SelectionDAG.cpp revision 8a7f7426eeb18fef58c3471db23fc829b67bc350
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetSelectionDAGInfo.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetIntrinsicInfo.h"
40#include "llvm/Target/TargetMachine.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/ManagedStatic.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/System/Mutex.h"
48#include "llvm/ADT/SetVector.h"
49#include "llvm/ADT/SmallPtrSet.h"
50#include "llvm/ADT/SmallSet.h"
51#include "llvm/ADT/SmallVector.h"
52#include "llvm/ADT/StringExtras.h"
53#include <algorithm>
54#include <cmath>
55using namespace llvm;
56
57/// makeVTList - Return an instance of the SDVTList struct initialized with the
58/// specified members.
59static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
60  SDVTList Res = {VTs, NumVTs};
61  return Res;
62}
63
64static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
65  switch (VT.getSimpleVT().SimpleTy) {
66  default: llvm_unreachable("Unknown FP format");
67  case MVT::f32:     return &APFloat::IEEEsingle;
68  case MVT::f64:     return &APFloat::IEEEdouble;
69  case MVT::f80:     return &APFloat::x87DoubleExtended;
70  case MVT::f128:    return &APFloat::IEEEquad;
71  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
72  }
73}
74
75SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
76
77//===----------------------------------------------------------------------===//
78//                              ConstantFPSDNode Class
79//===----------------------------------------------------------------------===//
80
81/// isExactlyValue - We don't rely on operator== working on double values, as
82/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
83/// As such, this method can be used to do an exact bit-for-bit comparison of
84/// two floating point values.
85bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
86  return getValueAPF().bitwiseIsEqual(V);
87}
88
89bool ConstantFPSDNode::isValueValidForType(EVT VT,
90                                           const APFloat& Val) {
91  assert(VT.isFloatingPoint() && "Can only convert between FP types");
92
93  // PPC long double cannot be converted to any other type.
94  if (VT == MVT::ppcf128 ||
95      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
96    return false;
97
98  // convert modifies in place, so make a copy.
99  APFloat Val2 = APFloat(Val);
100  bool losesInfo;
101  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
102                      &losesInfo);
103  return !losesInfo;
104}
105
106//===----------------------------------------------------------------------===//
107//                              ISD Namespace
108//===----------------------------------------------------------------------===//
109
110/// isBuildVectorAllOnes - Return true if the specified node is a
111/// BUILD_VECTOR where all of the elements are ~0 or undef.
112bool ISD::isBuildVectorAllOnes(const SDNode *N) {
113  // Look through a bit convert.
114  if (N->getOpcode() == ISD::BIT_CONVERT)
115    N = N->getOperand(0).getNode();
116
117  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118
119  unsigned i = 0, e = N->getNumOperands();
120
121  // Skip over all of the undef values.
122  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
123    ++i;
124
125  // Do not accept an all-undef vector.
126  if (i == e) return false;
127
128  // Do not accept build_vectors that aren't all constants or which have non-~0
129  // elements.
130  SDValue NotZero = N->getOperand(i);
131  if (isa<ConstantSDNode>(NotZero)) {
132    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
133      return false;
134  } else if (isa<ConstantFPSDNode>(NotZero)) {
135    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
136                bitcastToAPInt().isAllOnesValue())
137      return false;
138  } else
139    return false;
140
141  // Okay, we have at least one ~0 value, check to see if the rest match or are
142  // undefs.
143  for (++i; i != e; ++i)
144    if (N->getOperand(i) != NotZero &&
145        N->getOperand(i).getOpcode() != ISD::UNDEF)
146      return false;
147  return true;
148}
149
150
151/// isBuildVectorAllZeros - Return true if the specified node is a
152/// BUILD_VECTOR where all of the elements are 0 or undef.
153bool ISD::isBuildVectorAllZeros(const SDNode *N) {
154  // Look through a bit convert.
155  if (N->getOpcode() == ISD::BIT_CONVERT)
156    N = N->getOperand(0).getNode();
157
158  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
159
160  unsigned i = 0, e = N->getNumOperands();
161
162  // Skip over all of the undef values.
163  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
164    ++i;
165
166  // Do not accept an all-undef vector.
167  if (i == e) return false;
168
169  // Do not accept build_vectors that aren't all constants or which have non-0
170  // elements.
171  SDValue Zero = N->getOperand(i);
172  if (isa<ConstantSDNode>(Zero)) {
173    if (!cast<ConstantSDNode>(Zero)->isNullValue())
174      return false;
175  } else if (isa<ConstantFPSDNode>(Zero)) {
176    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
177      return false;
178  } else
179    return false;
180
181  // Okay, we have at least one 0 value, check to see if the rest match or are
182  // undefs.
183  for (++i; i != e; ++i)
184    if (N->getOperand(i) != Zero &&
185        N->getOperand(i).getOpcode() != ISD::UNDEF)
186      return false;
187  return true;
188}
189
190/// isScalarToVector - Return true if the specified node is a
191/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
192/// element is not an undef.
193bool ISD::isScalarToVector(const SDNode *N) {
194  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
195    return true;
196
197  if (N->getOpcode() != ISD::BUILD_VECTOR)
198    return false;
199  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
200    return false;
201  unsigned NumElems = N->getNumOperands();
202  for (unsigned i = 1; i < NumElems; ++i) {
203    SDValue V = N->getOperand(i);
204    if (V.getOpcode() != ISD::UNDEF)
205      return false;
206  }
207  return true;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: llvm_unreachable("Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309//===----------------------------------------------------------------------===//
310//                           SDNode Profile Support
311//===----------------------------------------------------------------------===//
312
313/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
314///
315static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
316  ID.AddInteger(OpC);
317}
318
319/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
320/// solely with their pointer.
321static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
322  ID.AddPointer(VTList.VTs);
323}
324
325/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
326///
327static void AddNodeIDOperands(FoldingSetNodeID &ID,
328                              const SDValue *Ops, unsigned NumOps) {
329  for (; NumOps; --NumOps, ++Ops) {
330    ID.AddPointer(Ops->getNode());
331    ID.AddInteger(Ops->getResNo());
332  }
333}
334
335/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
336///
337static void AddNodeIDOperands(FoldingSetNodeID &ID,
338                              const SDUse *Ops, unsigned NumOps) {
339  for (; NumOps; --NumOps, ++Ops) {
340    ID.AddPointer(Ops->getNode());
341    ID.AddInteger(Ops->getResNo());
342  }
343}
344
345static void AddNodeIDNode(FoldingSetNodeID &ID,
346                          unsigned short OpC, SDVTList VTList,
347                          const SDValue *OpList, unsigned N) {
348  AddNodeIDOpcode(ID, OpC);
349  AddNodeIDValueTypes(ID, VTList);
350  AddNodeIDOperands(ID, OpList, N);
351}
352
353/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
354/// the NodeID data.
355static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
356  switch (N->getOpcode()) {
357  case ISD::TargetExternalSymbol:
358  case ISD::ExternalSymbol:
359    llvm_unreachable("Should only be used on nodes with operands");
360  default: break;  // Normal nodes don't need extra info.
361  case ISD::TargetConstant:
362  case ISD::Constant:
363    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
364    break;
365  case ISD::TargetConstantFP:
366  case ISD::ConstantFP: {
367    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
368    break;
369  }
370  case ISD::TargetGlobalAddress:
371  case ISD::GlobalAddress:
372  case ISD::TargetGlobalTLSAddress:
373  case ISD::GlobalTLSAddress: {
374    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
375    ID.AddPointer(GA->getGlobal());
376    ID.AddInteger(GA->getOffset());
377    ID.AddInteger(GA->getTargetFlags());
378    break;
379  }
380  case ISD::BasicBlock:
381    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
382    break;
383  case ISD::Register:
384    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
385    break;
386
387  case ISD::SRCVALUE:
388    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
389    break;
390  case ISD::FrameIndex:
391  case ISD::TargetFrameIndex:
392    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
393    break;
394  case ISD::JumpTable:
395  case ISD::TargetJumpTable:
396    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
398    break;
399  case ISD::ConstantPool:
400  case ISD::TargetConstantPool: {
401    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
402    ID.AddInteger(CP->getAlignment());
403    ID.AddInteger(CP->getOffset());
404    if (CP->isMachineConstantPoolEntry())
405      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
406    else
407      ID.AddPointer(CP->getConstVal());
408    ID.AddInteger(CP->getTargetFlags());
409    break;
410  }
411  case ISD::LOAD: {
412    const LoadSDNode *LD = cast<LoadSDNode>(N);
413    ID.AddInteger(LD->getMemoryVT().getRawBits());
414    ID.AddInteger(LD->getRawSubclassData());
415    break;
416  }
417  case ISD::STORE: {
418    const StoreSDNode *ST = cast<StoreSDNode>(N);
419    ID.AddInteger(ST->getMemoryVT().getRawBits());
420    ID.AddInteger(ST->getRawSubclassData());
421    break;
422  }
423  case ISD::ATOMIC_CMP_SWAP:
424  case ISD::ATOMIC_SWAP:
425  case ISD::ATOMIC_LOAD_ADD:
426  case ISD::ATOMIC_LOAD_SUB:
427  case ISD::ATOMIC_LOAD_AND:
428  case ISD::ATOMIC_LOAD_OR:
429  case ISD::ATOMIC_LOAD_XOR:
430  case ISD::ATOMIC_LOAD_NAND:
431  case ISD::ATOMIC_LOAD_MIN:
432  case ISD::ATOMIC_LOAD_MAX:
433  case ISD::ATOMIC_LOAD_UMIN:
434  case ISD::ATOMIC_LOAD_UMAX: {
435    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
436    ID.AddInteger(AT->getMemoryVT().getRawBits());
437    ID.AddInteger(AT->getRawSubclassData());
438    break;
439  }
440  case ISD::VECTOR_SHUFFLE: {
441    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
442    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
443         i != e; ++i)
444      ID.AddInteger(SVN->getMaskElt(i));
445    break;
446  }
447  case ISD::TargetBlockAddress:
448  case ISD::BlockAddress: {
449    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
450    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
451    break;
452  }
453  } // end switch (N->getOpcode())
454}
455
456/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
457/// data.
458static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
459  AddNodeIDOpcode(ID, N->getOpcode());
460  // Add the return value info.
461  AddNodeIDValueTypes(ID, N->getVTList());
462  // Add the operand info.
463  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
464
465  // Handle SDNode leafs with special info.
466  AddNodeIDCustom(ID, N);
467}
468
469/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
470/// the CSE map that carries volatility, temporalness, indexing mode, and
471/// extension/truncation information.
472///
473static inline unsigned
474encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
475                     bool isNonTemporal) {
476  assert((ConvType & 3) == ConvType &&
477         "ConvType may not require more than 2 bits!");
478  assert((AM & 7) == AM &&
479         "AM may not require more than 3 bits!");
480  return ConvType |
481         (AM << 2) |
482         (isVolatile << 5) |
483         (isNonTemporal << 6);
484}
485
486//===----------------------------------------------------------------------===//
487//                              SelectionDAG Class
488//===----------------------------------------------------------------------===//
489
490/// doNotCSE - Return true if CSE should not be performed for this node.
491static bool doNotCSE(SDNode *N) {
492  if (N->getValueType(0) == MVT::Flag)
493    return true; // Never CSE anything that produces a flag.
494
495  switch (N->getOpcode()) {
496  default: break;
497  case ISD::HANDLENODE:
498  case ISD::EH_LABEL:
499    return true;   // Never CSE these nodes.
500  }
501
502  // Check that remaining values produced are not flags.
503  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
504    if (N->getValueType(i) == MVT::Flag)
505      return true; // Never CSE anything that produces a flag.
506
507  return false;
508}
509
510/// RemoveDeadNodes - This method deletes all unreachable nodes in the
511/// SelectionDAG.
512void SelectionDAG::RemoveDeadNodes() {
513  // Create a dummy node (which is not added to allnodes), that adds a reference
514  // to the root node, preventing it from being deleted.
515  HandleSDNode Dummy(getRoot());
516
517  SmallVector<SDNode*, 128> DeadNodes;
518
519  // Add all obviously-dead nodes to the DeadNodes worklist.
520  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
521    if (I->use_empty())
522      DeadNodes.push_back(I);
523
524  RemoveDeadNodes(DeadNodes);
525
526  // If the root changed (e.g. it was a dead load, update the root).
527  setRoot(Dummy.getValue());
528}
529
530/// RemoveDeadNodes - This method deletes the unreachable nodes in the
531/// given list, and any nodes that become unreachable as a result.
532void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
533                                   DAGUpdateListener *UpdateListener) {
534
535  // Process the worklist, deleting the nodes and adding their uses to the
536  // worklist.
537  while (!DeadNodes.empty()) {
538    SDNode *N = DeadNodes.pop_back_val();
539
540    if (UpdateListener)
541      UpdateListener->NodeDeleted(N, 0);
542
543    // Take the node out of the appropriate CSE map.
544    RemoveNodeFromCSEMaps(N);
545
546    // Next, brutally remove the operand list.  This is safe to do, as there are
547    // no cycles in the graph.
548    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
549      SDUse &Use = *I++;
550      SDNode *Operand = Use.getNode();
551      Use.set(SDValue());
552
553      // Now that we removed this operand, see if there are no uses of it left.
554      if (Operand->use_empty())
555        DeadNodes.push_back(Operand);
556    }
557
558    DeallocateNode(N);
559  }
560}
561
562void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
563  SmallVector<SDNode*, 16> DeadNodes(1, N);
564  RemoveDeadNodes(DeadNodes, UpdateListener);
565}
566
567void SelectionDAG::DeleteNode(SDNode *N) {
568  // First take this out of the appropriate CSE map.
569  RemoveNodeFromCSEMaps(N);
570
571  // Finally, remove uses due to operands of this node, remove from the
572  // AllNodes list, and delete the node.
573  DeleteNodeNotInCSEMaps(N);
574}
575
576void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
577  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
578  assert(N->use_empty() && "Cannot delete a node that is not dead!");
579
580  // Drop all of the operands and decrement used node's use counts.
581  N->DropOperands();
582
583  DeallocateNode(N);
584}
585
586void SelectionDAG::DeallocateNode(SDNode *N) {
587  if (N->OperandsNeedDelete)
588    delete[] N->OperandList;
589
590  // Set the opcode to DELETED_NODE to help catch bugs when node
591  // memory is reallocated.
592  N->NodeType = ISD::DELETED_NODE;
593
594  NodeAllocator.Deallocate(AllNodes.remove(N));
595
596  // Remove the ordering of this node.
597  Ordering->remove(N);
598
599  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
600  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
601  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
602    DbgVals[i]->setIsInvalidated();
603}
604
605/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
606/// correspond to it.  This is useful when we're about to delete or repurpose
607/// the node.  We don't want future request for structurally identical nodes
608/// to return N anymore.
609bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
610  bool Erased = false;
611  switch (N->getOpcode()) {
612  case ISD::EntryToken:
613    llvm_unreachable("EntryToken should not be in CSEMaps!");
614    return false;
615  case ISD::HANDLENODE: return false;  // noop.
616  case ISD::CONDCODE:
617    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
618           "Cond code doesn't exist!");
619    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
620    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
621    break;
622  case ISD::ExternalSymbol:
623    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624    break;
625  case ISD::TargetExternalSymbol: {
626    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
627    Erased = TargetExternalSymbols.erase(
628               std::pair<std::string,unsigned char>(ESN->getSymbol(),
629                                                    ESN->getTargetFlags()));
630    break;
631  }
632  case ISD::VALUETYPE: {
633    EVT VT = cast<VTSDNode>(N)->getVT();
634    if (VT.isExtended()) {
635      Erased = ExtendedValueTypeNodes.erase(VT);
636    } else {
637      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
638      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
639    }
640    break;
641  }
642  default:
643    // Remove it from the CSE Map.
644    Erased = CSEMap.RemoveNode(N);
645    break;
646  }
647#ifndef NDEBUG
648  // Verify that the node was actually in one of the CSE maps, unless it has a
649  // flag result (which cannot be CSE'd) or is one of the special cases that are
650  // not subject to CSE.
651  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
652      !N->isMachineOpcode() && !doNotCSE(N)) {
653    N->dump(this);
654    dbgs() << "\n";
655    llvm_unreachable("Node is not in map!");
656  }
657#endif
658  return Erased;
659}
660
661/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662/// maps and modified in place. Add it back to the CSE maps, unless an identical
663/// node already exists, in which case transfer all its users to the existing
664/// node. This transfer can potentially trigger recursive merging.
665///
666void
667SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668                                       DAGUpdateListener *UpdateListener) {
669  // For node types that aren't CSE'd, just act as if no identical node
670  // already exists.
671  if (!doNotCSE(N)) {
672    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673    if (Existing != N) {
674      // If there was already an existing matching node, use ReplaceAllUsesWith
675      // to replace the dead one with the existing one.  This can cause
676      // recursive merging of other unrelated nodes down the line.
677      ReplaceAllUsesWith(N, Existing, UpdateListener);
678
679      // N is now dead.  Inform the listener if it exists and delete it.
680      if (UpdateListener)
681        UpdateListener->NodeDeleted(N, Existing);
682      DeleteNodeNotInCSEMaps(N);
683      return;
684    }
685  }
686
687  // If the node doesn't already exist, we updated it.  Inform a listener if
688  // it exists.
689  if (UpdateListener)
690    UpdateListener->NodeUpdated(N);
691}
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698                                           void *&InsertPos) {
699  if (doNotCSE(N))
700    return 0;
701
702  SDValue Ops[] = { Op };
703  FoldingSetNodeID ID;
704  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705  AddNodeIDCustom(ID, N);
706  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707  return Node;
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725  return Node;
726}
727
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                           const SDValue *Ops,unsigned NumOps,
735                                           void *&InsertPos) {
736  if (doNotCSE(N))
737    return 0;
738
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741  AddNodeIDCustom(ID, N);
742  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743  return Node;
744}
745
746/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
747void SelectionDAG::VerifyNode(SDNode *N) {
748  switch (N->getOpcode()) {
749  default:
750    break;
751  case ISD::BUILD_PAIR: {
752    EVT VT = N->getValueType(0);
753    assert(N->getNumValues() == 1 && "Too many results!");
754    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
755           "Wrong return type!");
756    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
757    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
758           "Mismatched operand types!");
759    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
760           "Wrong operand type!");
761    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
762           "Wrong return type size");
763    break;
764  }
765  case ISD::BUILD_VECTOR: {
766    assert(N->getNumValues() == 1 && "Too many results!");
767    assert(N->getValueType(0).isVector() && "Wrong return type!");
768    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
769           "Wrong number of operands!");
770    EVT EltVT = N->getValueType(0).getVectorElementType();
771    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
772      assert((I->getValueType() == EltVT ||
773             (EltVT.isInteger() && I->getValueType().isInteger() &&
774              EltVT.bitsLE(I->getValueType()))) &&
775            "Wrong operand type!");
776    break;
777  }
778  }
779}
780
781/// getEVTAlignment - Compute the default alignment value for the
782/// given type.
783///
784unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
785  const Type *Ty = VT == MVT::iPTR ?
786                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
787                   VT.getTypeForEVT(*getContext());
788
789  return TLI.getTargetData()->getABITypeAlignment(Ty);
790}
791
792// EntryNode could meaningfully have debug info if we can find it...
793SelectionDAG::SelectionDAG(const TargetMachine &tm)
794  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
795    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
796    Root(getEntryNode()), Ordering(0) {
797  AllNodes.push_back(&EntryNode);
798  Ordering = new SDNodeOrdering();
799  DbgInfo = new SDDbgInfo();
800}
801
802void SelectionDAG::init(MachineFunction &mf) {
803  MF = &mf;
804  Context = &mf.getFunction()->getContext();
805}
806
807SelectionDAG::~SelectionDAG() {
808  allnodes_clear();
809  delete Ordering;
810  DbgInfo->clear();
811  delete DbgInfo;
812}
813
814void SelectionDAG::allnodes_clear() {
815  assert(&*AllNodes.begin() == &EntryNode);
816  AllNodes.remove(AllNodes.begin());
817  while (!AllNodes.empty())
818    DeallocateNode(AllNodes.begin());
819}
820
821void SelectionDAG::clear() {
822  allnodes_clear();
823  OperandAllocator.Reset();
824  CSEMap.clear();
825
826  ExtendedValueTypeNodes.clear();
827  ExternalSymbols.clear();
828  TargetExternalSymbols.clear();
829  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
830            static_cast<CondCodeSDNode*>(0));
831  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
832            static_cast<SDNode*>(0));
833
834  EntryNode.UseList = 0;
835  AllNodes.push_back(&EntryNode);
836  Root = getEntryNode();
837  delete Ordering;
838  Ordering = new SDNodeOrdering();
839  DbgInfo->clear();
840  delete DbgInfo;
841  DbgInfo = new SDDbgInfo();
842}
843
844SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
845  return VT.bitsGT(Op.getValueType()) ?
846    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
847    getNode(ISD::TRUNCATE, DL, VT, Op);
848}
849
850SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
851  return VT.bitsGT(Op.getValueType()) ?
852    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
853    getNode(ISD::TRUNCATE, DL, VT, Op);
854}
855
856SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
857  assert(!VT.isVector() &&
858         "getZeroExtendInReg should use the vector element type instead of "
859         "the vector type!");
860  if (Op.getValueType() == VT) return Op;
861  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
862  APInt Imm = APInt::getLowBitsSet(BitWidth,
863                                   VT.getSizeInBits());
864  return getNode(ISD::AND, DL, Op.getValueType(), Op,
865                 getConstant(Imm, Op.getValueType()));
866}
867
868/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
869///
870SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
871  EVT EltVT = VT.getScalarType();
872  SDValue NegOne =
873    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
874  return getNode(ISD::XOR, DL, VT, Val, NegOne);
875}
876
877SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
878  EVT EltVT = VT.getScalarType();
879  assert((EltVT.getSizeInBits() >= 64 ||
880         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
881         "getConstant with a uint64_t value that doesn't fit in the type!");
882  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
883}
884
885SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
886  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
887}
888
889SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
890  assert(VT.isInteger() && "Cannot create FP integer constant!");
891
892  EVT EltVT = VT.getScalarType();
893  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
894         "APInt size does not match type size!");
895
896  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
897  FoldingSetNodeID ID;
898  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
899  ID.AddPointer(&Val);
900  void *IP = 0;
901  SDNode *N = NULL;
902  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
903    if (!VT.isVector())
904      return SDValue(N, 0);
905
906  if (!N) {
907    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
908    CSEMap.InsertNode(N, IP);
909    AllNodes.push_back(N);
910  }
911
912  SDValue Result(N, 0);
913  if (VT.isVector()) {
914    SmallVector<SDValue, 8> Ops;
915    Ops.assign(VT.getVectorNumElements(), Result);
916    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
917  }
918  return Result;
919}
920
921SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
922  return getConstant(Val, TLI.getPointerTy(), isTarget);
923}
924
925
926SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
927  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
928}
929
930SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
931  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
932
933  EVT EltVT = VT.getScalarType();
934
935  // Do the map lookup using the actual bit pattern for the floating point
936  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
937  // we don't have issues with SNANs.
938  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
939  FoldingSetNodeID ID;
940  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
941  ID.AddPointer(&V);
942  void *IP = 0;
943  SDNode *N = NULL;
944  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
945    if (!VT.isVector())
946      return SDValue(N, 0);
947
948  if (!N) {
949    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
950    CSEMap.InsertNode(N, IP);
951    AllNodes.push_back(N);
952  }
953
954  SDValue Result(N, 0);
955  if (VT.isVector()) {
956    SmallVector<SDValue, 8> Ops;
957    Ops.assign(VT.getVectorNumElements(), Result);
958    // FIXME DebugLoc info might be appropriate here
959    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
960  }
961  return Result;
962}
963
964SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
965  EVT EltVT = VT.getScalarType();
966  if (EltVT==MVT::f32)
967    return getConstantFP(APFloat((float)Val), VT, isTarget);
968  else if (EltVT==MVT::f64)
969    return getConstantFP(APFloat(Val), VT, isTarget);
970  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
971    bool ignored;
972    APFloat apf = APFloat(Val);
973    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
974                &ignored);
975    return getConstantFP(apf, VT, isTarget);
976  } else {
977    assert(0 && "Unsupported type in getConstantFP");
978    return SDValue();
979  }
980}
981
982SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
983                                       EVT VT, int64_t Offset,
984                                       bool isTargetGA,
985                                       unsigned char TargetFlags) {
986  assert((TargetFlags == 0 || isTargetGA) &&
987         "Cannot set target flags on target-independent globals");
988
989  // Truncate (with sign-extension) the offset value to the pointer size.
990  EVT PTy = TLI.getPointerTy();
991  unsigned BitWidth = PTy.getSizeInBits();
992  if (BitWidth < 64)
993    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
994
995  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
996  if (!GVar) {
997    // If GV is an alias then use the aliasee for determining thread-localness.
998    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
999      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1000  }
1001
1002  unsigned Opc;
1003  if (GVar && GVar->isThreadLocal())
1004    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1005  else
1006    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1007
1008  FoldingSetNodeID ID;
1009  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1010  ID.AddPointer(GV);
1011  ID.AddInteger(Offset);
1012  ID.AddInteger(TargetFlags);
1013  void *IP = 0;
1014  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1015    return SDValue(E, 0);
1016
1017  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1018                                                      Offset, TargetFlags);
1019  CSEMap.InsertNode(N, IP);
1020  AllNodes.push_back(N);
1021  return SDValue(N, 0);
1022}
1023
1024SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1025  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1026  FoldingSetNodeID ID;
1027  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1028  ID.AddInteger(FI);
1029  void *IP = 0;
1030  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1031    return SDValue(E, 0);
1032
1033  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1034  CSEMap.InsertNode(N, IP);
1035  AllNodes.push_back(N);
1036  return SDValue(N, 0);
1037}
1038
1039SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1040                                   unsigned char TargetFlags) {
1041  assert((TargetFlags == 0 || isTarget) &&
1042         "Cannot set target flags on target-independent jump tables");
1043  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1044  FoldingSetNodeID ID;
1045  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1046  ID.AddInteger(JTI);
1047  ID.AddInteger(TargetFlags);
1048  void *IP = 0;
1049  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1050    return SDValue(E, 0);
1051
1052  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1053                                                  TargetFlags);
1054  CSEMap.InsertNode(N, IP);
1055  AllNodes.push_back(N);
1056  return SDValue(N, 0);
1057}
1058
1059SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1060                                      unsigned Alignment, int Offset,
1061                                      bool isTarget,
1062                                      unsigned char TargetFlags) {
1063  assert((TargetFlags == 0 || isTarget) &&
1064         "Cannot set target flags on target-independent globals");
1065  if (Alignment == 0)
1066    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1067  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1068  FoldingSetNodeID ID;
1069  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1070  ID.AddInteger(Alignment);
1071  ID.AddInteger(Offset);
1072  ID.AddPointer(C);
1073  ID.AddInteger(TargetFlags);
1074  void *IP = 0;
1075  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1076    return SDValue(E, 0);
1077
1078  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1079                                                     Alignment, TargetFlags);
1080  CSEMap.InsertNode(N, IP);
1081  AllNodes.push_back(N);
1082  return SDValue(N, 0);
1083}
1084
1085
1086SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1087                                      unsigned Alignment, int Offset,
1088                                      bool isTarget,
1089                                      unsigned char TargetFlags) {
1090  assert((TargetFlags == 0 || isTarget) &&
1091         "Cannot set target flags on target-independent globals");
1092  if (Alignment == 0)
1093    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1094  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1095  FoldingSetNodeID ID;
1096  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1097  ID.AddInteger(Alignment);
1098  ID.AddInteger(Offset);
1099  C->AddSelectionDAGCSEId(ID);
1100  ID.AddInteger(TargetFlags);
1101  void *IP = 0;
1102  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1103    return SDValue(E, 0);
1104
1105  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1106                                                     Alignment, TargetFlags);
1107  CSEMap.InsertNode(N, IP);
1108  AllNodes.push_back(N);
1109  return SDValue(N, 0);
1110}
1111
1112SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1113  FoldingSetNodeID ID;
1114  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1115  ID.AddPointer(MBB);
1116  void *IP = 0;
1117  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1118    return SDValue(E, 0);
1119
1120  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1121  CSEMap.InsertNode(N, IP);
1122  AllNodes.push_back(N);
1123  return SDValue(N, 0);
1124}
1125
1126SDValue SelectionDAG::getValueType(EVT VT) {
1127  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1128      ValueTypeNodes.size())
1129    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1130
1131  SDNode *&N = VT.isExtended() ?
1132    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1133
1134  if (N) return SDValue(N, 0);
1135  N = new (NodeAllocator) VTSDNode(VT);
1136  AllNodes.push_back(N);
1137  return SDValue(N, 0);
1138}
1139
1140SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1141  SDNode *&N = ExternalSymbols[Sym];
1142  if (N) return SDValue(N, 0);
1143  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1144  AllNodes.push_back(N);
1145  return SDValue(N, 0);
1146}
1147
1148SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1149                                              unsigned char TargetFlags) {
1150  SDNode *&N =
1151    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1152                                                               TargetFlags)];
1153  if (N) return SDValue(N, 0);
1154  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1155  AllNodes.push_back(N);
1156  return SDValue(N, 0);
1157}
1158
1159SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1160  if ((unsigned)Cond >= CondCodeNodes.size())
1161    CondCodeNodes.resize(Cond+1);
1162
1163  if (CondCodeNodes[Cond] == 0) {
1164    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1165    CondCodeNodes[Cond] = N;
1166    AllNodes.push_back(N);
1167  }
1168
1169  return SDValue(CondCodeNodes[Cond], 0);
1170}
1171
1172// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1173// the shuffle mask M that point at N1 to point at N2, and indices that point
1174// N2 to point at N1.
1175static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1176  std::swap(N1, N2);
1177  int NElts = M.size();
1178  for (int i = 0; i != NElts; ++i) {
1179    if (M[i] >= NElts)
1180      M[i] -= NElts;
1181    else if (M[i] >= 0)
1182      M[i] += NElts;
1183  }
1184}
1185
1186SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1187                                       SDValue N2, const int *Mask) {
1188  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1189  assert(VT.isVector() && N1.getValueType().isVector() &&
1190         "Vector Shuffle VTs must be a vectors");
1191  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1192         && "Vector Shuffle VTs must have same element type");
1193
1194  // Canonicalize shuffle undef, undef -> undef
1195  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1196    return getUNDEF(VT);
1197
1198  // Validate that all indices in Mask are within the range of the elements
1199  // input to the shuffle.
1200  unsigned NElts = VT.getVectorNumElements();
1201  SmallVector<int, 8> MaskVec;
1202  for (unsigned i = 0; i != NElts; ++i) {
1203    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1204    MaskVec.push_back(Mask[i]);
1205  }
1206
1207  // Canonicalize shuffle v, v -> v, undef
1208  if (N1 == N2) {
1209    N2 = getUNDEF(VT);
1210    for (unsigned i = 0; i != NElts; ++i)
1211      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1212  }
1213
1214  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1215  if (N1.getOpcode() == ISD::UNDEF)
1216    commuteShuffle(N1, N2, MaskVec);
1217
1218  // Canonicalize all index into lhs, -> shuffle lhs, undef
1219  // Canonicalize all index into rhs, -> shuffle rhs, undef
1220  bool AllLHS = true, AllRHS = true;
1221  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1222  for (unsigned i = 0; i != NElts; ++i) {
1223    if (MaskVec[i] >= (int)NElts) {
1224      if (N2Undef)
1225        MaskVec[i] = -1;
1226      else
1227        AllLHS = false;
1228    } else if (MaskVec[i] >= 0) {
1229      AllRHS = false;
1230    }
1231  }
1232  if (AllLHS && AllRHS)
1233    return getUNDEF(VT);
1234  if (AllLHS && !N2Undef)
1235    N2 = getUNDEF(VT);
1236  if (AllRHS) {
1237    N1 = getUNDEF(VT);
1238    commuteShuffle(N1, N2, MaskVec);
1239  }
1240
1241  // If Identity shuffle, or all shuffle in to undef, return that node.
1242  bool AllUndef = true;
1243  bool Identity = true;
1244  for (unsigned i = 0; i != NElts; ++i) {
1245    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1246    if (MaskVec[i] >= 0) AllUndef = false;
1247  }
1248  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1249    return N1;
1250  if (AllUndef)
1251    return getUNDEF(VT);
1252
1253  FoldingSetNodeID ID;
1254  SDValue Ops[2] = { N1, N2 };
1255  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1256  for (unsigned i = 0; i != NElts; ++i)
1257    ID.AddInteger(MaskVec[i]);
1258
1259  void* IP = 0;
1260  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1261    return SDValue(E, 0);
1262
1263  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1264  // SDNode doesn't have access to it.  This memory will be "leaked" when
1265  // the node is deallocated, but recovered when the NodeAllocator is released.
1266  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1267  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1268
1269  ShuffleVectorSDNode *N =
1270    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1271  CSEMap.InsertNode(N, IP);
1272  AllNodes.push_back(N);
1273  return SDValue(N, 0);
1274}
1275
1276SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1277                                       SDValue Val, SDValue DTy,
1278                                       SDValue STy, SDValue Rnd, SDValue Sat,
1279                                       ISD::CvtCode Code) {
1280  // If the src and dest types are the same and the conversion is between
1281  // integer types of the same sign or two floats, no conversion is necessary.
1282  if (DTy == STy &&
1283      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1284    return Val;
1285
1286  FoldingSetNodeID ID;
1287  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1288  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1289  void* IP = 0;
1290  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1291    return SDValue(E, 0);
1292
1293  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1294                                                           Code);
1295  CSEMap.InsertNode(N, IP);
1296  AllNodes.push_back(N);
1297  return SDValue(N, 0);
1298}
1299
1300SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1301  FoldingSetNodeID ID;
1302  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1303  ID.AddInteger(RegNo);
1304  void *IP = 0;
1305  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1306    return SDValue(E, 0);
1307
1308  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1309  CSEMap.InsertNode(N, IP);
1310  AllNodes.push_back(N);
1311  return SDValue(N, 0);
1312}
1313
1314SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1315  FoldingSetNodeID ID;
1316  SDValue Ops[] = { Root };
1317  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1318  ID.AddPointer(Label);
1319  void *IP = 0;
1320  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1321    return SDValue(E, 0);
1322
1323  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1324  CSEMap.InsertNode(N, IP);
1325  AllNodes.push_back(N);
1326  return SDValue(N, 0);
1327}
1328
1329
1330SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1331                                      bool isTarget,
1332                                      unsigned char TargetFlags) {
1333  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1334
1335  FoldingSetNodeID ID;
1336  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1337  ID.AddPointer(BA);
1338  ID.AddInteger(TargetFlags);
1339  void *IP = 0;
1340  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1341    return SDValue(E, 0);
1342
1343  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1344  CSEMap.InsertNode(N, IP);
1345  AllNodes.push_back(N);
1346  return SDValue(N, 0);
1347}
1348
1349SDValue SelectionDAG::getSrcValue(const Value *V) {
1350  assert((!V || V->getType()->isPointerTy()) &&
1351         "SrcValue is not a pointer?");
1352
1353  FoldingSetNodeID ID;
1354  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1355  ID.AddPointer(V);
1356
1357  void *IP = 0;
1358  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1359    return SDValue(E, 0);
1360
1361  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1362  CSEMap.InsertNode(N, IP);
1363  AllNodes.push_back(N);
1364  return SDValue(N, 0);
1365}
1366
1367/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1368SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1369  FoldingSetNodeID ID;
1370  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1371  ID.AddPointer(MD);
1372
1373  void *IP = 0;
1374  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1375    return SDValue(E, 0);
1376
1377  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1378  CSEMap.InsertNode(N, IP);
1379  AllNodes.push_back(N);
1380  return SDValue(N, 0);
1381}
1382
1383
1384/// getShiftAmountOperand - Return the specified value casted to
1385/// the target's desired shift amount type.
1386SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1387  EVT OpTy = Op.getValueType();
1388  MVT ShTy = TLI.getShiftAmountTy();
1389  if (OpTy == ShTy || OpTy.isVector()) return Op;
1390
1391  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1392  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1393}
1394
1395/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1396/// specified value type.
1397SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1398  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1399  unsigned ByteSize = VT.getStoreSize();
1400  const Type *Ty = VT.getTypeForEVT(*getContext());
1401  unsigned StackAlign =
1402  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1403
1404  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1405  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1406}
1407
1408/// CreateStackTemporary - Create a stack temporary suitable for holding
1409/// either of the specified value types.
1410SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1411  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1412                            VT2.getStoreSizeInBits())/8;
1413  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1414  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1415  const TargetData *TD = TLI.getTargetData();
1416  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1417                            TD->getPrefTypeAlignment(Ty2));
1418
1419  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1420  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1421  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1422}
1423
1424SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1425                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1426  // These setcc operations always fold.
1427  switch (Cond) {
1428  default: break;
1429  case ISD::SETFALSE:
1430  case ISD::SETFALSE2: return getConstant(0, VT);
1431  case ISD::SETTRUE:
1432  case ISD::SETTRUE2:  return getConstant(1, VT);
1433
1434  case ISD::SETOEQ:
1435  case ISD::SETOGT:
1436  case ISD::SETOGE:
1437  case ISD::SETOLT:
1438  case ISD::SETOLE:
1439  case ISD::SETONE:
1440  case ISD::SETO:
1441  case ISD::SETUO:
1442  case ISD::SETUEQ:
1443  case ISD::SETUNE:
1444    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1445    break;
1446  }
1447
1448  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1449    const APInt &C2 = N2C->getAPIntValue();
1450    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1451      const APInt &C1 = N1C->getAPIntValue();
1452
1453      switch (Cond) {
1454      default: llvm_unreachable("Unknown integer setcc!");
1455      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1456      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1457      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1458      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1459      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1460      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1461      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1462      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1463      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1464      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1465      }
1466    }
1467  }
1468  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1469    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1470      // No compile time operations on this type yet.
1471      if (N1C->getValueType(0) == MVT::ppcf128)
1472        return SDValue();
1473
1474      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1475      switch (Cond) {
1476      default: break;
1477      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1478                          return getUNDEF(VT);
1479                        // fall through
1480      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1481      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1482                          return getUNDEF(VT);
1483                        // fall through
1484      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1485                                           R==APFloat::cmpLessThan, VT);
1486      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1487                          return getUNDEF(VT);
1488                        // fall through
1489      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1490      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1491                          return getUNDEF(VT);
1492                        // fall through
1493      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1494      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1495                          return getUNDEF(VT);
1496                        // fall through
1497      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1498                                           R==APFloat::cmpEqual, VT);
1499      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1500                          return getUNDEF(VT);
1501                        // fall through
1502      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1503                                           R==APFloat::cmpEqual, VT);
1504      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1505      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1506      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1507                                           R==APFloat::cmpEqual, VT);
1508      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1509      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1510                                           R==APFloat::cmpLessThan, VT);
1511      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1512                                           R==APFloat::cmpUnordered, VT);
1513      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1514      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1515      }
1516    } else {
1517      // Ensure that the constant occurs on the RHS.
1518      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1519    }
1520  }
1521
1522  // Could not fold it.
1523  return SDValue();
1524}
1525
1526/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1527/// use this predicate to simplify operations downstream.
1528bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1529  // This predicate is not safe for vector operations.
1530  if (Op.getValueType().isVector())
1531    return false;
1532
1533  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1534  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1535}
1536
1537/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1538/// this predicate to simplify operations downstream.  Mask is known to be zero
1539/// for bits that V cannot have.
1540bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1541                                     unsigned Depth) const {
1542  APInt KnownZero, KnownOne;
1543  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1544  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1545  return (KnownZero & Mask) == Mask;
1546}
1547
1548/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1549/// known to be either zero or one and return them in the KnownZero/KnownOne
1550/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1551/// processing.
1552void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1553                                     APInt &KnownZero, APInt &KnownOne,
1554                                     unsigned Depth) const {
1555  unsigned BitWidth = Mask.getBitWidth();
1556  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1557         "Mask size mismatches value type size!");
1558
1559  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1560  if (Depth == 6 || Mask == 0)
1561    return;  // Limit search depth.
1562
1563  APInt KnownZero2, KnownOne2;
1564
1565  switch (Op.getOpcode()) {
1566  case ISD::Constant:
1567    // We know all of the bits for a constant!
1568    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1569    KnownZero = ~KnownOne & Mask;
1570    return;
1571  case ISD::AND:
1572    // If either the LHS or the RHS are Zero, the result is zero.
1573    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1574    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1575                      KnownZero2, KnownOne2, Depth+1);
1576    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1577    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1578
1579    // Output known-1 bits are only known if set in both the LHS & RHS.
1580    KnownOne &= KnownOne2;
1581    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1582    KnownZero |= KnownZero2;
1583    return;
1584  case ISD::OR:
1585    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1586    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1587                      KnownZero2, KnownOne2, Depth+1);
1588    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1589    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1590
1591    // Output known-0 bits are only known if clear in both the LHS & RHS.
1592    KnownZero &= KnownZero2;
1593    // Output known-1 are known to be set if set in either the LHS | RHS.
1594    KnownOne |= KnownOne2;
1595    return;
1596  case ISD::XOR: {
1597    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1598    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1599    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1600    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1601
1602    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1603    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1604    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1605    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1606    KnownZero = KnownZeroOut;
1607    return;
1608  }
1609  case ISD::MUL: {
1610    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1611    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1612    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1613    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1614    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1615
1616    // If low bits are zero in either operand, output low known-0 bits.
1617    // Also compute a conserative estimate for high known-0 bits.
1618    // More trickiness is possible, but this is sufficient for the
1619    // interesting case of alignment computation.
1620    KnownOne.clear();
1621    unsigned TrailZ = KnownZero.countTrailingOnes() +
1622                      KnownZero2.countTrailingOnes();
1623    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1624                               KnownZero2.countLeadingOnes(),
1625                               BitWidth) - BitWidth;
1626
1627    TrailZ = std::min(TrailZ, BitWidth);
1628    LeadZ = std::min(LeadZ, BitWidth);
1629    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1630                APInt::getHighBitsSet(BitWidth, LeadZ);
1631    KnownZero &= Mask;
1632    return;
1633  }
1634  case ISD::UDIV: {
1635    // For the purposes of computing leading zeros we can conservatively
1636    // treat a udiv as a logical right shift by the power of 2 known to
1637    // be less than the denominator.
1638    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1639    ComputeMaskedBits(Op.getOperand(0),
1640                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1641    unsigned LeadZ = KnownZero2.countLeadingOnes();
1642
1643    KnownOne2.clear();
1644    KnownZero2.clear();
1645    ComputeMaskedBits(Op.getOperand(1),
1646                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1647    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1648    if (RHSUnknownLeadingOnes != BitWidth)
1649      LeadZ = std::min(BitWidth,
1650                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1651
1652    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1653    return;
1654  }
1655  case ISD::SELECT:
1656    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1657    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1658    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1659    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1660
1661    // Only known if known in both the LHS and RHS.
1662    KnownOne &= KnownOne2;
1663    KnownZero &= KnownZero2;
1664    return;
1665  case ISD::SELECT_CC:
1666    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1667    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1668    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1669    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1670
1671    // Only known if known in both the LHS and RHS.
1672    KnownOne &= KnownOne2;
1673    KnownZero &= KnownZero2;
1674    return;
1675  case ISD::SADDO:
1676  case ISD::UADDO:
1677  case ISD::SSUBO:
1678  case ISD::USUBO:
1679  case ISD::SMULO:
1680  case ISD::UMULO:
1681    if (Op.getResNo() != 1)
1682      return;
1683    // The boolean result conforms to getBooleanContents.  Fall through.
1684  case ISD::SETCC:
1685    // If we know the result of a setcc has the top bits zero, use this info.
1686    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1687        BitWidth > 1)
1688      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1689    return;
1690  case ISD::SHL:
1691    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1692    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1693      unsigned ShAmt = SA->getZExtValue();
1694
1695      // If the shift count is an invalid immediate, don't do anything.
1696      if (ShAmt >= BitWidth)
1697        return;
1698
1699      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1700                        KnownZero, KnownOne, Depth+1);
1701      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1702      KnownZero <<= ShAmt;
1703      KnownOne  <<= ShAmt;
1704      // low bits known zero.
1705      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1706    }
1707    return;
1708  case ISD::SRL:
1709    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1710    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1711      unsigned ShAmt = SA->getZExtValue();
1712
1713      // If the shift count is an invalid immediate, don't do anything.
1714      if (ShAmt >= BitWidth)
1715        return;
1716
1717      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1718                        KnownZero, KnownOne, Depth+1);
1719      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1720      KnownZero = KnownZero.lshr(ShAmt);
1721      KnownOne  = KnownOne.lshr(ShAmt);
1722
1723      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1724      KnownZero |= HighBits;  // High bits known zero.
1725    }
1726    return;
1727  case ISD::SRA:
1728    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1729      unsigned ShAmt = SA->getZExtValue();
1730
1731      // If the shift count is an invalid immediate, don't do anything.
1732      if (ShAmt >= BitWidth)
1733        return;
1734
1735      APInt InDemandedMask = (Mask << ShAmt);
1736      // If any of the demanded bits are produced by the sign extension, we also
1737      // demand the input sign bit.
1738      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1739      if (HighBits.getBoolValue())
1740        InDemandedMask |= APInt::getSignBit(BitWidth);
1741
1742      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1743                        Depth+1);
1744      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1745      KnownZero = KnownZero.lshr(ShAmt);
1746      KnownOne  = KnownOne.lshr(ShAmt);
1747
1748      // Handle the sign bits.
1749      APInt SignBit = APInt::getSignBit(BitWidth);
1750      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1751
1752      if (KnownZero.intersects(SignBit)) {
1753        KnownZero |= HighBits;  // New bits are known zero.
1754      } else if (KnownOne.intersects(SignBit)) {
1755        KnownOne  |= HighBits;  // New bits are known one.
1756      }
1757    }
1758    return;
1759  case ISD::SIGN_EXTEND_INREG: {
1760    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1761    unsigned EBits = EVT.getScalarType().getSizeInBits();
1762
1763    // Sign extension.  Compute the demanded bits in the result that are not
1764    // present in the input.
1765    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1766
1767    APInt InSignBit = APInt::getSignBit(EBits);
1768    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1769
1770    // If the sign extended bits are demanded, we know that the sign
1771    // bit is demanded.
1772    InSignBit.zext(BitWidth);
1773    if (NewBits.getBoolValue())
1774      InputDemandedBits |= InSignBit;
1775
1776    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1777                      KnownZero, KnownOne, Depth+1);
1778    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1779
1780    // If the sign bit of the input is known set or clear, then we know the
1781    // top bits of the result.
1782    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1783      KnownZero |= NewBits;
1784      KnownOne  &= ~NewBits;
1785    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1786      KnownOne  |= NewBits;
1787      KnownZero &= ~NewBits;
1788    } else {                              // Input sign bit unknown
1789      KnownZero &= ~NewBits;
1790      KnownOne  &= ~NewBits;
1791    }
1792    return;
1793  }
1794  case ISD::CTTZ:
1795  case ISD::CTLZ:
1796  case ISD::CTPOP: {
1797    unsigned LowBits = Log2_32(BitWidth)+1;
1798    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1799    KnownOne.clear();
1800    return;
1801  }
1802  case ISD::LOAD: {
1803    if (ISD::isZEXTLoad(Op.getNode())) {
1804      LoadSDNode *LD = cast<LoadSDNode>(Op);
1805      EVT VT = LD->getMemoryVT();
1806      unsigned MemBits = VT.getScalarType().getSizeInBits();
1807      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1808    }
1809    return;
1810  }
1811  case ISD::ZERO_EXTEND: {
1812    EVT InVT = Op.getOperand(0).getValueType();
1813    unsigned InBits = InVT.getScalarType().getSizeInBits();
1814    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1815    APInt InMask    = Mask;
1816    InMask.trunc(InBits);
1817    KnownZero.trunc(InBits);
1818    KnownOne.trunc(InBits);
1819    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1820    KnownZero.zext(BitWidth);
1821    KnownOne.zext(BitWidth);
1822    KnownZero |= NewBits;
1823    return;
1824  }
1825  case ISD::SIGN_EXTEND: {
1826    EVT InVT = Op.getOperand(0).getValueType();
1827    unsigned InBits = InVT.getScalarType().getSizeInBits();
1828    APInt InSignBit = APInt::getSignBit(InBits);
1829    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1830    APInt InMask = Mask;
1831    InMask.trunc(InBits);
1832
1833    // If any of the sign extended bits are demanded, we know that the sign
1834    // bit is demanded. Temporarily set this bit in the mask for our callee.
1835    if (NewBits.getBoolValue())
1836      InMask |= InSignBit;
1837
1838    KnownZero.trunc(InBits);
1839    KnownOne.trunc(InBits);
1840    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1841
1842    // Note if the sign bit is known to be zero or one.
1843    bool SignBitKnownZero = KnownZero.isNegative();
1844    bool SignBitKnownOne  = KnownOne.isNegative();
1845    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1846           "Sign bit can't be known to be both zero and one!");
1847
1848    // If the sign bit wasn't actually demanded by our caller, we don't
1849    // want it set in the KnownZero and KnownOne result values. Reset the
1850    // mask and reapply it to the result values.
1851    InMask = Mask;
1852    InMask.trunc(InBits);
1853    KnownZero &= InMask;
1854    KnownOne  &= InMask;
1855
1856    KnownZero.zext(BitWidth);
1857    KnownOne.zext(BitWidth);
1858
1859    // If the sign bit is known zero or one, the top bits match.
1860    if (SignBitKnownZero)
1861      KnownZero |= NewBits;
1862    else if (SignBitKnownOne)
1863      KnownOne  |= NewBits;
1864    return;
1865  }
1866  case ISD::ANY_EXTEND: {
1867    EVT InVT = Op.getOperand(0).getValueType();
1868    unsigned InBits = InVT.getScalarType().getSizeInBits();
1869    APInt InMask = Mask;
1870    InMask.trunc(InBits);
1871    KnownZero.trunc(InBits);
1872    KnownOne.trunc(InBits);
1873    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1874    KnownZero.zext(BitWidth);
1875    KnownOne.zext(BitWidth);
1876    return;
1877  }
1878  case ISD::TRUNCATE: {
1879    EVT InVT = Op.getOperand(0).getValueType();
1880    unsigned InBits = InVT.getScalarType().getSizeInBits();
1881    APInt InMask = Mask;
1882    InMask.zext(InBits);
1883    KnownZero.zext(InBits);
1884    KnownOne.zext(InBits);
1885    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1886    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1887    KnownZero.trunc(BitWidth);
1888    KnownOne.trunc(BitWidth);
1889    break;
1890  }
1891  case ISD::AssertZext: {
1892    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1893    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1894    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1895                      KnownOne, Depth+1);
1896    KnownZero |= (~InMask) & Mask;
1897    return;
1898  }
1899  case ISD::FGETSIGN:
1900    // All bits are zero except the low bit.
1901    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1902    return;
1903
1904  case ISD::SUB: {
1905    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1906      // We know that the top bits of C-X are clear if X contains less bits
1907      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1908      // positive if we can prove that X is >= 0 and < 16.
1909      if (CLHS->getAPIntValue().isNonNegative()) {
1910        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1911        // NLZ can't be BitWidth with no sign bit
1912        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1913        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1914                          Depth+1);
1915
1916        // If all of the MaskV bits are known to be zero, then we know the
1917        // output top bits are zero, because we now know that the output is
1918        // from [0-C].
1919        if ((KnownZero2 & MaskV) == MaskV) {
1920          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1921          // Top bits known zero.
1922          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1923        }
1924      }
1925    }
1926  }
1927  // fall through
1928  case ISD::ADD: {
1929    // Output known-0 bits are known if clear or set in both the low clear bits
1930    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1931    // low 3 bits clear.
1932    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1933                                       BitWidth - Mask.countLeadingZeros());
1934    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1935    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1936    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1937
1938    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1939    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1940    KnownZeroOut = std::min(KnownZeroOut,
1941                            KnownZero2.countTrailingOnes());
1942
1943    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1944    return;
1945  }
1946  case ISD::SREM:
1947    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1948      const APInt &RA = Rem->getAPIntValue().abs();
1949      if (RA.isPowerOf2()) {
1950        APInt LowBits = RA - 1;
1951        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1952        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1953
1954        // The low bits of the first operand are unchanged by the srem.
1955        KnownZero = KnownZero2 & LowBits;
1956        KnownOne = KnownOne2 & LowBits;
1957
1958        // If the first operand is non-negative or has all low bits zero, then
1959        // the upper bits are all zero.
1960        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1961          KnownZero |= ~LowBits;
1962
1963        // If the first operand is negative and not all low bits are zero, then
1964        // the upper bits are all one.
1965        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1966          KnownOne |= ~LowBits;
1967
1968        KnownZero &= Mask;
1969        KnownOne &= Mask;
1970
1971        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1972      }
1973    }
1974    return;
1975  case ISD::UREM: {
1976    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1977      const APInt &RA = Rem->getAPIntValue();
1978      if (RA.isPowerOf2()) {
1979        APInt LowBits = (RA - 1);
1980        APInt Mask2 = LowBits & Mask;
1981        KnownZero |= ~LowBits & Mask;
1982        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1983        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1984        break;
1985      }
1986    }
1987
1988    // Since the result is less than or equal to either operand, any leading
1989    // zero bits in either operand must also exist in the result.
1990    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1991    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1992                      Depth+1);
1993    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1994                      Depth+1);
1995
1996    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1997                                KnownZero2.countLeadingOnes());
1998    KnownOne.clear();
1999    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2000    return;
2001  }
2002  default:
2003    // Allow the target to implement this method for its nodes.
2004    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2005  case ISD::INTRINSIC_WO_CHAIN:
2006  case ISD::INTRINSIC_W_CHAIN:
2007  case ISD::INTRINSIC_VOID:
2008      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2009                                         Depth);
2010    }
2011    return;
2012  }
2013}
2014
2015/// ComputeNumSignBits - Return the number of times the sign bit of the
2016/// register is replicated into the other bits.  We know that at least 1 bit
2017/// is always equal to the sign bit (itself), but other cases can give us
2018/// information.  For example, immediately after an "SRA X, 2", we know that
2019/// the top 3 bits are all equal to each other, so we return 3.
2020unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2021  EVT VT = Op.getValueType();
2022  assert(VT.isInteger() && "Invalid VT!");
2023  unsigned VTBits = VT.getScalarType().getSizeInBits();
2024  unsigned Tmp, Tmp2;
2025  unsigned FirstAnswer = 1;
2026
2027  if (Depth == 6)
2028    return 1;  // Limit search depth.
2029
2030  switch (Op.getOpcode()) {
2031  default: break;
2032  case ISD::AssertSext:
2033    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2034    return VTBits-Tmp+1;
2035  case ISD::AssertZext:
2036    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2037    return VTBits-Tmp;
2038
2039  case ISD::Constant: {
2040    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2041    // If negative, return # leading ones.
2042    if (Val.isNegative())
2043      return Val.countLeadingOnes();
2044
2045    // Return # leading zeros.
2046    return Val.countLeadingZeros();
2047  }
2048
2049  case ISD::SIGN_EXTEND:
2050    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2051    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2052
2053  case ISD::SIGN_EXTEND_INREG:
2054    // Max of the input and what this extends.
2055    Tmp =
2056      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2057    Tmp = VTBits-Tmp+1;
2058
2059    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2060    return std::max(Tmp, Tmp2);
2061
2062  case ISD::SRA:
2063    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2064    // SRA X, C   -> adds C sign bits.
2065    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2066      Tmp += C->getZExtValue();
2067      if (Tmp > VTBits) Tmp = VTBits;
2068    }
2069    return Tmp;
2070  case ISD::SHL:
2071    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2072      // shl destroys sign bits.
2073      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2074      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2075          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2076      return Tmp - C->getZExtValue();
2077    }
2078    break;
2079  case ISD::AND:
2080  case ISD::OR:
2081  case ISD::XOR:    // NOT is handled here.
2082    // Logical binary ops preserve the number of sign bits at the worst.
2083    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2084    if (Tmp != 1) {
2085      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2086      FirstAnswer = std::min(Tmp, Tmp2);
2087      // We computed what we know about the sign bits as our first
2088      // answer. Now proceed to the generic code that uses
2089      // ComputeMaskedBits, and pick whichever answer is better.
2090    }
2091    break;
2092
2093  case ISD::SELECT:
2094    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2095    if (Tmp == 1) return 1;  // Early out.
2096    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2097    return std::min(Tmp, Tmp2);
2098
2099  case ISD::SADDO:
2100  case ISD::UADDO:
2101  case ISD::SSUBO:
2102  case ISD::USUBO:
2103  case ISD::SMULO:
2104  case ISD::UMULO:
2105    if (Op.getResNo() != 1)
2106      break;
2107    // The boolean result conforms to getBooleanContents.  Fall through.
2108  case ISD::SETCC:
2109    // If setcc returns 0/-1, all bits are sign bits.
2110    if (TLI.getBooleanContents() ==
2111        TargetLowering::ZeroOrNegativeOneBooleanContent)
2112      return VTBits;
2113    break;
2114  case ISD::ROTL:
2115  case ISD::ROTR:
2116    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2117      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2118
2119      // Handle rotate right by N like a rotate left by 32-N.
2120      if (Op.getOpcode() == ISD::ROTR)
2121        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2122
2123      // If we aren't rotating out all of the known-in sign bits, return the
2124      // number that are left.  This handles rotl(sext(x), 1) for example.
2125      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2126      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2127    }
2128    break;
2129  case ISD::ADD:
2130    // Add can have at most one carry bit.  Thus we know that the output
2131    // is, at worst, one more bit than the inputs.
2132    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2133    if (Tmp == 1) return 1;  // Early out.
2134
2135    // Special case decrementing a value (ADD X, -1):
2136    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2137      if (CRHS->isAllOnesValue()) {
2138        APInt KnownZero, KnownOne;
2139        APInt Mask = APInt::getAllOnesValue(VTBits);
2140        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2141
2142        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2143        // sign bits set.
2144        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2145          return VTBits;
2146
2147        // If we are subtracting one from a positive number, there is no carry
2148        // out of the result.
2149        if (KnownZero.isNegative())
2150          return Tmp;
2151      }
2152
2153    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2154    if (Tmp2 == 1) return 1;
2155      return std::min(Tmp, Tmp2)-1;
2156    break;
2157
2158  case ISD::SUB:
2159    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2160    if (Tmp2 == 1) return 1;
2161
2162    // Handle NEG.
2163    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2164      if (CLHS->isNullValue()) {
2165        APInt KnownZero, KnownOne;
2166        APInt Mask = APInt::getAllOnesValue(VTBits);
2167        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2168        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2169        // sign bits set.
2170        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2171          return VTBits;
2172
2173        // If the input is known to be positive (the sign bit is known clear),
2174        // the output of the NEG has the same number of sign bits as the input.
2175        if (KnownZero.isNegative())
2176          return Tmp2;
2177
2178        // Otherwise, we treat this like a SUB.
2179      }
2180
2181    // Sub can have at most one carry bit.  Thus we know that the output
2182    // is, at worst, one more bit than the inputs.
2183    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2184    if (Tmp == 1) return 1;  // Early out.
2185      return std::min(Tmp, Tmp2)-1;
2186    break;
2187  case ISD::TRUNCATE:
2188    // FIXME: it's tricky to do anything useful for this, but it is an important
2189    // case for targets like X86.
2190    break;
2191  }
2192
2193  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2194  if (Op.getOpcode() == ISD::LOAD) {
2195    LoadSDNode *LD = cast<LoadSDNode>(Op);
2196    unsigned ExtType = LD->getExtensionType();
2197    switch (ExtType) {
2198    default: break;
2199    case ISD::SEXTLOAD:    // '17' bits known
2200      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2201      return VTBits-Tmp+1;
2202    case ISD::ZEXTLOAD:    // '16' bits known
2203      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2204      return VTBits-Tmp;
2205    }
2206  }
2207
2208  // Allow the target to implement this method for its nodes.
2209  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2210      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2211      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2212      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2213    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2214    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2215  }
2216
2217  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2218  // use this information.
2219  APInt KnownZero, KnownOne;
2220  APInt Mask = APInt::getAllOnesValue(VTBits);
2221  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2222
2223  if (KnownZero.isNegative()) {        // sign bit is 0
2224    Mask = KnownZero;
2225  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2226    Mask = KnownOne;
2227  } else {
2228    // Nothing known.
2229    return FirstAnswer;
2230  }
2231
2232  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2233  // the number of identical bits in the top of the input value.
2234  Mask = ~Mask;
2235  Mask <<= Mask.getBitWidth()-VTBits;
2236  // Return # leading zeros.  We use 'min' here in case Val was zero before
2237  // shifting.  We don't want to return '64' as for an i32 "0".
2238  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2239}
2240
2241bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2242  // If we're told that NaNs won't happen, assume they won't.
2243  if (FiniteOnlyFPMath())
2244    return true;
2245
2246  // If the value is a constant, we can obviously see if it is a NaN or not.
2247  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2248    return !C->getValueAPF().isNaN();
2249
2250  // TODO: Recognize more cases here.
2251
2252  return false;
2253}
2254
2255bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2256  // If the value is a constant, we can obviously see if it is a zero or not.
2257  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2258    return !C->isZero();
2259
2260  // TODO: Recognize more cases here.
2261
2262  return false;
2263}
2264
2265bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2266  // Check the obvious case.
2267  if (A == B) return true;
2268
2269  // For for negative and positive zero.
2270  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2271    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2272      if (CA->isZero() && CB->isZero()) return true;
2273
2274  // Otherwise they may not be equal.
2275  return false;
2276}
2277
2278bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2279  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2280  if (!GA) return false;
2281  if (GA->getOffset() != 0) return false;
2282  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2283  if (!GV) return false;
2284  return MF->getMMI().hasDebugInfo();
2285}
2286
2287
2288/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2289/// element of the result of the vector shuffle.
2290SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2291                                          unsigned i) {
2292  EVT VT = N->getValueType(0);
2293  DebugLoc dl = N->getDebugLoc();
2294  if (N->getMaskElt(i) < 0)
2295    return getUNDEF(VT.getVectorElementType());
2296  unsigned Index = N->getMaskElt(i);
2297  unsigned NumElems = VT.getVectorNumElements();
2298  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2299  Index %= NumElems;
2300
2301  if (V.getOpcode() == ISD::BIT_CONVERT) {
2302    V = V.getOperand(0);
2303    EVT VVT = V.getValueType();
2304    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2305      return SDValue();
2306  }
2307  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2308    return (Index == 0) ? V.getOperand(0)
2309                      : getUNDEF(VT.getVectorElementType());
2310  if (V.getOpcode() == ISD::BUILD_VECTOR)
2311    return V.getOperand(Index);
2312  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2313    return getShuffleScalarElt(SVN, Index);
2314  return SDValue();
2315}
2316
2317
2318/// getNode - Gets or creates the specified node.
2319///
2320SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2321  FoldingSetNodeID ID;
2322  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2323  void *IP = 0;
2324  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2325    return SDValue(E, 0);
2326
2327  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2328  CSEMap.InsertNode(N, IP);
2329
2330  AllNodes.push_back(N);
2331#ifndef NDEBUG
2332  VerifyNode(N);
2333#endif
2334  return SDValue(N, 0);
2335}
2336
2337SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2338                              EVT VT, SDValue Operand) {
2339  // Constant fold unary operations with an integer constant operand.
2340  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2341    const APInt &Val = C->getAPIntValue();
2342    switch (Opcode) {
2343    default: break;
2344    case ISD::SIGN_EXTEND:
2345      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2346    case ISD::ANY_EXTEND:
2347    case ISD::ZERO_EXTEND:
2348    case ISD::TRUNCATE:
2349      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2350    case ISD::UINT_TO_FP:
2351    case ISD::SINT_TO_FP: {
2352      const uint64_t zero[] = {0, 0};
2353      // No compile time operations on ppcf128.
2354      if (VT == MVT::ppcf128) break;
2355      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2356      (void)apf.convertFromAPInt(Val,
2357                                 Opcode==ISD::SINT_TO_FP,
2358                                 APFloat::rmNearestTiesToEven);
2359      return getConstantFP(apf, VT);
2360    }
2361    case ISD::BIT_CONVERT:
2362      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2363        return getConstantFP(Val.bitsToFloat(), VT);
2364      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2365        return getConstantFP(Val.bitsToDouble(), VT);
2366      break;
2367    case ISD::BSWAP:
2368      return getConstant(Val.byteSwap(), VT);
2369    case ISD::CTPOP:
2370      return getConstant(Val.countPopulation(), VT);
2371    case ISD::CTLZ:
2372      return getConstant(Val.countLeadingZeros(), VT);
2373    case ISD::CTTZ:
2374      return getConstant(Val.countTrailingZeros(), VT);
2375    }
2376  }
2377
2378  // Constant fold unary operations with a floating point constant operand.
2379  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2380    APFloat V = C->getValueAPF();    // make copy
2381    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2382      switch (Opcode) {
2383      case ISD::FNEG:
2384        V.changeSign();
2385        return getConstantFP(V, VT);
2386      case ISD::FABS:
2387        V.clearSign();
2388        return getConstantFP(V, VT);
2389      case ISD::FP_ROUND:
2390      case ISD::FP_EXTEND: {
2391        bool ignored;
2392        // This can return overflow, underflow, or inexact; we don't care.
2393        // FIXME need to be more flexible about rounding mode.
2394        (void)V.convert(*EVTToAPFloatSemantics(VT),
2395                        APFloat::rmNearestTiesToEven, &ignored);
2396        return getConstantFP(V, VT);
2397      }
2398      case ISD::FP_TO_SINT:
2399      case ISD::FP_TO_UINT: {
2400        integerPart x[2];
2401        bool ignored;
2402        assert(integerPartWidth >= 64);
2403        // FIXME need to be more flexible about rounding mode.
2404        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2405                              Opcode==ISD::FP_TO_SINT,
2406                              APFloat::rmTowardZero, &ignored);
2407        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2408          break;
2409        APInt api(VT.getSizeInBits(), 2, x);
2410        return getConstant(api, VT);
2411      }
2412      case ISD::BIT_CONVERT:
2413        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2414          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2415        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2416          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2417        break;
2418      }
2419    }
2420  }
2421
2422  unsigned OpOpcode = Operand.getNode()->getOpcode();
2423  switch (Opcode) {
2424  case ISD::TokenFactor:
2425  case ISD::MERGE_VALUES:
2426  case ISD::CONCAT_VECTORS:
2427    return Operand;         // Factor, merge or concat of one node?  No need.
2428  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2429  case ISD::FP_EXTEND:
2430    assert(VT.isFloatingPoint() &&
2431           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2432    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2433    assert((!VT.isVector() ||
2434            VT.getVectorNumElements() ==
2435            Operand.getValueType().getVectorNumElements()) &&
2436           "Vector element count mismatch!");
2437    if (Operand.getOpcode() == ISD::UNDEF)
2438      return getUNDEF(VT);
2439    break;
2440  case ISD::SIGN_EXTEND:
2441    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2442           "Invalid SIGN_EXTEND!");
2443    if (Operand.getValueType() == VT) return Operand;   // noop extension
2444    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2445           "Invalid sext node, dst < src!");
2446    assert((!VT.isVector() ||
2447            VT.getVectorNumElements() ==
2448            Operand.getValueType().getVectorNumElements()) &&
2449           "Vector element count mismatch!");
2450    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2451      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2452    break;
2453  case ISD::ZERO_EXTEND:
2454    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2455           "Invalid ZERO_EXTEND!");
2456    if (Operand.getValueType() == VT) return Operand;   // noop extension
2457    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2458           "Invalid zext node, dst < src!");
2459    assert((!VT.isVector() ||
2460            VT.getVectorNumElements() ==
2461            Operand.getValueType().getVectorNumElements()) &&
2462           "Vector element count mismatch!");
2463    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2464      return getNode(ISD::ZERO_EXTEND, DL, VT,
2465                     Operand.getNode()->getOperand(0));
2466    break;
2467  case ISD::ANY_EXTEND:
2468    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2469           "Invalid ANY_EXTEND!");
2470    if (Operand.getValueType() == VT) return Operand;   // noop extension
2471    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2472           "Invalid anyext node, dst < src!");
2473    assert((!VT.isVector() ||
2474            VT.getVectorNumElements() ==
2475            Operand.getValueType().getVectorNumElements()) &&
2476           "Vector element count mismatch!");
2477
2478    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2479        OpOpcode == ISD::ANY_EXTEND)
2480      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2481      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2482
2483    // (ext (trunx x)) -> x
2484    if (OpOpcode == ISD::TRUNCATE) {
2485      SDValue OpOp = Operand.getNode()->getOperand(0);
2486      if (OpOp.getValueType() == VT)
2487        return OpOp;
2488    }
2489    break;
2490  case ISD::TRUNCATE:
2491    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2492           "Invalid TRUNCATE!");
2493    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2494    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2495           "Invalid truncate node, src < dst!");
2496    assert((!VT.isVector() ||
2497            VT.getVectorNumElements() ==
2498            Operand.getValueType().getVectorNumElements()) &&
2499           "Vector element count mismatch!");
2500    if (OpOpcode == ISD::TRUNCATE)
2501      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2502    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2503             OpOpcode == ISD::ANY_EXTEND) {
2504      // If the source is smaller than the dest, we still need an extend.
2505      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2506            .bitsLT(VT.getScalarType()))
2507        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2508      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2509        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2510      else
2511        return Operand.getNode()->getOperand(0);
2512    }
2513    break;
2514  case ISD::BIT_CONVERT:
2515    // Basic sanity checking.
2516    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2517           && "Cannot BIT_CONVERT between types of different sizes!");
2518    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2519    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2520      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2521    if (OpOpcode == ISD::UNDEF)
2522      return getUNDEF(VT);
2523    break;
2524  case ISD::SCALAR_TO_VECTOR:
2525    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2526           (VT.getVectorElementType() == Operand.getValueType() ||
2527            (VT.getVectorElementType().isInteger() &&
2528             Operand.getValueType().isInteger() &&
2529             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2530           "Illegal SCALAR_TO_VECTOR node!");
2531    if (OpOpcode == ISD::UNDEF)
2532      return getUNDEF(VT);
2533    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2534    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2535        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2536        Operand.getConstantOperandVal(1) == 0 &&
2537        Operand.getOperand(0).getValueType() == VT)
2538      return Operand.getOperand(0);
2539    break;
2540  case ISD::FNEG:
2541    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2542    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2543      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2544                     Operand.getNode()->getOperand(0));
2545    if (OpOpcode == ISD::FNEG)  // --X -> X
2546      return Operand.getNode()->getOperand(0);
2547    break;
2548  case ISD::FABS:
2549    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2550      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2551    break;
2552  }
2553
2554  SDNode *N;
2555  SDVTList VTs = getVTList(VT);
2556  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2557    FoldingSetNodeID ID;
2558    SDValue Ops[1] = { Operand };
2559    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2560    void *IP = 0;
2561    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2562      return SDValue(E, 0);
2563
2564    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2565    CSEMap.InsertNode(N, IP);
2566  } else {
2567    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2568  }
2569
2570  AllNodes.push_back(N);
2571#ifndef NDEBUG
2572  VerifyNode(N);
2573#endif
2574  return SDValue(N, 0);
2575}
2576
2577SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2578                                             EVT VT,
2579                                             ConstantSDNode *Cst1,
2580                                             ConstantSDNode *Cst2) {
2581  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2582
2583  switch (Opcode) {
2584  case ISD::ADD:  return getConstant(C1 + C2, VT);
2585  case ISD::SUB:  return getConstant(C1 - C2, VT);
2586  case ISD::MUL:  return getConstant(C1 * C2, VT);
2587  case ISD::UDIV:
2588    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2589    break;
2590  case ISD::UREM:
2591    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2592    break;
2593  case ISD::SDIV:
2594    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2595    break;
2596  case ISD::SREM:
2597    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2598    break;
2599  case ISD::AND:  return getConstant(C1 & C2, VT);
2600  case ISD::OR:   return getConstant(C1 | C2, VT);
2601  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2602  case ISD::SHL:  return getConstant(C1 << C2, VT);
2603  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2604  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2605  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2606  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2607  default: break;
2608  }
2609
2610  return SDValue();
2611}
2612
2613SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2614                              SDValue N1, SDValue N2) {
2615  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2616  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2617  switch (Opcode) {
2618  default: break;
2619  case ISD::TokenFactor:
2620    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2621           N2.getValueType() == MVT::Other && "Invalid token factor!");
2622    // Fold trivial token factors.
2623    if (N1.getOpcode() == ISD::EntryToken) return N2;
2624    if (N2.getOpcode() == ISD::EntryToken) return N1;
2625    if (N1 == N2) return N1;
2626    break;
2627  case ISD::CONCAT_VECTORS:
2628    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2629    // one big BUILD_VECTOR.
2630    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2631        N2.getOpcode() == ISD::BUILD_VECTOR) {
2632      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2633      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2634      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2635    }
2636    break;
2637  case ISD::AND:
2638    assert(VT.isInteger() && "This operator does not apply to FP types!");
2639    assert(N1.getValueType() == N2.getValueType() &&
2640           N1.getValueType() == VT && "Binary operator types must match!");
2641    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2642    // worth handling here.
2643    if (N2C && N2C->isNullValue())
2644      return N2;
2645    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2646      return N1;
2647    break;
2648  case ISD::OR:
2649  case ISD::XOR:
2650  case ISD::ADD:
2651  case ISD::SUB:
2652    assert(VT.isInteger() && "This operator does not apply to FP types!");
2653    assert(N1.getValueType() == N2.getValueType() &&
2654           N1.getValueType() == VT && "Binary operator types must match!");
2655    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2656    // it's worth handling here.
2657    if (N2C && N2C->isNullValue())
2658      return N1;
2659    break;
2660  case ISD::UDIV:
2661  case ISD::UREM:
2662  case ISD::MULHU:
2663  case ISD::MULHS:
2664  case ISD::MUL:
2665  case ISD::SDIV:
2666  case ISD::SREM:
2667    assert(VT.isInteger() && "This operator does not apply to FP types!");
2668    assert(N1.getValueType() == N2.getValueType() &&
2669           N1.getValueType() == VT && "Binary operator types must match!");
2670    break;
2671  case ISD::FADD:
2672  case ISD::FSUB:
2673  case ISD::FMUL:
2674  case ISD::FDIV:
2675  case ISD::FREM:
2676    if (UnsafeFPMath) {
2677      if (Opcode == ISD::FADD) {
2678        // 0+x --> x
2679        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2680          if (CFP->getValueAPF().isZero())
2681            return N2;
2682        // x+0 --> x
2683        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2684          if (CFP->getValueAPF().isZero())
2685            return N1;
2686      } else if (Opcode == ISD::FSUB) {
2687        // x-0 --> x
2688        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2689          if (CFP->getValueAPF().isZero())
2690            return N1;
2691      }
2692    }
2693    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2694    assert(N1.getValueType() == N2.getValueType() &&
2695           N1.getValueType() == VT && "Binary operator types must match!");
2696    break;
2697  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2698    assert(N1.getValueType() == VT &&
2699           N1.getValueType().isFloatingPoint() &&
2700           N2.getValueType().isFloatingPoint() &&
2701           "Invalid FCOPYSIGN!");
2702    break;
2703  case ISD::SHL:
2704  case ISD::SRA:
2705  case ISD::SRL:
2706  case ISD::ROTL:
2707  case ISD::ROTR:
2708    assert(VT == N1.getValueType() &&
2709           "Shift operators return type must be the same as their first arg");
2710    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2711           "Shifts only work on integers");
2712
2713    // Always fold shifts of i1 values so the code generator doesn't need to
2714    // handle them.  Since we know the size of the shift has to be less than the
2715    // size of the value, the shift/rotate count is guaranteed to be zero.
2716    if (VT == MVT::i1)
2717      return N1;
2718    if (N2C && N2C->isNullValue())
2719      return N1;
2720    break;
2721  case ISD::FP_ROUND_INREG: {
2722    EVT EVT = cast<VTSDNode>(N2)->getVT();
2723    assert(VT == N1.getValueType() && "Not an inreg round!");
2724    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2725           "Cannot FP_ROUND_INREG integer types");
2726    assert(EVT.isVector() == VT.isVector() &&
2727           "FP_ROUND_INREG type should be vector iff the operand "
2728           "type is vector!");
2729    assert((!EVT.isVector() ||
2730            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2731           "Vector element counts must match in FP_ROUND_INREG");
2732    assert(EVT.bitsLE(VT) && "Not rounding down!");
2733    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2734    break;
2735  }
2736  case ISD::FP_ROUND:
2737    assert(VT.isFloatingPoint() &&
2738           N1.getValueType().isFloatingPoint() &&
2739           VT.bitsLE(N1.getValueType()) &&
2740           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2741    if (N1.getValueType() == VT) return N1;  // noop conversion.
2742    break;
2743  case ISD::AssertSext:
2744  case ISD::AssertZext: {
2745    EVT EVT = cast<VTSDNode>(N2)->getVT();
2746    assert(VT == N1.getValueType() && "Not an inreg extend!");
2747    assert(VT.isInteger() && EVT.isInteger() &&
2748           "Cannot *_EXTEND_INREG FP types");
2749    assert(!EVT.isVector() &&
2750           "AssertSExt/AssertZExt type should be the vector element type "
2751           "rather than the vector type!");
2752    assert(EVT.bitsLE(VT) && "Not extending!");
2753    if (VT == EVT) return N1; // noop assertion.
2754    break;
2755  }
2756  case ISD::SIGN_EXTEND_INREG: {
2757    EVT EVT = cast<VTSDNode>(N2)->getVT();
2758    assert(VT == N1.getValueType() && "Not an inreg extend!");
2759    assert(VT.isInteger() && EVT.isInteger() &&
2760           "Cannot *_EXTEND_INREG FP types");
2761    assert(EVT.isVector() == VT.isVector() &&
2762           "SIGN_EXTEND_INREG type should be vector iff the operand "
2763           "type is vector!");
2764    assert((!EVT.isVector() ||
2765            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2766           "Vector element counts must match in SIGN_EXTEND_INREG");
2767    assert(EVT.bitsLE(VT) && "Not extending!");
2768    if (EVT == VT) return N1;  // Not actually extending
2769
2770    if (N1C) {
2771      APInt Val = N1C->getAPIntValue();
2772      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2773      Val <<= Val.getBitWidth()-FromBits;
2774      Val = Val.ashr(Val.getBitWidth()-FromBits);
2775      return getConstant(Val, VT);
2776    }
2777    break;
2778  }
2779  case ISD::EXTRACT_VECTOR_ELT:
2780    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2781    if (N1.getOpcode() == ISD::UNDEF)
2782      return getUNDEF(VT);
2783
2784    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2785    // expanding copies of large vectors from registers.
2786    if (N2C &&
2787        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2788        N1.getNumOperands() > 0) {
2789      unsigned Factor =
2790        N1.getOperand(0).getValueType().getVectorNumElements();
2791      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2792                     N1.getOperand(N2C->getZExtValue() / Factor),
2793                     getConstant(N2C->getZExtValue() % Factor,
2794                                 N2.getValueType()));
2795    }
2796
2797    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2798    // expanding large vector constants.
2799    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2800      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2801      EVT VEltTy = N1.getValueType().getVectorElementType();
2802      if (Elt.getValueType() != VEltTy) {
2803        // If the vector element type is not legal, the BUILD_VECTOR operands
2804        // are promoted and implicitly truncated.  Make that explicit here.
2805        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2806      }
2807      if (VT != VEltTy) {
2808        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2809        // result is implicitly extended.
2810        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2811      }
2812      return Elt;
2813    }
2814
2815    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2816    // operations are lowered to scalars.
2817    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2818      // If the indices are the same, return the inserted element else
2819      // if the indices are known different, extract the element from
2820      // the original vector.
2821      SDValue N1Op2 = N1.getOperand(2);
2822      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2823
2824      if (N1Op2C && N2C) {
2825        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2826          if (VT == N1.getOperand(1).getValueType())
2827            return N1.getOperand(1);
2828          else
2829            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2830        }
2831
2832        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2833      }
2834    }
2835    break;
2836  case ISD::EXTRACT_ELEMENT:
2837    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2838    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2839           (N1.getValueType().isInteger() == VT.isInteger()) &&
2840           "Wrong types for EXTRACT_ELEMENT!");
2841
2842    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2843    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2844    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2845    if (N1.getOpcode() == ISD::BUILD_PAIR)
2846      return N1.getOperand(N2C->getZExtValue());
2847
2848    // EXTRACT_ELEMENT of a constant int is also very common.
2849    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2850      unsigned ElementSize = VT.getSizeInBits();
2851      unsigned Shift = ElementSize * N2C->getZExtValue();
2852      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2853      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2854    }
2855    break;
2856  case ISD::EXTRACT_SUBVECTOR:
2857    if (N1.getValueType() == VT) // Trivial extraction.
2858      return N1;
2859    break;
2860  }
2861
2862  if (N1C) {
2863    if (N2C) {
2864      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2865      if (SV.getNode()) return SV;
2866    } else {      // Cannonicalize constant to RHS if commutative
2867      if (isCommutativeBinOp(Opcode)) {
2868        std::swap(N1C, N2C);
2869        std::swap(N1, N2);
2870      }
2871    }
2872  }
2873
2874  // Constant fold FP operations.
2875  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2876  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2877  if (N1CFP) {
2878    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2879      // Cannonicalize constant to RHS if commutative
2880      std::swap(N1CFP, N2CFP);
2881      std::swap(N1, N2);
2882    } else if (N2CFP && VT != MVT::ppcf128) {
2883      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2884      APFloat::opStatus s;
2885      switch (Opcode) {
2886      case ISD::FADD:
2887        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2888        if (s != APFloat::opInvalidOp)
2889          return getConstantFP(V1, VT);
2890        break;
2891      case ISD::FSUB:
2892        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2893        if (s!=APFloat::opInvalidOp)
2894          return getConstantFP(V1, VT);
2895        break;
2896      case ISD::FMUL:
2897        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2898        if (s!=APFloat::opInvalidOp)
2899          return getConstantFP(V1, VT);
2900        break;
2901      case ISD::FDIV:
2902        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2903        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2904          return getConstantFP(V1, VT);
2905        break;
2906      case ISD::FREM :
2907        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2908        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2909          return getConstantFP(V1, VT);
2910        break;
2911      case ISD::FCOPYSIGN:
2912        V1.copySign(V2);
2913        return getConstantFP(V1, VT);
2914      default: break;
2915      }
2916    }
2917  }
2918
2919  // Canonicalize an UNDEF to the RHS, even over a constant.
2920  if (N1.getOpcode() == ISD::UNDEF) {
2921    if (isCommutativeBinOp(Opcode)) {
2922      std::swap(N1, N2);
2923    } else {
2924      switch (Opcode) {
2925      case ISD::FP_ROUND_INREG:
2926      case ISD::SIGN_EXTEND_INREG:
2927      case ISD::SUB:
2928      case ISD::FSUB:
2929      case ISD::FDIV:
2930      case ISD::FREM:
2931      case ISD::SRA:
2932        return N1;     // fold op(undef, arg2) -> undef
2933      case ISD::UDIV:
2934      case ISD::SDIV:
2935      case ISD::UREM:
2936      case ISD::SREM:
2937      case ISD::SRL:
2938      case ISD::SHL:
2939        if (!VT.isVector())
2940          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2941        // For vectors, we can't easily build an all zero vector, just return
2942        // the LHS.
2943        return N2;
2944      }
2945    }
2946  }
2947
2948  // Fold a bunch of operators when the RHS is undef.
2949  if (N2.getOpcode() == ISD::UNDEF) {
2950    switch (Opcode) {
2951    case ISD::XOR:
2952      if (N1.getOpcode() == ISD::UNDEF)
2953        // Handle undef ^ undef -> 0 special case. This is a common
2954        // idiom (misuse).
2955        return getConstant(0, VT);
2956      // fallthrough
2957    case ISD::ADD:
2958    case ISD::ADDC:
2959    case ISD::ADDE:
2960    case ISD::SUB:
2961    case ISD::UDIV:
2962    case ISD::SDIV:
2963    case ISD::UREM:
2964    case ISD::SREM:
2965      return N2;       // fold op(arg1, undef) -> undef
2966    case ISD::FADD:
2967    case ISD::FSUB:
2968    case ISD::FMUL:
2969    case ISD::FDIV:
2970    case ISD::FREM:
2971      if (UnsafeFPMath)
2972        return N2;
2973      break;
2974    case ISD::MUL:
2975    case ISD::AND:
2976    case ISD::SRL:
2977    case ISD::SHL:
2978      if (!VT.isVector())
2979        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2980      // For vectors, we can't easily build an all zero vector, just return
2981      // the LHS.
2982      return N1;
2983    case ISD::OR:
2984      if (!VT.isVector())
2985        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2986      // For vectors, we can't easily build an all one vector, just return
2987      // the LHS.
2988      return N1;
2989    case ISD::SRA:
2990      return N1;
2991    }
2992  }
2993
2994  // Memoize this node if possible.
2995  SDNode *N;
2996  SDVTList VTs = getVTList(VT);
2997  if (VT != MVT::Flag) {
2998    SDValue Ops[] = { N1, N2 };
2999    FoldingSetNodeID ID;
3000    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3001    void *IP = 0;
3002    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3003      return SDValue(E, 0);
3004
3005    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3006    CSEMap.InsertNode(N, IP);
3007  } else {
3008    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3009  }
3010
3011  AllNodes.push_back(N);
3012#ifndef NDEBUG
3013  VerifyNode(N);
3014#endif
3015  return SDValue(N, 0);
3016}
3017
3018SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3019                              SDValue N1, SDValue N2, SDValue N3) {
3020  // Perform various simplifications.
3021  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3022  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
3023  switch (Opcode) {
3024  case ISD::CONCAT_VECTORS:
3025    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3026    // one big BUILD_VECTOR.
3027    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3028        N2.getOpcode() == ISD::BUILD_VECTOR &&
3029        N3.getOpcode() == ISD::BUILD_VECTOR) {
3030      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
3031      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
3032      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
3033      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3034    }
3035    break;
3036  case ISD::SETCC: {
3037    // Use FoldSetCC to simplify SETCC's.
3038    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3039    if (Simp.getNode()) return Simp;
3040    break;
3041  }
3042  case ISD::SELECT:
3043    if (N1C) {
3044     if (N1C->getZExtValue())
3045        return N2;             // select true, X, Y -> X
3046      else
3047        return N3;             // select false, X, Y -> Y
3048    }
3049
3050    if (N2 == N3) return N2;   // select C, X, X -> X
3051    break;
3052  case ISD::BRCOND:
3053    if (N2C) {
3054      if (N2C->getZExtValue()) // Unconditional branch
3055        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3056      else
3057        return N1;         // Never-taken branch
3058    }
3059    break;
3060  case ISD::VECTOR_SHUFFLE:
3061    llvm_unreachable("should use getVectorShuffle constructor!");
3062    break;
3063  case ISD::BIT_CONVERT:
3064    // Fold bit_convert nodes from a type to themselves.
3065    if (N1.getValueType() == VT)
3066      return N1;
3067    break;
3068  }
3069
3070  // Memoize node if it doesn't produce a flag.
3071  SDNode *N;
3072  SDVTList VTs = getVTList(VT);
3073  if (VT != MVT::Flag) {
3074    SDValue Ops[] = { N1, N2, N3 };
3075    FoldingSetNodeID ID;
3076    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3077    void *IP = 0;
3078    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3079      return SDValue(E, 0);
3080
3081    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3082    CSEMap.InsertNode(N, IP);
3083  } else {
3084    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3085  }
3086
3087  AllNodes.push_back(N);
3088#ifndef NDEBUG
3089  VerifyNode(N);
3090#endif
3091  return SDValue(N, 0);
3092}
3093
3094SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3095                              SDValue N1, SDValue N2, SDValue N3,
3096                              SDValue N4) {
3097  SDValue Ops[] = { N1, N2, N3, N4 };
3098  return getNode(Opcode, DL, VT, Ops, 4);
3099}
3100
3101SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3102                              SDValue N1, SDValue N2, SDValue N3,
3103                              SDValue N4, SDValue N5) {
3104  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3105  return getNode(Opcode, DL, VT, Ops, 5);
3106}
3107
3108/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3109/// the incoming stack arguments to be loaded from the stack.
3110SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3111  SmallVector<SDValue, 8> ArgChains;
3112
3113  // Include the original chain at the beginning of the list. When this is
3114  // used by target LowerCall hooks, this helps legalize find the
3115  // CALLSEQ_BEGIN node.
3116  ArgChains.push_back(Chain);
3117
3118  // Add a chain value for each stack argument.
3119  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3120       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3121    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3122      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3123        if (FI->getIndex() < 0)
3124          ArgChains.push_back(SDValue(L, 1));
3125
3126  // Build a tokenfactor for all the chains.
3127  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3128                 &ArgChains[0], ArgChains.size());
3129}
3130
3131/// getMemsetValue - Vectorized representation of the memset value
3132/// operand.
3133static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3134                              DebugLoc dl) {
3135  assert(Value.getOpcode() != ISD::UNDEF);
3136
3137  unsigned NumBits = VT.getScalarType().getSizeInBits();
3138  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3139    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3140    unsigned Shift = 8;
3141    for (unsigned i = NumBits; i > 8; i >>= 1) {
3142      Val = (Val << Shift) | Val;
3143      Shift <<= 1;
3144    }
3145    if (VT.isInteger())
3146      return DAG.getConstant(Val, VT);
3147    return DAG.getConstantFP(APFloat(Val), VT);
3148  }
3149
3150  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3151  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3152  unsigned Shift = 8;
3153  for (unsigned i = NumBits; i > 8; i >>= 1) {
3154    Value = DAG.getNode(ISD::OR, dl, VT,
3155                        DAG.getNode(ISD::SHL, dl, VT, Value,
3156                                    DAG.getConstant(Shift,
3157                                                    TLI.getShiftAmountTy())),
3158                        Value);
3159    Shift <<= 1;
3160  }
3161
3162  return Value;
3163}
3164
3165/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3166/// used when a memcpy is turned into a memset when the source is a constant
3167/// string ptr.
3168static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3169                                  const TargetLowering &TLI,
3170                                  std::string &Str, unsigned Offset) {
3171  // Handle vector with all elements zero.
3172  if (Str.empty()) {
3173    if (VT.isInteger())
3174      return DAG.getConstant(0, VT);
3175    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3176             VT.getSimpleVT().SimpleTy == MVT::f64)
3177      return DAG.getConstantFP(0.0, VT);
3178    else if (VT.isVector()) {
3179      unsigned NumElts = VT.getVectorNumElements();
3180      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3181      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3182                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3183                                                             EltVT, NumElts)));
3184    } else
3185      llvm_unreachable("Expected type!");
3186  }
3187
3188  assert(!VT.isVector() && "Can't handle vector type here!");
3189  unsigned NumBits = VT.getSizeInBits();
3190  unsigned MSB = NumBits / 8;
3191  uint64_t Val = 0;
3192  if (TLI.isLittleEndian())
3193    Offset = Offset + MSB - 1;
3194  for (unsigned i = 0; i != MSB; ++i) {
3195    Val = (Val << 8) | (unsigned char)Str[Offset];
3196    Offset += TLI.isLittleEndian() ? -1 : 1;
3197  }
3198  return DAG.getConstant(Val, VT);
3199}
3200
3201/// getMemBasePlusOffset - Returns base and offset node for the
3202///
3203static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3204                                      SelectionDAG &DAG) {
3205  EVT VT = Base.getValueType();
3206  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3207                     VT, Base, DAG.getConstant(Offset, VT));
3208}
3209
3210/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3211///
3212static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3213  unsigned SrcDelta = 0;
3214  GlobalAddressSDNode *G = NULL;
3215  if (Src.getOpcode() == ISD::GlobalAddress)
3216    G = cast<GlobalAddressSDNode>(Src);
3217  else if (Src.getOpcode() == ISD::ADD &&
3218           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3219           Src.getOperand(1).getOpcode() == ISD::Constant) {
3220    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3221    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3222  }
3223  if (!G)
3224    return false;
3225
3226  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3227  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3228    return true;
3229
3230  return false;
3231}
3232
3233/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3234/// to replace the memset / memcpy. Return true if the number of memory ops
3235/// is below the threshold. It returns the types of the sequence of
3236/// memory ops to perform memset / memcpy by reference.
3237static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3238                                     unsigned Limit, uint64_t Size,
3239                                     unsigned DstAlign, unsigned SrcAlign,
3240                                     bool NonScalarIntSafe,
3241                                     bool MemcpyStrSrc,
3242                                     SelectionDAG &DAG,
3243                                     const TargetLowering &TLI) {
3244  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3245         "Expecting memcpy / memset source to meet alignment requirement!");
3246  // If 'SrcAlign' is zero, that means the memory operation does not need load
3247  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3248  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3249  // specified alignment of the memory operation. If it is zero, that means
3250  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3251  // indicates whether the memcpy source is constant so it does not need to be
3252  // loaded.
3253  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3254                                   NonScalarIntSafe, MemcpyStrSrc,
3255                                   DAG.getMachineFunction());
3256
3257  if (VT == MVT::Other) {
3258    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3259        TLI.allowsUnalignedMemoryAccesses(VT)) {
3260      VT = TLI.getPointerTy();
3261    } else {
3262      switch (DstAlign & 7) {
3263      case 0:  VT = MVT::i64; break;
3264      case 4:  VT = MVT::i32; break;
3265      case 2:  VT = MVT::i16; break;
3266      default: VT = MVT::i8;  break;
3267      }
3268    }
3269
3270    MVT LVT = MVT::i64;
3271    while (!TLI.isTypeLegal(LVT))
3272      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3273    assert(LVT.isInteger());
3274
3275    if (VT.bitsGT(LVT))
3276      VT = LVT;
3277  }
3278
3279  // If we're optimizing for size, and there is a limit, bump the maximum number
3280  // of operations inserted down to 4.  This is a wild guess that approximates
3281  // the size of a call to memcpy or memset (3 arguments + call).
3282  if (Limit != ~0U) {
3283    const Function *F = DAG.getMachineFunction().getFunction();
3284    if (F->hasFnAttr(Attribute::OptimizeForSize))
3285      Limit = 4;
3286  }
3287
3288  unsigned NumMemOps = 0;
3289  while (Size != 0) {
3290    unsigned VTSize = VT.getSizeInBits() / 8;
3291    while (VTSize > Size) {
3292      // For now, only use non-vector load / store's for the left-over pieces.
3293      if (VT.isVector() || VT.isFloatingPoint()) {
3294        VT = MVT::i64;
3295        while (!TLI.isTypeLegal(VT))
3296          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3297        VTSize = VT.getSizeInBits() / 8;
3298      } else {
3299        // This can result in a type that is not legal on the target, e.g.
3300        // 1 or 2 bytes on PPC.
3301        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3302        VTSize >>= 1;
3303      }
3304    }
3305
3306    if (++NumMemOps > Limit)
3307      return false;
3308    MemOps.push_back(VT);
3309    Size -= VTSize;
3310  }
3311
3312  return true;
3313}
3314
3315static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3316                                       SDValue Chain, SDValue Dst,
3317                                       SDValue Src, uint64_t Size,
3318                                       unsigned Align, bool isVol,
3319                                       bool AlwaysInline,
3320                                       const Value *DstSV, uint64_t DstSVOff,
3321                                       const Value *SrcSV, uint64_t SrcSVOff) {
3322  // Turn a memcpy of undef to nop.
3323  if (Src.getOpcode() == ISD::UNDEF)
3324    return Chain;
3325
3326  // Expand memcpy to a series of load and store ops if the size operand falls
3327  // below a certain threshold.
3328  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3329  std::vector<EVT> MemOps;
3330  bool DstAlignCanChange = false;
3331  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3332  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3333  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3334    DstAlignCanChange = true;
3335  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3336  if (Align > SrcAlign)
3337    SrcAlign = Align;
3338  std::string Str;
3339  bool CopyFromStr = isMemSrcFromString(Src, Str);
3340  bool isZeroStr = CopyFromStr && Str.empty();
3341  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy();
3342
3343  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3344                                (DstAlignCanChange ? 0 : Align),
3345                                (isZeroStr ? 0 : SrcAlign),
3346                                true, CopyFromStr, DAG, TLI))
3347    return SDValue();
3348
3349  if (DstAlignCanChange) {
3350    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3351    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3352    if (NewAlign > Align) {
3353      // Give the stack frame object a larger alignment if needed.
3354      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3355        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3356      Align = NewAlign;
3357    }
3358  }
3359
3360  SmallVector<SDValue, 8> OutChains;
3361  unsigned NumMemOps = MemOps.size();
3362  uint64_t SrcOff = 0, DstOff = 0;
3363  for (unsigned i = 0; i != NumMemOps; ++i) {
3364    EVT VT = MemOps[i];
3365    unsigned VTSize = VT.getSizeInBits() / 8;
3366    SDValue Value, Store;
3367
3368    if (CopyFromStr &&
3369        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3370      // It's unlikely a store of a vector immediate can be done in a single
3371      // instruction. It would require a load from a constantpool first.
3372      // We only handle zero vectors here.
3373      // FIXME: Handle other cases where store of vector immediate is done in
3374      // a single instruction.
3375      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3376      Store = DAG.getStore(Chain, dl, Value,
3377                           getMemBasePlusOffset(Dst, DstOff, DAG),
3378                           DstSV, DstSVOff + DstOff, isVol, false, Align);
3379    } else {
3380      // The type might not be legal for the target.  This should only happen
3381      // if the type is smaller than a legal type, as on PPC, so the right
3382      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3383      // to Load/Store if NVT==VT.
3384      // FIXME does the case above also need this?
3385      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3386      assert(NVT.bitsGE(VT));
3387      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3388                             getMemBasePlusOffset(Src, SrcOff, DAG),
3389                             SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3390                             MinAlign(SrcAlign, SrcOff));
3391      Store = DAG.getTruncStore(Chain, dl, Value,
3392                                getMemBasePlusOffset(Dst, DstOff, DAG),
3393                                DstSV, DstSVOff + DstOff, VT, isVol, false,
3394                                Align);
3395    }
3396    OutChains.push_back(Store);
3397    SrcOff += VTSize;
3398    DstOff += VTSize;
3399  }
3400
3401  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3402                     &OutChains[0], OutChains.size());
3403}
3404
3405static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3406                                        SDValue Chain, SDValue Dst,
3407                                        SDValue Src, uint64_t Size,
3408                                        unsigned Align,  bool isVol,
3409                                        bool AlwaysInline,
3410                                        const Value *DstSV, uint64_t DstSVOff,
3411                                        const Value *SrcSV, uint64_t SrcSVOff) {
3412  // Turn a memmove of undef to nop.
3413  if (Src.getOpcode() == ISD::UNDEF)
3414    return Chain;
3415
3416  // Expand memmove to a series of load and store ops if the size operand falls
3417  // below a certain threshold.
3418  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3419  std::vector<EVT> MemOps;
3420  bool DstAlignCanChange = false;
3421  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3422  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3423  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3424    DstAlignCanChange = true;
3425  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3426  if (Align > SrcAlign)
3427    SrcAlign = Align;
3428  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove();
3429
3430  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3431                                (DstAlignCanChange ? 0 : Align),
3432                                SrcAlign, true, false, DAG, TLI))
3433    return SDValue();
3434
3435  if (DstAlignCanChange) {
3436    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3437    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3438    if (NewAlign > Align) {
3439      // Give the stack frame object a larger alignment if needed.
3440      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3441        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3442      Align = NewAlign;
3443    }
3444  }
3445
3446  uint64_t SrcOff = 0, DstOff = 0;
3447  SmallVector<SDValue, 8> LoadValues;
3448  SmallVector<SDValue, 8> LoadChains;
3449  SmallVector<SDValue, 8> OutChains;
3450  unsigned NumMemOps = MemOps.size();
3451  for (unsigned i = 0; i < NumMemOps; i++) {
3452    EVT VT = MemOps[i];
3453    unsigned VTSize = VT.getSizeInBits() / 8;
3454    SDValue Value, Store;
3455
3456    Value = DAG.getLoad(VT, dl, Chain,
3457                        getMemBasePlusOffset(Src, SrcOff, DAG),
3458                        SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3459    LoadValues.push_back(Value);
3460    LoadChains.push_back(Value.getValue(1));
3461    SrcOff += VTSize;
3462  }
3463  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3464                      &LoadChains[0], LoadChains.size());
3465  OutChains.clear();
3466  for (unsigned i = 0; i < NumMemOps; i++) {
3467    EVT VT = MemOps[i];
3468    unsigned VTSize = VT.getSizeInBits() / 8;
3469    SDValue Value, Store;
3470
3471    Store = DAG.getStore(Chain, dl, LoadValues[i],
3472                         getMemBasePlusOffset(Dst, DstOff, DAG),
3473                         DstSV, DstSVOff + DstOff, isVol, false, Align);
3474    OutChains.push_back(Store);
3475    DstOff += VTSize;
3476  }
3477
3478  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3479                     &OutChains[0], OutChains.size());
3480}
3481
3482static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3483                               SDValue Chain, SDValue Dst,
3484                               SDValue Src, uint64_t Size,
3485                               unsigned Align, bool isVol,
3486                               const Value *DstSV, uint64_t DstSVOff) {
3487  // Turn a memset of undef to nop.
3488  if (Src.getOpcode() == ISD::UNDEF)
3489    return Chain;
3490
3491  // Expand memset to a series of load/store ops if the size operand
3492  // falls below a certain threshold.
3493  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3494  std::vector<EVT> MemOps;
3495  bool DstAlignCanChange = false;
3496  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3497  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3498  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3499    DstAlignCanChange = true;
3500  bool NonScalarIntSafe =
3501    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3502  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3503                                Size, (DstAlignCanChange ? 0 : Align), 0,
3504                                NonScalarIntSafe, false, DAG, TLI))
3505    return SDValue();
3506
3507  if (DstAlignCanChange) {
3508    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3509    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3510    if (NewAlign > Align) {
3511      // Give the stack frame object a larger alignment if needed.
3512      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3513        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3514      Align = NewAlign;
3515    }
3516  }
3517
3518  SmallVector<SDValue, 8> OutChains;
3519  uint64_t DstOff = 0;
3520  unsigned NumMemOps = MemOps.size();
3521  for (unsigned i = 0; i < NumMemOps; i++) {
3522    EVT VT = MemOps[i];
3523    unsigned VTSize = VT.getSizeInBits() / 8;
3524    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3525    SDValue Store = DAG.getStore(Chain, dl, Value,
3526                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3527                                 DstSV, DstSVOff + DstOff, isVol, false, 0);
3528    OutChains.push_back(Store);
3529    DstOff += VTSize;
3530  }
3531
3532  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3533                     &OutChains[0], OutChains.size());
3534}
3535
3536SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3537                                SDValue Src, SDValue Size,
3538                                unsigned Align, bool isVol, bool AlwaysInline,
3539                                const Value *DstSV, uint64_t DstSVOff,
3540                                const Value *SrcSV, uint64_t SrcSVOff) {
3541
3542  // Check to see if we should lower the memcpy to loads and stores first.
3543  // For cases within the target-specified limits, this is the best choice.
3544  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3545  if (ConstantSize) {
3546    // Memcpy with size zero? Just return the original chain.
3547    if (ConstantSize->isNullValue())
3548      return Chain;
3549
3550    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3551                                             ConstantSize->getZExtValue(),Align,
3552                                isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3553    if (Result.getNode())
3554      return Result;
3555  }
3556
3557  // Then check to see if we should lower the memcpy with target-specific
3558  // code. If the target chooses to do this, this is the next best.
3559  SDValue Result =
3560    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3561                                isVol, AlwaysInline,
3562                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3563  if (Result.getNode())
3564    return Result;
3565
3566  // If we really need inline code and the target declined to provide it,
3567  // use a (potentially long) sequence of loads and stores.
3568  if (AlwaysInline) {
3569    assert(ConstantSize && "AlwaysInline requires a constant size!");
3570    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3571                                   ConstantSize->getZExtValue(), Align, isVol,
3572                                   true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3573  }
3574
3575  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3576  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3577  // respect volatile, so they may do things like read or write memory
3578  // beyond the given memory regions. But fixing this isn't easy, and most
3579  // people don't care.
3580
3581  // Emit a library call.
3582  TargetLowering::ArgListTy Args;
3583  TargetLowering::ArgListEntry Entry;
3584  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3585  Entry.Node = Dst; Args.push_back(Entry);
3586  Entry.Node = Src; Args.push_back(Entry);
3587  Entry.Node = Size; Args.push_back(Entry);
3588  // FIXME: pass in DebugLoc
3589  std::pair<SDValue,SDValue> CallResult =
3590    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3591                    false, false, false, false, 0,
3592                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3593                    /*isReturnValueUsed=*/false,
3594                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3595                                      TLI.getPointerTy()),
3596                    Args, *this, dl);
3597  return CallResult.second;
3598}
3599
3600SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3601                                 SDValue Src, SDValue Size,
3602                                 unsigned Align, bool isVol,
3603                                 const Value *DstSV, uint64_t DstSVOff,
3604                                 const Value *SrcSV, uint64_t SrcSVOff) {
3605
3606  // Check to see if we should lower the memmove to loads and stores first.
3607  // For cases within the target-specified limits, this is the best choice.
3608  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3609  if (ConstantSize) {
3610    // Memmove with size zero? Just return the original chain.
3611    if (ConstantSize->isNullValue())
3612      return Chain;
3613
3614    SDValue Result =
3615      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3616                               ConstantSize->getZExtValue(), Align, isVol,
3617                               false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3618    if (Result.getNode())
3619      return Result;
3620  }
3621
3622  // Then check to see if we should lower the memmove with target-specific
3623  // code. If the target chooses to do this, this is the next best.
3624  SDValue Result =
3625    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3626                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3627  if (Result.getNode())
3628    return Result;
3629
3630  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3631  // not be safe.  See memcpy above for more details.
3632
3633  // Emit a library call.
3634  TargetLowering::ArgListTy Args;
3635  TargetLowering::ArgListEntry Entry;
3636  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3637  Entry.Node = Dst; Args.push_back(Entry);
3638  Entry.Node = Src; Args.push_back(Entry);
3639  Entry.Node = Size; Args.push_back(Entry);
3640  // FIXME:  pass in DebugLoc
3641  std::pair<SDValue,SDValue> CallResult =
3642    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3643                    false, false, false, false, 0,
3644                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3645                    /*isReturnValueUsed=*/false,
3646                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3647                                      TLI.getPointerTy()),
3648                    Args, *this, dl);
3649  return CallResult.second;
3650}
3651
3652SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3653                                SDValue Src, SDValue Size,
3654                                unsigned Align, bool isVol,
3655                                const Value *DstSV, uint64_t DstSVOff) {
3656
3657  // Check to see if we should lower the memset to stores first.
3658  // For cases within the target-specified limits, this is the best choice.
3659  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3660  if (ConstantSize) {
3661    // Memset with size zero? Just return the original chain.
3662    if (ConstantSize->isNullValue())
3663      return Chain;
3664
3665    SDValue Result =
3666      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3667                      Align, isVol, DstSV, DstSVOff);
3668
3669    if (Result.getNode())
3670      return Result;
3671  }
3672
3673  // Then check to see if we should lower the memset with target-specific
3674  // code. If the target chooses to do this, this is the next best.
3675  SDValue Result =
3676    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3677                                DstSV, DstSVOff);
3678  if (Result.getNode())
3679    return Result;
3680
3681  // Emit a library call.
3682  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3683  TargetLowering::ArgListTy Args;
3684  TargetLowering::ArgListEntry Entry;
3685  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3686  Args.push_back(Entry);
3687  // Extend or truncate the argument to be an i32 value for the call.
3688  if (Src.getValueType().bitsGT(MVT::i32))
3689    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3690  else
3691    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3692  Entry.Node = Src;
3693  Entry.Ty = Type::getInt32Ty(*getContext());
3694  Entry.isSExt = true;
3695  Args.push_back(Entry);
3696  Entry.Node = Size;
3697  Entry.Ty = IntPtrTy;
3698  Entry.isSExt = false;
3699  Args.push_back(Entry);
3700  // FIXME: pass in DebugLoc
3701  std::pair<SDValue,SDValue> CallResult =
3702    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3703                    false, false, false, false, 0,
3704                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3705                    /*isReturnValueUsed=*/false,
3706                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3707                                      TLI.getPointerTy()),
3708                    Args, *this, dl);
3709  return CallResult.second;
3710}
3711
3712SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3713                                SDValue Chain,
3714                                SDValue Ptr, SDValue Cmp,
3715                                SDValue Swp, const Value* PtrVal,
3716                                unsigned Alignment) {
3717  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3718    Alignment = getEVTAlignment(MemVT);
3719
3720  // Check if the memory reference references a frame index
3721  if (!PtrVal)
3722    if (const FrameIndexSDNode *FI =
3723          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3724      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3725
3726  MachineFunction &MF = getMachineFunction();
3727  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3728
3729  // For now, atomics are considered to be volatile always.
3730  Flags |= MachineMemOperand::MOVolatile;
3731
3732  MachineMemOperand *MMO =
3733    MF.getMachineMemOperand(PtrVal, Flags, 0,
3734                            MemVT.getStoreSize(), Alignment);
3735
3736  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3737}
3738
3739SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3740                                SDValue Chain,
3741                                SDValue Ptr, SDValue Cmp,
3742                                SDValue Swp, MachineMemOperand *MMO) {
3743  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3744  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3745
3746  EVT VT = Cmp.getValueType();
3747
3748  SDVTList VTs = getVTList(VT, MVT::Other);
3749  FoldingSetNodeID ID;
3750  ID.AddInteger(MemVT.getRawBits());
3751  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3752  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3753  void* IP = 0;
3754  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3755    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3756    return SDValue(E, 0);
3757  }
3758  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3759                                               Ptr, Cmp, Swp, MMO);
3760  CSEMap.InsertNode(N, IP);
3761  AllNodes.push_back(N);
3762  return SDValue(N, 0);
3763}
3764
3765SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3766                                SDValue Chain,
3767                                SDValue Ptr, SDValue Val,
3768                                const Value* PtrVal,
3769                                unsigned Alignment) {
3770  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3771    Alignment = getEVTAlignment(MemVT);
3772
3773  // Check if the memory reference references a frame index
3774  if (!PtrVal)
3775    if (const FrameIndexSDNode *FI =
3776          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3777      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3778
3779  MachineFunction &MF = getMachineFunction();
3780  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3781
3782  // For now, atomics are considered to be volatile always.
3783  Flags |= MachineMemOperand::MOVolatile;
3784
3785  MachineMemOperand *MMO =
3786    MF.getMachineMemOperand(PtrVal, Flags, 0,
3787                            MemVT.getStoreSize(), Alignment);
3788
3789  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3790}
3791
3792SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3793                                SDValue Chain,
3794                                SDValue Ptr, SDValue Val,
3795                                MachineMemOperand *MMO) {
3796  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3797          Opcode == ISD::ATOMIC_LOAD_SUB ||
3798          Opcode == ISD::ATOMIC_LOAD_AND ||
3799          Opcode == ISD::ATOMIC_LOAD_OR ||
3800          Opcode == ISD::ATOMIC_LOAD_XOR ||
3801          Opcode == ISD::ATOMIC_LOAD_NAND ||
3802          Opcode == ISD::ATOMIC_LOAD_MIN ||
3803          Opcode == ISD::ATOMIC_LOAD_MAX ||
3804          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3805          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3806          Opcode == ISD::ATOMIC_SWAP) &&
3807         "Invalid Atomic Op");
3808
3809  EVT VT = Val.getValueType();
3810
3811  SDVTList VTs = getVTList(VT, MVT::Other);
3812  FoldingSetNodeID ID;
3813  ID.AddInteger(MemVT.getRawBits());
3814  SDValue Ops[] = {Chain, Ptr, Val};
3815  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3816  void* IP = 0;
3817  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3818    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3819    return SDValue(E, 0);
3820  }
3821  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3822                                               Ptr, Val, MMO);
3823  CSEMap.InsertNode(N, IP);
3824  AllNodes.push_back(N);
3825  return SDValue(N, 0);
3826}
3827
3828/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3829/// Allowed to return something different (and simpler) if Simplify is true.
3830SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3831                                     DebugLoc dl) {
3832  if (NumOps == 1)
3833    return Ops[0];
3834
3835  SmallVector<EVT, 4> VTs;
3836  VTs.reserve(NumOps);
3837  for (unsigned i = 0; i < NumOps; ++i)
3838    VTs.push_back(Ops[i].getValueType());
3839  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3840                 Ops, NumOps);
3841}
3842
3843SDValue
3844SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3845                                  const EVT *VTs, unsigned NumVTs,
3846                                  const SDValue *Ops, unsigned NumOps,
3847                                  EVT MemVT, const Value *srcValue, int SVOff,
3848                                  unsigned Align, bool Vol,
3849                                  bool ReadMem, bool WriteMem) {
3850  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3851                             MemVT, srcValue, SVOff, Align, Vol,
3852                             ReadMem, WriteMem);
3853}
3854
3855SDValue
3856SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3857                                  const SDValue *Ops, unsigned NumOps,
3858                                  EVT MemVT, const Value *srcValue, int SVOff,
3859                                  unsigned Align, bool Vol,
3860                                  bool ReadMem, bool WriteMem) {
3861  if (Align == 0)  // Ensure that codegen never sees alignment 0
3862    Align = getEVTAlignment(MemVT);
3863
3864  MachineFunction &MF = getMachineFunction();
3865  unsigned Flags = 0;
3866  if (WriteMem)
3867    Flags |= MachineMemOperand::MOStore;
3868  if (ReadMem)
3869    Flags |= MachineMemOperand::MOLoad;
3870  if (Vol)
3871    Flags |= MachineMemOperand::MOVolatile;
3872  MachineMemOperand *MMO =
3873    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3874                            MemVT.getStoreSize(), Align);
3875
3876  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3877}
3878
3879SDValue
3880SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3881                                  const SDValue *Ops, unsigned NumOps,
3882                                  EVT MemVT, MachineMemOperand *MMO) {
3883  assert((Opcode == ISD::INTRINSIC_VOID ||
3884          Opcode == ISD::INTRINSIC_W_CHAIN ||
3885          (Opcode <= INT_MAX &&
3886           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3887         "Opcode is not a memory-accessing opcode!");
3888
3889  // Memoize the node unless it returns a flag.
3890  MemIntrinsicSDNode *N;
3891  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3892    FoldingSetNodeID ID;
3893    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3894    void *IP = 0;
3895    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3896      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3897      return SDValue(E, 0);
3898    }
3899
3900    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3901                                               MemVT, MMO);
3902    CSEMap.InsertNode(N, IP);
3903  } else {
3904    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3905                                               MemVT, MMO);
3906  }
3907  AllNodes.push_back(N);
3908  return SDValue(N, 0);
3909}
3910
3911SDValue
3912SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3913                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3914                      SDValue Ptr, SDValue Offset,
3915                      const Value *SV, int SVOffset, EVT MemVT,
3916                      bool isVolatile, bool isNonTemporal,
3917                      unsigned Alignment) {
3918  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3919    Alignment = getEVTAlignment(VT);
3920
3921  // Check if the memory reference references a frame index
3922  if (!SV)
3923    if (const FrameIndexSDNode *FI =
3924          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3925      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3926
3927  MachineFunction &MF = getMachineFunction();
3928  unsigned Flags = MachineMemOperand::MOLoad;
3929  if (isVolatile)
3930    Flags |= MachineMemOperand::MOVolatile;
3931  if (isNonTemporal)
3932    Flags |= MachineMemOperand::MONonTemporal;
3933  MachineMemOperand *MMO =
3934    MF.getMachineMemOperand(SV, Flags, SVOffset,
3935                            MemVT.getStoreSize(), Alignment);
3936  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3937}
3938
3939SDValue
3940SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3941                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3942                      SDValue Ptr, SDValue Offset, EVT MemVT,
3943                      MachineMemOperand *MMO) {
3944  if (VT == MemVT) {
3945    ExtType = ISD::NON_EXTLOAD;
3946  } else if (ExtType == ISD::NON_EXTLOAD) {
3947    assert(VT == MemVT && "Non-extending load from different memory type!");
3948  } else {
3949    // Extending load.
3950    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3951           "Should only be an extending load, not truncating!");
3952    assert(VT.isInteger() == MemVT.isInteger() &&
3953           "Cannot convert from FP to Int or Int -> FP!");
3954    assert(VT.isVector() == MemVT.isVector() &&
3955           "Cannot use trunc store to convert to or from a vector!");
3956    assert((!VT.isVector() ||
3957            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3958           "Cannot use trunc store to change the number of vector elements!");
3959  }
3960
3961  bool Indexed = AM != ISD::UNINDEXED;
3962  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3963         "Unindexed load with an offset!");
3964
3965  SDVTList VTs = Indexed ?
3966    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3967  SDValue Ops[] = { Chain, Ptr, Offset };
3968  FoldingSetNodeID ID;
3969  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3970  ID.AddInteger(MemVT.getRawBits());
3971  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3972                                     MMO->isNonTemporal()));
3973  void *IP = 0;
3974  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3975    cast<LoadSDNode>(E)->refineAlignment(MMO);
3976    return SDValue(E, 0);
3977  }
3978  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3979                                             MemVT, MMO);
3980  CSEMap.InsertNode(N, IP);
3981  AllNodes.push_back(N);
3982  return SDValue(N, 0);
3983}
3984
3985SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3986                              SDValue Chain, SDValue Ptr,
3987                              const Value *SV, int SVOffset,
3988                              bool isVolatile, bool isNonTemporal,
3989                              unsigned Alignment) {
3990  SDValue Undef = getUNDEF(Ptr.getValueType());
3991  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3992                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3993}
3994
3995SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3996                                 SDValue Chain, SDValue Ptr,
3997                                 const Value *SV,
3998                                 int SVOffset, EVT MemVT,
3999                                 bool isVolatile, bool isNonTemporal,
4000                                 unsigned Alignment) {
4001  SDValue Undef = getUNDEF(Ptr.getValueType());
4002  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
4003                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
4004}
4005
4006SDValue
4007SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4008                             SDValue Offset, ISD::MemIndexedMode AM) {
4009  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4010  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4011         "Load is already a indexed load!");
4012  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
4013                 LD->getChain(), Base, Offset, LD->getSrcValue(),
4014                 LD->getSrcValueOffset(), LD->getMemoryVT(),
4015                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4016}
4017
4018SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4019                               SDValue Ptr, const Value *SV, int SVOffset,
4020                               bool isVolatile, bool isNonTemporal,
4021                               unsigned Alignment) {
4022  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4023    Alignment = getEVTAlignment(Val.getValueType());
4024
4025  // Check if the memory reference references a frame index
4026  if (!SV)
4027    if (const FrameIndexSDNode *FI =
4028          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4029      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4030
4031  MachineFunction &MF = getMachineFunction();
4032  unsigned Flags = MachineMemOperand::MOStore;
4033  if (isVolatile)
4034    Flags |= MachineMemOperand::MOVolatile;
4035  if (isNonTemporal)
4036    Flags |= MachineMemOperand::MONonTemporal;
4037  MachineMemOperand *MMO =
4038    MF.getMachineMemOperand(SV, Flags, SVOffset,
4039                            Val.getValueType().getStoreSize(), Alignment);
4040
4041  return getStore(Chain, dl, Val, Ptr, MMO);
4042}
4043
4044SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4045                               SDValue Ptr, MachineMemOperand *MMO) {
4046  EVT VT = Val.getValueType();
4047  SDVTList VTs = getVTList(MVT::Other);
4048  SDValue Undef = getUNDEF(Ptr.getValueType());
4049  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4050  FoldingSetNodeID ID;
4051  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4052  ID.AddInteger(VT.getRawBits());
4053  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4054                                     MMO->isNonTemporal()));
4055  void *IP = 0;
4056  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4057    cast<StoreSDNode>(E)->refineAlignment(MMO);
4058    return SDValue(E, 0);
4059  }
4060  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4061                                              false, VT, MMO);
4062  CSEMap.InsertNode(N, IP);
4063  AllNodes.push_back(N);
4064  return SDValue(N, 0);
4065}
4066
4067SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4068                                    SDValue Ptr, const Value *SV,
4069                                    int SVOffset, EVT SVT,
4070                                    bool isVolatile, bool isNonTemporal,
4071                                    unsigned Alignment) {
4072  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4073    Alignment = getEVTAlignment(SVT);
4074
4075  // Check if the memory reference references a frame index
4076  if (!SV)
4077    if (const FrameIndexSDNode *FI =
4078          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4079      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4080
4081  MachineFunction &MF = getMachineFunction();
4082  unsigned Flags = MachineMemOperand::MOStore;
4083  if (isVolatile)
4084    Flags |= MachineMemOperand::MOVolatile;
4085  if (isNonTemporal)
4086    Flags |= MachineMemOperand::MONonTemporal;
4087  MachineMemOperand *MMO =
4088    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4089
4090  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4091}
4092
4093SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4094                                    SDValue Ptr, EVT SVT,
4095                                    MachineMemOperand *MMO) {
4096  EVT VT = Val.getValueType();
4097
4098  if (VT == SVT)
4099    return getStore(Chain, dl, Val, Ptr, MMO);
4100
4101  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4102         "Should only be a truncating store, not extending!");
4103  assert(VT.isInteger() == SVT.isInteger() &&
4104         "Can't do FP-INT conversion!");
4105  assert(VT.isVector() == SVT.isVector() &&
4106         "Cannot use trunc store to convert to or from a vector!");
4107  assert((!VT.isVector() ||
4108          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4109         "Cannot use trunc store to change the number of vector elements!");
4110
4111  SDVTList VTs = getVTList(MVT::Other);
4112  SDValue Undef = getUNDEF(Ptr.getValueType());
4113  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4114  FoldingSetNodeID ID;
4115  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4116  ID.AddInteger(SVT.getRawBits());
4117  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4118                                     MMO->isNonTemporal()));
4119  void *IP = 0;
4120  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4121    cast<StoreSDNode>(E)->refineAlignment(MMO);
4122    return SDValue(E, 0);
4123  }
4124  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4125                                              true, SVT, MMO);
4126  CSEMap.InsertNode(N, IP);
4127  AllNodes.push_back(N);
4128  return SDValue(N, 0);
4129}
4130
4131SDValue
4132SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4133                              SDValue Offset, ISD::MemIndexedMode AM) {
4134  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4135  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4136         "Store is already a indexed store!");
4137  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4138  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4139  FoldingSetNodeID ID;
4140  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4141  ID.AddInteger(ST->getMemoryVT().getRawBits());
4142  ID.AddInteger(ST->getRawSubclassData());
4143  void *IP = 0;
4144  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4145    return SDValue(E, 0);
4146
4147  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4148                                              ST->isTruncatingStore(),
4149                                              ST->getMemoryVT(),
4150                                              ST->getMemOperand());
4151  CSEMap.InsertNode(N, IP);
4152  AllNodes.push_back(N);
4153  return SDValue(N, 0);
4154}
4155
4156SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4157                               SDValue Chain, SDValue Ptr,
4158                               SDValue SV) {
4159  SDValue Ops[] = { Chain, Ptr, SV };
4160  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4161}
4162
4163SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4164                              const SDUse *Ops, unsigned NumOps) {
4165  switch (NumOps) {
4166  case 0: return getNode(Opcode, DL, VT);
4167  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4168  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4169  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4170  default: break;
4171  }
4172
4173  // Copy from an SDUse array into an SDValue array for use with
4174  // the regular getNode logic.
4175  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4176  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4177}
4178
4179SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4180                              const SDValue *Ops, unsigned NumOps) {
4181  switch (NumOps) {
4182  case 0: return getNode(Opcode, DL, VT);
4183  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4184  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4185  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4186  default: break;
4187  }
4188
4189  switch (Opcode) {
4190  default: break;
4191  case ISD::SELECT_CC: {
4192    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4193    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4194           "LHS and RHS of condition must have same type!");
4195    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4196           "True and False arms of SelectCC must have same type!");
4197    assert(Ops[2].getValueType() == VT &&
4198           "select_cc node must be of same type as true and false value!");
4199    break;
4200  }
4201  case ISD::BR_CC: {
4202    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4203    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4204           "LHS/RHS of comparison should match types!");
4205    break;
4206  }
4207  }
4208
4209  // Memoize nodes.
4210  SDNode *N;
4211  SDVTList VTs = getVTList(VT);
4212
4213  if (VT != MVT::Flag) {
4214    FoldingSetNodeID ID;
4215    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4216    void *IP = 0;
4217
4218    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4219      return SDValue(E, 0);
4220
4221    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4222    CSEMap.InsertNode(N, IP);
4223  } else {
4224    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4225  }
4226
4227  AllNodes.push_back(N);
4228#ifndef NDEBUG
4229  VerifyNode(N);
4230#endif
4231  return SDValue(N, 0);
4232}
4233
4234SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4235                              const std::vector<EVT> &ResultTys,
4236                              const SDValue *Ops, unsigned NumOps) {
4237  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4238                 Ops, NumOps);
4239}
4240
4241SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4242                              const EVT *VTs, unsigned NumVTs,
4243                              const SDValue *Ops, unsigned NumOps) {
4244  if (NumVTs == 1)
4245    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4246  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4247}
4248
4249SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4250                              const SDValue *Ops, unsigned NumOps) {
4251  if (VTList.NumVTs == 1)
4252    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4253
4254#if 0
4255  switch (Opcode) {
4256  // FIXME: figure out how to safely handle things like
4257  // int foo(int x) { return 1 << (x & 255); }
4258  // int bar() { return foo(256); }
4259  case ISD::SRA_PARTS:
4260  case ISD::SRL_PARTS:
4261  case ISD::SHL_PARTS:
4262    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4263        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4264      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4265    else if (N3.getOpcode() == ISD::AND)
4266      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4267        // If the and is only masking out bits that cannot effect the shift,
4268        // eliminate the and.
4269        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4270        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4271          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4272      }
4273    break;
4274  }
4275#endif
4276
4277  // Memoize the node unless it returns a flag.
4278  SDNode *N;
4279  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4280    FoldingSetNodeID ID;
4281    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4282    void *IP = 0;
4283    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4284      return SDValue(E, 0);
4285
4286    if (NumOps == 1) {
4287      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4288    } else if (NumOps == 2) {
4289      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4290    } else if (NumOps == 3) {
4291      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4292                                            Ops[2]);
4293    } else {
4294      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4295    }
4296    CSEMap.InsertNode(N, IP);
4297  } else {
4298    if (NumOps == 1) {
4299      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4300    } else if (NumOps == 2) {
4301      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4302    } else if (NumOps == 3) {
4303      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4304                                            Ops[2]);
4305    } else {
4306      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4307    }
4308  }
4309  AllNodes.push_back(N);
4310#ifndef NDEBUG
4311  VerifyNode(N);
4312#endif
4313  return SDValue(N, 0);
4314}
4315
4316SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4317  return getNode(Opcode, DL, VTList, 0, 0);
4318}
4319
4320SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4321                              SDValue N1) {
4322  SDValue Ops[] = { N1 };
4323  return getNode(Opcode, DL, VTList, Ops, 1);
4324}
4325
4326SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4327                              SDValue N1, SDValue N2) {
4328  SDValue Ops[] = { N1, N2 };
4329  return getNode(Opcode, DL, VTList, Ops, 2);
4330}
4331
4332SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4333                              SDValue N1, SDValue N2, SDValue N3) {
4334  SDValue Ops[] = { N1, N2, N3 };
4335  return getNode(Opcode, DL, VTList, Ops, 3);
4336}
4337
4338SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4339                              SDValue N1, SDValue N2, SDValue N3,
4340                              SDValue N4) {
4341  SDValue Ops[] = { N1, N2, N3, N4 };
4342  return getNode(Opcode, DL, VTList, Ops, 4);
4343}
4344
4345SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4346                              SDValue N1, SDValue N2, SDValue N3,
4347                              SDValue N4, SDValue N5) {
4348  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4349  return getNode(Opcode, DL, VTList, Ops, 5);
4350}
4351
4352SDVTList SelectionDAG::getVTList(EVT VT) {
4353  return makeVTList(SDNode::getValueTypeList(VT), 1);
4354}
4355
4356SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4357  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4358       E = VTList.rend(); I != E; ++I)
4359    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4360      return *I;
4361
4362  EVT *Array = Allocator.Allocate<EVT>(2);
4363  Array[0] = VT1;
4364  Array[1] = VT2;
4365  SDVTList Result = makeVTList(Array, 2);
4366  VTList.push_back(Result);
4367  return Result;
4368}
4369
4370SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4371  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4372       E = VTList.rend(); I != E; ++I)
4373    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4374                          I->VTs[2] == VT3)
4375      return *I;
4376
4377  EVT *Array = Allocator.Allocate<EVT>(3);
4378  Array[0] = VT1;
4379  Array[1] = VT2;
4380  Array[2] = VT3;
4381  SDVTList Result = makeVTList(Array, 3);
4382  VTList.push_back(Result);
4383  return Result;
4384}
4385
4386SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4387  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4388       E = VTList.rend(); I != E; ++I)
4389    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4390                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4391      return *I;
4392
4393  EVT *Array = Allocator.Allocate<EVT>(4);
4394  Array[0] = VT1;
4395  Array[1] = VT2;
4396  Array[2] = VT3;
4397  Array[3] = VT4;
4398  SDVTList Result = makeVTList(Array, 4);
4399  VTList.push_back(Result);
4400  return Result;
4401}
4402
4403SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4404  switch (NumVTs) {
4405    case 0: llvm_unreachable("Cannot have nodes without results!");
4406    case 1: return getVTList(VTs[0]);
4407    case 2: return getVTList(VTs[0], VTs[1]);
4408    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4409    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4410    default: break;
4411  }
4412
4413  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4414       E = VTList.rend(); I != E; ++I) {
4415    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4416      continue;
4417
4418    bool NoMatch = false;
4419    for (unsigned i = 2; i != NumVTs; ++i)
4420      if (VTs[i] != I->VTs[i]) {
4421        NoMatch = true;
4422        break;
4423      }
4424    if (!NoMatch)
4425      return *I;
4426  }
4427
4428  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4429  std::copy(VTs, VTs+NumVTs, Array);
4430  SDVTList Result = makeVTList(Array, NumVTs);
4431  VTList.push_back(Result);
4432  return Result;
4433}
4434
4435
4436/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4437/// specified operands.  If the resultant node already exists in the DAG,
4438/// this does not modify the specified node, instead it returns the node that
4439/// already exists.  If the resultant node does not exist in the DAG, the
4440/// input node is returned.  As a degenerate case, if you specify the same
4441/// input operands as the node already has, the input node is returned.
4442SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4443  SDNode *N = InN.getNode();
4444  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4445
4446  // Check to see if there is no change.
4447  if (Op == N->getOperand(0)) return InN;
4448
4449  // See if the modified node already exists.
4450  void *InsertPos = 0;
4451  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4452    return SDValue(Existing, InN.getResNo());
4453
4454  // Nope it doesn't.  Remove the node from its current place in the maps.
4455  if (InsertPos)
4456    if (!RemoveNodeFromCSEMaps(N))
4457      InsertPos = 0;
4458
4459  // Now we update the operands.
4460  N->OperandList[0].set(Op);
4461
4462  // If this gets put into a CSE map, add it.
4463  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4464  return InN;
4465}
4466
4467SDValue SelectionDAG::
4468UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4469  SDNode *N = InN.getNode();
4470  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4471
4472  // Check to see if there is no change.
4473  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4474    return InN;   // No operands changed, just return the input node.
4475
4476  // See if the modified node already exists.
4477  void *InsertPos = 0;
4478  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4479    return SDValue(Existing, InN.getResNo());
4480
4481  // Nope it doesn't.  Remove the node from its current place in the maps.
4482  if (InsertPos)
4483    if (!RemoveNodeFromCSEMaps(N))
4484      InsertPos = 0;
4485
4486  // Now we update the operands.
4487  if (N->OperandList[0] != Op1)
4488    N->OperandList[0].set(Op1);
4489  if (N->OperandList[1] != Op2)
4490    N->OperandList[1].set(Op2);
4491
4492  // If this gets put into a CSE map, add it.
4493  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4494  return InN;
4495}
4496
4497SDValue SelectionDAG::
4498UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4499  SDValue Ops[] = { Op1, Op2, Op3 };
4500  return UpdateNodeOperands(N, Ops, 3);
4501}
4502
4503SDValue SelectionDAG::
4504UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4505                   SDValue Op3, SDValue Op4) {
4506  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4507  return UpdateNodeOperands(N, Ops, 4);
4508}
4509
4510SDValue SelectionDAG::
4511UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4512                   SDValue Op3, SDValue Op4, SDValue Op5) {
4513  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4514  return UpdateNodeOperands(N, Ops, 5);
4515}
4516
4517SDValue SelectionDAG::
4518UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4519  SDNode *N = InN.getNode();
4520  assert(N->getNumOperands() == NumOps &&
4521         "Update with wrong number of operands");
4522
4523  // Check to see if there is no change.
4524  bool AnyChange = false;
4525  for (unsigned i = 0; i != NumOps; ++i) {
4526    if (Ops[i] != N->getOperand(i)) {
4527      AnyChange = true;
4528      break;
4529    }
4530  }
4531
4532  // No operands changed, just return the input node.
4533  if (!AnyChange) return InN;
4534
4535  // See if the modified node already exists.
4536  void *InsertPos = 0;
4537  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4538    return SDValue(Existing, InN.getResNo());
4539
4540  // Nope it doesn't.  Remove the node from its current place in the maps.
4541  if (InsertPos)
4542    if (!RemoveNodeFromCSEMaps(N))
4543      InsertPos = 0;
4544
4545  // Now we update the operands.
4546  for (unsigned i = 0; i != NumOps; ++i)
4547    if (N->OperandList[i] != Ops[i])
4548      N->OperandList[i].set(Ops[i]);
4549
4550  // If this gets put into a CSE map, add it.
4551  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4552  return InN;
4553}
4554
4555/// DropOperands - Release the operands and set this node to have
4556/// zero operands.
4557void SDNode::DropOperands() {
4558  // Unlike the code in MorphNodeTo that does this, we don't need to
4559  // watch for dead nodes here.
4560  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4561    SDUse &Use = *I++;
4562    Use.set(SDValue());
4563  }
4564}
4565
4566/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4567/// machine opcode.
4568///
4569SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4570                                   EVT VT) {
4571  SDVTList VTs = getVTList(VT);
4572  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4573}
4574
4575SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4576                                   EVT VT, SDValue Op1) {
4577  SDVTList VTs = getVTList(VT);
4578  SDValue Ops[] = { Op1 };
4579  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4580}
4581
4582SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4583                                   EVT VT, SDValue Op1,
4584                                   SDValue Op2) {
4585  SDVTList VTs = getVTList(VT);
4586  SDValue Ops[] = { Op1, Op2 };
4587  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4588}
4589
4590SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4591                                   EVT VT, SDValue Op1,
4592                                   SDValue Op2, SDValue Op3) {
4593  SDVTList VTs = getVTList(VT);
4594  SDValue Ops[] = { Op1, Op2, Op3 };
4595  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4596}
4597
4598SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4599                                   EVT VT, const SDValue *Ops,
4600                                   unsigned NumOps) {
4601  SDVTList VTs = getVTList(VT);
4602  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4603}
4604
4605SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4606                                   EVT VT1, EVT VT2, const SDValue *Ops,
4607                                   unsigned NumOps) {
4608  SDVTList VTs = getVTList(VT1, VT2);
4609  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4610}
4611
4612SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4613                                   EVT VT1, EVT VT2) {
4614  SDVTList VTs = getVTList(VT1, VT2);
4615  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4616}
4617
4618SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4619                                   EVT VT1, EVT VT2, EVT VT3,
4620                                   const SDValue *Ops, unsigned NumOps) {
4621  SDVTList VTs = getVTList(VT1, VT2, VT3);
4622  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4623}
4624
4625SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4626                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4627                                   const SDValue *Ops, unsigned NumOps) {
4628  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4629  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4630}
4631
4632SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4633                                   EVT VT1, EVT VT2,
4634                                   SDValue Op1) {
4635  SDVTList VTs = getVTList(VT1, VT2);
4636  SDValue Ops[] = { Op1 };
4637  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4638}
4639
4640SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4641                                   EVT VT1, EVT VT2,
4642                                   SDValue Op1, SDValue Op2) {
4643  SDVTList VTs = getVTList(VT1, VT2);
4644  SDValue Ops[] = { Op1, Op2 };
4645  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4646}
4647
4648SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4649                                   EVT VT1, EVT VT2,
4650                                   SDValue Op1, SDValue Op2,
4651                                   SDValue Op3) {
4652  SDVTList VTs = getVTList(VT1, VT2);
4653  SDValue Ops[] = { Op1, Op2, Op3 };
4654  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4655}
4656
4657SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4658                                   EVT VT1, EVT VT2, EVT VT3,
4659                                   SDValue Op1, SDValue Op2,
4660                                   SDValue Op3) {
4661  SDVTList VTs = getVTList(VT1, VT2, VT3);
4662  SDValue Ops[] = { Op1, Op2, Op3 };
4663  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4664}
4665
4666SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4667                                   SDVTList VTs, const SDValue *Ops,
4668                                   unsigned NumOps) {
4669  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4670  // Reset the NodeID to -1.
4671  N->setNodeId(-1);
4672  return N;
4673}
4674
4675/// MorphNodeTo - This *mutates* the specified node to have the specified
4676/// return type, opcode, and operands.
4677///
4678/// Note that MorphNodeTo returns the resultant node.  If there is already a
4679/// node of the specified opcode and operands, it returns that node instead of
4680/// the current one.  Note that the DebugLoc need not be the same.
4681///
4682/// Using MorphNodeTo is faster than creating a new node and swapping it in
4683/// with ReplaceAllUsesWith both because it often avoids allocating a new
4684/// node, and because it doesn't require CSE recalculation for any of
4685/// the node's users.
4686///
4687SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4688                                  SDVTList VTs, const SDValue *Ops,
4689                                  unsigned NumOps) {
4690  // If an identical node already exists, use it.
4691  void *IP = 0;
4692  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4693    FoldingSetNodeID ID;
4694    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4695    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4696      return ON;
4697  }
4698
4699  if (!RemoveNodeFromCSEMaps(N))
4700    IP = 0;
4701
4702  // Start the morphing.
4703  N->NodeType = Opc;
4704  N->ValueList = VTs.VTs;
4705  N->NumValues = VTs.NumVTs;
4706
4707  // Clear the operands list, updating used nodes to remove this from their
4708  // use list.  Keep track of any operands that become dead as a result.
4709  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4710  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4711    SDUse &Use = *I++;
4712    SDNode *Used = Use.getNode();
4713    Use.set(SDValue());
4714    if (Used->use_empty())
4715      DeadNodeSet.insert(Used);
4716  }
4717
4718  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4719    // Initialize the memory references information.
4720    MN->setMemRefs(0, 0);
4721    // If NumOps is larger than the # of operands we can have in a
4722    // MachineSDNode, reallocate the operand list.
4723    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4724      if (MN->OperandsNeedDelete)
4725        delete[] MN->OperandList;
4726      if (NumOps > array_lengthof(MN->LocalOperands))
4727        // We're creating a final node that will live unmorphed for the
4728        // remainder of the current SelectionDAG iteration, so we can allocate
4729        // the operands directly out of a pool with no recycling metadata.
4730        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4731                         Ops, NumOps);
4732      else
4733        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4734      MN->OperandsNeedDelete = false;
4735    } else
4736      MN->InitOperands(MN->OperandList, Ops, NumOps);
4737  } else {
4738    // If NumOps is larger than the # of operands we currently have, reallocate
4739    // the operand list.
4740    if (NumOps > N->NumOperands) {
4741      if (N->OperandsNeedDelete)
4742        delete[] N->OperandList;
4743      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4744      N->OperandsNeedDelete = true;
4745    } else
4746      N->InitOperands(N->OperandList, Ops, NumOps);
4747  }
4748
4749  // Delete any nodes that are still dead after adding the uses for the
4750  // new operands.
4751  if (!DeadNodeSet.empty()) {
4752    SmallVector<SDNode *, 16> DeadNodes;
4753    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4754         E = DeadNodeSet.end(); I != E; ++I)
4755      if ((*I)->use_empty())
4756        DeadNodes.push_back(*I);
4757    RemoveDeadNodes(DeadNodes);
4758  }
4759
4760  if (IP)
4761    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4762  return N;
4763}
4764
4765
4766/// getMachineNode - These are used for target selectors to create a new node
4767/// with specified return type(s), MachineInstr opcode, and operands.
4768///
4769/// Note that getMachineNode returns the resultant node.  If there is already a
4770/// node of the specified opcode and operands, it returns that node instead of
4771/// the current one.
4772MachineSDNode *
4773SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4774  SDVTList VTs = getVTList(VT);
4775  return getMachineNode(Opcode, dl, VTs, 0, 0);
4776}
4777
4778MachineSDNode *
4779SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4780  SDVTList VTs = getVTList(VT);
4781  SDValue Ops[] = { Op1 };
4782  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4783}
4784
4785MachineSDNode *
4786SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4787                             SDValue Op1, SDValue Op2) {
4788  SDVTList VTs = getVTList(VT);
4789  SDValue Ops[] = { Op1, Op2 };
4790  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4791}
4792
4793MachineSDNode *
4794SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4795                             SDValue Op1, SDValue Op2, SDValue Op3) {
4796  SDVTList VTs = getVTList(VT);
4797  SDValue Ops[] = { Op1, Op2, Op3 };
4798  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4799}
4800
4801MachineSDNode *
4802SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4803                             const SDValue *Ops, unsigned NumOps) {
4804  SDVTList VTs = getVTList(VT);
4805  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4806}
4807
4808MachineSDNode *
4809SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4810  SDVTList VTs = getVTList(VT1, VT2);
4811  return getMachineNode(Opcode, dl, VTs, 0, 0);
4812}
4813
4814MachineSDNode *
4815SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4816                             EVT VT1, EVT VT2, SDValue Op1) {
4817  SDVTList VTs = getVTList(VT1, VT2);
4818  SDValue Ops[] = { Op1 };
4819  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4820}
4821
4822MachineSDNode *
4823SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4824                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4825  SDVTList VTs = getVTList(VT1, VT2);
4826  SDValue Ops[] = { Op1, Op2 };
4827  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4828}
4829
4830MachineSDNode *
4831SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4832                             EVT VT1, EVT VT2, SDValue Op1,
4833                             SDValue Op2, SDValue Op3) {
4834  SDVTList VTs = getVTList(VT1, VT2);
4835  SDValue Ops[] = { Op1, Op2, Op3 };
4836  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4837}
4838
4839MachineSDNode *
4840SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4841                             EVT VT1, EVT VT2,
4842                             const SDValue *Ops, unsigned NumOps) {
4843  SDVTList VTs = getVTList(VT1, VT2);
4844  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4845}
4846
4847MachineSDNode *
4848SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4849                             EVT VT1, EVT VT2, EVT VT3,
4850                             SDValue Op1, SDValue Op2) {
4851  SDVTList VTs = getVTList(VT1, VT2, VT3);
4852  SDValue Ops[] = { Op1, Op2 };
4853  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4854}
4855
4856MachineSDNode *
4857SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4858                             EVT VT1, EVT VT2, EVT VT3,
4859                             SDValue Op1, SDValue Op2, SDValue Op3) {
4860  SDVTList VTs = getVTList(VT1, VT2, VT3);
4861  SDValue Ops[] = { Op1, Op2, Op3 };
4862  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4863}
4864
4865MachineSDNode *
4866SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4867                             EVT VT1, EVT VT2, EVT VT3,
4868                             const SDValue *Ops, unsigned NumOps) {
4869  SDVTList VTs = getVTList(VT1, VT2, VT3);
4870  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4871}
4872
4873MachineSDNode *
4874SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4875                             EVT VT2, EVT VT3, EVT VT4,
4876                             const SDValue *Ops, unsigned NumOps) {
4877  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4878  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4879}
4880
4881MachineSDNode *
4882SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4883                             const std::vector<EVT> &ResultTys,
4884                             const SDValue *Ops, unsigned NumOps) {
4885  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4886  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4887}
4888
4889MachineSDNode *
4890SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4891                             const SDValue *Ops, unsigned NumOps) {
4892  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4893  MachineSDNode *N;
4894  void *IP;
4895
4896  if (DoCSE) {
4897    FoldingSetNodeID ID;
4898    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4899    IP = 0;
4900    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4901      return cast<MachineSDNode>(E);
4902  }
4903
4904  // Allocate a new MachineSDNode.
4905  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4906
4907  // Initialize the operands list.
4908  if (NumOps > array_lengthof(N->LocalOperands))
4909    // We're creating a final node that will live unmorphed for the
4910    // remainder of the current SelectionDAG iteration, so we can allocate
4911    // the operands directly out of a pool with no recycling metadata.
4912    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4913                    Ops, NumOps);
4914  else
4915    N->InitOperands(N->LocalOperands, Ops, NumOps);
4916  N->OperandsNeedDelete = false;
4917
4918  if (DoCSE)
4919    CSEMap.InsertNode(N, IP);
4920
4921  AllNodes.push_back(N);
4922#ifndef NDEBUG
4923  VerifyNode(N);
4924#endif
4925  return N;
4926}
4927
4928/// getTargetExtractSubreg - A convenience function for creating
4929/// TargetOpcode::EXTRACT_SUBREG nodes.
4930SDValue
4931SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4932                                     SDValue Operand) {
4933  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4934  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4935                                  VT, Operand, SRIdxVal);
4936  return SDValue(Subreg, 0);
4937}
4938
4939/// getTargetInsertSubreg - A convenience function for creating
4940/// TargetOpcode::INSERT_SUBREG nodes.
4941SDValue
4942SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4943                                    SDValue Operand, SDValue Subreg) {
4944  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4945  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4946                                  VT, Operand, Subreg, SRIdxVal);
4947  return SDValue(Result, 0);
4948}
4949
4950/// getNodeIfExists - Get the specified node if it's already available, or
4951/// else return NULL.
4952SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4953                                      const SDValue *Ops, unsigned NumOps) {
4954  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4955    FoldingSetNodeID ID;
4956    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4957    void *IP = 0;
4958    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4959      return E;
4960  }
4961  return NULL;
4962}
4963
4964/// getDbgValue - Creates a SDDbgValue node.
4965///
4966SDDbgValue *
4967SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4968                          DebugLoc DL, unsigned O) {
4969  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4970}
4971
4972SDDbgValue *
4973SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4974                          DebugLoc DL, unsigned O) {
4975  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4976}
4977
4978SDDbgValue *
4979SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4980                          DebugLoc DL, unsigned O) {
4981  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4982}
4983
4984namespace {
4985
4986/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4987/// pointed to by a use iterator is deleted, increment the use iterator
4988/// so that it doesn't dangle.
4989///
4990/// This class also manages a "downlink" DAGUpdateListener, to forward
4991/// messages to ReplaceAllUsesWith's callers.
4992///
4993class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4994  SelectionDAG::DAGUpdateListener *DownLink;
4995  SDNode::use_iterator &UI;
4996  SDNode::use_iterator &UE;
4997
4998  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4999    // Increment the iterator as needed.
5000    while (UI != UE && N == *UI)
5001      ++UI;
5002
5003    // Then forward the message.
5004    if (DownLink) DownLink->NodeDeleted(N, E);
5005  }
5006
5007  virtual void NodeUpdated(SDNode *N) {
5008    // Just forward the message.
5009    if (DownLink) DownLink->NodeUpdated(N);
5010  }
5011
5012public:
5013  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5014                     SDNode::use_iterator &ui,
5015                     SDNode::use_iterator &ue)
5016    : DownLink(dl), UI(ui), UE(ue) {}
5017};
5018
5019}
5020
5021/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5022/// This can cause recursive merging of nodes in the DAG.
5023///
5024/// This version assumes From has a single result value.
5025///
5026void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5027                                      DAGUpdateListener *UpdateListener) {
5028  SDNode *From = FromN.getNode();
5029  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5030         "Cannot replace with this method!");
5031  assert(From != To.getNode() && "Cannot replace uses of with self");
5032
5033  // Iterate over all the existing uses of From. New uses will be added
5034  // to the beginning of the use list, which we avoid visiting.
5035  // This specifically avoids visiting uses of From that arise while the
5036  // replacement is happening, because any such uses would be the result
5037  // of CSE: If an existing node looks like From after one of its operands
5038  // is replaced by To, we don't want to replace of all its users with To
5039  // too. See PR3018 for more info.
5040  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5041  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5042  while (UI != UE) {
5043    SDNode *User = *UI;
5044
5045    // This node is about to morph, remove its old self from the CSE maps.
5046    RemoveNodeFromCSEMaps(User);
5047
5048    // A user can appear in a use list multiple times, and when this
5049    // happens the uses are usually next to each other in the list.
5050    // To help reduce the number of CSE recomputations, process all
5051    // the uses of this user that we can find this way.
5052    do {
5053      SDUse &Use = UI.getUse();
5054      ++UI;
5055      Use.set(To);
5056    } while (UI != UE && *UI == User);
5057
5058    // Now that we have modified User, add it back to the CSE maps.  If it
5059    // already exists there, recursively merge the results together.
5060    AddModifiedNodeToCSEMaps(User, &Listener);
5061  }
5062}
5063
5064/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5065/// This can cause recursive merging of nodes in the DAG.
5066///
5067/// This version assumes that for each value of From, there is a
5068/// corresponding value in To in the same position with the same type.
5069///
5070void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5071                                      DAGUpdateListener *UpdateListener) {
5072#ifndef NDEBUG
5073  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5074    assert((!From->hasAnyUseOfValue(i) ||
5075            From->getValueType(i) == To->getValueType(i)) &&
5076           "Cannot use this version of ReplaceAllUsesWith!");
5077#endif
5078
5079  // Handle the trivial case.
5080  if (From == To)
5081    return;
5082
5083  // Iterate over just the existing users of From. See the comments in
5084  // the ReplaceAllUsesWith above.
5085  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5086  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5087  while (UI != UE) {
5088    SDNode *User = *UI;
5089
5090    // This node is about to morph, remove its old self from the CSE maps.
5091    RemoveNodeFromCSEMaps(User);
5092
5093    // A user can appear in a use list multiple times, and when this
5094    // happens the uses are usually next to each other in the list.
5095    // To help reduce the number of CSE recomputations, process all
5096    // the uses of this user that we can find this way.
5097    do {
5098      SDUse &Use = UI.getUse();
5099      ++UI;
5100      Use.setNode(To);
5101    } while (UI != UE && *UI == User);
5102
5103    // Now that we have modified User, add it back to the CSE maps.  If it
5104    // already exists there, recursively merge the results together.
5105    AddModifiedNodeToCSEMaps(User, &Listener);
5106  }
5107}
5108
5109/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5110/// This can cause recursive merging of nodes in the DAG.
5111///
5112/// This version can replace From with any result values.  To must match the
5113/// number and types of values returned by From.
5114void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5115                                      const SDValue *To,
5116                                      DAGUpdateListener *UpdateListener) {
5117  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5118    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5119
5120  // Iterate over just the existing users of From. See the comments in
5121  // the ReplaceAllUsesWith above.
5122  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5123  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5124  while (UI != UE) {
5125    SDNode *User = *UI;
5126
5127    // This node is about to morph, remove its old self from the CSE maps.
5128    RemoveNodeFromCSEMaps(User);
5129
5130    // A user can appear in a use list multiple times, and when this
5131    // happens the uses are usually next to each other in the list.
5132    // To help reduce the number of CSE recomputations, process all
5133    // the uses of this user that we can find this way.
5134    do {
5135      SDUse &Use = UI.getUse();
5136      const SDValue &ToOp = To[Use.getResNo()];
5137      ++UI;
5138      Use.set(ToOp);
5139    } while (UI != UE && *UI == User);
5140
5141    // Now that we have modified User, add it back to the CSE maps.  If it
5142    // already exists there, recursively merge the results together.
5143    AddModifiedNodeToCSEMaps(User, &Listener);
5144  }
5145}
5146
5147/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5148/// uses of other values produced by From.getNode() alone.  The Deleted
5149/// vector is handled the same way as for ReplaceAllUsesWith.
5150void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5151                                             DAGUpdateListener *UpdateListener){
5152  // Handle the really simple, really trivial case efficiently.
5153  if (From == To) return;
5154
5155  // Handle the simple, trivial, case efficiently.
5156  if (From.getNode()->getNumValues() == 1) {
5157    ReplaceAllUsesWith(From, To, UpdateListener);
5158    return;
5159  }
5160
5161  // Iterate over just the existing users of From. See the comments in
5162  // the ReplaceAllUsesWith above.
5163  SDNode::use_iterator UI = From.getNode()->use_begin(),
5164                       UE = From.getNode()->use_end();
5165  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5166  while (UI != UE) {
5167    SDNode *User = *UI;
5168    bool UserRemovedFromCSEMaps = false;
5169
5170    // A user can appear in a use list multiple times, and when this
5171    // happens the uses are usually next to each other in the list.
5172    // To help reduce the number of CSE recomputations, process all
5173    // the uses of this user that we can find this way.
5174    do {
5175      SDUse &Use = UI.getUse();
5176
5177      // Skip uses of different values from the same node.
5178      if (Use.getResNo() != From.getResNo()) {
5179        ++UI;
5180        continue;
5181      }
5182
5183      // If this node hasn't been modified yet, it's still in the CSE maps,
5184      // so remove its old self from the CSE maps.
5185      if (!UserRemovedFromCSEMaps) {
5186        RemoveNodeFromCSEMaps(User);
5187        UserRemovedFromCSEMaps = true;
5188      }
5189
5190      ++UI;
5191      Use.set(To);
5192    } while (UI != UE && *UI == User);
5193
5194    // We are iterating over all uses of the From node, so if a use
5195    // doesn't use the specific value, no changes are made.
5196    if (!UserRemovedFromCSEMaps)
5197      continue;
5198
5199    // Now that we have modified User, add it back to the CSE maps.  If it
5200    // already exists there, recursively merge the results together.
5201    AddModifiedNodeToCSEMaps(User, &Listener);
5202  }
5203}
5204
5205namespace {
5206  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5207  /// to record information about a use.
5208  struct UseMemo {
5209    SDNode *User;
5210    unsigned Index;
5211    SDUse *Use;
5212  };
5213
5214  /// operator< - Sort Memos by User.
5215  bool operator<(const UseMemo &L, const UseMemo &R) {
5216    return (intptr_t)L.User < (intptr_t)R.User;
5217  }
5218}
5219
5220/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5221/// uses of other values produced by From.getNode() alone.  The same value
5222/// may appear in both the From and To list.  The Deleted vector is
5223/// handled the same way as for ReplaceAllUsesWith.
5224void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5225                                              const SDValue *To,
5226                                              unsigned Num,
5227                                              DAGUpdateListener *UpdateListener){
5228  // Handle the simple, trivial case efficiently.
5229  if (Num == 1)
5230    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5231
5232  // Read up all the uses and make records of them. This helps
5233  // processing new uses that are introduced during the
5234  // replacement process.
5235  SmallVector<UseMemo, 4> Uses;
5236  for (unsigned i = 0; i != Num; ++i) {
5237    unsigned FromResNo = From[i].getResNo();
5238    SDNode *FromNode = From[i].getNode();
5239    for (SDNode::use_iterator UI = FromNode->use_begin(),
5240         E = FromNode->use_end(); UI != E; ++UI) {
5241      SDUse &Use = UI.getUse();
5242      if (Use.getResNo() == FromResNo) {
5243        UseMemo Memo = { *UI, i, &Use };
5244        Uses.push_back(Memo);
5245      }
5246    }
5247  }
5248
5249  // Sort the uses, so that all the uses from a given User are together.
5250  std::sort(Uses.begin(), Uses.end());
5251
5252  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5253       UseIndex != UseIndexEnd; ) {
5254    // We know that this user uses some value of From.  If it is the right
5255    // value, update it.
5256    SDNode *User = Uses[UseIndex].User;
5257
5258    // This node is about to morph, remove its old self from the CSE maps.
5259    RemoveNodeFromCSEMaps(User);
5260
5261    // The Uses array is sorted, so all the uses for a given User
5262    // are next to each other in the list.
5263    // To help reduce the number of CSE recomputations, process all
5264    // the uses of this user that we can find this way.
5265    do {
5266      unsigned i = Uses[UseIndex].Index;
5267      SDUse &Use = *Uses[UseIndex].Use;
5268      ++UseIndex;
5269
5270      Use.set(To[i]);
5271    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5272
5273    // Now that we have modified User, add it back to the CSE maps.  If it
5274    // already exists there, recursively merge the results together.
5275    AddModifiedNodeToCSEMaps(User, UpdateListener);
5276  }
5277}
5278
5279/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5280/// based on their topological order. It returns the maximum id and a vector
5281/// of the SDNodes* in assigned order by reference.
5282unsigned SelectionDAG::AssignTopologicalOrder() {
5283
5284  unsigned DAGSize = 0;
5285
5286  // SortedPos tracks the progress of the algorithm. Nodes before it are
5287  // sorted, nodes after it are unsorted. When the algorithm completes
5288  // it is at the end of the list.
5289  allnodes_iterator SortedPos = allnodes_begin();
5290
5291  // Visit all the nodes. Move nodes with no operands to the front of
5292  // the list immediately. Annotate nodes that do have operands with their
5293  // operand count. Before we do this, the Node Id fields of the nodes
5294  // may contain arbitrary values. After, the Node Id fields for nodes
5295  // before SortedPos will contain the topological sort index, and the
5296  // Node Id fields for nodes At SortedPos and after will contain the
5297  // count of outstanding operands.
5298  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5299    SDNode *N = I++;
5300    checkForCycles(N);
5301    unsigned Degree = N->getNumOperands();
5302    if (Degree == 0) {
5303      // A node with no uses, add it to the result array immediately.
5304      N->setNodeId(DAGSize++);
5305      allnodes_iterator Q = N;
5306      if (Q != SortedPos)
5307        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5308      assert(SortedPos != AllNodes.end() && "Overran node list");
5309      ++SortedPos;
5310    } else {
5311      // Temporarily use the Node Id as scratch space for the degree count.
5312      N->setNodeId(Degree);
5313    }
5314  }
5315
5316  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5317  // such that by the time the end is reached all nodes will be sorted.
5318  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5319    SDNode *N = I;
5320    checkForCycles(N);
5321    // N is in sorted position, so all its uses have one less operand
5322    // that needs to be sorted.
5323    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5324         UI != UE; ++UI) {
5325      SDNode *P = *UI;
5326      unsigned Degree = P->getNodeId();
5327      assert(Degree != 0 && "Invalid node degree");
5328      --Degree;
5329      if (Degree == 0) {
5330        // All of P's operands are sorted, so P may sorted now.
5331        P->setNodeId(DAGSize++);
5332        if (P != SortedPos)
5333          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5334        assert(SortedPos != AllNodes.end() && "Overran node list");
5335        ++SortedPos;
5336      } else {
5337        // Update P's outstanding operand count.
5338        P->setNodeId(Degree);
5339      }
5340    }
5341    if (I == SortedPos) {
5342#ifndef NDEBUG
5343      SDNode *S = ++I;
5344      dbgs() << "Overran sorted position:\n";
5345      S->dumprFull();
5346#endif
5347      llvm_unreachable(0);
5348    }
5349  }
5350
5351  assert(SortedPos == AllNodes.end() &&
5352         "Topological sort incomplete!");
5353  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5354         "First node in topological sort is not the entry token!");
5355  assert(AllNodes.front().getNodeId() == 0 &&
5356         "First node in topological sort has non-zero id!");
5357  assert(AllNodes.front().getNumOperands() == 0 &&
5358         "First node in topological sort has operands!");
5359  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5360         "Last node in topologic sort has unexpected id!");
5361  assert(AllNodes.back().use_empty() &&
5362         "Last node in topologic sort has users!");
5363  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5364  return DAGSize;
5365}
5366
5367/// AssignOrdering - Assign an order to the SDNode.
5368void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5369  assert(SD && "Trying to assign an order to a null node!");
5370  Ordering->add(SD, Order);
5371}
5372
5373/// GetOrdering - Get the order for the SDNode.
5374unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5375  assert(SD && "Trying to get the order of a null node!");
5376  return Ordering->getOrder(SD);
5377}
5378
5379/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5380/// value is produced by SD.
5381void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5382  DbgInfo->add(DB, SD, isParameter);
5383  if (SD)
5384    SD->setHasDebugValue(true);
5385}
5386
5387//===----------------------------------------------------------------------===//
5388//                              SDNode Class
5389//===----------------------------------------------------------------------===//
5390
5391HandleSDNode::~HandleSDNode() {
5392  DropOperands();
5393}
5394
5395GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5396                                         EVT VT, int64_t o, unsigned char TF)
5397  : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5398  TheGlobal = GA;
5399}
5400
5401MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5402                     MachineMemOperand *mmo)
5403 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5404  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5405                                      MMO->isNonTemporal());
5406  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5407  assert(isNonTemporal() == MMO->isNonTemporal() &&
5408         "Non-temporal encoding error!");
5409  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5410}
5411
5412MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5413                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5414                     MachineMemOperand *mmo)
5415   : SDNode(Opc, dl, VTs, Ops, NumOps),
5416     MemoryVT(memvt), MMO(mmo) {
5417  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5418                                      MMO->isNonTemporal());
5419  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5420  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5421}
5422
5423/// Profile - Gather unique data for the node.
5424///
5425void SDNode::Profile(FoldingSetNodeID &ID) const {
5426  AddNodeIDNode(ID, this);
5427}
5428
5429namespace {
5430  struct EVTArray {
5431    std::vector<EVT> VTs;
5432
5433    EVTArray() {
5434      VTs.reserve(MVT::LAST_VALUETYPE);
5435      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5436        VTs.push_back(MVT((MVT::SimpleValueType)i));
5437    }
5438  };
5439}
5440
5441static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5442static ManagedStatic<EVTArray> SimpleVTArray;
5443static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5444
5445/// getValueTypeList - Return a pointer to the specified value type.
5446///
5447const EVT *SDNode::getValueTypeList(EVT VT) {
5448  if (VT.isExtended()) {
5449    sys::SmartScopedLock<true> Lock(*VTMutex);
5450    return &(*EVTs->insert(VT).first);
5451  } else {
5452    assert(VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
5453           "Value type out of range!");
5454    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5455  }
5456}
5457
5458/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5459/// indicated value.  This method ignores uses of other values defined by this
5460/// operation.
5461bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5462  assert(Value < getNumValues() && "Bad value!");
5463
5464  // TODO: Only iterate over uses of a given value of the node
5465  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5466    if (UI.getUse().getResNo() == Value) {
5467      if (NUses == 0)
5468        return false;
5469      --NUses;
5470    }
5471  }
5472
5473  // Found exactly the right number of uses?
5474  return NUses == 0;
5475}
5476
5477
5478/// hasAnyUseOfValue - Return true if there are any use of the indicated
5479/// value. This method ignores uses of other values defined by this operation.
5480bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5481  assert(Value < getNumValues() && "Bad value!");
5482
5483  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5484    if (UI.getUse().getResNo() == Value)
5485      return true;
5486
5487  return false;
5488}
5489
5490
5491/// isOnlyUserOf - Return true if this node is the only use of N.
5492///
5493bool SDNode::isOnlyUserOf(SDNode *N) const {
5494  bool Seen = false;
5495  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5496    SDNode *User = *I;
5497    if (User == this)
5498      Seen = true;
5499    else
5500      return false;
5501  }
5502
5503  return Seen;
5504}
5505
5506/// isOperand - Return true if this node is an operand of N.
5507///
5508bool SDValue::isOperandOf(SDNode *N) const {
5509  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5510    if (*this == N->getOperand(i))
5511      return true;
5512  return false;
5513}
5514
5515bool SDNode::isOperandOf(SDNode *N) const {
5516  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5517    if (this == N->OperandList[i].getNode())
5518      return true;
5519  return false;
5520}
5521
5522/// reachesChainWithoutSideEffects - Return true if this operand (which must
5523/// be a chain) reaches the specified operand without crossing any
5524/// side-effecting instructions.  In practice, this looks through token
5525/// factors and non-volatile loads.  In order to remain efficient, this only
5526/// looks a couple of nodes in, it does not do an exhaustive search.
5527bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5528                                               unsigned Depth) const {
5529  if (*this == Dest) return true;
5530
5531  // Don't search too deeply, we just want to be able to see through
5532  // TokenFactor's etc.
5533  if (Depth == 0) return false;
5534
5535  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5536  // of the operands of the TF reach dest, then we can do the xform.
5537  if (getOpcode() == ISD::TokenFactor) {
5538    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5539      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5540        return true;
5541    return false;
5542  }
5543
5544  // Loads don't have side effects, look through them.
5545  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5546    if (!Ld->isVolatile())
5547      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5548  }
5549  return false;
5550}
5551
5552/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5553/// is either an operand of N or it can be reached by traversing up the operands.
5554/// NOTE: this is an expensive method. Use it carefully.
5555bool SDNode::isPredecessorOf(SDNode *N) const {
5556  SmallPtrSet<SDNode *, 32> Visited;
5557  SmallVector<SDNode *, 16> Worklist;
5558  Worklist.push_back(N);
5559
5560  do {
5561    N = Worklist.pop_back_val();
5562    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5563      SDNode *Op = N->getOperand(i).getNode();
5564      if (Op == this)
5565        return true;
5566      if (Visited.insert(Op))
5567        Worklist.push_back(Op);
5568    }
5569  } while (!Worklist.empty());
5570
5571  return false;
5572}
5573
5574uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5575  assert(Num < NumOperands && "Invalid child # of SDNode!");
5576  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5577}
5578
5579std::string SDNode::getOperationName(const SelectionDAG *G) const {
5580  switch (getOpcode()) {
5581  default:
5582    if (getOpcode() < ISD::BUILTIN_OP_END)
5583      return "<<Unknown DAG Node>>";
5584    if (isMachineOpcode()) {
5585      if (G)
5586        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5587          if (getMachineOpcode() < TII->getNumOpcodes())
5588            return TII->get(getMachineOpcode()).getName();
5589      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5590    }
5591    if (G) {
5592      const TargetLowering &TLI = G->getTargetLoweringInfo();
5593      const char *Name = TLI.getTargetNodeName(getOpcode());
5594      if (Name) return Name;
5595      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5596    }
5597    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5598
5599#ifndef NDEBUG
5600  case ISD::DELETED_NODE:
5601    return "<<Deleted Node!>>";
5602#endif
5603  case ISD::PREFETCH:      return "Prefetch";
5604  case ISD::MEMBARRIER:    return "MemBarrier";
5605  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5606  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5607  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5608  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5609  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5610  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5611  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5612  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5613  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5614  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5615  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5616  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5617  case ISD::PCMARKER:      return "PCMarker";
5618  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5619  case ISD::SRCVALUE:      return "SrcValue";
5620  case ISD::MDNODE_SDNODE: return "MDNode";
5621  case ISD::EntryToken:    return "EntryToken";
5622  case ISD::TokenFactor:   return "TokenFactor";
5623  case ISD::AssertSext:    return "AssertSext";
5624  case ISD::AssertZext:    return "AssertZext";
5625
5626  case ISD::BasicBlock:    return "BasicBlock";
5627  case ISD::VALUETYPE:     return "ValueType";
5628  case ISD::Register:      return "Register";
5629
5630  case ISD::Constant:      return "Constant";
5631  case ISD::ConstantFP:    return "ConstantFP";
5632  case ISD::GlobalAddress: return "GlobalAddress";
5633  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5634  case ISD::FrameIndex:    return "FrameIndex";
5635  case ISD::JumpTable:     return "JumpTable";
5636  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5637  case ISD::RETURNADDR: return "RETURNADDR";
5638  case ISD::FRAMEADDR: return "FRAMEADDR";
5639  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5640  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5641  case ISD::LSDAADDR: return "LSDAADDR";
5642  case ISD::EHSELECTION: return "EHSELECTION";
5643  case ISD::EH_RETURN: return "EH_RETURN";
5644  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5645  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5646  case ISD::ConstantPool:  return "ConstantPool";
5647  case ISD::ExternalSymbol: return "ExternalSymbol";
5648  case ISD::BlockAddress:  return "BlockAddress";
5649  case ISD::INTRINSIC_WO_CHAIN:
5650  case ISD::INTRINSIC_VOID:
5651  case ISD::INTRINSIC_W_CHAIN: {
5652    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5653    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5654    if (IID < Intrinsic::num_intrinsics)
5655      return Intrinsic::getName((Intrinsic::ID)IID);
5656    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5657      return TII->getName(IID);
5658    llvm_unreachable("Invalid intrinsic ID");
5659  }
5660
5661  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5662  case ISD::TargetConstant: return "TargetConstant";
5663  case ISD::TargetConstantFP:return "TargetConstantFP";
5664  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5665  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5666  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5667  case ISD::TargetJumpTable:  return "TargetJumpTable";
5668  case ISD::TargetConstantPool:  return "TargetConstantPool";
5669  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5670  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5671
5672  case ISD::CopyToReg:     return "CopyToReg";
5673  case ISD::CopyFromReg:   return "CopyFromReg";
5674  case ISD::UNDEF:         return "undef";
5675  case ISD::MERGE_VALUES:  return "merge_values";
5676  case ISD::INLINEASM:     return "inlineasm";
5677  case ISD::EH_LABEL:      return "eh_label";
5678  case ISD::HANDLENODE:    return "handlenode";
5679
5680  // Unary operators
5681  case ISD::FABS:   return "fabs";
5682  case ISD::FNEG:   return "fneg";
5683  case ISD::FSQRT:  return "fsqrt";
5684  case ISD::FSIN:   return "fsin";
5685  case ISD::FCOS:   return "fcos";
5686  case ISD::FTRUNC: return "ftrunc";
5687  case ISD::FFLOOR: return "ffloor";
5688  case ISD::FCEIL:  return "fceil";
5689  case ISD::FRINT:  return "frint";
5690  case ISD::FNEARBYINT: return "fnearbyint";
5691  case ISD::FEXP:   return "fexp";
5692  case ISD::FEXP2:  return "fexp2";
5693  case ISD::FLOG:   return "flog";
5694  case ISD::FLOG2:  return "flog2";
5695  case ISD::FLOG10: return "flog10";
5696
5697  // Binary operators
5698  case ISD::ADD:    return "add";
5699  case ISD::SUB:    return "sub";
5700  case ISD::MUL:    return "mul";
5701  case ISD::MULHU:  return "mulhu";
5702  case ISD::MULHS:  return "mulhs";
5703  case ISD::SDIV:   return "sdiv";
5704  case ISD::UDIV:   return "udiv";
5705  case ISD::SREM:   return "srem";
5706  case ISD::UREM:   return "urem";
5707  case ISD::SMUL_LOHI:  return "smul_lohi";
5708  case ISD::UMUL_LOHI:  return "umul_lohi";
5709  case ISD::SDIVREM:    return "sdivrem";
5710  case ISD::UDIVREM:    return "udivrem";
5711  case ISD::AND:    return "and";
5712  case ISD::OR:     return "or";
5713  case ISD::XOR:    return "xor";
5714  case ISD::SHL:    return "shl";
5715  case ISD::SRA:    return "sra";
5716  case ISD::SRL:    return "srl";
5717  case ISD::ROTL:   return "rotl";
5718  case ISD::ROTR:   return "rotr";
5719  case ISD::FADD:   return "fadd";
5720  case ISD::FSUB:   return "fsub";
5721  case ISD::FMUL:   return "fmul";
5722  case ISD::FDIV:   return "fdiv";
5723  case ISD::FREM:   return "frem";
5724  case ISD::FCOPYSIGN: return "fcopysign";
5725  case ISD::FGETSIGN:  return "fgetsign";
5726  case ISD::FPOW:   return "fpow";
5727
5728  case ISD::FPOWI:  return "fpowi";
5729  case ISD::SETCC:       return "setcc";
5730  case ISD::VSETCC:      return "vsetcc";
5731  case ISD::SELECT:      return "select";
5732  case ISD::SELECT_CC:   return "select_cc";
5733  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5734  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5735  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5736  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5737  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5738  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5739  case ISD::CARRY_FALSE:         return "carry_false";
5740  case ISD::ADDC:        return "addc";
5741  case ISD::ADDE:        return "adde";
5742  case ISD::SADDO:       return "saddo";
5743  case ISD::UADDO:       return "uaddo";
5744  case ISD::SSUBO:       return "ssubo";
5745  case ISD::USUBO:       return "usubo";
5746  case ISD::SMULO:       return "smulo";
5747  case ISD::UMULO:       return "umulo";
5748  case ISD::SUBC:        return "subc";
5749  case ISD::SUBE:        return "sube";
5750  case ISD::SHL_PARTS:   return "shl_parts";
5751  case ISD::SRA_PARTS:   return "sra_parts";
5752  case ISD::SRL_PARTS:   return "srl_parts";
5753
5754  // Conversion operators.
5755  case ISD::SIGN_EXTEND: return "sign_extend";
5756  case ISD::ZERO_EXTEND: return "zero_extend";
5757  case ISD::ANY_EXTEND:  return "any_extend";
5758  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5759  case ISD::TRUNCATE:    return "truncate";
5760  case ISD::FP_ROUND:    return "fp_round";
5761  case ISD::FLT_ROUNDS_: return "flt_rounds";
5762  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5763  case ISD::FP_EXTEND:   return "fp_extend";
5764
5765  case ISD::SINT_TO_FP:  return "sint_to_fp";
5766  case ISD::UINT_TO_FP:  return "uint_to_fp";
5767  case ISD::FP_TO_SINT:  return "fp_to_sint";
5768  case ISD::FP_TO_UINT:  return "fp_to_uint";
5769  case ISD::BIT_CONVERT: return "bit_convert";
5770  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5771  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5772
5773  case ISD::CONVERT_RNDSAT: {
5774    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5775    default: llvm_unreachable("Unknown cvt code!");
5776    case ISD::CVT_FF:  return "cvt_ff";
5777    case ISD::CVT_FS:  return "cvt_fs";
5778    case ISD::CVT_FU:  return "cvt_fu";
5779    case ISD::CVT_SF:  return "cvt_sf";
5780    case ISD::CVT_UF:  return "cvt_uf";
5781    case ISD::CVT_SS:  return "cvt_ss";
5782    case ISD::CVT_SU:  return "cvt_su";
5783    case ISD::CVT_US:  return "cvt_us";
5784    case ISD::CVT_UU:  return "cvt_uu";
5785    }
5786  }
5787
5788    // Control flow instructions
5789  case ISD::BR:      return "br";
5790  case ISD::BRIND:   return "brind";
5791  case ISD::BR_JT:   return "br_jt";
5792  case ISD::BRCOND:  return "brcond";
5793  case ISD::BR_CC:   return "br_cc";
5794  case ISD::CALLSEQ_START:  return "callseq_start";
5795  case ISD::CALLSEQ_END:    return "callseq_end";
5796
5797    // Other operators
5798  case ISD::LOAD:               return "load";
5799  case ISD::STORE:              return "store";
5800  case ISD::VAARG:              return "vaarg";
5801  case ISD::VACOPY:             return "vacopy";
5802  case ISD::VAEND:              return "vaend";
5803  case ISD::VASTART:            return "vastart";
5804  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5805  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5806  case ISD::BUILD_PAIR:         return "build_pair";
5807  case ISD::STACKSAVE:          return "stacksave";
5808  case ISD::STACKRESTORE:       return "stackrestore";
5809  case ISD::TRAP:               return "trap";
5810
5811  // Bit manipulation
5812  case ISD::BSWAP:   return "bswap";
5813  case ISD::CTPOP:   return "ctpop";
5814  case ISD::CTTZ:    return "cttz";
5815  case ISD::CTLZ:    return "ctlz";
5816
5817  // Trampolines
5818  case ISD::TRAMPOLINE: return "trampoline";
5819
5820  case ISD::CONDCODE:
5821    switch (cast<CondCodeSDNode>(this)->get()) {
5822    default: llvm_unreachable("Unknown setcc condition!");
5823    case ISD::SETOEQ:  return "setoeq";
5824    case ISD::SETOGT:  return "setogt";
5825    case ISD::SETOGE:  return "setoge";
5826    case ISD::SETOLT:  return "setolt";
5827    case ISD::SETOLE:  return "setole";
5828    case ISD::SETONE:  return "setone";
5829
5830    case ISD::SETO:    return "seto";
5831    case ISD::SETUO:   return "setuo";
5832    case ISD::SETUEQ:  return "setue";
5833    case ISD::SETUGT:  return "setugt";
5834    case ISD::SETUGE:  return "setuge";
5835    case ISD::SETULT:  return "setult";
5836    case ISD::SETULE:  return "setule";
5837    case ISD::SETUNE:  return "setune";
5838
5839    case ISD::SETEQ:   return "seteq";
5840    case ISD::SETGT:   return "setgt";
5841    case ISD::SETGE:   return "setge";
5842    case ISD::SETLT:   return "setlt";
5843    case ISD::SETLE:   return "setle";
5844    case ISD::SETNE:   return "setne";
5845    }
5846  }
5847}
5848
5849const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5850  switch (AM) {
5851  default:
5852    return "";
5853  case ISD::PRE_INC:
5854    return "<pre-inc>";
5855  case ISD::PRE_DEC:
5856    return "<pre-dec>";
5857  case ISD::POST_INC:
5858    return "<post-inc>";
5859  case ISD::POST_DEC:
5860    return "<post-dec>";
5861  }
5862}
5863
5864std::string ISD::ArgFlagsTy::getArgFlagsString() {
5865  std::string S = "< ";
5866
5867  if (isZExt())
5868    S += "zext ";
5869  if (isSExt())
5870    S += "sext ";
5871  if (isInReg())
5872    S += "inreg ";
5873  if (isSRet())
5874    S += "sret ";
5875  if (isByVal())
5876    S += "byval ";
5877  if (isNest())
5878    S += "nest ";
5879  if (getByValAlign())
5880    S += "byval-align:" + utostr(getByValAlign()) + " ";
5881  if (getOrigAlign())
5882    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5883  if (getByValSize())
5884    S += "byval-size:" + utostr(getByValSize()) + " ";
5885  return S + ">";
5886}
5887
5888void SDNode::dump() const { dump(0); }
5889void SDNode::dump(const SelectionDAG *G) const {
5890  print(dbgs(), G);
5891}
5892
5893void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5894  OS << (void*)this << ": ";
5895
5896  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5897    if (i) OS << ",";
5898    if (getValueType(i) == MVT::Other)
5899      OS << "ch";
5900    else
5901      OS << getValueType(i).getEVTString();
5902  }
5903  OS << " = " << getOperationName(G);
5904}
5905
5906void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5907  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5908    if (!MN->memoperands_empty()) {
5909      OS << "<";
5910      OS << "Mem:";
5911      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5912           e = MN->memoperands_end(); i != e; ++i) {
5913        OS << **i;
5914        if (next(i) != e)
5915          OS << " ";
5916      }
5917      OS << ">";
5918    }
5919  } else if (const ShuffleVectorSDNode *SVN =
5920               dyn_cast<ShuffleVectorSDNode>(this)) {
5921    OS << "<";
5922    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5923      int Idx = SVN->getMaskElt(i);
5924      if (i) OS << ",";
5925      if (Idx < 0)
5926        OS << "u";
5927      else
5928        OS << Idx;
5929    }
5930    OS << ">";
5931  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5932    OS << '<' << CSDN->getAPIntValue() << '>';
5933  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5934    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5935      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5936    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5937      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5938    else {
5939      OS << "<APFloat(";
5940      CSDN->getValueAPF().bitcastToAPInt().dump();
5941      OS << ")>";
5942    }
5943  } else if (const GlobalAddressSDNode *GADN =
5944             dyn_cast<GlobalAddressSDNode>(this)) {
5945    int64_t offset = GADN->getOffset();
5946    OS << '<';
5947    WriteAsOperand(OS, GADN->getGlobal());
5948    OS << '>';
5949    if (offset > 0)
5950      OS << " + " << offset;
5951    else
5952      OS << " " << offset;
5953    if (unsigned int TF = GADN->getTargetFlags())
5954      OS << " [TF=" << TF << ']';
5955  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5956    OS << "<" << FIDN->getIndex() << ">";
5957  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5958    OS << "<" << JTDN->getIndex() << ">";
5959    if (unsigned int TF = JTDN->getTargetFlags())
5960      OS << " [TF=" << TF << ']';
5961  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5962    int offset = CP->getOffset();
5963    if (CP->isMachineConstantPoolEntry())
5964      OS << "<" << *CP->getMachineCPVal() << ">";
5965    else
5966      OS << "<" << *CP->getConstVal() << ">";
5967    if (offset > 0)
5968      OS << " + " << offset;
5969    else
5970      OS << " " << offset;
5971    if (unsigned int TF = CP->getTargetFlags())
5972      OS << " [TF=" << TF << ']';
5973  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5974    OS << "<";
5975    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5976    if (LBB)
5977      OS << LBB->getName() << " ";
5978    OS << (const void*)BBDN->getBasicBlock() << ">";
5979  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5980    if (G && R->getReg() &&
5981        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5982      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5983    } else {
5984      OS << " %reg" << R->getReg();
5985    }
5986  } else if (const ExternalSymbolSDNode *ES =
5987             dyn_cast<ExternalSymbolSDNode>(this)) {
5988    OS << "'" << ES->getSymbol() << "'";
5989    if (unsigned int TF = ES->getTargetFlags())
5990      OS << " [TF=" << TF << ']';
5991  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5992    if (M->getValue())
5993      OS << "<" << M->getValue() << ">";
5994    else
5995      OS << "<null>";
5996  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
5997    if (MD->getMD())
5998      OS << "<" << MD->getMD() << ">";
5999    else
6000      OS << "<null>";
6001  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6002    OS << ":" << N->getVT().getEVTString();
6003  }
6004  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6005    OS << "<" << *LD->getMemOperand();
6006
6007    bool doExt = true;
6008    switch (LD->getExtensionType()) {
6009    default: doExt = false; break;
6010    case ISD::EXTLOAD: OS << ", anyext"; break;
6011    case ISD::SEXTLOAD: OS << ", sext"; break;
6012    case ISD::ZEXTLOAD: OS << ", zext"; break;
6013    }
6014    if (doExt)
6015      OS << " from " << LD->getMemoryVT().getEVTString();
6016
6017    const char *AM = getIndexedModeName(LD->getAddressingMode());
6018    if (*AM)
6019      OS << ", " << AM;
6020
6021    OS << ">";
6022  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6023    OS << "<" << *ST->getMemOperand();
6024
6025    if (ST->isTruncatingStore())
6026      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6027
6028    const char *AM = getIndexedModeName(ST->getAddressingMode());
6029    if (*AM)
6030      OS << ", " << AM;
6031
6032    OS << ">";
6033  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6034    OS << "<" << *M->getMemOperand() << ">";
6035  } else if (const BlockAddressSDNode *BA =
6036               dyn_cast<BlockAddressSDNode>(this)) {
6037    OS << "<";
6038    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6039    OS << ", ";
6040    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6041    OS << ">";
6042    if (unsigned int TF = BA->getTargetFlags())
6043      OS << " [TF=" << TF << ']';
6044  }
6045
6046  if (G)
6047    if (unsigned Order = G->GetOrdering(this))
6048      OS << " [ORD=" << Order << ']';
6049
6050  if (getNodeId() != -1)
6051    OS << " [ID=" << getNodeId() << ']';
6052
6053  DebugLoc dl = getDebugLoc();
6054  if (G && !dl.isUnknown()) {
6055    DIScope
6056      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6057    OS << " dbg:";
6058    // Omit the directory, since it's usually long and uninteresting.
6059    if (Scope.Verify())
6060      OS << Scope.getFilename();
6061    else
6062      OS << "<unknown>";
6063    OS << ':' << dl.getLine();
6064    if (dl.getCol() != 0)
6065      OS << ':' << dl.getCol();
6066  }
6067}
6068
6069void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6070  print_types(OS, G);
6071  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6072    if (i) OS << ", "; else OS << " ";
6073    OS << (void*)getOperand(i).getNode();
6074    if (unsigned RN = getOperand(i).getResNo())
6075      OS << ":" << RN;
6076  }
6077  print_details(OS, G);
6078}
6079
6080static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6081                                  const SelectionDAG *G, unsigned depth,
6082                                  unsigned indent)
6083{
6084  if (depth == 0)
6085    return;
6086
6087  OS.indent(indent);
6088
6089  N->print(OS, G);
6090
6091  if (depth < 1)
6092    return;
6093
6094  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6095    OS << '\n';
6096    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6097  }
6098}
6099
6100void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6101                            unsigned depth) const {
6102  printrWithDepthHelper(OS, this, G, depth, 0);
6103}
6104
6105void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6106  // Don't print impossibly deep things.
6107  printrWithDepth(OS, G, 100);
6108}
6109
6110void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6111  printrWithDepth(dbgs(), G, depth);
6112}
6113
6114void SDNode::dumprFull(const SelectionDAG *G) const {
6115  // Don't print impossibly deep things.
6116  dumprWithDepth(G, 100);
6117}
6118
6119static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6120  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6121    if (N->getOperand(i).getNode()->hasOneUse())
6122      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6123    else
6124      dbgs() << "\n" << std::string(indent+2, ' ')
6125           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6126
6127
6128  dbgs() << "\n";
6129  dbgs().indent(indent);
6130  N->dump(G);
6131}
6132
6133SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6134  assert(N->getNumValues() == 1 &&
6135         "Can't unroll a vector with multiple results!");
6136
6137  EVT VT = N->getValueType(0);
6138  unsigned NE = VT.getVectorNumElements();
6139  EVT EltVT = VT.getVectorElementType();
6140  DebugLoc dl = N->getDebugLoc();
6141
6142  SmallVector<SDValue, 8> Scalars;
6143  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6144
6145  // If ResNE is 0, fully unroll the vector op.
6146  if (ResNE == 0)
6147    ResNE = NE;
6148  else if (NE > ResNE)
6149    NE = ResNE;
6150
6151  unsigned i;
6152  for (i= 0; i != NE; ++i) {
6153    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6154      SDValue Operand = N->getOperand(j);
6155      EVT OperandVT = Operand.getValueType();
6156      if (OperandVT.isVector()) {
6157        // A vector operand; extract a single element.
6158        EVT OperandEltVT = OperandVT.getVectorElementType();
6159        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6160                              OperandEltVT,
6161                              Operand,
6162                              getConstant(i, MVT::i32));
6163      } else {
6164        // A scalar operand; just use it as is.
6165        Operands[j] = Operand;
6166      }
6167    }
6168
6169    switch (N->getOpcode()) {
6170    default:
6171      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6172                                &Operands[0], Operands.size()));
6173      break;
6174    case ISD::SHL:
6175    case ISD::SRA:
6176    case ISD::SRL:
6177    case ISD::ROTL:
6178    case ISD::ROTR:
6179      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6180                                getShiftAmountOperand(Operands[1])));
6181      break;
6182    case ISD::SIGN_EXTEND_INREG:
6183    case ISD::FP_ROUND_INREG: {
6184      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6185      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6186                                Operands[0],
6187                                getValueType(ExtVT)));
6188    }
6189    }
6190  }
6191
6192  for (; i < ResNE; ++i)
6193    Scalars.push_back(getUNDEF(EltVT));
6194
6195  return getNode(ISD::BUILD_VECTOR, dl,
6196                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6197                 &Scalars[0], Scalars.size());
6198}
6199
6200
6201/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6202/// location that is 'Dist' units away from the location that the 'Base' load
6203/// is loading from.
6204bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6205                                     unsigned Bytes, int Dist) const {
6206  if (LD->getChain() != Base->getChain())
6207    return false;
6208  EVT VT = LD->getValueType(0);
6209  if (VT.getSizeInBits() / 8 != Bytes)
6210    return false;
6211
6212  SDValue Loc = LD->getOperand(1);
6213  SDValue BaseLoc = Base->getOperand(1);
6214  if (Loc.getOpcode() == ISD::FrameIndex) {
6215    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6216      return false;
6217    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6218    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6219    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6220    int FS  = MFI->getObjectSize(FI);
6221    int BFS = MFI->getObjectSize(BFI);
6222    if (FS != BFS || FS != (int)Bytes) return false;
6223    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6224  }
6225  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6226    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6227    if (V && (V->getSExtValue() == Dist*Bytes))
6228      return true;
6229  }
6230
6231  const GlobalValue *GV1 = NULL;
6232  const GlobalValue *GV2 = NULL;
6233  int64_t Offset1 = 0;
6234  int64_t Offset2 = 0;
6235  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6236  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6237  if (isGA1 && isGA2 && GV1 == GV2)
6238    return Offset1 == (Offset2 + Dist*Bytes);
6239  return false;
6240}
6241
6242
6243/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6244/// it cannot be inferred.
6245unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6246  // If this is a GlobalAddress + cst, return the alignment.
6247  const GlobalValue *GV;
6248  int64_t GVOffset = 0;
6249  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6250    // If GV has specified alignment, then use it. Otherwise, use the preferred
6251    // alignment.
6252    unsigned Align = GV->getAlignment();
6253    if (!Align) {
6254      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6255        if (GVar->hasInitializer()) {
6256          const TargetData *TD = TLI.getTargetData();
6257          Align = TD->getPreferredAlignment(GVar);
6258        }
6259      }
6260    }
6261    return MinAlign(Align, GVOffset);
6262  }
6263
6264  // If this is a direct reference to a stack slot, use information about the
6265  // stack slot's alignment.
6266  int FrameIdx = 1 << 31;
6267  int64_t FrameOffset = 0;
6268  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6269    FrameIdx = FI->getIndex();
6270  } else if (Ptr.getOpcode() == ISD::ADD &&
6271             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6272             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6273    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6274    FrameOffset = Ptr.getConstantOperandVal(1);
6275  }
6276
6277  if (FrameIdx != (1 << 31)) {
6278    // FIXME: Handle FI+CST.
6279    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6280    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6281                                    FrameOffset);
6282    if (MFI.isFixedObjectIndex(FrameIdx)) {
6283      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6284
6285      // The alignment of the frame index can be determined from its offset from
6286      // the incoming frame position.  If the frame object is at offset 32 and
6287      // the stack is guaranteed to be 16-byte aligned, then we know that the
6288      // object is 16-byte aligned.
6289      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6290      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6291
6292      // Finally, the frame object itself may have a known alignment.  Factor
6293      // the alignment + offset into a new alignment.  For example, if we know
6294      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6295      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6296      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6297      return std::max(Align, FIInfoAlign);
6298    }
6299    return FIInfoAlign;
6300  }
6301
6302  return 0;
6303}
6304
6305void SelectionDAG::dump() const {
6306  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6307
6308  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6309       I != E; ++I) {
6310    const SDNode *N = I;
6311    if (!N->hasOneUse() && N != getRoot().getNode())
6312      DumpNodes(N, 2, this);
6313  }
6314
6315  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6316
6317  dbgs() << "\n\n";
6318}
6319
6320void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6321  print_types(OS, G);
6322  print_details(OS, G);
6323}
6324
6325typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6326static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6327                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6328  if (!once.insert(N))          // If we've been here before, return now.
6329    return;
6330
6331  // Dump the current SDNode, but don't end the line yet.
6332  OS << std::string(indent, ' ');
6333  N->printr(OS, G);
6334
6335  // Having printed this SDNode, walk the children:
6336  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6337    const SDNode *child = N->getOperand(i).getNode();
6338
6339    if (i) OS << ",";
6340    OS << " ";
6341
6342    if (child->getNumOperands() == 0) {
6343      // This child has no grandchildren; print it inline right here.
6344      child->printr(OS, G);
6345      once.insert(child);
6346    } else {         // Just the address. FIXME: also print the child's opcode.
6347      OS << (void*)child;
6348      if (unsigned RN = N->getOperand(i).getResNo())
6349        OS << ":" << RN;
6350    }
6351  }
6352
6353  OS << "\n";
6354
6355  // Dump children that have grandchildren on their own line(s).
6356  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6357    const SDNode *child = N->getOperand(i).getNode();
6358    DumpNodesr(OS, child, indent+2, G, once);
6359  }
6360}
6361
6362void SDNode::dumpr() const {
6363  VisitedSDNodeSet once;
6364  DumpNodesr(dbgs(), this, 0, 0, once);
6365}
6366
6367void SDNode::dumpr(const SelectionDAG *G) const {
6368  VisitedSDNodeSet once;
6369  DumpNodesr(dbgs(), this, 0, G, once);
6370}
6371
6372
6373// getAddressSpace - Return the address space this GlobalAddress belongs to.
6374unsigned GlobalAddressSDNode::getAddressSpace() const {
6375  return getGlobal()->getType()->getAddressSpace();
6376}
6377
6378
6379const Type *ConstantPoolSDNode::getType() const {
6380  if (isMachineConstantPoolEntry())
6381    return Val.MachineCPVal->getType();
6382  return Val.ConstVal->getType();
6383}
6384
6385bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6386                                        APInt &SplatUndef,
6387                                        unsigned &SplatBitSize,
6388                                        bool &HasAnyUndefs,
6389                                        unsigned MinSplatBits,
6390                                        bool isBigEndian) {
6391  EVT VT = getValueType(0);
6392  assert(VT.isVector() && "Expected a vector type");
6393  unsigned sz = VT.getSizeInBits();
6394  if (MinSplatBits > sz)
6395    return false;
6396
6397  SplatValue = APInt(sz, 0);
6398  SplatUndef = APInt(sz, 0);
6399
6400  // Get the bits.  Bits with undefined values (when the corresponding element
6401  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6402  // in SplatValue.  If any of the values are not constant, give up and return
6403  // false.
6404  unsigned int nOps = getNumOperands();
6405  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6406  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6407
6408  for (unsigned j = 0; j < nOps; ++j) {
6409    unsigned i = isBigEndian ? nOps-1-j : j;
6410    SDValue OpVal = getOperand(i);
6411    unsigned BitPos = j * EltBitSize;
6412
6413    if (OpVal.getOpcode() == ISD::UNDEF)
6414      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6415    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6416      SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6417                    zextOrTrunc(sz) << BitPos;
6418    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6419      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6420     else
6421      return false;
6422  }
6423
6424  // The build_vector is all constants or undefs.  Find the smallest element
6425  // size that splats the vector.
6426
6427  HasAnyUndefs = (SplatUndef != 0);
6428  while (sz > 8) {
6429
6430    unsigned HalfSize = sz / 2;
6431    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6432    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6433    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6434    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6435
6436    // If the two halves do not match (ignoring undef bits), stop here.
6437    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6438        MinSplatBits > HalfSize)
6439      break;
6440
6441    SplatValue = HighValue | LowValue;
6442    SplatUndef = HighUndef & LowUndef;
6443
6444    sz = HalfSize;
6445  }
6446
6447  SplatBitSize = sz;
6448  return true;
6449}
6450
6451bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6452  // Find the first non-undef value in the shuffle mask.
6453  unsigned i, e;
6454  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6455    /* search */;
6456
6457  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6458
6459  // Make sure all remaining elements are either undef or the same as the first
6460  // non-undef value.
6461  for (int Idx = Mask[i]; i != e; ++i)
6462    if (Mask[i] >= 0 && Mask[i] != Idx)
6463      return false;
6464  return true;
6465}
6466
6467#ifdef XDEBUG
6468static void checkForCyclesHelper(const SDNode *N,
6469                                 SmallPtrSet<const SDNode*, 32> &Visited,
6470                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6471  // If this node has already been checked, don't check it again.
6472  if (Checked.count(N))
6473    return;
6474
6475  // If a node has already been visited on this depth-first walk, reject it as
6476  // a cycle.
6477  if (!Visited.insert(N)) {
6478    dbgs() << "Offending node:\n";
6479    N->dumprFull();
6480    errs() << "Detected cycle in SelectionDAG\n";
6481    abort();
6482  }
6483
6484  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6485    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6486
6487  Checked.insert(N);
6488  Visited.erase(N);
6489}
6490#endif
6491
6492void llvm::checkForCycles(const llvm::SDNode *N) {
6493#ifdef XDEBUG
6494  assert(N && "Checking nonexistant SDNode");
6495  SmallPtrSet<const SDNode*, 32> visited;
6496  SmallPtrSet<const SDNode*, 32> checked;
6497  checkForCyclesHelper(N, visited, checked);
6498#endif
6499}
6500
6501void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6502  checkForCycles(DAG->getRoot().getNode());
6503}
6504