SelectionDAG.cpp revision 8cdf7897416cf307bcae281ef8a0f80873d31356
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineModuleInfo.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Target/MRegisterInfo.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/StringExtras.h"
36#include <algorithm>
37#include <cmath>
38using namespace llvm;
39
40/// makeVTList - Return an instance of the SDVTList struct initialized with the
41/// specified members.
42static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
43  SDVTList Res = {VTs, NumVTs};
44  return Res;
45}
46
47SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
48
49//===----------------------------------------------------------------------===//
50//                              ConstantFPSDNode Class
51//===----------------------------------------------------------------------===//
52
53/// isExactlyValue - We don't rely on operator== working on double values, as
54/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
55/// As such, this method can be used to do an exact bit-for-bit comparison of
56/// two floating point values.
57bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
58  return Value.bitwiseIsEqual(V);
59}
60
61bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
62                                           const APFloat& Val) {
63  // convert modifies in place, so make a copy.
64  APFloat Val2 = APFloat(Val);
65  switch (VT) {
66  default:
67    return false;         // These can't be represented as floating point!
68
69  // FIXME rounding mode needs to be more flexible
70  case MVT::f32:
71    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
72           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
73              APFloat::opOK;
74  case MVT::f64:
75    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
76           &Val2.getSemantics() == &APFloat::IEEEdouble ||
77           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
78             APFloat::opOK;
79  // TODO: Figure out how to test if we can use a shorter type instead!
80  case MVT::f80:
81  case MVT::f128:
82  case MVT::ppcf128:
83    return true;
84  }
85}
86
87//===----------------------------------------------------------------------===//
88//                              ISD Namespace
89//===----------------------------------------------------------------------===//
90
91/// isBuildVectorAllOnes - Return true if the specified node is a
92/// BUILD_VECTOR where all of the elements are ~0 or undef.
93bool ISD::isBuildVectorAllOnes(const SDNode *N) {
94  // Look through a bit convert.
95  if (N->getOpcode() == ISD::BIT_CONVERT)
96    N = N->getOperand(0).Val;
97
98  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
99
100  unsigned i = 0, e = N->getNumOperands();
101
102  // Skip over all of the undef values.
103  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
104    ++i;
105
106  // Do not accept an all-undef vector.
107  if (i == e) return false;
108
109  // Do not accept build_vectors that aren't all constants or which have non-~0
110  // elements.
111  SDOperand NotZero = N->getOperand(i);
112  if (isa<ConstantSDNode>(NotZero)) {
113    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
114      return false;
115  } else if (isa<ConstantFPSDNode>(NotZero)) {
116    MVT::ValueType VT = NotZero.getValueType();
117    if (VT== MVT::f64) {
118      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
119                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
120        return false;
121    } else {
122      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
123                      getValueAPF().convertToAPInt().getZExtValue() !=
124          (uint32_t)-1)
125        return false;
126    }
127  } else
128    return false;
129
130  // Okay, we have at least one ~0 value, check to see if the rest match or are
131  // undefs.
132  for (++i; i != e; ++i)
133    if (N->getOperand(i) != NotZero &&
134        N->getOperand(i).getOpcode() != ISD::UNDEF)
135      return false;
136  return true;
137}
138
139
140/// isBuildVectorAllZeros - Return true if the specified node is a
141/// BUILD_VECTOR where all of the elements are 0 or undef.
142bool ISD::isBuildVectorAllZeros(const SDNode *N) {
143  // Look through a bit convert.
144  if (N->getOpcode() == ISD::BIT_CONVERT)
145    N = N->getOperand(0).Val;
146
147  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
148
149  unsigned i = 0, e = N->getNumOperands();
150
151  // Skip over all of the undef values.
152  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
153    ++i;
154
155  // Do not accept an all-undef vector.
156  if (i == e) return false;
157
158  // Do not accept build_vectors that aren't all constants or which have non-~0
159  // elements.
160  SDOperand Zero = N->getOperand(i);
161  if (isa<ConstantSDNode>(Zero)) {
162    if (!cast<ConstantSDNode>(Zero)->isNullValue())
163      return false;
164  } else if (isa<ConstantFPSDNode>(Zero)) {
165    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
166      return false;
167  } else
168    return false;
169
170  // Okay, we have at least one ~0 value, check to see if the rest match or are
171  // undefs.
172  for (++i; i != e; ++i)
173    if (N->getOperand(i) != Zero &&
174        N->getOperand(i).getOpcode() != ISD::UNDEF)
175      return false;
176  return true;
177}
178
179/// isDebugLabel - Return true if the specified node represents a debug
180/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
181/// is 0).
182bool ISD::isDebugLabel(const SDNode *N) {
183  SDOperand Zero;
184  if (N->getOpcode() == ISD::LABEL)
185    Zero = N->getOperand(2);
186  else if (N->isTargetOpcode() &&
187           N->getTargetOpcode() == TargetInstrInfo::LABEL)
188    // Chain moved to last operand.
189    Zero = N->getOperand(1);
190  else
191    return false;
192  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
193}
194
195/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
196/// when given the operation for (X op Y).
197ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
198  // To perform this operation, we just need to swap the L and G bits of the
199  // operation.
200  unsigned OldL = (Operation >> 2) & 1;
201  unsigned OldG = (Operation >> 1) & 1;
202  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
203                       (OldL << 1) |       // New G bit
204                       (OldG << 2));        // New L bit.
205}
206
207/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
208/// 'op' is a valid SetCC operation.
209ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
210  unsigned Operation = Op;
211  if (isInteger)
212    Operation ^= 7;   // Flip L, G, E bits, but not U.
213  else
214    Operation ^= 15;  // Flip all of the condition bits.
215  if (Operation > ISD::SETTRUE2)
216    Operation &= ~8;     // Don't let N and U bits get set.
217  return ISD::CondCode(Operation);
218}
219
220
221/// isSignedOp - For an integer comparison, return 1 if the comparison is a
222/// signed operation and 2 if the result is an unsigned comparison.  Return zero
223/// if the operation does not depend on the sign of the input (setne and seteq).
224static int isSignedOp(ISD::CondCode Opcode) {
225  switch (Opcode) {
226  default: assert(0 && "Illegal integer setcc operation!");
227  case ISD::SETEQ:
228  case ISD::SETNE: return 0;
229  case ISD::SETLT:
230  case ISD::SETLE:
231  case ISD::SETGT:
232  case ISD::SETGE: return 1;
233  case ISD::SETULT:
234  case ISD::SETULE:
235  case ISD::SETUGT:
236  case ISD::SETUGE: return 2;
237  }
238}
239
240/// getSetCCOrOperation - Return the result of a logical OR between different
241/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
242/// returns SETCC_INVALID if it is not possible to represent the resultant
243/// comparison.
244ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
245                                       bool isInteger) {
246  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
247    // Cannot fold a signed integer setcc with an unsigned integer setcc.
248    return ISD::SETCC_INVALID;
249
250  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
251
252  // If the N and U bits get set then the resultant comparison DOES suddenly
253  // care about orderedness, and is true when ordered.
254  if (Op > ISD::SETTRUE2)
255    Op &= ~16;     // Clear the U bit if the N bit is set.
256
257  // Canonicalize illegal integer setcc's.
258  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
259    Op = ISD::SETNE;
260
261  return ISD::CondCode(Op);
262}
263
264/// getSetCCAndOperation - Return the result of a logical AND between different
265/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
266/// function returns zero if it is not possible to represent the resultant
267/// comparison.
268ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
269                                        bool isInteger) {
270  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
271    // Cannot fold a signed setcc with an unsigned setcc.
272    return ISD::SETCC_INVALID;
273
274  // Combine all of the condition bits.
275  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
276
277  // Canonicalize illegal integer setcc's.
278  if (isInteger) {
279    switch (Result) {
280    default: break;
281    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
282    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
283    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
284    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
285    }
286  }
287
288  return Result;
289}
290
291const TargetMachine &SelectionDAG::getTarget() const {
292  return TLI.getTargetMachine();
293}
294
295//===----------------------------------------------------------------------===//
296//                           SDNode Profile Support
297//===----------------------------------------------------------------------===//
298
299/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
300///
301static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
302  ID.AddInteger(OpC);
303}
304
305/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
306/// solely with their pointer.
307void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
308  ID.AddPointer(VTList.VTs);
309}
310
311/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
312///
313static void AddNodeIDOperands(FoldingSetNodeID &ID,
314                              const SDOperand *Ops, unsigned NumOps) {
315  for (; NumOps; --NumOps, ++Ops) {
316    ID.AddPointer(Ops->Val);
317    ID.AddInteger(Ops->ResNo);
318  }
319}
320
321static void AddNodeIDNode(FoldingSetNodeID &ID,
322                          unsigned short OpC, SDVTList VTList,
323                          const SDOperand *OpList, unsigned N) {
324  AddNodeIDOpcode(ID, OpC);
325  AddNodeIDValueTypes(ID, VTList);
326  AddNodeIDOperands(ID, OpList, N);
327}
328
329/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
330/// data.
331static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
332  AddNodeIDOpcode(ID, N->getOpcode());
333  // Add the return value info.
334  AddNodeIDValueTypes(ID, N->getVTList());
335  // Add the operand info.
336  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
337
338  // Handle SDNode leafs with special info.
339  switch (N->getOpcode()) {
340  default: break;  // Normal nodes don't need extra info.
341  case ISD::TargetConstant:
342  case ISD::Constant:
343    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
344    break;
345  case ISD::TargetConstantFP:
346  case ISD::ConstantFP: {
347    ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF());
348    break;
349  }
350  case ISD::TargetGlobalAddress:
351  case ISD::GlobalAddress:
352  case ISD::TargetGlobalTLSAddress:
353  case ISD::GlobalTLSAddress: {
354    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
355    ID.AddPointer(GA->getGlobal());
356    ID.AddInteger(GA->getOffset());
357    break;
358  }
359  case ISD::BasicBlock:
360    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
361    break;
362  case ISD::Register:
363    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
364    break;
365  case ISD::SRCVALUE:
366    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
367    break;
368  case ISD::MEMOPERAND: {
369    const MemOperand &MO = cast<MemOperandSDNode>(N)->MO;
370    ID.AddPointer(MO.getValue());
371    ID.AddInteger(MO.getFlags());
372    ID.AddInteger(MO.getOffset());
373    ID.AddInteger(MO.getSize());
374    ID.AddInteger(MO.getAlignment());
375    break;
376  }
377  case ISD::FrameIndex:
378  case ISD::TargetFrameIndex:
379    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
380    break;
381  case ISD::JumpTable:
382  case ISD::TargetJumpTable:
383    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
384    break;
385  case ISD::ConstantPool:
386  case ISD::TargetConstantPool: {
387    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
388    ID.AddInteger(CP->getAlignment());
389    ID.AddInteger(CP->getOffset());
390    if (CP->isMachineConstantPoolEntry())
391      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
392    else
393      ID.AddPointer(CP->getConstVal());
394    break;
395  }
396  case ISD::LOAD: {
397    LoadSDNode *LD = cast<LoadSDNode>(N);
398    ID.AddInteger(LD->getAddressingMode());
399    ID.AddInteger(LD->getExtensionType());
400    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
401    ID.AddInteger(LD->getAlignment());
402    ID.AddInteger(LD->isVolatile());
403    break;
404  }
405  case ISD::STORE: {
406    StoreSDNode *ST = cast<StoreSDNode>(N);
407    ID.AddInteger(ST->getAddressingMode());
408    ID.AddInteger(ST->isTruncatingStore());
409    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
410    ID.AddInteger(ST->getAlignment());
411    ID.AddInteger(ST->isVolatile());
412    break;
413  }
414  }
415}
416
417//===----------------------------------------------------------------------===//
418//                              SelectionDAG Class
419//===----------------------------------------------------------------------===//
420
421/// RemoveDeadNodes - This method deletes all unreachable nodes in the
422/// SelectionDAG.
423void SelectionDAG::RemoveDeadNodes() {
424  // Create a dummy node (which is not added to allnodes), that adds a reference
425  // to the root node, preventing it from being deleted.
426  HandleSDNode Dummy(getRoot());
427
428  SmallVector<SDNode*, 128> DeadNodes;
429
430  // Add all obviously-dead nodes to the DeadNodes worklist.
431  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
432    if (I->use_empty())
433      DeadNodes.push_back(I);
434
435  // Process the worklist, deleting the nodes and adding their uses to the
436  // worklist.
437  while (!DeadNodes.empty()) {
438    SDNode *N = DeadNodes.back();
439    DeadNodes.pop_back();
440
441    // Take the node out of the appropriate CSE map.
442    RemoveNodeFromCSEMaps(N);
443
444    // Next, brutally remove the operand list.  This is safe to do, as there are
445    // no cycles in the graph.
446    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
447      SDNode *Operand = I->Val;
448      Operand->removeUser(N);
449
450      // Now that we removed this operand, see if there are no uses of it left.
451      if (Operand->use_empty())
452        DeadNodes.push_back(Operand);
453    }
454    if (N->OperandsNeedDelete)
455      delete[] N->OperandList;
456    N->OperandList = 0;
457    N->NumOperands = 0;
458
459    // Finally, remove N itself.
460    AllNodes.erase(N);
461  }
462
463  // If the root changed (e.g. it was a dead load, update the root).
464  setRoot(Dummy.getValue());
465}
466
467void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
468  SmallVector<SDNode*, 16> DeadNodes;
469  DeadNodes.push_back(N);
470
471  // Process the worklist, deleting the nodes and adding their uses to the
472  // worklist.
473  while (!DeadNodes.empty()) {
474    SDNode *N = DeadNodes.back();
475    DeadNodes.pop_back();
476
477    if (UpdateListener)
478      UpdateListener->NodeDeleted(N);
479
480    // Take the node out of the appropriate CSE map.
481    RemoveNodeFromCSEMaps(N);
482
483    // Next, brutally remove the operand list.  This is safe to do, as there are
484    // no cycles in the graph.
485    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
486      SDNode *Operand = I->Val;
487      Operand->removeUser(N);
488
489      // Now that we removed this operand, see if there are no uses of it left.
490      if (Operand->use_empty())
491        DeadNodes.push_back(Operand);
492    }
493    if (N->OperandsNeedDelete)
494      delete[] N->OperandList;
495    N->OperandList = 0;
496    N->NumOperands = 0;
497
498    // Finally, remove N itself.
499    AllNodes.erase(N);
500  }
501}
502
503void SelectionDAG::DeleteNode(SDNode *N) {
504  assert(N->use_empty() && "Cannot delete a node that is not dead!");
505
506  // First take this out of the appropriate CSE map.
507  RemoveNodeFromCSEMaps(N);
508
509  // Finally, remove uses due to operands of this node, remove from the
510  // AllNodes list, and delete the node.
511  DeleteNodeNotInCSEMaps(N);
512}
513
514void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
515
516  // Remove it from the AllNodes list.
517  AllNodes.remove(N);
518
519  // Drop all of the operands and decrement used nodes use counts.
520  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
521    I->Val->removeUser(N);
522  if (N->OperandsNeedDelete)
523    delete[] N->OperandList;
524  N->OperandList = 0;
525  N->NumOperands = 0;
526
527  delete N;
528}
529
530/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
531/// correspond to it.  This is useful when we're about to delete or repurpose
532/// the node.  We don't want future request for structurally identical nodes
533/// to return N anymore.
534void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
535  bool Erased = false;
536  switch (N->getOpcode()) {
537  case ISD::HANDLENODE: return;  // noop.
538  case ISD::STRING:
539    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
540    break;
541  case ISD::CONDCODE:
542    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
543           "Cond code doesn't exist!");
544    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
545    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
546    break;
547  case ISD::ExternalSymbol:
548    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
549    break;
550  case ISD::TargetExternalSymbol:
551    Erased =
552      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
553    break;
554  case ISD::VALUETYPE: {
555    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
556    if (MVT::isExtendedVT(VT)) {
557      Erased = ExtendedValueTypeNodes.erase(VT);
558    } else {
559      Erased = ValueTypeNodes[VT] != 0;
560      ValueTypeNodes[VT] = 0;
561    }
562    break;
563  }
564  default:
565    // Remove it from the CSE Map.
566    Erased = CSEMap.RemoveNode(N);
567    break;
568  }
569#ifndef NDEBUG
570  // Verify that the node was actually in one of the CSE maps, unless it has a
571  // flag result (which cannot be CSE'd) or is one of the special cases that are
572  // not subject to CSE.
573  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
574      !N->isTargetOpcode()) {
575    N->dump(this);
576    cerr << "\n";
577    assert(0 && "Node is not in map!");
578  }
579#endif
580}
581
582/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
583/// has been taken out and modified in some way.  If the specified node already
584/// exists in the CSE maps, do not modify the maps, but return the existing node
585/// instead.  If it doesn't exist, add it and return null.
586///
587SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
588  assert(N->getNumOperands() && "This is a leaf node!");
589  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
590    return 0;    // Never add these nodes.
591
592  // Check that remaining values produced are not flags.
593  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
594    if (N->getValueType(i) == MVT::Flag)
595      return 0;   // Never CSE anything that produces a flag.
596
597  SDNode *New = CSEMap.GetOrInsertNode(N);
598  if (New != N) return New;  // Node already existed.
599  return 0;
600}
601
602/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
603/// were replaced with those specified.  If this node is never memoized,
604/// return null, otherwise return a pointer to the slot it would take.  If a
605/// node already exists with these operands, the slot will be non-null.
606SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
607                                           void *&InsertPos) {
608  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
609    return 0;    // Never add these nodes.
610
611  // Check that remaining values produced are not flags.
612  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
613    if (N->getValueType(i) == MVT::Flag)
614      return 0;   // Never CSE anything that produces a flag.
615
616  SDOperand Ops[] = { Op };
617  FoldingSetNodeID ID;
618  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
619  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
620}
621
622/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
623/// were replaced with those specified.  If this node is never memoized,
624/// return null, otherwise return a pointer to the slot it would take.  If a
625/// node already exists with these operands, the slot will be non-null.
626SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
627                                           SDOperand Op1, SDOperand Op2,
628                                           void *&InsertPos) {
629  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
630    return 0;    // Never add these nodes.
631
632  // Check that remaining values produced are not flags.
633  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
634    if (N->getValueType(i) == MVT::Flag)
635      return 0;   // Never CSE anything that produces a flag.
636
637  SDOperand Ops[] = { Op1, Op2 };
638  FoldingSetNodeID ID;
639  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
640  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
641}
642
643
644/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
645/// were replaced with those specified.  If this node is never memoized,
646/// return null, otherwise return a pointer to the slot it would take.  If a
647/// node already exists with these operands, the slot will be non-null.
648SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
649                                           const SDOperand *Ops,unsigned NumOps,
650                                           void *&InsertPos) {
651  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
652    return 0;    // Never add these nodes.
653
654  // Check that remaining values produced are not flags.
655  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
656    if (N->getValueType(i) == MVT::Flag)
657      return 0;   // Never CSE anything that produces a flag.
658
659  FoldingSetNodeID ID;
660  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
661
662  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
663    ID.AddInteger(LD->getAddressingMode());
664    ID.AddInteger(LD->getExtensionType());
665    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
666    ID.AddInteger(LD->getAlignment());
667    ID.AddInteger(LD->isVolatile());
668  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
669    ID.AddInteger(ST->getAddressingMode());
670    ID.AddInteger(ST->isTruncatingStore());
671    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
672    ID.AddInteger(ST->getAlignment());
673    ID.AddInteger(ST->isVolatile());
674  }
675
676  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
677}
678
679
680SelectionDAG::~SelectionDAG() {
681  while (!AllNodes.empty()) {
682    SDNode *N = AllNodes.begin();
683    N->SetNextInBucket(0);
684    if (N->OperandsNeedDelete)
685      delete [] N->OperandList;
686    N->OperandList = 0;
687    N->NumOperands = 0;
688    AllNodes.pop_front();
689  }
690}
691
692SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
693  if (Op.getValueType() == VT) return Op;
694  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
695  return getNode(ISD::AND, Op.getValueType(), Op,
696                 getConstant(Imm, Op.getValueType()));
697}
698
699SDOperand SelectionDAG::getString(const std::string &Val) {
700  StringSDNode *&N = StringNodes[Val];
701  if (!N) {
702    N = new StringSDNode(Val);
703    AllNodes.push_back(N);
704  }
705  return SDOperand(N, 0);
706}
707
708SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
709  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
710
711  MVT::ValueType EltVT =
712    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
713
714  // Mask out any bits that are not valid for this constant.
715  Val &= MVT::getIntVTBitMask(EltVT);
716
717  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
718  FoldingSetNodeID ID;
719  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
720  ID.AddInteger(Val);
721  void *IP = 0;
722  SDNode *N = NULL;
723  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
724    if (!MVT::isVector(VT))
725      return SDOperand(N, 0);
726  if (!N) {
727    N = new ConstantSDNode(isT, Val, EltVT);
728    CSEMap.InsertNode(N, IP);
729    AllNodes.push_back(N);
730  }
731
732  SDOperand Result(N, 0);
733  if (MVT::isVector(VT)) {
734    SmallVector<SDOperand, 8> Ops;
735    Ops.assign(MVT::getVectorNumElements(VT), Result);
736    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
737  }
738  return Result;
739}
740
741SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
742  return getConstant(Val, TLI.getPointerTy(), isTarget);
743}
744
745
746SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
747                                      bool isTarget) {
748  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
749
750  MVT::ValueType EltVT =
751    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
752
753  // Do the map lookup using the actual bit pattern for the floating point
754  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
755  // we don't have issues with SNANs.
756  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
757  FoldingSetNodeID ID;
758  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
759  ID.AddAPFloat(V);
760  void *IP = 0;
761  SDNode *N = NULL;
762  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
763    if (!MVT::isVector(VT))
764      return SDOperand(N, 0);
765  if (!N) {
766    N = new ConstantFPSDNode(isTarget, V, EltVT);
767    CSEMap.InsertNode(N, IP);
768    AllNodes.push_back(N);
769  }
770
771  SDOperand Result(N, 0);
772  if (MVT::isVector(VT)) {
773    SmallVector<SDOperand, 8> Ops;
774    Ops.assign(MVT::getVectorNumElements(VT), Result);
775    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
776  }
777  return Result;
778}
779
780SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
781                                      bool isTarget) {
782  MVT::ValueType EltVT =
783    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
784  if (EltVT==MVT::f32)
785    return getConstantFP(APFloat((float)Val), VT, isTarget);
786  else
787    return getConstantFP(APFloat(Val), VT, isTarget);
788}
789
790SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
791                                         MVT::ValueType VT, int Offset,
792                                         bool isTargetGA) {
793  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
794  unsigned Opc;
795  if (GVar && GVar->isThreadLocal())
796    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
797  else
798    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
799  FoldingSetNodeID ID;
800  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
801  ID.AddPointer(GV);
802  ID.AddInteger(Offset);
803  void *IP = 0;
804  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
805   return SDOperand(E, 0);
806  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
807  CSEMap.InsertNode(N, IP);
808  AllNodes.push_back(N);
809  return SDOperand(N, 0);
810}
811
812SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
813                                      bool isTarget) {
814  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
815  FoldingSetNodeID ID;
816  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
817  ID.AddInteger(FI);
818  void *IP = 0;
819  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
820    return SDOperand(E, 0);
821  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
822  CSEMap.InsertNode(N, IP);
823  AllNodes.push_back(N);
824  return SDOperand(N, 0);
825}
826
827SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
828  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
829  FoldingSetNodeID ID;
830  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
831  ID.AddInteger(JTI);
832  void *IP = 0;
833  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
834    return SDOperand(E, 0);
835  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
836  CSEMap.InsertNode(N, IP);
837  AllNodes.push_back(N);
838  return SDOperand(N, 0);
839}
840
841SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
842                                        unsigned Alignment, int Offset,
843                                        bool isTarget) {
844  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
845  FoldingSetNodeID ID;
846  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
847  ID.AddInteger(Alignment);
848  ID.AddInteger(Offset);
849  ID.AddPointer(C);
850  void *IP = 0;
851  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
852    return SDOperand(E, 0);
853  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
854  CSEMap.InsertNode(N, IP);
855  AllNodes.push_back(N);
856  return SDOperand(N, 0);
857}
858
859
860SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
861                                        MVT::ValueType VT,
862                                        unsigned Alignment, int Offset,
863                                        bool isTarget) {
864  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
865  FoldingSetNodeID ID;
866  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
867  ID.AddInteger(Alignment);
868  ID.AddInteger(Offset);
869  C->AddSelectionDAGCSEId(ID);
870  void *IP = 0;
871  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
872    return SDOperand(E, 0);
873  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
874  CSEMap.InsertNode(N, IP);
875  AllNodes.push_back(N);
876  return SDOperand(N, 0);
877}
878
879
880SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
881  FoldingSetNodeID ID;
882  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
883  ID.AddPointer(MBB);
884  void *IP = 0;
885  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
886    return SDOperand(E, 0);
887  SDNode *N = new BasicBlockSDNode(MBB);
888  CSEMap.InsertNode(N, IP);
889  AllNodes.push_back(N);
890  return SDOperand(N, 0);
891}
892
893SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
894  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
895    ValueTypeNodes.resize(VT+1);
896
897  SDNode *&N = MVT::isExtendedVT(VT) ?
898    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
899
900  if (N) return SDOperand(N, 0);
901  N = new VTSDNode(VT);
902  AllNodes.push_back(N);
903  return SDOperand(N, 0);
904}
905
906SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
907  SDNode *&N = ExternalSymbols[Sym];
908  if (N) return SDOperand(N, 0);
909  N = new ExternalSymbolSDNode(false, Sym, VT);
910  AllNodes.push_back(N);
911  return SDOperand(N, 0);
912}
913
914SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
915                                                MVT::ValueType VT) {
916  SDNode *&N = TargetExternalSymbols[Sym];
917  if (N) return SDOperand(N, 0);
918  N = new ExternalSymbolSDNode(true, Sym, VT);
919  AllNodes.push_back(N);
920  return SDOperand(N, 0);
921}
922
923SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
924  if ((unsigned)Cond >= CondCodeNodes.size())
925    CondCodeNodes.resize(Cond+1);
926
927  if (CondCodeNodes[Cond] == 0) {
928    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
929    AllNodes.push_back(CondCodeNodes[Cond]);
930  }
931  return SDOperand(CondCodeNodes[Cond], 0);
932}
933
934SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
935  FoldingSetNodeID ID;
936  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
937  ID.AddInteger(RegNo);
938  void *IP = 0;
939  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
940    return SDOperand(E, 0);
941  SDNode *N = new RegisterSDNode(RegNo, VT);
942  CSEMap.InsertNode(N, IP);
943  AllNodes.push_back(N);
944  return SDOperand(N, 0);
945}
946
947SDOperand SelectionDAG::getSrcValue(const Value *V) {
948  assert((!V || isa<PointerType>(V->getType())) &&
949         "SrcValue is not a pointer?");
950
951  FoldingSetNodeID ID;
952  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
953  ID.AddPointer(V);
954
955  void *IP = 0;
956  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
957    return SDOperand(E, 0);
958
959  SDNode *N = new SrcValueSDNode(V);
960  CSEMap.InsertNode(N, IP);
961  AllNodes.push_back(N);
962  return SDOperand(N, 0);
963}
964
965SDOperand SelectionDAG::getMemOperand(const MemOperand &MO) {
966  const Value *v = MO.getValue();
967  assert((!v || isa<PointerType>(v->getType())) &&
968         "SrcValue is not a pointer?");
969
970  FoldingSetNodeID ID;
971  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
972  ID.AddPointer(v);
973  ID.AddInteger(MO.getFlags());
974  ID.AddInteger(MO.getOffset());
975  ID.AddInteger(MO.getSize());
976  ID.AddInteger(MO.getAlignment());
977
978  void *IP = 0;
979  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
980    return SDOperand(E, 0);
981
982  SDNode *N = new MemOperandSDNode(MO);
983  CSEMap.InsertNode(N, IP);
984  AllNodes.push_back(N);
985  return SDOperand(N, 0);
986}
987
988/// CreateStackTemporary - Create a stack temporary, suitable for holding the
989/// specified value type.
990SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
991  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
992  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
993  const Type *Ty = MVT::getTypeForValueType(VT);
994  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
995  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
996  return getFrameIndex(FrameIdx, TLI.getPointerTy());
997}
998
999
1000SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1001                                  SDOperand N2, ISD::CondCode Cond) {
1002  // These setcc operations always fold.
1003  switch (Cond) {
1004  default: break;
1005  case ISD::SETFALSE:
1006  case ISD::SETFALSE2: return getConstant(0, VT);
1007  case ISD::SETTRUE:
1008  case ISD::SETTRUE2:  return getConstant(1, VT);
1009
1010  case ISD::SETOEQ:
1011  case ISD::SETOGT:
1012  case ISD::SETOGE:
1013  case ISD::SETOLT:
1014  case ISD::SETOLE:
1015  case ISD::SETONE:
1016  case ISD::SETO:
1017  case ISD::SETUO:
1018  case ISD::SETUEQ:
1019  case ISD::SETUNE:
1020    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1021    break;
1022  }
1023
1024  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1025    uint64_t C2 = N2C->getValue();
1026    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1027      uint64_t C1 = N1C->getValue();
1028
1029      // Sign extend the operands if required
1030      if (ISD::isSignedIntSetCC(Cond)) {
1031        C1 = N1C->getSignExtended();
1032        C2 = N2C->getSignExtended();
1033      }
1034
1035      switch (Cond) {
1036      default: assert(0 && "Unknown integer setcc!");
1037      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1038      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1039      case ISD::SETULT: return getConstant(C1 <  C2, VT);
1040      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
1041      case ISD::SETULE: return getConstant(C1 <= C2, VT);
1042      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
1043      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
1044      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
1045      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
1046      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
1047      }
1048    }
1049  }
1050  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
1051    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1052      // No compile time operations on this type yet.
1053      if (N1C->getValueType(0) == MVT::ppcf128)
1054        return SDOperand();
1055
1056      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1057      switch (Cond) {
1058      default: break;
1059      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1060                          return getNode(ISD::UNDEF, VT);
1061                        // fall through
1062      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1063      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1064                          return getNode(ISD::UNDEF, VT);
1065                        // fall through
1066      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1067                                           R==APFloat::cmpLessThan, VT);
1068      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1069                          return getNode(ISD::UNDEF, VT);
1070                        // fall through
1071      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1072      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1073                          return getNode(ISD::UNDEF, VT);
1074                        // fall through
1075      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1076      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1077                          return getNode(ISD::UNDEF, VT);
1078                        // fall through
1079      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1080                                           R==APFloat::cmpEqual, VT);
1081      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1082                          return getNode(ISD::UNDEF, VT);
1083                        // fall through
1084      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1085                                           R==APFloat::cmpEqual, VT);
1086      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1087      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1088      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1089                                           R==APFloat::cmpEqual, VT);
1090      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1091      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1092                                           R==APFloat::cmpLessThan, VT);
1093      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1094                                           R==APFloat::cmpUnordered, VT);
1095      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1096      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1097      }
1098    } else {
1099      // Ensure that the constant occurs on the RHS.
1100      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1101    }
1102
1103  // Could not fold it.
1104  return SDOperand();
1105}
1106
1107/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1108/// this predicate to simplify operations downstream.  Mask is known to be zero
1109/// for bits that V cannot have.
1110bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1111                                     unsigned Depth) const {
1112  // The masks are not wide enough to represent this type!  Should use APInt.
1113  if (Op.getValueType() == MVT::i128)
1114    return false;
1115
1116  uint64_t KnownZero, KnownOne;
1117  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1118  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1119  return (KnownZero & Mask) == Mask;
1120}
1121
1122/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1123/// known to be either zero or one and return them in the KnownZero/KnownOne
1124/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1125/// processing.
1126void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1127                                     uint64_t &KnownZero, uint64_t &KnownOne,
1128                                     unsigned Depth) const {
1129  KnownZero = KnownOne = 0;   // Don't know anything.
1130  if (Depth == 6 || Mask == 0)
1131    return;  // Limit search depth.
1132
1133  // The masks are not wide enough to represent this type!  Should use APInt.
1134  if (Op.getValueType() == MVT::i128)
1135    return;
1136
1137  uint64_t KnownZero2, KnownOne2;
1138
1139  switch (Op.getOpcode()) {
1140  case ISD::Constant:
1141    // We know all of the bits for a constant!
1142    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1143    KnownZero = ~KnownOne & Mask;
1144    return;
1145  case ISD::AND:
1146    // If either the LHS or the RHS are Zero, the result is zero.
1147    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1148    Mask &= ~KnownZero;
1149    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1150    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1151    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1152
1153    // Output known-1 bits are only known if set in both the LHS & RHS.
1154    KnownOne &= KnownOne2;
1155    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1156    KnownZero |= KnownZero2;
1157    return;
1158  case ISD::OR:
1159    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1160    Mask &= ~KnownOne;
1161    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1162    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1163    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1164
1165    // Output known-0 bits are only known if clear in both the LHS & RHS.
1166    KnownZero &= KnownZero2;
1167    // Output known-1 are known to be set if set in either the LHS | RHS.
1168    KnownOne |= KnownOne2;
1169    return;
1170  case ISD::XOR: {
1171    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1172    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1173    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1174    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1175
1176    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1177    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1178    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1179    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1180    KnownZero = KnownZeroOut;
1181    return;
1182  }
1183  case ISD::SELECT:
1184    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1185    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1186    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1187    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1188
1189    // Only known if known in both the LHS and RHS.
1190    KnownOne &= KnownOne2;
1191    KnownZero &= KnownZero2;
1192    return;
1193  case ISD::SELECT_CC:
1194    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1195    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1196    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1197    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1198
1199    // Only known if known in both the LHS and RHS.
1200    KnownOne &= KnownOne2;
1201    KnownZero &= KnownZero2;
1202    return;
1203  case ISD::SETCC:
1204    // If we know the result of a setcc has the top bits zero, use this info.
1205    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1206      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1207    return;
1208  case ISD::SHL:
1209    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1210    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1211      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1212                        KnownZero, KnownOne, Depth+1);
1213      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1214      KnownZero <<= SA->getValue();
1215      KnownOne  <<= SA->getValue();
1216      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1217    }
1218    return;
1219  case ISD::SRL:
1220    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1221    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1222      MVT::ValueType VT = Op.getValueType();
1223      unsigned ShAmt = SA->getValue();
1224
1225      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1226      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1227                        KnownZero, KnownOne, Depth+1);
1228      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1229      KnownZero &= TypeMask;
1230      KnownOne  &= TypeMask;
1231      KnownZero >>= ShAmt;
1232      KnownOne  >>= ShAmt;
1233
1234      uint64_t HighBits = (1ULL << ShAmt)-1;
1235      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1236      KnownZero |= HighBits;  // High bits known zero.
1237    }
1238    return;
1239  case ISD::SRA:
1240    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1241      MVT::ValueType VT = Op.getValueType();
1242      unsigned ShAmt = SA->getValue();
1243
1244      // Compute the new bits that are at the top now.
1245      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1246
1247      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1248      // If any of the demanded bits are produced by the sign extension, we also
1249      // demand the input sign bit.
1250      uint64_t HighBits = (1ULL << ShAmt)-1;
1251      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1252      if (HighBits & Mask)
1253        InDemandedMask |= MVT::getIntVTSignBit(VT);
1254
1255      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1256                        Depth+1);
1257      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1258      KnownZero &= TypeMask;
1259      KnownOne  &= TypeMask;
1260      KnownZero >>= ShAmt;
1261      KnownOne  >>= ShAmt;
1262
1263      // Handle the sign bits.
1264      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1265      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1266
1267      if (KnownZero & SignBit) {
1268        KnownZero |= HighBits;  // New bits are known zero.
1269      } else if (KnownOne & SignBit) {
1270        KnownOne  |= HighBits;  // New bits are known one.
1271      }
1272    }
1273    return;
1274  case ISD::SIGN_EXTEND_INREG: {
1275    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1276
1277    // Sign extension.  Compute the demanded bits in the result that are not
1278    // present in the input.
1279    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1280
1281    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1282    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1283
1284    // If the sign extended bits are demanded, we know that the sign
1285    // bit is demanded.
1286    if (NewBits)
1287      InputDemandedBits |= InSignBit;
1288
1289    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1290                      KnownZero, KnownOne, Depth+1);
1291    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1292
1293    // If the sign bit of the input is known set or clear, then we know the
1294    // top bits of the result.
1295    if (KnownZero & InSignBit) {          // Input sign bit known clear
1296      KnownZero |= NewBits;
1297      KnownOne  &= ~NewBits;
1298    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1299      KnownOne  |= NewBits;
1300      KnownZero &= ~NewBits;
1301    } else {                              // Input sign bit unknown
1302      KnownZero &= ~NewBits;
1303      KnownOne  &= ~NewBits;
1304    }
1305    return;
1306  }
1307  case ISD::CTTZ:
1308  case ISD::CTLZ:
1309  case ISD::CTPOP: {
1310    MVT::ValueType VT = Op.getValueType();
1311    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1312    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1313    KnownOne  = 0;
1314    return;
1315  }
1316  case ISD::LOAD: {
1317    if (ISD::isZEXTLoad(Op.Val)) {
1318      LoadSDNode *LD = cast<LoadSDNode>(Op);
1319      MVT::ValueType VT = LD->getMemoryVT();
1320      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1321    }
1322    return;
1323  }
1324  case ISD::ZERO_EXTEND: {
1325    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1326    uint64_t NewBits = (~InMask) & Mask;
1327    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1328                      KnownOne, Depth+1);
1329    KnownZero |= NewBits & Mask;
1330    KnownOne  &= ~NewBits;
1331    return;
1332  }
1333  case ISD::SIGN_EXTEND: {
1334    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1335    unsigned InBits    = MVT::getSizeInBits(InVT);
1336    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1337    uint64_t InSignBit = 1ULL << (InBits-1);
1338    uint64_t NewBits   = (~InMask) & Mask;
1339    uint64_t InDemandedBits = Mask & InMask;
1340
1341    // If any of the sign extended bits are demanded, we know that the sign
1342    // bit is demanded.
1343    if (NewBits & Mask)
1344      InDemandedBits |= InSignBit;
1345
1346    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1347                      KnownOne, Depth+1);
1348    // If the sign bit is known zero or one, the  top bits match.
1349    if (KnownZero & InSignBit) {
1350      KnownZero |= NewBits;
1351      KnownOne  &= ~NewBits;
1352    } else if (KnownOne & InSignBit) {
1353      KnownOne  |= NewBits;
1354      KnownZero &= ~NewBits;
1355    } else {   // Otherwise, top bits aren't known.
1356      KnownOne  &= ~NewBits;
1357      KnownZero &= ~NewBits;
1358    }
1359    return;
1360  }
1361  case ISD::ANY_EXTEND: {
1362    MVT::ValueType VT = Op.getOperand(0).getValueType();
1363    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1364                      KnownZero, KnownOne, Depth+1);
1365    return;
1366  }
1367  case ISD::TRUNCATE: {
1368    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1369    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1370    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1371    KnownZero &= OutMask;
1372    KnownOne &= OutMask;
1373    break;
1374  }
1375  case ISD::AssertZext: {
1376    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1377    uint64_t InMask = MVT::getIntVTBitMask(VT);
1378    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1379                      KnownOne, Depth+1);
1380    KnownZero |= (~InMask) & Mask;
1381    return;
1382  }
1383  case ISD::FGETSIGN:
1384    // All bits are zero except the low bit.
1385    KnownZero = MVT::getIntVTBitMask(Op.getValueType()) ^ 1;
1386    return;
1387
1388  case ISD::ADD: {
1389    // If either the LHS or the RHS are Zero, the result is zero.
1390    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1391    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1392    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1393    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1394
1395    // Output known-0 bits are known if clear or set in both the low clear bits
1396    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1397    // low 3 bits clear.
1398    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1399                                     CountTrailingZeros_64(~KnownZero2));
1400
1401    KnownZero = (1ULL << KnownZeroOut) - 1;
1402    KnownOne = 0;
1403    return;
1404  }
1405  case ISD::SUB: {
1406    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1407    if (!CLHS) return;
1408
1409    // We know that the top bits of C-X are clear if X contains less bits
1410    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1411    // positive if we can prove that X is >= 0 and < 16.
1412    MVT::ValueType VT = CLHS->getValueType(0);
1413    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1414      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1415      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1416      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1417      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1418
1419      // If all of the MaskV bits are known to be zero, then we know the output
1420      // top bits are zero, because we now know that the output is from [0-C].
1421      if ((KnownZero & MaskV) == MaskV) {
1422        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1423        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1424        KnownOne = 0;   // No one bits known.
1425      } else {
1426        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1427      }
1428    }
1429    return;
1430  }
1431  default:
1432    // Allow the target to implement this method for its nodes.
1433    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1434  case ISD::INTRINSIC_WO_CHAIN:
1435  case ISD::INTRINSIC_W_CHAIN:
1436  case ISD::INTRINSIC_VOID:
1437      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1438    }
1439    return;
1440  }
1441}
1442
1443/// ComputeNumSignBits - Return the number of times the sign bit of the
1444/// register is replicated into the other bits.  We know that at least 1 bit
1445/// is always equal to the sign bit (itself), but other cases can give us
1446/// information.  For example, immediately after an "SRA X, 2", we know that
1447/// the top 3 bits are all equal to each other, so we return 3.
1448unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1449  MVT::ValueType VT = Op.getValueType();
1450  assert(MVT::isInteger(VT) && "Invalid VT!");
1451  unsigned VTBits = MVT::getSizeInBits(VT);
1452  unsigned Tmp, Tmp2;
1453
1454  if (Depth == 6)
1455    return 1;  // Limit search depth.
1456
1457  switch (Op.getOpcode()) {
1458  default: break;
1459  case ISD::AssertSext:
1460    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1461    return VTBits-Tmp+1;
1462  case ISD::AssertZext:
1463    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1464    return VTBits-Tmp;
1465
1466  case ISD::Constant: {
1467    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1468    // If negative, invert the bits, then look at it.
1469    if (Val & MVT::getIntVTSignBit(VT))
1470      Val = ~Val;
1471
1472    // Shift the bits so they are the leading bits in the int64_t.
1473    Val <<= 64-VTBits;
1474
1475    // Return # leading zeros.  We use 'min' here in case Val was zero before
1476    // shifting.  We don't want to return '64' as for an i32 "0".
1477    return std::min(VTBits, CountLeadingZeros_64(Val));
1478  }
1479
1480  case ISD::SIGN_EXTEND:
1481    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1482    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1483
1484  case ISD::SIGN_EXTEND_INREG:
1485    // Max of the input and what this extends.
1486    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1487    Tmp = VTBits-Tmp+1;
1488
1489    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1490    return std::max(Tmp, Tmp2);
1491
1492  case ISD::SRA:
1493    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1494    // SRA X, C   -> adds C sign bits.
1495    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1496      Tmp += C->getValue();
1497      if (Tmp > VTBits) Tmp = VTBits;
1498    }
1499    return Tmp;
1500  case ISD::SHL:
1501    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1502      // shl destroys sign bits.
1503      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1504      if (C->getValue() >= VTBits ||      // Bad shift.
1505          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1506      return Tmp - C->getValue();
1507    }
1508    break;
1509  case ISD::AND:
1510  case ISD::OR:
1511  case ISD::XOR:    // NOT is handled here.
1512    // Logical binary ops preserve the number of sign bits.
1513    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1514    if (Tmp == 1) return 1;  // Early out.
1515    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1516    return std::min(Tmp, Tmp2);
1517
1518  case ISD::SELECT:
1519    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1520    if (Tmp == 1) return 1;  // Early out.
1521    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1522    return std::min(Tmp, Tmp2);
1523
1524  case ISD::SETCC:
1525    // If setcc returns 0/-1, all bits are sign bits.
1526    if (TLI.getSetCCResultContents() ==
1527        TargetLowering::ZeroOrNegativeOneSetCCResult)
1528      return VTBits;
1529    break;
1530  case ISD::ROTL:
1531  case ISD::ROTR:
1532    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1533      unsigned RotAmt = C->getValue() & (VTBits-1);
1534
1535      // Handle rotate right by N like a rotate left by 32-N.
1536      if (Op.getOpcode() == ISD::ROTR)
1537        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1538
1539      // If we aren't rotating out all of the known-in sign bits, return the
1540      // number that are left.  This handles rotl(sext(x), 1) for example.
1541      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1542      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1543    }
1544    break;
1545  case ISD::ADD:
1546    // Add can have at most one carry bit.  Thus we know that the output
1547    // is, at worst, one more bit than the inputs.
1548    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1549    if (Tmp == 1) return 1;  // Early out.
1550
1551    // Special case decrementing a value (ADD X, -1):
1552    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1553      if (CRHS->isAllOnesValue()) {
1554        uint64_t KnownZero, KnownOne;
1555        uint64_t Mask = MVT::getIntVTBitMask(VT);
1556        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1557
1558        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1559        // sign bits set.
1560        if ((KnownZero|1) == Mask)
1561          return VTBits;
1562
1563        // If we are subtracting one from a positive number, there is no carry
1564        // out of the result.
1565        if (KnownZero & MVT::getIntVTSignBit(VT))
1566          return Tmp;
1567      }
1568
1569    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1570    if (Tmp2 == 1) return 1;
1571      return std::min(Tmp, Tmp2)-1;
1572    break;
1573
1574  case ISD::SUB:
1575    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1576    if (Tmp2 == 1) return 1;
1577
1578    // Handle NEG.
1579    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1580      if (CLHS->getValue() == 0) {
1581        uint64_t KnownZero, KnownOne;
1582        uint64_t Mask = MVT::getIntVTBitMask(VT);
1583        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1584        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1585        // sign bits set.
1586        if ((KnownZero|1) == Mask)
1587          return VTBits;
1588
1589        // If the input is known to be positive (the sign bit is known clear),
1590        // the output of the NEG has the same number of sign bits as the input.
1591        if (KnownZero & MVT::getIntVTSignBit(VT))
1592          return Tmp2;
1593
1594        // Otherwise, we treat this like a SUB.
1595      }
1596
1597    // Sub can have at most one carry bit.  Thus we know that the output
1598    // is, at worst, one more bit than the inputs.
1599    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1600    if (Tmp == 1) return 1;  // Early out.
1601      return std::min(Tmp, Tmp2)-1;
1602    break;
1603  case ISD::TRUNCATE:
1604    // FIXME: it's tricky to do anything useful for this, but it is an important
1605    // case for targets like X86.
1606    break;
1607  }
1608
1609  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1610  if (Op.getOpcode() == ISD::LOAD) {
1611    LoadSDNode *LD = cast<LoadSDNode>(Op);
1612    unsigned ExtType = LD->getExtensionType();
1613    switch (ExtType) {
1614    default: break;
1615    case ISD::SEXTLOAD:    // '17' bits known
1616      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1617      return VTBits-Tmp+1;
1618    case ISD::ZEXTLOAD:    // '16' bits known
1619      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1620      return VTBits-Tmp;
1621    }
1622  }
1623
1624  // Allow the target to implement this method for its nodes.
1625  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1626      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1627      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1628      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1629    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1630    if (NumBits > 1) return NumBits;
1631  }
1632
1633  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1634  // use this information.
1635  uint64_t KnownZero, KnownOne;
1636  uint64_t Mask = MVT::getIntVTBitMask(VT);
1637  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1638
1639  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1640  if (KnownZero & SignBit) {        // SignBit is 0
1641    Mask = KnownZero;
1642  } else if (KnownOne & SignBit) {  // SignBit is 1;
1643    Mask = KnownOne;
1644  } else {
1645    // Nothing known.
1646    return 1;
1647  }
1648
1649  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1650  // the number of identical bits in the top of the input value.
1651  Mask ^= ~0ULL;
1652  Mask <<= 64-VTBits;
1653  // Return # leading zeros.  We use 'min' here in case Val was zero before
1654  // shifting.  We don't want to return '64' as for an i32 "0".
1655  return std::min(VTBits, CountLeadingZeros_64(Mask));
1656}
1657
1658
1659bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1660  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1661  if (!GA) return false;
1662  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1663  if (!GV) return false;
1664  MachineModuleInfo *MMI = getMachineModuleInfo();
1665  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1666}
1667
1668
1669/// getNode - Gets or creates the specified node.
1670///
1671SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1672  FoldingSetNodeID ID;
1673  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1674  void *IP = 0;
1675  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1676    return SDOperand(E, 0);
1677  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1678  CSEMap.InsertNode(N, IP);
1679
1680  AllNodes.push_back(N);
1681  return SDOperand(N, 0);
1682}
1683
1684SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1685                                SDOperand Operand) {
1686  unsigned Tmp1;
1687  // Constant fold unary operations with an integer constant operand.
1688  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1689    uint64_t Val = C->getValue();
1690    switch (Opcode) {
1691    default: break;
1692    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1693    case ISD::ANY_EXTEND:
1694    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1695    case ISD::TRUNCATE:    return getConstant(Val, VT);
1696    case ISD::UINT_TO_FP:
1697    case ISD::SINT_TO_FP: {
1698      const uint64_t zero[] = {0, 0};
1699      // No compile time operations on this type.
1700      if (VT==MVT::ppcf128)
1701        break;
1702      APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
1703      (void)apf.convertFromZeroExtendedInteger(&Val,
1704                               MVT::getSizeInBits(Operand.getValueType()),
1705                               Opcode==ISD::SINT_TO_FP,
1706                               APFloat::rmNearestTiesToEven);
1707      return getConstantFP(apf, VT);
1708    }
1709    case ISD::BIT_CONVERT:
1710      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1711        return getConstantFP(BitsToFloat(Val), VT);
1712      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1713        return getConstantFP(BitsToDouble(Val), VT);
1714      break;
1715    case ISD::BSWAP:
1716      switch(VT) {
1717      default: assert(0 && "Invalid bswap!"); break;
1718      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1719      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1720      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1721      }
1722      break;
1723    case ISD::CTPOP:
1724      switch(VT) {
1725      default: assert(0 && "Invalid ctpop!"); break;
1726      case MVT::i1: return getConstant(Val != 0, VT);
1727      case MVT::i8:
1728        Tmp1 = (unsigned)Val & 0xFF;
1729        return getConstant(CountPopulation_32(Tmp1), VT);
1730      case MVT::i16:
1731        Tmp1 = (unsigned)Val & 0xFFFF;
1732        return getConstant(CountPopulation_32(Tmp1), VT);
1733      case MVT::i32:
1734        return getConstant(CountPopulation_32((unsigned)Val), VT);
1735      case MVT::i64:
1736        return getConstant(CountPopulation_64(Val), VT);
1737      }
1738    case ISD::CTLZ:
1739      switch(VT) {
1740      default: assert(0 && "Invalid ctlz!"); break;
1741      case MVT::i1: return getConstant(Val == 0, VT);
1742      case MVT::i8:
1743        Tmp1 = (unsigned)Val & 0xFF;
1744        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1745      case MVT::i16:
1746        Tmp1 = (unsigned)Val & 0xFFFF;
1747        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1748      case MVT::i32:
1749        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1750      case MVT::i64:
1751        return getConstant(CountLeadingZeros_64(Val), VT);
1752      }
1753    case ISD::CTTZ:
1754      switch(VT) {
1755      default: assert(0 && "Invalid cttz!"); break;
1756      case MVT::i1: return getConstant(Val == 0, VT);
1757      case MVT::i8:
1758        Tmp1 = (unsigned)Val | 0x100;
1759        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1760      case MVT::i16:
1761        Tmp1 = (unsigned)Val | 0x10000;
1762        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1763      case MVT::i32:
1764        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1765      case MVT::i64:
1766        return getConstant(CountTrailingZeros_64(Val), VT);
1767      }
1768    }
1769  }
1770
1771  // Constant fold unary operations with a floating point constant operand.
1772  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1773    APFloat V = C->getValueAPF();    // make copy
1774    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1775      switch (Opcode) {
1776      case ISD::FNEG:
1777        V.changeSign();
1778        return getConstantFP(V, VT);
1779      case ISD::FABS:
1780        V.clearSign();
1781        return getConstantFP(V, VT);
1782      case ISD::FP_ROUND:
1783      case ISD::FP_EXTEND:
1784        // This can return overflow, underflow, or inexact; we don't care.
1785        // FIXME need to be more flexible about rounding mode.
1786        (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1787                         VT==MVT::f64 ? APFloat::IEEEdouble :
1788                         VT==MVT::f80 ? APFloat::x87DoubleExtended :
1789                         VT==MVT::f128 ? APFloat::IEEEquad :
1790                         APFloat::Bogus,
1791                         APFloat::rmNearestTiesToEven);
1792        return getConstantFP(V, VT);
1793      case ISD::FP_TO_SINT:
1794      case ISD::FP_TO_UINT: {
1795        integerPart x;
1796        assert(integerPartWidth >= 64);
1797        // FIXME need to be more flexible about rounding mode.
1798        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1799                              Opcode==ISD::FP_TO_SINT,
1800                              APFloat::rmTowardZero);
1801        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1802          break;
1803        return getConstant(x, VT);
1804      }
1805      case ISD::BIT_CONVERT:
1806        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1807          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1808        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1809          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1810        break;
1811      }
1812    }
1813  }
1814
1815  unsigned OpOpcode = Operand.Val->getOpcode();
1816  switch (Opcode) {
1817  case ISD::TokenFactor:
1818    return Operand;         // Factor of one node?  No factor.
1819  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1820  case ISD::FP_EXTEND:
1821    assert(MVT::isFloatingPoint(VT) &&
1822           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1823    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1824    break;
1825    case ISD::SIGN_EXTEND:
1826    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1827           "Invalid SIGN_EXTEND!");
1828    if (Operand.getValueType() == VT) return Operand;   // noop extension
1829    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1830           && "Invalid sext node, dst < src!");
1831    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1832      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1833    break;
1834  case ISD::ZERO_EXTEND:
1835    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1836           "Invalid ZERO_EXTEND!");
1837    if (Operand.getValueType() == VT) return Operand;   // noop extension
1838    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1839           && "Invalid zext node, dst < src!");
1840    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1841      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1842    break;
1843  case ISD::ANY_EXTEND:
1844    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1845           "Invalid ANY_EXTEND!");
1846    if (Operand.getValueType() == VT) return Operand;   // noop extension
1847    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1848           && "Invalid anyext node, dst < src!");
1849    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1850      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1851      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1852    break;
1853  case ISD::TRUNCATE:
1854    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1855           "Invalid TRUNCATE!");
1856    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1857    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1858           && "Invalid truncate node, src < dst!");
1859    if (OpOpcode == ISD::TRUNCATE)
1860      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1861    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1862             OpOpcode == ISD::ANY_EXTEND) {
1863      // If the source is smaller than the dest, we still need an extend.
1864      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1865          < MVT::getSizeInBits(VT))
1866        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1867      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1868               > MVT::getSizeInBits(VT))
1869        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1870      else
1871        return Operand.Val->getOperand(0);
1872    }
1873    break;
1874  case ISD::BIT_CONVERT:
1875    // Basic sanity checking.
1876    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1877           && "Cannot BIT_CONVERT between types of different sizes!");
1878    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1879    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1880      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1881    if (OpOpcode == ISD::UNDEF)
1882      return getNode(ISD::UNDEF, VT);
1883    break;
1884  case ISD::SCALAR_TO_VECTOR:
1885    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1886           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1887           "Illegal SCALAR_TO_VECTOR node!");
1888    break;
1889  case ISD::FNEG:
1890    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1891      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1892                     Operand.Val->getOperand(0));
1893    if (OpOpcode == ISD::FNEG)  // --X -> X
1894      return Operand.Val->getOperand(0);
1895    break;
1896  case ISD::FABS:
1897    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1898      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1899    break;
1900  }
1901
1902  SDNode *N;
1903  SDVTList VTs = getVTList(VT);
1904  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1905    FoldingSetNodeID ID;
1906    SDOperand Ops[1] = { Operand };
1907    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1908    void *IP = 0;
1909    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1910      return SDOperand(E, 0);
1911    N = new UnarySDNode(Opcode, VTs, Operand);
1912    CSEMap.InsertNode(N, IP);
1913  } else {
1914    N = new UnarySDNode(Opcode, VTs, Operand);
1915  }
1916  AllNodes.push_back(N);
1917  return SDOperand(N, 0);
1918}
1919
1920
1921
1922SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1923                                SDOperand N1, SDOperand N2) {
1924  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1925  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1926  switch (Opcode) {
1927  default: break;
1928  case ISD::TokenFactor:
1929    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1930           N2.getValueType() == MVT::Other && "Invalid token factor!");
1931    // Fold trivial token factors.
1932    if (N1.getOpcode() == ISD::EntryToken) return N2;
1933    if (N2.getOpcode() == ISD::EntryToken) return N1;
1934    break;
1935  case ISD::AND:
1936    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1937           N1.getValueType() == VT && "Binary operator types must match!");
1938    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1939    // worth handling here.
1940    if (N2C && N2C->getValue() == 0)
1941      return N2;
1942    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
1943      return N1;
1944    break;
1945  case ISD::OR:
1946  case ISD::XOR:
1947    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1948           N1.getValueType() == VT && "Binary operator types must match!");
1949    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1950    // worth handling here.
1951    if (N2C && N2C->getValue() == 0)
1952      return N1;
1953    break;
1954  case ISD::UDIV:
1955  case ISD::UREM:
1956  case ISD::MULHU:
1957  case ISD::MULHS:
1958    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1959    // fall through
1960  case ISD::ADD:
1961  case ISD::SUB:
1962  case ISD::MUL:
1963  case ISD::SDIV:
1964  case ISD::SREM:
1965  case ISD::FADD:
1966  case ISD::FSUB:
1967  case ISD::FMUL:
1968  case ISD::FDIV:
1969  case ISD::FREM:
1970    assert(N1.getValueType() == N2.getValueType() &&
1971           N1.getValueType() == VT && "Binary operator types must match!");
1972    break;
1973  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1974    assert(N1.getValueType() == VT &&
1975           MVT::isFloatingPoint(N1.getValueType()) &&
1976           MVT::isFloatingPoint(N2.getValueType()) &&
1977           "Invalid FCOPYSIGN!");
1978    break;
1979  case ISD::SHL:
1980  case ISD::SRA:
1981  case ISD::SRL:
1982  case ISD::ROTL:
1983  case ISD::ROTR:
1984    assert(VT == N1.getValueType() &&
1985           "Shift operators return type must be the same as their first arg");
1986    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1987           VT != MVT::i1 && "Shifts only work on integers");
1988    break;
1989  case ISD::FP_ROUND_INREG: {
1990    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1991    assert(VT == N1.getValueType() && "Not an inreg round!");
1992    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1993           "Cannot FP_ROUND_INREG integer types");
1994    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1995           "Not rounding down!");
1996    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1997    break;
1998  }
1999  case ISD::FP_ROUND:
2000    assert(MVT::isFloatingPoint(VT) &&
2001           MVT::isFloatingPoint(N1.getValueType()) &&
2002           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2003           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2004    if (N1.getValueType() == VT) return N1;  // noop conversion.
2005    break;
2006  case ISD::AssertSext:
2007  case ISD::AssertZext: {
2008    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2009    assert(VT == N1.getValueType() && "Not an inreg extend!");
2010    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2011           "Cannot *_EXTEND_INREG FP types");
2012    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2013           "Not extending!");
2014    break;
2015  }
2016  case ISD::SIGN_EXTEND_INREG: {
2017    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2018    assert(VT == N1.getValueType() && "Not an inreg extend!");
2019    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2020           "Cannot *_EXTEND_INREG FP types");
2021    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2022           "Not extending!");
2023    if (EVT == VT) return N1;  // Not actually extending
2024
2025    if (N1C) {
2026      int64_t Val = N1C->getValue();
2027      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2028      Val <<= 64-FromBits;
2029      Val >>= 64-FromBits;
2030      return getConstant(Val, VT);
2031    }
2032    break;
2033  }
2034  case ISD::EXTRACT_VECTOR_ELT:
2035    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2036
2037    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2038    // expanding copies of large vectors from registers.
2039    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2040        N1.getNumOperands() > 0) {
2041      unsigned Factor =
2042        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2043      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2044                     N1.getOperand(N2C->getValue() / Factor),
2045                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2046    }
2047
2048    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2049    // expanding large vector constants.
2050    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2051      return N1.getOperand(N2C->getValue());
2052
2053    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2054    // operations are lowered to scalars.
2055    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2056      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2057        if (IEC == N2C)
2058          return N1.getOperand(1);
2059        else
2060          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2061      }
2062    break;
2063  case ISD::EXTRACT_ELEMENT:
2064    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2065
2066    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2067    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2068    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2069    if (N1.getOpcode() == ISD::BUILD_PAIR)
2070      return N1.getOperand(N2C->getValue());
2071
2072    // EXTRACT_ELEMENT of a constant int is also very common.
2073    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2074      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2075      return getConstant(C->getValue() >> Shift, VT);
2076    }
2077    break;
2078  }
2079
2080  if (N1C) {
2081    if (N2C) {
2082      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
2083      switch (Opcode) {
2084      case ISD::ADD: return getConstant(C1 + C2, VT);
2085      case ISD::SUB: return getConstant(C1 - C2, VT);
2086      case ISD::MUL: return getConstant(C1 * C2, VT);
2087      case ISD::UDIV:
2088        if (C2) return getConstant(C1 / C2, VT);
2089        break;
2090      case ISD::UREM :
2091        if (C2) return getConstant(C1 % C2, VT);
2092        break;
2093      case ISD::SDIV :
2094        if (C2) return getConstant(N1C->getSignExtended() /
2095                                   N2C->getSignExtended(), VT);
2096        break;
2097      case ISD::SREM :
2098        if (C2) return getConstant(N1C->getSignExtended() %
2099                                   N2C->getSignExtended(), VT);
2100        break;
2101      case ISD::AND  : return getConstant(C1 & C2, VT);
2102      case ISD::OR   : return getConstant(C1 | C2, VT);
2103      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2104      case ISD::SHL  : return getConstant(C1 << C2, VT);
2105      case ISD::SRL  : return getConstant(C1 >> C2, VT);
2106      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
2107      case ISD::ROTL :
2108        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
2109                           VT);
2110      case ISD::ROTR :
2111        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
2112                           VT);
2113      default: break;
2114      }
2115    } else {      // Cannonicalize constant to RHS if commutative
2116      if (isCommutativeBinOp(Opcode)) {
2117        std::swap(N1C, N2C);
2118        std::swap(N1, N2);
2119      }
2120    }
2121  }
2122
2123  // Constant fold FP operations.
2124  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2125  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2126  if (N1CFP) {
2127    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2128      // Cannonicalize constant to RHS if commutative
2129      std::swap(N1CFP, N2CFP);
2130      std::swap(N1, N2);
2131    } else if (N2CFP && VT != MVT::ppcf128) {
2132      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2133      APFloat::opStatus s;
2134      switch (Opcode) {
2135      case ISD::FADD:
2136        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2137        if (s != APFloat::opInvalidOp)
2138          return getConstantFP(V1, VT);
2139        break;
2140      case ISD::FSUB:
2141        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2142        if (s!=APFloat::opInvalidOp)
2143          return getConstantFP(V1, VT);
2144        break;
2145      case ISD::FMUL:
2146        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2147        if (s!=APFloat::opInvalidOp)
2148          return getConstantFP(V1, VT);
2149        break;
2150      case ISD::FDIV:
2151        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2152        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2153          return getConstantFP(V1, VT);
2154        break;
2155      case ISD::FREM :
2156        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2157        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2158          return getConstantFP(V1, VT);
2159        break;
2160      case ISD::FCOPYSIGN:
2161        V1.copySign(V2);
2162        return getConstantFP(V1, VT);
2163      default: break;
2164      }
2165    }
2166  }
2167
2168  // Canonicalize an UNDEF to the RHS, even over a constant.
2169  if (N1.getOpcode() == ISD::UNDEF) {
2170    if (isCommutativeBinOp(Opcode)) {
2171      std::swap(N1, N2);
2172    } else {
2173      switch (Opcode) {
2174      case ISD::FP_ROUND_INREG:
2175      case ISD::SIGN_EXTEND_INREG:
2176      case ISD::SUB:
2177      case ISD::FSUB:
2178      case ISD::FDIV:
2179      case ISD::FREM:
2180      case ISD::SRA:
2181        return N1;     // fold op(undef, arg2) -> undef
2182      case ISD::UDIV:
2183      case ISD::SDIV:
2184      case ISD::UREM:
2185      case ISD::SREM:
2186      case ISD::SRL:
2187      case ISD::SHL:
2188        if (!MVT::isVector(VT))
2189          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2190        // For vectors, we can't easily build an all zero vector, just return
2191        // the LHS.
2192        return N2;
2193      }
2194    }
2195  }
2196
2197  // Fold a bunch of operators when the RHS is undef.
2198  if (N2.getOpcode() == ISD::UNDEF) {
2199    switch (Opcode) {
2200    case ISD::ADD:
2201    case ISD::ADDC:
2202    case ISD::ADDE:
2203    case ISD::SUB:
2204    case ISD::FADD:
2205    case ISD::FSUB:
2206    case ISD::FMUL:
2207    case ISD::FDIV:
2208    case ISD::FREM:
2209    case ISD::UDIV:
2210    case ISD::SDIV:
2211    case ISD::UREM:
2212    case ISD::SREM:
2213    case ISD::XOR:
2214      return N2;       // fold op(arg1, undef) -> undef
2215    case ISD::MUL:
2216    case ISD::AND:
2217    case ISD::SRL:
2218    case ISD::SHL:
2219      if (!MVT::isVector(VT))
2220        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2221      // For vectors, we can't easily build an all zero vector, just return
2222      // the LHS.
2223      return N1;
2224    case ISD::OR:
2225      if (!MVT::isVector(VT))
2226        return getConstant(MVT::getIntVTBitMask(VT), VT);
2227      // For vectors, we can't easily build an all one vector, just return
2228      // the LHS.
2229      return N1;
2230    case ISD::SRA:
2231      return N1;
2232    }
2233  }
2234
2235  // Memoize this node if possible.
2236  SDNode *N;
2237  SDVTList VTs = getVTList(VT);
2238  if (VT != MVT::Flag) {
2239    SDOperand Ops[] = { N1, N2 };
2240    FoldingSetNodeID ID;
2241    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2242    void *IP = 0;
2243    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2244      return SDOperand(E, 0);
2245    N = new BinarySDNode(Opcode, VTs, N1, N2);
2246    CSEMap.InsertNode(N, IP);
2247  } else {
2248    N = new BinarySDNode(Opcode, VTs, N1, N2);
2249  }
2250
2251  AllNodes.push_back(N);
2252  return SDOperand(N, 0);
2253}
2254
2255SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2256                                SDOperand N1, SDOperand N2, SDOperand N3) {
2257  // Perform various simplifications.
2258  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2259  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2260  switch (Opcode) {
2261  case ISD::SETCC: {
2262    // Use FoldSetCC to simplify SETCC's.
2263    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2264    if (Simp.Val) return Simp;
2265    break;
2266  }
2267  case ISD::SELECT:
2268    if (N1C)
2269      if (N1C->getValue())
2270        return N2;             // select true, X, Y -> X
2271      else
2272        return N3;             // select false, X, Y -> Y
2273
2274    if (N2 == N3) return N2;   // select C, X, X -> X
2275    break;
2276  case ISD::BRCOND:
2277    if (N2C)
2278      if (N2C->getValue()) // Unconditional branch
2279        return getNode(ISD::BR, MVT::Other, N1, N3);
2280      else
2281        return N1;         // Never-taken branch
2282    break;
2283  case ISD::VECTOR_SHUFFLE:
2284    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2285           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2286           N3.getOpcode() == ISD::BUILD_VECTOR &&
2287           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2288           "Illegal VECTOR_SHUFFLE node!");
2289    break;
2290  case ISD::BIT_CONVERT:
2291    // Fold bit_convert nodes from a type to themselves.
2292    if (N1.getValueType() == VT)
2293      return N1;
2294    break;
2295  }
2296
2297  // Memoize node if it doesn't produce a flag.
2298  SDNode *N;
2299  SDVTList VTs = getVTList(VT);
2300  if (VT != MVT::Flag) {
2301    SDOperand Ops[] = { N1, N2, N3 };
2302    FoldingSetNodeID ID;
2303    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2304    void *IP = 0;
2305    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2306      return SDOperand(E, 0);
2307    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2308    CSEMap.InsertNode(N, IP);
2309  } else {
2310    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2311  }
2312  AllNodes.push_back(N);
2313  return SDOperand(N, 0);
2314}
2315
2316SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2317                                SDOperand N1, SDOperand N2, SDOperand N3,
2318                                SDOperand N4) {
2319  SDOperand Ops[] = { N1, N2, N3, N4 };
2320  return getNode(Opcode, VT, Ops, 4);
2321}
2322
2323SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2324                                SDOperand N1, SDOperand N2, SDOperand N3,
2325                                SDOperand N4, SDOperand N5) {
2326  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2327  return getNode(Opcode, VT, Ops, 5);
2328}
2329
2330SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2331                                  SDOperand Src, SDOperand Size,
2332                                  SDOperand Align,
2333                                  SDOperand AlwaysInline) {
2334  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2335  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2336}
2337
2338SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2339                                  SDOperand Src, SDOperand Size,
2340                                  SDOperand Align,
2341                                  SDOperand AlwaysInline) {
2342  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2343  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2344}
2345
2346SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2347                                  SDOperand Src, SDOperand Size,
2348                                  SDOperand Align,
2349                                  SDOperand AlwaysInline) {
2350  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2351  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2352}
2353
2354SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2355                                SDOperand Chain, SDOperand Ptr,
2356                                const Value *SV, int SVOffset,
2357                                bool isVolatile, unsigned Alignment) {
2358  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2359    const Type *Ty = 0;
2360    if (VT != MVT::iPTR) {
2361      Ty = MVT::getTypeForValueType(VT);
2362    } else if (SV) {
2363      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2364      assert(PT && "Value for load must be a pointer");
2365      Ty = PT->getElementType();
2366    }
2367    assert(Ty && "Could not get type information for load");
2368    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2369  }
2370  SDVTList VTs = getVTList(VT, MVT::Other);
2371  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2372  SDOperand Ops[] = { Chain, Ptr, Undef };
2373  FoldingSetNodeID ID;
2374  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2375  ID.AddInteger(ISD::UNINDEXED);
2376  ID.AddInteger(ISD::NON_EXTLOAD);
2377  ID.AddInteger((unsigned int)VT);
2378  ID.AddInteger(Alignment);
2379  ID.AddInteger(isVolatile);
2380  void *IP = 0;
2381  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2382    return SDOperand(E, 0);
2383  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2384                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2385                             isVolatile);
2386  CSEMap.InsertNode(N, IP);
2387  AllNodes.push_back(N);
2388  return SDOperand(N, 0);
2389}
2390
2391SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2392                                   SDOperand Chain, SDOperand Ptr,
2393                                   const Value *SV,
2394                                   int SVOffset, MVT::ValueType EVT,
2395                                   bool isVolatile, unsigned Alignment) {
2396  // If they are asking for an extending load from/to the same thing, return a
2397  // normal load.
2398  if (VT == EVT)
2399    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2400
2401  if (MVT::isVector(VT))
2402    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2403  else
2404    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2405           "Should only be an extending load, not truncating!");
2406  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2407         "Cannot sign/zero extend a FP/Vector load!");
2408  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2409         "Cannot convert from FP to Int or Int -> FP!");
2410
2411  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2412    const Type *Ty = 0;
2413    if (VT != MVT::iPTR) {
2414      Ty = MVT::getTypeForValueType(VT);
2415    } else if (SV) {
2416      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2417      assert(PT && "Value for load must be a pointer");
2418      Ty = PT->getElementType();
2419    }
2420    assert(Ty && "Could not get type information for load");
2421    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2422  }
2423  SDVTList VTs = getVTList(VT, MVT::Other);
2424  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2425  SDOperand Ops[] = { Chain, Ptr, Undef };
2426  FoldingSetNodeID ID;
2427  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2428  ID.AddInteger(ISD::UNINDEXED);
2429  ID.AddInteger(ExtType);
2430  ID.AddInteger((unsigned int)EVT);
2431  ID.AddInteger(Alignment);
2432  ID.AddInteger(isVolatile);
2433  void *IP = 0;
2434  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2435    return SDOperand(E, 0);
2436  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2437                             SV, SVOffset, Alignment, isVolatile);
2438  CSEMap.InsertNode(N, IP);
2439  AllNodes.push_back(N);
2440  return SDOperand(N, 0);
2441}
2442
2443SDOperand
2444SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2445                             SDOperand Offset, ISD::MemIndexedMode AM) {
2446  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2447  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2448         "Load is already a indexed load!");
2449  MVT::ValueType VT = OrigLoad.getValueType();
2450  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2451  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2452  FoldingSetNodeID ID;
2453  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2454  ID.AddInteger(AM);
2455  ID.AddInteger(LD->getExtensionType());
2456  ID.AddInteger((unsigned int)(LD->getMemoryVT()));
2457  ID.AddInteger(LD->getAlignment());
2458  ID.AddInteger(LD->isVolatile());
2459  void *IP = 0;
2460  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2461    return SDOperand(E, 0);
2462  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2463                             LD->getExtensionType(), LD->getMemoryVT(),
2464                             LD->getSrcValue(), LD->getSrcValueOffset(),
2465                             LD->getAlignment(), LD->isVolatile());
2466  CSEMap.InsertNode(N, IP);
2467  AllNodes.push_back(N);
2468  return SDOperand(N, 0);
2469}
2470
2471SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2472                                 SDOperand Ptr, const Value *SV, int SVOffset,
2473                                 bool isVolatile, unsigned Alignment) {
2474  MVT::ValueType VT = Val.getValueType();
2475
2476  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2477    const Type *Ty = 0;
2478    if (VT != MVT::iPTR) {
2479      Ty = MVT::getTypeForValueType(VT);
2480    } else if (SV) {
2481      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2482      assert(PT && "Value for store must be a pointer");
2483      Ty = PT->getElementType();
2484    }
2485    assert(Ty && "Could not get type information for store");
2486    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2487  }
2488  SDVTList VTs = getVTList(MVT::Other);
2489  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2490  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2491  FoldingSetNodeID ID;
2492  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2493  ID.AddInteger(ISD::UNINDEXED);
2494  ID.AddInteger(false);
2495  ID.AddInteger((unsigned int)VT);
2496  ID.AddInteger(Alignment);
2497  ID.AddInteger(isVolatile);
2498  void *IP = 0;
2499  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2500    return SDOperand(E, 0);
2501  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2502                              VT, SV, SVOffset, Alignment, isVolatile);
2503  CSEMap.InsertNode(N, IP);
2504  AllNodes.push_back(N);
2505  return SDOperand(N, 0);
2506}
2507
2508SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2509                                      SDOperand Ptr, const Value *SV,
2510                                      int SVOffset, MVT::ValueType SVT,
2511                                      bool isVolatile, unsigned Alignment) {
2512  MVT::ValueType VT = Val.getValueType();
2513
2514  if (VT == SVT)
2515    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2516
2517  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2518         "Not a truncation?");
2519  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2520         "Can't do FP-INT conversion!");
2521
2522  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2523    const Type *Ty = 0;
2524    if (VT != MVT::iPTR) {
2525      Ty = MVT::getTypeForValueType(VT);
2526    } else if (SV) {
2527      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2528      assert(PT && "Value for store must be a pointer");
2529      Ty = PT->getElementType();
2530    }
2531    assert(Ty && "Could not get type information for store");
2532    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2533  }
2534  SDVTList VTs = getVTList(MVT::Other);
2535  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2536  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2537  FoldingSetNodeID ID;
2538  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2539  ID.AddInteger(ISD::UNINDEXED);
2540  ID.AddInteger(1);
2541  ID.AddInteger((unsigned int)SVT);
2542  ID.AddInteger(Alignment);
2543  ID.AddInteger(isVolatile);
2544  void *IP = 0;
2545  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2546    return SDOperand(E, 0);
2547  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2548                              SVT, SV, SVOffset, Alignment, isVolatile);
2549  CSEMap.InsertNode(N, IP);
2550  AllNodes.push_back(N);
2551  return SDOperand(N, 0);
2552}
2553
2554SDOperand
2555SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2556                              SDOperand Offset, ISD::MemIndexedMode AM) {
2557  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2558  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2559         "Store is already a indexed store!");
2560  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2561  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2562  FoldingSetNodeID ID;
2563  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2564  ID.AddInteger(AM);
2565  ID.AddInteger(ST->isTruncatingStore());
2566  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
2567  ID.AddInteger(ST->getAlignment());
2568  ID.AddInteger(ST->isVolatile());
2569  void *IP = 0;
2570  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2571    return SDOperand(E, 0);
2572  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2573                              ST->isTruncatingStore(), ST->getMemoryVT(),
2574                              ST->getSrcValue(), ST->getSrcValueOffset(),
2575                              ST->getAlignment(), ST->isVolatile());
2576  CSEMap.InsertNode(N, IP);
2577  AllNodes.push_back(N);
2578  return SDOperand(N, 0);
2579}
2580
2581SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2582                                 SDOperand Chain, SDOperand Ptr,
2583                                 SDOperand SV) {
2584  SDOperand Ops[] = { Chain, Ptr, SV };
2585  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2586}
2587
2588SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2589                                const SDOperand *Ops, unsigned NumOps) {
2590  switch (NumOps) {
2591  case 0: return getNode(Opcode, VT);
2592  case 1: return getNode(Opcode, VT, Ops[0]);
2593  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2594  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2595  default: break;
2596  }
2597
2598  switch (Opcode) {
2599  default: break;
2600  case ISD::SELECT_CC: {
2601    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2602    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2603           "LHS and RHS of condition must have same type!");
2604    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2605           "True and False arms of SelectCC must have same type!");
2606    assert(Ops[2].getValueType() == VT &&
2607           "select_cc node must be of same type as true and false value!");
2608    break;
2609  }
2610  case ISD::BR_CC: {
2611    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2612    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2613           "LHS/RHS of comparison should match types!");
2614    break;
2615  }
2616  }
2617
2618  // Memoize nodes.
2619  SDNode *N;
2620  SDVTList VTs = getVTList(VT);
2621  if (VT != MVT::Flag) {
2622    FoldingSetNodeID ID;
2623    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2624    void *IP = 0;
2625    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2626      return SDOperand(E, 0);
2627    N = new SDNode(Opcode, VTs, Ops, NumOps);
2628    CSEMap.InsertNode(N, IP);
2629  } else {
2630    N = new SDNode(Opcode, VTs, Ops, NumOps);
2631  }
2632  AllNodes.push_back(N);
2633  return SDOperand(N, 0);
2634}
2635
2636SDOperand SelectionDAG::getNode(unsigned Opcode,
2637                                std::vector<MVT::ValueType> &ResultTys,
2638                                const SDOperand *Ops, unsigned NumOps) {
2639  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2640                 Ops, NumOps);
2641}
2642
2643SDOperand SelectionDAG::getNode(unsigned Opcode,
2644                                const MVT::ValueType *VTs, unsigned NumVTs,
2645                                const SDOperand *Ops, unsigned NumOps) {
2646  if (NumVTs == 1)
2647    return getNode(Opcode, VTs[0], Ops, NumOps);
2648  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2649}
2650
2651SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2652                                const SDOperand *Ops, unsigned NumOps) {
2653  if (VTList.NumVTs == 1)
2654    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2655
2656  switch (Opcode) {
2657  // FIXME: figure out how to safely handle things like
2658  // int foo(int x) { return 1 << (x & 255); }
2659  // int bar() { return foo(256); }
2660#if 0
2661  case ISD::SRA_PARTS:
2662  case ISD::SRL_PARTS:
2663  case ISD::SHL_PARTS:
2664    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2665        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2666      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2667    else if (N3.getOpcode() == ISD::AND)
2668      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2669        // If the and is only masking out bits that cannot effect the shift,
2670        // eliminate the and.
2671        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2672        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2673          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2674      }
2675    break;
2676#endif
2677  }
2678
2679  // Memoize the node unless it returns a flag.
2680  SDNode *N;
2681  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2682    FoldingSetNodeID ID;
2683    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2684    void *IP = 0;
2685    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2686      return SDOperand(E, 0);
2687    if (NumOps == 1)
2688      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2689    else if (NumOps == 2)
2690      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2691    else if (NumOps == 3)
2692      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2693    else
2694      N = new SDNode(Opcode, VTList, Ops, NumOps);
2695    CSEMap.InsertNode(N, IP);
2696  } else {
2697    if (NumOps == 1)
2698      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2699    else if (NumOps == 2)
2700      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2701    else if (NumOps == 3)
2702      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2703    else
2704      N = new SDNode(Opcode, VTList, Ops, NumOps);
2705  }
2706  AllNodes.push_back(N);
2707  return SDOperand(N, 0);
2708}
2709
2710SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2711  return getNode(Opcode, VTList, 0, 0);
2712}
2713
2714SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2715                                SDOperand N1) {
2716  SDOperand Ops[] = { N1 };
2717  return getNode(Opcode, VTList, Ops, 1);
2718}
2719
2720SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2721                                SDOperand N1, SDOperand N2) {
2722  SDOperand Ops[] = { N1, N2 };
2723  return getNode(Opcode, VTList, Ops, 2);
2724}
2725
2726SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2727                                SDOperand N1, SDOperand N2, SDOperand N3) {
2728  SDOperand Ops[] = { N1, N2, N3 };
2729  return getNode(Opcode, VTList, Ops, 3);
2730}
2731
2732SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2733                                SDOperand N1, SDOperand N2, SDOperand N3,
2734                                SDOperand N4) {
2735  SDOperand Ops[] = { N1, N2, N3, N4 };
2736  return getNode(Opcode, VTList, Ops, 4);
2737}
2738
2739SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2740                                SDOperand N1, SDOperand N2, SDOperand N3,
2741                                SDOperand N4, SDOperand N5) {
2742  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2743  return getNode(Opcode, VTList, Ops, 5);
2744}
2745
2746SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2747  return makeVTList(SDNode::getValueTypeList(VT), 1);
2748}
2749
2750SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2751  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2752       E = VTList.end(); I != E; ++I) {
2753    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2754      return makeVTList(&(*I)[0], 2);
2755  }
2756  std::vector<MVT::ValueType> V;
2757  V.push_back(VT1);
2758  V.push_back(VT2);
2759  VTList.push_front(V);
2760  return makeVTList(&(*VTList.begin())[0], 2);
2761}
2762SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2763                                 MVT::ValueType VT3) {
2764  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2765       E = VTList.end(); I != E; ++I) {
2766    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2767        (*I)[2] == VT3)
2768      return makeVTList(&(*I)[0], 3);
2769  }
2770  std::vector<MVT::ValueType> V;
2771  V.push_back(VT1);
2772  V.push_back(VT2);
2773  V.push_back(VT3);
2774  VTList.push_front(V);
2775  return makeVTList(&(*VTList.begin())[0], 3);
2776}
2777
2778SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2779  switch (NumVTs) {
2780    case 0: assert(0 && "Cannot have nodes without results!");
2781    case 1: return getVTList(VTs[0]);
2782    case 2: return getVTList(VTs[0], VTs[1]);
2783    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2784    default: break;
2785  }
2786
2787  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2788       E = VTList.end(); I != E; ++I) {
2789    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2790
2791    bool NoMatch = false;
2792    for (unsigned i = 2; i != NumVTs; ++i)
2793      if (VTs[i] != (*I)[i]) {
2794        NoMatch = true;
2795        break;
2796      }
2797    if (!NoMatch)
2798      return makeVTList(&*I->begin(), NumVTs);
2799  }
2800
2801  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2802  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2803}
2804
2805
2806/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2807/// specified operands.  If the resultant node already exists in the DAG,
2808/// this does not modify the specified node, instead it returns the node that
2809/// already exists.  If the resultant node does not exist in the DAG, the
2810/// input node is returned.  As a degenerate case, if you specify the same
2811/// input operands as the node already has, the input node is returned.
2812SDOperand SelectionDAG::
2813UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2814  SDNode *N = InN.Val;
2815  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2816
2817  // Check to see if there is no change.
2818  if (Op == N->getOperand(0)) return InN;
2819
2820  // See if the modified node already exists.
2821  void *InsertPos = 0;
2822  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2823    return SDOperand(Existing, InN.ResNo);
2824
2825  // Nope it doesn't.  Remove the node from it's current place in the maps.
2826  if (InsertPos)
2827    RemoveNodeFromCSEMaps(N);
2828
2829  // Now we update the operands.
2830  N->OperandList[0].Val->removeUser(N);
2831  Op.Val->addUser(N);
2832  N->OperandList[0] = Op;
2833
2834  // If this gets put into a CSE map, add it.
2835  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2836  return InN;
2837}
2838
2839SDOperand SelectionDAG::
2840UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2841  SDNode *N = InN.Val;
2842  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2843
2844  // Check to see if there is no change.
2845  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2846    return InN;   // No operands changed, just return the input node.
2847
2848  // See if the modified node already exists.
2849  void *InsertPos = 0;
2850  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2851    return SDOperand(Existing, InN.ResNo);
2852
2853  // Nope it doesn't.  Remove the node from it's current place in the maps.
2854  if (InsertPos)
2855    RemoveNodeFromCSEMaps(N);
2856
2857  // Now we update the operands.
2858  if (N->OperandList[0] != Op1) {
2859    N->OperandList[0].Val->removeUser(N);
2860    Op1.Val->addUser(N);
2861    N->OperandList[0] = Op1;
2862  }
2863  if (N->OperandList[1] != Op2) {
2864    N->OperandList[1].Val->removeUser(N);
2865    Op2.Val->addUser(N);
2866    N->OperandList[1] = Op2;
2867  }
2868
2869  // If this gets put into a CSE map, add it.
2870  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2871  return InN;
2872}
2873
2874SDOperand SelectionDAG::
2875UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2876  SDOperand Ops[] = { Op1, Op2, Op3 };
2877  return UpdateNodeOperands(N, Ops, 3);
2878}
2879
2880SDOperand SelectionDAG::
2881UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2882                   SDOperand Op3, SDOperand Op4) {
2883  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2884  return UpdateNodeOperands(N, Ops, 4);
2885}
2886
2887SDOperand SelectionDAG::
2888UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2889                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2890  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2891  return UpdateNodeOperands(N, Ops, 5);
2892}
2893
2894
2895SDOperand SelectionDAG::
2896UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2897  SDNode *N = InN.Val;
2898  assert(N->getNumOperands() == NumOps &&
2899         "Update with wrong number of operands");
2900
2901  // Check to see if there is no change.
2902  bool AnyChange = false;
2903  for (unsigned i = 0; i != NumOps; ++i) {
2904    if (Ops[i] != N->getOperand(i)) {
2905      AnyChange = true;
2906      break;
2907    }
2908  }
2909
2910  // No operands changed, just return the input node.
2911  if (!AnyChange) return InN;
2912
2913  // See if the modified node already exists.
2914  void *InsertPos = 0;
2915  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2916    return SDOperand(Existing, InN.ResNo);
2917
2918  // Nope it doesn't.  Remove the node from it's current place in the maps.
2919  if (InsertPos)
2920    RemoveNodeFromCSEMaps(N);
2921
2922  // Now we update the operands.
2923  for (unsigned i = 0; i != NumOps; ++i) {
2924    if (N->OperandList[i] != Ops[i]) {
2925      N->OperandList[i].Val->removeUser(N);
2926      Ops[i].Val->addUser(N);
2927      N->OperandList[i] = Ops[i];
2928    }
2929  }
2930
2931  // If this gets put into a CSE map, add it.
2932  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2933  return InN;
2934}
2935
2936
2937/// MorphNodeTo - This frees the operands of the current node, resets the
2938/// opcode, types, and operands to the specified value.  This should only be
2939/// used by the SelectionDAG class.
2940void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2941                         const SDOperand *Ops, unsigned NumOps) {
2942  NodeType = Opc;
2943  ValueList = L.VTs;
2944  NumValues = L.NumVTs;
2945
2946  // Clear the operands list, updating used nodes to remove this from their
2947  // use list.
2948  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2949    I->Val->removeUser(this);
2950
2951  // If NumOps is larger than the # of operands we currently have, reallocate
2952  // the operand list.
2953  if (NumOps > NumOperands) {
2954    if (OperandsNeedDelete)
2955      delete [] OperandList;
2956    OperandList = new SDOperand[NumOps];
2957    OperandsNeedDelete = true;
2958  }
2959
2960  // Assign the new operands.
2961  NumOperands = NumOps;
2962
2963  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2964    OperandList[i] = Ops[i];
2965    SDNode *N = OperandList[i].Val;
2966    N->Uses.push_back(this);
2967  }
2968}
2969
2970/// SelectNodeTo - These are used for target selectors to *mutate* the
2971/// specified node to have the specified return type, Target opcode, and
2972/// operands.  Note that target opcodes are stored as
2973/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2974///
2975/// Note that SelectNodeTo returns the resultant node.  If there is already a
2976/// node of the specified opcode and operands, it returns that node instead of
2977/// the current one.
2978SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2979                                   MVT::ValueType VT) {
2980  SDVTList VTs = getVTList(VT);
2981  FoldingSetNodeID ID;
2982  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2983  void *IP = 0;
2984  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2985    return ON;
2986
2987  RemoveNodeFromCSEMaps(N);
2988
2989  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2990
2991  CSEMap.InsertNode(N, IP);
2992  return N;
2993}
2994
2995SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2996                                   MVT::ValueType VT, SDOperand Op1) {
2997  // If an identical node already exists, use it.
2998  SDVTList VTs = getVTList(VT);
2999  SDOperand Ops[] = { Op1 };
3000
3001  FoldingSetNodeID ID;
3002  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3003  void *IP = 0;
3004  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3005    return ON;
3006
3007  RemoveNodeFromCSEMaps(N);
3008  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3009  CSEMap.InsertNode(N, IP);
3010  return N;
3011}
3012
3013SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3014                                   MVT::ValueType VT, SDOperand Op1,
3015                                   SDOperand Op2) {
3016  // If an identical node already exists, use it.
3017  SDVTList VTs = getVTList(VT);
3018  SDOperand Ops[] = { Op1, Op2 };
3019
3020  FoldingSetNodeID ID;
3021  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3022  void *IP = 0;
3023  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3024    return ON;
3025
3026  RemoveNodeFromCSEMaps(N);
3027
3028  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3029
3030  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3031  return N;
3032}
3033
3034SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3035                                   MVT::ValueType VT, SDOperand Op1,
3036                                   SDOperand Op2, SDOperand Op3) {
3037  // If an identical node already exists, use it.
3038  SDVTList VTs = getVTList(VT);
3039  SDOperand Ops[] = { Op1, Op2, Op3 };
3040  FoldingSetNodeID ID;
3041  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3042  void *IP = 0;
3043  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3044    return ON;
3045
3046  RemoveNodeFromCSEMaps(N);
3047
3048  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3049
3050  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3051  return N;
3052}
3053
3054SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3055                                   MVT::ValueType VT, const SDOperand *Ops,
3056                                   unsigned NumOps) {
3057  // If an identical node already exists, use it.
3058  SDVTList VTs = getVTList(VT);
3059  FoldingSetNodeID ID;
3060  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3061  void *IP = 0;
3062  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3063    return ON;
3064
3065  RemoveNodeFromCSEMaps(N);
3066  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3067
3068  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3069  return N;
3070}
3071
3072SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3073                                   MVT::ValueType VT1, MVT::ValueType VT2,
3074                                   SDOperand Op1, SDOperand Op2) {
3075  SDVTList VTs = getVTList(VT1, VT2);
3076  FoldingSetNodeID ID;
3077  SDOperand Ops[] = { Op1, Op2 };
3078  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3079  void *IP = 0;
3080  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3081    return ON;
3082
3083  RemoveNodeFromCSEMaps(N);
3084  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3085  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3086  return N;
3087}
3088
3089SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3090                                   MVT::ValueType VT1, MVT::ValueType VT2,
3091                                   SDOperand Op1, SDOperand Op2,
3092                                   SDOperand Op3) {
3093  // If an identical node already exists, use it.
3094  SDVTList VTs = getVTList(VT1, VT2);
3095  SDOperand Ops[] = { Op1, Op2, Op3 };
3096  FoldingSetNodeID ID;
3097  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3098  void *IP = 0;
3099  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3100    return ON;
3101
3102  RemoveNodeFromCSEMaps(N);
3103
3104  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3105  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3106  return N;
3107}
3108
3109
3110/// getTargetNode - These are used for target selectors to create a new node
3111/// with specified return type(s), target opcode, and operands.
3112///
3113/// Note that getTargetNode returns the resultant node.  If there is already a
3114/// node of the specified opcode and operands, it returns that node instead of
3115/// the current one.
3116SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3117  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3118}
3119SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3120                                    SDOperand Op1) {
3121  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3122}
3123SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3124                                    SDOperand Op1, SDOperand Op2) {
3125  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3126}
3127SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3128                                    SDOperand Op1, SDOperand Op2,
3129                                    SDOperand Op3) {
3130  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3131}
3132SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3133                                    const SDOperand *Ops, unsigned NumOps) {
3134  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3135}
3136SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3137                                    MVT::ValueType VT2) {
3138  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3139  SDOperand Op;
3140  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3141}
3142SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3143                                    MVT::ValueType VT2, SDOperand Op1) {
3144  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3145  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3146}
3147SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3148                                    MVT::ValueType VT2, SDOperand Op1,
3149                                    SDOperand Op2) {
3150  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3151  SDOperand Ops[] = { Op1, Op2 };
3152  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3153}
3154SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3155                                    MVT::ValueType VT2, SDOperand Op1,
3156                                    SDOperand Op2, SDOperand Op3) {
3157  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3158  SDOperand Ops[] = { Op1, Op2, Op3 };
3159  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3160}
3161SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3162                                    MVT::ValueType VT2,
3163                                    const SDOperand *Ops, unsigned NumOps) {
3164  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3165  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3166}
3167SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3168                                    MVT::ValueType VT2, MVT::ValueType VT3,
3169                                    SDOperand Op1, SDOperand Op2) {
3170  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3171  SDOperand Ops[] = { Op1, Op2 };
3172  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3173}
3174SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3175                                    MVT::ValueType VT2, MVT::ValueType VT3,
3176                                    SDOperand Op1, SDOperand Op2,
3177                                    SDOperand Op3) {
3178  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3179  SDOperand Ops[] = { Op1, Op2, Op3 };
3180  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3181}
3182SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3183                                    MVT::ValueType VT2, MVT::ValueType VT3,
3184                                    const SDOperand *Ops, unsigned NumOps) {
3185  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3186  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3187}
3188SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3189                                    MVT::ValueType VT2, MVT::ValueType VT3,
3190                                    MVT::ValueType VT4,
3191                                    const SDOperand *Ops, unsigned NumOps) {
3192  std::vector<MVT::ValueType> VTList;
3193  VTList.push_back(VT1);
3194  VTList.push_back(VT2);
3195  VTList.push_back(VT3);
3196  VTList.push_back(VT4);
3197  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3198  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3199}
3200SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3201                                    std::vector<MVT::ValueType> &ResultTys,
3202                                    const SDOperand *Ops, unsigned NumOps) {
3203  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3204  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3205                 Ops, NumOps).Val;
3206}
3207
3208
3209/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3210/// This can cause recursive merging of nodes in the DAG.
3211///
3212/// This version assumes From has a single result value.
3213///
3214void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3215                                      DAGUpdateListener *UpdateListener) {
3216  SDNode *From = FromN.Val;
3217  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3218         "Cannot replace with this method!");
3219  assert(From != To.Val && "Cannot replace uses of with self");
3220
3221  while (!From->use_empty()) {
3222    // Process users until they are all gone.
3223    SDNode *U = *From->use_begin();
3224
3225    // This node is about to morph, remove its old self from the CSE maps.
3226    RemoveNodeFromCSEMaps(U);
3227
3228    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3229         I != E; ++I)
3230      if (I->Val == From) {
3231        From->removeUser(U);
3232        *I = To;
3233        To.Val->addUser(U);
3234      }
3235
3236    // Now that we have modified U, add it back to the CSE maps.  If it already
3237    // exists there, recursively merge the results together.
3238    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3239      ReplaceAllUsesWith(U, Existing, UpdateListener);
3240      // U is now dead.  Inform the listener if it exists and delete it.
3241      if (UpdateListener)
3242        UpdateListener->NodeDeleted(U);
3243      DeleteNodeNotInCSEMaps(U);
3244    } else {
3245      // If the node doesn't already exist, we updated it.  Inform a listener if
3246      // it exists.
3247      if (UpdateListener)
3248        UpdateListener->NodeUpdated(U);
3249    }
3250  }
3251}
3252
3253/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3254/// This can cause recursive merging of nodes in the DAG.
3255///
3256/// This version assumes From/To have matching types and numbers of result
3257/// values.
3258///
3259void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3260                                      DAGUpdateListener *UpdateListener) {
3261  assert(From != To && "Cannot replace uses of with self");
3262  assert(From->getNumValues() == To->getNumValues() &&
3263         "Cannot use this version of ReplaceAllUsesWith!");
3264  if (From->getNumValues() == 1)   // If possible, use the faster version.
3265    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3266                              UpdateListener);
3267
3268  while (!From->use_empty()) {
3269    // Process users until they are all gone.
3270    SDNode *U = *From->use_begin();
3271
3272    // This node is about to morph, remove its old self from the CSE maps.
3273    RemoveNodeFromCSEMaps(U);
3274
3275    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3276         I != E; ++I)
3277      if (I->Val == From) {
3278        From->removeUser(U);
3279        I->Val = To;
3280        To->addUser(U);
3281      }
3282
3283    // Now that we have modified U, add it back to the CSE maps.  If it already
3284    // exists there, recursively merge the results together.
3285    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3286      ReplaceAllUsesWith(U, Existing, UpdateListener);
3287      // U is now dead.  Inform the listener if it exists and delete it.
3288      if (UpdateListener)
3289        UpdateListener->NodeDeleted(U);
3290      DeleteNodeNotInCSEMaps(U);
3291    } else {
3292      // If the node doesn't already exist, we updated it.  Inform a listener if
3293      // it exists.
3294      if (UpdateListener)
3295        UpdateListener->NodeUpdated(U);
3296    }
3297  }
3298}
3299
3300/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3301/// This can cause recursive merging of nodes in the DAG.
3302///
3303/// This version can replace From with any result values.  To must match the
3304/// number and types of values returned by From.
3305void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3306                                      const SDOperand *To,
3307                                      DAGUpdateListener *UpdateListener) {
3308  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3309    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3310
3311  while (!From->use_empty()) {
3312    // Process users until they are all gone.
3313    SDNode *U = *From->use_begin();
3314
3315    // This node is about to morph, remove its old self from the CSE maps.
3316    RemoveNodeFromCSEMaps(U);
3317
3318    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3319         I != E; ++I)
3320      if (I->Val == From) {
3321        const SDOperand &ToOp = To[I->ResNo];
3322        From->removeUser(U);
3323        *I = ToOp;
3324        ToOp.Val->addUser(U);
3325      }
3326
3327    // Now that we have modified U, add it back to the CSE maps.  If it already
3328    // exists there, recursively merge the results together.
3329    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3330      ReplaceAllUsesWith(U, Existing, UpdateListener);
3331      // U is now dead.  Inform the listener if it exists and delete it.
3332      if (UpdateListener)
3333        UpdateListener->NodeDeleted(U);
3334      DeleteNodeNotInCSEMaps(U);
3335    } else {
3336      // If the node doesn't already exist, we updated it.  Inform a listener if
3337      // it exists.
3338      if (UpdateListener)
3339        UpdateListener->NodeUpdated(U);
3340    }
3341  }
3342}
3343
3344namespace {
3345  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3346  /// any deleted nodes from the set passed into its constructor and recursively
3347  /// notifies another update listener if specified.
3348  class ChainedSetUpdaterListener :
3349  public SelectionDAG::DAGUpdateListener {
3350    SmallSetVector<SDNode*, 16> &Set;
3351    SelectionDAG::DAGUpdateListener *Chain;
3352  public:
3353    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3354                              SelectionDAG::DAGUpdateListener *chain)
3355      : Set(set), Chain(chain) {}
3356
3357    virtual void NodeDeleted(SDNode *N) {
3358      Set.remove(N);
3359      if (Chain) Chain->NodeDeleted(N);
3360    }
3361    virtual void NodeUpdated(SDNode *N) {
3362      if (Chain) Chain->NodeUpdated(N);
3363    }
3364  };
3365}
3366
3367/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3368/// uses of other values produced by From.Val alone.  The Deleted vector is
3369/// handled the same way as for ReplaceAllUsesWith.
3370void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3371                                             DAGUpdateListener *UpdateListener){
3372  assert(From != To && "Cannot replace a value with itself");
3373
3374  // Handle the simple, trivial, case efficiently.
3375  if (From.Val->getNumValues() == 1) {
3376    ReplaceAllUsesWith(From, To, UpdateListener);
3377    return;
3378  }
3379
3380  if (From.use_empty()) return;
3381
3382  // Get all of the users of From.Val.  We want these in a nice,
3383  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3384  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3385
3386  // When one of the recursive merges deletes nodes from the graph, we need to
3387  // make sure that UpdateListener is notified *and* that the node is removed
3388  // from Users if present.  CSUL does this.
3389  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3390
3391  while (!Users.empty()) {
3392    // We know that this user uses some value of From.  If it is the right
3393    // value, update it.
3394    SDNode *User = Users.back();
3395    Users.pop_back();
3396
3397    // Scan for an operand that matches From.
3398    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3399    for (; Op != E; ++Op)
3400      if (*Op == From) break;
3401
3402    // If there are no matches, the user must use some other result of From.
3403    if (Op == E) continue;
3404
3405    // Okay, we know this user needs to be updated.  Remove its old self
3406    // from the CSE maps.
3407    RemoveNodeFromCSEMaps(User);
3408
3409    // Update all operands that match "From" in case there are multiple uses.
3410    for (; Op != E; ++Op) {
3411      if (*Op == From) {
3412        From.Val->removeUser(User);
3413        *Op = To;
3414        To.Val->addUser(User);
3415      }
3416    }
3417
3418    // Now that we have modified User, add it back to the CSE maps.  If it
3419    // already exists there, recursively merge the results together.
3420    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3421    if (!Existing) {
3422      if (UpdateListener) UpdateListener->NodeUpdated(User);
3423      continue;  // Continue on to next user.
3424    }
3425
3426    // If there was already an existing matching node, use ReplaceAllUsesWith
3427    // to replace the dead one with the existing one.  This can cause
3428    // recursive merging of other unrelated nodes down the line.  The merging
3429    // can cause deletion of nodes that used the old value.  To handle this, we
3430    // use CSUL to remove them from the Users set.
3431    ReplaceAllUsesWith(User, Existing, &CSUL);
3432
3433    // User is now dead.  Notify a listener if present.
3434    if (UpdateListener) UpdateListener->NodeDeleted(User);
3435    DeleteNodeNotInCSEMaps(User);
3436  }
3437}
3438
3439
3440/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3441/// their allnodes order. It returns the maximum id.
3442unsigned SelectionDAG::AssignNodeIds() {
3443  unsigned Id = 0;
3444  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3445    SDNode *N = I;
3446    N->setNodeId(Id++);
3447  }
3448  return Id;
3449}
3450
3451/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3452/// based on their topological order. It returns the maximum id and a vector
3453/// of the SDNodes* in assigned order by reference.
3454unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3455  unsigned DAGSize = AllNodes.size();
3456  std::vector<unsigned> InDegree(DAGSize);
3457  std::vector<SDNode*> Sources;
3458
3459  // Use a two pass approach to avoid using a std::map which is slow.
3460  unsigned Id = 0;
3461  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3462    SDNode *N = I;
3463    N->setNodeId(Id++);
3464    unsigned Degree = N->use_size();
3465    InDegree[N->getNodeId()] = Degree;
3466    if (Degree == 0)
3467      Sources.push_back(N);
3468  }
3469
3470  TopOrder.clear();
3471  while (!Sources.empty()) {
3472    SDNode *N = Sources.back();
3473    Sources.pop_back();
3474    TopOrder.push_back(N);
3475    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3476      SDNode *P = I->Val;
3477      unsigned Degree = --InDegree[P->getNodeId()];
3478      if (Degree == 0)
3479        Sources.push_back(P);
3480    }
3481  }
3482
3483  // Second pass, assign the actual topological order as node ids.
3484  Id = 0;
3485  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3486       TI != TE; ++TI)
3487    (*TI)->setNodeId(Id++);
3488
3489  return Id;
3490}
3491
3492
3493
3494//===----------------------------------------------------------------------===//
3495//                              SDNode Class
3496//===----------------------------------------------------------------------===//
3497
3498// Out-of-line virtual method to give class a home.
3499void SDNode::ANCHOR() {}
3500void UnarySDNode::ANCHOR() {}
3501void BinarySDNode::ANCHOR() {}
3502void TernarySDNode::ANCHOR() {}
3503void HandleSDNode::ANCHOR() {}
3504void StringSDNode::ANCHOR() {}
3505void ConstantSDNode::ANCHOR() {}
3506void ConstantFPSDNode::ANCHOR() {}
3507void GlobalAddressSDNode::ANCHOR() {}
3508void FrameIndexSDNode::ANCHOR() {}
3509void JumpTableSDNode::ANCHOR() {}
3510void ConstantPoolSDNode::ANCHOR() {}
3511void BasicBlockSDNode::ANCHOR() {}
3512void SrcValueSDNode::ANCHOR() {}
3513void MemOperandSDNode::ANCHOR() {}
3514void RegisterSDNode::ANCHOR() {}
3515void ExternalSymbolSDNode::ANCHOR() {}
3516void CondCodeSDNode::ANCHOR() {}
3517void VTSDNode::ANCHOR() {}
3518void LoadSDNode::ANCHOR() {}
3519void StoreSDNode::ANCHOR() {}
3520
3521HandleSDNode::~HandleSDNode() {
3522  SDVTList VTs = { 0, 0 };
3523  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3524}
3525
3526GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3527                                         MVT::ValueType VT, int o)
3528  : SDNode(isa<GlobalVariable>(GA) &&
3529           cast<GlobalVariable>(GA)->isThreadLocal() ?
3530           // Thread Local
3531           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3532           // Non Thread Local
3533           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3534           getSDVTList(VT)), Offset(o) {
3535  TheGlobal = const_cast<GlobalValue*>(GA);
3536}
3537
3538/// getMemOperand - Return a MemOperand object describing the memory
3539/// reference performed by this load or store.
3540MemOperand LSBaseSDNode::getMemOperand() const {
3541  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
3542  int Flags =
3543    getOpcode() == ISD::LOAD ? MemOperand::MOLoad : MemOperand::MOStore;
3544  if (IsVolatile) Flags |= MemOperand::MOVolatile;
3545
3546  // Check if the load references a frame index, and does not have
3547  // an SV attached.
3548  const FrameIndexSDNode *FI =
3549    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
3550  if (!getSrcValue() && FI)
3551    return MemOperand(PseudoSourceValue::getFixedStack(), Flags,
3552                      FI->getIndex(), Size, Alignment);
3553  else
3554    return MemOperand(getSrcValue(), Flags,
3555                      getSrcValueOffset(), Size, Alignment);
3556}
3557
3558/// Profile - Gather unique data for the node.
3559///
3560void SDNode::Profile(FoldingSetNodeID &ID) {
3561  AddNodeIDNode(ID, this);
3562}
3563
3564/// getValueTypeList - Return a pointer to the specified value type.
3565///
3566const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3567  if (MVT::isExtendedVT(VT)) {
3568    static std::set<MVT::ValueType> EVTs;
3569    return &(*EVTs.insert(VT).first);
3570  } else {
3571    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3572    VTs[VT] = VT;
3573    return &VTs[VT];
3574  }
3575}
3576
3577/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3578/// indicated value.  This method ignores uses of other values defined by this
3579/// operation.
3580bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3581  assert(Value < getNumValues() && "Bad value!");
3582
3583  // If there is only one value, this is easy.
3584  if (getNumValues() == 1)
3585    return use_size() == NUses;
3586  if (use_size() < NUses) return false;
3587
3588  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3589
3590  SmallPtrSet<SDNode*, 32> UsersHandled;
3591
3592  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3593    SDNode *User = *UI;
3594    if (User->getNumOperands() == 1 ||
3595        UsersHandled.insert(User))     // First time we've seen this?
3596      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3597        if (User->getOperand(i) == TheValue) {
3598          if (NUses == 0)
3599            return false;   // too many uses
3600          --NUses;
3601        }
3602  }
3603
3604  // Found exactly the right number of uses?
3605  return NUses == 0;
3606}
3607
3608
3609/// hasAnyUseOfValue - Return true if there are any use of the indicated
3610/// value. This method ignores uses of other values defined by this operation.
3611bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3612  assert(Value < getNumValues() && "Bad value!");
3613
3614  if (use_empty()) return false;
3615
3616  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3617
3618  SmallPtrSet<SDNode*, 32> UsersHandled;
3619
3620  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3621    SDNode *User = *UI;
3622    if (User->getNumOperands() == 1 ||
3623        UsersHandled.insert(User))     // First time we've seen this?
3624      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3625        if (User->getOperand(i) == TheValue) {
3626          return true;
3627        }
3628  }
3629
3630  return false;
3631}
3632
3633
3634/// isOnlyUse - Return true if this node is the only use of N.
3635///
3636bool SDNode::isOnlyUse(SDNode *N) const {
3637  bool Seen = false;
3638  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3639    SDNode *User = *I;
3640    if (User == this)
3641      Seen = true;
3642    else
3643      return false;
3644  }
3645
3646  return Seen;
3647}
3648
3649/// isOperand - Return true if this node is an operand of N.
3650///
3651bool SDOperand::isOperand(SDNode *N) const {
3652  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3653    if (*this == N->getOperand(i))
3654      return true;
3655  return false;
3656}
3657
3658bool SDNode::isOperand(SDNode *N) const {
3659  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3660    if (this == N->OperandList[i].Val)
3661      return true;
3662  return false;
3663}
3664
3665/// reachesChainWithoutSideEffects - Return true if this operand (which must
3666/// be a chain) reaches the specified operand without crossing any
3667/// side-effecting instructions.  In practice, this looks through token
3668/// factors and non-volatile loads.  In order to remain efficient, this only
3669/// looks a couple of nodes in, it does not do an exhaustive search.
3670bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3671                                               unsigned Depth) const {
3672  if (*this == Dest) return true;
3673
3674  // Don't search too deeply, we just want to be able to see through
3675  // TokenFactor's etc.
3676  if (Depth == 0) return false;
3677
3678  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3679  // of the operands of the TF reach dest, then we can do the xform.
3680  if (getOpcode() == ISD::TokenFactor) {
3681    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3682      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3683        return true;
3684    return false;
3685  }
3686
3687  // Loads don't have side effects, look through them.
3688  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3689    if (!Ld->isVolatile())
3690      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3691  }
3692  return false;
3693}
3694
3695
3696static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3697                            SmallPtrSet<SDNode *, 32> &Visited) {
3698  if (found || !Visited.insert(N))
3699    return;
3700
3701  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3702    SDNode *Op = N->getOperand(i).Val;
3703    if (Op == P) {
3704      found = true;
3705      return;
3706    }
3707    findPredecessor(Op, P, found, Visited);
3708  }
3709}
3710
3711/// isPredecessor - Return true if this node is a predecessor of N. This node
3712/// is either an operand of N or it can be reached by recursively traversing
3713/// up the operands.
3714/// NOTE: this is an expensive method. Use it carefully.
3715bool SDNode::isPredecessor(SDNode *N) const {
3716  SmallPtrSet<SDNode *, 32> Visited;
3717  bool found = false;
3718  findPredecessor(N, this, found, Visited);
3719  return found;
3720}
3721
3722uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3723  assert(Num < NumOperands && "Invalid child # of SDNode!");
3724  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3725}
3726
3727std::string SDNode::getOperationName(const SelectionDAG *G) const {
3728  switch (getOpcode()) {
3729  default:
3730    if (getOpcode() < ISD::BUILTIN_OP_END)
3731      return "<<Unknown DAG Node>>";
3732    else {
3733      if (G) {
3734        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3735          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3736            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3737
3738        TargetLowering &TLI = G->getTargetLoweringInfo();
3739        const char *Name =
3740          TLI.getTargetNodeName(getOpcode());
3741        if (Name) return Name;
3742      }
3743
3744      return "<<Unknown Target Node>>";
3745    }
3746
3747  case ISD::PCMARKER:      return "PCMarker";
3748  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3749  case ISD::SRCVALUE:      return "SrcValue";
3750  case ISD::MEMOPERAND:    return "MemOperand";
3751  case ISD::EntryToken:    return "EntryToken";
3752  case ISD::TokenFactor:   return "TokenFactor";
3753  case ISD::AssertSext:    return "AssertSext";
3754  case ISD::AssertZext:    return "AssertZext";
3755
3756  case ISD::STRING:        return "String";
3757  case ISD::BasicBlock:    return "BasicBlock";
3758  case ISD::VALUETYPE:     return "ValueType";
3759  case ISD::Register:      return "Register";
3760
3761  case ISD::Constant:      return "Constant";
3762  case ISD::ConstantFP:    return "ConstantFP";
3763  case ISD::GlobalAddress: return "GlobalAddress";
3764  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3765  case ISD::FrameIndex:    return "FrameIndex";
3766  case ISD::JumpTable:     return "JumpTable";
3767  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3768  case ISD::RETURNADDR: return "RETURNADDR";
3769  case ISD::FRAMEADDR: return "FRAMEADDR";
3770  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3771  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3772  case ISD::EHSELECTION: return "EHSELECTION";
3773  case ISD::EH_RETURN: return "EH_RETURN";
3774  case ISD::ConstantPool:  return "ConstantPool";
3775  case ISD::ExternalSymbol: return "ExternalSymbol";
3776  case ISD::INTRINSIC_WO_CHAIN: {
3777    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3778    return Intrinsic::getName((Intrinsic::ID)IID);
3779  }
3780  case ISD::INTRINSIC_VOID:
3781  case ISD::INTRINSIC_W_CHAIN: {
3782    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3783    return Intrinsic::getName((Intrinsic::ID)IID);
3784  }
3785
3786  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3787  case ISD::TargetConstant: return "TargetConstant";
3788  case ISD::TargetConstantFP:return "TargetConstantFP";
3789  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3790  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3791  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3792  case ISD::TargetJumpTable:  return "TargetJumpTable";
3793  case ISD::TargetConstantPool:  return "TargetConstantPool";
3794  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3795
3796  case ISD::CopyToReg:     return "CopyToReg";
3797  case ISD::CopyFromReg:   return "CopyFromReg";
3798  case ISD::UNDEF:         return "undef";
3799  case ISD::MERGE_VALUES:  return "merge_values";
3800  case ISD::INLINEASM:     return "inlineasm";
3801  case ISD::LABEL:         return "label";
3802  case ISD::DECLARE:       return "declare";
3803  case ISD::HANDLENODE:    return "handlenode";
3804  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3805  case ISD::CALL:          return "call";
3806
3807  // Unary operators
3808  case ISD::FABS:   return "fabs";
3809  case ISD::FNEG:   return "fneg";
3810  case ISD::FSQRT:  return "fsqrt";
3811  case ISD::FSIN:   return "fsin";
3812  case ISD::FCOS:   return "fcos";
3813  case ISD::FPOWI:  return "fpowi";
3814  case ISD::FPOW:   return "fpow";
3815
3816  // Binary operators
3817  case ISD::ADD:    return "add";
3818  case ISD::SUB:    return "sub";
3819  case ISD::MUL:    return "mul";
3820  case ISD::MULHU:  return "mulhu";
3821  case ISD::MULHS:  return "mulhs";
3822  case ISD::SDIV:   return "sdiv";
3823  case ISD::UDIV:   return "udiv";
3824  case ISD::SREM:   return "srem";
3825  case ISD::UREM:   return "urem";
3826  case ISD::SMUL_LOHI:  return "smul_lohi";
3827  case ISD::UMUL_LOHI:  return "umul_lohi";
3828  case ISD::SDIVREM:    return "sdivrem";
3829  case ISD::UDIVREM:    return "divrem";
3830  case ISD::AND:    return "and";
3831  case ISD::OR:     return "or";
3832  case ISD::XOR:    return "xor";
3833  case ISD::SHL:    return "shl";
3834  case ISD::SRA:    return "sra";
3835  case ISD::SRL:    return "srl";
3836  case ISD::ROTL:   return "rotl";
3837  case ISD::ROTR:   return "rotr";
3838  case ISD::FADD:   return "fadd";
3839  case ISD::FSUB:   return "fsub";
3840  case ISD::FMUL:   return "fmul";
3841  case ISD::FDIV:   return "fdiv";
3842  case ISD::FREM:   return "frem";
3843  case ISD::FCOPYSIGN: return "fcopysign";
3844  case ISD::FGETSIGN:  return "fgetsign";
3845
3846  case ISD::SETCC:       return "setcc";
3847  case ISD::SELECT:      return "select";
3848  case ISD::SELECT_CC:   return "select_cc";
3849  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3850  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3851  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3852  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3853  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3854  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3855  case ISD::CARRY_FALSE:         return "carry_false";
3856  case ISD::ADDC:        return "addc";
3857  case ISD::ADDE:        return "adde";
3858  case ISD::SUBC:        return "subc";
3859  case ISD::SUBE:        return "sube";
3860  case ISD::SHL_PARTS:   return "shl_parts";
3861  case ISD::SRA_PARTS:   return "sra_parts";
3862  case ISD::SRL_PARTS:   return "srl_parts";
3863
3864  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3865  case ISD::INSERT_SUBREG:      return "insert_subreg";
3866
3867  // Conversion operators.
3868  case ISD::SIGN_EXTEND: return "sign_extend";
3869  case ISD::ZERO_EXTEND: return "zero_extend";
3870  case ISD::ANY_EXTEND:  return "any_extend";
3871  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3872  case ISD::TRUNCATE:    return "truncate";
3873  case ISD::FP_ROUND:    return "fp_round";
3874  case ISD::FLT_ROUNDS_: return "flt_rounds";
3875  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3876  case ISD::FP_EXTEND:   return "fp_extend";
3877
3878  case ISD::SINT_TO_FP:  return "sint_to_fp";
3879  case ISD::UINT_TO_FP:  return "uint_to_fp";
3880  case ISD::FP_TO_SINT:  return "fp_to_sint";
3881  case ISD::FP_TO_UINT:  return "fp_to_uint";
3882  case ISD::BIT_CONVERT: return "bit_convert";
3883
3884    // Control flow instructions
3885  case ISD::BR:      return "br";
3886  case ISD::BRIND:   return "brind";
3887  case ISD::BR_JT:   return "br_jt";
3888  case ISD::BRCOND:  return "brcond";
3889  case ISD::BR_CC:   return "br_cc";
3890  case ISD::RET:     return "ret";
3891  case ISD::CALLSEQ_START:  return "callseq_start";
3892  case ISD::CALLSEQ_END:    return "callseq_end";
3893
3894    // Other operators
3895  case ISD::LOAD:               return "load";
3896  case ISD::STORE:              return "store";
3897  case ISD::VAARG:              return "vaarg";
3898  case ISD::VACOPY:             return "vacopy";
3899  case ISD::VAEND:              return "vaend";
3900  case ISD::VASTART:            return "vastart";
3901  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3902  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3903  case ISD::BUILD_PAIR:         return "build_pair";
3904  case ISD::STACKSAVE:          return "stacksave";
3905  case ISD::STACKRESTORE:       return "stackrestore";
3906  case ISD::TRAP:               return "trap";
3907
3908  // Block memory operations.
3909  case ISD::MEMSET:  return "memset";
3910  case ISD::MEMCPY:  return "memcpy";
3911  case ISD::MEMMOVE: return "memmove";
3912
3913  // Bit manipulation
3914  case ISD::BSWAP:   return "bswap";
3915  case ISD::CTPOP:   return "ctpop";
3916  case ISD::CTTZ:    return "cttz";
3917  case ISD::CTLZ:    return "ctlz";
3918
3919  // Debug info
3920  case ISD::LOCATION: return "location";
3921  case ISD::DEBUG_LOC: return "debug_loc";
3922
3923  // Trampolines
3924  case ISD::TRAMPOLINE: return "trampoline";
3925
3926  case ISD::CONDCODE:
3927    switch (cast<CondCodeSDNode>(this)->get()) {
3928    default: assert(0 && "Unknown setcc condition!");
3929    case ISD::SETOEQ:  return "setoeq";
3930    case ISD::SETOGT:  return "setogt";
3931    case ISD::SETOGE:  return "setoge";
3932    case ISD::SETOLT:  return "setolt";
3933    case ISD::SETOLE:  return "setole";
3934    case ISD::SETONE:  return "setone";
3935
3936    case ISD::SETO:    return "seto";
3937    case ISD::SETUO:   return "setuo";
3938    case ISD::SETUEQ:  return "setue";
3939    case ISD::SETUGT:  return "setugt";
3940    case ISD::SETUGE:  return "setuge";
3941    case ISD::SETULT:  return "setult";
3942    case ISD::SETULE:  return "setule";
3943    case ISD::SETUNE:  return "setune";
3944
3945    case ISD::SETEQ:   return "seteq";
3946    case ISD::SETGT:   return "setgt";
3947    case ISD::SETGE:   return "setge";
3948    case ISD::SETLT:   return "setlt";
3949    case ISD::SETLE:   return "setle";
3950    case ISD::SETNE:   return "setne";
3951    }
3952  }
3953}
3954
3955const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3956  switch (AM) {
3957  default:
3958    return "";
3959  case ISD::PRE_INC:
3960    return "<pre-inc>";
3961  case ISD::PRE_DEC:
3962    return "<pre-dec>";
3963  case ISD::POST_INC:
3964    return "<post-inc>";
3965  case ISD::POST_DEC:
3966    return "<post-dec>";
3967  }
3968}
3969
3970void SDNode::dump() const { dump(0); }
3971void SDNode::dump(const SelectionDAG *G) const {
3972  cerr << (void*)this << ": ";
3973
3974  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3975    if (i) cerr << ",";
3976    if (getValueType(i) == MVT::Other)
3977      cerr << "ch";
3978    else
3979      cerr << MVT::getValueTypeString(getValueType(i));
3980  }
3981  cerr << " = " << getOperationName(G);
3982
3983  cerr << " ";
3984  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3985    if (i) cerr << ", ";
3986    cerr << (void*)getOperand(i).Val;
3987    if (unsigned RN = getOperand(i).ResNo)
3988      cerr << ":" << RN;
3989  }
3990
3991  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
3992    SDNode *Mask = getOperand(2).Val;
3993    cerr << "<";
3994    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
3995      if (i) cerr << ",";
3996      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
3997        cerr << "u";
3998      else
3999        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4000    }
4001    cerr << ">";
4002  }
4003
4004  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4005    cerr << "<" << CSDN->getValue() << ">";
4006  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4007    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4008      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4009    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4010      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4011    else {
4012      cerr << "<APFloat(";
4013      CSDN->getValueAPF().convertToAPInt().dump();
4014      cerr << ")>";
4015    }
4016  } else if (const GlobalAddressSDNode *GADN =
4017             dyn_cast<GlobalAddressSDNode>(this)) {
4018    int offset = GADN->getOffset();
4019    cerr << "<";
4020    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4021    if (offset > 0)
4022      cerr << " + " << offset;
4023    else
4024      cerr << " " << offset;
4025  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4026    cerr << "<" << FIDN->getIndex() << ">";
4027  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4028    cerr << "<" << JTDN->getIndex() << ">";
4029  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4030    int offset = CP->getOffset();
4031    if (CP->isMachineConstantPoolEntry())
4032      cerr << "<" << *CP->getMachineCPVal() << ">";
4033    else
4034      cerr << "<" << *CP->getConstVal() << ">";
4035    if (offset > 0)
4036      cerr << " + " << offset;
4037    else
4038      cerr << " " << offset;
4039  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4040    cerr << "<";
4041    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4042    if (LBB)
4043      cerr << LBB->getName() << " ";
4044    cerr << (const void*)BBDN->getBasicBlock() << ">";
4045  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4046    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
4047      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
4048    } else {
4049      cerr << " #" << R->getReg();
4050    }
4051  } else if (const ExternalSymbolSDNode *ES =
4052             dyn_cast<ExternalSymbolSDNode>(this)) {
4053    cerr << "'" << ES->getSymbol() << "'";
4054  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4055    if (M->getValue())
4056      cerr << "<" << M->getValue() << ">";
4057    else
4058      cerr << "<null>";
4059  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4060    if (M->MO.getValue())
4061      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4062    else
4063      cerr << "<null:" << M->MO.getOffset() << ">";
4064  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4065    cerr << ":" << MVT::getValueTypeString(N->getVT());
4066  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4067    const Value *SrcValue = LD->getSrcValue();
4068    int SrcOffset = LD->getSrcValueOffset();
4069    cerr << " <";
4070    if (SrcValue)
4071      cerr << SrcValue;
4072    else
4073      cerr << "null";
4074    cerr << ":" << SrcOffset << ">";
4075
4076    bool doExt = true;
4077    switch (LD->getExtensionType()) {
4078    default: doExt = false; break;
4079    case ISD::EXTLOAD:
4080      cerr << " <anyext ";
4081      break;
4082    case ISD::SEXTLOAD:
4083      cerr << " <sext ";
4084      break;
4085    case ISD::ZEXTLOAD:
4086      cerr << " <zext ";
4087      break;
4088    }
4089    if (doExt)
4090      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4091
4092    const char *AM = getIndexedModeName(LD->getAddressingMode());
4093    if (*AM)
4094      cerr << " " << AM;
4095    if (LD->isVolatile())
4096      cerr << " <volatile>";
4097    cerr << " alignment=" << LD->getAlignment();
4098  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4099    const Value *SrcValue = ST->getSrcValue();
4100    int SrcOffset = ST->getSrcValueOffset();
4101    cerr << " <";
4102    if (SrcValue)
4103      cerr << SrcValue;
4104    else
4105      cerr << "null";
4106    cerr << ":" << SrcOffset << ">";
4107
4108    if (ST->isTruncatingStore())
4109      cerr << " <trunc "
4110           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4111
4112    const char *AM = getIndexedModeName(ST->getAddressingMode());
4113    if (*AM)
4114      cerr << " " << AM;
4115    if (ST->isVolatile())
4116      cerr << " <volatile>";
4117    cerr << " alignment=" << ST->getAlignment();
4118  }
4119}
4120
4121static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4122  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4123    if (N->getOperand(i).Val->hasOneUse())
4124      DumpNodes(N->getOperand(i).Val, indent+2, G);
4125    else
4126      cerr << "\n" << std::string(indent+2, ' ')
4127           << (void*)N->getOperand(i).Val << ": <multiple use>";
4128
4129
4130  cerr << "\n" << std::string(indent, ' ');
4131  N->dump(G);
4132}
4133
4134void SelectionDAG::dump() const {
4135  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4136  std::vector<const SDNode*> Nodes;
4137  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4138       I != E; ++I)
4139    Nodes.push_back(I);
4140
4141  std::sort(Nodes.begin(), Nodes.end());
4142
4143  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4144    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4145      DumpNodes(Nodes[i], 2, this);
4146  }
4147
4148  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4149
4150  cerr << "\n\n";
4151}
4152
4153const Type *ConstantPoolSDNode::getType() const {
4154  if (isMachineConstantPoolEntry())
4155    return Val.MachineCPVal->getType();
4156  return Val.ConstVal->getType();
4157}
4158