SelectionDAG.cpp revision 8e1f7ac87d75ffc02d2fd363a5a9c6d4c7089daf
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/Support/MathExtras.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetLowering.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/StringExtras.h"
34#include <algorithm>
35#include <cmath>
36using namespace llvm;
37
38/// makeVTList - Return an instance of the SDVTList struct initialized with the
39/// specified members.
40static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
41  SDVTList Res = {VTs, NumVTs};
42  return Res;
43}
44
45//===----------------------------------------------------------------------===//
46//                              ConstantFPSDNode Class
47//===----------------------------------------------------------------------===//
48
49/// isExactlyValue - We don't rely on operator== working on double values, as
50/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
51/// As such, this method can be used to do an exact bit-for-bit comparison of
52/// two floating point values.
53bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
54  return Value.bitwiseIsEqual(V);
55}
56
57bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
58                                           const APFloat& Val) {
59  // convert modifies in place, so make a copy.
60  APFloat Val2 = APFloat(Val);
61  switch (VT) {
62  default:
63    return false;         // These can't be represented as floating point!
64
65  // FIXME rounding mode needs to be more flexible
66  case MVT::f32:
67    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
68           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
69              APFloat::opOK;
70  case MVT::f64:
71    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
72           &Val2.getSemantics() == &APFloat::IEEEdouble ||
73           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
74             APFloat::opOK;
75  // TODO: Figure out how to test if we can use a shorter type instead!
76  case MVT::f80:
77  case MVT::f128:
78  case MVT::ppcf128:
79    return true;
80  }
81}
82
83//===----------------------------------------------------------------------===//
84//                              ISD Namespace
85//===----------------------------------------------------------------------===//
86
87/// isBuildVectorAllOnes - Return true if the specified node is a
88/// BUILD_VECTOR where all of the elements are ~0 or undef.
89bool ISD::isBuildVectorAllOnes(const SDNode *N) {
90  // Look through a bit convert.
91  if (N->getOpcode() == ISD::BIT_CONVERT)
92    N = N->getOperand(0).Val;
93
94  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
95
96  unsigned i = 0, e = N->getNumOperands();
97
98  // Skip over all of the undef values.
99  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
100    ++i;
101
102  // Do not accept an all-undef vector.
103  if (i == e) return false;
104
105  // Do not accept build_vectors that aren't all constants or which have non-~0
106  // elements.
107  SDOperand NotZero = N->getOperand(i);
108  if (isa<ConstantSDNode>(NotZero)) {
109    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
110      return false;
111  } else if (isa<ConstantFPSDNode>(NotZero)) {
112    MVT::ValueType VT = NotZero.getValueType();
113    if (VT== MVT::f64) {
114      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
115                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
116        return false;
117    } else {
118      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
119                      getValueAPF().convertToAPInt().getZExtValue() !=
120          (uint32_t)-1)
121        return false;
122    }
123  } else
124    return false;
125
126  // Okay, we have at least one ~0 value, check to see if the rest match or are
127  // undefs.
128  for (++i; i != e; ++i)
129    if (N->getOperand(i) != NotZero &&
130        N->getOperand(i).getOpcode() != ISD::UNDEF)
131      return false;
132  return true;
133}
134
135
136/// isBuildVectorAllZeros - Return true if the specified node is a
137/// BUILD_VECTOR where all of the elements are 0 or undef.
138bool ISD::isBuildVectorAllZeros(const SDNode *N) {
139  // Look through a bit convert.
140  if (N->getOpcode() == ISD::BIT_CONVERT)
141    N = N->getOperand(0).Val;
142
143  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
144
145  unsigned i = 0, e = N->getNumOperands();
146
147  // Skip over all of the undef values.
148  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
149    ++i;
150
151  // Do not accept an all-undef vector.
152  if (i == e) return false;
153
154  // Do not accept build_vectors that aren't all constants or which have non-~0
155  // elements.
156  SDOperand Zero = N->getOperand(i);
157  if (isa<ConstantSDNode>(Zero)) {
158    if (!cast<ConstantSDNode>(Zero)->isNullValue())
159      return false;
160  } else if (isa<ConstantFPSDNode>(Zero)) {
161    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
162      return false;
163  } else
164    return false;
165
166  // Okay, we have at least one ~0 value, check to see if the rest match or are
167  // undefs.
168  for (++i; i != e; ++i)
169    if (N->getOperand(i) != Zero &&
170        N->getOperand(i).getOpcode() != ISD::UNDEF)
171      return false;
172  return true;
173}
174
175/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
176/// when given the operation for (X op Y).
177ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
178  // To perform this operation, we just need to swap the L and G bits of the
179  // operation.
180  unsigned OldL = (Operation >> 2) & 1;
181  unsigned OldG = (Operation >> 1) & 1;
182  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
183                       (OldL << 1) |       // New G bit
184                       (OldG << 2));        // New L bit.
185}
186
187/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
188/// 'op' is a valid SetCC operation.
189ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
190  unsigned Operation = Op;
191  if (isInteger)
192    Operation ^= 7;   // Flip L, G, E bits, but not U.
193  else
194    Operation ^= 15;  // Flip all of the condition bits.
195  if (Operation > ISD::SETTRUE2)
196    Operation &= ~8;     // Don't let N and U bits get set.
197  return ISD::CondCode(Operation);
198}
199
200
201/// isSignedOp - For an integer comparison, return 1 if the comparison is a
202/// signed operation and 2 if the result is an unsigned comparison.  Return zero
203/// if the operation does not depend on the sign of the input (setne and seteq).
204static int isSignedOp(ISD::CondCode Opcode) {
205  switch (Opcode) {
206  default: assert(0 && "Illegal integer setcc operation!");
207  case ISD::SETEQ:
208  case ISD::SETNE: return 0;
209  case ISD::SETLT:
210  case ISD::SETLE:
211  case ISD::SETGT:
212  case ISD::SETGE: return 1;
213  case ISD::SETULT:
214  case ISD::SETULE:
215  case ISD::SETUGT:
216  case ISD::SETUGE: return 2;
217  }
218}
219
220/// getSetCCOrOperation - Return the result of a logical OR between different
221/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
222/// returns SETCC_INVALID if it is not possible to represent the resultant
223/// comparison.
224ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
225                                       bool isInteger) {
226  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
227    // Cannot fold a signed integer setcc with an unsigned integer setcc.
228    return ISD::SETCC_INVALID;
229
230  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
231
232  // If the N and U bits get set then the resultant comparison DOES suddenly
233  // care about orderedness, and is true when ordered.
234  if (Op > ISD::SETTRUE2)
235    Op &= ~16;     // Clear the U bit if the N bit is set.
236
237  // Canonicalize illegal integer setcc's.
238  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
239    Op = ISD::SETNE;
240
241  return ISD::CondCode(Op);
242}
243
244/// getSetCCAndOperation - Return the result of a logical AND between different
245/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
246/// function returns zero if it is not possible to represent the resultant
247/// comparison.
248ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
249                                        bool isInteger) {
250  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
251    // Cannot fold a signed setcc with an unsigned setcc.
252    return ISD::SETCC_INVALID;
253
254  // Combine all of the condition bits.
255  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
256
257  // Canonicalize illegal integer setcc's.
258  if (isInteger) {
259    switch (Result) {
260    default: break;
261    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
262    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
263    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
264    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
265    }
266  }
267
268  return Result;
269}
270
271const TargetMachine &SelectionDAG::getTarget() const {
272  return TLI.getTargetMachine();
273}
274
275//===----------------------------------------------------------------------===//
276//                           SDNode Profile Support
277//===----------------------------------------------------------------------===//
278
279/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
280///
281static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
282  ID.AddInteger(OpC);
283}
284
285/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
286/// solely with their pointer.
287void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
288  ID.AddPointer(VTList.VTs);
289}
290
291/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
292///
293static void AddNodeIDOperands(FoldingSetNodeID &ID,
294                              const SDOperand *Ops, unsigned NumOps) {
295  for (; NumOps; --NumOps, ++Ops) {
296    ID.AddPointer(Ops->Val);
297    ID.AddInteger(Ops->ResNo);
298  }
299}
300
301static void AddNodeIDNode(FoldingSetNodeID &ID,
302                          unsigned short OpC, SDVTList VTList,
303                          const SDOperand *OpList, unsigned N) {
304  AddNodeIDOpcode(ID, OpC);
305  AddNodeIDValueTypes(ID, VTList);
306  AddNodeIDOperands(ID, OpList, N);
307}
308
309/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
310/// data.
311static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
312  AddNodeIDOpcode(ID, N->getOpcode());
313  // Add the return value info.
314  AddNodeIDValueTypes(ID, N->getVTList());
315  // Add the operand info.
316  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
317
318  // Handle SDNode leafs with special info.
319  switch (N->getOpcode()) {
320  default: break;  // Normal nodes don't need extra info.
321  case ISD::TargetConstant:
322  case ISD::Constant:
323    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
324    break;
325  case ISD::TargetConstantFP:
326  case ISD::ConstantFP: {
327    ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF());
328    break;
329  }
330  case ISD::TargetGlobalAddress:
331  case ISD::GlobalAddress:
332  case ISD::TargetGlobalTLSAddress:
333  case ISD::GlobalTLSAddress: {
334    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
335    ID.AddPointer(GA->getGlobal());
336    ID.AddInteger(GA->getOffset());
337    break;
338  }
339  case ISD::BasicBlock:
340    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
341    break;
342  case ISD::Register:
343    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
344    break;
345  case ISD::SRCVALUE: {
346    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
347    ID.AddPointer(SV->getValue());
348    ID.AddInteger(SV->getOffset());
349    break;
350  }
351  case ISD::FrameIndex:
352  case ISD::TargetFrameIndex:
353    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
354    break;
355  case ISD::JumpTable:
356  case ISD::TargetJumpTable:
357    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
358    break;
359  case ISD::ConstantPool:
360  case ISD::TargetConstantPool: {
361    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
362    ID.AddInteger(CP->getAlignment());
363    ID.AddInteger(CP->getOffset());
364    if (CP->isMachineConstantPoolEntry())
365      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
366    else
367      ID.AddPointer(CP->getConstVal());
368    break;
369  }
370  case ISD::LOAD: {
371    LoadSDNode *LD = cast<LoadSDNode>(N);
372    ID.AddInteger(LD->getAddressingMode());
373    ID.AddInteger(LD->getExtensionType());
374    ID.AddInteger((unsigned int)(LD->getLoadedVT()));
375    ID.AddInteger(LD->getAlignment());
376    ID.AddInteger(LD->isVolatile());
377    break;
378  }
379  case ISD::STORE: {
380    StoreSDNode *ST = cast<StoreSDNode>(N);
381    ID.AddInteger(ST->getAddressingMode());
382    ID.AddInteger(ST->isTruncatingStore());
383    ID.AddInteger((unsigned int)(ST->getStoredVT()));
384    ID.AddInteger(ST->getAlignment());
385    ID.AddInteger(ST->isVolatile());
386    break;
387  }
388  }
389}
390
391//===----------------------------------------------------------------------===//
392//                              SelectionDAG Class
393//===----------------------------------------------------------------------===//
394
395/// RemoveDeadNodes - This method deletes all unreachable nodes in the
396/// SelectionDAG.
397void SelectionDAG::RemoveDeadNodes() {
398  // Create a dummy node (which is not added to allnodes), that adds a reference
399  // to the root node, preventing it from being deleted.
400  HandleSDNode Dummy(getRoot());
401
402  SmallVector<SDNode*, 128> DeadNodes;
403
404  // Add all obviously-dead nodes to the DeadNodes worklist.
405  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
406    if (I->use_empty())
407      DeadNodes.push_back(I);
408
409  // Process the worklist, deleting the nodes and adding their uses to the
410  // worklist.
411  while (!DeadNodes.empty()) {
412    SDNode *N = DeadNodes.back();
413    DeadNodes.pop_back();
414
415    // Take the node out of the appropriate CSE map.
416    RemoveNodeFromCSEMaps(N);
417
418    // Next, brutally remove the operand list.  This is safe to do, as there are
419    // no cycles in the graph.
420    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
421      SDNode *Operand = I->Val;
422      Operand->removeUser(N);
423
424      // Now that we removed this operand, see if there are no uses of it left.
425      if (Operand->use_empty())
426        DeadNodes.push_back(Operand);
427    }
428    if (N->OperandsNeedDelete)
429      delete[] N->OperandList;
430    N->OperandList = 0;
431    N->NumOperands = 0;
432
433    // Finally, remove N itself.
434    AllNodes.erase(N);
435  }
436
437  // If the root changed (e.g. it was a dead load, update the root).
438  setRoot(Dummy.getValue());
439}
440
441void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
442  SmallVector<SDNode*, 16> DeadNodes;
443  DeadNodes.push_back(N);
444
445  // Process the worklist, deleting the nodes and adding their uses to the
446  // worklist.
447  while (!DeadNodes.empty()) {
448    SDNode *N = DeadNodes.back();
449    DeadNodes.pop_back();
450
451    // Take the node out of the appropriate CSE map.
452    RemoveNodeFromCSEMaps(N);
453
454    // Next, brutally remove the operand list.  This is safe to do, as there are
455    // no cycles in the graph.
456    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
457      SDNode *Operand = I->Val;
458      Operand->removeUser(N);
459
460      // Now that we removed this operand, see if there are no uses of it left.
461      if (Operand->use_empty())
462        DeadNodes.push_back(Operand);
463    }
464    if (N->OperandsNeedDelete)
465      delete[] N->OperandList;
466    N->OperandList = 0;
467    N->NumOperands = 0;
468
469    // Finally, remove N itself.
470    Deleted.push_back(N);
471    AllNodes.erase(N);
472  }
473}
474
475void SelectionDAG::DeleteNode(SDNode *N) {
476  assert(N->use_empty() && "Cannot delete a node that is not dead!");
477
478  // First take this out of the appropriate CSE map.
479  RemoveNodeFromCSEMaps(N);
480
481  // Finally, remove uses due to operands of this node, remove from the
482  // AllNodes list, and delete the node.
483  DeleteNodeNotInCSEMaps(N);
484}
485
486void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
487
488  // Remove it from the AllNodes list.
489  AllNodes.remove(N);
490
491  // Drop all of the operands and decrement used nodes use counts.
492  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
493    I->Val->removeUser(N);
494  if (N->OperandsNeedDelete)
495    delete[] N->OperandList;
496  N->OperandList = 0;
497  N->NumOperands = 0;
498
499  delete N;
500}
501
502/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
503/// correspond to it.  This is useful when we're about to delete or repurpose
504/// the node.  We don't want future request for structurally identical nodes
505/// to return N anymore.
506void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
507  bool Erased = false;
508  switch (N->getOpcode()) {
509  case ISD::HANDLENODE: return;  // noop.
510  case ISD::STRING:
511    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
512    break;
513  case ISD::CONDCODE:
514    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
515           "Cond code doesn't exist!");
516    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
517    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
518    break;
519  case ISD::ExternalSymbol:
520    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
521    break;
522  case ISD::TargetExternalSymbol:
523    Erased =
524      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
525    break;
526  case ISD::VALUETYPE: {
527    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
528    if (MVT::isExtendedVT(VT)) {
529      Erased = ExtendedValueTypeNodes.erase(VT);
530    } else {
531      Erased = ValueTypeNodes[VT] != 0;
532      ValueTypeNodes[VT] = 0;
533    }
534    break;
535  }
536  default:
537    // Remove it from the CSE Map.
538    Erased = CSEMap.RemoveNode(N);
539    break;
540  }
541#ifndef NDEBUG
542  // Verify that the node was actually in one of the CSE maps, unless it has a
543  // flag result (which cannot be CSE'd) or is one of the special cases that are
544  // not subject to CSE.
545  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
546      !N->isTargetOpcode()) {
547    N->dump(this);
548    cerr << "\n";
549    assert(0 && "Node is not in map!");
550  }
551#endif
552}
553
554/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
555/// has been taken out and modified in some way.  If the specified node already
556/// exists in the CSE maps, do not modify the maps, but return the existing node
557/// instead.  If it doesn't exist, add it and return null.
558///
559SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
560  assert(N->getNumOperands() && "This is a leaf node!");
561  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
562    return 0;    // Never add these nodes.
563
564  // Check that remaining values produced are not flags.
565  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
566    if (N->getValueType(i) == MVT::Flag)
567      return 0;   // Never CSE anything that produces a flag.
568
569  SDNode *New = CSEMap.GetOrInsertNode(N);
570  if (New != N) return New;  // Node already existed.
571  return 0;
572}
573
574/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
575/// were replaced with those specified.  If this node is never memoized,
576/// return null, otherwise return a pointer to the slot it would take.  If a
577/// node already exists with these operands, the slot will be non-null.
578SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
579                                           void *&InsertPos) {
580  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
581    return 0;    // Never add these nodes.
582
583  // Check that remaining values produced are not flags.
584  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
585    if (N->getValueType(i) == MVT::Flag)
586      return 0;   // Never CSE anything that produces a flag.
587
588  SDOperand Ops[] = { Op };
589  FoldingSetNodeID ID;
590  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
591  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
592}
593
594/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
595/// were replaced with those specified.  If this node is never memoized,
596/// return null, otherwise return a pointer to the slot it would take.  If a
597/// node already exists with these operands, the slot will be non-null.
598SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
599                                           SDOperand Op1, SDOperand Op2,
600                                           void *&InsertPos) {
601  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
602    return 0;    // Never add these nodes.
603
604  // Check that remaining values produced are not flags.
605  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
606    if (N->getValueType(i) == MVT::Flag)
607      return 0;   // Never CSE anything that produces a flag.
608
609  SDOperand Ops[] = { Op1, Op2 };
610  FoldingSetNodeID ID;
611  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
612  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
613}
614
615
616/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
617/// were replaced with those specified.  If this node is never memoized,
618/// return null, otherwise return a pointer to the slot it would take.  If a
619/// node already exists with these operands, the slot will be non-null.
620SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
621                                           const SDOperand *Ops,unsigned NumOps,
622                                           void *&InsertPos) {
623  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
624    return 0;    // Never add these nodes.
625
626  // Check that remaining values produced are not flags.
627  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
628    if (N->getValueType(i) == MVT::Flag)
629      return 0;   // Never CSE anything that produces a flag.
630
631  FoldingSetNodeID ID;
632  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
633
634  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
635    ID.AddInteger(LD->getAddressingMode());
636    ID.AddInteger(LD->getExtensionType());
637    ID.AddInteger((unsigned int)(LD->getLoadedVT()));
638    ID.AddInteger(LD->getAlignment());
639    ID.AddInteger(LD->isVolatile());
640  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
641    ID.AddInteger(ST->getAddressingMode());
642    ID.AddInteger(ST->isTruncatingStore());
643    ID.AddInteger((unsigned int)(ST->getStoredVT()));
644    ID.AddInteger(ST->getAlignment());
645    ID.AddInteger(ST->isVolatile());
646  }
647
648  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
649}
650
651
652SelectionDAG::~SelectionDAG() {
653  while (!AllNodes.empty()) {
654    SDNode *N = AllNodes.begin();
655    N->SetNextInBucket(0);
656    if (N->OperandsNeedDelete)
657      delete [] N->OperandList;
658    N->OperandList = 0;
659    N->NumOperands = 0;
660    AllNodes.pop_front();
661  }
662}
663
664SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
665  if (Op.getValueType() == VT) return Op;
666  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
667  return getNode(ISD::AND, Op.getValueType(), Op,
668                 getConstant(Imm, Op.getValueType()));
669}
670
671SDOperand SelectionDAG::getString(const std::string &Val) {
672  StringSDNode *&N = StringNodes[Val];
673  if (!N) {
674    N = new StringSDNode(Val);
675    AllNodes.push_back(N);
676  }
677  return SDOperand(N, 0);
678}
679
680SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
681  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
682
683  MVT::ValueType EltVT =
684    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
685
686  // Mask out any bits that are not valid for this constant.
687  Val &= MVT::getIntVTBitMask(EltVT);
688
689  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
690  FoldingSetNodeID ID;
691  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
692  ID.AddInteger(Val);
693  void *IP = 0;
694  SDNode *N = NULL;
695  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
696    if (!MVT::isVector(VT))
697      return SDOperand(N, 0);
698  if (!N) {
699    N = new ConstantSDNode(isT, Val, EltVT);
700    CSEMap.InsertNode(N, IP);
701    AllNodes.push_back(N);
702  }
703
704  SDOperand Result(N, 0);
705  if (MVT::isVector(VT)) {
706    SmallVector<SDOperand, 8> Ops;
707    Ops.assign(MVT::getVectorNumElements(VT), Result);
708    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
709  }
710  return Result;
711}
712
713SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
714  return getConstant(Val, TLI.getPointerTy(), isTarget);
715}
716
717
718SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
719                                      bool isTarget) {
720  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
721
722  MVT::ValueType EltVT =
723    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
724
725  // Do the map lookup using the actual bit pattern for the floating point
726  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
727  // we don't have issues with SNANs.
728  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
729  FoldingSetNodeID ID;
730  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
731  ID.AddAPFloat(V);
732  void *IP = 0;
733  SDNode *N = NULL;
734  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
735    if (!MVT::isVector(VT))
736      return SDOperand(N, 0);
737  if (!N) {
738    N = new ConstantFPSDNode(isTarget, V, EltVT);
739    CSEMap.InsertNode(N, IP);
740    AllNodes.push_back(N);
741  }
742
743  SDOperand Result(N, 0);
744  if (MVT::isVector(VT)) {
745    SmallVector<SDOperand, 8> Ops;
746    Ops.assign(MVT::getVectorNumElements(VT), Result);
747    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
748  }
749  return Result;
750}
751
752SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
753                                      bool isTarget) {
754  MVT::ValueType EltVT =
755    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
756  if (EltVT==MVT::f32)
757    return getConstantFP(APFloat((float)Val), VT, isTarget);
758  else
759    return getConstantFP(APFloat(Val), VT, isTarget);
760}
761
762SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
763                                         MVT::ValueType VT, int Offset,
764                                         bool isTargetGA) {
765  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
766  unsigned Opc;
767  if (GVar && GVar->isThreadLocal())
768    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
769  else
770    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
771  FoldingSetNodeID ID;
772  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
773  ID.AddPointer(GV);
774  ID.AddInteger(Offset);
775  void *IP = 0;
776  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
777   return SDOperand(E, 0);
778  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
779  CSEMap.InsertNode(N, IP);
780  AllNodes.push_back(N);
781  return SDOperand(N, 0);
782}
783
784SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
785                                      bool isTarget) {
786  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
787  FoldingSetNodeID ID;
788  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
789  ID.AddInteger(FI);
790  void *IP = 0;
791  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
792    return SDOperand(E, 0);
793  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
794  CSEMap.InsertNode(N, IP);
795  AllNodes.push_back(N);
796  return SDOperand(N, 0);
797}
798
799SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
800  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
801  FoldingSetNodeID ID;
802  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
803  ID.AddInteger(JTI);
804  void *IP = 0;
805  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
806    return SDOperand(E, 0);
807  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
808  CSEMap.InsertNode(N, IP);
809  AllNodes.push_back(N);
810  return SDOperand(N, 0);
811}
812
813SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
814                                        unsigned Alignment, int Offset,
815                                        bool isTarget) {
816  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
817  FoldingSetNodeID ID;
818  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
819  ID.AddInteger(Alignment);
820  ID.AddInteger(Offset);
821  ID.AddPointer(C);
822  void *IP = 0;
823  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
824    return SDOperand(E, 0);
825  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
826  CSEMap.InsertNode(N, IP);
827  AllNodes.push_back(N);
828  return SDOperand(N, 0);
829}
830
831
832SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
833                                        MVT::ValueType VT,
834                                        unsigned Alignment, int Offset,
835                                        bool isTarget) {
836  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
837  FoldingSetNodeID ID;
838  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
839  ID.AddInteger(Alignment);
840  ID.AddInteger(Offset);
841  C->AddSelectionDAGCSEId(ID);
842  void *IP = 0;
843  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
844    return SDOperand(E, 0);
845  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
846  CSEMap.InsertNode(N, IP);
847  AllNodes.push_back(N);
848  return SDOperand(N, 0);
849}
850
851
852SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
853  FoldingSetNodeID ID;
854  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
855  ID.AddPointer(MBB);
856  void *IP = 0;
857  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
858    return SDOperand(E, 0);
859  SDNode *N = new BasicBlockSDNode(MBB);
860  CSEMap.InsertNode(N, IP);
861  AllNodes.push_back(N);
862  return SDOperand(N, 0);
863}
864
865SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
866  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
867    ValueTypeNodes.resize(VT+1);
868
869  SDNode *&N = MVT::isExtendedVT(VT) ?
870    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
871
872  if (N) return SDOperand(N, 0);
873  N = new VTSDNode(VT);
874  AllNodes.push_back(N);
875  return SDOperand(N, 0);
876}
877
878SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
879  SDNode *&N = ExternalSymbols[Sym];
880  if (N) return SDOperand(N, 0);
881  N = new ExternalSymbolSDNode(false, Sym, VT);
882  AllNodes.push_back(N);
883  return SDOperand(N, 0);
884}
885
886SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
887                                                MVT::ValueType VT) {
888  SDNode *&N = TargetExternalSymbols[Sym];
889  if (N) return SDOperand(N, 0);
890  N = new ExternalSymbolSDNode(true, Sym, VT);
891  AllNodes.push_back(N);
892  return SDOperand(N, 0);
893}
894
895SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
896  if ((unsigned)Cond >= CondCodeNodes.size())
897    CondCodeNodes.resize(Cond+1);
898
899  if (CondCodeNodes[Cond] == 0) {
900    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
901    AllNodes.push_back(CondCodeNodes[Cond]);
902  }
903  return SDOperand(CondCodeNodes[Cond], 0);
904}
905
906SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
907  FoldingSetNodeID ID;
908  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
909  ID.AddInteger(RegNo);
910  void *IP = 0;
911  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
912    return SDOperand(E, 0);
913  SDNode *N = new RegisterSDNode(RegNo, VT);
914  CSEMap.InsertNode(N, IP);
915  AllNodes.push_back(N);
916  return SDOperand(N, 0);
917}
918
919SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
920  assert((!V || isa<PointerType>(V->getType())) &&
921         "SrcValue is not a pointer?");
922
923  FoldingSetNodeID ID;
924  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
925  ID.AddPointer(V);
926  ID.AddInteger(Offset);
927  void *IP = 0;
928  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
929    return SDOperand(E, 0);
930  SDNode *N = new SrcValueSDNode(V, Offset);
931  CSEMap.InsertNode(N, IP);
932  AllNodes.push_back(N);
933  return SDOperand(N, 0);
934}
935
936/// CreateStackTemporary - Create a stack temporary, suitable for holding the
937/// specified value type.
938SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
939  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
940  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
941  const Type *Ty = MVT::getTypeForValueType(VT);
942  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
943  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
944  return getFrameIndex(FrameIdx, TLI.getPointerTy());
945}
946
947
948SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
949                                  SDOperand N2, ISD::CondCode Cond) {
950  // These setcc operations always fold.
951  switch (Cond) {
952  default: break;
953  case ISD::SETFALSE:
954  case ISD::SETFALSE2: return getConstant(0, VT);
955  case ISD::SETTRUE:
956  case ISD::SETTRUE2:  return getConstant(1, VT);
957
958  case ISD::SETOEQ:
959  case ISD::SETOGT:
960  case ISD::SETOGE:
961  case ISD::SETOLT:
962  case ISD::SETOLE:
963  case ISD::SETONE:
964  case ISD::SETO:
965  case ISD::SETUO:
966  case ISD::SETUEQ:
967  case ISD::SETUNE:
968    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
969    break;
970  }
971
972  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
973    uint64_t C2 = N2C->getValue();
974    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
975      uint64_t C1 = N1C->getValue();
976
977      // Sign extend the operands if required
978      if (ISD::isSignedIntSetCC(Cond)) {
979        C1 = N1C->getSignExtended();
980        C2 = N2C->getSignExtended();
981      }
982
983      switch (Cond) {
984      default: assert(0 && "Unknown integer setcc!");
985      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
986      case ISD::SETNE:  return getConstant(C1 != C2, VT);
987      case ISD::SETULT: return getConstant(C1 <  C2, VT);
988      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
989      case ISD::SETULE: return getConstant(C1 <= C2, VT);
990      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
991      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
992      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
993      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
994      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
995      }
996    }
997  }
998  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
999    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1000      // No compile time operations on this type yet.
1001      if (N1C->getValueType(0) == MVT::ppcf128)
1002        return SDOperand();
1003
1004      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1005      switch (Cond) {
1006      default: break;
1007      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1008                          return getNode(ISD::UNDEF, VT);
1009                        // fall through
1010      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1011      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1012                          return getNode(ISD::UNDEF, VT);
1013                        // fall through
1014      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1015                                           R==APFloat::cmpLessThan, VT);
1016      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1017                          return getNode(ISD::UNDEF, VT);
1018                        // fall through
1019      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1020      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1021                          return getNode(ISD::UNDEF, VT);
1022                        // fall through
1023      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1024      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1025                          return getNode(ISD::UNDEF, VT);
1026                        // fall through
1027      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1028                                           R==APFloat::cmpEqual, VT);
1029      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1030                          return getNode(ISD::UNDEF, VT);
1031                        // fall through
1032      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1033                                           R==APFloat::cmpEqual, VT);
1034      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1035      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1036      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1037                                           R==APFloat::cmpEqual, VT);
1038      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1039      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1040                                           R==APFloat::cmpLessThan, VT);
1041      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1042                                           R==APFloat::cmpUnordered, VT);
1043      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1044      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1045      }
1046    } else {
1047      // Ensure that the constant occurs on the RHS.
1048      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1049    }
1050
1051  // Could not fold it.
1052  return SDOperand();
1053}
1054
1055/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1056/// this predicate to simplify operations downstream.  Mask is known to be zero
1057/// for bits that V cannot have.
1058bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1059                                     unsigned Depth) const {
1060  // The masks are not wide enough to represent this type!  Should use APInt.
1061  if (Op.getValueType() == MVT::i128)
1062    return false;
1063
1064  uint64_t KnownZero, KnownOne;
1065  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1066  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1067  return (KnownZero & Mask) == Mask;
1068}
1069
1070/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1071/// known to be either zero or one and return them in the KnownZero/KnownOne
1072/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1073/// processing.
1074void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1075                                     uint64_t &KnownZero, uint64_t &KnownOne,
1076                                     unsigned Depth) const {
1077  KnownZero = KnownOne = 0;   // Don't know anything.
1078  if (Depth == 6 || Mask == 0)
1079    return;  // Limit search depth.
1080
1081  // The masks are not wide enough to represent this type!  Should use APInt.
1082  if (Op.getValueType() == MVT::i128)
1083    return;
1084
1085  uint64_t KnownZero2, KnownOne2;
1086
1087  switch (Op.getOpcode()) {
1088  case ISD::Constant:
1089    // We know all of the bits for a constant!
1090    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1091    KnownZero = ~KnownOne & Mask;
1092    return;
1093  case ISD::AND:
1094    // If either the LHS or the RHS are Zero, the result is zero.
1095    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1096    Mask &= ~KnownZero;
1097    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1098    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1099    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1100
1101    // Output known-1 bits are only known if set in both the LHS & RHS.
1102    KnownOne &= KnownOne2;
1103    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1104    KnownZero |= KnownZero2;
1105    return;
1106  case ISD::OR:
1107    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1108    Mask &= ~KnownOne;
1109    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1110    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1111    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1112
1113    // Output known-0 bits are only known if clear in both the LHS & RHS.
1114    KnownZero &= KnownZero2;
1115    // Output known-1 are known to be set if set in either the LHS | RHS.
1116    KnownOne |= KnownOne2;
1117    return;
1118  case ISD::XOR: {
1119    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1120    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1121    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1122    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1123
1124    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1125    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1126    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1127    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1128    KnownZero = KnownZeroOut;
1129    return;
1130  }
1131  case ISD::SELECT:
1132    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1133    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1134    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1135    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1136
1137    // Only known if known in both the LHS and RHS.
1138    KnownOne &= KnownOne2;
1139    KnownZero &= KnownZero2;
1140    return;
1141  case ISD::SELECT_CC:
1142    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1143    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1144    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1145    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1146
1147    // Only known if known in both the LHS and RHS.
1148    KnownOne &= KnownOne2;
1149    KnownZero &= KnownZero2;
1150    return;
1151  case ISD::SETCC:
1152    // If we know the result of a setcc has the top bits zero, use this info.
1153    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1154      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1155    return;
1156  case ISD::SHL:
1157    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1158    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1159      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1160                        KnownZero, KnownOne, Depth+1);
1161      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1162      KnownZero <<= SA->getValue();
1163      KnownOne  <<= SA->getValue();
1164      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1165    }
1166    return;
1167  case ISD::SRL:
1168    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1169    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1170      MVT::ValueType VT = Op.getValueType();
1171      unsigned ShAmt = SA->getValue();
1172
1173      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1174      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1175                        KnownZero, KnownOne, Depth+1);
1176      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1177      KnownZero &= TypeMask;
1178      KnownOne  &= TypeMask;
1179      KnownZero >>= ShAmt;
1180      KnownOne  >>= ShAmt;
1181
1182      uint64_t HighBits = (1ULL << ShAmt)-1;
1183      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1184      KnownZero |= HighBits;  // High bits known zero.
1185    }
1186    return;
1187  case ISD::SRA:
1188    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1189      MVT::ValueType VT = Op.getValueType();
1190      unsigned ShAmt = SA->getValue();
1191
1192      // Compute the new bits that are at the top now.
1193      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1194
1195      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1196      // If any of the demanded bits are produced by the sign extension, we also
1197      // demand the input sign bit.
1198      uint64_t HighBits = (1ULL << ShAmt)-1;
1199      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1200      if (HighBits & Mask)
1201        InDemandedMask |= MVT::getIntVTSignBit(VT);
1202
1203      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1204                        Depth+1);
1205      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1206      KnownZero &= TypeMask;
1207      KnownOne  &= TypeMask;
1208      KnownZero >>= ShAmt;
1209      KnownOne  >>= ShAmt;
1210
1211      // Handle the sign bits.
1212      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1213      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1214
1215      if (KnownZero & SignBit) {
1216        KnownZero |= HighBits;  // New bits are known zero.
1217      } else if (KnownOne & SignBit) {
1218        KnownOne  |= HighBits;  // New bits are known one.
1219      }
1220    }
1221    return;
1222  case ISD::SIGN_EXTEND_INREG: {
1223    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1224
1225    // Sign extension.  Compute the demanded bits in the result that are not
1226    // present in the input.
1227    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1228
1229    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1230    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1231
1232    // If the sign extended bits are demanded, we know that the sign
1233    // bit is demanded.
1234    if (NewBits)
1235      InputDemandedBits |= InSignBit;
1236
1237    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1238                      KnownZero, KnownOne, Depth+1);
1239    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1240
1241    // If the sign bit of the input is known set or clear, then we know the
1242    // top bits of the result.
1243    if (KnownZero & InSignBit) {          // Input sign bit known clear
1244      KnownZero |= NewBits;
1245      KnownOne  &= ~NewBits;
1246    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1247      KnownOne  |= NewBits;
1248      KnownZero &= ~NewBits;
1249    } else {                              // Input sign bit unknown
1250      KnownZero &= ~NewBits;
1251      KnownOne  &= ~NewBits;
1252    }
1253    return;
1254  }
1255  case ISD::CTTZ:
1256  case ISD::CTLZ:
1257  case ISD::CTPOP: {
1258    MVT::ValueType VT = Op.getValueType();
1259    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1260    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1261    KnownOne  = 0;
1262    return;
1263  }
1264  case ISD::LOAD: {
1265    if (ISD::isZEXTLoad(Op.Val)) {
1266      LoadSDNode *LD = cast<LoadSDNode>(Op);
1267      MVT::ValueType VT = LD->getLoadedVT();
1268      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1269    }
1270    return;
1271  }
1272  case ISD::ZERO_EXTEND: {
1273    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1274    uint64_t NewBits = (~InMask) & Mask;
1275    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1276                      KnownOne, Depth+1);
1277    KnownZero |= NewBits & Mask;
1278    KnownOne  &= ~NewBits;
1279    return;
1280  }
1281  case ISD::SIGN_EXTEND: {
1282    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1283    unsigned InBits    = MVT::getSizeInBits(InVT);
1284    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1285    uint64_t InSignBit = 1ULL << (InBits-1);
1286    uint64_t NewBits   = (~InMask) & Mask;
1287    uint64_t InDemandedBits = Mask & InMask;
1288
1289    // If any of the sign extended bits are demanded, we know that the sign
1290    // bit is demanded.
1291    if (NewBits & Mask)
1292      InDemandedBits |= InSignBit;
1293
1294    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1295                      KnownOne, Depth+1);
1296    // If the sign bit is known zero or one, the  top bits match.
1297    if (KnownZero & InSignBit) {
1298      KnownZero |= NewBits;
1299      KnownOne  &= ~NewBits;
1300    } else if (KnownOne & InSignBit) {
1301      KnownOne  |= NewBits;
1302      KnownZero &= ~NewBits;
1303    } else {   // Otherwise, top bits aren't known.
1304      KnownOne  &= ~NewBits;
1305      KnownZero &= ~NewBits;
1306    }
1307    return;
1308  }
1309  case ISD::ANY_EXTEND: {
1310    MVT::ValueType VT = Op.getOperand(0).getValueType();
1311    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1312                      KnownZero, KnownOne, Depth+1);
1313    return;
1314  }
1315  case ISD::TRUNCATE: {
1316    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1317    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1318    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1319    KnownZero &= OutMask;
1320    KnownOne &= OutMask;
1321    break;
1322  }
1323  case ISD::AssertZext: {
1324    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1325    uint64_t InMask = MVT::getIntVTBitMask(VT);
1326    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1327                      KnownOne, Depth+1);
1328    KnownZero |= (~InMask) & Mask;
1329    return;
1330  }
1331  case ISD::FGETSIGN:
1332    // All bits are zero except the low bit.
1333    KnownZero = MVT::getIntVTBitMask(Op.getValueType()) ^ 1;
1334    return;
1335
1336  case ISD::ADD: {
1337    // If either the LHS or the RHS are Zero, the result is zero.
1338    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1339    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1340    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1341    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1342
1343    // Output known-0 bits are known if clear or set in both the low clear bits
1344    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1345    // low 3 bits clear.
1346    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1347                                     CountTrailingZeros_64(~KnownZero2));
1348
1349    KnownZero = (1ULL << KnownZeroOut) - 1;
1350    KnownOne = 0;
1351    return;
1352  }
1353  case ISD::SUB: {
1354    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1355    if (!CLHS) return;
1356
1357    // We know that the top bits of C-X are clear if X contains less bits
1358    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1359    // positive if we can prove that X is >= 0 and < 16.
1360    MVT::ValueType VT = CLHS->getValueType(0);
1361    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1362      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1363      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1364      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1365      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1366
1367      // If all of the MaskV bits are known to be zero, then we know the output
1368      // top bits are zero, because we now know that the output is from [0-C].
1369      if ((KnownZero & MaskV) == MaskV) {
1370        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1371        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1372        KnownOne = 0;   // No one bits known.
1373      } else {
1374        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1375      }
1376    }
1377    return;
1378  }
1379  default:
1380    // Allow the target to implement this method for its nodes.
1381    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1382  case ISD::INTRINSIC_WO_CHAIN:
1383  case ISD::INTRINSIC_W_CHAIN:
1384  case ISD::INTRINSIC_VOID:
1385      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1386    }
1387    return;
1388  }
1389}
1390
1391/// ComputeNumSignBits - Return the number of times the sign bit of the
1392/// register is replicated into the other bits.  We know that at least 1 bit
1393/// is always equal to the sign bit (itself), but other cases can give us
1394/// information.  For example, immediately after an "SRA X, 2", we know that
1395/// the top 3 bits are all equal to each other, so we return 3.
1396unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1397  MVT::ValueType VT = Op.getValueType();
1398  assert(MVT::isInteger(VT) && "Invalid VT!");
1399  unsigned VTBits = MVT::getSizeInBits(VT);
1400  unsigned Tmp, Tmp2;
1401
1402  if (Depth == 6)
1403    return 1;  // Limit search depth.
1404
1405  switch (Op.getOpcode()) {
1406  default: break;
1407  case ISD::AssertSext:
1408    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1409    return VTBits-Tmp+1;
1410  case ISD::AssertZext:
1411    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1412    return VTBits-Tmp;
1413
1414  case ISD::Constant: {
1415    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1416    // If negative, invert the bits, then look at it.
1417    if (Val & MVT::getIntVTSignBit(VT))
1418      Val = ~Val;
1419
1420    // Shift the bits so they are the leading bits in the int64_t.
1421    Val <<= 64-VTBits;
1422
1423    // Return # leading zeros.  We use 'min' here in case Val was zero before
1424    // shifting.  We don't want to return '64' as for an i32 "0".
1425    return std::min(VTBits, CountLeadingZeros_64(Val));
1426  }
1427
1428  case ISD::SIGN_EXTEND:
1429    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1430    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1431
1432  case ISD::SIGN_EXTEND_INREG:
1433    // Max of the input and what this extends.
1434    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1435    Tmp = VTBits-Tmp+1;
1436
1437    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1438    return std::max(Tmp, Tmp2);
1439
1440  case ISD::SRA:
1441    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1442    // SRA X, C   -> adds C sign bits.
1443    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1444      Tmp += C->getValue();
1445      if (Tmp > VTBits) Tmp = VTBits;
1446    }
1447    return Tmp;
1448  case ISD::SHL:
1449    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1450      // shl destroys sign bits.
1451      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1452      if (C->getValue() >= VTBits ||      // Bad shift.
1453          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1454      return Tmp - C->getValue();
1455    }
1456    break;
1457  case ISD::AND:
1458  case ISD::OR:
1459  case ISD::XOR:    // NOT is handled here.
1460    // Logical binary ops preserve the number of sign bits.
1461    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1462    if (Tmp == 1) return 1;  // Early out.
1463    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1464    return std::min(Tmp, Tmp2);
1465
1466  case ISD::SELECT:
1467    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1468    if (Tmp == 1) return 1;  // Early out.
1469    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1470    return std::min(Tmp, Tmp2);
1471
1472  case ISD::SETCC:
1473    // If setcc returns 0/-1, all bits are sign bits.
1474    if (TLI.getSetCCResultContents() ==
1475        TargetLowering::ZeroOrNegativeOneSetCCResult)
1476      return VTBits;
1477    break;
1478  case ISD::ROTL:
1479  case ISD::ROTR:
1480    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1481      unsigned RotAmt = C->getValue() & (VTBits-1);
1482
1483      // Handle rotate right by N like a rotate left by 32-N.
1484      if (Op.getOpcode() == ISD::ROTR)
1485        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1486
1487      // If we aren't rotating out all of the known-in sign bits, return the
1488      // number that are left.  This handles rotl(sext(x), 1) for example.
1489      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1490      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1491    }
1492    break;
1493  case ISD::ADD:
1494    // Add can have at most one carry bit.  Thus we know that the output
1495    // is, at worst, one more bit than the inputs.
1496    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1497    if (Tmp == 1) return 1;  // Early out.
1498
1499    // Special case decrementing a value (ADD X, -1):
1500    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1501      if (CRHS->isAllOnesValue()) {
1502        uint64_t KnownZero, KnownOne;
1503        uint64_t Mask = MVT::getIntVTBitMask(VT);
1504        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1505
1506        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1507        // sign bits set.
1508        if ((KnownZero|1) == Mask)
1509          return VTBits;
1510
1511        // If we are subtracting one from a positive number, there is no carry
1512        // out of the result.
1513        if (KnownZero & MVT::getIntVTSignBit(VT))
1514          return Tmp;
1515      }
1516
1517    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1518    if (Tmp2 == 1) return 1;
1519      return std::min(Tmp, Tmp2)-1;
1520    break;
1521
1522  case ISD::SUB:
1523    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1524    if (Tmp2 == 1) return 1;
1525
1526    // Handle NEG.
1527    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1528      if (CLHS->getValue() == 0) {
1529        uint64_t KnownZero, KnownOne;
1530        uint64_t Mask = MVT::getIntVTBitMask(VT);
1531        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1532        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1533        // sign bits set.
1534        if ((KnownZero|1) == Mask)
1535          return VTBits;
1536
1537        // If the input is known to be positive (the sign bit is known clear),
1538        // the output of the NEG has the same number of sign bits as the input.
1539        if (KnownZero & MVT::getIntVTSignBit(VT))
1540          return Tmp2;
1541
1542        // Otherwise, we treat this like a SUB.
1543      }
1544
1545    // Sub can have at most one carry bit.  Thus we know that the output
1546    // is, at worst, one more bit than the inputs.
1547    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1548    if (Tmp == 1) return 1;  // Early out.
1549      return std::min(Tmp, Tmp2)-1;
1550    break;
1551  case ISD::TRUNCATE:
1552    // FIXME: it's tricky to do anything useful for this, but it is an important
1553    // case for targets like X86.
1554    break;
1555  }
1556
1557  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1558  if (Op.getOpcode() == ISD::LOAD) {
1559    LoadSDNode *LD = cast<LoadSDNode>(Op);
1560    unsigned ExtType = LD->getExtensionType();
1561    switch (ExtType) {
1562    default: break;
1563    case ISD::SEXTLOAD:    // '17' bits known
1564      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1565      return VTBits-Tmp+1;
1566    case ISD::ZEXTLOAD:    // '16' bits known
1567      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1568      return VTBits-Tmp;
1569    }
1570  }
1571
1572  // Allow the target to implement this method for its nodes.
1573  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1574      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1575      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1576      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1577    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1578    if (NumBits > 1) return NumBits;
1579  }
1580
1581  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1582  // use this information.
1583  uint64_t KnownZero, KnownOne;
1584  uint64_t Mask = MVT::getIntVTBitMask(VT);
1585  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1586
1587  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1588  if (KnownZero & SignBit) {        // SignBit is 0
1589    Mask = KnownZero;
1590  } else if (KnownOne & SignBit) {  // SignBit is 1;
1591    Mask = KnownOne;
1592  } else {
1593    // Nothing known.
1594    return 1;
1595  }
1596
1597  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1598  // the number of identical bits in the top of the input value.
1599  Mask ^= ~0ULL;
1600  Mask <<= 64-VTBits;
1601  // Return # leading zeros.  We use 'min' here in case Val was zero before
1602  // shifting.  We don't want to return '64' as for an i32 "0".
1603  return std::min(VTBits, CountLeadingZeros_64(Mask));
1604}
1605
1606
1607/// getNode - Gets or creates the specified node.
1608///
1609SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1610  FoldingSetNodeID ID;
1611  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1612  void *IP = 0;
1613  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1614    return SDOperand(E, 0);
1615  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1616  CSEMap.InsertNode(N, IP);
1617
1618  AllNodes.push_back(N);
1619  return SDOperand(N, 0);
1620}
1621
1622SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1623                                SDOperand Operand) {
1624  unsigned Tmp1;
1625  // Constant fold unary operations with an integer constant operand.
1626  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1627    uint64_t Val = C->getValue();
1628    switch (Opcode) {
1629    default: break;
1630    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1631    case ISD::ANY_EXTEND:
1632    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1633    case ISD::TRUNCATE:    return getConstant(Val, VT);
1634    case ISD::UINT_TO_FP:
1635    case ISD::SINT_TO_FP: {
1636      const uint64_t zero[] = {0, 0};
1637      // No compile time operations on this type.
1638      if (VT==MVT::ppcf128)
1639        break;
1640      APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
1641      (void)apf.convertFromZeroExtendedInteger(&Val,
1642                               MVT::getSizeInBits(Operand.getValueType()),
1643                               Opcode==ISD::SINT_TO_FP,
1644                               APFloat::rmNearestTiesToEven);
1645      return getConstantFP(apf, VT);
1646    }
1647    case ISD::BIT_CONVERT:
1648      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1649        return getConstantFP(BitsToFloat(Val), VT);
1650      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1651        return getConstantFP(BitsToDouble(Val), VT);
1652      break;
1653    case ISD::BSWAP:
1654      switch(VT) {
1655      default: assert(0 && "Invalid bswap!"); break;
1656      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1657      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1658      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1659      }
1660      break;
1661    case ISD::CTPOP:
1662      switch(VT) {
1663      default: assert(0 && "Invalid ctpop!"); break;
1664      case MVT::i1: return getConstant(Val != 0, VT);
1665      case MVT::i8:
1666        Tmp1 = (unsigned)Val & 0xFF;
1667        return getConstant(CountPopulation_32(Tmp1), VT);
1668      case MVT::i16:
1669        Tmp1 = (unsigned)Val & 0xFFFF;
1670        return getConstant(CountPopulation_32(Tmp1), VT);
1671      case MVT::i32:
1672        return getConstant(CountPopulation_32((unsigned)Val), VT);
1673      case MVT::i64:
1674        return getConstant(CountPopulation_64(Val), VT);
1675      }
1676    case ISD::CTLZ:
1677      switch(VT) {
1678      default: assert(0 && "Invalid ctlz!"); break;
1679      case MVT::i1: return getConstant(Val == 0, VT);
1680      case MVT::i8:
1681        Tmp1 = (unsigned)Val & 0xFF;
1682        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1683      case MVT::i16:
1684        Tmp1 = (unsigned)Val & 0xFFFF;
1685        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1686      case MVT::i32:
1687        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1688      case MVT::i64:
1689        return getConstant(CountLeadingZeros_64(Val), VT);
1690      }
1691    case ISD::CTTZ:
1692      switch(VT) {
1693      default: assert(0 && "Invalid cttz!"); break;
1694      case MVT::i1: return getConstant(Val == 0, VT);
1695      case MVT::i8:
1696        Tmp1 = (unsigned)Val | 0x100;
1697        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1698      case MVT::i16:
1699        Tmp1 = (unsigned)Val | 0x10000;
1700        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1701      case MVT::i32:
1702        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1703      case MVT::i64:
1704        return getConstant(CountTrailingZeros_64(Val), VT);
1705      }
1706    }
1707  }
1708
1709  // Constant fold unary operations with a floating point constant operand.
1710  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1711    APFloat V = C->getValueAPF();    // make copy
1712    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1713      switch (Opcode) {
1714      case ISD::FNEG:
1715        V.changeSign();
1716        return getConstantFP(V, VT);
1717      case ISD::FABS:
1718        V.clearSign();
1719        return getConstantFP(V, VT);
1720      case ISD::FP_ROUND:
1721      case ISD::FP_EXTEND:
1722        // This can return overflow, underflow, or inexact; we don't care.
1723        // FIXME need to be more flexible about rounding mode.
1724        (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1725                         VT==MVT::f64 ? APFloat::IEEEdouble :
1726                         VT==MVT::f80 ? APFloat::x87DoubleExtended :
1727                         VT==MVT::f128 ? APFloat::IEEEquad :
1728                         APFloat::Bogus,
1729                         APFloat::rmNearestTiesToEven);
1730        return getConstantFP(V, VT);
1731      case ISD::FP_TO_SINT:
1732      case ISD::FP_TO_UINT: {
1733        integerPart x;
1734        assert(integerPartWidth >= 64);
1735        // FIXME need to be more flexible about rounding mode.
1736        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1737                              Opcode==ISD::FP_TO_SINT,
1738                              APFloat::rmTowardZero);
1739        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1740          break;
1741        return getConstant(x, VT);
1742      }
1743      case ISD::BIT_CONVERT:
1744        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1745          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1746        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1747          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1748        break;
1749      }
1750    }
1751  }
1752
1753  unsigned OpOpcode = Operand.Val->getOpcode();
1754  switch (Opcode) {
1755  case ISD::TokenFactor:
1756    return Operand;         // Factor of one node?  No factor.
1757  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1758  case ISD::FP_EXTEND:
1759    assert(MVT::isFloatingPoint(VT) &&
1760           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1761    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1762    break;
1763    case ISD::SIGN_EXTEND:
1764    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1765           "Invalid SIGN_EXTEND!");
1766    if (Operand.getValueType() == VT) return Operand;   // noop extension
1767    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1768           && "Invalid sext node, dst < src!");
1769    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1770      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1771    break;
1772  case ISD::ZERO_EXTEND:
1773    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1774           "Invalid ZERO_EXTEND!");
1775    if (Operand.getValueType() == VT) return Operand;   // noop extension
1776    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1777           && "Invalid zext node, dst < src!");
1778    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1779      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1780    break;
1781  case ISD::ANY_EXTEND:
1782    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1783           "Invalid ANY_EXTEND!");
1784    if (Operand.getValueType() == VT) return Operand;   // noop extension
1785    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1786           && "Invalid anyext node, dst < src!");
1787    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1788      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1789      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1790    break;
1791  case ISD::TRUNCATE:
1792    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1793           "Invalid TRUNCATE!");
1794    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1795    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1796           && "Invalid truncate node, src < dst!");
1797    if (OpOpcode == ISD::TRUNCATE)
1798      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1799    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1800             OpOpcode == ISD::ANY_EXTEND) {
1801      // If the source is smaller than the dest, we still need an extend.
1802      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1803          < MVT::getSizeInBits(VT))
1804        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1805      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1806               > MVT::getSizeInBits(VT))
1807        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1808      else
1809        return Operand.Val->getOperand(0);
1810    }
1811    break;
1812  case ISD::BIT_CONVERT:
1813    // Basic sanity checking.
1814    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1815           && "Cannot BIT_CONVERT between types of different sizes!");
1816    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1817    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1818      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1819    if (OpOpcode == ISD::UNDEF)
1820      return getNode(ISD::UNDEF, VT);
1821    break;
1822  case ISD::SCALAR_TO_VECTOR:
1823    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1824           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1825           "Illegal SCALAR_TO_VECTOR node!");
1826    break;
1827  case ISD::FNEG:
1828    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1829      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1830                     Operand.Val->getOperand(0));
1831    if (OpOpcode == ISD::FNEG)  // --X -> X
1832      return Operand.Val->getOperand(0);
1833    break;
1834  case ISD::FABS:
1835    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1836      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1837    break;
1838  }
1839
1840  SDNode *N;
1841  SDVTList VTs = getVTList(VT);
1842  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1843    FoldingSetNodeID ID;
1844    SDOperand Ops[1] = { Operand };
1845    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1846    void *IP = 0;
1847    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1848      return SDOperand(E, 0);
1849    N = new UnarySDNode(Opcode, VTs, Operand);
1850    CSEMap.InsertNode(N, IP);
1851  } else {
1852    N = new UnarySDNode(Opcode, VTs, Operand);
1853  }
1854  AllNodes.push_back(N);
1855  return SDOperand(N, 0);
1856}
1857
1858
1859
1860SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1861                                SDOperand N1, SDOperand N2) {
1862  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1863  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1864  switch (Opcode) {
1865  default: break;
1866  case ISD::TokenFactor:
1867    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1868           N2.getValueType() == MVT::Other && "Invalid token factor!");
1869    // Fold trivial token factors.
1870    if (N1.getOpcode() == ISD::EntryToken) return N2;
1871    if (N2.getOpcode() == ISD::EntryToken) return N1;
1872    break;
1873  case ISD::AND:
1874    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1875           N1.getValueType() == VT && "Binary operator types must match!");
1876    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1877    // worth handling here.
1878    if (N2C && N2C->getValue() == 0)
1879      return N2;
1880    break;
1881  case ISD::OR:
1882  case ISD::XOR:
1883    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1884           N1.getValueType() == VT && "Binary operator types must match!");
1885    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1886    // worth handling here.
1887    if (N2C && N2C->getValue() == 0)
1888      return N1;
1889    break;
1890  case ISD::UDIV:
1891  case ISD::UREM:
1892  case ISD::MULHU:
1893  case ISD::MULHS:
1894    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1895    // fall through
1896  case ISD::ADD:
1897  case ISD::SUB:
1898  case ISD::MUL:
1899  case ISD::SDIV:
1900  case ISD::SREM:
1901  case ISD::FADD:
1902  case ISD::FSUB:
1903  case ISD::FMUL:
1904  case ISD::FDIV:
1905  case ISD::FREM:
1906    assert(N1.getValueType() == N2.getValueType() &&
1907           N1.getValueType() == VT && "Binary operator types must match!");
1908    break;
1909  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1910    assert(N1.getValueType() == VT &&
1911           MVT::isFloatingPoint(N1.getValueType()) &&
1912           MVT::isFloatingPoint(N2.getValueType()) &&
1913           "Invalid FCOPYSIGN!");
1914    break;
1915  case ISD::SHL:
1916  case ISD::SRA:
1917  case ISD::SRL:
1918  case ISD::ROTL:
1919  case ISD::ROTR:
1920    assert(VT == N1.getValueType() &&
1921           "Shift operators return type must be the same as their first arg");
1922    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1923           VT != MVT::i1 && "Shifts only work on integers");
1924    break;
1925  case ISD::FP_ROUND_INREG: {
1926    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1927    assert(VT == N1.getValueType() && "Not an inreg round!");
1928    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1929           "Cannot FP_ROUND_INREG integer types");
1930    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1931           "Not rounding down!");
1932    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1933    break;
1934  }
1935  case ISD::FP_ROUND:
1936    assert(MVT::isFloatingPoint(VT) &&
1937           MVT::isFloatingPoint(N1.getValueType()) &&
1938           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
1939           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
1940    if (N1.getValueType() == VT) return N1;  // noop conversion.
1941    break;
1942  case ISD::AssertSext:
1943  case ISD::AssertZext: {
1944    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1945    assert(VT == N1.getValueType() && "Not an inreg extend!");
1946    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1947           "Cannot *_EXTEND_INREG FP types");
1948    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1949           "Not extending!");
1950    break;
1951  }
1952  case ISD::SIGN_EXTEND_INREG: {
1953    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1954    assert(VT == N1.getValueType() && "Not an inreg extend!");
1955    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1956           "Cannot *_EXTEND_INREG FP types");
1957    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1958           "Not extending!");
1959    if (EVT == VT) return N1;  // Not actually extending
1960
1961    if (N1C) {
1962      int64_t Val = N1C->getValue();
1963      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1964      Val <<= 64-FromBits;
1965      Val >>= 64-FromBits;
1966      return getConstant(Val, VT);
1967    }
1968    break;
1969  }
1970  case ISD::EXTRACT_VECTOR_ELT:
1971    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
1972
1973    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
1974    // expanding copies of large vectors from registers.
1975    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
1976        N1.getNumOperands() > 0) {
1977      unsigned Factor =
1978        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
1979      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
1980                     N1.getOperand(N2C->getValue() / Factor),
1981                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
1982    }
1983
1984    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
1985    // expanding large vector constants.
1986    if (N1.getOpcode() == ISD::BUILD_VECTOR)
1987      return N1.getOperand(N2C->getValue());
1988
1989    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
1990    // operations are lowered to scalars.
1991    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
1992      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
1993        if (IEC == N2C)
1994          return N1.getOperand(1);
1995        else
1996          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
1997      }
1998    break;
1999  case ISD::EXTRACT_ELEMENT:
2000    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2001
2002    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2003    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2004    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2005    if (N1.getOpcode() == ISD::BUILD_PAIR)
2006      return N1.getOperand(N2C->getValue());
2007
2008    // EXTRACT_ELEMENT of a constant int is also very common.
2009    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2010      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2011      return getConstant(C->getValue() >> Shift, VT);
2012    }
2013    break;
2014  }
2015
2016  if (N1C) {
2017    if (N2C) {
2018      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
2019      switch (Opcode) {
2020      case ISD::ADD: return getConstant(C1 + C2, VT);
2021      case ISD::SUB: return getConstant(C1 - C2, VT);
2022      case ISD::MUL: return getConstant(C1 * C2, VT);
2023      case ISD::UDIV:
2024        if (C2) return getConstant(C1 / C2, VT);
2025        break;
2026      case ISD::UREM :
2027        if (C2) return getConstant(C1 % C2, VT);
2028        break;
2029      case ISD::SDIV :
2030        if (C2) return getConstant(N1C->getSignExtended() /
2031                                   N2C->getSignExtended(), VT);
2032        break;
2033      case ISD::SREM :
2034        if (C2) return getConstant(N1C->getSignExtended() %
2035                                   N2C->getSignExtended(), VT);
2036        break;
2037      case ISD::AND  : return getConstant(C1 & C2, VT);
2038      case ISD::OR   : return getConstant(C1 | C2, VT);
2039      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2040      case ISD::SHL  : return getConstant(C1 << C2, VT);
2041      case ISD::SRL  : return getConstant(C1 >> C2, VT);
2042      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
2043      case ISD::ROTL :
2044        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
2045                           VT);
2046      case ISD::ROTR :
2047        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
2048                           VT);
2049      default: break;
2050      }
2051    } else {      // Cannonicalize constant to RHS if commutative
2052      if (isCommutativeBinOp(Opcode)) {
2053        std::swap(N1C, N2C);
2054        std::swap(N1, N2);
2055      }
2056    }
2057  }
2058
2059  // Constant fold FP operations.
2060  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2061  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2062  if (N1CFP) {
2063    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2064      // Cannonicalize constant to RHS if commutative
2065      std::swap(N1CFP, N2CFP);
2066      std::swap(N1, N2);
2067    } else if (N2CFP && VT != MVT::ppcf128) {
2068      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2069      APFloat::opStatus s;
2070      switch (Opcode) {
2071      case ISD::FADD:
2072        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2073        if (s != APFloat::opInvalidOp)
2074          return getConstantFP(V1, VT);
2075        break;
2076      case ISD::FSUB:
2077        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2078        if (s!=APFloat::opInvalidOp)
2079          return getConstantFP(V1, VT);
2080        break;
2081      case ISD::FMUL:
2082        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2083        if (s!=APFloat::opInvalidOp)
2084          return getConstantFP(V1, VT);
2085        break;
2086      case ISD::FDIV:
2087        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2088        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2089          return getConstantFP(V1, VT);
2090        break;
2091      case ISD::FREM :
2092        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2093        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2094          return getConstantFP(V1, VT);
2095        break;
2096      case ISD::FCOPYSIGN:
2097        V1.copySign(V2);
2098        return getConstantFP(V1, VT);
2099      default: break;
2100      }
2101    }
2102  }
2103
2104  // Canonicalize an UNDEF to the RHS, even over a constant.
2105  if (N1.getOpcode() == ISD::UNDEF) {
2106    if (isCommutativeBinOp(Opcode)) {
2107      std::swap(N1, N2);
2108    } else {
2109      switch (Opcode) {
2110      case ISD::FP_ROUND_INREG:
2111      case ISD::SIGN_EXTEND_INREG:
2112      case ISD::SUB:
2113      case ISD::FSUB:
2114      case ISD::FDIV:
2115      case ISD::FREM:
2116      case ISD::SRA:
2117        return N1;     // fold op(undef, arg2) -> undef
2118      case ISD::UDIV:
2119      case ISD::SDIV:
2120      case ISD::UREM:
2121      case ISD::SREM:
2122      case ISD::SRL:
2123      case ISD::SHL:
2124        if (!MVT::isVector(VT))
2125          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2126        // For vectors, we can't easily build an all zero vector, just return
2127        // the LHS.
2128        return N2;
2129      }
2130    }
2131  }
2132
2133  // Fold a bunch of operators when the RHS is undef.
2134  if (N2.getOpcode() == ISD::UNDEF) {
2135    switch (Opcode) {
2136    case ISD::ADD:
2137    case ISD::ADDC:
2138    case ISD::ADDE:
2139    case ISD::SUB:
2140    case ISD::FADD:
2141    case ISD::FSUB:
2142    case ISD::FMUL:
2143    case ISD::FDIV:
2144    case ISD::FREM:
2145    case ISD::UDIV:
2146    case ISD::SDIV:
2147    case ISD::UREM:
2148    case ISD::SREM:
2149    case ISD::XOR:
2150      return N2;       // fold op(arg1, undef) -> undef
2151    case ISD::MUL:
2152    case ISD::AND:
2153    case ISD::SRL:
2154    case ISD::SHL:
2155      if (!MVT::isVector(VT))
2156        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2157      // For vectors, we can't easily build an all zero vector, just return
2158      // the LHS.
2159      return N1;
2160    case ISD::OR:
2161      if (!MVT::isVector(VT))
2162        return getConstant(MVT::getIntVTBitMask(VT), VT);
2163      // For vectors, we can't easily build an all one vector, just return
2164      // the LHS.
2165      return N1;
2166    case ISD::SRA:
2167      return N1;
2168    }
2169  }
2170
2171  // Memoize this node if possible.
2172  SDNode *N;
2173  SDVTList VTs = getVTList(VT);
2174  if (VT != MVT::Flag) {
2175    SDOperand Ops[] = { N1, N2 };
2176    FoldingSetNodeID ID;
2177    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2178    void *IP = 0;
2179    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2180      return SDOperand(E, 0);
2181    N = new BinarySDNode(Opcode, VTs, N1, N2);
2182    CSEMap.InsertNode(N, IP);
2183  } else {
2184    N = new BinarySDNode(Opcode, VTs, N1, N2);
2185  }
2186
2187  AllNodes.push_back(N);
2188  return SDOperand(N, 0);
2189}
2190
2191SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2192                                SDOperand N1, SDOperand N2, SDOperand N3) {
2193  // Perform various simplifications.
2194  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2195  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2196  switch (Opcode) {
2197  case ISD::SETCC: {
2198    // Use FoldSetCC to simplify SETCC's.
2199    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2200    if (Simp.Val) return Simp;
2201    break;
2202  }
2203  case ISD::SELECT:
2204    if (N1C)
2205      if (N1C->getValue())
2206        return N2;             // select true, X, Y -> X
2207      else
2208        return N3;             // select false, X, Y -> Y
2209
2210    if (N2 == N3) return N2;   // select C, X, X -> X
2211    break;
2212  case ISD::BRCOND:
2213    if (N2C)
2214      if (N2C->getValue()) // Unconditional branch
2215        return getNode(ISD::BR, MVT::Other, N1, N3);
2216      else
2217        return N1;         // Never-taken branch
2218    break;
2219  case ISD::VECTOR_SHUFFLE:
2220    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2221           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2222           N3.getOpcode() == ISD::BUILD_VECTOR &&
2223           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2224           "Illegal VECTOR_SHUFFLE node!");
2225    break;
2226  case ISD::BIT_CONVERT:
2227    // Fold bit_convert nodes from a type to themselves.
2228    if (N1.getValueType() == VT)
2229      return N1;
2230    break;
2231  }
2232
2233  // Memoize node if it doesn't produce a flag.
2234  SDNode *N;
2235  SDVTList VTs = getVTList(VT);
2236  if (VT != MVT::Flag) {
2237    SDOperand Ops[] = { N1, N2, N3 };
2238    FoldingSetNodeID ID;
2239    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2240    void *IP = 0;
2241    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2242      return SDOperand(E, 0);
2243    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2244    CSEMap.InsertNode(N, IP);
2245  } else {
2246    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2247  }
2248  AllNodes.push_back(N);
2249  return SDOperand(N, 0);
2250}
2251
2252SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2253                                SDOperand N1, SDOperand N2, SDOperand N3,
2254                                SDOperand N4) {
2255  SDOperand Ops[] = { N1, N2, N3, N4 };
2256  return getNode(Opcode, VT, Ops, 4);
2257}
2258
2259SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2260                                SDOperand N1, SDOperand N2, SDOperand N3,
2261                                SDOperand N4, SDOperand N5) {
2262  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2263  return getNode(Opcode, VT, Ops, 5);
2264}
2265
2266SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2267                                  SDOperand Src, SDOperand Size,
2268                                  SDOperand Align,
2269                                  SDOperand AlwaysInline) {
2270  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2271  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2272}
2273
2274SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2275                                  SDOperand Src, SDOperand Size,
2276                                  SDOperand Align,
2277                                  SDOperand AlwaysInline) {
2278  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2279  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2280}
2281
2282SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2283                                  SDOperand Src, SDOperand Size,
2284                                  SDOperand Align,
2285                                  SDOperand AlwaysInline) {
2286  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2287  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2288}
2289
2290SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2291                                SDOperand Chain, SDOperand Ptr,
2292                                const Value *SV, int SVOffset,
2293                                bool isVolatile, unsigned Alignment) {
2294  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2295    const Type *Ty = 0;
2296    if (VT != MVT::iPTR) {
2297      Ty = MVT::getTypeForValueType(VT);
2298    } else if (SV) {
2299      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2300      assert(PT && "Value for load must be a pointer");
2301      Ty = PT->getElementType();
2302    }
2303    assert(Ty && "Could not get type information for load");
2304    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2305  }
2306  SDVTList VTs = getVTList(VT, MVT::Other);
2307  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2308  SDOperand Ops[] = { Chain, Ptr, Undef };
2309  FoldingSetNodeID ID;
2310  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2311  ID.AddInteger(ISD::UNINDEXED);
2312  ID.AddInteger(ISD::NON_EXTLOAD);
2313  ID.AddInteger((unsigned int)VT);
2314  ID.AddInteger(Alignment);
2315  ID.AddInteger(isVolatile);
2316  void *IP = 0;
2317  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2318    return SDOperand(E, 0);
2319  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2320                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2321                             isVolatile);
2322  CSEMap.InsertNode(N, IP);
2323  AllNodes.push_back(N);
2324  return SDOperand(N, 0);
2325}
2326
2327SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2328                                   SDOperand Chain, SDOperand Ptr,
2329                                   const Value *SV,
2330                                   int SVOffset, MVT::ValueType EVT,
2331                                   bool isVolatile, unsigned Alignment) {
2332  // If they are asking for an extending load from/to the same thing, return a
2333  // normal load.
2334  if (VT == EVT)
2335    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2336
2337  if (MVT::isVector(VT))
2338    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2339  else
2340    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2341           "Should only be an extending load, not truncating!");
2342  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2343         "Cannot sign/zero extend a FP/Vector load!");
2344  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2345         "Cannot convert from FP to Int or Int -> FP!");
2346
2347  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2348    const Type *Ty = 0;
2349    if (VT != MVT::iPTR) {
2350      Ty = MVT::getTypeForValueType(VT);
2351    } else if (SV) {
2352      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2353      assert(PT && "Value for load must be a pointer");
2354      Ty = PT->getElementType();
2355    }
2356    assert(Ty && "Could not get type information for load");
2357    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2358  }
2359  SDVTList VTs = getVTList(VT, MVT::Other);
2360  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2361  SDOperand Ops[] = { Chain, Ptr, Undef };
2362  FoldingSetNodeID ID;
2363  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2364  ID.AddInteger(ISD::UNINDEXED);
2365  ID.AddInteger(ExtType);
2366  ID.AddInteger((unsigned int)EVT);
2367  ID.AddInteger(Alignment);
2368  ID.AddInteger(isVolatile);
2369  void *IP = 0;
2370  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2371    return SDOperand(E, 0);
2372  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2373                             SV, SVOffset, Alignment, isVolatile);
2374  CSEMap.InsertNode(N, IP);
2375  AllNodes.push_back(N);
2376  return SDOperand(N, 0);
2377}
2378
2379SDOperand
2380SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2381                             SDOperand Offset, ISD::MemIndexedMode AM) {
2382  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2383  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2384         "Load is already a indexed load!");
2385  MVT::ValueType VT = OrigLoad.getValueType();
2386  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2387  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2388  FoldingSetNodeID ID;
2389  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2390  ID.AddInteger(AM);
2391  ID.AddInteger(LD->getExtensionType());
2392  ID.AddInteger((unsigned int)(LD->getLoadedVT()));
2393  ID.AddInteger(LD->getAlignment());
2394  ID.AddInteger(LD->isVolatile());
2395  void *IP = 0;
2396  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2397    return SDOperand(E, 0);
2398  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2399                             LD->getExtensionType(), LD->getLoadedVT(),
2400                             LD->getSrcValue(), LD->getSrcValueOffset(),
2401                             LD->getAlignment(), LD->isVolatile());
2402  CSEMap.InsertNode(N, IP);
2403  AllNodes.push_back(N);
2404  return SDOperand(N, 0);
2405}
2406
2407SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2408                                 SDOperand Ptr, const Value *SV, int SVOffset,
2409                                 bool isVolatile, unsigned Alignment) {
2410  MVT::ValueType VT = Val.getValueType();
2411
2412  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2413    const Type *Ty = 0;
2414    if (VT != MVT::iPTR) {
2415      Ty = MVT::getTypeForValueType(VT);
2416    } else if (SV) {
2417      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2418      assert(PT && "Value for store must be a pointer");
2419      Ty = PT->getElementType();
2420    }
2421    assert(Ty && "Could not get type information for store");
2422    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2423  }
2424  SDVTList VTs = getVTList(MVT::Other);
2425  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2426  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2427  FoldingSetNodeID ID;
2428  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2429  ID.AddInteger(ISD::UNINDEXED);
2430  ID.AddInteger(false);
2431  ID.AddInteger((unsigned int)VT);
2432  ID.AddInteger(Alignment);
2433  ID.AddInteger(isVolatile);
2434  void *IP = 0;
2435  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2436    return SDOperand(E, 0);
2437  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2438                              VT, SV, SVOffset, Alignment, isVolatile);
2439  CSEMap.InsertNode(N, IP);
2440  AllNodes.push_back(N);
2441  return SDOperand(N, 0);
2442}
2443
2444SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2445                                      SDOperand Ptr, const Value *SV,
2446                                      int SVOffset, MVT::ValueType SVT,
2447                                      bool isVolatile, unsigned Alignment) {
2448  MVT::ValueType VT = Val.getValueType();
2449
2450  if (VT == SVT)
2451    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2452
2453  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2454         "Not a truncation?");
2455  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2456         "Can't do FP-INT conversion!");
2457
2458  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2459    const Type *Ty = 0;
2460    if (VT != MVT::iPTR) {
2461      Ty = MVT::getTypeForValueType(VT);
2462    } else if (SV) {
2463      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2464      assert(PT && "Value for store must be a pointer");
2465      Ty = PT->getElementType();
2466    }
2467    assert(Ty && "Could not get type information for store");
2468    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2469  }
2470  SDVTList VTs = getVTList(MVT::Other);
2471  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2472  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2473  FoldingSetNodeID ID;
2474  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2475  ID.AddInteger(ISD::UNINDEXED);
2476  ID.AddInteger(1);
2477  ID.AddInteger((unsigned int)SVT);
2478  ID.AddInteger(Alignment);
2479  ID.AddInteger(isVolatile);
2480  void *IP = 0;
2481  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2482    return SDOperand(E, 0);
2483  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2484                              SVT, SV, SVOffset, Alignment, isVolatile);
2485  CSEMap.InsertNode(N, IP);
2486  AllNodes.push_back(N);
2487  return SDOperand(N, 0);
2488}
2489
2490SDOperand
2491SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2492                              SDOperand Offset, ISD::MemIndexedMode AM) {
2493  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2494  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2495         "Store is already a indexed store!");
2496  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2497  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2498  FoldingSetNodeID ID;
2499  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2500  ID.AddInteger(AM);
2501  ID.AddInteger(ST->isTruncatingStore());
2502  ID.AddInteger((unsigned int)(ST->getStoredVT()));
2503  ID.AddInteger(ST->getAlignment());
2504  ID.AddInteger(ST->isVolatile());
2505  void *IP = 0;
2506  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2507    return SDOperand(E, 0);
2508  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2509                              ST->isTruncatingStore(), ST->getStoredVT(),
2510                              ST->getSrcValue(), ST->getSrcValueOffset(),
2511                              ST->getAlignment(), ST->isVolatile());
2512  CSEMap.InsertNode(N, IP);
2513  AllNodes.push_back(N);
2514  return SDOperand(N, 0);
2515}
2516
2517SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2518                                 SDOperand Chain, SDOperand Ptr,
2519                                 SDOperand SV) {
2520  SDOperand Ops[] = { Chain, Ptr, SV };
2521  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2522}
2523
2524SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2525                                const SDOperand *Ops, unsigned NumOps) {
2526  switch (NumOps) {
2527  case 0: return getNode(Opcode, VT);
2528  case 1: return getNode(Opcode, VT, Ops[0]);
2529  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2530  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2531  default: break;
2532  }
2533
2534  switch (Opcode) {
2535  default: break;
2536  case ISD::SELECT_CC: {
2537    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2538    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2539           "LHS and RHS of condition must have same type!");
2540    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2541           "True and False arms of SelectCC must have same type!");
2542    assert(Ops[2].getValueType() == VT &&
2543           "select_cc node must be of same type as true and false value!");
2544    break;
2545  }
2546  case ISD::BR_CC: {
2547    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2548    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2549           "LHS/RHS of comparison should match types!");
2550    break;
2551  }
2552  }
2553
2554  // Memoize nodes.
2555  SDNode *N;
2556  SDVTList VTs = getVTList(VT);
2557  if (VT != MVT::Flag) {
2558    FoldingSetNodeID ID;
2559    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2560    void *IP = 0;
2561    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2562      return SDOperand(E, 0);
2563    N = new SDNode(Opcode, VTs, Ops, NumOps);
2564    CSEMap.InsertNode(N, IP);
2565  } else {
2566    N = new SDNode(Opcode, VTs, Ops, NumOps);
2567  }
2568  AllNodes.push_back(N);
2569  return SDOperand(N, 0);
2570}
2571
2572SDOperand SelectionDAG::getNode(unsigned Opcode,
2573                                std::vector<MVT::ValueType> &ResultTys,
2574                                const SDOperand *Ops, unsigned NumOps) {
2575  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2576                 Ops, NumOps);
2577}
2578
2579SDOperand SelectionDAG::getNode(unsigned Opcode,
2580                                const MVT::ValueType *VTs, unsigned NumVTs,
2581                                const SDOperand *Ops, unsigned NumOps) {
2582  if (NumVTs == 1)
2583    return getNode(Opcode, VTs[0], Ops, NumOps);
2584  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2585}
2586
2587SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2588                                const SDOperand *Ops, unsigned NumOps) {
2589  if (VTList.NumVTs == 1)
2590    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2591
2592  switch (Opcode) {
2593  // FIXME: figure out how to safely handle things like
2594  // int foo(int x) { return 1 << (x & 255); }
2595  // int bar() { return foo(256); }
2596#if 0
2597  case ISD::SRA_PARTS:
2598  case ISD::SRL_PARTS:
2599  case ISD::SHL_PARTS:
2600    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2601        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2602      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2603    else if (N3.getOpcode() == ISD::AND)
2604      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2605        // If the and is only masking out bits that cannot effect the shift,
2606        // eliminate the and.
2607        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2608        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2609          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2610      }
2611    break;
2612#endif
2613  }
2614
2615  // Memoize the node unless it returns a flag.
2616  SDNode *N;
2617  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2618    FoldingSetNodeID ID;
2619    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2620    void *IP = 0;
2621    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2622      return SDOperand(E, 0);
2623    if (NumOps == 1)
2624      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2625    else if (NumOps == 2)
2626      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2627    else if (NumOps == 3)
2628      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2629    else
2630      N = new SDNode(Opcode, VTList, Ops, NumOps);
2631    CSEMap.InsertNode(N, IP);
2632  } else {
2633    if (NumOps == 1)
2634      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2635    else if (NumOps == 2)
2636      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2637    else if (NumOps == 3)
2638      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2639    else
2640      N = new SDNode(Opcode, VTList, Ops, NumOps);
2641  }
2642  AllNodes.push_back(N);
2643  return SDOperand(N, 0);
2644}
2645
2646SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2647  return getNode(Opcode, VTList, 0, 0);
2648}
2649
2650SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2651                                SDOperand N1) {
2652  SDOperand Ops[] = { N1 };
2653  return getNode(Opcode, VTList, Ops, 1);
2654}
2655
2656SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2657                                SDOperand N1, SDOperand N2) {
2658  SDOperand Ops[] = { N1, N2 };
2659  return getNode(Opcode, VTList, Ops, 2);
2660}
2661
2662SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2663                                SDOperand N1, SDOperand N2, SDOperand N3) {
2664  SDOperand Ops[] = { N1, N2, N3 };
2665  return getNode(Opcode, VTList, Ops, 3);
2666}
2667
2668SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2669                                SDOperand N1, SDOperand N2, SDOperand N3,
2670                                SDOperand N4) {
2671  SDOperand Ops[] = { N1, N2, N3, N4 };
2672  return getNode(Opcode, VTList, Ops, 4);
2673}
2674
2675SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2676                                SDOperand N1, SDOperand N2, SDOperand N3,
2677                                SDOperand N4, SDOperand N5) {
2678  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2679  return getNode(Opcode, VTList, Ops, 5);
2680}
2681
2682SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2683  return makeVTList(SDNode::getValueTypeList(VT), 1);
2684}
2685
2686SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2687  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2688       E = VTList.end(); I != E; ++I) {
2689    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2690      return makeVTList(&(*I)[0], 2);
2691  }
2692  std::vector<MVT::ValueType> V;
2693  V.push_back(VT1);
2694  V.push_back(VT2);
2695  VTList.push_front(V);
2696  return makeVTList(&(*VTList.begin())[0], 2);
2697}
2698SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2699                                 MVT::ValueType VT3) {
2700  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2701       E = VTList.end(); I != E; ++I) {
2702    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2703        (*I)[2] == VT3)
2704      return makeVTList(&(*I)[0], 3);
2705  }
2706  std::vector<MVT::ValueType> V;
2707  V.push_back(VT1);
2708  V.push_back(VT2);
2709  V.push_back(VT3);
2710  VTList.push_front(V);
2711  return makeVTList(&(*VTList.begin())[0], 3);
2712}
2713
2714SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2715  switch (NumVTs) {
2716    case 0: assert(0 && "Cannot have nodes without results!");
2717    case 1: return getVTList(VTs[0]);
2718    case 2: return getVTList(VTs[0], VTs[1]);
2719    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2720    default: break;
2721  }
2722
2723  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2724       E = VTList.end(); I != E; ++I) {
2725    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2726
2727    bool NoMatch = false;
2728    for (unsigned i = 2; i != NumVTs; ++i)
2729      if (VTs[i] != (*I)[i]) {
2730        NoMatch = true;
2731        break;
2732      }
2733    if (!NoMatch)
2734      return makeVTList(&*I->begin(), NumVTs);
2735  }
2736
2737  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2738  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2739}
2740
2741
2742/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2743/// specified operands.  If the resultant node already exists in the DAG,
2744/// this does not modify the specified node, instead it returns the node that
2745/// already exists.  If the resultant node does not exist in the DAG, the
2746/// input node is returned.  As a degenerate case, if you specify the same
2747/// input operands as the node already has, the input node is returned.
2748SDOperand SelectionDAG::
2749UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2750  SDNode *N = InN.Val;
2751  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2752
2753  // Check to see if there is no change.
2754  if (Op == N->getOperand(0)) return InN;
2755
2756  // See if the modified node already exists.
2757  void *InsertPos = 0;
2758  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2759    return SDOperand(Existing, InN.ResNo);
2760
2761  // Nope it doesn't.  Remove the node from it's current place in the maps.
2762  if (InsertPos)
2763    RemoveNodeFromCSEMaps(N);
2764
2765  // Now we update the operands.
2766  N->OperandList[0].Val->removeUser(N);
2767  Op.Val->addUser(N);
2768  N->OperandList[0] = Op;
2769
2770  // If this gets put into a CSE map, add it.
2771  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2772  return InN;
2773}
2774
2775SDOperand SelectionDAG::
2776UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2777  SDNode *N = InN.Val;
2778  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2779
2780  // Check to see if there is no change.
2781  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2782    return InN;   // No operands changed, just return the input node.
2783
2784  // See if the modified node already exists.
2785  void *InsertPos = 0;
2786  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2787    return SDOperand(Existing, InN.ResNo);
2788
2789  // Nope it doesn't.  Remove the node from it's current place in the maps.
2790  if (InsertPos)
2791    RemoveNodeFromCSEMaps(N);
2792
2793  // Now we update the operands.
2794  if (N->OperandList[0] != Op1) {
2795    N->OperandList[0].Val->removeUser(N);
2796    Op1.Val->addUser(N);
2797    N->OperandList[0] = Op1;
2798  }
2799  if (N->OperandList[1] != Op2) {
2800    N->OperandList[1].Val->removeUser(N);
2801    Op2.Val->addUser(N);
2802    N->OperandList[1] = Op2;
2803  }
2804
2805  // If this gets put into a CSE map, add it.
2806  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2807  return InN;
2808}
2809
2810SDOperand SelectionDAG::
2811UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2812  SDOperand Ops[] = { Op1, Op2, Op3 };
2813  return UpdateNodeOperands(N, Ops, 3);
2814}
2815
2816SDOperand SelectionDAG::
2817UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2818                   SDOperand Op3, SDOperand Op4) {
2819  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2820  return UpdateNodeOperands(N, Ops, 4);
2821}
2822
2823SDOperand SelectionDAG::
2824UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2825                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2826  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2827  return UpdateNodeOperands(N, Ops, 5);
2828}
2829
2830
2831SDOperand SelectionDAG::
2832UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2833  SDNode *N = InN.Val;
2834  assert(N->getNumOperands() == NumOps &&
2835         "Update with wrong number of operands");
2836
2837  // Check to see if there is no change.
2838  bool AnyChange = false;
2839  for (unsigned i = 0; i != NumOps; ++i) {
2840    if (Ops[i] != N->getOperand(i)) {
2841      AnyChange = true;
2842      break;
2843    }
2844  }
2845
2846  // No operands changed, just return the input node.
2847  if (!AnyChange) return InN;
2848
2849  // See if the modified node already exists.
2850  void *InsertPos = 0;
2851  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2852    return SDOperand(Existing, InN.ResNo);
2853
2854  // Nope it doesn't.  Remove the node from it's current place in the maps.
2855  if (InsertPos)
2856    RemoveNodeFromCSEMaps(N);
2857
2858  // Now we update the operands.
2859  for (unsigned i = 0; i != NumOps; ++i) {
2860    if (N->OperandList[i] != Ops[i]) {
2861      N->OperandList[i].Val->removeUser(N);
2862      Ops[i].Val->addUser(N);
2863      N->OperandList[i] = Ops[i];
2864    }
2865  }
2866
2867  // If this gets put into a CSE map, add it.
2868  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2869  return InN;
2870}
2871
2872
2873/// MorphNodeTo - This frees the operands of the current node, resets the
2874/// opcode, types, and operands to the specified value.  This should only be
2875/// used by the SelectionDAG class.
2876void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2877                         const SDOperand *Ops, unsigned NumOps) {
2878  NodeType = Opc;
2879  ValueList = L.VTs;
2880  NumValues = L.NumVTs;
2881
2882  // Clear the operands list, updating used nodes to remove this from their
2883  // use list.
2884  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2885    I->Val->removeUser(this);
2886
2887  // If NumOps is larger than the # of operands we currently have, reallocate
2888  // the operand list.
2889  if (NumOps > NumOperands) {
2890    if (OperandsNeedDelete)
2891      delete [] OperandList;
2892    OperandList = new SDOperand[NumOps];
2893    OperandsNeedDelete = true;
2894  }
2895
2896  // Assign the new operands.
2897  NumOperands = NumOps;
2898
2899  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2900    OperandList[i] = Ops[i];
2901    SDNode *N = OperandList[i].Val;
2902    N->Uses.push_back(this);
2903  }
2904}
2905
2906/// SelectNodeTo - These are used for target selectors to *mutate* the
2907/// specified node to have the specified return type, Target opcode, and
2908/// operands.  Note that target opcodes are stored as
2909/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2910///
2911/// Note that SelectNodeTo returns the resultant node.  If there is already a
2912/// node of the specified opcode and operands, it returns that node instead of
2913/// the current one.
2914SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2915                                   MVT::ValueType VT) {
2916  SDVTList VTs = getVTList(VT);
2917  FoldingSetNodeID ID;
2918  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2919  void *IP = 0;
2920  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2921    return ON;
2922
2923  RemoveNodeFromCSEMaps(N);
2924
2925  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2926
2927  CSEMap.InsertNode(N, IP);
2928  return N;
2929}
2930
2931SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2932                                   MVT::ValueType VT, SDOperand Op1) {
2933  // If an identical node already exists, use it.
2934  SDVTList VTs = getVTList(VT);
2935  SDOperand Ops[] = { Op1 };
2936
2937  FoldingSetNodeID ID;
2938  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2939  void *IP = 0;
2940  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2941    return ON;
2942
2943  RemoveNodeFromCSEMaps(N);
2944  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2945  CSEMap.InsertNode(N, IP);
2946  return N;
2947}
2948
2949SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2950                                   MVT::ValueType VT, SDOperand Op1,
2951                                   SDOperand Op2) {
2952  // If an identical node already exists, use it.
2953  SDVTList VTs = getVTList(VT);
2954  SDOperand Ops[] = { Op1, Op2 };
2955
2956  FoldingSetNodeID ID;
2957  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2958  void *IP = 0;
2959  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2960    return ON;
2961
2962  RemoveNodeFromCSEMaps(N);
2963
2964  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2965
2966  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2967  return N;
2968}
2969
2970SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2971                                   MVT::ValueType VT, SDOperand Op1,
2972                                   SDOperand Op2, SDOperand Op3) {
2973  // If an identical node already exists, use it.
2974  SDVTList VTs = getVTList(VT);
2975  SDOperand Ops[] = { Op1, Op2, Op3 };
2976  FoldingSetNodeID ID;
2977  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2978  void *IP = 0;
2979  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2980    return ON;
2981
2982  RemoveNodeFromCSEMaps(N);
2983
2984  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2985
2986  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2987  return N;
2988}
2989
2990SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2991                                   MVT::ValueType VT, const SDOperand *Ops,
2992                                   unsigned NumOps) {
2993  // If an identical node already exists, use it.
2994  SDVTList VTs = getVTList(VT);
2995  FoldingSetNodeID ID;
2996  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2997  void *IP = 0;
2998  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2999    return ON;
3000
3001  RemoveNodeFromCSEMaps(N);
3002  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3003
3004  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3005  return N;
3006}
3007
3008SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3009                                   MVT::ValueType VT1, MVT::ValueType VT2,
3010                                   SDOperand Op1, SDOperand Op2) {
3011  SDVTList VTs = getVTList(VT1, VT2);
3012  FoldingSetNodeID ID;
3013  SDOperand Ops[] = { Op1, Op2 };
3014  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3015  void *IP = 0;
3016  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3017    return ON;
3018
3019  RemoveNodeFromCSEMaps(N);
3020  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3021  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3022  return N;
3023}
3024
3025SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3026                                   MVT::ValueType VT1, MVT::ValueType VT2,
3027                                   SDOperand Op1, SDOperand Op2,
3028                                   SDOperand Op3) {
3029  // If an identical node already exists, use it.
3030  SDVTList VTs = getVTList(VT1, VT2);
3031  SDOperand Ops[] = { Op1, Op2, Op3 };
3032  FoldingSetNodeID ID;
3033  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3034  void *IP = 0;
3035  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3036    return ON;
3037
3038  RemoveNodeFromCSEMaps(N);
3039
3040  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3041  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3042  return N;
3043}
3044
3045
3046/// getTargetNode - These are used for target selectors to create a new node
3047/// with specified return type(s), target opcode, and operands.
3048///
3049/// Note that getTargetNode returns the resultant node.  If there is already a
3050/// node of the specified opcode and operands, it returns that node instead of
3051/// the current one.
3052SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3053  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3054}
3055SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3056                                    SDOperand Op1) {
3057  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3058}
3059SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3060                                    SDOperand Op1, SDOperand Op2) {
3061  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3062}
3063SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3064                                    SDOperand Op1, SDOperand Op2,
3065                                    SDOperand Op3) {
3066  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3067}
3068SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3069                                    const SDOperand *Ops, unsigned NumOps) {
3070  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3071}
3072SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3073                                    MVT::ValueType VT2) {
3074  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3075  SDOperand Op;
3076  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3077}
3078SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3079                                    MVT::ValueType VT2, SDOperand Op1) {
3080  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3081  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3082}
3083SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3084                                    MVT::ValueType VT2, SDOperand Op1,
3085                                    SDOperand Op2) {
3086  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3087  SDOperand Ops[] = { Op1, Op2 };
3088  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3089}
3090SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3091                                    MVT::ValueType VT2, SDOperand Op1,
3092                                    SDOperand Op2, SDOperand Op3) {
3093  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3094  SDOperand Ops[] = { Op1, Op2, Op3 };
3095  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3096}
3097SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3098                                    MVT::ValueType VT2,
3099                                    const SDOperand *Ops, unsigned NumOps) {
3100  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3101  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3102}
3103SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3104                                    MVT::ValueType VT2, MVT::ValueType VT3,
3105                                    SDOperand Op1, SDOperand Op2) {
3106  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3107  SDOperand Ops[] = { Op1, Op2 };
3108  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3109}
3110SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3111                                    MVT::ValueType VT2, MVT::ValueType VT3,
3112                                    SDOperand Op1, SDOperand Op2,
3113                                    SDOperand Op3) {
3114  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3115  SDOperand Ops[] = { Op1, Op2, Op3 };
3116  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3117}
3118SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3119                                    MVT::ValueType VT2, MVT::ValueType VT3,
3120                                    const SDOperand *Ops, unsigned NumOps) {
3121  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3122  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3123}
3124SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3125                                    MVT::ValueType VT2, MVT::ValueType VT3,
3126                                    MVT::ValueType VT4,
3127                                    const SDOperand *Ops, unsigned NumOps) {
3128  std::vector<MVT::ValueType> VTList;
3129  VTList.push_back(VT1);
3130  VTList.push_back(VT2);
3131  VTList.push_back(VT3);
3132  VTList.push_back(VT4);
3133  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3134  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3135}
3136SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3137                                    std::vector<MVT::ValueType> &ResultTys,
3138                                    const SDOperand *Ops, unsigned NumOps) {
3139  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3140  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3141                 Ops, NumOps).Val;
3142}
3143
3144/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3145/// This can cause recursive merging of nodes in the DAG.
3146///
3147/// This version assumes From/To have a single result value.
3148///
3149void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3150                                      std::vector<SDNode*> *Deleted) {
3151  SDNode *From = FromN.Val, *To = ToN.Val;
3152  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3153         "Cannot replace with this method!");
3154  assert(From != To && "Cannot replace uses of with self");
3155
3156  while (!From->use_empty()) {
3157    // Process users until they are all gone.
3158    SDNode *U = *From->use_begin();
3159
3160    // This node is about to morph, remove its old self from the CSE maps.
3161    RemoveNodeFromCSEMaps(U);
3162
3163    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3164         I != E; ++I)
3165      if (I->Val == From) {
3166        From->removeUser(U);
3167        I->Val = To;
3168        To->addUser(U);
3169      }
3170
3171    // Now that we have modified U, add it back to the CSE maps.  If it already
3172    // exists there, recursively merge the results together.
3173    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3174      ReplaceAllUsesWith(U, Existing, Deleted);
3175      // U is now dead.
3176      if (Deleted) Deleted->push_back(U);
3177      DeleteNodeNotInCSEMaps(U);
3178    }
3179  }
3180}
3181
3182/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3183/// This can cause recursive merging of nodes in the DAG.
3184///
3185/// This version assumes From/To have matching types and numbers of result
3186/// values.
3187///
3188void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3189                                      std::vector<SDNode*> *Deleted) {
3190  assert(From != To && "Cannot replace uses of with self");
3191  assert(From->getNumValues() == To->getNumValues() &&
3192         "Cannot use this version of ReplaceAllUsesWith!");
3193  if (From->getNumValues() == 1) {  // If possible, use the faster version.
3194    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3195    return;
3196  }
3197
3198  while (!From->use_empty()) {
3199    // Process users until they are all gone.
3200    SDNode *U = *From->use_begin();
3201
3202    // This node is about to morph, remove its old self from the CSE maps.
3203    RemoveNodeFromCSEMaps(U);
3204
3205    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3206         I != E; ++I)
3207      if (I->Val == From) {
3208        From->removeUser(U);
3209        I->Val = To;
3210        To->addUser(U);
3211      }
3212
3213    // Now that we have modified U, add it back to the CSE maps.  If it already
3214    // exists there, recursively merge the results together.
3215    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3216      ReplaceAllUsesWith(U, Existing, Deleted);
3217      // U is now dead.
3218      if (Deleted) Deleted->push_back(U);
3219      DeleteNodeNotInCSEMaps(U);
3220    }
3221  }
3222}
3223
3224/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3225/// This can cause recursive merging of nodes in the DAG.
3226///
3227/// This version can replace From with any result values.  To must match the
3228/// number and types of values returned by From.
3229void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3230                                      const SDOperand *To,
3231                                      std::vector<SDNode*> *Deleted) {
3232  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3233    // Degenerate case handled above.
3234    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3235    return;
3236  }
3237
3238  while (!From->use_empty()) {
3239    // Process users until they are all gone.
3240    SDNode *U = *From->use_begin();
3241
3242    // This node is about to morph, remove its old self from the CSE maps.
3243    RemoveNodeFromCSEMaps(U);
3244
3245    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3246         I != E; ++I)
3247      if (I->Val == From) {
3248        const SDOperand &ToOp = To[I->ResNo];
3249        From->removeUser(U);
3250        *I = ToOp;
3251        ToOp.Val->addUser(U);
3252      }
3253
3254    // Now that we have modified U, add it back to the CSE maps.  If it already
3255    // exists there, recursively merge the results together.
3256    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3257      ReplaceAllUsesWith(U, Existing, Deleted);
3258      // U is now dead.
3259      if (Deleted) Deleted->push_back(U);
3260      DeleteNodeNotInCSEMaps(U);
3261    }
3262  }
3263}
3264
3265/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3266/// uses of other values produced by From.Val alone.  The Deleted vector is
3267/// handled the same was as for ReplaceAllUsesWith.
3268void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3269                                             std::vector<SDNode*> *Deleted) {
3270  assert(From != To && "Cannot replace a value with itself");
3271  // Handle the simple, trivial, case efficiently.
3272  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3273    ReplaceAllUsesWith(From, To, Deleted);
3274    return;
3275  }
3276
3277  // Get all of the users of From.Val.  We want these in a nice,
3278  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3279  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3280
3281  std::vector<SDNode*> LocalDeletionVector;
3282
3283  // Pick a deletion vector to use.  If the user specified one, use theirs,
3284  // otherwise use a local one.
3285  std::vector<SDNode*> *DeleteVector = Deleted ? Deleted : &LocalDeletionVector;
3286  while (!Users.empty()) {
3287    // We know that this user uses some value of From.  If it is the right
3288    // value, update it.
3289    SDNode *User = Users.back();
3290    Users.pop_back();
3291
3292    // Scan for an operand that matches From.
3293    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3294    for (; Op != E; ++Op)
3295      if (*Op == From) break;
3296
3297    // If there are no matches, the user must use some other result of From.
3298    if (Op == E) continue;
3299
3300    // Okay, we know this user needs to be updated.  Remove its old self
3301    // from the CSE maps.
3302    RemoveNodeFromCSEMaps(User);
3303
3304    // Update all operands that match "From".
3305    for (; Op != E; ++Op) {
3306      if (*Op == From) {
3307        From.Val->removeUser(User);
3308        *Op = To;
3309        To.Val->addUser(User);
3310      }
3311    }
3312
3313    // Now that we have modified User, add it back to the CSE maps.  If it
3314    // already exists there, recursively merge the results together.
3315    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3316    if (!Existing) continue;  // Continue on to next user.
3317
3318    // If there was already an existing matching node, use ReplaceAllUsesWith
3319    // to replace the dead one with the existing one.  However, this can cause
3320    // recursive merging of other unrelated nodes down the line.  The merging
3321    // can cause deletion of nodes that used the old value.  In this case,
3322    // we have to be certain to remove them from the Users set.
3323    unsigned NumDeleted = DeleteVector->size();
3324    ReplaceAllUsesWith(User, Existing, DeleteVector);
3325
3326    // User is now dead.
3327    DeleteVector->push_back(User);
3328    DeleteNodeNotInCSEMaps(User);
3329
3330    // We have to be careful here, because ReplaceAllUsesWith could have
3331    // deleted a user of From, which means there may be dangling pointers
3332    // in the "Users" setvector.  Scan over the deleted node pointers and
3333    // remove them from the setvector.
3334    for (unsigned i = NumDeleted, e = DeleteVector->size(); i != e; ++i)
3335      Users.remove((*DeleteVector)[i]);
3336
3337    // If the user doesn't need the set of deleted elements, don't retain them
3338    // to the next loop iteration.
3339    if (Deleted == 0)
3340      LocalDeletionVector.clear();
3341  }
3342}
3343
3344
3345/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3346/// their allnodes order. It returns the maximum id.
3347unsigned SelectionDAG::AssignNodeIds() {
3348  unsigned Id = 0;
3349  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3350    SDNode *N = I;
3351    N->setNodeId(Id++);
3352  }
3353  return Id;
3354}
3355
3356/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3357/// based on their topological order. It returns the maximum id and a vector
3358/// of the SDNodes* in assigned order by reference.
3359unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3360  unsigned DAGSize = AllNodes.size();
3361  std::vector<unsigned> InDegree(DAGSize);
3362  std::vector<SDNode*> Sources;
3363
3364  // Use a two pass approach to avoid using a std::map which is slow.
3365  unsigned Id = 0;
3366  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3367    SDNode *N = I;
3368    N->setNodeId(Id++);
3369    unsigned Degree = N->use_size();
3370    InDegree[N->getNodeId()] = Degree;
3371    if (Degree == 0)
3372      Sources.push_back(N);
3373  }
3374
3375  TopOrder.clear();
3376  while (!Sources.empty()) {
3377    SDNode *N = Sources.back();
3378    Sources.pop_back();
3379    TopOrder.push_back(N);
3380    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3381      SDNode *P = I->Val;
3382      unsigned Degree = --InDegree[P->getNodeId()];
3383      if (Degree == 0)
3384        Sources.push_back(P);
3385    }
3386  }
3387
3388  // Second pass, assign the actual topological order as node ids.
3389  Id = 0;
3390  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3391       TI != TE; ++TI)
3392    (*TI)->setNodeId(Id++);
3393
3394  return Id;
3395}
3396
3397
3398
3399//===----------------------------------------------------------------------===//
3400//                              SDNode Class
3401//===----------------------------------------------------------------------===//
3402
3403// Out-of-line virtual method to give class a home.
3404void SDNode::ANCHOR() {}
3405void UnarySDNode::ANCHOR() {}
3406void BinarySDNode::ANCHOR() {}
3407void TernarySDNode::ANCHOR() {}
3408void HandleSDNode::ANCHOR() {}
3409void StringSDNode::ANCHOR() {}
3410void ConstantSDNode::ANCHOR() {}
3411void ConstantFPSDNode::ANCHOR() {}
3412void GlobalAddressSDNode::ANCHOR() {}
3413void FrameIndexSDNode::ANCHOR() {}
3414void JumpTableSDNode::ANCHOR() {}
3415void ConstantPoolSDNode::ANCHOR() {}
3416void BasicBlockSDNode::ANCHOR() {}
3417void SrcValueSDNode::ANCHOR() {}
3418void RegisterSDNode::ANCHOR() {}
3419void ExternalSymbolSDNode::ANCHOR() {}
3420void CondCodeSDNode::ANCHOR() {}
3421void VTSDNode::ANCHOR() {}
3422void LoadSDNode::ANCHOR() {}
3423void StoreSDNode::ANCHOR() {}
3424
3425HandleSDNode::~HandleSDNode() {
3426  SDVTList VTs = { 0, 0 };
3427  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3428}
3429
3430GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3431                                         MVT::ValueType VT, int o)
3432  : SDNode(isa<GlobalVariable>(GA) &&
3433           cast<GlobalVariable>(GA)->isThreadLocal() ?
3434           // Thread Local
3435           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3436           // Non Thread Local
3437           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3438           getSDVTList(VT)), Offset(o) {
3439  TheGlobal = const_cast<GlobalValue*>(GA);
3440}
3441
3442/// Profile - Gather unique data for the node.
3443///
3444void SDNode::Profile(FoldingSetNodeID &ID) {
3445  AddNodeIDNode(ID, this);
3446}
3447
3448/// getValueTypeList - Return a pointer to the specified value type.
3449///
3450MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3451  if (MVT::isExtendedVT(VT)) {
3452    static std::set<MVT::ValueType> EVTs;
3453    return (MVT::ValueType *)&(*EVTs.insert(VT).first);
3454  } else {
3455    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3456    VTs[VT] = VT;
3457    return &VTs[VT];
3458  }
3459}
3460
3461/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3462/// indicated value.  This method ignores uses of other values defined by this
3463/// operation.
3464bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3465  assert(Value < getNumValues() && "Bad value!");
3466
3467  // If there is only one value, this is easy.
3468  if (getNumValues() == 1)
3469    return use_size() == NUses;
3470  if (use_size() < NUses) return false;
3471
3472  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3473
3474  SmallPtrSet<SDNode*, 32> UsersHandled;
3475
3476  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3477    SDNode *User = *UI;
3478    if (User->getNumOperands() == 1 ||
3479        UsersHandled.insert(User))     // First time we've seen this?
3480      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3481        if (User->getOperand(i) == TheValue) {
3482          if (NUses == 0)
3483            return false;   // too many uses
3484          --NUses;
3485        }
3486  }
3487
3488  // Found exactly the right number of uses?
3489  return NUses == 0;
3490}
3491
3492
3493/// hasAnyUseOfValue - Return true if there are any use of the indicated
3494/// value. This method ignores uses of other values defined by this operation.
3495bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3496  assert(Value < getNumValues() && "Bad value!");
3497
3498  if (use_size() == 0) return false;
3499
3500  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3501
3502  SmallPtrSet<SDNode*, 32> UsersHandled;
3503
3504  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3505    SDNode *User = *UI;
3506    if (User->getNumOperands() == 1 ||
3507        UsersHandled.insert(User))     // First time we've seen this?
3508      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3509        if (User->getOperand(i) == TheValue) {
3510          return true;
3511        }
3512  }
3513
3514  return false;
3515}
3516
3517
3518/// isOnlyUse - Return true if this node is the only use of N.
3519///
3520bool SDNode::isOnlyUse(SDNode *N) const {
3521  bool Seen = false;
3522  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3523    SDNode *User = *I;
3524    if (User == this)
3525      Seen = true;
3526    else
3527      return false;
3528  }
3529
3530  return Seen;
3531}
3532
3533/// isOperand - Return true if this node is an operand of N.
3534///
3535bool SDOperand::isOperand(SDNode *N) const {
3536  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3537    if (*this == N->getOperand(i))
3538      return true;
3539  return false;
3540}
3541
3542bool SDNode::isOperand(SDNode *N) const {
3543  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3544    if (this == N->OperandList[i].Val)
3545      return true;
3546  return false;
3547}
3548
3549/// reachesChainWithoutSideEffects - Return true if this operand (which must
3550/// be a chain) reaches the specified operand without crossing any
3551/// side-effecting instructions.  In practice, this looks through token
3552/// factors and non-volatile loads.  In order to remain efficient, this only
3553/// looks a couple of nodes in, it does not do an exhaustive search.
3554bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3555                                               unsigned Depth) const {
3556  if (*this == Dest) return true;
3557
3558  // Don't search too deeply, we just want to be able to see through
3559  // TokenFactor's etc.
3560  if (Depth == 0) return false;
3561
3562  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3563  // of the operands of the TF reach dest, then we can do the xform.
3564  if (getOpcode() == ISD::TokenFactor) {
3565    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3566      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3567        return true;
3568    return false;
3569  }
3570
3571  // Loads don't have side effects, look through them.
3572  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3573    if (!Ld->isVolatile())
3574      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3575  }
3576  return false;
3577}
3578
3579
3580static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3581                            SmallPtrSet<SDNode *, 32> &Visited) {
3582  if (found || !Visited.insert(N))
3583    return;
3584
3585  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3586    SDNode *Op = N->getOperand(i).Val;
3587    if (Op == P) {
3588      found = true;
3589      return;
3590    }
3591    findPredecessor(Op, P, found, Visited);
3592  }
3593}
3594
3595/// isPredecessor - Return true if this node is a predecessor of N. This node
3596/// is either an operand of N or it can be reached by recursively traversing
3597/// up the operands.
3598/// NOTE: this is an expensive method. Use it carefully.
3599bool SDNode::isPredecessor(SDNode *N) const {
3600  SmallPtrSet<SDNode *, 32> Visited;
3601  bool found = false;
3602  findPredecessor(N, this, found, Visited);
3603  return found;
3604}
3605
3606uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3607  assert(Num < NumOperands && "Invalid child # of SDNode!");
3608  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3609}
3610
3611std::string SDNode::getOperationName(const SelectionDAG *G) const {
3612  switch (getOpcode()) {
3613  default:
3614    if (getOpcode() < ISD::BUILTIN_OP_END)
3615      return "<<Unknown DAG Node>>";
3616    else {
3617      if (G) {
3618        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3619          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3620            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3621
3622        TargetLowering &TLI = G->getTargetLoweringInfo();
3623        const char *Name =
3624          TLI.getTargetNodeName(getOpcode());
3625        if (Name) return Name;
3626      }
3627
3628      return "<<Unknown Target Node>>";
3629    }
3630
3631  case ISD::PCMARKER:      return "PCMarker";
3632  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3633  case ISD::SRCVALUE:      return "SrcValue";
3634  case ISD::EntryToken:    return "EntryToken";
3635  case ISD::TokenFactor:   return "TokenFactor";
3636  case ISD::AssertSext:    return "AssertSext";
3637  case ISD::AssertZext:    return "AssertZext";
3638
3639  case ISD::STRING:        return "String";
3640  case ISD::BasicBlock:    return "BasicBlock";
3641  case ISD::VALUETYPE:     return "ValueType";
3642  case ISD::Register:      return "Register";
3643
3644  case ISD::Constant:      return "Constant";
3645  case ISD::ConstantFP:    return "ConstantFP";
3646  case ISD::GlobalAddress: return "GlobalAddress";
3647  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3648  case ISD::FrameIndex:    return "FrameIndex";
3649  case ISD::JumpTable:     return "JumpTable";
3650  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3651  case ISD::RETURNADDR: return "RETURNADDR";
3652  case ISD::FRAMEADDR: return "FRAMEADDR";
3653  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3654  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3655  case ISD::EHSELECTION: return "EHSELECTION";
3656  case ISD::EH_RETURN: return "EH_RETURN";
3657  case ISD::ConstantPool:  return "ConstantPool";
3658  case ISD::ExternalSymbol: return "ExternalSymbol";
3659  case ISD::INTRINSIC_WO_CHAIN: {
3660    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3661    return Intrinsic::getName((Intrinsic::ID)IID);
3662  }
3663  case ISD::INTRINSIC_VOID:
3664  case ISD::INTRINSIC_W_CHAIN: {
3665    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3666    return Intrinsic::getName((Intrinsic::ID)IID);
3667  }
3668
3669  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3670  case ISD::TargetConstant: return "TargetConstant";
3671  case ISD::TargetConstantFP:return "TargetConstantFP";
3672  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3673  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3674  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3675  case ISD::TargetJumpTable:  return "TargetJumpTable";
3676  case ISD::TargetConstantPool:  return "TargetConstantPool";
3677  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3678
3679  case ISD::CopyToReg:     return "CopyToReg";
3680  case ISD::CopyFromReg:   return "CopyFromReg";
3681  case ISD::UNDEF:         return "undef";
3682  case ISD::MERGE_VALUES:  return "merge_values";
3683  case ISD::INLINEASM:     return "inlineasm";
3684  case ISD::LABEL:         return "label";
3685  case ISD::HANDLENODE:    return "handlenode";
3686  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3687  case ISD::CALL:          return "call";
3688
3689  // Unary operators
3690  case ISD::FABS:   return "fabs";
3691  case ISD::FNEG:   return "fneg";
3692  case ISD::FSQRT:  return "fsqrt";
3693  case ISD::FSIN:   return "fsin";
3694  case ISD::FCOS:   return "fcos";
3695  case ISD::FPOWI:  return "fpowi";
3696  case ISD::FPOW:   return "fpow";
3697
3698  // Binary operators
3699  case ISD::ADD:    return "add";
3700  case ISD::SUB:    return "sub";
3701  case ISD::MUL:    return "mul";
3702  case ISD::MULHU:  return "mulhu";
3703  case ISD::MULHS:  return "mulhs";
3704  case ISD::SDIV:   return "sdiv";
3705  case ISD::UDIV:   return "udiv";
3706  case ISD::SREM:   return "srem";
3707  case ISD::UREM:   return "urem";
3708  case ISD::SMUL_LOHI:  return "smul_lohi";
3709  case ISD::UMUL_LOHI:  return "umul_lohi";
3710  case ISD::SDIVREM:    return "sdivrem";
3711  case ISD::UDIVREM:    return "divrem";
3712  case ISD::AND:    return "and";
3713  case ISD::OR:     return "or";
3714  case ISD::XOR:    return "xor";
3715  case ISD::SHL:    return "shl";
3716  case ISD::SRA:    return "sra";
3717  case ISD::SRL:    return "srl";
3718  case ISD::ROTL:   return "rotl";
3719  case ISD::ROTR:   return "rotr";
3720  case ISD::FADD:   return "fadd";
3721  case ISD::FSUB:   return "fsub";
3722  case ISD::FMUL:   return "fmul";
3723  case ISD::FDIV:   return "fdiv";
3724  case ISD::FREM:   return "frem";
3725  case ISD::FCOPYSIGN: return "fcopysign";
3726  case ISD::FGETSIGN:  return "fgetsign";
3727
3728  case ISD::SETCC:       return "setcc";
3729  case ISD::SELECT:      return "select";
3730  case ISD::SELECT_CC:   return "select_cc";
3731  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3732  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3733  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3734  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3735  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3736  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3737  case ISD::CARRY_FALSE:         return "carry_false";
3738  case ISD::ADDC:        return "addc";
3739  case ISD::ADDE:        return "adde";
3740  case ISD::SUBC:        return "subc";
3741  case ISD::SUBE:        return "sube";
3742  case ISD::SHL_PARTS:   return "shl_parts";
3743  case ISD::SRA_PARTS:   return "sra_parts";
3744  case ISD::SRL_PARTS:   return "srl_parts";
3745
3746  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3747  case ISD::INSERT_SUBREG:      return "insert_subreg";
3748
3749  // Conversion operators.
3750  case ISD::SIGN_EXTEND: return "sign_extend";
3751  case ISD::ZERO_EXTEND: return "zero_extend";
3752  case ISD::ANY_EXTEND:  return "any_extend";
3753  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3754  case ISD::TRUNCATE:    return "truncate";
3755  case ISD::FP_ROUND:    return "fp_round";
3756  case ISD::FLT_ROUNDS:  return "flt_rounds";
3757  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3758  case ISD::FP_EXTEND:   return "fp_extend";
3759
3760  case ISD::SINT_TO_FP:  return "sint_to_fp";
3761  case ISD::UINT_TO_FP:  return "uint_to_fp";
3762  case ISD::FP_TO_SINT:  return "fp_to_sint";
3763  case ISD::FP_TO_UINT:  return "fp_to_uint";
3764  case ISD::BIT_CONVERT: return "bit_convert";
3765
3766    // Control flow instructions
3767  case ISD::BR:      return "br";
3768  case ISD::BRIND:   return "brind";
3769  case ISD::BR_JT:   return "br_jt";
3770  case ISD::BRCOND:  return "brcond";
3771  case ISD::BR_CC:   return "br_cc";
3772  case ISD::RET:     return "ret";
3773  case ISD::CALLSEQ_START:  return "callseq_start";
3774  case ISD::CALLSEQ_END:    return "callseq_end";
3775
3776    // Other operators
3777  case ISD::LOAD:               return "load";
3778  case ISD::STORE:              return "store";
3779  case ISD::VAARG:              return "vaarg";
3780  case ISD::VACOPY:             return "vacopy";
3781  case ISD::VAEND:              return "vaend";
3782  case ISD::VASTART:            return "vastart";
3783  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3784  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3785  case ISD::BUILD_PAIR:         return "build_pair";
3786  case ISD::STACKSAVE:          return "stacksave";
3787  case ISD::STACKRESTORE:       return "stackrestore";
3788  case ISD::TRAP:               return "trap";
3789
3790  // Block memory operations.
3791  case ISD::MEMSET:  return "memset";
3792  case ISD::MEMCPY:  return "memcpy";
3793  case ISD::MEMMOVE: return "memmove";
3794
3795  // Bit manipulation
3796  case ISD::BSWAP:   return "bswap";
3797  case ISD::CTPOP:   return "ctpop";
3798  case ISD::CTTZ:    return "cttz";
3799  case ISD::CTLZ:    return "ctlz";
3800
3801  // Debug info
3802  case ISD::LOCATION: return "location";
3803  case ISD::DEBUG_LOC: return "debug_loc";
3804
3805  // Trampolines
3806  case ISD::TRAMPOLINE: return "trampoline";
3807
3808  case ISD::CONDCODE:
3809    switch (cast<CondCodeSDNode>(this)->get()) {
3810    default: assert(0 && "Unknown setcc condition!");
3811    case ISD::SETOEQ:  return "setoeq";
3812    case ISD::SETOGT:  return "setogt";
3813    case ISD::SETOGE:  return "setoge";
3814    case ISD::SETOLT:  return "setolt";
3815    case ISD::SETOLE:  return "setole";
3816    case ISD::SETONE:  return "setone";
3817
3818    case ISD::SETO:    return "seto";
3819    case ISD::SETUO:   return "setuo";
3820    case ISD::SETUEQ:  return "setue";
3821    case ISD::SETUGT:  return "setugt";
3822    case ISD::SETUGE:  return "setuge";
3823    case ISD::SETULT:  return "setult";
3824    case ISD::SETULE:  return "setule";
3825    case ISD::SETUNE:  return "setune";
3826
3827    case ISD::SETEQ:   return "seteq";
3828    case ISD::SETGT:   return "setgt";
3829    case ISD::SETGE:   return "setge";
3830    case ISD::SETLT:   return "setlt";
3831    case ISD::SETLE:   return "setle";
3832    case ISD::SETNE:   return "setne";
3833    }
3834  }
3835}
3836
3837const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3838  switch (AM) {
3839  default:
3840    return "";
3841  case ISD::PRE_INC:
3842    return "<pre-inc>";
3843  case ISD::PRE_DEC:
3844    return "<pre-dec>";
3845  case ISD::POST_INC:
3846    return "<post-inc>";
3847  case ISD::POST_DEC:
3848    return "<post-dec>";
3849  }
3850}
3851
3852void SDNode::dump() const { dump(0); }
3853void SDNode::dump(const SelectionDAG *G) const {
3854  cerr << (void*)this << ": ";
3855
3856  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3857    if (i) cerr << ",";
3858    if (getValueType(i) == MVT::Other)
3859      cerr << "ch";
3860    else
3861      cerr << MVT::getValueTypeString(getValueType(i));
3862  }
3863  cerr << " = " << getOperationName(G);
3864
3865  cerr << " ";
3866  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3867    if (i) cerr << ", ";
3868    cerr << (void*)getOperand(i).Val;
3869    if (unsigned RN = getOperand(i).ResNo)
3870      cerr << ":" << RN;
3871  }
3872
3873  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
3874    SDNode *Mask = getOperand(2).Val;
3875    cerr << "<";
3876    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
3877      if (i) cerr << ",";
3878      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
3879        cerr << "u";
3880      else
3881        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
3882    }
3883    cerr << ">";
3884  }
3885
3886  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3887    cerr << "<" << CSDN->getValue() << ">";
3888  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3889    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
3890      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
3891    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
3892      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
3893    else {
3894      cerr << "<APFloat(";
3895      CSDN->getValueAPF().convertToAPInt().dump();
3896      cerr << ")>";
3897    }
3898  } else if (const GlobalAddressSDNode *GADN =
3899             dyn_cast<GlobalAddressSDNode>(this)) {
3900    int offset = GADN->getOffset();
3901    cerr << "<";
3902    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3903    if (offset > 0)
3904      cerr << " + " << offset;
3905    else
3906      cerr << " " << offset;
3907  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3908    cerr << "<" << FIDN->getIndex() << ">";
3909  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3910    cerr << "<" << JTDN->getIndex() << ">";
3911  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3912    int offset = CP->getOffset();
3913    if (CP->isMachineConstantPoolEntry())
3914      cerr << "<" << *CP->getMachineCPVal() << ">";
3915    else
3916      cerr << "<" << *CP->getConstVal() << ">";
3917    if (offset > 0)
3918      cerr << " + " << offset;
3919    else
3920      cerr << " " << offset;
3921  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3922    cerr << "<";
3923    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3924    if (LBB)
3925      cerr << LBB->getName() << " ";
3926    cerr << (const void*)BBDN->getBasicBlock() << ">";
3927  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3928    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3929      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3930    } else {
3931      cerr << " #" << R->getReg();
3932    }
3933  } else if (const ExternalSymbolSDNode *ES =
3934             dyn_cast<ExternalSymbolSDNode>(this)) {
3935    cerr << "'" << ES->getSymbol() << "'";
3936  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3937    if (M->getValue())
3938      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3939    else
3940      cerr << "<null:" << M->getOffset() << ">";
3941  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3942    cerr << ":" << MVT::getValueTypeString(N->getVT());
3943  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3944    const Value *SrcValue = LD->getSrcValue();
3945    int SrcOffset = LD->getSrcValueOffset();
3946    cerr << " <";
3947    if (SrcValue)
3948      cerr << SrcValue;
3949    else
3950      cerr << "null";
3951    cerr << ":" << SrcOffset << ">";
3952
3953    bool doExt = true;
3954    switch (LD->getExtensionType()) {
3955    default: doExt = false; break;
3956    case ISD::EXTLOAD:
3957      cerr << " <anyext ";
3958      break;
3959    case ISD::SEXTLOAD:
3960      cerr << " <sext ";
3961      break;
3962    case ISD::ZEXTLOAD:
3963      cerr << " <zext ";
3964      break;
3965    }
3966    if (doExt)
3967      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3968
3969    const char *AM = getIndexedModeName(LD->getAddressingMode());
3970    if (*AM)
3971      cerr << " " << AM;
3972    if (LD->isVolatile())
3973      cerr << " <volatile>";
3974    cerr << " alignment=" << LD->getAlignment();
3975  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3976    const Value *SrcValue = ST->getSrcValue();
3977    int SrcOffset = ST->getSrcValueOffset();
3978    cerr << " <";
3979    if (SrcValue)
3980      cerr << SrcValue;
3981    else
3982      cerr << "null";
3983    cerr << ":" << SrcOffset << ">";
3984
3985    if (ST->isTruncatingStore())
3986      cerr << " <trunc "
3987           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3988
3989    const char *AM = getIndexedModeName(ST->getAddressingMode());
3990    if (*AM)
3991      cerr << " " << AM;
3992    if (ST->isVolatile())
3993      cerr << " <volatile>";
3994    cerr << " alignment=" << ST->getAlignment();
3995  }
3996}
3997
3998static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3999  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4000    if (N->getOperand(i).Val->hasOneUse())
4001      DumpNodes(N->getOperand(i).Val, indent+2, G);
4002    else
4003      cerr << "\n" << std::string(indent+2, ' ')
4004           << (void*)N->getOperand(i).Val << ": <multiple use>";
4005
4006
4007  cerr << "\n" << std::string(indent, ' ');
4008  N->dump(G);
4009}
4010
4011void SelectionDAG::dump() const {
4012  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4013  std::vector<const SDNode*> Nodes;
4014  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4015       I != E; ++I)
4016    Nodes.push_back(I);
4017
4018  std::sort(Nodes.begin(), Nodes.end());
4019
4020  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4021    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4022      DumpNodes(Nodes[i], 2, this);
4023  }
4024
4025  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4026
4027  cerr << "\n\n";
4028}
4029
4030const Type *ConstantPoolSDNode::getType() const {
4031  if (isMachineConstantPoolEntry())
4032    return Val.MachineCPVal->getType();
4033  return Val.ConstVal->getType();
4034}
4035