT);
2102      break;
2103    case ISD::BSWAP:
2104      return getConstant(Val.byteSwap(), VT);
2105    case ISD::CTPOP:
2106      return getConstant(Val.countPopulation(), VT);
2107    case ISD::CTLZ:
2108      return getConstant(Val.countLeadingZeros(), VT);
2109    case ISD::CTTZ:
2110      return getConstant(Val.countTrailingZeros(), VT);
2111    }
2112  }
2113
2114  // Constant fold unary operations with a floating point constant operand.
2115  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2116    APFloat V = C->getValueAPF();    // make copy
2117    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2118      switch (Opcode) {
2119      case ISD::FNEG:
2120        V.changeSign();
2121        return getConstantFP(V, VT);
2122      case ISD::FABS:
2123        V.clearSign();
2124        return getConstantFP(V, VT);
2125      case ISD::FP_ROUND:
2126      case ISD::FP_EXTEND:
2127        // This can return overflow, underflow, or inexact; we don't care.
2128        // FIXME need to be more flexible about rounding mode.
2129        (void)V.convert(*MVTToAPFloatSemantics(VT),
2130                        APFloat::rmNearestTiesToEven);
2131        return getConstantFP(V, VT);
2132      case ISD::FP_TO_SINT:
2133      case ISD::FP_TO_UINT: {
2134        integerPart x;
2135        assert(integerPartWidth >= 64);
2136        // FIXME need to be more flexible about rounding mode.
2137        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2138                              Opcode==ISD::FP_TO_SINT,
2139                              APFloat::rmTowardZero);
2140        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2141          break;
2142        return getConstant(x, VT);
2143      }
2144      case ISD::BIT_CONVERT:
2145        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2146          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
2147        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2148          return getConstant(V.convertToAPInt().getZExtValue(), VT);
2149        break;
2150      }
2151    }
2152  }
2153
2154  unsigned OpOpcode = Operand.getNode()->getOpcode();
2155  switch (Opcode) {
2156  case ISD::TokenFactor:
2157  case ISD::CONCAT_VECTORS:
2158    return Operand;         // Factor or concat of one node?  No need.
2159  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2160  case ISD::FP_EXTEND:
2161    assert(VT.isFloatingPoint() &&
2162           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2163    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2164    if (Operand.getOpcode() == ISD::UNDEF)
2165      return getNode(ISD::UNDEF, VT);
2166    break;
2167  case ISD::SIGN_EXTEND:
2168    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2169           "Invalid SIGN_EXTEND!");
2170    if (Operand.getValueType() == VT) return Operand;   // noop extension
2171    assert(Operand.getValueType().bitsLT(VT)
2172           && "Invalid sext node, dst < src!");
2173    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2174      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2175    break;
2176  case ISD::ZERO_EXTEND:
2177    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2178           "Invalid ZERO_EXTEND!");
2179    if (Operand.getValueType() == VT) return Operand;   // noop extension
2180    assert(Operand.getValueType().bitsLT(VT)
2181           && "Invalid zext node, dst < src!");
2182    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2183      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2184    break;
2185  case ISD::ANY_EXTEND:
2186    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2187           "Invalid ANY_EXTEND!");
2188    if (Operand.getValueType() == VT) return Operand;   // noop extension
2189    assert(Operand.getValueType().bitsLT(VT)
2190           && "Invalid anyext node, dst < src!");
2191    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2192      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2193      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2194    break;
2195  case ISD::TRUNCATE:
2196    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2197           "Invalid TRUNCATE!");
2198    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2199    assert(Operand.getValueType().bitsGT(VT)
2200           && "Invalid truncate node, src < dst!");
2201    if (OpOpcode == ISD::TRUNCATE)
2202      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2203    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2204             OpOpcode == ISD::ANY_EXTEND) {
2205      // If the source is smaller than the dest, we still need an extend.
2206      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2207        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2208      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2209        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2210      else
2211        return Operand.getNode()->getOperand(0);
2212    }
2213    break;
2214  case ISD::BIT_CONVERT:
2215    // Basic sanity checking.
2216    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2217           && "Cannot BIT_CONVERT between types of different sizes!");
2218    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2219    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2220      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2221    if (OpOpcode == ISD::UNDEF)
2222      return getNode(ISD::UNDEF, VT);
2223    break;
2224  case ISD::SCALAR_TO_VECTOR:
2225    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2226           VT.getVectorElementType() == Operand.getValueType() &&
2227           "Illegal SCALAR_TO_VECTOR node!");
2228    if (OpOpcode == ISD::UNDEF)
2229      return getNode(ISD::UNDEF, VT);
2230    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2231    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2232        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2233        Operand.getConstantOperandVal(1) == 0 &&
2234        Operand.getOperand(0).getValueType() == VT)
2235      return Operand.getOperand(0);
2236    break;
2237  case ISD::FNEG:
2238    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2239      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2240                     Operand.getNode()->getOperand(0));
2241    if (OpOpcode == ISD::FNEG)  // --X -> X
2242      return Operand.getNode()->getOperand(0);
2243    break;
2244  case ISD::FABS:
2245    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2246      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2247    break;
2248  }
2249
2250  SDNode *N;
2251  SDVTList VTs = getVTList(VT);
2252  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2253    FoldingSetNodeID ID;
2254    SDValue Ops[1] = { Operand };
2255    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2256    void *IP = 0;
2257    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2258      return SDValue(E, 0);
2259    N = NodeAllocator.Allocate<UnarySDNode>();
2260    new (N) UnarySDNode(Opcode, VTs, Operand);
2261    CSEMap.InsertNode(N, IP);
2262  } else {
2263    N = NodeAllocator.Allocate<UnarySDNode>();
2264    new (N) UnarySDNode(Opcode, VTs, Operand);
2265  }
2266
2267  AllNodes.push_back(N);
2268#ifndef NDEBUG
2269  VerifyNode(N);
2270#endif
2271  return SDValue(N, 0);
2272}
2273
2274SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2275                                             MVT VT,
2276                                             ConstantSDNode *Cst1,
2277                                             ConstantSDNode *Cst2) {
2278  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2279
2280  switch (Opcode) {
2281  case ISD::ADD:  return getConstant(C1 + C2, VT);
2282  case ISD::SUB:  return getConstant(C1 - C2, VT);
2283  case ISD::MUL:  return getConstant(C1 * C2, VT);
2284  case ISD::UDIV:
2285    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2286    break;
2287  case ISD::UREM:
2288    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2289    break;
2290  case ISD::SDIV:
2291    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2292    break;
2293  case ISD::SREM:
2294    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2295    break;
2296  case ISD::AND:  return getConstant(C1 & C2, VT);
2297  case ISD::OR:   return getConstant(C1 | C2, VT);
2298  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2299  case ISD::SHL:  return getConstant(C1 << C2, VT);
2300  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2301  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2302  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2303  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2304  default: break;
2305  }
2306
2307  return SDValue();
2308}
2309
2310SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2311                              SDValue N1, SDValue N2) {
2312  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2313  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2314  switch (Opcode) {
2315  default: break;
2316  case ISD::TokenFactor:
2317    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2318           N2.getValueType() == MVT::Other && "Invalid token factor!");
2319    // Fold trivial token factors.
2320    if (N1.getOpcode() == ISD::EntryToken) return N2;
2321    if (N2.getOpcode() == ISD::EntryToken) return N1;
2322    break;
2323  case ISD::CONCAT_VECTORS:
2324    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2325    // one big BUILD_VECTOR.
2326    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2327        N2.getOpcode() == ISD::BUILD_VECTOR) {
2328      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2329      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2330      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2331    }
2332    break;
2333  case ISD::AND:
2334    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2335           N1.getValueType() == VT && "Binary operator types must match!");
2336    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2337    // worth handling here.
2338    if (N2C && N2C->isNullValue())
2339      return N2;
2340    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2341      return N1;
2342    break;
2343  case ISD::OR:
2344  case ISD::XOR:
2345  case ISD::ADD:
2346  case ISD::SUB:
2347    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2348           N1.getValueType() == VT && "Binary operator types must match!");
2349    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2350    // it's worth handling here.
2351    if (N2C && N2C->isNullValue())
2352      return N1;
2353    break;
2354  case ISD::UDIV:
2355  case ISD::UREM:
2356  case ISD::MULHU:
2357  case ISD::MULHS:
2358    assert(VT.isInteger() && "This operator does not apply to FP types!");
2359    // fall through
2360  case ISD::MUL:
2361  case ISD::SDIV:
2362  case ISD::SREM:
2363  case ISD::FADD:
2364  case ISD::FSUB:
2365  case ISD::FMUL:
2366  case ISD::FDIV:
2367  case ISD::FREM:
2368    assert(N1.getValueType() == N2.getValueType() &&
2369           N1.getValueType() == VT && "Binary operator types must match!");
2370    break;
2371  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2372    assert(N1.getValueType() == VT &&
2373           N1.getValueType().isFloatingPoint() &&
2374           N2.getValueType().isFloatingPoint() &&
2375           "Invalid FCOPYSIGN!");
2376    break;
2377  case ISD::SHL:
2378  case ISD::SRA:
2379  case ISD::SRL:
2380  case ISD::ROTL:
2381  case ISD::ROTR:
2382    assert(VT == N1.getValueType() &&
2383           "Shift operators return type must be the same as their first arg");
2384    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2385           "Shifts only work on integers");
2386
2387    // Always fold shifts of i1 values so the code generator doesn't need to
2388    // handle them.  Since we know the size of the shift has to be less than the
2389    // size of the value, the shift/rotate count is guaranteed to be zero.
2390    if (VT == MVT::i1)
2391      return N1;
2392    break;
2393  case ISD::FP_ROUND_INREG: {
2394    MVT EVT = cast<VTSDNode>(N2)->getVT();
2395    assert(VT == N1.getValueType() && "Not an inreg round!");
2396    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2397           "Cannot FP_ROUND_INREG integer types");
2398    assert(EVT.bitsLE(VT) && "Not rounding down!");
2399    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2400    break;
2401  }
2402  case ISD::FP_ROUND:
2403    assert(VT.isFloatingPoint() &&
2404           N1.getValueType().isFloatingPoint() &&
2405           VT.bitsLE(N1.getValueType()) &&
2406           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2407    if (N1.getValueType() == VT) return N1;  // noop conversion.
2408    break;
2409  case ISD::AssertSext:
2410  case ISD::AssertZext: {
2411    MVT EVT = cast<VTSDNode>(N2)->getVT();
2412    assert(VT == N1.getValueType() && "Not an inreg extend!");
2413    assert(VT.isInteger() && EVT.isInteger() &&
2414           "Cannot *_EXTEND_INREG FP types");
2415    assert(EVT.bitsLE(VT) && "Not extending!");
2416    if (VT == EVT) return N1; // noop assertion.
2417    break;
2418  }
2419  case ISD::SIGN_EXTEND_INREG: {
2420    MVT EVT = cast<VTSDNode>(N2)->getVT();
2421    assert(VT == N1.getValueType() && "Not an inreg extend!");
2422    assert(VT.isInteger() && EVT.isInteger() &&
2423           "Cannot *_EXTEND_INREG FP types");
2424    assert(EVT.bitsLE(VT) && "Not extending!");
2425    if (EVT == VT) return N1;  // Not actually extending
2426
2427    if (N1C) {
2428      APInt Val = N1C->getAPIntValue();
2429      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2430      Val <<= Val.getBitWidth()-FromBits;
2431      Val = Val.ashr(Val.getBitWidth()-FromBits);
2432      return getConstant(Val, VT);
2433    }
2434    break;
2435  }
2436  case ISD::EXTRACT_VECTOR_ELT:
2437    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2438    if (N1.getOpcode() == ISD::UNDEF)
2439      return getNode(ISD::UNDEF, VT);
2440
2441    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2442    // expanding copies of large vectors from registers.
2443    if (N2C &&
2444        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2445        N1.getNumOperands() > 0) {
2446      unsigned Factor =
2447        N1.getOperand(0).getValueType().getVectorNumElements();
2448      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2449                     N1.getOperand(N2C->getZExtValue() / Factor),
2450                     getConstant(N2C->getZExtValue() % Factor,
2451                                 N2.getValueType()));
2452    }
2453
2454    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2455    // expanding large vector constants.
2456    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2457      return N1.getOperand(N2C->getZExtValue());
2458
2459    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2460    // operations are lowered to scalars.
2461    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2462      if (N1.getOperand(2) == N2)
2463        return N1.getOperand(1);
2464      else
2465        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2466    }
2467    break;
2468  case ISD::EXTRACT_ELEMENT:
2469    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2470    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2471           (N1.getValueType().isInteger() == VT.isInteger()) &&
2472           "Wrong types for EXTRACT_ELEMENT!");
2473
2474    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2475    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2476    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2477    if (N1.getOpcode() == ISD::BUILD_PAIR)
2478      return N1.getOperand(N2C->getZExtValue());
2479
2480    // EXTRACT_ELEMENT of a constant int is also very common.
2481    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2482      unsigned ElementSize = VT.getSizeInBits();
2483      unsigned Shift = ElementSize * N2C->getZExtValue();
2484      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2485      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2486    }
2487    break;
2488  case ISD::EXTRACT_SUBVECTOR:
2489    if (N1.getValueType() == VT) // Trivial extraction.
2490      return N1;
2491    break;
2492  }
2493
2494  if (N1C) {
2495    if (N2C) {
2496      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2497      if (SV.getNode()) return SV;
2498    } else {      // Cannonicalize constant to RHS if commutative
2499      if (isCommutativeBinOp(Opcode)) {
2500        std::swap(N1C, N2C);
2501        std::swap(N1, N2);
2502      }
2503    }
2504  }
2505
2506  // Constant fold FP operations.
2507  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2508  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2509  if (N1CFP) {
2510    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2511      // Cannonicalize constant to RHS if commutative
2512      std::swap(N1CFP, N2CFP);
2513      std::swap(N1, N2);
2514    } else if (N2CFP && VT != MVT::ppcf128) {
2515      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2516      APFloat::opStatus s;
2517      switch (Opcode) {
2518      case ISD::FADD:
2519        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2520        if (s != APFloat::opInvalidOp)
2521          return getConstantFP(V1, VT);
2522        break;
2523      case ISD::FSUB:
2524        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2525        if (s!=APFloat::opInvalidOp)
2526          return getConstantFP(V1, VT);
2527        break;
2528      case ISD::FMUL:
2529        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2530        if (s!=APFloat::opInvalidOp)
2531          return getConstantFP(V1, VT);
2532        break;
2533      case ISD::FDIV:
2534        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2535        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2536          return getConstantFP(V1, VT);
2537        break;
2538      case ISD::FREM :
2539        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2540        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2541          return getConstantFP(V1, VT);
2542        break;
2543      case ISD::FCOPYSIGN:
2544        V1.copySign(V2);
2545        return getConstantFP(V1, VT);
2546      default: break;
2547      }
2548    }
2549  }
2550
2551  // Canonicalize an UNDEF to the RHS, even over a constant.
2552  if (N1.getOpcode() == ISD::UNDEF) {
2553    if (isCommutativeBinOp(Opcode)) {
2554      std::swap(N1, N2);
2555    } else {
2556      switch (Opcode) {
2557      case ISD::FP_ROUND_INREG:
2558      case ISD::SIGN_EXTEND_INREG:
2559      case ISD::SUB:
2560      case ISD::FSUB:
2561      case ISD::FDIV:
2562      case ISD::FREM:
2563      case ISD::SRA:
2564        return N1;     // fold op(undef, arg2) -> undef
2565      case ISD::UDIV:
2566      case ISD::SDIV:
2567      case ISD::UREM:
2568      case ISD::SREM:
2569      case ISD::SRL:
2570      case ISD::SHL:
2571        if (!VT.isVector())
2572          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2573        // For vectors, we can't easily build an all zero vector, just return
2574        // the LHS.
2575        return N2;
2576      }
2577    }
2578  }
2579
2580  // Fold a bunch of operators when the RHS is undef.
2581  if (N2.getOpcode() == ISD::UNDEF) {
2582    switch (Opcode) {
2583    case ISD::XOR:
2584      if (N1.getOpcode() == ISD::UNDEF)
2585        // Handle undef ^ undef -> 0 special case. This is a common
2586        // idiom (misuse).
2587        return getConstant(0, VT);
2588      // fallthrough
2589    case ISD::ADD:
2590    case ISD::ADDC:
2591    case ISD::ADDE:
2592    case ISD::SUB:
2593    case ISD::FADD:
2594    case ISD::FSUB:
2595    case ISD::FMUL:
2596    case ISD::FDIV:
2597    case ISD::FREM:
2598    case ISD::UDIV:
2599    case ISD::SDIV:
2600    case ISD::UREM:
2601    case ISD::SREM:
2602      return N2;       // fold op(arg1, undef) -> undef
2603    case ISD::MUL:
2604    case ISD::AND:
2605    case ISD::SRL:
2606    case ISD::SHL:
2607      if (!VT.isVector())
2608        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2609      // For vectors, we can't easily build an all zero vector, just return
2610      // the LHS.
2611      return N1;
2612    case ISD::OR:
2613      if (!VT.isVector())
2614        return getConstant(VT.getIntegerVTBitMask(), VT);
2615      // For vectors, we can't easily build an all one vector, just return
2616      // the LHS.
2617      return N1;
2618    case ISD::SRA:
2619      return N1;
2620    }
2621  }
2622
2623  // Memoize this node if possible.
2624  SDNode *N;
2625  SDVTList VTs = getVTList(VT);
2626  if (VT != MVT::Flag) {
2627    SDValue Ops[] = { N1, N2 };
2628    FoldingSetNodeID ID;
2629    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2630    void *IP = 0;
2631    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2632      return SDValue(E, 0);
2633    N = NodeAllocator.Allocate<BinarySDNode>();
2634    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2635    CSEMap.InsertNode(N, IP);
2636  } else {
2637    N = NodeAllocator.Allocate<BinarySDNode>();
2638    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2639  }
2640
2641  AllNodes.push_back(N);
2642#ifndef NDEBUG
2643  VerifyNode(N);
2644#endif
2645  return SDValue(N, 0);
2646}
2647
2648SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2649                              SDValue N1, SDValue N2, SDValue N3) {
2650  // Perform various simplifications.
2651  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2652  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2653  switch (Opcode) {
2654  case ISD::CONCAT_VECTORS:
2655    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2656    // one big BUILD_VECTOR.
2657    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2658        N2.getOpcode() == ISD::BUILD_VECTOR &&
2659        N3.getOpcode() == ISD::BUILD_VECTOR) {
2660      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2661      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2662      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2663      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2664    }
2665    break;
2666  case ISD::SETCC: {
2667    // Use FoldSetCC to simplify SETCC's.
2668    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2669    if (Simp.getNode()) return Simp;
2670    break;
2671  }
2672  case ISD::SELECT:
2673    if (N1C) {
2674     if (N1C->getZExtValue())
2675        return N2;             // select true, X, Y -> X
2676      else
2677        return N3;             // select false, X, Y -> Y
2678    }
2679
2680    if (N2 == N3) return N2;   // select C, X, X -> X
2681    break;
2682  case ISD::BRCOND:
2683    if (N2C) {
2684      if (N2C->getZExtValue()) // Unconditional branch
2685        return getNode(ISD::BR, MVT::Other, N1, N3);
2686      else
2687        return N1;         // Never-taken branch
2688    }
2689    break;
2690  case ISD::VECTOR_SHUFFLE:
2691    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2692           VT.isVector() && N3.getValueType().isVector() &&
2693           N3.getOpcode() == ISD::BUILD_VECTOR &&
2694           VT.getVectorNumElements() == N3.getNumOperands() &&
2695           "Illegal VECTOR_SHUFFLE node!");
2696    break;
2697  case ISD::BIT_CONVERT:
2698    // Fold bit_convert nodes from a type to themselves.
2699    if (N1.getValueType() == VT)
2700      return N1;
2701    break;
2702  }
2703
2704  // Memoize node if it doesn't produce a flag.
2705  SDNode *N;
2706  SDVTList VTs = getVTList(VT);
2707  if (VT != MVT::Flag) {
2708    SDValue Ops[] = { N1, N2, N3 };
2709    FoldingSetNodeID ID;
2710    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2711    void *IP = 0;
2712    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2713      return SDValue(E, 0);
2714    N = NodeAllocator.Allocate<TernarySDNode>();
2715    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2716    CSEMap.InsertNode(N, IP);
2717  } else {
2718    N = NodeAllocator.Allocate<TernarySDNode>();
2719    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2720  }
2721  AllNodes.push_back(N);
2722#ifndef NDEBUG
2723  VerifyNode(N);
2724#endif
2725  return SDValue(N, 0);
2726}
2727
2728SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2729                              SDValue N1, SDValue N2, SDValue N3,
2730                              SDValue N4) {
2731  SDValue Ops[] = { N1, N2, N3, N4 };
2732  return getNode(Opcode, VT, Ops, 4);
2733}
2734
2735SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2736                              SDValue N1, SDValue N2, SDValue N3,
2737                              SDValue N4, SDValue N5) {
2738  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2739  return getNode(Opcode, VT, Ops, 5);
2740}
2741
2742/// getMemsetValue - Vectorized representation of the memset value
2743/// operand.
2744static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2745  unsigned NumBits = VT.isVector() ?
2746    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2747  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2748    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2749    unsigned Shift = 8;
2750    for (unsigned i = NumBits; i > 8; i >>= 1) {
2751      Val = (Val << Shift) | Val;
2752      Shift <<= 1;
2753    }
2754    if (VT.isInteger())
2755      return DAG.getConstant(Val, VT);
2756    return DAG.getConstantFP(APFloat(Val), VT);
2757  }
2758
2759  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2760  unsigned Shift = 8;
2761  for (unsigned i = NumBits; i > 8; i >>= 1) {
2762    Value = DAG.getNode(ISD::OR, VT,
2763                        DAG.getNode(ISD::SHL, VT, Value,
2764                                    DAG.getConstant(Shift, MVT::i8)), Value);
2765    Shift <<= 1;
2766  }
2767
2768  return Value;
2769}
2770
2771/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2772/// used when a memcpy is turned into a memset when the source is a constant
2773/// string ptr.
2774static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2775                                    const TargetLowering &TLI,
2776                                    std::string &Str, unsigned Offset) {
2777  // Handle vector with all elements zero.
2778  if (Str.empty()) {
2779    if (VT.isInteger())
2780      return DAG.getConstant(0, VT);
2781    unsigned NumElts = VT.getVectorNumElements();
2782    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2783    return DAG.getNode(ISD::BIT_CONVERT, VT,
2784                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2785  }
2786
2787  assert(!VT.isVector() && "Can't handle vector type here!");
2788  unsigned NumBits = VT.getSizeInBits();
2789  unsigned MSB = NumBits / 8;
2790  uint64_t Val = 0;
2791  if (TLI.isLittleEndian())
2792    Offset = Offset + MSB - 1;
2793  for (unsigned i = 0; i != MSB; ++i) {
2794    Val = (Val << 8) | (unsigned char)Str[Offset];
2795    Offset += TLI.isLittleEndian() ? -1 : 1;
2796  }
2797  return DAG.getConstant(Val, VT);
2798}
2799
2800/// getMemBasePlusOffset - Returns base and offset node for the
2801///
2802static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2803                                      SelectionDAG &DAG) {
2804  MVT VT = Base.getValueType();
2805  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2806}
2807
2808/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2809///
2810static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2811  unsigned SrcDelta = 0;
2812  GlobalAddressSDNode *G = NULL;
2813  if (Src.getOpcode() == ISD::GlobalAddress)
2814    G = cast<GlobalAddressSDNode>(Src);
2815  else if (Src.getOpcode() == ISD::ADD &&
2816           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2817           Src.getOperand(1).getOpcode() == ISD::Constant) {
2818    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2819    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2820  }
2821  if (!G)
2822    return false;
2823
2824  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2825  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2826    return true;
2827
2828  return false;
2829}
2830
2831/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2832/// to replace the memset / memcpy is below the threshold. It also returns the
2833/// types of the sequence of memory ops to perform memset / memcpy.
2834static
2835bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2836                              SDValue Dst, SDValue Src,
2837                              unsigned Limit, uint64_t Size, unsigned &Align,
2838                              std::string &Str, bool &isSrcStr,
2839                              SelectionDAG &DAG,
2840                              const TargetLowering &TLI) {
2841  isSrcStr = isMemSrcFromString(Src, Str);
2842  bool isSrcConst = isa<ConstantSDNode>(Src);
2843  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2844  MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2845  if (VT != MVT::iAny) {
2846    unsigned NewAlign = (unsigned)
2847      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2848    // If source is a string constant, this will require an unaligned load.
2849    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2850      if (Dst.getOpcode() != ISD::FrameIndex) {
2851        // Can't change destination alignment. It requires a unaligned store.
2852        if (AllowUnalign)
2853          VT = MVT::iAny;
2854      } else {
2855        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2856        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2857        if (MFI->isFixedObjectIndex(FI)) {
2858          // Can't change destination alignment. It requires a unaligned store.
2859          if (AllowUnalign)
2860            VT = MVT::iAny;
2861        } else {
2862          // Give the stack frame object a larger alignment if needed.
2863          if (MFI->getObjectAlignment(FI) < NewAlign)
2864            MFI->setObjectAlignment(FI, NewAlign);
2865          Align = NewAlign;
2866        }
2867      }
2868    }
2869  }
2870
2871  if (VT == MVT::iAny) {
2872    if (AllowUnalign) {
2873      VT = MVT::i64;
2874    } else {
2875      switch (Align & 7) {
2876      case 0:  VT = MVT::i64; break;
2877      case 4:  VT = MVT::i32; break;
2878      case 2:  VT = MVT::i16; break;
2879      default: VT = MVT::i8;  break;
2880      }
2881    }
2882
2883    MVT LVT = MVT::i64;
2884    while (!TLI.isTypeLegal(LVT))
2885      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2886    assert(LVT.isInteger());
2887
2888    if (VT.bitsGT(LVT))
2889      VT = LVT;
2890  }
2891
2892  unsigned NumMemOps = 0;
2893  while (Size != 0) {
2894    unsigned VTSize = VT.getSizeInBits() / 8;
2895    while (VTSize > Size) {
2896      // For now, only use non-vector load / store's for the left-over pieces.
2897      if (VT.isVector()) {
2898        VT = MVT::i64;
2899        while (!TLI.isTypeLegal(VT))
2900          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2901        VTSize = VT.getSizeInBits() / 8;
2902      } else {
2903        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2904        VTSize >>= 1;
2905      }
2906    }
2907
2908    if (++NumMemOps > Limit)
2909      return false;
2910    MemOps.push_back(VT);
2911    Size -= VTSize;
2912  }
2913
2914  return true;
2915}
2916
2917static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2918                                         SDValue Chain, SDValue Dst,
2919                                         SDValue Src, uint64_t Size,
2920                                         unsigned Align, bool AlwaysInline,
2921                                         const Value *DstSV, uint64_t DstSVOff,
2922                                         const Value *SrcSV, uint64_t SrcSVOff){
2923  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2924
2925  // Expand memcpy to a series of load and store ops if the size operand falls
2926  // below a certain threshold.
2927  std::vector<MVT> MemOps;
2928  uint64_t Limit = -1;
2929  if (!AlwaysInline)
2930    Limit = TLI.getMaxStoresPerMemcpy();
2931  unsigned DstAlign = Align;  // Destination alignment can change.
2932  std::string Str;
2933  bool CopyFromStr;
2934  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2935                                Str, CopyFromStr, DAG, TLI))
2936    return SDValue();
2937
2938
2939  bool isZeroStr = CopyFromStr && Str.empty();
2940  SmallVector<SDValue, 8> OutChains;
2941  unsigned NumMemOps = MemOps.size();
2942  uint64_t SrcOff = 0, DstOff = 0;
2943  for (unsigned i = 0; i < NumMemOps; i++) {
2944    MVT VT = MemOps[i];
2945    unsigned VTSize = VT.getSizeInBits() / 8;
2946    SDValue Value, Store;
2947
2948    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2949      // It's unlikely a store of a vector immediate can be done in a single
2950      // instruction. It would require a load from a constantpool first.
2951      // We also handle store a vector with all zero's.
2952      // FIXME: Handle other cases where store of vector immediate is done in
2953      // a single instruction.
2954      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2955      Store = DAG.getStore(Chain, Value,
2956                           getMemBasePlusOffset(Dst, DstOff, DAG),
2957                           DstSV, DstSVOff + DstOff, false, DstAlign);
2958    } else {
2959      Value = DAG.getLoad(VT, Chain,
2960                          getMemBasePlusOffset(Src, SrcOff, DAG),
2961                          SrcSV, SrcSVOff + SrcOff, false, Align);
2962      Store = DAG.getStore(Chain, Value,
2963                           getMemBasePlusOffset(Dst, DstOff, DAG),
2964                           DstSV, DstSVOff + DstOff, false, DstAlign);
2965    }
2966    OutChains.push_back(Store);
2967    SrcOff += VTSize;
2968    DstOff += VTSize;
2969  }
2970
2971  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2972                     &OutChains[0], OutChains.size());
2973}
2974
2975static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
2976                                          SDValue Chain, SDValue Dst,
2977                                          SDValue Src, uint64_t Size,
2978                                          unsigned Align, bool AlwaysInline,
2979                                          const Value *DstSV, uint64_t DstSVOff,
2980                                          const Value *SrcSV, uint64_t SrcSVOff){
2981  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2982
2983  // Expand memmove to a series of load and store ops if the size operand falls
2984  // below a certain threshold.
2985  std::vector<MVT> MemOps;
2986  uint64_t Limit = -1;
2987  if (!AlwaysInline)
2988    Limit = TLI.getMaxStoresPerMemmove();
2989  unsigned DstAlign = Align;  // Destination alignment can change.
2990  std::string Str;
2991  bool CopyFromStr;
2992  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2993                                Str, CopyFromStr, DAG, TLI))
2994    return SDValue();
2995
2996  uint64_t SrcOff = 0, DstOff = 0;
2997
2998  SmallVector<SDValue, 8> LoadValues;
2999  SmallVector<SDValue, 8> LoadChains;
3000  SmallVector<SDValue, 8> OutChains;
3001  unsigned NumMemOps = MemOps.size();
3002  for (unsigned i = 0; i < NumMemOps; i++) {
3003    MVT VT = MemOps[i];
3004    unsigned VTSize = VT.getSizeInBits() / 8;
3005    SDValue Value, Store;
3006
3007    Value = DAG.getLoad(VT, Chain,
3008                        getMemBasePlusOffset(Src, SrcOff, DAG),
3009                        SrcSV, SrcSVOff + SrcOff, false, Align);
3010    LoadValues.push_back(Value);
3011    LoadChains.push_back(Value.getValue(1));
3012    SrcOff += VTSize;
3013  }
3014  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3015                      &LoadChains[0], LoadChains.size());
3016  OutChains.clear();
3017  for (unsigned i = 0; i < NumMemOps; i++) {
3018    MVT VT = MemOps[i];
3019    unsigned VTSize = VT.getSizeInBits() / 8;
3020    SDValue Value, Store;
3021
3022    Store = DAG.getStore(Chain, LoadValues[i],
3023                         getMemBasePlusOffset(Dst, DstOff, DAG),
3024                         DstSV, DstSVOff + DstOff, false, DstAlign);
3025    OutChains.push_back(Store);
3026    DstOff += VTSize;
3027  }
3028
3029  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3030                     &OutChains[0], OutChains.size());
3031}
3032
3033static SDValue getMemsetStores(SelectionDAG &DAG,
3034                                 SDValue Chain, SDValue Dst,
3035                                 SDValue Src, uint64_t Size,
3036                                 unsigned Align,
3037                                 const Value *DstSV, uint64_t DstSVOff) {
3038  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3039
3040  // Expand memset to a series of load/store ops if the size operand
3041  // falls below a certain threshold.
3042  std::vector<MVT> MemOps;
3043  std::string Str;
3044  bool CopyFromStr;
3045  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3046                                Size, Align, Str, CopyFromStr, DAG, TLI))
3047    return SDValue();
3048
3049  SmallVector<SDValue, 8> OutChains;
3050  uint64_t DstOff = 0;
3051
3052  unsigned NumMemOps = MemOps.size();
3053  for (unsigned i = 0; i < NumMemOps; i++) {
3054    MVT VT = MemOps[i];
3055    unsigned VTSize = VT.getSizeInBits() / 8;
3056    SDValue Value = getMemsetValue(Src, VT, DAG);
3057    SDValue Store = DAG.getStore(Chain, Value,
3058                                   getMemBasePlusOffset(Dst, DstOff, DAG),
3059                                   DstSV, DstSVOff + DstOff);
3060    OutChains.push_back(Store);
3061    DstOff += VTSize;
3062  }
3063
3064  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3065                     &OutChains[0], OutChains.size());
3066}
3067
3068SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3069                                SDValue Src, SDValue Size,
3070                                unsigned Align, bool AlwaysInline,
3071                                const Value *DstSV, uint64_t DstSVOff,
3072                                const Value *SrcSV, uint64_t SrcSVOff) {
3073
3074  // Check to see if we should lower the memcpy to loads and stores first.
3075  // For cases within the target-specified limits, this is the best choice.
3076  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3077  if (ConstantSize) {
3078    // Memcpy with size zero? Just return the original chain.
3079    if (ConstantSize->isNullValue())
3080      return Chain;
3081
3082    SDValue Result =
3083      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3084                              ConstantSize->getZExtValue(),
3085                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3086    if (Result.getNode())
3087      return Result;
3088  }
3089
3090  // Then check to see if we should lower the memcpy with target-specific
3091  // code. If the target chooses to do this, this is the next best.
3092  SDValue Result =
3093    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3094                                AlwaysInline,
3095                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3096  if (Result.getNode())
3097    return Result;
3098
3099  // If we really need inline code and the target declined to provide it,
3100  // use a (potentially long) sequence of loads and stores.
3101  if (AlwaysInline) {
3102    assert(ConstantSize && "AlwaysInline requires a constant size!");
3103    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3104                                   ConstantSize->getZExtValue(), Align, true,
3105                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3106  }
3107
3108  // Emit a library call.
3109  TargetLowering::ArgListTy Args;
3110  TargetLowering::ArgListEntry Entry;
3111  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3112  Entry.Node = Dst; Args.push_back(Entry);
3113  Entry.Node = Src; Args.push_back(Entry);
3114  Entry.Node = Size; Args.push_back(Entry);
3115  std::pair<SDValue,SDValue> CallResult =
3116    TLI.LowerCallTo(Chain, Type::VoidTy,
3117                    false, false, false, false, CallingConv::C, false,
3118                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3119                    Args, *this);
3120  return CallResult.second;
3121}
3122
3123SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3124                                 SDValue Src, SDValue Size,
3125                                 unsigned Align,
3126                                 const Value *DstSV, uint64_t DstSVOff,
3127                                 const Value *SrcSV, uint64_t SrcSVOff) {
3128
3129  // Check to see if we should lower the memmove to loads and stores first.
3130  // For cases within the target-specified limits, this is the best choice.
3131  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3132  if (ConstantSize) {
3133    // Memmove with size zero? Just return the original chain.
3134    if (ConstantSize->isNullValue())
3135      return Chain;
3136
3137    SDValue Result =
3138      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3139                               ConstantSize->getZExtValue(),
3140                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3141    if (Result.getNode())
3142      return Result;
3143  }
3144
3145  // Then check to see if we should lower the memmove with target-specific
3146  // code. If the target chooses to do this, this is the next best.
3147  SDValue Result =
3148    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3149                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3150  if (Result.getNode())
3151    return Result;
3152
3153  // Emit a library call.
3154  TargetLowering::ArgListTy Args;
3155  TargetLowering::ArgListEntry Entry;
3156  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3157  Entry.Node = Dst; Args.push_back(Entry);
3158  Entry.Node = Src; Args.push_back(Entry);
3159  Entry.Node = Size; Args.push_back(Entry);
3160  std::pair<SDValue,SDValue> CallResult =
3161    TLI.LowerCallTo(Chain, Type::VoidTy,
3162                    false, false, false, false, CallingConv::C, false,
3163                    getExternalSymbol("memmove", TLI.getPointerTy()),
3164                    Args, *this);
3165  return CallResult.second;
3166}
3167
3168SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3169                                SDValue Src, SDValue Size,
3170                                unsigned Align,
3171                                const Value *DstSV, uint64_t DstSVOff) {
3172
3173  // Check to see if we should lower the memset to stores first.
3174  // For cases within the target-specified limits, this is the best choice.
3175  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3176  if (ConstantSize) {
3177    // Memset with size zero? Just return the original chain.
3178    if (ConstantSize->isNullValue())
3179      return Chain;
3180
3181    SDValue Result =
3182      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3183                      Align, DstSV, DstSVOff);
3184    if (Result.getNode())
3185      return Result;
3186  }
3187
3188  // Then check to see if we should lower the memset with target-specific
3189  // code. If the target chooses to do this, this is the next best.
3190  SDValue Result =
3191    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3192                                DstSV, DstSVOff);
3193  if (Result.getNode())
3194    return Result;
3195
3196  // Emit a library call.
3197  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3198  TargetLowering::ArgListTy Args;
3199  TargetLowering::ArgListEntry Entry;
3200  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3201  Args.push_back(Entry);
3202  // Extend or truncate the argument to be an i32 value for the call.
3203  if (Src.getValueType().bitsGT(MVT::i32))
3204    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3205  else
3206    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3207  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3208  Args.push_back(Entry);
3209  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3210  Args.push_back(Entry);
3211  std::pair<SDValue,SDValue> CallResult =
3212    TLI.LowerCallTo(Chain, Type::VoidTy,
3213                    false, false, false, false, CallingConv::C, false,
3214                    getExternalSymbol("memset", TLI.getPointerTy()),
3215                    Args, *this);
3216  return CallResult.second;
3217}
3218
3219SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3220                                SDValue Ptr, SDValue Cmp,
3221                                SDValue Swp, const Value* PtrVal,
3222                                unsigned Alignment) {
3223  assert((Opcode == ISD::ATOMIC_CMP_SWAP_8  ||
3224          Opcode == ISD::ATOMIC_CMP_SWAP_16 ||
3225          Opcode == ISD::ATOMIC_CMP_SWAP_32 ||
3226          Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op");
3227  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3228
3229  MVT VT = Cmp.getValueType();
3230
3231  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3232    Alignment = getMVTAlignment(VT);
3233
3234  SDVTList VTs = getVTList(VT, MVT::Other);
3235  FoldingSetNodeID ID;
3236  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3237  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3238  void* IP = 0;
3239  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3240    return SDValue(E, 0);
3241  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3242  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3243  CSEMap.InsertNode(N, IP);
3244  AllNodes.push_back(N);
3245  return SDValue(N, 0);
3246}
3247
3248SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3249                                SDValue Ptr, SDValue Val,
3250                                const Value* PtrVal,
3251                                unsigned Alignment) {
3252  assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 ||
3253          Opcode == ISD::ATOMIC_LOAD_SUB_8 ||
3254          Opcode == ISD::ATOMIC_LOAD_AND_8 ||
3255          Opcode == ISD::ATOMIC_LOAD_OR_8 ||
3256          Opcode == ISD::ATOMIC_LOAD_XOR_8 ||
3257          Opcode == ISD::ATOMIC_LOAD_NAND_8 ||
3258          Opcode == ISD::ATOMIC_LOAD_MIN_8 ||
3259          Opcode == ISD::ATOMIC_LOAD_MAX_8 ||
3260          Opcode == ISD::ATOMIC_LOAD_UMIN_8 ||
3261          Opcode == ISD::ATOMIC_LOAD_UMAX_8 ||
3262          Opcode == ISD::ATOMIC_SWAP_8 ||
3263          Opcode == ISD::ATOMIC_LOAD_ADD_16 ||
3264          Opcode == ISD::ATOMIC_LOAD_SUB_16 ||
3265          Opcode == ISD::ATOMIC_LOAD_AND_16 ||
3266          Opcode == ISD::ATOMIC_LOAD_OR_16 ||
3267          Opcode == ISD::ATOMIC_LOAD_XOR_16 ||
3268          Opcode == ISD::ATOMIC_LOAD_NAND_16 ||
3269          Opcode == ISD::ATOMIC_LOAD_MIN_16 ||
3270          Opcode == ISD::ATOMIC_LOAD_MAX_16 ||
3271          Opcode == ISD::ATOMIC_LOAD_UMIN_16 ||
3272          Opcode == ISD::ATOMIC_LOAD_UMAX_16 ||
3273          Opcode == ISD::ATOMIC_SWAP_16 ||
3274          Opcode == ISD::ATOMIC_LOAD_ADD_32 ||
3275          Opcode == ISD::ATOMIC_LOAD_SUB_32 ||
3276          Opcode == ISD::ATOMIC_LOAD_AND_32 ||
3277          Opcode == ISD::ATOMIC_LOAD_OR_32 ||
3278          Opcode == ISD::ATOMIC_LOAD_XOR_32 ||
3279          Opcode == ISD::ATOMIC_LOAD_NAND_32 ||
3280          Opcode == ISD::ATOMIC_LOAD_MIN_32 ||
3281          Opcode == ISD::ATOMIC_LOAD_MAX_32 ||
3282          Opcode == ISD::ATOMIC_LOAD_UMIN_32 ||
3283          Opcode == ISD::ATOMIC_LOAD_UMAX_32 ||
3284          Opcode == ISD::ATOMIC_SWAP_32 ||
3285          Opcode == ISD::ATOMIC_LOAD_ADD_64 ||
3286          Opcode == ISD::ATOMIC_LOAD_SUB_64 ||
3287          Opcode == ISD::ATOMIC_LOAD_AND_64 ||
3288          Opcode == ISD::ATOMIC_LOAD_OR_64 ||
3289          Opcode == ISD::ATOMIC_LOAD_XOR_64 ||
3290          Opcode == ISD::ATOMIC_LOAD_NAND_64 ||
3291          Opcode == ISD::ATOMIC_LOAD_MIN_64 ||
3292          Opcode == ISD::ATOMIC_LOAD_MAX_64 ||
3293          Opcode == ISD::ATOMIC_LOAD_UMIN_64 ||
3294          Opcode == ISD::ATOMIC_LOAD_UMAX_64 ||
3295          Opcode == ISD::ATOMIC_SWAP_64)        && "Invalid Atomic Op");
3296
3297  MVT VT = Val.getValueType();
3298
3299  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3300    Alignment = getMVTAlignment(VT);
3301
3302  SDVTList VTs = getVTList(VT, MVT::Other);
3303  FoldingSetNodeID ID;
3304  SDValue Ops[] = {Chain, Ptr, Val};
3305  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3306  void* IP = 0;
3307  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3308    return SDValue(E, 0);
3309  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3310  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3311  CSEMap.InsertNode(N, IP);
3312  AllNodes.push_back(N);
3313  return SDValue(N, 0);
3314}
3315
3316/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3317/// Allowed to return something different (and simpler) if Simplify is true.
3318SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3319                                     bool Simplify) {
3320  if (Simplify && NumOps == 1)
3321    return Ops[0];
3322
3323  SmallVector<MVT, 4> VTs;
3324  VTs.reserve(NumOps);
3325  for (unsigned i = 0; i < NumOps; ++i)
3326    VTs.push_back(Ops[i].getValueType());
3327  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3328}
3329
3330SDValue
3331SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3332                      bool IsInreg, SDVTList VTs,
3333                      const SDValue *Operands, unsigned NumOperands) {
3334  // Do not include isTailCall in the folding set profile.
3335  FoldingSetNodeID ID;
3336  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3337  ID.AddInteger(CallingConv);
3338  ID.AddInteger(IsVarArgs);
3339  void *IP = 0;
3340  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3341    // Instead of including isTailCall in the folding set, we just
3342    // set the flag of the existing node.
3343    if (!IsTailCall)
3344      cast<CallSDNode>(E)->setNotTailCall();
3345    return SDValue(E, 0);
3346  }
3347  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3348  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3349                     VTs, Operands, NumOperands);
3350  CSEMap.InsertNode(N, IP);
3351  AllNodes.push_back(N);
3352  return SDValue(N, 0);
3353}
3354
3355SDValue
3356SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3357                      MVT VT, SDValue Chain,
3358                      SDValue Ptr, SDValue Offset,
3359                      const Value *SV, int SVOffset, MVT EVT,
3360                      bool isVolatile, unsigned Alignment) {
3361  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3362    Alignment = getMVTAlignment(VT);
3363
3364  if (VT == EVT) {
3365    ExtType = ISD::NON_EXTLOAD;
3366  } else if (ExtType == ISD::NON_EXTLOAD) {
3367    assert(VT == EVT && "Non-extending load from different memory type!");
3368  } else {
3369    // Extending load.
3370    if (VT.isVector())
3371      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3372             "Invalid vector extload!");
3373    else
3374      assert(EVT.bitsLT(VT) &&
3375             "Should only be an extending load, not truncating!");
3376    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3377           "Cannot sign/zero extend a FP/Vector load!");
3378    assert(VT.isInteger() == EVT.isInteger() &&
3379           "Cannot convert from FP to Int or Int -> FP!");
3380  }
3381
3382  bool Indexed = AM != ISD::UNINDEXED;
3383  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3384         "Unindexed load with an offset!");
3385
3386  SDVTList VTs = Indexed ?
3387    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3388  SDValue Ops[] = { Chain, Ptr, Offset };
3389  FoldingSetNodeID ID;
3390  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3391  ID.AddInteger(AM);
3392  ID.AddInteger(ExtType);
3393  ID.AddInteger(EVT.getRawBits());
3394  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3395  void *IP = 0;
3396  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3397    return SDValue(E, 0);
3398  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3399  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3400                     Alignment, isVolatile);
3401  CSEMap.InsertNode(N, IP);
3402  AllNodes.push_back(N);
3403  return SDValue(N, 0);
3404}
3405
3406SDValue SelectionDAG::getLoad(MVT VT,
3407                              SDValue Chain, SDValue Ptr,
3408                              const Value *SV, int SVOffset,
3409                              bool isVolatile, unsigned Alignment) {
3410  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3411  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3412                 SV, SVOffset, VT, isVolatile, Alignment);
3413}
3414
3415SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3416                                 SDValue Chain, SDValue Ptr,
3417                                 const Value *SV,
3418                                 int SVOffset, MVT EVT,
3419                                 bool isVolatile, unsigned Alignment) {
3420  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3421  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3422                 SV, SVOffset, EVT, isVolatile, Alignment);
3423}
3424
3425SDValue
3426SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3427                             SDValue Offset, ISD::MemIndexedMode AM) {
3428  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3429  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3430         "Load is already a indexed load!");
3431  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3432                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3433                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3434                 LD->isVolatile(), LD->getAlignment());
3435}
3436
3437SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3438                               SDValue Ptr, const Value *SV, int SVOffset,
3439                               bool isVolatile, unsigned Alignment) {
3440  MVT VT = Val.getValueType();
3441
3442  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3443    Alignment = getMVTAlignment(VT);
3444
3445  SDVTList VTs = getVTList(MVT::Other);
3446  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3447  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3448  FoldingSetNodeID ID;
3449  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3450  ID.AddInteger(ISD::UNINDEXED);
3451  ID.AddInteger(false);
3452  ID.AddInteger(VT.getRawBits());
3453  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3454  void *IP = 0;
3455  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3456    return SDValue(E, 0);
3457  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3458  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3459                      VT, SV, SVOffset, Alignment, isVolatile);
3460  CSEMap.InsertNode(N, IP);
3461  AllNodes.push_back(N);
3462  return SDValue(N, 0);
3463}
3464
3465SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3466                                    SDValue Ptr, const Value *SV,
3467                                    int SVOffset, MVT SVT,
3468                                    bool isVolatile, unsigned Alignment) {
3469  MVT VT = Val.getValueType();
3470
3471  if (VT == SVT)
3472    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3473
3474  assert(VT.bitsGT(SVT) && "Not a truncation?");
3475  assert(VT.isInteger() == SVT.isInteger() &&
3476         "Can't do FP-INT conversion!");
3477
3478  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3479    Alignment = getMVTAlignment(VT);
3480
3481  SDVTList VTs = getVTList(MVT::Other);
3482  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3483  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3484  FoldingSetNodeID ID;
3485  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3486  ID.AddInteger(ISD::UNINDEXED);
3487  ID.AddInteger(1);
3488  ID.AddInteger(SVT.getRawBits());
3489  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3490  void *IP = 0;
3491  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3492    return SDValue(E, 0);
3493  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3494  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3495                      SVT, SV, SVOffset, Alignment, isVolatile);
3496  CSEMap.InsertNode(N, IP);
3497  AllNodes.push_back(N);
3498  return SDValue(N, 0);
3499}
3500
3501SDValue
3502SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3503                              SDValue Offset, ISD::MemIndexedMode AM) {
3504  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3505  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3506         "Store is already a indexed store!");
3507  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3508  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3509  FoldingSetNodeID ID;
3510  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3511  ID.AddInteger(AM);
3512  ID.AddInteger(ST->isTruncatingStore());
3513  ID.AddInteger(ST->getMemoryVT().getRawBits());
3514  ID.AddInteger(ST->getRawFlags());
3515  void *IP = 0;
3516  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3517    return SDValue(E, 0);
3518  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3519  new (N) StoreSDNode(Ops, VTs, AM,
3520                      ST->isTruncatingStore(), ST->getMemoryVT(),
3521                      ST->getSrcValue(), ST->getSrcValueOffset(),
3522                      ST->getAlignment(), ST->isVolatile());
3523  CSEMap.InsertNode(N, IP);
3524  AllNodes.push_back(N);
3525  return SDValue(N, 0);
3526}
3527
3528SDValue SelectionDAG::getVAArg(MVT VT,
3529                               SDValue Chain, SDValue Ptr,
3530                               SDValue SV) {
3531  SDValue Ops[] = { Chain, Ptr, SV };
3532  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3533}
3534
3535SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3536                              const SDUse *Ops, unsigned NumOps) {
3537  switch (NumOps) {
3538  case 0: return getNode(Opcode, VT);
3539  case 1: return getNode(Opcode, VT, Ops[0]);
3540  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3541  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3542  default: break;
3543  }
3544
3545  // Copy from an SDUse array into an SDValue array for use with
3546  // the regular getNode logic.
3547  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3548  return getNode(Opcode, VT, &NewOps[0], NumOps);
3549}
3550
3551SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3552                              const SDValue *Ops, unsigned NumOps) {
3553  switch (NumOps) {
3554  case 0: return getNode(Opcode, VT);
3555  case 1: return getNode(Opcode, VT, Ops[0]);
3556  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3557  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3558  default: break;
3559  }
3560
3561  switch (Opcode) {
3562  default: break;
3563  case ISD::SELECT_CC: {
3564    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3565    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3566           "LHS and RHS of condition must have same type!");
3567    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3568           "True and False arms of SelectCC must have same type!");
3569    assert(Ops[2].getValueType() == VT &&
3570           "select_cc node must be of same type as true and false value!");
3571    break;
3572  }
3573  case ISD::BR_CC: {
3574    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3575    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3576           "LHS/RHS of comparison should match types!");
3577    break;
3578  }
3579  }
3580
3581  // Memoize nodes.
3582  SDNode *N;
3583  SDVTList VTs = getVTList(VT);
3584  if (VT != MVT::Flag) {
3585    FoldingSetNodeID ID;
3586    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3587    void *IP = 0;
3588    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3589      return SDValue(E, 0);
3590    N = NodeAllocator.Allocate<SDNode>();
3591    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3592    CSEMap.InsertNode(N, IP);
3593  } else {
3594    N = NodeAllocator.Allocate<SDNode>();
3595    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3596  }
3597  AllNodes.push_back(N);
3598#ifndef NDEBUG
3599  VerifyNode(N);
3600#endif
3601  return SDValue(N, 0);
3602}
3603
3604SDValue SelectionDAG::getNode(unsigned Opcode,
3605                              const std::vector<MVT> &ResultTys,
3606                              const SDValue *Ops, unsigned NumOps) {
3607  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3608                 Ops, NumOps);
3609}
3610
3611SDValue SelectionDAG::getNode(unsigned Opcode,
3612                              const MVT *VTs, unsigned NumVTs,
3613                              const SDValue *Ops, unsigned NumOps) {
3614  if (NumVTs == 1)
3615    return getNode(Opcode, VTs[0], Ops, NumOps);
3616  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3617}
3618
3619SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3620                              const SDValue *Ops, unsigned NumOps) {
3621  if (VTList.NumVTs == 1)
3622    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3623
3624  switch (Opcode) {
3625  // FIXME: figure out how to safely handle things like
3626  // int foo(int x) { return 1 << (x & 255); }
3627  // int bar() { return foo(256); }
3628#if 0
3629  case ISD::SRA_PARTS:
3630  case ISD::SRL_PARTS:
3631  case ISD::SHL_PARTS:
3632    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3633        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3634      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3635    else if (N3.getOpcode() == ISD::AND)
3636      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3637        // If the and is only masking out bits that cannot effect the shift,
3638        // eliminate the and.
3639        unsigned NumBits = VT.getSizeInBits()*2;
3640        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3641          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3642      }
3643    break;
3644#endif
3645  }
3646
3647  // Memoize the node unless it returns a flag.
3648  SDNode *N;
3649  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3650    FoldingSetNodeID ID;
3651    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3652    void *IP = 0;
3653    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3654      return SDValue(E, 0);
3655    if (NumOps == 1) {
3656      N = NodeAllocator.Allocate<UnarySDNode>();
3657      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3658    } else if (NumOps == 2) {
3659      N = NodeAllocator.Allocate<BinarySDNode>();
3660      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3661    } else if (NumOps == 3) {
3662      N = NodeAllocator.Allocate<TernarySDNode>();
3663      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3664    } else {
3665      N = NodeAllocator.Allocate<SDNode>();
3666      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3667    }
3668    CSEMap.InsertNode(N, IP);
3669  } else {
3670    if (NumOps == 1) {
3671      N = NodeAllocator.Allocate<UnarySDNode>();
3672      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3673    } else if (NumOps == 2) {
3674      N = NodeAllocator.Allocate<BinarySDNode>();
3675      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3676    } else if (NumOps == 3) {
3677      N = NodeAllocator.Allocate<TernarySDNode>();
3678      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3679    } else {
3680      N = NodeAllocator.Allocate<SDNode>();
3681      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3682    }
3683  }
3684  AllNodes.push_back(N);
3685#ifndef NDEBUG
3686  VerifyNode(N);
3687#endif
3688  return SDValue(N, 0);
3689}
3690
3691SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3692  return getNode(Opcode, VTList, 0, 0);
3693}
3694
3695SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3696                                SDValue N1) {
3697  SDValue Ops[] = { N1 };
3698  return getNode(Opcode, VTList, Ops, 1);
3699}
3700
3701SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3702                              SDValue N1, SDValue N2) {
3703  SDValue Ops[] = { N1, N2 };
3704  return getNode(Opcode, VTList, Ops, 2);
3705}
3706
3707SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3708                              SDValue N1, SDValue N2, SDValue N3) {
3709  SDValue Ops[] = { N1, N2, N3 };
3710  return getNode(Opcode, VTList, Ops, 3);
3711}
3712
3713SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3714                              SDValue N1, SDValue N2, SDValue N3,
3715                              SDValue N4) {
3716  SDValue Ops[] = { N1, N2, N3, N4 };
3717  return getNode(Opcode, VTList, Ops, 4);
3718}
3719
3720SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3721                              SDValue N1, SDValue N2, SDValue N3,
3722                              SDValue N4, SDValue N5) {
3723  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3724  return getNode(Opcode, VTList, Ops, 5);
3725}
3726
3727SDVTList SelectionDAG::getVTList(MVT VT) {
3728  return makeVTList(SDNode::getValueTypeList(VT), 1);
3729}
3730
3731SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3732  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3733       E = VTList.rend(); I != E; ++I)
3734    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3735      return *I;
3736
3737  MVT *Array = Allocator.Allocate<MVT>(2);
3738  Array[0] = VT1;
3739  Array[1] = VT2;
3740  SDVTList Result = makeVTList(Array, 2);
3741  VTList.push_back(Result);
3742  return Result;
3743}
3744
3745SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3746  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3747       E = VTList.rend(); I != E; ++I)
3748    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3749                          I->VTs[2] == VT3)
3750      return *I;
3751
3752  MVT *Array = Allocator.Allocate<MVT>(3);
3753  Array[0] = VT1;
3754  Array[1] = VT2;
3755  Array[2] = VT3;
3756  SDVTList Result = makeVTList(Array, 3);
3757  VTList.push_back(Result);
3758  return Result;
3759}
3760
3761SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3762  switch (NumVTs) {
3763    case 0: assert(0 && "Cannot have nodes without results!");
3764    case 1: return getVTList(VTs[0]);
3765    case 2: return getVTList(VTs[0], VTs[1]);
3766    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3767    default: break;
3768  }
3769
3770  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3771       E = VTList.rend(); I != E; ++I) {
3772    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3773      continue;
3774
3775    bool NoMatch = false;
3776    for (unsigned i = 2; i != NumVTs; ++i)
3777      if (VTs[i] != I->VTs[i]) {
3778        NoMatch = true;
3779        break;
3780      }
3781    if (!NoMatch)
3782      return *I;
3783  }
3784
3785  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3786  std::copy(VTs, VTs+NumVTs, Array);
3787  SDVTList Result = makeVTList(Array, NumVTs);
3788  VTList.push_back(Result);
3789  return Result;
3790}
3791
3792
3793/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3794/// specified operands.  If the resultant node already exists in the DAG,
3795/// this does not modify the specified node, instead it returns the node that
3796/// already exists.  If the resultant node does not exist in the DAG, the
3797/// input node is returned.  As a degenerate case, if you specify the same
3798/// input operands as the node already has, the input node is returned.
3799SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3800  SDNode *N = InN.getNode();
3801  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3802
3803  // Check to see if there is no change.
3804  if (Op == N->getOperand(0)) return InN;
3805
3806  // See if the modified node already exists.
3807  void *InsertPos = 0;
3808  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3809    return SDValue(Existing, InN.getResNo());
3810
3811  // Nope it doesn't.  Remove the node from its current place in the maps.
3812  if (InsertPos)
3813    if (!RemoveNodeFromCSEMaps(N))
3814      InsertPos = 0;
3815
3816  // Now we update the operands.
3817  N->OperandList[0].getVal()->removeUser(0, N);
3818  N->OperandList[0] = Op;
3819  N->OperandList[0].setUser(N);
3820  Op.getNode()->addUser(0, N);
3821
3822  // If this gets put into a CSE map, add it.
3823  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3824  return InN;
3825}
3826
3827SDValue SelectionDAG::
3828UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3829  SDNode *N = InN.getNode();
3830  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3831
3832  // Check to see if there is no change.
3833  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3834    return InN;   // No operands changed, just return the input node.
3835
3836  // See if the modified node already exists.
3837  void *InsertPos = 0;
3838  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3839    return SDValue(Existing, InN.getResNo());
3840
3841  // Nope it doesn't.  Remove the node from its current place in the maps.
3842  if (InsertPos)
3843    if (!RemoveNodeFromCSEMaps(N))
3844      InsertPos = 0;
3845
3846  // Now we update the operands.
3847  if (N->OperandList[0] != Op1) {
3848    N->OperandList[0].getVal()->removeUser(0, N);
3849    N->OperandList[0] = Op1;
3850    N->OperandList[0].setUser(N);
3851    Op1.getNode()->addUser(0, N);
3852  }
3853  if (N->OperandList[1] != Op2) {
3854    N->OperandList[1].getVal()->removeUser(1, N);
3855    N->OperandList[1] = Op2;
3856    N->OperandList[1].setUser(N);
3857    Op2.getNode()->addUser(1, N);
3858  }
3859
3860  // If this gets put into a CSE map, add it.
3861  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3862  return InN;
3863}
3864
3865SDValue SelectionDAG::
3866UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3867  SDValue Ops[] = { Op1, Op2, Op3 };
3868  return UpdateNodeOperands(N, Ops, 3);
3869}
3870
3871SDValue SelectionDAG::
3872UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3873                   SDValue Op3, SDValue Op4) {
3874  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3875  return UpdateNodeOperands(N, Ops, 4);
3876}
3877
3878SDValue SelectionDAG::
3879UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3880                   SDValue Op3, SDValue Op4, SDValue Op5) {
3881  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3882  return UpdateNodeOperands(N, Ops, 5);
3883}
3884
3885SDValue SelectionDAG::
3886UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3887  SDNode *N = InN.getNode();
3888  assert(N->getNumOperands() == NumOps &&
3889         "Update with wrong number of operands");
3890
3891  // Check to see if there is no change.
3892  bool AnyChange = false;
3893  for (unsigned i = 0; i != NumOps; ++i) {
3894    if (Ops[i] != N->getOperand(i)) {
3895      AnyChange = true;
3896      break;
3897    }
3898  }
3899
3900  // No operands changed, just return the input node.
3901  if (!AnyChange) return InN;
3902
3903  // See if the modified node already exists.
3904  void *InsertPos = 0;
3905  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3906    return SDValue(Existing, InN.getResNo());
3907
3908  // Nope it doesn't.  Remove the node from its current place in the maps.
3909  if (InsertPos)
3910    if (!RemoveNodeFromCSEMaps(N))
3911      InsertPos = 0;
3912
3913  // Now we update the operands.
3914  for (unsigned i = 0; i != NumOps; ++i) {
3915    if (N->OperandList[i] != Ops[i]) {
3916      N->OperandList[i].getVal()->removeUser(i, N);
3917      N->OperandList[i] = Ops[i];
3918      N->OperandList[i].setUser(N);
3919      Ops[i].getNode()->addUser(i, N);
3920    }
3921  }
3922
3923  // If this gets put into a CSE map, add it.
3924  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3925  return InN;
3926}
3927
3928/// DropOperands - Release the operands and set this node to have
3929/// zero operands.
3930void SDNode::DropOperands() {
3931  // Unlike the code in MorphNodeTo that does this, we don't need to
3932  // watch for dead nodes here.
3933  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3934    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3935
3936  NumOperands = 0;
3937}
3938
3939/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
3940/// machine opcode.
3941///
3942SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3943                                   MVT VT) {
3944  SDVTList VTs = getVTList(VT);
3945  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
3946}
3947
3948SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3949                                   MVT VT, SDValue Op1) {
3950  SDVTList VTs = getVTList(VT);
3951  SDValue Ops[] = { Op1 };
3952  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
3953}
3954
3955SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3956                                   MVT VT, SDValue Op1,
3957                                   SDValue Op2) {
3958  SDVTList VTs = getVTList(VT);
3959  SDValue Ops[] = { Op1, Op2 };
3960  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
3961}
3962
3963SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3964                                   MVT VT, SDValue Op1,
3965                                   SDValue Op2, SDValue Op3) {
3966  SDVTList VTs = getVTList(VT);
3967  SDValue Ops[] = { Op1, Op2, Op3 };
3968  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
3969}
3970
3971SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3972                                   MVT VT, const SDValue *Ops,
3973                                   unsigned NumOps) {
3974  SDVTList VTs = getVTList(VT);
3975  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3976}
3977
3978SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3979                                   MVT VT1, MVT VT2, const SDValue *Ops,
3980                                   unsigned NumOps) {
3981  SDVTList VTs = getVTList(VT1, VT2);
3982  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3983}
3984
3985SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3986                                   MVT VT1, MVT VT2) {
3987  SDVTList VTs = getVTList(VT1, VT2);
3988  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
3989}
3990
3991SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3992                                   MVT VT1, MVT VT2, MVT VT3,
3993                                   const SDValue *Ops, unsigned NumOps) {
3994  SDVTList VTs = getVTList(VT1, VT2, VT3);
3995  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3996}
3997
3998SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3999                                   MVT VT1, MVT VT2,
4000                                   SDValue Op1) {
4001  SDVTList VTs = getVTList(VT1, VT2);
4002  SDValue Ops[] = { Op1 };
4003  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4004}
4005
4006SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4007                                   MVT VT1, MVT VT2,
4008                                   SDValue Op1, SDValue Op2) {
4009  SDVTList VTs = getVTList(VT1, VT2);
4010  SDValue Ops[] = { Op1, Op2 };
4011  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4012}
4013
4014SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4015                                   MVT VT1, MVT VT2,
4016                                   SDValue Op1, SDValue Op2,
4017                                   SDValue Op3) {
4018  SDVTList VTs = getVTList(VT1, VT2);
4019  SDValue Ops[] = { Op1, Op2, Op3 };
4020  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4021}
4022
4023SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4024                                   SDVTList VTs, const SDValue *Ops,
4025                                   unsigned NumOps) {
4026  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4027}
4028
4029SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4030                                  MVT VT) {
4031  SDVTList VTs = getVTList(VT);
4032  return MorphNodeTo(N, Opc, VTs, 0, 0);
4033}
4034
4035SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4036                                  MVT VT, SDValue Op1) {
4037  SDVTList VTs = getVTList(VT);
4038  SDValue Ops[] = { Op1 };
4039  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4040}
4041
4042SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4043                                  MVT VT, SDValue Op1,
4044                                  SDValue Op2) {
4045  SDVTList VTs = getVTList(VT);
4046  SDValue Ops[] = { Op1, Op2 };
4047  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4048}
4049
4050SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4051                                  MVT VT, SDValue Op1,
4052                                  SDValue Op2, SDValue Op3) {
4053  SDVTList VTs = getVTList(VT);
4054  SDValue Ops[] = { Op1, Op2, Op3 };
4055  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4056}
4057
4058SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4059                                  MVT VT, const SDValue *Ops,
4060                                  unsigned NumOps) {
4061  SDVTList VTs = getVTList(VT);
4062  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4063}
4064
4065SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4066                                  MVT VT1, MVT VT2, const SDValue *Ops,
4067                                  unsigned NumOps) {
4068  SDVTList VTs = getVTList(VT1, VT2);
4069  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4070}
4071
4072SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4073                                  MVT VT1, MVT VT2) {
4074  SDVTList VTs = getVTList(VT1, VT2);
4075  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4076}
4077
4078SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4079                                  MVT VT1, MVT VT2, MVT VT3,
4080                                  const SDValue *Ops, unsigned NumOps) {
4081  SDVTList VTs = getVTList(VT1, VT2, VT3);
4082  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4083}
4084
4085SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4086                                  MVT VT1, MVT VT2,
4087                                  SDValue Op1) {
4088  SDVTList VTs = getVTList(VT1, VT2);
4089  SDValue Ops[] = { Op1 };
4090  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4091}
4092
4093SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4094                                  MVT VT1, MVT VT2,
4095                                  SDValue Op1, SDValue Op2) {
4096  SDVTList VTs = getVTList(VT1, VT2);
4097  SDValue Ops[] = { Op1, Op2 };
4098  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4099}
4100
4101SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4102                                  MVT VT1, MVT VT2,
4103                                  SDValue Op1, SDValue Op2,
4104                                  SDValue Op3) {
4105  SDVTList VTs = getVTList(VT1, VT2);
4106  SDValue Ops[] = { Op1, Op2, Op3 };
4107  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4108}
4109
4110/// MorphNodeTo - These *mutate* the specified node to have the specified
4111/// return type, opcode, and operands.
4112///
4113/// Note that MorphNodeTo returns the resultant node.  If there is already a
4114/// node of the specified opcode and operands, it returns that node instead of
4115/// the current one.
4116///
4117/// Using MorphNodeTo is faster than creating a new node and swapping it in
4118/// with ReplaceAllUsesWith both because it often avoids allocating a new
4119/// node, and because it doesn't require CSE recalculation for any of
4120/// the node's users.
4121///
4122SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4123                                  SDVTList VTs, const SDValue *Ops,
4124                                  unsigned NumOps) {
4125  // If an identical node already exists, use it.
4126  void *IP = 0;
4127  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4128    FoldingSetNodeID ID;
4129    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4130    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4131      return ON;
4132  }
4133
4134  if (!RemoveNodeFromCSEMaps(N))
4135    IP = 0;
4136
4137  // Start the morphing.
4138  N->NodeType = Opc;
4139  N->ValueList = VTs.VTs;
4140  N->NumValues = VTs.NumVTs;
4141
4142  // Clear the operands list, updating used nodes to remove this from their
4143  // use list.  Keep track of any operands that become dead as a result.
4144  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4145  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4146       I != E; ++I) {
4147    SDNode *Used = I->getVal();
4148    Used->removeUser(std::distance(B, I), N);
4149    if (Used->use_empty())
4150      DeadNodeSet.insert(Used);
4151  }
4152
4153  // If NumOps is larger than the # of operands we currently have, reallocate
4154  // the operand list.
4155  if (NumOps > N->NumOperands) {
4156    if (N->OperandsNeedDelete)
4157      delete[] N->OperandList;
4158    if (N->isMachineOpcode()) {
4159      // We're creating a final node that will live unmorphed for the
4160      // remainder of the current SelectionDAG iteration, so we can allocate
4161      // the operands directly out of a pool with no recycling metadata.
4162      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4163      N->OperandsNeedDelete = false;
4164    } else {
4165      N->OperandList = new SDUse[NumOps];
4166      N->OperandsNeedDelete = true;
4167    }
4168  }
4169
4170  // Assign the new operands.
4171  N->NumOperands = NumOps;
4172  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4173    N->OperandList[i] = Ops[i];
4174    N->OperandList[i].setUser(N);
4175    SDNode *ToUse = N->OperandList[i].getVal();
4176    ToUse->addUser(i, N);
4177  }
4178
4179  // Delete any nodes that are still dead after adding the uses for the
4180  // new operands.
4181  SmallVector<SDNode *, 16> DeadNodes;
4182  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4183       E = DeadNodeSet.end(); I != E; ++I)
4184    if ((*I)->use_empty())
4185      DeadNodes.push_back(*I);
4186  RemoveDeadNodes(DeadNodes);
4187
4188  if (IP)
4189    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4190  return N;
4191}
4192
4193
4194/// getTargetNode - These are used for target selectors to create a new node
4195/// with specified return type(s), target opcode, and operands.
4196///
4197/// Note that getTargetNode returns the resultant node.  If there is already a
4198/// node of the specified opcode and operands, it returns that node instead of
4199/// the current one.
4200SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4201  return getNode(~Opcode, VT).getNode();
4202}
4203SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4204  return getNode(~Opcode, VT, Op1).getNode();
4205}
4206SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4207                                    SDValue Op1, SDValue Op2) {
4208  return getNode(~Opcode, VT, Op1, Op2).getNode();
4209}
4210SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4211                                    SDValue Op1, SDValue Op2,
4212                                    SDValue Op3) {
4213  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4214}
4215SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4216                                    const SDValue *Ops, unsigned NumOps) {
4217  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4218}
4219SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4220  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4221  SDValue Op;
4222  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4223}
4224SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4225                                    MVT VT2, SDValue Op1) {
4226  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4227  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4228}
4229SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4230                                    MVT VT2, SDValue Op1,
4231                                    SDValue Op2) {
4232  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4233  SDValue Ops[] = { Op1, Op2 };
4234  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4235}
4236SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4237                                    MVT VT2, SDValue Op1,
4238                                    SDValue Op2, SDValue Op3) {
4239  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4240  SDValue Ops[] = { Op1, Op2, Op3 };
4241  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4242}
4243SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4244                                    const SDValue *Ops, unsigned NumOps) {
4245  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4246  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4247}
4248SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4249                                    SDValue Op1, SDValue Op2) {
4250  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4251  SDValue Ops[] = { Op1, Op2 };
4252  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4253}
4254SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4255                                    SDValue Op1, SDValue Op2,
4256                                    SDValue Op3) {
4257  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4258  SDValue Ops[] = { Op1, Op2, Op3 };
4259  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4260}
4261SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4262                                    const SDValue *Ops, unsigned NumOps) {
4263  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4264  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4265}
4266SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4267                                    MVT VT2, MVT VT3, MVT VT4,
4268                                    const SDValue *Ops, unsigned NumOps) {
4269  std::vector<MVT> VTList;
4270  VTList.push_back(VT1);
4271  VTList.push_back(VT2);
4272  VTList.push_back(VT3);
4273  VTList.push_back(VT4);
4274  const MVT *VTs = getNodeValueTypes(VTList);
4275  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4276}
4277SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4278                                    const std::vector<MVT> &ResultTys,
4279                                    const SDValue *Ops, unsigned NumOps) {
4280  const MVT *VTs = getNodeValueTypes(ResultTys);
4281  return getNode(~Opcode, VTs, ResultTys.size(),
4282                 Ops, NumOps).getNode();
4283}
4284
4285/// getNodeIfExists - Get the specified node if it's already available, or
4286/// else return NULL.
4287SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4288                                      const SDValue *Ops, unsigned NumOps) {
4289  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4290    FoldingSetNodeID ID;
4291    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4292    void *IP = 0;
4293    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4294      return E;
4295  }
4296  return NULL;
4297}
4298
4299
4300/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4301/// This can cause recursive merging of nodes in the DAG.
4302///
4303/// This version assumes From has a single result value.
4304///
4305void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4306                                      DAGUpdateListener *UpdateListener) {
4307  SDNode *From = FromN.getNode();
4308  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4309         "Cannot replace with this method!");
4310  assert(From != To.getNode() && "Cannot replace uses of with self");
4311
4312  while (!From->use_empty()) {
4313    SDNode::use_iterator UI = From->use_begin();
4314    SDNode *U = *UI;
4315
4316    // This node is about to morph, remove its old self from the CSE maps.
4317    RemoveNodeFromCSEMaps(U);
4318    int operandNum = 0;
4319    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4320         I != E; ++I, ++operandNum)
4321      if (I->getVal() == From) {
4322        From->removeUser(operandNum, U);
4323        *I = To;
4324        I->setUser(U);
4325        To.getNode()->addUser(operandNum, U);
4326      }
4327
4328    // Now that we have modified U, add it back to the CSE maps.  If it already
4329    // exists there, recursively merge the results together.
4330    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4331      ReplaceAllUsesWith(U, Existing, UpdateListener);
4332      // U is now dead.  Inform the listener if it exists and delete it.
4333      if (UpdateListener)
4334        UpdateListener->NodeDeleted(U, Existing);
4335      DeleteNodeNotInCSEMaps(U);
4336    } else {
4337      // If the node doesn't already exist, we updated it.  Inform a listener if
4338      // it exists.
4339      if (UpdateListener)
4340        UpdateListener->NodeUpdated(U);
4341    }
4342  }
4343}
4344
4345/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4346/// This can cause recursive merging of nodes in the DAG.
4347///
4348/// This version assumes From/To have matching types and numbers of result
4349/// values.
4350///
4351void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4352                                      DAGUpdateListener *UpdateListener) {
4353  assert(From->getVTList().VTs == To->getVTList().VTs &&
4354         From->getNumValues() == To->getNumValues() &&
4355         "Cannot use this version of ReplaceAllUsesWith!");
4356
4357  // Handle the trivial case.
4358  if (From == To)
4359    return;
4360
4361  while (!From->use_empty()) {
4362    SDNode::use_iterator UI = From->use_begin();
4363    SDNode *U = *UI;
4364
4365    // This node is about to morph, remove its old self from the CSE maps.
4366    RemoveNodeFromCSEMaps(U);
4367    int operandNum = 0;
4368    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4369         I != E; ++I, ++operandNum)
4370      if (I->getVal() == From) {
4371        From->removeUser(operandNum, U);
4372        I->getSDValue().setNode(To);
4373        To->addUser(operandNum, U);
4374      }
4375
4376    // Now that we have modified U, add it back to the CSE maps.  If it already
4377    // exists there, recursively merge the results together.
4378    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4379      ReplaceAllUsesWith(U, Existing, UpdateListener);
4380      // U is now dead.  Inform the listener if it exists and delete it.
4381      if (UpdateListener)
4382        UpdateListener->NodeDeleted(U, Existing);
4383      DeleteNodeNotInCSEMaps(U);
4384    } else {
4385      // If the node doesn't already exist, we updated it.  Inform a listener if
4386      // it exists.
4387      if (UpdateListener)
4388        UpdateListener->NodeUpdated(U);
4389    }
4390  }
4391}
4392
4393/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4394/// This can cause recursive merging of nodes in the DAG.
4395///
4396/// This version can replace From with any result values.  To must match the
4397/// number and types of values returned by From.
4398void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4399                                      const SDValue *To,
4400                                      DAGUpdateListener *UpdateListener) {
4401  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4402    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4403
4404  while (!From->use_empty()) {
4405    SDNode::use_iterator UI = From->use_begin();
4406    SDNode *U = *UI;
4407
4408    // This node is about to morph, remove its old self from the CSE maps.
4409    RemoveNodeFromCSEMaps(U);
4410    int operandNum = 0;
4411    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4412         I != E; ++I, ++operandNum)
4413      if (I->getVal() == From) {
4414        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4415        From->removeUser(operandNum, U);
4416        *I = ToOp;
4417        I->setUser(U);
4418        ToOp.getNode()->addUser(operandNum, U);
4419      }
4420
4421    // Now that we have modified U, add it back to the CSE maps.  If it already
4422    // exists there, recursively merge the results together.
4423    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4424      ReplaceAllUsesWith(U, Existing, UpdateListener);
4425      // U is now dead.  Inform the listener if it exists and delete it.
4426      if (UpdateListener)
4427        UpdateListener->NodeDeleted(U, Existing);
4428      DeleteNodeNotInCSEMaps(U);
4429    } else {
4430      // If the node doesn't already exist, we updated it.  Inform a listener if
4431      // it exists.
4432      if (UpdateListener)
4433        UpdateListener->NodeUpdated(U);
4434    }
4435  }
4436}
4437
4438/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4439/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4440/// handled the same way as for ReplaceAllUsesWith.
4441void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4442                                             DAGUpdateListener *UpdateListener){
4443  // Handle the really simple, really trivial case efficiently.
4444  if (From == To) return;
4445
4446  // Handle the simple, trivial, case efficiently.
4447  if (From.getNode()->getNumValues() == 1) {
4448    ReplaceAllUsesWith(From, To, UpdateListener);
4449    return;
4450  }
4451
4452  // Get all of the users of From.getNode().  We want these in a nice,
4453  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4454  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4455
4456  while (!Users.empty()) {
4457    // We know that this user uses some value of From.  If it is the right
4458    // value, update it.
4459    SDNode *User = Users.back();
4460    Users.pop_back();
4461
4462    // Scan for an operand that matches From.
4463    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4464    for (; Op != E; ++Op)
4465      if (*Op == From) break;
4466
4467    // If there are no matches, the user must use some other result of From.
4468    if (Op == E) continue;
4469
4470    // Okay, we know this user needs to be updated.  Remove its old self
4471    // from the CSE maps.
4472    RemoveNodeFromCSEMaps(User);
4473
4474    // Update all operands that match "From" in case there are multiple uses.
4475    for (; Op != E; ++Op) {
4476      if (*Op == From) {
4477        From.getNode()->removeUser(Op-User->op_begin(), User);
4478        *Op = To;
4479        Op->setUser(User);
4480        To.getNode()->addUser(Op-User->op_begin(), User);
4481      }
4482    }
4483
4484    // Now that we have modified User, add it back to the CSE maps.  If it
4485    // already exists there, recursively merge the results together.
4486    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4487    if (!Existing) {
4488      if (UpdateListener) UpdateListener->NodeUpdated(User);
4489      continue;  // Continue on to next user.
4490    }
4491
4492    // If there was already an existing matching node, use ReplaceAllUsesWith
4493    // to replace the dead one with the existing one.  This can cause
4494    // recursive merging of other unrelated nodes down the line.
4495    ReplaceAllUsesWith(User, Existing, UpdateListener);
4496
4497    // User is now dead.  Notify a listener if present.
4498    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4499    DeleteNodeNotInCSEMaps(User);
4500  }
4501}
4502
4503/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4504/// uses of other values produced by From.getVal() alone.  The same value may
4505/// appear in both the From and To list.  The Deleted vector is
4506/// handled the same way as for ReplaceAllUsesWith.
4507void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4508                                              const SDValue *To,
4509                                              unsigned Num,
4510                                              DAGUpdateListener *UpdateListener){
4511  // Handle the simple, trivial case efficiently.
4512  if (Num == 1)
4513    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4514
4515  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4516  for (unsigned i = 0; i != Num; ++i)
4517    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4518         E = From[i].getNode()->use_end(); UI != E; ++UI)
4519      Users.push_back(std::make_pair(*UI, i));
4520
4521  while (!Users.empty()) {
4522    // We know that this user uses some value of From.  If it is the right
4523    // value, update it.
4524    SDNode *User = Users.back().first;
4525    unsigned i = Users.back().second;
4526    Users.pop_back();
4527
4528    // Scan for an operand that matches From.
4529    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4530    for (; Op != E; ++Op)
4531      if (*Op == From[i]) break;
4532
4533    // If there are no matches, the user must use some other result of From.
4534    if (Op == E) continue;
4535
4536    // Okay, we know this user needs to be updated.  Remove its old self
4537    // from the CSE maps.
4538    RemoveNodeFromCSEMaps(User);
4539
4540    // Update all operands that match "From" in case there are multiple uses.
4541    for (; Op != E; ++Op) {
4542      if (*Op == From[i]) {
4543        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4544        *Op = To[i];
4545        Op->setUser(User);
4546        To[i].getNode()->addUser(Op-User->op_begin(), User);
4547      }
4548    }
4549
4550    // Now that we have modified User, add it back to the CSE maps.  If it
4551    // already exists there, recursively merge the results together.
4552    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4553    if (!Existing) {
4554      if (UpdateListener) UpdateListener->NodeUpdated(User);
4555      continue;  // Continue on to next user.
4556    }
4557
4558    // If there was already an existing matching node, use ReplaceAllUsesWith
4559    // to replace the dead one with the existing one.  This can cause
4560    // recursive merging of other unrelated nodes down the line.
4561    ReplaceAllUsesWith(User, Existing, UpdateListener);
4562
4563    // User is now dead.  Notify a listener if present.
4564    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4565    DeleteNodeNotInCSEMaps(User);
4566  }
4567}
4568
4569/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4570/// based on their topological order. It returns the maximum id and a vector
4571/// of the SDNodes* in assigned order by reference.
4572unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
4573  unsigned DAGSize = AllNodes.size();
4574  std::vector<SDNode*> Sources;
4575
4576  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
4577    SDNode *N = I;
4578    unsigned Degree = N->use_size();
4579    // Temporarily use the Node Id as scratch space for the degree count.
4580    N->setNodeId(Degree);
4581    if (Degree == 0)
4582      Sources.push_back(N);
4583  }
4584
4585  TopOrder.clear();
4586  TopOrder.reserve(DAGSize);
4587  int Id = 0;
4588  while (!Sources.empty()) {
4589    SDNode *N = Sources.back();
4590    Sources.pop_back();
4591    TopOrder.push_back(N);
4592    N->setNodeId(Id++);
4593    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
4594      SDNode *P = I->getVal();
4595      unsigned Degree = P->getNodeId();
4596      --Degree;
4597      P->setNodeId(Degree);
4598      if (Degree == 0)
4599        Sources.push_back(P);
4600    }
4601  }
4602
4603  return Id;
4604}
4605
4606
4607
4608//===----------------------------------------------------------------------===//
4609//                              SDNode Class
4610//===----------------------------------------------------------------------===//
4611
4612// Out-of-line virtual method to give class a home.
4613void SDNode::ANCHOR() {}
4614void UnarySDNode::ANCHOR() {}
4615void BinarySDNode::ANCHOR() {}
4616void TernarySDNode::ANCHOR() {}
4617void HandleSDNode::ANCHOR() {}
4618void ConstantSDNode::ANCHOR() {}
4619void ConstantFPSDNode::ANCHOR() {}
4620void GlobalAddressSDNode::ANCHOR() {}
4621void FrameIndexSDNode::ANCHOR() {}
4622void JumpTableSDNode::ANCHOR() {}
4623void ConstantPoolSDNode::ANCHOR() {}
4624void BasicBlockSDNode::ANCHOR() {}
4625void SrcValueSDNode::ANCHOR() {}
4626void MemOperandSDNode::ANCHOR() {}
4627void RegisterSDNode::ANCHOR() {}
4628void DbgStopPointSDNode::ANCHOR() {}
4629void LabelSDNode::ANCHOR() {}
4630void ExternalSymbolSDNode::ANCHOR() {}
4631void CondCodeSDNode::ANCHOR() {}
4632void ARG_FLAGSSDNode::ANCHOR() {}
4633void VTSDNode::ANCHOR() {}
4634void MemSDNode::ANCHOR() {}
4635void LoadSDNode::ANCHOR() {}
4636void StoreSDNode::ANCHOR() {}
4637void AtomicSDNode::ANCHOR() {}
4638void CallSDNode::ANCHOR() {}
4639
4640HandleSDNode::~HandleSDNode() {
4641  DropOperands();
4642}
4643
4644GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4645                                         MVT VT, int o)
4646  : SDNode(isa<GlobalVariable>(GA) &&
4647           cast<GlobalVariable>(GA)->isThreadLocal() ?
4648           // Thread Local
4649           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4650           // Non Thread Local
4651           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4652           getSDVTList(VT)), Offset(o) {
4653  TheGlobal = const_cast<GlobalValue*>(GA);
4654}
4655
4656MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4657                     const Value *srcValue, int SVO,
4658                     unsigned alignment, bool vol)
4659 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4660   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4661
4662  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4663  assert(getAlignment() == alignment && "Alignment representation error!");
4664  assert(isVolatile() == vol && "Volatile representation error!");
4665}
4666
4667/// getMemOperand - Return a MachineMemOperand object describing the memory
4668/// reference performed by this memory reference.
4669MachineMemOperand MemSDNode::getMemOperand() const {
4670  int Flags;
4671  if (isa<LoadSDNode>(this))
4672    Flags = MachineMemOperand::MOLoad;
4673  else if (isa<StoreSDNode>(this))
4674    Flags = MachineMemOperand::MOStore;
4675  else {
4676    assert(isa<AtomicSDNode>(this) && "Unknown MemSDNode opcode!");
4677    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4678  }
4679
4680  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4681  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4682
4683  // Check if the memory reference references a frame index
4684  const FrameIndexSDNode *FI =
4685  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4686  if (!getSrcValue() && FI)
4687    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4688                             Flags, 0, Size, getAlignment());
4689  else
4690    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4691                             Size, getAlignment());
4692}
4693
4694/// Profile - Gather unique data for the node.
4695///
4696void SDNode::Profile(FoldingSetNodeID &ID) const {
4697  AddNodeIDNode(ID, this);
4698}
4699
4700/// getValueTypeList - Return a pointer to the specified value type.
4701///
4702const MVT *SDNode::getValueTypeList(MVT VT) {
4703  if (VT.isExtended()) {
4704    static std::set<MVT, MVT::compareRawBits> EVTs;
4705    return &(*EVTs.insert(VT).first);
4706  } else {
4707    static MVT VTs[MVT::LAST_VALUETYPE];
4708    VTs[VT.getSimpleVT()] = VT;
4709    return &VTs[VT.getSimpleVT()];
4710  }
4711}
4712
4713/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4714/// indicated value.  This method ignores uses of other values defined by this
4715/// operation.
4716bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4717  assert(Value < getNumValues() && "Bad value!");
4718
4719  // TODO: Only iterate over uses of a given value of the node
4720  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4721    if (UI.getUse().getSDValue().getResNo() == Value) {
4722      if (NUses == 0)
4723        return false;
4724      --NUses;
4725    }
4726  }
4727
4728  // Found exactly the right number of uses?
4729  return NUses == 0;
4730}
4731
4732
4733/// hasAnyUseOfValue - Return true if there are any use of the indicated
4734/// value. This method ignores uses of other values defined by this operation.
4735bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4736  assert(Value < getNumValues() && "Bad value!");
4737
4738  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4739    if (UI.getUse().getSDValue().getResNo() == Value)
4740      return true;
4741
4742  return false;
4743}
4744
4745
4746/// isOnlyUserOf - Return true if this node is the only use of N.
4747///
4748bool SDNode::isOnlyUserOf(SDNode *N) const {
4749  bool Seen = false;
4750  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4751    SDNode *User = *I;
4752    if (User == this)
4753      Seen = true;
4754    else
4755      return false;
4756  }
4757
4758  return Seen;
4759}
4760
4761/// isOperand - Return true if this node is an operand of N.
4762///
4763bool SDValue::isOperandOf(SDNode *N) const {
4764  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4765    if (*this == N->getOperand(i))
4766      return true;
4767  return false;
4768}
4769
4770bool SDNode::isOperandOf(SDNode *N) const {
4771  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4772    if (this == N->OperandList[i].getVal())
4773      return true;
4774  return false;
4775}
4776
4777/// reachesChainWithoutSideEffects - Return true if this operand (which must
4778/// be a chain) reaches the specified operand without crossing any
4779/// side-effecting instructions.  In practice, this looks through token
4780/// factors and non-volatile loads.  In order to remain efficient, this only
4781/// looks a couple of nodes in, it does not do an exhaustive search.
4782bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4783                                               unsigned Depth) const {
4784  if (*this == Dest) return true;
4785
4786  // Don't search too deeply, we just want to be able to see through
4787  // TokenFactor's etc.
4788  if (Depth == 0) return false;
4789
4790  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4791  // of the operands of the TF reach dest, then we can do the xform.
4792  if (getOpcode() == ISD::TokenFactor) {
4793    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4794      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4795        return true;
4796    return false;
4797  }
4798
4799  // Loads don't have side effects, look through them.
4800  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4801    if (!Ld->isVolatile())
4802      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4803  }
4804  return false;
4805}
4806
4807
4808static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4809                            SmallPtrSet<SDNode *, 32> &Visited) {
4810  if (found || !Visited.insert(N))
4811    return;
4812
4813  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4814    SDNode *Op = N->getOperand(i).getNode();
4815    if (Op == P) {
4816      found = true;
4817      return;
4818    }
4819    findPredecessor(Op, P, found, Visited);
4820  }
4821}
4822
4823/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4824/// is either an operand of N or it can be reached by recursively traversing
4825/// up the operands.
4826/// NOTE: this is an expensive method. Use it carefully.
4827bool SDNode::isPredecessorOf(SDNode *N) const {
4828  SmallPtrSet<SDNode *, 32> Visited;
4829  bool found = false;
4830  findPredecessor(N, this, found, Visited);
4831  return found;
4832}
4833
4834uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4835  assert(Num < NumOperands && "Invalid child # of SDNode!");
4836  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4837}
4838
4839std::string SDNode::getOperationName(const SelectionDAG *G) const {
4840  switch (getOpcode()) {
4841  default:
4842    if (getOpcode() < ISD::BUILTIN_OP_END)
4843      return "<<Unknown DAG Node>>";
4844    if (isMachineOpcode()) {
4845      if (G)
4846        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4847          if (getMachineOpcode() < TII->getNumOpcodes())
4848            return TII->get(getMachineOpcode()).getName();
4849      return "<<Unknown Machine Node>>";
4850    }
4851    if (G) {
4852      TargetLowering &TLI = G->getTargetLoweringInfo();
4853      const char *Name = TLI.getTargetNodeName(getOpcode());
4854      if (Name) return Name;
4855      return "<<Unknown Target Node>>";
4856    }
4857    return "<<Unknown Node>>";
4858
4859#ifndef NDEBUG
4860  case ISD::DELETED_NODE:
4861    return "<<Deleted Node!>>";
4862#endif
4863  case ISD::PREFETCH:      return "Prefetch";
4864  case ISD::MEMBARRIER:    return "MemBarrier";
4865  case ISD::ATOMIC_CMP_SWAP_8:  return "AtomicCmpSwap8";
4866  case ISD::ATOMIC_SWAP_8:      return "AtomicSwap8";
4867  case ISD::ATOMIC_LOAD_ADD_8:  return "AtomicLoadAdd8";
4868  case ISD::ATOMIC_LOAD_SUB_8:  return "AtomicLoadSub8";
4869  case ISD::ATOMIC_LOAD_AND_8:  return "AtomicLoadAnd8";
4870  case ISD::ATOMIC_LOAD_OR_8:   return "AtomicLoadOr8";
4871  case ISD::ATOMIC_LOAD_XOR_8:  return "AtomicLoadXor8";
4872  case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8";
4873  case ISD::ATOMIC_LOAD_MIN_8:  return "AtomicLoadMin8";
4874  case ISD::ATOMIC_LOAD_MAX_8:  return "AtomicLoadMax8";
4875  case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8";
4876  case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8";
4877  case ISD::ATOMIC_CMP_SWAP_16:  return "AtomicCmpSwap16";
4878  case ISD::ATOMIC_SWAP_16:      return "AtomicSwap16";
4879  case ISD::ATOMIC_LOAD_ADD_16:  return "AtomicLoadAdd16";
4880  case ISD::ATOMIC_LOAD_SUB_16:  return "AtomicLoadSub16";
4881  case ISD::ATOMIC_LOAD_AND_16:  return "AtomicLoadAnd16";
4882  case ISD::ATOMIC_LOAD_OR_16:   return "AtomicLoadOr16";
4883  case ISD::ATOMIC_LOAD_XOR_16:  return "AtomicLoadXor16";
4884  case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16";
4885  case ISD::ATOMIC_LOAD_MIN_16:  return "AtomicLoadMin16";
4886  case ISD::ATOMIC_LOAD_MAX_16:  return "AtomicLoadMax16";
4887  case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16";
4888  case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16";
4889  case ISD::ATOMIC_CMP_SWAP_32:  return "AtomicCmpSwap32";
4890  case ISD::ATOMIC_SWAP_32:      return "AtomicSwap32";
4891  case ISD::ATOMIC_LOAD_ADD_32:  return "AtomicLoadAdd32";
4892  case ISD::ATOMIC_LOAD_SUB_32:  return "AtomicLoadSub32";
4893  case ISD::ATOMIC_LOAD_AND_32:  return "AtomicLoadAnd32";
4894  case ISD::ATOMIC_LOAD_OR_32:   return "AtomicLoadOr32";
4895  case ISD::ATOMIC_LOAD_XOR_32:  return "AtomicLoadXor32";
4896  case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32";
4897  case ISD::ATOMIC_LOAD_MIN_32:  return "AtomicLoadMin32";
4898  case ISD::ATOMIC_LOAD_MAX_32:  return "AtomicLoadMax32";
4899  case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32";
4900  case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32";
4901  case ISD::ATOMIC_CMP_SWAP_64:  return "AtomicCmpSwap64";
4902  case ISD::ATOMIC_SWAP_64:      return "AtomicSwap64";
4903  case ISD::ATOMIC_LOAD_ADD_64:  return "AtomicLoadAdd64";
4904  case ISD::ATOMIC_LOAD_SUB_64:  return "AtomicLoadSub64";
4905  case ISD::ATOMIC_LOAD_AND_64:  return "AtomicLoadAnd64";
4906  case ISD::ATOMIC_LOAD_OR_64:   return "AtomicLoadOr64";
4907  case ISD::ATOMIC_LOAD_XOR_64:  return "AtomicLoadXor64";
4908  case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64";
4909  case ISD::ATOMIC_LOAD_MIN_64:  return "AtomicLoadMin64";
4910  case ISD::ATOMIC_LOAD_MAX_64:  return "AtomicLoadMax64";
4911  case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64";
4912  case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64";
4913  case ISD::PCMARKER:      return "PCMarker";
4914  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4915  case ISD::SRCVALUE:      return "SrcValue";
4916  case ISD::MEMOPERAND:    return "MemOperand";
4917  case ISD::EntryToken:    return "EntryToken";
4918  case ISD::TokenFactor:   return "TokenFactor";
4919  case ISD::AssertSext:    return "AssertSext";
4920  case ISD::AssertZext:    return "AssertZext";
4921
4922  case ISD::BasicBlock:    return "BasicBlock";
4923  case ISD::ARG_FLAGS:     return "ArgFlags";
4924  case ISD::VALUETYPE:     return "ValueType";
4925  case ISD::Register:      return "Register";
4926
4927  case ISD::Constant:      return "Constant";
4928  case ISD::ConstantFP:    return "ConstantFP";
4929  case ISD::GlobalAddress: return "GlobalAddress";
4930  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4931  case ISD::FrameIndex:    return "FrameIndex";
4932  case ISD::JumpTable:     return "JumpTable";
4933  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4934  case ISD::RETURNADDR: return "RETURNADDR";
4935  case ISD::FRAMEADDR: return "FRAMEADDR";
4936  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4937  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4938  case ISD::EHSELECTION: return "EHSELECTION";
4939  case ISD::EH_RETURN: return "EH_RETURN";
4940  case ISD::ConstantPool:  return "ConstantPool";
4941  case ISD::ExternalSymbol: return "ExternalSymbol";
4942  case ISD::INTRINSIC_WO_CHAIN: {
4943    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
4944    return Intrinsic::getName((Intrinsic::ID)IID);
4945  }
4946  case ISD::INTRINSIC_VOID:
4947  case ISD::INTRINSIC_W_CHAIN: {
4948    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
4949    return Intrinsic::getName((Intrinsic::ID)IID);
4950  }
4951
4952  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4953  case ISD::TargetConstant: return "TargetConstant";
4954  case ISD::TargetConstantFP:return "TargetConstantFP";
4955  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4956  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4957  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4958  case ISD::TargetJumpTable:  return "TargetJumpTable";
4959  case ISD::TargetConstantPool:  return "TargetConstantPool";
4960  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4961
4962  case ISD::CopyToReg:     return "CopyToReg";
4963  case ISD::CopyFromReg:   return "CopyFromReg";
4964  case ISD::UNDEF:         return "undef";
4965  case ISD::MERGE_VALUES:  return "merge_values";
4966  case ISD::INLINEASM:     return "inlineasm";
4967  case ISD::DBG_LABEL:     return "dbg_label";
4968  case ISD::EH_LABEL:      return "eh_label";
4969  case ISD::DECLARE:       return "declare";
4970  case ISD::HANDLENODE:    return "handlenode";
4971  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4972  case ISD::CALL:          return "call";
4973
4974  // Unary operators
4975  case ISD::FABS:   return "fabs";
4976  case ISD::FNEG:   return "fneg";
4977  case ISD::FSQRT:  return "fsqrt";
4978  case ISD::FSIN:   return "fsin";
4979  case ISD::FCOS:   return "fcos";
4980  case ISD::FPOWI:  return "fpowi";
4981  case ISD::FPOW:   return "fpow";
4982  case ISD::FTRUNC: return "ftrunc";
4983  case ISD::FFLOOR: return "ffloor";
4984  case ISD::FCEIL:  return "fceil";
4985  case ISD::FRINT:  return "frint";
4986  case ISD::FNEARBYINT: return "fnearbyint";
4987
4988  // Binary operators
4989  case ISD::ADD:    return "add";
4990  case ISD::SUB:    return "sub";
4991  case ISD::MUL:    return "mul";
4992  case ISD::MULHU:  return "mulhu";
4993  case ISD::MULHS:  return "mulhs";
4994  case ISD::SDIV:   return "sdiv";
4995  case ISD::UDIV:   return "udiv";
4996  case ISD::SREM:   return "srem";
4997  case ISD::UREM:   return "urem";
4998  case ISD::SMUL_LOHI:  return "smul_lohi";
4999  case ISD::UMUL_LOHI:  return "umul_lohi";
5000  case ISD::SDIVREM:    return "sdivrem";
5001  case ISD::UDIVREM:    return "udivrem";
5002  case ISD::AND:    return "and";
5003  case ISD::OR:     return "or";
5004  case ISD::XOR:    return "xor";
5005  case ISD::SHL:    return "shl";
5006  case ISD::SRA:    return "sra";
5007  case ISD::SRL:    return "srl";
5008  case ISD::ROTL:   return "rotl";
5009  case ISD::ROTR:   return "rotr";
5010  case ISD::FADD:   return "fadd";
5011  case ISD::FSUB:   return "fsub";
5012  case ISD::FMUL:   return "fmul";
5013  case ISD::FDIV:   return "fdiv";
5014  case ISD::FREM:   return "frem";
5015  case ISD::FCOPYSIGN: return "fcopysign";
5016  case ISD::FGETSIGN:  return "fgetsign";
5017
5018  case ISD::SETCC:       return "setcc";
5019  case ISD::VSETCC:      return "vsetcc";
5020  case ISD::SELECT:      return "select";
5021  case ISD::SELECT_CC:   return "select_cc";
5022  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5023  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5024  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5025  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5026  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5027  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5028  case ISD::CARRY_FALSE:         return "carry_false";
5029  case ISD::ADDC:        return "addc";
5030  case ISD::ADDE:        return "adde";
5031  case ISD::SUBC:        return "subc";
5032  case ISD::SUBE:        return "sube";
5033  case ISD::SHL_PARTS:   return "shl_parts";
5034  case ISD::SRA_PARTS:   return "sra_parts";
5035  case ISD::SRL_PARTS:   return "srl_parts";
5036
5037  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5038  case ISD::INSERT_SUBREG:      return "insert_subreg";
5039
5040  // Conversion operators.
5041  case ISD::SIGN_EXTEND: return "sign_extend";
5042  case ISD::ZERO_EXTEND: return "zero_extend";
5043  case ISD::ANY_EXTEND:  return "any_extend";
5044  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5045  case ISD::TRUNCATE:    return "truncate";
5046  case ISD::FP_ROUND:    return "fp_round";
5047  case ISD::FLT_ROUNDS_: return "flt_rounds";
5048  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5049  case ISD::FP_EXTEND:   return "fp_extend";
5050
5051  case ISD::SINT_TO_FP:  return "sint_to_fp";
5052  case ISD::UINT_TO_FP:  return "uint_to_fp";
5053  case ISD::FP_TO_SINT:  return "fp_to_sint";
5054  case ISD::FP_TO_UINT:  return "fp_to_uint";
5055  case ISD::BIT_CONVERT: return "bit_convert";
5056
5057    // Control flow instructions
5058  case ISD::BR:      return "br";
5059  case ISD::BRIND:   return "brind";
5060  case ISD::BR_JT:   return "br_jt";
5061  case ISD::BRCOND:  return "brcond";
5062  case ISD::BR_CC:   return "br_cc";
5063  case ISD::RET:     return "ret";
5064  case ISD::CALLSEQ_START:  return "callseq_start";
5065  case ISD::CALLSEQ_END:    return "callseq_end";
5066
5067    // Other operators
5068  case ISD::LOAD:               return "load";
5069  case ISD::STORE:              return "store";
5070  case ISD::VAARG:              return "vaarg";
5071  case ISD::VACOPY:             return "vacopy";
5072  case ISD::VAEND:              return "vaend";
5073  case ISD::VASTART:            return "vastart";
5074  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5075  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5076  case ISD::BUILD_PAIR:         return "build_pair";
5077  case ISD::STACKSAVE:          return "stacksave";
5078  case ISD::STACKRESTORE:       return "stackrestore";
5079  case ISD::TRAP:               return "trap";
5080
5081  // Bit manipulation
5082  case ISD::BSWAP:   return "bswap";
5083  case ISD::CTPOP:   return "ctpop";
5084  case ISD::CTTZ:    return "cttz";
5085  case ISD::CTLZ:    return "ctlz";
5086
5087  // Debug info
5088  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5089  case ISD::DEBUG_LOC: return "debug_loc";
5090
5091  // Trampolines
5092  case ISD::TRAMPOLINE: return "trampoline";
5093
5094  case ISD::CONDCODE:
5095    switch (cast<CondCodeSDNode>(this)->get()) {
5096    default: assert(0 && "Unknown setcc condition!");
5097    case ISD::SETOEQ:  return "setoeq";
5098    case ISD::SETOGT:  return "setogt";
5099    case ISD::SETOGE:  return "setoge";
5100    case ISD::SETOLT:  return "setolt";
5101    case ISD::SETOLE:  return "setole";
5102    case ISD::SETONE:  return "setone";
5103
5104    case ISD::SETO:    return "seto";
5105    case ISD::SETUO:   return "setuo";
5106    case ISD::SETUEQ:  return "setue";
5107    case ISD::SETUGT:  return "setugt";
5108    case ISD::SETUGE:  return "setuge";
5109    case ISD::SETULT:  return "setult";
5110    case ISD::SETULE:  return "setule";
5111    case ISD::SETUNE:  return "setune";
5112
5113    case ISD::SETEQ:   return "seteq";
5114    case ISD::SETGT:   return "setgt";
5115    case ISD::SETGE:   return "setge";
5116    case ISD::SETLT:   return "setlt";
5117    case ISD::SETLE:   return "setle";
5118    case ISD::SETNE:   return "setne";
5119    }
5120  }
5121}
5122
5123const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5124  switch (AM) {
5125  default:
5126    return "";
5127  case ISD::PRE_INC:
5128    return "<pre-inc>";
5129  case ISD::PRE_DEC:
5130    return "<pre-dec>";
5131  case ISD::POST_INC:
5132    return "<post-inc>";
5133  case ISD::POST_DEC:
5134    return "<post-dec>";
5135  }
5136}
5137
5138std::string ISD::ArgFlagsTy::getArgFlagsString() {
5139  std::string S = "< ";
5140
5141  if (isZExt())
5142    S += "zext ";
5143  if (isSExt())
5144    S += "sext ";
5145  if (isInReg())
5146    S += "inreg ";
5147  if (isSRet())
5148    S += "sret ";
5149  if (isByVal())
5150    S += "byval ";
5151  if (isNest())
5152    S += "nest ";
5153  if (getByValAlign())
5154    S += "byval-align:" + utostr(getByValAlign()) + " ";
5155  if (getOrigAlign())
5156    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5157  if (getByValSize())
5158    S += "byval-size:" + utostr(getByValSize()) + " ";
5159  return S + ">";
5160}
5161
5162void SDNode::dump() const { dump(0); }
5163void SDNode::dump(const SelectionDAG *G) const {
5164  print(errs(), G);
5165  errs().flush();
5166}
5167
5168void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5169  OS << (void*)this << ": ";
5170
5171  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5172    if (i) OS << ",";
5173    if (getValueType(i) == MVT::Other)
5174      OS << "ch";
5175    else
5176      OS << getValueType(i).getMVTString();
5177  }
5178  OS << " = " << getOperationName(G);
5179
5180  OS << " ";
5181  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5182    if (i) OS << ", ";
5183    OS << (void*)getOperand(i).getNode();
5184    if (unsigned RN = getOperand(i).getResNo())
5185      OS << ":" << RN;
5186  }
5187
5188  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5189    SDNode *Mask = getOperand(2).getNode();
5190    OS << "<";
5191    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5192      if (i) OS << ",";
5193      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5194        OS << "u";
5195      else
5196        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5197    }
5198    OS << ">";
5199  }
5200
5201  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5202    OS << '<' << CSDN->getAPIntValue() << '>';
5203  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5204    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5205      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5206    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5207      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5208    else {
5209      OS << "<APFloat(";
5210      CSDN->getValueAPF().convertToAPInt().dump();
5211      OS << ")>";
5212    }
5213  } else if (const GlobalAddressSDNode *GADN =
5214             dyn_cast<GlobalAddressSDNode>(this)) {
5215    int offset = GADN->getOffset();
5216    OS << '<';
5217    WriteAsOperand(OS, GADN->getGlobal());
5218    OS << '>';
5219    if (offset > 0)
5220      OS << " + " << offset;
5221    else
5222      OS << " " << offset;
5223  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5224    OS << "<" << FIDN->getIndex() << ">";
5225  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5226    OS << "<" << JTDN->getIndex() << ">";
5227  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5228    int offset = CP->getOffset();
5229    if (CP->isMachineConstantPoolEntry())
5230      OS << "<" << *CP->getMachineCPVal() << ">";
5231    else
5232      OS << "<" << *CP->getConstVal() << ">";
5233    if (offset > 0)
5234      OS << " + " << offset;
5235    else
5236      OS << " " << offset;
5237  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5238    OS << "<";
5239    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5240    if (LBB)
5241      OS << LBB->getName() << " ";
5242    OS << (const void*)BBDN->getBasicBlock() << ">";
5243  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5244    if (G && R->getReg() &&
5245        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5246      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5247    } else {
5248      OS << " #" << R->getReg();
5249    }
5250  } else if (const ExternalSymbolSDNode *ES =
5251             dyn_cast<ExternalSymbolSDNode>(this)) {
5252    OS << "'" << ES->getSymbol() << "'";
5253  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5254    if (M->getValue())
5255      OS << "<" << M->getValue() << ">";
5256    else
5257      OS << "<null>";
5258  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5259    if (M->MO.getValue())
5260      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5261    else
5262      OS << "<null:" << M->MO.getOffset() << ">";
5263  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5264    OS << N->getArgFlags().getArgFlagsString();
5265  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5266    OS << ":" << N->getVT().getMVTString();
5267  }
5268  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5269    const Value *SrcValue = LD->getSrcValue();
5270    int SrcOffset = LD->getSrcValueOffset();
5271    OS << " <";
5272    if (SrcValue)
5273      OS << SrcValue;
5274    else
5275      OS << "null";
5276    OS << ":" << SrcOffset << ">";
5277
5278    bool doExt = true;
5279    switch (LD->getExtensionType()) {
5280    default: doExt = false; break;
5281    case ISD::EXTLOAD: OS << " <anyext "; break;
5282    case ISD::SEXTLOAD: OS << " <sext "; break;
5283    case ISD::ZEXTLOAD: OS << " <zext "; break;
5284    }
5285    if (doExt)
5286      OS << LD->getMemoryVT().getMVTString() << ">";
5287
5288    const char *AM = getIndexedModeName(LD->getAddressingMode());
5289    if (*AM)
5290      OS << " " << AM;
5291    if (LD->isVolatile())
5292      OS << " <volatile>";
5293    OS << " alignment=" << LD->getAlignment();
5294  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5295    const Value *SrcValue = ST->getSrcValue();
5296    int SrcOffset = ST->getSrcValueOffset();
5297    OS << " <";
5298    if (SrcValue)
5299      OS << SrcValue;
5300    else
5301      OS << "null";
5302    OS << ":" << SrcOffset << ">";
5303
5304    if (ST->isTruncatingStore())
5305      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5306
5307    const char *AM = getIndexedModeName(ST->getAddressingMode());
5308    if (*AM)
5309      OS << " " << AM;
5310    if (ST->isVolatile())
5311      OS << " <volatile>";
5312    OS << " alignment=" << ST->getAlignment();
5313  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5314    const Value *SrcValue = AT->getSrcValue();
5315    int SrcOffset = AT->getSrcValueOffset();
5316    OS << " <";
5317    if (SrcValue)
5318      OS << SrcValue;
5319    else
5320      OS << "null";
5321    OS << ":" << SrcOffset << ">";
5322    if (AT->isVolatile())
5323      OS << " <volatile>";
5324    OS << " alignment=" << AT->getAlignment();
5325  }
5326}
5327
5328static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5329  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5330    if (N->getOperand(i).getNode()->hasOneUse())
5331      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5332    else
5333      cerr << "\n" << std::string(indent+2, ' ')
5334           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5335
5336
5337  cerr << "\n" << std::string(indent, ' ');
5338  N->dump(G);
5339}
5340
5341void SelectionDAG::dump() const {
5342  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5343
5344  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5345       I != E; ++I) {
5346    const SDNode *N = I;
5347    if (!N->hasOneUse() && N != getRoot().getNode())
5348      DumpNodes(N, 2, this);
5349  }
5350
5351  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5352
5353  cerr << "\n\n";
5354}
5355
5356const Type *ConstantPoolSDNode::getType() const {
5357  if (isMachineConstantPoolEntry())
5358    return Val.MachineCPVal->getType();
5359  return Val.ConstVal->getType();
5360}
5361