SelectionDAG.cpp revision 8ec0c1c07b51d3332ac0d0fc4d643ba982803a18
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetSelectionDAGInfo.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetIntrinsicInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/ManagedStatic.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Support/Mutex.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallPtrSet.h"
49#include "llvm/ADT/SmallSet.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/StringExtras.h"
52#include <algorithm>
53#include <cmath>
54using namespace llvm;
55
56/// makeVTList - Return an instance of the SDVTList struct initialized with the
57/// specified members.
58static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59  SDVTList Res = {VTs, NumVTs};
60  return Res;
61}
62
63static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
64  switch (VT.getSimpleVT().SimpleTy) {
65  default: llvm_unreachable("Unknown FP format");
66  case MVT::f32:     return &APFloat::IEEEsingle;
67  case MVT::f64:     return &APFloat::IEEEdouble;
68  case MVT::f80:     return &APFloat::x87DoubleExtended;
69  case MVT::f128:    return &APFloat::IEEEquad;
70  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
71  }
72}
73
74SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
75
76//===----------------------------------------------------------------------===//
77//                              ConstantFPSDNode Class
78//===----------------------------------------------------------------------===//
79
80/// isExactlyValue - We don't rely on operator== working on double values, as
81/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
82/// As such, this method can be used to do an exact bit-for-bit comparison of
83/// two floating point values.
84bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
85  return getValueAPF().bitwiseIsEqual(V);
86}
87
88bool ConstantFPSDNode::isValueValidForType(EVT VT,
89                                           const APFloat& Val) {
90  assert(VT.isFloatingPoint() && "Can only convert between FP types");
91
92  // PPC long double cannot be converted to any other type.
93  if (VT == MVT::ppcf128 ||
94      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
95    return false;
96
97  // convert modifies in place, so make a copy.
98  APFloat Val2 = APFloat(Val);
99  bool losesInfo;
100  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
101                      &losesInfo);
102  return !losesInfo;
103}
104
105//===----------------------------------------------------------------------===//
106//                              ISD Namespace
107//===----------------------------------------------------------------------===//
108
109/// isBuildVectorAllOnes - Return true if the specified node is a
110/// BUILD_VECTOR where all of the elements are ~0 or undef.
111bool ISD::isBuildVectorAllOnes(const SDNode *N) {
112  // Look through a bit convert.
113  if (N->getOpcode() == ISD::BITCAST)
114    N = N->getOperand(0).getNode();
115
116  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
117
118  unsigned i = 0, e = N->getNumOperands();
119
120  // Skip over all of the undef values.
121  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
122    ++i;
123
124  // Do not accept an all-undef vector.
125  if (i == e) return false;
126
127  // Do not accept build_vectors that aren't all constants or which have non-~0
128  // elements.
129  SDValue NotZero = N->getOperand(i);
130  if (isa<ConstantSDNode>(NotZero)) {
131    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
132      return false;
133  } else if (isa<ConstantFPSDNode>(NotZero)) {
134    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
135                bitcastToAPInt().isAllOnesValue())
136      return false;
137  } else
138    return false;
139
140  // Okay, we have at least one ~0 value, check to see if the rest match or are
141  // undefs.
142  for (++i; i != e; ++i)
143    if (N->getOperand(i) != NotZero &&
144        N->getOperand(i).getOpcode() != ISD::UNDEF)
145      return false;
146  return true;
147}
148
149
150/// isBuildVectorAllZeros - Return true if the specified node is a
151/// BUILD_VECTOR where all of the elements are 0 or undef.
152bool ISD::isBuildVectorAllZeros(const SDNode *N) {
153  // Look through a bit convert.
154  if (N->getOpcode() == ISD::BITCAST)
155    N = N->getOperand(0).getNode();
156
157  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158
159  unsigned i = 0, e = N->getNumOperands();
160
161  // Skip over all of the undef values.
162  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
163    ++i;
164
165  // Do not accept an all-undef vector.
166  if (i == e) return false;
167
168  // Do not accept build_vectors that aren't all constants or which have non-0
169  // elements.
170  SDValue Zero = N->getOperand(i);
171  if (isa<ConstantSDNode>(Zero)) {
172    if (!cast<ConstantSDNode>(Zero)->isNullValue())
173      return false;
174  } else if (isa<ConstantFPSDNode>(Zero)) {
175    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
176      return false;
177  } else
178    return false;
179
180  // Okay, we have at least one 0 value, check to see if the rest match or are
181  // undefs.
182  for (++i; i != e; ++i)
183    if (N->getOperand(i) != Zero &&
184        N->getOperand(i).getOpcode() != ISD::UNDEF)
185      return false;
186  return true;
187}
188
189/// isScalarToVector - Return true if the specified node is a
190/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191/// element is not an undef.
192bool ISD::isScalarToVector(const SDNode *N) {
193  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
194    return true;
195
196  if (N->getOpcode() != ISD::BUILD_VECTOR)
197    return false;
198  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
199    return false;
200  unsigned NumElems = N->getNumOperands();
201  if (NumElems == 1)
202    return false;
203  for (unsigned i = 1; i < NumElems; ++i) {
204    SDValue V = N->getOperand(i);
205    if (V.getOpcode() != ISD::UNDEF)
206      return false;
207  }
208  return true;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: llvm_unreachable("Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX: {
436    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437    ID.AddInteger(AT->getMemoryVT().getRawBits());
438    ID.AddInteger(AT->getRawSubclassData());
439    break;
440  }
441  case ISD::VECTOR_SHUFFLE: {
442    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444         i != e; ++i)
445      ID.AddInteger(SVN->getMaskElt(i));
446    break;
447  }
448  case ISD::TargetBlockAddress:
449  case ISD::BlockAddress: {
450    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452    break;
453  }
454  } // end switch (N->getOpcode())
455}
456
457/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458/// data.
459static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460  AddNodeIDOpcode(ID, N->getOpcode());
461  // Add the return value info.
462  AddNodeIDValueTypes(ID, N->getVTList());
463  // Add the operand info.
464  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465
466  // Handle SDNode leafs with special info.
467  AddNodeIDCustom(ID, N);
468}
469
470/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471/// the CSE map that carries volatility, temporalness, indexing mode, and
472/// extension/truncation information.
473///
474static inline unsigned
475encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
476                     bool isNonTemporal) {
477  assert((ConvType & 3) == ConvType &&
478         "ConvType may not require more than 2 bits!");
479  assert((AM & 7) == AM &&
480         "AM may not require more than 3 bits!");
481  return ConvType |
482         (AM << 2) |
483         (isVolatile << 5) |
484         (isNonTemporal << 6);
485}
486
487//===----------------------------------------------------------------------===//
488//                              SelectionDAG Class
489//===----------------------------------------------------------------------===//
490
491/// doNotCSE - Return true if CSE should not be performed for this node.
492static bool doNotCSE(SDNode *N) {
493  if (N->getValueType(0) == MVT::Glue)
494    return true; // Never CSE anything that produces a flag.
495
496  switch (N->getOpcode()) {
497  default: break;
498  case ISD::HANDLENODE:
499  case ISD::EH_LABEL:
500    return true;   // Never CSE these nodes.
501  }
502
503  // Check that remaining values produced are not flags.
504  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
505    if (N->getValueType(i) == MVT::Glue)
506      return true; // Never CSE anything that produces a flag.
507
508  return false;
509}
510
511/// RemoveDeadNodes - This method deletes all unreachable nodes in the
512/// SelectionDAG.
513void SelectionDAG::RemoveDeadNodes() {
514  // Create a dummy node (which is not added to allnodes), that adds a reference
515  // to the root node, preventing it from being deleted.
516  HandleSDNode Dummy(getRoot());
517
518  SmallVector<SDNode*, 128> DeadNodes;
519
520  // Add all obviously-dead nodes to the DeadNodes worklist.
521  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
522    if (I->use_empty())
523      DeadNodes.push_back(I);
524
525  RemoveDeadNodes(DeadNodes);
526
527  // If the root changed (e.g. it was a dead load, update the root).
528  setRoot(Dummy.getValue());
529}
530
531/// RemoveDeadNodes - This method deletes the unreachable nodes in the
532/// given list, and any nodes that become unreachable as a result.
533void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
534                                   DAGUpdateListener *UpdateListener) {
535
536  // Process the worklist, deleting the nodes and adding their uses to the
537  // worklist.
538  while (!DeadNodes.empty()) {
539    SDNode *N = DeadNodes.pop_back_val();
540
541    if (UpdateListener)
542      UpdateListener->NodeDeleted(N, 0);
543
544    // Take the node out of the appropriate CSE map.
545    RemoveNodeFromCSEMaps(N);
546
547    // Next, brutally remove the operand list.  This is safe to do, as there are
548    // no cycles in the graph.
549    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
550      SDUse &Use = *I++;
551      SDNode *Operand = Use.getNode();
552      Use.set(SDValue());
553
554      // Now that we removed this operand, see if there are no uses of it left.
555      if (Operand->use_empty())
556        DeadNodes.push_back(Operand);
557    }
558
559    DeallocateNode(N);
560  }
561}
562
563void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
564  SmallVector<SDNode*, 16> DeadNodes(1, N);
565  RemoveDeadNodes(DeadNodes, UpdateListener);
566}
567
568void SelectionDAG::DeleteNode(SDNode *N) {
569  // First take this out of the appropriate CSE map.
570  RemoveNodeFromCSEMaps(N);
571
572  // Finally, remove uses due to operands of this node, remove from the
573  // AllNodes list, and delete the node.
574  DeleteNodeNotInCSEMaps(N);
575}
576
577void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
578  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
579  assert(N->use_empty() && "Cannot delete a node that is not dead!");
580
581  // Drop all of the operands and decrement used node's use counts.
582  N->DropOperands();
583
584  DeallocateNode(N);
585}
586
587void SelectionDAG::DeallocateNode(SDNode *N) {
588  if (N->OperandsNeedDelete)
589    delete[] N->OperandList;
590
591  // Set the opcode to DELETED_NODE to help catch bugs when node
592  // memory is reallocated.
593  N->NodeType = ISD::DELETED_NODE;
594
595  NodeAllocator.Deallocate(AllNodes.remove(N));
596
597  // Remove the ordering of this node.
598  Ordering->remove(N);
599
600  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
601  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
602  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
603    DbgVals[i]->setIsInvalidated();
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::HANDLENODE: return false;  // noop.
614  case ISD::CONDCODE:
615    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
616           "Cond code doesn't exist!");
617    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
618    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
619    break;
620  case ISD::ExternalSymbol:
621    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
622    break;
623  case ISD::TargetExternalSymbol: {
624    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
625    Erased = TargetExternalSymbols.erase(
626               std::pair<std::string,unsigned char>(ESN->getSymbol(),
627                                                    ESN->getTargetFlags()));
628    break;
629  }
630  case ISD::VALUETYPE: {
631    EVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
636      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
643    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
644    Erased = CSEMap.RemoveNode(N);
645    break;
646  }
647#ifndef NDEBUG
648  // Verify that the node was actually in one of the CSE maps, unless it has a
649  // flag result (which cannot be CSE'd) or is one of the special cases that are
650  // not subject to CSE.
651  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
652      !N->isMachineOpcode() && !doNotCSE(N)) {
653    N->dump(this);
654    dbgs() << "\n";
655    llvm_unreachable("Node is not in map!");
656  }
657#endif
658  return Erased;
659}
660
661/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662/// maps and modified in place. Add it back to the CSE maps, unless an identical
663/// node already exists, in which case transfer all its users to the existing
664/// node. This transfer can potentially trigger recursive merging.
665///
666void
667SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668                                       DAGUpdateListener *UpdateListener) {
669  // For node types that aren't CSE'd, just act as if no identical node
670  // already exists.
671  if (!doNotCSE(N)) {
672    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673    if (Existing != N) {
674      // If there was already an existing matching node, use ReplaceAllUsesWith
675      // to replace the dead one with the existing one.  This can cause
676      // recursive merging of other unrelated nodes down the line.
677      ReplaceAllUsesWith(N, Existing, UpdateListener);
678
679      // N is now dead.  Inform the listener if it exists and delete it.
680      if (UpdateListener)
681        UpdateListener->NodeDeleted(N, Existing);
682      DeleteNodeNotInCSEMaps(N);
683      return;
684    }
685  }
686
687  // If the node doesn't already exist, we updated it.  Inform a listener if
688  // it exists.
689  if (UpdateListener)
690    UpdateListener->NodeUpdated(N);
691}
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698                                           void *&InsertPos) {
699  if (doNotCSE(N))
700    return 0;
701
702  SDValue Ops[] = { Op };
703  FoldingSetNodeID ID;
704  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705  AddNodeIDCustom(ID, N);
706  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707  return Node;
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725  return Node;
726}
727
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                           const SDValue *Ops,unsigned NumOps,
735                                           void *&InsertPos) {
736  if (doNotCSE(N))
737    return 0;
738
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741  AddNodeIDCustom(ID, N);
742  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743  return Node;
744}
745
746#ifndef NDEBUG
747/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
748static void VerifyNodeCommon(SDNode *N) {
749  switch (N->getOpcode()) {
750  default:
751    break;
752  case ISD::BUILD_PAIR: {
753    EVT VT = N->getValueType(0);
754    assert(N->getNumValues() == 1 && "Too many results!");
755    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
756           "Wrong return type!");
757    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
758    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
759           "Mismatched operand types!");
760    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
761           "Wrong operand type!");
762    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
763           "Wrong return type size");
764    break;
765  }
766  case ISD::BUILD_VECTOR: {
767    assert(N->getNumValues() == 1 && "Too many results!");
768    assert(N->getValueType(0).isVector() && "Wrong return type!");
769    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
770           "Wrong number of operands!");
771    EVT EltVT = N->getValueType(0).getVectorElementType();
772    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
773      assert((I->getValueType() == EltVT ||
774             (EltVT.isInteger() && I->getValueType().isInteger() &&
775              EltVT.bitsLE(I->getValueType()))) &&
776            "Wrong operand type!");
777    break;
778  }
779  }
780}
781
782/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
783static void VerifySDNode(SDNode *N) {
784  // The SDNode allocators cannot be used to allocate nodes with fields that are
785  // not present in an SDNode!
786  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
787  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
788  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
789  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
790  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
791  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
792  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
793  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
794  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
795  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
796  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
797  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
798  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
799  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
800  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
801  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
802  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
803  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
804  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
805
806  VerifyNodeCommon(N);
807}
808
809/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
810/// invalid.
811static void VerifyMachineNode(SDNode *N) {
812  // The MachineNode allocators cannot be used to allocate nodes with fields
813  // that are not present in a MachineNode!
814  // Currently there are no such nodes.
815
816  VerifyNodeCommon(N);
817}
818#endif // NDEBUG
819
820/// getEVTAlignment - Compute the default alignment value for the
821/// given type.
822///
823unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
824  const Type *Ty = VT == MVT::iPTR ?
825                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
826                   VT.getTypeForEVT(*getContext());
827
828  return TLI.getTargetData()->getABITypeAlignment(Ty);
829}
830
831// EntryNode could meaningfully have debug info if we can find it...
832SelectionDAG::SelectionDAG(const TargetMachine &tm)
833  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
834    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
835    Root(getEntryNode()), Ordering(0) {
836  AllNodes.push_back(&EntryNode);
837  Ordering = new SDNodeOrdering();
838  DbgInfo = new SDDbgInfo();
839}
840
841void SelectionDAG::init(MachineFunction &mf) {
842  MF = &mf;
843  Context = &mf.getFunction()->getContext();
844}
845
846SelectionDAG::~SelectionDAG() {
847  allnodes_clear();
848  delete Ordering;
849  delete DbgInfo;
850}
851
852void SelectionDAG::allnodes_clear() {
853  assert(&*AllNodes.begin() == &EntryNode);
854  AllNodes.remove(AllNodes.begin());
855  while (!AllNodes.empty())
856    DeallocateNode(AllNodes.begin());
857}
858
859void SelectionDAG::clear() {
860  allnodes_clear();
861  OperandAllocator.Reset();
862  CSEMap.clear();
863
864  ExtendedValueTypeNodes.clear();
865  ExternalSymbols.clear();
866  TargetExternalSymbols.clear();
867  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
868            static_cast<CondCodeSDNode*>(0));
869  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
870            static_cast<SDNode*>(0));
871
872  EntryNode.UseList = 0;
873  AllNodes.push_back(&EntryNode);
874  Root = getEntryNode();
875  Ordering->clear();
876  DbgInfo->clear();
877}
878
879SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
880  return VT.bitsGT(Op.getValueType()) ?
881    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
882    getNode(ISD::TRUNCATE, DL, VT, Op);
883}
884
885SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
886  return VT.bitsGT(Op.getValueType()) ?
887    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
888    getNode(ISD::TRUNCATE, DL, VT, Op);
889}
890
891SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
892  assert(!VT.isVector() &&
893         "getZeroExtendInReg should use the vector element type instead of "
894         "the vector type!");
895  if (Op.getValueType() == VT) return Op;
896  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
897  APInt Imm = APInt::getLowBitsSet(BitWidth,
898                                   VT.getSizeInBits());
899  return getNode(ISD::AND, DL, Op.getValueType(), Op,
900                 getConstant(Imm, Op.getValueType()));
901}
902
903/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
904///
905SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
906  EVT EltVT = VT.getScalarType();
907  SDValue NegOne =
908    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
909  return getNode(ISD::XOR, DL, VT, Val, NegOne);
910}
911
912SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
913  EVT EltVT = VT.getScalarType();
914  assert((EltVT.getSizeInBits() >= 64 ||
915         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
916         "getConstant with a uint64_t value that doesn't fit in the type!");
917  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
918}
919
920SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
921  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
922}
923
924SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
925  assert(VT.isInteger() && "Cannot create FP integer constant!");
926
927  EVT EltVT = VT.getScalarType();
928  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
929         "APInt size does not match type size!");
930
931  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
932  FoldingSetNodeID ID;
933  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
934  ID.AddPointer(&Val);
935  void *IP = 0;
936  SDNode *N = NULL;
937  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
938    if (!VT.isVector())
939      return SDValue(N, 0);
940
941  if (!N) {
942    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
943    CSEMap.InsertNode(N, IP);
944    AllNodes.push_back(N);
945  }
946
947  SDValue Result(N, 0);
948  if (VT.isVector()) {
949    SmallVector<SDValue, 8> Ops;
950    Ops.assign(VT.getVectorNumElements(), Result);
951    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
952  }
953  return Result;
954}
955
956SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
957  return getConstant(Val, TLI.getPointerTy(), isTarget);
958}
959
960
961SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
962  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
963}
964
965SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
966  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
967
968  EVT EltVT = VT.getScalarType();
969
970  // Do the map lookup using the actual bit pattern for the floating point
971  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
972  // we don't have issues with SNANs.
973  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
974  FoldingSetNodeID ID;
975  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
976  ID.AddPointer(&V);
977  void *IP = 0;
978  SDNode *N = NULL;
979  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
980    if (!VT.isVector())
981      return SDValue(N, 0);
982
983  if (!N) {
984    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
985    CSEMap.InsertNode(N, IP);
986    AllNodes.push_back(N);
987  }
988
989  SDValue Result(N, 0);
990  if (VT.isVector()) {
991    SmallVector<SDValue, 8> Ops;
992    Ops.assign(VT.getVectorNumElements(), Result);
993    // FIXME DebugLoc info might be appropriate here
994    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
995  }
996  return Result;
997}
998
999SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1000  EVT EltVT = VT.getScalarType();
1001  if (EltVT==MVT::f32)
1002    return getConstantFP(APFloat((float)Val), VT, isTarget);
1003  else if (EltVT==MVT::f64)
1004    return getConstantFP(APFloat(Val), VT, isTarget);
1005  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1006    bool ignored;
1007    APFloat apf = APFloat(Val);
1008    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1009                &ignored);
1010    return getConstantFP(apf, VT, isTarget);
1011  } else {
1012    assert(0 && "Unsupported type in getConstantFP");
1013    return SDValue();
1014  }
1015}
1016
1017SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1018                                       EVT VT, int64_t Offset,
1019                                       bool isTargetGA,
1020                                       unsigned char TargetFlags) {
1021  assert((TargetFlags == 0 || isTargetGA) &&
1022         "Cannot set target flags on target-independent globals");
1023
1024  // Truncate (with sign-extension) the offset value to the pointer size.
1025  EVT PTy = TLI.getPointerTy();
1026  unsigned BitWidth = PTy.getSizeInBits();
1027  if (BitWidth < 64)
1028    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1029
1030  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1031  if (!GVar) {
1032    // If GV is an alias then use the aliasee for determining thread-localness.
1033    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1034      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1035  }
1036
1037  unsigned Opc;
1038  if (GVar && GVar->isThreadLocal())
1039    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1040  else
1041    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1042
1043  FoldingSetNodeID ID;
1044  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1045  ID.AddPointer(GV);
1046  ID.AddInteger(Offset);
1047  ID.AddInteger(TargetFlags);
1048  void *IP = 0;
1049  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1050    return SDValue(E, 0);
1051
1052  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1053                                                      Offset, TargetFlags);
1054  CSEMap.InsertNode(N, IP);
1055  AllNodes.push_back(N);
1056  return SDValue(N, 0);
1057}
1058
1059SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1060  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1061  FoldingSetNodeID ID;
1062  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1063  ID.AddInteger(FI);
1064  void *IP = 0;
1065  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1066    return SDValue(E, 0);
1067
1068  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1069  CSEMap.InsertNode(N, IP);
1070  AllNodes.push_back(N);
1071  return SDValue(N, 0);
1072}
1073
1074SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1075                                   unsigned char TargetFlags) {
1076  assert((TargetFlags == 0 || isTarget) &&
1077         "Cannot set target flags on target-independent jump tables");
1078  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1079  FoldingSetNodeID ID;
1080  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1081  ID.AddInteger(JTI);
1082  ID.AddInteger(TargetFlags);
1083  void *IP = 0;
1084  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1085    return SDValue(E, 0);
1086
1087  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1088                                                  TargetFlags);
1089  CSEMap.InsertNode(N, IP);
1090  AllNodes.push_back(N);
1091  return SDValue(N, 0);
1092}
1093
1094SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1095                                      unsigned Alignment, int Offset,
1096                                      bool isTarget,
1097                                      unsigned char TargetFlags) {
1098  assert((TargetFlags == 0 || isTarget) &&
1099         "Cannot set target flags on target-independent globals");
1100  if (Alignment == 0)
1101    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1102  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1103  FoldingSetNodeID ID;
1104  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1105  ID.AddInteger(Alignment);
1106  ID.AddInteger(Offset);
1107  ID.AddPointer(C);
1108  ID.AddInteger(TargetFlags);
1109  void *IP = 0;
1110  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1111    return SDValue(E, 0);
1112
1113  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1114                                                     Alignment, TargetFlags);
1115  CSEMap.InsertNode(N, IP);
1116  AllNodes.push_back(N);
1117  return SDValue(N, 0);
1118}
1119
1120
1121SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1122                                      unsigned Alignment, int Offset,
1123                                      bool isTarget,
1124                                      unsigned char TargetFlags) {
1125  assert((TargetFlags == 0 || isTarget) &&
1126         "Cannot set target flags on target-independent globals");
1127  if (Alignment == 0)
1128    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1129  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1130  FoldingSetNodeID ID;
1131  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1132  ID.AddInteger(Alignment);
1133  ID.AddInteger(Offset);
1134  C->AddSelectionDAGCSEId(ID);
1135  ID.AddInteger(TargetFlags);
1136  void *IP = 0;
1137  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1138    return SDValue(E, 0);
1139
1140  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1141                                                     Alignment, TargetFlags);
1142  CSEMap.InsertNode(N, IP);
1143  AllNodes.push_back(N);
1144  return SDValue(N, 0);
1145}
1146
1147SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1148  FoldingSetNodeID ID;
1149  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1150  ID.AddPointer(MBB);
1151  void *IP = 0;
1152  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1153    return SDValue(E, 0);
1154
1155  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1156  CSEMap.InsertNode(N, IP);
1157  AllNodes.push_back(N);
1158  return SDValue(N, 0);
1159}
1160
1161SDValue SelectionDAG::getValueType(EVT VT) {
1162  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1163      ValueTypeNodes.size())
1164    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1165
1166  SDNode *&N = VT.isExtended() ?
1167    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1168
1169  if (N) return SDValue(N, 0);
1170  N = new (NodeAllocator) VTSDNode(VT);
1171  AllNodes.push_back(N);
1172  return SDValue(N, 0);
1173}
1174
1175SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1176  SDNode *&N = ExternalSymbols[Sym];
1177  if (N) return SDValue(N, 0);
1178  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1179  AllNodes.push_back(N);
1180  return SDValue(N, 0);
1181}
1182
1183SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1184                                              unsigned char TargetFlags) {
1185  SDNode *&N =
1186    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1187                                                               TargetFlags)];
1188  if (N) return SDValue(N, 0);
1189  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1190  AllNodes.push_back(N);
1191  return SDValue(N, 0);
1192}
1193
1194SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1195  if ((unsigned)Cond >= CondCodeNodes.size())
1196    CondCodeNodes.resize(Cond+1);
1197
1198  if (CondCodeNodes[Cond] == 0) {
1199    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1200    CondCodeNodes[Cond] = N;
1201    AllNodes.push_back(N);
1202  }
1203
1204  return SDValue(CondCodeNodes[Cond], 0);
1205}
1206
1207// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1208// the shuffle mask M that point at N1 to point at N2, and indices that point
1209// N2 to point at N1.
1210static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1211  std::swap(N1, N2);
1212  int NElts = M.size();
1213  for (int i = 0; i != NElts; ++i) {
1214    if (M[i] >= NElts)
1215      M[i] -= NElts;
1216    else if (M[i] >= 0)
1217      M[i] += NElts;
1218  }
1219}
1220
1221SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1222                                       SDValue N2, const int *Mask) {
1223  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1224  assert(VT.isVector() && N1.getValueType().isVector() &&
1225         "Vector Shuffle VTs must be a vectors");
1226  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1227         && "Vector Shuffle VTs must have same element type");
1228
1229  // Canonicalize shuffle undef, undef -> undef
1230  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1231    return getUNDEF(VT);
1232
1233  // Validate that all indices in Mask are within the range of the elements
1234  // input to the shuffle.
1235  unsigned NElts = VT.getVectorNumElements();
1236  SmallVector<int, 8> MaskVec;
1237  for (unsigned i = 0; i != NElts; ++i) {
1238    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1239    MaskVec.push_back(Mask[i]);
1240  }
1241
1242  // Canonicalize shuffle v, v -> v, undef
1243  if (N1 == N2) {
1244    N2 = getUNDEF(VT);
1245    for (unsigned i = 0; i != NElts; ++i)
1246      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1247  }
1248
1249  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1250  if (N1.getOpcode() == ISD::UNDEF)
1251    commuteShuffle(N1, N2, MaskVec);
1252
1253  // Canonicalize all index into lhs, -> shuffle lhs, undef
1254  // Canonicalize all index into rhs, -> shuffle rhs, undef
1255  bool AllLHS = true, AllRHS = true;
1256  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1257  for (unsigned i = 0; i != NElts; ++i) {
1258    if (MaskVec[i] >= (int)NElts) {
1259      if (N2Undef)
1260        MaskVec[i] = -1;
1261      else
1262        AllLHS = false;
1263    } else if (MaskVec[i] >= 0) {
1264      AllRHS = false;
1265    }
1266  }
1267  if (AllLHS && AllRHS)
1268    return getUNDEF(VT);
1269  if (AllLHS && !N2Undef)
1270    N2 = getUNDEF(VT);
1271  if (AllRHS) {
1272    N1 = getUNDEF(VT);
1273    commuteShuffle(N1, N2, MaskVec);
1274  }
1275
1276  // If Identity shuffle, or all shuffle in to undef, return that node.
1277  bool AllUndef = true;
1278  bool Identity = true;
1279  for (unsigned i = 0; i != NElts; ++i) {
1280    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1281    if (MaskVec[i] >= 0) AllUndef = false;
1282  }
1283  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1284    return N1;
1285  if (AllUndef)
1286    return getUNDEF(VT);
1287
1288  FoldingSetNodeID ID;
1289  SDValue Ops[2] = { N1, N2 };
1290  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1291  for (unsigned i = 0; i != NElts; ++i)
1292    ID.AddInteger(MaskVec[i]);
1293
1294  void* IP = 0;
1295  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1296    return SDValue(E, 0);
1297
1298  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1299  // SDNode doesn't have access to it.  This memory will be "leaked" when
1300  // the node is deallocated, but recovered when the NodeAllocator is released.
1301  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1302  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1303
1304  ShuffleVectorSDNode *N =
1305    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1306  CSEMap.InsertNode(N, IP);
1307  AllNodes.push_back(N);
1308  return SDValue(N, 0);
1309}
1310
1311SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1312                                       SDValue Val, SDValue DTy,
1313                                       SDValue STy, SDValue Rnd, SDValue Sat,
1314                                       ISD::CvtCode Code) {
1315  // If the src and dest types are the same and the conversion is between
1316  // integer types of the same sign or two floats, no conversion is necessary.
1317  if (DTy == STy &&
1318      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1319    return Val;
1320
1321  FoldingSetNodeID ID;
1322  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1323  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1324  void* IP = 0;
1325  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1326    return SDValue(E, 0);
1327
1328  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1329                                                           Code);
1330  CSEMap.InsertNode(N, IP);
1331  AllNodes.push_back(N);
1332  return SDValue(N, 0);
1333}
1334
1335SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1336  FoldingSetNodeID ID;
1337  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1338  ID.AddInteger(RegNo);
1339  void *IP = 0;
1340  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1341    return SDValue(E, 0);
1342
1343  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1344  CSEMap.InsertNode(N, IP);
1345  AllNodes.push_back(N);
1346  return SDValue(N, 0);
1347}
1348
1349SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1350  FoldingSetNodeID ID;
1351  SDValue Ops[] = { Root };
1352  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1353  ID.AddPointer(Label);
1354  void *IP = 0;
1355  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1356    return SDValue(E, 0);
1357
1358  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1359  CSEMap.InsertNode(N, IP);
1360  AllNodes.push_back(N);
1361  return SDValue(N, 0);
1362}
1363
1364
1365SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1366                                      bool isTarget,
1367                                      unsigned char TargetFlags) {
1368  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1369
1370  FoldingSetNodeID ID;
1371  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1372  ID.AddPointer(BA);
1373  ID.AddInteger(TargetFlags);
1374  void *IP = 0;
1375  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1376    return SDValue(E, 0);
1377
1378  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1379  CSEMap.InsertNode(N, IP);
1380  AllNodes.push_back(N);
1381  return SDValue(N, 0);
1382}
1383
1384SDValue SelectionDAG::getSrcValue(const Value *V) {
1385  assert((!V || V->getType()->isPointerTy()) &&
1386         "SrcValue is not a pointer?");
1387
1388  FoldingSetNodeID ID;
1389  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1390  ID.AddPointer(V);
1391
1392  void *IP = 0;
1393  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1394    return SDValue(E, 0);
1395
1396  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1397  CSEMap.InsertNode(N, IP);
1398  AllNodes.push_back(N);
1399  return SDValue(N, 0);
1400}
1401
1402/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1403SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1404  FoldingSetNodeID ID;
1405  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1406  ID.AddPointer(MD);
1407
1408  void *IP = 0;
1409  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1410    return SDValue(E, 0);
1411
1412  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1413  CSEMap.InsertNode(N, IP);
1414  AllNodes.push_back(N);
1415  return SDValue(N, 0);
1416}
1417
1418
1419/// getShiftAmountOperand - Return the specified value casted to
1420/// the target's desired shift amount type.
1421SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1422  EVT OpTy = Op.getValueType();
1423  MVT ShTy = TLI.getShiftAmountTy(LHSTy);
1424  if (OpTy == ShTy || OpTy.isVector()) return Op;
1425
1426  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1427  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1428}
1429
1430/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1431/// specified value type.
1432SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1433  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1434  unsigned ByteSize = VT.getStoreSize();
1435  const Type *Ty = VT.getTypeForEVT(*getContext());
1436  unsigned StackAlign =
1437  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1438
1439  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1440  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1441}
1442
1443/// CreateStackTemporary - Create a stack temporary suitable for holding
1444/// either of the specified value types.
1445SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1446  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1447                            VT2.getStoreSizeInBits())/8;
1448  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1449  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1450  const TargetData *TD = TLI.getTargetData();
1451  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1452                            TD->getPrefTypeAlignment(Ty2));
1453
1454  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1455  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1456  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1457}
1458
1459SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1460                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1461  // These setcc operations always fold.
1462  switch (Cond) {
1463  default: break;
1464  case ISD::SETFALSE:
1465  case ISD::SETFALSE2: return getConstant(0, VT);
1466  case ISD::SETTRUE:
1467  case ISD::SETTRUE2:  return getConstant(1, VT);
1468
1469  case ISD::SETOEQ:
1470  case ISD::SETOGT:
1471  case ISD::SETOGE:
1472  case ISD::SETOLT:
1473  case ISD::SETOLE:
1474  case ISD::SETONE:
1475  case ISD::SETO:
1476  case ISD::SETUO:
1477  case ISD::SETUEQ:
1478  case ISD::SETUNE:
1479    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1480    break;
1481  }
1482
1483  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1484    const APInt &C2 = N2C->getAPIntValue();
1485    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1486      const APInt &C1 = N1C->getAPIntValue();
1487
1488      switch (Cond) {
1489      default: llvm_unreachable("Unknown integer setcc!");
1490      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1491      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1492      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1493      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1494      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1495      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1496      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1497      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1498      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1499      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1500      }
1501    }
1502  }
1503  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1504    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1505      // No compile time operations on this type yet.
1506      if (N1C->getValueType(0) == MVT::ppcf128)
1507        return SDValue();
1508
1509      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1510      switch (Cond) {
1511      default: break;
1512      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1513                          return getUNDEF(VT);
1514                        // fall through
1515      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1516      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1517                          return getUNDEF(VT);
1518                        // fall through
1519      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1520                                           R==APFloat::cmpLessThan, VT);
1521      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1522                          return getUNDEF(VT);
1523                        // fall through
1524      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1525      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1526                          return getUNDEF(VT);
1527                        // fall through
1528      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1529      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1530                          return getUNDEF(VT);
1531                        // fall through
1532      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1533                                           R==APFloat::cmpEqual, VT);
1534      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1535                          return getUNDEF(VT);
1536                        // fall through
1537      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1538                                           R==APFloat::cmpEqual, VT);
1539      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1540      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1541      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1542                                           R==APFloat::cmpEqual, VT);
1543      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1544      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1545                                           R==APFloat::cmpLessThan, VT);
1546      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1547                                           R==APFloat::cmpUnordered, VT);
1548      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1549      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1550      }
1551    } else {
1552      // Ensure that the constant occurs on the RHS.
1553      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1554    }
1555  }
1556
1557  // Could not fold it.
1558  return SDValue();
1559}
1560
1561/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1562/// use this predicate to simplify operations downstream.
1563bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1564  // This predicate is not safe for vector operations.
1565  if (Op.getValueType().isVector())
1566    return false;
1567
1568  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1569  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1570}
1571
1572/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1573/// this predicate to simplify operations downstream.  Mask is known to be zero
1574/// for bits that V cannot have.
1575bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1576                                     unsigned Depth) const {
1577  APInt KnownZero, KnownOne;
1578  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1579  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1580  return (KnownZero & Mask) == Mask;
1581}
1582
1583/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1584/// known to be either zero or one and return them in the KnownZero/KnownOne
1585/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1586/// processing.
1587void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1588                                     APInt &KnownZero, APInt &KnownOne,
1589                                     unsigned Depth) const {
1590  unsigned BitWidth = Mask.getBitWidth();
1591  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1592         "Mask size mismatches value type size!");
1593
1594  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1595  if (Depth == 6 || Mask == 0)
1596    return;  // Limit search depth.
1597
1598  APInt KnownZero2, KnownOne2;
1599
1600  switch (Op.getOpcode()) {
1601  case ISD::Constant:
1602    // We know all of the bits for a constant!
1603    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1604    KnownZero = ~KnownOne & Mask;
1605    return;
1606  case ISD::AND:
1607    // If either the LHS or the RHS are Zero, the result is zero.
1608    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1609    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1610                      KnownZero2, KnownOne2, Depth+1);
1611    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1612    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1613
1614    // Output known-1 bits are only known if set in both the LHS & RHS.
1615    KnownOne &= KnownOne2;
1616    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1617    KnownZero |= KnownZero2;
1618    return;
1619  case ISD::OR:
1620    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1621    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1622                      KnownZero2, KnownOne2, Depth+1);
1623    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1624    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1625
1626    // Output known-0 bits are only known if clear in both the LHS & RHS.
1627    KnownZero &= KnownZero2;
1628    // Output known-1 are known to be set if set in either the LHS | RHS.
1629    KnownOne |= KnownOne2;
1630    return;
1631  case ISD::XOR: {
1632    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1633    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1634    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1635    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1636
1637    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1638    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1639    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1640    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1641    KnownZero = KnownZeroOut;
1642    return;
1643  }
1644  case ISD::MUL: {
1645    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1646    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1647    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1648    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1649    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1650
1651    // If low bits are zero in either operand, output low known-0 bits.
1652    // Also compute a conserative estimate for high known-0 bits.
1653    // More trickiness is possible, but this is sufficient for the
1654    // interesting case of alignment computation.
1655    KnownOne.clearAllBits();
1656    unsigned TrailZ = KnownZero.countTrailingOnes() +
1657                      KnownZero2.countTrailingOnes();
1658    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1659                               KnownZero2.countLeadingOnes(),
1660                               BitWidth) - BitWidth;
1661
1662    TrailZ = std::min(TrailZ, BitWidth);
1663    LeadZ = std::min(LeadZ, BitWidth);
1664    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1665                APInt::getHighBitsSet(BitWidth, LeadZ);
1666    KnownZero &= Mask;
1667    return;
1668  }
1669  case ISD::UDIV: {
1670    // For the purposes of computing leading zeros we can conservatively
1671    // treat a udiv as a logical right shift by the power of 2 known to
1672    // be less than the denominator.
1673    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1674    ComputeMaskedBits(Op.getOperand(0),
1675                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1676    unsigned LeadZ = KnownZero2.countLeadingOnes();
1677
1678    KnownOne2.clearAllBits();
1679    KnownZero2.clearAllBits();
1680    ComputeMaskedBits(Op.getOperand(1),
1681                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1682    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1683    if (RHSUnknownLeadingOnes != BitWidth)
1684      LeadZ = std::min(BitWidth,
1685                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1686
1687    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1688    return;
1689  }
1690  case ISD::SELECT:
1691    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1692    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1693    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1694    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1695
1696    // Only known if known in both the LHS and RHS.
1697    KnownOne &= KnownOne2;
1698    KnownZero &= KnownZero2;
1699    return;
1700  case ISD::SELECT_CC:
1701    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1702    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1703    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1704    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1705
1706    // Only known if known in both the LHS and RHS.
1707    KnownOne &= KnownOne2;
1708    KnownZero &= KnownZero2;
1709    return;
1710  case ISD::SADDO:
1711  case ISD::UADDO:
1712  case ISD::SSUBO:
1713  case ISD::USUBO:
1714  case ISD::SMULO:
1715  case ISD::UMULO:
1716    if (Op.getResNo() != 1)
1717      return;
1718    // The boolean result conforms to getBooleanContents.  Fall through.
1719  case ISD::SETCC:
1720    // If we know the result of a setcc has the top bits zero, use this info.
1721    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1722        BitWidth > 1)
1723      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1724    return;
1725  case ISD::SHL:
1726    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1727    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1728      unsigned ShAmt = SA->getZExtValue();
1729
1730      // If the shift count is an invalid immediate, don't do anything.
1731      if (ShAmt >= BitWidth)
1732        return;
1733
1734      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1735                        KnownZero, KnownOne, Depth+1);
1736      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1737      KnownZero <<= ShAmt;
1738      KnownOne  <<= ShAmt;
1739      // low bits known zero.
1740      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1741    }
1742    return;
1743  case ISD::SRL:
1744    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1745    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1746      unsigned ShAmt = SA->getZExtValue();
1747
1748      // If the shift count is an invalid immediate, don't do anything.
1749      if (ShAmt >= BitWidth)
1750        return;
1751
1752      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1753                        KnownZero, KnownOne, Depth+1);
1754      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1755      KnownZero = KnownZero.lshr(ShAmt);
1756      KnownOne  = KnownOne.lshr(ShAmt);
1757
1758      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1759      KnownZero |= HighBits;  // High bits known zero.
1760    }
1761    return;
1762  case ISD::SRA:
1763    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1764      unsigned ShAmt = SA->getZExtValue();
1765
1766      // If the shift count is an invalid immediate, don't do anything.
1767      if (ShAmt >= BitWidth)
1768        return;
1769
1770      APInt InDemandedMask = (Mask << ShAmt);
1771      // If any of the demanded bits are produced by the sign extension, we also
1772      // demand the input sign bit.
1773      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1774      if (HighBits.getBoolValue())
1775        InDemandedMask |= APInt::getSignBit(BitWidth);
1776
1777      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1778                        Depth+1);
1779      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1780      KnownZero = KnownZero.lshr(ShAmt);
1781      KnownOne  = KnownOne.lshr(ShAmt);
1782
1783      // Handle the sign bits.
1784      APInt SignBit = APInt::getSignBit(BitWidth);
1785      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1786
1787      if (KnownZero.intersects(SignBit)) {
1788        KnownZero |= HighBits;  // New bits are known zero.
1789      } else if (KnownOne.intersects(SignBit)) {
1790        KnownOne  |= HighBits;  // New bits are known one.
1791      }
1792    }
1793    return;
1794  case ISD::SIGN_EXTEND_INREG: {
1795    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1796    unsigned EBits = EVT.getScalarType().getSizeInBits();
1797
1798    // Sign extension.  Compute the demanded bits in the result that are not
1799    // present in the input.
1800    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1801
1802    APInt InSignBit = APInt::getSignBit(EBits);
1803    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1804
1805    // If the sign extended bits are demanded, we know that the sign
1806    // bit is demanded.
1807    InSignBit = InSignBit.zext(BitWidth);
1808    if (NewBits.getBoolValue())
1809      InputDemandedBits |= InSignBit;
1810
1811    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1812                      KnownZero, KnownOne, Depth+1);
1813    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1814
1815    // If the sign bit of the input is known set or clear, then we know the
1816    // top bits of the result.
1817    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1818      KnownZero |= NewBits;
1819      KnownOne  &= ~NewBits;
1820    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1821      KnownOne  |= NewBits;
1822      KnownZero &= ~NewBits;
1823    } else {                              // Input sign bit unknown
1824      KnownZero &= ~NewBits;
1825      KnownOne  &= ~NewBits;
1826    }
1827    return;
1828  }
1829  case ISD::CTTZ:
1830  case ISD::CTLZ:
1831  case ISD::CTPOP: {
1832    unsigned LowBits = Log2_32(BitWidth)+1;
1833    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1834    KnownOne.clearAllBits();
1835    return;
1836  }
1837  case ISD::LOAD: {
1838    if (ISD::isZEXTLoad(Op.getNode())) {
1839      LoadSDNode *LD = cast<LoadSDNode>(Op);
1840      EVT VT = LD->getMemoryVT();
1841      unsigned MemBits = VT.getScalarType().getSizeInBits();
1842      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1843    }
1844    return;
1845  }
1846  case ISD::ZERO_EXTEND: {
1847    EVT InVT = Op.getOperand(0).getValueType();
1848    unsigned InBits = InVT.getScalarType().getSizeInBits();
1849    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1850    APInt InMask    = Mask.trunc(InBits);
1851    KnownZero = KnownZero.trunc(InBits);
1852    KnownOne = KnownOne.trunc(InBits);
1853    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1854    KnownZero = KnownZero.zext(BitWidth);
1855    KnownOne = KnownOne.zext(BitWidth);
1856    KnownZero |= NewBits;
1857    return;
1858  }
1859  case ISD::SIGN_EXTEND: {
1860    EVT InVT = Op.getOperand(0).getValueType();
1861    unsigned InBits = InVT.getScalarType().getSizeInBits();
1862    APInt InSignBit = APInt::getSignBit(InBits);
1863    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1864    APInt InMask = Mask.trunc(InBits);
1865
1866    // If any of the sign extended bits are demanded, we know that the sign
1867    // bit is demanded. Temporarily set this bit in the mask for our callee.
1868    if (NewBits.getBoolValue())
1869      InMask |= InSignBit;
1870
1871    KnownZero = KnownZero.trunc(InBits);
1872    KnownOne = KnownOne.trunc(InBits);
1873    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1874
1875    // Note if the sign bit is known to be zero or one.
1876    bool SignBitKnownZero = KnownZero.isNegative();
1877    bool SignBitKnownOne  = KnownOne.isNegative();
1878    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1879           "Sign bit can't be known to be both zero and one!");
1880
1881    // If the sign bit wasn't actually demanded by our caller, we don't
1882    // want it set in the KnownZero and KnownOne result values. Reset the
1883    // mask and reapply it to the result values.
1884    InMask = Mask.trunc(InBits);
1885    KnownZero &= InMask;
1886    KnownOne  &= InMask;
1887
1888    KnownZero = KnownZero.zext(BitWidth);
1889    KnownOne = KnownOne.zext(BitWidth);
1890
1891    // If the sign bit is known zero or one, the top bits match.
1892    if (SignBitKnownZero)
1893      KnownZero |= NewBits;
1894    else if (SignBitKnownOne)
1895      KnownOne  |= NewBits;
1896    return;
1897  }
1898  case ISD::ANY_EXTEND: {
1899    EVT InVT = Op.getOperand(0).getValueType();
1900    unsigned InBits = InVT.getScalarType().getSizeInBits();
1901    APInt InMask = Mask.trunc(InBits);
1902    KnownZero = KnownZero.trunc(InBits);
1903    KnownOne = KnownOne.trunc(InBits);
1904    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1905    KnownZero = KnownZero.zext(BitWidth);
1906    KnownOne = KnownOne.zext(BitWidth);
1907    return;
1908  }
1909  case ISD::TRUNCATE: {
1910    EVT InVT = Op.getOperand(0).getValueType();
1911    unsigned InBits = InVT.getScalarType().getSizeInBits();
1912    APInt InMask = Mask.zext(InBits);
1913    KnownZero = KnownZero.zext(InBits);
1914    KnownOne = KnownOne.zext(InBits);
1915    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1916    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1917    KnownZero = KnownZero.trunc(BitWidth);
1918    KnownOne = KnownOne.trunc(BitWidth);
1919    break;
1920  }
1921  case ISD::AssertZext: {
1922    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1923    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1924    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1925                      KnownOne, Depth+1);
1926    KnownZero |= (~InMask) & Mask;
1927    return;
1928  }
1929  case ISD::FGETSIGN:
1930    // All bits are zero except the low bit.
1931    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1932    return;
1933
1934  case ISD::SUB: {
1935    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1936      // We know that the top bits of C-X are clear if X contains less bits
1937      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1938      // positive if we can prove that X is >= 0 and < 16.
1939      if (CLHS->getAPIntValue().isNonNegative()) {
1940        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1941        // NLZ can't be BitWidth with no sign bit
1942        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1943        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1944                          Depth+1);
1945
1946        // If all of the MaskV bits are known to be zero, then we know the
1947        // output top bits are zero, because we now know that the output is
1948        // from [0-C].
1949        if ((KnownZero2 & MaskV) == MaskV) {
1950          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1951          // Top bits known zero.
1952          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1953        }
1954      }
1955    }
1956  }
1957  // fall through
1958  case ISD::ADD:
1959  case ISD::ADDE: {
1960    // Output known-0 bits are known if clear or set in both the low clear bits
1961    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1962    // low 3 bits clear.
1963    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1964                                       BitWidth - Mask.countLeadingZeros());
1965    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1966    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1967    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1968
1969    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1970    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1971    KnownZeroOut = std::min(KnownZeroOut,
1972                            KnownZero2.countTrailingOnes());
1973
1974    if (Op.getOpcode() == ISD::ADD) {
1975      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1976      return;
1977    }
1978
1979    // With ADDE, a carry bit may be added in, so we can only use this
1980    // information if we know (at least) that the low two bits are clear.  We
1981    // then return to the caller that the low bit is unknown but that other bits
1982    // are known zero.
1983    if (KnownZeroOut >= 2) // ADDE
1984      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
1985    return;
1986  }
1987  case ISD::SREM:
1988    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1989      const APInt &RA = Rem->getAPIntValue().abs();
1990      if (RA.isPowerOf2()) {
1991        APInt LowBits = RA - 1;
1992        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1993        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1994
1995        // The low bits of the first operand are unchanged by the srem.
1996        KnownZero = KnownZero2 & LowBits;
1997        KnownOne = KnownOne2 & LowBits;
1998
1999        // If the first operand is non-negative or has all low bits zero, then
2000        // the upper bits are all zero.
2001        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2002          KnownZero |= ~LowBits;
2003
2004        // If the first operand is negative and not all low bits are zero, then
2005        // the upper bits are all one.
2006        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2007          KnownOne |= ~LowBits;
2008
2009        KnownZero &= Mask;
2010        KnownOne &= Mask;
2011
2012        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2013      }
2014    }
2015    return;
2016  case ISD::UREM: {
2017    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2018      const APInt &RA = Rem->getAPIntValue();
2019      if (RA.isPowerOf2()) {
2020        APInt LowBits = (RA - 1);
2021        APInt Mask2 = LowBits & Mask;
2022        KnownZero |= ~LowBits & Mask;
2023        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2024        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2025        break;
2026      }
2027    }
2028
2029    // Since the result is less than or equal to either operand, any leading
2030    // zero bits in either operand must also exist in the result.
2031    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2032    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2033                      Depth+1);
2034    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2035                      Depth+1);
2036
2037    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2038                                KnownZero2.countLeadingOnes());
2039    KnownOne.clearAllBits();
2040    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2041    return;
2042  }
2043  case ISD::FrameIndex:
2044  case ISD::TargetFrameIndex:
2045    if (unsigned Align = InferPtrAlignment(Op)) {
2046      // The low bits are known zero if the pointer is aligned.
2047      KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2048      return;
2049    }
2050    break;
2051
2052  default:
2053    if (Op.getOpcode() < ISD::BUILTIN_OP_END)
2054      break;
2055    // Fallthrough
2056  case ISD::INTRINSIC_WO_CHAIN:
2057  case ISD::INTRINSIC_W_CHAIN:
2058  case ISD::INTRINSIC_VOID:
2059    // Allow the target to implement this method for its nodes.
2060    TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2061                                       Depth);
2062    return;
2063  }
2064}
2065
2066/// ComputeNumSignBits - Return the number of times the sign bit of the
2067/// register is replicated into the other bits.  We know that at least 1 bit
2068/// is always equal to the sign bit (itself), but other cases can give us
2069/// information.  For example, immediately after an "SRA X, 2", we know that
2070/// the top 3 bits are all equal to each other, so we return 3.
2071unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2072  EVT VT = Op.getValueType();
2073  assert(VT.isInteger() && "Invalid VT!");
2074  unsigned VTBits = VT.getScalarType().getSizeInBits();
2075  unsigned Tmp, Tmp2;
2076  unsigned FirstAnswer = 1;
2077
2078  if (Depth == 6)
2079    return 1;  // Limit search depth.
2080
2081  switch (Op.getOpcode()) {
2082  default: break;
2083  case ISD::AssertSext:
2084    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2085    return VTBits-Tmp+1;
2086  case ISD::AssertZext:
2087    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2088    return VTBits-Tmp;
2089
2090  case ISD::Constant: {
2091    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2092    return Val.getNumSignBits();
2093  }
2094
2095  case ISD::SIGN_EXTEND:
2096    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2097    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2098
2099  case ISD::SIGN_EXTEND_INREG:
2100    // Max of the input and what this extends.
2101    Tmp =
2102      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2103    Tmp = VTBits-Tmp+1;
2104
2105    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2106    return std::max(Tmp, Tmp2);
2107
2108  case ISD::SRA:
2109    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2110    // SRA X, C   -> adds C sign bits.
2111    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2112      Tmp += C->getZExtValue();
2113      if (Tmp > VTBits) Tmp = VTBits;
2114    }
2115    return Tmp;
2116  case ISD::SHL:
2117    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2118      // shl destroys sign bits.
2119      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2120      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2121          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2122      return Tmp - C->getZExtValue();
2123    }
2124    break;
2125  case ISD::AND:
2126  case ISD::OR:
2127  case ISD::XOR:    // NOT is handled here.
2128    // Logical binary ops preserve the number of sign bits at the worst.
2129    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2130    if (Tmp != 1) {
2131      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2132      FirstAnswer = std::min(Tmp, Tmp2);
2133      // We computed what we know about the sign bits as our first
2134      // answer. Now proceed to the generic code that uses
2135      // ComputeMaskedBits, and pick whichever answer is better.
2136    }
2137    break;
2138
2139  case ISD::SELECT:
2140    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2141    if (Tmp == 1) return 1;  // Early out.
2142    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2143    return std::min(Tmp, Tmp2);
2144
2145  case ISD::SADDO:
2146  case ISD::UADDO:
2147  case ISD::SSUBO:
2148  case ISD::USUBO:
2149  case ISD::SMULO:
2150  case ISD::UMULO:
2151    if (Op.getResNo() != 1)
2152      break;
2153    // The boolean result conforms to getBooleanContents.  Fall through.
2154  case ISD::SETCC:
2155    // If setcc returns 0/-1, all bits are sign bits.
2156    if (TLI.getBooleanContents() ==
2157        TargetLowering::ZeroOrNegativeOneBooleanContent)
2158      return VTBits;
2159    break;
2160  case ISD::ROTL:
2161  case ISD::ROTR:
2162    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2163      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2164
2165      // Handle rotate right by N like a rotate left by 32-N.
2166      if (Op.getOpcode() == ISD::ROTR)
2167        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2168
2169      // If we aren't rotating out all of the known-in sign bits, return the
2170      // number that are left.  This handles rotl(sext(x), 1) for example.
2171      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2172      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2173    }
2174    break;
2175  case ISD::ADD:
2176    // Add can have at most one carry bit.  Thus we know that the output
2177    // is, at worst, one more bit than the inputs.
2178    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2179    if (Tmp == 1) return 1;  // Early out.
2180
2181    // Special case decrementing a value (ADD X, -1):
2182    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2183      if (CRHS->isAllOnesValue()) {
2184        APInt KnownZero, KnownOne;
2185        APInt Mask = APInt::getAllOnesValue(VTBits);
2186        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2187
2188        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2189        // sign bits set.
2190        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2191          return VTBits;
2192
2193        // If we are subtracting one from a positive number, there is no carry
2194        // out of the result.
2195        if (KnownZero.isNegative())
2196          return Tmp;
2197      }
2198
2199    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2200    if (Tmp2 == 1) return 1;
2201      return std::min(Tmp, Tmp2)-1;
2202    break;
2203
2204  case ISD::SUB:
2205    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2206    if (Tmp2 == 1) return 1;
2207
2208    // Handle NEG.
2209    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2210      if (CLHS->isNullValue()) {
2211        APInt KnownZero, KnownOne;
2212        APInt Mask = APInt::getAllOnesValue(VTBits);
2213        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2214        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2215        // sign bits set.
2216        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2217          return VTBits;
2218
2219        // If the input is known to be positive (the sign bit is known clear),
2220        // the output of the NEG has the same number of sign bits as the input.
2221        if (KnownZero.isNegative())
2222          return Tmp2;
2223
2224        // Otherwise, we treat this like a SUB.
2225      }
2226
2227    // Sub can have at most one carry bit.  Thus we know that the output
2228    // is, at worst, one more bit than the inputs.
2229    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2230    if (Tmp == 1) return 1;  // Early out.
2231      return std::min(Tmp, Tmp2)-1;
2232    break;
2233  case ISD::TRUNCATE:
2234    // FIXME: it's tricky to do anything useful for this, but it is an important
2235    // case for targets like X86.
2236    break;
2237  }
2238
2239  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2240  if (Op.getOpcode() == ISD::LOAD) {
2241    LoadSDNode *LD = cast<LoadSDNode>(Op);
2242    unsigned ExtType = LD->getExtensionType();
2243    switch (ExtType) {
2244    default: break;
2245    case ISD::SEXTLOAD:    // '17' bits known
2246      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2247      return VTBits-Tmp+1;
2248    case ISD::ZEXTLOAD:    // '16' bits known
2249      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2250      return VTBits-Tmp;
2251    }
2252  }
2253
2254  // Allow the target to implement this method for its nodes.
2255  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2256      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2257      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2258      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2259    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2260    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2261  }
2262
2263  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2264  // use this information.
2265  APInt KnownZero, KnownOne;
2266  APInt Mask = APInt::getAllOnesValue(VTBits);
2267  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2268
2269  if (KnownZero.isNegative()) {        // sign bit is 0
2270    Mask = KnownZero;
2271  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2272    Mask = KnownOne;
2273  } else {
2274    // Nothing known.
2275    return FirstAnswer;
2276  }
2277
2278  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2279  // the number of identical bits in the top of the input value.
2280  Mask = ~Mask;
2281  Mask <<= Mask.getBitWidth()-VTBits;
2282  // Return # leading zeros.  We use 'min' here in case Val was zero before
2283  // shifting.  We don't want to return '64' as for an i32 "0".
2284  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2285}
2286
2287/// isBaseWithConstantOffset - Return true if the specified operand is an
2288/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2289/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2290/// semantics as an ADD.  This handles the equivalence:
2291///     X|Cst == X+Cst iff X&Cst = 0.
2292bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2293  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2294      !isa<ConstantSDNode>(Op.getOperand(1)))
2295    return false;
2296
2297  if (Op.getOpcode() == ISD::OR &&
2298      !MaskedValueIsZero(Op.getOperand(0),
2299                     cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2300    return false;
2301
2302  return true;
2303}
2304
2305
2306bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2307  // If we're told that NaNs won't happen, assume they won't.
2308  if (NoNaNsFPMath)
2309    return true;
2310
2311  // If the value is a constant, we can obviously see if it is a NaN or not.
2312  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2313    return !C->getValueAPF().isNaN();
2314
2315  // TODO: Recognize more cases here.
2316
2317  return false;
2318}
2319
2320bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2321  // If the value is a constant, we can obviously see if it is a zero or not.
2322  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2323    return !C->isZero();
2324
2325  // TODO: Recognize more cases here.
2326  switch (Op.getOpcode()) {
2327  default: break;
2328  case ISD::OR:
2329    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2330      return !C->isNullValue();
2331    break;
2332  }
2333
2334  return false;
2335}
2336
2337bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2338  // Check the obvious case.
2339  if (A == B) return true;
2340
2341  // For for negative and positive zero.
2342  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2343    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2344      if (CA->isZero() && CB->isZero()) return true;
2345
2346  // Otherwise they may not be equal.
2347  return false;
2348}
2349
2350/// getNode - Gets or creates the specified node.
2351///
2352SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2353  FoldingSetNodeID ID;
2354  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2355  void *IP = 0;
2356  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2357    return SDValue(E, 0);
2358
2359  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2360  CSEMap.InsertNode(N, IP);
2361
2362  AllNodes.push_back(N);
2363#ifndef NDEBUG
2364  VerifySDNode(N);
2365#endif
2366  return SDValue(N, 0);
2367}
2368
2369SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2370                              EVT VT, SDValue Operand) {
2371  // Constant fold unary operations with an integer constant operand.
2372  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2373    const APInt &Val = C->getAPIntValue();
2374    switch (Opcode) {
2375    default: break;
2376    case ISD::SIGN_EXTEND:
2377      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2378    case ISD::ANY_EXTEND:
2379    case ISD::ZERO_EXTEND:
2380    case ISD::TRUNCATE:
2381      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2382    case ISD::UINT_TO_FP:
2383    case ISD::SINT_TO_FP: {
2384      // No compile time operations on ppcf128.
2385      if (VT == MVT::ppcf128) break;
2386      APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2387      (void)apf.convertFromAPInt(Val,
2388                                 Opcode==ISD::SINT_TO_FP,
2389                                 APFloat::rmNearestTiesToEven);
2390      return getConstantFP(apf, VT);
2391    }
2392    case ISD::BITCAST:
2393      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2394        return getConstantFP(Val.bitsToFloat(), VT);
2395      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2396        return getConstantFP(Val.bitsToDouble(), VT);
2397      break;
2398    case ISD::BSWAP:
2399      return getConstant(Val.byteSwap(), VT);
2400    case ISD::CTPOP:
2401      return getConstant(Val.countPopulation(), VT);
2402    case ISD::CTLZ:
2403      return getConstant(Val.countLeadingZeros(), VT);
2404    case ISD::CTTZ:
2405      return getConstant(Val.countTrailingZeros(), VT);
2406    }
2407  }
2408
2409  // Constant fold unary operations with a floating point constant operand.
2410  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2411    APFloat V = C->getValueAPF();    // make copy
2412    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2413      switch (Opcode) {
2414      case ISD::FNEG:
2415        V.changeSign();
2416        return getConstantFP(V, VT);
2417      case ISD::FABS:
2418        V.clearSign();
2419        return getConstantFP(V, VT);
2420      case ISD::FP_ROUND:
2421      case ISD::FP_EXTEND: {
2422        bool ignored;
2423        // This can return overflow, underflow, or inexact; we don't care.
2424        // FIXME need to be more flexible about rounding mode.
2425        (void)V.convert(*EVTToAPFloatSemantics(VT),
2426                        APFloat::rmNearestTiesToEven, &ignored);
2427        return getConstantFP(V, VT);
2428      }
2429      case ISD::FP_TO_SINT:
2430      case ISD::FP_TO_UINT: {
2431        integerPart x[2];
2432        bool ignored;
2433        assert(integerPartWidth >= 64);
2434        // FIXME need to be more flexible about rounding mode.
2435        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2436                              Opcode==ISD::FP_TO_SINT,
2437                              APFloat::rmTowardZero, &ignored);
2438        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2439          break;
2440        APInt api(VT.getSizeInBits(), 2, x);
2441        return getConstant(api, VT);
2442      }
2443      case ISD::BITCAST:
2444        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2445          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2446        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2447          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2448        break;
2449      }
2450    }
2451  }
2452
2453  unsigned OpOpcode = Operand.getNode()->getOpcode();
2454  switch (Opcode) {
2455  case ISD::TokenFactor:
2456  case ISD::MERGE_VALUES:
2457  case ISD::CONCAT_VECTORS:
2458    return Operand;         // Factor, merge or concat of one node?  No need.
2459  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2460  case ISD::FP_EXTEND:
2461    assert(VT.isFloatingPoint() &&
2462           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2463    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2464    assert((!VT.isVector() ||
2465            VT.getVectorNumElements() ==
2466            Operand.getValueType().getVectorNumElements()) &&
2467           "Vector element count mismatch!");
2468    if (Operand.getOpcode() == ISD::UNDEF)
2469      return getUNDEF(VT);
2470    break;
2471  case ISD::SIGN_EXTEND:
2472    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2473           "Invalid SIGN_EXTEND!");
2474    if (Operand.getValueType() == VT) return Operand;   // noop extension
2475    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2476           "Invalid sext node, dst < src!");
2477    assert((!VT.isVector() ||
2478            VT.getVectorNumElements() ==
2479            Operand.getValueType().getVectorNumElements()) &&
2480           "Vector element count mismatch!");
2481    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2482      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2483    else if (OpOpcode == ISD::UNDEF)
2484      // sext(undef) = 0, because the top bits will all be the same.
2485      return getConstant(0, VT);
2486    break;
2487  case ISD::ZERO_EXTEND:
2488    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2489           "Invalid ZERO_EXTEND!");
2490    if (Operand.getValueType() == VT) return Operand;   // noop extension
2491    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2492           "Invalid zext node, dst < src!");
2493    assert((!VT.isVector() ||
2494            VT.getVectorNumElements() ==
2495            Operand.getValueType().getVectorNumElements()) &&
2496           "Vector element count mismatch!");
2497    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2498      return getNode(ISD::ZERO_EXTEND, DL, VT,
2499                     Operand.getNode()->getOperand(0));
2500    else if (OpOpcode == ISD::UNDEF)
2501      // zext(undef) = 0, because the top bits will be zero.
2502      return getConstant(0, VT);
2503    break;
2504  case ISD::ANY_EXTEND:
2505    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2506           "Invalid ANY_EXTEND!");
2507    if (Operand.getValueType() == VT) return Operand;   // noop extension
2508    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2509           "Invalid anyext node, dst < src!");
2510    assert((!VT.isVector() ||
2511            VT.getVectorNumElements() ==
2512            Operand.getValueType().getVectorNumElements()) &&
2513           "Vector element count mismatch!");
2514
2515    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2516        OpOpcode == ISD::ANY_EXTEND)
2517      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2518      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2519    else if (OpOpcode == ISD::UNDEF)
2520      return getUNDEF(VT);
2521
2522    // (ext (trunx x)) -> x
2523    if (OpOpcode == ISD::TRUNCATE) {
2524      SDValue OpOp = Operand.getNode()->getOperand(0);
2525      if (OpOp.getValueType() == VT)
2526        return OpOp;
2527    }
2528    break;
2529  case ISD::TRUNCATE:
2530    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2531           "Invalid TRUNCATE!");
2532    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2533    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2534           "Invalid truncate node, src < dst!");
2535    assert((!VT.isVector() ||
2536            VT.getVectorNumElements() ==
2537            Operand.getValueType().getVectorNumElements()) &&
2538           "Vector element count mismatch!");
2539    if (OpOpcode == ISD::TRUNCATE)
2540      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2541    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2542             OpOpcode == ISD::ANY_EXTEND) {
2543      // If the source is smaller than the dest, we still need an extend.
2544      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2545            .bitsLT(VT.getScalarType()))
2546        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2547      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2548        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2549      else
2550        return Operand.getNode()->getOperand(0);
2551    }
2552    break;
2553  case ISD::BITCAST:
2554    // Basic sanity checking.
2555    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2556           && "Cannot BITCAST between types of different sizes!");
2557    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2558    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2559      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2560    if (OpOpcode == ISD::UNDEF)
2561      return getUNDEF(VT);
2562    break;
2563  case ISD::SCALAR_TO_VECTOR:
2564    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2565           (VT.getVectorElementType() == Operand.getValueType() ||
2566            (VT.getVectorElementType().isInteger() &&
2567             Operand.getValueType().isInteger() &&
2568             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2569           "Illegal SCALAR_TO_VECTOR node!");
2570    if (OpOpcode == ISD::UNDEF)
2571      return getUNDEF(VT);
2572    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2573    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2574        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2575        Operand.getConstantOperandVal(1) == 0 &&
2576        Operand.getOperand(0).getValueType() == VT)
2577      return Operand.getOperand(0);
2578    break;
2579  case ISD::FNEG:
2580    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2581    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2582      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2583                     Operand.getNode()->getOperand(0));
2584    if (OpOpcode == ISD::FNEG)  // --X -> X
2585      return Operand.getNode()->getOperand(0);
2586    break;
2587  case ISD::FABS:
2588    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2589      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2590    break;
2591  }
2592
2593  SDNode *N;
2594  SDVTList VTs = getVTList(VT);
2595  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2596    FoldingSetNodeID ID;
2597    SDValue Ops[1] = { Operand };
2598    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2599    void *IP = 0;
2600    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2601      return SDValue(E, 0);
2602
2603    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2604    CSEMap.InsertNode(N, IP);
2605  } else {
2606    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2607  }
2608
2609  AllNodes.push_back(N);
2610#ifndef NDEBUG
2611  VerifySDNode(N);
2612#endif
2613  return SDValue(N, 0);
2614}
2615
2616SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2617                                             EVT VT,
2618                                             ConstantSDNode *Cst1,
2619                                             ConstantSDNode *Cst2) {
2620  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2621
2622  switch (Opcode) {
2623  case ISD::ADD:  return getConstant(C1 + C2, VT);
2624  case ISD::SUB:  return getConstant(C1 - C2, VT);
2625  case ISD::MUL:  return getConstant(C1 * C2, VT);
2626  case ISD::UDIV:
2627    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2628    break;
2629  case ISD::UREM:
2630    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2631    break;
2632  case ISD::SDIV:
2633    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2634    break;
2635  case ISD::SREM:
2636    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2637    break;
2638  case ISD::AND:  return getConstant(C1 & C2, VT);
2639  case ISD::OR:   return getConstant(C1 | C2, VT);
2640  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2641  case ISD::SHL:  return getConstant(C1 << C2, VT);
2642  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2643  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2644  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2645  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2646  default: break;
2647  }
2648
2649  return SDValue();
2650}
2651
2652SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2653                              SDValue N1, SDValue N2) {
2654  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2655  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2656  switch (Opcode) {
2657  default: break;
2658  case ISD::TokenFactor:
2659    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2660           N2.getValueType() == MVT::Other && "Invalid token factor!");
2661    // Fold trivial token factors.
2662    if (N1.getOpcode() == ISD::EntryToken) return N2;
2663    if (N2.getOpcode() == ISD::EntryToken) return N1;
2664    if (N1 == N2) return N1;
2665    break;
2666  case ISD::CONCAT_VECTORS:
2667    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2668    // one big BUILD_VECTOR.
2669    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2670        N2.getOpcode() == ISD::BUILD_VECTOR) {
2671      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2672                                    N1.getNode()->op_end());
2673      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2674      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2675    }
2676    break;
2677  case ISD::AND:
2678    assert(VT.isInteger() && "This operator does not apply to FP types!");
2679    assert(N1.getValueType() == N2.getValueType() &&
2680           N1.getValueType() == VT && "Binary operator types must match!");
2681    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2682    // worth handling here.
2683    if (N2C && N2C->isNullValue())
2684      return N2;
2685    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2686      return N1;
2687    break;
2688  case ISD::OR:
2689  case ISD::XOR:
2690  case ISD::ADD:
2691  case ISD::SUB:
2692    assert(VT.isInteger() && "This operator does not apply to FP types!");
2693    assert(N1.getValueType() == N2.getValueType() &&
2694           N1.getValueType() == VT && "Binary operator types must match!");
2695    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2696    // it's worth handling here.
2697    if (N2C && N2C->isNullValue())
2698      return N1;
2699    break;
2700  case ISD::UDIV:
2701  case ISD::UREM:
2702  case ISD::MULHU:
2703  case ISD::MULHS:
2704  case ISD::MUL:
2705  case ISD::SDIV:
2706  case ISD::SREM:
2707    assert(VT.isInteger() && "This operator does not apply to FP types!");
2708    assert(N1.getValueType() == N2.getValueType() &&
2709           N1.getValueType() == VT && "Binary operator types must match!");
2710    break;
2711  case ISD::FADD:
2712  case ISD::FSUB:
2713  case ISD::FMUL:
2714  case ISD::FDIV:
2715  case ISD::FREM:
2716    if (UnsafeFPMath) {
2717      if (Opcode == ISD::FADD) {
2718        // 0+x --> x
2719        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2720          if (CFP->getValueAPF().isZero())
2721            return N2;
2722        // x+0 --> x
2723        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2724          if (CFP->getValueAPF().isZero())
2725            return N1;
2726      } else if (Opcode == ISD::FSUB) {
2727        // x-0 --> x
2728        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2729          if (CFP->getValueAPF().isZero())
2730            return N1;
2731      }
2732    }
2733    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2734    assert(N1.getValueType() == N2.getValueType() &&
2735           N1.getValueType() == VT && "Binary operator types must match!");
2736    break;
2737  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2738    assert(N1.getValueType() == VT &&
2739           N1.getValueType().isFloatingPoint() &&
2740           N2.getValueType().isFloatingPoint() &&
2741           "Invalid FCOPYSIGN!");
2742    break;
2743  case ISD::SHL:
2744  case ISD::SRA:
2745  case ISD::SRL:
2746  case ISD::ROTL:
2747  case ISD::ROTR:
2748    assert(VT == N1.getValueType() &&
2749           "Shift operators return type must be the same as their first arg");
2750    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2751           "Shifts only work on integers");
2752    // Verify that the shift amount VT is bit enough to hold valid shift
2753    // amounts.  This catches things like trying to shift an i1024 value by an
2754    // i8, which is easy to fall into in generic code that uses
2755    // TLI.getShiftAmount().
2756    assert(N2.getValueType().getSizeInBits() >=
2757                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2758           "Invalid use of small shift amount with oversized value!");
2759
2760    // Always fold shifts of i1 values so the code generator doesn't need to
2761    // handle them.  Since we know the size of the shift has to be less than the
2762    // size of the value, the shift/rotate count is guaranteed to be zero.
2763    if (VT == MVT::i1)
2764      return N1;
2765    if (N2C && N2C->isNullValue())
2766      return N1;
2767    break;
2768  case ISD::FP_ROUND_INREG: {
2769    EVT EVT = cast<VTSDNode>(N2)->getVT();
2770    assert(VT == N1.getValueType() && "Not an inreg round!");
2771    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2772           "Cannot FP_ROUND_INREG integer types");
2773    assert(EVT.isVector() == VT.isVector() &&
2774           "FP_ROUND_INREG type should be vector iff the operand "
2775           "type is vector!");
2776    assert((!EVT.isVector() ||
2777            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2778           "Vector element counts must match in FP_ROUND_INREG");
2779    assert(EVT.bitsLE(VT) && "Not rounding down!");
2780    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2781    break;
2782  }
2783  case ISD::FP_ROUND:
2784    assert(VT.isFloatingPoint() &&
2785           N1.getValueType().isFloatingPoint() &&
2786           VT.bitsLE(N1.getValueType()) &&
2787           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2788    if (N1.getValueType() == VT) return N1;  // noop conversion.
2789    break;
2790  case ISD::AssertSext:
2791  case ISD::AssertZext: {
2792    EVT EVT = cast<VTSDNode>(N2)->getVT();
2793    assert(VT == N1.getValueType() && "Not an inreg extend!");
2794    assert(VT.isInteger() && EVT.isInteger() &&
2795           "Cannot *_EXTEND_INREG FP types");
2796    assert(!EVT.isVector() &&
2797           "AssertSExt/AssertZExt type should be the vector element type "
2798           "rather than the vector type!");
2799    assert(EVT.bitsLE(VT) && "Not extending!");
2800    if (VT == EVT) return N1; // noop assertion.
2801    break;
2802  }
2803  case ISD::SIGN_EXTEND_INREG: {
2804    EVT EVT = cast<VTSDNode>(N2)->getVT();
2805    assert(VT == N1.getValueType() && "Not an inreg extend!");
2806    assert(VT.isInteger() && EVT.isInteger() &&
2807           "Cannot *_EXTEND_INREG FP types");
2808    assert(EVT.isVector() == VT.isVector() &&
2809           "SIGN_EXTEND_INREG type should be vector iff the operand "
2810           "type is vector!");
2811    assert((!EVT.isVector() ||
2812            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2813           "Vector element counts must match in SIGN_EXTEND_INREG");
2814    assert(EVT.bitsLE(VT) && "Not extending!");
2815    if (EVT == VT) return N1;  // Not actually extending
2816
2817    if (N1C) {
2818      APInt Val = N1C->getAPIntValue();
2819      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2820      Val <<= Val.getBitWidth()-FromBits;
2821      Val = Val.ashr(Val.getBitWidth()-FromBits);
2822      return getConstant(Val, VT);
2823    }
2824    break;
2825  }
2826  case ISD::EXTRACT_VECTOR_ELT:
2827    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2828    if (N1.getOpcode() == ISD::UNDEF)
2829      return getUNDEF(VT);
2830
2831    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2832    // expanding copies of large vectors from registers.
2833    if (N2C &&
2834        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2835        N1.getNumOperands() > 0) {
2836      unsigned Factor =
2837        N1.getOperand(0).getValueType().getVectorNumElements();
2838      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2839                     N1.getOperand(N2C->getZExtValue() / Factor),
2840                     getConstant(N2C->getZExtValue() % Factor,
2841                                 N2.getValueType()));
2842    }
2843
2844    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2845    // expanding large vector constants.
2846    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2847      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2848      EVT VEltTy = N1.getValueType().getVectorElementType();
2849      if (Elt.getValueType() != VEltTy) {
2850        // If the vector element type is not legal, the BUILD_VECTOR operands
2851        // are promoted and implicitly truncated.  Make that explicit here.
2852        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2853      }
2854      if (VT != VEltTy) {
2855        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2856        // result is implicitly extended.
2857        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2858      }
2859      return Elt;
2860    }
2861
2862    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2863    // operations are lowered to scalars.
2864    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2865      // If the indices are the same, return the inserted element else
2866      // if the indices are known different, extract the element from
2867      // the original vector.
2868      SDValue N1Op2 = N1.getOperand(2);
2869      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2870
2871      if (N1Op2C && N2C) {
2872        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2873          if (VT == N1.getOperand(1).getValueType())
2874            return N1.getOperand(1);
2875          else
2876            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2877        }
2878
2879        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2880      }
2881    }
2882    break;
2883  case ISD::EXTRACT_ELEMENT:
2884    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2885    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2886           (N1.getValueType().isInteger() == VT.isInteger()) &&
2887           "Wrong types for EXTRACT_ELEMENT!");
2888
2889    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2890    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2891    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2892    if (N1.getOpcode() == ISD::BUILD_PAIR)
2893      return N1.getOperand(N2C->getZExtValue());
2894
2895    // EXTRACT_ELEMENT of a constant int is also very common.
2896    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2897      unsigned ElementSize = VT.getSizeInBits();
2898      unsigned Shift = ElementSize * N2C->getZExtValue();
2899      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2900      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2901    }
2902    break;
2903  case ISD::EXTRACT_SUBVECTOR: {
2904    SDValue Index = N2;
2905    if (VT.isSimple() && N1.getValueType().isSimple()) {
2906      assert(VT.isVector() && N1.getValueType().isVector() &&
2907             "Extract subvector VTs must be a vectors!");
2908      assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
2909             "Extract subvector VTs must have the same element type!");
2910      assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
2911             "Extract subvector must be from larger vector to smaller vector!");
2912
2913      if (isa<ConstantSDNode>(Index.getNode())) {
2914        assert((VT.getVectorNumElements() +
2915                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
2916                <= N1.getValueType().getVectorNumElements())
2917               && "Extract subvector overflow!");
2918      }
2919
2920      // Trivial extraction.
2921      if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
2922        return N1;
2923    }
2924    break;
2925  }
2926  }
2927
2928  if (N1C) {
2929    if (N2C) {
2930      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2931      if (SV.getNode()) return SV;
2932    } else {      // Cannonicalize constant to RHS if commutative
2933      if (isCommutativeBinOp(Opcode)) {
2934        std::swap(N1C, N2C);
2935        std::swap(N1, N2);
2936      }
2937    }
2938  }
2939
2940  // Constant fold FP operations.
2941  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2942  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2943  if (N1CFP) {
2944    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2945      // Cannonicalize constant to RHS if commutative
2946      std::swap(N1CFP, N2CFP);
2947      std::swap(N1, N2);
2948    } else if (N2CFP && VT != MVT::ppcf128) {
2949      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2950      APFloat::opStatus s;
2951      switch (Opcode) {
2952      case ISD::FADD:
2953        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2954        if (s != APFloat::opInvalidOp)
2955          return getConstantFP(V1, VT);
2956        break;
2957      case ISD::FSUB:
2958        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2959        if (s!=APFloat::opInvalidOp)
2960          return getConstantFP(V1, VT);
2961        break;
2962      case ISD::FMUL:
2963        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2964        if (s!=APFloat::opInvalidOp)
2965          return getConstantFP(V1, VT);
2966        break;
2967      case ISD::FDIV:
2968        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2969        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2970          return getConstantFP(V1, VT);
2971        break;
2972      case ISD::FREM :
2973        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2974        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2975          return getConstantFP(V1, VT);
2976        break;
2977      case ISD::FCOPYSIGN:
2978        V1.copySign(V2);
2979        return getConstantFP(V1, VT);
2980      default: break;
2981      }
2982    }
2983  }
2984
2985  // Canonicalize an UNDEF to the RHS, even over a constant.
2986  if (N1.getOpcode() == ISD::UNDEF) {
2987    if (isCommutativeBinOp(Opcode)) {
2988      std::swap(N1, N2);
2989    } else {
2990      switch (Opcode) {
2991      case ISD::FP_ROUND_INREG:
2992      case ISD::SIGN_EXTEND_INREG:
2993      case ISD::SUB:
2994      case ISD::FSUB:
2995      case ISD::FDIV:
2996      case ISD::FREM:
2997      case ISD::SRA:
2998        return N1;     // fold op(undef, arg2) -> undef
2999      case ISD::UDIV:
3000      case ISD::SDIV:
3001      case ISD::UREM:
3002      case ISD::SREM:
3003      case ISD::SRL:
3004      case ISD::SHL:
3005        if (!VT.isVector())
3006          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
3007        // For vectors, we can't easily build an all zero vector, just return
3008        // the LHS.
3009        return N2;
3010      }
3011    }
3012  }
3013
3014  // Fold a bunch of operators when the RHS is undef.
3015  if (N2.getOpcode() == ISD::UNDEF) {
3016    switch (Opcode) {
3017    case ISD::XOR:
3018      if (N1.getOpcode() == ISD::UNDEF)
3019        // Handle undef ^ undef -> 0 special case. This is a common
3020        // idiom (misuse).
3021        return getConstant(0, VT);
3022      // fallthrough
3023    case ISD::ADD:
3024    case ISD::ADDC:
3025    case ISD::ADDE:
3026    case ISD::SUB:
3027    case ISD::UDIV:
3028    case ISD::SDIV:
3029    case ISD::UREM:
3030    case ISD::SREM:
3031      return N2;       // fold op(arg1, undef) -> undef
3032    case ISD::FADD:
3033    case ISD::FSUB:
3034    case ISD::FMUL:
3035    case ISD::FDIV:
3036    case ISD::FREM:
3037      if (UnsafeFPMath)
3038        return N2;
3039      break;
3040    case ISD::MUL:
3041    case ISD::AND:
3042    case ISD::SRL:
3043    case ISD::SHL:
3044      if (!VT.isVector())
3045        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3046      // For vectors, we can't easily build an all zero vector, just return
3047      // the LHS.
3048      return N1;
3049    case ISD::OR:
3050      if (!VT.isVector())
3051        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3052      // For vectors, we can't easily build an all one vector, just return
3053      // the LHS.
3054      return N1;
3055    case ISD::SRA:
3056      return N1;
3057    }
3058  }
3059
3060  // Memoize this node if possible.
3061  SDNode *N;
3062  SDVTList VTs = getVTList(VT);
3063  if (VT != MVT::Glue) {
3064    SDValue Ops[] = { N1, N2 };
3065    FoldingSetNodeID ID;
3066    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3067    void *IP = 0;
3068    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3069      return SDValue(E, 0);
3070
3071    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3072    CSEMap.InsertNode(N, IP);
3073  } else {
3074    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3075  }
3076
3077  AllNodes.push_back(N);
3078#ifndef NDEBUG
3079  VerifySDNode(N);
3080#endif
3081  return SDValue(N, 0);
3082}
3083
3084SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3085                              SDValue N1, SDValue N2, SDValue N3) {
3086  // Perform various simplifications.
3087  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3088  switch (Opcode) {
3089  case ISD::CONCAT_VECTORS:
3090    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3091    // one big BUILD_VECTOR.
3092    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3093        N2.getOpcode() == ISD::BUILD_VECTOR &&
3094        N3.getOpcode() == ISD::BUILD_VECTOR) {
3095      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3096                                    N1.getNode()->op_end());
3097      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3098      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3099      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3100    }
3101    break;
3102  case ISD::SETCC: {
3103    // Use FoldSetCC to simplify SETCC's.
3104    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3105    if (Simp.getNode()) return Simp;
3106    break;
3107  }
3108  case ISD::SELECT:
3109    if (N1C) {
3110     if (N1C->getZExtValue())
3111        return N2;             // select true, X, Y -> X
3112      else
3113        return N3;             // select false, X, Y -> Y
3114    }
3115
3116    if (N2 == N3) return N2;   // select C, X, X -> X
3117    break;
3118  case ISD::VECTOR_SHUFFLE:
3119    llvm_unreachable("should use getVectorShuffle constructor!");
3120    break;
3121  case ISD::INSERT_SUBVECTOR: {
3122    SDValue Index = N3;
3123    if (VT.isSimple() && N1.getValueType().isSimple()
3124        && N2.getValueType().isSimple()) {
3125      assert(VT.isVector() && N1.getValueType().isVector() &&
3126             N2.getValueType().isVector() &&
3127             "Insert subvector VTs must be a vectors");
3128      assert(VT == N1.getValueType() &&
3129             "Dest and insert subvector source types must match!");
3130      assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3131             "Insert subvector must be from smaller vector to larger vector!");
3132      if (isa<ConstantSDNode>(Index.getNode())) {
3133        assert((N2.getValueType().getVectorNumElements() +
3134                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3135                <= VT.getVectorNumElements())
3136               && "Insert subvector overflow!");
3137      }
3138
3139      // Trivial insertion.
3140      if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3141        return N2;
3142    }
3143    break;
3144  }
3145  case ISD::BITCAST:
3146    // Fold bit_convert nodes from a type to themselves.
3147    if (N1.getValueType() == VT)
3148      return N1;
3149    break;
3150  }
3151
3152  // Memoize node if it doesn't produce a flag.
3153  SDNode *N;
3154  SDVTList VTs = getVTList(VT);
3155  if (VT != MVT::Glue) {
3156    SDValue Ops[] = { N1, N2, N3 };
3157    FoldingSetNodeID ID;
3158    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3159    void *IP = 0;
3160    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3161      return SDValue(E, 0);
3162
3163    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3164    CSEMap.InsertNode(N, IP);
3165  } else {
3166    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3167  }
3168
3169  AllNodes.push_back(N);
3170#ifndef NDEBUG
3171  VerifySDNode(N);
3172#endif
3173  return SDValue(N, 0);
3174}
3175
3176SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3177                              SDValue N1, SDValue N2, SDValue N3,
3178                              SDValue N4) {
3179  SDValue Ops[] = { N1, N2, N3, N4 };
3180  return getNode(Opcode, DL, VT, Ops, 4);
3181}
3182
3183SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3184                              SDValue N1, SDValue N2, SDValue N3,
3185                              SDValue N4, SDValue N5) {
3186  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3187  return getNode(Opcode, DL, VT, Ops, 5);
3188}
3189
3190/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3191/// the incoming stack arguments to be loaded from the stack.
3192SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3193  SmallVector<SDValue, 8> ArgChains;
3194
3195  // Include the original chain at the beginning of the list. When this is
3196  // used by target LowerCall hooks, this helps legalize find the
3197  // CALLSEQ_BEGIN node.
3198  ArgChains.push_back(Chain);
3199
3200  // Add a chain value for each stack argument.
3201  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3202       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3203    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3204      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3205        if (FI->getIndex() < 0)
3206          ArgChains.push_back(SDValue(L, 1));
3207
3208  // Build a tokenfactor for all the chains.
3209  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3210                 &ArgChains[0], ArgChains.size());
3211}
3212
3213/// SplatByte - Distribute ByteVal over NumBits bits.
3214static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
3215  APInt Val = APInt(NumBits, ByteVal);
3216  unsigned Shift = 8;
3217  for (unsigned i = NumBits; i > 8; i >>= 1) {
3218    Val = (Val << Shift) | Val;
3219    Shift <<= 1;
3220  }
3221  return Val;
3222}
3223
3224/// getMemsetValue - Vectorized representation of the memset value
3225/// operand.
3226static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3227                              DebugLoc dl) {
3228  assert(Value.getOpcode() != ISD::UNDEF);
3229
3230  unsigned NumBits = VT.getScalarType().getSizeInBits();
3231  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3232    APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
3233    if (VT.isInteger())
3234      return DAG.getConstant(Val, VT);
3235    return DAG.getConstantFP(APFloat(Val), VT);
3236  }
3237
3238  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3239  if (NumBits > 8) {
3240    // Use a multiplication with 0x010101... to extend the input to the
3241    // required length.
3242    APInt Magic = SplatByte(NumBits, 0x01);
3243    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3244  }
3245
3246  return Value;
3247}
3248
3249/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3250/// used when a memcpy is turned into a memset when the source is a constant
3251/// string ptr.
3252static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3253                                  const TargetLowering &TLI,
3254                                  std::string &Str, unsigned Offset) {
3255  // Handle vector with all elements zero.
3256  if (Str.empty()) {
3257    if (VT.isInteger())
3258      return DAG.getConstant(0, VT);
3259    else if (VT == MVT::f32 || VT == MVT::f64)
3260      return DAG.getConstantFP(0.0, VT);
3261    else if (VT.isVector()) {
3262      unsigned NumElts = VT.getVectorNumElements();
3263      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3264      return DAG.getNode(ISD::BITCAST, dl, VT,
3265                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3266                                                             EltVT, NumElts)));
3267    } else
3268      llvm_unreachable("Expected type!");
3269  }
3270
3271  assert(!VT.isVector() && "Can't handle vector type here!");
3272  unsigned NumBits = VT.getSizeInBits();
3273  unsigned MSB = NumBits / 8;
3274  uint64_t Val = 0;
3275  if (TLI.isLittleEndian())
3276    Offset = Offset + MSB - 1;
3277  for (unsigned i = 0; i != MSB; ++i) {
3278    Val = (Val << 8) | (unsigned char)Str[Offset];
3279    Offset += TLI.isLittleEndian() ? -1 : 1;
3280  }
3281  return DAG.getConstant(Val, VT);
3282}
3283
3284/// getMemBasePlusOffset - Returns base and offset node for the
3285///
3286static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3287                                      SelectionDAG &DAG) {
3288  EVT VT = Base.getValueType();
3289  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3290                     VT, Base, DAG.getConstant(Offset, VT));
3291}
3292
3293/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3294///
3295static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3296  unsigned SrcDelta = 0;
3297  GlobalAddressSDNode *G = NULL;
3298  if (Src.getOpcode() == ISD::GlobalAddress)
3299    G = cast<GlobalAddressSDNode>(Src);
3300  else if (Src.getOpcode() == ISD::ADD &&
3301           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3302           Src.getOperand(1).getOpcode() == ISD::Constant) {
3303    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3304    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3305  }
3306  if (!G)
3307    return false;
3308
3309  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3310  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3311    return true;
3312
3313  return false;
3314}
3315
3316/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3317/// to replace the memset / memcpy. Return true if the number of memory ops
3318/// is below the threshold. It returns the types of the sequence of
3319/// memory ops to perform memset / memcpy by reference.
3320static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3321                                     unsigned Limit, uint64_t Size,
3322                                     unsigned DstAlign, unsigned SrcAlign,
3323                                     bool NonScalarIntSafe,
3324                                     bool MemcpyStrSrc,
3325                                     SelectionDAG &DAG,
3326                                     const TargetLowering &TLI) {
3327  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3328         "Expecting memcpy / memset source to meet alignment requirement!");
3329  // If 'SrcAlign' is zero, that means the memory operation does not need load
3330  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3331  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3332  // specified alignment of the memory operation. If it is zero, that means
3333  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3334  // indicates whether the memcpy source is constant so it does not need to be
3335  // loaded.
3336  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3337                                   NonScalarIntSafe, MemcpyStrSrc,
3338                                   DAG.getMachineFunction());
3339
3340  if (VT == MVT::Other) {
3341    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3342        TLI.allowsUnalignedMemoryAccesses(VT)) {
3343      VT = TLI.getPointerTy();
3344    } else {
3345      switch (DstAlign & 7) {
3346      case 0:  VT = MVT::i64; break;
3347      case 4:  VT = MVT::i32; break;
3348      case 2:  VT = MVT::i16; break;
3349      default: VT = MVT::i8;  break;
3350      }
3351    }
3352
3353    MVT LVT = MVT::i64;
3354    while (!TLI.isTypeLegal(LVT))
3355      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3356    assert(LVT.isInteger());
3357
3358    if (VT.bitsGT(LVT))
3359      VT = LVT;
3360  }
3361
3362  unsigned NumMemOps = 0;
3363  while (Size != 0) {
3364    unsigned VTSize = VT.getSizeInBits() / 8;
3365    while (VTSize > Size) {
3366      // For now, only use non-vector load / store's for the left-over pieces.
3367      if (VT.isVector() || VT.isFloatingPoint()) {
3368        VT = MVT::i64;
3369        while (!TLI.isTypeLegal(VT))
3370          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3371        VTSize = VT.getSizeInBits() / 8;
3372      } else {
3373        // This can result in a type that is not legal on the target, e.g.
3374        // 1 or 2 bytes on PPC.
3375        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3376        VTSize >>= 1;
3377      }
3378    }
3379
3380    if (++NumMemOps > Limit)
3381      return false;
3382    MemOps.push_back(VT);
3383    Size -= VTSize;
3384  }
3385
3386  return true;
3387}
3388
3389static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3390                                       SDValue Chain, SDValue Dst,
3391                                       SDValue Src, uint64_t Size,
3392                                       unsigned Align, bool isVol,
3393                                       bool AlwaysInline,
3394                                       MachinePointerInfo DstPtrInfo,
3395                                       MachinePointerInfo SrcPtrInfo) {
3396  // Turn a memcpy of undef to nop.
3397  if (Src.getOpcode() == ISD::UNDEF)
3398    return Chain;
3399
3400  // Expand memcpy to a series of load and store ops if the size operand falls
3401  // below a certain threshold.
3402  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3403  // rather than maybe a humongous number of loads and stores.
3404  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3405  std::vector<EVT> MemOps;
3406  bool DstAlignCanChange = false;
3407  MachineFunction &MF = DAG.getMachineFunction();
3408  MachineFrameInfo *MFI = MF.getFrameInfo();
3409  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3410  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3411  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3412    DstAlignCanChange = true;
3413  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3414  if (Align > SrcAlign)
3415    SrcAlign = Align;
3416  std::string Str;
3417  bool CopyFromStr = isMemSrcFromString(Src, Str);
3418  bool isZeroStr = CopyFromStr && Str.empty();
3419  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3420
3421  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3422                                (DstAlignCanChange ? 0 : Align),
3423                                (isZeroStr ? 0 : SrcAlign),
3424                                true, CopyFromStr, DAG, TLI))
3425    return SDValue();
3426
3427  if (DstAlignCanChange) {
3428    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3429    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3430    if (NewAlign > Align) {
3431      // Give the stack frame object a larger alignment if needed.
3432      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3433        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3434      Align = NewAlign;
3435    }
3436  }
3437
3438  SmallVector<SDValue, 8> OutChains;
3439  unsigned NumMemOps = MemOps.size();
3440  uint64_t SrcOff = 0, DstOff = 0;
3441  for (unsigned i = 0; i != NumMemOps; ++i) {
3442    EVT VT = MemOps[i];
3443    unsigned VTSize = VT.getSizeInBits() / 8;
3444    SDValue Value, Store;
3445
3446    if (CopyFromStr &&
3447        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3448      // It's unlikely a store of a vector immediate can be done in a single
3449      // instruction. It would require a load from a constantpool first.
3450      // We only handle zero vectors here.
3451      // FIXME: Handle other cases where store of vector immediate is done in
3452      // a single instruction.
3453      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3454      Store = DAG.getStore(Chain, dl, Value,
3455                           getMemBasePlusOffset(Dst, DstOff, DAG),
3456                           DstPtrInfo.getWithOffset(DstOff), isVol,
3457                           false, Align);
3458    } else {
3459      // The type might not be legal for the target.  This should only happen
3460      // if the type is smaller than a legal type, as on PPC, so the right
3461      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3462      // to Load/Store if NVT==VT.
3463      // FIXME does the case above also need this?
3464      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3465      assert(NVT.bitsGE(VT));
3466      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3467                             getMemBasePlusOffset(Src, SrcOff, DAG),
3468                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3469                             MinAlign(SrcAlign, SrcOff));
3470      Store = DAG.getTruncStore(Chain, dl, Value,
3471                                getMemBasePlusOffset(Dst, DstOff, DAG),
3472                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3473                                false, Align);
3474    }
3475    OutChains.push_back(Store);
3476    SrcOff += VTSize;
3477    DstOff += VTSize;
3478  }
3479
3480  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3481                     &OutChains[0], OutChains.size());
3482}
3483
3484static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3485                                        SDValue Chain, SDValue Dst,
3486                                        SDValue Src, uint64_t Size,
3487                                        unsigned Align,  bool isVol,
3488                                        bool AlwaysInline,
3489                                        MachinePointerInfo DstPtrInfo,
3490                                        MachinePointerInfo SrcPtrInfo) {
3491  // Turn a memmove of undef to nop.
3492  if (Src.getOpcode() == ISD::UNDEF)
3493    return Chain;
3494
3495  // Expand memmove to a series of load and store ops if the size operand falls
3496  // below a certain threshold.
3497  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3498  std::vector<EVT> MemOps;
3499  bool DstAlignCanChange = false;
3500  MachineFunction &MF = DAG.getMachineFunction();
3501  MachineFrameInfo *MFI = MF.getFrameInfo();
3502  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3503  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3504  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3505    DstAlignCanChange = true;
3506  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3507  if (Align > SrcAlign)
3508    SrcAlign = Align;
3509  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3510
3511  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3512                                (DstAlignCanChange ? 0 : Align),
3513                                SrcAlign, true, false, DAG, TLI))
3514    return SDValue();
3515
3516  if (DstAlignCanChange) {
3517    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3518    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3519    if (NewAlign > Align) {
3520      // Give the stack frame object a larger alignment if needed.
3521      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3522        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3523      Align = NewAlign;
3524    }
3525  }
3526
3527  uint64_t SrcOff = 0, DstOff = 0;
3528  SmallVector<SDValue, 8> LoadValues;
3529  SmallVector<SDValue, 8> LoadChains;
3530  SmallVector<SDValue, 8> OutChains;
3531  unsigned NumMemOps = MemOps.size();
3532  for (unsigned i = 0; i < NumMemOps; i++) {
3533    EVT VT = MemOps[i];
3534    unsigned VTSize = VT.getSizeInBits() / 8;
3535    SDValue Value, Store;
3536
3537    Value = DAG.getLoad(VT, dl, Chain,
3538                        getMemBasePlusOffset(Src, SrcOff, DAG),
3539                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3540                        false, SrcAlign);
3541    LoadValues.push_back(Value);
3542    LoadChains.push_back(Value.getValue(1));
3543    SrcOff += VTSize;
3544  }
3545  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3546                      &LoadChains[0], LoadChains.size());
3547  OutChains.clear();
3548  for (unsigned i = 0; i < NumMemOps; i++) {
3549    EVT VT = MemOps[i];
3550    unsigned VTSize = VT.getSizeInBits() / 8;
3551    SDValue Value, Store;
3552
3553    Store = DAG.getStore(Chain, dl, LoadValues[i],
3554                         getMemBasePlusOffset(Dst, DstOff, DAG),
3555                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3556    OutChains.push_back(Store);
3557    DstOff += VTSize;
3558  }
3559
3560  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3561                     &OutChains[0], OutChains.size());
3562}
3563
3564static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3565                               SDValue Chain, SDValue Dst,
3566                               SDValue Src, uint64_t Size,
3567                               unsigned Align, bool isVol,
3568                               MachinePointerInfo DstPtrInfo) {
3569  // Turn a memset of undef to nop.
3570  if (Src.getOpcode() == ISD::UNDEF)
3571    return Chain;
3572
3573  // Expand memset to a series of load/store ops if the size operand
3574  // falls below a certain threshold.
3575  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3576  std::vector<EVT> MemOps;
3577  bool DstAlignCanChange = false;
3578  MachineFunction &MF = DAG.getMachineFunction();
3579  MachineFrameInfo *MFI = MF.getFrameInfo();
3580  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3581  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3582  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3583    DstAlignCanChange = true;
3584  bool NonScalarIntSafe =
3585    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3586  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3587                                Size, (DstAlignCanChange ? 0 : Align), 0,
3588                                NonScalarIntSafe, false, DAG, TLI))
3589    return SDValue();
3590
3591  if (DstAlignCanChange) {
3592    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3593    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3594    if (NewAlign > Align) {
3595      // Give the stack frame object a larger alignment if needed.
3596      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3597        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3598      Align = NewAlign;
3599    }
3600  }
3601
3602  SmallVector<SDValue, 8> OutChains;
3603  uint64_t DstOff = 0;
3604  unsigned NumMemOps = MemOps.size();
3605
3606  // Find the largest store and generate the bit pattern for it.
3607  EVT LargestVT = MemOps[0];
3608  for (unsigned i = 1; i < NumMemOps; i++)
3609    if (MemOps[i].bitsGT(LargestVT))
3610      LargestVT = MemOps[i];
3611  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3612
3613  for (unsigned i = 0; i < NumMemOps; i++) {
3614    EVT VT = MemOps[i];
3615
3616    // If this store is smaller than the largest store see whether we can get
3617    // the smaller value for free with a truncate.
3618    SDValue Value = MemSetValue;
3619    if (VT.bitsLT(LargestVT)) {
3620      if (!LargestVT.isVector() && !VT.isVector() &&
3621          TLI.isTruncateFree(LargestVT, VT))
3622        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3623      else
3624        Value = getMemsetValue(Src, VT, DAG, dl);
3625    }
3626    assert(Value.getValueType() == VT && "Value with wrong type.");
3627    SDValue Store = DAG.getStore(Chain, dl, Value,
3628                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3629                                 DstPtrInfo.getWithOffset(DstOff),
3630                                 isVol, false, Align);
3631    OutChains.push_back(Store);
3632    DstOff += VT.getSizeInBits() / 8;
3633  }
3634
3635  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3636                     &OutChains[0], OutChains.size());
3637}
3638
3639SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3640                                SDValue Src, SDValue Size,
3641                                unsigned Align, bool isVol, bool AlwaysInline,
3642                                MachinePointerInfo DstPtrInfo,
3643                                MachinePointerInfo SrcPtrInfo) {
3644
3645  // Check to see if we should lower the memcpy to loads and stores first.
3646  // For cases within the target-specified limits, this is the best choice.
3647  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3648  if (ConstantSize) {
3649    // Memcpy with size zero? Just return the original chain.
3650    if (ConstantSize->isNullValue())
3651      return Chain;
3652
3653    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3654                                             ConstantSize->getZExtValue(),Align,
3655                                isVol, false, DstPtrInfo, SrcPtrInfo);
3656    if (Result.getNode())
3657      return Result;
3658  }
3659
3660  // Then check to see if we should lower the memcpy with target-specific
3661  // code. If the target chooses to do this, this is the next best.
3662  SDValue Result =
3663    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3664                                isVol, AlwaysInline,
3665                                DstPtrInfo, SrcPtrInfo);
3666  if (Result.getNode())
3667    return Result;
3668
3669  // If we really need inline code and the target declined to provide it,
3670  // use a (potentially long) sequence of loads and stores.
3671  if (AlwaysInline) {
3672    assert(ConstantSize && "AlwaysInline requires a constant size!");
3673    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3674                                   ConstantSize->getZExtValue(), Align, isVol,
3675                                   true, DstPtrInfo, SrcPtrInfo);
3676  }
3677
3678  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3679  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3680  // respect volatile, so they may do things like read or write memory
3681  // beyond the given memory regions. But fixing this isn't easy, and most
3682  // people don't care.
3683
3684  // Emit a library call.
3685  TargetLowering::ArgListTy Args;
3686  TargetLowering::ArgListEntry Entry;
3687  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3688  Entry.Node = Dst; Args.push_back(Entry);
3689  Entry.Node = Src; Args.push_back(Entry);
3690  Entry.Node = Size; Args.push_back(Entry);
3691  // FIXME: pass in DebugLoc
3692  std::pair<SDValue,SDValue> CallResult =
3693    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3694                    false, false, false, false, 0,
3695                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3696                    /*isReturnValueUsed=*/false,
3697                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3698                                      TLI.getPointerTy()),
3699                    Args, *this, dl);
3700  return CallResult.second;
3701}
3702
3703SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3704                                 SDValue Src, SDValue Size,
3705                                 unsigned Align, bool isVol,
3706                                 MachinePointerInfo DstPtrInfo,
3707                                 MachinePointerInfo SrcPtrInfo) {
3708
3709  // Check to see if we should lower the memmove to loads and stores first.
3710  // For cases within the target-specified limits, this is the best choice.
3711  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3712  if (ConstantSize) {
3713    // Memmove with size zero? Just return the original chain.
3714    if (ConstantSize->isNullValue())
3715      return Chain;
3716
3717    SDValue Result =
3718      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3719                               ConstantSize->getZExtValue(), Align, isVol,
3720                               false, DstPtrInfo, SrcPtrInfo);
3721    if (Result.getNode())
3722      return Result;
3723  }
3724
3725  // Then check to see if we should lower the memmove with target-specific
3726  // code. If the target chooses to do this, this is the next best.
3727  SDValue Result =
3728    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3729                                 DstPtrInfo, SrcPtrInfo);
3730  if (Result.getNode())
3731    return Result;
3732
3733  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3734  // not be safe.  See memcpy above for more details.
3735
3736  // Emit a library call.
3737  TargetLowering::ArgListTy Args;
3738  TargetLowering::ArgListEntry Entry;
3739  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3740  Entry.Node = Dst; Args.push_back(Entry);
3741  Entry.Node = Src; Args.push_back(Entry);
3742  Entry.Node = Size; Args.push_back(Entry);
3743  // FIXME:  pass in DebugLoc
3744  std::pair<SDValue,SDValue> CallResult =
3745    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3746                    false, false, false, false, 0,
3747                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3748                    /*isReturnValueUsed=*/false,
3749                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3750                                      TLI.getPointerTy()),
3751                    Args, *this, dl);
3752  return CallResult.second;
3753}
3754
3755SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3756                                SDValue Src, SDValue Size,
3757                                unsigned Align, bool isVol,
3758                                MachinePointerInfo DstPtrInfo) {
3759
3760  // Check to see if we should lower the memset to stores first.
3761  // For cases within the target-specified limits, this is the best choice.
3762  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3763  if (ConstantSize) {
3764    // Memset with size zero? Just return the original chain.
3765    if (ConstantSize->isNullValue())
3766      return Chain;
3767
3768    SDValue Result =
3769      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3770                      Align, isVol, DstPtrInfo);
3771
3772    if (Result.getNode())
3773      return Result;
3774  }
3775
3776  // Then check to see if we should lower the memset with target-specific
3777  // code. If the target chooses to do this, this is the next best.
3778  SDValue Result =
3779    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3780                                DstPtrInfo);
3781  if (Result.getNode())
3782    return Result;
3783
3784  // Emit a library call.
3785  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3786  TargetLowering::ArgListTy Args;
3787  TargetLowering::ArgListEntry Entry;
3788  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3789  Args.push_back(Entry);
3790  // Extend or truncate the argument to be an i32 value for the call.
3791  if (Src.getValueType().bitsGT(MVT::i32))
3792    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3793  else
3794    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3795  Entry.Node = Src;
3796  Entry.Ty = Type::getInt32Ty(*getContext());
3797  Entry.isSExt = true;
3798  Args.push_back(Entry);
3799  Entry.Node = Size;
3800  Entry.Ty = IntPtrTy;
3801  Entry.isSExt = false;
3802  Args.push_back(Entry);
3803  // FIXME: pass in DebugLoc
3804  std::pair<SDValue,SDValue> CallResult =
3805    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3806                    false, false, false, false, 0,
3807                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3808                    /*isReturnValueUsed=*/false,
3809                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3810                                      TLI.getPointerTy()),
3811                    Args, *this, dl);
3812  return CallResult.second;
3813}
3814
3815SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3816                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3817                                SDValue Swp, MachinePointerInfo PtrInfo,
3818                                unsigned Alignment) {
3819  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3820    Alignment = getEVTAlignment(MemVT);
3821
3822  MachineFunction &MF = getMachineFunction();
3823  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3824
3825  // For now, atomics are considered to be volatile always.
3826  Flags |= MachineMemOperand::MOVolatile;
3827
3828  MachineMemOperand *MMO =
3829    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3830
3831  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3832}
3833
3834SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3835                                SDValue Chain,
3836                                SDValue Ptr, SDValue Cmp,
3837                                SDValue Swp, MachineMemOperand *MMO) {
3838  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3839  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3840
3841  EVT VT = Cmp.getValueType();
3842
3843  SDVTList VTs = getVTList(VT, MVT::Other);
3844  FoldingSetNodeID ID;
3845  ID.AddInteger(MemVT.getRawBits());
3846  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3847  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3848  void* IP = 0;
3849  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3850    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3851    return SDValue(E, 0);
3852  }
3853  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3854                                               Ptr, Cmp, Swp, MMO);
3855  CSEMap.InsertNode(N, IP);
3856  AllNodes.push_back(N);
3857  return SDValue(N, 0);
3858}
3859
3860SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3861                                SDValue Chain,
3862                                SDValue Ptr, SDValue Val,
3863                                const Value* PtrVal,
3864                                unsigned Alignment) {
3865  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3866    Alignment = getEVTAlignment(MemVT);
3867
3868  MachineFunction &MF = getMachineFunction();
3869  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3870
3871  // For now, atomics are considered to be volatile always.
3872  Flags |= MachineMemOperand::MOVolatile;
3873
3874  MachineMemOperand *MMO =
3875    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3876                            MemVT.getStoreSize(), Alignment);
3877
3878  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3879}
3880
3881SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3882                                SDValue Chain,
3883                                SDValue Ptr, SDValue Val,
3884                                MachineMemOperand *MMO) {
3885  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3886          Opcode == ISD::ATOMIC_LOAD_SUB ||
3887          Opcode == ISD::ATOMIC_LOAD_AND ||
3888          Opcode == ISD::ATOMIC_LOAD_OR ||
3889          Opcode == ISD::ATOMIC_LOAD_XOR ||
3890          Opcode == ISD::ATOMIC_LOAD_NAND ||
3891          Opcode == ISD::ATOMIC_LOAD_MIN ||
3892          Opcode == ISD::ATOMIC_LOAD_MAX ||
3893          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3894          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3895          Opcode == ISD::ATOMIC_SWAP) &&
3896         "Invalid Atomic Op");
3897
3898  EVT VT = Val.getValueType();
3899
3900  SDVTList VTs = getVTList(VT, MVT::Other);
3901  FoldingSetNodeID ID;
3902  ID.AddInteger(MemVT.getRawBits());
3903  SDValue Ops[] = {Chain, Ptr, Val};
3904  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3905  void* IP = 0;
3906  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3907    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3908    return SDValue(E, 0);
3909  }
3910  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3911                                               Ptr, Val, MMO);
3912  CSEMap.InsertNode(N, IP);
3913  AllNodes.push_back(N);
3914  return SDValue(N, 0);
3915}
3916
3917/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3918SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3919                                     DebugLoc dl) {
3920  if (NumOps == 1)
3921    return Ops[0];
3922
3923  SmallVector<EVT, 4> VTs;
3924  VTs.reserve(NumOps);
3925  for (unsigned i = 0; i < NumOps; ++i)
3926    VTs.push_back(Ops[i].getValueType());
3927  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3928                 Ops, NumOps);
3929}
3930
3931SDValue
3932SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3933                                  const EVT *VTs, unsigned NumVTs,
3934                                  const SDValue *Ops, unsigned NumOps,
3935                                  EVT MemVT, MachinePointerInfo PtrInfo,
3936                                  unsigned Align, bool Vol,
3937                                  bool ReadMem, bool WriteMem) {
3938  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3939                             MemVT, PtrInfo, Align, Vol,
3940                             ReadMem, WriteMem);
3941}
3942
3943SDValue
3944SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3945                                  const SDValue *Ops, unsigned NumOps,
3946                                  EVT MemVT, MachinePointerInfo PtrInfo,
3947                                  unsigned Align, bool Vol,
3948                                  bool ReadMem, bool WriteMem) {
3949  if (Align == 0)  // Ensure that codegen never sees alignment 0
3950    Align = getEVTAlignment(MemVT);
3951
3952  MachineFunction &MF = getMachineFunction();
3953  unsigned Flags = 0;
3954  if (WriteMem)
3955    Flags |= MachineMemOperand::MOStore;
3956  if (ReadMem)
3957    Flags |= MachineMemOperand::MOLoad;
3958  if (Vol)
3959    Flags |= MachineMemOperand::MOVolatile;
3960  MachineMemOperand *MMO =
3961    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
3962
3963  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3964}
3965
3966SDValue
3967SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3968                                  const SDValue *Ops, unsigned NumOps,
3969                                  EVT MemVT, MachineMemOperand *MMO) {
3970  assert((Opcode == ISD::INTRINSIC_VOID ||
3971          Opcode == ISD::INTRINSIC_W_CHAIN ||
3972          Opcode == ISD::PREFETCH ||
3973          (Opcode <= INT_MAX &&
3974           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3975         "Opcode is not a memory-accessing opcode!");
3976
3977  // Memoize the node unless it returns a flag.
3978  MemIntrinsicSDNode *N;
3979  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
3980    FoldingSetNodeID ID;
3981    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3982    void *IP = 0;
3983    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3984      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3985      return SDValue(E, 0);
3986    }
3987
3988    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3989                                               MemVT, MMO);
3990    CSEMap.InsertNode(N, IP);
3991  } else {
3992    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3993                                               MemVT, MMO);
3994  }
3995  AllNodes.push_back(N);
3996  return SDValue(N, 0);
3997}
3998
3999/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4000/// MachinePointerInfo record from it.  This is particularly useful because the
4001/// code generator has many cases where it doesn't bother passing in a
4002/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4003static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
4004  // If this is FI+Offset, we can model it.
4005  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4006    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4007
4008  // If this is (FI+Offset1)+Offset2, we can model it.
4009  if (Ptr.getOpcode() != ISD::ADD ||
4010      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4011      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4012    return MachinePointerInfo();
4013
4014  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4015  return MachinePointerInfo::getFixedStack(FI, Offset+
4016                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4017}
4018
4019/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4020/// MachinePointerInfo record from it.  This is particularly useful because the
4021/// code generator has many cases where it doesn't bother passing in a
4022/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4023static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4024  // If the 'Offset' value isn't a constant, we can't handle this.
4025  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4026    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4027  if (OffsetOp.getOpcode() == ISD::UNDEF)
4028    return InferPointerInfo(Ptr);
4029  return MachinePointerInfo();
4030}
4031
4032
4033SDValue
4034SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4035                      EVT VT, DebugLoc dl, SDValue Chain,
4036                      SDValue Ptr, SDValue Offset,
4037                      MachinePointerInfo PtrInfo, EVT MemVT,
4038                      bool isVolatile, bool isNonTemporal,
4039                      unsigned Alignment, const MDNode *TBAAInfo) {
4040  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4041    Alignment = getEVTAlignment(VT);
4042
4043  unsigned Flags = MachineMemOperand::MOLoad;
4044  if (isVolatile)
4045    Flags |= MachineMemOperand::MOVolatile;
4046  if (isNonTemporal)
4047    Flags |= MachineMemOperand::MONonTemporal;
4048
4049  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4050  // clients.
4051  if (PtrInfo.V == 0)
4052    PtrInfo = InferPointerInfo(Ptr, Offset);
4053
4054  MachineFunction &MF = getMachineFunction();
4055  MachineMemOperand *MMO =
4056    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4057                            TBAAInfo);
4058  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4059}
4060
4061SDValue
4062SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4063                      EVT VT, DebugLoc dl, SDValue Chain,
4064                      SDValue Ptr, SDValue Offset, EVT MemVT,
4065                      MachineMemOperand *MMO) {
4066  if (VT == MemVT) {
4067    ExtType = ISD::NON_EXTLOAD;
4068  } else if (ExtType == ISD::NON_EXTLOAD) {
4069    assert(VT == MemVT && "Non-extending load from different memory type!");
4070  } else {
4071    // Extending load.
4072    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4073           "Should only be an extending load, not truncating!");
4074    assert(VT.isInteger() == MemVT.isInteger() &&
4075           "Cannot convert from FP to Int or Int -> FP!");
4076    assert(VT.isVector() == MemVT.isVector() &&
4077           "Cannot use trunc store to convert to or from a vector!");
4078    assert((!VT.isVector() ||
4079            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4080           "Cannot use trunc store to change the number of vector elements!");
4081  }
4082
4083  bool Indexed = AM != ISD::UNINDEXED;
4084  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4085         "Unindexed load with an offset!");
4086
4087  SDVTList VTs = Indexed ?
4088    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4089  SDValue Ops[] = { Chain, Ptr, Offset };
4090  FoldingSetNodeID ID;
4091  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4092  ID.AddInteger(MemVT.getRawBits());
4093  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4094                                     MMO->isNonTemporal()));
4095  void *IP = 0;
4096  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4097    cast<LoadSDNode>(E)->refineAlignment(MMO);
4098    return SDValue(E, 0);
4099  }
4100  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4101                                             MemVT, MMO);
4102  CSEMap.InsertNode(N, IP);
4103  AllNodes.push_back(N);
4104  return SDValue(N, 0);
4105}
4106
4107SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4108                              SDValue Chain, SDValue Ptr,
4109                              MachinePointerInfo PtrInfo,
4110                              bool isVolatile, bool isNonTemporal,
4111                              unsigned Alignment, const MDNode *TBAAInfo) {
4112  SDValue Undef = getUNDEF(Ptr.getValueType());
4113  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4114                 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
4115}
4116
4117SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
4118                                 SDValue Chain, SDValue Ptr,
4119                                 MachinePointerInfo PtrInfo, EVT MemVT,
4120                                 bool isVolatile, bool isNonTemporal,
4121                                 unsigned Alignment, const MDNode *TBAAInfo) {
4122  SDValue Undef = getUNDEF(Ptr.getValueType());
4123  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4124                 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
4125                 TBAAInfo);
4126}
4127
4128
4129SDValue
4130SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4131                             SDValue Offset, ISD::MemIndexedMode AM) {
4132  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4133  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4134         "Load is already a indexed load!");
4135  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4136                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4137                 LD->getMemoryVT(),
4138                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4139}
4140
4141SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4142                               SDValue Ptr, MachinePointerInfo PtrInfo,
4143                               bool isVolatile, bool isNonTemporal,
4144                               unsigned Alignment, const MDNode *TBAAInfo) {
4145  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4146    Alignment = getEVTAlignment(Val.getValueType());
4147
4148  unsigned Flags = MachineMemOperand::MOStore;
4149  if (isVolatile)
4150    Flags |= MachineMemOperand::MOVolatile;
4151  if (isNonTemporal)
4152    Flags |= MachineMemOperand::MONonTemporal;
4153
4154  if (PtrInfo.V == 0)
4155    PtrInfo = InferPointerInfo(Ptr);
4156
4157  MachineFunction &MF = getMachineFunction();
4158  MachineMemOperand *MMO =
4159    MF.getMachineMemOperand(PtrInfo, Flags,
4160                            Val.getValueType().getStoreSize(), Alignment,
4161                            TBAAInfo);
4162
4163  return getStore(Chain, dl, Val, Ptr, MMO);
4164}
4165
4166SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4167                               SDValue Ptr, MachineMemOperand *MMO) {
4168  EVT VT = Val.getValueType();
4169  SDVTList VTs = getVTList(MVT::Other);
4170  SDValue Undef = getUNDEF(Ptr.getValueType());
4171  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4172  FoldingSetNodeID ID;
4173  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4174  ID.AddInteger(VT.getRawBits());
4175  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4176                                     MMO->isNonTemporal()));
4177  void *IP = 0;
4178  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4179    cast<StoreSDNode>(E)->refineAlignment(MMO);
4180    return SDValue(E, 0);
4181  }
4182  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4183                                              false, VT, MMO);
4184  CSEMap.InsertNode(N, IP);
4185  AllNodes.push_back(N);
4186  return SDValue(N, 0);
4187}
4188
4189SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4190                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4191                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4192                                    unsigned Alignment,
4193                                    const MDNode *TBAAInfo) {
4194  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4195    Alignment = getEVTAlignment(SVT);
4196
4197  unsigned Flags = MachineMemOperand::MOStore;
4198  if (isVolatile)
4199    Flags |= MachineMemOperand::MOVolatile;
4200  if (isNonTemporal)
4201    Flags |= MachineMemOperand::MONonTemporal;
4202
4203  if (PtrInfo.V == 0)
4204    PtrInfo = InferPointerInfo(Ptr);
4205
4206  MachineFunction &MF = getMachineFunction();
4207  MachineMemOperand *MMO =
4208    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4209                            TBAAInfo);
4210
4211  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4212}
4213
4214SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4215                                    SDValue Ptr, EVT SVT,
4216                                    MachineMemOperand *MMO) {
4217  EVT VT = Val.getValueType();
4218
4219  if (VT == SVT)
4220    return getStore(Chain, dl, Val, Ptr, MMO);
4221
4222  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4223         "Should only be a truncating store, not extending!");
4224  assert(VT.isInteger() == SVT.isInteger() &&
4225         "Can't do FP-INT conversion!");
4226  assert(VT.isVector() == SVT.isVector() &&
4227         "Cannot use trunc store to convert to or from a vector!");
4228  assert((!VT.isVector() ||
4229          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4230         "Cannot use trunc store to change the number of vector elements!");
4231
4232  SDVTList VTs = getVTList(MVT::Other);
4233  SDValue Undef = getUNDEF(Ptr.getValueType());
4234  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4235  FoldingSetNodeID ID;
4236  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4237  ID.AddInteger(SVT.getRawBits());
4238  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4239                                     MMO->isNonTemporal()));
4240  void *IP = 0;
4241  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4242    cast<StoreSDNode>(E)->refineAlignment(MMO);
4243    return SDValue(E, 0);
4244  }
4245  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4246                                              true, SVT, MMO);
4247  CSEMap.InsertNode(N, IP);
4248  AllNodes.push_back(N);
4249  return SDValue(N, 0);
4250}
4251
4252SDValue
4253SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4254                              SDValue Offset, ISD::MemIndexedMode AM) {
4255  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4256  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4257         "Store is already a indexed store!");
4258  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4259  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4260  FoldingSetNodeID ID;
4261  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4262  ID.AddInteger(ST->getMemoryVT().getRawBits());
4263  ID.AddInteger(ST->getRawSubclassData());
4264  void *IP = 0;
4265  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4266    return SDValue(E, 0);
4267
4268  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4269                                              ST->isTruncatingStore(),
4270                                              ST->getMemoryVT(),
4271                                              ST->getMemOperand());
4272  CSEMap.InsertNode(N, IP);
4273  AllNodes.push_back(N);
4274  return SDValue(N, 0);
4275}
4276
4277SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4278                               SDValue Chain, SDValue Ptr,
4279                               SDValue SV,
4280                               unsigned Align) {
4281  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4282  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4283}
4284
4285SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4286                              const SDUse *Ops, unsigned NumOps) {
4287  switch (NumOps) {
4288  case 0: return getNode(Opcode, DL, VT);
4289  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4290  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4291  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4292  default: break;
4293  }
4294
4295  // Copy from an SDUse array into an SDValue array for use with
4296  // the regular getNode logic.
4297  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4298  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4299}
4300
4301SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4302                              const SDValue *Ops, unsigned NumOps) {
4303  switch (NumOps) {
4304  case 0: return getNode(Opcode, DL, VT);
4305  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4306  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4307  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4308  default: break;
4309  }
4310
4311  switch (Opcode) {
4312  default: break;
4313  case ISD::SELECT_CC: {
4314    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4315    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4316           "LHS and RHS of condition must have same type!");
4317    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4318           "True and False arms of SelectCC must have same type!");
4319    assert(Ops[2].getValueType() == VT &&
4320           "select_cc node must be of same type as true and false value!");
4321    break;
4322  }
4323  case ISD::BR_CC: {
4324    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4325    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4326           "LHS/RHS of comparison should match types!");
4327    break;
4328  }
4329  }
4330
4331  // Memoize nodes.
4332  SDNode *N;
4333  SDVTList VTs = getVTList(VT);
4334
4335  if (VT != MVT::Glue) {
4336    FoldingSetNodeID ID;
4337    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4338    void *IP = 0;
4339
4340    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4341      return SDValue(E, 0);
4342
4343    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4344    CSEMap.InsertNode(N, IP);
4345  } else {
4346    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4347  }
4348
4349  AllNodes.push_back(N);
4350#ifndef NDEBUG
4351  VerifySDNode(N);
4352#endif
4353  return SDValue(N, 0);
4354}
4355
4356SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4357                              const std::vector<EVT> &ResultTys,
4358                              const SDValue *Ops, unsigned NumOps) {
4359  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4360                 Ops, NumOps);
4361}
4362
4363SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4364                              const EVT *VTs, unsigned NumVTs,
4365                              const SDValue *Ops, unsigned NumOps) {
4366  if (NumVTs == 1)
4367    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4368  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4369}
4370
4371SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4372                              const SDValue *Ops, unsigned NumOps) {
4373  if (VTList.NumVTs == 1)
4374    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4375
4376#if 0
4377  switch (Opcode) {
4378  // FIXME: figure out how to safely handle things like
4379  // int foo(int x) { return 1 << (x & 255); }
4380  // int bar() { return foo(256); }
4381  case ISD::SRA_PARTS:
4382  case ISD::SRL_PARTS:
4383  case ISD::SHL_PARTS:
4384    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4385        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4386      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4387    else if (N3.getOpcode() == ISD::AND)
4388      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4389        // If the and is only masking out bits that cannot effect the shift,
4390        // eliminate the and.
4391        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4392        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4393          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4394      }
4395    break;
4396  }
4397#endif
4398
4399  // Memoize the node unless it returns a flag.
4400  SDNode *N;
4401  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4402    FoldingSetNodeID ID;
4403    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4404    void *IP = 0;
4405    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4406      return SDValue(E, 0);
4407
4408    if (NumOps == 1) {
4409      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4410    } else if (NumOps == 2) {
4411      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4412    } else if (NumOps == 3) {
4413      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4414                                            Ops[2]);
4415    } else {
4416      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4417    }
4418    CSEMap.InsertNode(N, IP);
4419  } else {
4420    if (NumOps == 1) {
4421      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4422    } else if (NumOps == 2) {
4423      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4424    } else if (NumOps == 3) {
4425      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4426                                            Ops[2]);
4427    } else {
4428      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4429    }
4430  }
4431  AllNodes.push_back(N);
4432#ifndef NDEBUG
4433  VerifySDNode(N);
4434#endif
4435  return SDValue(N, 0);
4436}
4437
4438SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4439  return getNode(Opcode, DL, VTList, 0, 0);
4440}
4441
4442SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4443                              SDValue N1) {
4444  SDValue Ops[] = { N1 };
4445  return getNode(Opcode, DL, VTList, Ops, 1);
4446}
4447
4448SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4449                              SDValue N1, SDValue N2) {
4450  SDValue Ops[] = { N1, N2 };
4451  return getNode(Opcode, DL, VTList, Ops, 2);
4452}
4453
4454SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4455                              SDValue N1, SDValue N2, SDValue N3) {
4456  SDValue Ops[] = { N1, N2, N3 };
4457  return getNode(Opcode, DL, VTList, Ops, 3);
4458}
4459
4460SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4461                              SDValue N1, SDValue N2, SDValue N3,
4462                              SDValue N4) {
4463  SDValue Ops[] = { N1, N2, N3, N4 };
4464  return getNode(Opcode, DL, VTList, Ops, 4);
4465}
4466
4467SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4468                              SDValue N1, SDValue N2, SDValue N3,
4469                              SDValue N4, SDValue N5) {
4470  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4471  return getNode(Opcode, DL, VTList, Ops, 5);
4472}
4473
4474SDVTList SelectionDAG::getVTList(EVT VT) {
4475  return makeVTList(SDNode::getValueTypeList(VT), 1);
4476}
4477
4478SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4479  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4480       E = VTList.rend(); I != E; ++I)
4481    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4482      return *I;
4483
4484  EVT *Array = Allocator.Allocate<EVT>(2);
4485  Array[0] = VT1;
4486  Array[1] = VT2;
4487  SDVTList Result = makeVTList(Array, 2);
4488  VTList.push_back(Result);
4489  return Result;
4490}
4491
4492SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4493  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4494       E = VTList.rend(); I != E; ++I)
4495    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4496                          I->VTs[2] == VT3)
4497      return *I;
4498
4499  EVT *Array = Allocator.Allocate<EVT>(3);
4500  Array[0] = VT1;
4501  Array[1] = VT2;
4502  Array[2] = VT3;
4503  SDVTList Result = makeVTList(Array, 3);
4504  VTList.push_back(Result);
4505  return Result;
4506}
4507
4508SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4509  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4510       E = VTList.rend(); I != E; ++I)
4511    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4512                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4513      return *I;
4514
4515  EVT *Array = Allocator.Allocate<EVT>(4);
4516  Array[0] = VT1;
4517  Array[1] = VT2;
4518  Array[2] = VT3;
4519  Array[3] = VT4;
4520  SDVTList Result = makeVTList(Array, 4);
4521  VTList.push_back(Result);
4522  return Result;
4523}
4524
4525SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4526  switch (NumVTs) {
4527    case 0: llvm_unreachable("Cannot have nodes without results!");
4528    case 1: return getVTList(VTs[0]);
4529    case 2: return getVTList(VTs[0], VTs[1]);
4530    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4531    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4532    default: break;
4533  }
4534
4535  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4536       E = VTList.rend(); I != E; ++I) {
4537    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4538      continue;
4539
4540    bool NoMatch = false;
4541    for (unsigned i = 2; i != NumVTs; ++i)
4542      if (VTs[i] != I->VTs[i]) {
4543        NoMatch = true;
4544        break;
4545      }
4546    if (!NoMatch)
4547      return *I;
4548  }
4549
4550  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4551  std::copy(VTs, VTs+NumVTs, Array);
4552  SDVTList Result = makeVTList(Array, NumVTs);
4553  VTList.push_back(Result);
4554  return Result;
4555}
4556
4557
4558/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4559/// specified operands.  If the resultant node already exists in the DAG,
4560/// this does not modify the specified node, instead it returns the node that
4561/// already exists.  If the resultant node does not exist in the DAG, the
4562/// input node is returned.  As a degenerate case, if you specify the same
4563/// input operands as the node already has, the input node is returned.
4564SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4565  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4566
4567  // Check to see if there is no change.
4568  if (Op == N->getOperand(0)) return N;
4569
4570  // See if the modified node already exists.
4571  void *InsertPos = 0;
4572  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4573    return Existing;
4574
4575  // Nope it doesn't.  Remove the node from its current place in the maps.
4576  if (InsertPos)
4577    if (!RemoveNodeFromCSEMaps(N))
4578      InsertPos = 0;
4579
4580  // Now we update the operands.
4581  N->OperandList[0].set(Op);
4582
4583  // If this gets put into a CSE map, add it.
4584  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4585  return N;
4586}
4587
4588SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4589  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4590
4591  // Check to see if there is no change.
4592  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4593    return N;   // No operands changed, just return the input node.
4594
4595  // See if the modified node already exists.
4596  void *InsertPos = 0;
4597  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4598    return Existing;
4599
4600  // Nope it doesn't.  Remove the node from its current place in the maps.
4601  if (InsertPos)
4602    if (!RemoveNodeFromCSEMaps(N))
4603      InsertPos = 0;
4604
4605  // Now we update the operands.
4606  if (N->OperandList[0] != Op1)
4607    N->OperandList[0].set(Op1);
4608  if (N->OperandList[1] != Op2)
4609    N->OperandList[1].set(Op2);
4610
4611  // If this gets put into a CSE map, add it.
4612  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4613  return N;
4614}
4615
4616SDNode *SelectionDAG::
4617UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4618  SDValue Ops[] = { Op1, Op2, Op3 };
4619  return UpdateNodeOperands(N, Ops, 3);
4620}
4621
4622SDNode *SelectionDAG::
4623UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4624                   SDValue Op3, SDValue Op4) {
4625  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4626  return UpdateNodeOperands(N, Ops, 4);
4627}
4628
4629SDNode *SelectionDAG::
4630UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4631                   SDValue Op3, SDValue Op4, SDValue Op5) {
4632  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4633  return UpdateNodeOperands(N, Ops, 5);
4634}
4635
4636SDNode *SelectionDAG::
4637UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4638  assert(N->getNumOperands() == NumOps &&
4639         "Update with wrong number of operands");
4640
4641  // Check to see if there is no change.
4642  bool AnyChange = false;
4643  for (unsigned i = 0; i != NumOps; ++i) {
4644    if (Ops[i] != N->getOperand(i)) {
4645      AnyChange = true;
4646      break;
4647    }
4648  }
4649
4650  // No operands changed, just return the input node.
4651  if (!AnyChange) return N;
4652
4653  // See if the modified node already exists.
4654  void *InsertPos = 0;
4655  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4656    return Existing;
4657
4658  // Nope it doesn't.  Remove the node from its current place in the maps.
4659  if (InsertPos)
4660    if (!RemoveNodeFromCSEMaps(N))
4661      InsertPos = 0;
4662
4663  // Now we update the operands.
4664  for (unsigned i = 0; i != NumOps; ++i)
4665    if (N->OperandList[i] != Ops[i])
4666      N->OperandList[i].set(Ops[i]);
4667
4668  // If this gets put into a CSE map, add it.
4669  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4670  return N;
4671}
4672
4673/// DropOperands - Release the operands and set this node to have
4674/// zero operands.
4675void SDNode::DropOperands() {
4676  // Unlike the code in MorphNodeTo that does this, we don't need to
4677  // watch for dead nodes here.
4678  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4679    SDUse &Use = *I++;
4680    Use.set(SDValue());
4681  }
4682}
4683
4684/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4685/// machine opcode.
4686///
4687SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4688                                   EVT VT) {
4689  SDVTList VTs = getVTList(VT);
4690  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4691}
4692
4693SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4694                                   EVT VT, SDValue Op1) {
4695  SDVTList VTs = getVTList(VT);
4696  SDValue Ops[] = { Op1 };
4697  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4698}
4699
4700SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4701                                   EVT VT, SDValue Op1,
4702                                   SDValue Op2) {
4703  SDVTList VTs = getVTList(VT);
4704  SDValue Ops[] = { Op1, Op2 };
4705  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4706}
4707
4708SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4709                                   EVT VT, SDValue Op1,
4710                                   SDValue Op2, SDValue Op3) {
4711  SDVTList VTs = getVTList(VT);
4712  SDValue Ops[] = { Op1, Op2, Op3 };
4713  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4714}
4715
4716SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4717                                   EVT VT, const SDValue *Ops,
4718                                   unsigned NumOps) {
4719  SDVTList VTs = getVTList(VT);
4720  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4721}
4722
4723SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4724                                   EVT VT1, EVT VT2, const SDValue *Ops,
4725                                   unsigned NumOps) {
4726  SDVTList VTs = getVTList(VT1, VT2);
4727  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4728}
4729
4730SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4731                                   EVT VT1, EVT VT2) {
4732  SDVTList VTs = getVTList(VT1, VT2);
4733  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4734}
4735
4736SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4737                                   EVT VT1, EVT VT2, EVT VT3,
4738                                   const SDValue *Ops, unsigned NumOps) {
4739  SDVTList VTs = getVTList(VT1, VT2, VT3);
4740  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4741}
4742
4743SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4744                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4745                                   const SDValue *Ops, unsigned NumOps) {
4746  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4747  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4748}
4749
4750SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4751                                   EVT VT1, EVT VT2,
4752                                   SDValue Op1) {
4753  SDVTList VTs = getVTList(VT1, VT2);
4754  SDValue Ops[] = { Op1 };
4755  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4756}
4757
4758SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4759                                   EVT VT1, EVT VT2,
4760                                   SDValue Op1, SDValue Op2) {
4761  SDVTList VTs = getVTList(VT1, VT2);
4762  SDValue Ops[] = { Op1, Op2 };
4763  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4764}
4765
4766SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4767                                   EVT VT1, EVT VT2,
4768                                   SDValue Op1, SDValue Op2,
4769                                   SDValue Op3) {
4770  SDVTList VTs = getVTList(VT1, VT2);
4771  SDValue Ops[] = { Op1, Op2, Op3 };
4772  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4773}
4774
4775SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4776                                   EVT VT1, EVT VT2, EVT VT3,
4777                                   SDValue Op1, SDValue Op2,
4778                                   SDValue Op3) {
4779  SDVTList VTs = getVTList(VT1, VT2, VT3);
4780  SDValue Ops[] = { Op1, Op2, Op3 };
4781  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4782}
4783
4784SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4785                                   SDVTList VTs, const SDValue *Ops,
4786                                   unsigned NumOps) {
4787  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4788  // Reset the NodeID to -1.
4789  N->setNodeId(-1);
4790  return N;
4791}
4792
4793/// MorphNodeTo - This *mutates* the specified node to have the specified
4794/// return type, opcode, and operands.
4795///
4796/// Note that MorphNodeTo returns the resultant node.  If there is already a
4797/// node of the specified opcode and operands, it returns that node instead of
4798/// the current one.  Note that the DebugLoc need not be the same.
4799///
4800/// Using MorphNodeTo is faster than creating a new node and swapping it in
4801/// with ReplaceAllUsesWith both because it often avoids allocating a new
4802/// node, and because it doesn't require CSE recalculation for any of
4803/// the node's users.
4804///
4805SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4806                                  SDVTList VTs, const SDValue *Ops,
4807                                  unsigned NumOps) {
4808  // If an identical node already exists, use it.
4809  void *IP = 0;
4810  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
4811    FoldingSetNodeID ID;
4812    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4813    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4814      return ON;
4815  }
4816
4817  if (!RemoveNodeFromCSEMaps(N))
4818    IP = 0;
4819
4820  // Start the morphing.
4821  N->NodeType = Opc;
4822  N->ValueList = VTs.VTs;
4823  N->NumValues = VTs.NumVTs;
4824
4825  // Clear the operands list, updating used nodes to remove this from their
4826  // use list.  Keep track of any operands that become dead as a result.
4827  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4828  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4829    SDUse &Use = *I++;
4830    SDNode *Used = Use.getNode();
4831    Use.set(SDValue());
4832    if (Used->use_empty())
4833      DeadNodeSet.insert(Used);
4834  }
4835
4836  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4837    // Initialize the memory references information.
4838    MN->setMemRefs(0, 0);
4839    // If NumOps is larger than the # of operands we can have in a
4840    // MachineSDNode, reallocate the operand list.
4841    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4842      if (MN->OperandsNeedDelete)
4843        delete[] MN->OperandList;
4844      if (NumOps > array_lengthof(MN->LocalOperands))
4845        // We're creating a final node that will live unmorphed for the
4846        // remainder of the current SelectionDAG iteration, so we can allocate
4847        // the operands directly out of a pool with no recycling metadata.
4848        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4849                         Ops, NumOps);
4850      else
4851        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4852      MN->OperandsNeedDelete = false;
4853    } else
4854      MN->InitOperands(MN->OperandList, Ops, NumOps);
4855  } else {
4856    // If NumOps is larger than the # of operands we currently have, reallocate
4857    // the operand list.
4858    if (NumOps > N->NumOperands) {
4859      if (N->OperandsNeedDelete)
4860        delete[] N->OperandList;
4861      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4862      N->OperandsNeedDelete = true;
4863    } else
4864      N->InitOperands(N->OperandList, Ops, NumOps);
4865  }
4866
4867  // Delete any nodes that are still dead after adding the uses for the
4868  // new operands.
4869  if (!DeadNodeSet.empty()) {
4870    SmallVector<SDNode *, 16> DeadNodes;
4871    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4872         E = DeadNodeSet.end(); I != E; ++I)
4873      if ((*I)->use_empty())
4874        DeadNodes.push_back(*I);
4875    RemoveDeadNodes(DeadNodes);
4876  }
4877
4878  if (IP)
4879    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4880  return N;
4881}
4882
4883
4884/// getMachineNode - These are used for target selectors to create a new node
4885/// with specified return type(s), MachineInstr opcode, and operands.
4886///
4887/// Note that getMachineNode returns the resultant node.  If there is already a
4888/// node of the specified opcode and operands, it returns that node instead of
4889/// the current one.
4890MachineSDNode *
4891SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4892  SDVTList VTs = getVTList(VT);
4893  return getMachineNode(Opcode, dl, VTs, 0, 0);
4894}
4895
4896MachineSDNode *
4897SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4898  SDVTList VTs = getVTList(VT);
4899  SDValue Ops[] = { Op1 };
4900  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4901}
4902
4903MachineSDNode *
4904SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4905                             SDValue Op1, SDValue Op2) {
4906  SDVTList VTs = getVTList(VT);
4907  SDValue Ops[] = { Op1, Op2 };
4908  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4909}
4910
4911MachineSDNode *
4912SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4913                             SDValue Op1, SDValue Op2, SDValue Op3) {
4914  SDVTList VTs = getVTList(VT);
4915  SDValue Ops[] = { Op1, Op2, Op3 };
4916  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4917}
4918
4919MachineSDNode *
4920SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4921                             const SDValue *Ops, unsigned NumOps) {
4922  SDVTList VTs = getVTList(VT);
4923  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4924}
4925
4926MachineSDNode *
4927SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4928  SDVTList VTs = getVTList(VT1, VT2);
4929  return getMachineNode(Opcode, dl, VTs, 0, 0);
4930}
4931
4932MachineSDNode *
4933SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4934                             EVT VT1, EVT VT2, SDValue Op1) {
4935  SDVTList VTs = getVTList(VT1, VT2);
4936  SDValue Ops[] = { Op1 };
4937  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4938}
4939
4940MachineSDNode *
4941SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4942                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4943  SDVTList VTs = getVTList(VT1, VT2);
4944  SDValue Ops[] = { Op1, Op2 };
4945  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4946}
4947
4948MachineSDNode *
4949SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4950                             EVT VT1, EVT VT2, SDValue Op1,
4951                             SDValue Op2, SDValue Op3) {
4952  SDVTList VTs = getVTList(VT1, VT2);
4953  SDValue Ops[] = { Op1, Op2, Op3 };
4954  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4955}
4956
4957MachineSDNode *
4958SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4959                             EVT VT1, EVT VT2,
4960                             const SDValue *Ops, unsigned NumOps) {
4961  SDVTList VTs = getVTList(VT1, VT2);
4962  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4963}
4964
4965MachineSDNode *
4966SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4967                             EVT VT1, EVT VT2, EVT VT3,
4968                             SDValue Op1, SDValue Op2) {
4969  SDVTList VTs = getVTList(VT1, VT2, VT3);
4970  SDValue Ops[] = { Op1, Op2 };
4971  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4972}
4973
4974MachineSDNode *
4975SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4976                             EVT VT1, EVT VT2, EVT VT3,
4977                             SDValue Op1, SDValue Op2, SDValue Op3) {
4978  SDVTList VTs = getVTList(VT1, VT2, VT3);
4979  SDValue Ops[] = { Op1, Op2, Op3 };
4980  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4981}
4982
4983MachineSDNode *
4984SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4985                             EVT VT1, EVT VT2, EVT VT3,
4986                             const SDValue *Ops, unsigned NumOps) {
4987  SDVTList VTs = getVTList(VT1, VT2, VT3);
4988  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4989}
4990
4991MachineSDNode *
4992SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4993                             EVT VT2, EVT VT3, EVT VT4,
4994                             const SDValue *Ops, unsigned NumOps) {
4995  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4996  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4997}
4998
4999MachineSDNode *
5000SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5001                             const std::vector<EVT> &ResultTys,
5002                             const SDValue *Ops, unsigned NumOps) {
5003  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
5004  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5005}
5006
5007MachineSDNode *
5008SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
5009                             const SDValue *Ops, unsigned NumOps) {
5010  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5011  MachineSDNode *N;
5012  void *IP = 0;
5013
5014  if (DoCSE) {
5015    FoldingSetNodeID ID;
5016    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5017    IP = 0;
5018    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5019      return cast<MachineSDNode>(E);
5020  }
5021
5022  // Allocate a new MachineSDNode.
5023  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
5024
5025  // Initialize the operands list.
5026  if (NumOps > array_lengthof(N->LocalOperands))
5027    // We're creating a final node that will live unmorphed for the
5028    // remainder of the current SelectionDAG iteration, so we can allocate
5029    // the operands directly out of a pool with no recycling metadata.
5030    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5031                    Ops, NumOps);
5032  else
5033    N->InitOperands(N->LocalOperands, Ops, NumOps);
5034  N->OperandsNeedDelete = false;
5035
5036  if (DoCSE)
5037    CSEMap.InsertNode(N, IP);
5038
5039  AllNodes.push_back(N);
5040#ifndef NDEBUG
5041  VerifyMachineNode(N);
5042#endif
5043  return N;
5044}
5045
5046/// getTargetExtractSubreg - A convenience function for creating
5047/// TargetOpcode::EXTRACT_SUBREG nodes.
5048SDValue
5049SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5050                                     SDValue Operand) {
5051  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5052  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5053                                  VT, Operand, SRIdxVal);
5054  return SDValue(Subreg, 0);
5055}
5056
5057/// getTargetInsertSubreg - A convenience function for creating
5058/// TargetOpcode::INSERT_SUBREG nodes.
5059SDValue
5060SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5061                                    SDValue Operand, SDValue Subreg) {
5062  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5063  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5064                                  VT, Operand, Subreg, SRIdxVal);
5065  return SDValue(Result, 0);
5066}
5067
5068/// getNodeIfExists - Get the specified node if it's already available, or
5069/// else return NULL.
5070SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5071                                      const SDValue *Ops, unsigned NumOps) {
5072  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5073    FoldingSetNodeID ID;
5074    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5075    void *IP = 0;
5076    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5077      return E;
5078  }
5079  return NULL;
5080}
5081
5082/// getDbgValue - Creates a SDDbgValue node.
5083///
5084SDDbgValue *
5085SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5086                          DebugLoc DL, unsigned O) {
5087  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5088}
5089
5090SDDbgValue *
5091SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5092                          DebugLoc DL, unsigned O) {
5093  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5094}
5095
5096SDDbgValue *
5097SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5098                          DebugLoc DL, unsigned O) {
5099  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5100}
5101
5102namespace {
5103
5104/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5105/// pointed to by a use iterator is deleted, increment the use iterator
5106/// so that it doesn't dangle.
5107///
5108/// This class also manages a "downlink" DAGUpdateListener, to forward
5109/// messages to ReplaceAllUsesWith's callers.
5110///
5111class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5112  SelectionDAG::DAGUpdateListener *DownLink;
5113  SDNode::use_iterator &UI;
5114  SDNode::use_iterator &UE;
5115
5116  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5117    // Increment the iterator as needed.
5118    while (UI != UE && N == *UI)
5119      ++UI;
5120
5121    // Then forward the message.
5122    if (DownLink) DownLink->NodeDeleted(N, E);
5123  }
5124
5125  virtual void NodeUpdated(SDNode *N) {
5126    // Just forward the message.
5127    if (DownLink) DownLink->NodeUpdated(N);
5128  }
5129
5130public:
5131  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5132                     SDNode::use_iterator &ui,
5133                     SDNode::use_iterator &ue)
5134    : DownLink(dl), UI(ui), UE(ue) {}
5135};
5136
5137}
5138
5139/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5140/// This can cause recursive merging of nodes in the DAG.
5141///
5142/// This version assumes From has a single result value.
5143///
5144void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5145                                      DAGUpdateListener *UpdateListener) {
5146  SDNode *From = FromN.getNode();
5147  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5148         "Cannot replace with this method!");
5149  assert(From != To.getNode() && "Cannot replace uses of with self");
5150
5151  // Iterate over all the existing uses of From. New uses will be added
5152  // to the beginning of the use list, which we avoid visiting.
5153  // This specifically avoids visiting uses of From that arise while the
5154  // replacement is happening, because any such uses would be the result
5155  // of CSE: If an existing node looks like From after one of its operands
5156  // is replaced by To, we don't want to replace of all its users with To
5157  // too. See PR3018 for more info.
5158  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5159  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5160  while (UI != UE) {
5161    SDNode *User = *UI;
5162
5163    // This node is about to morph, remove its old self from the CSE maps.
5164    RemoveNodeFromCSEMaps(User);
5165
5166    // A user can appear in a use list multiple times, and when this
5167    // happens the uses are usually next to each other in the list.
5168    // To help reduce the number of CSE recomputations, process all
5169    // the uses of this user that we can find this way.
5170    do {
5171      SDUse &Use = UI.getUse();
5172      ++UI;
5173      Use.set(To);
5174    } while (UI != UE && *UI == User);
5175
5176    // Now that we have modified User, add it back to the CSE maps.  If it
5177    // already exists there, recursively merge the results together.
5178    AddModifiedNodeToCSEMaps(User, &Listener);
5179  }
5180}
5181
5182/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5183/// This can cause recursive merging of nodes in the DAG.
5184///
5185/// This version assumes that for each value of From, there is a
5186/// corresponding value in To in the same position with the same type.
5187///
5188void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5189                                      DAGUpdateListener *UpdateListener) {
5190#ifndef NDEBUG
5191  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5192    assert((!From->hasAnyUseOfValue(i) ||
5193            From->getValueType(i) == To->getValueType(i)) &&
5194           "Cannot use this version of ReplaceAllUsesWith!");
5195#endif
5196
5197  // Handle the trivial case.
5198  if (From == To)
5199    return;
5200
5201  // Iterate over just the existing users of From. See the comments in
5202  // the ReplaceAllUsesWith above.
5203  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5204  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5205  while (UI != UE) {
5206    SDNode *User = *UI;
5207
5208    // This node is about to morph, remove its old self from the CSE maps.
5209    RemoveNodeFromCSEMaps(User);
5210
5211    // A user can appear in a use list multiple times, and when this
5212    // happens the uses are usually next to each other in the list.
5213    // To help reduce the number of CSE recomputations, process all
5214    // the uses of this user that we can find this way.
5215    do {
5216      SDUse &Use = UI.getUse();
5217      ++UI;
5218      Use.setNode(To);
5219    } while (UI != UE && *UI == User);
5220
5221    // Now that we have modified User, add it back to the CSE maps.  If it
5222    // already exists there, recursively merge the results together.
5223    AddModifiedNodeToCSEMaps(User, &Listener);
5224  }
5225}
5226
5227/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5228/// This can cause recursive merging of nodes in the DAG.
5229///
5230/// This version can replace From with any result values.  To must match the
5231/// number and types of values returned by From.
5232void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5233                                      const SDValue *To,
5234                                      DAGUpdateListener *UpdateListener) {
5235  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5236    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5237
5238  // Iterate over just the existing users of From. See the comments in
5239  // the ReplaceAllUsesWith above.
5240  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5241  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5242  while (UI != UE) {
5243    SDNode *User = *UI;
5244
5245    // This node is about to morph, remove its old self from the CSE maps.
5246    RemoveNodeFromCSEMaps(User);
5247
5248    // A user can appear in a use list multiple times, and when this
5249    // happens the uses are usually next to each other in the list.
5250    // To help reduce the number of CSE recomputations, process all
5251    // the uses of this user that we can find this way.
5252    do {
5253      SDUse &Use = UI.getUse();
5254      const SDValue &ToOp = To[Use.getResNo()];
5255      ++UI;
5256      Use.set(ToOp);
5257    } while (UI != UE && *UI == User);
5258
5259    // Now that we have modified User, add it back to the CSE maps.  If it
5260    // already exists there, recursively merge the results together.
5261    AddModifiedNodeToCSEMaps(User, &Listener);
5262  }
5263}
5264
5265/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5266/// uses of other values produced by From.getNode() alone.  The Deleted
5267/// vector is handled the same way as for ReplaceAllUsesWith.
5268void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5269                                             DAGUpdateListener *UpdateListener){
5270  // Handle the really simple, really trivial case efficiently.
5271  if (From == To) return;
5272
5273  // Handle the simple, trivial, case efficiently.
5274  if (From.getNode()->getNumValues() == 1) {
5275    ReplaceAllUsesWith(From, To, UpdateListener);
5276    return;
5277  }
5278
5279  // Iterate over just the existing users of From. See the comments in
5280  // the ReplaceAllUsesWith above.
5281  SDNode::use_iterator UI = From.getNode()->use_begin(),
5282                       UE = From.getNode()->use_end();
5283  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5284  while (UI != UE) {
5285    SDNode *User = *UI;
5286    bool UserRemovedFromCSEMaps = false;
5287
5288    // A user can appear in a use list multiple times, and when this
5289    // happens the uses are usually next to each other in the list.
5290    // To help reduce the number of CSE recomputations, process all
5291    // the uses of this user that we can find this way.
5292    do {
5293      SDUse &Use = UI.getUse();
5294
5295      // Skip uses of different values from the same node.
5296      if (Use.getResNo() != From.getResNo()) {
5297        ++UI;
5298        continue;
5299      }
5300
5301      // If this node hasn't been modified yet, it's still in the CSE maps,
5302      // so remove its old self from the CSE maps.
5303      if (!UserRemovedFromCSEMaps) {
5304        RemoveNodeFromCSEMaps(User);
5305        UserRemovedFromCSEMaps = true;
5306      }
5307
5308      ++UI;
5309      Use.set(To);
5310    } while (UI != UE && *UI == User);
5311
5312    // We are iterating over all uses of the From node, so if a use
5313    // doesn't use the specific value, no changes are made.
5314    if (!UserRemovedFromCSEMaps)
5315      continue;
5316
5317    // Now that we have modified User, add it back to the CSE maps.  If it
5318    // already exists there, recursively merge the results together.
5319    AddModifiedNodeToCSEMaps(User, &Listener);
5320  }
5321}
5322
5323namespace {
5324  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5325  /// to record information about a use.
5326  struct UseMemo {
5327    SDNode *User;
5328    unsigned Index;
5329    SDUse *Use;
5330  };
5331
5332  /// operator< - Sort Memos by User.
5333  bool operator<(const UseMemo &L, const UseMemo &R) {
5334    return (intptr_t)L.User < (intptr_t)R.User;
5335  }
5336}
5337
5338/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5339/// uses of other values produced by From.getNode() alone.  The same value
5340/// may appear in both the From and To list.  The Deleted vector is
5341/// handled the same way as for ReplaceAllUsesWith.
5342void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5343                                              const SDValue *To,
5344                                              unsigned Num,
5345                                              DAGUpdateListener *UpdateListener){
5346  // Handle the simple, trivial case efficiently.
5347  if (Num == 1)
5348    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5349
5350  // Read up all the uses and make records of them. This helps
5351  // processing new uses that are introduced during the
5352  // replacement process.
5353  SmallVector<UseMemo, 4> Uses;
5354  for (unsigned i = 0; i != Num; ++i) {
5355    unsigned FromResNo = From[i].getResNo();
5356    SDNode *FromNode = From[i].getNode();
5357    for (SDNode::use_iterator UI = FromNode->use_begin(),
5358         E = FromNode->use_end(); UI != E; ++UI) {
5359      SDUse &Use = UI.getUse();
5360      if (Use.getResNo() == FromResNo) {
5361        UseMemo Memo = { *UI, i, &Use };
5362        Uses.push_back(Memo);
5363      }
5364    }
5365  }
5366
5367  // Sort the uses, so that all the uses from a given User are together.
5368  std::sort(Uses.begin(), Uses.end());
5369
5370  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5371       UseIndex != UseIndexEnd; ) {
5372    // We know that this user uses some value of From.  If it is the right
5373    // value, update it.
5374    SDNode *User = Uses[UseIndex].User;
5375
5376    // This node is about to morph, remove its old self from the CSE maps.
5377    RemoveNodeFromCSEMaps(User);
5378
5379    // The Uses array is sorted, so all the uses for a given User
5380    // are next to each other in the list.
5381    // To help reduce the number of CSE recomputations, process all
5382    // the uses of this user that we can find this way.
5383    do {
5384      unsigned i = Uses[UseIndex].Index;
5385      SDUse &Use = *Uses[UseIndex].Use;
5386      ++UseIndex;
5387
5388      Use.set(To[i]);
5389    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5390
5391    // Now that we have modified User, add it back to the CSE maps.  If it
5392    // already exists there, recursively merge the results together.
5393    AddModifiedNodeToCSEMaps(User, UpdateListener);
5394  }
5395}
5396
5397/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5398/// based on their topological order. It returns the maximum id and a vector
5399/// of the SDNodes* in assigned order by reference.
5400unsigned SelectionDAG::AssignTopologicalOrder() {
5401
5402  unsigned DAGSize = 0;
5403
5404  // SortedPos tracks the progress of the algorithm. Nodes before it are
5405  // sorted, nodes after it are unsorted. When the algorithm completes
5406  // it is at the end of the list.
5407  allnodes_iterator SortedPos = allnodes_begin();
5408
5409  // Visit all the nodes. Move nodes with no operands to the front of
5410  // the list immediately. Annotate nodes that do have operands with their
5411  // operand count. Before we do this, the Node Id fields of the nodes
5412  // may contain arbitrary values. After, the Node Id fields for nodes
5413  // before SortedPos will contain the topological sort index, and the
5414  // Node Id fields for nodes At SortedPos and after will contain the
5415  // count of outstanding operands.
5416  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5417    SDNode *N = I++;
5418    checkForCycles(N);
5419    unsigned Degree = N->getNumOperands();
5420    if (Degree == 0) {
5421      // A node with no uses, add it to the result array immediately.
5422      N->setNodeId(DAGSize++);
5423      allnodes_iterator Q = N;
5424      if (Q != SortedPos)
5425        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5426      assert(SortedPos != AllNodes.end() && "Overran node list");
5427      ++SortedPos;
5428    } else {
5429      // Temporarily use the Node Id as scratch space for the degree count.
5430      N->setNodeId(Degree);
5431    }
5432  }
5433
5434  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5435  // such that by the time the end is reached all nodes will be sorted.
5436  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5437    SDNode *N = I;
5438    checkForCycles(N);
5439    // N is in sorted position, so all its uses have one less operand
5440    // that needs to be sorted.
5441    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5442         UI != UE; ++UI) {
5443      SDNode *P = *UI;
5444      unsigned Degree = P->getNodeId();
5445      assert(Degree != 0 && "Invalid node degree");
5446      --Degree;
5447      if (Degree == 0) {
5448        // All of P's operands are sorted, so P may sorted now.
5449        P->setNodeId(DAGSize++);
5450        if (P != SortedPos)
5451          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5452        assert(SortedPos != AllNodes.end() && "Overran node list");
5453        ++SortedPos;
5454      } else {
5455        // Update P's outstanding operand count.
5456        P->setNodeId(Degree);
5457      }
5458    }
5459    if (I == SortedPos) {
5460#ifndef NDEBUG
5461      SDNode *S = ++I;
5462      dbgs() << "Overran sorted position:\n";
5463      S->dumprFull();
5464#endif
5465      llvm_unreachable(0);
5466    }
5467  }
5468
5469  assert(SortedPos == AllNodes.end() &&
5470         "Topological sort incomplete!");
5471  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5472         "First node in topological sort is not the entry token!");
5473  assert(AllNodes.front().getNodeId() == 0 &&
5474         "First node in topological sort has non-zero id!");
5475  assert(AllNodes.front().getNumOperands() == 0 &&
5476         "First node in topological sort has operands!");
5477  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5478         "Last node in topologic sort has unexpected id!");
5479  assert(AllNodes.back().use_empty() &&
5480         "Last node in topologic sort has users!");
5481  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5482  return DAGSize;
5483}
5484
5485/// AssignOrdering - Assign an order to the SDNode.
5486void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5487  assert(SD && "Trying to assign an order to a null node!");
5488  Ordering->add(SD, Order);
5489}
5490
5491/// GetOrdering - Get the order for the SDNode.
5492unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5493  assert(SD && "Trying to get the order of a null node!");
5494  return Ordering->getOrder(SD);
5495}
5496
5497/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5498/// value is produced by SD.
5499void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5500  DbgInfo->add(DB, SD, isParameter);
5501  if (SD)
5502    SD->setHasDebugValue(true);
5503}
5504
5505/// TransferDbgValues - Transfer SDDbgValues.
5506void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5507  if (From == To || !From.getNode()->getHasDebugValue())
5508    return;
5509  SDNode *FromNode = From.getNode();
5510  SDNode *ToNode = To.getNode();
5511  SmallVector<SDDbgValue *, 2> &DVs = GetDbgValues(FromNode);
5512  SmallVector<SDDbgValue *, 2> ClonedDVs;
5513  for (SmallVector<SDDbgValue *, 2>::iterator I = DVs.begin(), E = DVs.end();
5514       I != E; ++I) {
5515    SDDbgValue *Dbg = *I;
5516    if (Dbg->getKind() == SDDbgValue::SDNODE) {
5517      SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
5518                                      Dbg->getOffset(), Dbg->getDebugLoc(),
5519                                      Dbg->getOrder());
5520      ClonedDVs.push_back(Clone);
5521    }
5522  }
5523  for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
5524         E = ClonedDVs.end(); I != E; ++I)
5525    AddDbgValue(*I, ToNode, false);
5526}
5527
5528//===----------------------------------------------------------------------===//
5529//                              SDNode Class
5530//===----------------------------------------------------------------------===//
5531
5532HandleSDNode::~HandleSDNode() {
5533  DropOperands();
5534}
5535
5536GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5537                                         const GlobalValue *GA,
5538                                         EVT VT, int64_t o, unsigned char TF)
5539  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5540  TheGlobal = GA;
5541}
5542
5543MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5544                     MachineMemOperand *mmo)
5545 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5546  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5547                                      MMO->isNonTemporal());
5548  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5549  assert(isNonTemporal() == MMO->isNonTemporal() &&
5550         "Non-temporal encoding error!");
5551  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5552}
5553
5554MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5555                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5556                     MachineMemOperand *mmo)
5557   : SDNode(Opc, dl, VTs, Ops, NumOps),
5558     MemoryVT(memvt), MMO(mmo) {
5559  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5560                                      MMO->isNonTemporal());
5561  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5562  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5563}
5564
5565/// Profile - Gather unique data for the node.
5566///
5567void SDNode::Profile(FoldingSetNodeID &ID) const {
5568  AddNodeIDNode(ID, this);
5569}
5570
5571namespace {
5572  struct EVTArray {
5573    std::vector<EVT> VTs;
5574
5575    EVTArray() {
5576      VTs.reserve(MVT::LAST_VALUETYPE);
5577      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5578        VTs.push_back(MVT((MVT::SimpleValueType)i));
5579    }
5580  };
5581}
5582
5583static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5584static ManagedStatic<EVTArray> SimpleVTArray;
5585static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5586
5587/// getValueTypeList - Return a pointer to the specified value type.
5588///
5589const EVT *SDNode::getValueTypeList(EVT VT) {
5590  if (VT.isExtended()) {
5591    sys::SmartScopedLock<true> Lock(*VTMutex);
5592    return &(*EVTs->insert(VT).first);
5593  } else {
5594    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5595           "Value type out of range!");
5596    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5597  }
5598}
5599
5600/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5601/// indicated value.  This method ignores uses of other values defined by this
5602/// operation.
5603bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5604  assert(Value < getNumValues() && "Bad value!");
5605
5606  // TODO: Only iterate over uses of a given value of the node
5607  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5608    if (UI.getUse().getResNo() == Value) {
5609      if (NUses == 0)
5610        return false;
5611      --NUses;
5612    }
5613  }
5614
5615  // Found exactly the right number of uses?
5616  return NUses == 0;
5617}
5618
5619
5620/// hasAnyUseOfValue - Return true if there are any use of the indicated
5621/// value. This method ignores uses of other values defined by this operation.
5622bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5623  assert(Value < getNumValues() && "Bad value!");
5624
5625  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5626    if (UI.getUse().getResNo() == Value)
5627      return true;
5628
5629  return false;
5630}
5631
5632
5633/// isOnlyUserOf - Return true if this node is the only use of N.
5634///
5635bool SDNode::isOnlyUserOf(SDNode *N) const {
5636  bool Seen = false;
5637  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5638    SDNode *User = *I;
5639    if (User == this)
5640      Seen = true;
5641    else
5642      return false;
5643  }
5644
5645  return Seen;
5646}
5647
5648/// isOperand - Return true if this node is an operand of N.
5649///
5650bool SDValue::isOperandOf(SDNode *N) const {
5651  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5652    if (*this == N->getOperand(i))
5653      return true;
5654  return false;
5655}
5656
5657bool SDNode::isOperandOf(SDNode *N) const {
5658  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5659    if (this == N->OperandList[i].getNode())
5660      return true;
5661  return false;
5662}
5663
5664/// reachesChainWithoutSideEffects - Return true if this operand (which must
5665/// be a chain) reaches the specified operand without crossing any
5666/// side-effecting instructions on any chain path.  In practice, this looks
5667/// through token factors and non-volatile loads.  In order to remain efficient,
5668/// this only looks a couple of nodes in, it does not do an exhaustive search.
5669bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5670                                               unsigned Depth) const {
5671  if (*this == Dest) return true;
5672
5673  // Don't search too deeply, we just want to be able to see through
5674  // TokenFactor's etc.
5675  if (Depth == 0) return false;
5676
5677  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5678  // of the operands of the TF does not reach dest, then we cannot do the xform.
5679  if (getOpcode() == ISD::TokenFactor) {
5680    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5681      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5682        return false;
5683    return true;
5684  }
5685
5686  // Loads don't have side effects, look through them.
5687  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5688    if (!Ld->isVolatile())
5689      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5690  }
5691  return false;
5692}
5693
5694/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5695/// is either an operand of N or it can be reached by traversing up the operands.
5696/// NOTE: this is an expensive method. Use it carefully.
5697bool SDNode::isPredecessorOf(SDNode *N) const {
5698  SmallPtrSet<SDNode *, 32> Visited;
5699  SmallVector<SDNode *, 16> Worklist;
5700  Worklist.push_back(N);
5701
5702  do {
5703    N = Worklist.pop_back_val();
5704    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5705      SDNode *Op = N->getOperand(i).getNode();
5706      if (Op == this)
5707        return true;
5708      if (Visited.insert(Op))
5709        Worklist.push_back(Op);
5710    }
5711  } while (!Worklist.empty());
5712
5713  return false;
5714}
5715
5716uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5717  assert(Num < NumOperands && "Invalid child # of SDNode!");
5718  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5719}
5720
5721std::string SDNode::getOperationName(const SelectionDAG *G) const {
5722  switch (getOpcode()) {
5723  default:
5724    if (getOpcode() < ISD::BUILTIN_OP_END)
5725      return "<<Unknown DAG Node>>";
5726    if (isMachineOpcode()) {
5727      if (G)
5728        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5729          if (getMachineOpcode() < TII->getNumOpcodes())
5730            return TII->get(getMachineOpcode()).getName();
5731      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5732    }
5733    if (G) {
5734      const TargetLowering &TLI = G->getTargetLoweringInfo();
5735      const char *Name = TLI.getTargetNodeName(getOpcode());
5736      if (Name) return Name;
5737      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5738    }
5739    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5740
5741#ifndef NDEBUG
5742  case ISD::DELETED_NODE:
5743    return "<<Deleted Node!>>";
5744#endif
5745  case ISD::PREFETCH:      return "Prefetch";
5746  case ISD::MEMBARRIER:    return "MemBarrier";
5747  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5748  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5749  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5750  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5751  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5752  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5753  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5754  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5755  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5756  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5757  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5758  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5759  case ISD::PCMARKER:      return "PCMarker";
5760  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5761  case ISD::SRCVALUE:      return "SrcValue";
5762  case ISD::MDNODE_SDNODE: return "MDNode";
5763  case ISD::EntryToken:    return "EntryToken";
5764  case ISD::TokenFactor:   return "TokenFactor";
5765  case ISD::AssertSext:    return "AssertSext";
5766  case ISD::AssertZext:    return "AssertZext";
5767
5768  case ISD::BasicBlock:    return "BasicBlock";
5769  case ISD::VALUETYPE:     return "ValueType";
5770  case ISD::Register:      return "Register";
5771
5772  case ISD::Constant:      return "Constant";
5773  case ISD::ConstantFP:    return "ConstantFP";
5774  case ISD::GlobalAddress: return "GlobalAddress";
5775  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5776  case ISD::FrameIndex:    return "FrameIndex";
5777  case ISD::JumpTable:     return "JumpTable";
5778  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5779  case ISD::RETURNADDR: return "RETURNADDR";
5780  case ISD::FRAMEADDR: return "FRAMEADDR";
5781  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5782  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5783  case ISD::LSDAADDR: return "LSDAADDR";
5784  case ISD::EHSELECTION: return "EHSELECTION";
5785  case ISD::EH_RETURN: return "EH_RETURN";
5786  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5787  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5788  case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5789  case ISD::ConstantPool:  return "ConstantPool";
5790  case ISD::ExternalSymbol: return "ExternalSymbol";
5791  case ISD::BlockAddress:  return "BlockAddress";
5792  case ISD::INTRINSIC_WO_CHAIN:
5793  case ISD::INTRINSIC_VOID:
5794  case ISD::INTRINSIC_W_CHAIN: {
5795    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5796    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5797    if (IID < Intrinsic::num_intrinsics)
5798      return Intrinsic::getName((Intrinsic::ID)IID);
5799    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5800      return TII->getName(IID);
5801    llvm_unreachable("Invalid intrinsic ID");
5802  }
5803
5804  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5805  case ISD::TargetConstant: return "TargetConstant";
5806  case ISD::TargetConstantFP:return "TargetConstantFP";
5807  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5808  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5809  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5810  case ISD::TargetJumpTable:  return "TargetJumpTable";
5811  case ISD::TargetConstantPool:  return "TargetConstantPool";
5812  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5813  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5814
5815  case ISD::CopyToReg:     return "CopyToReg";
5816  case ISD::CopyFromReg:   return "CopyFromReg";
5817  case ISD::UNDEF:         return "undef";
5818  case ISD::MERGE_VALUES:  return "merge_values";
5819  case ISD::INLINEASM:     return "inlineasm";
5820  case ISD::EH_LABEL:      return "eh_label";
5821  case ISD::HANDLENODE:    return "handlenode";
5822
5823  // Unary operators
5824  case ISD::FABS:   return "fabs";
5825  case ISD::FNEG:   return "fneg";
5826  case ISD::FSQRT:  return "fsqrt";
5827  case ISD::FSIN:   return "fsin";
5828  case ISD::FCOS:   return "fcos";
5829  case ISD::FTRUNC: return "ftrunc";
5830  case ISD::FFLOOR: return "ffloor";
5831  case ISD::FCEIL:  return "fceil";
5832  case ISD::FRINT:  return "frint";
5833  case ISD::FNEARBYINT: return "fnearbyint";
5834  case ISD::FEXP:   return "fexp";
5835  case ISD::FEXP2:  return "fexp2";
5836  case ISD::FLOG:   return "flog";
5837  case ISD::FLOG2:  return "flog2";
5838  case ISD::FLOG10: return "flog10";
5839
5840  // Binary operators
5841  case ISD::ADD:    return "add";
5842  case ISD::SUB:    return "sub";
5843  case ISD::MUL:    return "mul";
5844  case ISD::MULHU:  return "mulhu";
5845  case ISD::MULHS:  return "mulhs";
5846  case ISD::SDIV:   return "sdiv";
5847  case ISD::UDIV:   return "udiv";
5848  case ISD::SREM:   return "srem";
5849  case ISD::UREM:   return "urem";
5850  case ISD::SMUL_LOHI:  return "smul_lohi";
5851  case ISD::UMUL_LOHI:  return "umul_lohi";
5852  case ISD::SDIVREM:    return "sdivrem";
5853  case ISD::UDIVREM:    return "udivrem";
5854  case ISD::AND:    return "and";
5855  case ISD::OR:     return "or";
5856  case ISD::XOR:    return "xor";
5857  case ISD::SHL:    return "shl";
5858  case ISD::SRA:    return "sra";
5859  case ISD::SRL:    return "srl";
5860  case ISD::ROTL:   return "rotl";
5861  case ISD::ROTR:   return "rotr";
5862  case ISD::FADD:   return "fadd";
5863  case ISD::FSUB:   return "fsub";
5864  case ISD::FMUL:   return "fmul";
5865  case ISD::FDIV:   return "fdiv";
5866  case ISD::FREM:   return "frem";
5867  case ISD::FCOPYSIGN: return "fcopysign";
5868  case ISD::FGETSIGN:  return "fgetsign";
5869  case ISD::FPOW:   return "fpow";
5870
5871  case ISD::FPOWI:  return "fpowi";
5872  case ISD::SETCC:       return "setcc";
5873  case ISD::VSETCC:      return "vsetcc";
5874  case ISD::SELECT:      return "select";
5875  case ISD::SELECT_CC:   return "select_cc";
5876  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5877  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5878  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5879  case ISD::INSERT_SUBVECTOR:    return "insert_subvector";
5880  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5881  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5882  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5883  case ISD::CARRY_FALSE:         return "carry_false";
5884  case ISD::ADDC:        return "addc";
5885  case ISD::ADDE:        return "adde";
5886  case ISD::SADDO:       return "saddo";
5887  case ISD::UADDO:       return "uaddo";
5888  case ISD::SSUBO:       return "ssubo";
5889  case ISD::USUBO:       return "usubo";
5890  case ISD::SMULO:       return "smulo";
5891  case ISD::UMULO:       return "umulo";
5892  case ISD::SUBC:        return "subc";
5893  case ISD::SUBE:        return "sube";
5894  case ISD::SHL_PARTS:   return "shl_parts";
5895  case ISD::SRA_PARTS:   return "sra_parts";
5896  case ISD::SRL_PARTS:   return "srl_parts";
5897
5898  // Conversion operators.
5899  case ISD::SIGN_EXTEND: return "sign_extend";
5900  case ISD::ZERO_EXTEND: return "zero_extend";
5901  case ISD::ANY_EXTEND:  return "any_extend";
5902  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5903  case ISD::TRUNCATE:    return "truncate";
5904  case ISD::FP_ROUND:    return "fp_round";
5905  case ISD::FLT_ROUNDS_: return "flt_rounds";
5906  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5907  case ISD::FP_EXTEND:   return "fp_extend";
5908
5909  case ISD::SINT_TO_FP:  return "sint_to_fp";
5910  case ISD::UINT_TO_FP:  return "uint_to_fp";
5911  case ISD::FP_TO_SINT:  return "fp_to_sint";
5912  case ISD::FP_TO_UINT:  return "fp_to_uint";
5913  case ISD::BITCAST:     return "bitcast";
5914  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5915  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5916
5917  case ISD::CONVERT_RNDSAT: {
5918    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5919    default: llvm_unreachable("Unknown cvt code!");
5920    case ISD::CVT_FF:  return "cvt_ff";
5921    case ISD::CVT_FS:  return "cvt_fs";
5922    case ISD::CVT_FU:  return "cvt_fu";
5923    case ISD::CVT_SF:  return "cvt_sf";
5924    case ISD::CVT_UF:  return "cvt_uf";
5925    case ISD::CVT_SS:  return "cvt_ss";
5926    case ISD::CVT_SU:  return "cvt_su";
5927    case ISD::CVT_US:  return "cvt_us";
5928    case ISD::CVT_UU:  return "cvt_uu";
5929    }
5930  }
5931
5932    // Control flow instructions
5933  case ISD::BR:      return "br";
5934  case ISD::BRIND:   return "brind";
5935  case ISD::BR_JT:   return "br_jt";
5936  case ISD::BRCOND:  return "brcond";
5937  case ISD::BR_CC:   return "br_cc";
5938  case ISD::CALLSEQ_START:  return "callseq_start";
5939  case ISD::CALLSEQ_END:    return "callseq_end";
5940
5941    // Other operators
5942  case ISD::LOAD:               return "load";
5943  case ISD::STORE:              return "store";
5944  case ISD::VAARG:              return "vaarg";
5945  case ISD::VACOPY:             return "vacopy";
5946  case ISD::VAEND:              return "vaend";
5947  case ISD::VASTART:            return "vastart";
5948  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5949  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5950  case ISD::BUILD_PAIR:         return "build_pair";
5951  case ISD::STACKSAVE:          return "stacksave";
5952  case ISD::STACKRESTORE:       return "stackrestore";
5953  case ISD::TRAP:               return "trap";
5954
5955  // Bit manipulation
5956  case ISD::BSWAP:   return "bswap";
5957  case ISD::CTPOP:   return "ctpop";
5958  case ISD::CTTZ:    return "cttz";
5959  case ISD::CTLZ:    return "ctlz";
5960
5961  // Trampolines
5962  case ISD::TRAMPOLINE: return "trampoline";
5963
5964  case ISD::CONDCODE:
5965    switch (cast<CondCodeSDNode>(this)->get()) {
5966    default: llvm_unreachable("Unknown setcc condition!");
5967    case ISD::SETOEQ:  return "setoeq";
5968    case ISD::SETOGT:  return "setogt";
5969    case ISD::SETOGE:  return "setoge";
5970    case ISD::SETOLT:  return "setolt";
5971    case ISD::SETOLE:  return "setole";
5972    case ISD::SETONE:  return "setone";
5973
5974    case ISD::SETO:    return "seto";
5975    case ISD::SETUO:   return "setuo";
5976    case ISD::SETUEQ:  return "setue";
5977    case ISD::SETUGT:  return "setugt";
5978    case ISD::SETUGE:  return "setuge";
5979    case ISD::SETULT:  return "setult";
5980    case ISD::SETULE:  return "setule";
5981    case ISD::SETUNE:  return "setune";
5982
5983    case ISD::SETEQ:   return "seteq";
5984    case ISD::SETGT:   return "setgt";
5985    case ISD::SETGE:   return "setge";
5986    case ISD::SETLT:   return "setlt";
5987    case ISD::SETLE:   return "setle";
5988    case ISD::SETNE:   return "setne";
5989    }
5990  }
5991}
5992
5993const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5994  switch (AM) {
5995  default:
5996    return "";
5997  case ISD::PRE_INC:
5998    return "<pre-inc>";
5999  case ISD::PRE_DEC:
6000    return "<pre-dec>";
6001  case ISD::POST_INC:
6002    return "<post-inc>";
6003  case ISD::POST_DEC:
6004    return "<post-dec>";
6005  }
6006}
6007
6008std::string ISD::ArgFlagsTy::getArgFlagsString() {
6009  std::string S = "< ";
6010
6011  if (isZExt())
6012    S += "zext ";
6013  if (isSExt())
6014    S += "sext ";
6015  if (isInReg())
6016    S += "inreg ";
6017  if (isSRet())
6018    S += "sret ";
6019  if (isByVal())
6020    S += "byval ";
6021  if (isNest())
6022    S += "nest ";
6023  if (getByValAlign())
6024    S += "byval-align:" + utostr(getByValAlign()) + " ";
6025  if (getOrigAlign())
6026    S += "orig-align:" + utostr(getOrigAlign()) + " ";
6027  if (getByValSize())
6028    S += "byval-size:" + utostr(getByValSize()) + " ";
6029  return S + ">";
6030}
6031
6032void SDNode::dump() const { dump(0); }
6033void SDNode::dump(const SelectionDAG *G) const {
6034  print(dbgs(), G);
6035  dbgs() << '\n';
6036}
6037
6038void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
6039  OS << (void*)this << ": ";
6040
6041  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
6042    if (i) OS << ",";
6043    if (getValueType(i) == MVT::Other)
6044      OS << "ch";
6045    else
6046      OS << getValueType(i).getEVTString();
6047  }
6048  OS << " = " << getOperationName(G);
6049}
6050
6051void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
6052  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
6053    if (!MN->memoperands_empty()) {
6054      OS << "<";
6055      OS << "Mem:";
6056      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
6057           e = MN->memoperands_end(); i != e; ++i) {
6058        OS << **i;
6059        if (llvm::next(i) != e)
6060          OS << " ";
6061      }
6062      OS << ">";
6063    }
6064  } else if (const ShuffleVectorSDNode *SVN =
6065               dyn_cast<ShuffleVectorSDNode>(this)) {
6066    OS << "<";
6067    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
6068      int Idx = SVN->getMaskElt(i);
6069      if (i) OS << ",";
6070      if (Idx < 0)
6071        OS << "u";
6072      else
6073        OS << Idx;
6074    }
6075    OS << ">";
6076  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
6077    OS << '<' << CSDN->getAPIntValue() << '>';
6078  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
6079    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
6080      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
6081    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
6082      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
6083    else {
6084      OS << "<APFloat(";
6085      CSDN->getValueAPF().bitcastToAPInt().dump();
6086      OS << ")>";
6087    }
6088  } else if (const GlobalAddressSDNode *GADN =
6089             dyn_cast<GlobalAddressSDNode>(this)) {
6090    int64_t offset = GADN->getOffset();
6091    OS << '<';
6092    WriteAsOperand(OS, GADN->getGlobal());
6093    OS << '>';
6094    if (offset > 0)
6095      OS << " + " << offset;
6096    else
6097      OS << " " << offset;
6098    if (unsigned int TF = GADN->getTargetFlags())
6099      OS << " [TF=" << TF << ']';
6100  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
6101    OS << "<" << FIDN->getIndex() << ">";
6102  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
6103    OS << "<" << JTDN->getIndex() << ">";
6104    if (unsigned int TF = JTDN->getTargetFlags())
6105      OS << " [TF=" << TF << ']';
6106  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
6107    int offset = CP->getOffset();
6108    if (CP->isMachineConstantPoolEntry())
6109      OS << "<" << *CP->getMachineCPVal() << ">";
6110    else
6111      OS << "<" << *CP->getConstVal() << ">";
6112    if (offset > 0)
6113      OS << " + " << offset;
6114    else
6115      OS << " " << offset;
6116    if (unsigned int TF = CP->getTargetFlags())
6117      OS << " [TF=" << TF << ']';
6118  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
6119    OS << "<";
6120    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
6121    if (LBB)
6122      OS << LBB->getName() << " ";
6123    OS << (const void*)BBDN->getBasicBlock() << ">";
6124  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
6125    OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
6126  } else if (const ExternalSymbolSDNode *ES =
6127             dyn_cast<ExternalSymbolSDNode>(this)) {
6128    OS << "'" << ES->getSymbol() << "'";
6129    if (unsigned int TF = ES->getTargetFlags())
6130      OS << " [TF=" << TF << ']';
6131  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
6132    if (M->getValue())
6133      OS << "<" << M->getValue() << ">";
6134    else
6135      OS << "<null>";
6136  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
6137    if (MD->getMD())
6138      OS << "<" << MD->getMD() << ">";
6139    else
6140      OS << "<null>";
6141  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6142    OS << ":" << N->getVT().getEVTString();
6143  }
6144  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6145    OS << "<" << *LD->getMemOperand();
6146
6147    bool doExt = true;
6148    switch (LD->getExtensionType()) {
6149    default: doExt = false; break;
6150    case ISD::EXTLOAD: OS << ", anyext"; break;
6151    case ISD::SEXTLOAD: OS << ", sext"; break;
6152    case ISD::ZEXTLOAD: OS << ", zext"; break;
6153    }
6154    if (doExt)
6155      OS << " from " << LD->getMemoryVT().getEVTString();
6156
6157    const char *AM = getIndexedModeName(LD->getAddressingMode());
6158    if (*AM)
6159      OS << ", " << AM;
6160
6161    OS << ">";
6162  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6163    OS << "<" << *ST->getMemOperand();
6164
6165    if (ST->isTruncatingStore())
6166      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6167
6168    const char *AM = getIndexedModeName(ST->getAddressingMode());
6169    if (*AM)
6170      OS << ", " << AM;
6171
6172    OS << ">";
6173  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6174    OS << "<" << *M->getMemOperand() << ">";
6175  } else if (const BlockAddressSDNode *BA =
6176               dyn_cast<BlockAddressSDNode>(this)) {
6177    OS << "<";
6178    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6179    OS << ", ";
6180    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6181    OS << ">";
6182    if (unsigned int TF = BA->getTargetFlags())
6183      OS << " [TF=" << TF << ']';
6184  }
6185
6186  if (G)
6187    if (unsigned Order = G->GetOrdering(this))
6188      OS << " [ORD=" << Order << ']';
6189
6190  if (getNodeId() != -1)
6191    OS << " [ID=" << getNodeId() << ']';
6192
6193  DebugLoc dl = getDebugLoc();
6194  if (G && !dl.isUnknown()) {
6195    DIScope
6196      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6197    OS << " dbg:";
6198    // Omit the directory, since it's usually long and uninteresting.
6199    if (Scope.Verify())
6200      OS << Scope.getFilename();
6201    else
6202      OS << "<unknown>";
6203    OS << ':' << dl.getLine();
6204    if (dl.getCol() != 0)
6205      OS << ':' << dl.getCol();
6206  }
6207}
6208
6209void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6210  print_types(OS, G);
6211  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6212    if (i) OS << ", "; else OS << " ";
6213    OS << (void*)getOperand(i).getNode();
6214    if (unsigned RN = getOperand(i).getResNo())
6215      OS << ":" << RN;
6216  }
6217  print_details(OS, G);
6218}
6219
6220static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6221                                  const SelectionDAG *G, unsigned depth,
6222                                  unsigned indent)
6223{
6224  if (depth == 0)
6225    return;
6226
6227  OS.indent(indent);
6228
6229  N->print(OS, G);
6230
6231  if (depth < 1)
6232    return;
6233
6234  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6235    // Don't follow chain operands.
6236    if (N->getOperand(i).getValueType() == MVT::Other)
6237      continue;
6238    OS << '\n';
6239    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6240  }
6241}
6242
6243void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6244                            unsigned depth) const {
6245  printrWithDepthHelper(OS, this, G, depth, 0);
6246}
6247
6248void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6249  // Don't print impossibly deep things.
6250  printrWithDepth(OS, G, 10);
6251}
6252
6253void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6254  printrWithDepth(dbgs(), G, depth);
6255}
6256
6257void SDNode::dumprFull(const SelectionDAG *G) const {
6258  // Don't print impossibly deep things.
6259  dumprWithDepth(G, 10);
6260}
6261
6262static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6263  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6264    if (N->getOperand(i).getNode()->hasOneUse())
6265      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6266    else
6267      dbgs() << "\n" << std::string(indent+2, ' ')
6268           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6269
6270
6271  dbgs() << "\n";
6272  dbgs().indent(indent);
6273  N->dump(G);
6274}
6275
6276SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6277  assert(N->getNumValues() == 1 &&
6278         "Can't unroll a vector with multiple results!");
6279
6280  EVT VT = N->getValueType(0);
6281  unsigned NE = VT.getVectorNumElements();
6282  EVT EltVT = VT.getVectorElementType();
6283  DebugLoc dl = N->getDebugLoc();
6284
6285  SmallVector<SDValue, 8> Scalars;
6286  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6287
6288  // If ResNE is 0, fully unroll the vector op.
6289  if (ResNE == 0)
6290    ResNE = NE;
6291  else if (NE > ResNE)
6292    NE = ResNE;
6293
6294  unsigned i;
6295  for (i= 0; i != NE; ++i) {
6296    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6297      SDValue Operand = N->getOperand(j);
6298      EVT OperandVT = Operand.getValueType();
6299      if (OperandVT.isVector()) {
6300        // A vector operand; extract a single element.
6301        EVT OperandEltVT = OperandVT.getVectorElementType();
6302        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6303                              OperandEltVT,
6304                              Operand,
6305                              getConstant(i, TLI.getPointerTy()));
6306      } else {
6307        // A scalar operand; just use it as is.
6308        Operands[j] = Operand;
6309      }
6310    }
6311
6312    switch (N->getOpcode()) {
6313    default:
6314      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6315                                &Operands[0], Operands.size()));
6316      break;
6317    case ISD::SHL:
6318    case ISD::SRA:
6319    case ISD::SRL:
6320    case ISD::ROTL:
6321    case ISD::ROTR:
6322      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6323                                getShiftAmountOperand(Operands[0].getValueType(),
6324                                                      Operands[1])));
6325      break;
6326    case ISD::SIGN_EXTEND_INREG:
6327    case ISD::FP_ROUND_INREG: {
6328      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6329      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6330                                Operands[0],
6331                                getValueType(ExtVT)));
6332    }
6333    }
6334  }
6335
6336  for (; i < ResNE; ++i)
6337    Scalars.push_back(getUNDEF(EltVT));
6338
6339  return getNode(ISD::BUILD_VECTOR, dl,
6340                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6341                 &Scalars[0], Scalars.size());
6342}
6343
6344
6345/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6346/// location that is 'Dist' units away from the location that the 'Base' load
6347/// is loading from.
6348bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6349                                     unsigned Bytes, int Dist) const {
6350  if (LD->getChain() != Base->getChain())
6351    return false;
6352  EVT VT = LD->getValueType(0);
6353  if (VT.getSizeInBits() / 8 != Bytes)
6354    return false;
6355
6356  SDValue Loc = LD->getOperand(1);
6357  SDValue BaseLoc = Base->getOperand(1);
6358  if (Loc.getOpcode() == ISD::FrameIndex) {
6359    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6360      return false;
6361    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6362    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6363    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6364    int FS  = MFI->getObjectSize(FI);
6365    int BFS = MFI->getObjectSize(BFI);
6366    if (FS != BFS || FS != (int)Bytes) return false;
6367    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6368  }
6369
6370  // Handle X+C
6371  if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6372      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6373    return true;
6374
6375  const GlobalValue *GV1 = NULL;
6376  const GlobalValue *GV2 = NULL;
6377  int64_t Offset1 = 0;
6378  int64_t Offset2 = 0;
6379  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6380  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6381  if (isGA1 && isGA2 && GV1 == GV2)
6382    return Offset1 == (Offset2 + Dist*Bytes);
6383  return false;
6384}
6385
6386
6387/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6388/// it cannot be inferred.
6389unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6390  // If this is a GlobalAddress + cst, return the alignment.
6391  const GlobalValue *GV;
6392  int64_t GVOffset = 0;
6393  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6394    // If GV has specified alignment, then use it. Otherwise, use the preferred
6395    // alignment.
6396    unsigned Align = GV->getAlignment();
6397    if (!Align) {
6398      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6399        if (GVar->hasInitializer()) {
6400          const TargetData *TD = TLI.getTargetData();
6401          Align = TD->getPreferredAlignment(GVar);
6402        }
6403      }
6404    }
6405    return MinAlign(Align, GVOffset);
6406  }
6407
6408  // If this is a direct reference to a stack slot, use information about the
6409  // stack slot's alignment.
6410  int FrameIdx = 1 << 31;
6411  int64_t FrameOffset = 0;
6412  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6413    FrameIdx = FI->getIndex();
6414  } else if (isBaseWithConstantOffset(Ptr) &&
6415             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6416    // Handle FI+Cst
6417    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6418    FrameOffset = Ptr.getConstantOperandVal(1);
6419  }
6420
6421  if (FrameIdx != (1 << 31)) {
6422    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6423    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6424                                    FrameOffset);
6425    return FIInfoAlign;
6426  }
6427
6428  return 0;
6429}
6430
6431void SelectionDAG::dump() const {
6432  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6433
6434  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6435       I != E; ++I) {
6436    const SDNode *N = I;
6437    if (!N->hasOneUse() && N != getRoot().getNode())
6438      DumpNodes(N, 2, this);
6439  }
6440
6441  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6442
6443  dbgs() << "\n\n";
6444}
6445
6446void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6447  print_types(OS, G);
6448  print_details(OS, G);
6449}
6450
6451typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6452static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6453                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6454  if (!once.insert(N))          // If we've been here before, return now.
6455    return;
6456
6457  // Dump the current SDNode, but don't end the line yet.
6458  OS << std::string(indent, ' ');
6459  N->printr(OS, G);
6460
6461  // Having printed this SDNode, walk the children:
6462  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6463    const SDNode *child = N->getOperand(i).getNode();
6464
6465    if (i) OS << ",";
6466    OS << " ";
6467
6468    if (child->getNumOperands() == 0) {
6469      // This child has no grandchildren; print it inline right here.
6470      child->printr(OS, G);
6471      once.insert(child);
6472    } else {         // Just the address. FIXME: also print the child's opcode.
6473      OS << (void*)child;
6474      if (unsigned RN = N->getOperand(i).getResNo())
6475        OS << ":" << RN;
6476    }
6477  }
6478
6479  OS << "\n";
6480
6481  // Dump children that have grandchildren on their own line(s).
6482  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6483    const SDNode *child = N->getOperand(i).getNode();
6484    DumpNodesr(OS, child, indent+2, G, once);
6485  }
6486}
6487
6488void SDNode::dumpr() const {
6489  VisitedSDNodeSet once;
6490  DumpNodesr(dbgs(), this, 0, 0, once);
6491}
6492
6493void SDNode::dumpr(const SelectionDAG *G) const {
6494  VisitedSDNodeSet once;
6495  DumpNodesr(dbgs(), this, 0, G, once);
6496}
6497
6498
6499// getAddressSpace - Return the address space this GlobalAddress belongs to.
6500unsigned GlobalAddressSDNode::getAddressSpace() const {
6501  return getGlobal()->getType()->getAddressSpace();
6502}
6503
6504
6505const Type *ConstantPoolSDNode::getType() const {
6506  if (isMachineConstantPoolEntry())
6507    return Val.MachineCPVal->getType();
6508  return Val.ConstVal->getType();
6509}
6510
6511bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6512                                        APInt &SplatUndef,
6513                                        unsigned &SplatBitSize,
6514                                        bool &HasAnyUndefs,
6515                                        unsigned MinSplatBits,
6516                                        bool isBigEndian) {
6517  EVT VT = getValueType(0);
6518  assert(VT.isVector() && "Expected a vector type");
6519  unsigned sz = VT.getSizeInBits();
6520  if (MinSplatBits > sz)
6521    return false;
6522
6523  SplatValue = APInt(sz, 0);
6524  SplatUndef = APInt(sz, 0);
6525
6526  // Get the bits.  Bits with undefined values (when the corresponding element
6527  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6528  // in SplatValue.  If any of the values are not constant, give up and return
6529  // false.
6530  unsigned int nOps = getNumOperands();
6531  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6532  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6533
6534  for (unsigned j = 0; j < nOps; ++j) {
6535    unsigned i = isBigEndian ? nOps-1-j : j;
6536    SDValue OpVal = getOperand(i);
6537    unsigned BitPos = j * EltBitSize;
6538
6539    if (OpVal.getOpcode() == ISD::UNDEF)
6540      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6541    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6542      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6543                    zextOrTrunc(sz) << BitPos;
6544    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6545      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6546     else
6547      return false;
6548  }
6549
6550  // The build_vector is all constants or undefs.  Find the smallest element
6551  // size that splats the vector.
6552
6553  HasAnyUndefs = (SplatUndef != 0);
6554  while (sz > 8) {
6555
6556    unsigned HalfSize = sz / 2;
6557    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6558    APInt LowValue = SplatValue.trunc(HalfSize);
6559    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6560    APInt LowUndef = SplatUndef.trunc(HalfSize);
6561
6562    // If the two halves do not match (ignoring undef bits), stop here.
6563    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6564        MinSplatBits > HalfSize)
6565      break;
6566
6567    SplatValue = HighValue | LowValue;
6568    SplatUndef = HighUndef & LowUndef;
6569
6570    sz = HalfSize;
6571  }
6572
6573  SplatBitSize = sz;
6574  return true;
6575}
6576
6577bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6578  // Find the first non-undef value in the shuffle mask.
6579  unsigned i, e;
6580  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6581    /* search */;
6582
6583  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6584
6585  // Make sure all remaining elements are either undef or the same as the first
6586  // non-undef value.
6587  for (int Idx = Mask[i]; i != e; ++i)
6588    if (Mask[i] >= 0 && Mask[i] != Idx)
6589      return false;
6590  return true;
6591}
6592
6593#ifdef XDEBUG
6594static void checkForCyclesHelper(const SDNode *N,
6595                                 SmallPtrSet<const SDNode*, 32> &Visited,
6596                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6597  // If this node has already been checked, don't check it again.
6598  if (Checked.count(N))
6599    return;
6600
6601  // If a node has already been visited on this depth-first walk, reject it as
6602  // a cycle.
6603  if (!Visited.insert(N)) {
6604    dbgs() << "Offending node:\n";
6605    N->dumprFull();
6606    errs() << "Detected cycle in SelectionDAG\n";
6607    abort();
6608  }
6609
6610  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6611    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6612
6613  Checked.insert(N);
6614  Visited.erase(N);
6615}
6616#endif
6617
6618void llvm::checkForCycles(const llvm::SDNode *N) {
6619#ifdef XDEBUG
6620  assert(N && "Checking nonexistant SDNode");
6621  SmallPtrSet<const SDNode*, 32> visited;
6622  SmallPtrSet<const SDNode*, 32> checked;
6623  checkForCyclesHelper(N, visited, checked);
6624#endif
6625}
6626
6627void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6628  checkForCycles(DAG->getRoot().getNode());
6629}
6630