SelectionDAG.cpp revision 944d0d515fd58645a0b8487e6cbe6bb36a4e73fe
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallSet.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/StringExtras.h"
40#include <algorithm>
41#include <cmath>
42using namespace llvm;
43
44/// makeVTList - Return an instance of the SDVTList struct initialized with the
45/// specified members.
46static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
47  SDVTList Res = {VTs, NumVTs};
48  return Res;
49}
50
51static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
52  switch (VT.getSimpleVT()) {
53  default: assert(0 && "Unknown FP format");
54  case MVT::f32:     return &APFloat::IEEEsingle;
55  case MVT::f64:     return &APFloat::IEEEdouble;
56  case MVT::f80:     return &APFloat::x87DoubleExtended;
57  case MVT::f128:    return &APFloat::IEEEquad;
58  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
59  }
60}
61
62SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
63
64//===----------------------------------------------------------------------===//
65//                              ConstantFPSDNode Class
66//===----------------------------------------------------------------------===//
67
68/// isExactlyValue - We don't rely on operator== working on double values, as
69/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
70/// As such, this method can be used to do an exact bit-for-bit comparison of
71/// two floating point values.
72bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
73  return getValueAPF().bitwiseIsEqual(V);
74}
75
76bool ConstantFPSDNode::isValueValidForType(MVT VT,
77                                           const APFloat& Val) {
78  assert(VT.isFloatingPoint() && "Can only convert between FP types");
79
80  // PPC long double cannot be converted to any other type.
81  if (VT == MVT::ppcf128 ||
82      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
83    return false;
84
85  // convert modifies in place, so make a copy.
86  APFloat Val2 = APFloat(Val);
87  bool losesInfo;
88  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
89                      &losesInfo);
90  return !losesInfo;
91}
92
93//===----------------------------------------------------------------------===//
94//                              ISD Namespace
95//===----------------------------------------------------------------------===//
96
97/// isBuildVectorAllOnes - Return true if the specified node is a
98/// BUILD_VECTOR where all of the elements are ~0 or undef.
99bool ISD::isBuildVectorAllOnes(const SDNode *N) {
100  // Look through a bit convert.
101  if (N->getOpcode() == ISD::BIT_CONVERT)
102    N = N->getOperand(0).getNode();
103
104  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
105
106  unsigned i = 0, e = N->getNumOperands();
107
108  // Skip over all of the undef values.
109  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
110    ++i;
111
112  // Do not accept an all-undef vector.
113  if (i == e) return false;
114
115  // Do not accept build_vectors that aren't all constants or which have non-~0
116  // elements.
117  SDValue NotZero = N->getOperand(i);
118  if (isa<ConstantSDNode>(NotZero)) {
119    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
120      return false;
121  } else if (isa<ConstantFPSDNode>(NotZero)) {
122    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
123                bitcastToAPInt().isAllOnesValue())
124      return false;
125  } else
126    return false;
127
128  // Okay, we have at least one ~0 value, check to see if the rest match or are
129  // undefs.
130  for (++i; i != e; ++i)
131    if (N->getOperand(i) != NotZero &&
132        N->getOperand(i).getOpcode() != ISD::UNDEF)
133      return false;
134  return true;
135}
136
137
138/// isBuildVectorAllZeros - Return true if the specified node is a
139/// BUILD_VECTOR where all of the elements are 0 or undef.
140bool ISD::isBuildVectorAllZeros(const SDNode *N) {
141  // Look through a bit convert.
142  if (N->getOpcode() == ISD::BIT_CONVERT)
143    N = N->getOperand(0).getNode();
144
145  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
146
147  unsigned i = 0, e = N->getNumOperands();
148
149  // Skip over all of the undef values.
150  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
151    ++i;
152
153  // Do not accept an all-undef vector.
154  if (i == e) return false;
155
156  // Do not accept build_vectors that aren't all constants or which have non-~0
157  // elements.
158  SDValue Zero = N->getOperand(i);
159  if (isa<ConstantSDNode>(Zero)) {
160    if (!cast<ConstantSDNode>(Zero)->isNullValue())
161      return false;
162  } else if (isa<ConstantFPSDNode>(Zero)) {
163    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
164      return false;
165  } else
166    return false;
167
168  // Okay, we have at least one ~0 value, check to see if the rest match or are
169  // undefs.
170  for (++i; i != e; ++i)
171    if (N->getOperand(i) != Zero &&
172        N->getOperand(i).getOpcode() != ISD::UNDEF)
173      return false;
174  return true;
175}
176
177/// isScalarToVector - Return true if the specified node is a
178/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
179/// element is not an undef.
180bool ISD::isScalarToVector(const SDNode *N) {
181  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
182    return true;
183
184  if (N->getOpcode() != ISD::BUILD_VECTOR)
185    return false;
186  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
187    return false;
188  unsigned NumElems = N->getNumOperands();
189  for (unsigned i = 1; i < NumElems; ++i) {
190    SDValue V = N->getOperand(i);
191    if (V.getOpcode() != ISD::UNDEF)
192      return false;
193  }
194  return true;
195}
196
197
198/// isDebugLabel - Return true if the specified node represents a debug
199/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
200bool ISD::isDebugLabel(const SDNode *N) {
201  SDValue Zero;
202  if (N->getOpcode() == ISD::DBG_LABEL)
203    return true;
204  if (N->isMachineOpcode() &&
205      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
206    return true;
207  return false;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: assert(0 && "Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309const TargetMachine &SelectionDAG::getTarget() const {
310  return MF->getTarget();
311}
312
313//===----------------------------------------------------------------------===//
314//                           SDNode Profile Support
315//===----------------------------------------------------------------------===//
316
317/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
318///
319static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
320  ID.AddInteger(OpC);
321}
322
323/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
324/// solely with their pointer.
325static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
326  ID.AddPointer(VTList.VTs);
327}
328
329/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
330///
331static void AddNodeIDOperands(FoldingSetNodeID &ID,
332                              const SDValue *Ops, unsigned NumOps) {
333  for (; NumOps; --NumOps, ++Ops) {
334    ID.AddPointer(Ops->getNode());
335    ID.AddInteger(Ops->getResNo());
336  }
337}
338
339/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
340///
341static void AddNodeIDOperands(FoldingSetNodeID &ID,
342                              const SDUse *Ops, unsigned NumOps) {
343  for (; NumOps; --NumOps, ++Ops) {
344    ID.AddPointer(Ops->getVal());
345    ID.AddInteger(Ops->getSDValue().getResNo());
346  }
347}
348
349static void AddNodeIDNode(FoldingSetNodeID &ID,
350                          unsigned short OpC, SDVTList VTList,
351                          const SDValue *OpList, unsigned N) {
352  AddNodeIDOpcode(ID, OpC);
353  AddNodeIDValueTypes(ID, VTList);
354  AddNodeIDOperands(ID, OpList, N);
355}
356
357
358/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
359/// data.
360static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
361  AddNodeIDOpcode(ID, N->getOpcode());
362  // Add the return value info.
363  AddNodeIDValueTypes(ID, N->getVTList());
364  // Add the operand info.
365  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
366
367  // Handle SDNode leafs with special info.
368  switch (N->getOpcode()) {
369  default: break;  // Normal nodes don't need extra info.
370  case ISD::ARG_FLAGS:
371    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
372    break;
373  case ISD::TargetConstant:
374  case ISD::Constant:
375    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
376    break;
377  case ISD::TargetConstantFP:
378  case ISD::ConstantFP: {
379    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
380    break;
381  }
382  case ISD::TargetGlobalAddress:
383  case ISD::GlobalAddress:
384  case ISD::TargetGlobalTLSAddress:
385  case ISD::GlobalTLSAddress: {
386    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
387    ID.AddPointer(GA->getGlobal());
388    ID.AddInteger(GA->getOffset());
389    break;
390  }
391  case ISD::BasicBlock:
392    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
393    break;
394  case ISD::Register:
395    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
396    break;
397  case ISD::DBG_STOPPOINT: {
398    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
399    ID.AddInteger(DSP->getLine());
400    ID.AddInteger(DSP->getColumn());
401    ID.AddPointer(DSP->getCompileUnit());
402    break;
403  }
404  case ISD::SRCVALUE:
405    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
406    break;
407  case ISD::MEMOPERAND: {
408    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
409    MO.Profile(ID);
410    break;
411  }
412  case ISD::FrameIndex:
413  case ISD::TargetFrameIndex:
414    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
415    break;
416  case ISD::JumpTable:
417  case ISD::TargetJumpTable:
418    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
419    break;
420  case ISD::ConstantPool:
421  case ISD::TargetConstantPool: {
422    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
423    ID.AddInteger(CP->getAlignment());
424    ID.AddInteger(CP->getOffset());
425    if (CP->isMachineConstantPoolEntry())
426      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
427    else
428      ID.AddPointer(CP->getConstVal());
429    break;
430  }
431  case ISD::CALL: {
432    const CallSDNode *Call = cast<CallSDNode>(N);
433    ID.AddInteger(Call->getCallingConv());
434    ID.AddInteger(Call->isVarArg());
435    break;
436  }
437  case ISD::LOAD: {
438    const LoadSDNode *LD = cast<LoadSDNode>(N);
439    ID.AddInteger(LD->getAddressingMode());
440    ID.AddInteger(LD->getExtensionType());
441    ID.AddInteger(LD->getMemoryVT().getRawBits());
442    ID.AddInteger(LD->getRawFlags());
443    break;
444  }
445  case ISD::STORE: {
446    const StoreSDNode *ST = cast<StoreSDNode>(N);
447    ID.AddInteger(ST->getAddressingMode());
448    ID.AddInteger(ST->isTruncatingStore());
449    ID.AddInteger(ST->getMemoryVT().getRawBits());
450    ID.AddInteger(ST->getRawFlags());
451    break;
452  }
453  case ISD::ATOMIC_CMP_SWAP_8:
454  case ISD::ATOMIC_SWAP_8:
455  case ISD::ATOMIC_LOAD_ADD_8:
456  case ISD::ATOMIC_LOAD_SUB_8:
457  case ISD::ATOMIC_LOAD_AND_8:
458  case ISD::ATOMIC_LOAD_OR_8:
459  case ISD::ATOMIC_LOAD_XOR_8:
460  case ISD::ATOMIC_LOAD_NAND_8:
461  case ISD::ATOMIC_LOAD_MIN_8:
462  case ISD::ATOMIC_LOAD_MAX_8:
463  case ISD::ATOMIC_LOAD_UMIN_8:
464  case ISD::ATOMIC_LOAD_UMAX_8:
465  case ISD::ATOMIC_CMP_SWAP_16:
466  case ISD::ATOMIC_SWAP_16:
467  case ISD::ATOMIC_LOAD_ADD_16:
468  case ISD::ATOMIC_LOAD_SUB_16:
469  case ISD::ATOMIC_LOAD_AND_16:
470  case ISD::ATOMIC_LOAD_OR_16:
471  case ISD::ATOMIC_LOAD_XOR_16:
472  case ISD::ATOMIC_LOAD_NAND_16:
473  case ISD::ATOMIC_LOAD_MIN_16:
474  case ISD::ATOMIC_LOAD_MAX_16:
475  case ISD::ATOMIC_LOAD_UMIN_16:
476  case ISD::ATOMIC_LOAD_UMAX_16:
477  case ISD::ATOMIC_CMP_SWAP_32:
478  case ISD::ATOMIC_SWAP_32:
479  case ISD::ATOMIC_LOAD_ADD_32:
480  case ISD::ATOMIC_LOAD_SUB_32:
481  case ISD::ATOMIC_LOAD_AND_32:
482  case ISD::ATOMIC_LOAD_OR_32:
483  case ISD::ATOMIC_LOAD_XOR_32:
484  case ISD::ATOMIC_LOAD_NAND_32:
485  case ISD::ATOMIC_LOAD_MIN_32:
486  case ISD::ATOMIC_LOAD_MAX_32:
487  case ISD::ATOMIC_LOAD_UMIN_32:
488  case ISD::ATOMIC_LOAD_UMAX_32:
489  case ISD::ATOMIC_CMP_SWAP_64:
490  case ISD::ATOMIC_SWAP_64:
491  case ISD::ATOMIC_LOAD_ADD_64:
492  case ISD::ATOMIC_LOAD_SUB_64:
493  case ISD::ATOMIC_LOAD_AND_64:
494  case ISD::ATOMIC_LOAD_OR_64:
495  case ISD::ATOMIC_LOAD_XOR_64:
496  case ISD::ATOMIC_LOAD_NAND_64:
497  case ISD::ATOMIC_LOAD_MIN_64:
498  case ISD::ATOMIC_LOAD_MAX_64:
499  case ISD::ATOMIC_LOAD_UMIN_64:
500  case ISD::ATOMIC_LOAD_UMAX_64: {
501    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
502    ID.AddInteger(AT->getRawFlags());
503    break;
504  }
505  } // end switch (N->getOpcode())
506}
507
508/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
509/// the CSE map that carries both alignment and volatility information.
510///
511static inline unsigned
512encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
513  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
514}
515
516//===----------------------------------------------------------------------===//
517//                              SelectionDAG Class
518//===----------------------------------------------------------------------===//
519
520/// RemoveDeadNodes - This method deletes all unreachable nodes in the
521/// SelectionDAG.
522void SelectionDAG::RemoveDeadNodes() {
523  // Create a dummy node (which is not added to allnodes), that adds a reference
524  // to the root node, preventing it from being deleted.
525  HandleSDNode Dummy(getRoot());
526
527  SmallVector<SDNode*, 128> DeadNodes;
528
529  // Add all obviously-dead nodes to the DeadNodes worklist.
530  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
531    if (I->use_empty())
532      DeadNodes.push_back(I);
533
534  RemoveDeadNodes(DeadNodes);
535
536  // If the root changed (e.g. it was a dead load, update the root).
537  setRoot(Dummy.getValue());
538}
539
540/// RemoveDeadNodes - This method deletes the unreachable nodes in the
541/// given list, and any nodes that become unreachable as a result.
542void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
543                                   DAGUpdateListener *UpdateListener) {
544
545  // Process the worklist, deleting the nodes and adding their uses to the
546  // worklist.
547  while (!DeadNodes.empty()) {
548    SDNode *N = DeadNodes.back();
549    DeadNodes.pop_back();
550
551    if (UpdateListener)
552      UpdateListener->NodeDeleted(N, 0);
553
554    // Take the node out of the appropriate CSE map.
555    RemoveNodeFromCSEMaps(N);
556
557    // Next, brutally remove the operand list.  This is safe to do, as there are
558    // no cycles in the graph.
559    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
560      SDNode *Operand = I->getVal();
561      Operand->removeUser(std::distance(N->op_begin(), I), N);
562
563      // Now that we removed this operand, see if there are no uses of it left.
564      if (Operand->use_empty())
565        DeadNodes.push_back(Operand);
566    }
567
568    if (N->OperandsNeedDelete)
569      delete[] N->OperandList;
570
571    N->OperandList = 0;
572    N->NumOperands = 0;
573
574    // Finally, remove N itself.
575    NodeAllocator.Deallocate(AllNodes.remove(N));
576  }
577}
578
579void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
580  SmallVector<SDNode*, 16> DeadNodes(1, N);
581  RemoveDeadNodes(DeadNodes, UpdateListener);
582}
583
584void SelectionDAG::DeleteNode(SDNode *N) {
585  assert(N->use_empty() && "Cannot delete a node that is not dead!");
586
587  // First take this out of the appropriate CSE map.
588  RemoveNodeFromCSEMaps(N);
589
590  // Finally, remove uses due to operands of this node, remove from the
591  // AllNodes list, and delete the node.
592  DeleteNodeNotInCSEMaps(N);
593}
594
595void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
596  // Drop all of the operands and decrement used node's use counts.
597  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
598    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
599
600  if (N->OperandsNeedDelete) {
601    delete[] N->OperandList;
602    N->OperandList = 0;
603  }
604
605  assert(N != AllNodes.begin());
606  NodeAllocator.Deallocate(AllNodes.remove(N));
607}
608
609/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
610/// correspond to it.  This is useful when we're about to delete or repurpose
611/// the node.  We don't want future request for structurally identical nodes
612/// to return N anymore.
613bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
614  bool Erased = false;
615  switch (N->getOpcode()) {
616  case ISD::EntryToken:
617    assert(0 && "EntryToken should not be in CSEMaps!");
618    return false;
619  case ISD::HANDLENODE: return false;  // noop.
620  case ISD::CONDCODE:
621    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
622           "Cond code doesn't exist!");
623    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
624    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
625    break;
626  case ISD::ExternalSymbol:
627    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
628    break;
629  case ISD::TargetExternalSymbol:
630    Erased =
631      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
632    break;
633  case ISD::VALUETYPE: {
634    MVT VT = cast<VTSDNode>(N)->getVT();
635    if (VT.isExtended()) {
636      Erased = ExtendedValueTypeNodes.erase(VT);
637    } else {
638      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
639      ValueTypeNodes[VT.getSimpleVT()] = 0;
640    }
641    break;
642  }
643  default:
644    // Remove it from the CSE Map.
645    Erased = CSEMap.RemoveNode(N);
646    break;
647  }
648#ifndef NDEBUG
649  // Verify that the node was actually in one of the CSE maps, unless it has a
650  // flag result (which cannot be CSE'd) or is one of the special cases that are
651  // not subject to CSE.
652  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
653      !N->isMachineOpcode() &&
654      N->getOpcode() != ISD::DBG_LABEL &&
655      N->getOpcode() != ISD::DBG_STOPPOINT &&
656      N->getOpcode() != ISD::EH_LABEL &&
657      N->getOpcode() != ISD::DECLARE) {
658    N->dump(this);
659    cerr << "\n";
660    assert(0 && "Node is not in map!");
661  }
662#endif
663  return Erased;
664}
665
666/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
667/// has been taken out and modified in some way.  If the specified node already
668/// exists in the CSE maps, do not modify the maps, but return the existing node
669/// instead.  If it doesn't exist, add it and return null.
670///
671SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
672  assert(N->getNumOperands() && "This is a leaf node!");
673
674  if (N->getValueType(0) == MVT::Flag)
675    return 0;   // Never CSE anything that produces a flag.
676
677  switch (N->getOpcode()) {
678  default: break;
679  case ISD::HANDLENODE:
680  case ISD::DBG_LABEL:
681  case ISD::DBG_STOPPOINT:
682  case ISD::EH_LABEL:
683  case ISD::DECLARE:
684    return 0;   // Never add these nodes.
685  }
686
687  // Check that remaining values produced are not flags.
688  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
689    if (N->getValueType(i) == MVT::Flag)
690      return 0; // Never CSE anything that produces a flag.
691
692  SDNode *New = CSEMap.GetOrInsertNode(N);
693  if (New != N) return New;  // Node already existed.
694  return 0;
695}
696
697/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
698/// were replaced with those specified.  If this node is never memoized,
699/// return null, otherwise return a pointer to the slot it would take.  If a
700/// node already exists with these operands, the slot will be non-null.
701SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
702                                           void *&InsertPos) {
703  if (N->getValueType(0) == MVT::Flag)
704    return 0;   // Never CSE anything that produces a flag.
705
706  switch (N->getOpcode()) {
707  default: break;
708  case ISD::HANDLENODE:
709  case ISD::DBG_LABEL:
710  case ISD::DBG_STOPPOINT:
711  case ISD::EH_LABEL:
712    return 0;   // Never add these nodes.
713  }
714
715  // Check that remaining values produced are not flags.
716  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
717    if (N->getValueType(i) == MVT::Flag)
718      return 0; // Never CSE anything that produces a flag.
719
720  SDValue Ops[] = { Op };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
723  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
724}
725
726/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
727/// were replaced with those specified.  If this node is never memoized,
728/// return null, otherwise return a pointer to the slot it would take.  If a
729/// node already exists with these operands, the slot will be non-null.
730SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
731                                           SDValue Op1, SDValue Op2,
732                                           void *&InsertPos) {
733  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
734
735  // Check that remaining values produced are not flags.
736  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
737    if (N->getValueType(i) == MVT::Flag)
738      return 0; // Never CSE anything that produces a flag.
739
740  SDValue Ops[] = { Op1, Op2 };
741  FoldingSetNodeID ID;
742  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
743  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
744}
745
746
747/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
748/// were replaced with those specified.  If this node is never memoized,
749/// return null, otherwise return a pointer to the slot it would take.  If a
750/// node already exists with these operands, the slot will be non-null.
751SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
752                                           const SDValue *Ops,unsigned NumOps,
753                                           void *&InsertPos) {
754  if (N->getValueType(0) == MVT::Flag)
755    return 0;   // Never CSE anything that produces a flag.
756
757  switch (N->getOpcode()) {
758  default: break;
759  case ISD::HANDLENODE:
760  case ISD::DBG_LABEL:
761  case ISD::DBG_STOPPOINT:
762  case ISD::EH_LABEL:
763  case ISD::DECLARE:
764    return 0;   // Never add these nodes.
765  }
766
767  // Check that remaining values produced are not flags.
768  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
769    if (N->getValueType(i) == MVT::Flag)
770      return 0; // Never CSE anything that produces a flag.
771
772  FoldingSetNodeID ID;
773  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
774
775  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
776    ID.AddInteger(LD->getAddressingMode());
777    ID.AddInteger(LD->getExtensionType());
778    ID.AddInteger(LD->getMemoryVT().getRawBits());
779    ID.AddInteger(LD->getRawFlags());
780  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
781    ID.AddInteger(ST->getAddressingMode());
782    ID.AddInteger(ST->isTruncatingStore());
783    ID.AddInteger(ST->getMemoryVT().getRawBits());
784    ID.AddInteger(ST->getRawFlags());
785  }
786
787  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
788}
789
790/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
791void SelectionDAG::VerifyNode(SDNode *N) {
792  switch (N->getOpcode()) {
793  default:
794    break;
795  case ISD::BUILD_VECTOR: {
796    assert(N->getNumValues() == 1 && "Too many results for BUILD_VECTOR!");
797    assert(N->getValueType(0).isVector() && "Wrong BUILD_VECTOR return type!");
798    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
799           "Wrong number of BUILD_VECTOR operands!");
800    // FIXME: Change vector_shuffle to a variadic node with mask elements being
801    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
802    // operand, and it is not always possible to legalize it.  Turning off the
803    // following checks at least makes it possible to legalize most of the time.
804//    MVT EltVT = N->getValueType(0).getVectorElementType();
805//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
806//      assert(I->getSDValue().getValueType() == EltVT &&
807//             "Wrong BUILD_VECTOR operand type!");
808    break;
809  }
810  }
811}
812
813/// getMVTAlignment - Compute the default alignment value for the
814/// given type.
815///
816unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
817  const Type *Ty = VT == MVT::iPTR ?
818                   PointerType::get(Type::Int8Ty, 0) :
819                   VT.getTypeForMVT();
820
821  return TLI.getTargetData()->getABITypeAlignment(Ty);
822}
823
824SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
825  : TLI(tli), FLI(fli),
826    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
827    Root(getEntryNode()) {
828  AllNodes.push_back(&EntryNode);
829}
830
831void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
832  MF = &mf;
833  MMI = mmi;
834}
835
836SelectionDAG::~SelectionDAG() {
837  allnodes_clear();
838}
839
840void SelectionDAG::allnodes_clear() {
841  assert(&*AllNodes.begin() == &EntryNode);
842  AllNodes.remove(AllNodes.begin());
843  while (!AllNodes.empty()) {
844    SDNode *N = AllNodes.remove(AllNodes.begin());
845    N->SetNextInBucket(0);
846
847    if (N->OperandsNeedDelete) {
848      delete [] N->OperandList;
849      N->OperandList = 0;
850    }
851
852    NodeAllocator.Deallocate(N);
853  }
854}
855
856void SelectionDAG::clear() {
857  allnodes_clear();
858  OperandAllocator.Reset();
859  CSEMap.clear();
860
861  ExtendedValueTypeNodes.clear();
862  ExternalSymbols.clear();
863  TargetExternalSymbols.clear();
864  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
865            static_cast<CondCodeSDNode*>(0));
866  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
867            static_cast<SDNode*>(0));
868
869  EntryNode.Uses = 0;
870  AllNodes.push_back(&EntryNode);
871  Root = getEntryNode();
872}
873
874SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
875  if (Op.getValueType() == VT) return Op;
876  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
877                                   VT.getSizeInBits());
878  return getNode(ISD::AND, Op.getValueType(), Op,
879                 getConstant(Imm, Op.getValueType()));
880}
881
882SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
883  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
884  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
885}
886
887SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
888  return getConstant(*ConstantInt::get(Val), VT, isT);
889}
890
891SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
892  assert(VT.isInteger() && "Cannot create FP integer constant!");
893
894  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
895  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
896         "APInt size does not match type size!");
897
898  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
899  FoldingSetNodeID ID;
900  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
901  ID.AddPointer(&Val);
902  void *IP = 0;
903  SDNode *N = NULL;
904  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
905    if (!VT.isVector())
906      return SDValue(N, 0);
907  if (!N) {
908    N = NodeAllocator.Allocate<ConstantSDNode>();
909    new (N) ConstantSDNode(isT, &Val, EltVT);
910    CSEMap.InsertNode(N, IP);
911    AllNodes.push_back(N);
912  }
913
914  SDValue Result(N, 0);
915  if (VT.isVector()) {
916    SmallVector<SDValue, 8> Ops;
917    Ops.assign(VT.getVectorNumElements(), Result);
918    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
919  }
920  return Result;
921}
922
923SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
924  return getConstant(Val, TLI.getPointerTy(), isTarget);
925}
926
927
928SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
929  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
930}
931
932SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
933  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
934
935  MVT EltVT =
936    VT.isVector() ? VT.getVectorElementType() : VT;
937
938  // Do the map lookup using the actual bit pattern for the floating point
939  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
940  // we don't have issues with SNANs.
941  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
942  FoldingSetNodeID ID;
943  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
944  ID.AddPointer(&V);
945  void *IP = 0;
946  SDNode *N = NULL;
947  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
948    if (!VT.isVector())
949      return SDValue(N, 0);
950  if (!N) {
951    N = NodeAllocator.Allocate<ConstantFPSDNode>();
952    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
953    CSEMap.InsertNode(N, IP);
954    AllNodes.push_back(N);
955  }
956
957  SDValue Result(N, 0);
958  if (VT.isVector()) {
959    SmallVector<SDValue, 8> Ops;
960    Ops.assign(VT.getVectorNumElements(), Result);
961    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
962  }
963  return Result;
964}
965
966SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
967  MVT EltVT =
968    VT.isVector() ? VT.getVectorElementType() : VT;
969  if (EltVT==MVT::f32)
970    return getConstantFP(APFloat((float)Val), VT, isTarget);
971  else
972    return getConstantFP(APFloat(Val), VT, isTarget);
973}
974
975SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
976                                       MVT VT, int64_t Offset,
977                                       bool isTargetGA) {
978  unsigned Opc;
979
980  // Truncate (with sign-extension) the offset value to the pointer size.
981  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
982  if (BitWidth < 64)
983    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
984
985  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
986  if (!GVar) {
987    // If GV is an alias then use the aliasee for determining thread-localness.
988    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
989      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
990  }
991
992  if (GVar && GVar->isThreadLocal())
993    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
994  else
995    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
996
997  FoldingSetNodeID ID;
998  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
999  ID.AddPointer(GV);
1000  ID.AddInteger(Offset);
1001  void *IP = 0;
1002  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1003   return SDValue(E, 0);
1004  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1005  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
1006  CSEMap.InsertNode(N, IP);
1007  AllNodes.push_back(N);
1008  return SDValue(N, 0);
1009}
1010
1011SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
1012  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1013  FoldingSetNodeID ID;
1014  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1015  ID.AddInteger(FI);
1016  void *IP = 0;
1017  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1018    return SDValue(E, 0);
1019  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1020  new (N) FrameIndexSDNode(FI, VT, isTarget);
1021  CSEMap.InsertNode(N, IP);
1022  AllNodes.push_back(N);
1023  return SDValue(N, 0);
1024}
1025
1026SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1027  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1028  FoldingSetNodeID ID;
1029  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1030  ID.AddInteger(JTI);
1031  void *IP = 0;
1032  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1033    return SDValue(E, 0);
1034  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1035  new (N) JumpTableSDNode(JTI, VT, isTarget);
1036  CSEMap.InsertNode(N, IP);
1037  AllNodes.push_back(N);
1038  return SDValue(N, 0);
1039}
1040
1041SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1042                                      unsigned Alignment, int Offset,
1043                                      bool isTarget) {
1044  if (Alignment == 0)
1045    Alignment =
1046      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1047  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1048  FoldingSetNodeID ID;
1049  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1050  ID.AddInteger(Alignment);
1051  ID.AddInteger(Offset);
1052  ID.AddPointer(C);
1053  void *IP = 0;
1054  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1055    return SDValue(E, 0);
1056  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1057  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1058  CSEMap.InsertNode(N, IP);
1059  AllNodes.push_back(N);
1060  return SDValue(N, 0);
1061}
1062
1063
1064SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1065                                      unsigned Alignment, int Offset,
1066                                      bool isTarget) {
1067  if (Alignment == 0)
1068    Alignment =
1069      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1070  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1071  FoldingSetNodeID ID;
1072  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1073  ID.AddInteger(Alignment);
1074  ID.AddInteger(Offset);
1075  C->AddSelectionDAGCSEId(ID);
1076  void *IP = 0;
1077  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1078    return SDValue(E, 0);
1079  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1080  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1081  CSEMap.InsertNode(N, IP);
1082  AllNodes.push_back(N);
1083  return SDValue(N, 0);
1084}
1085
1086
1087SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1088  FoldingSetNodeID ID;
1089  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1090  ID.AddPointer(MBB);
1091  void *IP = 0;
1092  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1093    return SDValue(E, 0);
1094  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1095  new (N) BasicBlockSDNode(MBB);
1096  CSEMap.InsertNode(N, IP);
1097  AllNodes.push_back(N);
1098  return SDValue(N, 0);
1099}
1100
1101SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1102  FoldingSetNodeID ID;
1103  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1104  ID.AddInteger(Flags.getRawBits());
1105  void *IP = 0;
1106  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1107    return SDValue(E, 0);
1108  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1109  new (N) ARG_FLAGSSDNode(Flags);
1110  CSEMap.InsertNode(N, IP);
1111  AllNodes.push_back(N);
1112  return SDValue(N, 0);
1113}
1114
1115SDValue SelectionDAG::getValueType(MVT VT) {
1116  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1117    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1118
1119  SDNode *&N = VT.isExtended() ?
1120    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1121
1122  if (N) return SDValue(N, 0);
1123  N = NodeAllocator.Allocate<VTSDNode>();
1124  new (N) VTSDNode(VT);
1125  AllNodes.push_back(N);
1126  return SDValue(N, 0);
1127}
1128
1129SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1130  SDNode *&N = ExternalSymbols[Sym];
1131  if (N) return SDValue(N, 0);
1132  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1133  new (N) ExternalSymbolSDNode(false, Sym, VT);
1134  AllNodes.push_back(N);
1135  return SDValue(N, 0);
1136}
1137
1138SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1139  SDNode *&N = TargetExternalSymbols[Sym];
1140  if (N) return SDValue(N, 0);
1141  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1142  new (N) ExternalSymbolSDNode(true, Sym, VT);
1143  AllNodes.push_back(N);
1144  return SDValue(N, 0);
1145}
1146
1147SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1148  if ((unsigned)Cond >= CondCodeNodes.size())
1149    CondCodeNodes.resize(Cond+1);
1150
1151  if (CondCodeNodes[Cond] == 0) {
1152    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1153    new (N) CondCodeSDNode(Cond);
1154    CondCodeNodes[Cond] = N;
1155    AllNodes.push_back(N);
1156  }
1157  return SDValue(CondCodeNodes[Cond], 0);
1158}
1159
1160SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1161  FoldingSetNodeID ID;
1162  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1163  ID.AddInteger(RegNo);
1164  void *IP = 0;
1165  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1166    return SDValue(E, 0);
1167  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1168  new (N) RegisterSDNode(RegNo, VT);
1169  CSEMap.InsertNode(N, IP);
1170  AllNodes.push_back(N);
1171  return SDValue(N, 0);
1172}
1173
1174SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1175                                        unsigned Line, unsigned Col,
1176                                        const CompileUnitDesc *CU) {
1177  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1178  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1179  AllNodes.push_back(N);
1180  return SDValue(N, 0);
1181}
1182
1183SDValue SelectionDAG::getLabel(unsigned Opcode,
1184                               SDValue Root,
1185                               unsigned LabelID) {
1186  FoldingSetNodeID ID;
1187  SDValue Ops[] = { Root };
1188  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1189  ID.AddInteger(LabelID);
1190  void *IP = 0;
1191  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1192    return SDValue(E, 0);
1193  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1194  new (N) LabelSDNode(Opcode, Root, LabelID);
1195  CSEMap.InsertNode(N, IP);
1196  AllNodes.push_back(N);
1197  return SDValue(N, 0);
1198}
1199
1200SDValue SelectionDAG::getSrcValue(const Value *V) {
1201  assert((!V || isa<PointerType>(V->getType())) &&
1202         "SrcValue is not a pointer?");
1203
1204  FoldingSetNodeID ID;
1205  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1206  ID.AddPointer(V);
1207
1208  void *IP = 0;
1209  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1210    return SDValue(E, 0);
1211
1212  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1213  new (N) SrcValueSDNode(V);
1214  CSEMap.InsertNode(N, IP);
1215  AllNodes.push_back(N);
1216  return SDValue(N, 0);
1217}
1218
1219SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1220  const Value *v = MO.getValue();
1221  assert((!v || isa<PointerType>(v->getType())) &&
1222         "SrcValue is not a pointer?");
1223
1224  FoldingSetNodeID ID;
1225  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1226  MO.Profile(ID);
1227
1228  void *IP = 0;
1229  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1230    return SDValue(E, 0);
1231
1232  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1233  new (N) MemOperandSDNode(MO);
1234  CSEMap.InsertNode(N, IP);
1235  AllNodes.push_back(N);
1236  return SDValue(N, 0);
1237}
1238
1239/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1240/// specified value type.
1241SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1242  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1243  unsigned ByteSize = VT.getSizeInBits()/8;
1244  const Type *Ty = VT.getTypeForMVT();
1245  unsigned StackAlign =
1246  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1247
1248  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1249  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1250}
1251
1252SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1253                                SDValue N2, ISD::CondCode Cond) {
1254  // These setcc operations always fold.
1255  switch (Cond) {
1256  default: break;
1257  case ISD::SETFALSE:
1258  case ISD::SETFALSE2: return getConstant(0, VT);
1259  case ISD::SETTRUE:
1260  case ISD::SETTRUE2:  return getConstant(1, VT);
1261
1262  case ISD::SETOEQ:
1263  case ISD::SETOGT:
1264  case ISD::SETOGE:
1265  case ISD::SETOLT:
1266  case ISD::SETOLE:
1267  case ISD::SETONE:
1268  case ISD::SETO:
1269  case ISD::SETUO:
1270  case ISD::SETUEQ:
1271  case ISD::SETUNE:
1272    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1273    break;
1274  }
1275
1276  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1277    const APInt &C2 = N2C->getAPIntValue();
1278    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1279      const APInt &C1 = N1C->getAPIntValue();
1280
1281      switch (Cond) {
1282      default: assert(0 && "Unknown integer setcc!");
1283      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1284      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1285      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1286      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1287      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1288      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1289      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1290      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1291      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1292      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1293      }
1294    }
1295  }
1296  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1297    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1298      // No compile time operations on this type yet.
1299      if (N1C->getValueType(0) == MVT::ppcf128)
1300        return SDValue();
1301
1302      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1303      switch (Cond) {
1304      default: break;
1305      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1306                          return getNode(ISD::UNDEF, VT);
1307                        // fall through
1308      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1309      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1310                          return getNode(ISD::UNDEF, VT);
1311                        // fall through
1312      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1313                                           R==APFloat::cmpLessThan, VT);
1314      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1315                          return getNode(ISD::UNDEF, VT);
1316                        // fall through
1317      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1318      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1319                          return getNode(ISD::UNDEF, VT);
1320                        // fall through
1321      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1322      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1323                          return getNode(ISD::UNDEF, VT);
1324                        // fall through
1325      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1326                                           R==APFloat::cmpEqual, VT);
1327      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1328                          return getNode(ISD::UNDEF, VT);
1329                        // fall through
1330      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1331                                           R==APFloat::cmpEqual, VT);
1332      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1333      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1334      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1335                                           R==APFloat::cmpEqual, VT);
1336      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1337      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1338                                           R==APFloat::cmpLessThan, VT);
1339      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1340                                           R==APFloat::cmpUnordered, VT);
1341      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1342      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1343      }
1344    } else {
1345      // Ensure that the constant occurs on the RHS.
1346      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1347    }
1348  }
1349
1350  // Could not fold it.
1351  return SDValue();
1352}
1353
1354/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1355/// use this predicate to simplify operations downstream.
1356bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1357  unsigned BitWidth = Op.getValueSizeInBits();
1358  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1359}
1360
1361/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1362/// this predicate to simplify operations downstream.  Mask is known to be zero
1363/// for bits that V cannot have.
1364bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1365                                     unsigned Depth) const {
1366  APInt KnownZero, KnownOne;
1367  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1368  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1369  return (KnownZero & Mask) == Mask;
1370}
1371
1372/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1373/// known to be either zero or one and return them in the KnownZero/KnownOne
1374/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1375/// processing.
1376void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1377                                     APInt &KnownZero, APInt &KnownOne,
1378                                     unsigned Depth) const {
1379  unsigned BitWidth = Mask.getBitWidth();
1380  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1381         "Mask size mismatches value type size!");
1382
1383  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1384  if (Depth == 6 || Mask == 0)
1385    return;  // Limit search depth.
1386
1387  APInt KnownZero2, KnownOne2;
1388
1389  switch (Op.getOpcode()) {
1390  case ISD::Constant:
1391    // We know all of the bits for a constant!
1392    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1393    KnownZero = ~KnownOne & Mask;
1394    return;
1395  case ISD::AND:
1396    // If either the LHS or the RHS are Zero, the result is zero.
1397    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1398    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1399                      KnownZero2, KnownOne2, Depth+1);
1400    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1401    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1402
1403    // Output known-1 bits are only known if set in both the LHS & RHS.
1404    KnownOne &= KnownOne2;
1405    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1406    KnownZero |= KnownZero2;
1407    return;
1408  case ISD::OR:
1409    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1410    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1411                      KnownZero2, KnownOne2, Depth+1);
1412    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1413    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1414
1415    // Output known-0 bits are only known if clear in both the LHS & RHS.
1416    KnownZero &= KnownZero2;
1417    // Output known-1 are known to be set if set in either the LHS | RHS.
1418    KnownOne |= KnownOne2;
1419    return;
1420  case ISD::XOR: {
1421    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1422    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1423    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1424    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1425
1426    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1427    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1428    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1429    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1430    KnownZero = KnownZeroOut;
1431    return;
1432  }
1433  case ISD::MUL: {
1434    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1435    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1436    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1437    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1438    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1439
1440    // If low bits are zero in either operand, output low known-0 bits.
1441    // Also compute a conserative estimate for high known-0 bits.
1442    // More trickiness is possible, but this is sufficient for the
1443    // interesting case of alignment computation.
1444    KnownOne.clear();
1445    unsigned TrailZ = KnownZero.countTrailingOnes() +
1446                      KnownZero2.countTrailingOnes();
1447    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1448                               KnownZero2.countLeadingOnes(),
1449                               BitWidth) - BitWidth;
1450
1451    TrailZ = std::min(TrailZ, BitWidth);
1452    LeadZ = std::min(LeadZ, BitWidth);
1453    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1454                APInt::getHighBitsSet(BitWidth, LeadZ);
1455    KnownZero &= Mask;
1456    return;
1457  }
1458  case ISD::UDIV: {
1459    // For the purposes of computing leading zeros we can conservatively
1460    // treat a udiv as a logical right shift by the power of 2 known to
1461    // be less than the denominator.
1462    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1463    ComputeMaskedBits(Op.getOperand(0),
1464                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1465    unsigned LeadZ = KnownZero2.countLeadingOnes();
1466
1467    KnownOne2.clear();
1468    KnownZero2.clear();
1469    ComputeMaskedBits(Op.getOperand(1),
1470                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1471    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1472    if (RHSUnknownLeadingOnes != BitWidth)
1473      LeadZ = std::min(BitWidth,
1474                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1475
1476    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1477    return;
1478  }
1479  case ISD::SELECT:
1480    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1481    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1482    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1483    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1484
1485    // Only known if known in both the LHS and RHS.
1486    KnownOne &= KnownOne2;
1487    KnownZero &= KnownZero2;
1488    return;
1489  case ISD::SELECT_CC:
1490    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1491    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1492    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1493    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1494
1495    // Only known if known in both the LHS and RHS.
1496    KnownOne &= KnownOne2;
1497    KnownZero &= KnownZero2;
1498    return;
1499  case ISD::SETCC:
1500    // If we know the result of a setcc has the top bits zero, use this info.
1501    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1502        BitWidth > 1)
1503      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1504    return;
1505  case ISD::SHL:
1506    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1507    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1508      unsigned ShAmt = SA->getZExtValue();
1509
1510      // If the shift count is an invalid immediate, don't do anything.
1511      if (ShAmt >= BitWidth)
1512        return;
1513
1514      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1515                        KnownZero, KnownOne, Depth+1);
1516      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1517      KnownZero <<= ShAmt;
1518      KnownOne  <<= ShAmt;
1519      // low bits known zero.
1520      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1521    }
1522    return;
1523  case ISD::SRL:
1524    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1525    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1526      unsigned ShAmt = SA->getZExtValue();
1527
1528      // If the shift count is an invalid immediate, don't do anything.
1529      if (ShAmt >= BitWidth)
1530        return;
1531
1532      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1533                        KnownZero, KnownOne, Depth+1);
1534      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1535      KnownZero = KnownZero.lshr(ShAmt);
1536      KnownOne  = KnownOne.lshr(ShAmt);
1537
1538      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1539      KnownZero |= HighBits;  // High bits known zero.
1540    }
1541    return;
1542  case ISD::SRA:
1543    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1544      unsigned ShAmt = SA->getZExtValue();
1545
1546      // If the shift count is an invalid immediate, don't do anything.
1547      if (ShAmt >= BitWidth)
1548        return;
1549
1550      APInt InDemandedMask = (Mask << ShAmt);
1551      // If any of the demanded bits are produced by the sign extension, we also
1552      // demand the input sign bit.
1553      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1554      if (HighBits.getBoolValue())
1555        InDemandedMask |= APInt::getSignBit(BitWidth);
1556
1557      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1558                        Depth+1);
1559      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1560      KnownZero = KnownZero.lshr(ShAmt);
1561      KnownOne  = KnownOne.lshr(ShAmt);
1562
1563      // Handle the sign bits.
1564      APInt SignBit = APInt::getSignBit(BitWidth);
1565      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1566
1567      if (KnownZero.intersects(SignBit)) {
1568        KnownZero |= HighBits;  // New bits are known zero.
1569      } else if (KnownOne.intersects(SignBit)) {
1570        KnownOne  |= HighBits;  // New bits are known one.
1571      }
1572    }
1573    return;
1574  case ISD::SIGN_EXTEND_INREG: {
1575    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1576    unsigned EBits = EVT.getSizeInBits();
1577
1578    // Sign extension.  Compute the demanded bits in the result that are not
1579    // present in the input.
1580    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1581
1582    APInt InSignBit = APInt::getSignBit(EBits);
1583    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1584
1585    // If the sign extended bits are demanded, we know that the sign
1586    // bit is demanded.
1587    InSignBit.zext(BitWidth);
1588    if (NewBits.getBoolValue())
1589      InputDemandedBits |= InSignBit;
1590
1591    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1592                      KnownZero, KnownOne, Depth+1);
1593    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1594
1595    // If the sign bit of the input is known set or clear, then we know the
1596    // top bits of the result.
1597    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1598      KnownZero |= NewBits;
1599      KnownOne  &= ~NewBits;
1600    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1601      KnownOne  |= NewBits;
1602      KnownZero &= ~NewBits;
1603    } else {                              // Input sign bit unknown
1604      KnownZero &= ~NewBits;
1605      KnownOne  &= ~NewBits;
1606    }
1607    return;
1608  }
1609  case ISD::CTTZ:
1610  case ISD::CTLZ:
1611  case ISD::CTPOP: {
1612    unsigned LowBits = Log2_32(BitWidth)+1;
1613    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1614    KnownOne.clear();
1615    return;
1616  }
1617  case ISD::LOAD: {
1618    if (ISD::isZEXTLoad(Op.getNode())) {
1619      LoadSDNode *LD = cast<LoadSDNode>(Op);
1620      MVT VT = LD->getMemoryVT();
1621      unsigned MemBits = VT.getSizeInBits();
1622      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1623    }
1624    return;
1625  }
1626  case ISD::ZERO_EXTEND: {
1627    MVT InVT = Op.getOperand(0).getValueType();
1628    unsigned InBits = InVT.getSizeInBits();
1629    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1630    APInt InMask    = Mask;
1631    InMask.trunc(InBits);
1632    KnownZero.trunc(InBits);
1633    KnownOne.trunc(InBits);
1634    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1635    KnownZero.zext(BitWidth);
1636    KnownOne.zext(BitWidth);
1637    KnownZero |= NewBits;
1638    return;
1639  }
1640  case ISD::SIGN_EXTEND: {
1641    MVT InVT = Op.getOperand(0).getValueType();
1642    unsigned InBits = InVT.getSizeInBits();
1643    APInt InSignBit = APInt::getSignBit(InBits);
1644    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1645    APInt InMask = Mask;
1646    InMask.trunc(InBits);
1647
1648    // If any of the sign extended bits are demanded, we know that the sign
1649    // bit is demanded. Temporarily set this bit in the mask for our callee.
1650    if (NewBits.getBoolValue())
1651      InMask |= InSignBit;
1652
1653    KnownZero.trunc(InBits);
1654    KnownOne.trunc(InBits);
1655    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1656
1657    // Note if the sign bit is known to be zero or one.
1658    bool SignBitKnownZero = KnownZero.isNegative();
1659    bool SignBitKnownOne  = KnownOne.isNegative();
1660    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1661           "Sign bit can't be known to be both zero and one!");
1662
1663    // If the sign bit wasn't actually demanded by our caller, we don't
1664    // want it set in the KnownZero and KnownOne result values. Reset the
1665    // mask and reapply it to the result values.
1666    InMask = Mask;
1667    InMask.trunc(InBits);
1668    KnownZero &= InMask;
1669    KnownOne  &= InMask;
1670
1671    KnownZero.zext(BitWidth);
1672    KnownOne.zext(BitWidth);
1673
1674    // If the sign bit is known zero or one, the top bits match.
1675    if (SignBitKnownZero)
1676      KnownZero |= NewBits;
1677    else if (SignBitKnownOne)
1678      KnownOne  |= NewBits;
1679    return;
1680  }
1681  case ISD::ANY_EXTEND: {
1682    MVT InVT = Op.getOperand(0).getValueType();
1683    unsigned InBits = InVT.getSizeInBits();
1684    APInt InMask = Mask;
1685    InMask.trunc(InBits);
1686    KnownZero.trunc(InBits);
1687    KnownOne.trunc(InBits);
1688    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1689    KnownZero.zext(BitWidth);
1690    KnownOne.zext(BitWidth);
1691    return;
1692  }
1693  case ISD::TRUNCATE: {
1694    MVT InVT = Op.getOperand(0).getValueType();
1695    unsigned InBits = InVT.getSizeInBits();
1696    APInt InMask = Mask;
1697    InMask.zext(InBits);
1698    KnownZero.zext(InBits);
1699    KnownOne.zext(InBits);
1700    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1701    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1702    KnownZero.trunc(BitWidth);
1703    KnownOne.trunc(BitWidth);
1704    break;
1705  }
1706  case ISD::AssertZext: {
1707    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1708    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1709    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1710                      KnownOne, Depth+1);
1711    KnownZero |= (~InMask) & Mask;
1712    return;
1713  }
1714  case ISD::FGETSIGN:
1715    // All bits are zero except the low bit.
1716    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1717    return;
1718
1719  case ISD::SUB: {
1720    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1721      // We know that the top bits of C-X are clear if X contains less bits
1722      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1723      // positive if we can prove that X is >= 0 and < 16.
1724      if (CLHS->getAPIntValue().isNonNegative()) {
1725        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1726        // NLZ can't be BitWidth with no sign bit
1727        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1728        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1729                          Depth+1);
1730
1731        // If all of the MaskV bits are known to be zero, then we know the
1732        // output top bits are zero, because we now know that the output is
1733        // from [0-C].
1734        if ((KnownZero2 & MaskV) == MaskV) {
1735          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1736          // Top bits known zero.
1737          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1738        }
1739      }
1740    }
1741  }
1742  // fall through
1743  case ISD::ADD: {
1744    // Output known-0 bits are known if clear or set in both the low clear bits
1745    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1746    // low 3 bits clear.
1747    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1748    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1749    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1750    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1751
1752    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1753    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1754    KnownZeroOut = std::min(KnownZeroOut,
1755                            KnownZero2.countTrailingOnes());
1756
1757    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1758    return;
1759  }
1760  case ISD::SREM:
1761    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1762      const APInt &RA = Rem->getAPIntValue();
1763      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1764        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1765        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1766        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1767
1768        // If the sign bit of the first operand is zero, the sign bit of
1769        // the result is zero. If the first operand has no one bits below
1770        // the second operand's single 1 bit, its sign will be zero.
1771        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1772          KnownZero2 |= ~LowBits;
1773
1774        KnownZero |= KnownZero2 & Mask;
1775
1776        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1777      }
1778    }
1779    return;
1780  case ISD::UREM: {
1781    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1782      const APInt &RA = Rem->getAPIntValue();
1783      if (RA.isPowerOf2()) {
1784        APInt LowBits = (RA - 1);
1785        APInt Mask2 = LowBits & Mask;
1786        KnownZero |= ~LowBits & Mask;
1787        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1788        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1789        break;
1790      }
1791    }
1792
1793    // Since the result is less than or equal to either operand, any leading
1794    // zero bits in either operand must also exist in the result.
1795    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1796    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1797                      Depth+1);
1798    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1799                      Depth+1);
1800
1801    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1802                                KnownZero2.countLeadingOnes());
1803    KnownOne.clear();
1804    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1805    return;
1806  }
1807  default:
1808    // Allow the target to implement this method for its nodes.
1809    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1810  case ISD::INTRINSIC_WO_CHAIN:
1811  case ISD::INTRINSIC_W_CHAIN:
1812  case ISD::INTRINSIC_VOID:
1813      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1814    }
1815    return;
1816  }
1817}
1818
1819/// ComputeNumSignBits - Return the number of times the sign bit of the
1820/// register is replicated into the other bits.  We know that at least 1 bit
1821/// is always equal to the sign bit (itself), but other cases can give us
1822/// information.  For example, immediately after an "SRA X, 2", we know that
1823/// the top 3 bits are all equal to each other, so we return 3.
1824unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1825  MVT VT = Op.getValueType();
1826  assert(VT.isInteger() && "Invalid VT!");
1827  unsigned VTBits = VT.getSizeInBits();
1828  unsigned Tmp, Tmp2;
1829  unsigned FirstAnswer = 1;
1830
1831  if (Depth == 6)
1832    return 1;  // Limit search depth.
1833
1834  switch (Op.getOpcode()) {
1835  default: break;
1836  case ISD::AssertSext:
1837    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1838    return VTBits-Tmp+1;
1839  case ISD::AssertZext:
1840    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1841    return VTBits-Tmp;
1842
1843  case ISD::Constant: {
1844    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1845    // If negative, return # leading ones.
1846    if (Val.isNegative())
1847      return Val.countLeadingOnes();
1848
1849    // Return # leading zeros.
1850    return Val.countLeadingZeros();
1851  }
1852
1853  case ISD::SIGN_EXTEND:
1854    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1855    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1856
1857  case ISD::SIGN_EXTEND_INREG:
1858    // Max of the input and what this extends.
1859    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1860    Tmp = VTBits-Tmp+1;
1861
1862    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1863    return std::max(Tmp, Tmp2);
1864
1865  case ISD::SRA:
1866    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1867    // SRA X, C   -> adds C sign bits.
1868    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1869      Tmp += C->getZExtValue();
1870      if (Tmp > VTBits) Tmp = VTBits;
1871    }
1872    return Tmp;
1873  case ISD::SHL:
1874    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1875      // shl destroys sign bits.
1876      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1877      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1878          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1879      return Tmp - C->getZExtValue();
1880    }
1881    break;
1882  case ISD::AND:
1883  case ISD::OR:
1884  case ISD::XOR:    // NOT is handled here.
1885    // Logical binary ops preserve the number of sign bits at the worst.
1886    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1887    if (Tmp != 1) {
1888      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1889      FirstAnswer = std::min(Tmp, Tmp2);
1890      // We computed what we know about the sign bits as our first
1891      // answer. Now proceed to the generic code that uses
1892      // ComputeMaskedBits, and pick whichever answer is better.
1893    }
1894    break;
1895
1896  case ISD::SELECT:
1897    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1898    if (Tmp == 1) return 1;  // Early out.
1899    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1900    return std::min(Tmp, Tmp2);
1901
1902  case ISD::SETCC:
1903    // If setcc returns 0/-1, all bits are sign bits.
1904    if (TLI.getSetCCResultContents() ==
1905        TargetLowering::ZeroOrNegativeOneSetCCResult)
1906      return VTBits;
1907    break;
1908  case ISD::ROTL:
1909  case ISD::ROTR:
1910    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1911      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1912
1913      // Handle rotate right by N like a rotate left by 32-N.
1914      if (Op.getOpcode() == ISD::ROTR)
1915        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1916
1917      // If we aren't rotating out all of the known-in sign bits, return the
1918      // number that are left.  This handles rotl(sext(x), 1) for example.
1919      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1920      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1921    }
1922    break;
1923  case ISD::ADD:
1924    // Add can have at most one carry bit.  Thus we know that the output
1925    // is, at worst, one more bit than the inputs.
1926    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1927    if (Tmp == 1) return 1;  // Early out.
1928
1929    // Special case decrementing a value (ADD X, -1):
1930    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1931      if (CRHS->isAllOnesValue()) {
1932        APInt KnownZero, KnownOne;
1933        APInt Mask = APInt::getAllOnesValue(VTBits);
1934        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1935
1936        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1937        // sign bits set.
1938        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1939          return VTBits;
1940
1941        // If we are subtracting one from a positive number, there is no carry
1942        // out of the result.
1943        if (KnownZero.isNegative())
1944          return Tmp;
1945      }
1946
1947    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1948    if (Tmp2 == 1) return 1;
1949      return std::min(Tmp, Tmp2)-1;
1950    break;
1951
1952  case ISD::SUB:
1953    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1954    if (Tmp2 == 1) return 1;
1955
1956    // Handle NEG.
1957    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1958      if (CLHS->isNullValue()) {
1959        APInt KnownZero, KnownOne;
1960        APInt Mask = APInt::getAllOnesValue(VTBits);
1961        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1962        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1963        // sign bits set.
1964        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1965          return VTBits;
1966
1967        // If the input is known to be positive (the sign bit is known clear),
1968        // the output of the NEG has the same number of sign bits as the input.
1969        if (KnownZero.isNegative())
1970          return Tmp2;
1971
1972        // Otherwise, we treat this like a SUB.
1973      }
1974
1975    // Sub can have at most one carry bit.  Thus we know that the output
1976    // is, at worst, one more bit than the inputs.
1977    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1978    if (Tmp == 1) return 1;  // Early out.
1979      return std::min(Tmp, Tmp2)-1;
1980    break;
1981  case ISD::TRUNCATE:
1982    // FIXME: it's tricky to do anything useful for this, but it is an important
1983    // case for targets like X86.
1984    break;
1985  }
1986
1987  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1988  if (Op.getOpcode() == ISD::LOAD) {
1989    LoadSDNode *LD = cast<LoadSDNode>(Op);
1990    unsigned ExtType = LD->getExtensionType();
1991    switch (ExtType) {
1992    default: break;
1993    case ISD::SEXTLOAD:    // '17' bits known
1994      Tmp = LD->getMemoryVT().getSizeInBits();
1995      return VTBits-Tmp+1;
1996    case ISD::ZEXTLOAD:    // '16' bits known
1997      Tmp = LD->getMemoryVT().getSizeInBits();
1998      return VTBits-Tmp;
1999    }
2000  }
2001
2002  // Allow the target to implement this method for its nodes.
2003  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2004      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2005      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2006      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2007    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2008    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2009  }
2010
2011  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2012  // use this information.
2013  APInt KnownZero, KnownOne;
2014  APInt Mask = APInt::getAllOnesValue(VTBits);
2015  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2016
2017  if (KnownZero.isNegative()) {        // sign bit is 0
2018    Mask = KnownZero;
2019  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2020    Mask = KnownOne;
2021  } else {
2022    // Nothing known.
2023    return FirstAnswer;
2024  }
2025
2026  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2027  // the number of identical bits in the top of the input value.
2028  Mask = ~Mask;
2029  Mask <<= Mask.getBitWidth()-VTBits;
2030  // Return # leading zeros.  We use 'min' here in case Val was zero before
2031  // shifting.  We don't want to return '64' as for an i32 "0".
2032  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2033}
2034
2035
2036bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2037  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2038  if (!GA) return false;
2039  if (GA->getOffset() != 0) return false;
2040  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2041  if (!GV) return false;
2042  MachineModuleInfo *MMI = getMachineModuleInfo();
2043  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2044}
2045
2046
2047/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2048/// element of the result of the vector shuffle.
2049SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2050  MVT VT = N->getValueType(0);
2051  SDValue PermMask = N->getOperand(2);
2052  SDValue Idx = PermMask.getOperand(i);
2053  if (Idx.getOpcode() == ISD::UNDEF)
2054    return getNode(ISD::UNDEF, VT.getVectorElementType());
2055  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2056  unsigned NumElems = PermMask.getNumOperands();
2057  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2058  Index %= NumElems;
2059
2060  if (V.getOpcode() == ISD::BIT_CONVERT) {
2061    V = V.getOperand(0);
2062    if (V.getValueType().getVectorNumElements() != NumElems)
2063      return SDValue();
2064  }
2065  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2066    return (Index == 0) ? V.getOperand(0)
2067                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2068  if (V.getOpcode() == ISD::BUILD_VECTOR)
2069    return V.getOperand(Index);
2070  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2071    return getShuffleScalarElt(V.getNode(), Index);
2072  return SDValue();
2073}
2074
2075
2076/// getNode - Gets or creates the specified node.
2077///
2078SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2079  FoldingSetNodeID ID;
2080  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2081  void *IP = 0;
2082  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2083    return SDValue(E, 0);
2084  SDNode *N = NodeAllocator.Allocate<SDNode>();
2085  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2086  CSEMap.InsertNode(N, IP);
2087
2088  AllNodes.push_back(N);
2089#ifndef NDEBUG
2090  VerifyNode(N);
2091#endif
2092  return SDValue(N, 0);
2093}
2094
2095SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2096  // Constant fold unary operations with an integer constant operand.
2097  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2098    const APInt &Val = C->getAPIntValue();
2099    unsigned BitWidth = VT.getSizeInBits();
2100    switch (Opcode) {
2101    default: break;
2102    case ISD::SIGN_EXTEND:
2103      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2104    case ISD::ANY_EXTEND:
2105    case ISD::ZERO_EXTEND:
2106    case ISD::TRUNCATE:
2107      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2108    case ISD::UINT_TO_FP:
2109    case ISD::SINT_TO_FP: {
2110      const uint64_t zero[] = {0, 0};
2111      // No compile time operations on this type.
2112      if (VT==MVT::ppcf128)
2113        break;
2114      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2115      (void)apf.convertFromAPInt(Val,
2116                                 Opcode==ISD::SINT_TO_FP,
2117                                 APFloat::rmNearestTiesToEven);
2118      return getConstantFP(apf, VT);
2119    }
2120    case ISD::BIT_CONVERT:
2121      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2122        return getConstantFP(Val.bitsToFloat(), VT);
2123      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2124        return getConstantFP(Val.bitsToDouble(), VT);
2125      break;
2126    case ISD::BSWAP:
2127      return getConstant(Val.byteSwap(), VT);
2128    case ISD::CTPOP:
2129      return getConstant(Val.countPopulation(), VT);
2130    case ISD::CTLZ:
2131      return getConstant(Val.countLeadingZeros(), VT);
2132    case ISD::CTTZ:
2133      return getConstant(Val.countTrailingZeros(), VT);
2134    }
2135  }
2136
2137  // Constant fold unary operations with a floating point constant operand.
2138  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2139    APFloat V = C->getValueAPF();    // make copy
2140    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2141      switch (Opcode) {
2142      case ISD::FNEG:
2143        V.changeSign();
2144        return getConstantFP(V, VT);
2145      case ISD::FABS:
2146        V.clearSign();
2147        return getConstantFP(V, VT);
2148      case ISD::FP_ROUND:
2149      case ISD::FP_EXTEND: {
2150        bool ignored;
2151        // This can return overflow, underflow, or inexact; we don't care.
2152        // FIXME need to be more flexible about rounding mode.
2153        (void)V.convert(*MVTToAPFloatSemantics(VT),
2154                        APFloat::rmNearestTiesToEven, &ignored);
2155        return getConstantFP(V, VT);
2156      }
2157      case ISD::FP_TO_SINT:
2158      case ISD::FP_TO_UINT: {
2159        integerPart x;
2160        bool ignored;
2161        assert(integerPartWidth >= 64);
2162        // FIXME need to be more flexible about rounding mode.
2163        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2164                              Opcode==ISD::FP_TO_SINT,
2165                              APFloat::rmTowardZero, &ignored);
2166        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2167          break;
2168        return getConstant(x, VT);
2169      }
2170      case ISD::BIT_CONVERT:
2171        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2172          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2173        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2174          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2175        break;
2176      }
2177    }
2178  }
2179
2180  unsigned OpOpcode = Operand.getNode()->getOpcode();
2181  switch (Opcode) {
2182  case ISD::TokenFactor:
2183  case ISD::CONCAT_VECTORS:
2184    return Operand;         // Factor or concat of one node?  No need.
2185  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2186  case ISD::FP_EXTEND:
2187    assert(VT.isFloatingPoint() &&
2188           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2189    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2190    if (Operand.getOpcode() == ISD::UNDEF)
2191      return getNode(ISD::UNDEF, VT);
2192    break;
2193  case ISD::SIGN_EXTEND:
2194    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2195           "Invalid SIGN_EXTEND!");
2196    if (Operand.getValueType() == VT) return Operand;   // noop extension
2197    assert(Operand.getValueType().bitsLT(VT)
2198           && "Invalid sext node, dst < src!");
2199    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2200      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2201    break;
2202  case ISD::ZERO_EXTEND:
2203    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2204           "Invalid ZERO_EXTEND!");
2205    if (Operand.getValueType() == VT) return Operand;   // noop extension
2206    assert(Operand.getValueType().bitsLT(VT)
2207           && "Invalid zext node, dst < src!");
2208    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2209      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2210    break;
2211  case ISD::ANY_EXTEND:
2212    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2213           "Invalid ANY_EXTEND!");
2214    if (Operand.getValueType() == VT) return Operand;   // noop extension
2215    assert(Operand.getValueType().bitsLT(VT)
2216           && "Invalid anyext node, dst < src!");
2217    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2218      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2219      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2220    break;
2221  case ISD::TRUNCATE:
2222    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2223           "Invalid TRUNCATE!");
2224    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2225    assert(Operand.getValueType().bitsGT(VT)
2226           && "Invalid truncate node, src < dst!");
2227    if (OpOpcode == ISD::TRUNCATE)
2228      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2229    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2230             OpOpcode == ISD::ANY_EXTEND) {
2231      // If the source is smaller than the dest, we still need an extend.
2232      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2233        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2234      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2235        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2236      else
2237        return Operand.getNode()->getOperand(0);
2238    }
2239    break;
2240  case ISD::BIT_CONVERT:
2241    // Basic sanity checking.
2242    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2243           && "Cannot BIT_CONVERT between types of different sizes!");
2244    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2245    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2246      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2247    if (OpOpcode == ISD::UNDEF)
2248      return getNode(ISD::UNDEF, VT);
2249    break;
2250  case ISD::SCALAR_TO_VECTOR:
2251    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2252           VT.getVectorElementType() == Operand.getValueType() &&
2253           "Illegal SCALAR_TO_VECTOR node!");
2254    if (OpOpcode == ISD::UNDEF)
2255      return getNode(ISD::UNDEF, VT);
2256    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2257    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2258        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2259        Operand.getConstantOperandVal(1) == 0 &&
2260        Operand.getOperand(0).getValueType() == VT)
2261      return Operand.getOperand(0);
2262    break;
2263  case ISD::FNEG:
2264    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2265      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2266                     Operand.getNode()->getOperand(0));
2267    if (OpOpcode == ISD::FNEG)  // --X -> X
2268      return Operand.getNode()->getOperand(0);
2269    break;
2270  case ISD::FABS:
2271    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2272      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2273    break;
2274  }
2275
2276  SDNode *N;
2277  SDVTList VTs = getVTList(VT);
2278  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2279    FoldingSetNodeID ID;
2280    SDValue Ops[1] = { Operand };
2281    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2282    void *IP = 0;
2283    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2284      return SDValue(E, 0);
2285    N = NodeAllocator.Allocate<UnarySDNode>();
2286    new (N) UnarySDNode(Opcode, VTs, Operand);
2287    CSEMap.InsertNode(N, IP);
2288  } else {
2289    N = NodeAllocator.Allocate<UnarySDNode>();
2290    new (N) UnarySDNode(Opcode, VTs, Operand);
2291  }
2292
2293  AllNodes.push_back(N);
2294#ifndef NDEBUG
2295  VerifyNode(N);
2296#endif
2297  return SDValue(N, 0);
2298}
2299
2300SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2301                                             MVT VT,
2302                                             ConstantSDNode *Cst1,
2303                                             ConstantSDNode *Cst2) {
2304  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2305
2306  switch (Opcode) {
2307  case ISD::ADD:  return getConstant(C1 + C2, VT);
2308  case ISD::SUB:  return getConstant(C1 - C2, VT);
2309  case ISD::MUL:  return getConstant(C1 * C2, VT);
2310  case ISD::UDIV:
2311    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2312    break;
2313  case ISD::UREM:
2314    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2315    break;
2316  case ISD::SDIV:
2317    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2318    break;
2319  case ISD::SREM:
2320    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2321    break;
2322  case ISD::AND:  return getConstant(C1 & C2, VT);
2323  case ISD::OR:   return getConstant(C1 | C2, VT);
2324  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2325  case ISD::SHL:  return getConstant(C1 << C2, VT);
2326  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2327  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2328  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2329  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2330  default: break;
2331  }
2332
2333  return SDValue();
2334}
2335
2336SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2337                              SDValue N1, SDValue N2) {
2338  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2339  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2340  switch (Opcode) {
2341  default: break;
2342  case ISD::TokenFactor:
2343    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2344           N2.getValueType() == MVT::Other && "Invalid token factor!");
2345    // Fold trivial token factors.
2346    if (N1.getOpcode() == ISD::EntryToken) return N2;
2347    if (N2.getOpcode() == ISD::EntryToken) return N1;
2348    if (N1 == N2) return N1;
2349    break;
2350  case ISD::CONCAT_VECTORS:
2351    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2352    // one big BUILD_VECTOR.
2353    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2354        N2.getOpcode() == ISD::BUILD_VECTOR) {
2355      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2356      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2357      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2358    }
2359    break;
2360  case ISD::AND:
2361    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2362           N1.getValueType() == VT && "Binary operator types must match!");
2363    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2364    // worth handling here.
2365    if (N2C && N2C->isNullValue())
2366      return N2;
2367    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2368      return N1;
2369    break;
2370  case ISD::OR:
2371  case ISD::XOR:
2372  case ISD::ADD:
2373  case ISD::SUB:
2374    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2375           N1.getValueType() == VT && "Binary operator types must match!");
2376    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2377    // it's worth handling here.
2378    if (N2C && N2C->isNullValue())
2379      return N1;
2380    break;
2381  case ISD::UDIV:
2382  case ISD::UREM:
2383  case ISD::MULHU:
2384  case ISD::MULHS:
2385    assert(VT.isInteger() && "This operator does not apply to FP types!");
2386    // fall through
2387  case ISD::MUL:
2388  case ISD::SDIV:
2389  case ISD::SREM:
2390  case ISD::FADD:
2391  case ISD::FSUB:
2392  case ISD::FMUL:
2393  case ISD::FDIV:
2394  case ISD::FREM:
2395    assert(N1.getValueType() == N2.getValueType() &&
2396           N1.getValueType() == VT && "Binary operator types must match!");
2397    break;
2398  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2399    assert(N1.getValueType() == VT &&
2400           N1.getValueType().isFloatingPoint() &&
2401           N2.getValueType().isFloatingPoint() &&
2402           "Invalid FCOPYSIGN!");
2403    break;
2404  case ISD::SHL:
2405  case ISD::SRA:
2406  case ISD::SRL:
2407  case ISD::ROTL:
2408  case ISD::ROTR:
2409    assert(VT == N1.getValueType() &&
2410           "Shift operators return type must be the same as their first arg");
2411    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2412           "Shifts only work on integers");
2413
2414    // Always fold shifts of i1 values so the code generator doesn't need to
2415    // handle them.  Since we know the size of the shift has to be less than the
2416    // size of the value, the shift/rotate count is guaranteed to be zero.
2417    if (VT == MVT::i1)
2418      return N1;
2419    break;
2420  case ISD::FP_ROUND_INREG: {
2421    MVT EVT = cast<VTSDNode>(N2)->getVT();
2422    assert(VT == N1.getValueType() && "Not an inreg round!");
2423    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2424           "Cannot FP_ROUND_INREG integer types");
2425    assert(EVT.bitsLE(VT) && "Not rounding down!");
2426    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2427    break;
2428  }
2429  case ISD::FP_ROUND:
2430    assert(VT.isFloatingPoint() &&
2431           N1.getValueType().isFloatingPoint() &&
2432           VT.bitsLE(N1.getValueType()) &&
2433           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2434    if (N1.getValueType() == VT) return N1;  // noop conversion.
2435    break;
2436  case ISD::AssertSext:
2437  case ISD::AssertZext: {
2438    MVT EVT = cast<VTSDNode>(N2)->getVT();
2439    assert(VT == N1.getValueType() && "Not an inreg extend!");
2440    assert(VT.isInteger() && EVT.isInteger() &&
2441           "Cannot *_EXTEND_INREG FP types");
2442    assert(EVT.bitsLE(VT) && "Not extending!");
2443    if (VT == EVT) return N1; // noop assertion.
2444    break;
2445  }
2446  case ISD::SIGN_EXTEND_INREG: {
2447    MVT EVT = cast<VTSDNode>(N2)->getVT();
2448    assert(VT == N1.getValueType() && "Not an inreg extend!");
2449    assert(VT.isInteger() && EVT.isInteger() &&
2450           "Cannot *_EXTEND_INREG FP types");
2451    assert(EVT.bitsLE(VT) && "Not extending!");
2452    if (EVT == VT) return N1;  // Not actually extending
2453
2454    if (N1C) {
2455      APInt Val = N1C->getAPIntValue();
2456      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2457      Val <<= Val.getBitWidth()-FromBits;
2458      Val = Val.ashr(Val.getBitWidth()-FromBits);
2459      return getConstant(Val, VT);
2460    }
2461    break;
2462  }
2463  case ISD::EXTRACT_VECTOR_ELT:
2464    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2465    if (N1.getOpcode() == ISD::UNDEF)
2466      return getNode(ISD::UNDEF, VT);
2467
2468    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2469    // expanding copies of large vectors from registers.
2470    if (N2C &&
2471        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2472        N1.getNumOperands() > 0) {
2473      unsigned Factor =
2474        N1.getOperand(0).getValueType().getVectorNumElements();
2475      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2476                     N1.getOperand(N2C->getZExtValue() / Factor),
2477                     getConstant(N2C->getZExtValue() % Factor,
2478                                 N2.getValueType()));
2479    }
2480
2481    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2482    // expanding large vector constants.
2483    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2484      return N1.getOperand(N2C->getZExtValue());
2485
2486    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2487    // operations are lowered to scalars.
2488    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2489      if (N1.getOperand(2) == N2)
2490        return N1.getOperand(1);
2491      else
2492        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2493    }
2494    break;
2495  case ISD::EXTRACT_ELEMENT:
2496    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2497    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2498           (N1.getValueType().isInteger() == VT.isInteger()) &&
2499           "Wrong types for EXTRACT_ELEMENT!");
2500
2501    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2502    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2503    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2504    if (N1.getOpcode() == ISD::BUILD_PAIR)
2505      return N1.getOperand(N2C->getZExtValue());
2506
2507    // EXTRACT_ELEMENT of a constant int is also very common.
2508    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2509      unsigned ElementSize = VT.getSizeInBits();
2510      unsigned Shift = ElementSize * N2C->getZExtValue();
2511      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2512      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2513    }
2514    break;
2515  case ISD::EXTRACT_SUBVECTOR:
2516    if (N1.getValueType() == VT) // Trivial extraction.
2517      return N1;
2518    break;
2519  }
2520
2521  if (N1C) {
2522    if (N2C) {
2523      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2524      if (SV.getNode()) return SV;
2525    } else {      // Cannonicalize constant to RHS if commutative
2526      if (isCommutativeBinOp(Opcode)) {
2527        std::swap(N1C, N2C);
2528        std::swap(N1, N2);
2529      }
2530    }
2531  }
2532
2533  // Constant fold FP operations.
2534  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2535  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2536  if (N1CFP) {
2537    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2538      // Cannonicalize constant to RHS if commutative
2539      std::swap(N1CFP, N2CFP);
2540      std::swap(N1, N2);
2541    } else if (N2CFP && VT != MVT::ppcf128) {
2542      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2543      APFloat::opStatus s;
2544      switch (Opcode) {
2545      case ISD::FADD:
2546        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2547        if (s != APFloat::opInvalidOp)
2548          return getConstantFP(V1, VT);
2549        break;
2550      case ISD::FSUB:
2551        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2552        if (s!=APFloat::opInvalidOp)
2553          return getConstantFP(V1, VT);
2554        break;
2555      case ISD::FMUL:
2556        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2557        if (s!=APFloat::opInvalidOp)
2558          return getConstantFP(V1, VT);
2559        break;
2560      case ISD::FDIV:
2561        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2562        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2563          return getConstantFP(V1, VT);
2564        break;
2565      case ISD::FREM :
2566        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2567        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2568          return getConstantFP(V1, VT);
2569        break;
2570      case ISD::FCOPYSIGN:
2571        V1.copySign(V2);
2572        return getConstantFP(V1, VT);
2573      default: break;
2574      }
2575    }
2576  }
2577
2578  // Canonicalize an UNDEF to the RHS, even over a constant.
2579  if (N1.getOpcode() == ISD::UNDEF) {
2580    if (isCommutativeBinOp(Opcode)) {
2581      std::swap(N1, N2);
2582    } else {
2583      switch (Opcode) {
2584      case ISD::FP_ROUND_INREG:
2585      case ISD::SIGN_EXTEND_INREG:
2586      case ISD::SUB:
2587      case ISD::FSUB:
2588      case ISD::FDIV:
2589      case ISD::FREM:
2590      case ISD::SRA:
2591        return N1;     // fold op(undef, arg2) -> undef
2592      case ISD::UDIV:
2593      case ISD::SDIV:
2594      case ISD::UREM:
2595      case ISD::SREM:
2596      case ISD::SRL:
2597      case ISD::SHL:
2598        if (!VT.isVector())
2599          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2600        // For vectors, we can't easily build an all zero vector, just return
2601        // the LHS.
2602        return N2;
2603      }
2604    }
2605  }
2606
2607  // Fold a bunch of operators when the RHS is undef.
2608  if (N2.getOpcode() == ISD::UNDEF) {
2609    switch (Opcode) {
2610    case ISD::XOR:
2611      if (N1.getOpcode() == ISD::UNDEF)
2612        // Handle undef ^ undef -> 0 special case. This is a common
2613        // idiom (misuse).
2614        return getConstant(0, VT);
2615      // fallthrough
2616    case ISD::ADD:
2617    case ISD::ADDC:
2618    case ISD::ADDE:
2619    case ISD::SUB:
2620    case ISD::FADD:
2621    case ISD::FSUB:
2622    case ISD::FMUL:
2623    case ISD::FDIV:
2624    case ISD::FREM:
2625    case ISD::UDIV:
2626    case ISD::SDIV:
2627    case ISD::UREM:
2628    case ISD::SREM:
2629      return N2;       // fold op(arg1, undef) -> undef
2630    case ISD::MUL:
2631    case ISD::AND:
2632    case ISD::SRL:
2633    case ISD::SHL:
2634      if (!VT.isVector())
2635        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2636      // For vectors, we can't easily build an all zero vector, just return
2637      // the LHS.
2638      return N1;
2639    case ISD::OR:
2640      if (!VT.isVector())
2641        return getConstant(VT.getIntegerVTBitMask(), VT);
2642      // For vectors, we can't easily build an all one vector, just return
2643      // the LHS.
2644      return N1;
2645    case ISD::SRA:
2646      return N1;
2647    }
2648  }
2649
2650  // Memoize this node if possible.
2651  SDNode *N;
2652  SDVTList VTs = getVTList(VT);
2653  if (VT != MVT::Flag) {
2654    SDValue Ops[] = { N1, N2 };
2655    FoldingSetNodeID ID;
2656    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2657    void *IP = 0;
2658    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2659      return SDValue(E, 0);
2660    N = NodeAllocator.Allocate<BinarySDNode>();
2661    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2662    CSEMap.InsertNode(N, IP);
2663  } else {
2664    N = NodeAllocator.Allocate<BinarySDNode>();
2665    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2666  }
2667
2668  AllNodes.push_back(N);
2669#ifndef NDEBUG
2670  VerifyNode(N);
2671#endif
2672  return SDValue(N, 0);
2673}
2674
2675SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2676                              SDValue N1, SDValue N2, SDValue N3) {
2677  // Perform various simplifications.
2678  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2679  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2680  switch (Opcode) {
2681  case ISD::CONCAT_VECTORS:
2682    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2683    // one big BUILD_VECTOR.
2684    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2685        N2.getOpcode() == ISD::BUILD_VECTOR &&
2686        N3.getOpcode() == ISD::BUILD_VECTOR) {
2687      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2688      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2689      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2690      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2691    }
2692    break;
2693  case ISD::SETCC: {
2694    // Use FoldSetCC to simplify SETCC's.
2695    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2696    if (Simp.getNode()) return Simp;
2697    break;
2698  }
2699  case ISD::SELECT:
2700    if (N1C) {
2701     if (N1C->getZExtValue())
2702        return N2;             // select true, X, Y -> X
2703      else
2704        return N3;             // select false, X, Y -> Y
2705    }
2706
2707    if (N2 == N3) return N2;   // select C, X, X -> X
2708    break;
2709  case ISD::BRCOND:
2710    if (N2C) {
2711      if (N2C->getZExtValue()) // Unconditional branch
2712        return getNode(ISD::BR, MVT::Other, N1, N3);
2713      else
2714        return N1;         // Never-taken branch
2715    }
2716    break;
2717  case ISD::VECTOR_SHUFFLE:
2718    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2719           VT.isVector() && N3.getValueType().isVector() &&
2720           N3.getOpcode() == ISD::BUILD_VECTOR &&
2721           VT.getVectorNumElements() == N3.getNumOperands() &&
2722           "Illegal VECTOR_SHUFFLE node!");
2723    break;
2724  case ISD::BIT_CONVERT:
2725    // Fold bit_convert nodes from a type to themselves.
2726    if (N1.getValueType() == VT)
2727      return N1;
2728    break;
2729  }
2730
2731  // Memoize node if it doesn't produce a flag.
2732  SDNode *N;
2733  SDVTList VTs = getVTList(VT);
2734  if (VT != MVT::Flag) {
2735    SDValue Ops[] = { N1, N2, N3 };
2736    FoldingSetNodeID ID;
2737    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2738    void *IP = 0;
2739    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2740      return SDValue(E, 0);
2741    N = NodeAllocator.Allocate<TernarySDNode>();
2742    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2743    CSEMap.InsertNode(N, IP);
2744  } else {
2745    N = NodeAllocator.Allocate<TernarySDNode>();
2746    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2747  }
2748  AllNodes.push_back(N);
2749#ifndef NDEBUG
2750  VerifyNode(N);
2751#endif
2752  return SDValue(N, 0);
2753}
2754
2755SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2756                              SDValue N1, SDValue N2, SDValue N3,
2757                              SDValue N4) {
2758  SDValue Ops[] = { N1, N2, N3, N4 };
2759  return getNode(Opcode, VT, Ops, 4);
2760}
2761
2762SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2763                              SDValue N1, SDValue N2, SDValue N3,
2764                              SDValue N4, SDValue N5) {
2765  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2766  return getNode(Opcode, VT, Ops, 5);
2767}
2768
2769/// getMemsetValue - Vectorized representation of the memset value
2770/// operand.
2771static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2772  unsigned NumBits = VT.isVector() ?
2773    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2774  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2775    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2776    unsigned Shift = 8;
2777    for (unsigned i = NumBits; i > 8; i >>= 1) {
2778      Val = (Val << Shift) | Val;
2779      Shift <<= 1;
2780    }
2781    if (VT.isInteger())
2782      return DAG.getConstant(Val, VT);
2783    return DAG.getConstantFP(APFloat(Val), VT);
2784  }
2785
2786  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2787  unsigned Shift = 8;
2788  for (unsigned i = NumBits; i > 8; i >>= 1) {
2789    Value = DAG.getNode(ISD::OR, VT,
2790                        DAG.getNode(ISD::SHL, VT, Value,
2791                                    DAG.getConstant(Shift, MVT::i8)), Value);
2792    Shift <<= 1;
2793  }
2794
2795  return Value;
2796}
2797
2798/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2799/// used when a memcpy is turned into a memset when the source is a constant
2800/// string ptr.
2801static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2802                                    const TargetLowering &TLI,
2803                                    std::string &Str, unsigned Offset) {
2804  // Handle vector with all elements zero.
2805  if (Str.empty()) {
2806    if (VT.isInteger())
2807      return DAG.getConstant(0, VT);
2808    unsigned NumElts = VT.getVectorNumElements();
2809    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2810    return DAG.getNode(ISD::BIT_CONVERT, VT,
2811                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2812  }
2813
2814  assert(!VT.isVector() && "Can't handle vector type here!");
2815  unsigned NumBits = VT.getSizeInBits();
2816  unsigned MSB = NumBits / 8;
2817  uint64_t Val = 0;
2818  if (TLI.isLittleEndian())
2819    Offset = Offset + MSB - 1;
2820  for (unsigned i = 0; i != MSB; ++i) {
2821    Val = (Val << 8) | (unsigned char)Str[Offset];
2822    Offset += TLI.isLittleEndian() ? -1 : 1;
2823  }
2824  return DAG.getConstant(Val, VT);
2825}
2826
2827/// getMemBasePlusOffset - Returns base and offset node for the
2828///
2829static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2830                                      SelectionDAG &DAG) {
2831  MVT VT = Base.getValueType();
2832  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2833}
2834
2835/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2836///
2837static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2838  unsigned SrcDelta = 0;
2839  GlobalAddressSDNode *G = NULL;
2840  if (Src.getOpcode() == ISD::GlobalAddress)
2841    G = cast<GlobalAddressSDNode>(Src);
2842  else if (Src.getOpcode() == ISD::ADD &&
2843           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2844           Src.getOperand(1).getOpcode() == ISD::Constant) {
2845    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2846    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2847  }
2848  if (!G)
2849    return false;
2850
2851  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2852  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2853    return true;
2854
2855  return false;
2856}
2857
2858/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2859/// to replace the memset / memcpy is below the threshold. It also returns the
2860/// types of the sequence of memory ops to perform memset / memcpy.
2861static
2862bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2863                              SDValue Dst, SDValue Src,
2864                              unsigned Limit, uint64_t Size, unsigned &Align,
2865                              std::string &Str, bool &isSrcStr,
2866                              SelectionDAG &DAG,
2867                              const TargetLowering &TLI) {
2868  isSrcStr = isMemSrcFromString(Src, Str);
2869  bool isSrcConst = isa<ConstantSDNode>(Src);
2870  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2871  MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2872  if (VT != MVT::iAny) {
2873    unsigned NewAlign = (unsigned)
2874      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2875    // If source is a string constant, this will require an unaligned load.
2876    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2877      if (Dst.getOpcode() != ISD::FrameIndex) {
2878        // Can't change destination alignment. It requires a unaligned store.
2879        if (AllowUnalign)
2880          VT = MVT::iAny;
2881      } else {
2882        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2883        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2884        if (MFI->isFixedObjectIndex(FI)) {
2885          // Can't change destination alignment. It requires a unaligned store.
2886          if (AllowUnalign)
2887            VT = MVT::iAny;
2888        } else {
2889          // Give the stack frame object a larger alignment if needed.
2890          if (MFI->getObjectAlignment(FI) < NewAlign)
2891            MFI->setObjectAlignment(FI, NewAlign);
2892          Align = NewAlign;
2893        }
2894      }
2895    }
2896  }
2897
2898  if (VT == MVT::iAny) {
2899    if (AllowUnalign) {
2900      VT = MVT::i64;
2901    } else {
2902      switch (Align & 7) {
2903      case 0:  VT = MVT::i64; break;
2904      case 4:  VT = MVT::i32; break;
2905      case 2:  VT = MVT::i16; break;
2906      default: VT = MVT::i8;  break;
2907      }
2908    }
2909
2910    MVT LVT = MVT::i64;
2911    while (!TLI.isTypeLegal(LVT))
2912      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2913    assert(LVT.isInteger());
2914
2915    if (VT.bitsGT(LVT))
2916      VT = LVT;
2917  }
2918
2919  unsigned NumMemOps = 0;
2920  while (Size != 0) {
2921    unsigned VTSize = VT.getSizeInBits() / 8;
2922    while (VTSize > Size) {
2923      // For now, only use non-vector load / store's for the left-over pieces.
2924      if (VT.isVector()) {
2925        VT = MVT::i64;
2926        while (!TLI.isTypeLegal(VT))
2927          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2928        VTSize = VT.getSizeInBits() / 8;
2929      } else {
2930        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2931        VTSize >>= 1;
2932      }
2933    }
2934
2935    if (++NumMemOps > Limit)
2936      return false;
2937    MemOps.push_back(VT);
2938    Size -= VTSize;
2939  }
2940
2941  return true;
2942}
2943
2944static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2945                                         SDValue Chain, SDValue Dst,
2946                                         SDValue Src, uint64_t Size,
2947                                         unsigned Align, bool AlwaysInline,
2948                                         const Value *DstSV, uint64_t DstSVOff,
2949                                         const Value *SrcSV, uint64_t SrcSVOff){
2950  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2951
2952  // Expand memcpy to a series of load and store ops if the size operand falls
2953  // below a certain threshold.
2954  std::vector<MVT> MemOps;
2955  uint64_t Limit = -1ULL;
2956  if (!AlwaysInline)
2957    Limit = TLI.getMaxStoresPerMemcpy();
2958  unsigned DstAlign = Align;  // Destination alignment can change.
2959  std::string Str;
2960  bool CopyFromStr;
2961  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2962                                Str, CopyFromStr, DAG, TLI))
2963    return SDValue();
2964
2965
2966  bool isZeroStr = CopyFromStr && Str.empty();
2967  SmallVector<SDValue, 8> OutChains;
2968  unsigned NumMemOps = MemOps.size();
2969  uint64_t SrcOff = 0, DstOff = 0;
2970  for (unsigned i = 0; i < NumMemOps; i++) {
2971    MVT VT = MemOps[i];
2972    unsigned VTSize = VT.getSizeInBits() / 8;
2973    SDValue Value, Store;
2974
2975    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2976      // It's unlikely a store of a vector immediate can be done in a single
2977      // instruction. It would require a load from a constantpool first.
2978      // We also handle store a vector with all zero's.
2979      // FIXME: Handle other cases where store of vector immediate is done in
2980      // a single instruction.
2981      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2982      Store = DAG.getStore(Chain, Value,
2983                           getMemBasePlusOffset(Dst, DstOff, DAG),
2984                           DstSV, DstSVOff + DstOff, false, DstAlign);
2985    } else {
2986      Value = DAG.getLoad(VT, Chain,
2987                          getMemBasePlusOffset(Src, SrcOff, DAG),
2988                          SrcSV, SrcSVOff + SrcOff, false, Align);
2989      Store = DAG.getStore(Chain, Value,
2990                           getMemBasePlusOffset(Dst, DstOff, DAG),
2991                           DstSV, DstSVOff + DstOff, false, DstAlign);
2992    }
2993    OutChains.push_back(Store);
2994    SrcOff += VTSize;
2995    DstOff += VTSize;
2996  }
2997
2998  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2999                     &OutChains[0], OutChains.size());
3000}
3001
3002static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
3003                                          SDValue Chain, SDValue Dst,
3004                                          SDValue Src, uint64_t Size,
3005                                          unsigned Align, bool AlwaysInline,
3006                                          const Value *DstSV, uint64_t DstSVOff,
3007                                          const Value *SrcSV, uint64_t SrcSVOff){
3008  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3009
3010  // Expand memmove to a series of load and store ops if the size operand falls
3011  // below a certain threshold.
3012  std::vector<MVT> MemOps;
3013  uint64_t Limit = -1ULL;
3014  if (!AlwaysInline)
3015    Limit = TLI.getMaxStoresPerMemmove();
3016  unsigned DstAlign = Align;  // Destination alignment can change.
3017  std::string Str;
3018  bool CopyFromStr;
3019  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3020                                Str, CopyFromStr, DAG, TLI))
3021    return SDValue();
3022
3023  uint64_t SrcOff = 0, DstOff = 0;
3024
3025  SmallVector<SDValue, 8> LoadValues;
3026  SmallVector<SDValue, 8> LoadChains;
3027  SmallVector<SDValue, 8> OutChains;
3028  unsigned NumMemOps = MemOps.size();
3029  for (unsigned i = 0; i < NumMemOps; i++) {
3030    MVT VT = MemOps[i];
3031    unsigned VTSize = VT.getSizeInBits() / 8;
3032    SDValue Value, Store;
3033
3034    Value = DAG.getLoad(VT, Chain,
3035                        getMemBasePlusOffset(Src, SrcOff, DAG),
3036                        SrcSV, SrcSVOff + SrcOff, false, Align);
3037    LoadValues.push_back(Value);
3038    LoadChains.push_back(Value.getValue(1));
3039    SrcOff += VTSize;
3040  }
3041  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3042                      &LoadChains[0], LoadChains.size());
3043  OutChains.clear();
3044  for (unsigned i = 0; i < NumMemOps; i++) {
3045    MVT VT = MemOps[i];
3046    unsigned VTSize = VT.getSizeInBits() / 8;
3047    SDValue Value, Store;
3048
3049    Store = DAG.getStore(Chain, LoadValues[i],
3050                         getMemBasePlusOffset(Dst, DstOff, DAG),
3051                         DstSV, DstSVOff + DstOff, false, DstAlign);
3052    OutChains.push_back(Store);
3053    DstOff += VTSize;
3054  }
3055
3056  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3057                     &OutChains[0], OutChains.size());
3058}
3059
3060static SDValue getMemsetStores(SelectionDAG &DAG,
3061                                 SDValue Chain, SDValue Dst,
3062                                 SDValue Src, uint64_t Size,
3063                                 unsigned Align,
3064                                 const Value *DstSV, uint64_t DstSVOff) {
3065  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3066
3067  // Expand memset to a series of load/store ops if the size operand
3068  // falls below a certain threshold.
3069  std::vector<MVT> MemOps;
3070  std::string Str;
3071  bool CopyFromStr;
3072  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3073                                Size, Align, Str, CopyFromStr, DAG, TLI))
3074    return SDValue();
3075
3076  SmallVector<SDValue, 8> OutChains;
3077  uint64_t DstOff = 0;
3078
3079  unsigned NumMemOps = MemOps.size();
3080  for (unsigned i = 0; i < NumMemOps; i++) {
3081    MVT VT = MemOps[i];
3082    unsigned VTSize = VT.getSizeInBits() / 8;
3083    SDValue Value = getMemsetValue(Src, VT, DAG);
3084    SDValue Store = DAG.getStore(Chain, Value,
3085                                   getMemBasePlusOffset(Dst, DstOff, DAG),
3086                                   DstSV, DstSVOff + DstOff);
3087    OutChains.push_back(Store);
3088    DstOff += VTSize;
3089  }
3090
3091  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3092                     &OutChains[0], OutChains.size());
3093}
3094
3095SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3096                                SDValue Src, SDValue Size,
3097                                unsigned Align, bool AlwaysInline,
3098                                const Value *DstSV, uint64_t DstSVOff,
3099                                const Value *SrcSV, uint64_t SrcSVOff) {
3100
3101  // Check to see if we should lower the memcpy to loads and stores first.
3102  // For cases within the target-specified limits, this is the best choice.
3103  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3104  if (ConstantSize) {
3105    // Memcpy with size zero? Just return the original chain.
3106    if (ConstantSize->isNullValue())
3107      return Chain;
3108
3109    SDValue Result =
3110      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3111                              ConstantSize->getZExtValue(),
3112                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3113    if (Result.getNode())
3114      return Result;
3115  }
3116
3117  // Then check to see if we should lower the memcpy with target-specific
3118  // code. If the target chooses to do this, this is the next best.
3119  SDValue Result =
3120    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3121                                AlwaysInline,
3122                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3123  if (Result.getNode())
3124    return Result;
3125
3126  // If we really need inline code and the target declined to provide it,
3127  // use a (potentially long) sequence of loads and stores.
3128  if (AlwaysInline) {
3129    assert(ConstantSize && "AlwaysInline requires a constant size!");
3130    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3131                                   ConstantSize->getZExtValue(), Align, true,
3132                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3133  }
3134
3135  // Emit a library call.
3136  TargetLowering::ArgListTy Args;
3137  TargetLowering::ArgListEntry Entry;
3138  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3139  Entry.Node = Dst; Args.push_back(Entry);
3140  Entry.Node = Src; Args.push_back(Entry);
3141  Entry.Node = Size; Args.push_back(Entry);
3142  std::pair<SDValue,SDValue> CallResult =
3143    TLI.LowerCallTo(Chain, Type::VoidTy,
3144                    false, false, false, false, CallingConv::C, false,
3145                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3146                    Args, *this);
3147  return CallResult.second;
3148}
3149
3150SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3151                                 SDValue Src, SDValue Size,
3152                                 unsigned Align,
3153                                 const Value *DstSV, uint64_t DstSVOff,
3154                                 const Value *SrcSV, uint64_t SrcSVOff) {
3155
3156  // Check to see if we should lower the memmove to loads and stores first.
3157  // For cases within the target-specified limits, this is the best choice.
3158  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3159  if (ConstantSize) {
3160    // Memmove with size zero? Just return the original chain.
3161    if (ConstantSize->isNullValue())
3162      return Chain;
3163
3164    SDValue Result =
3165      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3166                               ConstantSize->getZExtValue(),
3167                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3168    if (Result.getNode())
3169      return Result;
3170  }
3171
3172  // Then check to see if we should lower the memmove with target-specific
3173  // code. If the target chooses to do this, this is the next best.
3174  SDValue Result =
3175    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3176                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3177  if (Result.getNode())
3178    return Result;
3179
3180  // Emit a library call.
3181  TargetLowering::ArgListTy Args;
3182  TargetLowering::ArgListEntry Entry;
3183  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3184  Entry.Node = Dst; Args.push_back(Entry);
3185  Entry.Node = Src; Args.push_back(Entry);
3186  Entry.Node = Size; Args.push_back(Entry);
3187  std::pair<SDValue,SDValue> CallResult =
3188    TLI.LowerCallTo(Chain, Type::VoidTy,
3189                    false, false, false, false, CallingConv::C, false,
3190                    getExternalSymbol("memmove", TLI.getPointerTy()),
3191                    Args, *this);
3192  return CallResult.second;
3193}
3194
3195SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3196                                SDValue Src, SDValue Size,
3197                                unsigned Align,
3198                                const Value *DstSV, uint64_t DstSVOff) {
3199
3200  // Check to see if we should lower the memset to stores first.
3201  // For cases within the target-specified limits, this is the best choice.
3202  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3203  if (ConstantSize) {
3204    // Memset with size zero? Just return the original chain.
3205    if (ConstantSize->isNullValue())
3206      return Chain;
3207
3208    SDValue Result =
3209      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3210                      Align, DstSV, DstSVOff);
3211    if (Result.getNode())
3212      return Result;
3213  }
3214
3215  // Then check to see if we should lower the memset with target-specific
3216  // code. If the target chooses to do this, this is the next best.
3217  SDValue Result =
3218    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3219                                DstSV, DstSVOff);
3220  if (Result.getNode())
3221    return Result;
3222
3223  // Emit a library call.
3224  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3225  TargetLowering::ArgListTy Args;
3226  TargetLowering::ArgListEntry Entry;
3227  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3228  Args.push_back(Entry);
3229  // Extend or truncate the argument to be an i32 value for the call.
3230  if (Src.getValueType().bitsGT(MVT::i32))
3231    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3232  else
3233    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3234  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3235  Args.push_back(Entry);
3236  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3237  Args.push_back(Entry);
3238  std::pair<SDValue,SDValue> CallResult =
3239    TLI.LowerCallTo(Chain, Type::VoidTy,
3240                    false, false, false, false, CallingConv::C, false,
3241                    getExternalSymbol("memset", TLI.getPointerTy()),
3242                    Args, *this);
3243  return CallResult.second;
3244}
3245
3246SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3247                                SDValue Ptr, SDValue Cmp,
3248                                SDValue Swp, const Value* PtrVal,
3249                                unsigned Alignment) {
3250  assert((Opcode == ISD::ATOMIC_CMP_SWAP_8  ||
3251          Opcode == ISD::ATOMIC_CMP_SWAP_16 ||
3252          Opcode == ISD::ATOMIC_CMP_SWAP_32 ||
3253          Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op");
3254  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3255
3256  MVT VT = Cmp.getValueType();
3257
3258  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3259    Alignment = getMVTAlignment(VT);
3260
3261  SDVTList VTs = getVTList(VT, MVT::Other);
3262  FoldingSetNodeID ID;
3263  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3264  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3265  void* IP = 0;
3266  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3267    return SDValue(E, 0);
3268  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3269  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3270  CSEMap.InsertNode(N, IP);
3271  AllNodes.push_back(N);
3272  return SDValue(N, 0);
3273}
3274
3275SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3276                                SDValue Ptr, SDValue Val,
3277                                const Value* PtrVal,
3278                                unsigned Alignment) {
3279  assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 ||
3280          Opcode == ISD::ATOMIC_LOAD_SUB_8 ||
3281          Opcode == ISD::ATOMIC_LOAD_AND_8 ||
3282          Opcode == ISD::ATOMIC_LOAD_OR_8 ||
3283          Opcode == ISD::ATOMIC_LOAD_XOR_8 ||
3284          Opcode == ISD::ATOMIC_LOAD_NAND_8 ||
3285          Opcode == ISD::ATOMIC_LOAD_MIN_8 ||
3286          Opcode == ISD::ATOMIC_LOAD_MAX_8 ||
3287          Opcode == ISD::ATOMIC_LOAD_UMIN_8 ||
3288          Opcode == ISD::ATOMIC_LOAD_UMAX_8 ||
3289          Opcode == ISD::ATOMIC_SWAP_8 ||
3290          Opcode == ISD::ATOMIC_LOAD_ADD_16 ||
3291          Opcode == ISD::ATOMIC_LOAD_SUB_16 ||
3292          Opcode == ISD::ATOMIC_LOAD_AND_16 ||
3293          Opcode == ISD::ATOMIC_LOAD_OR_16 ||
3294          Opcode == ISD::ATOMIC_LOAD_XOR_16 ||
3295          Opcode == ISD::ATOMIC_LOAD_NAND_16 ||
3296          Opcode == ISD::ATOMIC_LOAD_MIN_16 ||
3297          Opcode == ISD::ATOMIC_LOAD_MAX_16 ||
3298          Opcode == ISD::ATOMIC_LOAD_UMIN_16 ||
3299          Opcode == ISD::ATOMIC_LOAD_UMAX_16 ||
3300          Opcode == ISD::ATOMIC_SWAP_16 ||
3301          Opcode == ISD::ATOMIC_LOAD_ADD_32 ||
3302          Opcode == ISD::ATOMIC_LOAD_SUB_32 ||
3303          Opcode == ISD::ATOMIC_LOAD_AND_32 ||
3304          Opcode == ISD::ATOMIC_LOAD_OR_32 ||
3305          Opcode == ISD::ATOMIC_LOAD_XOR_32 ||
3306          Opcode == ISD::ATOMIC_LOAD_NAND_32 ||
3307          Opcode == ISD::ATOMIC_LOAD_MIN_32 ||
3308          Opcode == ISD::ATOMIC_LOAD_MAX_32 ||
3309          Opcode == ISD::ATOMIC_LOAD_UMIN_32 ||
3310          Opcode == ISD::ATOMIC_LOAD_UMAX_32 ||
3311          Opcode == ISD::ATOMIC_SWAP_32 ||
3312          Opcode == ISD::ATOMIC_LOAD_ADD_64 ||
3313          Opcode == ISD::ATOMIC_LOAD_SUB_64 ||
3314          Opcode == ISD::ATOMIC_LOAD_AND_64 ||
3315          Opcode == ISD::ATOMIC_LOAD_OR_64 ||
3316          Opcode == ISD::ATOMIC_LOAD_XOR_64 ||
3317          Opcode == ISD::ATOMIC_LOAD_NAND_64 ||
3318          Opcode == ISD::ATOMIC_LOAD_MIN_64 ||
3319          Opcode == ISD::ATOMIC_LOAD_MAX_64 ||
3320          Opcode == ISD::ATOMIC_LOAD_UMIN_64 ||
3321          Opcode == ISD::ATOMIC_LOAD_UMAX_64 ||
3322          Opcode == ISD::ATOMIC_SWAP_64)        && "Invalid Atomic Op");
3323
3324  MVT VT = Val.getValueType();
3325
3326  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3327    Alignment = getMVTAlignment(VT);
3328
3329  SDVTList VTs = getVTList(VT, MVT::Other);
3330  FoldingSetNodeID ID;
3331  SDValue Ops[] = {Chain, Ptr, Val};
3332  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3333  void* IP = 0;
3334  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3335    return SDValue(E, 0);
3336  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3337  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3338  CSEMap.InsertNode(N, IP);
3339  AllNodes.push_back(N);
3340  return SDValue(N, 0);
3341}
3342
3343/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3344/// Allowed to return something different (and simpler) if Simplify is true.
3345SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3346                                     bool Simplify) {
3347  if (Simplify && NumOps == 1)
3348    return Ops[0];
3349
3350  SmallVector<MVT, 4> VTs;
3351  VTs.reserve(NumOps);
3352  for (unsigned i = 0; i < NumOps; ++i)
3353    VTs.push_back(Ops[i].getValueType());
3354  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3355}
3356
3357SDValue
3358SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3359                                  const MVT *VTs, unsigned NumVTs,
3360                                  const SDValue *Ops, unsigned NumOps,
3361                                  MVT MemVT, const Value *srcValue, int SVOff,
3362                                  unsigned Align, bool Vol,
3363                                  bool ReadMem, bool WriteMem) {
3364  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3365                             MemVT, srcValue, SVOff, Align, Vol,
3366                             ReadMem, WriteMem);
3367}
3368
3369SDValue
3370SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3371                                  const SDValue *Ops, unsigned NumOps,
3372                                  MVT MemVT, const Value *srcValue, int SVOff,
3373                                  unsigned Align, bool Vol,
3374                                  bool ReadMem, bool WriteMem) {
3375  // Memoize the node unless it returns a flag.
3376  MemIntrinsicSDNode *N;
3377  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3378    FoldingSetNodeID ID;
3379    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3380    void *IP = 0;
3381    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3382      return SDValue(E, 0);
3383
3384    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3385    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3386                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3387    CSEMap.InsertNode(N, IP);
3388  } else {
3389    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3390    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3391                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3392  }
3393  AllNodes.push_back(N);
3394  return SDValue(N, 0);
3395}
3396
3397SDValue
3398SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3399                      bool IsInreg, SDVTList VTs,
3400                      const SDValue *Operands, unsigned NumOperands) {
3401  // Do not include isTailCall in the folding set profile.
3402  FoldingSetNodeID ID;
3403  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3404  ID.AddInteger(CallingConv);
3405  ID.AddInteger(IsVarArgs);
3406  void *IP = 0;
3407  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3408    // Instead of including isTailCall in the folding set, we just
3409    // set the flag of the existing node.
3410    if (!IsTailCall)
3411      cast<CallSDNode>(E)->setNotTailCall();
3412    return SDValue(E, 0);
3413  }
3414  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3415  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3416                     VTs, Operands, NumOperands);
3417  CSEMap.InsertNode(N, IP);
3418  AllNodes.push_back(N);
3419  return SDValue(N, 0);
3420}
3421
3422SDValue
3423SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3424                      MVT VT, SDValue Chain,
3425                      SDValue Ptr, SDValue Offset,
3426                      const Value *SV, int SVOffset, MVT EVT,
3427                      bool isVolatile, unsigned Alignment) {
3428  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3429    Alignment = getMVTAlignment(VT);
3430
3431  if (VT == EVT) {
3432    ExtType = ISD::NON_EXTLOAD;
3433  } else if (ExtType == ISD::NON_EXTLOAD) {
3434    assert(VT == EVT && "Non-extending load from different memory type!");
3435  } else {
3436    // Extending load.
3437    if (VT.isVector())
3438      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3439             "Invalid vector extload!");
3440    else
3441      assert(EVT.bitsLT(VT) &&
3442             "Should only be an extending load, not truncating!");
3443    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3444           "Cannot sign/zero extend a FP/Vector load!");
3445    assert(VT.isInteger() == EVT.isInteger() &&
3446           "Cannot convert from FP to Int or Int -> FP!");
3447  }
3448
3449  bool Indexed = AM != ISD::UNINDEXED;
3450  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3451         "Unindexed load with an offset!");
3452
3453  SDVTList VTs = Indexed ?
3454    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3455  SDValue Ops[] = { Chain, Ptr, Offset };
3456  FoldingSetNodeID ID;
3457  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3458  ID.AddInteger(AM);
3459  ID.AddInteger(ExtType);
3460  ID.AddInteger(EVT.getRawBits());
3461  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3462  void *IP = 0;
3463  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3464    return SDValue(E, 0);
3465  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3466  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3467                     Alignment, isVolatile);
3468  CSEMap.InsertNode(N, IP);
3469  AllNodes.push_back(N);
3470  return SDValue(N, 0);
3471}
3472
3473SDValue SelectionDAG::getLoad(MVT VT,
3474                              SDValue Chain, SDValue Ptr,
3475                              const Value *SV, int SVOffset,
3476                              bool isVolatile, unsigned Alignment) {
3477  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3478  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3479                 SV, SVOffset, VT, isVolatile, Alignment);
3480}
3481
3482SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3483                                 SDValue Chain, SDValue Ptr,
3484                                 const Value *SV,
3485                                 int SVOffset, MVT EVT,
3486                                 bool isVolatile, unsigned Alignment) {
3487  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3488  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3489                 SV, SVOffset, EVT, isVolatile, Alignment);
3490}
3491
3492SDValue
3493SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3494                             SDValue Offset, ISD::MemIndexedMode AM) {
3495  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3496  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3497         "Load is already a indexed load!");
3498  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3499                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3500                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3501                 LD->isVolatile(), LD->getAlignment());
3502}
3503
3504SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3505                               SDValue Ptr, const Value *SV, int SVOffset,
3506                               bool isVolatile, unsigned Alignment) {
3507  MVT VT = Val.getValueType();
3508
3509  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3510    Alignment = getMVTAlignment(VT);
3511
3512  SDVTList VTs = getVTList(MVT::Other);
3513  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3514  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3515  FoldingSetNodeID ID;
3516  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3517  ID.AddInteger(ISD::UNINDEXED);
3518  ID.AddInteger(false);
3519  ID.AddInteger(VT.getRawBits());
3520  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3521  void *IP = 0;
3522  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3523    return SDValue(E, 0);
3524  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3525  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3526                      VT, SV, SVOffset, Alignment, isVolatile);
3527  CSEMap.InsertNode(N, IP);
3528  AllNodes.push_back(N);
3529  return SDValue(N, 0);
3530}
3531
3532SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3533                                    SDValue Ptr, const Value *SV,
3534                                    int SVOffset, MVT SVT,
3535                                    bool isVolatile, unsigned Alignment) {
3536  MVT VT = Val.getValueType();
3537
3538  if (VT == SVT)
3539    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3540
3541  assert(VT.bitsGT(SVT) && "Not a truncation?");
3542  assert(VT.isInteger() == SVT.isInteger() &&
3543         "Can't do FP-INT conversion!");
3544
3545  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3546    Alignment = getMVTAlignment(VT);
3547
3548  SDVTList VTs = getVTList(MVT::Other);
3549  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3550  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3551  FoldingSetNodeID ID;
3552  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3553  ID.AddInteger(ISD::UNINDEXED);
3554  ID.AddInteger(1);
3555  ID.AddInteger(SVT.getRawBits());
3556  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3557  void *IP = 0;
3558  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3559    return SDValue(E, 0);
3560  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3561  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3562                      SVT, SV, SVOffset, Alignment, isVolatile);
3563  CSEMap.InsertNode(N, IP);
3564  AllNodes.push_back(N);
3565  return SDValue(N, 0);
3566}
3567
3568SDValue
3569SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3570                              SDValue Offset, ISD::MemIndexedMode AM) {
3571  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3572  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3573         "Store is already a indexed store!");
3574  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3575  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3576  FoldingSetNodeID ID;
3577  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3578  ID.AddInteger(AM);
3579  ID.AddInteger(ST->isTruncatingStore());
3580  ID.AddInteger(ST->getMemoryVT().getRawBits());
3581  ID.AddInteger(ST->getRawFlags());
3582  void *IP = 0;
3583  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3584    return SDValue(E, 0);
3585  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3586  new (N) StoreSDNode(Ops, VTs, AM,
3587                      ST->isTruncatingStore(), ST->getMemoryVT(),
3588                      ST->getSrcValue(), ST->getSrcValueOffset(),
3589                      ST->getAlignment(), ST->isVolatile());
3590  CSEMap.InsertNode(N, IP);
3591  AllNodes.push_back(N);
3592  return SDValue(N, 0);
3593}
3594
3595SDValue SelectionDAG::getVAArg(MVT VT,
3596                               SDValue Chain, SDValue Ptr,
3597                               SDValue SV) {
3598  SDValue Ops[] = { Chain, Ptr, SV };
3599  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3600}
3601
3602SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3603                              const SDUse *Ops, unsigned NumOps) {
3604  switch (NumOps) {
3605  case 0: return getNode(Opcode, VT);
3606  case 1: return getNode(Opcode, VT, Ops[0]);
3607  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3608  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3609  default: break;
3610  }
3611
3612  // Copy from an SDUse array into an SDValue array for use with
3613  // the regular getNode logic.
3614  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3615  return getNode(Opcode, VT, &NewOps[0], NumOps);
3616}
3617
3618SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3619                              const SDValue *Ops, unsigned NumOps) {
3620  switch (NumOps) {
3621  case 0: return getNode(Opcode, VT);
3622  case 1: return getNode(Opcode, VT, Ops[0]);
3623  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3624  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3625  default: break;
3626  }
3627
3628  switch (Opcode) {
3629  default: break;
3630  case ISD::SELECT_CC: {
3631    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3632    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3633           "LHS and RHS of condition must have same type!");
3634    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3635           "True and False arms of SelectCC must have same type!");
3636    assert(Ops[2].getValueType() == VT &&
3637           "select_cc node must be of same type as true and false value!");
3638    break;
3639  }
3640  case ISD::BR_CC: {
3641    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3642    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3643           "LHS/RHS of comparison should match types!");
3644    break;
3645  }
3646  }
3647
3648  // Memoize nodes.
3649  SDNode *N;
3650  SDVTList VTs = getVTList(VT);
3651  if (VT != MVT::Flag) {
3652    FoldingSetNodeID ID;
3653    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3654    void *IP = 0;
3655    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3656      return SDValue(E, 0);
3657    N = NodeAllocator.Allocate<SDNode>();
3658    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3659    CSEMap.InsertNode(N, IP);
3660  } else {
3661    N = NodeAllocator.Allocate<SDNode>();
3662    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3663  }
3664  AllNodes.push_back(N);
3665#ifndef NDEBUG
3666  VerifyNode(N);
3667#endif
3668  return SDValue(N, 0);
3669}
3670
3671SDValue SelectionDAG::getNode(unsigned Opcode,
3672                              const std::vector<MVT> &ResultTys,
3673                              const SDValue *Ops, unsigned NumOps) {
3674  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3675                 Ops, NumOps);
3676}
3677
3678SDValue SelectionDAG::getNode(unsigned Opcode,
3679                              const MVT *VTs, unsigned NumVTs,
3680                              const SDValue *Ops, unsigned NumOps) {
3681  if (NumVTs == 1)
3682    return getNode(Opcode, VTs[0], Ops, NumOps);
3683  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3684}
3685
3686SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3687                              const SDValue *Ops, unsigned NumOps) {
3688  if (VTList.NumVTs == 1)
3689    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3690
3691  switch (Opcode) {
3692  // FIXME: figure out how to safely handle things like
3693  // int foo(int x) { return 1 << (x & 255); }
3694  // int bar() { return foo(256); }
3695#if 0
3696  case ISD::SRA_PARTS:
3697  case ISD::SRL_PARTS:
3698  case ISD::SHL_PARTS:
3699    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3700        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3701      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3702    else if (N3.getOpcode() == ISD::AND)
3703      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3704        // If the and is only masking out bits that cannot effect the shift,
3705        // eliminate the and.
3706        unsigned NumBits = VT.getSizeInBits()*2;
3707        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3708          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3709      }
3710    break;
3711#endif
3712  }
3713
3714  // Memoize the node unless it returns a flag.
3715  SDNode *N;
3716  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3717    FoldingSetNodeID ID;
3718    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3719    void *IP = 0;
3720    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3721      return SDValue(E, 0);
3722    if (NumOps == 1) {
3723      N = NodeAllocator.Allocate<UnarySDNode>();
3724      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3725    } else if (NumOps == 2) {
3726      N = NodeAllocator.Allocate<BinarySDNode>();
3727      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3728    } else if (NumOps == 3) {
3729      N = NodeAllocator.Allocate<TernarySDNode>();
3730      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3731    } else {
3732      N = NodeAllocator.Allocate<SDNode>();
3733      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3734    }
3735    CSEMap.InsertNode(N, IP);
3736  } else {
3737    if (NumOps == 1) {
3738      N = NodeAllocator.Allocate<UnarySDNode>();
3739      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3740    } else if (NumOps == 2) {
3741      N = NodeAllocator.Allocate<BinarySDNode>();
3742      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3743    } else if (NumOps == 3) {
3744      N = NodeAllocator.Allocate<TernarySDNode>();
3745      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3746    } else {
3747      N = NodeAllocator.Allocate<SDNode>();
3748      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3749    }
3750  }
3751  AllNodes.push_back(N);
3752#ifndef NDEBUG
3753  VerifyNode(N);
3754#endif
3755  return SDValue(N, 0);
3756}
3757
3758SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3759  return getNode(Opcode, VTList, 0, 0);
3760}
3761
3762SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3763                                SDValue N1) {
3764  SDValue Ops[] = { N1 };
3765  return getNode(Opcode, VTList, Ops, 1);
3766}
3767
3768SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3769                              SDValue N1, SDValue N2) {
3770  SDValue Ops[] = { N1, N2 };
3771  return getNode(Opcode, VTList, Ops, 2);
3772}
3773
3774SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3775                              SDValue N1, SDValue N2, SDValue N3) {
3776  SDValue Ops[] = { N1, N2, N3 };
3777  return getNode(Opcode, VTList, Ops, 3);
3778}
3779
3780SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3781                              SDValue N1, SDValue N2, SDValue N3,
3782                              SDValue N4) {
3783  SDValue Ops[] = { N1, N2, N3, N4 };
3784  return getNode(Opcode, VTList, Ops, 4);
3785}
3786
3787SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3788                              SDValue N1, SDValue N2, SDValue N3,
3789                              SDValue N4, SDValue N5) {
3790  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3791  return getNode(Opcode, VTList, Ops, 5);
3792}
3793
3794SDVTList SelectionDAG::getVTList(MVT VT) {
3795  return makeVTList(SDNode::getValueTypeList(VT), 1);
3796}
3797
3798SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3799  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3800       E = VTList.rend(); I != E; ++I)
3801    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3802      return *I;
3803
3804  MVT *Array = Allocator.Allocate<MVT>(2);
3805  Array[0] = VT1;
3806  Array[1] = VT2;
3807  SDVTList Result = makeVTList(Array, 2);
3808  VTList.push_back(Result);
3809  return Result;
3810}
3811
3812SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3813  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3814       E = VTList.rend(); I != E; ++I)
3815    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3816                          I->VTs[2] == VT3)
3817      return *I;
3818
3819  MVT *Array = Allocator.Allocate<MVT>(3);
3820  Array[0] = VT1;
3821  Array[1] = VT2;
3822  Array[2] = VT3;
3823  SDVTList Result = makeVTList(Array, 3);
3824  VTList.push_back(Result);
3825  return Result;
3826}
3827
3828SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3829  switch (NumVTs) {
3830    case 0: assert(0 && "Cannot have nodes without results!");
3831    case 1: return getVTList(VTs[0]);
3832    case 2: return getVTList(VTs[0], VTs[1]);
3833    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3834    default: break;
3835  }
3836
3837  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3838       E = VTList.rend(); I != E; ++I) {
3839    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3840      continue;
3841
3842    bool NoMatch = false;
3843    for (unsigned i = 2; i != NumVTs; ++i)
3844      if (VTs[i] != I->VTs[i]) {
3845        NoMatch = true;
3846        break;
3847      }
3848    if (!NoMatch)
3849      return *I;
3850  }
3851
3852  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3853  std::copy(VTs, VTs+NumVTs, Array);
3854  SDVTList Result = makeVTList(Array, NumVTs);
3855  VTList.push_back(Result);
3856  return Result;
3857}
3858
3859
3860/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3861/// specified operands.  If the resultant node already exists in the DAG,
3862/// this does not modify the specified node, instead it returns the node that
3863/// already exists.  If the resultant node does not exist in the DAG, the
3864/// input node is returned.  As a degenerate case, if you specify the same
3865/// input operands as the node already has, the input node is returned.
3866SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3867  SDNode *N = InN.getNode();
3868  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3869
3870  // Check to see if there is no change.
3871  if (Op == N->getOperand(0)) return InN;
3872
3873  // See if the modified node already exists.
3874  void *InsertPos = 0;
3875  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3876    return SDValue(Existing, InN.getResNo());
3877
3878  // Nope it doesn't.  Remove the node from its current place in the maps.
3879  if (InsertPos)
3880    if (!RemoveNodeFromCSEMaps(N))
3881      InsertPos = 0;
3882
3883  // Now we update the operands.
3884  N->OperandList[0].getVal()->removeUser(0, N);
3885  N->OperandList[0] = Op;
3886  N->OperandList[0].setUser(N);
3887  Op.getNode()->addUser(0, N);
3888
3889  // If this gets put into a CSE map, add it.
3890  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3891  return InN;
3892}
3893
3894SDValue SelectionDAG::
3895UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3896  SDNode *N = InN.getNode();
3897  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3898
3899  // Check to see if there is no change.
3900  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3901    return InN;   // No operands changed, just return the input node.
3902
3903  // See if the modified node already exists.
3904  void *InsertPos = 0;
3905  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3906    return SDValue(Existing, InN.getResNo());
3907
3908  // Nope it doesn't.  Remove the node from its current place in the maps.
3909  if (InsertPos)
3910    if (!RemoveNodeFromCSEMaps(N))
3911      InsertPos = 0;
3912
3913  // Now we update the operands.
3914  if (N->OperandList[0] != Op1) {
3915    N->OperandList[0].getVal()->removeUser(0, N);
3916    N->OperandList[0] = Op1;
3917    N->OperandList[0].setUser(N);
3918    Op1.getNode()->addUser(0, N);
3919  }
3920  if (N->OperandList[1] != Op2) {
3921    N->OperandList[1].getVal()->removeUser(1, N);
3922    N->OperandList[1] = Op2;
3923    N->OperandList[1].setUser(N);
3924    Op2.getNode()->addUser(1, N);
3925  }
3926
3927  // If this gets put into a CSE map, add it.
3928  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3929  return InN;
3930}
3931
3932SDValue SelectionDAG::
3933UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3934  SDValue Ops[] = { Op1, Op2, Op3 };
3935  return UpdateNodeOperands(N, Ops, 3);
3936}
3937
3938SDValue SelectionDAG::
3939UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3940                   SDValue Op3, SDValue Op4) {
3941  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3942  return UpdateNodeOperands(N, Ops, 4);
3943}
3944
3945SDValue SelectionDAG::
3946UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3947                   SDValue Op3, SDValue Op4, SDValue Op5) {
3948  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3949  return UpdateNodeOperands(N, Ops, 5);
3950}
3951
3952SDValue SelectionDAG::
3953UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3954  SDNode *N = InN.getNode();
3955  assert(N->getNumOperands() == NumOps &&
3956         "Update with wrong number of operands");
3957
3958  // Check to see if there is no change.
3959  bool AnyChange = false;
3960  for (unsigned i = 0; i != NumOps; ++i) {
3961    if (Ops[i] != N->getOperand(i)) {
3962      AnyChange = true;
3963      break;
3964    }
3965  }
3966
3967  // No operands changed, just return the input node.
3968  if (!AnyChange) return InN;
3969
3970  // See if the modified node already exists.
3971  void *InsertPos = 0;
3972  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3973    return SDValue(Existing, InN.getResNo());
3974
3975  // Nope it doesn't.  Remove the node from its current place in the maps.
3976  if (InsertPos)
3977    if (!RemoveNodeFromCSEMaps(N))
3978      InsertPos = 0;
3979
3980  // Now we update the operands.
3981  for (unsigned i = 0; i != NumOps; ++i) {
3982    if (N->OperandList[i] != Ops[i]) {
3983      N->OperandList[i].getVal()->removeUser(i, N);
3984      N->OperandList[i] = Ops[i];
3985      N->OperandList[i].setUser(N);
3986      Ops[i].getNode()->addUser(i, N);
3987    }
3988  }
3989
3990  // If this gets put into a CSE map, add it.
3991  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3992  return InN;
3993}
3994
3995/// DropOperands - Release the operands and set this node to have
3996/// zero operands.
3997void SDNode::DropOperands() {
3998  // Unlike the code in MorphNodeTo that does this, we don't need to
3999  // watch for dead nodes here.
4000  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
4001    I->getVal()->removeUser(std::distance(op_begin(), I), this);
4002
4003  NumOperands = 0;
4004}
4005
4006/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4007/// machine opcode.
4008///
4009SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4010                                   MVT VT) {
4011  SDVTList VTs = getVTList(VT);
4012  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4013}
4014
4015SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4016                                   MVT VT, SDValue Op1) {
4017  SDVTList VTs = getVTList(VT);
4018  SDValue Ops[] = { Op1 };
4019  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4020}
4021
4022SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4023                                   MVT VT, SDValue Op1,
4024                                   SDValue Op2) {
4025  SDVTList VTs = getVTList(VT);
4026  SDValue Ops[] = { Op1, Op2 };
4027  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4028}
4029
4030SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4031                                   MVT VT, SDValue Op1,
4032                                   SDValue Op2, SDValue Op3) {
4033  SDVTList VTs = getVTList(VT);
4034  SDValue Ops[] = { Op1, Op2, Op3 };
4035  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4036}
4037
4038SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4039                                   MVT VT, const SDValue *Ops,
4040                                   unsigned NumOps) {
4041  SDVTList VTs = getVTList(VT);
4042  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4043}
4044
4045SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4046                                   MVT VT1, MVT VT2, const SDValue *Ops,
4047                                   unsigned NumOps) {
4048  SDVTList VTs = getVTList(VT1, VT2);
4049  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4050}
4051
4052SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4053                                   MVT VT1, MVT VT2) {
4054  SDVTList VTs = getVTList(VT1, VT2);
4055  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4056}
4057
4058SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4059                                   MVT VT1, MVT VT2, MVT VT3,
4060                                   const SDValue *Ops, unsigned NumOps) {
4061  SDVTList VTs = getVTList(VT1, VT2, VT3);
4062  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4063}
4064
4065SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4066                                   MVT VT1, MVT VT2,
4067                                   SDValue Op1) {
4068  SDVTList VTs = getVTList(VT1, VT2);
4069  SDValue Ops[] = { Op1 };
4070  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4071}
4072
4073SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4074                                   MVT VT1, MVT VT2,
4075                                   SDValue Op1, SDValue Op2) {
4076  SDVTList VTs = getVTList(VT1, VT2);
4077  SDValue Ops[] = { Op1, Op2 };
4078  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4079}
4080
4081SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4082                                   MVT VT1, MVT VT2,
4083                                   SDValue Op1, SDValue Op2,
4084                                   SDValue Op3) {
4085  SDVTList VTs = getVTList(VT1, VT2);
4086  SDValue Ops[] = { Op1, Op2, Op3 };
4087  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4088}
4089
4090SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4091                                   SDVTList VTs, const SDValue *Ops,
4092                                   unsigned NumOps) {
4093  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4094}
4095
4096SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4097                                  MVT VT) {
4098  SDVTList VTs = getVTList(VT);
4099  return MorphNodeTo(N, Opc, VTs, 0, 0);
4100}
4101
4102SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4103                                  MVT VT, SDValue Op1) {
4104  SDVTList VTs = getVTList(VT);
4105  SDValue Ops[] = { Op1 };
4106  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4107}
4108
4109SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4110                                  MVT VT, SDValue Op1,
4111                                  SDValue Op2) {
4112  SDVTList VTs = getVTList(VT);
4113  SDValue Ops[] = { Op1, Op2 };
4114  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4115}
4116
4117SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4118                                  MVT VT, SDValue Op1,
4119                                  SDValue Op2, SDValue Op3) {
4120  SDVTList VTs = getVTList(VT);
4121  SDValue Ops[] = { Op1, Op2, Op3 };
4122  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4123}
4124
4125SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4126                                  MVT VT, const SDValue *Ops,
4127                                  unsigned NumOps) {
4128  SDVTList VTs = getVTList(VT);
4129  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4130}
4131
4132SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4133                                  MVT VT1, MVT VT2, const SDValue *Ops,
4134                                  unsigned NumOps) {
4135  SDVTList VTs = getVTList(VT1, VT2);
4136  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4137}
4138
4139SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4140                                  MVT VT1, MVT VT2) {
4141  SDVTList VTs = getVTList(VT1, VT2);
4142  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4143}
4144
4145SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4146                                  MVT VT1, MVT VT2, MVT VT3,
4147                                  const SDValue *Ops, unsigned NumOps) {
4148  SDVTList VTs = getVTList(VT1, VT2, VT3);
4149  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4150}
4151
4152SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4153                                  MVT VT1, MVT VT2,
4154                                  SDValue Op1) {
4155  SDVTList VTs = getVTList(VT1, VT2);
4156  SDValue Ops[] = { Op1 };
4157  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4158}
4159
4160SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4161                                  MVT VT1, MVT VT2,
4162                                  SDValue Op1, SDValue Op2) {
4163  SDVTList VTs = getVTList(VT1, VT2);
4164  SDValue Ops[] = { Op1, Op2 };
4165  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4166}
4167
4168SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4169                                  MVT VT1, MVT VT2,
4170                                  SDValue Op1, SDValue Op2,
4171                                  SDValue Op3) {
4172  SDVTList VTs = getVTList(VT1, VT2);
4173  SDValue Ops[] = { Op1, Op2, Op3 };
4174  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4175}
4176
4177/// MorphNodeTo - These *mutate* the specified node to have the specified
4178/// return type, opcode, and operands.
4179///
4180/// Note that MorphNodeTo returns the resultant node.  If there is already a
4181/// node of the specified opcode and operands, it returns that node instead of
4182/// the current one.
4183///
4184/// Using MorphNodeTo is faster than creating a new node and swapping it in
4185/// with ReplaceAllUsesWith both because it often avoids allocating a new
4186/// node, and because it doesn't require CSE recalculation for any of
4187/// the node's users.
4188///
4189SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4190                                  SDVTList VTs, const SDValue *Ops,
4191                                  unsigned NumOps) {
4192  // If an identical node already exists, use it.
4193  void *IP = 0;
4194  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4195    FoldingSetNodeID ID;
4196    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4197    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4198      return ON;
4199  }
4200
4201  if (!RemoveNodeFromCSEMaps(N))
4202    IP = 0;
4203
4204  // Start the morphing.
4205  N->NodeType = Opc;
4206  N->ValueList = VTs.VTs;
4207  N->NumValues = VTs.NumVTs;
4208
4209  // Clear the operands list, updating used nodes to remove this from their
4210  // use list.  Keep track of any operands that become dead as a result.
4211  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4212  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4213       I != E; ++I) {
4214    SDNode *Used = I->getVal();
4215    Used->removeUser(std::distance(B, I), N);
4216    if (Used->use_empty())
4217      DeadNodeSet.insert(Used);
4218  }
4219
4220  // If NumOps is larger than the # of operands we currently have, reallocate
4221  // the operand list.
4222  if (NumOps > N->NumOperands) {
4223    if (N->OperandsNeedDelete)
4224      delete[] N->OperandList;
4225
4226    if (N->isMachineOpcode()) {
4227      // We're creating a final node that will live unmorphed for the
4228      // remainder of the current SelectionDAG iteration, so we can allocate
4229      // the operands directly out of a pool with no recycling metadata.
4230      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4231      N->OperandsNeedDelete = false;
4232    } else {
4233      N->OperandList = new SDUse[NumOps];
4234      N->OperandsNeedDelete = true;
4235    }
4236  }
4237
4238  // Assign the new operands.
4239  N->NumOperands = NumOps;
4240  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4241    N->OperandList[i] = Ops[i];
4242    N->OperandList[i].setUser(N);
4243    SDNode *ToUse = N->OperandList[i].getVal();
4244    ToUse->addUser(i, N);
4245  }
4246
4247  // Delete any nodes that are still dead after adding the uses for the
4248  // new operands.
4249  SmallVector<SDNode *, 16> DeadNodes;
4250  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4251       E = DeadNodeSet.end(); I != E; ++I)
4252    if ((*I)->use_empty())
4253      DeadNodes.push_back(*I);
4254  RemoveDeadNodes(DeadNodes);
4255
4256  if (IP)
4257    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4258  return N;
4259}
4260
4261
4262/// getTargetNode - These are used for target selectors to create a new node
4263/// with specified return type(s), target opcode, and operands.
4264///
4265/// Note that getTargetNode returns the resultant node.  If there is already a
4266/// node of the specified opcode and operands, it returns that node instead of
4267/// the current one.
4268SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4269  return getNode(~Opcode, VT).getNode();
4270}
4271SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4272  return getNode(~Opcode, VT, Op1).getNode();
4273}
4274SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4275                                    SDValue Op1, SDValue Op2) {
4276  return getNode(~Opcode, VT, Op1, Op2).getNode();
4277}
4278SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4279                                    SDValue Op1, SDValue Op2,
4280                                    SDValue Op3) {
4281  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4282}
4283SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4284                                    const SDValue *Ops, unsigned NumOps) {
4285  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4286}
4287SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4288  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4289  SDValue Op;
4290  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4291}
4292SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4293                                    MVT VT2, SDValue Op1) {
4294  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4295  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4296}
4297SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4298                                    MVT VT2, SDValue Op1,
4299                                    SDValue Op2) {
4300  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4301  SDValue Ops[] = { Op1, Op2 };
4302  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4303}
4304SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4305                                    MVT VT2, SDValue Op1,
4306                                    SDValue Op2, SDValue Op3) {
4307  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4308  SDValue Ops[] = { Op1, Op2, Op3 };
4309  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4310}
4311SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4312                                    const SDValue *Ops, unsigned NumOps) {
4313  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4314  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4315}
4316SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4317                                    SDValue Op1, SDValue Op2) {
4318  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4319  SDValue Ops[] = { Op1, Op2 };
4320  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4321}
4322SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4323                                    SDValue Op1, SDValue Op2,
4324                                    SDValue Op3) {
4325  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4326  SDValue Ops[] = { Op1, Op2, Op3 };
4327  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4328}
4329SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4330                                    const SDValue *Ops, unsigned NumOps) {
4331  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4332  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4333}
4334SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4335                                    MVT VT2, MVT VT3, MVT VT4,
4336                                    const SDValue *Ops, unsigned NumOps) {
4337  std::vector<MVT> VTList;
4338  VTList.push_back(VT1);
4339  VTList.push_back(VT2);
4340  VTList.push_back(VT3);
4341  VTList.push_back(VT4);
4342  const MVT *VTs = getNodeValueTypes(VTList);
4343  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4344}
4345SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4346                                    const std::vector<MVT> &ResultTys,
4347                                    const SDValue *Ops, unsigned NumOps) {
4348  const MVT *VTs = getNodeValueTypes(ResultTys);
4349  return getNode(~Opcode, VTs, ResultTys.size(),
4350                 Ops, NumOps).getNode();
4351}
4352
4353/// getNodeIfExists - Get the specified node if it's already available, or
4354/// else return NULL.
4355SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4356                                      const SDValue *Ops, unsigned NumOps) {
4357  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4358    FoldingSetNodeID ID;
4359    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4360    void *IP = 0;
4361    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4362      return E;
4363  }
4364  return NULL;
4365}
4366
4367
4368/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4369/// This can cause recursive merging of nodes in the DAG.
4370///
4371/// This version assumes From has a single result value.
4372///
4373void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4374                                      DAGUpdateListener *UpdateListener) {
4375  SDNode *From = FromN.getNode();
4376  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4377         "Cannot replace with this method!");
4378  assert(From != To.getNode() && "Cannot replace uses of with self");
4379
4380  while (!From->use_empty()) {
4381    SDNode::use_iterator UI = From->use_begin();
4382    SDNode *U = *UI;
4383
4384    // This node is about to morph, remove its old self from the CSE maps.
4385    RemoveNodeFromCSEMaps(U);
4386    int operandNum = 0;
4387    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4388         I != E; ++I, ++operandNum)
4389      if (I->getVal() == From) {
4390        From->removeUser(operandNum, U);
4391        *I = To;
4392        I->setUser(U);
4393        To.getNode()->addUser(operandNum, U);
4394      }
4395
4396    // Now that we have modified U, add it back to the CSE maps.  If it already
4397    // exists there, recursively merge the results together.
4398    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4399      ReplaceAllUsesWith(U, Existing, UpdateListener);
4400      // U is now dead.  Inform the listener if it exists and delete it.
4401      if (UpdateListener)
4402        UpdateListener->NodeDeleted(U, Existing);
4403      DeleteNodeNotInCSEMaps(U);
4404    } else {
4405      // If the node doesn't already exist, we updated it.  Inform a listener if
4406      // it exists.
4407      if (UpdateListener)
4408        UpdateListener->NodeUpdated(U);
4409    }
4410  }
4411}
4412
4413/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4414/// This can cause recursive merging of nodes in the DAG.
4415///
4416/// This version assumes From/To have matching types and numbers of result
4417/// values.
4418///
4419void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4420                                      DAGUpdateListener *UpdateListener) {
4421  assert(From->getVTList().VTs == To->getVTList().VTs &&
4422         From->getNumValues() == To->getNumValues() &&
4423         "Cannot use this version of ReplaceAllUsesWith!");
4424
4425  // Handle the trivial case.
4426  if (From == To)
4427    return;
4428
4429  while (!From->use_empty()) {
4430    SDNode::use_iterator UI = From->use_begin();
4431    SDNode *U = *UI;
4432
4433    // This node is about to morph, remove its old self from the CSE maps.
4434    RemoveNodeFromCSEMaps(U);
4435    int operandNum = 0;
4436    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4437         I != E; ++I, ++operandNum)
4438      if (I->getVal() == From) {
4439        From->removeUser(operandNum, U);
4440        I->getSDValue().setNode(To);
4441        To->addUser(operandNum, U);
4442      }
4443
4444    // Now that we have modified U, add it back to the CSE maps.  If it already
4445    // exists there, recursively merge the results together.
4446    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4447      ReplaceAllUsesWith(U, Existing, UpdateListener);
4448      // U is now dead.  Inform the listener if it exists and delete it.
4449      if (UpdateListener)
4450        UpdateListener->NodeDeleted(U, Existing);
4451      DeleteNodeNotInCSEMaps(U);
4452    } else {
4453      // If the node doesn't already exist, we updated it.  Inform a listener if
4454      // it exists.
4455      if (UpdateListener)
4456        UpdateListener->NodeUpdated(U);
4457    }
4458  }
4459}
4460
4461/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4462/// This can cause recursive merging of nodes in the DAG.
4463///
4464/// This version can replace From with any result values.  To must match the
4465/// number and types of values returned by From.
4466void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4467                                      const SDValue *To,
4468                                      DAGUpdateListener *UpdateListener) {
4469  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4470    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4471
4472  while (!From->use_empty()) {
4473    SDNode::use_iterator UI = From->use_begin();
4474    SDNode *U = *UI;
4475
4476    // This node is about to morph, remove its old self from the CSE maps.
4477    RemoveNodeFromCSEMaps(U);
4478    int operandNum = 0;
4479    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4480         I != E; ++I, ++operandNum)
4481      if (I->getVal() == From) {
4482        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4483        From->removeUser(operandNum, U);
4484        *I = ToOp;
4485        I->setUser(U);
4486        ToOp.getNode()->addUser(operandNum, U);
4487      }
4488
4489    // Now that we have modified U, add it back to the CSE maps.  If it already
4490    // exists there, recursively merge the results together.
4491    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4492      ReplaceAllUsesWith(U, Existing, UpdateListener);
4493      // U is now dead.  Inform the listener if it exists and delete it.
4494      if (UpdateListener)
4495        UpdateListener->NodeDeleted(U, Existing);
4496      DeleteNodeNotInCSEMaps(U);
4497    } else {
4498      // If the node doesn't already exist, we updated it.  Inform a listener if
4499      // it exists.
4500      if (UpdateListener)
4501        UpdateListener->NodeUpdated(U);
4502    }
4503  }
4504}
4505
4506/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4507/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4508/// handled the same way as for ReplaceAllUsesWith.
4509void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4510                                             DAGUpdateListener *UpdateListener){
4511  // Handle the really simple, really trivial case efficiently.
4512  if (From == To) return;
4513
4514  // Handle the simple, trivial, case efficiently.
4515  if (From.getNode()->getNumValues() == 1) {
4516    ReplaceAllUsesWith(From, To, UpdateListener);
4517    return;
4518  }
4519
4520  // Get all of the users of From.getNode().  We want these in a nice,
4521  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4522  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4523
4524  while (!Users.empty()) {
4525    // We know that this user uses some value of From.  If it is the right
4526    // value, update it.
4527    SDNode *User = Users.back();
4528    Users.pop_back();
4529
4530    // Scan for an operand that matches From.
4531    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4532    for (; Op != E; ++Op)
4533      if (*Op == From) break;
4534
4535    // If there are no matches, the user must use some other result of From.
4536    if (Op == E) continue;
4537
4538    // Okay, we know this user needs to be updated.  Remove its old self
4539    // from the CSE maps.
4540    RemoveNodeFromCSEMaps(User);
4541
4542    // Update all operands that match "From" in case there are multiple uses.
4543    for (; Op != E; ++Op) {
4544      if (*Op == From) {
4545        From.getNode()->removeUser(Op-User->op_begin(), User);
4546        *Op = To;
4547        Op->setUser(User);
4548        To.getNode()->addUser(Op-User->op_begin(), User);
4549      }
4550    }
4551
4552    // Now that we have modified User, add it back to the CSE maps.  If it
4553    // already exists there, recursively merge the results together.
4554    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4555    if (!Existing) {
4556      if (UpdateListener) UpdateListener->NodeUpdated(User);
4557      continue;  // Continue on to next user.
4558    }
4559
4560    // If there was already an existing matching node, use ReplaceAllUsesWith
4561    // to replace the dead one with the existing one.  This can cause
4562    // recursive merging of other unrelated nodes down the line.
4563    ReplaceAllUsesWith(User, Existing, UpdateListener);
4564
4565    // User is now dead.  Notify a listener if present.
4566    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4567    DeleteNodeNotInCSEMaps(User);
4568  }
4569}
4570
4571/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4572/// uses of other values produced by From.getVal() alone.  The same value may
4573/// appear in both the From and To list.  The Deleted vector is
4574/// handled the same way as for ReplaceAllUsesWith.
4575void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4576                                              const SDValue *To,
4577                                              unsigned Num,
4578                                              DAGUpdateListener *UpdateListener){
4579  // Handle the simple, trivial case efficiently.
4580  if (Num == 1)
4581    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4582
4583  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4584  for (unsigned i = 0; i != Num; ++i)
4585    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4586         E = From[i].getNode()->use_end(); UI != E; ++UI)
4587      Users.push_back(std::make_pair(*UI, i));
4588
4589  while (!Users.empty()) {
4590    // We know that this user uses some value of From.  If it is the right
4591    // value, update it.
4592    SDNode *User = Users.back().first;
4593    unsigned i = Users.back().second;
4594    Users.pop_back();
4595
4596    // Scan for an operand that matches From.
4597    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4598    for (; Op != E; ++Op)
4599      if (*Op == From[i]) break;
4600
4601    // If there are no matches, the user must use some other result of From.
4602    if (Op == E) continue;
4603
4604    // Okay, we know this user needs to be updated.  Remove its old self
4605    // from the CSE maps.
4606    RemoveNodeFromCSEMaps(User);
4607
4608    // Update all operands that match "From" in case there are multiple uses.
4609    for (; Op != E; ++Op) {
4610      if (*Op == From[i]) {
4611        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4612        *Op = To[i];
4613        Op->setUser(User);
4614        To[i].getNode()->addUser(Op-User->op_begin(), User);
4615      }
4616    }
4617
4618    // Now that we have modified User, add it back to the CSE maps.  If it
4619    // already exists there, recursively merge the results together.
4620    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4621    if (!Existing) {
4622      if (UpdateListener) UpdateListener->NodeUpdated(User);
4623      continue;  // Continue on to next user.
4624    }
4625
4626    // If there was already an existing matching node, use ReplaceAllUsesWith
4627    // to replace the dead one with the existing one.  This can cause
4628    // recursive merging of other unrelated nodes down the line.
4629    ReplaceAllUsesWith(User, Existing, UpdateListener);
4630
4631    // User is now dead.  Notify a listener if present.
4632    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4633    DeleteNodeNotInCSEMaps(User);
4634  }
4635}
4636
4637/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4638/// based on their topological order. It returns the maximum id and a vector
4639/// of the SDNodes* in assigned order by reference.
4640unsigned SelectionDAG::AssignTopologicalOrder() {
4641
4642  unsigned DAGSize = 0;
4643
4644  // SortedPos tracks the progress of the algorithm. Nodes before it are
4645  // sorted, nodes after it are unsorted. When the algorithm completes
4646  // it is at the end of the list.
4647  allnodes_iterator SortedPos = allnodes_begin();
4648
4649  // Visit all the nodes. Add nodes with no operands to the TopOrder result
4650  // array immediately. Annotate nodes that do have operands with their
4651  // operand count. Before we do this, the Node Id fields of the nodes
4652  // may contain arbitrary values. After, the Node Id fields for nodes
4653  // before SortedPos will contain the topological sort index, and the
4654  // Node Id fields for nodes At SortedPos and after will contain the
4655  // count of outstanding operands.
4656  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4657    SDNode *N = I++;
4658    unsigned Degree = N->getNumOperands();
4659    if (Degree == 0) {
4660      // A node with no uses, add it to the result array immediately.
4661      N->setNodeId(DAGSize++);
4662      allnodes_iterator Q = N;
4663      if (Q != SortedPos)
4664        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4665      ++SortedPos;
4666    } else {
4667      // Temporarily use the Node Id as scratch space for the degree count.
4668      N->setNodeId(Degree);
4669    }
4670  }
4671
4672  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4673  // such that by the time the end is reached all nodes will be sorted.
4674  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4675    SDNode *N = I;
4676    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4677         UI != UE; ++UI) {
4678      SDNode *P = *UI;
4679      unsigned Degree = P->getNodeId();
4680      --Degree;
4681      if (Degree == 0) {
4682        // All of P's operands are sorted, so P may sorted now.
4683        P->setNodeId(DAGSize++);
4684        if (P != SortedPos)
4685          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4686        ++SortedPos;
4687      } else {
4688        // Update P's outstanding operand count.
4689        P->setNodeId(Degree);
4690      }
4691    }
4692  }
4693
4694  assert(SortedPos == AllNodes.end() &&
4695         "Topological sort incomplete!");
4696  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4697         "First node in topological sort is not the entry token!");
4698  assert(AllNodes.front().getNodeId() == 0 &&
4699         "First node in topological sort has non-zero id!");
4700  assert(AllNodes.front().getNumOperands() == 0 &&
4701         "First node in topological sort has operands!");
4702  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4703         "Last node in topologic sort has unexpected id!");
4704  assert(AllNodes.back().use_empty() &&
4705         "Last node in topologic sort has users!");
4706  assert(DAGSize == allnodes_size() && "TopOrder result count mismatch!");
4707  return DAGSize;
4708}
4709
4710
4711
4712//===----------------------------------------------------------------------===//
4713//                              SDNode Class
4714//===----------------------------------------------------------------------===//
4715
4716// Out-of-line virtual method to give class a home.
4717void SDNode::ANCHOR() {}
4718void UnarySDNode::ANCHOR() {}
4719void BinarySDNode::ANCHOR() {}
4720void TernarySDNode::ANCHOR() {}
4721void HandleSDNode::ANCHOR() {}
4722void ConstantSDNode::ANCHOR() {}
4723void ConstantFPSDNode::ANCHOR() {}
4724void GlobalAddressSDNode::ANCHOR() {}
4725void FrameIndexSDNode::ANCHOR() {}
4726void JumpTableSDNode::ANCHOR() {}
4727void ConstantPoolSDNode::ANCHOR() {}
4728void BasicBlockSDNode::ANCHOR() {}
4729void SrcValueSDNode::ANCHOR() {}
4730void MemOperandSDNode::ANCHOR() {}
4731void RegisterSDNode::ANCHOR() {}
4732void DbgStopPointSDNode::ANCHOR() {}
4733void LabelSDNode::ANCHOR() {}
4734void ExternalSymbolSDNode::ANCHOR() {}
4735void CondCodeSDNode::ANCHOR() {}
4736void ARG_FLAGSSDNode::ANCHOR() {}
4737void VTSDNode::ANCHOR() {}
4738void MemSDNode::ANCHOR() {}
4739void LoadSDNode::ANCHOR() {}
4740void StoreSDNode::ANCHOR() {}
4741void AtomicSDNode::ANCHOR() {}
4742void MemIntrinsicSDNode::ANCHOR() {}
4743void CallSDNode::ANCHOR() {}
4744
4745HandleSDNode::~HandleSDNode() {
4746  DropOperands();
4747}
4748
4749GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4750                                         MVT VT, int64_t o)
4751  : SDNode(isa<GlobalVariable>(GA) &&
4752           cast<GlobalVariable>(GA)->isThreadLocal() ?
4753           // Thread Local
4754           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4755           // Non Thread Local
4756           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4757           getSDVTList(VT)), Offset(o) {
4758  TheGlobal = const_cast<GlobalValue*>(GA);
4759}
4760
4761MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4762                     const Value *srcValue, int SVO,
4763                     unsigned alignment, bool vol)
4764 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4765   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4766
4767  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4768  assert(getAlignment() == alignment && "Alignment representation error!");
4769  assert(isVolatile() == vol && "Volatile representation error!");
4770}
4771
4772MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4773                     unsigned NumOps, MVT memvt, const Value *srcValue,
4774                     int SVO, unsigned alignment, bool vol)
4775   : SDNode(Opc, VTs, Ops, NumOps),
4776     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4777     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
4778  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4779  assert(getAlignment() == alignment && "Alignment representation error!");
4780  assert(isVolatile() == vol && "Volatile representation error!");
4781}
4782
4783/// getMemOperand - Return a MachineMemOperand object describing the memory
4784/// reference performed by this memory reference.
4785MachineMemOperand MemSDNode::getMemOperand() const {
4786  int Flags;
4787  if (isa<LoadSDNode>(this))
4788    Flags = MachineMemOperand::MOLoad;
4789  else if (isa<StoreSDNode>(this))
4790    Flags = MachineMemOperand::MOStore;
4791  else if (isa<AtomicSDNode>(this)) {
4792    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4793  }
4794  else {
4795    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4796    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4797    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4798    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4799  }
4800
4801  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4802  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4803
4804  // Check if the memory reference references a frame index
4805  const FrameIndexSDNode *FI =
4806  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4807  if (!getSrcValue() && FI)
4808    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4809                             Flags, 0, Size, getAlignment());
4810  else
4811    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4812                             Size, getAlignment());
4813}
4814
4815/// Profile - Gather unique data for the node.
4816///
4817void SDNode::Profile(FoldingSetNodeID &ID) const {
4818  AddNodeIDNode(ID, this);
4819}
4820
4821/// getValueTypeList - Return a pointer to the specified value type.
4822///
4823const MVT *SDNode::getValueTypeList(MVT VT) {
4824  if (VT.isExtended()) {
4825    static std::set<MVT, MVT::compareRawBits> EVTs;
4826    return &(*EVTs.insert(VT).first);
4827  } else {
4828    static MVT VTs[MVT::LAST_VALUETYPE];
4829    VTs[VT.getSimpleVT()] = VT;
4830    return &VTs[VT.getSimpleVT()];
4831  }
4832}
4833
4834/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4835/// indicated value.  This method ignores uses of other values defined by this
4836/// operation.
4837bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4838  assert(Value < getNumValues() && "Bad value!");
4839
4840  // TODO: Only iterate over uses of a given value of the node
4841  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4842    if (UI.getUse().getSDValue().getResNo() == Value) {
4843      if (NUses == 0)
4844        return false;
4845      --NUses;
4846    }
4847  }
4848
4849  // Found exactly the right number of uses?
4850  return NUses == 0;
4851}
4852
4853
4854/// hasAnyUseOfValue - Return true if there are any use of the indicated
4855/// value. This method ignores uses of other values defined by this operation.
4856bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4857  assert(Value < getNumValues() && "Bad value!");
4858
4859  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4860    if (UI.getUse().getSDValue().getResNo() == Value)
4861      return true;
4862
4863  return false;
4864}
4865
4866
4867/// isOnlyUserOf - Return true if this node is the only use of N.
4868///
4869bool SDNode::isOnlyUserOf(SDNode *N) const {
4870  bool Seen = false;
4871  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4872    SDNode *User = *I;
4873    if (User == this)
4874      Seen = true;
4875    else
4876      return false;
4877  }
4878
4879  return Seen;
4880}
4881
4882/// isOperand - Return true if this node is an operand of N.
4883///
4884bool SDValue::isOperandOf(SDNode *N) const {
4885  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4886    if (*this == N->getOperand(i))
4887      return true;
4888  return false;
4889}
4890
4891bool SDNode::isOperandOf(SDNode *N) const {
4892  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4893    if (this == N->OperandList[i].getVal())
4894      return true;
4895  return false;
4896}
4897
4898/// reachesChainWithoutSideEffects - Return true if this operand (which must
4899/// be a chain) reaches the specified operand without crossing any
4900/// side-effecting instructions.  In practice, this looks through token
4901/// factors and non-volatile loads.  In order to remain efficient, this only
4902/// looks a couple of nodes in, it does not do an exhaustive search.
4903bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4904                                               unsigned Depth) const {
4905  if (*this == Dest) return true;
4906
4907  // Don't search too deeply, we just want to be able to see through
4908  // TokenFactor's etc.
4909  if (Depth == 0) return false;
4910
4911  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4912  // of the operands of the TF reach dest, then we can do the xform.
4913  if (getOpcode() == ISD::TokenFactor) {
4914    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4915      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4916        return true;
4917    return false;
4918  }
4919
4920  // Loads don't have side effects, look through them.
4921  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4922    if (!Ld->isVolatile())
4923      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4924  }
4925  return false;
4926}
4927
4928
4929static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4930                            SmallPtrSet<SDNode *, 32> &Visited) {
4931  if (found || !Visited.insert(N))
4932    return;
4933
4934  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4935    SDNode *Op = N->getOperand(i).getNode();
4936    if (Op == P) {
4937      found = true;
4938      return;
4939    }
4940    findPredecessor(Op, P, found, Visited);
4941  }
4942}
4943
4944/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4945/// is either an operand of N or it can be reached by recursively traversing
4946/// up the operands.
4947/// NOTE: this is an expensive method. Use it carefully.
4948bool SDNode::isPredecessorOf(SDNode *N) const {
4949  SmallPtrSet<SDNode *, 32> Visited;
4950  bool found = false;
4951  findPredecessor(N, this, found, Visited);
4952  return found;
4953}
4954
4955uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4956  assert(Num < NumOperands && "Invalid child # of SDNode!");
4957  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4958}
4959
4960std::string SDNode::getOperationName(const SelectionDAG *G) const {
4961  switch (getOpcode()) {
4962  default:
4963    if (getOpcode() < ISD::BUILTIN_OP_END)
4964      return "<<Unknown DAG Node>>";
4965    if (isMachineOpcode()) {
4966      if (G)
4967        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4968          if (getMachineOpcode() < TII->getNumOpcodes())
4969            return TII->get(getMachineOpcode()).getName();
4970      return "<<Unknown Machine Node>>";
4971    }
4972    if (G) {
4973      TargetLowering &TLI = G->getTargetLoweringInfo();
4974      const char *Name = TLI.getTargetNodeName(getOpcode());
4975      if (Name) return Name;
4976      return "<<Unknown Target Node>>";
4977    }
4978    return "<<Unknown Node>>";
4979
4980#ifndef NDEBUG
4981  case ISD::DELETED_NODE:
4982    return "<<Deleted Node!>>";
4983#endif
4984  case ISD::PREFETCH:      return "Prefetch";
4985  case ISD::MEMBARRIER:    return "MemBarrier";
4986  case ISD::ATOMIC_CMP_SWAP_8:  return "AtomicCmpSwap8";
4987  case ISD::ATOMIC_SWAP_8:      return "AtomicSwap8";
4988  case ISD::ATOMIC_LOAD_ADD_8:  return "AtomicLoadAdd8";
4989  case ISD::ATOMIC_LOAD_SUB_8:  return "AtomicLoadSub8";
4990  case ISD::ATOMIC_LOAD_AND_8:  return "AtomicLoadAnd8";
4991  case ISD::ATOMIC_LOAD_OR_8:   return "AtomicLoadOr8";
4992  case ISD::ATOMIC_LOAD_XOR_8:  return "AtomicLoadXor8";
4993  case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8";
4994  case ISD::ATOMIC_LOAD_MIN_8:  return "AtomicLoadMin8";
4995  case ISD::ATOMIC_LOAD_MAX_8:  return "AtomicLoadMax8";
4996  case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8";
4997  case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8";
4998  case ISD::ATOMIC_CMP_SWAP_16:  return "AtomicCmpSwap16";
4999  case ISD::ATOMIC_SWAP_16:      return "AtomicSwap16";
5000  case ISD::ATOMIC_LOAD_ADD_16:  return "AtomicLoadAdd16";
5001  case ISD::ATOMIC_LOAD_SUB_16:  return "AtomicLoadSub16";
5002  case ISD::ATOMIC_LOAD_AND_16:  return "AtomicLoadAnd16";
5003  case ISD::ATOMIC_LOAD_OR_16:   return "AtomicLoadOr16";
5004  case ISD::ATOMIC_LOAD_XOR_16:  return "AtomicLoadXor16";
5005  case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16";
5006  case ISD::ATOMIC_LOAD_MIN_16:  return "AtomicLoadMin16";
5007  case ISD::ATOMIC_LOAD_MAX_16:  return "AtomicLoadMax16";
5008  case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16";
5009  case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16";
5010  case ISD::ATOMIC_CMP_SWAP_32:  return "AtomicCmpSwap32";
5011  case ISD::ATOMIC_SWAP_32:      return "AtomicSwap32";
5012  case ISD::ATOMIC_LOAD_ADD_32:  return "AtomicLoadAdd32";
5013  case ISD::ATOMIC_LOAD_SUB_32:  return "AtomicLoadSub32";
5014  case ISD::ATOMIC_LOAD_AND_32:  return "AtomicLoadAnd32";
5015  case ISD::ATOMIC_LOAD_OR_32:   return "AtomicLoadOr32";
5016  case ISD::ATOMIC_LOAD_XOR_32:  return "AtomicLoadXor32";
5017  case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32";
5018  case ISD::ATOMIC_LOAD_MIN_32:  return "AtomicLoadMin32";
5019  case ISD::ATOMIC_LOAD_MAX_32:  return "AtomicLoadMax32";
5020  case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32";
5021  case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32";
5022  case ISD::ATOMIC_CMP_SWAP_64:  return "AtomicCmpSwap64";
5023  case ISD::ATOMIC_SWAP_64:      return "AtomicSwap64";
5024  case ISD::ATOMIC_LOAD_ADD_64:  return "AtomicLoadAdd64";
5025  case ISD::ATOMIC_LOAD_SUB_64:  return "AtomicLoadSub64";
5026  case ISD::ATOMIC_LOAD_AND_64:  return "AtomicLoadAnd64";
5027  case ISD::ATOMIC_LOAD_OR_64:   return "AtomicLoadOr64";
5028  case ISD::ATOMIC_LOAD_XOR_64:  return "AtomicLoadXor64";
5029  case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64";
5030  case ISD::ATOMIC_LOAD_MIN_64:  return "AtomicLoadMin64";
5031  case ISD::ATOMIC_LOAD_MAX_64:  return "AtomicLoadMax64";
5032  case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64";
5033  case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64";
5034  case ISD::PCMARKER:      return "PCMarker";
5035  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5036  case ISD::SRCVALUE:      return "SrcValue";
5037  case ISD::MEMOPERAND:    return "MemOperand";
5038  case ISD::EntryToken:    return "EntryToken";
5039  case ISD::TokenFactor:   return "TokenFactor";
5040  case ISD::AssertSext:    return "AssertSext";
5041  case ISD::AssertZext:    return "AssertZext";
5042
5043  case ISD::BasicBlock:    return "BasicBlock";
5044  case ISD::ARG_FLAGS:     return "ArgFlags";
5045  case ISD::VALUETYPE:     return "ValueType";
5046  case ISD::Register:      return "Register";
5047
5048  case ISD::Constant:      return "Constant";
5049  case ISD::ConstantFP:    return "ConstantFP";
5050  case ISD::GlobalAddress: return "GlobalAddress";
5051  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5052  case ISD::FrameIndex:    return "FrameIndex";
5053  case ISD::JumpTable:     return "JumpTable";
5054  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5055  case ISD::RETURNADDR: return "RETURNADDR";
5056  case ISD::FRAMEADDR: return "FRAMEADDR";
5057  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5058  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5059  case ISD::EHSELECTION: return "EHSELECTION";
5060  case ISD::EH_RETURN: return "EH_RETURN";
5061  case ISD::ConstantPool:  return "ConstantPool";
5062  case ISD::ExternalSymbol: return "ExternalSymbol";
5063  case ISD::INTRINSIC_WO_CHAIN: {
5064    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5065    return Intrinsic::getName((Intrinsic::ID)IID);
5066  }
5067  case ISD::INTRINSIC_VOID:
5068  case ISD::INTRINSIC_W_CHAIN: {
5069    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5070    return Intrinsic::getName((Intrinsic::ID)IID);
5071  }
5072
5073  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5074  case ISD::TargetConstant: return "TargetConstant";
5075  case ISD::TargetConstantFP:return "TargetConstantFP";
5076  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5077  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5078  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5079  case ISD::TargetJumpTable:  return "TargetJumpTable";
5080  case ISD::TargetConstantPool:  return "TargetConstantPool";
5081  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5082
5083  case ISD::CopyToReg:     return "CopyToReg";
5084  case ISD::CopyFromReg:   return "CopyFromReg";
5085  case ISD::UNDEF:         return "undef";
5086  case ISD::MERGE_VALUES:  return "merge_values";
5087  case ISD::INLINEASM:     return "inlineasm";
5088  case ISD::DBG_LABEL:     return "dbg_label";
5089  case ISD::EH_LABEL:      return "eh_label";
5090  case ISD::DECLARE:       return "declare";
5091  case ISD::HANDLENODE:    return "handlenode";
5092  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5093  case ISD::CALL:          return "call";
5094
5095  // Unary operators
5096  case ISD::FABS:   return "fabs";
5097  case ISD::FNEG:   return "fneg";
5098  case ISD::FSQRT:  return "fsqrt";
5099  case ISD::FSIN:   return "fsin";
5100  case ISD::FCOS:   return "fcos";
5101  case ISD::FPOWI:  return "fpowi";
5102  case ISD::FPOW:   return "fpow";
5103  case ISD::FTRUNC: return "ftrunc";
5104  case ISD::FFLOOR: return "ffloor";
5105  case ISD::FCEIL:  return "fceil";
5106  case ISD::FRINT:  return "frint";
5107  case ISD::FNEARBYINT: return "fnearbyint";
5108
5109  // Binary operators
5110  case ISD::ADD:    return "add";
5111  case ISD::SUB:    return "sub";
5112  case ISD::MUL:    return "mul";
5113  case ISD::MULHU:  return "mulhu";
5114  case ISD::MULHS:  return "mulhs";
5115  case ISD::SDIV:   return "sdiv";
5116  case ISD::UDIV:   return "udiv";
5117  case ISD::SREM:   return "srem";
5118  case ISD::UREM:   return "urem";
5119  case ISD::SMUL_LOHI:  return "smul_lohi";
5120  case ISD::UMUL_LOHI:  return "umul_lohi";
5121  case ISD::SDIVREM:    return "sdivrem";
5122  case ISD::UDIVREM:    return "udivrem";
5123  case ISD::AND:    return "and";
5124  case ISD::OR:     return "or";
5125  case ISD::XOR:    return "xor";
5126  case ISD::SHL:    return "shl";
5127  case ISD::SRA:    return "sra";
5128  case ISD::SRL:    return "srl";
5129  case ISD::ROTL:   return "rotl";
5130  case ISD::ROTR:   return "rotr";
5131  case ISD::FADD:   return "fadd";
5132  case ISD::FSUB:   return "fsub";
5133  case ISD::FMUL:   return "fmul";
5134  case ISD::FDIV:   return "fdiv";
5135  case ISD::FREM:   return "frem";
5136  case ISD::FCOPYSIGN: return "fcopysign";
5137  case ISD::FGETSIGN:  return "fgetsign";
5138
5139  case ISD::SETCC:       return "setcc";
5140  case ISD::VSETCC:      return "vsetcc";
5141  case ISD::SELECT:      return "select";
5142  case ISD::SELECT_CC:   return "select_cc";
5143  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5144  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5145  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5146  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5147  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5148  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5149  case ISD::CARRY_FALSE:         return "carry_false";
5150  case ISD::ADDC:        return "addc";
5151  case ISD::ADDE:        return "adde";
5152  case ISD::SUBC:        return "subc";
5153  case ISD::SUBE:        return "sube";
5154  case ISD::SHL_PARTS:   return "shl_parts";
5155  case ISD::SRA_PARTS:   return "sra_parts";
5156  case ISD::SRL_PARTS:   return "srl_parts";
5157
5158  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5159  case ISD::INSERT_SUBREG:      return "insert_subreg";
5160
5161  // Conversion operators.
5162  case ISD::SIGN_EXTEND: return "sign_extend";
5163  case ISD::ZERO_EXTEND: return "zero_extend";
5164  case ISD::ANY_EXTEND:  return "any_extend";
5165  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5166  case ISD::TRUNCATE:    return "truncate";
5167  case ISD::FP_ROUND:    return "fp_round";
5168  case ISD::FLT_ROUNDS_: return "flt_rounds";
5169  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5170  case ISD::FP_EXTEND:   return "fp_extend";
5171
5172  case ISD::SINT_TO_FP:  return "sint_to_fp";
5173  case ISD::UINT_TO_FP:  return "uint_to_fp";
5174  case ISD::FP_TO_SINT:  return "fp_to_sint";
5175  case ISD::FP_TO_UINT:  return "fp_to_uint";
5176  case ISD::BIT_CONVERT: return "bit_convert";
5177
5178    // Control flow instructions
5179  case ISD::BR:      return "br";
5180  case ISD::BRIND:   return "brind";
5181  case ISD::BR_JT:   return "br_jt";
5182  case ISD::BRCOND:  return "brcond";
5183  case ISD::BR_CC:   return "br_cc";
5184  case ISD::RET:     return "ret";
5185  case ISD::CALLSEQ_START:  return "callseq_start";
5186  case ISD::CALLSEQ_END:    return "callseq_end";
5187
5188    // Other operators
5189  case ISD::LOAD:               return "load";
5190  case ISD::STORE:              return "store";
5191  case ISD::VAARG:              return "vaarg";
5192  case ISD::VACOPY:             return "vacopy";
5193  case ISD::VAEND:              return "vaend";
5194  case ISD::VASTART:            return "vastart";
5195  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5196  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5197  case ISD::BUILD_PAIR:         return "build_pair";
5198  case ISD::STACKSAVE:          return "stacksave";
5199  case ISD::STACKRESTORE:       return "stackrestore";
5200  case ISD::TRAP:               return "trap";
5201
5202  // Bit manipulation
5203  case ISD::BSWAP:   return "bswap";
5204  case ISD::CTPOP:   return "ctpop";
5205  case ISD::CTTZ:    return "cttz";
5206  case ISD::CTLZ:    return "ctlz";
5207
5208  // Debug info
5209  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5210  case ISD::DEBUG_LOC: return "debug_loc";
5211
5212  // Trampolines
5213  case ISD::TRAMPOLINE: return "trampoline";
5214
5215  case ISD::CONDCODE:
5216    switch (cast<CondCodeSDNode>(this)->get()) {
5217    default: assert(0 && "Unknown setcc condition!");
5218    case ISD::SETOEQ:  return "setoeq";
5219    case ISD::SETOGT:  return "setogt";
5220    case ISD::SETOGE:  return "setoge";
5221    case ISD::SETOLT:  return "setolt";
5222    case ISD::SETOLE:  return "setole";
5223    case ISD::SETONE:  return "setone";
5224
5225    case ISD::SETO:    return "seto";
5226    case ISD::SETUO:   return "setuo";
5227    case ISD::SETUEQ:  return "setue";
5228    case ISD::SETUGT:  return "setugt";
5229    case ISD::SETUGE:  return "setuge";
5230    case ISD::SETULT:  return "setult";
5231    case ISD::SETULE:  return "setule";
5232    case ISD::SETUNE:  return "setune";
5233
5234    case ISD::SETEQ:   return "seteq";
5235    case ISD::SETGT:   return "setgt";
5236    case ISD::SETGE:   return "setge";
5237    case ISD::SETLT:   return "setlt";
5238    case ISD::SETLE:   return "setle";
5239    case ISD::SETNE:   return "setne";
5240    }
5241  }
5242}
5243
5244const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5245  switch (AM) {
5246  default:
5247    return "";
5248  case ISD::PRE_INC:
5249    return "<pre-inc>";
5250  case ISD::PRE_DEC:
5251    return "<pre-dec>";
5252  case ISD::POST_INC:
5253    return "<post-inc>";
5254  case ISD::POST_DEC:
5255    return "<post-dec>";
5256  }
5257}
5258
5259std::string ISD::ArgFlagsTy::getArgFlagsString() {
5260  std::string S = "< ";
5261
5262  if (isZExt())
5263    S += "zext ";
5264  if (isSExt())
5265    S += "sext ";
5266  if (isInReg())
5267    S += "inreg ";
5268  if (isSRet())
5269    S += "sret ";
5270  if (isByVal())
5271    S += "byval ";
5272  if (isNest())
5273    S += "nest ";
5274  if (getByValAlign())
5275    S += "byval-align:" + utostr(getByValAlign()) + " ";
5276  if (getOrigAlign())
5277    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5278  if (getByValSize())
5279    S += "byval-size:" + utostr(getByValSize()) + " ";
5280  return S + ">";
5281}
5282
5283void SDNode::dump() const { dump(0); }
5284void SDNode::dump(const SelectionDAG *G) const {
5285  print(errs(), G);
5286  errs().flush();
5287}
5288
5289void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5290  OS << (void*)this << ": ";
5291
5292  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5293    if (i) OS << ",";
5294    if (getValueType(i) == MVT::Other)
5295      OS << "ch";
5296    else
5297      OS << getValueType(i).getMVTString();
5298  }
5299  OS << " = " << getOperationName(G);
5300
5301  OS << " ";
5302  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5303    if (i) OS << ", ";
5304    OS << (void*)getOperand(i).getNode();
5305    if (unsigned RN = getOperand(i).getResNo())
5306      OS << ":" << RN;
5307  }
5308
5309  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5310    SDNode *Mask = getOperand(2).getNode();
5311    OS << "<";
5312    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5313      if (i) OS << ",";
5314      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5315        OS << "u";
5316      else
5317        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5318    }
5319    OS << ">";
5320  }
5321
5322  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5323    OS << '<' << CSDN->getAPIntValue() << '>';
5324  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5325    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5326      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5327    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5328      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5329    else {
5330      OS << "<APFloat(";
5331      CSDN->getValueAPF().bitcastToAPInt().dump();
5332      OS << ")>";
5333    }
5334  } else if (const GlobalAddressSDNode *GADN =
5335             dyn_cast<GlobalAddressSDNode>(this)) {
5336    int64_t offset = GADN->getOffset();
5337    OS << '<';
5338    WriteAsOperand(OS, GADN->getGlobal());
5339    OS << '>';
5340    if (offset > 0)
5341      OS << " + " << offset;
5342    else
5343      OS << " " << offset;
5344  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5345    OS << "<" << FIDN->getIndex() << ">";
5346  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5347    OS << "<" << JTDN->getIndex() << ">";
5348  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5349    int offset = CP->getOffset();
5350    if (CP->isMachineConstantPoolEntry())
5351      OS << "<" << *CP->getMachineCPVal() << ">";
5352    else
5353      OS << "<" << *CP->getConstVal() << ">";
5354    if (offset > 0)
5355      OS << " + " << offset;
5356    else
5357      OS << " " << offset;
5358  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5359    OS << "<";
5360    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5361    if (LBB)
5362      OS << LBB->getName() << " ";
5363    OS << (const void*)BBDN->getBasicBlock() << ">";
5364  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5365    if (G && R->getReg() &&
5366        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5367      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5368    } else {
5369      OS << " #" << R->getReg();
5370    }
5371  } else if (const ExternalSymbolSDNode *ES =
5372             dyn_cast<ExternalSymbolSDNode>(this)) {
5373    OS << "'" << ES->getSymbol() << "'";
5374  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5375    if (M->getValue())
5376      OS << "<" << M->getValue() << ">";
5377    else
5378      OS << "<null>";
5379  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5380    if (M->MO.getValue())
5381      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5382    else
5383      OS << "<null:" << M->MO.getOffset() << ">";
5384  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5385    OS << N->getArgFlags().getArgFlagsString();
5386  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5387    OS << ":" << N->getVT().getMVTString();
5388  }
5389  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5390    const Value *SrcValue = LD->getSrcValue();
5391    int SrcOffset = LD->getSrcValueOffset();
5392    OS << " <";
5393    if (SrcValue)
5394      OS << SrcValue;
5395    else
5396      OS << "null";
5397    OS << ":" << SrcOffset << ">";
5398
5399    bool doExt = true;
5400    switch (LD->getExtensionType()) {
5401    default: doExt = false; break;
5402    case ISD::EXTLOAD: OS << " <anyext "; break;
5403    case ISD::SEXTLOAD: OS << " <sext "; break;
5404    case ISD::ZEXTLOAD: OS << " <zext "; break;
5405    }
5406    if (doExt)
5407      OS << LD->getMemoryVT().getMVTString() << ">";
5408
5409    const char *AM = getIndexedModeName(LD->getAddressingMode());
5410    if (*AM)
5411      OS << " " << AM;
5412    if (LD->isVolatile())
5413      OS << " <volatile>";
5414    OS << " alignment=" << LD->getAlignment();
5415  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5416    const Value *SrcValue = ST->getSrcValue();
5417    int SrcOffset = ST->getSrcValueOffset();
5418    OS << " <";
5419    if (SrcValue)
5420      OS << SrcValue;
5421    else
5422      OS << "null";
5423    OS << ":" << SrcOffset << ">";
5424
5425    if (ST->isTruncatingStore())
5426      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5427
5428    const char *AM = getIndexedModeName(ST->getAddressingMode());
5429    if (*AM)
5430      OS << " " << AM;
5431    if (ST->isVolatile())
5432      OS << " <volatile>";
5433    OS << " alignment=" << ST->getAlignment();
5434  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5435    const Value *SrcValue = AT->getSrcValue();
5436    int SrcOffset = AT->getSrcValueOffset();
5437    OS << " <";
5438    if (SrcValue)
5439      OS << SrcValue;
5440    else
5441      OS << "null";
5442    OS << ":" << SrcOffset << ">";
5443    if (AT->isVolatile())
5444      OS << " <volatile>";
5445    OS << " alignment=" << AT->getAlignment();
5446  }
5447}
5448
5449static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5450  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5451    if (N->getOperand(i).getNode()->hasOneUse())
5452      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5453    else
5454      cerr << "\n" << std::string(indent+2, ' ')
5455           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5456
5457
5458  cerr << "\n" << std::string(indent, ' ');
5459  N->dump(G);
5460}
5461
5462void SelectionDAG::dump() const {
5463  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5464
5465  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5466       I != E; ++I) {
5467    const SDNode *N = I;
5468    if (!N->hasOneUse() && N != getRoot().getNode())
5469      DumpNodes(N, 2, this);
5470  }
5471
5472  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5473
5474  cerr << "\n\n";
5475}
5476
5477const Type *ConstantPoolSDNode::getType() const {
5478  if (isMachineConstantPoolEntry())
5479    return Val.MachineCPVal->getType();
5480  return Val.ConstVal->getType();
5481}
5482