SelectionDAG.cpp revision 8a423f7fcba0ff1bbb0748a9f3b62c8074f5097f
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getNode());
346    ID.AddInteger(Ops->getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getMemoryVT().getRawBits());
433    ID.AddInteger(LD->getRawSubclassData());
434    break;
435  }
436  case ISD::STORE: {
437    const StoreSDNode *ST = cast<StoreSDNode>(N);
438    ID.AddInteger(ST->getMemoryVT().getRawBits());
439    ID.AddInteger(ST->getRawSubclassData());
440    break;
441  }
442  case ISD::ATOMIC_CMP_SWAP:
443  case ISD::ATOMIC_SWAP:
444  case ISD::ATOMIC_LOAD_ADD:
445  case ISD::ATOMIC_LOAD_SUB:
446  case ISD::ATOMIC_LOAD_AND:
447  case ISD::ATOMIC_LOAD_OR:
448  case ISD::ATOMIC_LOAD_XOR:
449  case ISD::ATOMIC_LOAD_NAND:
450  case ISD::ATOMIC_LOAD_MIN:
451  case ISD::ATOMIC_LOAD_MAX:
452  case ISD::ATOMIC_LOAD_UMIN:
453  case ISD::ATOMIC_LOAD_UMAX: {
454    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
455    ID.AddInteger(AT->getMemoryVT().getRawBits());
456    ID.AddInteger(AT->getRawSubclassData());
457    break;
458  }
459  } // end switch (N->getOpcode())
460}
461
462/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
463/// data.
464static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
465  AddNodeIDOpcode(ID, N->getOpcode());
466  // Add the return value info.
467  AddNodeIDValueTypes(ID, N->getVTList());
468  // Add the operand info.
469  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
470
471  // Handle SDNode leafs with special info.
472  AddNodeIDCustom(ID, N);
473}
474
475/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
476/// the CSE map that carries alignment, volatility, indexing mode, and
477/// extension/truncation information.
478///
479static inline unsigned
480encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
481                     bool isVolatile, unsigned Alignment) {
482  assert((ConvType & 3) == ConvType &&
483         "ConvType may not require more than 2 bits!");
484  assert((AM & 7) == AM &&
485         "AM may not require more than 3 bits!");
486  return ConvType |
487         (AM << 2) |
488         (isVolatile << 5) |
489         ((Log2_32(Alignment) + 1) << 6);
490}
491
492//===----------------------------------------------------------------------===//
493//                              SelectionDAG Class
494//===----------------------------------------------------------------------===//
495
496/// doNotCSE - Return true if CSE should not be performed for this node.
497static bool doNotCSE(SDNode *N) {
498  if (N->getValueType(0) == MVT::Flag)
499    return true; // Never CSE anything that produces a flag.
500
501  switch (N->getOpcode()) {
502  default: break;
503  case ISD::HANDLENODE:
504  case ISD::DBG_LABEL:
505  case ISD::DBG_STOPPOINT:
506  case ISD::EH_LABEL:
507  case ISD::DECLARE:
508    return true;   // Never CSE these nodes.
509  }
510
511  // Check that remaining values produced are not flags.
512  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
513    if (N->getValueType(i) == MVT::Flag)
514      return true; // Never CSE anything that produces a flag.
515
516  return false;
517}
518
519/// RemoveDeadNodes - This method deletes all unreachable nodes in the
520/// SelectionDAG.
521void SelectionDAG::RemoveDeadNodes() {
522  // Create a dummy node (which is not added to allnodes), that adds a reference
523  // to the root node, preventing it from being deleted.
524  HandleSDNode Dummy(getRoot());
525
526  SmallVector<SDNode*, 128> DeadNodes;
527
528  // Add all obviously-dead nodes to the DeadNodes worklist.
529  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
530    if (I->use_empty())
531      DeadNodes.push_back(I);
532
533  RemoveDeadNodes(DeadNodes);
534
535  // If the root changed (e.g. it was a dead load, update the root).
536  setRoot(Dummy.getValue());
537}
538
539/// RemoveDeadNodes - This method deletes the unreachable nodes in the
540/// given list, and any nodes that become unreachable as a result.
541void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
542                                   DAGUpdateListener *UpdateListener) {
543
544  // Process the worklist, deleting the nodes and adding their uses to the
545  // worklist.
546  while (!DeadNodes.empty()) {
547    SDNode *N = DeadNodes.pop_back_val();
548
549    if (UpdateListener)
550      UpdateListener->NodeDeleted(N, 0);
551
552    // Take the node out of the appropriate CSE map.
553    RemoveNodeFromCSEMaps(N);
554
555    // Next, brutally remove the operand list.  This is safe to do, as there are
556    // no cycles in the graph.
557    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
558      SDUse &Use = *I++;
559      SDNode *Operand = Use.getNode();
560      Use.set(SDValue());
561
562      // Now that we removed this operand, see if there are no uses of it left.
563      if (Operand->use_empty())
564        DeadNodes.push_back(Operand);
565    }
566
567    DeallocateNode(N);
568  }
569}
570
571void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
572  SmallVector<SDNode*, 16> DeadNodes(1, N);
573  RemoveDeadNodes(DeadNodes, UpdateListener);
574}
575
576void SelectionDAG::DeleteNode(SDNode *N) {
577  // First take this out of the appropriate CSE map.
578  RemoveNodeFromCSEMaps(N);
579
580  // Finally, remove uses due to operands of this node, remove from the
581  // AllNodes list, and delete the node.
582  DeleteNodeNotInCSEMaps(N);
583}
584
585void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
586  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
587  assert(N->use_empty() && "Cannot delete a node that is not dead!");
588
589  // Drop all of the operands and decrement used node's use counts.
590  N->DropOperands();
591
592  DeallocateNode(N);
593}
594
595void SelectionDAG::DeallocateNode(SDNode *N) {
596  if (N->OperandsNeedDelete)
597    delete[] N->OperandList;
598
599  // Set the opcode to DELETED_NODE to help catch bugs when node
600  // memory is reallocated.
601  N->NodeType = ISD::DELETED_NODE;
602
603  NodeAllocator.Deallocate(AllNodes.remove(N));
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::EntryToken:
614    assert(0 && "EntryToken should not be in CSEMaps!");
615    return false;
616  case ISD::HANDLENODE: return false;  // noop.
617  case ISD::CONDCODE:
618    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
619           "Cond code doesn't exist!");
620    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
621    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
622    break;
623  case ISD::ExternalSymbol:
624    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
625    break;
626  case ISD::TargetExternalSymbol:
627    Erased =
628      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
629    break;
630  case ISD::VALUETYPE: {
631    MVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
636      ValueTypeNodes[VT.getSimpleVT()] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    Erased = CSEMap.RemoveNode(N);
643    break;
644  }
645#ifndef NDEBUG
646  // Verify that the node was actually in one of the CSE maps, unless it has a
647  // flag result (which cannot be CSE'd) or is one of the special cases that are
648  // not subject to CSE.
649  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
650      !N->isMachineOpcode() && !doNotCSE(N)) {
651    N->dump(this);
652    cerr << "\n";
653    assert(0 && "Node is not in map!");
654  }
655#endif
656  return Erased;
657}
658
659/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
660/// maps and modified in place. Add it back to the CSE maps, unless an identical
661/// node already exists, in which case transfer all its users to the existing
662/// node. This transfer can potentially trigger recursive merging.
663///
664void
665SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
666                                       DAGUpdateListener *UpdateListener) {
667  // For node types that aren't CSE'd, just act as if no identical node
668  // already exists.
669  if (!doNotCSE(N)) {
670    SDNode *Existing = CSEMap.GetOrInsertNode(N);
671    if (Existing != N) {
672      // If there was already an existing matching node, use ReplaceAllUsesWith
673      // to replace the dead one with the existing one.  This can cause
674      // recursive merging of other unrelated nodes down the line.
675      ReplaceAllUsesWith(N, Existing, UpdateListener);
676
677      // N is now dead.  Inform the listener if it exists and delete it.
678      if (UpdateListener)
679        UpdateListener->NodeDeleted(N, Existing);
680      DeleteNodeNotInCSEMaps(N);
681      return;
682    }
683  }
684
685  // If the node doesn't already exist, we updated it.  Inform a listener if
686  // it exists.
687  if (UpdateListener)
688    UpdateListener->NodeUpdated(N);
689}
690
691/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692/// were replaced with those specified.  If this node is never memoized,
693/// return null, otherwise return a pointer to the slot it would take.  If a
694/// node already exists with these operands, the slot will be non-null.
695SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
696                                           void *&InsertPos) {
697  if (doNotCSE(N))
698    return 0;
699
700  SDValue Ops[] = { Op };
701  FoldingSetNodeID ID;
702  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
703  AddNodeIDCustom(ID, N);
704  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
705}
706
707/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
708/// were replaced with those specified.  If this node is never memoized,
709/// return null, otherwise return a pointer to the slot it would take.  If a
710/// node already exists with these operands, the slot will be non-null.
711SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
712                                           SDValue Op1, SDValue Op2,
713                                           void *&InsertPos) {
714  if (doNotCSE(N))
715    return 0;
716
717  SDValue Ops[] = { Op1, Op2 };
718  FoldingSetNodeID ID;
719  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
720  AddNodeIDCustom(ID, N);
721  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
722}
723
724
725/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726/// were replaced with those specified.  If this node is never memoized,
727/// return null, otherwise return a pointer to the slot it would take.  If a
728/// node already exists with these operands, the slot will be non-null.
729SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730                                           const SDValue *Ops,unsigned NumOps,
731                                           void *&InsertPos) {
732  if (doNotCSE(N))
733    return 0;
734
735  FoldingSetNodeID ID;
736  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
737  AddNodeIDCustom(ID, N);
738  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
739}
740
741/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
742void SelectionDAG::VerifyNode(SDNode *N) {
743  switch (N->getOpcode()) {
744  default:
745    break;
746  case ISD::BUILD_PAIR: {
747    MVT VT = N->getValueType(0);
748    assert(N->getNumValues() == 1 && "Too many results!");
749    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
750           "Wrong return type!");
751    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
752    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
753           "Mismatched operand types!");
754    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
755           "Wrong operand type!");
756    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
757           "Wrong return type size");
758    break;
759  }
760  case ISD::BUILD_VECTOR: {
761    assert(N->getNumValues() == 1 && "Too many results!");
762    assert(N->getValueType(0).isVector() && "Wrong return type!");
763    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
764           "Wrong number of operands!");
765    // FIXME: Change vector_shuffle to a variadic node with mask elements being
766    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
767    // operand, and it is not always possible to legalize it.  Turning off the
768    // following checks at least makes it possible to legalize most of the time.
769//    MVT EltVT = N->getValueType(0).getVectorElementType();
770//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
771//      assert(I->getValueType() == EltVT &&
772//             "Wrong operand type!");
773    break;
774  }
775  }
776}
777
778/// getMVTAlignment - Compute the default alignment value for the
779/// given type.
780///
781unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
782  const Type *Ty = VT == MVT::iPTR ?
783                   PointerType::get(Type::Int8Ty, 0) :
784                   VT.getTypeForMVT();
785
786  return TLI.getTargetData()->getABITypeAlignment(Ty);
787}
788
789SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
790  : TLI(tli), FLI(fli), DW(0),
791    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
792    Root(getEntryNode()) {
793  AllNodes.push_back(&EntryNode);
794}
795
796void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
797                        DwarfWriter *dw) {
798  MF = &mf;
799  MMI = mmi;
800  DW = dw;
801}
802
803SelectionDAG::~SelectionDAG() {
804  allnodes_clear();
805}
806
807void SelectionDAG::allnodes_clear() {
808  assert(&*AllNodes.begin() == &EntryNode);
809  AllNodes.remove(AllNodes.begin());
810  while (!AllNodes.empty())
811    DeallocateNode(AllNodes.begin());
812}
813
814void SelectionDAG::clear() {
815  allnodes_clear();
816  OperandAllocator.Reset();
817  CSEMap.clear();
818
819  ExtendedValueTypeNodes.clear();
820  ExternalSymbols.clear();
821  TargetExternalSymbols.clear();
822  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
823            static_cast<CondCodeSDNode*>(0));
824  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
825            static_cast<SDNode*>(0));
826
827  EntryNode.UseList = 0;
828  AllNodes.push_back(&EntryNode);
829  Root = getEntryNode();
830}
831
832SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
833  if (Op.getValueType() == VT) return Op;
834  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
835                                   VT.getSizeInBits());
836  return getNode(ISD::AND, DL, Op.getValueType(), Op,
837                 getConstant(Imm, Op.getValueType()));
838}
839
840/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
841///
842SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
843  SDValue NegOne;
844  if (VT.isVector()) {
845    MVT EltVT = VT.getVectorElementType();
846    SDValue NegOneElt =
847      getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), EltVT);
848    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
849    NegOne = getNode(ISD::BUILD_VECTOR, DL, VT, &NegOnes[0], NegOnes.size());
850  } else {
851    NegOne = getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
852  }
853  return getNode(ISD::XOR, DL, VT, Val, NegOne);
854}
855
856SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
857  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
858  assert((EltVT.getSizeInBits() >= 64 ||
859         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
860         "getConstant with a uint64_t value that doesn't fit in the type!");
861  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
862}
863
864SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
865  return getConstant(*ConstantInt::get(Val), VT, isT);
866}
867
868SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
869  assert(VT.isInteger() && "Cannot create FP integer constant!");
870
871  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
872  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
873         "APInt size does not match type size!");
874
875  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
876  FoldingSetNodeID ID;
877  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
878  ID.AddPointer(&Val);
879  void *IP = 0;
880  SDNode *N = NULL;
881  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
882    if (!VT.isVector())
883      return SDValue(N, 0);
884  if (!N) {
885    N = NodeAllocator.Allocate<ConstantSDNode>();
886    new (N) ConstantSDNode(isT, &Val, EltVT);
887    CSEMap.InsertNode(N, IP);
888    AllNodes.push_back(N);
889  }
890
891  SDValue Result(N, 0);
892  if (VT.isVector()) {
893    SmallVector<SDValue, 8> Ops;
894    Ops.assign(VT.getVectorNumElements(), Result);
895    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
896  }
897  return Result;
898}
899
900SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
901  return getConstant(Val, TLI.getPointerTy(), isTarget);
902}
903
904
905SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
906  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
907}
908
909SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
910  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
911
912  MVT EltVT =
913    VT.isVector() ? VT.getVectorElementType() : VT;
914
915  // Do the map lookup using the actual bit pattern for the floating point
916  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
917  // we don't have issues with SNANs.
918  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
919  FoldingSetNodeID ID;
920  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
921  ID.AddPointer(&V);
922  void *IP = 0;
923  SDNode *N = NULL;
924  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
925    if (!VT.isVector())
926      return SDValue(N, 0);
927  if (!N) {
928    N = NodeAllocator.Allocate<ConstantFPSDNode>();
929    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
930    CSEMap.InsertNode(N, IP);
931    AllNodes.push_back(N);
932  }
933
934  SDValue Result(N, 0);
935  if (VT.isVector()) {
936    SmallVector<SDValue, 8> Ops;
937    Ops.assign(VT.getVectorNumElements(), Result);
938    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
939  }
940  return Result;
941}
942
943SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
944  MVT EltVT =
945    VT.isVector() ? VT.getVectorElementType() : VT;
946  if (EltVT==MVT::f32)
947    return getConstantFP(APFloat((float)Val), VT, isTarget);
948  else
949    return getConstantFP(APFloat(Val), VT, isTarget);
950}
951
952SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
953                                       MVT VT, int64_t Offset,
954                                       bool isTargetGA) {
955  unsigned Opc;
956
957  // Truncate (with sign-extension) the offset value to the pointer size.
958  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
959  if (BitWidth < 64)
960    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
961
962  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
963  if (!GVar) {
964    // If GV is an alias then use the aliasee for determining thread-localness.
965    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
966      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
967  }
968
969  if (GVar && GVar->isThreadLocal())
970    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
971  else
972    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
973
974  FoldingSetNodeID ID;
975  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
976  ID.AddPointer(GV);
977  ID.AddInteger(Offset);
978  void *IP = 0;
979  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
980    return SDValue(E, 0);
981  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
982  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
983  CSEMap.InsertNode(N, IP);
984  AllNodes.push_back(N);
985  return SDValue(N, 0);
986}
987
988SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
989  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
990  FoldingSetNodeID ID;
991  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
992  ID.AddInteger(FI);
993  void *IP = 0;
994  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
995    return SDValue(E, 0);
996  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
997  new (N) FrameIndexSDNode(FI, VT, isTarget);
998  CSEMap.InsertNode(N, IP);
999  AllNodes.push_back(N);
1000  return SDValue(N, 0);
1001}
1002
1003SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1004  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1005  FoldingSetNodeID ID;
1006  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1007  ID.AddInteger(JTI);
1008  void *IP = 0;
1009  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1010    return SDValue(E, 0);
1011  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1012  new (N) JumpTableSDNode(JTI, VT, isTarget);
1013  CSEMap.InsertNode(N, IP);
1014  AllNodes.push_back(N);
1015  return SDValue(N, 0);
1016}
1017
1018SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1019                                      unsigned Alignment, int Offset,
1020                                      bool isTarget) {
1021  if (Alignment == 0)
1022    Alignment =
1023      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1024  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1025  FoldingSetNodeID ID;
1026  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1027  ID.AddInteger(Alignment);
1028  ID.AddInteger(Offset);
1029  ID.AddPointer(C);
1030  void *IP = 0;
1031  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1032    return SDValue(E, 0);
1033  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1034  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1035  CSEMap.InsertNode(N, IP);
1036  AllNodes.push_back(N);
1037  return SDValue(N, 0);
1038}
1039
1040
1041SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1042                                      unsigned Alignment, int Offset,
1043                                      bool isTarget) {
1044  if (Alignment == 0)
1045    Alignment =
1046      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1047  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1048  FoldingSetNodeID ID;
1049  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1050  ID.AddInteger(Alignment);
1051  ID.AddInteger(Offset);
1052  C->AddSelectionDAGCSEId(ID);
1053  void *IP = 0;
1054  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1055    return SDValue(E, 0);
1056  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1057  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1058  CSEMap.InsertNode(N, IP);
1059  AllNodes.push_back(N);
1060  return SDValue(N, 0);
1061}
1062
1063SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1064  FoldingSetNodeID ID;
1065  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1066  ID.AddPointer(MBB);
1067  void *IP = 0;
1068  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1069    return SDValue(E, 0);
1070  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1071  new (N) BasicBlockSDNode(MBB);
1072  CSEMap.InsertNode(N, IP);
1073  AllNodes.push_back(N);
1074  return SDValue(N, 0);
1075}
1076
1077SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB, DebugLoc dl) {
1078  FoldingSetNodeID ID;
1079  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1080  ID.AddPointer(MBB);
1081  void *IP = 0;
1082  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1083    return SDValue(E, 0);
1084  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1085  new (N) BasicBlockSDNode(MBB, dl);
1086  CSEMap.InsertNode(N, IP);
1087  AllNodes.push_back(N);
1088  return SDValue(N, 0);
1089}
1090
1091SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1092  FoldingSetNodeID ID;
1093  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1094  ID.AddInteger(Flags.getRawBits());
1095  void *IP = 0;
1096  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1097    return SDValue(E, 0);
1098  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1099  new (N) ARG_FLAGSSDNode(Flags);
1100  CSEMap.InsertNode(N, IP);
1101  AllNodes.push_back(N);
1102  return SDValue(N, 0);
1103}
1104
1105SDValue SelectionDAG::getValueType(MVT VT) {
1106  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1107    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1108
1109  SDNode *&N = VT.isExtended() ?
1110    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1111
1112  if (N) return SDValue(N, 0);
1113  N = NodeAllocator.Allocate<VTSDNode>();
1114  new (N) VTSDNode(VT);
1115  AllNodes.push_back(N);
1116  return SDValue(N, 0);
1117}
1118
1119SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1120  SDNode *&N = ExternalSymbols[Sym];
1121  if (N) return SDValue(N, 0);
1122  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1123  new (N) ExternalSymbolSDNode(false, Sym, VT);
1124  AllNodes.push_back(N);
1125  return SDValue(N, 0);
1126}
1127
1128SDValue SelectionDAG::getExternalSymbol(const char *Sym, DebugLoc dl, MVT VT) {
1129  SDNode *&N = ExternalSymbols[Sym];
1130  if (N) return SDValue(N, 0);
1131  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1132  new (N) ExternalSymbolSDNode(false, dl, Sym, VT);
1133  AllNodes.push_back(N);
1134  return SDValue(N, 0);
1135}
1136
1137SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1138  SDNode *&N = TargetExternalSymbols[Sym];
1139  if (N) return SDValue(N, 0);
1140  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1141  new (N) ExternalSymbolSDNode(true, Sym, VT);
1142  AllNodes.push_back(N);
1143  return SDValue(N, 0);
1144}
1145
1146SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, DebugLoc dl,
1147                                              MVT VT) {
1148  SDNode *&N = TargetExternalSymbols[Sym];
1149  if (N) return SDValue(N, 0);
1150  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1151  new (N) ExternalSymbolSDNode(true, dl, Sym, VT);
1152  AllNodes.push_back(N);
1153  return SDValue(N, 0);
1154}
1155
1156SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1157  if ((unsigned)Cond >= CondCodeNodes.size())
1158    CondCodeNodes.resize(Cond+1);
1159
1160  if (CondCodeNodes[Cond] == 0) {
1161    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1162    new (N) CondCodeSDNode(Cond);
1163    CondCodeNodes[Cond] = N;
1164    AllNodes.push_back(N);
1165  }
1166  return SDValue(CondCodeNodes[Cond], 0);
1167}
1168
1169SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1170                                       SDValue Val, SDValue DTy,
1171                                       SDValue STy, SDValue Rnd, SDValue Sat,
1172                                       ISD::CvtCode Code) {
1173  // If the src and dest types are the same and the conversion is between
1174  // integer types of the same sign or two floats, no conversion is necessary.
1175  if (DTy == STy &&
1176      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1177    return Val;
1178
1179  FoldingSetNodeID ID;
1180  void* IP = 0;
1181  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1182    return SDValue(E, 0);
1183  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1184  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1185  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1186  CSEMap.InsertNode(N, IP);
1187  AllNodes.push_back(N);
1188  return SDValue(N, 0);
1189}
1190
1191SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1192  FoldingSetNodeID ID;
1193  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1194  ID.AddInteger(RegNo);
1195  void *IP = 0;
1196  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1197    return SDValue(E, 0);
1198  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1199  new (N) RegisterSDNode(RegNo, VT);
1200  CSEMap.InsertNode(N, IP);
1201  AllNodes.push_back(N);
1202  return SDValue(N, 0);
1203}
1204
1205SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1206                                      unsigned Line, unsigned Col,
1207                                      Value *CU) {
1208  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1209  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1210  AllNodes.push_back(N);
1211  return SDValue(N, 0);
1212}
1213
1214SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1215                               SDValue Root,
1216                               unsigned LabelID) {
1217  FoldingSetNodeID ID;
1218  SDValue Ops[] = { Root };
1219  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1220  ID.AddInteger(LabelID);
1221  void *IP = 0;
1222  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1223    return SDValue(E, 0);
1224  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1225  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1226  CSEMap.InsertNode(N, IP);
1227  AllNodes.push_back(N);
1228  return SDValue(N, 0);
1229}
1230
1231SDValue SelectionDAG::getSrcValue(const Value *V) {
1232  assert((!V || isa<PointerType>(V->getType())) &&
1233         "SrcValue is not a pointer?");
1234
1235  FoldingSetNodeID ID;
1236  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1237  ID.AddPointer(V);
1238
1239  void *IP = 0;
1240  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1241    return SDValue(E, 0);
1242
1243  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1244  new (N) SrcValueSDNode(V);
1245  CSEMap.InsertNode(N, IP);
1246  AllNodes.push_back(N);
1247  return SDValue(N, 0);
1248}
1249
1250SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1251#ifndef NDEBUG
1252  const Value *v = MO.getValue();
1253  assert((!v || isa<PointerType>(v->getType())) &&
1254         "SrcValue is not a pointer?");
1255#endif
1256
1257  FoldingSetNodeID ID;
1258  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1259  MO.Profile(ID);
1260
1261  void *IP = 0;
1262  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1263    return SDValue(E, 0);
1264
1265  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1266  new (N) MemOperandSDNode(MO);
1267  CSEMap.InsertNode(N, IP);
1268  AllNodes.push_back(N);
1269  return SDValue(N, 0);
1270}
1271
1272/// getShiftAmountOperand - Return the specified value casted to
1273/// the target's desired shift amount type.
1274SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1275  MVT OpTy = Op.getValueType();
1276  MVT ShTy = TLI.getShiftAmountTy();
1277  if (OpTy == ShTy || OpTy.isVector()) return Op;
1278
1279  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1280  return getNode(Opcode, ShTy, Op);
1281}
1282
1283/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1284/// specified value type.
1285SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1286  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1287  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1288  const Type *Ty = VT.getTypeForMVT();
1289  unsigned StackAlign =
1290  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1291
1292  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1293  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1294}
1295
1296/// CreateStackTemporary - Create a stack temporary suitable for holding
1297/// either of the specified value types.
1298SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1299  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1300                            VT2.getStoreSizeInBits())/8;
1301  const Type *Ty1 = VT1.getTypeForMVT();
1302  const Type *Ty2 = VT2.getTypeForMVT();
1303  const TargetData *TD = TLI.getTargetData();
1304  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1305                            TD->getPrefTypeAlignment(Ty2));
1306
1307  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1308  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1309  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1310}
1311
1312SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1313                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1314  // These setcc operations always fold.
1315  switch (Cond) {
1316  default: break;
1317  case ISD::SETFALSE:
1318  case ISD::SETFALSE2: return getConstant(0, VT);
1319  case ISD::SETTRUE:
1320  case ISD::SETTRUE2:  return getConstant(1, VT);
1321
1322  case ISD::SETOEQ:
1323  case ISD::SETOGT:
1324  case ISD::SETOGE:
1325  case ISD::SETOLT:
1326  case ISD::SETOLE:
1327  case ISD::SETONE:
1328  case ISD::SETO:
1329  case ISD::SETUO:
1330  case ISD::SETUEQ:
1331  case ISD::SETUNE:
1332    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1333    break;
1334  }
1335
1336  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1337    const APInt &C2 = N2C->getAPIntValue();
1338    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1339      const APInt &C1 = N1C->getAPIntValue();
1340
1341      switch (Cond) {
1342      default: assert(0 && "Unknown integer setcc!");
1343      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1344      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1345      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1346      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1347      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1348      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1349      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1350      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1351      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1352      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1353      }
1354    }
1355  }
1356  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1357    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1358      // No compile time operations on this type yet.
1359      if (N1C->getValueType(0) == MVT::ppcf128)
1360        return SDValue();
1361
1362      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1363      switch (Cond) {
1364      default: break;
1365      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1366                          return getNode(ISD::UNDEF, dl, VT);
1367                        // fall through
1368      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1369      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1370                          return getNode(ISD::UNDEF, dl, VT);
1371                        // fall through
1372      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1373                                           R==APFloat::cmpLessThan, VT);
1374      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1375                          return getNode(ISD::UNDEF, dl, VT);
1376                        // fall through
1377      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1378      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1379                          return getNode(ISD::UNDEF, dl, VT);
1380                        // fall through
1381      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1382      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1383                          return getNode(ISD::UNDEF, dl, VT);
1384                        // fall through
1385      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1386                                           R==APFloat::cmpEqual, VT);
1387      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1388                          return getNode(ISD::UNDEF, dl, VT);
1389                        // fall through
1390      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1391                                           R==APFloat::cmpEqual, VT);
1392      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1393      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1394      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1395                                           R==APFloat::cmpEqual, VT);
1396      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1397      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1398                                           R==APFloat::cmpLessThan, VT);
1399      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1400                                           R==APFloat::cmpUnordered, VT);
1401      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1402      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1403      }
1404    } else {
1405      // Ensure that the constant occurs on the RHS.
1406      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1407    }
1408  }
1409
1410  // Could not fold it.
1411  return SDValue();
1412}
1413
1414/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1415/// use this predicate to simplify operations downstream.
1416bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1417  unsigned BitWidth = Op.getValueSizeInBits();
1418  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1419}
1420
1421/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1422/// this predicate to simplify operations downstream.  Mask is known to be zero
1423/// for bits that V cannot have.
1424bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1425                                     unsigned Depth) const {
1426  APInt KnownZero, KnownOne;
1427  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1428  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1429  return (KnownZero & Mask) == Mask;
1430}
1431
1432/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1433/// known to be either zero or one and return them in the KnownZero/KnownOne
1434/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1435/// processing.
1436void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1437                                     APInt &KnownZero, APInt &KnownOne,
1438                                     unsigned Depth) const {
1439  unsigned BitWidth = Mask.getBitWidth();
1440  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1441         "Mask size mismatches value type size!");
1442
1443  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1444  if (Depth == 6 || Mask == 0)
1445    return;  // Limit search depth.
1446
1447  APInt KnownZero2, KnownOne2;
1448
1449  switch (Op.getOpcode()) {
1450  case ISD::Constant:
1451    // We know all of the bits for a constant!
1452    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1453    KnownZero = ~KnownOne & Mask;
1454    return;
1455  case ISD::AND:
1456    // If either the LHS or the RHS are Zero, the result is zero.
1457    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1458    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1459                      KnownZero2, KnownOne2, Depth+1);
1460    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1461    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1462
1463    // Output known-1 bits are only known if set in both the LHS & RHS.
1464    KnownOne &= KnownOne2;
1465    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1466    KnownZero |= KnownZero2;
1467    return;
1468  case ISD::OR:
1469    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1470    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1471                      KnownZero2, KnownOne2, Depth+1);
1472    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1473    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1474
1475    // Output known-0 bits are only known if clear in both the LHS & RHS.
1476    KnownZero &= KnownZero2;
1477    // Output known-1 are known to be set if set in either the LHS | RHS.
1478    KnownOne |= KnownOne2;
1479    return;
1480  case ISD::XOR: {
1481    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1482    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1483    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1484    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1485
1486    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1487    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1488    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1489    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1490    KnownZero = KnownZeroOut;
1491    return;
1492  }
1493  case ISD::MUL: {
1494    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1495    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1496    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1497    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1498    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1499
1500    // If low bits are zero in either operand, output low known-0 bits.
1501    // Also compute a conserative estimate for high known-0 bits.
1502    // More trickiness is possible, but this is sufficient for the
1503    // interesting case of alignment computation.
1504    KnownOne.clear();
1505    unsigned TrailZ = KnownZero.countTrailingOnes() +
1506                      KnownZero2.countTrailingOnes();
1507    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1508                               KnownZero2.countLeadingOnes(),
1509                               BitWidth) - BitWidth;
1510
1511    TrailZ = std::min(TrailZ, BitWidth);
1512    LeadZ = std::min(LeadZ, BitWidth);
1513    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1514                APInt::getHighBitsSet(BitWidth, LeadZ);
1515    KnownZero &= Mask;
1516    return;
1517  }
1518  case ISD::UDIV: {
1519    // For the purposes of computing leading zeros we can conservatively
1520    // treat a udiv as a logical right shift by the power of 2 known to
1521    // be less than the denominator.
1522    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1523    ComputeMaskedBits(Op.getOperand(0),
1524                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1525    unsigned LeadZ = KnownZero2.countLeadingOnes();
1526
1527    KnownOne2.clear();
1528    KnownZero2.clear();
1529    ComputeMaskedBits(Op.getOperand(1),
1530                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1531    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1532    if (RHSUnknownLeadingOnes != BitWidth)
1533      LeadZ = std::min(BitWidth,
1534                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1535
1536    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1537    return;
1538  }
1539  case ISD::SELECT:
1540    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1541    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1542    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1543    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1544
1545    // Only known if known in both the LHS and RHS.
1546    KnownOne &= KnownOne2;
1547    KnownZero &= KnownZero2;
1548    return;
1549  case ISD::SELECT_CC:
1550    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1551    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1552    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1553    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1554
1555    // Only known if known in both the LHS and RHS.
1556    KnownOne &= KnownOne2;
1557    KnownZero &= KnownZero2;
1558    return;
1559  case ISD::SADDO:
1560  case ISD::UADDO:
1561  case ISD::SSUBO:
1562  case ISD::USUBO:
1563  case ISD::SMULO:
1564  case ISD::UMULO:
1565    if (Op.getResNo() != 1)
1566      return;
1567    // The boolean result conforms to getBooleanContents.  Fall through.
1568  case ISD::SETCC:
1569    // If we know the result of a setcc has the top bits zero, use this info.
1570    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1571        BitWidth > 1)
1572      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1573    return;
1574  case ISD::SHL:
1575    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1576    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1577      unsigned ShAmt = SA->getZExtValue();
1578
1579      // If the shift count is an invalid immediate, don't do anything.
1580      if (ShAmt >= BitWidth)
1581        return;
1582
1583      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1584                        KnownZero, KnownOne, Depth+1);
1585      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1586      KnownZero <<= ShAmt;
1587      KnownOne  <<= ShAmt;
1588      // low bits known zero.
1589      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1590    }
1591    return;
1592  case ISD::SRL:
1593    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1594    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1595      unsigned ShAmt = SA->getZExtValue();
1596
1597      // If the shift count is an invalid immediate, don't do anything.
1598      if (ShAmt >= BitWidth)
1599        return;
1600
1601      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1602                        KnownZero, KnownOne, Depth+1);
1603      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1604      KnownZero = KnownZero.lshr(ShAmt);
1605      KnownOne  = KnownOne.lshr(ShAmt);
1606
1607      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1608      KnownZero |= HighBits;  // High bits known zero.
1609    }
1610    return;
1611  case ISD::SRA:
1612    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1613      unsigned ShAmt = SA->getZExtValue();
1614
1615      // If the shift count is an invalid immediate, don't do anything.
1616      if (ShAmt >= BitWidth)
1617        return;
1618
1619      APInt InDemandedMask = (Mask << ShAmt);
1620      // If any of the demanded bits are produced by the sign extension, we also
1621      // demand the input sign bit.
1622      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1623      if (HighBits.getBoolValue())
1624        InDemandedMask |= APInt::getSignBit(BitWidth);
1625
1626      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1627                        Depth+1);
1628      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1629      KnownZero = KnownZero.lshr(ShAmt);
1630      KnownOne  = KnownOne.lshr(ShAmt);
1631
1632      // Handle the sign bits.
1633      APInt SignBit = APInt::getSignBit(BitWidth);
1634      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1635
1636      if (KnownZero.intersects(SignBit)) {
1637        KnownZero |= HighBits;  // New bits are known zero.
1638      } else if (KnownOne.intersects(SignBit)) {
1639        KnownOne  |= HighBits;  // New bits are known one.
1640      }
1641    }
1642    return;
1643  case ISD::SIGN_EXTEND_INREG: {
1644    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1645    unsigned EBits = EVT.getSizeInBits();
1646
1647    // Sign extension.  Compute the demanded bits in the result that are not
1648    // present in the input.
1649    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1650
1651    APInt InSignBit = APInt::getSignBit(EBits);
1652    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1653
1654    // If the sign extended bits are demanded, we know that the sign
1655    // bit is demanded.
1656    InSignBit.zext(BitWidth);
1657    if (NewBits.getBoolValue())
1658      InputDemandedBits |= InSignBit;
1659
1660    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1661                      KnownZero, KnownOne, Depth+1);
1662    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1663
1664    // If the sign bit of the input is known set or clear, then we know the
1665    // top bits of the result.
1666    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1667      KnownZero |= NewBits;
1668      KnownOne  &= ~NewBits;
1669    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1670      KnownOne  |= NewBits;
1671      KnownZero &= ~NewBits;
1672    } else {                              // Input sign bit unknown
1673      KnownZero &= ~NewBits;
1674      KnownOne  &= ~NewBits;
1675    }
1676    return;
1677  }
1678  case ISD::CTTZ:
1679  case ISD::CTLZ:
1680  case ISD::CTPOP: {
1681    unsigned LowBits = Log2_32(BitWidth)+1;
1682    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1683    KnownOne.clear();
1684    return;
1685  }
1686  case ISD::LOAD: {
1687    if (ISD::isZEXTLoad(Op.getNode())) {
1688      LoadSDNode *LD = cast<LoadSDNode>(Op);
1689      MVT VT = LD->getMemoryVT();
1690      unsigned MemBits = VT.getSizeInBits();
1691      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1692    }
1693    return;
1694  }
1695  case ISD::ZERO_EXTEND: {
1696    MVT InVT = Op.getOperand(0).getValueType();
1697    unsigned InBits = InVT.getSizeInBits();
1698    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1699    APInt InMask    = Mask;
1700    InMask.trunc(InBits);
1701    KnownZero.trunc(InBits);
1702    KnownOne.trunc(InBits);
1703    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1704    KnownZero.zext(BitWidth);
1705    KnownOne.zext(BitWidth);
1706    KnownZero |= NewBits;
1707    return;
1708  }
1709  case ISD::SIGN_EXTEND: {
1710    MVT InVT = Op.getOperand(0).getValueType();
1711    unsigned InBits = InVT.getSizeInBits();
1712    APInt InSignBit = APInt::getSignBit(InBits);
1713    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1714    APInt InMask = Mask;
1715    InMask.trunc(InBits);
1716
1717    // If any of the sign extended bits are demanded, we know that the sign
1718    // bit is demanded. Temporarily set this bit in the mask for our callee.
1719    if (NewBits.getBoolValue())
1720      InMask |= InSignBit;
1721
1722    KnownZero.trunc(InBits);
1723    KnownOne.trunc(InBits);
1724    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1725
1726    // Note if the sign bit is known to be zero or one.
1727    bool SignBitKnownZero = KnownZero.isNegative();
1728    bool SignBitKnownOne  = KnownOne.isNegative();
1729    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1730           "Sign bit can't be known to be both zero and one!");
1731
1732    // If the sign bit wasn't actually demanded by our caller, we don't
1733    // want it set in the KnownZero and KnownOne result values. Reset the
1734    // mask and reapply it to the result values.
1735    InMask = Mask;
1736    InMask.trunc(InBits);
1737    KnownZero &= InMask;
1738    KnownOne  &= InMask;
1739
1740    KnownZero.zext(BitWidth);
1741    KnownOne.zext(BitWidth);
1742
1743    // If the sign bit is known zero or one, the top bits match.
1744    if (SignBitKnownZero)
1745      KnownZero |= NewBits;
1746    else if (SignBitKnownOne)
1747      KnownOne  |= NewBits;
1748    return;
1749  }
1750  case ISD::ANY_EXTEND: {
1751    MVT InVT = Op.getOperand(0).getValueType();
1752    unsigned InBits = InVT.getSizeInBits();
1753    APInt InMask = Mask;
1754    InMask.trunc(InBits);
1755    KnownZero.trunc(InBits);
1756    KnownOne.trunc(InBits);
1757    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1758    KnownZero.zext(BitWidth);
1759    KnownOne.zext(BitWidth);
1760    return;
1761  }
1762  case ISD::TRUNCATE: {
1763    MVT InVT = Op.getOperand(0).getValueType();
1764    unsigned InBits = InVT.getSizeInBits();
1765    APInt InMask = Mask;
1766    InMask.zext(InBits);
1767    KnownZero.zext(InBits);
1768    KnownOne.zext(InBits);
1769    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1770    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1771    KnownZero.trunc(BitWidth);
1772    KnownOne.trunc(BitWidth);
1773    break;
1774  }
1775  case ISD::AssertZext: {
1776    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1777    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1778    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1779                      KnownOne, Depth+1);
1780    KnownZero |= (~InMask) & Mask;
1781    return;
1782  }
1783  case ISD::FGETSIGN:
1784    // All bits are zero except the low bit.
1785    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1786    return;
1787
1788  case ISD::SUB: {
1789    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1790      // We know that the top bits of C-X are clear if X contains less bits
1791      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1792      // positive if we can prove that X is >= 0 and < 16.
1793      if (CLHS->getAPIntValue().isNonNegative()) {
1794        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1795        // NLZ can't be BitWidth with no sign bit
1796        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1797        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1798                          Depth+1);
1799
1800        // If all of the MaskV bits are known to be zero, then we know the
1801        // output top bits are zero, because we now know that the output is
1802        // from [0-C].
1803        if ((KnownZero2 & MaskV) == MaskV) {
1804          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1805          // Top bits known zero.
1806          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1807        }
1808      }
1809    }
1810  }
1811  // fall through
1812  case ISD::ADD: {
1813    // Output known-0 bits are known if clear or set in both the low clear bits
1814    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1815    // low 3 bits clear.
1816    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1817    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1818    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1819    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1820
1821    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1822    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1823    KnownZeroOut = std::min(KnownZeroOut,
1824                            KnownZero2.countTrailingOnes());
1825
1826    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1827    return;
1828  }
1829  case ISD::SREM:
1830    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1831      const APInt &RA = Rem->getAPIntValue();
1832      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1833        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1834        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1835        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1836
1837        // If the sign bit of the first operand is zero, the sign bit of
1838        // the result is zero. If the first operand has no one bits below
1839        // the second operand's single 1 bit, its sign will be zero.
1840        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1841          KnownZero2 |= ~LowBits;
1842
1843        KnownZero |= KnownZero2 & Mask;
1844
1845        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1846      }
1847    }
1848    return;
1849  case ISD::UREM: {
1850    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1851      const APInt &RA = Rem->getAPIntValue();
1852      if (RA.isPowerOf2()) {
1853        APInt LowBits = (RA - 1);
1854        APInt Mask2 = LowBits & Mask;
1855        KnownZero |= ~LowBits & Mask;
1856        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1857        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1858        break;
1859      }
1860    }
1861
1862    // Since the result is less than or equal to either operand, any leading
1863    // zero bits in either operand must also exist in the result.
1864    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1865    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1866                      Depth+1);
1867    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1868                      Depth+1);
1869
1870    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1871                                KnownZero2.countLeadingOnes());
1872    KnownOne.clear();
1873    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1874    return;
1875  }
1876  default:
1877    // Allow the target to implement this method for its nodes.
1878    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1879  case ISD::INTRINSIC_WO_CHAIN:
1880  case ISD::INTRINSIC_W_CHAIN:
1881  case ISD::INTRINSIC_VOID:
1882      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1883    }
1884    return;
1885  }
1886}
1887
1888/// ComputeNumSignBits - Return the number of times the sign bit of the
1889/// register is replicated into the other bits.  We know that at least 1 bit
1890/// is always equal to the sign bit (itself), but other cases can give us
1891/// information.  For example, immediately after an "SRA X, 2", we know that
1892/// the top 3 bits are all equal to each other, so we return 3.
1893unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1894  MVT VT = Op.getValueType();
1895  assert(VT.isInteger() && "Invalid VT!");
1896  unsigned VTBits = VT.getSizeInBits();
1897  unsigned Tmp, Tmp2;
1898  unsigned FirstAnswer = 1;
1899
1900  if (Depth == 6)
1901    return 1;  // Limit search depth.
1902
1903  switch (Op.getOpcode()) {
1904  default: break;
1905  case ISD::AssertSext:
1906    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1907    return VTBits-Tmp+1;
1908  case ISD::AssertZext:
1909    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1910    return VTBits-Tmp;
1911
1912  case ISD::Constant: {
1913    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1914    // If negative, return # leading ones.
1915    if (Val.isNegative())
1916      return Val.countLeadingOnes();
1917
1918    // Return # leading zeros.
1919    return Val.countLeadingZeros();
1920  }
1921
1922  case ISD::SIGN_EXTEND:
1923    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1924    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1925
1926  case ISD::SIGN_EXTEND_INREG:
1927    // Max of the input and what this extends.
1928    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1929    Tmp = VTBits-Tmp+1;
1930
1931    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1932    return std::max(Tmp, Tmp2);
1933
1934  case ISD::SRA:
1935    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1936    // SRA X, C   -> adds C sign bits.
1937    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1938      Tmp += C->getZExtValue();
1939      if (Tmp > VTBits) Tmp = VTBits;
1940    }
1941    return Tmp;
1942  case ISD::SHL:
1943    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1944      // shl destroys sign bits.
1945      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1946      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1947          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1948      return Tmp - C->getZExtValue();
1949    }
1950    break;
1951  case ISD::AND:
1952  case ISD::OR:
1953  case ISD::XOR:    // NOT is handled here.
1954    // Logical binary ops preserve the number of sign bits at the worst.
1955    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1956    if (Tmp != 1) {
1957      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1958      FirstAnswer = std::min(Tmp, Tmp2);
1959      // We computed what we know about the sign bits as our first
1960      // answer. Now proceed to the generic code that uses
1961      // ComputeMaskedBits, and pick whichever answer is better.
1962    }
1963    break;
1964
1965  case ISD::SELECT:
1966    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1967    if (Tmp == 1) return 1;  // Early out.
1968    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1969    return std::min(Tmp, Tmp2);
1970
1971  case ISD::SADDO:
1972  case ISD::UADDO:
1973  case ISD::SSUBO:
1974  case ISD::USUBO:
1975  case ISD::SMULO:
1976  case ISD::UMULO:
1977    if (Op.getResNo() != 1)
1978      break;
1979    // The boolean result conforms to getBooleanContents.  Fall through.
1980  case ISD::SETCC:
1981    // If setcc returns 0/-1, all bits are sign bits.
1982    if (TLI.getBooleanContents() ==
1983        TargetLowering::ZeroOrNegativeOneBooleanContent)
1984      return VTBits;
1985    break;
1986  case ISD::ROTL:
1987  case ISD::ROTR:
1988    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1989      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1990
1991      // Handle rotate right by N like a rotate left by 32-N.
1992      if (Op.getOpcode() == ISD::ROTR)
1993        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1994
1995      // If we aren't rotating out all of the known-in sign bits, return the
1996      // number that are left.  This handles rotl(sext(x), 1) for example.
1997      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1998      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1999    }
2000    break;
2001  case ISD::ADD:
2002    // Add can have at most one carry bit.  Thus we know that the output
2003    // is, at worst, one more bit than the inputs.
2004    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2005    if (Tmp == 1) return 1;  // Early out.
2006
2007    // Special case decrementing a value (ADD X, -1):
2008    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2009      if (CRHS->isAllOnesValue()) {
2010        APInt KnownZero, KnownOne;
2011        APInt Mask = APInt::getAllOnesValue(VTBits);
2012        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2013
2014        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2015        // sign bits set.
2016        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2017          return VTBits;
2018
2019        // If we are subtracting one from a positive number, there is no carry
2020        // out of the result.
2021        if (KnownZero.isNegative())
2022          return Tmp;
2023      }
2024
2025    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2026    if (Tmp2 == 1) return 1;
2027      return std::min(Tmp, Tmp2)-1;
2028    break;
2029
2030  case ISD::SUB:
2031    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2032    if (Tmp2 == 1) return 1;
2033
2034    // Handle NEG.
2035    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2036      if (CLHS->isNullValue()) {
2037        APInt KnownZero, KnownOne;
2038        APInt Mask = APInt::getAllOnesValue(VTBits);
2039        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2040        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2041        // sign bits set.
2042        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2043          return VTBits;
2044
2045        // If the input is known to be positive (the sign bit is known clear),
2046        // the output of the NEG has the same number of sign bits as the input.
2047        if (KnownZero.isNegative())
2048          return Tmp2;
2049
2050        // Otherwise, we treat this like a SUB.
2051      }
2052
2053    // Sub can have at most one carry bit.  Thus we know that the output
2054    // is, at worst, one more bit than the inputs.
2055    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2056    if (Tmp == 1) return 1;  // Early out.
2057      return std::min(Tmp, Tmp2)-1;
2058    break;
2059  case ISD::TRUNCATE:
2060    // FIXME: it's tricky to do anything useful for this, but it is an important
2061    // case for targets like X86.
2062    break;
2063  }
2064
2065  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2066  if (Op.getOpcode() == ISD::LOAD) {
2067    LoadSDNode *LD = cast<LoadSDNode>(Op);
2068    unsigned ExtType = LD->getExtensionType();
2069    switch (ExtType) {
2070    default: break;
2071    case ISD::SEXTLOAD:    // '17' bits known
2072      Tmp = LD->getMemoryVT().getSizeInBits();
2073      return VTBits-Tmp+1;
2074    case ISD::ZEXTLOAD:    // '16' bits known
2075      Tmp = LD->getMemoryVT().getSizeInBits();
2076      return VTBits-Tmp;
2077    }
2078  }
2079
2080  // Allow the target to implement this method for its nodes.
2081  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2082      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2083      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2084      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2085    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2086    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2087  }
2088
2089  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2090  // use this information.
2091  APInt KnownZero, KnownOne;
2092  APInt Mask = APInt::getAllOnesValue(VTBits);
2093  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2094
2095  if (KnownZero.isNegative()) {        // sign bit is 0
2096    Mask = KnownZero;
2097  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2098    Mask = KnownOne;
2099  } else {
2100    // Nothing known.
2101    return FirstAnswer;
2102  }
2103
2104  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2105  // the number of identical bits in the top of the input value.
2106  Mask = ~Mask;
2107  Mask <<= Mask.getBitWidth()-VTBits;
2108  // Return # leading zeros.  We use 'min' here in case Val was zero before
2109  // shifting.  We don't want to return '64' as for an i32 "0".
2110  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2111}
2112
2113
2114bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2115  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2116  if (!GA) return false;
2117  if (GA->getOffset() != 0) return false;
2118  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2119  if (!GV) return false;
2120  MachineModuleInfo *MMI = getMachineModuleInfo();
2121  return MMI && MMI->hasDebugInfo();
2122}
2123
2124
2125/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2126/// element of the result of the vector shuffle.
2127SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2128  MVT VT = N->getValueType(0);
2129  DebugLoc dl = N->getDebugLoc();
2130  SDValue PermMask = N->getOperand(2);
2131  SDValue Idx = PermMask.getOperand(i);
2132  if (Idx.getOpcode() == ISD::UNDEF)
2133    return getNode(ISD::UNDEF, dl, VT.getVectorElementType());
2134  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2135  unsigned NumElems = PermMask.getNumOperands();
2136  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2137  Index %= NumElems;
2138
2139  if (V.getOpcode() == ISD::BIT_CONVERT) {
2140    V = V.getOperand(0);
2141    MVT VVT = V.getValueType();
2142    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2143      return SDValue();
2144  }
2145  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2146    return (Index == 0) ? V.getOperand(0)
2147                      : getNode(ISD::UNDEF, dl, VT.getVectorElementType());
2148  if (V.getOpcode() == ISD::BUILD_VECTOR)
2149    return V.getOperand(Index);
2150  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2151    return getShuffleScalarElt(V.getNode(), Index);
2152  return SDValue();
2153}
2154
2155
2156/// getNode - Gets or creates the specified node.
2157///
2158SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2159  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT);
2160}
2161
2162SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2163  FoldingSetNodeID ID;
2164  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2165  void *IP = 0;
2166  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2167    return SDValue(E, 0);
2168  SDNode *N = NodeAllocator.Allocate<SDNode>();
2169  new (N) SDNode(Opcode, DL, SDNode::getSDVTList(VT));
2170  CSEMap.InsertNode(N, IP);
2171
2172  AllNodes.push_back(N);
2173#ifndef NDEBUG
2174  VerifyNode(N);
2175#endif
2176  return SDValue(N, 0);
2177}
2178
2179SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2180  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Operand);
2181}
2182
2183SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2184                              MVT VT, SDValue Operand) {
2185  // Constant fold unary operations with an integer constant operand.
2186  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2187    const APInt &Val = C->getAPIntValue();
2188    unsigned BitWidth = VT.getSizeInBits();
2189    switch (Opcode) {
2190    default: break;
2191    case ISD::SIGN_EXTEND:
2192      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2193    case ISD::ANY_EXTEND:
2194    case ISD::ZERO_EXTEND:
2195    case ISD::TRUNCATE:
2196      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2197    case ISD::UINT_TO_FP:
2198    case ISD::SINT_TO_FP: {
2199      const uint64_t zero[] = {0, 0};
2200      // No compile time operations on this type.
2201      if (VT==MVT::ppcf128)
2202        break;
2203      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2204      (void)apf.convertFromAPInt(Val,
2205                                 Opcode==ISD::SINT_TO_FP,
2206                                 APFloat::rmNearestTiesToEven);
2207      return getConstantFP(apf, VT);
2208    }
2209    case ISD::BIT_CONVERT:
2210      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2211        return getConstantFP(Val.bitsToFloat(), VT);
2212      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2213        return getConstantFP(Val.bitsToDouble(), VT);
2214      break;
2215    case ISD::BSWAP:
2216      return getConstant(Val.byteSwap(), VT);
2217    case ISD::CTPOP:
2218      return getConstant(Val.countPopulation(), VT);
2219    case ISD::CTLZ:
2220      return getConstant(Val.countLeadingZeros(), VT);
2221    case ISD::CTTZ:
2222      return getConstant(Val.countTrailingZeros(), VT);
2223    }
2224  }
2225
2226  // Constant fold unary operations with a floating point constant operand.
2227  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2228    APFloat V = C->getValueAPF();    // make copy
2229    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2230      switch (Opcode) {
2231      case ISD::FNEG:
2232        V.changeSign();
2233        return getConstantFP(V, VT);
2234      case ISD::FABS:
2235        V.clearSign();
2236        return getConstantFP(V, VT);
2237      case ISD::FP_ROUND:
2238      case ISD::FP_EXTEND: {
2239        bool ignored;
2240        // This can return overflow, underflow, or inexact; we don't care.
2241        // FIXME need to be more flexible about rounding mode.
2242        (void)V.convert(*MVTToAPFloatSemantics(VT),
2243                        APFloat::rmNearestTiesToEven, &ignored);
2244        return getConstantFP(V, VT);
2245      }
2246      case ISD::FP_TO_SINT:
2247      case ISD::FP_TO_UINT: {
2248        integerPart x;
2249        bool ignored;
2250        assert(integerPartWidth >= 64);
2251        // FIXME need to be more flexible about rounding mode.
2252        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2253                              Opcode==ISD::FP_TO_SINT,
2254                              APFloat::rmTowardZero, &ignored);
2255        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2256          break;
2257        return getConstant(x, VT);
2258      }
2259      case ISD::BIT_CONVERT:
2260        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2261          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2262        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2263          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2264        break;
2265      }
2266    }
2267  }
2268
2269  unsigned OpOpcode = Operand.getNode()->getOpcode();
2270  switch (Opcode) {
2271  case ISD::TokenFactor:
2272  case ISD::MERGE_VALUES:
2273  case ISD::CONCAT_VECTORS:
2274    return Operand;         // Factor, merge or concat of one node?  No need.
2275  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2276  case ISD::FP_EXTEND:
2277    assert(VT.isFloatingPoint() &&
2278           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2279    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2280    if (Operand.getOpcode() == ISD::UNDEF)
2281      return getNode(ISD::UNDEF, DL, VT);
2282    break;
2283  case ISD::SIGN_EXTEND:
2284    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2285           "Invalid SIGN_EXTEND!");
2286    if (Operand.getValueType() == VT) return Operand;   // noop extension
2287    assert(Operand.getValueType().bitsLT(VT)
2288           && "Invalid sext node, dst < src!");
2289    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2290      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2291    break;
2292  case ISD::ZERO_EXTEND:
2293    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2294           "Invalid ZERO_EXTEND!");
2295    if (Operand.getValueType() == VT) return Operand;   // noop extension
2296    assert(Operand.getValueType().bitsLT(VT)
2297           && "Invalid zext node, dst < src!");
2298    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2299      return getNode(ISD::ZERO_EXTEND, DL, VT,
2300                     Operand.getNode()->getOperand(0));
2301    break;
2302  case ISD::ANY_EXTEND:
2303    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2304           "Invalid ANY_EXTEND!");
2305    if (Operand.getValueType() == VT) return Operand;   // noop extension
2306    assert(Operand.getValueType().bitsLT(VT)
2307           && "Invalid anyext node, dst < src!");
2308    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2309      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2310      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2311    break;
2312  case ISD::TRUNCATE:
2313    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2314           "Invalid TRUNCATE!");
2315    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2316    assert(Operand.getValueType().bitsGT(VT)
2317           && "Invalid truncate node, src < dst!");
2318    if (OpOpcode == ISD::TRUNCATE)
2319      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2320    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2321             OpOpcode == ISD::ANY_EXTEND) {
2322      // If the source is smaller than the dest, we still need an extend.
2323      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2324        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2325      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2326        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2327      else
2328        return Operand.getNode()->getOperand(0);
2329    }
2330    break;
2331  case ISD::BIT_CONVERT:
2332    // Basic sanity checking.
2333    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2334           && "Cannot BIT_CONVERT between types of different sizes!");
2335    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2336    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2337      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2338    if (OpOpcode == ISD::UNDEF)
2339      return getNode(ISD::UNDEF, DL, VT);
2340    break;
2341  case ISD::SCALAR_TO_VECTOR:
2342    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2343           VT.getVectorElementType() == Operand.getValueType() &&
2344           "Illegal SCALAR_TO_VECTOR node!");
2345    if (OpOpcode == ISD::UNDEF)
2346      return getNode(ISD::UNDEF, DL, VT);
2347    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2348    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2349        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2350        Operand.getConstantOperandVal(1) == 0 &&
2351        Operand.getOperand(0).getValueType() == VT)
2352      return Operand.getOperand(0);
2353    break;
2354  case ISD::FNEG:
2355    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2356    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2357      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2358                     Operand.getNode()->getOperand(0));
2359    if (OpOpcode == ISD::FNEG)  // --X -> X
2360      return Operand.getNode()->getOperand(0);
2361    break;
2362  case ISD::FABS:
2363    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2364      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2365    break;
2366  }
2367
2368  SDNode *N;
2369  SDVTList VTs = getVTList(VT);
2370  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2371    FoldingSetNodeID ID;
2372    SDValue Ops[1] = { Operand };
2373    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2374    void *IP = 0;
2375    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2376      return SDValue(E, 0);
2377    N = NodeAllocator.Allocate<UnarySDNode>();
2378    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2379    CSEMap.InsertNode(N, IP);
2380  } else {
2381    N = NodeAllocator.Allocate<UnarySDNode>();
2382    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2383  }
2384
2385  AllNodes.push_back(N);
2386#ifndef NDEBUG
2387  VerifyNode(N);
2388#endif
2389  return SDValue(N, 0);
2390}
2391
2392SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2393                                             MVT VT,
2394                                             ConstantSDNode *Cst1,
2395                                             ConstantSDNode *Cst2) {
2396  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2397
2398  switch (Opcode) {
2399  case ISD::ADD:  return getConstant(C1 + C2, VT);
2400  case ISD::SUB:  return getConstant(C1 - C2, VT);
2401  case ISD::MUL:  return getConstant(C1 * C2, VT);
2402  case ISD::UDIV:
2403    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2404    break;
2405  case ISD::UREM:
2406    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2407    break;
2408  case ISD::SDIV:
2409    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2410    break;
2411  case ISD::SREM:
2412    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2413    break;
2414  case ISD::AND:  return getConstant(C1 & C2, VT);
2415  case ISD::OR:   return getConstant(C1 | C2, VT);
2416  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2417  case ISD::SHL:  return getConstant(C1 << C2, VT);
2418  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2419  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2420  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2421  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2422  default: break;
2423  }
2424
2425  return SDValue();
2426}
2427
2428SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2429                              SDValue N1, SDValue N2) {
2430  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2);
2431}
2432
2433SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2434                              SDValue N1, SDValue N2) {
2435  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2436  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2437  switch (Opcode) {
2438  default: break;
2439  case ISD::TokenFactor:
2440    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2441           N2.getValueType() == MVT::Other && "Invalid token factor!");
2442    // Fold trivial token factors.
2443    if (N1.getOpcode() == ISD::EntryToken) return N2;
2444    if (N2.getOpcode() == ISD::EntryToken) return N1;
2445    if (N1 == N2) return N1;
2446    break;
2447  case ISD::CONCAT_VECTORS:
2448    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2449    // one big BUILD_VECTOR.
2450    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2451        N2.getOpcode() == ISD::BUILD_VECTOR) {
2452      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2453      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2454      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2455    }
2456    break;
2457  case ISD::AND:
2458    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2459           N1.getValueType() == VT && "Binary operator types must match!");
2460    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2461    // worth handling here.
2462    if (N2C && N2C->isNullValue())
2463      return N2;
2464    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2465      return N1;
2466    break;
2467  case ISD::OR:
2468  case ISD::XOR:
2469  case ISD::ADD:
2470  case ISD::SUB:
2471    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2472           N1.getValueType() == VT && "Binary operator types must match!");
2473    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2474    // it's worth handling here.
2475    if (N2C && N2C->isNullValue())
2476      return N1;
2477    break;
2478  case ISD::UDIV:
2479  case ISD::UREM:
2480  case ISD::MULHU:
2481  case ISD::MULHS:
2482  case ISD::MUL:
2483  case ISD::SDIV:
2484  case ISD::SREM:
2485    assert(VT.isInteger() && "This operator does not apply to FP types!");
2486    // fall through
2487  case ISD::FADD:
2488  case ISD::FSUB:
2489  case ISD::FMUL:
2490  case ISD::FDIV:
2491  case ISD::FREM:
2492    if (UnsafeFPMath) {
2493      if (Opcode == ISD::FADD) {
2494        // 0+x --> x
2495        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2496          if (CFP->getValueAPF().isZero())
2497            return N2;
2498        // x+0 --> x
2499        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2500          if (CFP->getValueAPF().isZero())
2501            return N1;
2502      } else if (Opcode == ISD::FSUB) {
2503        // x-0 --> x
2504        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2505          if (CFP->getValueAPF().isZero())
2506            return N1;
2507      }
2508    }
2509    assert(N1.getValueType() == N2.getValueType() &&
2510           N1.getValueType() == VT && "Binary operator types must match!");
2511    break;
2512  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2513    assert(N1.getValueType() == VT &&
2514           N1.getValueType().isFloatingPoint() &&
2515           N2.getValueType().isFloatingPoint() &&
2516           "Invalid FCOPYSIGN!");
2517    break;
2518  case ISD::SHL:
2519  case ISD::SRA:
2520  case ISD::SRL:
2521  case ISD::ROTL:
2522  case ISD::ROTR:
2523    assert(VT == N1.getValueType() &&
2524           "Shift operators return type must be the same as their first arg");
2525    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2526           "Shifts only work on integers");
2527
2528    // Always fold shifts of i1 values so the code generator doesn't need to
2529    // handle them.  Since we know the size of the shift has to be less than the
2530    // size of the value, the shift/rotate count is guaranteed to be zero.
2531    if (VT == MVT::i1)
2532      return N1;
2533    break;
2534  case ISD::FP_ROUND_INREG: {
2535    MVT EVT = cast<VTSDNode>(N2)->getVT();
2536    assert(VT == N1.getValueType() && "Not an inreg round!");
2537    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2538           "Cannot FP_ROUND_INREG integer types");
2539    assert(EVT.bitsLE(VT) && "Not rounding down!");
2540    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2541    break;
2542  }
2543  case ISD::FP_ROUND:
2544    assert(VT.isFloatingPoint() &&
2545           N1.getValueType().isFloatingPoint() &&
2546           VT.bitsLE(N1.getValueType()) &&
2547           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2548    if (N1.getValueType() == VT) return N1;  // noop conversion.
2549    break;
2550  case ISD::AssertSext:
2551  case ISD::AssertZext: {
2552    MVT EVT = cast<VTSDNode>(N2)->getVT();
2553    assert(VT == N1.getValueType() && "Not an inreg extend!");
2554    assert(VT.isInteger() && EVT.isInteger() &&
2555           "Cannot *_EXTEND_INREG FP types");
2556    assert(EVT.bitsLE(VT) && "Not extending!");
2557    if (VT == EVT) return N1; // noop assertion.
2558    break;
2559  }
2560  case ISD::SIGN_EXTEND_INREG: {
2561    MVT EVT = cast<VTSDNode>(N2)->getVT();
2562    assert(VT == N1.getValueType() && "Not an inreg extend!");
2563    assert(VT.isInteger() && EVT.isInteger() &&
2564           "Cannot *_EXTEND_INREG FP types");
2565    assert(EVT.bitsLE(VT) && "Not extending!");
2566    if (EVT == VT) return N1;  // Not actually extending
2567
2568    if (N1C) {
2569      APInt Val = N1C->getAPIntValue();
2570      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2571      Val <<= Val.getBitWidth()-FromBits;
2572      Val = Val.ashr(Val.getBitWidth()-FromBits);
2573      return getConstant(Val, VT);
2574    }
2575    break;
2576  }
2577  case ISD::EXTRACT_VECTOR_ELT:
2578    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2579    if (N1.getOpcode() == ISD::UNDEF)
2580      return getNode(ISD::UNDEF, DL, VT);
2581
2582    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2583    // expanding copies of large vectors from registers.
2584    if (N2C &&
2585        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2586        N1.getNumOperands() > 0) {
2587      unsigned Factor =
2588        N1.getOperand(0).getValueType().getVectorNumElements();
2589      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2590                     N1.getOperand(N2C->getZExtValue() / Factor),
2591                     getConstant(N2C->getZExtValue() % Factor,
2592                                 N2.getValueType()));
2593    }
2594
2595    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2596    // expanding large vector constants.
2597    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2598      return N1.getOperand(N2C->getZExtValue());
2599
2600    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2601    // operations are lowered to scalars.
2602    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2603      // If the indices are the same, return the inserted element.
2604      if (N1.getOperand(2) == N2)
2605        return N1.getOperand(1);
2606      // If the indices are known different, extract the element from
2607      // the original vector.
2608      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2609               isa<ConstantSDNode>(N2))
2610        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2611    }
2612    break;
2613  case ISD::EXTRACT_ELEMENT:
2614    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2615    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2616           (N1.getValueType().isInteger() == VT.isInteger()) &&
2617           "Wrong types for EXTRACT_ELEMENT!");
2618
2619    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2620    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2621    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2622    if (N1.getOpcode() == ISD::BUILD_PAIR)
2623      return N1.getOperand(N2C->getZExtValue());
2624
2625    // EXTRACT_ELEMENT of a constant int is also very common.
2626    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2627      unsigned ElementSize = VT.getSizeInBits();
2628      unsigned Shift = ElementSize * N2C->getZExtValue();
2629      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2630      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2631    }
2632    break;
2633  case ISD::EXTRACT_SUBVECTOR:
2634    if (N1.getValueType() == VT) // Trivial extraction.
2635      return N1;
2636    break;
2637  }
2638
2639  if (N1C) {
2640    if (N2C) {
2641      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2642      if (SV.getNode()) return SV;
2643    } else {      // Cannonicalize constant to RHS if commutative
2644      if (isCommutativeBinOp(Opcode)) {
2645        std::swap(N1C, N2C);
2646        std::swap(N1, N2);
2647      }
2648    }
2649  }
2650
2651  // Constant fold FP operations.
2652  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2653  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2654  if (N1CFP) {
2655    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2656      // Cannonicalize constant to RHS if commutative
2657      std::swap(N1CFP, N2CFP);
2658      std::swap(N1, N2);
2659    } else if (N2CFP && VT != MVT::ppcf128) {
2660      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2661      APFloat::opStatus s;
2662      switch (Opcode) {
2663      case ISD::FADD:
2664        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2665        if (s != APFloat::opInvalidOp)
2666          return getConstantFP(V1, VT);
2667        break;
2668      case ISD::FSUB:
2669        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2670        if (s!=APFloat::opInvalidOp)
2671          return getConstantFP(V1, VT);
2672        break;
2673      case ISD::FMUL:
2674        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2675        if (s!=APFloat::opInvalidOp)
2676          return getConstantFP(V1, VT);
2677        break;
2678      case ISD::FDIV:
2679        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2680        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2681          return getConstantFP(V1, VT);
2682        break;
2683      case ISD::FREM :
2684        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2685        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2686          return getConstantFP(V1, VT);
2687        break;
2688      case ISD::FCOPYSIGN:
2689        V1.copySign(V2);
2690        return getConstantFP(V1, VT);
2691      default: break;
2692      }
2693    }
2694  }
2695
2696  // Canonicalize an UNDEF to the RHS, even over a constant.
2697  if (N1.getOpcode() == ISD::UNDEF) {
2698    if (isCommutativeBinOp(Opcode)) {
2699      std::swap(N1, N2);
2700    } else {
2701      switch (Opcode) {
2702      case ISD::FP_ROUND_INREG:
2703      case ISD::SIGN_EXTEND_INREG:
2704      case ISD::SUB:
2705      case ISD::FSUB:
2706      case ISD::FDIV:
2707      case ISD::FREM:
2708      case ISD::SRA:
2709        return N1;     // fold op(undef, arg2) -> undef
2710      case ISD::UDIV:
2711      case ISD::SDIV:
2712      case ISD::UREM:
2713      case ISD::SREM:
2714      case ISD::SRL:
2715      case ISD::SHL:
2716        if (!VT.isVector())
2717          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2718        // For vectors, we can't easily build an all zero vector, just return
2719        // the LHS.
2720        return N2;
2721      }
2722    }
2723  }
2724
2725  // Fold a bunch of operators when the RHS is undef.
2726  if (N2.getOpcode() == ISD::UNDEF) {
2727    switch (Opcode) {
2728    case ISD::XOR:
2729      if (N1.getOpcode() == ISD::UNDEF)
2730        // Handle undef ^ undef -> 0 special case. This is a common
2731        // idiom (misuse).
2732        return getConstant(0, VT);
2733      // fallthrough
2734    case ISD::ADD:
2735    case ISD::ADDC:
2736    case ISD::ADDE:
2737    case ISD::SUB:
2738    case ISD::FADD:
2739    case ISD::FSUB:
2740    case ISD::FMUL:
2741    case ISD::FDIV:
2742    case ISD::FREM:
2743    case ISD::UDIV:
2744    case ISD::SDIV:
2745    case ISD::UREM:
2746    case ISD::SREM:
2747      return N2;       // fold op(arg1, undef) -> undef
2748    case ISD::MUL:
2749    case ISD::AND:
2750    case ISD::SRL:
2751    case ISD::SHL:
2752      if (!VT.isVector())
2753        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2754      // For vectors, we can't easily build an all zero vector, just return
2755      // the LHS.
2756      return N1;
2757    case ISD::OR:
2758      if (!VT.isVector())
2759        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2760      // For vectors, we can't easily build an all one vector, just return
2761      // the LHS.
2762      return N1;
2763    case ISD::SRA:
2764      return N1;
2765    }
2766  }
2767
2768  // Memoize this node if possible.
2769  SDNode *N;
2770  SDVTList VTs = getVTList(VT);
2771  if (VT != MVT::Flag) {
2772    SDValue Ops[] = { N1, N2 };
2773    FoldingSetNodeID ID;
2774    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2775    void *IP = 0;
2776    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2777      return SDValue(E, 0);
2778    N = NodeAllocator.Allocate<BinarySDNode>();
2779    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2780    CSEMap.InsertNode(N, IP);
2781  } else {
2782    N = NodeAllocator.Allocate<BinarySDNode>();
2783    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2784  }
2785
2786  AllNodes.push_back(N);
2787#ifndef NDEBUG
2788  VerifyNode(N);
2789#endif
2790  return SDValue(N, 0);
2791}
2792
2793SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2794                              SDValue N1, SDValue N2, SDValue N3) {
2795  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3);
2796}
2797
2798SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2799                              SDValue N1, SDValue N2, SDValue N3) {
2800  // Perform various simplifications.
2801  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2802  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2803  switch (Opcode) {
2804  case ISD::CONCAT_VECTORS:
2805    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2806    // one big BUILD_VECTOR.
2807    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2808        N2.getOpcode() == ISD::BUILD_VECTOR &&
2809        N3.getOpcode() == ISD::BUILD_VECTOR) {
2810      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2811      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2812      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2813      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2814    }
2815    break;
2816  case ISD::SETCC: {
2817    // Use FoldSetCC to simplify SETCC's.
2818    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2819    if (Simp.getNode()) return Simp;
2820    break;
2821  }
2822  case ISD::SELECT:
2823    if (N1C) {
2824     if (N1C->getZExtValue())
2825        return N2;             // select true, X, Y -> X
2826      else
2827        return N3;             // select false, X, Y -> Y
2828    }
2829
2830    if (N2 == N3) return N2;   // select C, X, X -> X
2831    break;
2832  case ISD::BRCOND:
2833    if (N2C) {
2834      if (N2C->getZExtValue()) // Unconditional branch
2835        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2836      else
2837        return N1;         // Never-taken branch
2838    }
2839    break;
2840  case ISD::VECTOR_SHUFFLE:
2841    assert(N1.getValueType() == N2.getValueType() &&
2842           N1.getValueType().isVector() &&
2843           VT.isVector() && N3.getValueType().isVector() &&
2844           N3.getOpcode() == ISD::BUILD_VECTOR &&
2845           VT.getVectorNumElements() == N3.getNumOperands() &&
2846           "Illegal VECTOR_SHUFFLE node!");
2847    break;
2848  case ISD::BIT_CONVERT:
2849    // Fold bit_convert nodes from a type to themselves.
2850    if (N1.getValueType() == VT)
2851      return N1;
2852    break;
2853  }
2854
2855  // Memoize node if it doesn't produce a flag.
2856  SDNode *N;
2857  SDVTList VTs = getVTList(VT);
2858  if (VT != MVT::Flag) {
2859    SDValue Ops[] = { N1, N2, N3 };
2860    FoldingSetNodeID ID;
2861    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2862    void *IP = 0;
2863    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2864      return SDValue(E, 0);
2865    N = NodeAllocator.Allocate<TernarySDNode>();
2866    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2867    CSEMap.InsertNode(N, IP);
2868  } else {
2869    N = NodeAllocator.Allocate<TernarySDNode>();
2870    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2871  }
2872  AllNodes.push_back(N);
2873#ifndef NDEBUG
2874  VerifyNode(N);
2875#endif
2876  return SDValue(N, 0);
2877}
2878
2879SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2880                              SDValue N1, SDValue N2, SDValue N3,
2881                              SDValue N4) {
2882  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3, N4);
2883}
2884
2885SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2886                              SDValue N1, SDValue N2, SDValue N3,
2887                              SDValue N4) {
2888  SDValue Ops[] = { N1, N2, N3, N4 };
2889  return getNode(Opcode, DL, VT, Ops, 4);
2890}
2891
2892SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2893                              SDValue N1, SDValue N2, SDValue N3,
2894                              SDValue N4, SDValue N5) {
2895  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3, N4, N5);
2896}
2897
2898SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2899                              SDValue N1, SDValue N2, SDValue N3,
2900                              SDValue N4, SDValue N5) {
2901  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2902  return getNode(Opcode, DL, VT, Ops, 5);
2903}
2904
2905/// getMemsetValue - Vectorized representation of the memset value
2906/// operand.
2907static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2908                              DebugLoc dl) {
2909  unsigned NumBits = VT.isVector() ?
2910    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2911  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2912    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2913    unsigned Shift = 8;
2914    for (unsigned i = NumBits; i > 8; i >>= 1) {
2915      Val = (Val << Shift) | Val;
2916      Shift <<= 1;
2917    }
2918    if (VT.isInteger())
2919      return DAG.getConstant(Val, VT);
2920    return DAG.getConstantFP(APFloat(Val), VT);
2921  }
2922
2923  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2924  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
2925  unsigned Shift = 8;
2926  for (unsigned i = NumBits; i > 8; i >>= 1) {
2927    Value = DAG.getNode(ISD::OR, dl, VT,
2928                        DAG.getNode(ISD::SHL, dl, VT, Value,
2929                                    DAG.getConstant(Shift,
2930                                                    TLI.getShiftAmountTy())),
2931                        Value);
2932    Shift <<= 1;
2933  }
2934
2935  return Value;
2936}
2937
2938/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2939/// used when a memcpy is turned into a memset when the source is a constant
2940/// string ptr.
2941static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
2942                                    const TargetLowering &TLI,
2943                                    std::string &Str, unsigned Offset) {
2944  // Handle vector with all elements zero.
2945  if (Str.empty()) {
2946    if (VT.isInteger())
2947      return DAG.getConstant(0, VT);
2948    unsigned NumElts = VT.getVectorNumElements();
2949    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2950    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
2951                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2952  }
2953
2954  assert(!VT.isVector() && "Can't handle vector type here!");
2955  unsigned NumBits = VT.getSizeInBits();
2956  unsigned MSB = NumBits / 8;
2957  uint64_t Val = 0;
2958  if (TLI.isLittleEndian())
2959    Offset = Offset + MSB - 1;
2960  for (unsigned i = 0; i != MSB; ++i) {
2961    Val = (Val << 8) | (unsigned char)Str[Offset];
2962    Offset += TLI.isLittleEndian() ? -1 : 1;
2963  }
2964  return DAG.getConstant(Val, VT);
2965}
2966
2967/// getMemBasePlusOffset - Returns base and offset node for the
2968///
2969static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2970                                      SelectionDAG &DAG) {
2971  MVT VT = Base.getValueType();
2972  return DAG.getNode(ISD::ADD, Base.getNode()->getDebugLoc(),
2973                     VT, Base, DAG.getConstant(Offset, VT));
2974}
2975
2976/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2977///
2978static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2979  unsigned SrcDelta = 0;
2980  GlobalAddressSDNode *G = NULL;
2981  if (Src.getOpcode() == ISD::GlobalAddress)
2982    G = cast<GlobalAddressSDNode>(Src);
2983  else if (Src.getOpcode() == ISD::ADD &&
2984           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2985           Src.getOperand(1).getOpcode() == ISD::Constant) {
2986    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2987    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2988  }
2989  if (!G)
2990    return false;
2991
2992  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2993  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2994    return true;
2995
2996  return false;
2997}
2998
2999/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3000/// to replace the memset / memcpy is below the threshold. It also returns the
3001/// types of the sequence of memory ops to perform memset / memcpy.
3002static
3003bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
3004                              SDValue Dst, SDValue Src,
3005                              unsigned Limit, uint64_t Size, unsigned &Align,
3006                              std::string &Str, bool &isSrcStr,
3007                              SelectionDAG &DAG,
3008                              const TargetLowering &TLI) {
3009  isSrcStr = isMemSrcFromString(Src, Str);
3010  bool isSrcConst = isa<ConstantSDNode>(Src);
3011  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
3012  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
3013  if (VT != MVT::iAny) {
3014    unsigned NewAlign = (unsigned)
3015      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
3016    // If source is a string constant, this will require an unaligned load.
3017    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3018      if (Dst.getOpcode() != ISD::FrameIndex) {
3019        // Can't change destination alignment. It requires a unaligned store.
3020        if (AllowUnalign)
3021          VT = MVT::iAny;
3022      } else {
3023        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3024        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3025        if (MFI->isFixedObjectIndex(FI)) {
3026          // Can't change destination alignment. It requires a unaligned store.
3027          if (AllowUnalign)
3028            VT = MVT::iAny;
3029        } else {
3030          // Give the stack frame object a larger alignment if needed.
3031          if (MFI->getObjectAlignment(FI) < NewAlign)
3032            MFI->setObjectAlignment(FI, NewAlign);
3033          Align = NewAlign;
3034        }
3035      }
3036    }
3037  }
3038
3039  if (VT == MVT::iAny) {
3040    if (AllowUnalign) {
3041      VT = MVT::i64;
3042    } else {
3043      switch (Align & 7) {
3044      case 0:  VT = MVT::i64; break;
3045      case 4:  VT = MVT::i32; break;
3046      case 2:  VT = MVT::i16; break;
3047      default: VT = MVT::i8;  break;
3048      }
3049    }
3050
3051    MVT LVT = MVT::i64;
3052    while (!TLI.isTypeLegal(LVT))
3053      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3054    assert(LVT.isInteger());
3055
3056    if (VT.bitsGT(LVT))
3057      VT = LVT;
3058  }
3059
3060  unsigned NumMemOps = 0;
3061  while (Size != 0) {
3062    unsigned VTSize = VT.getSizeInBits() / 8;
3063    while (VTSize > Size) {
3064      // For now, only use non-vector load / store's for the left-over pieces.
3065      if (VT.isVector()) {
3066        VT = MVT::i64;
3067        while (!TLI.isTypeLegal(VT))
3068          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3069        VTSize = VT.getSizeInBits() / 8;
3070      } else {
3071        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3072        VTSize >>= 1;
3073      }
3074    }
3075
3076    if (++NumMemOps > Limit)
3077      return false;
3078    MemOps.push_back(VT);
3079    Size -= VTSize;
3080  }
3081
3082  return true;
3083}
3084
3085static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3086                                         SDValue Chain, SDValue Dst,
3087                                         SDValue Src, uint64_t Size,
3088                                         unsigned Align, bool AlwaysInline,
3089                                         const Value *DstSV, uint64_t DstSVOff,
3090                                         const Value *SrcSV, uint64_t SrcSVOff){
3091  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3092
3093  // Expand memcpy to a series of load and store ops if the size operand falls
3094  // below a certain threshold.
3095  std::vector<MVT> MemOps;
3096  uint64_t Limit = -1ULL;
3097  if (!AlwaysInline)
3098    Limit = TLI.getMaxStoresPerMemcpy();
3099  unsigned DstAlign = Align;  // Destination alignment can change.
3100  std::string Str;
3101  bool CopyFromStr;
3102  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3103                                Str, CopyFromStr, DAG, TLI))
3104    return SDValue();
3105
3106
3107  bool isZeroStr = CopyFromStr && Str.empty();
3108  SmallVector<SDValue, 8> OutChains;
3109  unsigned NumMemOps = MemOps.size();
3110  uint64_t SrcOff = 0, DstOff = 0;
3111  for (unsigned i = 0; i < NumMemOps; i++) {
3112    MVT VT = MemOps[i];
3113    unsigned VTSize = VT.getSizeInBits() / 8;
3114    SDValue Value, Store;
3115
3116    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3117      // It's unlikely a store of a vector immediate can be done in a single
3118      // instruction. It would require a load from a constantpool first.
3119      // We also handle store a vector with all zero's.
3120      // FIXME: Handle other cases where store of vector immediate is done in
3121      // a single instruction.
3122      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3123      Store = DAG.getStore(Chain, dl, Value,
3124                           getMemBasePlusOffset(Dst, DstOff, DAG),
3125                           DstSV, DstSVOff + DstOff, false, DstAlign);
3126    } else {
3127      Value = DAG.getLoad(VT, dl, Chain,
3128                          getMemBasePlusOffset(Src, SrcOff, DAG),
3129                          SrcSV, SrcSVOff + SrcOff, false, Align);
3130      Store = DAG.getStore(Chain, dl, Value,
3131                           getMemBasePlusOffset(Dst, DstOff, DAG),
3132                           DstSV, DstSVOff + DstOff, false, DstAlign);
3133    }
3134    OutChains.push_back(Store);
3135    SrcOff += VTSize;
3136    DstOff += VTSize;
3137  }
3138
3139  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3140                     &OutChains[0], OutChains.size());
3141}
3142
3143static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3144                                          SDValue Chain, SDValue Dst,
3145                                          SDValue Src, uint64_t Size,
3146                                          unsigned Align, bool AlwaysInline,
3147                                          const Value *DstSV, uint64_t DstSVOff,
3148                                          const Value *SrcSV, uint64_t SrcSVOff){
3149  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3150
3151  // Expand memmove to a series of load and store ops if the size operand falls
3152  // below a certain threshold.
3153  std::vector<MVT> MemOps;
3154  uint64_t Limit = -1ULL;
3155  if (!AlwaysInline)
3156    Limit = TLI.getMaxStoresPerMemmove();
3157  unsigned DstAlign = Align;  // Destination alignment can change.
3158  std::string Str;
3159  bool CopyFromStr;
3160  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3161                                Str, CopyFromStr, DAG, TLI))
3162    return SDValue();
3163
3164  uint64_t SrcOff = 0, DstOff = 0;
3165
3166  SmallVector<SDValue, 8> LoadValues;
3167  SmallVector<SDValue, 8> LoadChains;
3168  SmallVector<SDValue, 8> OutChains;
3169  unsigned NumMemOps = MemOps.size();
3170  for (unsigned i = 0; i < NumMemOps; i++) {
3171    MVT VT = MemOps[i];
3172    unsigned VTSize = VT.getSizeInBits() / 8;
3173    SDValue Value, Store;
3174
3175    Value = DAG.getLoad(VT, dl, Chain,
3176                        getMemBasePlusOffset(Src, SrcOff, DAG),
3177                        SrcSV, SrcSVOff + SrcOff, false, Align);
3178    LoadValues.push_back(Value);
3179    LoadChains.push_back(Value.getValue(1));
3180    SrcOff += VTSize;
3181  }
3182  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3183                      &LoadChains[0], LoadChains.size());
3184  OutChains.clear();
3185  for (unsigned i = 0; i < NumMemOps; i++) {
3186    MVT VT = MemOps[i];
3187    unsigned VTSize = VT.getSizeInBits() / 8;
3188    SDValue Value, Store;
3189
3190    Store = DAG.getStore(Chain, dl, LoadValues[i],
3191                         getMemBasePlusOffset(Dst, DstOff, DAG),
3192                         DstSV, DstSVOff + DstOff, false, DstAlign);
3193    OutChains.push_back(Store);
3194    DstOff += VTSize;
3195  }
3196
3197  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3198                     &OutChains[0], OutChains.size());
3199}
3200
3201static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3202                                 SDValue Chain, SDValue Dst,
3203                                 SDValue Src, uint64_t Size,
3204                                 unsigned Align,
3205                                 const Value *DstSV, uint64_t DstSVOff) {
3206  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3207
3208  // Expand memset to a series of load/store ops if the size operand
3209  // falls below a certain threshold.
3210  std::vector<MVT> MemOps;
3211  std::string Str;
3212  bool CopyFromStr;
3213  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3214                                Size, Align, Str, CopyFromStr, DAG, TLI))
3215    return SDValue();
3216
3217  SmallVector<SDValue, 8> OutChains;
3218  uint64_t DstOff = 0;
3219
3220  unsigned NumMemOps = MemOps.size();
3221  for (unsigned i = 0; i < NumMemOps; i++) {
3222    MVT VT = MemOps[i];
3223    unsigned VTSize = VT.getSizeInBits() / 8;
3224    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3225    SDValue Store = DAG.getStore(Chain, dl, Value,
3226                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3227                                 DstSV, DstSVOff + DstOff);
3228    OutChains.push_back(Store);
3229    DstOff += VTSize;
3230  }
3231
3232  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3233                     &OutChains[0], OutChains.size());
3234}
3235
3236SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3237                                SDValue Src, SDValue Size,
3238                                unsigned Align, bool AlwaysInline,
3239                                const Value *DstSV, uint64_t DstSVOff,
3240                                const Value *SrcSV, uint64_t SrcSVOff) {
3241
3242  // Check to see if we should lower the memcpy to loads and stores first.
3243  // For cases within the target-specified limits, this is the best choice.
3244  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3245  if (ConstantSize) {
3246    // Memcpy with size zero? Just return the original chain.
3247    if (ConstantSize->isNullValue())
3248      return Chain;
3249
3250    SDValue Result =
3251      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3252                              ConstantSize->getZExtValue(),
3253                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3254    if (Result.getNode())
3255      return Result;
3256  }
3257
3258  // Then check to see if we should lower the memcpy with target-specific
3259  // code. If the target chooses to do this, this is the next best.
3260  SDValue Result =
3261    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3262                                AlwaysInline,
3263                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3264  if (Result.getNode())
3265    return Result;
3266
3267  // If we really need inline code and the target declined to provide it,
3268  // use a (potentially long) sequence of loads and stores.
3269  if (AlwaysInline) {
3270    assert(ConstantSize && "AlwaysInline requires a constant size!");
3271    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3272                                   ConstantSize->getZExtValue(), Align, true,
3273                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3274  }
3275
3276  // Emit a library call.
3277  TargetLowering::ArgListTy Args;
3278  TargetLowering::ArgListEntry Entry;
3279  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3280  Entry.Node = Dst; Args.push_back(Entry);
3281  Entry.Node = Src; Args.push_back(Entry);
3282  Entry.Node = Size; Args.push_back(Entry);
3283  // FIXME: pass in DebugLoc
3284  std::pair<SDValue,SDValue> CallResult =
3285    TLI.LowerCallTo(Chain, Type::VoidTy,
3286                    false, false, false, false, CallingConv::C, false,
3287                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3288                    Args, *this, dl);
3289  return CallResult.second;
3290}
3291
3292SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3293                                 SDValue Src, SDValue Size,
3294                                 unsigned Align,
3295                                 const Value *DstSV, uint64_t DstSVOff,
3296                                 const Value *SrcSV, uint64_t SrcSVOff) {
3297
3298  // Check to see if we should lower the memmove to loads and stores first.
3299  // For cases within the target-specified limits, this is the best choice.
3300  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3301  if (ConstantSize) {
3302    // Memmove with size zero? Just return the original chain.
3303    if (ConstantSize->isNullValue())
3304      return Chain;
3305
3306    SDValue Result =
3307      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3308                               ConstantSize->getZExtValue(),
3309                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3310    if (Result.getNode())
3311      return Result;
3312  }
3313
3314  // Then check to see if we should lower the memmove with target-specific
3315  // code. If the target chooses to do this, this is the next best.
3316  SDValue Result =
3317    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3318                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3319  if (Result.getNode())
3320    return Result;
3321
3322  // Emit a library call.
3323  TargetLowering::ArgListTy Args;
3324  TargetLowering::ArgListEntry Entry;
3325  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3326  Entry.Node = Dst; Args.push_back(Entry);
3327  Entry.Node = Src; Args.push_back(Entry);
3328  Entry.Node = Size; Args.push_back(Entry);
3329  // FIXME:  pass in DebugLoc
3330  std::pair<SDValue,SDValue> CallResult =
3331    TLI.LowerCallTo(Chain, Type::VoidTy,
3332                    false, false, false, false, CallingConv::C, false,
3333                    getExternalSymbol("memmove", TLI.getPointerTy()),
3334                    Args, *this, dl);
3335  return CallResult.second;
3336}
3337
3338SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3339                                SDValue Src, SDValue Size,
3340                                unsigned Align,
3341                                const Value *DstSV, uint64_t DstSVOff) {
3342
3343  // Check to see if we should lower the memset to stores first.
3344  // For cases within the target-specified limits, this is the best choice.
3345  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3346  if (ConstantSize) {
3347    // Memset with size zero? Just return the original chain.
3348    if (ConstantSize->isNullValue())
3349      return Chain;
3350
3351    SDValue Result =
3352      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3353                      Align, DstSV, DstSVOff);
3354    if (Result.getNode())
3355      return Result;
3356  }
3357
3358  // Then check to see if we should lower the memset with target-specific
3359  // code. If the target chooses to do this, this is the next best.
3360  SDValue Result =
3361    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3362                                DstSV, DstSVOff);
3363  if (Result.getNode())
3364    return Result;
3365
3366  // Emit a library call.
3367  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3368  TargetLowering::ArgListTy Args;
3369  TargetLowering::ArgListEntry Entry;
3370  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3371  Args.push_back(Entry);
3372  // Extend or truncate the argument to be an i32 value for the call.
3373  if (Src.getValueType().bitsGT(MVT::i32))
3374    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3375  else
3376    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3377  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3378  Args.push_back(Entry);
3379  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3380  Args.push_back(Entry);
3381  // FIXME: pass in DebugLoc
3382  std::pair<SDValue,SDValue> CallResult =
3383    TLI.LowerCallTo(Chain, Type::VoidTy,
3384                    false, false, false, false, CallingConv::C, false,
3385                    getExternalSymbol("memset", TLI.getPointerTy()),
3386                    Args, *this, dl);
3387  return CallResult.second;
3388}
3389
3390SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3391                                SDValue Chain,
3392                                SDValue Ptr, SDValue Cmp,
3393                                SDValue Swp, const Value* PtrVal,
3394                                unsigned Alignment) {
3395  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3396  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3397
3398  MVT VT = Cmp.getValueType();
3399
3400  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3401    Alignment = getMVTAlignment(MemVT);
3402
3403  SDVTList VTs = getVTList(VT, MVT::Other);
3404  FoldingSetNodeID ID;
3405  ID.AddInteger(MemVT.getRawBits());
3406  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3407  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3408  void* IP = 0;
3409  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3410    return SDValue(E, 0);
3411  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3412  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3413                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3414  CSEMap.InsertNode(N, IP);
3415  AllNodes.push_back(N);
3416  return SDValue(N, 0);
3417}
3418
3419SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3420                                SDValue Chain,
3421                                SDValue Ptr, SDValue Val,
3422                                const Value* PtrVal,
3423                                unsigned Alignment) {
3424  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3425          Opcode == ISD::ATOMIC_LOAD_SUB ||
3426          Opcode == ISD::ATOMIC_LOAD_AND ||
3427          Opcode == ISD::ATOMIC_LOAD_OR ||
3428          Opcode == ISD::ATOMIC_LOAD_XOR ||
3429          Opcode == ISD::ATOMIC_LOAD_NAND ||
3430          Opcode == ISD::ATOMIC_LOAD_MIN ||
3431          Opcode == ISD::ATOMIC_LOAD_MAX ||
3432          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3433          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3434          Opcode == ISD::ATOMIC_SWAP) &&
3435         "Invalid Atomic Op");
3436
3437  MVT VT = Val.getValueType();
3438
3439  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3440    Alignment = getMVTAlignment(MemVT);
3441
3442  SDVTList VTs = getVTList(VT, MVT::Other);
3443  FoldingSetNodeID ID;
3444  ID.AddInteger(MemVT.getRawBits());
3445  SDValue Ops[] = {Chain, Ptr, Val};
3446  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3447  void* IP = 0;
3448  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3449    return SDValue(E, 0);
3450  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3451  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3452                       Chain, Ptr, Val, PtrVal, Alignment);
3453  CSEMap.InsertNode(N, IP);
3454  AllNodes.push_back(N);
3455  return SDValue(N, 0);
3456}
3457
3458/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3459/// Allowed to return something different (and simpler) if Simplify is true.
3460SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3461                                     DebugLoc dl) {
3462  if (NumOps == 1)
3463    return Ops[0];
3464
3465  SmallVector<MVT, 4> VTs;
3466  VTs.reserve(NumOps);
3467  for (unsigned i = 0; i < NumOps; ++i)
3468    VTs.push_back(Ops[i].getValueType());
3469  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3470                 Ops, NumOps);
3471}
3472
3473SDValue
3474SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3475                                  const MVT *VTs, unsigned NumVTs,
3476                                  const SDValue *Ops, unsigned NumOps,
3477                                  MVT MemVT, const Value *srcValue, int SVOff,
3478                                  unsigned Align, bool Vol,
3479                                  bool ReadMem, bool WriteMem) {
3480  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3481                             MemVT, srcValue, SVOff, Align, Vol,
3482                             ReadMem, WriteMem);
3483}
3484
3485SDValue
3486SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3487                                  const SDValue *Ops, unsigned NumOps,
3488                                  MVT MemVT, const Value *srcValue, int SVOff,
3489                                  unsigned Align, bool Vol,
3490                                  bool ReadMem, bool WriteMem) {
3491  // Memoize the node unless it returns a flag.
3492  MemIntrinsicSDNode *N;
3493  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3494    FoldingSetNodeID ID;
3495    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3496    void *IP = 0;
3497    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3498      return SDValue(E, 0);
3499
3500    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3501    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3502                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3503    CSEMap.InsertNode(N, IP);
3504  } else {
3505    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3506    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3507                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3508  }
3509  AllNodes.push_back(N);
3510  return SDValue(N, 0);
3511}
3512
3513SDValue
3514SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3515                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3516                      const SDValue *Operands, unsigned NumOperands) {
3517  // Do not include isTailCall in the folding set profile.
3518  FoldingSetNodeID ID;
3519  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3520  ID.AddInteger(CallingConv);
3521  ID.AddInteger(IsVarArgs);
3522  void *IP = 0;
3523  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3524    // Instead of including isTailCall in the folding set, we just
3525    // set the flag of the existing node.
3526    if (!IsTailCall)
3527      cast<CallSDNode>(E)->setNotTailCall();
3528    return SDValue(E, 0);
3529  }
3530  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3531  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3532                     VTs, Operands, NumOperands);
3533  CSEMap.InsertNode(N, IP);
3534  AllNodes.push_back(N);
3535  return SDValue(N, 0);
3536}
3537
3538SDValue
3539SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3540                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3541                      SDValue Ptr, SDValue Offset,
3542                      const Value *SV, int SVOffset, MVT EVT,
3543                      bool isVolatile, unsigned Alignment) {
3544  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3545    Alignment = getMVTAlignment(VT);
3546
3547  if (VT == EVT) {
3548    ExtType = ISD::NON_EXTLOAD;
3549  } else if (ExtType == ISD::NON_EXTLOAD) {
3550    assert(VT == EVT && "Non-extending load from different memory type!");
3551  } else {
3552    // Extending load.
3553    if (VT.isVector())
3554      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3555             "Invalid vector extload!");
3556    else
3557      assert(EVT.bitsLT(VT) &&
3558             "Should only be an extending load, not truncating!");
3559    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3560           "Cannot sign/zero extend a FP/Vector load!");
3561    assert(VT.isInteger() == EVT.isInteger() &&
3562           "Cannot convert from FP to Int or Int -> FP!");
3563  }
3564
3565  bool Indexed = AM != ISD::UNINDEXED;
3566  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3567         "Unindexed load with an offset!");
3568
3569  SDVTList VTs = Indexed ?
3570    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3571  SDValue Ops[] = { Chain, Ptr, Offset };
3572  FoldingSetNodeID ID;
3573  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3574  ID.AddInteger(EVT.getRawBits());
3575  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3576  void *IP = 0;
3577  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3578    return SDValue(E, 0);
3579  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3580  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3581                     Alignment, isVolatile);
3582  CSEMap.InsertNode(N, IP);
3583  AllNodes.push_back(N);
3584  return SDValue(N, 0);
3585}
3586
3587SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3588                              SDValue Chain, SDValue Ptr,
3589                              const Value *SV, int SVOffset,
3590                              bool isVolatile, unsigned Alignment) {
3591  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3592  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3593                 SV, SVOffset, VT, isVolatile, Alignment);
3594}
3595
3596SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3597                                 SDValue Chain, SDValue Ptr,
3598                                 const Value *SV,
3599                                 int SVOffset, MVT EVT,
3600                                 bool isVolatile, unsigned Alignment) {
3601  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3602  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3603                 SV, SVOffset, EVT, isVolatile, Alignment);
3604}
3605
3606SDValue
3607SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3608                             SDValue Offset, ISD::MemIndexedMode AM) {
3609  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3610  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3611         "Load is already a indexed load!");
3612  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3613                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3614                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3615                 LD->isVolatile(), LD->getAlignment());
3616}
3617
3618SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3619                               SDValue Ptr, const Value *SV, int SVOffset,
3620                               bool isVolatile, unsigned Alignment) {
3621  MVT VT = Val.getValueType();
3622
3623  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3624    Alignment = getMVTAlignment(VT);
3625
3626  SDVTList VTs = getVTList(MVT::Other);
3627  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3628  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3629  FoldingSetNodeID ID;
3630  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3631  ID.AddInteger(VT.getRawBits());
3632  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3633                                     isVolatile, Alignment));
3634  void *IP = 0;
3635  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3636    return SDValue(E, 0);
3637  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3638  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3639                      VT, SV, SVOffset, Alignment, isVolatile);
3640  CSEMap.InsertNode(N, IP);
3641  AllNodes.push_back(N);
3642  return SDValue(N, 0);
3643}
3644
3645SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3646                                    SDValue Ptr, const Value *SV,
3647                                    int SVOffset, MVT SVT,
3648                                    bool isVolatile, unsigned Alignment) {
3649  MVT VT = Val.getValueType();
3650
3651  if (VT == SVT)
3652    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3653
3654  assert(VT.bitsGT(SVT) && "Not a truncation?");
3655  assert(VT.isInteger() == SVT.isInteger() &&
3656         "Can't do FP-INT conversion!");
3657
3658  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3659    Alignment = getMVTAlignment(VT);
3660
3661  SDVTList VTs = getVTList(MVT::Other);
3662  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3663  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3664  FoldingSetNodeID ID;
3665  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3666  ID.AddInteger(SVT.getRawBits());
3667  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3668                                     isVolatile, Alignment));
3669  void *IP = 0;
3670  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3671    return SDValue(E, 0);
3672  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3673  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3674                      SVT, SV, SVOffset, Alignment, isVolatile);
3675  CSEMap.InsertNode(N, IP);
3676  AllNodes.push_back(N);
3677  return SDValue(N, 0);
3678}
3679
3680SDValue
3681SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3682                              SDValue Offset, ISD::MemIndexedMode AM) {
3683  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3684  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3685         "Store is already a indexed store!");
3686  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3687  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3688  FoldingSetNodeID ID;
3689  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3690  ID.AddInteger(ST->getMemoryVT().getRawBits());
3691  ID.AddInteger(ST->getRawSubclassData());
3692  void *IP = 0;
3693  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3694    return SDValue(E, 0);
3695  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3696  new (N) StoreSDNode(Ops, dl, VTs, AM,
3697                      ST->isTruncatingStore(), ST->getMemoryVT(),
3698                      ST->getSrcValue(), ST->getSrcValueOffset(),
3699                      ST->getAlignment(), ST->isVolatile());
3700  CSEMap.InsertNode(N, IP);
3701  AllNodes.push_back(N);
3702  return SDValue(N, 0);
3703}
3704
3705SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3706                               SDValue Chain, SDValue Ptr,
3707                               SDValue SV) {
3708  SDValue Ops[] = { Chain, Ptr, SV };
3709  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3710}
3711
3712SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3713                              const SDUse *Ops, unsigned NumOps) {
3714  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Ops, NumOps);
3715}
3716
3717SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3718                              const SDUse *Ops, unsigned NumOps) {
3719  switch (NumOps) {
3720  case 0: return getNode(Opcode, DL, VT);
3721  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3722  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3723  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3724  default: break;
3725  }
3726
3727  // Copy from an SDUse array into an SDValue array for use with
3728  // the regular getNode logic.
3729  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3730  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3731}
3732
3733SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3734                              const SDValue *Ops, unsigned NumOps) {
3735  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Ops, NumOps);
3736}
3737
3738SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3739                              const SDValue *Ops, unsigned NumOps) {
3740  switch (NumOps) {
3741  case 0: return getNode(Opcode, DL, VT);
3742  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3743  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3744  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3745  default: break;
3746  }
3747
3748  switch (Opcode) {
3749  default: break;
3750  case ISD::SELECT_CC: {
3751    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3752    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3753           "LHS and RHS of condition must have same type!");
3754    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3755           "True and False arms of SelectCC must have same type!");
3756    assert(Ops[2].getValueType() == VT &&
3757           "select_cc node must be of same type as true and false value!");
3758    break;
3759  }
3760  case ISD::BR_CC: {
3761    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3762    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3763           "LHS/RHS of comparison should match types!");
3764    break;
3765  }
3766  }
3767
3768  // Memoize nodes.
3769  SDNode *N;
3770  SDVTList VTs = getVTList(VT);
3771
3772  if (VT != MVT::Flag) {
3773    FoldingSetNodeID ID;
3774    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3775    void *IP = 0;
3776
3777    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3778      return SDValue(E, 0);
3779
3780    N = NodeAllocator.Allocate<SDNode>();
3781    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3782    CSEMap.InsertNode(N, IP);
3783  } else {
3784    N = NodeAllocator.Allocate<SDNode>();
3785    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3786  }
3787
3788  AllNodes.push_back(N);
3789#ifndef NDEBUG
3790  VerifyNode(N);
3791#endif
3792  return SDValue(N, 0);
3793}
3794
3795SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3796                              const std::vector<MVT> &ResultTys,
3797                              const SDValue *Ops, unsigned NumOps) {
3798  return getNode(Opcode, DL, getNodeValueTypes(ResultTys), ResultTys.size(),
3799                 Ops, NumOps);
3800}
3801
3802SDValue SelectionDAG::getNode(unsigned Opcode,
3803                              const MVT *VTs, unsigned NumVTs,
3804                              const SDValue *Ops, unsigned NumOps) {
3805  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTs, NumVTs, Ops, NumOps);
3806}
3807
3808SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3809                              const MVT *VTs, unsigned NumVTs,
3810                              const SDValue *Ops, unsigned NumOps) {
3811  if (NumVTs == 1)
3812    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3813  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3814}
3815
3816SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3817                              const SDValue *Ops, unsigned NumOps) {
3818  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, Ops, NumOps);
3819}
3820
3821SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3822                              const SDValue *Ops, unsigned NumOps) {
3823  if (VTList.NumVTs == 1)
3824    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3825
3826  switch (Opcode) {
3827  // FIXME: figure out how to safely handle things like
3828  // int foo(int x) { return 1 << (x & 255); }
3829  // int bar() { return foo(256); }
3830#if 0
3831  case ISD::SRA_PARTS:
3832  case ISD::SRL_PARTS:
3833  case ISD::SHL_PARTS:
3834    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3835        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3836      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3837    else if (N3.getOpcode() == ISD::AND)
3838      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3839        // If the and is only masking out bits that cannot effect the shift,
3840        // eliminate the and.
3841        unsigned NumBits = VT.getSizeInBits()*2;
3842        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3843          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3844      }
3845    break;
3846#endif
3847  }
3848
3849  // Memoize the node unless it returns a flag.
3850  SDNode *N;
3851  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3852    FoldingSetNodeID ID;
3853    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3854    void *IP = 0;
3855    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3856      return SDValue(E, 0);
3857    if (NumOps == 1) {
3858      N = NodeAllocator.Allocate<UnarySDNode>();
3859      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3860    } else if (NumOps == 2) {
3861      N = NodeAllocator.Allocate<BinarySDNode>();
3862      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3863    } else if (NumOps == 3) {
3864      N = NodeAllocator.Allocate<TernarySDNode>();
3865      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3866    } else {
3867      N = NodeAllocator.Allocate<SDNode>();
3868      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3869    }
3870    CSEMap.InsertNode(N, IP);
3871  } else {
3872    if (NumOps == 1) {
3873      N = NodeAllocator.Allocate<UnarySDNode>();
3874      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3875    } else if (NumOps == 2) {
3876      N = NodeAllocator.Allocate<BinarySDNode>();
3877      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3878    } else if (NumOps == 3) {
3879      N = NodeAllocator.Allocate<TernarySDNode>();
3880      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3881    } else {
3882      N = NodeAllocator.Allocate<SDNode>();
3883      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3884    }
3885  }
3886  AllNodes.push_back(N);
3887#ifndef NDEBUG
3888  VerifyNode(N);
3889#endif
3890  return SDValue(N, 0);
3891}
3892
3893SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3894  return getNode(Opcode, DL, VTList, 0, 0);
3895}
3896
3897SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3898                              SDValue N1) {
3899  SDValue Ops[] = { N1 };
3900  return getNode(Opcode, DL, VTList, Ops, 1);
3901}
3902
3903SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3904                              SDValue N1, SDValue N2) {
3905  SDValue Ops[] = { N1, N2 };
3906  return getNode(Opcode, DL, VTList, Ops, 2);
3907}
3908
3909SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3910                              SDValue N1, SDValue N2, SDValue N3) {
3911  SDValue Ops[] = { N1, N2, N3 };
3912  return getNode(Opcode, DL, VTList, Ops, 3);
3913}
3914
3915SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3916                              SDValue N1, SDValue N2, SDValue N3,
3917                              SDValue N4) {
3918  SDValue Ops[] = { N1, N2, N3, N4 };
3919  return getNode(Opcode, DL, VTList, Ops, 4);
3920}
3921
3922SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3923                              SDValue N1, SDValue N2, SDValue N3,
3924                              SDValue N4, SDValue N5) {
3925  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3926  return getNode(Opcode, DL, VTList, Ops, 5);
3927}
3928
3929SDVTList SelectionDAG::getVTList(MVT VT) {
3930  return makeVTList(SDNode::getValueTypeList(VT), 1);
3931}
3932
3933SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3934  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3935       E = VTList.rend(); I != E; ++I)
3936    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3937      return *I;
3938
3939  MVT *Array = Allocator.Allocate<MVT>(2);
3940  Array[0] = VT1;
3941  Array[1] = VT2;
3942  SDVTList Result = makeVTList(Array, 2);
3943  VTList.push_back(Result);
3944  return Result;
3945}
3946
3947SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3948  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3949       E = VTList.rend(); I != E; ++I)
3950    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3951                          I->VTs[2] == VT3)
3952      return *I;
3953
3954  MVT *Array = Allocator.Allocate<MVT>(3);
3955  Array[0] = VT1;
3956  Array[1] = VT2;
3957  Array[2] = VT3;
3958  SDVTList Result = makeVTList(Array, 3);
3959  VTList.push_back(Result);
3960  return Result;
3961}
3962
3963SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3964  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3965       E = VTList.rend(); I != E; ++I)
3966    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3967                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3968      return *I;
3969
3970  MVT *Array = Allocator.Allocate<MVT>(3);
3971  Array[0] = VT1;
3972  Array[1] = VT2;
3973  Array[2] = VT3;
3974  Array[3] = VT4;
3975  SDVTList Result = makeVTList(Array, 4);
3976  VTList.push_back(Result);
3977  return Result;
3978}
3979
3980SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3981  switch (NumVTs) {
3982    case 0: assert(0 && "Cannot have nodes without results!");
3983    case 1: return getVTList(VTs[0]);
3984    case 2: return getVTList(VTs[0], VTs[1]);
3985    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3986    default: break;
3987  }
3988
3989  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3990       E = VTList.rend(); I != E; ++I) {
3991    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3992      continue;
3993
3994    bool NoMatch = false;
3995    for (unsigned i = 2; i != NumVTs; ++i)
3996      if (VTs[i] != I->VTs[i]) {
3997        NoMatch = true;
3998        break;
3999      }
4000    if (!NoMatch)
4001      return *I;
4002  }
4003
4004  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
4005  std::copy(VTs, VTs+NumVTs, Array);
4006  SDVTList Result = makeVTList(Array, NumVTs);
4007  VTList.push_back(Result);
4008  return Result;
4009}
4010
4011
4012/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4013/// specified operands.  If the resultant node already exists in the DAG,
4014/// this does not modify the specified node, instead it returns the node that
4015/// already exists.  If the resultant node does not exist in the DAG, the
4016/// input node is returned.  As a degenerate case, if you specify the same
4017/// input operands as the node already has, the input node is returned.
4018SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4019  SDNode *N = InN.getNode();
4020  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4021
4022  // Check to see if there is no change.
4023  if (Op == N->getOperand(0)) return InN;
4024
4025  // See if the modified node already exists.
4026  void *InsertPos = 0;
4027  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4028    return SDValue(Existing, InN.getResNo());
4029
4030  // Nope it doesn't.  Remove the node from its current place in the maps.
4031  if (InsertPos)
4032    if (!RemoveNodeFromCSEMaps(N))
4033      InsertPos = 0;
4034
4035  // Now we update the operands.
4036  N->OperandList[0].set(Op);
4037
4038  // If this gets put into a CSE map, add it.
4039  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4040  return InN;
4041}
4042
4043SDValue SelectionDAG::
4044UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4045  SDNode *N = InN.getNode();
4046  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4047
4048  // Check to see if there is no change.
4049  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4050    return InN;   // No operands changed, just return the input node.
4051
4052  // See if the modified node already exists.
4053  void *InsertPos = 0;
4054  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4055    return SDValue(Existing, InN.getResNo());
4056
4057  // Nope it doesn't.  Remove the node from its current place in the maps.
4058  if (InsertPos)
4059    if (!RemoveNodeFromCSEMaps(N))
4060      InsertPos = 0;
4061
4062  // Now we update the operands.
4063  if (N->OperandList[0] != Op1)
4064    N->OperandList[0].set(Op1);
4065  if (N->OperandList[1] != Op2)
4066    N->OperandList[1].set(Op2);
4067
4068  // If this gets put into a CSE map, add it.
4069  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4070  return InN;
4071}
4072
4073SDValue SelectionDAG::
4074UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4075  SDValue Ops[] = { Op1, Op2, Op3 };
4076  return UpdateNodeOperands(N, Ops, 3);
4077}
4078
4079SDValue SelectionDAG::
4080UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4081                   SDValue Op3, SDValue Op4) {
4082  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4083  return UpdateNodeOperands(N, Ops, 4);
4084}
4085
4086SDValue SelectionDAG::
4087UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4088                   SDValue Op3, SDValue Op4, SDValue Op5) {
4089  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4090  return UpdateNodeOperands(N, Ops, 5);
4091}
4092
4093SDValue SelectionDAG::
4094UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4095  SDNode *N = InN.getNode();
4096  assert(N->getNumOperands() == NumOps &&
4097         "Update with wrong number of operands");
4098
4099  // Check to see if there is no change.
4100  bool AnyChange = false;
4101  for (unsigned i = 0; i != NumOps; ++i) {
4102    if (Ops[i] != N->getOperand(i)) {
4103      AnyChange = true;
4104      break;
4105    }
4106  }
4107
4108  // No operands changed, just return the input node.
4109  if (!AnyChange) return InN;
4110
4111  // See if the modified node already exists.
4112  void *InsertPos = 0;
4113  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4114    return SDValue(Existing, InN.getResNo());
4115
4116  // Nope it doesn't.  Remove the node from its current place in the maps.
4117  if (InsertPos)
4118    if (!RemoveNodeFromCSEMaps(N))
4119      InsertPos = 0;
4120
4121  // Now we update the operands.
4122  for (unsigned i = 0; i != NumOps; ++i)
4123    if (N->OperandList[i] != Ops[i])
4124      N->OperandList[i].set(Ops[i]);
4125
4126  // If this gets put into a CSE map, add it.
4127  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4128  return InN;
4129}
4130
4131/// DropOperands - Release the operands and set this node to have
4132/// zero operands.
4133void SDNode::DropOperands() {
4134  // Unlike the code in MorphNodeTo that does this, we don't need to
4135  // watch for dead nodes here.
4136  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4137    SDUse &Use = *I++;
4138    Use.set(SDValue());
4139  }
4140}
4141
4142/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4143/// machine opcode.
4144///
4145SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4146                                   MVT VT) {
4147  SDVTList VTs = getVTList(VT);
4148  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4149}
4150
4151SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4152                                   MVT VT, SDValue Op1) {
4153  SDVTList VTs = getVTList(VT);
4154  SDValue Ops[] = { Op1 };
4155  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4156}
4157
4158SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4159                                   MVT VT, SDValue Op1,
4160                                   SDValue Op2) {
4161  SDVTList VTs = getVTList(VT);
4162  SDValue Ops[] = { Op1, Op2 };
4163  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4164}
4165
4166SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4167                                   MVT VT, SDValue Op1,
4168                                   SDValue Op2, SDValue Op3) {
4169  SDVTList VTs = getVTList(VT);
4170  SDValue Ops[] = { Op1, Op2, Op3 };
4171  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4172}
4173
4174SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4175                                   MVT VT, const SDValue *Ops,
4176                                   unsigned NumOps) {
4177  SDVTList VTs = getVTList(VT);
4178  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4179}
4180
4181SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4182                                   MVT VT1, MVT VT2, const SDValue *Ops,
4183                                   unsigned NumOps) {
4184  SDVTList VTs = getVTList(VT1, VT2);
4185  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4186}
4187
4188SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4189                                   MVT VT1, MVT VT2) {
4190  SDVTList VTs = getVTList(VT1, VT2);
4191  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4192}
4193
4194SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4195                                   MVT VT1, MVT VT2, MVT VT3,
4196                                   const SDValue *Ops, unsigned NumOps) {
4197  SDVTList VTs = getVTList(VT1, VT2, VT3);
4198  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4199}
4200
4201SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4202                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4203                                   const SDValue *Ops, unsigned NumOps) {
4204  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4205  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4206}
4207
4208SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4209                                   MVT VT1, MVT VT2,
4210                                   SDValue Op1) {
4211  SDVTList VTs = getVTList(VT1, VT2);
4212  SDValue Ops[] = { Op1 };
4213  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4214}
4215
4216SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4217                                   MVT VT1, MVT VT2,
4218                                   SDValue Op1, SDValue Op2) {
4219  SDVTList VTs = getVTList(VT1, VT2);
4220  SDValue Ops[] = { Op1, Op2 };
4221  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4222}
4223
4224SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4225                                   MVT VT1, MVT VT2,
4226                                   SDValue Op1, SDValue Op2,
4227                                   SDValue Op3) {
4228  SDVTList VTs = getVTList(VT1, VT2);
4229  SDValue Ops[] = { Op1, Op2, Op3 };
4230  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4231}
4232
4233SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4234                                   MVT VT1, MVT VT2, MVT VT3,
4235                                   SDValue Op1, SDValue Op2,
4236                                   SDValue Op3) {
4237  SDVTList VTs = getVTList(VT1, VT2, VT3);
4238  SDValue Ops[] = { Op1, Op2, Op3 };
4239  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4240}
4241
4242SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4243                                   SDVTList VTs, const SDValue *Ops,
4244                                   unsigned NumOps) {
4245  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4246}
4247
4248SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4249                                  MVT VT) {
4250  SDVTList VTs = getVTList(VT);
4251  return MorphNodeTo(N, Opc, VTs, 0, 0);
4252}
4253
4254SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4255                                  MVT VT, SDValue Op1) {
4256  SDVTList VTs = getVTList(VT);
4257  SDValue Ops[] = { Op1 };
4258  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4259}
4260
4261SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4262                                  MVT VT, SDValue Op1,
4263                                  SDValue Op2) {
4264  SDVTList VTs = getVTList(VT);
4265  SDValue Ops[] = { Op1, Op2 };
4266  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4267}
4268
4269SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4270                                  MVT VT, SDValue Op1,
4271                                  SDValue Op2, SDValue Op3) {
4272  SDVTList VTs = getVTList(VT);
4273  SDValue Ops[] = { Op1, Op2, Op3 };
4274  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4275}
4276
4277SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4278                                  MVT VT, const SDValue *Ops,
4279                                  unsigned NumOps) {
4280  SDVTList VTs = getVTList(VT);
4281  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4282}
4283
4284SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4285                                  MVT VT1, MVT VT2, const SDValue *Ops,
4286                                  unsigned NumOps) {
4287  SDVTList VTs = getVTList(VT1, VT2);
4288  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4289}
4290
4291SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4292                                  MVT VT1, MVT VT2) {
4293  SDVTList VTs = getVTList(VT1, VT2);
4294  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4295}
4296
4297SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4298                                  MVT VT1, MVT VT2, MVT VT3,
4299                                  const SDValue *Ops, unsigned NumOps) {
4300  SDVTList VTs = getVTList(VT1, VT2, VT3);
4301  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4302}
4303
4304SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4305                                  MVT VT1, MVT VT2,
4306                                  SDValue Op1) {
4307  SDVTList VTs = getVTList(VT1, VT2);
4308  SDValue Ops[] = { Op1 };
4309  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4310}
4311
4312SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4313                                  MVT VT1, MVT VT2,
4314                                  SDValue Op1, SDValue Op2) {
4315  SDVTList VTs = getVTList(VT1, VT2);
4316  SDValue Ops[] = { Op1, Op2 };
4317  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4318}
4319
4320SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4321                                  MVT VT1, MVT VT2,
4322                                  SDValue Op1, SDValue Op2,
4323                                  SDValue Op3) {
4324  SDVTList VTs = getVTList(VT1, VT2);
4325  SDValue Ops[] = { Op1, Op2, Op3 };
4326  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4327}
4328
4329/// MorphNodeTo - These *mutate* the specified node to have the specified
4330/// return type, opcode, and operands.
4331///
4332/// Note that MorphNodeTo returns the resultant node.  If there is already a
4333/// node of the specified opcode and operands, it returns that node instead of
4334/// the current one.  Note that the DebugLoc need not be the same.
4335///
4336/// Using MorphNodeTo is faster than creating a new node and swapping it in
4337/// with ReplaceAllUsesWith both because it often avoids allocating a new
4338/// node, and because it doesn't require CSE recalculation for any of
4339/// the node's users.
4340///
4341SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4342                                  SDVTList VTs, const SDValue *Ops,
4343                                  unsigned NumOps) {
4344  // If an identical node already exists, use it.
4345  void *IP = 0;
4346  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4347    FoldingSetNodeID ID;
4348    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4349    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4350      return ON;
4351  }
4352
4353  if (!RemoveNodeFromCSEMaps(N))
4354    IP = 0;
4355
4356  // Start the morphing.
4357  N->NodeType = Opc;
4358  N->ValueList = VTs.VTs;
4359  N->NumValues = VTs.NumVTs;
4360
4361  // Clear the operands list, updating used nodes to remove this from their
4362  // use list.  Keep track of any operands that become dead as a result.
4363  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4364  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4365    SDUse &Use = *I++;
4366    SDNode *Used = Use.getNode();
4367    Use.set(SDValue());
4368    if (Used->use_empty())
4369      DeadNodeSet.insert(Used);
4370  }
4371
4372  // If NumOps is larger than the # of operands we currently have, reallocate
4373  // the operand list.
4374  if (NumOps > N->NumOperands) {
4375    if (N->OperandsNeedDelete)
4376      delete[] N->OperandList;
4377
4378    if (N->isMachineOpcode()) {
4379      // We're creating a final node that will live unmorphed for the
4380      // remainder of the current SelectionDAG iteration, so we can allocate
4381      // the operands directly out of a pool with no recycling metadata.
4382      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4383      N->OperandsNeedDelete = false;
4384    } else {
4385      N->OperandList = new SDUse[NumOps];
4386      N->OperandsNeedDelete = true;
4387    }
4388  }
4389
4390  // Assign the new operands.
4391  N->NumOperands = NumOps;
4392  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4393    N->OperandList[i].setUser(N);
4394    N->OperandList[i].setInitial(Ops[i]);
4395  }
4396
4397  // Delete any nodes that are still dead after adding the uses for the
4398  // new operands.
4399  SmallVector<SDNode *, 16> DeadNodes;
4400  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4401       E = DeadNodeSet.end(); I != E; ++I)
4402    if ((*I)->use_empty())
4403      DeadNodes.push_back(*I);
4404  RemoveDeadNodes(DeadNodes);
4405
4406  if (IP)
4407    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4408  return N;
4409}
4410
4411
4412/// getTargetNode - These are used for target selectors to create a new node
4413/// with specified return type(s), target opcode, and operands.
4414///
4415/// Note that getTargetNode returns the resultant node.  If there is already a
4416/// node of the specified opcode and operands, it returns that node instead of
4417/// the current one.
4418SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4419  return getNode(~Opcode, VT).getNode();
4420}
4421SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4422  return getNode(~Opcode, dl, VT).getNode();
4423}
4424
4425SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4426  return getNode(~Opcode, VT, Op1).getNode();
4427}
4428SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4429                                    SDValue Op1) {
4430  return getNode(~Opcode, dl, VT, Op1).getNode();
4431}
4432
4433SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4434                                    SDValue Op1, SDValue Op2) {
4435  return getNode(~Opcode, VT, Op1, Op2).getNode();
4436}
4437SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4438                                    SDValue Op1, SDValue Op2) {
4439  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4440}
4441
4442SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4443                                    SDValue Op1, SDValue Op2,
4444                                    SDValue Op3) {
4445  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4446}
4447SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4448                                    SDValue Op1, SDValue Op2,
4449                                    SDValue Op3) {
4450  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4451}
4452
4453SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4454                                    const SDValue *Ops, unsigned NumOps) {
4455  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4456}
4457SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4458                                    const SDValue *Ops, unsigned NumOps) {
4459  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4460}
4461
4462SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4463  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4464  SDValue Op;
4465  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4466}
4467SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4468                                    MVT VT1, MVT VT2) {
4469  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4470  SDValue Op;
4471  return getNode(~Opcode, dl, VTs, 2, &Op, 0).getNode();
4472}
4473
4474SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4475                                    MVT VT2, SDValue Op1) {
4476  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4477  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4478}
4479SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4480                                    MVT VT2, SDValue Op1) {
4481  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4482  return getNode(~Opcode, dl, VTs, 2, &Op1, 1).getNode();
4483}
4484
4485SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4486                                    MVT VT2, SDValue Op1,
4487                                    SDValue Op2) {
4488  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4489  SDValue Ops[] = { Op1, Op2 };
4490  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4491}
4492SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4493                                    MVT VT2, SDValue Op1,
4494                                    SDValue Op2) {
4495  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4496  SDValue Ops[] = { Op1, Op2 };
4497  return getNode(~Opcode, dl, VTs, 2, Ops, 2).getNode();
4498}
4499
4500SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4501                                    MVT VT2, SDValue Op1,
4502                                    SDValue Op2, SDValue Op3) {
4503  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4504  SDValue Ops[] = { Op1, Op2, Op3 };
4505  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4506}
4507SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4508                                    MVT VT2, SDValue Op1,
4509                                    SDValue Op2, SDValue Op3) {
4510  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4511  SDValue Ops[] = { Op1, Op2, Op3 };
4512  return getNode(~Opcode, dl, VTs, 2, Ops, 3).getNode();
4513}
4514
4515SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4516                                    const SDValue *Ops, unsigned NumOps) {
4517  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4518  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4519}
4520SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4521                                    MVT VT1, MVT VT2,
4522                                    const SDValue *Ops, unsigned NumOps) {
4523  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4524  return getNode(~Opcode, dl, VTs, 2, Ops, NumOps).getNode();
4525}
4526
4527SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4528                                    SDValue Op1, SDValue Op2) {
4529  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4530  SDValue Ops[] = { Op1, Op2 };
4531  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4532}
4533SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4534                                    MVT VT1, MVT VT2, MVT VT3,
4535                                    SDValue Op1, SDValue Op2) {
4536  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4537  SDValue Ops[] = { Op1, Op2 };
4538  return getNode(~Opcode, dl, VTs, 3, Ops, 2).getNode();
4539}
4540
4541SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4542                                    SDValue Op1, SDValue Op2,
4543                                    SDValue Op3) {
4544  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4545  SDValue Ops[] = { Op1, Op2, Op3 };
4546  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4547}
4548SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4549                                    MVT VT1, MVT VT2, MVT VT3,
4550                                    SDValue Op1, SDValue Op2,
4551                                    SDValue Op3) {
4552  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4553  SDValue Ops[] = { Op1, Op2, Op3 };
4554  return getNode(~Opcode, dl, VTs, 3, Ops, 3).getNode();
4555}
4556
4557SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4558                                    const SDValue *Ops, unsigned NumOps) {
4559  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4560  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4561}
4562SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4563                                    MVT VT1, MVT VT2, MVT VT3,
4564                                    const SDValue *Ops, unsigned NumOps) {
4565  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4566  return getNode(~Opcode, dl, VTs, 3, Ops, NumOps).getNode();
4567}
4568
4569SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4570                                    MVT VT2, MVT VT3, MVT VT4,
4571                                    const SDValue *Ops, unsigned NumOps) {
4572  std::vector<MVT> VTList;
4573  VTList.push_back(VT1);
4574  VTList.push_back(VT2);
4575  VTList.push_back(VT3);
4576  VTList.push_back(VT4);
4577  const MVT *VTs = getNodeValueTypes(VTList);
4578  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4579}
4580SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4581                                    MVT VT2, MVT VT3, MVT VT4,
4582                                    const SDValue *Ops, unsigned NumOps) {
4583  std::vector<MVT> VTList;
4584  VTList.push_back(VT1);
4585  VTList.push_back(VT2);
4586  VTList.push_back(VT3);
4587  VTList.push_back(VT4);
4588  const MVT *VTs = getNodeValueTypes(VTList);
4589  return getNode(~Opcode, dl, VTs, 4, Ops, NumOps).getNode();
4590}
4591
4592SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4593                                    const std::vector<MVT> &ResultTys,
4594                                    const SDValue *Ops, unsigned NumOps) {
4595  const MVT *VTs = getNodeValueTypes(ResultTys);
4596  return getNode(~Opcode, VTs, ResultTys.size(),
4597                 Ops, NumOps).getNode();
4598}
4599SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4600                                    const std::vector<MVT> &ResultTys,
4601                                    const SDValue *Ops, unsigned NumOps) {
4602  const MVT *VTs = getNodeValueTypes(ResultTys);
4603  return getNode(~Opcode, dl, VTs, ResultTys.size(),
4604                 Ops, NumOps).getNode();
4605}
4606
4607/// getNodeIfExists - Get the specified node if it's already available, or
4608/// else return NULL.
4609SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4610                                      const SDValue *Ops, unsigned NumOps) {
4611  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4612    FoldingSetNodeID ID;
4613    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4614    void *IP = 0;
4615    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4616      return E;
4617  }
4618  return NULL;
4619}
4620
4621/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4622/// This can cause recursive merging of nodes in the DAG.
4623///
4624/// This version assumes From has a single result value.
4625///
4626void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4627                                      DAGUpdateListener *UpdateListener) {
4628  SDNode *From = FromN.getNode();
4629  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4630         "Cannot replace with this method!");
4631  assert(From != To.getNode() && "Cannot replace uses of with self");
4632
4633  // Iterate over all the existing uses of From. New uses will be added
4634  // to the beginning of the use list, which we avoid visiting.
4635  // This specifically avoids visiting uses of From that arise while the
4636  // replacement is happening, because any such uses would be the result
4637  // of CSE: If an existing node looks like From after one of its operands
4638  // is replaced by To, we don't want to replace of all its users with To
4639  // too. See PR3018 for more info.
4640  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4641  while (UI != UE) {
4642    SDNode *User = *UI;
4643
4644    // This node is about to morph, remove its old self from the CSE maps.
4645    RemoveNodeFromCSEMaps(User);
4646
4647    // A user can appear in a use list multiple times, and when this
4648    // happens the uses are usually next to each other in the list.
4649    // To help reduce the number of CSE recomputations, process all
4650    // the uses of this user that we can find this way.
4651    do {
4652      SDUse &Use = UI.getUse();
4653      ++UI;
4654      Use.set(To);
4655    } while (UI != UE && *UI == User);
4656
4657    // Now that we have modified User, add it back to the CSE maps.  If it
4658    // already exists there, recursively merge the results together.
4659    AddModifiedNodeToCSEMaps(User, UpdateListener);
4660  }
4661}
4662
4663/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4664/// This can cause recursive merging of nodes in the DAG.
4665///
4666/// This version assumes From/To have matching types and numbers of result
4667/// values.
4668///
4669void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4670                                      DAGUpdateListener *UpdateListener) {
4671  assert(From->getVTList().VTs == To->getVTList().VTs &&
4672         From->getNumValues() == To->getNumValues() &&
4673         "Cannot use this version of ReplaceAllUsesWith!");
4674
4675  // Handle the trivial case.
4676  if (From == To)
4677    return;
4678
4679  // Iterate over just the existing users of From. See the comments in
4680  // the ReplaceAllUsesWith above.
4681  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4682  while (UI != UE) {
4683    SDNode *User = *UI;
4684
4685    // This node is about to morph, remove its old self from the CSE maps.
4686    RemoveNodeFromCSEMaps(User);
4687
4688    // A user can appear in a use list multiple times, and when this
4689    // happens the uses are usually next to each other in the list.
4690    // To help reduce the number of CSE recomputations, process all
4691    // the uses of this user that we can find this way.
4692    do {
4693      SDUse &Use = UI.getUse();
4694      ++UI;
4695      Use.setNode(To);
4696    } while (UI != UE && *UI == User);
4697
4698    // Now that we have modified User, add it back to the CSE maps.  If it
4699    // already exists there, recursively merge the results together.
4700    AddModifiedNodeToCSEMaps(User, UpdateListener);
4701  }
4702}
4703
4704/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4705/// This can cause recursive merging of nodes in the DAG.
4706///
4707/// This version can replace From with any result values.  To must match the
4708/// number and types of values returned by From.
4709void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4710                                      const SDValue *To,
4711                                      DAGUpdateListener *UpdateListener) {
4712  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4713    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4714
4715  // Iterate over just the existing users of From. See the comments in
4716  // the ReplaceAllUsesWith above.
4717  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4718  while (UI != UE) {
4719    SDNode *User = *UI;
4720
4721    // This node is about to morph, remove its old self from the CSE maps.
4722    RemoveNodeFromCSEMaps(User);
4723
4724    // A user can appear in a use list multiple times, and when this
4725    // happens the uses are usually next to each other in the list.
4726    // To help reduce the number of CSE recomputations, process all
4727    // the uses of this user that we can find this way.
4728    do {
4729      SDUse &Use = UI.getUse();
4730      const SDValue &ToOp = To[Use.getResNo()];
4731      ++UI;
4732      Use.set(ToOp);
4733    } while (UI != UE && *UI == User);
4734
4735    // Now that we have modified User, add it back to the CSE maps.  If it
4736    // already exists there, recursively merge the results together.
4737    AddModifiedNodeToCSEMaps(User, UpdateListener);
4738  }
4739}
4740
4741/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4742/// uses of other values produced by From.getNode() alone.  The Deleted
4743/// vector is handled the same way as for ReplaceAllUsesWith.
4744void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4745                                             DAGUpdateListener *UpdateListener){
4746  // Handle the really simple, really trivial case efficiently.
4747  if (From == To) return;
4748
4749  // Handle the simple, trivial, case efficiently.
4750  if (From.getNode()->getNumValues() == 1) {
4751    ReplaceAllUsesWith(From, To, UpdateListener);
4752    return;
4753  }
4754
4755  // Iterate over just the existing users of From. See the comments in
4756  // the ReplaceAllUsesWith above.
4757  SDNode::use_iterator UI = From.getNode()->use_begin(),
4758                       UE = From.getNode()->use_end();
4759  while (UI != UE) {
4760    SDNode *User = *UI;
4761    bool UserRemovedFromCSEMaps = false;
4762
4763    // A user can appear in a use list multiple times, and when this
4764    // happens the uses are usually next to each other in the list.
4765    // To help reduce the number of CSE recomputations, process all
4766    // the uses of this user that we can find this way.
4767    do {
4768      SDUse &Use = UI.getUse();
4769
4770      // Skip uses of different values from the same node.
4771      if (Use.getResNo() != From.getResNo()) {
4772        ++UI;
4773        continue;
4774      }
4775
4776      // If this node hasn't been modified yet, it's still in the CSE maps,
4777      // so remove its old self from the CSE maps.
4778      if (!UserRemovedFromCSEMaps) {
4779        RemoveNodeFromCSEMaps(User);
4780        UserRemovedFromCSEMaps = true;
4781      }
4782
4783      ++UI;
4784      Use.set(To);
4785    } while (UI != UE && *UI == User);
4786
4787    // We are iterating over all uses of the From node, so if a use
4788    // doesn't use the specific value, no changes are made.
4789    if (!UserRemovedFromCSEMaps)
4790      continue;
4791
4792    // Now that we have modified User, add it back to the CSE maps.  If it
4793    // already exists there, recursively merge the results together.
4794    AddModifiedNodeToCSEMaps(User, UpdateListener);
4795  }
4796}
4797
4798namespace {
4799  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4800  /// to record information about a use.
4801  struct UseMemo {
4802    SDNode *User;
4803    unsigned Index;
4804    SDUse *Use;
4805  };
4806
4807  /// operator< - Sort Memos by User.
4808  bool operator<(const UseMemo &L, const UseMemo &R) {
4809    return (intptr_t)L.User < (intptr_t)R.User;
4810  }
4811}
4812
4813/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4814/// uses of other values produced by From.getNode() alone.  The same value
4815/// may appear in both the From and To list.  The Deleted vector is
4816/// handled the same way as for ReplaceAllUsesWith.
4817void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4818                                              const SDValue *To,
4819                                              unsigned Num,
4820                                              DAGUpdateListener *UpdateListener){
4821  // Handle the simple, trivial case efficiently.
4822  if (Num == 1)
4823    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4824
4825  // Read up all the uses and make records of them. This helps
4826  // processing new uses that are introduced during the
4827  // replacement process.
4828  SmallVector<UseMemo, 4> Uses;
4829  for (unsigned i = 0; i != Num; ++i) {
4830    unsigned FromResNo = From[i].getResNo();
4831    SDNode *FromNode = From[i].getNode();
4832    for (SDNode::use_iterator UI = FromNode->use_begin(),
4833         E = FromNode->use_end(); UI != E; ++UI) {
4834      SDUse &Use = UI.getUse();
4835      if (Use.getResNo() == FromResNo) {
4836        UseMemo Memo = { *UI, i, &Use };
4837        Uses.push_back(Memo);
4838      }
4839    }
4840  }
4841
4842  // Sort the uses, so that all the uses from a given User are together.
4843  std::sort(Uses.begin(), Uses.end());
4844
4845  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4846       UseIndex != UseIndexEnd; ) {
4847    // We know that this user uses some value of From.  If it is the right
4848    // value, update it.
4849    SDNode *User = Uses[UseIndex].User;
4850
4851    // This node is about to morph, remove its old self from the CSE maps.
4852    RemoveNodeFromCSEMaps(User);
4853
4854    // The Uses array is sorted, so all the uses for a given User
4855    // are next to each other in the list.
4856    // To help reduce the number of CSE recomputations, process all
4857    // the uses of this user that we can find this way.
4858    do {
4859      unsigned i = Uses[UseIndex].Index;
4860      SDUse &Use = *Uses[UseIndex].Use;
4861      ++UseIndex;
4862
4863      Use.set(To[i]);
4864    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4865
4866    // Now that we have modified User, add it back to the CSE maps.  If it
4867    // already exists there, recursively merge the results together.
4868    AddModifiedNodeToCSEMaps(User, UpdateListener);
4869  }
4870}
4871
4872/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4873/// based on their topological order. It returns the maximum id and a vector
4874/// of the SDNodes* in assigned order by reference.
4875unsigned SelectionDAG::AssignTopologicalOrder() {
4876
4877  unsigned DAGSize = 0;
4878
4879  // SortedPos tracks the progress of the algorithm. Nodes before it are
4880  // sorted, nodes after it are unsorted. When the algorithm completes
4881  // it is at the end of the list.
4882  allnodes_iterator SortedPos = allnodes_begin();
4883
4884  // Visit all the nodes. Move nodes with no operands to the front of
4885  // the list immediately. Annotate nodes that do have operands with their
4886  // operand count. Before we do this, the Node Id fields of the nodes
4887  // may contain arbitrary values. After, the Node Id fields for nodes
4888  // before SortedPos will contain the topological sort index, and the
4889  // Node Id fields for nodes At SortedPos and after will contain the
4890  // count of outstanding operands.
4891  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4892    SDNode *N = I++;
4893    unsigned Degree = N->getNumOperands();
4894    if (Degree == 0) {
4895      // A node with no uses, add it to the result array immediately.
4896      N->setNodeId(DAGSize++);
4897      allnodes_iterator Q = N;
4898      if (Q != SortedPos)
4899        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4900      ++SortedPos;
4901    } else {
4902      // Temporarily use the Node Id as scratch space for the degree count.
4903      N->setNodeId(Degree);
4904    }
4905  }
4906
4907  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4908  // such that by the time the end is reached all nodes will be sorted.
4909  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4910    SDNode *N = I;
4911    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4912         UI != UE; ++UI) {
4913      SDNode *P = *UI;
4914      unsigned Degree = P->getNodeId();
4915      --Degree;
4916      if (Degree == 0) {
4917        // All of P's operands are sorted, so P may sorted now.
4918        P->setNodeId(DAGSize++);
4919        if (P != SortedPos)
4920          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4921        ++SortedPos;
4922      } else {
4923        // Update P's outstanding operand count.
4924        P->setNodeId(Degree);
4925      }
4926    }
4927  }
4928
4929  assert(SortedPos == AllNodes.end() &&
4930         "Topological sort incomplete!");
4931  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4932         "First node in topological sort is not the entry token!");
4933  assert(AllNodes.front().getNodeId() == 0 &&
4934         "First node in topological sort has non-zero id!");
4935  assert(AllNodes.front().getNumOperands() == 0 &&
4936         "First node in topological sort has operands!");
4937  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4938         "Last node in topologic sort has unexpected id!");
4939  assert(AllNodes.back().use_empty() &&
4940         "Last node in topologic sort has users!");
4941  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4942  return DAGSize;
4943}
4944
4945
4946
4947//===----------------------------------------------------------------------===//
4948//                              SDNode Class
4949//===----------------------------------------------------------------------===//
4950
4951HandleSDNode::~HandleSDNode() {
4952  DropOperands();
4953}
4954
4955GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4956                                         MVT VT, int64_t o)
4957  : SDNode(isa<GlobalVariable>(GA) &&
4958           cast<GlobalVariable>(GA)->isThreadLocal() ?
4959           // Thread Local
4960           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4961           // Non Thread Local
4962           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4963           getSDVTList(VT)), Offset(o) {
4964  TheGlobal = const_cast<GlobalValue*>(GA);
4965}
4966
4967MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4968                     const Value *srcValue, int SVO,
4969                     unsigned alignment, bool vol)
4970 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4971  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4972  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4973  assert(getAlignment() == alignment && "Alignment representation error!");
4974  assert(isVolatile() == vol && "Volatile representation error!");
4975}
4976
4977MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4978                     unsigned NumOps, MVT memvt, const Value *srcValue,
4979                     int SVO, unsigned alignment, bool vol)
4980   : SDNode(Opc, VTs, Ops, NumOps),
4981     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4982  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4983  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4984  assert(getAlignment() == alignment && "Alignment representation error!");
4985  assert(isVolatile() == vol && "Volatile representation error!");
4986}
4987
4988MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4989                     const Value *srcValue, int SVO,
4990                     unsigned alignment, bool vol)
4991 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4992  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4993  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4994  assert(getAlignment() == alignment && "Alignment representation error!");
4995  assert(isVolatile() == vol && "Volatile representation error!");
4996}
4997
4998MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4999                     const SDValue *Ops,
5000                     unsigned NumOps, MVT memvt, const Value *srcValue,
5001                     int SVO, unsigned alignment, bool vol)
5002   : SDNode(Opc, dl, VTs, Ops, NumOps),
5003     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
5004  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
5005  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5006  assert(getAlignment() == alignment && "Alignment representation error!");
5007  assert(isVolatile() == vol && "Volatile representation error!");
5008}
5009
5010/// getMemOperand - Return a MachineMemOperand object describing the memory
5011/// reference performed by this memory reference.
5012MachineMemOperand MemSDNode::getMemOperand() const {
5013  int Flags = 0;
5014  if (isa<LoadSDNode>(this))
5015    Flags = MachineMemOperand::MOLoad;
5016  else if (isa<StoreSDNode>(this))
5017    Flags = MachineMemOperand::MOStore;
5018  else if (isa<AtomicSDNode>(this)) {
5019    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
5020  }
5021  else {
5022    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
5023    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
5024    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
5025    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
5026  }
5027
5028  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
5029  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
5030
5031  // Check if the memory reference references a frame index
5032  const FrameIndexSDNode *FI =
5033  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
5034  if (!getSrcValue() && FI)
5035    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
5036                             Flags, 0, Size, getAlignment());
5037  else
5038    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
5039                             Size, getAlignment());
5040}
5041
5042/// Profile - Gather unique data for the node.
5043///
5044void SDNode::Profile(FoldingSetNodeID &ID) const {
5045  AddNodeIDNode(ID, this);
5046}
5047
5048/// getValueTypeList - Return a pointer to the specified value type.
5049///
5050const MVT *SDNode::getValueTypeList(MVT VT) {
5051  if (VT.isExtended()) {
5052    static std::set<MVT, MVT::compareRawBits> EVTs;
5053    return &(*EVTs.insert(VT).first);
5054  } else {
5055    static MVT VTs[MVT::LAST_VALUETYPE];
5056    VTs[VT.getSimpleVT()] = VT;
5057    return &VTs[VT.getSimpleVT()];
5058  }
5059}
5060
5061/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5062/// indicated value.  This method ignores uses of other values defined by this
5063/// operation.
5064bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5065  assert(Value < getNumValues() && "Bad value!");
5066
5067  // TODO: Only iterate over uses of a given value of the node
5068  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5069    if (UI.getUse().getResNo() == Value) {
5070      if (NUses == 0)
5071        return false;
5072      --NUses;
5073    }
5074  }
5075
5076  // Found exactly the right number of uses?
5077  return NUses == 0;
5078}
5079
5080
5081/// hasAnyUseOfValue - Return true if there are any use of the indicated
5082/// value. This method ignores uses of other values defined by this operation.
5083bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5084  assert(Value < getNumValues() && "Bad value!");
5085
5086  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5087    if (UI.getUse().getResNo() == Value)
5088      return true;
5089
5090  return false;
5091}
5092
5093
5094/// isOnlyUserOf - Return true if this node is the only use of N.
5095///
5096bool SDNode::isOnlyUserOf(SDNode *N) const {
5097  bool Seen = false;
5098  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5099    SDNode *User = *I;
5100    if (User == this)
5101      Seen = true;
5102    else
5103      return false;
5104  }
5105
5106  return Seen;
5107}
5108
5109/// isOperand - Return true if this node is an operand of N.
5110///
5111bool SDValue::isOperandOf(SDNode *N) const {
5112  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5113    if (*this == N->getOperand(i))
5114      return true;
5115  return false;
5116}
5117
5118bool SDNode::isOperandOf(SDNode *N) const {
5119  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5120    if (this == N->OperandList[i].getNode())
5121      return true;
5122  return false;
5123}
5124
5125/// reachesChainWithoutSideEffects - Return true if this operand (which must
5126/// be a chain) reaches the specified operand without crossing any
5127/// side-effecting instructions.  In practice, this looks through token
5128/// factors and non-volatile loads.  In order to remain efficient, this only
5129/// looks a couple of nodes in, it does not do an exhaustive search.
5130bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5131                                               unsigned Depth) const {
5132  if (*this == Dest) return true;
5133
5134  // Don't search too deeply, we just want to be able to see through
5135  // TokenFactor's etc.
5136  if (Depth == 0) return false;
5137
5138  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5139  // of the operands of the TF reach dest, then we can do the xform.
5140  if (getOpcode() == ISD::TokenFactor) {
5141    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5142      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5143        return true;
5144    return false;
5145  }
5146
5147  // Loads don't have side effects, look through them.
5148  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5149    if (!Ld->isVolatile())
5150      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5151  }
5152  return false;
5153}
5154
5155
5156static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5157                            SmallPtrSet<SDNode *, 32> &Visited) {
5158  if (found || !Visited.insert(N))
5159    return;
5160
5161  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5162    SDNode *Op = N->getOperand(i).getNode();
5163    if (Op == P) {
5164      found = true;
5165      return;
5166    }
5167    findPredecessor(Op, P, found, Visited);
5168  }
5169}
5170
5171/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5172/// is either an operand of N or it can be reached by recursively traversing
5173/// up the operands.
5174/// NOTE: this is an expensive method. Use it carefully.
5175bool SDNode::isPredecessorOf(SDNode *N) const {
5176  SmallPtrSet<SDNode *, 32> Visited;
5177  bool found = false;
5178  findPredecessor(N, this, found, Visited);
5179  return found;
5180}
5181
5182uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5183  assert(Num < NumOperands && "Invalid child # of SDNode!");
5184  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5185}
5186
5187std::string SDNode::getOperationName(const SelectionDAG *G) const {
5188  switch (getOpcode()) {
5189  default:
5190    if (getOpcode() < ISD::BUILTIN_OP_END)
5191      return "<<Unknown DAG Node>>";
5192    if (isMachineOpcode()) {
5193      if (G)
5194        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5195          if (getMachineOpcode() < TII->getNumOpcodes())
5196            return TII->get(getMachineOpcode()).getName();
5197      return "<<Unknown Machine Node>>";
5198    }
5199    if (G) {
5200      const TargetLowering &TLI = G->getTargetLoweringInfo();
5201      const char *Name = TLI.getTargetNodeName(getOpcode());
5202      if (Name) return Name;
5203      return "<<Unknown Target Node>>";
5204    }
5205    return "<<Unknown Node>>";
5206
5207#ifndef NDEBUG
5208  case ISD::DELETED_NODE:
5209    return "<<Deleted Node!>>";
5210#endif
5211  case ISD::PREFETCH:      return "Prefetch";
5212  case ISD::MEMBARRIER:    return "MemBarrier";
5213  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5214  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5215  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5216  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5217  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5218  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5219  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5220  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5221  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5222  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5223  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5224  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5225  case ISD::PCMARKER:      return "PCMarker";
5226  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5227  case ISD::SRCVALUE:      return "SrcValue";
5228  case ISD::MEMOPERAND:    return "MemOperand";
5229  case ISD::EntryToken:    return "EntryToken";
5230  case ISD::TokenFactor:   return "TokenFactor";
5231  case ISD::AssertSext:    return "AssertSext";
5232  case ISD::AssertZext:    return "AssertZext";
5233
5234  case ISD::BasicBlock:    return "BasicBlock";
5235  case ISD::ARG_FLAGS:     return "ArgFlags";
5236  case ISD::VALUETYPE:     return "ValueType";
5237  case ISD::Register:      return "Register";
5238
5239  case ISD::Constant:      return "Constant";
5240  case ISD::ConstantFP:    return "ConstantFP";
5241  case ISD::GlobalAddress: return "GlobalAddress";
5242  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5243  case ISD::FrameIndex:    return "FrameIndex";
5244  case ISD::JumpTable:     return "JumpTable";
5245  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5246  case ISD::RETURNADDR: return "RETURNADDR";
5247  case ISD::FRAMEADDR: return "FRAMEADDR";
5248  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5249  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5250  case ISD::EHSELECTION: return "EHSELECTION";
5251  case ISD::EH_RETURN: return "EH_RETURN";
5252  case ISD::ConstantPool:  return "ConstantPool";
5253  case ISD::ExternalSymbol: return "ExternalSymbol";
5254  case ISD::INTRINSIC_WO_CHAIN: {
5255    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5256    return Intrinsic::getName((Intrinsic::ID)IID);
5257  }
5258  case ISD::INTRINSIC_VOID:
5259  case ISD::INTRINSIC_W_CHAIN: {
5260    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5261    return Intrinsic::getName((Intrinsic::ID)IID);
5262  }
5263
5264  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5265  case ISD::TargetConstant: return "TargetConstant";
5266  case ISD::TargetConstantFP:return "TargetConstantFP";
5267  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5268  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5269  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5270  case ISD::TargetJumpTable:  return "TargetJumpTable";
5271  case ISD::TargetConstantPool:  return "TargetConstantPool";
5272  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5273
5274  case ISD::CopyToReg:     return "CopyToReg";
5275  case ISD::CopyFromReg:   return "CopyFromReg";
5276  case ISD::UNDEF:         return "undef";
5277  case ISD::MERGE_VALUES:  return "merge_values";
5278  case ISD::INLINEASM:     return "inlineasm";
5279  case ISD::DBG_LABEL:     return "dbg_label";
5280  case ISD::EH_LABEL:      return "eh_label";
5281  case ISD::DECLARE:       return "declare";
5282  case ISD::HANDLENODE:    return "handlenode";
5283  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5284  case ISD::CALL:          return "call";
5285
5286  // Unary operators
5287  case ISD::FABS:   return "fabs";
5288  case ISD::FNEG:   return "fneg";
5289  case ISD::FSQRT:  return "fsqrt";
5290  case ISD::FSIN:   return "fsin";
5291  case ISD::FCOS:   return "fcos";
5292  case ISD::FPOWI:  return "fpowi";
5293  case ISD::FPOW:   return "fpow";
5294  case ISD::FTRUNC: return "ftrunc";
5295  case ISD::FFLOOR: return "ffloor";
5296  case ISD::FCEIL:  return "fceil";
5297  case ISD::FRINT:  return "frint";
5298  case ISD::FNEARBYINT: return "fnearbyint";
5299
5300  // Binary operators
5301  case ISD::ADD:    return "add";
5302  case ISD::SUB:    return "sub";
5303  case ISD::MUL:    return "mul";
5304  case ISD::MULHU:  return "mulhu";
5305  case ISD::MULHS:  return "mulhs";
5306  case ISD::SDIV:   return "sdiv";
5307  case ISD::UDIV:   return "udiv";
5308  case ISD::SREM:   return "srem";
5309  case ISD::UREM:   return "urem";
5310  case ISD::SMUL_LOHI:  return "smul_lohi";
5311  case ISD::UMUL_LOHI:  return "umul_lohi";
5312  case ISD::SDIVREM:    return "sdivrem";
5313  case ISD::UDIVREM:    return "udivrem";
5314  case ISD::AND:    return "and";
5315  case ISD::OR:     return "or";
5316  case ISD::XOR:    return "xor";
5317  case ISD::SHL:    return "shl";
5318  case ISD::SRA:    return "sra";
5319  case ISD::SRL:    return "srl";
5320  case ISD::ROTL:   return "rotl";
5321  case ISD::ROTR:   return "rotr";
5322  case ISD::FADD:   return "fadd";
5323  case ISD::FSUB:   return "fsub";
5324  case ISD::FMUL:   return "fmul";
5325  case ISD::FDIV:   return "fdiv";
5326  case ISD::FREM:   return "frem";
5327  case ISD::FCOPYSIGN: return "fcopysign";
5328  case ISD::FGETSIGN:  return "fgetsign";
5329
5330  case ISD::SETCC:       return "setcc";
5331  case ISD::VSETCC:      return "vsetcc";
5332  case ISD::SELECT:      return "select";
5333  case ISD::SELECT_CC:   return "select_cc";
5334  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5335  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5336  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5337  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5338  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5339  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5340  case ISD::CARRY_FALSE:         return "carry_false";
5341  case ISD::ADDC:        return "addc";
5342  case ISD::ADDE:        return "adde";
5343  case ISD::SADDO:       return "saddo";
5344  case ISD::UADDO:       return "uaddo";
5345  case ISD::SSUBO:       return "ssubo";
5346  case ISD::USUBO:       return "usubo";
5347  case ISD::SMULO:       return "smulo";
5348  case ISD::UMULO:       return "umulo";
5349  case ISD::SUBC:        return "subc";
5350  case ISD::SUBE:        return "sube";
5351  case ISD::SHL_PARTS:   return "shl_parts";
5352  case ISD::SRA_PARTS:   return "sra_parts";
5353  case ISD::SRL_PARTS:   return "srl_parts";
5354
5355  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5356  case ISD::INSERT_SUBREG:      return "insert_subreg";
5357
5358  // Conversion operators.
5359  case ISD::SIGN_EXTEND: return "sign_extend";
5360  case ISD::ZERO_EXTEND: return "zero_extend";
5361  case ISD::ANY_EXTEND:  return "any_extend";
5362  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5363  case ISD::TRUNCATE:    return "truncate";
5364  case ISD::FP_ROUND:    return "fp_round";
5365  case ISD::FLT_ROUNDS_: return "flt_rounds";
5366  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5367  case ISD::FP_EXTEND:   return "fp_extend";
5368
5369  case ISD::SINT_TO_FP:  return "sint_to_fp";
5370  case ISD::UINT_TO_FP:  return "uint_to_fp";
5371  case ISD::FP_TO_SINT:  return "fp_to_sint";
5372  case ISD::FP_TO_UINT:  return "fp_to_uint";
5373  case ISD::BIT_CONVERT: return "bit_convert";
5374
5375  case ISD::CONVERT_RNDSAT: {
5376    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5377    default: assert(0 && "Unknown cvt code!");
5378    case ISD::CVT_FF:  return "cvt_ff";
5379    case ISD::CVT_FS:  return "cvt_fs";
5380    case ISD::CVT_FU:  return "cvt_fu";
5381    case ISD::CVT_SF:  return "cvt_sf";
5382    case ISD::CVT_UF:  return "cvt_uf";
5383    case ISD::CVT_SS:  return "cvt_ss";
5384    case ISD::CVT_SU:  return "cvt_su";
5385    case ISD::CVT_US:  return "cvt_us";
5386    case ISD::CVT_UU:  return "cvt_uu";
5387    }
5388  }
5389
5390    // Control flow instructions
5391  case ISD::BR:      return "br";
5392  case ISD::BRIND:   return "brind";
5393  case ISD::BR_JT:   return "br_jt";
5394  case ISD::BRCOND:  return "brcond";
5395  case ISD::BR_CC:   return "br_cc";
5396  case ISD::RET:     return "ret";
5397  case ISD::CALLSEQ_START:  return "callseq_start";
5398  case ISD::CALLSEQ_END:    return "callseq_end";
5399
5400    // Other operators
5401  case ISD::LOAD:               return "load";
5402  case ISD::STORE:              return "store";
5403  case ISD::VAARG:              return "vaarg";
5404  case ISD::VACOPY:             return "vacopy";
5405  case ISD::VAEND:              return "vaend";
5406  case ISD::VASTART:            return "vastart";
5407  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5408  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5409  case ISD::BUILD_PAIR:         return "build_pair";
5410  case ISD::STACKSAVE:          return "stacksave";
5411  case ISD::STACKRESTORE:       return "stackrestore";
5412  case ISD::TRAP:               return "trap";
5413
5414  // Bit manipulation
5415  case ISD::BSWAP:   return "bswap";
5416  case ISD::CTPOP:   return "ctpop";
5417  case ISD::CTTZ:    return "cttz";
5418  case ISD::CTLZ:    return "ctlz";
5419
5420  // Debug info
5421  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5422  case ISD::DEBUG_LOC: return "debug_loc";
5423
5424  // Trampolines
5425  case ISD::TRAMPOLINE: return "trampoline";
5426
5427  case ISD::CONDCODE:
5428    switch (cast<CondCodeSDNode>(this)->get()) {
5429    default: assert(0 && "Unknown setcc condition!");
5430    case ISD::SETOEQ:  return "setoeq";
5431    case ISD::SETOGT:  return "setogt";
5432    case ISD::SETOGE:  return "setoge";
5433    case ISD::SETOLT:  return "setolt";
5434    case ISD::SETOLE:  return "setole";
5435    case ISD::SETONE:  return "setone";
5436
5437    case ISD::SETO:    return "seto";
5438    case ISD::SETUO:   return "setuo";
5439    case ISD::SETUEQ:  return "setue";
5440    case ISD::SETUGT:  return "setugt";
5441    case ISD::SETUGE:  return "setuge";
5442    case ISD::SETULT:  return "setult";
5443    case ISD::SETULE:  return "setule";
5444    case ISD::SETUNE:  return "setune";
5445
5446    case ISD::SETEQ:   return "seteq";
5447    case ISD::SETGT:   return "setgt";
5448    case ISD::SETGE:   return "setge";
5449    case ISD::SETLT:   return "setlt";
5450    case ISD::SETLE:   return "setle";
5451    case ISD::SETNE:   return "setne";
5452    }
5453  }
5454}
5455
5456const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5457  switch (AM) {
5458  default:
5459    return "";
5460  case ISD::PRE_INC:
5461    return "<pre-inc>";
5462  case ISD::PRE_DEC:
5463    return "<pre-dec>";
5464  case ISD::POST_INC:
5465    return "<post-inc>";
5466  case ISD::POST_DEC:
5467    return "<post-dec>";
5468  }
5469}
5470
5471std::string ISD::ArgFlagsTy::getArgFlagsString() {
5472  std::string S = "< ";
5473
5474  if (isZExt())
5475    S += "zext ";
5476  if (isSExt())
5477    S += "sext ";
5478  if (isInReg())
5479    S += "inreg ";
5480  if (isSRet())
5481    S += "sret ";
5482  if (isByVal())
5483    S += "byval ";
5484  if (isNest())
5485    S += "nest ";
5486  if (getByValAlign())
5487    S += "byval-align:" + utostr(getByValAlign()) + " ";
5488  if (getOrigAlign())
5489    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5490  if (getByValSize())
5491    S += "byval-size:" + utostr(getByValSize()) + " ";
5492  return S + ">";
5493}
5494
5495void SDNode::dump() const { dump(0); }
5496void SDNode::dump(const SelectionDAG *G) const {
5497  print(errs(), G);
5498  errs().flush();
5499}
5500
5501void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5502  OS << (void*)this << ": ";
5503
5504  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5505    if (i) OS << ",";
5506    if (getValueType(i) == MVT::Other)
5507      OS << "ch";
5508    else
5509      OS << getValueType(i).getMVTString();
5510  }
5511  OS << " = " << getOperationName(G);
5512}
5513
5514void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5515  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5516    SDNode *Mask = getOperand(2).getNode();
5517    OS << "<";
5518    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5519      if (i) OS << ",";
5520      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5521        OS << "u";
5522      else
5523        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5524    }
5525    OS << ">";
5526  }
5527
5528  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5529    OS << '<' << CSDN->getAPIntValue() << '>';
5530  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5531    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5532      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5533    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5534      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5535    else {
5536      OS << "<APFloat(";
5537      CSDN->getValueAPF().bitcastToAPInt().dump();
5538      OS << ")>";
5539    }
5540  } else if (const GlobalAddressSDNode *GADN =
5541             dyn_cast<GlobalAddressSDNode>(this)) {
5542    int64_t offset = GADN->getOffset();
5543    OS << '<';
5544    WriteAsOperand(OS, GADN->getGlobal());
5545    OS << '>';
5546    if (offset > 0)
5547      OS << " + " << offset;
5548    else
5549      OS << " " << offset;
5550  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5551    OS << "<" << FIDN->getIndex() << ">";
5552  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5553    OS << "<" << JTDN->getIndex() << ">";
5554  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5555    int offset = CP->getOffset();
5556    if (CP->isMachineConstantPoolEntry())
5557      OS << "<" << *CP->getMachineCPVal() << ">";
5558    else
5559      OS << "<" << *CP->getConstVal() << ">";
5560    if (offset > 0)
5561      OS << " + " << offset;
5562    else
5563      OS << " " << offset;
5564  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5565    OS << "<";
5566    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5567    if (LBB)
5568      OS << LBB->getName() << " ";
5569    OS << (const void*)BBDN->getBasicBlock() << ">";
5570  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5571    if (G && R->getReg() &&
5572        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5573      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5574    } else {
5575      OS << " #" << R->getReg();
5576    }
5577  } else if (const ExternalSymbolSDNode *ES =
5578             dyn_cast<ExternalSymbolSDNode>(this)) {
5579    OS << "'" << ES->getSymbol() << "'";
5580  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5581    if (M->getValue())
5582      OS << "<" << M->getValue() << ">";
5583    else
5584      OS << "<null>";
5585  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5586    if (M->MO.getValue())
5587      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5588    else
5589      OS << "<null:" << M->MO.getOffset() << ">";
5590  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5591    OS << N->getArgFlags().getArgFlagsString();
5592  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5593    OS << ":" << N->getVT().getMVTString();
5594  }
5595  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5596    const Value *SrcValue = LD->getSrcValue();
5597    int SrcOffset = LD->getSrcValueOffset();
5598    OS << " <";
5599    if (SrcValue)
5600      OS << SrcValue;
5601    else
5602      OS << "null";
5603    OS << ":" << SrcOffset << ">";
5604
5605    bool doExt = true;
5606    switch (LD->getExtensionType()) {
5607    default: doExt = false; break;
5608    case ISD::EXTLOAD: OS << " <anyext "; break;
5609    case ISD::SEXTLOAD: OS << " <sext "; break;
5610    case ISD::ZEXTLOAD: OS << " <zext "; break;
5611    }
5612    if (doExt)
5613      OS << LD->getMemoryVT().getMVTString() << ">";
5614
5615    const char *AM = getIndexedModeName(LD->getAddressingMode());
5616    if (*AM)
5617      OS << " " << AM;
5618    if (LD->isVolatile())
5619      OS << " <volatile>";
5620    OS << " alignment=" << LD->getAlignment();
5621  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5622    const Value *SrcValue = ST->getSrcValue();
5623    int SrcOffset = ST->getSrcValueOffset();
5624    OS << " <";
5625    if (SrcValue)
5626      OS << SrcValue;
5627    else
5628      OS << "null";
5629    OS << ":" << SrcOffset << ">";
5630
5631    if (ST->isTruncatingStore())
5632      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5633
5634    const char *AM = getIndexedModeName(ST->getAddressingMode());
5635    if (*AM)
5636      OS << " " << AM;
5637    if (ST->isVolatile())
5638      OS << " <volatile>";
5639    OS << " alignment=" << ST->getAlignment();
5640  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5641    const Value *SrcValue = AT->getSrcValue();
5642    int SrcOffset = AT->getSrcValueOffset();
5643    OS << " <";
5644    if (SrcValue)
5645      OS << SrcValue;
5646    else
5647      OS << "null";
5648    OS << ":" << SrcOffset << ">";
5649    if (AT->isVolatile())
5650      OS << " <volatile>";
5651    OS << " alignment=" << AT->getAlignment();
5652  }
5653}
5654
5655void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5656  print_types(OS, G);
5657  OS << " ";
5658  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5659    if (i) OS << ", ";
5660    OS << (void*)getOperand(i).getNode();
5661    if (unsigned RN = getOperand(i).getResNo())
5662      OS << ":" << RN;
5663  }
5664  print_details(OS, G);
5665}
5666
5667static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5668  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5669    if (N->getOperand(i).getNode()->hasOneUse())
5670      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5671    else
5672      cerr << "\n" << std::string(indent+2, ' ')
5673           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5674
5675
5676  cerr << "\n" << std::string(indent, ' ');
5677  N->dump(G);
5678}
5679
5680void SelectionDAG::dump() const {
5681  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5682
5683  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5684       I != E; ++I) {
5685    const SDNode *N = I;
5686    if (!N->hasOneUse() && N != getRoot().getNode())
5687      DumpNodes(N, 2, this);
5688  }
5689
5690  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5691
5692  cerr << "\n\n";
5693}
5694
5695void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5696  print_types(OS, G);
5697  print_details(OS, G);
5698}
5699
5700typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5701static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5702		       const SelectionDAG *G, VisitedSDNodeSet &once) {
5703  if (!once.insert(N))	// If we've been here before, return now.
5704    return;
5705  // Dump the current SDNode, but don't end the line yet.
5706  OS << std::string(indent, ' ');
5707  N->printr(OS, G);
5708  // Having printed this SDNode, walk the children:
5709  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5710    const SDNode *child = N->getOperand(i).getNode();
5711    if (i) OS << ",";
5712    OS << " ";
5713    if (child->getNumOperands() == 0) {
5714      // This child has no grandchildren; print it inline right here.
5715      child->printr(OS, G);
5716      once.insert(child);
5717    } else {	// Just the address.  FIXME: also print the child's opcode
5718      OS << (void*)child;
5719      if (unsigned RN = N->getOperand(i).getResNo())
5720	OS << ":" << RN;
5721    }
5722  }
5723  OS << "\n";
5724  // Dump children that have grandchildren on their own line(s).
5725  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5726    const SDNode *child = N->getOperand(i).getNode();
5727    DumpNodesr(OS, child, indent+2, G, once);
5728  }
5729}
5730
5731void SDNode::dumpr() const {
5732  VisitedSDNodeSet once;
5733  DumpNodesr(errs(), this, 0, 0, once);
5734  errs().flush();
5735}
5736
5737const Type *ConstantPoolSDNode::getType() const {
5738  if (isMachineConstantPoolEntry())
5739    return Val.MachineCPVal->getType();
5740  return Val.ConstVal->getType();
5741}
5742