SelectionDAG.cpp revision 90c25d16c7db440514e86cec1843736b9bd46904
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/GlobalAlias.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CallingConv.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineModuleInfo.h"
25#include "llvm/CodeGen/PseudoSourceValue.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/ADT/SetVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringExtras.h"
37#include <algorithm>
38#include <cmath>
39using namespace llvm;
40
41/// makeVTList - Return an instance of the SDVTList struct initialized with the
42/// specified members.
43static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
44  SDVTList Res = {VTs, NumVTs};
45  return Res;
46}
47
48static const fltSemantics *MVTToAPFloatSemantics(MVT::ValueType VT) {
49  switch (VT) {
50  default: assert(0 && "Unknown FP format");
51  case MVT::f32:     return &APFloat::IEEEsingle;
52  case MVT::f64:     return &APFloat::IEEEdouble;
53  case MVT::f80:     return &APFloat::x87DoubleExtended;
54  case MVT::f128:    return &APFloat::IEEEquad;
55  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
56  }
57}
58
59SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
60
61//===----------------------------------------------------------------------===//
62//                              ConstantFPSDNode Class
63//===----------------------------------------------------------------------===//
64
65/// isExactlyValue - We don't rely on operator== working on double values, as
66/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
67/// As such, this method can be used to do an exact bit-for-bit comparison of
68/// two floating point values.
69bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
70  return Value.bitwiseIsEqual(V);
71}
72
73bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
74                                           const APFloat& Val) {
75  assert(MVT::isFloatingPoint(VT) && "Can only convert between FP types");
76
77  // PPC long double cannot be converted to any other type.
78  if (VT == MVT::ppcf128 ||
79      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
80    return false;
81
82  // convert modifies in place, so make a copy.
83  APFloat Val2 = APFloat(Val);
84  return Val2.convert(*MVTToAPFloatSemantics(VT),
85                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
86}
87
88//===----------------------------------------------------------------------===//
89//                              ISD Namespace
90//===----------------------------------------------------------------------===//
91
92/// isBuildVectorAllOnes - Return true if the specified node is a
93/// BUILD_VECTOR where all of the elements are ~0 or undef.
94bool ISD::isBuildVectorAllOnes(const SDNode *N) {
95  // Look through a bit convert.
96  if (N->getOpcode() == ISD::BIT_CONVERT)
97    N = N->getOperand(0).Val;
98
99  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
100
101  unsigned i = 0, e = N->getNumOperands();
102
103  // Skip over all of the undef values.
104  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
105    ++i;
106
107  // Do not accept an all-undef vector.
108  if (i == e) return false;
109
110  // Do not accept build_vectors that aren't all constants or which have non-~0
111  // elements.
112  SDOperand NotZero = N->getOperand(i);
113  if (isa<ConstantSDNode>(NotZero)) {
114    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
115      return false;
116  } else if (isa<ConstantFPSDNode>(NotZero)) {
117    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
118                convertToAPInt().isAllOnesValue())
119      return false;
120  } else
121    return false;
122
123  // Okay, we have at least one ~0 value, check to see if the rest match or are
124  // undefs.
125  for (++i; i != e; ++i)
126    if (N->getOperand(i) != NotZero &&
127        N->getOperand(i).getOpcode() != ISD::UNDEF)
128      return false;
129  return true;
130}
131
132
133/// isBuildVectorAllZeros - Return true if the specified node is a
134/// BUILD_VECTOR where all of the elements are 0 or undef.
135bool ISD::isBuildVectorAllZeros(const SDNode *N) {
136  // Look through a bit convert.
137  if (N->getOpcode() == ISD::BIT_CONVERT)
138    N = N->getOperand(0).Val;
139
140  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
141
142  unsigned i = 0, e = N->getNumOperands();
143
144  // Skip over all of the undef values.
145  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
146    ++i;
147
148  // Do not accept an all-undef vector.
149  if (i == e) return false;
150
151  // Do not accept build_vectors that aren't all constants or which have non-~0
152  // elements.
153  SDOperand Zero = N->getOperand(i);
154  if (isa<ConstantSDNode>(Zero)) {
155    if (!cast<ConstantSDNode>(Zero)->isNullValue())
156      return false;
157  } else if (isa<ConstantFPSDNode>(Zero)) {
158    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
159      return false;
160  } else
161    return false;
162
163  // Okay, we have at least one ~0 value, check to see if the rest match or are
164  // undefs.
165  for (++i; i != e; ++i)
166    if (N->getOperand(i) != Zero &&
167        N->getOperand(i).getOpcode() != ISD::UNDEF)
168      return false;
169  return true;
170}
171
172/// isScalarToVector - Return true if the specified node is a
173/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
174/// element is not an undef.
175bool ISD::isScalarToVector(const SDNode *N) {
176  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
177    return true;
178
179  if (N->getOpcode() != ISD::BUILD_VECTOR)
180    return false;
181  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
182    return false;
183  unsigned NumElems = N->getNumOperands();
184  for (unsigned i = 1; i < NumElems; ++i) {
185    SDOperand V = N->getOperand(i);
186    if (V.getOpcode() != ISD::UNDEF)
187      return false;
188  }
189  return true;
190}
191
192
193/// isDebugLabel - Return true if the specified node represents a debug
194/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
195/// is 0).
196bool ISD::isDebugLabel(const SDNode *N) {
197  SDOperand Zero;
198  if (N->getOpcode() == ISD::LABEL)
199    Zero = N->getOperand(2);
200  else if (N->isTargetOpcode() &&
201           N->getTargetOpcode() == TargetInstrInfo::LABEL)
202    // Chain moved to last operand.
203    Zero = N->getOperand(1);
204  else
205    return false;
206  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
207}
208
209/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
210/// when given the operation for (X op Y).
211ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
212  // To perform this operation, we just need to swap the L and G bits of the
213  // operation.
214  unsigned OldL = (Operation >> 2) & 1;
215  unsigned OldG = (Operation >> 1) & 1;
216  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
217                       (OldL << 1) |       // New G bit
218                       (OldG << 2));        // New L bit.
219}
220
221/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
222/// 'op' is a valid SetCC operation.
223ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
224  unsigned Operation = Op;
225  if (isInteger)
226    Operation ^= 7;   // Flip L, G, E bits, but not U.
227  else
228    Operation ^= 15;  // Flip all of the condition bits.
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;     // Don't let N and U bits get set.
231  return ISD::CondCode(Operation);
232}
233
234
235/// isSignedOp - For an integer comparison, return 1 if the comparison is a
236/// signed operation and 2 if the result is an unsigned comparison.  Return zero
237/// if the operation does not depend on the sign of the input (setne and seteq).
238static int isSignedOp(ISD::CondCode Opcode) {
239  switch (Opcode) {
240  default: assert(0 && "Illegal integer setcc operation!");
241  case ISD::SETEQ:
242  case ISD::SETNE: return 0;
243  case ISD::SETLT:
244  case ISD::SETLE:
245  case ISD::SETGT:
246  case ISD::SETGE: return 1;
247  case ISD::SETULT:
248  case ISD::SETULE:
249  case ISD::SETUGT:
250  case ISD::SETUGE: return 2;
251  }
252}
253
254/// getSetCCOrOperation - Return the result of a logical OR between different
255/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
256/// returns SETCC_INVALID if it is not possible to represent the resultant
257/// comparison.
258ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
259                                       bool isInteger) {
260  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
261    // Cannot fold a signed integer setcc with an unsigned integer setcc.
262    return ISD::SETCC_INVALID;
263
264  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
265
266  // If the N and U bits get set then the resultant comparison DOES suddenly
267  // care about orderedness, and is true when ordered.
268  if (Op > ISD::SETTRUE2)
269    Op &= ~16;     // Clear the U bit if the N bit is set.
270
271  // Canonicalize illegal integer setcc's.
272  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
273    Op = ISD::SETNE;
274
275  return ISD::CondCode(Op);
276}
277
278/// getSetCCAndOperation - Return the result of a logical AND between different
279/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
280/// function returns zero if it is not possible to represent the resultant
281/// comparison.
282ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
283                                        bool isInteger) {
284  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
285    // Cannot fold a signed setcc with an unsigned setcc.
286    return ISD::SETCC_INVALID;
287
288  // Combine all of the condition bits.
289  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
290
291  // Canonicalize illegal integer setcc's.
292  if (isInteger) {
293    switch (Result) {
294    default: break;
295    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
296    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
297    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
298    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
299    }
300  }
301
302  return Result;
303}
304
305const TargetMachine &SelectionDAG::getTarget() const {
306  return TLI.getTargetMachine();
307}
308
309//===----------------------------------------------------------------------===//
310//                           SDNode Profile Support
311//===----------------------------------------------------------------------===//
312
313/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
314///
315static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
316  ID.AddInteger(OpC);
317}
318
319/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
320/// solely with their pointer.
321void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
322  ID.AddPointer(VTList.VTs);
323}
324
325/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
326///
327static void AddNodeIDOperands(FoldingSetNodeID &ID,
328                              SDOperandPtr Ops, unsigned NumOps) {
329  for (; NumOps; --NumOps, ++Ops) {
330    ID.AddPointer(Ops->Val);
331    ID.AddInteger(Ops->ResNo);
332  }
333}
334
335static void AddNodeIDNode(FoldingSetNodeID &ID,
336                          unsigned short OpC, SDVTList VTList,
337                          SDOperandPtr OpList, unsigned N) {
338  AddNodeIDOpcode(ID, OpC);
339  AddNodeIDValueTypes(ID, VTList);
340  AddNodeIDOperands(ID, OpList, N);
341}
342
343
344/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
345/// data.
346static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
347  AddNodeIDOpcode(ID, N->getOpcode());
348  // Add the return value info.
349  AddNodeIDValueTypes(ID, N->getVTList());
350  // Add the operand info.
351  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
352
353  // Handle SDNode leafs with special info.
354  switch (N->getOpcode()) {
355  default: break;  // Normal nodes don't need extra info.
356  case ISD::ARG_FLAGS:
357    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
358    break;
359  case ISD::TargetConstant:
360  case ISD::Constant:
361    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
362    break;
363  case ISD::TargetConstantFP:
364  case ISD::ConstantFP: {
365    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
366    break;
367  }
368  case ISD::TargetGlobalAddress:
369  case ISD::GlobalAddress:
370  case ISD::TargetGlobalTLSAddress:
371  case ISD::GlobalTLSAddress: {
372    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
373    ID.AddPointer(GA->getGlobal());
374    ID.AddInteger(GA->getOffset());
375    break;
376  }
377  case ISD::BasicBlock:
378    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
379    break;
380  case ISD::Register:
381    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
382    break;
383  case ISD::SRCVALUE:
384    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
385    break;
386  case ISD::MEMOPERAND: {
387    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
388    ID.AddPointer(MO.getValue());
389    ID.AddInteger(MO.getFlags());
390    ID.AddInteger(MO.getOffset());
391    ID.AddInteger(MO.getSize());
392    ID.AddInteger(MO.getAlignment());
393    break;
394  }
395  case ISD::FrameIndex:
396  case ISD::TargetFrameIndex:
397    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
398    break;
399  case ISD::JumpTable:
400  case ISD::TargetJumpTable:
401    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
402    break;
403  case ISD::ConstantPool:
404  case ISD::TargetConstantPool: {
405    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
406    ID.AddInteger(CP->getAlignment());
407    ID.AddInteger(CP->getOffset());
408    if (CP->isMachineConstantPoolEntry())
409      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
410    else
411      ID.AddPointer(CP->getConstVal());
412    break;
413  }
414  case ISD::LOAD: {
415    LoadSDNode *LD = cast<LoadSDNode>(N);
416    ID.AddInteger(LD->getAddressingMode());
417    ID.AddInteger(LD->getExtensionType());
418    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
419    ID.AddInteger(LD->getAlignment());
420    ID.AddInteger(LD->isVolatile());
421    break;
422  }
423  case ISD::STORE: {
424    StoreSDNode *ST = cast<StoreSDNode>(N);
425    ID.AddInteger(ST->getAddressingMode());
426    ID.AddInteger(ST->isTruncatingStore());
427    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
428    ID.AddInteger(ST->getAlignment());
429    ID.AddInteger(ST->isVolatile());
430    break;
431  }
432  }
433}
434
435//===----------------------------------------------------------------------===//
436//                              SelectionDAG Class
437//===----------------------------------------------------------------------===//
438
439/// RemoveDeadNodes - This method deletes all unreachable nodes in the
440/// SelectionDAG.
441void SelectionDAG::RemoveDeadNodes() {
442  // Create a dummy node (which is not added to allnodes), that adds a reference
443  // to the root node, preventing it from being deleted.
444  HandleSDNode Dummy(getRoot());
445
446  SmallVector<SDNode*, 128> DeadNodes;
447
448  // Add all obviously-dead nodes to the DeadNodes worklist.
449  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
450    if (I->use_empty())
451      DeadNodes.push_back(I);
452
453  // Process the worklist, deleting the nodes and adding their uses to the
454  // worklist.
455  while (!DeadNodes.empty()) {
456    SDNode *N = DeadNodes.back();
457    DeadNodes.pop_back();
458
459    // Take the node out of the appropriate CSE map.
460    RemoveNodeFromCSEMaps(N);
461
462    // Next, brutally remove the operand list.  This is safe to do, as there are
463    // no cycles in the graph.
464    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
465      SDNode *Operand = I->getVal();
466      Operand->removeUser(std::distance(N->op_begin(), I), N);
467
468      // Now that we removed this operand, see if there are no uses of it left.
469      if (Operand->use_empty())
470        DeadNodes.push_back(Operand);
471    }
472    if (N->OperandsNeedDelete) {
473      delete[] N->OperandList;
474    }
475    N->OperandList = 0;
476    N->NumOperands = 0;
477
478    // Finally, remove N itself.
479    AllNodes.erase(N);
480  }
481
482  // If the root changed (e.g. it was a dead load, update the root).
483  setRoot(Dummy.getValue());
484}
485
486void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
487  SmallVector<SDNode*, 16> DeadNodes;
488  DeadNodes.push_back(N);
489
490  // Process the worklist, deleting the nodes and adding their uses to the
491  // worklist.
492  while (!DeadNodes.empty()) {
493    SDNode *N = DeadNodes.back();
494    DeadNodes.pop_back();
495
496    if (UpdateListener)
497      UpdateListener->NodeDeleted(N);
498
499    // Take the node out of the appropriate CSE map.
500    RemoveNodeFromCSEMaps(N);
501
502    // Next, brutally remove the operand list.  This is safe to do, as there are
503    // no cycles in the graph.
504    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
505      SDNode *Operand = I->getVal();
506      Operand->removeUser(std::distance(N->op_begin(), I), N);
507
508      // Now that we removed this operand, see if there are no uses of it left.
509      if (Operand->use_empty())
510        DeadNodes.push_back(Operand);
511    }
512    if (N->OperandsNeedDelete) {
513      delete[] N->OperandList;
514    }
515    N->OperandList = 0;
516    N->NumOperands = 0;
517
518    // Finally, remove N itself.
519    AllNodes.erase(N);
520  }
521}
522
523void SelectionDAG::DeleteNode(SDNode *N) {
524  assert(N->use_empty() && "Cannot delete a node that is not dead!");
525
526  // First take this out of the appropriate CSE map.
527  RemoveNodeFromCSEMaps(N);
528
529  // Finally, remove uses due to operands of this node, remove from the
530  // AllNodes list, and delete the node.
531  DeleteNodeNotInCSEMaps(N);
532}
533
534void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
535
536  // Remove it from the AllNodes list.
537  AllNodes.remove(N);
538
539  // Drop all of the operands and decrement used nodes use counts.
540  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
541    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
542  if (N->OperandsNeedDelete) {
543    delete[] N->OperandList;
544  }
545  N->OperandList = 0;
546  N->NumOperands = 0;
547
548  delete N;
549}
550
551/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
552/// correspond to it.  This is useful when we're about to delete or repurpose
553/// the node.  We don't want future request for structurally identical nodes
554/// to return N anymore.
555void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
556  bool Erased = false;
557  switch (N->getOpcode()) {
558  case ISD::HANDLENODE: return;  // noop.
559  case ISD::STRING:
560    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
561    break;
562  case ISD::CONDCODE:
563    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
564           "Cond code doesn't exist!");
565    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
566    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
567    break;
568  case ISD::ExternalSymbol:
569    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
570    break;
571  case ISD::TargetExternalSymbol:
572    Erased =
573      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
574    break;
575  case ISD::VALUETYPE: {
576    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
577    if (MVT::isExtendedVT(VT)) {
578      Erased = ExtendedValueTypeNodes.erase(VT);
579    } else {
580      Erased = ValueTypeNodes[VT] != 0;
581      ValueTypeNodes[VT] = 0;
582    }
583    break;
584  }
585  default:
586    // Remove it from the CSE Map.
587    Erased = CSEMap.RemoveNode(N);
588    break;
589  }
590#ifndef NDEBUG
591  // Verify that the node was actually in one of the CSE maps, unless it has a
592  // flag result (which cannot be CSE'd) or is one of the special cases that are
593  // not subject to CSE.
594  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
595      !N->isTargetOpcode()) {
596    N->dump(this);
597    cerr << "\n";
598    assert(0 && "Node is not in map!");
599  }
600#endif
601}
602
603/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
604/// has been taken out and modified in some way.  If the specified node already
605/// exists in the CSE maps, do not modify the maps, but return the existing node
606/// instead.  If it doesn't exist, add it and return null.
607///
608SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
609  assert(N->getNumOperands() && "This is a leaf node!");
610  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
611    return 0;    // Never add these nodes.
612
613  // Check that remaining values produced are not flags.
614  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
615    if (N->getValueType(i) == MVT::Flag)
616      return 0;   // Never CSE anything that produces a flag.
617
618  SDNode *New = CSEMap.GetOrInsertNode(N);
619  if (New != N) return New;  // Node already existed.
620  return 0;
621}
622
623/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
624/// were replaced with those specified.  If this node is never memoized,
625/// return null, otherwise return a pointer to the slot it would take.  If a
626/// node already exists with these operands, the slot will be non-null.
627SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
628                                           void *&InsertPos) {
629  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
630    return 0;    // Never add these nodes.
631
632  // Check that remaining values produced are not flags.
633  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
634    if (N->getValueType(i) == MVT::Flag)
635      return 0;   // Never CSE anything that produces a flag.
636
637  SDOperand Ops[] = { Op };
638  FoldingSetNodeID ID;
639  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
640  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
641}
642
643/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
644/// were replaced with those specified.  If this node is never memoized,
645/// return null, otherwise return a pointer to the slot it would take.  If a
646/// node already exists with these operands, the slot will be non-null.
647SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
648                                           SDOperand Op1, SDOperand Op2,
649                                           void *&InsertPos) {
650  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
651    return 0;    // Never add these nodes.
652
653  // Check that remaining values produced are not flags.
654  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
655    if (N->getValueType(i) == MVT::Flag)
656      return 0;   // Never CSE anything that produces a flag.
657
658  SDOperand Ops[] = { Op1, Op2 };
659  FoldingSetNodeID ID;
660  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
661  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
662}
663
664
665/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
666/// were replaced with those specified.  If this node is never memoized,
667/// return null, otherwise return a pointer to the slot it would take.  If a
668/// node already exists with these operands, the slot will be non-null.
669SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
670                                           SDOperandPtr Ops,unsigned NumOps,
671                                           void *&InsertPos) {
672  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
673    return 0;    // Never add these nodes.
674
675  // Check that remaining values produced are not flags.
676  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
677    if (N->getValueType(i) == MVT::Flag)
678      return 0;   // Never CSE anything that produces a flag.
679
680  FoldingSetNodeID ID;
681  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
682
683  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
684    ID.AddInteger(LD->getAddressingMode());
685    ID.AddInteger(LD->getExtensionType());
686    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
687    ID.AddInteger(LD->getAlignment());
688    ID.AddInteger(LD->isVolatile());
689  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
690    ID.AddInteger(ST->getAddressingMode());
691    ID.AddInteger(ST->isTruncatingStore());
692    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
693    ID.AddInteger(ST->getAlignment());
694    ID.AddInteger(ST->isVolatile());
695  }
696
697  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
698}
699
700
701SelectionDAG::~SelectionDAG() {
702  while (!AllNodes.empty()) {
703    SDNode *N = AllNodes.begin();
704    N->SetNextInBucket(0);
705    if (N->OperandsNeedDelete) {
706      delete [] N->OperandList;
707    }
708    N->OperandList = 0;
709    N->NumOperands = 0;
710    AllNodes.pop_front();
711  }
712}
713
714SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
715  if (Op.getValueType() == VT) return Op;
716  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
717                                   MVT::getSizeInBits(VT));
718  return getNode(ISD::AND, Op.getValueType(), Op,
719                 getConstant(Imm, Op.getValueType()));
720}
721
722SDOperand SelectionDAG::getString(const std::string &Val) {
723  StringSDNode *&N = StringNodes[Val];
724  if (!N) {
725    N = new StringSDNode(Val);
726    AllNodes.push_back(N);
727  }
728  return SDOperand(N, 0);
729}
730
731SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
732  MVT::ValueType EltVT =
733    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
734
735  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
736}
737
738SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
739  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
740
741  MVT::ValueType EltVT =
742    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
743
744  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
745         "APInt size does not match type size!");
746
747  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
748  FoldingSetNodeID ID;
749  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
750  ID.Add(Val);
751  void *IP = 0;
752  SDNode *N = NULL;
753  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
754    if (!MVT::isVector(VT))
755      return SDOperand(N, 0);
756  if (!N) {
757    N = new ConstantSDNode(isT, Val, EltVT);
758    CSEMap.InsertNode(N, IP);
759    AllNodes.push_back(N);
760  }
761
762  SDOperand Result(N, 0);
763  if (MVT::isVector(VT)) {
764    SmallVector<SDOperand, 8> Ops;
765    Ops.assign(MVT::getVectorNumElements(VT), Result);
766    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
767  }
768  return Result;
769}
770
771SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
772  return getConstant(Val, TLI.getPointerTy(), isTarget);
773}
774
775
776SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
777                                      bool isTarget) {
778  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
779
780  MVT::ValueType EltVT =
781    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
782
783  // Do the map lookup using the actual bit pattern for the floating point
784  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
785  // we don't have issues with SNANs.
786  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
787  FoldingSetNodeID ID;
788  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
789  ID.Add(V);
790  void *IP = 0;
791  SDNode *N = NULL;
792  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
793    if (!MVT::isVector(VT))
794      return SDOperand(N, 0);
795  if (!N) {
796    N = new ConstantFPSDNode(isTarget, V, EltVT);
797    CSEMap.InsertNode(N, IP);
798    AllNodes.push_back(N);
799  }
800
801  SDOperand Result(N, 0);
802  if (MVT::isVector(VT)) {
803    SmallVector<SDOperand, 8> Ops;
804    Ops.assign(MVT::getVectorNumElements(VT), Result);
805    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
806  }
807  return Result;
808}
809
810SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
811                                      bool isTarget) {
812  MVT::ValueType EltVT =
813    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
814  if (EltVT==MVT::f32)
815    return getConstantFP(APFloat((float)Val), VT, isTarget);
816  else
817    return getConstantFP(APFloat(Val), VT, isTarget);
818}
819
820SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
821                                         MVT::ValueType VT, int Offset,
822                                         bool isTargetGA) {
823  unsigned Opc;
824
825  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
826  if (!GVar) {
827    // If GV is an alias then use the aliasee for determining thread-localness.
828    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
829      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
830  }
831
832  if (GVar && GVar->isThreadLocal())
833    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
834  else
835    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
836
837  FoldingSetNodeID ID;
838  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
839  ID.AddPointer(GV);
840  ID.AddInteger(Offset);
841  void *IP = 0;
842  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
843   return SDOperand(E, 0);
844  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
845  CSEMap.InsertNode(N, IP);
846  AllNodes.push_back(N);
847  return SDOperand(N, 0);
848}
849
850SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
851                                      bool isTarget) {
852  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
853  FoldingSetNodeID ID;
854  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
855  ID.AddInteger(FI);
856  void *IP = 0;
857  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
858    return SDOperand(E, 0);
859  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
860  CSEMap.InsertNode(N, IP);
861  AllNodes.push_back(N);
862  return SDOperand(N, 0);
863}
864
865SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
866  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
867  FoldingSetNodeID ID;
868  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
869  ID.AddInteger(JTI);
870  void *IP = 0;
871  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
872    return SDOperand(E, 0);
873  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
874  CSEMap.InsertNode(N, IP);
875  AllNodes.push_back(N);
876  return SDOperand(N, 0);
877}
878
879SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
880                                        unsigned Alignment, int Offset,
881                                        bool isTarget) {
882  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
883  FoldingSetNodeID ID;
884  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
885  ID.AddInteger(Alignment);
886  ID.AddInteger(Offset);
887  ID.AddPointer(C);
888  void *IP = 0;
889  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
890    return SDOperand(E, 0);
891  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
892  CSEMap.InsertNode(N, IP);
893  AllNodes.push_back(N);
894  return SDOperand(N, 0);
895}
896
897
898SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
899                                        MVT::ValueType VT,
900                                        unsigned Alignment, int Offset,
901                                        bool isTarget) {
902  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
903  FoldingSetNodeID ID;
904  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
905  ID.AddInteger(Alignment);
906  ID.AddInteger(Offset);
907  C->AddSelectionDAGCSEId(ID);
908  void *IP = 0;
909  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
910    return SDOperand(E, 0);
911  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
912  CSEMap.InsertNode(N, IP);
913  AllNodes.push_back(N);
914  return SDOperand(N, 0);
915}
916
917
918SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
919  FoldingSetNodeID ID;
920  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), (SDOperand*)0, 0);
921  ID.AddPointer(MBB);
922  void *IP = 0;
923  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
924    return SDOperand(E, 0);
925  SDNode *N = new BasicBlockSDNode(MBB);
926  CSEMap.InsertNode(N, IP);
927  AllNodes.push_back(N);
928  return SDOperand(N, 0);
929}
930
931SDOperand SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
932  FoldingSetNodeID ID;
933  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), (SDOperand*)0, 0);
934  ID.AddInteger(Flags.getRawBits());
935  void *IP = 0;
936  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
937    return SDOperand(E, 0);
938  SDNode *N = new ARG_FLAGSSDNode(Flags);
939  CSEMap.InsertNode(N, IP);
940  AllNodes.push_back(N);
941  return SDOperand(N, 0);
942}
943
944SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
945  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
946    ValueTypeNodes.resize(VT+1);
947
948  SDNode *&N = MVT::isExtendedVT(VT) ?
949    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
950
951  if (N) return SDOperand(N, 0);
952  N = new VTSDNode(VT);
953  AllNodes.push_back(N);
954  return SDOperand(N, 0);
955}
956
957SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
958  SDNode *&N = ExternalSymbols[Sym];
959  if (N) return SDOperand(N, 0);
960  N = new ExternalSymbolSDNode(false, Sym, VT);
961  AllNodes.push_back(N);
962  return SDOperand(N, 0);
963}
964
965SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
966                                                MVT::ValueType VT) {
967  SDNode *&N = TargetExternalSymbols[Sym];
968  if (N) return SDOperand(N, 0);
969  N = new ExternalSymbolSDNode(true, Sym, VT);
970  AllNodes.push_back(N);
971  return SDOperand(N, 0);
972}
973
974SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
975  if ((unsigned)Cond >= CondCodeNodes.size())
976    CondCodeNodes.resize(Cond+1);
977
978  if (CondCodeNodes[Cond] == 0) {
979    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
980    AllNodes.push_back(CondCodeNodes[Cond]);
981  }
982  return SDOperand(CondCodeNodes[Cond], 0);
983}
984
985SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
986  FoldingSetNodeID ID;
987  AddNodeIDNode(ID, ISD::Register, getVTList(VT), (SDOperand*)0, 0);
988  ID.AddInteger(RegNo);
989  void *IP = 0;
990  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
991    return SDOperand(E, 0);
992  SDNode *N = new RegisterSDNode(RegNo, VT);
993  CSEMap.InsertNode(N, IP);
994  AllNodes.push_back(N);
995  return SDOperand(N, 0);
996}
997
998SDOperand SelectionDAG::getSrcValue(const Value *V) {
999  assert((!V || isa<PointerType>(V->getType())) &&
1000         "SrcValue is not a pointer?");
1001
1002  FoldingSetNodeID ID;
1003  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), (SDOperand*)0, 0);
1004  ID.AddPointer(V);
1005
1006  void *IP = 0;
1007  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1008    return SDOperand(E, 0);
1009
1010  SDNode *N = new SrcValueSDNode(V);
1011  CSEMap.InsertNode(N, IP);
1012  AllNodes.push_back(N);
1013  return SDOperand(N, 0);
1014}
1015
1016SDOperand SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1017  const Value *v = MO.getValue();
1018  assert((!v || isa<PointerType>(v->getType())) &&
1019         "SrcValue is not a pointer?");
1020
1021  FoldingSetNodeID ID;
1022  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), (SDOperand*)0, 0);
1023  ID.AddPointer(v);
1024  ID.AddInteger(MO.getFlags());
1025  ID.AddInteger(MO.getOffset());
1026  ID.AddInteger(MO.getSize());
1027  ID.AddInteger(MO.getAlignment());
1028
1029  void *IP = 0;
1030  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1031    return SDOperand(E, 0);
1032
1033  SDNode *N = new MemOperandSDNode(MO);
1034  CSEMap.InsertNode(N, IP);
1035  AllNodes.push_back(N);
1036  return SDOperand(N, 0);
1037}
1038
1039/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1040/// specified value type.
1041SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
1042  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1043  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1044  const Type *Ty = MVT::getTypeForValueType(VT);
1045  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1046  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1047  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1048}
1049
1050
1051SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1052                                  SDOperand N2, ISD::CondCode Cond) {
1053  // These setcc operations always fold.
1054  switch (Cond) {
1055  default: break;
1056  case ISD::SETFALSE:
1057  case ISD::SETFALSE2: return getConstant(0, VT);
1058  case ISD::SETTRUE:
1059  case ISD::SETTRUE2:  return getConstant(1, VT);
1060
1061  case ISD::SETOEQ:
1062  case ISD::SETOGT:
1063  case ISD::SETOGE:
1064  case ISD::SETOLT:
1065  case ISD::SETOLE:
1066  case ISD::SETONE:
1067  case ISD::SETO:
1068  case ISD::SETUO:
1069  case ISD::SETUEQ:
1070  case ISD::SETUNE:
1071    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1072    break;
1073  }
1074
1075  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1076    const APInt &C2 = N2C->getAPIntValue();
1077    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1078      const APInt &C1 = N1C->getAPIntValue();
1079
1080      switch (Cond) {
1081      default: assert(0 && "Unknown integer setcc!");
1082      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1083      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1084      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1085      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1086      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1087      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1088      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1089      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1090      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1091      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1092      }
1093    }
1094  }
1095  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1096    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1097      // No compile time operations on this type yet.
1098      if (N1C->getValueType(0) == MVT::ppcf128)
1099        return SDOperand();
1100
1101      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1102      switch (Cond) {
1103      default: break;
1104      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1105                          return getNode(ISD::UNDEF, VT);
1106                        // fall through
1107      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1108      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1109                          return getNode(ISD::UNDEF, VT);
1110                        // fall through
1111      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1112                                           R==APFloat::cmpLessThan, VT);
1113      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1114                          return getNode(ISD::UNDEF, VT);
1115                        // fall through
1116      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1117      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1118                          return getNode(ISD::UNDEF, VT);
1119                        // fall through
1120      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1121      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1122                          return getNode(ISD::UNDEF, VT);
1123                        // fall through
1124      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1125                                           R==APFloat::cmpEqual, VT);
1126      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1127                          return getNode(ISD::UNDEF, VT);
1128                        // fall through
1129      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1130                                           R==APFloat::cmpEqual, VT);
1131      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1132      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1133      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1134                                           R==APFloat::cmpEqual, VT);
1135      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1136      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1137                                           R==APFloat::cmpLessThan, VT);
1138      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1139                                           R==APFloat::cmpUnordered, VT);
1140      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1141      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1142      }
1143    } else {
1144      // Ensure that the constant occurs on the RHS.
1145      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1146    }
1147  }
1148
1149  // Could not fold it.
1150  return SDOperand();
1151}
1152
1153/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1154/// use this predicate to simplify operations downstream.
1155bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1156  unsigned BitWidth = Op.getValueSizeInBits();
1157  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1158}
1159
1160/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1161/// this predicate to simplify operations downstream.  Mask is known to be zero
1162/// for bits that V cannot have.
1163bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1164                                     unsigned Depth) const {
1165  APInt KnownZero, KnownOne;
1166  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1167  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1168  return (KnownZero & Mask) == Mask;
1169}
1170
1171/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1172/// known to be either zero or one and return them in the KnownZero/KnownOne
1173/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1174/// processing.
1175void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1176                                     APInt &KnownZero, APInt &KnownOne,
1177                                     unsigned Depth) const {
1178  unsigned BitWidth = Mask.getBitWidth();
1179  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1180         "Mask size mismatches value type size!");
1181
1182  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1183  if (Depth == 6 || Mask == 0)
1184    return;  // Limit search depth.
1185
1186  APInt KnownZero2, KnownOne2;
1187
1188  switch (Op.getOpcode()) {
1189  case ISD::Constant:
1190    // We know all of the bits for a constant!
1191    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1192    KnownZero = ~KnownOne & Mask;
1193    return;
1194  case ISD::AND:
1195    // If either the LHS or the RHS are Zero, the result is zero.
1196    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1197    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1198                      KnownZero2, KnownOne2, Depth+1);
1199    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1200    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1201
1202    // Output known-1 bits are only known if set in both the LHS & RHS.
1203    KnownOne &= KnownOne2;
1204    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1205    KnownZero |= KnownZero2;
1206    return;
1207  case ISD::OR:
1208    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1209    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1210                      KnownZero2, KnownOne2, Depth+1);
1211    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1212    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1213
1214    // Output known-0 bits are only known if clear in both the LHS & RHS.
1215    KnownZero &= KnownZero2;
1216    // Output known-1 are known to be set if set in either the LHS | RHS.
1217    KnownOne |= KnownOne2;
1218    return;
1219  case ISD::XOR: {
1220    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1221    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1222    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1223    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1224
1225    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1226    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1227    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1228    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1229    KnownZero = KnownZeroOut;
1230    return;
1231  }
1232  case ISD::SELECT:
1233    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1234    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1235    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1236    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1237
1238    // Only known if known in both the LHS and RHS.
1239    KnownOne &= KnownOne2;
1240    KnownZero &= KnownZero2;
1241    return;
1242  case ISD::SELECT_CC:
1243    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1244    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1245    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1246    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1247
1248    // Only known if known in both the LHS and RHS.
1249    KnownOne &= KnownOne2;
1250    KnownZero &= KnownZero2;
1251    return;
1252  case ISD::SETCC:
1253    // If we know the result of a setcc has the top bits zero, use this info.
1254    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1255        BitWidth > 1)
1256      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1257    return;
1258  case ISD::SHL:
1259    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1260    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1261      unsigned ShAmt = SA->getValue();
1262
1263      // If the shift count is an invalid immediate, don't do anything.
1264      if (ShAmt >= BitWidth)
1265        return;
1266
1267      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1268                        KnownZero, KnownOne, Depth+1);
1269      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1270      KnownZero <<= ShAmt;
1271      KnownOne  <<= ShAmt;
1272      // low bits known zero.
1273      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1274    }
1275    return;
1276  case ISD::SRL:
1277    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1278    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1279      unsigned ShAmt = SA->getValue();
1280
1281      // If the shift count is an invalid immediate, don't do anything.
1282      if (ShAmt >= BitWidth)
1283        return;
1284
1285      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1286                        KnownZero, KnownOne, Depth+1);
1287      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1288      KnownZero = KnownZero.lshr(ShAmt);
1289      KnownOne  = KnownOne.lshr(ShAmt);
1290
1291      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1292      KnownZero |= HighBits;  // High bits known zero.
1293    }
1294    return;
1295  case ISD::SRA:
1296    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1297      unsigned ShAmt = SA->getValue();
1298
1299      // If the shift count is an invalid immediate, don't do anything.
1300      if (ShAmt >= BitWidth)
1301        return;
1302
1303      APInt InDemandedMask = (Mask << ShAmt);
1304      // If any of the demanded bits are produced by the sign extension, we also
1305      // demand the input sign bit.
1306      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1307      if (HighBits.getBoolValue())
1308        InDemandedMask |= APInt::getSignBit(BitWidth);
1309
1310      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1311                        Depth+1);
1312      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1313      KnownZero = KnownZero.lshr(ShAmt);
1314      KnownOne  = KnownOne.lshr(ShAmt);
1315
1316      // Handle the sign bits.
1317      APInt SignBit = APInt::getSignBit(BitWidth);
1318      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1319
1320      if (KnownZero.intersects(SignBit)) {
1321        KnownZero |= HighBits;  // New bits are known zero.
1322      } else if (KnownOne.intersects(SignBit)) {
1323        KnownOne  |= HighBits;  // New bits are known one.
1324      }
1325    }
1326    return;
1327  case ISD::SIGN_EXTEND_INREG: {
1328    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1329    unsigned EBits = MVT::getSizeInBits(EVT);
1330
1331    // Sign extension.  Compute the demanded bits in the result that are not
1332    // present in the input.
1333    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1334
1335    APInt InSignBit = APInt::getSignBit(EBits);
1336    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1337
1338    // If the sign extended bits are demanded, we know that the sign
1339    // bit is demanded.
1340    InSignBit.zext(BitWidth);
1341    if (NewBits.getBoolValue())
1342      InputDemandedBits |= InSignBit;
1343
1344    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1345                      KnownZero, KnownOne, Depth+1);
1346    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1347
1348    // If the sign bit of the input is known set or clear, then we know the
1349    // top bits of the result.
1350    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1351      KnownZero |= NewBits;
1352      KnownOne  &= ~NewBits;
1353    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1354      KnownOne  |= NewBits;
1355      KnownZero &= ~NewBits;
1356    } else {                              // Input sign bit unknown
1357      KnownZero &= ~NewBits;
1358      KnownOne  &= ~NewBits;
1359    }
1360    return;
1361  }
1362  case ISD::CTTZ:
1363  case ISD::CTLZ:
1364  case ISD::CTPOP: {
1365    unsigned LowBits = Log2_32(BitWidth)+1;
1366    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1367    KnownOne  = APInt(BitWidth, 0);
1368    return;
1369  }
1370  case ISD::LOAD: {
1371    if (ISD::isZEXTLoad(Op.Val)) {
1372      LoadSDNode *LD = cast<LoadSDNode>(Op);
1373      MVT::ValueType VT = LD->getMemoryVT();
1374      unsigned MemBits = MVT::getSizeInBits(VT);
1375      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1376    }
1377    return;
1378  }
1379  case ISD::ZERO_EXTEND: {
1380    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1381    unsigned InBits = MVT::getSizeInBits(InVT);
1382    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1383    APInt InMask    = Mask;
1384    InMask.trunc(InBits);
1385    KnownZero.trunc(InBits);
1386    KnownOne.trunc(InBits);
1387    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1388    KnownZero.zext(BitWidth);
1389    KnownOne.zext(BitWidth);
1390    KnownZero |= NewBits;
1391    return;
1392  }
1393  case ISD::SIGN_EXTEND: {
1394    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1395    unsigned InBits = MVT::getSizeInBits(InVT);
1396    APInt InSignBit = APInt::getSignBit(InBits);
1397    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1398    APInt InMask = Mask;
1399    InMask.trunc(InBits);
1400
1401    // If any of the sign extended bits are demanded, we know that the sign
1402    // bit is demanded. Temporarily set this bit in the mask for our callee.
1403    if (NewBits.getBoolValue())
1404      InMask |= InSignBit;
1405
1406    KnownZero.trunc(InBits);
1407    KnownOne.trunc(InBits);
1408    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1409
1410    // Note if the sign bit is known to be zero or one.
1411    bool SignBitKnownZero = KnownZero.isNegative();
1412    bool SignBitKnownOne  = KnownOne.isNegative();
1413    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1414           "Sign bit can't be known to be both zero and one!");
1415
1416    // If the sign bit wasn't actually demanded by our caller, we don't
1417    // want it set in the KnownZero and KnownOne result values. Reset the
1418    // mask and reapply it to the result values.
1419    InMask = Mask;
1420    InMask.trunc(InBits);
1421    KnownZero &= InMask;
1422    KnownOne  &= InMask;
1423
1424    KnownZero.zext(BitWidth);
1425    KnownOne.zext(BitWidth);
1426
1427    // If the sign bit is known zero or one, the top bits match.
1428    if (SignBitKnownZero)
1429      KnownZero |= NewBits;
1430    else if (SignBitKnownOne)
1431      KnownOne  |= NewBits;
1432    return;
1433  }
1434  case ISD::ANY_EXTEND: {
1435    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1436    unsigned InBits = MVT::getSizeInBits(InVT);
1437    APInt InMask = Mask;
1438    InMask.trunc(InBits);
1439    KnownZero.trunc(InBits);
1440    KnownOne.trunc(InBits);
1441    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1442    KnownZero.zext(BitWidth);
1443    KnownOne.zext(BitWidth);
1444    return;
1445  }
1446  case ISD::TRUNCATE: {
1447    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1448    unsigned InBits = MVT::getSizeInBits(InVT);
1449    APInt InMask = Mask;
1450    InMask.zext(InBits);
1451    KnownZero.zext(InBits);
1452    KnownOne.zext(InBits);
1453    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1454    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1455    KnownZero.trunc(BitWidth);
1456    KnownOne.trunc(BitWidth);
1457    break;
1458  }
1459  case ISD::AssertZext: {
1460    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1461    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1462    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1463                      KnownOne, Depth+1);
1464    KnownZero |= (~InMask) & Mask;
1465    return;
1466  }
1467  case ISD::FGETSIGN:
1468    // All bits are zero except the low bit.
1469    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1470    return;
1471
1472  case ISD::ADD: {
1473    // If either the LHS or the RHS are Zero, the result is zero.
1474    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1475    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1476    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1477    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1478
1479    // Output known-0 bits are known if clear or set in both the low clear bits
1480    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1481    // low 3 bits clear.
1482    unsigned KnownZeroOut = std::min(KnownZero.countTrailingOnes(),
1483                                     KnownZero2.countTrailingOnes());
1484
1485    KnownZero = APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1486    KnownOne = APInt(BitWidth, 0);
1487    return;
1488  }
1489  case ISD::SUB: {
1490    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1491    if (!CLHS) return;
1492
1493    // We know that the top bits of C-X are clear if X contains less bits
1494    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1495    // positive if we can prove that X is >= 0 and < 16.
1496    if (CLHS->getAPIntValue().isNonNegative()) {
1497      unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1498      // NLZ can't be BitWidth with no sign bit
1499      APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1500      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1501
1502      // If all of the MaskV bits are known to be zero, then we know the output
1503      // top bits are zero, because we now know that the output is from [0-C].
1504      if ((KnownZero & MaskV) == MaskV) {
1505        unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1506        // Top bits known zero.
1507        KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1508        KnownOne = APInt(BitWidth, 0);   // No one bits known.
1509      } else {
1510        KnownZero = KnownOne = APInt(BitWidth, 0);  // Otherwise, nothing known.
1511      }
1512    }
1513    return;
1514  }
1515  default:
1516    // Allow the target to implement this method for its nodes.
1517    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1518  case ISD::INTRINSIC_WO_CHAIN:
1519  case ISD::INTRINSIC_W_CHAIN:
1520  case ISD::INTRINSIC_VOID:
1521      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1522    }
1523    return;
1524  }
1525}
1526
1527/// ComputeNumSignBits - Return the number of times the sign bit of the
1528/// register is replicated into the other bits.  We know that at least 1 bit
1529/// is always equal to the sign bit (itself), but other cases can give us
1530/// information.  For example, immediately after an "SRA X, 2", we know that
1531/// the top 3 bits are all equal to each other, so we return 3.
1532unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1533  MVT::ValueType VT = Op.getValueType();
1534  assert(MVT::isInteger(VT) && "Invalid VT!");
1535  unsigned VTBits = MVT::getSizeInBits(VT);
1536  unsigned Tmp, Tmp2;
1537
1538  if (Depth == 6)
1539    return 1;  // Limit search depth.
1540
1541  switch (Op.getOpcode()) {
1542  default: break;
1543  case ISD::AssertSext:
1544    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1545    return VTBits-Tmp+1;
1546  case ISD::AssertZext:
1547    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1548    return VTBits-Tmp;
1549
1550  case ISD::Constant: {
1551    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1552    // If negative, return # leading ones.
1553    if (Val.isNegative())
1554      return Val.countLeadingOnes();
1555
1556    // Return # leading zeros.
1557    return Val.countLeadingZeros();
1558  }
1559
1560  case ISD::SIGN_EXTEND:
1561    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1562    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1563
1564  case ISD::SIGN_EXTEND_INREG:
1565    // Max of the input and what this extends.
1566    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1567    Tmp = VTBits-Tmp+1;
1568
1569    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1570    return std::max(Tmp, Tmp2);
1571
1572  case ISD::SRA:
1573    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1574    // SRA X, C   -> adds C sign bits.
1575    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1576      Tmp += C->getValue();
1577      if (Tmp > VTBits) Tmp = VTBits;
1578    }
1579    return Tmp;
1580  case ISD::SHL:
1581    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1582      // shl destroys sign bits.
1583      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1584      if (C->getValue() >= VTBits ||      // Bad shift.
1585          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1586      return Tmp - C->getValue();
1587    }
1588    break;
1589  case ISD::AND:
1590  case ISD::OR:
1591  case ISD::XOR:    // NOT is handled here.
1592    // Logical binary ops preserve the number of sign bits.
1593    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1594    if (Tmp == 1) return 1;  // Early out.
1595    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1596    return std::min(Tmp, Tmp2);
1597
1598  case ISD::SELECT:
1599    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1600    if (Tmp == 1) return 1;  // Early out.
1601    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1602    return std::min(Tmp, Tmp2);
1603
1604  case ISD::SETCC:
1605    // If setcc returns 0/-1, all bits are sign bits.
1606    if (TLI.getSetCCResultContents() ==
1607        TargetLowering::ZeroOrNegativeOneSetCCResult)
1608      return VTBits;
1609    break;
1610  case ISD::ROTL:
1611  case ISD::ROTR:
1612    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1613      unsigned RotAmt = C->getValue() & (VTBits-1);
1614
1615      // Handle rotate right by N like a rotate left by 32-N.
1616      if (Op.getOpcode() == ISD::ROTR)
1617        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1618
1619      // If we aren't rotating out all of the known-in sign bits, return the
1620      // number that are left.  This handles rotl(sext(x), 1) for example.
1621      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1622      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1623    }
1624    break;
1625  case ISD::ADD:
1626    // Add can have at most one carry bit.  Thus we know that the output
1627    // is, at worst, one more bit than the inputs.
1628    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1629    if (Tmp == 1) return 1;  // Early out.
1630
1631    // Special case decrementing a value (ADD X, -1):
1632    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1633      if (CRHS->isAllOnesValue()) {
1634        APInt KnownZero, KnownOne;
1635        APInt Mask = APInt::getAllOnesValue(VTBits);
1636        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1637
1638        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1639        // sign bits set.
1640        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1641          return VTBits;
1642
1643        // If we are subtracting one from a positive number, there is no carry
1644        // out of the result.
1645        if (KnownZero.isNegative())
1646          return Tmp;
1647      }
1648
1649    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1650    if (Tmp2 == 1) return 1;
1651      return std::min(Tmp, Tmp2)-1;
1652    break;
1653
1654  case ISD::SUB:
1655    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1656    if (Tmp2 == 1) return 1;
1657
1658    // Handle NEG.
1659    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1660      if (CLHS->isNullValue()) {
1661        APInt KnownZero, KnownOne;
1662        APInt Mask = APInt::getAllOnesValue(VTBits);
1663        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1664        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1665        // sign bits set.
1666        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1667          return VTBits;
1668
1669        // If the input is known to be positive (the sign bit is known clear),
1670        // the output of the NEG has the same number of sign bits as the input.
1671        if (KnownZero.isNegative())
1672          return Tmp2;
1673
1674        // Otherwise, we treat this like a SUB.
1675      }
1676
1677    // Sub can have at most one carry bit.  Thus we know that the output
1678    // is, at worst, one more bit than the inputs.
1679    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1680    if (Tmp == 1) return 1;  // Early out.
1681      return std::min(Tmp, Tmp2)-1;
1682    break;
1683  case ISD::TRUNCATE:
1684    // FIXME: it's tricky to do anything useful for this, but it is an important
1685    // case for targets like X86.
1686    break;
1687  }
1688
1689  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1690  if (Op.getOpcode() == ISD::LOAD) {
1691    LoadSDNode *LD = cast<LoadSDNode>(Op);
1692    unsigned ExtType = LD->getExtensionType();
1693    switch (ExtType) {
1694    default: break;
1695    case ISD::SEXTLOAD:    // '17' bits known
1696      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1697      return VTBits-Tmp+1;
1698    case ISD::ZEXTLOAD:    // '16' bits known
1699      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1700      return VTBits-Tmp;
1701    }
1702  }
1703
1704  // Allow the target to implement this method for its nodes.
1705  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1706      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1707      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1708      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1709    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1710    if (NumBits > 1) return NumBits;
1711  }
1712
1713  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1714  // use this information.
1715  APInt KnownZero, KnownOne;
1716  APInt Mask = APInt::getAllOnesValue(VTBits);
1717  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1718
1719  if (KnownZero.isNegative()) {        // sign bit is 0
1720    Mask = KnownZero;
1721  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1722    Mask = KnownOne;
1723  } else {
1724    // Nothing known.
1725    return 1;
1726  }
1727
1728  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1729  // the number of identical bits in the top of the input value.
1730  Mask = ~Mask;
1731  Mask <<= Mask.getBitWidth()-VTBits;
1732  // Return # leading zeros.  We use 'min' here in case Val was zero before
1733  // shifting.  We don't want to return '64' as for an i32 "0".
1734  return std::min(VTBits, Mask.countLeadingZeros());
1735}
1736
1737
1738bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1739  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1740  if (!GA) return false;
1741  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1742  if (!GV) return false;
1743  MachineModuleInfo *MMI = getMachineModuleInfo();
1744  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1745}
1746
1747
1748/// getNode - Gets or creates the specified node.
1749///
1750SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1751  FoldingSetNodeID ID;
1752  AddNodeIDNode(ID, Opcode, getVTList(VT), (SDOperand*)0, 0);
1753  void *IP = 0;
1754  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1755    return SDOperand(E, 0);
1756  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1757  CSEMap.InsertNode(N, IP);
1758
1759  AllNodes.push_back(N);
1760  return SDOperand(N, 0);
1761}
1762
1763SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1764                                SDOperand Operand) {
1765  // Constant fold unary operations with an integer constant operand.
1766  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1767    const APInt &Val = C->getAPIntValue();
1768    unsigned BitWidth = MVT::getSizeInBits(VT);
1769    switch (Opcode) {
1770    default: break;
1771    case ISD::SIGN_EXTEND:
1772      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1773    case ISD::ANY_EXTEND:
1774    case ISD::ZERO_EXTEND:
1775    case ISD::TRUNCATE:
1776      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1777    case ISD::UINT_TO_FP:
1778    case ISD::SINT_TO_FP: {
1779      const uint64_t zero[] = {0, 0};
1780      // No compile time operations on this type.
1781      if (VT==MVT::ppcf128)
1782        break;
1783      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1784      (void)apf.convertFromAPInt(Val,
1785                                 Opcode==ISD::SINT_TO_FP,
1786                                 APFloat::rmNearestTiesToEven);
1787      return getConstantFP(apf, VT);
1788    }
1789    case ISD::BIT_CONVERT:
1790      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1791        return getConstantFP(Val.bitsToFloat(), VT);
1792      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1793        return getConstantFP(Val.bitsToDouble(), VT);
1794      break;
1795    case ISD::BSWAP:
1796      return getConstant(Val.byteSwap(), VT);
1797    case ISD::CTPOP:
1798      return getConstant(Val.countPopulation(), VT);
1799    case ISD::CTLZ:
1800      return getConstant(Val.countLeadingZeros(), VT);
1801    case ISD::CTTZ:
1802      return getConstant(Val.countTrailingZeros(), VT);
1803    }
1804  }
1805
1806  // Constant fold unary operations with a floating point constant operand.
1807  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1808    APFloat V = C->getValueAPF();    // make copy
1809    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1810      switch (Opcode) {
1811      case ISD::FNEG:
1812        V.changeSign();
1813        return getConstantFP(V, VT);
1814      case ISD::FABS:
1815        V.clearSign();
1816        return getConstantFP(V, VT);
1817      case ISD::FP_ROUND:
1818      case ISD::FP_EXTEND:
1819        // This can return overflow, underflow, or inexact; we don't care.
1820        // FIXME need to be more flexible about rounding mode.
1821        (void)V.convert(*MVTToAPFloatSemantics(VT),
1822                        APFloat::rmNearestTiesToEven);
1823        return getConstantFP(V, VT);
1824      case ISD::FP_TO_SINT:
1825      case ISD::FP_TO_UINT: {
1826        integerPart x;
1827        assert(integerPartWidth >= 64);
1828        // FIXME need to be more flexible about rounding mode.
1829        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1830                              Opcode==ISD::FP_TO_SINT,
1831                              APFloat::rmTowardZero);
1832        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1833          break;
1834        return getConstant(x, VT);
1835      }
1836      case ISD::BIT_CONVERT:
1837        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1838          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1839        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1840          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1841        break;
1842      }
1843    }
1844  }
1845
1846  unsigned OpOpcode = Operand.Val->getOpcode();
1847  switch (Opcode) {
1848  case ISD::TokenFactor:
1849  case ISD::MERGE_VALUES:
1850    return Operand;         // Factor or merge of one node?  No need.
1851  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1852  case ISD::FP_EXTEND:
1853    assert(MVT::isFloatingPoint(VT) &&
1854           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1855    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1856    if (Operand.getOpcode() == ISD::UNDEF)
1857      return getNode(ISD::UNDEF, VT);
1858    break;
1859  case ISD::SIGN_EXTEND:
1860    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1861           "Invalid SIGN_EXTEND!");
1862    if (Operand.getValueType() == VT) return Operand;   // noop extension
1863    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1864           && "Invalid sext node, dst < src!");
1865    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1866      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1867    break;
1868  case ISD::ZERO_EXTEND:
1869    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1870           "Invalid ZERO_EXTEND!");
1871    if (Operand.getValueType() == VT) return Operand;   // noop extension
1872    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1873           && "Invalid zext node, dst < src!");
1874    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1875      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1876    break;
1877  case ISD::ANY_EXTEND:
1878    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1879           "Invalid ANY_EXTEND!");
1880    if (Operand.getValueType() == VT) return Operand;   // noop extension
1881    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1882           && "Invalid anyext node, dst < src!");
1883    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1884      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1885      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1886    break;
1887  case ISD::TRUNCATE:
1888    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1889           "Invalid TRUNCATE!");
1890    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1891    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1892           && "Invalid truncate node, src < dst!");
1893    if (OpOpcode == ISD::TRUNCATE)
1894      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1895    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1896             OpOpcode == ISD::ANY_EXTEND) {
1897      // If the source is smaller than the dest, we still need an extend.
1898      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1899          < MVT::getSizeInBits(VT))
1900        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1901      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1902               > MVT::getSizeInBits(VT))
1903        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1904      else
1905        return Operand.Val->getOperand(0);
1906    }
1907    break;
1908  case ISD::BIT_CONVERT:
1909    // Basic sanity checking.
1910    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1911           && "Cannot BIT_CONVERT between types of different sizes!");
1912    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1913    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1914      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1915    if (OpOpcode == ISD::UNDEF)
1916      return getNode(ISD::UNDEF, VT);
1917    break;
1918  case ISD::SCALAR_TO_VECTOR:
1919    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1920           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1921           "Illegal SCALAR_TO_VECTOR node!");
1922    if (OpOpcode == ISD::UNDEF)
1923      return getNode(ISD::UNDEF, VT);
1924    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
1925    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
1926        isa<ConstantSDNode>(Operand.getOperand(1)) &&
1927        Operand.getConstantOperandVal(1) == 0 &&
1928        Operand.getOperand(0).getValueType() == VT)
1929      return Operand.getOperand(0);
1930    break;
1931  case ISD::FNEG:
1932    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1933      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1934                     Operand.Val->getOperand(0));
1935    if (OpOpcode == ISD::FNEG)  // --X -> X
1936      return Operand.Val->getOperand(0);
1937    break;
1938  case ISD::FABS:
1939    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1940      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1941    break;
1942  }
1943
1944  SDNode *N;
1945  SDVTList VTs = getVTList(VT);
1946  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1947    FoldingSetNodeID ID;
1948    SDOperand Ops[1] = { Operand };
1949    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1950    void *IP = 0;
1951    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1952      return SDOperand(E, 0);
1953    N = new UnarySDNode(Opcode, VTs, Operand);
1954    CSEMap.InsertNode(N, IP);
1955  } else {
1956    N = new UnarySDNode(Opcode, VTs, Operand);
1957  }
1958  AllNodes.push_back(N);
1959  return SDOperand(N, 0);
1960}
1961
1962
1963
1964SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1965                                SDOperand N1, SDOperand N2) {
1966  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1967  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1968  switch (Opcode) {
1969  default: break;
1970  case ISD::TokenFactor:
1971    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1972           N2.getValueType() == MVT::Other && "Invalid token factor!");
1973    // Fold trivial token factors.
1974    if (N1.getOpcode() == ISD::EntryToken) return N2;
1975    if (N2.getOpcode() == ISD::EntryToken) return N1;
1976    break;
1977  case ISD::AND:
1978    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1979           N1.getValueType() == VT && "Binary operator types must match!");
1980    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1981    // worth handling here.
1982    if (N2C && N2C->isNullValue())
1983      return N2;
1984    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
1985      return N1;
1986    break;
1987  case ISD::OR:
1988  case ISD::XOR:
1989    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1990           N1.getValueType() == VT && "Binary operator types must match!");
1991    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1992    // worth handling here.
1993    if (N2C && N2C->isNullValue())
1994      return N1;
1995    break;
1996  case ISD::UDIV:
1997  case ISD::UREM:
1998  case ISD::MULHU:
1999  case ISD::MULHS:
2000    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
2001    // fall through
2002  case ISD::ADD:
2003  case ISD::SUB:
2004  case ISD::MUL:
2005  case ISD::SDIV:
2006  case ISD::SREM:
2007  case ISD::FADD:
2008  case ISD::FSUB:
2009  case ISD::FMUL:
2010  case ISD::FDIV:
2011  case ISD::FREM:
2012    assert(N1.getValueType() == N2.getValueType() &&
2013           N1.getValueType() == VT && "Binary operator types must match!");
2014    break;
2015  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2016    assert(N1.getValueType() == VT &&
2017           MVT::isFloatingPoint(N1.getValueType()) &&
2018           MVT::isFloatingPoint(N2.getValueType()) &&
2019           "Invalid FCOPYSIGN!");
2020    break;
2021  case ISD::SHL:
2022  case ISD::SRA:
2023  case ISD::SRL:
2024  case ISD::ROTL:
2025  case ISD::ROTR:
2026    assert(VT == N1.getValueType() &&
2027           "Shift operators return type must be the same as their first arg");
2028    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
2029           VT != MVT::i1 && "Shifts only work on integers");
2030    break;
2031  case ISD::FP_ROUND_INREG: {
2032    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2033    assert(VT == N1.getValueType() && "Not an inreg round!");
2034    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2035           "Cannot FP_ROUND_INREG integer types");
2036    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2037           "Not rounding down!");
2038    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2039    break;
2040  }
2041  case ISD::FP_ROUND:
2042    assert(MVT::isFloatingPoint(VT) &&
2043           MVT::isFloatingPoint(N1.getValueType()) &&
2044           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2045           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2046    if (N1.getValueType() == VT) return N1;  // noop conversion.
2047    break;
2048  case ISD::AssertSext:
2049  case ISD::AssertZext: {
2050    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2051    assert(VT == N1.getValueType() && "Not an inreg extend!");
2052    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2053           "Cannot *_EXTEND_INREG FP types");
2054    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2055           "Not extending!");
2056    if (VT == EVT) return N1; // noop assertion.
2057    break;
2058  }
2059  case ISD::SIGN_EXTEND_INREG: {
2060    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2061    assert(VT == N1.getValueType() && "Not an inreg extend!");
2062    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2063           "Cannot *_EXTEND_INREG FP types");
2064    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2065           "Not extending!");
2066    if (EVT == VT) return N1;  // Not actually extending
2067
2068    if (N1C) {
2069      APInt Val = N1C->getAPIntValue();
2070      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2071      Val <<= Val.getBitWidth()-FromBits;
2072      Val = Val.ashr(Val.getBitWidth()-FromBits);
2073      return getConstant(Val, VT);
2074    }
2075    break;
2076  }
2077  case ISD::EXTRACT_VECTOR_ELT:
2078    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2079
2080    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2081    if (N1.getOpcode() == ISD::UNDEF)
2082      return getNode(ISD::UNDEF, VT);
2083
2084    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2085    // expanding copies of large vectors from registers.
2086    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2087        N1.getNumOperands() > 0) {
2088      unsigned Factor =
2089        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2090      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2091                     N1.getOperand(N2C->getValue() / Factor),
2092                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2093    }
2094
2095    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2096    // expanding large vector constants.
2097    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2098      return N1.getOperand(N2C->getValue());
2099
2100    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2101    // operations are lowered to scalars.
2102    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2103      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2104        if (IEC == N2C)
2105          return N1.getOperand(1);
2106        else
2107          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2108      }
2109    break;
2110  case ISD::EXTRACT_ELEMENT:
2111    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2112    assert(!MVT::isVector(N1.getValueType()) &&
2113           MVT::isInteger(N1.getValueType()) &&
2114           !MVT::isVector(VT) && MVT::isInteger(VT) &&
2115           "EXTRACT_ELEMENT only applies to integers!");
2116
2117    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2118    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2119    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2120    if (N1.getOpcode() == ISD::BUILD_PAIR)
2121      return N1.getOperand(N2C->getValue());
2122
2123    // EXTRACT_ELEMENT of a constant int is also very common.
2124    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2125      unsigned ElementSize = MVT::getSizeInBits(VT);
2126      unsigned Shift = ElementSize * N2C->getValue();
2127      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2128      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2129    }
2130    break;
2131  case ISD::EXTRACT_SUBVECTOR:
2132    if (N1.getValueType() == VT) // Trivial extraction.
2133      return N1;
2134    break;
2135  }
2136
2137  if (N1C) {
2138    if (N2C) {
2139      APInt C1 = N1C->getAPIntValue(), C2 = N2C->getAPIntValue();
2140      switch (Opcode) {
2141      case ISD::ADD: return getConstant(C1 + C2, VT);
2142      case ISD::SUB: return getConstant(C1 - C2, VT);
2143      case ISD::MUL: return getConstant(C1 * C2, VT);
2144      case ISD::UDIV:
2145        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2146        break;
2147      case ISD::UREM :
2148        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2149        break;
2150      case ISD::SDIV :
2151        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2152        break;
2153      case ISD::SREM :
2154        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2155        break;
2156      case ISD::AND  : return getConstant(C1 & C2, VT);
2157      case ISD::OR   : return getConstant(C1 | C2, VT);
2158      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2159      case ISD::SHL  : return getConstant(C1 << C2, VT);
2160      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2161      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2162      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2163      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2164      default: break;
2165      }
2166    } else {      // Cannonicalize constant to RHS if commutative
2167      if (isCommutativeBinOp(Opcode)) {
2168        std::swap(N1C, N2C);
2169        std::swap(N1, N2);
2170      }
2171    }
2172  }
2173
2174  // Constant fold FP operations.
2175  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2176  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2177  if (N1CFP) {
2178    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2179      // Cannonicalize constant to RHS if commutative
2180      std::swap(N1CFP, N2CFP);
2181      std::swap(N1, N2);
2182    } else if (N2CFP && VT != MVT::ppcf128) {
2183      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2184      APFloat::opStatus s;
2185      switch (Opcode) {
2186      case ISD::FADD:
2187        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2188        if (s != APFloat::opInvalidOp)
2189          return getConstantFP(V1, VT);
2190        break;
2191      case ISD::FSUB:
2192        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2193        if (s!=APFloat::opInvalidOp)
2194          return getConstantFP(V1, VT);
2195        break;
2196      case ISD::FMUL:
2197        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2198        if (s!=APFloat::opInvalidOp)
2199          return getConstantFP(V1, VT);
2200        break;
2201      case ISD::FDIV:
2202        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2203        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2204          return getConstantFP(V1, VT);
2205        break;
2206      case ISD::FREM :
2207        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2208        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2209          return getConstantFP(V1, VT);
2210        break;
2211      case ISD::FCOPYSIGN:
2212        V1.copySign(V2);
2213        return getConstantFP(V1, VT);
2214      default: break;
2215      }
2216    }
2217  }
2218
2219  // Canonicalize an UNDEF to the RHS, even over a constant.
2220  if (N1.getOpcode() == ISD::UNDEF) {
2221    if (isCommutativeBinOp(Opcode)) {
2222      std::swap(N1, N2);
2223    } else {
2224      switch (Opcode) {
2225      case ISD::FP_ROUND_INREG:
2226      case ISD::SIGN_EXTEND_INREG:
2227      case ISD::SUB:
2228      case ISD::FSUB:
2229      case ISD::FDIV:
2230      case ISD::FREM:
2231      case ISD::SRA:
2232        return N1;     // fold op(undef, arg2) -> undef
2233      case ISD::UDIV:
2234      case ISD::SDIV:
2235      case ISD::UREM:
2236      case ISD::SREM:
2237      case ISD::SRL:
2238      case ISD::SHL:
2239        if (!MVT::isVector(VT))
2240          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2241        // For vectors, we can't easily build an all zero vector, just return
2242        // the LHS.
2243        return N2;
2244      }
2245    }
2246  }
2247
2248  // Fold a bunch of operators when the RHS is undef.
2249  if (N2.getOpcode() == ISD::UNDEF) {
2250    switch (Opcode) {
2251    case ISD::XOR:
2252      if (N1.getOpcode() == ISD::UNDEF)
2253        // Handle undef ^ undef -> 0 special case. This is a common
2254        // idiom (misuse).
2255        return getConstant(0, VT);
2256      // fallthrough
2257    case ISD::ADD:
2258    case ISD::ADDC:
2259    case ISD::ADDE:
2260    case ISD::SUB:
2261    case ISD::FADD:
2262    case ISD::FSUB:
2263    case ISD::FMUL:
2264    case ISD::FDIV:
2265    case ISD::FREM:
2266    case ISD::UDIV:
2267    case ISD::SDIV:
2268    case ISD::UREM:
2269    case ISD::SREM:
2270      return N2;       // fold op(arg1, undef) -> undef
2271    case ISD::MUL:
2272    case ISD::AND:
2273    case ISD::SRL:
2274    case ISD::SHL:
2275      if (!MVT::isVector(VT))
2276        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2277      // For vectors, we can't easily build an all zero vector, just return
2278      // the LHS.
2279      return N1;
2280    case ISD::OR:
2281      if (!MVT::isVector(VT))
2282        return getConstant(MVT::getIntVTBitMask(VT), VT);
2283      // For vectors, we can't easily build an all one vector, just return
2284      // the LHS.
2285      return N1;
2286    case ISD::SRA:
2287      return N1;
2288    }
2289  }
2290
2291  // Memoize this node if possible.
2292  SDNode *N;
2293  SDVTList VTs = getVTList(VT);
2294  if (VT != MVT::Flag) {
2295    SDOperand Ops[] = { N1, N2 };
2296    FoldingSetNodeID ID;
2297    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2298    void *IP = 0;
2299    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2300      return SDOperand(E, 0);
2301    N = new BinarySDNode(Opcode, VTs, N1, N2);
2302    CSEMap.InsertNode(N, IP);
2303  } else {
2304    N = new BinarySDNode(Opcode, VTs, N1, N2);
2305  }
2306
2307  AllNodes.push_back(N);
2308  return SDOperand(N, 0);
2309}
2310
2311SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2312                                SDOperand N1, SDOperand N2, SDOperand N3) {
2313  // Perform various simplifications.
2314  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2315  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2316  switch (Opcode) {
2317  case ISD::SETCC: {
2318    // Use FoldSetCC to simplify SETCC's.
2319    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2320    if (Simp.Val) return Simp;
2321    break;
2322  }
2323  case ISD::SELECT:
2324    if (N1C) {
2325     if (N1C->getValue())
2326        return N2;             // select true, X, Y -> X
2327      else
2328        return N3;             // select false, X, Y -> Y
2329    }
2330
2331    if (N2 == N3) return N2;   // select C, X, X -> X
2332    break;
2333  case ISD::BRCOND:
2334    if (N2C) {
2335      if (N2C->getValue()) // Unconditional branch
2336        return getNode(ISD::BR, MVT::Other, N1, N3);
2337      else
2338        return N1;         // Never-taken branch
2339    }
2340    break;
2341  case ISD::VECTOR_SHUFFLE:
2342    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2343           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2344           N3.getOpcode() == ISD::BUILD_VECTOR &&
2345           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2346           "Illegal VECTOR_SHUFFLE node!");
2347    break;
2348  case ISD::BIT_CONVERT:
2349    // Fold bit_convert nodes from a type to themselves.
2350    if (N1.getValueType() == VT)
2351      return N1;
2352    break;
2353  }
2354
2355  // Memoize node if it doesn't produce a flag.
2356  SDNode *N;
2357  SDVTList VTs = getVTList(VT);
2358  if (VT != MVT::Flag) {
2359    SDOperand Ops[] = { N1, N2, N3 };
2360    FoldingSetNodeID ID;
2361    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2362    void *IP = 0;
2363    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2364      return SDOperand(E, 0);
2365    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2366    CSEMap.InsertNode(N, IP);
2367  } else {
2368    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2369  }
2370  AllNodes.push_back(N);
2371  return SDOperand(N, 0);
2372}
2373
2374SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2375                                SDOperand N1, SDOperand N2, SDOperand N3,
2376                                SDOperand N4) {
2377  SDOperand Ops[] = { N1, N2, N3, N4 };
2378  return getNode(Opcode, VT, Ops, 4);
2379}
2380
2381SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2382                                SDOperand N1, SDOperand N2, SDOperand N3,
2383                                SDOperand N4, SDOperand N5) {
2384  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2385  return getNode(Opcode, VT, Ops, 5);
2386}
2387
2388/// getMemsetValue - Vectorized representation of the memset value
2389/// operand.
2390static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2391                                SelectionDAG &DAG) {
2392  MVT::ValueType CurVT = VT;
2393  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2394    uint64_t Val   = C->getValue() & 255;
2395    unsigned Shift = 8;
2396    while (CurVT != MVT::i8) {
2397      Val = (Val << Shift) | Val;
2398      Shift <<= 1;
2399      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2400    }
2401    return DAG.getConstant(Val, VT);
2402  } else {
2403    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2404    unsigned Shift = 8;
2405    while (CurVT != MVT::i8) {
2406      Value =
2407        DAG.getNode(ISD::OR, VT,
2408                    DAG.getNode(ISD::SHL, VT, Value,
2409                                DAG.getConstant(Shift, MVT::i8)), Value);
2410      Shift <<= 1;
2411      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2412    }
2413
2414    return Value;
2415  }
2416}
2417
2418/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2419/// used when a memcpy is turned into a memset when the source is a constant
2420/// string ptr.
2421static SDOperand getMemsetStringVal(MVT::ValueType VT,
2422                                    SelectionDAG &DAG,
2423                                    const TargetLowering &TLI,
2424                                    std::string &Str, unsigned Offset) {
2425  uint64_t Val = 0;
2426  unsigned MSB = MVT::getSizeInBits(VT) / 8;
2427  if (TLI.isLittleEndian())
2428    Offset = Offset + MSB - 1;
2429  for (unsigned i = 0; i != MSB; ++i) {
2430    Val = (Val << 8) | (unsigned char)Str[Offset];
2431    Offset += TLI.isLittleEndian() ? -1 : 1;
2432  }
2433  return DAG.getConstant(Val, VT);
2434}
2435
2436/// getMemBasePlusOffset - Returns base and offset node for the
2437static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2438                                      SelectionDAG &DAG) {
2439  MVT::ValueType VT = Base.getValueType();
2440  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2441}
2442
2443/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2444/// to replace the memset / memcpy is below the threshold. It also returns the
2445/// types of the sequence of memory ops to perform memset / memcpy.
2446static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2447                                     unsigned Limit, uint64_t Size,
2448                                     unsigned Align,
2449                                     const TargetLowering &TLI) {
2450  MVT::ValueType VT;
2451
2452  if (TLI.allowsUnalignedMemoryAccesses()) {
2453    VT = MVT::i64;
2454  } else {
2455    switch (Align & 7) {
2456    case 0:
2457      VT = MVT::i64;
2458      break;
2459    case 4:
2460      VT = MVT::i32;
2461      break;
2462    case 2:
2463      VT = MVT::i16;
2464      break;
2465    default:
2466      VT = MVT::i8;
2467      break;
2468    }
2469  }
2470
2471  MVT::ValueType LVT = MVT::i64;
2472  while (!TLI.isTypeLegal(LVT))
2473    LVT = (MVT::ValueType)((unsigned)LVT - 1);
2474  assert(MVT::isInteger(LVT));
2475
2476  if (VT > LVT)
2477    VT = LVT;
2478
2479  unsigned NumMemOps = 0;
2480  while (Size != 0) {
2481    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2482    while (VTSize > Size) {
2483      VT = (MVT::ValueType)((unsigned)VT - 1);
2484      VTSize >>= 1;
2485    }
2486    assert(MVT::isInteger(VT));
2487
2488    if (++NumMemOps > Limit)
2489      return false;
2490    MemOps.push_back(VT);
2491    Size -= VTSize;
2492  }
2493
2494  return true;
2495}
2496
2497static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
2498                                         SDOperand Chain, SDOperand Dst,
2499                                         SDOperand Src, uint64_t Size,
2500                                         unsigned Align,
2501                                         bool AlwaysInline,
2502                                         const Value *DstSV, uint64_t DstOff,
2503                                         const Value *SrcSV, uint64_t SrcOff) {
2504  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2505
2506  // Expand memcpy to a series of store ops if the size operand falls below
2507  // a certain threshold.
2508  std::vector<MVT::ValueType> MemOps;
2509  uint64_t Limit = -1;
2510  if (!AlwaysInline)
2511    Limit = TLI.getMaxStoresPerMemcpy();
2512  if (!MeetsMaxMemopRequirement(MemOps, Limit, Size, Align, TLI))
2513    return SDOperand();
2514
2515  SmallVector<SDOperand, 8> OutChains;
2516
2517  unsigned NumMemOps = MemOps.size();
2518  unsigned SrcDelta = 0;
2519  GlobalAddressSDNode *G = NULL;
2520  std::string Str;
2521  bool CopyFromStr = false;
2522
2523  if (Src.getOpcode() == ISD::GlobalAddress)
2524    G = cast<GlobalAddressSDNode>(Src);
2525  else if (Src.getOpcode() == ISD::ADD &&
2526           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2527           Src.getOperand(1).getOpcode() == ISD::Constant) {
2528    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2529    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
2530  }
2531  if (G) {
2532    GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2533    if (GV && GV->isConstant()) {
2534      Str = GV->getStringValue(false);
2535      if (!Str.empty()) {
2536        CopyFromStr = true;
2537        SrcOff += SrcDelta;
2538      }
2539    }
2540  }
2541
2542  for (unsigned i = 0; i < NumMemOps; i++) {
2543    MVT::ValueType VT = MemOps[i];
2544    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2545    SDOperand Value, Store;
2546
2547    if (CopyFromStr) {
2548      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2549      Store =
2550        DAG.getStore(Chain, Value,
2551                     getMemBasePlusOffset(Dst, DstOff, DAG),
2552                     DstSV, DstOff);
2553    } else {
2554      Value = DAG.getLoad(VT, Chain,
2555                          getMemBasePlusOffset(Src, SrcOff, DAG),
2556                          SrcSV, SrcOff, false, Align);
2557      Store =
2558        DAG.getStore(Chain, Value,
2559                     getMemBasePlusOffset(Dst, DstOff, DAG),
2560                     DstSV, DstOff, false, Align);
2561    }
2562    OutChains.push_back(Store);
2563    SrcOff += VTSize;
2564    DstOff += VTSize;
2565  }
2566
2567  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2568                     &OutChains[0], OutChains.size());
2569}
2570
2571static SDOperand getMemsetStores(SelectionDAG &DAG,
2572                                 SDOperand Chain, SDOperand Dst,
2573                                 SDOperand Src, uint64_t Size,
2574                                 unsigned Align,
2575                                 const Value *DstSV, uint64_t DstOff) {
2576  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2577
2578  // Expand memset to a series of load/store ops if the size operand
2579  // falls below a certain threshold.
2580  std::vector<MVT::ValueType> MemOps;
2581  if (!MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
2582                                Size, Align, TLI))
2583    return SDOperand();
2584
2585  SmallVector<SDOperand, 8> OutChains;
2586
2587  unsigned NumMemOps = MemOps.size();
2588  for (unsigned i = 0; i < NumMemOps; i++) {
2589    MVT::ValueType VT = MemOps[i];
2590    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2591    SDOperand Value = getMemsetValue(Src, VT, DAG);
2592    SDOperand Store = DAG.getStore(Chain, Value,
2593                                   getMemBasePlusOffset(Dst, DstOff, DAG),
2594                                   DstSV, DstOff);
2595    OutChains.push_back(Store);
2596    DstOff += VTSize;
2597  }
2598
2599  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2600                     &OutChains[0], OutChains.size());
2601}
2602
2603SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dst,
2604                                  SDOperand Src, SDOperand Size,
2605                                  unsigned Align, bool AlwaysInline,
2606                                  const Value *DstSV, uint64_t DstOff,
2607                                  const Value *SrcSV, uint64_t SrcOff) {
2608
2609  // Check to see if we should lower the memcpy to loads and stores first.
2610  // For cases within the target-specified limits, this is the best choice.
2611  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2612  if (ConstantSize) {
2613    // Memcpy with size zero? Just return the original chain.
2614    if (ConstantSize->isNullValue())
2615      return Chain;
2616
2617    SDOperand Result =
2618      getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2619                              Align, false, DstSV, DstOff, SrcSV, SrcOff);
2620    if (Result.Val)
2621      return Result;
2622  }
2623
2624  // Then check to see if we should lower the memcpy with target-specific
2625  // code. If the target chooses to do this, this is the next best.
2626  SDOperand Result =
2627    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
2628                                AlwaysInline,
2629                                DstSV, DstOff, SrcSV, SrcOff);
2630  if (Result.Val)
2631    return Result;
2632
2633  // If we really need inline code and the target declined to provide it,
2634  // use a (potentially long) sequence of loads and stores.
2635  if (AlwaysInline) {
2636    assert(ConstantSize && "AlwaysInline requires a constant size!");
2637    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
2638                                   ConstantSize->getValue(), Align, true,
2639                                   DstSV, DstOff, SrcSV, SrcOff);
2640  }
2641
2642  // Emit a library call.
2643  TargetLowering::ArgListTy Args;
2644  TargetLowering::ArgListEntry Entry;
2645  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2646  Entry.Node = Dst; Args.push_back(Entry);
2647  Entry.Node = Src; Args.push_back(Entry);
2648  Entry.Node = Size; Args.push_back(Entry);
2649  std::pair<SDOperand,SDOperand> CallResult =
2650    TLI.LowerCallTo(Chain, Type::VoidTy,
2651                    false, false, false, CallingConv::C, false,
2652                    getExternalSymbol("memcpy", TLI.getPointerTy()),
2653                    Args, *this);
2654  return CallResult.second;
2655}
2656
2657SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dst,
2658                                   SDOperand Src, SDOperand Size,
2659                                   unsigned Align,
2660                                   const Value *DstSV, uint64_t DstOff,
2661                                   const Value *SrcSV, uint64_t SrcOff) {
2662
2663  // TODO: Optimize small memmove cases with simple loads and stores,
2664  // ensuring that all loads precede all stores. This can cause severe
2665  // register pressure, so targets should be careful with the size limit.
2666
2667  // Then check to see if we should lower the memmove with target-specific
2668  // code. If the target chooses to do this, this is the next best.
2669  SDOperand Result =
2670    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
2671                                 DstSV, DstOff, SrcSV, SrcOff);
2672  if (Result.Val)
2673    return Result;
2674
2675  // Emit a library call.
2676  TargetLowering::ArgListTy Args;
2677  TargetLowering::ArgListEntry Entry;
2678  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2679  Entry.Node = Dst; Args.push_back(Entry);
2680  Entry.Node = Src; Args.push_back(Entry);
2681  Entry.Node = Size; Args.push_back(Entry);
2682  std::pair<SDOperand,SDOperand> CallResult =
2683    TLI.LowerCallTo(Chain, Type::VoidTy,
2684                    false, false, false, CallingConv::C, false,
2685                    getExternalSymbol("memmove", TLI.getPointerTy()),
2686                    Args, *this);
2687  return CallResult.second;
2688}
2689
2690SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dst,
2691                                  SDOperand Src, SDOperand Size,
2692                                  unsigned Align,
2693                                  const Value *DstSV, uint64_t DstOff) {
2694
2695  // Check to see if we should lower the memset to stores first.
2696  // For cases within the target-specified limits, this is the best choice.
2697  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2698  if (ConstantSize) {
2699    // Memset with size zero? Just return the original chain.
2700    if (ConstantSize->isNullValue())
2701      return Chain;
2702
2703    SDOperand Result =
2704      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
2705                      DstSV, DstOff);
2706    if (Result.Val)
2707      return Result;
2708  }
2709
2710  // Then check to see if we should lower the memset with target-specific
2711  // code. If the target chooses to do this, this is the next best.
2712  SDOperand Result =
2713    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
2714                                DstSV, DstOff);
2715  if (Result.Val)
2716    return Result;
2717
2718  // Emit a library call.
2719  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
2720  TargetLowering::ArgListTy Args;
2721  TargetLowering::ArgListEntry Entry;
2722  Entry.Node = Dst; Entry.Ty = IntPtrTy;
2723  Args.push_back(Entry);
2724  // Extend or truncate the argument to be an i32 value for the call.
2725  if (Src.getValueType() > MVT::i32)
2726    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
2727  else
2728    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
2729  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
2730  Args.push_back(Entry);
2731  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
2732  Args.push_back(Entry);
2733  std::pair<SDOperand,SDOperand> CallResult =
2734    TLI.LowerCallTo(Chain, Type::VoidTy,
2735                    false, false, false, CallingConv::C, false,
2736                    getExternalSymbol("memset", TLI.getPointerTy()),
2737                    Args, *this);
2738  return CallResult.second;
2739}
2740
2741SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2742                                  SDOperand Ptr, SDOperand Cmp,
2743                                  SDOperand Swp, MVT::ValueType VT) {
2744  assert(Opcode == ISD::ATOMIC_LCS && "Invalid Atomic Op");
2745  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
2746  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
2747  FoldingSetNodeID ID;
2748  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
2749  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
2750  ID.AddInteger((unsigned int)VT);
2751  void* IP = 0;
2752  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2753    return SDOperand(E, 0);
2754  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, VT);
2755  CSEMap.InsertNode(N, IP);
2756  AllNodes.push_back(N);
2757  return SDOperand(N, 0);
2758}
2759
2760SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2761                                  SDOperand Ptr, SDOperand Val,
2762                                  MVT::ValueType VT) {
2763  assert((Opcode == ISD::ATOMIC_LAS || Opcode == ISD::ATOMIC_SWAP)
2764         && "Invalid Atomic Op");
2765  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
2766  FoldingSetNodeID ID;
2767  SDOperand Ops[] = {Chain, Ptr, Val};
2768  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2769  ID.AddInteger((unsigned int)VT);
2770  void* IP = 0;
2771  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2772    return SDOperand(E, 0);
2773  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, VT);
2774  CSEMap.InsertNode(N, IP);
2775  AllNodes.push_back(N);
2776  return SDOperand(N, 0);
2777}
2778
2779SDOperand
2780SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
2781                      MVT::ValueType VT, SDOperand Chain,
2782                      SDOperand Ptr, SDOperand Offset,
2783                      const Value *SV, int SVOffset, MVT::ValueType EVT,
2784                      bool isVolatile, unsigned Alignment) {
2785  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2786    const Type *Ty = 0;
2787    if (VT != MVT::iPTR) {
2788      Ty = MVT::getTypeForValueType(VT);
2789    } else if (SV) {
2790      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2791      assert(PT && "Value for load must be a pointer");
2792      Ty = PT->getElementType();
2793    }
2794    assert(Ty && "Could not get type information for load");
2795    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2796  }
2797
2798  if (VT == EVT) {
2799    ExtType = ISD::NON_EXTLOAD;
2800  } else if (ExtType == ISD::NON_EXTLOAD) {
2801    assert(VT == EVT && "Non-extending load from different memory type!");
2802  } else {
2803    // Extending load.
2804    if (MVT::isVector(VT))
2805      assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2806    else
2807      assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2808             "Should only be an extending load, not truncating!");
2809    assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2810           "Cannot sign/zero extend a FP/Vector load!");
2811    assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2812           "Cannot convert from FP to Int or Int -> FP!");
2813  }
2814
2815  bool Indexed = AM != ISD::UNINDEXED;
2816  assert(Indexed || Offset.getOpcode() == ISD::UNDEF &&
2817         "Unindexed load with an offset!");
2818
2819  SDVTList VTs = Indexed ?
2820    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
2821  SDOperand Ops[] = { Chain, Ptr, Offset };
2822  FoldingSetNodeID ID;
2823  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2824  ID.AddInteger(AM);
2825  ID.AddInteger(ExtType);
2826  ID.AddInteger((unsigned int)EVT);
2827  ID.AddInteger(Alignment);
2828  ID.AddInteger(isVolatile);
2829  void *IP = 0;
2830  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2831    return SDOperand(E, 0);
2832  SDNode *N = new LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
2833                             Alignment, isVolatile);
2834  CSEMap.InsertNode(N, IP);
2835  AllNodes.push_back(N);
2836  return SDOperand(N, 0);
2837}
2838
2839SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2840                                SDOperand Chain, SDOperand Ptr,
2841                                const Value *SV, int SVOffset,
2842                                bool isVolatile, unsigned Alignment) {
2843  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2844  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
2845                 SV, SVOffset, VT, isVolatile, Alignment);
2846}
2847
2848SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2849                                   SDOperand Chain, SDOperand Ptr,
2850                                   const Value *SV,
2851                                   int SVOffset, MVT::ValueType EVT,
2852                                   bool isVolatile, unsigned Alignment) {
2853  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2854  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
2855                 SV, SVOffset, EVT, isVolatile, Alignment);
2856}
2857
2858SDOperand
2859SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2860                             SDOperand Offset, ISD::MemIndexedMode AM) {
2861  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2862  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2863         "Load is already a indexed load!");
2864  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
2865                 LD->getChain(), Base, Offset, LD->getSrcValue(),
2866                 LD->getSrcValueOffset(), LD->getMemoryVT(),
2867                 LD->isVolatile(), LD->getAlignment());
2868}
2869
2870SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2871                                 SDOperand Ptr, const Value *SV, int SVOffset,
2872                                 bool isVolatile, unsigned Alignment) {
2873  MVT::ValueType VT = Val.getValueType();
2874
2875  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2876    const Type *Ty = 0;
2877    if (VT != MVT::iPTR) {
2878      Ty = MVT::getTypeForValueType(VT);
2879    } else if (SV) {
2880      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2881      assert(PT && "Value for store must be a pointer");
2882      Ty = PT->getElementType();
2883    }
2884    assert(Ty && "Could not get type information for store");
2885    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2886  }
2887  SDVTList VTs = getVTList(MVT::Other);
2888  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2889  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2890  FoldingSetNodeID ID;
2891  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2892  ID.AddInteger(ISD::UNINDEXED);
2893  ID.AddInteger(false);
2894  ID.AddInteger((unsigned int)VT);
2895  ID.AddInteger(Alignment);
2896  ID.AddInteger(isVolatile);
2897  void *IP = 0;
2898  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2899    return SDOperand(E, 0);
2900  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2901                              VT, SV, SVOffset, Alignment, isVolatile);
2902  CSEMap.InsertNode(N, IP);
2903  AllNodes.push_back(N);
2904  return SDOperand(N, 0);
2905}
2906
2907SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2908                                      SDOperand Ptr, const Value *SV,
2909                                      int SVOffset, MVT::ValueType SVT,
2910                                      bool isVolatile, unsigned Alignment) {
2911  MVT::ValueType VT = Val.getValueType();
2912
2913  if (VT == SVT)
2914    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2915
2916  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2917         "Not a truncation?");
2918  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2919         "Can't do FP-INT conversion!");
2920
2921  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2922    const Type *Ty = 0;
2923    if (VT != MVT::iPTR) {
2924      Ty = MVT::getTypeForValueType(VT);
2925    } else if (SV) {
2926      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2927      assert(PT && "Value for store must be a pointer");
2928      Ty = PT->getElementType();
2929    }
2930    assert(Ty && "Could not get type information for store");
2931    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2932  }
2933  SDVTList VTs = getVTList(MVT::Other);
2934  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2935  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2936  FoldingSetNodeID ID;
2937  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2938  ID.AddInteger(ISD::UNINDEXED);
2939  ID.AddInteger(1);
2940  ID.AddInteger((unsigned int)SVT);
2941  ID.AddInteger(Alignment);
2942  ID.AddInteger(isVolatile);
2943  void *IP = 0;
2944  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2945    return SDOperand(E, 0);
2946  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2947                              SVT, SV, SVOffset, Alignment, isVolatile);
2948  CSEMap.InsertNode(N, IP);
2949  AllNodes.push_back(N);
2950  return SDOperand(N, 0);
2951}
2952
2953SDOperand
2954SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2955                              SDOperand Offset, ISD::MemIndexedMode AM) {
2956  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2957  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2958         "Store is already a indexed store!");
2959  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2960  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2961  FoldingSetNodeID ID;
2962  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2963  ID.AddInteger(AM);
2964  ID.AddInteger(ST->isTruncatingStore());
2965  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
2966  ID.AddInteger(ST->getAlignment());
2967  ID.AddInteger(ST->isVolatile());
2968  void *IP = 0;
2969  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2970    return SDOperand(E, 0);
2971  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2972                              ST->isTruncatingStore(), ST->getMemoryVT(),
2973                              ST->getSrcValue(), ST->getSrcValueOffset(),
2974                              ST->getAlignment(), ST->isVolatile());
2975  CSEMap.InsertNode(N, IP);
2976  AllNodes.push_back(N);
2977  return SDOperand(N, 0);
2978}
2979
2980SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2981                                 SDOperand Chain, SDOperand Ptr,
2982                                 SDOperand SV) {
2983  SDOperand Ops[] = { Chain, Ptr, SV };
2984  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2985}
2986
2987SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2988                                SDOperandPtr Ops, unsigned NumOps) {
2989  switch (NumOps) {
2990  case 0: return getNode(Opcode, VT);
2991  case 1: return getNode(Opcode, VT, Ops[0]);
2992  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2993  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2994  default: break;
2995  }
2996
2997  switch (Opcode) {
2998  default: break;
2999  case ISD::SELECT_CC: {
3000    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3001    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3002           "LHS and RHS of condition must have same type!");
3003    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3004           "True and False arms of SelectCC must have same type!");
3005    assert(Ops[2].getValueType() == VT &&
3006           "select_cc node must be of same type as true and false value!");
3007    break;
3008  }
3009  case ISD::BR_CC: {
3010    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3011    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3012           "LHS/RHS of comparison should match types!");
3013    break;
3014  }
3015  }
3016
3017  // Memoize nodes.
3018  SDNode *N;
3019  SDVTList VTs = getVTList(VT);
3020  if (VT != MVT::Flag) {
3021    FoldingSetNodeID ID;
3022    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3023    void *IP = 0;
3024    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3025      return SDOperand(E, 0);
3026    N = new SDNode(Opcode, VTs, Ops, NumOps);
3027    CSEMap.InsertNode(N, IP);
3028  } else {
3029    N = new SDNode(Opcode, VTs, Ops, NumOps);
3030  }
3031  AllNodes.push_back(N);
3032  return SDOperand(N, 0);
3033}
3034
3035SDOperand SelectionDAG::getNode(unsigned Opcode,
3036                                std::vector<MVT::ValueType> &ResultTys,
3037                                SDOperandPtr Ops, unsigned NumOps) {
3038  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3039                 Ops, NumOps);
3040}
3041
3042SDOperand SelectionDAG::getNode(unsigned Opcode,
3043                                const MVT::ValueType *VTs, unsigned NumVTs,
3044                                SDOperandPtr Ops, unsigned NumOps) {
3045  if (NumVTs == 1)
3046    return getNode(Opcode, VTs[0], Ops, NumOps);
3047  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3048}
3049
3050SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3051                                SDOperandPtr Ops, unsigned NumOps) {
3052  if (VTList.NumVTs == 1)
3053    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3054
3055  switch (Opcode) {
3056  // FIXME: figure out how to safely handle things like
3057  // int foo(int x) { return 1 << (x & 255); }
3058  // int bar() { return foo(256); }
3059#if 0
3060  case ISD::SRA_PARTS:
3061  case ISD::SRL_PARTS:
3062  case ISD::SHL_PARTS:
3063    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3064        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3065      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3066    else if (N3.getOpcode() == ISD::AND)
3067      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3068        // If the and is only masking out bits that cannot effect the shift,
3069        // eliminate the and.
3070        unsigned NumBits = MVT::getSizeInBits(VT)*2;
3071        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3072          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3073      }
3074    break;
3075#endif
3076  }
3077
3078  // Memoize the node unless it returns a flag.
3079  SDNode *N;
3080  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3081    FoldingSetNodeID ID;
3082    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3083    void *IP = 0;
3084    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3085      return SDOperand(E, 0);
3086    if (NumOps == 1)
3087      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3088    else if (NumOps == 2)
3089      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3090    else if (NumOps == 3)
3091      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3092    else
3093      N = new SDNode(Opcode, VTList, Ops, NumOps);
3094    CSEMap.InsertNode(N, IP);
3095  } else {
3096    if (NumOps == 1)
3097      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3098    else if (NumOps == 2)
3099      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3100    else if (NumOps == 3)
3101      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3102    else
3103      N = new SDNode(Opcode, VTList, Ops, NumOps);
3104  }
3105  AllNodes.push_back(N);
3106  return SDOperand(N, 0);
3107}
3108
3109SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3110  return getNode(Opcode, VTList, (SDOperand*)0, 0);
3111}
3112
3113SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3114                                SDOperand N1) {
3115  SDOperand Ops[] = { N1 };
3116  return getNode(Opcode, VTList, Ops, 1);
3117}
3118
3119SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3120                                SDOperand N1, SDOperand N2) {
3121  SDOperand Ops[] = { N1, N2 };
3122  return getNode(Opcode, VTList, Ops, 2);
3123}
3124
3125SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3126                                SDOperand N1, SDOperand N2, SDOperand N3) {
3127  SDOperand Ops[] = { N1, N2, N3 };
3128  return getNode(Opcode, VTList, Ops, 3);
3129}
3130
3131SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3132                                SDOperand N1, SDOperand N2, SDOperand N3,
3133                                SDOperand N4) {
3134  SDOperand Ops[] = { N1, N2, N3, N4 };
3135  return getNode(Opcode, VTList, Ops, 4);
3136}
3137
3138SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3139                                SDOperand N1, SDOperand N2, SDOperand N3,
3140                                SDOperand N4, SDOperand N5) {
3141  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
3142  return getNode(Opcode, VTList, Ops, 5);
3143}
3144
3145SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
3146  return makeVTList(SDNode::getValueTypeList(VT), 1);
3147}
3148
3149SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
3150  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3151       E = VTList.end(); I != E; ++I) {
3152    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
3153      return makeVTList(&(*I)[0], 2);
3154  }
3155  std::vector<MVT::ValueType> V;
3156  V.push_back(VT1);
3157  V.push_back(VT2);
3158  VTList.push_front(V);
3159  return makeVTList(&(*VTList.begin())[0], 2);
3160}
3161SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
3162                                 MVT::ValueType VT3) {
3163  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3164       E = VTList.end(); I != E; ++I) {
3165    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
3166        (*I)[2] == VT3)
3167      return makeVTList(&(*I)[0], 3);
3168  }
3169  std::vector<MVT::ValueType> V;
3170  V.push_back(VT1);
3171  V.push_back(VT2);
3172  V.push_back(VT3);
3173  VTList.push_front(V);
3174  return makeVTList(&(*VTList.begin())[0], 3);
3175}
3176
3177SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
3178  switch (NumVTs) {
3179    case 0: assert(0 && "Cannot have nodes without results!");
3180    case 1: return getVTList(VTs[0]);
3181    case 2: return getVTList(VTs[0], VTs[1]);
3182    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3183    default: break;
3184  }
3185
3186  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3187       E = VTList.end(); I != E; ++I) {
3188    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
3189
3190    bool NoMatch = false;
3191    for (unsigned i = 2; i != NumVTs; ++i)
3192      if (VTs[i] != (*I)[i]) {
3193        NoMatch = true;
3194        break;
3195      }
3196    if (!NoMatch)
3197      return makeVTList(&*I->begin(), NumVTs);
3198  }
3199
3200  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
3201  return makeVTList(&*VTList.begin()->begin(), NumVTs);
3202}
3203
3204
3205/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3206/// specified operands.  If the resultant node already exists in the DAG,
3207/// this does not modify the specified node, instead it returns the node that
3208/// already exists.  If the resultant node does not exist in the DAG, the
3209/// input node is returned.  As a degenerate case, if you specify the same
3210/// input operands as the node already has, the input node is returned.
3211SDOperand SelectionDAG::
3212UpdateNodeOperands(SDOperand InN, SDOperand Op) {
3213  SDNode *N = InN.Val;
3214  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3215
3216  // Check to see if there is no change.
3217  if (Op == N->getOperand(0)) return InN;
3218
3219  // See if the modified node already exists.
3220  void *InsertPos = 0;
3221  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3222    return SDOperand(Existing, InN.ResNo);
3223
3224  // Nope it doesn't.  Remove the node from it's current place in the maps.
3225  if (InsertPos)
3226    RemoveNodeFromCSEMaps(N);
3227
3228  // Now we update the operands.
3229  N->OperandList[0].getVal()->removeUser(0, N);
3230  N->OperandList[0] = Op;
3231  N->OperandList[0].setUser(N);
3232  Op.Val->addUser(0, N);
3233
3234  // If this gets put into a CSE map, add it.
3235  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3236  return InN;
3237}
3238
3239SDOperand SelectionDAG::
3240UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
3241  SDNode *N = InN.Val;
3242  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3243
3244  // Check to see if there is no change.
3245  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3246    return InN;   // No operands changed, just return the input node.
3247
3248  // See if the modified node already exists.
3249  void *InsertPos = 0;
3250  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3251    return SDOperand(Existing, InN.ResNo);
3252
3253  // Nope it doesn't.  Remove the node from it's current place in the maps.
3254  if (InsertPos)
3255    RemoveNodeFromCSEMaps(N);
3256
3257  // Now we update the operands.
3258  if (N->OperandList[0] != Op1) {
3259    N->OperandList[0].getVal()->removeUser(0, N);
3260    N->OperandList[0] = Op1;
3261    N->OperandList[0].setUser(N);
3262    Op1.Val->addUser(0, N);
3263  }
3264  if (N->OperandList[1] != Op2) {
3265    N->OperandList[1].getVal()->removeUser(1, N);
3266    N->OperandList[1] = Op2;
3267    N->OperandList[1].setUser(N);
3268    Op2.Val->addUser(1, N);
3269  }
3270
3271  // If this gets put into a CSE map, add it.
3272  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3273  return InN;
3274}
3275
3276SDOperand SelectionDAG::
3277UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
3278  SDOperand Ops[] = { Op1, Op2, Op3 };
3279  return UpdateNodeOperands(N, Ops, 3);
3280}
3281
3282SDOperand SelectionDAG::
3283UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3284                   SDOperand Op3, SDOperand Op4) {
3285  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
3286  return UpdateNodeOperands(N, Ops, 4);
3287}
3288
3289SDOperand SelectionDAG::
3290UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3291                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
3292  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3293  return UpdateNodeOperands(N, Ops, 5);
3294}
3295
3296SDOperand SelectionDAG::
3297UpdateNodeOperands(SDOperand InN, SDOperandPtr Ops, unsigned NumOps) {
3298  SDNode *N = InN.Val;
3299  assert(N->getNumOperands() == NumOps &&
3300         "Update with wrong number of operands");
3301
3302  // Check to see if there is no change.
3303  bool AnyChange = false;
3304  for (unsigned i = 0; i != NumOps; ++i) {
3305    if (Ops[i] != N->getOperand(i)) {
3306      AnyChange = true;
3307      break;
3308    }
3309  }
3310
3311  // No operands changed, just return the input node.
3312  if (!AnyChange) return InN;
3313
3314  // See if the modified node already exists.
3315  void *InsertPos = 0;
3316  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3317    return SDOperand(Existing, InN.ResNo);
3318
3319  // Nope it doesn't.  Remove the node from it's current place in the maps.
3320  if (InsertPos)
3321    RemoveNodeFromCSEMaps(N);
3322
3323  // Now we update the operands.
3324  for (unsigned i = 0; i != NumOps; ++i) {
3325    if (N->OperandList[i] != Ops[i]) {
3326      N->OperandList[i].getVal()->removeUser(i, N);
3327      N->OperandList[i] = Ops[i];
3328      N->OperandList[i].setUser(N);
3329      Ops[i].Val->addUser(i, N);
3330    }
3331  }
3332
3333  // If this gets put into a CSE map, add it.
3334  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3335  return InN;
3336}
3337
3338/// MorphNodeTo - This frees the operands of the current node, resets the
3339/// opcode, types, and operands to the specified value.  This should only be
3340/// used by the SelectionDAG class.
3341void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3342                         SDOperandPtr Ops, unsigned NumOps) {
3343  NodeType = Opc;
3344  ValueList = L.VTs;
3345  NumValues = L.NumVTs;
3346
3347  // Clear the operands list, updating used nodes to remove this from their
3348  // use list.
3349  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3350    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3351
3352  // If NumOps is larger than the # of operands we currently have, reallocate
3353  // the operand list.
3354  if (NumOps > NumOperands) {
3355    if (OperandsNeedDelete) {
3356      delete [] OperandList;
3357    }
3358    OperandList = new SDUse[NumOps];
3359    OperandsNeedDelete = true;
3360  }
3361
3362  // Assign the new operands.
3363  NumOperands = NumOps;
3364
3365  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3366    OperandList[i] = Ops[i];
3367    OperandList[i].setUser(this);
3368    SDNode *N = OperandList[i].getVal();
3369    N->addUser(i, this);
3370    ++N->UsesSize;
3371  }
3372}
3373
3374/// SelectNodeTo - These are used for target selectors to *mutate* the
3375/// specified node to have the specified return type, Target opcode, and
3376/// operands.  Note that target opcodes are stored as
3377/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3378///
3379/// Note that SelectNodeTo returns the resultant node.  If there is already a
3380/// node of the specified opcode and operands, it returns that node instead of
3381/// the current one.
3382SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3383                                   MVT::ValueType VT) {
3384  SDVTList VTs = getVTList(VT);
3385  FoldingSetNodeID ID;
3386  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, (SDOperand*)0, 0);
3387  void *IP = 0;
3388  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3389    return ON;
3390
3391  RemoveNodeFromCSEMaps(N);
3392
3393  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, SDOperandPtr(), 0);
3394
3395  CSEMap.InsertNode(N, IP);
3396  return N;
3397}
3398
3399SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3400                                   MVT::ValueType VT, SDOperand Op1) {
3401  // If an identical node already exists, use it.
3402  SDVTList VTs = getVTList(VT);
3403  SDOperand Ops[] = { Op1 };
3404
3405  FoldingSetNodeID ID;
3406  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3407  void *IP = 0;
3408  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3409    return ON;
3410
3411  RemoveNodeFromCSEMaps(N);
3412  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3413  CSEMap.InsertNode(N, IP);
3414  return N;
3415}
3416
3417SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3418                                   MVT::ValueType VT, SDOperand Op1,
3419                                   SDOperand Op2) {
3420  // If an identical node already exists, use it.
3421  SDVTList VTs = getVTList(VT);
3422  SDOperand Ops[] = { Op1, Op2 };
3423
3424  FoldingSetNodeID ID;
3425  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3426  void *IP = 0;
3427  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3428    return ON;
3429
3430  RemoveNodeFromCSEMaps(N);
3431
3432  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3433
3434  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3435  return N;
3436}
3437
3438SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3439                                   MVT::ValueType VT, SDOperand Op1,
3440                                   SDOperand Op2, SDOperand Op3) {
3441  // If an identical node already exists, use it.
3442  SDVTList VTs = getVTList(VT);
3443  SDOperand Ops[] = { Op1, Op2, Op3 };
3444  FoldingSetNodeID ID;
3445  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3446  void *IP = 0;
3447  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3448    return ON;
3449
3450  RemoveNodeFromCSEMaps(N);
3451
3452  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3453
3454  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3455  return N;
3456}
3457
3458SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3459                                   MVT::ValueType VT, SDOperandPtr Ops,
3460                                   unsigned NumOps) {
3461  // If an identical node already exists, use it.
3462  SDVTList VTs = getVTList(VT);
3463  FoldingSetNodeID ID;
3464  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3465  void *IP = 0;
3466  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3467    return ON;
3468
3469  RemoveNodeFromCSEMaps(N);
3470  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3471
3472  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3473  return N;
3474}
3475
3476SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3477                                   MVT::ValueType VT1, MVT::ValueType VT2,
3478                                   SDOperand Op1, SDOperand Op2) {
3479  SDVTList VTs = getVTList(VT1, VT2);
3480  FoldingSetNodeID ID;
3481  SDOperand Ops[] = { Op1, Op2 };
3482  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3483  void *IP = 0;
3484  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3485    return ON;
3486
3487  RemoveNodeFromCSEMaps(N);
3488  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3489  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3490  return N;
3491}
3492
3493SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3494                                   MVT::ValueType VT1, MVT::ValueType VT2,
3495                                   SDOperand Op1, SDOperand Op2,
3496                                   SDOperand Op3) {
3497  // If an identical node already exists, use it.
3498  SDVTList VTs = getVTList(VT1, VT2);
3499  SDOperand Ops[] = { Op1, Op2, Op3 };
3500  FoldingSetNodeID ID;
3501  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3502  void *IP = 0;
3503  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3504    return ON;
3505
3506  RemoveNodeFromCSEMaps(N);
3507
3508  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3509  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3510  return N;
3511}
3512
3513
3514/// getTargetNode - These are used for target selectors to create a new node
3515/// with specified return type(s), target opcode, and operands.
3516///
3517/// Note that getTargetNode returns the resultant node.  If there is already a
3518/// node of the specified opcode and operands, it returns that node instead of
3519/// the current one.
3520SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3521  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3522}
3523SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3524                                    SDOperand Op1) {
3525  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3526}
3527SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3528                                    SDOperand Op1, SDOperand Op2) {
3529  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3530}
3531SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3532                                    SDOperand Op1, SDOperand Op2,
3533                                    SDOperand Op3) {
3534  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3535}
3536SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3537                                    SDOperandPtr Ops, unsigned NumOps) {
3538  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3539}
3540SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3541                                    MVT::ValueType VT2) {
3542  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3543  SDOperand Op;
3544  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3545}
3546SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3547                                    MVT::ValueType VT2, SDOperand Op1) {
3548  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3549  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3550}
3551SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3552                                    MVT::ValueType VT2, SDOperand Op1,
3553                                    SDOperand Op2) {
3554  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3555  SDOperand Ops[] = { Op1, Op2 };
3556  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3557}
3558SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3559                                    MVT::ValueType VT2, SDOperand Op1,
3560                                    SDOperand Op2, SDOperand Op3) {
3561  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3562  SDOperand Ops[] = { Op1, Op2, Op3 };
3563  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3564}
3565SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3566                                    MVT::ValueType VT2,
3567                                    SDOperandPtr Ops, unsigned NumOps) {
3568  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3569  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3570}
3571SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3572                                    MVT::ValueType VT2, MVT::ValueType VT3,
3573                                    SDOperand Op1, SDOperand Op2) {
3574  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3575  SDOperand Ops[] = { Op1, Op2 };
3576  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3577}
3578SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3579                                    MVT::ValueType VT2, MVT::ValueType VT3,
3580                                    SDOperand Op1, SDOperand Op2,
3581                                    SDOperand Op3) {
3582  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3583  SDOperand Ops[] = { Op1, Op2, Op3 };
3584  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3585}
3586SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3587                                    MVT::ValueType VT2, MVT::ValueType VT3,
3588                                    SDOperandPtr Ops, unsigned NumOps) {
3589  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3590  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3591}
3592SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3593                                    MVT::ValueType VT2, MVT::ValueType VT3,
3594                                    MVT::ValueType VT4,
3595                                    SDOperandPtr Ops, unsigned NumOps) {
3596  std::vector<MVT::ValueType> VTList;
3597  VTList.push_back(VT1);
3598  VTList.push_back(VT2);
3599  VTList.push_back(VT3);
3600  VTList.push_back(VT4);
3601  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3602  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3603}
3604SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3605                                    std::vector<MVT::ValueType> &ResultTys,
3606                                    SDOperandPtr Ops, unsigned NumOps) {
3607  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3608  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3609                 Ops, NumOps).Val;
3610}
3611
3612/// getNodeIfExists - Get the specified node if it's already available, or
3613/// else return NULL.
3614SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
3615                                      SDOperandPtr Ops, unsigned NumOps) {
3616  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3617    FoldingSetNodeID ID;
3618    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3619    void *IP = 0;
3620    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3621      return E;
3622  }
3623  return NULL;
3624}
3625
3626
3627/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3628/// This can cause recursive merging of nodes in the DAG.
3629///
3630/// This version assumes From has a single result value.
3631///
3632void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3633                                      DAGUpdateListener *UpdateListener) {
3634  SDNode *From = FromN.Val;
3635  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3636         "Cannot replace with this method!");
3637  assert(From != To.Val && "Cannot replace uses of with self");
3638
3639  while (!From->use_empty()) {
3640    SDNode::use_iterator UI = From->use_begin();
3641    SDNode *U = UI->getUser();
3642
3643    // This node is about to morph, remove its old self from the CSE maps.
3644    RemoveNodeFromCSEMaps(U);
3645    int operandNum = 0;
3646    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3647         I != E; ++I, ++operandNum)
3648      if (I->getVal() == From) {
3649        From->removeUser(operandNum, U);
3650        *I = To;
3651        I->setUser(U);
3652        To.Val->addUser(operandNum, U);
3653      }
3654
3655    // Now that we have modified U, add it back to the CSE maps.  If it already
3656    // exists there, recursively merge the results together.
3657    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3658      ReplaceAllUsesWith(U, Existing, UpdateListener);
3659      // U is now dead.  Inform the listener if it exists and delete it.
3660      if (UpdateListener)
3661        UpdateListener->NodeDeleted(U);
3662      DeleteNodeNotInCSEMaps(U);
3663    } else {
3664      // If the node doesn't already exist, we updated it.  Inform a listener if
3665      // it exists.
3666      if (UpdateListener)
3667        UpdateListener->NodeUpdated(U);
3668    }
3669  }
3670}
3671
3672/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3673/// This can cause recursive merging of nodes in the DAG.
3674///
3675/// This version assumes From/To have matching types and numbers of result
3676/// values.
3677///
3678void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3679                                      DAGUpdateListener *UpdateListener) {
3680  assert(From != To && "Cannot replace uses of with self");
3681  assert(From->getNumValues() == To->getNumValues() &&
3682         "Cannot use this version of ReplaceAllUsesWith!");
3683  if (From->getNumValues() == 1)   // If possible, use the faster version.
3684    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3685                              UpdateListener);
3686
3687  while (!From->use_empty()) {
3688    SDNode::use_iterator UI = From->use_begin();
3689    SDNode *U = UI->getUser();
3690
3691    // This node is about to morph, remove its old self from the CSE maps.
3692    RemoveNodeFromCSEMaps(U);
3693    int operandNum = 0;
3694    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3695         I != E; ++I, ++operandNum)
3696      if (I->getVal() == From) {
3697        From->removeUser(operandNum, U);
3698        I->getVal() = To;
3699        To->addUser(operandNum, U);
3700      }
3701
3702    // Now that we have modified U, add it back to the CSE maps.  If it already
3703    // exists there, recursively merge the results together.
3704    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3705      ReplaceAllUsesWith(U, Existing, UpdateListener);
3706      // U is now dead.  Inform the listener if it exists and delete it.
3707      if (UpdateListener)
3708        UpdateListener->NodeDeleted(U);
3709      DeleteNodeNotInCSEMaps(U);
3710    } else {
3711      // If the node doesn't already exist, we updated it.  Inform a listener if
3712      // it exists.
3713      if (UpdateListener)
3714        UpdateListener->NodeUpdated(U);
3715    }
3716  }
3717}
3718
3719/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3720/// This can cause recursive merging of nodes in the DAG.
3721///
3722/// This version can replace From with any result values.  To must match the
3723/// number and types of values returned by From.
3724void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3725                                      SDOperandPtr To,
3726                                      DAGUpdateListener *UpdateListener) {
3727  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3728    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3729
3730  while (!From->use_empty()) {
3731    SDNode::use_iterator UI = From->use_begin();
3732    SDNode *U = UI->getUser();
3733
3734    // This node is about to morph, remove its old self from the CSE maps.
3735    RemoveNodeFromCSEMaps(U);
3736    int operandNum = 0;
3737    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3738         I != E; ++I, ++operandNum)
3739      if (I->getVal() == From) {
3740        const SDOperand &ToOp = To[I->getSDOperand().ResNo];
3741        From->removeUser(operandNum, U);
3742        *I = ToOp;
3743        I->setUser(U);
3744        ToOp.Val->addUser(operandNum, U);
3745      }
3746
3747    // Now that we have modified U, add it back to the CSE maps.  If it already
3748    // exists there, recursively merge the results together.
3749    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3750      ReplaceAllUsesWith(U, Existing, UpdateListener);
3751      // U is now dead.  Inform the listener if it exists and delete it.
3752      if (UpdateListener)
3753        UpdateListener->NodeDeleted(U);
3754      DeleteNodeNotInCSEMaps(U);
3755    } else {
3756      // If the node doesn't already exist, we updated it.  Inform a listener if
3757      // it exists.
3758      if (UpdateListener)
3759        UpdateListener->NodeUpdated(U);
3760    }
3761  }
3762}
3763
3764namespace {
3765  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3766  /// any deleted nodes from the set passed into its constructor and recursively
3767  /// notifies another update listener if specified.
3768  class ChainedSetUpdaterListener :
3769  public SelectionDAG::DAGUpdateListener {
3770    SmallSetVector<SDNode*, 16> &Set;
3771    SelectionDAG::DAGUpdateListener *Chain;
3772  public:
3773    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3774                              SelectionDAG::DAGUpdateListener *chain)
3775      : Set(set), Chain(chain) {}
3776
3777    virtual void NodeDeleted(SDNode *N) {
3778      Set.remove(N);
3779      if (Chain) Chain->NodeDeleted(N);
3780    }
3781    virtual void NodeUpdated(SDNode *N) {
3782      if (Chain) Chain->NodeUpdated(N);
3783    }
3784  };
3785}
3786
3787/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3788/// uses of other values produced by From.Val alone.  The Deleted vector is
3789/// handled the same way as for ReplaceAllUsesWith.
3790void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3791                                             DAGUpdateListener *UpdateListener){
3792  assert(From != To && "Cannot replace a value with itself");
3793
3794  // Handle the simple, trivial, case efficiently.
3795  if (From.Val->getNumValues() == 1) {
3796    ReplaceAllUsesWith(From, To, UpdateListener);
3797    return;
3798  }
3799
3800  if (From.use_empty()) return;
3801
3802  // Get all of the users of From.Val.  We want these in a nice,
3803  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3804  SmallSetVector<SDNode*, 16> Users;
3805  for (SDNode::use_iterator UI = From.Val->use_begin(),
3806      E = From.Val->use_end(); UI != E; ++UI) {
3807    SDNode *User = UI->getUser();
3808    if (!Users.count(User))
3809      Users.insert(User);
3810  }
3811
3812  // When one of the recursive merges deletes nodes from the graph, we need to
3813  // make sure that UpdateListener is notified *and* that the node is removed
3814  // from Users if present.  CSUL does this.
3815  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3816
3817  while (!Users.empty()) {
3818    // We know that this user uses some value of From.  If it is the right
3819    // value, update it.
3820    SDNode *User = Users.back();
3821    Users.pop_back();
3822
3823    // Scan for an operand that matches From.
3824    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
3825    for (; Op != E; ++Op)
3826      if (*Op == From) break;
3827
3828    // If there are no matches, the user must use some other result of From.
3829    if (Op == E) continue;
3830
3831    // Okay, we know this user needs to be updated.  Remove its old self
3832    // from the CSE maps.
3833    RemoveNodeFromCSEMaps(User);
3834
3835    // Update all operands that match "From" in case there are multiple uses.
3836    for (; Op != E; ++Op) {
3837      if (*Op == From) {
3838        From.Val->removeUser(Op-User->op_begin(), User);
3839        *Op = To;
3840        Op->setUser(User);
3841        To.Val->addUser(Op-User->op_begin(), User);
3842      }
3843    }
3844
3845    // Now that we have modified User, add it back to the CSE maps.  If it
3846    // already exists there, recursively merge the results together.
3847    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3848    if (!Existing) {
3849      if (UpdateListener) UpdateListener->NodeUpdated(User);
3850      continue;  // Continue on to next user.
3851    }
3852
3853    // If there was already an existing matching node, use ReplaceAllUsesWith
3854    // to replace the dead one with the existing one.  This can cause
3855    // recursive merging of other unrelated nodes down the line.  The merging
3856    // can cause deletion of nodes that used the old value.  To handle this, we
3857    // use CSUL to remove them from the Users set.
3858    ReplaceAllUsesWith(User, Existing, &CSUL);
3859
3860    // User is now dead.  Notify a listener if present.
3861    if (UpdateListener) UpdateListener->NodeDeleted(User);
3862    DeleteNodeNotInCSEMaps(User);
3863  }
3864}
3865
3866/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3867/// their allnodes order. It returns the maximum id.
3868unsigned SelectionDAG::AssignNodeIds() {
3869  unsigned Id = 0;
3870  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3871    SDNode *N = I;
3872    N->setNodeId(Id++);
3873  }
3874  return Id;
3875}
3876
3877/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3878/// based on their topological order. It returns the maximum id and a vector
3879/// of the SDNodes* in assigned order by reference.
3880unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3881  unsigned DAGSize = AllNodes.size();
3882  std::vector<unsigned> InDegree(DAGSize);
3883  std::vector<SDNode*> Sources;
3884
3885  // Use a two pass approach to avoid using a std::map which is slow.
3886  unsigned Id = 0;
3887  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3888    SDNode *N = I;
3889    N->setNodeId(Id++);
3890    unsigned Degree = N->use_size();
3891    InDegree[N->getNodeId()] = Degree;
3892    if (Degree == 0)
3893      Sources.push_back(N);
3894  }
3895
3896  TopOrder.clear();
3897  while (!Sources.empty()) {
3898    SDNode *N = Sources.back();
3899    Sources.pop_back();
3900    TopOrder.push_back(N);
3901    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3902      SDNode *P = I->getVal();
3903      unsigned Degree = --InDegree[P->getNodeId()];
3904      if (Degree == 0)
3905        Sources.push_back(P);
3906    }
3907  }
3908
3909  // Second pass, assign the actual topological order as node ids.
3910  Id = 0;
3911  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3912       TI != TE; ++TI)
3913    (*TI)->setNodeId(Id++);
3914
3915  return Id;
3916}
3917
3918
3919
3920//===----------------------------------------------------------------------===//
3921//                              SDNode Class
3922//===----------------------------------------------------------------------===//
3923
3924// Out-of-line virtual method to give class a home.
3925void SDNode::ANCHOR() {}
3926void UnarySDNode::ANCHOR() {}
3927void BinarySDNode::ANCHOR() {}
3928void TernarySDNode::ANCHOR() {}
3929void HandleSDNode::ANCHOR() {}
3930void StringSDNode::ANCHOR() {}
3931void ConstantSDNode::ANCHOR() {}
3932void ConstantFPSDNode::ANCHOR() {}
3933void GlobalAddressSDNode::ANCHOR() {}
3934void FrameIndexSDNode::ANCHOR() {}
3935void JumpTableSDNode::ANCHOR() {}
3936void ConstantPoolSDNode::ANCHOR() {}
3937void BasicBlockSDNode::ANCHOR() {}
3938void SrcValueSDNode::ANCHOR() {}
3939void MemOperandSDNode::ANCHOR() {}
3940void RegisterSDNode::ANCHOR() {}
3941void ExternalSymbolSDNode::ANCHOR() {}
3942void CondCodeSDNode::ANCHOR() {}
3943void ARG_FLAGSSDNode::ANCHOR() {}
3944void VTSDNode::ANCHOR() {}
3945void LoadSDNode::ANCHOR() {}
3946void StoreSDNode::ANCHOR() {}
3947void AtomicSDNode::ANCHOR() {}
3948
3949HandleSDNode::~HandleSDNode() {
3950  SDVTList VTs = { 0, 0 };
3951  MorphNodeTo(ISD::HANDLENODE, VTs, SDOperandPtr(), 0);  // Drops operand uses.
3952}
3953
3954GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3955                                         MVT::ValueType VT, int o)
3956  : SDNode(isa<GlobalVariable>(GA) &&
3957           cast<GlobalVariable>(GA)->isThreadLocal() ?
3958           // Thread Local
3959           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3960           // Non Thread Local
3961           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3962           getSDVTList(VT)), Offset(o) {
3963  TheGlobal = const_cast<GlobalValue*>(GA);
3964}
3965
3966/// getMemOperand - Return a MachineMemOperand object describing the memory
3967/// reference performed by this load or store.
3968MachineMemOperand LSBaseSDNode::getMemOperand() const {
3969  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
3970  int Flags =
3971    getOpcode() == ISD::LOAD ? MachineMemOperand::MOLoad :
3972                               MachineMemOperand::MOStore;
3973  if (IsVolatile) Flags |= MachineMemOperand::MOVolatile;
3974
3975  // Check if the load references a frame index, and does not have
3976  // an SV attached.
3977  const FrameIndexSDNode *FI =
3978    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
3979  if (!getSrcValue() && FI)
3980    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
3981                             FI->getIndex(), Size, Alignment);
3982  else
3983    return MachineMemOperand(getSrcValue(), Flags,
3984                             getSrcValueOffset(), Size, Alignment);
3985}
3986
3987/// Profile - Gather unique data for the node.
3988///
3989void SDNode::Profile(FoldingSetNodeID &ID) {
3990  AddNodeIDNode(ID, this);
3991}
3992
3993/// getValueTypeList - Return a pointer to the specified value type.
3994///
3995const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3996  if (MVT::isExtendedVT(VT)) {
3997    static std::set<MVT::ValueType> EVTs;
3998    return &(*EVTs.insert(VT).first);
3999  } else {
4000    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
4001    VTs[VT] = VT;
4002    return &VTs[VT];
4003  }
4004}
4005
4006/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4007/// indicated value.  This method ignores uses of other values defined by this
4008/// operation.
4009bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4010  assert(Value < getNumValues() && "Bad value!");
4011
4012  // If there is only one value, this is easy.
4013  if (getNumValues() == 1)
4014    return use_size() == NUses;
4015  if (use_size() < NUses) return false;
4016
4017  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4018
4019  SmallPtrSet<SDNode*, 32> UsersHandled;
4020
4021  // TODO: Only iterate over uses of a given value of the node
4022  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4023    if (*UI == TheValue) {
4024      if (NUses == 0)
4025        return false;
4026      --NUses;
4027    }
4028  }
4029
4030  // Found exactly the right number of uses?
4031  return NUses == 0;
4032}
4033
4034
4035/// hasAnyUseOfValue - Return true if there are any use of the indicated
4036/// value. This method ignores uses of other values defined by this operation.
4037bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4038  assert(Value < getNumValues() && "Bad value!");
4039
4040  if (use_empty()) return false;
4041
4042  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4043
4044  SmallPtrSet<SDNode*, 32> UsersHandled;
4045
4046  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4047    SDNode *User = UI->getUser();
4048    if (User->getNumOperands() == 1 ||
4049        UsersHandled.insert(User))     // First time we've seen this?
4050      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
4051        if (User->getOperand(i) == TheValue) {
4052          return true;
4053        }
4054  }
4055
4056  return false;
4057}
4058
4059
4060/// isOnlyUseOf - Return true if this node is the only use of N.
4061///
4062bool SDNode::isOnlyUseOf(SDNode *N) const {
4063  bool Seen = false;
4064  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4065    SDNode *User = I->getUser();
4066    if (User == this)
4067      Seen = true;
4068    else
4069      return false;
4070  }
4071
4072  return Seen;
4073}
4074
4075/// isOperand - Return true if this node is an operand of N.
4076///
4077bool SDOperand::isOperandOf(SDNode *N) const {
4078  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4079    if (*this == N->getOperand(i))
4080      return true;
4081  return false;
4082}
4083
4084bool SDNode::isOperandOf(SDNode *N) const {
4085  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4086    if (this == N->OperandList[i].getVal())
4087      return true;
4088  return false;
4089}
4090
4091/// reachesChainWithoutSideEffects - Return true if this operand (which must
4092/// be a chain) reaches the specified operand without crossing any
4093/// side-effecting instructions.  In practice, this looks through token
4094/// factors and non-volatile loads.  In order to remain efficient, this only
4095/// looks a couple of nodes in, it does not do an exhaustive search.
4096bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
4097                                               unsigned Depth) const {
4098  if (*this == Dest) return true;
4099
4100  // Don't search too deeply, we just want to be able to see through
4101  // TokenFactor's etc.
4102  if (Depth == 0) return false;
4103
4104  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4105  // of the operands of the TF reach dest, then we can do the xform.
4106  if (getOpcode() == ISD::TokenFactor) {
4107    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4108      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4109        return true;
4110    return false;
4111  }
4112
4113  // Loads don't have side effects, look through them.
4114  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4115    if (!Ld->isVolatile())
4116      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4117  }
4118  return false;
4119}
4120
4121
4122static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4123                            SmallPtrSet<SDNode *, 32> &Visited) {
4124  if (found || !Visited.insert(N))
4125    return;
4126
4127  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4128    SDNode *Op = N->getOperand(i).Val;
4129    if (Op == P) {
4130      found = true;
4131      return;
4132    }
4133    findPredecessor(Op, P, found, Visited);
4134  }
4135}
4136
4137/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4138/// is either an operand of N or it can be reached by recursively traversing
4139/// up the operands.
4140/// NOTE: this is an expensive method. Use it carefully.
4141bool SDNode::isPredecessorOf(SDNode *N) const {
4142  SmallPtrSet<SDNode *, 32> Visited;
4143  bool found = false;
4144  findPredecessor(N, this, found, Visited);
4145  return found;
4146}
4147
4148uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4149  assert(Num < NumOperands && "Invalid child # of SDNode!");
4150  return cast<ConstantSDNode>(OperandList[Num])->getValue();
4151}
4152
4153std::string SDNode::getOperationName(const SelectionDAG *G) const {
4154  switch (getOpcode()) {
4155  default:
4156    if (getOpcode() < ISD::BUILTIN_OP_END)
4157      return "<<Unknown DAG Node>>";
4158    else {
4159      if (G) {
4160        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4161          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
4162            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
4163
4164        TargetLowering &TLI = G->getTargetLoweringInfo();
4165        const char *Name =
4166          TLI.getTargetNodeName(getOpcode());
4167        if (Name) return Name;
4168      }
4169
4170      return "<<Unknown Target Node>>";
4171    }
4172
4173  case ISD::PREFETCH:      return "Prefetch";
4174  case ISD::MEMBARRIER:    return "MemBarrier";
4175  case ISD::ATOMIC_LCS:    return "AtomicLCS";
4176  case ISD::ATOMIC_LAS:    return "AtomicLAS";
4177  case ISD::ATOMIC_SWAP:    return "AtomicSWAP";
4178  case ISD::PCMARKER:      return "PCMarker";
4179  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4180  case ISD::SRCVALUE:      return "SrcValue";
4181  case ISD::MEMOPERAND:    return "MemOperand";
4182  case ISD::EntryToken:    return "EntryToken";
4183  case ISD::TokenFactor:   return "TokenFactor";
4184  case ISD::AssertSext:    return "AssertSext";
4185  case ISD::AssertZext:    return "AssertZext";
4186
4187  case ISD::STRING:        return "String";
4188  case ISD::BasicBlock:    return "BasicBlock";
4189  case ISD::ARG_FLAGS:     return "ArgFlags";
4190  case ISD::VALUETYPE:     return "ValueType";
4191  case ISD::Register:      return "Register";
4192
4193  case ISD::Constant:      return "Constant";
4194  case ISD::ConstantFP:    return "ConstantFP";
4195  case ISD::GlobalAddress: return "GlobalAddress";
4196  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4197  case ISD::FrameIndex:    return "FrameIndex";
4198  case ISD::JumpTable:     return "JumpTable";
4199  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4200  case ISD::RETURNADDR: return "RETURNADDR";
4201  case ISD::FRAMEADDR: return "FRAMEADDR";
4202  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4203  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4204  case ISD::EHSELECTION: return "EHSELECTION";
4205  case ISD::EH_RETURN: return "EH_RETURN";
4206  case ISD::ConstantPool:  return "ConstantPool";
4207  case ISD::ExternalSymbol: return "ExternalSymbol";
4208  case ISD::INTRINSIC_WO_CHAIN: {
4209    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
4210    return Intrinsic::getName((Intrinsic::ID)IID);
4211  }
4212  case ISD::INTRINSIC_VOID:
4213  case ISD::INTRINSIC_W_CHAIN: {
4214    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
4215    return Intrinsic::getName((Intrinsic::ID)IID);
4216  }
4217
4218  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4219  case ISD::TargetConstant: return "TargetConstant";
4220  case ISD::TargetConstantFP:return "TargetConstantFP";
4221  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4222  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4223  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4224  case ISD::TargetJumpTable:  return "TargetJumpTable";
4225  case ISD::TargetConstantPool:  return "TargetConstantPool";
4226  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4227
4228  case ISD::CopyToReg:     return "CopyToReg";
4229  case ISD::CopyFromReg:   return "CopyFromReg";
4230  case ISD::UNDEF:         return "undef";
4231  case ISD::MERGE_VALUES:  return "merge_values";
4232  case ISD::INLINEASM:     return "inlineasm";
4233  case ISD::LABEL:         return "label";
4234  case ISD::DECLARE:       return "declare";
4235  case ISD::HANDLENODE:    return "handlenode";
4236  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4237  case ISD::CALL:          return "call";
4238
4239  // Unary operators
4240  case ISD::FABS:   return "fabs";
4241  case ISD::FNEG:   return "fneg";
4242  case ISD::FSQRT:  return "fsqrt";
4243  case ISD::FSIN:   return "fsin";
4244  case ISD::FCOS:   return "fcos";
4245  case ISD::FPOWI:  return "fpowi";
4246  case ISD::FPOW:   return "fpow";
4247
4248  // Binary operators
4249  case ISD::ADD:    return "add";
4250  case ISD::SUB:    return "sub";
4251  case ISD::MUL:    return "mul";
4252  case ISD::MULHU:  return "mulhu";
4253  case ISD::MULHS:  return "mulhs";
4254  case ISD::SDIV:   return "sdiv";
4255  case ISD::UDIV:   return "udiv";
4256  case ISD::SREM:   return "srem";
4257  case ISD::UREM:   return "urem";
4258  case ISD::SMUL_LOHI:  return "smul_lohi";
4259  case ISD::UMUL_LOHI:  return "umul_lohi";
4260  case ISD::SDIVREM:    return "sdivrem";
4261  case ISD::UDIVREM:    return "divrem";
4262  case ISD::AND:    return "and";
4263  case ISD::OR:     return "or";
4264  case ISD::XOR:    return "xor";
4265  case ISD::SHL:    return "shl";
4266  case ISD::SRA:    return "sra";
4267  case ISD::SRL:    return "srl";
4268  case ISD::ROTL:   return "rotl";
4269  case ISD::ROTR:   return "rotr";
4270  case ISD::FADD:   return "fadd";
4271  case ISD::FSUB:   return "fsub";
4272  case ISD::FMUL:   return "fmul";
4273  case ISD::FDIV:   return "fdiv";
4274  case ISD::FREM:   return "frem";
4275  case ISD::FCOPYSIGN: return "fcopysign";
4276  case ISD::FGETSIGN:  return "fgetsign";
4277
4278  case ISD::SETCC:       return "setcc";
4279  case ISD::SELECT:      return "select";
4280  case ISD::SELECT_CC:   return "select_cc";
4281  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
4282  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
4283  case ISD::CONCAT_VECTORS:      return "concat_vectors";
4284  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
4285  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
4286  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
4287  case ISD::CARRY_FALSE:         return "carry_false";
4288  case ISD::ADDC:        return "addc";
4289  case ISD::ADDE:        return "adde";
4290  case ISD::SUBC:        return "subc";
4291  case ISD::SUBE:        return "sube";
4292  case ISD::SHL_PARTS:   return "shl_parts";
4293  case ISD::SRA_PARTS:   return "sra_parts";
4294  case ISD::SRL_PARTS:   return "srl_parts";
4295
4296  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
4297  case ISD::INSERT_SUBREG:      return "insert_subreg";
4298
4299  // Conversion operators.
4300  case ISD::SIGN_EXTEND: return "sign_extend";
4301  case ISD::ZERO_EXTEND: return "zero_extend";
4302  case ISD::ANY_EXTEND:  return "any_extend";
4303  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
4304  case ISD::TRUNCATE:    return "truncate";
4305  case ISD::FP_ROUND:    return "fp_round";
4306  case ISD::FLT_ROUNDS_: return "flt_rounds";
4307  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
4308  case ISD::FP_EXTEND:   return "fp_extend";
4309
4310  case ISD::SINT_TO_FP:  return "sint_to_fp";
4311  case ISD::UINT_TO_FP:  return "uint_to_fp";
4312  case ISD::FP_TO_SINT:  return "fp_to_sint";
4313  case ISD::FP_TO_UINT:  return "fp_to_uint";
4314  case ISD::BIT_CONVERT: return "bit_convert";
4315
4316    // Control flow instructions
4317  case ISD::BR:      return "br";
4318  case ISD::BRIND:   return "brind";
4319  case ISD::BR_JT:   return "br_jt";
4320  case ISD::BRCOND:  return "brcond";
4321  case ISD::BR_CC:   return "br_cc";
4322  case ISD::RET:     return "ret";
4323  case ISD::CALLSEQ_START:  return "callseq_start";
4324  case ISD::CALLSEQ_END:    return "callseq_end";
4325
4326    // Other operators
4327  case ISD::LOAD:               return "load";
4328  case ISD::STORE:              return "store";
4329  case ISD::VAARG:              return "vaarg";
4330  case ISD::VACOPY:             return "vacopy";
4331  case ISD::VAEND:              return "vaend";
4332  case ISD::VASTART:            return "vastart";
4333  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4334  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4335  case ISD::BUILD_PAIR:         return "build_pair";
4336  case ISD::STACKSAVE:          return "stacksave";
4337  case ISD::STACKRESTORE:       return "stackrestore";
4338  case ISD::TRAP:               return "trap";
4339
4340  // Bit manipulation
4341  case ISD::BSWAP:   return "bswap";
4342  case ISD::CTPOP:   return "ctpop";
4343  case ISD::CTTZ:    return "cttz";
4344  case ISD::CTLZ:    return "ctlz";
4345
4346  // Debug info
4347  case ISD::LOCATION: return "location";
4348  case ISD::DEBUG_LOC: return "debug_loc";
4349
4350  // Trampolines
4351  case ISD::TRAMPOLINE: return "trampoline";
4352
4353  case ISD::CONDCODE:
4354    switch (cast<CondCodeSDNode>(this)->get()) {
4355    default: assert(0 && "Unknown setcc condition!");
4356    case ISD::SETOEQ:  return "setoeq";
4357    case ISD::SETOGT:  return "setogt";
4358    case ISD::SETOGE:  return "setoge";
4359    case ISD::SETOLT:  return "setolt";
4360    case ISD::SETOLE:  return "setole";
4361    case ISD::SETONE:  return "setone";
4362
4363    case ISD::SETO:    return "seto";
4364    case ISD::SETUO:   return "setuo";
4365    case ISD::SETUEQ:  return "setue";
4366    case ISD::SETUGT:  return "setugt";
4367    case ISD::SETUGE:  return "setuge";
4368    case ISD::SETULT:  return "setult";
4369    case ISD::SETULE:  return "setule";
4370    case ISD::SETUNE:  return "setune";
4371
4372    case ISD::SETEQ:   return "seteq";
4373    case ISD::SETGT:   return "setgt";
4374    case ISD::SETGE:   return "setge";
4375    case ISD::SETLT:   return "setlt";
4376    case ISD::SETLE:   return "setle";
4377    case ISD::SETNE:   return "setne";
4378    }
4379  }
4380}
4381
4382const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4383  switch (AM) {
4384  default:
4385    return "";
4386  case ISD::PRE_INC:
4387    return "<pre-inc>";
4388  case ISD::PRE_DEC:
4389    return "<pre-dec>";
4390  case ISD::POST_INC:
4391    return "<post-inc>";
4392  case ISD::POST_DEC:
4393    return "<post-dec>";
4394  }
4395}
4396
4397std::string ISD::ArgFlagsTy::getArgFlagsString() {
4398  std::string S = "< ";
4399
4400  if (isZExt())
4401    S += "zext ";
4402  if (isSExt())
4403    S += "sext ";
4404  if (isInReg())
4405    S += "inreg ";
4406  if (isSRet())
4407    S += "sret ";
4408  if (isByVal())
4409    S += "byval ";
4410  if (isNest())
4411    S += "nest ";
4412  if (getByValAlign())
4413    S += "byval-align:" + utostr(getByValAlign()) + " ";
4414  if (getOrigAlign())
4415    S += "orig-align:" + utostr(getOrigAlign()) + " ";
4416  if (getByValSize())
4417    S += "byval-size:" + utostr(getByValSize()) + " ";
4418  return S + ">";
4419}
4420
4421void SDNode::dump() const { dump(0); }
4422void SDNode::dump(const SelectionDAG *G) const {
4423  cerr << (void*)this << ": ";
4424
4425  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4426    if (i) cerr << ",";
4427    if (getValueType(i) == MVT::Other)
4428      cerr << "ch";
4429    else
4430      cerr << MVT::getValueTypeString(getValueType(i));
4431  }
4432  cerr << " = " << getOperationName(G);
4433
4434  cerr << " ";
4435  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4436    if (i) cerr << ", ";
4437    cerr << (void*)getOperand(i).Val;
4438    if (unsigned RN = getOperand(i).ResNo)
4439      cerr << ":" << RN;
4440  }
4441
4442  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4443    SDNode *Mask = getOperand(2).Val;
4444    cerr << "<";
4445    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4446      if (i) cerr << ",";
4447      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4448        cerr << "u";
4449      else
4450        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4451    }
4452    cerr << ">";
4453  }
4454
4455  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4456    cerr << "<" << CSDN->getValue() << ">";
4457  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4458    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4459      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4460    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4461      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4462    else {
4463      cerr << "<APFloat(";
4464      CSDN->getValueAPF().convertToAPInt().dump();
4465      cerr << ")>";
4466    }
4467  } else if (const GlobalAddressSDNode *GADN =
4468             dyn_cast<GlobalAddressSDNode>(this)) {
4469    int offset = GADN->getOffset();
4470    cerr << "<";
4471    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4472    if (offset > 0)
4473      cerr << " + " << offset;
4474    else
4475      cerr << " " << offset;
4476  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4477    cerr << "<" << FIDN->getIndex() << ">";
4478  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4479    cerr << "<" << JTDN->getIndex() << ">";
4480  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4481    int offset = CP->getOffset();
4482    if (CP->isMachineConstantPoolEntry())
4483      cerr << "<" << *CP->getMachineCPVal() << ">";
4484    else
4485      cerr << "<" << *CP->getConstVal() << ">";
4486    if (offset > 0)
4487      cerr << " + " << offset;
4488    else
4489      cerr << " " << offset;
4490  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4491    cerr << "<";
4492    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4493    if (LBB)
4494      cerr << LBB->getName() << " ";
4495    cerr << (const void*)BBDN->getBasicBlock() << ">";
4496  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4497    if (G && R->getReg() &&
4498        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4499      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4500    } else {
4501      cerr << " #" << R->getReg();
4502    }
4503  } else if (const ExternalSymbolSDNode *ES =
4504             dyn_cast<ExternalSymbolSDNode>(this)) {
4505    cerr << "'" << ES->getSymbol() << "'";
4506  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4507    if (M->getValue())
4508      cerr << "<" << M->getValue() << ">";
4509    else
4510      cerr << "<null>";
4511  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4512    if (M->MO.getValue())
4513      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4514    else
4515      cerr << "<null:" << M->MO.getOffset() << ">";
4516  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
4517    cerr << N->getArgFlags().getArgFlagsString();
4518  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4519    cerr << ":" << MVT::getValueTypeString(N->getVT());
4520  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4521    const Value *SrcValue = LD->getSrcValue();
4522    int SrcOffset = LD->getSrcValueOffset();
4523    cerr << " <";
4524    if (SrcValue)
4525      cerr << SrcValue;
4526    else
4527      cerr << "null";
4528    cerr << ":" << SrcOffset << ">";
4529
4530    bool doExt = true;
4531    switch (LD->getExtensionType()) {
4532    default: doExt = false; break;
4533    case ISD::EXTLOAD:
4534      cerr << " <anyext ";
4535      break;
4536    case ISD::SEXTLOAD:
4537      cerr << " <sext ";
4538      break;
4539    case ISD::ZEXTLOAD:
4540      cerr << " <zext ";
4541      break;
4542    }
4543    if (doExt)
4544      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4545
4546    const char *AM = getIndexedModeName(LD->getAddressingMode());
4547    if (*AM)
4548      cerr << " " << AM;
4549    if (LD->isVolatile())
4550      cerr << " <volatile>";
4551    cerr << " alignment=" << LD->getAlignment();
4552  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4553    const Value *SrcValue = ST->getSrcValue();
4554    int SrcOffset = ST->getSrcValueOffset();
4555    cerr << " <";
4556    if (SrcValue)
4557      cerr << SrcValue;
4558    else
4559      cerr << "null";
4560    cerr << ":" << SrcOffset << ">";
4561
4562    if (ST->isTruncatingStore())
4563      cerr << " <trunc "
4564           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4565
4566    const char *AM = getIndexedModeName(ST->getAddressingMode());
4567    if (*AM)
4568      cerr << " " << AM;
4569    if (ST->isVolatile())
4570      cerr << " <volatile>";
4571    cerr << " alignment=" << ST->getAlignment();
4572  }
4573}
4574
4575static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4576  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4577    if (N->getOperand(i).Val->hasOneUse())
4578      DumpNodes(N->getOperand(i).Val, indent+2, G);
4579    else
4580      cerr << "\n" << std::string(indent+2, ' ')
4581           << (void*)N->getOperand(i).Val << ": <multiple use>";
4582
4583
4584  cerr << "\n" << std::string(indent, ' ');
4585  N->dump(G);
4586}
4587
4588void SelectionDAG::dump() const {
4589  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4590  std::vector<const SDNode*> Nodes;
4591  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4592       I != E; ++I)
4593    Nodes.push_back(I);
4594
4595  std::sort(Nodes.begin(), Nodes.end());
4596
4597  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4598    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4599      DumpNodes(Nodes[i], 2, this);
4600  }
4601
4602  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4603
4604  cerr << "\n\n";
4605}
4606
4607const Type *ConstantPoolSDNode::getType() const {
4608  if (isMachineConstantPoolEntry())
4609    return Val.MachineCPVal->getType();
4610  return Val.ConstVal->getType();
4611}
4612