SelectionDAG.cpp revision 87503a63d5756f1836f66f4c9723ec0ea30ec3ca
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Target/MRegisterInfo.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringExtras.h"
32#include <algorithm>
33#include <cmath>
34using namespace llvm;
35
36/// makeVTList - Return an instance of the SDVTList struct initialized with the
37/// specified members.
38static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
39  SDVTList Res = {VTs, NumVTs};
40  return Res;
41}
42
43//===----------------------------------------------------------------------===//
44//                              ConstantFPSDNode Class
45//===----------------------------------------------------------------------===//
46
47/// isExactlyValue - We don't rely on operator== working on double values, as
48/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
49/// As such, this method can be used to do an exact bit-for-bit comparison of
50/// two floating point values.
51bool ConstantFPSDNode::isExactlyValue(APFloat V) const {
52  return Value.bitwiseIsEqual(V);
53}
54
55//===----------------------------------------------------------------------===//
56//                              ISD Namespace
57//===----------------------------------------------------------------------===//
58
59/// isBuildVectorAllOnes - Return true if the specified node is a
60/// BUILD_VECTOR where all of the elements are ~0 or undef.
61bool ISD::isBuildVectorAllOnes(const SDNode *N) {
62  // Look through a bit convert.
63  if (N->getOpcode() == ISD::BIT_CONVERT)
64    N = N->getOperand(0).Val;
65
66  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
67
68  unsigned i = 0, e = N->getNumOperands();
69
70  // Skip over all of the undef values.
71  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
72    ++i;
73
74  // Do not accept an all-undef vector.
75  if (i == e) return false;
76
77  // Do not accept build_vectors that aren't all constants or which have non-~0
78  // elements.
79  SDOperand NotZero = N->getOperand(i);
80  if (isa<ConstantSDNode>(NotZero)) {
81    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
82      return false;
83  } else if (isa<ConstantFPSDNode>(NotZero)) {
84    MVT::ValueType VT = NotZero.getValueType();
85    if (VT== MVT::f64) {
86      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
87          (uint64_t)-1)
88        return false;
89    } else {
90      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
91          (uint32_t)-1)
92        return false;
93    }
94  } else
95    return false;
96
97  // Okay, we have at least one ~0 value, check to see if the rest match or are
98  // undefs.
99  for (++i; i != e; ++i)
100    if (N->getOperand(i) != NotZero &&
101        N->getOperand(i).getOpcode() != ISD::UNDEF)
102      return false;
103  return true;
104}
105
106
107/// isBuildVectorAllZeros - Return true if the specified node is a
108/// BUILD_VECTOR where all of the elements are 0 or undef.
109bool ISD::isBuildVectorAllZeros(const SDNode *N) {
110  // Look through a bit convert.
111  if (N->getOpcode() == ISD::BIT_CONVERT)
112    N = N->getOperand(0).Val;
113
114  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
115
116  unsigned i = 0, e = N->getNumOperands();
117
118  // Skip over all of the undef values.
119  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
120    ++i;
121
122  // Do not accept an all-undef vector.
123  if (i == e) return false;
124
125  // Do not accept build_vectors that aren't all constants or which have non-~0
126  // elements.
127  SDOperand Zero = N->getOperand(i);
128  if (isa<ConstantSDNode>(Zero)) {
129    if (!cast<ConstantSDNode>(Zero)->isNullValue())
130      return false;
131  } else if (isa<ConstantFPSDNode>(Zero)) {
132    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
133      return false;
134  } else
135    return false;
136
137  // Okay, we have at least one ~0 value, check to see if the rest match or are
138  // undefs.
139  for (++i; i != e; ++i)
140    if (N->getOperand(i) != Zero &&
141        N->getOperand(i).getOpcode() != ISD::UNDEF)
142      return false;
143  return true;
144}
145
146/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
147/// when given the operation for (X op Y).
148ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
149  // To perform this operation, we just need to swap the L and G bits of the
150  // operation.
151  unsigned OldL = (Operation >> 2) & 1;
152  unsigned OldG = (Operation >> 1) & 1;
153  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
154                       (OldL << 1) |       // New G bit
155                       (OldG << 2));        // New L bit.
156}
157
158/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
159/// 'op' is a valid SetCC operation.
160ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
161  unsigned Operation = Op;
162  if (isInteger)
163    Operation ^= 7;   // Flip L, G, E bits, but not U.
164  else
165    Operation ^= 15;  // Flip all of the condition bits.
166  if (Operation > ISD::SETTRUE2)
167    Operation &= ~8;     // Don't let N and U bits get set.
168  return ISD::CondCode(Operation);
169}
170
171
172/// isSignedOp - For an integer comparison, return 1 if the comparison is a
173/// signed operation and 2 if the result is an unsigned comparison.  Return zero
174/// if the operation does not depend on the sign of the input (setne and seteq).
175static int isSignedOp(ISD::CondCode Opcode) {
176  switch (Opcode) {
177  default: assert(0 && "Illegal integer setcc operation!");
178  case ISD::SETEQ:
179  case ISD::SETNE: return 0;
180  case ISD::SETLT:
181  case ISD::SETLE:
182  case ISD::SETGT:
183  case ISD::SETGE: return 1;
184  case ISD::SETULT:
185  case ISD::SETULE:
186  case ISD::SETUGT:
187  case ISD::SETUGE: return 2;
188  }
189}
190
191/// getSetCCOrOperation - Return the result of a logical OR between different
192/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
193/// returns SETCC_INVALID if it is not possible to represent the resultant
194/// comparison.
195ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
196                                       bool isInteger) {
197  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
198    // Cannot fold a signed integer setcc with an unsigned integer setcc.
199    return ISD::SETCC_INVALID;
200
201  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
202
203  // If the N and U bits get set then the resultant comparison DOES suddenly
204  // care about orderedness, and is true when ordered.
205  if (Op > ISD::SETTRUE2)
206    Op &= ~16;     // Clear the U bit if the N bit is set.
207
208  // Canonicalize illegal integer setcc's.
209  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
210    Op = ISD::SETNE;
211
212  return ISD::CondCode(Op);
213}
214
215/// getSetCCAndOperation - Return the result of a logical AND between different
216/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
217/// function returns zero if it is not possible to represent the resultant
218/// comparison.
219ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
220                                        bool isInteger) {
221  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
222    // Cannot fold a signed setcc with an unsigned setcc.
223    return ISD::SETCC_INVALID;
224
225  // Combine all of the condition bits.
226  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
227
228  // Canonicalize illegal integer setcc's.
229  if (isInteger) {
230    switch (Result) {
231    default: break;
232    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
233    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
234    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
235    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
236    }
237  }
238
239  return Result;
240}
241
242const TargetMachine &SelectionDAG::getTarget() const {
243  return TLI.getTargetMachine();
244}
245
246//===----------------------------------------------------------------------===//
247//                           SDNode Profile Support
248//===----------------------------------------------------------------------===//
249
250/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
251///
252static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
253  ID.AddInteger(OpC);
254}
255
256/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
257/// solely with their pointer.
258void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
259  ID.AddPointer(VTList.VTs);
260}
261
262/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
263///
264static void AddNodeIDOperands(FoldingSetNodeID &ID,
265                              const SDOperand *Ops, unsigned NumOps) {
266  for (; NumOps; --NumOps, ++Ops) {
267    ID.AddPointer(Ops->Val);
268    ID.AddInteger(Ops->ResNo);
269  }
270}
271
272static void AddNodeIDNode(FoldingSetNodeID &ID,
273                          unsigned short OpC, SDVTList VTList,
274                          const SDOperand *OpList, unsigned N) {
275  AddNodeIDOpcode(ID, OpC);
276  AddNodeIDValueTypes(ID, VTList);
277  AddNodeIDOperands(ID, OpList, N);
278}
279
280/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
281/// data.
282static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
283  AddNodeIDOpcode(ID, N->getOpcode());
284  // Add the return value info.
285  AddNodeIDValueTypes(ID, N->getVTList());
286  // Add the operand info.
287  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
288
289  // Handle SDNode leafs with special info.
290  switch (N->getOpcode()) {
291  default: break;  // Normal nodes don't need extra info.
292  case ISD::TargetConstant:
293  case ISD::Constant:
294    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
295    break;
296  case ISD::TargetConstantFP:
297  case ISD::ConstantFP:
298    ID.AddDouble(cast<ConstantFPSDNode>(N)->getValue());
299    break;
300  case ISD::TargetGlobalAddress:
301  case ISD::GlobalAddress:
302  case ISD::TargetGlobalTLSAddress:
303  case ISD::GlobalTLSAddress: {
304    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
305    ID.AddPointer(GA->getGlobal());
306    ID.AddInteger(GA->getOffset());
307    break;
308  }
309  case ISD::BasicBlock:
310    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
311    break;
312  case ISD::Register:
313    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
314    break;
315  case ISD::SRCVALUE: {
316    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
317    ID.AddPointer(SV->getValue());
318    ID.AddInteger(SV->getOffset());
319    break;
320  }
321  case ISD::FrameIndex:
322  case ISD::TargetFrameIndex:
323    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
324    break;
325  case ISD::JumpTable:
326  case ISD::TargetJumpTable:
327    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
328    break;
329  case ISD::ConstantPool:
330  case ISD::TargetConstantPool: {
331    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
332    ID.AddInteger(CP->getAlignment());
333    ID.AddInteger(CP->getOffset());
334    if (CP->isMachineConstantPoolEntry())
335      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
336    else
337      ID.AddPointer(CP->getConstVal());
338    break;
339  }
340  case ISD::LOAD: {
341    LoadSDNode *LD = cast<LoadSDNode>(N);
342    ID.AddInteger(LD->getAddressingMode());
343    ID.AddInteger(LD->getExtensionType());
344    ID.AddInteger(LD->getLoadedVT());
345    ID.AddPointer(LD->getSrcValue());
346    ID.AddInteger(LD->getSrcValueOffset());
347    ID.AddInteger(LD->getAlignment());
348    ID.AddInteger(LD->isVolatile());
349    break;
350  }
351  case ISD::STORE: {
352    StoreSDNode *ST = cast<StoreSDNode>(N);
353    ID.AddInteger(ST->getAddressingMode());
354    ID.AddInteger(ST->isTruncatingStore());
355    ID.AddInteger(ST->getStoredVT());
356    ID.AddPointer(ST->getSrcValue());
357    ID.AddInteger(ST->getSrcValueOffset());
358    ID.AddInteger(ST->getAlignment());
359    ID.AddInteger(ST->isVolatile());
360    break;
361  }
362  }
363}
364
365//===----------------------------------------------------------------------===//
366//                              SelectionDAG Class
367//===----------------------------------------------------------------------===//
368
369/// RemoveDeadNodes - This method deletes all unreachable nodes in the
370/// SelectionDAG.
371void SelectionDAG::RemoveDeadNodes() {
372  // Create a dummy node (which is not added to allnodes), that adds a reference
373  // to the root node, preventing it from being deleted.
374  HandleSDNode Dummy(getRoot());
375
376  SmallVector<SDNode*, 128> DeadNodes;
377
378  // Add all obviously-dead nodes to the DeadNodes worklist.
379  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
380    if (I->use_empty())
381      DeadNodes.push_back(I);
382
383  // Process the worklist, deleting the nodes and adding their uses to the
384  // worklist.
385  while (!DeadNodes.empty()) {
386    SDNode *N = DeadNodes.back();
387    DeadNodes.pop_back();
388
389    // Take the node out of the appropriate CSE map.
390    RemoveNodeFromCSEMaps(N);
391
392    // Next, brutally remove the operand list.  This is safe to do, as there are
393    // no cycles in the graph.
394    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
395      SDNode *Operand = I->Val;
396      Operand->removeUser(N);
397
398      // Now that we removed this operand, see if there are no uses of it left.
399      if (Operand->use_empty())
400        DeadNodes.push_back(Operand);
401    }
402    if (N->OperandsNeedDelete)
403      delete[] N->OperandList;
404    N->OperandList = 0;
405    N->NumOperands = 0;
406
407    // Finally, remove N itself.
408    AllNodes.erase(N);
409  }
410
411  // If the root changed (e.g. it was a dead load, update the root).
412  setRoot(Dummy.getValue());
413}
414
415void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
416  SmallVector<SDNode*, 16> DeadNodes;
417  DeadNodes.push_back(N);
418
419  // Process the worklist, deleting the nodes and adding their uses to the
420  // worklist.
421  while (!DeadNodes.empty()) {
422    SDNode *N = DeadNodes.back();
423    DeadNodes.pop_back();
424
425    // Take the node out of the appropriate CSE map.
426    RemoveNodeFromCSEMaps(N);
427
428    // Next, brutally remove the operand list.  This is safe to do, as there are
429    // no cycles in the graph.
430    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
431      SDNode *Operand = I->Val;
432      Operand->removeUser(N);
433
434      // Now that we removed this operand, see if there are no uses of it left.
435      if (Operand->use_empty())
436        DeadNodes.push_back(Operand);
437    }
438    if (N->OperandsNeedDelete)
439      delete[] N->OperandList;
440    N->OperandList = 0;
441    N->NumOperands = 0;
442
443    // Finally, remove N itself.
444    Deleted.push_back(N);
445    AllNodes.erase(N);
446  }
447}
448
449void SelectionDAG::DeleteNode(SDNode *N) {
450  assert(N->use_empty() && "Cannot delete a node that is not dead!");
451
452  // First take this out of the appropriate CSE map.
453  RemoveNodeFromCSEMaps(N);
454
455  // Finally, remove uses due to operands of this node, remove from the
456  // AllNodes list, and delete the node.
457  DeleteNodeNotInCSEMaps(N);
458}
459
460void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
461
462  // Remove it from the AllNodes list.
463  AllNodes.remove(N);
464
465  // Drop all of the operands and decrement used nodes use counts.
466  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
467    I->Val->removeUser(N);
468  if (N->OperandsNeedDelete)
469    delete[] N->OperandList;
470  N->OperandList = 0;
471  N->NumOperands = 0;
472
473  delete N;
474}
475
476/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
477/// correspond to it.  This is useful when we're about to delete or repurpose
478/// the node.  We don't want future request for structurally identical nodes
479/// to return N anymore.
480void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
481  bool Erased = false;
482  switch (N->getOpcode()) {
483  case ISD::HANDLENODE: return;  // noop.
484  case ISD::STRING:
485    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
486    break;
487  case ISD::CONDCODE:
488    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
489           "Cond code doesn't exist!");
490    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
491    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
492    break;
493  case ISD::ExternalSymbol:
494    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
495    break;
496  case ISD::TargetExternalSymbol:
497    Erased =
498      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
499    break;
500  case ISD::VALUETYPE:
501    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
502    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
503    break;
504  default:
505    // Remove it from the CSE Map.
506    Erased = CSEMap.RemoveNode(N);
507    break;
508  }
509#ifndef NDEBUG
510  // Verify that the node was actually in one of the CSE maps, unless it has a
511  // flag result (which cannot be CSE'd) or is one of the special cases that are
512  // not subject to CSE.
513  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
514      !N->isTargetOpcode()) {
515    N->dump(this);
516    cerr << "\n";
517    assert(0 && "Node is not in map!");
518  }
519#endif
520}
521
522/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
523/// has been taken out and modified in some way.  If the specified node already
524/// exists in the CSE maps, do not modify the maps, but return the existing node
525/// instead.  If it doesn't exist, add it and return null.
526///
527SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
528  assert(N->getNumOperands() && "This is a leaf node!");
529  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
530    return 0;    // Never add these nodes.
531
532  // Check that remaining values produced are not flags.
533  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
534    if (N->getValueType(i) == MVT::Flag)
535      return 0;   // Never CSE anything that produces a flag.
536
537  SDNode *New = CSEMap.GetOrInsertNode(N);
538  if (New != N) return New;  // Node already existed.
539  return 0;
540}
541
542/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
543/// were replaced with those specified.  If this node is never memoized,
544/// return null, otherwise return a pointer to the slot it would take.  If a
545/// node already exists with these operands, the slot will be non-null.
546SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
547                                           void *&InsertPos) {
548  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
549    return 0;    // Never add these nodes.
550
551  // Check that remaining values produced are not flags.
552  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
553    if (N->getValueType(i) == MVT::Flag)
554      return 0;   // Never CSE anything that produces a flag.
555
556  SDOperand Ops[] = { Op };
557  FoldingSetNodeID ID;
558  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
559  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
560}
561
562/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
563/// were replaced with those specified.  If this node is never memoized,
564/// return null, otherwise return a pointer to the slot it would take.  If a
565/// node already exists with these operands, the slot will be non-null.
566SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
567                                           SDOperand Op1, SDOperand Op2,
568                                           void *&InsertPos) {
569  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
570    return 0;    // Never add these nodes.
571
572  // Check that remaining values produced are not flags.
573  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
574    if (N->getValueType(i) == MVT::Flag)
575      return 0;   // Never CSE anything that produces a flag.
576
577  SDOperand Ops[] = { Op1, Op2 };
578  FoldingSetNodeID ID;
579  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
580  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
581}
582
583
584/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
585/// were replaced with those specified.  If this node is never memoized,
586/// return null, otherwise return a pointer to the slot it would take.  If a
587/// node already exists with these operands, the slot will be non-null.
588SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
589                                           const SDOperand *Ops,unsigned NumOps,
590                                           void *&InsertPos) {
591  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
592    return 0;    // Never add these nodes.
593
594  // Check that remaining values produced are not flags.
595  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
596    if (N->getValueType(i) == MVT::Flag)
597      return 0;   // Never CSE anything that produces a flag.
598
599  FoldingSetNodeID ID;
600  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
601
602  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
603    ID.AddInteger(LD->getAddressingMode());
604    ID.AddInteger(LD->getExtensionType());
605    ID.AddInteger(LD->getLoadedVT());
606    ID.AddPointer(LD->getSrcValue());
607    ID.AddInteger(LD->getSrcValueOffset());
608    ID.AddInteger(LD->getAlignment());
609    ID.AddInteger(LD->isVolatile());
610  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
611    ID.AddInteger(ST->getAddressingMode());
612    ID.AddInteger(ST->isTruncatingStore());
613    ID.AddInteger(ST->getStoredVT());
614    ID.AddPointer(ST->getSrcValue());
615    ID.AddInteger(ST->getSrcValueOffset());
616    ID.AddInteger(ST->getAlignment());
617    ID.AddInteger(ST->isVolatile());
618  }
619
620  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
621}
622
623
624SelectionDAG::~SelectionDAG() {
625  while (!AllNodes.empty()) {
626    SDNode *N = AllNodes.begin();
627    N->SetNextInBucket(0);
628    if (N->OperandsNeedDelete)
629      delete [] N->OperandList;
630    N->OperandList = 0;
631    N->NumOperands = 0;
632    AllNodes.pop_front();
633  }
634}
635
636SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
637  if (Op.getValueType() == VT) return Op;
638  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
639  return getNode(ISD::AND, Op.getValueType(), Op,
640                 getConstant(Imm, Op.getValueType()));
641}
642
643SDOperand SelectionDAG::getString(const std::string &Val) {
644  StringSDNode *&N = StringNodes[Val];
645  if (!N) {
646    N = new StringSDNode(Val);
647    AllNodes.push_back(N);
648  }
649  return SDOperand(N, 0);
650}
651
652SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
653  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
654  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
655
656  // Mask out any bits that are not valid for this constant.
657  Val &= MVT::getIntVTBitMask(VT);
658
659  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
660  FoldingSetNodeID ID;
661  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
662  ID.AddInteger(Val);
663  void *IP = 0;
664  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
665    return SDOperand(E, 0);
666  SDNode *N = new ConstantSDNode(isT, Val, VT);
667  CSEMap.InsertNode(N, IP);
668  AllNodes.push_back(N);
669  return SDOperand(N, 0);
670}
671
672SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
673                                      bool isTarget) {
674  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
675  MVT::ValueType EltVT =
676    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
677  if (EltVT == MVT::f32)
678    Val = (float)Val;  // Mask out extra precision.
679
680  // Do the map lookup using the actual bit pattern for the floating point
681  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
682  // we don't have issues with SNANs.
683  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
684  FoldingSetNodeID ID;
685  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
686  ID.AddDouble(Val);
687  void *IP = 0;
688  SDNode *N = NULL;
689  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
690    if (!MVT::isVector(VT))
691      return SDOperand(N, 0);
692  if (!N) {
693    N = new ConstantFPSDNode(isTarget, Val, EltVT);
694    CSEMap.InsertNode(N, IP);
695    AllNodes.push_back(N);
696  }
697
698  SDOperand Result(N, 0);
699  if (MVT::isVector(VT)) {
700    SmallVector<SDOperand, 8> Ops;
701    Ops.assign(MVT::getVectorNumElements(VT), Result);
702    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
703  }
704  return Result;
705}
706
707SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
708                                         MVT::ValueType VT, int Offset,
709                                         bool isTargetGA) {
710  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
711  unsigned Opc;
712  if (GVar && GVar->isThreadLocal())
713    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
714  else
715    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
716  FoldingSetNodeID ID;
717  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
718  ID.AddPointer(GV);
719  ID.AddInteger(Offset);
720  void *IP = 0;
721  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
722   return SDOperand(E, 0);
723  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
724  CSEMap.InsertNode(N, IP);
725  AllNodes.push_back(N);
726  return SDOperand(N, 0);
727}
728
729SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
730                                      bool isTarget) {
731  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
732  FoldingSetNodeID ID;
733  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
734  ID.AddInteger(FI);
735  void *IP = 0;
736  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
737    return SDOperand(E, 0);
738  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
739  CSEMap.InsertNode(N, IP);
740  AllNodes.push_back(N);
741  return SDOperand(N, 0);
742}
743
744SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
745  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
746  FoldingSetNodeID ID;
747  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
748  ID.AddInteger(JTI);
749  void *IP = 0;
750  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
751    return SDOperand(E, 0);
752  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
753  CSEMap.InsertNode(N, IP);
754  AllNodes.push_back(N);
755  return SDOperand(N, 0);
756}
757
758SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
759                                        unsigned Alignment, int Offset,
760                                        bool isTarget) {
761  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
762  FoldingSetNodeID ID;
763  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
764  ID.AddInteger(Alignment);
765  ID.AddInteger(Offset);
766  ID.AddPointer(C);
767  void *IP = 0;
768  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
769    return SDOperand(E, 0);
770  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
771  CSEMap.InsertNode(N, IP);
772  AllNodes.push_back(N);
773  return SDOperand(N, 0);
774}
775
776
777SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
778                                        MVT::ValueType VT,
779                                        unsigned Alignment, int Offset,
780                                        bool isTarget) {
781  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
782  FoldingSetNodeID ID;
783  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
784  ID.AddInteger(Alignment);
785  ID.AddInteger(Offset);
786  C->AddSelectionDAGCSEId(ID);
787  void *IP = 0;
788  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
789    return SDOperand(E, 0);
790  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
791  CSEMap.InsertNode(N, IP);
792  AllNodes.push_back(N);
793  return SDOperand(N, 0);
794}
795
796
797SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
798  FoldingSetNodeID ID;
799  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
800  ID.AddPointer(MBB);
801  void *IP = 0;
802  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
803    return SDOperand(E, 0);
804  SDNode *N = new BasicBlockSDNode(MBB);
805  CSEMap.InsertNode(N, IP);
806  AllNodes.push_back(N);
807  return SDOperand(N, 0);
808}
809
810SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
811  if ((unsigned)VT >= ValueTypeNodes.size())
812    ValueTypeNodes.resize(VT+1);
813  if (ValueTypeNodes[VT] == 0) {
814    ValueTypeNodes[VT] = new VTSDNode(VT);
815    AllNodes.push_back(ValueTypeNodes[VT]);
816  }
817
818  return SDOperand(ValueTypeNodes[VT], 0);
819}
820
821SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
822  SDNode *&N = ExternalSymbols[Sym];
823  if (N) return SDOperand(N, 0);
824  N = new ExternalSymbolSDNode(false, Sym, VT);
825  AllNodes.push_back(N);
826  return SDOperand(N, 0);
827}
828
829SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
830                                                MVT::ValueType VT) {
831  SDNode *&N = TargetExternalSymbols[Sym];
832  if (N) return SDOperand(N, 0);
833  N = new ExternalSymbolSDNode(true, Sym, VT);
834  AllNodes.push_back(N);
835  return SDOperand(N, 0);
836}
837
838SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
839  if ((unsigned)Cond >= CondCodeNodes.size())
840    CondCodeNodes.resize(Cond+1);
841
842  if (CondCodeNodes[Cond] == 0) {
843    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
844    AllNodes.push_back(CondCodeNodes[Cond]);
845  }
846  return SDOperand(CondCodeNodes[Cond], 0);
847}
848
849SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
850  FoldingSetNodeID ID;
851  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
852  ID.AddInteger(RegNo);
853  void *IP = 0;
854  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
855    return SDOperand(E, 0);
856  SDNode *N = new RegisterSDNode(RegNo, VT);
857  CSEMap.InsertNode(N, IP);
858  AllNodes.push_back(N);
859  return SDOperand(N, 0);
860}
861
862SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
863  assert((!V || isa<PointerType>(V->getType())) &&
864         "SrcValue is not a pointer?");
865
866  FoldingSetNodeID ID;
867  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
868  ID.AddPointer(V);
869  ID.AddInteger(Offset);
870  void *IP = 0;
871  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
872    return SDOperand(E, 0);
873  SDNode *N = new SrcValueSDNode(V, Offset);
874  CSEMap.InsertNode(N, IP);
875  AllNodes.push_back(N);
876  return SDOperand(N, 0);
877}
878
879SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
880                                  SDOperand N2, ISD::CondCode Cond) {
881  // These setcc operations always fold.
882  switch (Cond) {
883  default: break;
884  case ISD::SETFALSE:
885  case ISD::SETFALSE2: return getConstant(0, VT);
886  case ISD::SETTRUE:
887  case ISD::SETTRUE2:  return getConstant(1, VT);
888
889  case ISD::SETOEQ:
890  case ISD::SETOGT:
891  case ISD::SETOGE:
892  case ISD::SETOLT:
893  case ISD::SETOLE:
894  case ISD::SETONE:
895  case ISD::SETO:
896  case ISD::SETUO:
897  case ISD::SETUEQ:
898  case ISD::SETUNE:
899    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
900    break;
901  }
902
903  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
904    uint64_t C2 = N2C->getValue();
905    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
906      uint64_t C1 = N1C->getValue();
907
908      // Sign extend the operands if required
909      if (ISD::isSignedIntSetCC(Cond)) {
910        C1 = N1C->getSignExtended();
911        C2 = N2C->getSignExtended();
912      }
913
914      switch (Cond) {
915      default: assert(0 && "Unknown integer setcc!");
916      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
917      case ISD::SETNE:  return getConstant(C1 != C2, VT);
918      case ISD::SETULT: return getConstant(C1 <  C2, VT);
919      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
920      case ISD::SETULE: return getConstant(C1 <= C2, VT);
921      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
922      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
923      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
924      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
925      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
926      }
927    }
928  }
929  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
930    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
931      double C1 = N1C->getValue(), C2 = N2C->getValue();
932
933      switch (Cond) {
934      default: break; // FIXME: Implement the rest of these!
935      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
936      case ISD::SETNE:  return getConstant(C1 != C2, VT);
937      case ISD::SETLT:  return getConstant(C1 < C2, VT);
938      case ISD::SETGT:  return getConstant(C1 > C2, VT);
939      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
940      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
941      }
942    } else {
943      // Ensure that the constant occurs on the RHS.
944      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
945    }
946
947  // Could not fold it.
948  return SDOperand();
949}
950
951/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
952/// this predicate to simplify operations downstream.  Mask is known to be zero
953/// for bits that V cannot have.
954bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
955                                     unsigned Depth) const {
956  // The masks are not wide enough to represent this type!  Should use APInt.
957  if (Op.getValueType() == MVT::i128)
958    return false;
959
960  uint64_t KnownZero, KnownOne;
961  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
962  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
963  return (KnownZero & Mask) == Mask;
964}
965
966/// ComputeMaskedBits - Determine which of the bits specified in Mask are
967/// known to be either zero or one and return them in the KnownZero/KnownOne
968/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
969/// processing.
970void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
971                                     uint64_t &KnownZero, uint64_t &KnownOne,
972                                     unsigned Depth) const {
973  KnownZero = KnownOne = 0;   // Don't know anything.
974  if (Depth == 6 || Mask == 0)
975    return;  // Limit search depth.
976
977  // The masks are not wide enough to represent this type!  Should use APInt.
978  if (Op.getValueType() == MVT::i128)
979    return;
980
981  uint64_t KnownZero2, KnownOne2;
982
983  switch (Op.getOpcode()) {
984  case ISD::Constant:
985    // We know all of the bits for a constant!
986    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
987    KnownZero = ~KnownOne & Mask;
988    return;
989  case ISD::AND:
990    // If either the LHS or the RHS are Zero, the result is zero.
991    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
992    Mask &= ~KnownZero;
993    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
994    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
995    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
996
997    // Output known-1 bits are only known if set in both the LHS & RHS.
998    KnownOne &= KnownOne2;
999    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1000    KnownZero |= KnownZero2;
1001    return;
1002  case ISD::OR:
1003    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1004    Mask &= ~KnownOne;
1005    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1006    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1007    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1008
1009    // Output known-0 bits are only known if clear in both the LHS & RHS.
1010    KnownZero &= KnownZero2;
1011    // Output known-1 are known to be set if set in either the LHS | RHS.
1012    KnownOne |= KnownOne2;
1013    return;
1014  case ISD::XOR: {
1015    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1016    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1017    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1018    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1019
1020    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1021    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1022    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1023    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1024    KnownZero = KnownZeroOut;
1025    return;
1026  }
1027  case ISD::SELECT:
1028    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1029    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1030    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1031    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1032
1033    // Only known if known in both the LHS and RHS.
1034    KnownOne &= KnownOne2;
1035    KnownZero &= KnownZero2;
1036    return;
1037  case ISD::SELECT_CC:
1038    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1039    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1040    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1041    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1042
1043    // Only known if known in both the LHS and RHS.
1044    KnownOne &= KnownOne2;
1045    KnownZero &= KnownZero2;
1046    return;
1047  case ISD::SETCC:
1048    // If we know the result of a setcc has the top bits zero, use this info.
1049    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1050      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1051    return;
1052  case ISD::SHL:
1053    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1054    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1055      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1056                        KnownZero, KnownOne, Depth+1);
1057      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1058      KnownZero <<= SA->getValue();
1059      KnownOne  <<= SA->getValue();
1060      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1061    }
1062    return;
1063  case ISD::SRL:
1064    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1065    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1066      MVT::ValueType VT = Op.getValueType();
1067      unsigned ShAmt = SA->getValue();
1068
1069      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1070      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1071                        KnownZero, KnownOne, Depth+1);
1072      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1073      KnownZero &= TypeMask;
1074      KnownOne  &= TypeMask;
1075      KnownZero >>= ShAmt;
1076      KnownOne  >>= ShAmt;
1077
1078      uint64_t HighBits = (1ULL << ShAmt)-1;
1079      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1080      KnownZero |= HighBits;  // High bits known zero.
1081    }
1082    return;
1083  case ISD::SRA:
1084    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1085      MVT::ValueType VT = Op.getValueType();
1086      unsigned ShAmt = SA->getValue();
1087
1088      // Compute the new bits that are at the top now.
1089      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1090
1091      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1092      // If any of the demanded bits are produced by the sign extension, we also
1093      // demand the input sign bit.
1094      uint64_t HighBits = (1ULL << ShAmt)-1;
1095      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1096      if (HighBits & Mask)
1097        InDemandedMask |= MVT::getIntVTSignBit(VT);
1098
1099      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1100                        Depth+1);
1101      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1102      KnownZero &= TypeMask;
1103      KnownOne  &= TypeMask;
1104      KnownZero >>= ShAmt;
1105      KnownOne  >>= ShAmt;
1106
1107      // Handle the sign bits.
1108      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1109      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1110
1111      if (KnownZero & SignBit) {
1112        KnownZero |= HighBits;  // New bits are known zero.
1113      } else if (KnownOne & SignBit) {
1114        KnownOne  |= HighBits;  // New bits are known one.
1115      }
1116    }
1117    return;
1118  case ISD::SIGN_EXTEND_INREG: {
1119    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1120
1121    // Sign extension.  Compute the demanded bits in the result that are not
1122    // present in the input.
1123    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1124
1125    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1126    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1127
1128    // If the sign extended bits are demanded, we know that the sign
1129    // bit is demanded.
1130    if (NewBits)
1131      InputDemandedBits |= InSignBit;
1132
1133    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1134                      KnownZero, KnownOne, Depth+1);
1135    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1136
1137    // If the sign bit of the input is known set or clear, then we know the
1138    // top bits of the result.
1139    if (KnownZero & InSignBit) {          // Input sign bit known clear
1140      KnownZero |= NewBits;
1141      KnownOne  &= ~NewBits;
1142    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1143      KnownOne  |= NewBits;
1144      KnownZero &= ~NewBits;
1145    } else {                              // Input sign bit unknown
1146      KnownZero &= ~NewBits;
1147      KnownOne  &= ~NewBits;
1148    }
1149    return;
1150  }
1151  case ISD::CTTZ:
1152  case ISD::CTLZ:
1153  case ISD::CTPOP: {
1154    MVT::ValueType VT = Op.getValueType();
1155    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1156    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1157    KnownOne  = 0;
1158    return;
1159  }
1160  case ISD::LOAD: {
1161    if (ISD::isZEXTLoad(Op.Val)) {
1162      LoadSDNode *LD = cast<LoadSDNode>(Op);
1163      MVT::ValueType VT = LD->getLoadedVT();
1164      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1165    }
1166    return;
1167  }
1168  case ISD::ZERO_EXTEND: {
1169    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1170    uint64_t NewBits = (~InMask) & Mask;
1171    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1172                      KnownOne, Depth+1);
1173    KnownZero |= NewBits & Mask;
1174    KnownOne  &= ~NewBits;
1175    return;
1176  }
1177  case ISD::SIGN_EXTEND: {
1178    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1179    unsigned InBits    = MVT::getSizeInBits(InVT);
1180    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1181    uint64_t InSignBit = 1ULL << (InBits-1);
1182    uint64_t NewBits   = (~InMask) & Mask;
1183    uint64_t InDemandedBits = Mask & InMask;
1184
1185    // If any of the sign extended bits are demanded, we know that the sign
1186    // bit is demanded.
1187    if (NewBits & Mask)
1188      InDemandedBits |= InSignBit;
1189
1190    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1191                      KnownOne, Depth+1);
1192    // If the sign bit is known zero or one, the  top bits match.
1193    if (KnownZero & InSignBit) {
1194      KnownZero |= NewBits;
1195      KnownOne  &= ~NewBits;
1196    } else if (KnownOne & InSignBit) {
1197      KnownOne  |= NewBits;
1198      KnownZero &= ~NewBits;
1199    } else {   // Otherwise, top bits aren't known.
1200      KnownOne  &= ~NewBits;
1201      KnownZero &= ~NewBits;
1202    }
1203    return;
1204  }
1205  case ISD::ANY_EXTEND: {
1206    MVT::ValueType VT = Op.getOperand(0).getValueType();
1207    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1208                      KnownZero, KnownOne, Depth+1);
1209    return;
1210  }
1211  case ISD::TRUNCATE: {
1212    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1213    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1214    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1215    KnownZero &= OutMask;
1216    KnownOne &= OutMask;
1217    break;
1218  }
1219  case ISD::AssertZext: {
1220    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1221    uint64_t InMask = MVT::getIntVTBitMask(VT);
1222    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1223                      KnownOne, Depth+1);
1224    KnownZero |= (~InMask) & Mask;
1225    return;
1226  }
1227  case ISD::ADD: {
1228    // If either the LHS or the RHS are Zero, the result is zero.
1229    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1230    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1231    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1232    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1233
1234    // Output known-0 bits are known if clear or set in both the low clear bits
1235    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1236    // low 3 bits clear.
1237    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1238                                     CountTrailingZeros_64(~KnownZero2));
1239
1240    KnownZero = (1ULL << KnownZeroOut) - 1;
1241    KnownOne = 0;
1242    return;
1243  }
1244  case ISD::SUB: {
1245    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1246    if (!CLHS) return;
1247
1248    // We know that the top bits of C-X are clear if X contains less bits
1249    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1250    // positive if we can prove that X is >= 0 and < 16.
1251    MVT::ValueType VT = CLHS->getValueType(0);
1252    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1253      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1254      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1255      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1256      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1257
1258      // If all of the MaskV bits are known to be zero, then we know the output
1259      // top bits are zero, because we now know that the output is from [0-C].
1260      if ((KnownZero & MaskV) == MaskV) {
1261        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1262        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1263        KnownOne = 0;   // No one bits known.
1264      } else {
1265        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1266      }
1267    }
1268    return;
1269  }
1270  default:
1271    // Allow the target to implement this method for its nodes.
1272    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1273  case ISD::INTRINSIC_WO_CHAIN:
1274  case ISD::INTRINSIC_W_CHAIN:
1275  case ISD::INTRINSIC_VOID:
1276      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1277    }
1278    return;
1279  }
1280}
1281
1282/// ComputeNumSignBits - Return the number of times the sign bit of the
1283/// register is replicated into the other bits.  We know that at least 1 bit
1284/// is always equal to the sign bit (itself), but other cases can give us
1285/// information.  For example, immediately after an "SRA X, 2", we know that
1286/// the top 3 bits are all equal to each other, so we return 3.
1287unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1288  MVT::ValueType VT = Op.getValueType();
1289  assert(MVT::isInteger(VT) && "Invalid VT!");
1290  unsigned VTBits = MVT::getSizeInBits(VT);
1291  unsigned Tmp, Tmp2;
1292
1293  if (Depth == 6)
1294    return 1;  // Limit search depth.
1295
1296  switch (Op.getOpcode()) {
1297  default: break;
1298  case ISD::AssertSext:
1299    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1300    return VTBits-Tmp+1;
1301  case ISD::AssertZext:
1302    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1303    return VTBits-Tmp;
1304
1305  case ISD::Constant: {
1306    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1307    // If negative, invert the bits, then look at it.
1308    if (Val & MVT::getIntVTSignBit(VT))
1309      Val = ~Val;
1310
1311    // Shift the bits so they are the leading bits in the int64_t.
1312    Val <<= 64-VTBits;
1313
1314    // Return # leading zeros.  We use 'min' here in case Val was zero before
1315    // shifting.  We don't want to return '64' as for an i32 "0".
1316    return std::min(VTBits, CountLeadingZeros_64(Val));
1317  }
1318
1319  case ISD::SIGN_EXTEND:
1320    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1321    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1322
1323  case ISD::SIGN_EXTEND_INREG:
1324    // Max of the input and what this extends.
1325    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1326    Tmp = VTBits-Tmp+1;
1327
1328    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1329    return std::max(Tmp, Tmp2);
1330
1331  case ISD::SRA:
1332    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1333    // SRA X, C   -> adds C sign bits.
1334    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1335      Tmp += C->getValue();
1336      if (Tmp > VTBits) Tmp = VTBits;
1337    }
1338    return Tmp;
1339  case ISD::SHL:
1340    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1341      // shl destroys sign bits.
1342      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1343      if (C->getValue() >= VTBits ||      // Bad shift.
1344          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1345      return Tmp - C->getValue();
1346    }
1347    break;
1348  case ISD::AND:
1349  case ISD::OR:
1350  case ISD::XOR:    // NOT is handled here.
1351    // Logical binary ops preserve the number of sign bits.
1352    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1353    if (Tmp == 1) return 1;  // Early out.
1354    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1355    return std::min(Tmp, Tmp2);
1356
1357  case ISD::SELECT:
1358    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1359    if (Tmp == 1) return 1;  // Early out.
1360    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1361    return std::min(Tmp, Tmp2);
1362
1363  case ISD::SETCC:
1364    // If setcc returns 0/-1, all bits are sign bits.
1365    if (TLI.getSetCCResultContents() ==
1366        TargetLowering::ZeroOrNegativeOneSetCCResult)
1367      return VTBits;
1368    break;
1369  case ISD::ROTL:
1370  case ISD::ROTR:
1371    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1372      unsigned RotAmt = C->getValue() & (VTBits-1);
1373
1374      // Handle rotate right by N like a rotate left by 32-N.
1375      if (Op.getOpcode() == ISD::ROTR)
1376        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1377
1378      // If we aren't rotating out all of the known-in sign bits, return the
1379      // number that are left.  This handles rotl(sext(x), 1) for example.
1380      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1381      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1382    }
1383    break;
1384  case ISD::ADD:
1385    // Add can have at most one carry bit.  Thus we know that the output
1386    // is, at worst, one more bit than the inputs.
1387    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1388    if (Tmp == 1) return 1;  // Early out.
1389
1390    // Special case decrementing a value (ADD X, -1):
1391    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1392      if (CRHS->isAllOnesValue()) {
1393        uint64_t KnownZero, KnownOne;
1394        uint64_t Mask = MVT::getIntVTBitMask(VT);
1395        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1396
1397        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1398        // sign bits set.
1399        if ((KnownZero|1) == Mask)
1400          return VTBits;
1401
1402        // If we are subtracting one from a positive number, there is no carry
1403        // out of the result.
1404        if (KnownZero & MVT::getIntVTSignBit(VT))
1405          return Tmp;
1406      }
1407
1408    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1409    if (Tmp2 == 1) return 1;
1410      return std::min(Tmp, Tmp2)-1;
1411    break;
1412
1413  case ISD::SUB:
1414    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1415    if (Tmp2 == 1) return 1;
1416
1417    // Handle NEG.
1418    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1419      if (CLHS->getValue() == 0) {
1420        uint64_t KnownZero, KnownOne;
1421        uint64_t Mask = MVT::getIntVTBitMask(VT);
1422        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1423        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1424        // sign bits set.
1425        if ((KnownZero|1) == Mask)
1426          return VTBits;
1427
1428        // If the input is known to be positive (the sign bit is known clear),
1429        // the output of the NEG has the same number of sign bits as the input.
1430        if (KnownZero & MVT::getIntVTSignBit(VT))
1431          return Tmp2;
1432
1433        // Otherwise, we treat this like a SUB.
1434      }
1435
1436    // Sub can have at most one carry bit.  Thus we know that the output
1437    // is, at worst, one more bit than the inputs.
1438    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1439    if (Tmp == 1) return 1;  // Early out.
1440      return std::min(Tmp, Tmp2)-1;
1441    break;
1442  case ISD::TRUNCATE:
1443    // FIXME: it's tricky to do anything useful for this, but it is an important
1444    // case for targets like X86.
1445    break;
1446  }
1447
1448  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1449  if (Op.getOpcode() == ISD::LOAD) {
1450    LoadSDNode *LD = cast<LoadSDNode>(Op);
1451    unsigned ExtType = LD->getExtensionType();
1452    switch (ExtType) {
1453    default: break;
1454    case ISD::SEXTLOAD:    // '17' bits known
1455      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1456      return VTBits-Tmp+1;
1457    case ISD::ZEXTLOAD:    // '16' bits known
1458      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1459      return VTBits-Tmp;
1460    }
1461  }
1462
1463  // Allow the target to implement this method for its nodes.
1464  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1465      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1466      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1467      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1468    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1469    if (NumBits > 1) return NumBits;
1470  }
1471
1472  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1473  // use this information.
1474  uint64_t KnownZero, KnownOne;
1475  uint64_t Mask = MVT::getIntVTBitMask(VT);
1476  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1477
1478  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1479  if (KnownZero & SignBit) {        // SignBit is 0
1480    Mask = KnownZero;
1481  } else if (KnownOne & SignBit) {  // SignBit is 1;
1482    Mask = KnownOne;
1483  } else {
1484    // Nothing known.
1485    return 1;
1486  }
1487
1488  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1489  // the number of identical bits in the top of the input value.
1490  Mask ^= ~0ULL;
1491  Mask <<= 64-VTBits;
1492  // Return # leading zeros.  We use 'min' here in case Val was zero before
1493  // shifting.  We don't want to return '64' as for an i32 "0".
1494  return std::min(VTBits, CountLeadingZeros_64(Mask));
1495}
1496
1497
1498/// getNode - Gets or creates the specified node.
1499///
1500SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1501  FoldingSetNodeID ID;
1502  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1503  void *IP = 0;
1504  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1505    return SDOperand(E, 0);
1506  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1507  CSEMap.InsertNode(N, IP);
1508
1509  AllNodes.push_back(N);
1510  return SDOperand(N, 0);
1511}
1512
1513SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1514                                SDOperand Operand) {
1515  unsigned Tmp1;
1516  // Constant fold unary operations with an integer constant operand.
1517  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1518    uint64_t Val = C->getValue();
1519    switch (Opcode) {
1520    default: break;
1521    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1522    case ISD::ANY_EXTEND:
1523    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1524    case ISD::TRUNCATE:    return getConstant(Val, VT);
1525    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
1526    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
1527    case ISD::BIT_CONVERT:
1528      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1529        return getConstantFP(BitsToFloat(Val), VT);
1530      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1531        return getConstantFP(BitsToDouble(Val), VT);
1532      break;
1533    case ISD::BSWAP:
1534      switch(VT) {
1535      default: assert(0 && "Invalid bswap!"); break;
1536      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1537      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1538      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1539      }
1540      break;
1541    case ISD::CTPOP:
1542      switch(VT) {
1543      default: assert(0 && "Invalid ctpop!"); break;
1544      case MVT::i1: return getConstant(Val != 0, VT);
1545      case MVT::i8:
1546        Tmp1 = (unsigned)Val & 0xFF;
1547        return getConstant(CountPopulation_32(Tmp1), VT);
1548      case MVT::i16:
1549        Tmp1 = (unsigned)Val & 0xFFFF;
1550        return getConstant(CountPopulation_32(Tmp1), VT);
1551      case MVT::i32:
1552        return getConstant(CountPopulation_32((unsigned)Val), VT);
1553      case MVT::i64:
1554        return getConstant(CountPopulation_64(Val), VT);
1555      }
1556    case ISD::CTLZ:
1557      switch(VT) {
1558      default: assert(0 && "Invalid ctlz!"); break;
1559      case MVT::i1: return getConstant(Val == 0, VT);
1560      case MVT::i8:
1561        Tmp1 = (unsigned)Val & 0xFF;
1562        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1563      case MVT::i16:
1564        Tmp1 = (unsigned)Val & 0xFFFF;
1565        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1566      case MVT::i32:
1567        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1568      case MVT::i64:
1569        return getConstant(CountLeadingZeros_64(Val), VT);
1570      }
1571    case ISD::CTTZ:
1572      switch(VT) {
1573      default: assert(0 && "Invalid cttz!"); break;
1574      case MVT::i1: return getConstant(Val == 0, VT);
1575      case MVT::i8:
1576        Tmp1 = (unsigned)Val | 0x100;
1577        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1578      case MVT::i16:
1579        Tmp1 = (unsigned)Val | 0x10000;
1580        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1581      case MVT::i32:
1582        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1583      case MVT::i64:
1584        return getConstant(CountTrailingZeros_64(Val), VT);
1585      }
1586    }
1587  }
1588
1589  // Constant fold unary operations with an floating point constant operand.
1590  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1591    switch (Opcode) {
1592    case ISD::FNEG:
1593      return getConstantFP(-C->getValue(), VT);
1594    case ISD::FABS:
1595      return getConstantFP(fabs(C->getValue()), VT);
1596    case ISD::FP_ROUND:
1597    case ISD::FP_EXTEND:
1598      return getConstantFP(C->getValue(), VT);
1599    case ISD::FP_TO_SINT:
1600      return getConstant((int64_t)C->getValue(), VT);
1601    case ISD::FP_TO_UINT:
1602      return getConstant((uint64_t)C->getValue(), VT);
1603    case ISD::BIT_CONVERT:
1604      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1605        return getConstant(FloatToBits(C->getValue()), VT);
1606      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1607        return getConstant(DoubleToBits(C->getValue()), VT);
1608      break;
1609    }
1610
1611  unsigned OpOpcode = Operand.Val->getOpcode();
1612  switch (Opcode) {
1613  case ISD::TokenFactor:
1614    return Operand;         // Factor of one node?  No factor.
1615  case ISD::FP_ROUND:
1616  case ISD::FP_EXTEND:
1617    assert(MVT::isFloatingPoint(VT) &&
1618           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1619    break;
1620  case ISD::SIGN_EXTEND:
1621    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1622           "Invalid SIGN_EXTEND!");
1623    if (Operand.getValueType() == VT) return Operand;   // noop extension
1624    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1625    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1626      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1627    break;
1628  case ISD::ZERO_EXTEND:
1629    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1630           "Invalid ZERO_EXTEND!");
1631    if (Operand.getValueType() == VT) return Operand;   // noop extension
1632    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1633    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1634      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1635    break;
1636  case ISD::ANY_EXTEND:
1637    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1638           "Invalid ANY_EXTEND!");
1639    if (Operand.getValueType() == VT) return Operand;   // noop extension
1640    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1641    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1642      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1643      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1644    break;
1645  case ISD::TRUNCATE:
1646    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1647           "Invalid TRUNCATE!");
1648    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1649    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1650    if (OpOpcode == ISD::TRUNCATE)
1651      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1652    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1653             OpOpcode == ISD::ANY_EXTEND) {
1654      // If the source is smaller than the dest, we still need an extend.
1655      if (Operand.Val->getOperand(0).getValueType() < VT)
1656        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1657      else if (Operand.Val->getOperand(0).getValueType() > VT)
1658        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1659      else
1660        return Operand.Val->getOperand(0);
1661    }
1662    break;
1663  case ISD::BIT_CONVERT:
1664    // Basic sanity checking.
1665    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1666           && "Cannot BIT_CONVERT between types of different sizes!");
1667    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1668    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1669      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1670    if (OpOpcode == ISD::UNDEF)
1671      return getNode(ISD::UNDEF, VT);
1672    break;
1673  case ISD::SCALAR_TO_VECTOR:
1674    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1675           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1676           "Illegal SCALAR_TO_VECTOR node!");
1677    break;
1678  case ISD::FNEG:
1679    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1680      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1681                     Operand.Val->getOperand(0));
1682    if (OpOpcode == ISD::FNEG)  // --X -> X
1683      return Operand.Val->getOperand(0);
1684    break;
1685  case ISD::FABS:
1686    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1687      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1688    break;
1689  }
1690
1691  SDNode *N;
1692  SDVTList VTs = getVTList(VT);
1693  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1694    FoldingSetNodeID ID;
1695    SDOperand Ops[1] = { Operand };
1696    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1697    void *IP = 0;
1698    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1699      return SDOperand(E, 0);
1700    N = new UnarySDNode(Opcode, VTs, Operand);
1701    CSEMap.InsertNode(N, IP);
1702  } else {
1703    N = new UnarySDNode(Opcode, VTs, Operand);
1704  }
1705  AllNodes.push_back(N);
1706  return SDOperand(N, 0);
1707}
1708
1709
1710
1711SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1712                                SDOperand N1, SDOperand N2) {
1713#ifndef NDEBUG
1714  switch (Opcode) {
1715  case ISD::TokenFactor:
1716    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1717           N2.getValueType() == MVT::Other && "Invalid token factor!");
1718    break;
1719  case ISD::AND:
1720  case ISD::OR:
1721  case ISD::XOR:
1722  case ISD::UDIV:
1723  case ISD::UREM:
1724  case ISD::MULHU:
1725  case ISD::MULHS:
1726    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1727    // fall through
1728  case ISD::ADD:
1729  case ISD::SUB:
1730  case ISD::MUL:
1731  case ISD::SDIV:
1732  case ISD::SREM:
1733    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1734    // fall through.
1735  case ISD::FADD:
1736  case ISD::FSUB:
1737  case ISD::FMUL:
1738  case ISD::FDIV:
1739  case ISD::FREM:
1740    assert(N1.getValueType() == N2.getValueType() &&
1741           N1.getValueType() == VT && "Binary operator types must match!");
1742    break;
1743  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1744    assert(N1.getValueType() == VT &&
1745           MVT::isFloatingPoint(N1.getValueType()) &&
1746           MVT::isFloatingPoint(N2.getValueType()) &&
1747           "Invalid FCOPYSIGN!");
1748    break;
1749  case ISD::SHL:
1750  case ISD::SRA:
1751  case ISD::SRL:
1752  case ISD::ROTL:
1753  case ISD::ROTR:
1754    assert(VT == N1.getValueType() &&
1755           "Shift operators return type must be the same as their first arg");
1756    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1757           VT != MVT::i1 && "Shifts only work on integers");
1758    break;
1759  case ISD::FP_ROUND_INREG: {
1760    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1761    assert(VT == N1.getValueType() && "Not an inreg round!");
1762    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1763           "Cannot FP_ROUND_INREG integer types");
1764    assert(EVT <= VT && "Not rounding down!");
1765    break;
1766  }
1767  case ISD::AssertSext:
1768  case ISD::AssertZext:
1769  case ISD::SIGN_EXTEND_INREG: {
1770    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1771    assert(VT == N1.getValueType() && "Not an inreg extend!");
1772    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1773           "Cannot *_EXTEND_INREG FP types");
1774    assert(EVT <= VT && "Not extending!");
1775  }
1776
1777  default: break;
1778  }
1779#endif
1780
1781  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1782  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1783  if (N1C) {
1784    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1785      int64_t Val = N1C->getValue();
1786      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1787      Val <<= 64-FromBits;
1788      Val >>= 64-FromBits;
1789      return getConstant(Val, VT);
1790    }
1791
1792    if (N2C) {
1793      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1794      switch (Opcode) {
1795      case ISD::ADD: return getConstant(C1 + C2, VT);
1796      case ISD::SUB: return getConstant(C1 - C2, VT);
1797      case ISD::MUL: return getConstant(C1 * C2, VT);
1798      case ISD::UDIV:
1799        if (C2) return getConstant(C1 / C2, VT);
1800        break;
1801      case ISD::UREM :
1802        if (C2) return getConstant(C1 % C2, VT);
1803        break;
1804      case ISD::SDIV :
1805        if (C2) return getConstant(N1C->getSignExtended() /
1806                                   N2C->getSignExtended(), VT);
1807        break;
1808      case ISD::SREM :
1809        if (C2) return getConstant(N1C->getSignExtended() %
1810                                   N2C->getSignExtended(), VT);
1811        break;
1812      case ISD::AND  : return getConstant(C1 & C2, VT);
1813      case ISD::OR   : return getConstant(C1 | C2, VT);
1814      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1815      case ISD::SHL  : return getConstant(C1 << C2, VT);
1816      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1817      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1818      case ISD::ROTL :
1819        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1820                           VT);
1821      case ISD::ROTR :
1822        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1823                           VT);
1824      default: break;
1825      }
1826    } else {      // Cannonicalize constant to RHS if commutative
1827      if (isCommutativeBinOp(Opcode)) {
1828        std::swap(N1C, N2C);
1829        std::swap(N1, N2);
1830      }
1831    }
1832  }
1833
1834  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1835  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1836  if (N1CFP) {
1837    if (N2CFP) {
1838      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1839      switch (Opcode) {
1840      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1841      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1842      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1843      case ISD::FDIV:
1844        if (C2) return getConstantFP(C1 / C2, VT);
1845        break;
1846      case ISD::FREM :
1847        if (C2) return getConstantFP(fmod(C1, C2), VT);
1848        break;
1849      case ISD::FCOPYSIGN: {
1850        union {
1851          double   F;
1852          uint64_t I;
1853        } u1;
1854        u1.F = C1;
1855        if (int64_t(DoubleToBits(C2)) < 0)  // Sign bit of RHS set?
1856          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1857        else
1858          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1859        return getConstantFP(u1.F, VT);
1860      }
1861      default: break;
1862      }
1863    } else {      // Cannonicalize constant to RHS if commutative
1864      if (isCommutativeBinOp(Opcode)) {
1865        std::swap(N1CFP, N2CFP);
1866        std::swap(N1, N2);
1867      }
1868    }
1869  }
1870
1871  // Canonicalize an UNDEF to the RHS, even over a constant.
1872  if (N1.getOpcode() == ISD::UNDEF) {
1873    if (isCommutativeBinOp(Opcode)) {
1874      std::swap(N1, N2);
1875    } else {
1876      switch (Opcode) {
1877      case ISD::FP_ROUND_INREG:
1878      case ISD::SIGN_EXTEND_INREG:
1879      case ISD::SUB:
1880      case ISD::FSUB:
1881      case ISD::FDIV:
1882      case ISD::FREM:
1883      case ISD::SRA:
1884        return N1;     // fold op(undef, arg2) -> undef
1885      case ISD::UDIV:
1886      case ISD::SDIV:
1887      case ISD::UREM:
1888      case ISD::SREM:
1889      case ISD::SRL:
1890      case ISD::SHL:
1891        if (!MVT::isVector(VT))
1892          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1893        // For vectors, we can't easily build an all zero vector, just return
1894        // the LHS.
1895        return N2;
1896      }
1897    }
1898  }
1899
1900  // Fold a bunch of operators when the RHS is undef.
1901  if (N2.getOpcode() == ISD::UNDEF) {
1902    switch (Opcode) {
1903    case ISD::ADD:
1904    case ISD::ADDC:
1905    case ISD::ADDE:
1906    case ISD::SUB:
1907    case ISD::FADD:
1908    case ISD::FSUB:
1909    case ISD::FMUL:
1910    case ISD::FDIV:
1911    case ISD::FREM:
1912    case ISD::UDIV:
1913    case ISD::SDIV:
1914    case ISD::UREM:
1915    case ISD::SREM:
1916    case ISD::XOR:
1917      return N2;       // fold op(arg1, undef) -> undef
1918    case ISD::MUL:
1919    case ISD::AND:
1920    case ISD::SRL:
1921    case ISD::SHL:
1922      if (!MVT::isVector(VT))
1923        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1924      // For vectors, we can't easily build an all zero vector, just return
1925      // the LHS.
1926      return N1;
1927    case ISD::OR:
1928      if (!MVT::isVector(VT))
1929        return getConstant(MVT::getIntVTBitMask(VT), VT);
1930      // For vectors, we can't easily build an all one vector, just return
1931      // the LHS.
1932      return N1;
1933    case ISD::SRA:
1934      return N1;
1935    }
1936  }
1937
1938  // Fold operations.
1939  switch (Opcode) {
1940  case ISD::TokenFactor:
1941    // Fold trivial token factors.
1942    if (N1.getOpcode() == ISD::EntryToken) return N2;
1943    if (N2.getOpcode() == ISD::EntryToken) return N1;
1944    break;
1945
1946  case ISD::AND:
1947    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1948    // worth handling here.
1949    if (N2C && N2C->getValue() == 0)
1950      return N2;
1951    break;
1952  case ISD::OR:
1953  case ISD::XOR:
1954    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1955    // worth handling here.
1956    if (N2C && N2C->getValue() == 0)
1957      return N1;
1958    break;
1959  case ISD::FP_ROUND_INREG:
1960    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1961    break;
1962  case ISD::SIGN_EXTEND_INREG: {
1963    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1964    if (EVT == VT) return N1;  // Not actually extending
1965    break;
1966  }
1967  case ISD::EXTRACT_VECTOR_ELT:
1968    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
1969
1970    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
1971    // expanding copies of large vectors from registers.
1972    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
1973        N1.getNumOperands() > 0) {
1974      unsigned Factor =
1975        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
1976      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
1977                     N1.getOperand(N2C->getValue() / Factor),
1978                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
1979    }
1980
1981    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
1982    // expanding large vector constants.
1983    if (N1.getOpcode() == ISD::BUILD_VECTOR)
1984      return N1.getOperand(N2C->getValue());
1985
1986    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
1987    // operations are lowered to scalars.
1988    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
1989      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
1990        if (IEC == N2C)
1991          return N1.getOperand(1);
1992        else
1993          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
1994      }
1995    break;
1996  case ISD::EXTRACT_ELEMENT:
1997    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
1998
1999    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2000    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2001    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2002    if (N1.getOpcode() == ISD::BUILD_PAIR)
2003      return N1.getOperand(N2C->getValue());
2004
2005    // EXTRACT_ELEMENT of a constant int is also very common.
2006    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2007      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2008      return getConstant(C->getValue() >> Shift, VT);
2009    }
2010    break;
2011
2012  // FIXME: figure out how to safely handle things like
2013  // int foo(int x) { return 1 << (x & 255); }
2014  // int bar() { return foo(256); }
2015#if 0
2016  case ISD::SHL:
2017  case ISD::SRL:
2018  case ISD::SRA:
2019    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2020        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2021      return getNode(Opcode, VT, N1, N2.getOperand(0));
2022    else if (N2.getOpcode() == ISD::AND)
2023      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2024        // If the and is only masking out bits that cannot effect the shift,
2025        // eliminate the and.
2026        unsigned NumBits = MVT::getSizeInBits(VT);
2027        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2028          return getNode(Opcode, VT, N1, N2.getOperand(0));
2029      }
2030    break;
2031#endif
2032  }
2033
2034  // Memoize this node if possible.
2035  SDNode *N;
2036  SDVTList VTs = getVTList(VT);
2037  if (VT != MVT::Flag) {
2038    SDOperand Ops[] = { N1, N2 };
2039    FoldingSetNodeID ID;
2040    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2041    void *IP = 0;
2042    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2043      return SDOperand(E, 0);
2044    N = new BinarySDNode(Opcode, VTs, N1, N2);
2045    CSEMap.InsertNode(N, IP);
2046  } else {
2047    N = new BinarySDNode(Opcode, VTs, N1, N2);
2048  }
2049
2050  AllNodes.push_back(N);
2051  return SDOperand(N, 0);
2052}
2053
2054SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2055                                SDOperand N1, SDOperand N2, SDOperand N3) {
2056  // Perform various simplifications.
2057  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2058  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2059  switch (Opcode) {
2060  case ISD::SETCC: {
2061    // Use FoldSetCC to simplify SETCC's.
2062    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2063    if (Simp.Val) return Simp;
2064    break;
2065  }
2066  case ISD::SELECT:
2067    if (N1C)
2068      if (N1C->getValue())
2069        return N2;             // select true, X, Y -> X
2070      else
2071        return N3;             // select false, X, Y -> Y
2072
2073    if (N2 == N3) return N2;   // select C, X, X -> X
2074    break;
2075  case ISD::BRCOND:
2076    if (N2C)
2077      if (N2C->getValue()) // Unconditional branch
2078        return getNode(ISD::BR, MVT::Other, N1, N3);
2079      else
2080        return N1;         // Never-taken branch
2081    break;
2082  case ISD::VECTOR_SHUFFLE:
2083    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2084           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2085           N3.getOpcode() == ISD::BUILD_VECTOR &&
2086           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2087           "Illegal VECTOR_SHUFFLE node!");
2088    break;
2089  case ISD::BIT_CONVERT:
2090    // Fold bit_convert nodes from a type to themselves.
2091    if (N1.getValueType() == VT)
2092      return N1;
2093    break;
2094  }
2095
2096  // Memoize node if it doesn't produce a flag.
2097  SDNode *N;
2098  SDVTList VTs = getVTList(VT);
2099  if (VT != MVT::Flag) {
2100    SDOperand Ops[] = { N1, N2, N3 };
2101    FoldingSetNodeID ID;
2102    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2103    void *IP = 0;
2104    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2105      return SDOperand(E, 0);
2106    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2107    CSEMap.InsertNode(N, IP);
2108  } else {
2109    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2110  }
2111  AllNodes.push_back(N);
2112  return SDOperand(N, 0);
2113}
2114
2115SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2116                                SDOperand N1, SDOperand N2, SDOperand N3,
2117                                SDOperand N4) {
2118  SDOperand Ops[] = { N1, N2, N3, N4 };
2119  return getNode(Opcode, VT, Ops, 4);
2120}
2121
2122SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2123                                SDOperand N1, SDOperand N2, SDOperand N3,
2124                                SDOperand N4, SDOperand N5) {
2125  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2126  return getNode(Opcode, VT, Ops, 5);
2127}
2128
2129SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2130                                SDOperand Chain, SDOperand Ptr,
2131                                const Value *SV, int SVOffset,
2132                                bool isVolatile, unsigned Alignment) {
2133  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2134    const Type *Ty = 0;
2135    if (VT != MVT::iPTR) {
2136      Ty = MVT::getTypeForValueType(VT);
2137    } else if (SV) {
2138      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2139      assert(PT && "Value for load must be a pointer");
2140      Ty = PT->getElementType();
2141    }
2142    assert(Ty && "Could not get type information for load");
2143    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2144  }
2145  SDVTList VTs = getVTList(VT, MVT::Other);
2146  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2147  SDOperand Ops[] = { Chain, Ptr, Undef };
2148  FoldingSetNodeID ID;
2149  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2150  ID.AddInteger(ISD::UNINDEXED);
2151  ID.AddInteger(ISD::NON_EXTLOAD);
2152  ID.AddInteger(VT);
2153  ID.AddPointer(SV);
2154  ID.AddInteger(SVOffset);
2155  ID.AddInteger(Alignment);
2156  ID.AddInteger(isVolatile);
2157  void *IP = 0;
2158  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2159    return SDOperand(E, 0);
2160  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2161                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2162                             isVolatile);
2163  CSEMap.InsertNode(N, IP);
2164  AllNodes.push_back(N);
2165  return SDOperand(N, 0);
2166}
2167
2168SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2169                                   SDOperand Chain, SDOperand Ptr,
2170                                   const Value *SV,
2171                                   int SVOffset, MVT::ValueType EVT,
2172                                   bool isVolatile, unsigned Alignment) {
2173  // If they are asking for an extending load from/to the same thing, return a
2174  // normal load.
2175  if (VT == EVT)
2176    ExtType = ISD::NON_EXTLOAD;
2177
2178  if (MVT::isVector(VT))
2179    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2180  else
2181    assert(EVT < VT && "Should only be an extending load, not truncating!");
2182  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2183         "Cannot sign/zero extend a FP/Vector load!");
2184  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2185         "Cannot convert from FP to Int or Int -> FP!");
2186
2187  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2188    const Type *Ty = 0;
2189    if (VT != MVT::iPTR) {
2190      Ty = MVT::getTypeForValueType(VT);
2191    } else if (SV) {
2192      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2193      assert(PT && "Value for load must be a pointer");
2194      Ty = PT->getElementType();
2195    }
2196    assert(Ty && "Could not get type information for load");
2197    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2198  }
2199  SDVTList VTs = getVTList(VT, MVT::Other);
2200  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2201  SDOperand Ops[] = { Chain, Ptr, Undef };
2202  FoldingSetNodeID ID;
2203  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2204  ID.AddInteger(ISD::UNINDEXED);
2205  ID.AddInteger(ExtType);
2206  ID.AddInteger(EVT);
2207  ID.AddPointer(SV);
2208  ID.AddInteger(SVOffset);
2209  ID.AddInteger(Alignment);
2210  ID.AddInteger(isVolatile);
2211  void *IP = 0;
2212  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2213    return SDOperand(E, 0);
2214  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2215                             SV, SVOffset, Alignment, isVolatile);
2216  CSEMap.InsertNode(N, IP);
2217  AllNodes.push_back(N);
2218  return SDOperand(N, 0);
2219}
2220
2221SDOperand
2222SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2223                             SDOperand Offset, ISD::MemIndexedMode AM) {
2224  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2225  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2226         "Load is already a indexed load!");
2227  MVT::ValueType VT = OrigLoad.getValueType();
2228  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2229  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2230  FoldingSetNodeID ID;
2231  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2232  ID.AddInteger(AM);
2233  ID.AddInteger(LD->getExtensionType());
2234  ID.AddInteger(LD->getLoadedVT());
2235  ID.AddPointer(LD->getSrcValue());
2236  ID.AddInteger(LD->getSrcValueOffset());
2237  ID.AddInteger(LD->getAlignment());
2238  ID.AddInteger(LD->isVolatile());
2239  void *IP = 0;
2240  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2241    return SDOperand(E, 0);
2242  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2243                             LD->getExtensionType(), LD->getLoadedVT(),
2244                             LD->getSrcValue(), LD->getSrcValueOffset(),
2245                             LD->getAlignment(), LD->isVolatile());
2246  CSEMap.InsertNode(N, IP);
2247  AllNodes.push_back(N);
2248  return SDOperand(N, 0);
2249}
2250
2251SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2252                                 SDOperand Ptr, const Value *SV, int SVOffset,
2253                                 bool isVolatile, unsigned Alignment) {
2254  MVT::ValueType VT = Val.getValueType();
2255
2256  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2257    const Type *Ty = 0;
2258    if (VT != MVT::iPTR) {
2259      Ty = MVT::getTypeForValueType(VT);
2260    } else if (SV) {
2261      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2262      assert(PT && "Value for store must be a pointer");
2263      Ty = PT->getElementType();
2264    }
2265    assert(Ty && "Could not get type information for store");
2266    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2267  }
2268  SDVTList VTs = getVTList(MVT::Other);
2269  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2270  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2271  FoldingSetNodeID ID;
2272  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2273  ID.AddInteger(ISD::UNINDEXED);
2274  ID.AddInteger(false);
2275  ID.AddInteger(VT);
2276  ID.AddPointer(SV);
2277  ID.AddInteger(SVOffset);
2278  ID.AddInteger(Alignment);
2279  ID.AddInteger(isVolatile);
2280  void *IP = 0;
2281  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2282    return SDOperand(E, 0);
2283  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2284                              VT, SV, SVOffset, Alignment, isVolatile);
2285  CSEMap.InsertNode(N, IP);
2286  AllNodes.push_back(N);
2287  return SDOperand(N, 0);
2288}
2289
2290SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2291                                      SDOperand Ptr, const Value *SV,
2292                                      int SVOffset, MVT::ValueType SVT,
2293                                      bool isVolatile, unsigned Alignment) {
2294  MVT::ValueType VT = Val.getValueType();
2295  bool isTrunc = VT != SVT;
2296
2297  assert(VT > SVT && "Not a truncation?");
2298  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2299         "Can't do FP-INT conversion!");
2300
2301  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2302    const Type *Ty = 0;
2303    if (VT != MVT::iPTR) {
2304      Ty = MVT::getTypeForValueType(VT);
2305    } else if (SV) {
2306      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2307      assert(PT && "Value for store must be a pointer");
2308      Ty = PT->getElementType();
2309    }
2310    assert(Ty && "Could not get type information for store");
2311    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2312  }
2313  SDVTList VTs = getVTList(MVT::Other);
2314  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2315  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2316  FoldingSetNodeID ID;
2317  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2318  ID.AddInteger(ISD::UNINDEXED);
2319  ID.AddInteger(isTrunc);
2320  ID.AddInteger(SVT);
2321  ID.AddPointer(SV);
2322  ID.AddInteger(SVOffset);
2323  ID.AddInteger(Alignment);
2324  ID.AddInteger(isVolatile);
2325  void *IP = 0;
2326  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2327    return SDOperand(E, 0);
2328  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
2329                              SVT, SV, SVOffset, Alignment, isVolatile);
2330  CSEMap.InsertNode(N, IP);
2331  AllNodes.push_back(N);
2332  return SDOperand(N, 0);
2333}
2334
2335SDOperand
2336SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2337                              SDOperand Offset, ISD::MemIndexedMode AM) {
2338  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2339  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2340         "Store is already a indexed store!");
2341  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2342  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2343  FoldingSetNodeID ID;
2344  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2345  ID.AddInteger(AM);
2346  ID.AddInteger(ST->isTruncatingStore());
2347  ID.AddInteger(ST->getStoredVT());
2348  ID.AddPointer(ST->getSrcValue());
2349  ID.AddInteger(ST->getSrcValueOffset());
2350  ID.AddInteger(ST->getAlignment());
2351  ID.AddInteger(ST->isVolatile());
2352  void *IP = 0;
2353  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2354    return SDOperand(E, 0);
2355  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2356                              ST->isTruncatingStore(), ST->getStoredVT(),
2357                              ST->getSrcValue(), ST->getSrcValueOffset(),
2358                              ST->getAlignment(), ST->isVolatile());
2359  CSEMap.InsertNode(N, IP);
2360  AllNodes.push_back(N);
2361  return SDOperand(N, 0);
2362}
2363
2364SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2365                                 SDOperand Chain, SDOperand Ptr,
2366                                 SDOperand SV) {
2367  SDOperand Ops[] = { Chain, Ptr, SV };
2368  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2369}
2370
2371SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2372                                const SDOperand *Ops, unsigned NumOps) {
2373  switch (NumOps) {
2374  case 0: return getNode(Opcode, VT);
2375  case 1: return getNode(Opcode, VT, Ops[0]);
2376  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2377  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2378  default: break;
2379  }
2380
2381  switch (Opcode) {
2382  default: break;
2383  case ISD::SELECT_CC: {
2384    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2385    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2386           "LHS and RHS of condition must have same type!");
2387    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2388           "True and False arms of SelectCC must have same type!");
2389    assert(Ops[2].getValueType() == VT &&
2390           "select_cc node must be of same type as true and false value!");
2391    break;
2392  }
2393  case ISD::BR_CC: {
2394    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2395    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2396           "LHS/RHS of comparison should match types!");
2397    break;
2398  }
2399  }
2400
2401  // Memoize nodes.
2402  SDNode *N;
2403  SDVTList VTs = getVTList(VT);
2404  if (VT != MVT::Flag) {
2405    FoldingSetNodeID ID;
2406    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2407    void *IP = 0;
2408    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2409      return SDOperand(E, 0);
2410    N = new SDNode(Opcode, VTs, Ops, NumOps);
2411    CSEMap.InsertNode(N, IP);
2412  } else {
2413    N = new SDNode(Opcode, VTs, Ops, NumOps);
2414  }
2415  AllNodes.push_back(N);
2416  return SDOperand(N, 0);
2417}
2418
2419SDOperand SelectionDAG::getNode(unsigned Opcode,
2420                                std::vector<MVT::ValueType> &ResultTys,
2421                                const SDOperand *Ops, unsigned NumOps) {
2422  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2423                 Ops, NumOps);
2424}
2425
2426SDOperand SelectionDAG::getNode(unsigned Opcode,
2427                                const MVT::ValueType *VTs, unsigned NumVTs,
2428                                const SDOperand *Ops, unsigned NumOps) {
2429  if (NumVTs == 1)
2430    return getNode(Opcode, VTs[0], Ops, NumOps);
2431  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2432}
2433
2434SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2435                                const SDOperand *Ops, unsigned NumOps) {
2436  if (VTList.NumVTs == 1)
2437    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2438
2439  switch (Opcode) {
2440  // FIXME: figure out how to safely handle things like
2441  // int foo(int x) { return 1 << (x & 255); }
2442  // int bar() { return foo(256); }
2443#if 0
2444  case ISD::SRA_PARTS:
2445  case ISD::SRL_PARTS:
2446  case ISD::SHL_PARTS:
2447    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2448        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2449      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2450    else if (N3.getOpcode() == ISD::AND)
2451      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2452        // If the and is only masking out bits that cannot effect the shift,
2453        // eliminate the and.
2454        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2455        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2456          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2457      }
2458    break;
2459#endif
2460  }
2461
2462  // Memoize the node unless it returns a flag.
2463  SDNode *N;
2464  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2465    FoldingSetNodeID ID;
2466    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2467    void *IP = 0;
2468    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2469      return SDOperand(E, 0);
2470    if (NumOps == 1)
2471      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2472    else if (NumOps == 2)
2473      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2474    else if (NumOps == 3)
2475      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2476    else
2477      N = new SDNode(Opcode, VTList, Ops, NumOps);
2478    CSEMap.InsertNode(N, IP);
2479  } else {
2480    if (NumOps == 1)
2481      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2482    else if (NumOps == 2)
2483      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2484    else if (NumOps == 3)
2485      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2486    else
2487      N = new SDNode(Opcode, VTList, Ops, NumOps);
2488  }
2489  AllNodes.push_back(N);
2490  return SDOperand(N, 0);
2491}
2492
2493SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2494  if (!MVT::isExtendedVT(VT))
2495    return makeVTList(SDNode::getValueTypeList(VT), 1);
2496
2497  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2498       E = VTList.end(); I != E; ++I) {
2499    if (I->size() == 1 && (*I)[0] == VT)
2500      return makeVTList(&(*I)[0], 1);
2501  }
2502  std::vector<MVT::ValueType> V;
2503  V.push_back(VT);
2504  VTList.push_front(V);
2505  return makeVTList(&(*VTList.begin())[0], 1);
2506}
2507
2508SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2509  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2510       E = VTList.end(); I != E; ++I) {
2511    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2512      return makeVTList(&(*I)[0], 2);
2513  }
2514  std::vector<MVT::ValueType> V;
2515  V.push_back(VT1);
2516  V.push_back(VT2);
2517  VTList.push_front(V);
2518  return makeVTList(&(*VTList.begin())[0], 2);
2519}
2520SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2521                                 MVT::ValueType VT3) {
2522  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2523       E = VTList.end(); I != E; ++I) {
2524    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2525        (*I)[2] == VT3)
2526      return makeVTList(&(*I)[0], 3);
2527  }
2528  std::vector<MVT::ValueType> V;
2529  V.push_back(VT1);
2530  V.push_back(VT2);
2531  V.push_back(VT3);
2532  VTList.push_front(V);
2533  return makeVTList(&(*VTList.begin())[0], 3);
2534}
2535
2536SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2537  switch (NumVTs) {
2538    case 0: assert(0 && "Cannot have nodes without results!");
2539    case 1: return getVTList(VTs[0]);
2540    case 2: return getVTList(VTs[0], VTs[1]);
2541    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2542    default: break;
2543  }
2544
2545  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2546       E = VTList.end(); I != E; ++I) {
2547    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2548
2549    bool NoMatch = false;
2550    for (unsigned i = 2; i != NumVTs; ++i)
2551      if (VTs[i] != (*I)[i]) {
2552        NoMatch = true;
2553        break;
2554      }
2555    if (!NoMatch)
2556      return makeVTList(&*I->begin(), NumVTs);
2557  }
2558
2559  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2560  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2561}
2562
2563
2564/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2565/// specified operands.  If the resultant node already exists in the DAG,
2566/// this does not modify the specified node, instead it returns the node that
2567/// already exists.  If the resultant node does not exist in the DAG, the
2568/// input node is returned.  As a degenerate case, if you specify the same
2569/// input operands as the node already has, the input node is returned.
2570SDOperand SelectionDAG::
2571UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2572  SDNode *N = InN.Val;
2573  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2574
2575  // Check to see if there is no change.
2576  if (Op == N->getOperand(0)) return InN;
2577
2578  // See if the modified node already exists.
2579  void *InsertPos = 0;
2580  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2581    return SDOperand(Existing, InN.ResNo);
2582
2583  // Nope it doesn't.  Remove the node from it's current place in the maps.
2584  if (InsertPos)
2585    RemoveNodeFromCSEMaps(N);
2586
2587  // Now we update the operands.
2588  N->OperandList[0].Val->removeUser(N);
2589  Op.Val->addUser(N);
2590  N->OperandList[0] = Op;
2591
2592  // If this gets put into a CSE map, add it.
2593  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2594  return InN;
2595}
2596
2597SDOperand SelectionDAG::
2598UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2599  SDNode *N = InN.Val;
2600  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2601
2602  // Check to see if there is no change.
2603  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2604    return InN;   // No operands changed, just return the input node.
2605
2606  // See if the modified node already exists.
2607  void *InsertPos = 0;
2608  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2609    return SDOperand(Existing, InN.ResNo);
2610
2611  // Nope it doesn't.  Remove the node from it's current place in the maps.
2612  if (InsertPos)
2613    RemoveNodeFromCSEMaps(N);
2614
2615  // Now we update the operands.
2616  if (N->OperandList[0] != Op1) {
2617    N->OperandList[0].Val->removeUser(N);
2618    Op1.Val->addUser(N);
2619    N->OperandList[0] = Op1;
2620  }
2621  if (N->OperandList[1] != Op2) {
2622    N->OperandList[1].Val->removeUser(N);
2623    Op2.Val->addUser(N);
2624    N->OperandList[1] = Op2;
2625  }
2626
2627  // If this gets put into a CSE map, add it.
2628  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2629  return InN;
2630}
2631
2632SDOperand SelectionDAG::
2633UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2634  SDOperand Ops[] = { Op1, Op2, Op3 };
2635  return UpdateNodeOperands(N, Ops, 3);
2636}
2637
2638SDOperand SelectionDAG::
2639UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2640                   SDOperand Op3, SDOperand Op4) {
2641  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2642  return UpdateNodeOperands(N, Ops, 4);
2643}
2644
2645SDOperand SelectionDAG::
2646UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2647                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2648  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2649  return UpdateNodeOperands(N, Ops, 5);
2650}
2651
2652
2653SDOperand SelectionDAG::
2654UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2655  SDNode *N = InN.Val;
2656  assert(N->getNumOperands() == NumOps &&
2657         "Update with wrong number of operands");
2658
2659  // Check to see if there is no change.
2660  bool AnyChange = false;
2661  for (unsigned i = 0; i != NumOps; ++i) {
2662    if (Ops[i] != N->getOperand(i)) {
2663      AnyChange = true;
2664      break;
2665    }
2666  }
2667
2668  // No operands changed, just return the input node.
2669  if (!AnyChange) return InN;
2670
2671  // See if the modified node already exists.
2672  void *InsertPos = 0;
2673  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2674    return SDOperand(Existing, InN.ResNo);
2675
2676  // Nope it doesn't.  Remove the node from it's current place in the maps.
2677  if (InsertPos)
2678    RemoveNodeFromCSEMaps(N);
2679
2680  // Now we update the operands.
2681  for (unsigned i = 0; i != NumOps; ++i) {
2682    if (N->OperandList[i] != Ops[i]) {
2683      N->OperandList[i].Val->removeUser(N);
2684      Ops[i].Val->addUser(N);
2685      N->OperandList[i] = Ops[i];
2686    }
2687  }
2688
2689  // If this gets put into a CSE map, add it.
2690  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2691  return InN;
2692}
2693
2694
2695/// MorphNodeTo - This frees the operands of the current node, resets the
2696/// opcode, types, and operands to the specified value.  This should only be
2697/// used by the SelectionDAG class.
2698void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2699                         const SDOperand *Ops, unsigned NumOps) {
2700  NodeType = Opc;
2701  ValueList = L.VTs;
2702  NumValues = L.NumVTs;
2703
2704  // Clear the operands list, updating used nodes to remove this from their
2705  // use list.
2706  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2707    I->Val->removeUser(this);
2708
2709  // If NumOps is larger than the # of operands we currently have, reallocate
2710  // the operand list.
2711  if (NumOps > NumOperands) {
2712    if (OperandsNeedDelete)
2713      delete [] OperandList;
2714    OperandList = new SDOperand[NumOps];
2715    OperandsNeedDelete = true;
2716  }
2717
2718  // Assign the new operands.
2719  NumOperands = NumOps;
2720
2721  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2722    OperandList[i] = Ops[i];
2723    SDNode *N = OperandList[i].Val;
2724    N->Uses.push_back(this);
2725  }
2726}
2727
2728/// SelectNodeTo - These are used for target selectors to *mutate* the
2729/// specified node to have the specified return type, Target opcode, and
2730/// operands.  Note that target opcodes are stored as
2731/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2732///
2733/// Note that SelectNodeTo returns the resultant node.  If there is already a
2734/// node of the specified opcode and operands, it returns that node instead of
2735/// the current one.
2736SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2737                                   MVT::ValueType VT) {
2738  SDVTList VTs = getVTList(VT);
2739  FoldingSetNodeID ID;
2740  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2741  void *IP = 0;
2742  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2743    return ON;
2744
2745  RemoveNodeFromCSEMaps(N);
2746
2747  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2748
2749  CSEMap.InsertNode(N, IP);
2750  return N;
2751}
2752
2753SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2754                                   MVT::ValueType VT, SDOperand Op1) {
2755  // If an identical node already exists, use it.
2756  SDVTList VTs = getVTList(VT);
2757  SDOperand Ops[] = { Op1 };
2758
2759  FoldingSetNodeID ID;
2760  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2761  void *IP = 0;
2762  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2763    return ON;
2764
2765  RemoveNodeFromCSEMaps(N);
2766  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2767  CSEMap.InsertNode(N, IP);
2768  return N;
2769}
2770
2771SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2772                                   MVT::ValueType VT, SDOperand Op1,
2773                                   SDOperand Op2) {
2774  // If an identical node already exists, use it.
2775  SDVTList VTs = getVTList(VT);
2776  SDOperand Ops[] = { Op1, Op2 };
2777
2778  FoldingSetNodeID ID;
2779  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2780  void *IP = 0;
2781  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2782    return ON;
2783
2784  RemoveNodeFromCSEMaps(N);
2785
2786  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2787
2788  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2789  return N;
2790}
2791
2792SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2793                                   MVT::ValueType VT, SDOperand Op1,
2794                                   SDOperand Op2, SDOperand Op3) {
2795  // If an identical node already exists, use it.
2796  SDVTList VTs = getVTList(VT);
2797  SDOperand Ops[] = { Op1, Op2, Op3 };
2798  FoldingSetNodeID ID;
2799  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2800  void *IP = 0;
2801  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2802    return ON;
2803
2804  RemoveNodeFromCSEMaps(N);
2805
2806  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2807
2808  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2809  return N;
2810}
2811
2812SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2813                                   MVT::ValueType VT, const SDOperand *Ops,
2814                                   unsigned NumOps) {
2815  // If an identical node already exists, use it.
2816  SDVTList VTs = getVTList(VT);
2817  FoldingSetNodeID ID;
2818  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2819  void *IP = 0;
2820  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2821    return ON;
2822
2823  RemoveNodeFromCSEMaps(N);
2824  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2825
2826  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2827  return N;
2828}
2829
2830SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2831                                   MVT::ValueType VT1, MVT::ValueType VT2,
2832                                   SDOperand Op1, SDOperand Op2) {
2833  SDVTList VTs = getVTList(VT1, VT2);
2834  FoldingSetNodeID ID;
2835  SDOperand Ops[] = { Op1, Op2 };
2836  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2837  void *IP = 0;
2838  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2839    return ON;
2840
2841  RemoveNodeFromCSEMaps(N);
2842  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2843  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2844  return N;
2845}
2846
2847SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2848                                   MVT::ValueType VT1, MVT::ValueType VT2,
2849                                   SDOperand Op1, SDOperand Op2,
2850                                   SDOperand Op3) {
2851  // If an identical node already exists, use it.
2852  SDVTList VTs = getVTList(VT1, VT2);
2853  SDOperand Ops[] = { Op1, Op2, Op3 };
2854  FoldingSetNodeID ID;
2855  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2856  void *IP = 0;
2857  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2858    return ON;
2859
2860  RemoveNodeFromCSEMaps(N);
2861
2862  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2863  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2864  return N;
2865}
2866
2867
2868/// getTargetNode - These are used for target selectors to create a new node
2869/// with specified return type(s), target opcode, and operands.
2870///
2871/// Note that getTargetNode returns the resultant node.  If there is already a
2872/// node of the specified opcode and operands, it returns that node instead of
2873/// the current one.
2874SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2875  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2876}
2877SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2878                                    SDOperand Op1) {
2879  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2880}
2881SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2882                                    SDOperand Op1, SDOperand Op2) {
2883  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2884}
2885SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2886                                    SDOperand Op1, SDOperand Op2,
2887                                    SDOperand Op3) {
2888  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2889}
2890SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2891                                    const SDOperand *Ops, unsigned NumOps) {
2892  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2893}
2894SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2895                                    MVT::ValueType VT2, SDOperand Op1) {
2896  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2897  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2898}
2899SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2900                                    MVT::ValueType VT2, SDOperand Op1,
2901                                    SDOperand Op2) {
2902  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2903  SDOperand Ops[] = { Op1, Op2 };
2904  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2905}
2906SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2907                                    MVT::ValueType VT2, SDOperand Op1,
2908                                    SDOperand Op2, SDOperand Op3) {
2909  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2910  SDOperand Ops[] = { Op1, Op2, Op3 };
2911  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2912}
2913SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2914                                    MVT::ValueType VT2,
2915                                    const SDOperand *Ops, unsigned NumOps) {
2916  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2917  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2918}
2919SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2920                                    MVT::ValueType VT2, MVT::ValueType VT3,
2921                                    SDOperand Op1, SDOperand Op2) {
2922  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2923  SDOperand Ops[] = { Op1, Op2 };
2924  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
2925}
2926SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2927                                    MVT::ValueType VT2, MVT::ValueType VT3,
2928                                    SDOperand Op1, SDOperand Op2,
2929                                    SDOperand Op3) {
2930  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2931  SDOperand Ops[] = { Op1, Op2, Op3 };
2932  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
2933}
2934SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2935                                    MVT::ValueType VT2, MVT::ValueType VT3,
2936                                    const SDOperand *Ops, unsigned NumOps) {
2937  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2938  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
2939}
2940
2941/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2942/// This can cause recursive merging of nodes in the DAG.
2943///
2944/// This version assumes From/To have a single result value.
2945///
2946void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2947                                      std::vector<SDNode*> *Deleted) {
2948  SDNode *From = FromN.Val, *To = ToN.Val;
2949  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2950         "Cannot replace with this method!");
2951  assert(From != To && "Cannot replace uses of with self");
2952
2953  while (!From->use_empty()) {
2954    // Process users until they are all gone.
2955    SDNode *U = *From->use_begin();
2956
2957    // This node is about to morph, remove its old self from the CSE maps.
2958    RemoveNodeFromCSEMaps(U);
2959
2960    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2961         I != E; ++I)
2962      if (I->Val == From) {
2963        From->removeUser(U);
2964        I->Val = To;
2965        To->addUser(U);
2966      }
2967
2968    // Now that we have modified U, add it back to the CSE maps.  If it already
2969    // exists there, recursively merge the results together.
2970    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2971      ReplaceAllUsesWith(U, Existing, Deleted);
2972      // U is now dead.
2973      if (Deleted) Deleted->push_back(U);
2974      DeleteNodeNotInCSEMaps(U);
2975    }
2976  }
2977}
2978
2979/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2980/// This can cause recursive merging of nodes in the DAG.
2981///
2982/// This version assumes From/To have matching types and numbers of result
2983/// values.
2984///
2985void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2986                                      std::vector<SDNode*> *Deleted) {
2987  assert(From != To && "Cannot replace uses of with self");
2988  assert(From->getNumValues() == To->getNumValues() &&
2989         "Cannot use this version of ReplaceAllUsesWith!");
2990  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2991    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2992    return;
2993  }
2994
2995  while (!From->use_empty()) {
2996    // Process users until they are all gone.
2997    SDNode *U = *From->use_begin();
2998
2999    // This node is about to morph, remove its old self from the CSE maps.
3000    RemoveNodeFromCSEMaps(U);
3001
3002    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3003         I != E; ++I)
3004      if (I->Val == From) {
3005        From->removeUser(U);
3006        I->Val = To;
3007        To->addUser(U);
3008      }
3009
3010    // Now that we have modified U, add it back to the CSE maps.  If it already
3011    // exists there, recursively merge the results together.
3012    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3013      ReplaceAllUsesWith(U, Existing, Deleted);
3014      // U is now dead.
3015      if (Deleted) Deleted->push_back(U);
3016      DeleteNodeNotInCSEMaps(U);
3017    }
3018  }
3019}
3020
3021/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3022/// This can cause recursive merging of nodes in the DAG.
3023///
3024/// This version can replace From with any result values.  To must match the
3025/// number and types of values returned by From.
3026void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3027                                      const SDOperand *To,
3028                                      std::vector<SDNode*> *Deleted) {
3029  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3030    // Degenerate case handled above.
3031    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3032    return;
3033  }
3034
3035  while (!From->use_empty()) {
3036    // Process users until they are all gone.
3037    SDNode *U = *From->use_begin();
3038
3039    // This node is about to morph, remove its old self from the CSE maps.
3040    RemoveNodeFromCSEMaps(U);
3041
3042    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3043         I != E; ++I)
3044      if (I->Val == From) {
3045        const SDOperand &ToOp = To[I->ResNo];
3046        From->removeUser(U);
3047        *I = ToOp;
3048        ToOp.Val->addUser(U);
3049      }
3050
3051    // Now that we have modified U, add it back to the CSE maps.  If it already
3052    // exists there, recursively merge the results together.
3053    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3054      ReplaceAllUsesWith(U, Existing, Deleted);
3055      // U is now dead.
3056      if (Deleted) Deleted->push_back(U);
3057      DeleteNodeNotInCSEMaps(U);
3058    }
3059  }
3060}
3061
3062/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3063/// uses of other values produced by From.Val alone.  The Deleted vector is
3064/// handled the same was as for ReplaceAllUsesWith.
3065void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3066                                             std::vector<SDNode*> &Deleted) {
3067  assert(From != To && "Cannot replace a value with itself");
3068  // Handle the simple, trivial, case efficiently.
3069  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3070    ReplaceAllUsesWith(From, To, &Deleted);
3071    return;
3072  }
3073
3074  // Get all of the users of From.Val.  We want these in a nice,
3075  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3076  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3077
3078  while (!Users.empty()) {
3079    // We know that this user uses some value of From.  If it is the right
3080    // value, update it.
3081    SDNode *User = Users.back();
3082    Users.pop_back();
3083
3084    for (SDOperand *Op = User->OperandList,
3085         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
3086      if (*Op == From) {
3087        // Okay, we know this user needs to be updated.  Remove its old self
3088        // from the CSE maps.
3089        RemoveNodeFromCSEMaps(User);
3090
3091        // Update all operands that match "From".
3092        for (; Op != E; ++Op) {
3093          if (*Op == From) {
3094            From.Val->removeUser(User);
3095            *Op = To;
3096            To.Val->addUser(User);
3097          }
3098        }
3099
3100        // Now that we have modified User, add it back to the CSE maps.  If it
3101        // already exists there, recursively merge the results together.
3102        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
3103          unsigned NumDeleted = Deleted.size();
3104          ReplaceAllUsesWith(User, Existing, &Deleted);
3105
3106          // User is now dead.
3107          Deleted.push_back(User);
3108          DeleteNodeNotInCSEMaps(User);
3109
3110          // We have to be careful here, because ReplaceAllUsesWith could have
3111          // deleted a user of From, which means there may be dangling pointers
3112          // in the "Users" setvector.  Scan over the deleted node pointers and
3113          // remove them from the setvector.
3114          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
3115            Users.remove(Deleted[i]);
3116        }
3117        break;   // Exit the operand scanning loop.
3118      }
3119    }
3120  }
3121}
3122
3123
3124/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3125/// their allnodes order. It returns the maximum id.
3126unsigned SelectionDAG::AssignNodeIds() {
3127  unsigned Id = 0;
3128  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3129    SDNode *N = I;
3130    N->setNodeId(Id++);
3131  }
3132  return Id;
3133}
3134
3135/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3136/// based on their topological order. It returns the maximum id and a vector
3137/// of the SDNodes* in assigned order by reference.
3138unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3139  unsigned DAGSize = AllNodes.size();
3140  std::vector<unsigned> InDegree(DAGSize);
3141  std::vector<SDNode*> Sources;
3142
3143  // Use a two pass approach to avoid using a std::map which is slow.
3144  unsigned Id = 0;
3145  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3146    SDNode *N = I;
3147    N->setNodeId(Id++);
3148    unsigned Degree = N->use_size();
3149    InDegree[N->getNodeId()] = Degree;
3150    if (Degree == 0)
3151      Sources.push_back(N);
3152  }
3153
3154  TopOrder.clear();
3155  while (!Sources.empty()) {
3156    SDNode *N = Sources.back();
3157    Sources.pop_back();
3158    TopOrder.push_back(N);
3159    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3160      SDNode *P = I->Val;
3161      unsigned Degree = --InDegree[P->getNodeId()];
3162      if (Degree == 0)
3163        Sources.push_back(P);
3164    }
3165  }
3166
3167  // Second pass, assign the actual topological order as node ids.
3168  Id = 0;
3169  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3170       TI != TE; ++TI)
3171    (*TI)->setNodeId(Id++);
3172
3173  return Id;
3174}
3175
3176
3177
3178//===----------------------------------------------------------------------===//
3179//                              SDNode Class
3180//===----------------------------------------------------------------------===//
3181
3182// Out-of-line virtual method to give class a home.
3183void SDNode::ANCHOR() {}
3184void UnarySDNode::ANCHOR() {}
3185void BinarySDNode::ANCHOR() {}
3186void TernarySDNode::ANCHOR() {}
3187void HandleSDNode::ANCHOR() {}
3188void StringSDNode::ANCHOR() {}
3189void ConstantSDNode::ANCHOR() {}
3190void ConstantFPSDNode::ANCHOR() {}
3191void GlobalAddressSDNode::ANCHOR() {}
3192void FrameIndexSDNode::ANCHOR() {}
3193void JumpTableSDNode::ANCHOR() {}
3194void ConstantPoolSDNode::ANCHOR() {}
3195void BasicBlockSDNode::ANCHOR() {}
3196void SrcValueSDNode::ANCHOR() {}
3197void RegisterSDNode::ANCHOR() {}
3198void ExternalSymbolSDNode::ANCHOR() {}
3199void CondCodeSDNode::ANCHOR() {}
3200void VTSDNode::ANCHOR() {}
3201void LoadSDNode::ANCHOR() {}
3202void StoreSDNode::ANCHOR() {}
3203
3204HandleSDNode::~HandleSDNode() {
3205  SDVTList VTs = { 0, 0 };
3206  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3207}
3208
3209GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3210                                         MVT::ValueType VT, int o)
3211  : SDNode(isa<GlobalVariable>(GA) &&
3212           cast<GlobalVariable>(GA)->isThreadLocal() ?
3213           // Thread Local
3214           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3215           // Non Thread Local
3216           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3217           getSDVTList(VT)), Offset(o) {
3218  TheGlobal = const_cast<GlobalValue*>(GA);
3219}
3220
3221/// Profile - Gather unique data for the node.
3222///
3223void SDNode::Profile(FoldingSetNodeID &ID) {
3224  AddNodeIDNode(ID, this);
3225}
3226
3227/// getValueTypeList - Return a pointer to the specified value type.
3228///
3229MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3230  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3231  VTs[VT] = VT;
3232  return &VTs[VT];
3233}
3234
3235/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3236/// indicated value.  This method ignores uses of other values defined by this
3237/// operation.
3238bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3239  assert(Value < getNumValues() && "Bad value!");
3240
3241  // If there is only one value, this is easy.
3242  if (getNumValues() == 1)
3243    return use_size() == NUses;
3244  if (use_size() < NUses) return false;
3245
3246  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3247
3248  SmallPtrSet<SDNode*, 32> UsersHandled;
3249
3250  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3251    SDNode *User = *UI;
3252    if (User->getNumOperands() == 1 ||
3253        UsersHandled.insert(User))     // First time we've seen this?
3254      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3255        if (User->getOperand(i) == TheValue) {
3256          if (NUses == 0)
3257            return false;   // too many uses
3258          --NUses;
3259        }
3260  }
3261
3262  // Found exactly the right number of uses?
3263  return NUses == 0;
3264}
3265
3266
3267/// hasAnyUseOfValue - Return true if there are any use of the indicated
3268/// value. This method ignores uses of other values defined by this operation.
3269bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3270  assert(Value < getNumValues() && "Bad value!");
3271
3272  if (use_size() == 0) return false;
3273
3274  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3275
3276  SmallPtrSet<SDNode*, 32> UsersHandled;
3277
3278  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3279    SDNode *User = *UI;
3280    if (User->getNumOperands() == 1 ||
3281        UsersHandled.insert(User))     // First time we've seen this?
3282      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3283        if (User->getOperand(i) == TheValue) {
3284          return true;
3285        }
3286  }
3287
3288  return false;
3289}
3290
3291
3292/// isOnlyUse - Return true if this node is the only use of N.
3293///
3294bool SDNode::isOnlyUse(SDNode *N) const {
3295  bool Seen = false;
3296  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3297    SDNode *User = *I;
3298    if (User == this)
3299      Seen = true;
3300    else
3301      return false;
3302  }
3303
3304  return Seen;
3305}
3306
3307/// isOperand - Return true if this node is an operand of N.
3308///
3309bool SDOperand::isOperand(SDNode *N) const {
3310  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3311    if (*this == N->getOperand(i))
3312      return true;
3313  return false;
3314}
3315
3316bool SDNode::isOperand(SDNode *N) const {
3317  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3318    if (this == N->OperandList[i].Val)
3319      return true;
3320  return false;
3321}
3322
3323static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3324                            SmallPtrSet<SDNode *, 32> &Visited) {
3325  if (found || !Visited.insert(N))
3326    return;
3327
3328  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3329    SDNode *Op = N->getOperand(i).Val;
3330    if (Op == P) {
3331      found = true;
3332      return;
3333    }
3334    findPredecessor(Op, P, found, Visited);
3335  }
3336}
3337
3338/// isPredecessor - Return true if this node is a predecessor of N. This node
3339/// is either an operand of N or it can be reached by recursively traversing
3340/// up the operands.
3341/// NOTE: this is an expensive method. Use it carefully.
3342bool SDNode::isPredecessor(SDNode *N) const {
3343  SmallPtrSet<SDNode *, 32> Visited;
3344  bool found = false;
3345  findPredecessor(N, this, found, Visited);
3346  return found;
3347}
3348
3349uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3350  assert(Num < NumOperands && "Invalid child # of SDNode!");
3351  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3352}
3353
3354std::string SDNode::getOperationName(const SelectionDAG *G) const {
3355  switch (getOpcode()) {
3356  default:
3357    if (getOpcode() < ISD::BUILTIN_OP_END)
3358      return "<<Unknown DAG Node>>";
3359    else {
3360      if (G) {
3361        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3362          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3363            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
3364
3365        TargetLowering &TLI = G->getTargetLoweringInfo();
3366        const char *Name =
3367          TLI.getTargetNodeName(getOpcode());
3368        if (Name) return Name;
3369      }
3370
3371      return "<<Unknown Target Node>>";
3372    }
3373
3374  case ISD::PCMARKER:      return "PCMarker";
3375  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3376  case ISD::SRCVALUE:      return "SrcValue";
3377  case ISD::EntryToken:    return "EntryToken";
3378  case ISD::TokenFactor:   return "TokenFactor";
3379  case ISD::AssertSext:    return "AssertSext";
3380  case ISD::AssertZext:    return "AssertZext";
3381
3382  case ISD::STRING:        return "String";
3383  case ISD::BasicBlock:    return "BasicBlock";
3384  case ISD::VALUETYPE:     return "ValueType";
3385  case ISD::Register:      return "Register";
3386
3387  case ISD::Constant:      return "Constant";
3388  case ISD::ConstantFP:    return "ConstantFP";
3389  case ISD::GlobalAddress: return "GlobalAddress";
3390  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3391  case ISD::FrameIndex:    return "FrameIndex";
3392  case ISD::JumpTable:     return "JumpTable";
3393  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3394  case ISD::RETURNADDR: return "RETURNADDR";
3395  case ISD::FRAMEADDR: return "FRAMEADDR";
3396  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3397  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3398  case ISD::EHSELECTION: return "EHSELECTION";
3399  case ISD::EH_RETURN: return "EH_RETURN";
3400  case ISD::ConstantPool:  return "ConstantPool";
3401  case ISD::ExternalSymbol: return "ExternalSymbol";
3402  case ISD::INTRINSIC_WO_CHAIN: {
3403    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3404    return Intrinsic::getName((Intrinsic::ID)IID);
3405  }
3406  case ISD::INTRINSIC_VOID:
3407  case ISD::INTRINSIC_W_CHAIN: {
3408    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3409    return Intrinsic::getName((Intrinsic::ID)IID);
3410  }
3411
3412  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3413  case ISD::TargetConstant: return "TargetConstant";
3414  case ISD::TargetConstantFP:return "TargetConstantFP";
3415  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3416  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3417  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3418  case ISD::TargetJumpTable:  return "TargetJumpTable";
3419  case ISD::TargetConstantPool:  return "TargetConstantPool";
3420  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3421
3422  case ISD::CopyToReg:     return "CopyToReg";
3423  case ISD::CopyFromReg:   return "CopyFromReg";
3424  case ISD::UNDEF:         return "undef";
3425  case ISD::MERGE_VALUES:  return "merge_values";
3426  case ISD::INLINEASM:     return "inlineasm";
3427  case ISD::LABEL:         return "label";
3428  case ISD::HANDLENODE:    return "handlenode";
3429  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3430  case ISD::CALL:          return "call";
3431
3432  // Unary operators
3433  case ISD::FABS:   return "fabs";
3434  case ISD::FNEG:   return "fneg";
3435  case ISD::FSQRT:  return "fsqrt";
3436  case ISD::FSIN:   return "fsin";
3437  case ISD::FCOS:   return "fcos";
3438  case ISD::FPOWI:  return "fpowi";
3439
3440  // Binary operators
3441  case ISD::ADD:    return "add";
3442  case ISD::SUB:    return "sub";
3443  case ISD::MUL:    return "mul";
3444  case ISD::MULHU:  return "mulhu";
3445  case ISD::MULHS:  return "mulhs";
3446  case ISD::SDIV:   return "sdiv";
3447  case ISD::UDIV:   return "udiv";
3448  case ISD::SREM:   return "srem";
3449  case ISD::UREM:   return "urem";
3450  case ISD::AND:    return "and";
3451  case ISD::OR:     return "or";
3452  case ISD::XOR:    return "xor";
3453  case ISD::SHL:    return "shl";
3454  case ISD::SRA:    return "sra";
3455  case ISD::SRL:    return "srl";
3456  case ISD::ROTL:   return "rotl";
3457  case ISD::ROTR:   return "rotr";
3458  case ISD::FADD:   return "fadd";
3459  case ISD::FSUB:   return "fsub";
3460  case ISD::FMUL:   return "fmul";
3461  case ISD::FDIV:   return "fdiv";
3462  case ISD::FREM:   return "frem";
3463  case ISD::FCOPYSIGN: return "fcopysign";
3464
3465  case ISD::SETCC:       return "setcc";
3466  case ISD::SELECT:      return "select";
3467  case ISD::SELECT_CC:   return "select_cc";
3468  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3469  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3470  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3471  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3472  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3473  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3474  case ISD::CARRY_FALSE:         return "carry_false";
3475  case ISD::ADDC:        return "addc";
3476  case ISD::ADDE:        return "adde";
3477  case ISD::SUBC:        return "subc";
3478  case ISD::SUBE:        return "sube";
3479  case ISD::SHL_PARTS:   return "shl_parts";
3480  case ISD::SRA_PARTS:   return "sra_parts";
3481  case ISD::SRL_PARTS:   return "srl_parts";
3482
3483  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3484  case ISD::INSERT_SUBREG:      return "insert_subreg";
3485
3486  // Conversion operators.
3487  case ISD::SIGN_EXTEND: return "sign_extend";
3488  case ISD::ZERO_EXTEND: return "zero_extend";
3489  case ISD::ANY_EXTEND:  return "any_extend";
3490  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3491  case ISD::TRUNCATE:    return "truncate";
3492  case ISD::FP_ROUND:    return "fp_round";
3493  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3494  case ISD::FP_EXTEND:   return "fp_extend";
3495
3496  case ISD::SINT_TO_FP:  return "sint_to_fp";
3497  case ISD::UINT_TO_FP:  return "uint_to_fp";
3498  case ISD::FP_TO_SINT:  return "fp_to_sint";
3499  case ISD::FP_TO_UINT:  return "fp_to_uint";
3500  case ISD::BIT_CONVERT: return "bit_convert";
3501
3502    // Control flow instructions
3503  case ISD::BR:      return "br";
3504  case ISD::BRIND:   return "brind";
3505  case ISD::BR_JT:   return "br_jt";
3506  case ISD::BRCOND:  return "brcond";
3507  case ISD::BR_CC:   return "br_cc";
3508  case ISD::RET:     return "ret";
3509  case ISD::CALLSEQ_START:  return "callseq_start";
3510  case ISD::CALLSEQ_END:    return "callseq_end";
3511
3512    // Other operators
3513  case ISD::LOAD:               return "load";
3514  case ISD::STORE:              return "store";
3515  case ISD::VAARG:              return "vaarg";
3516  case ISD::VACOPY:             return "vacopy";
3517  case ISD::VAEND:              return "vaend";
3518  case ISD::VASTART:            return "vastart";
3519  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3520  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3521  case ISD::BUILD_PAIR:         return "build_pair";
3522  case ISD::STACKSAVE:          return "stacksave";
3523  case ISD::STACKRESTORE:       return "stackrestore";
3524
3525  // Block memory operations.
3526  case ISD::MEMSET:  return "memset";
3527  case ISD::MEMCPY:  return "memcpy";
3528  case ISD::MEMMOVE: return "memmove";
3529
3530  // Bit manipulation
3531  case ISD::BSWAP:   return "bswap";
3532  case ISD::CTPOP:   return "ctpop";
3533  case ISD::CTTZ:    return "cttz";
3534  case ISD::CTLZ:    return "ctlz";
3535
3536  // Debug info
3537  case ISD::LOCATION: return "location";
3538  case ISD::DEBUG_LOC: return "debug_loc";
3539
3540  // Trampolines
3541  case ISD::ADJUST_TRAMP: return "adjust_tramp";
3542  case ISD::TRAMPOLINE:   return "trampoline";
3543
3544  case ISD::CONDCODE:
3545    switch (cast<CondCodeSDNode>(this)->get()) {
3546    default: assert(0 && "Unknown setcc condition!");
3547    case ISD::SETOEQ:  return "setoeq";
3548    case ISD::SETOGT:  return "setogt";
3549    case ISD::SETOGE:  return "setoge";
3550    case ISD::SETOLT:  return "setolt";
3551    case ISD::SETOLE:  return "setole";
3552    case ISD::SETONE:  return "setone";
3553
3554    case ISD::SETO:    return "seto";
3555    case ISD::SETUO:   return "setuo";
3556    case ISD::SETUEQ:  return "setue";
3557    case ISD::SETUGT:  return "setugt";
3558    case ISD::SETUGE:  return "setuge";
3559    case ISD::SETULT:  return "setult";
3560    case ISD::SETULE:  return "setule";
3561    case ISD::SETUNE:  return "setune";
3562
3563    case ISD::SETEQ:   return "seteq";
3564    case ISD::SETGT:   return "setgt";
3565    case ISD::SETGE:   return "setge";
3566    case ISD::SETLT:   return "setlt";
3567    case ISD::SETLE:   return "setle";
3568    case ISD::SETNE:   return "setne";
3569    }
3570  }
3571}
3572
3573const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3574  switch (AM) {
3575  default:
3576    return "";
3577  case ISD::PRE_INC:
3578    return "<pre-inc>";
3579  case ISD::PRE_DEC:
3580    return "<pre-dec>";
3581  case ISD::POST_INC:
3582    return "<post-inc>";
3583  case ISD::POST_DEC:
3584    return "<post-dec>";
3585  }
3586}
3587
3588void SDNode::dump() const { dump(0); }
3589void SDNode::dump(const SelectionDAG *G) const {
3590  cerr << (void*)this << ": ";
3591
3592  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3593    if (i) cerr << ",";
3594    if (getValueType(i) == MVT::Other)
3595      cerr << "ch";
3596    else
3597      cerr << MVT::getValueTypeString(getValueType(i));
3598  }
3599  cerr << " = " << getOperationName(G);
3600
3601  cerr << " ";
3602  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3603    if (i) cerr << ", ";
3604    cerr << (void*)getOperand(i).Val;
3605    if (unsigned RN = getOperand(i).ResNo)
3606      cerr << ":" << RN;
3607  }
3608
3609  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3610    cerr << "<" << CSDN->getValue() << ">";
3611  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3612    cerr << "<" << CSDN->getValue() << ">";
3613  } else if (const GlobalAddressSDNode *GADN =
3614             dyn_cast<GlobalAddressSDNode>(this)) {
3615    int offset = GADN->getOffset();
3616    cerr << "<";
3617    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3618    if (offset > 0)
3619      cerr << " + " << offset;
3620    else
3621      cerr << " " << offset;
3622  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3623    cerr << "<" << FIDN->getIndex() << ">";
3624  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3625    cerr << "<" << JTDN->getIndex() << ">";
3626  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3627    int offset = CP->getOffset();
3628    if (CP->isMachineConstantPoolEntry())
3629      cerr << "<" << *CP->getMachineCPVal() << ">";
3630    else
3631      cerr << "<" << *CP->getConstVal() << ">";
3632    if (offset > 0)
3633      cerr << " + " << offset;
3634    else
3635      cerr << " " << offset;
3636  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3637    cerr << "<";
3638    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3639    if (LBB)
3640      cerr << LBB->getName() << " ";
3641    cerr << (const void*)BBDN->getBasicBlock() << ">";
3642  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3643    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3644      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3645    } else {
3646      cerr << " #" << R->getReg();
3647    }
3648  } else if (const ExternalSymbolSDNode *ES =
3649             dyn_cast<ExternalSymbolSDNode>(this)) {
3650    cerr << "'" << ES->getSymbol() << "'";
3651  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3652    if (M->getValue())
3653      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3654    else
3655      cerr << "<null:" << M->getOffset() << ">";
3656  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3657    cerr << ":" << MVT::getValueTypeString(N->getVT());
3658  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3659    bool doExt = true;
3660    switch (LD->getExtensionType()) {
3661    default: doExt = false; break;
3662    case ISD::EXTLOAD:
3663      cerr << " <anyext ";
3664      break;
3665    case ISD::SEXTLOAD:
3666      cerr << " <sext ";
3667      break;
3668    case ISD::ZEXTLOAD:
3669      cerr << " <zext ";
3670      break;
3671    }
3672    if (doExt)
3673      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3674
3675    const char *AM = getIndexedModeName(LD->getAddressingMode());
3676    if (*AM)
3677      cerr << " " << AM;
3678  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3679    if (ST->isTruncatingStore())
3680      cerr << " <trunc "
3681           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3682
3683    const char *AM = getIndexedModeName(ST->getAddressingMode());
3684    if (*AM)
3685      cerr << " " << AM;
3686  }
3687}
3688
3689static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3690  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3691    if (N->getOperand(i).Val->hasOneUse())
3692      DumpNodes(N->getOperand(i).Val, indent+2, G);
3693    else
3694      cerr << "\n" << std::string(indent+2, ' ')
3695           << (void*)N->getOperand(i).Val << ": <multiple use>";
3696
3697
3698  cerr << "\n" << std::string(indent, ' ');
3699  N->dump(G);
3700}
3701
3702void SelectionDAG::dump() const {
3703  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3704  std::vector<const SDNode*> Nodes;
3705  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3706       I != E; ++I)
3707    Nodes.push_back(I);
3708
3709  std::sort(Nodes.begin(), Nodes.end());
3710
3711  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3712    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3713      DumpNodes(Nodes[i], 2, this);
3714  }
3715
3716  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3717
3718  cerr << "\n\n";
3719}
3720
3721const Type *ConstantPoolSDNode::getType() const {
3722  if (isMachineConstantPoolEntry())
3723    return Val.MachineCPVal->getType();
3724  return Val.ConstVal->getType();
3725}
3726