SelectionDAG.cpp revision 94683777aee436a0e5f12e08a4b3827a11265fb2
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/ADT/StringExtras.h"
25#include <iostream>
26#include <set>
27#include <cmath>
28#include <algorithm>
29using namespace llvm;
30
31static bool isCommutativeBinOp(unsigned Opcode) {
32  switch (Opcode) {
33  case ISD::ADD:
34  case ISD::MUL:
35  case ISD::FADD:
36  case ISD::FMUL:
37  case ISD::AND:
38  case ISD::OR:
39  case ISD::XOR: return true;
40  default: return false; // FIXME: Need commutative info for user ops!
41  }
42}
43
44static bool isAssociativeBinOp(unsigned Opcode) {
45  switch (Opcode) {
46  case ISD::ADD:
47  case ISD::MUL:
48  case ISD::AND:
49  case ISD::OR:
50  case ISD::XOR: return true;
51  default: return false; // FIXME: Need associative info for user ops!
52  }
53}
54
55// isInvertibleForFree - Return true if there is no cost to emitting the logical
56// inverse of this node.
57static bool isInvertibleForFree(SDOperand N) {
58  if (isa<ConstantSDNode>(N.Val)) return true;
59  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
60    return true;
61  return false;
62}
63
64//===----------------------------------------------------------------------===//
65//                              ConstantFPSDNode Class
66//===----------------------------------------------------------------------===//
67
68/// isExactlyValue - We don't rely on operator== working on double values, as
69/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
70/// As such, this method can be used to do an exact bit-for-bit comparison of
71/// two floating point values.
72bool ConstantFPSDNode::isExactlyValue(double V) const {
73  return DoubleToBits(V) == DoubleToBits(Value);
74}
75
76//===----------------------------------------------------------------------===//
77//                              ISD Class
78//===----------------------------------------------------------------------===//
79
80/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
81/// when given the operation for (X op Y).
82ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
83  // To perform this operation, we just need to swap the L and G bits of the
84  // operation.
85  unsigned OldL = (Operation >> 2) & 1;
86  unsigned OldG = (Operation >> 1) & 1;
87  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
88                       (OldL << 1) |       // New G bit
89                       (OldG << 2));        // New L bit.
90}
91
92/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
93/// 'op' is a valid SetCC operation.
94ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
95  unsigned Operation = Op;
96  if (isInteger)
97    Operation ^= 7;   // Flip L, G, E bits, but not U.
98  else
99    Operation ^= 15;  // Flip all of the condition bits.
100  if (Operation > ISD::SETTRUE2)
101    Operation &= ~8;     // Don't let N and U bits get set.
102  return ISD::CondCode(Operation);
103}
104
105
106/// isSignedOp - For an integer comparison, return 1 if the comparison is a
107/// signed operation and 2 if the result is an unsigned comparison.  Return zero
108/// if the operation does not depend on the sign of the input (setne and seteq).
109static int isSignedOp(ISD::CondCode Opcode) {
110  switch (Opcode) {
111  default: assert(0 && "Illegal integer setcc operation!");
112  case ISD::SETEQ:
113  case ISD::SETNE: return 0;
114  case ISD::SETLT:
115  case ISD::SETLE:
116  case ISD::SETGT:
117  case ISD::SETGE: return 1;
118  case ISD::SETULT:
119  case ISD::SETULE:
120  case ISD::SETUGT:
121  case ISD::SETUGE: return 2;
122  }
123}
124
125/// getSetCCOrOperation - Return the result of a logical OR between different
126/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
127/// returns SETCC_INVALID if it is not possible to represent the resultant
128/// comparison.
129ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
130                                       bool isInteger) {
131  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
132    // Cannot fold a signed integer setcc with an unsigned integer setcc.
133    return ISD::SETCC_INVALID;
134
135  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
136
137  // If the N and U bits get set then the resultant comparison DOES suddenly
138  // care about orderedness, and is true when ordered.
139  if (Op > ISD::SETTRUE2)
140    Op &= ~16;     // Clear the N bit.
141  return ISD::CondCode(Op);
142}
143
144/// getSetCCAndOperation - Return the result of a logical AND between different
145/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
146/// function returns zero if it is not possible to represent the resultant
147/// comparison.
148ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
149                                        bool isInteger) {
150  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
151    // Cannot fold a signed setcc with an unsigned setcc.
152    return ISD::SETCC_INVALID;
153
154  // Combine all of the condition bits.
155  return ISD::CondCode(Op1 & Op2);
156}
157
158const TargetMachine &SelectionDAG::getTarget() const {
159  return TLI.getTargetMachine();
160}
161
162//===----------------------------------------------------------------------===//
163//                              SelectionDAG Class
164//===----------------------------------------------------------------------===//
165
166/// RemoveDeadNodes - This method deletes all unreachable nodes in the
167/// SelectionDAG, including nodes (like loads) that have uses of their token
168/// chain but no other uses and no side effect.  If a node is passed in as an
169/// argument, it is used as the seed for node deletion.
170void SelectionDAG::RemoveDeadNodes(SDNode *N) {
171  // Create a dummy node (which is not added to allnodes), that adds a reference
172  // to the root node, preventing it from being deleted.
173  HandleSDNode Dummy(getRoot());
174
175  bool MadeChange = false;
176
177  // If we have a hint to start from, use it.
178  if (N && N->use_empty()) {
179    DestroyDeadNode(N);
180    MadeChange = true;
181  }
182
183  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
184    if (I->use_empty() && I->getOpcode() != 65535) {
185      // Node is dead, recursively delete newly dead uses.
186      DestroyDeadNode(I);
187      MadeChange = true;
188    }
189
190  // Walk the nodes list, removing the nodes we've marked as dead.
191  if (MadeChange) {
192    for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ) {
193      SDNode *N = I++;
194      if (N->use_empty())
195        AllNodes.erase(N);
196    }
197  }
198
199  // If the root changed (e.g. it was a dead load, update the root).
200  setRoot(Dummy.getValue());
201}
202
203/// DestroyDeadNode - We know that N is dead.  Nuke it from the CSE maps for the
204/// graph.  If it is the last user of any of its operands, recursively process
205/// them the same way.
206///
207void SelectionDAG::DestroyDeadNode(SDNode *N) {
208  // Okay, we really are going to delete this node.  First take this out of the
209  // appropriate CSE map.
210  RemoveNodeFromCSEMaps(N);
211
212  // Next, brutally remove the operand list.  This is safe to do, as there are
213  // no cycles in the graph.
214  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
215    SDNode *O = I->Val;
216    O->removeUser(N);
217
218    // Now that we removed this operand, see if there are no uses of it left.
219    if (O->use_empty())
220      DestroyDeadNode(O);
221  }
222  delete[] N->OperandList;
223  N->OperandList = 0;
224  N->NumOperands = 0;
225
226  // Mark the node as dead.
227  N->MorphNodeTo(65535);
228}
229
230void SelectionDAG::DeleteNode(SDNode *N) {
231  assert(N->use_empty() && "Cannot delete a node that is not dead!");
232
233  // First take this out of the appropriate CSE map.
234  RemoveNodeFromCSEMaps(N);
235
236  // Finally, remove uses due to operands of this node, remove from the
237  // AllNodes list, and delete the node.
238  DeleteNodeNotInCSEMaps(N);
239}
240
241void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
242
243  // Remove it from the AllNodes list.
244  AllNodes.remove(N);
245
246  // Drop all of the operands and decrement used nodes use counts.
247  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
248    I->Val->removeUser(N);
249  delete[] N->OperandList;
250  N->OperandList = 0;
251  N->NumOperands = 0;
252
253  delete N;
254}
255
256/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
257/// correspond to it.  This is useful when we're about to delete or repurpose
258/// the node.  We don't want future request for structurally identical nodes
259/// to return N anymore.
260void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
261  bool Erased = false;
262  switch (N->getOpcode()) {
263  case ISD::HANDLENODE: return;  // noop.
264  case ISD::Constant:
265    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
266                                            N->getValueType(0)));
267    break;
268  case ISD::TargetConstant:
269    Erased = TargetConstants.erase(std::make_pair(
270                                    cast<ConstantSDNode>(N)->getValue(),
271                                                  N->getValueType(0)));
272    break;
273  case ISD::ConstantFP: {
274    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
275    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
276    break;
277  }
278  case ISD::STRING:
279    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
280    break;
281  case ISD::CONDCODE:
282    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
283           "Cond code doesn't exist!");
284    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
285    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
286    break;
287  case ISD::GlobalAddress: {
288    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
289    Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(),
290                                               GN->getOffset()));
291    break;
292  }
293  case ISD::TargetGlobalAddress: {
294    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
295    Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(),
296                                                    GN->getOffset()));
297    break;
298  }
299  case ISD::FrameIndex:
300    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
301    break;
302  case ISD::TargetFrameIndex:
303    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
304    break;
305  case ISD::ConstantPool:
306    Erased = ConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
307    break;
308  case ISD::TargetConstantPool:
309    Erased =TargetConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
310    break;
311  case ISD::BasicBlock:
312    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
313    break;
314  case ISD::ExternalSymbol:
315    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
316    break;
317  case ISD::TargetExternalSymbol:
318    Erased = TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
319    break;
320  case ISD::VALUETYPE:
321    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
322    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
323    break;
324  case ISD::Register:
325    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
326                                           N->getValueType(0)));
327    break;
328  case ISD::SRCVALUE: {
329    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
330    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
331    break;
332  }
333  case ISD::LOAD:
334    Erased = Loads.erase(std::make_pair(N->getOperand(1),
335                                        std::make_pair(N->getOperand(0),
336                                                       N->getValueType(0))));
337    break;
338  default:
339    if (N->getNumValues() == 1) {
340      if (N->getNumOperands() == 0) {
341        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
342                                                 N->getValueType(0)));
343      } else if (N->getNumOperands() == 1) {
344        Erased =
345          UnaryOps.erase(std::make_pair(N->getOpcode(),
346                                        std::make_pair(N->getOperand(0),
347                                                       N->getValueType(0))));
348      } else if (N->getNumOperands() == 2) {
349        Erased =
350          BinaryOps.erase(std::make_pair(N->getOpcode(),
351                                         std::make_pair(N->getOperand(0),
352                                                        N->getOperand(1))));
353      } else {
354        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
355        Erased =
356          OneResultNodes.erase(std::make_pair(N->getOpcode(),
357                                              std::make_pair(N->getValueType(0),
358                                                             Ops)));
359      }
360    } else {
361      // Remove the node from the ArbitraryNodes map.
362      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
363      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
364      Erased =
365        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
366                                            std::make_pair(RV, Ops)));
367    }
368    break;
369  }
370#ifndef NDEBUG
371  // Verify that the node was actually in one of the CSE maps, unless it has a
372  // flag result (which cannot be CSE'd) or is one of the special cases that are
373  // not subject to CSE.
374  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
375      N->getOpcode() != ISD::CALL && N->getOpcode() != ISD::CALLSEQ_START &&
376      N->getOpcode() != ISD::CALLSEQ_END && !N->isTargetOpcode()) {
377
378    N->dump();
379    assert(0 && "Node is not in map!");
380  }
381#endif
382}
383
384/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
385/// has been taken out and modified in some way.  If the specified node already
386/// exists in the CSE maps, do not modify the maps, but return the existing node
387/// instead.  If it doesn't exist, add it and return null.
388///
389SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
390  assert(N->getNumOperands() && "This is a leaf node!");
391  if (N->getOpcode() == ISD::CALLSEQ_START ||
392      N->getOpcode() == ISD::CALLSEQ_END ||
393      N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
394    return 0;    // Never add these nodes.
395
396  // Check that remaining values produced are not flags.
397  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
398    if (N->getValueType(i) == MVT::Flag)
399      return 0;   // Never CSE anything that produces a flag.
400
401  if (N->getNumValues() == 1) {
402    if (N->getNumOperands() == 1) {
403      SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
404                                           std::make_pair(N->getOperand(0),
405                                                          N->getValueType(0)))];
406      if (U) return U;
407      U = N;
408    } else if (N->getNumOperands() == 2) {
409      SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
410                                            std::make_pair(N->getOperand(0),
411                                                           N->getOperand(1)))];
412      if (B) return B;
413      B = N;
414    } else {
415      std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
416      SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
417                                                   std::make_pair(N->getValueType(0), Ops))];
418      if (ORN) return ORN;
419      ORN = N;
420    }
421  } else {
422    if (N->getOpcode() == ISD::LOAD) {
423      SDNode *&L = Loads[std::make_pair(N->getOperand(1),
424                                        std::make_pair(N->getOperand(0),
425                                                       N->getValueType(0)))];
426      if (L) return L;
427      L = N;
428    } else {
429      // Remove the node from the ArbitraryNodes map.
430      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
431      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
432      SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
433                                                  std::make_pair(RV, Ops))];
434      if (AN) return AN;
435      AN = N;
436    }
437  }
438  return 0;
439}
440
441
442
443SelectionDAG::~SelectionDAG() {
444  while (!AllNodes.empty()) {
445    SDNode *N = AllNodes.begin();
446    delete [] N->OperandList;
447    N->OperandList = 0;
448    N->NumOperands = 0;
449    AllNodes.pop_front();
450  }
451}
452
453SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
454  if (Op.getValueType() == VT) return Op;
455  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
456  return getNode(ISD::AND, Op.getValueType(), Op,
457                 getConstant(Imm, Op.getValueType()));
458}
459
460SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
461  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
462  // Mask out any bits that are not valid for this constant.
463  if (VT != MVT::i64)
464    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
465
466  SDNode *&N = Constants[std::make_pair(Val, VT)];
467  if (N) return SDOperand(N, 0);
468  N = new ConstantSDNode(false, Val, VT);
469  AllNodes.push_back(N);
470  return SDOperand(N, 0);
471}
472
473SDOperand SelectionDAG::getString(const std::string &Val) {
474  StringSDNode *&N = StringNodes[Val];
475  if (!N) {
476    N = new StringSDNode(Val);
477    AllNodes.push_back(N);
478  }
479  return SDOperand(N, 0);
480}
481
482SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
483  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
484  // Mask out any bits that are not valid for this constant.
485  if (VT != MVT::i64)
486    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
487
488  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
489  if (N) return SDOperand(N, 0);
490  N = new ConstantSDNode(true, Val, VT);
491  AllNodes.push_back(N);
492  return SDOperand(N, 0);
493}
494
495SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
496  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
497  if (VT == MVT::f32)
498    Val = (float)Val;  // Mask out extra precision.
499
500  // Do the map lookup using the actual bit pattern for the floating point
501  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
502  // we don't have issues with SNANs.
503  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
504  if (N) return SDOperand(N, 0);
505  N = new ConstantFPSDNode(Val, VT);
506  AllNodes.push_back(N);
507  return SDOperand(N, 0);
508}
509
510SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
511                                         MVT::ValueType VT, int offset) {
512  SDNode *&N = GlobalValues[std::make_pair(GV, offset)];
513  if (N) return SDOperand(N, 0);
514  N = new GlobalAddressSDNode(false, GV, VT);
515  AllNodes.push_back(N);
516  return SDOperand(N, 0);
517}
518
519SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
520                                               MVT::ValueType VT, int offset) {
521  SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)];
522  if (N) return SDOperand(N, 0);
523  N = new GlobalAddressSDNode(true, GV, VT, offset);
524  AllNodes.push_back(N);
525  return SDOperand(N, 0);
526}
527
528SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
529  SDNode *&N = FrameIndices[FI];
530  if (N) return SDOperand(N, 0);
531  N = new FrameIndexSDNode(FI, VT, false);
532  AllNodes.push_back(N);
533  return SDOperand(N, 0);
534}
535
536SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
537  SDNode *&N = TargetFrameIndices[FI];
538  if (N) return SDOperand(N, 0);
539  N = new FrameIndexSDNode(FI, VT, true);
540  AllNodes.push_back(N);
541  return SDOperand(N, 0);
542}
543
544SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT) {
545  SDNode *&N = ConstantPoolIndices[C];
546  if (N) return SDOperand(N, 0);
547  N = new ConstantPoolSDNode(C, VT, false);
548  AllNodes.push_back(N);
549  return SDOperand(N, 0);
550}
551
552SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT) {
553  SDNode *&N = TargetConstantPoolIndices[C];
554  if (N) return SDOperand(N, 0);
555  N = new ConstantPoolSDNode(C, VT, true);
556  AllNodes.push_back(N);
557  return SDOperand(N, 0);
558}
559
560SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
561  SDNode *&N = BBNodes[MBB];
562  if (N) return SDOperand(N, 0);
563  N = new BasicBlockSDNode(MBB);
564  AllNodes.push_back(N);
565  return SDOperand(N, 0);
566}
567
568SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
569  if ((unsigned)VT >= ValueTypeNodes.size())
570    ValueTypeNodes.resize(VT+1);
571  if (ValueTypeNodes[VT] == 0) {
572    ValueTypeNodes[VT] = new VTSDNode(VT);
573    AllNodes.push_back(ValueTypeNodes[VT]);
574  }
575
576  return SDOperand(ValueTypeNodes[VT], 0);
577}
578
579SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
580  SDNode *&N = ExternalSymbols[Sym];
581  if (N) return SDOperand(N, 0);
582  N = new ExternalSymbolSDNode(false, Sym, VT);
583  AllNodes.push_back(N);
584  return SDOperand(N, 0);
585}
586
587SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT::ValueType VT) {
588  SDNode *&N = TargetExternalSymbols[Sym];
589  if (N) return SDOperand(N, 0);
590  N = new ExternalSymbolSDNode(true, Sym, VT);
591  AllNodes.push_back(N);
592  return SDOperand(N, 0);
593}
594
595SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
596  if ((unsigned)Cond >= CondCodeNodes.size())
597    CondCodeNodes.resize(Cond+1);
598
599  if (CondCodeNodes[Cond] == 0) {
600    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
601    AllNodes.push_back(CondCodeNodes[Cond]);
602  }
603  return SDOperand(CondCodeNodes[Cond], 0);
604}
605
606SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
607  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
608  if (!Reg) {
609    Reg = new RegisterSDNode(RegNo, VT);
610    AllNodes.push_back(Reg);
611  }
612  return SDOperand(Reg, 0);
613}
614
615SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
616                                      SDOperand N2, ISD::CondCode Cond) {
617  // These setcc operations always fold.
618  switch (Cond) {
619  default: break;
620  case ISD::SETFALSE:
621  case ISD::SETFALSE2: return getConstant(0, VT);
622  case ISD::SETTRUE:
623  case ISD::SETTRUE2:  return getConstant(1, VT);
624  }
625
626  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
627    uint64_t C2 = N2C->getValue();
628    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
629      uint64_t C1 = N1C->getValue();
630
631      // Sign extend the operands if required
632      if (ISD::isSignedIntSetCC(Cond)) {
633        C1 = N1C->getSignExtended();
634        C2 = N2C->getSignExtended();
635      }
636
637      switch (Cond) {
638      default: assert(0 && "Unknown integer setcc!");
639      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
640      case ISD::SETNE:  return getConstant(C1 != C2, VT);
641      case ISD::SETULT: return getConstant(C1 <  C2, VT);
642      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
643      case ISD::SETULE: return getConstant(C1 <= C2, VT);
644      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
645      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
646      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
647      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
648      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
649      }
650    } else {
651      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
652      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
653        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
654
655        // If the comparison constant has bits in the upper part, the
656        // zero-extended value could never match.
657        if (C2 & (~0ULL << InSize)) {
658          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
659          switch (Cond) {
660          case ISD::SETUGT:
661          case ISD::SETUGE:
662          case ISD::SETEQ: return getConstant(0, VT);
663          case ISD::SETULT:
664          case ISD::SETULE:
665          case ISD::SETNE: return getConstant(1, VT);
666          case ISD::SETGT:
667          case ISD::SETGE:
668            // True if the sign bit of C2 is set.
669            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
670          case ISD::SETLT:
671          case ISD::SETLE:
672            // True if the sign bit of C2 isn't set.
673            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
674          default:
675            break;
676          }
677        }
678
679        // Otherwise, we can perform the comparison with the low bits.
680        switch (Cond) {
681        case ISD::SETEQ:
682        case ISD::SETNE:
683        case ISD::SETUGT:
684        case ISD::SETUGE:
685        case ISD::SETULT:
686        case ISD::SETULE:
687          return getSetCC(VT, N1.getOperand(0),
688                          getConstant(C2, N1.getOperand(0).getValueType()),
689                          Cond);
690        default:
691          break;   // todo, be more careful with signed comparisons
692        }
693      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
694                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
695        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
696        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
697        MVT::ValueType ExtDstTy = N1.getValueType();
698        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
699
700        // If the extended part has any inconsistent bits, it cannot ever
701        // compare equal.  In other words, they have to be all ones or all
702        // zeros.
703        uint64_t ExtBits =
704          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
705        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
706          return getConstant(Cond == ISD::SETNE, VT);
707
708        // Otherwise, make this a use of a zext.
709        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
710                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
711                        Cond);
712      }
713
714      uint64_t MinVal, MaxVal;
715      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
716      if (ISD::isSignedIntSetCC(Cond)) {
717        MinVal = 1ULL << (OperandBitSize-1);
718        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
719          MaxVal = ~0ULL >> (65-OperandBitSize);
720        else
721          MaxVal = 0;
722      } else {
723        MinVal = 0;
724        MaxVal = ~0ULL >> (64-OperandBitSize);
725      }
726
727      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
728      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
729        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
730        --C2;                                          // X >= C1 --> X > (C1-1)
731        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
732                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
733      }
734
735      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
736        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
737        ++C2;                                          // X <= C1 --> X < (C1+1)
738        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
739                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
740      }
741
742      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
743        return getConstant(0, VT);      // X < MIN --> false
744
745      // Canonicalize setgt X, Min --> setne X, Min
746      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
747        return getSetCC(VT, N1, N2, ISD::SETNE);
748
749      // If we have setult X, 1, turn it into seteq X, 0
750      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
751        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
752                        ISD::SETEQ);
753      // If we have setugt X, Max-1, turn it into seteq X, Max
754      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
755        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
756                        ISD::SETEQ);
757
758      // If we have "setcc X, C1", check to see if we can shrink the immediate
759      // by changing cc.
760
761      // SETUGT X, SINTMAX  -> SETLT X, 0
762      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
763          C2 == (~0ULL >> (65-OperandBitSize)))
764        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
765
766      // FIXME: Implement the rest of these.
767
768
769      // Fold bit comparisons when we can.
770      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
771          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
772        if (ConstantSDNode *AndRHS =
773                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
774          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
775            // Perform the xform if the AND RHS is a single bit.
776            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
777              return getNode(ISD::SRL, VT, N1,
778                             getConstant(Log2_64(AndRHS->getValue()),
779                                                   TLI.getShiftAmountTy()));
780            }
781          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
782            // (X & 8) == 8  -->  (X & 8) >> 3
783            // Perform the xform if C2 is a single bit.
784            if ((C2 & (C2-1)) == 0) {
785              return getNode(ISD::SRL, VT, N1,
786                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
787            }
788          }
789        }
790    }
791  } else if (isa<ConstantSDNode>(N1.Val)) {
792      // Ensure that the constant occurs on the RHS.
793    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
794  }
795
796  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
797    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
798      double C1 = N1C->getValue(), C2 = N2C->getValue();
799
800      switch (Cond) {
801      default: break; // FIXME: Implement the rest of these!
802      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
803      case ISD::SETNE:  return getConstant(C1 != C2, VT);
804      case ISD::SETLT:  return getConstant(C1 < C2, VT);
805      case ISD::SETGT:  return getConstant(C1 > C2, VT);
806      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
807      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
808      }
809    } else {
810      // Ensure that the constant occurs on the RHS.
811      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
812    }
813
814  // Could not fold it.
815  return SDOperand();
816}
817
818/// getNode - Gets or creates the specified node.
819///
820SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
821  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
822  if (!N) {
823    N = new SDNode(Opcode, VT);
824    AllNodes.push_back(N);
825  }
826  return SDOperand(N, 0);
827}
828
829SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
830                                SDOperand Operand) {
831  // Constant fold unary operations with an integer constant operand.
832  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
833    uint64_t Val = C->getValue();
834    switch (Opcode) {
835    default: break;
836    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
837    case ISD::ANY_EXTEND:
838    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
839    case ISD::TRUNCATE:    return getConstant(Val, VT);
840    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
841    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
842    case ISD::BIT_CONVERT:
843      if (VT == MVT::f32) {
844        assert(C->getValueType(0) == MVT::i32 && "Invalid bit_convert!");
845        return getConstantFP(BitsToFloat(Val), VT);
846      } else if (VT == MVT::f64) {
847        assert(C->getValueType(0) == MVT::i64 && "Invalid bit_convert!");
848        return getConstantFP(BitsToDouble(Val), VT);
849      }
850      break;
851    }
852  }
853
854  // Constant fold unary operations with an floating point constant operand.
855  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
856    switch (Opcode) {
857    case ISD::FNEG:
858      return getConstantFP(-C->getValue(), VT);
859    case ISD::FABS:
860      return getConstantFP(fabs(C->getValue()), VT);
861    case ISD::FP_ROUND:
862    case ISD::FP_EXTEND:
863      return getConstantFP(C->getValue(), VT);
864    case ISD::FP_TO_SINT:
865      return getConstant((int64_t)C->getValue(), VT);
866    case ISD::FP_TO_UINT:
867      return getConstant((uint64_t)C->getValue(), VT);
868    case ISD::BIT_CONVERT:
869      if (VT == MVT::i32) {
870        assert(C->getValueType(0) == MVT::f32 && "Invalid bit_convert!");
871        return getConstant(FloatToBits(C->getValue()), VT);
872      } else if (VT == MVT::i64) {
873        assert(C->getValueType(0) == MVT::f64 && "Invalid bit_convert!");
874        return getConstant(DoubleToBits(C->getValue()), VT);
875      }
876      break;
877    }
878
879  unsigned OpOpcode = Operand.Val->getOpcode();
880  switch (Opcode) {
881  case ISD::TokenFactor:
882    return Operand;         // Factor of one node?  No factor.
883  case ISD::SIGN_EXTEND:
884    if (Operand.getValueType() == VT) return Operand;   // noop extension
885    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
886      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
887    break;
888  case ISD::ZERO_EXTEND:
889    if (Operand.getValueType() == VT) return Operand;   // noop extension
890    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
891      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
892    break;
893  case ISD::ANY_EXTEND:
894    if (Operand.getValueType() == VT) return Operand;   // noop extension
895    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
896      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
897      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
898    break;
899  case ISD::TRUNCATE:
900    if (Operand.getValueType() == VT) return Operand;   // noop truncate
901    if (OpOpcode == ISD::TRUNCATE)
902      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
903    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
904             OpOpcode == ISD::ANY_EXTEND) {
905      // If the source is smaller than the dest, we still need an extend.
906      if (Operand.Val->getOperand(0).getValueType() < VT)
907        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
908      else if (Operand.Val->getOperand(0).getValueType() > VT)
909        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
910      else
911        return Operand.Val->getOperand(0);
912    }
913    break;
914  case ISD::BIT_CONVERT:
915    // Basic sanity checking.
916    assert(MVT::getSizeInBits(VT)==MVT::getSizeInBits(Operand.getValueType()) &&
917           "Cannot BIT_CONVERT between two different types!");
918    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
919    break;
920  case ISD::FNEG:
921    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
922      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
923                     Operand.Val->getOperand(0));
924    if (OpOpcode == ISD::FNEG)  // --X -> X
925      return Operand.Val->getOperand(0);
926    break;
927  case ISD::FABS:
928    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
929      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
930    break;
931  }
932
933  SDNode *N;
934  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
935    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
936    if (E) return SDOperand(E, 0);
937    E = N = new SDNode(Opcode, Operand);
938  } else {
939    N = new SDNode(Opcode, Operand);
940  }
941  N->setValueTypes(VT);
942  AllNodes.push_back(N);
943  return SDOperand(N, 0);
944}
945
946
947
948SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
949                                SDOperand N1, SDOperand N2) {
950#ifndef NDEBUG
951  switch (Opcode) {
952  case ISD::TokenFactor:
953    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
954           N2.getValueType() == MVT::Other && "Invalid token factor!");
955    break;
956  case ISD::AND:
957  case ISD::OR:
958  case ISD::XOR:
959  case ISD::UDIV:
960  case ISD::UREM:
961  case ISD::MULHU:
962  case ISD::MULHS:
963    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
964    // fall through
965  case ISD::ADD:
966  case ISD::SUB:
967  case ISD::MUL:
968  case ISD::SDIV:
969  case ISD::SREM:
970    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
971    // fall through.
972  case ISD::FADD:
973  case ISD::FSUB:
974  case ISD::FMUL:
975  case ISD::FDIV:
976  case ISD::FREM:
977    assert(N1.getValueType() == N2.getValueType() &&
978           N1.getValueType() == VT && "Binary operator types must match!");
979    break;
980
981  case ISD::SHL:
982  case ISD::SRA:
983  case ISD::SRL:
984    assert(VT == N1.getValueType() &&
985           "Shift operators return type must be the same as their first arg");
986    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
987           VT != MVT::i1 && "Shifts only work on integers");
988    break;
989  case ISD::FP_ROUND_INREG: {
990    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
991    assert(VT == N1.getValueType() && "Not an inreg round!");
992    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
993           "Cannot FP_ROUND_INREG integer types");
994    assert(EVT <= VT && "Not rounding down!");
995    break;
996  }
997  case ISD::AssertSext:
998  case ISD::AssertZext:
999  case ISD::SIGN_EXTEND_INREG: {
1000    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1001    assert(VT == N1.getValueType() && "Not an inreg extend!");
1002    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1003           "Cannot *_EXTEND_INREG FP types");
1004    assert(EVT <= VT && "Not extending!");
1005  }
1006
1007  default: break;
1008  }
1009#endif
1010
1011  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1012  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1013  if (N1C) {
1014    if (N2C) {
1015      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1016      switch (Opcode) {
1017      case ISD::ADD: return getConstant(C1 + C2, VT);
1018      case ISD::SUB: return getConstant(C1 - C2, VT);
1019      case ISD::MUL: return getConstant(C1 * C2, VT);
1020      case ISD::UDIV:
1021        if (C2) return getConstant(C1 / C2, VT);
1022        break;
1023      case ISD::UREM :
1024        if (C2) return getConstant(C1 % C2, VT);
1025        break;
1026      case ISD::SDIV :
1027        if (C2) return getConstant(N1C->getSignExtended() /
1028                                   N2C->getSignExtended(), VT);
1029        break;
1030      case ISD::SREM :
1031        if (C2) return getConstant(N1C->getSignExtended() %
1032                                   N2C->getSignExtended(), VT);
1033        break;
1034      case ISD::AND  : return getConstant(C1 & C2, VT);
1035      case ISD::OR   : return getConstant(C1 | C2, VT);
1036      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1037      case ISD::SHL  : return getConstant(C1 << C2, VT);
1038      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1039      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1040      default: break;
1041      }
1042    } else {      // Cannonicalize constant to RHS if commutative
1043      if (isCommutativeBinOp(Opcode)) {
1044        std::swap(N1C, N2C);
1045        std::swap(N1, N2);
1046      }
1047    }
1048  }
1049
1050  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1051  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1052  if (N1CFP) {
1053    if (N2CFP) {
1054      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1055      switch (Opcode) {
1056      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1057      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1058      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1059      case ISD::FDIV:
1060        if (C2) return getConstantFP(C1 / C2, VT);
1061        break;
1062      case ISD::FREM :
1063        if (C2) return getConstantFP(fmod(C1, C2), VT);
1064        break;
1065      default: break;
1066      }
1067    } else {      // Cannonicalize constant to RHS if commutative
1068      if (isCommutativeBinOp(Opcode)) {
1069        std::swap(N1CFP, N2CFP);
1070        std::swap(N1, N2);
1071      }
1072    }
1073  }
1074
1075  // Finally, fold operations that do not require constants.
1076  switch (Opcode) {
1077  case ISD::FP_ROUND_INREG:
1078    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1079    break;
1080  case ISD::SIGN_EXTEND_INREG: {
1081    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1082    if (EVT == VT) return N1;  // Not actually extending
1083    break;
1084  }
1085
1086  // FIXME: figure out how to safely handle things like
1087  // int foo(int x) { return 1 << (x & 255); }
1088  // int bar() { return foo(256); }
1089#if 0
1090  case ISD::SHL:
1091  case ISD::SRL:
1092  case ISD::SRA:
1093    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1094        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1095      return getNode(Opcode, VT, N1, N2.getOperand(0));
1096    else if (N2.getOpcode() == ISD::AND)
1097      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1098        // If the and is only masking out bits that cannot effect the shift,
1099        // eliminate the and.
1100        unsigned NumBits = MVT::getSizeInBits(VT);
1101        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1102          return getNode(Opcode, VT, N1, N2.getOperand(0));
1103      }
1104    break;
1105#endif
1106  }
1107
1108  // Memoize this node if possible.
1109  SDNode *N;
1110  if (Opcode != ISD::CALLSEQ_START && Opcode != ISD::CALLSEQ_END &&
1111      VT != MVT::Flag) {
1112    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1113    if (BON) return SDOperand(BON, 0);
1114
1115    BON = N = new SDNode(Opcode, N1, N2);
1116  } else {
1117    N = new SDNode(Opcode, N1, N2);
1118  }
1119
1120  N->setValueTypes(VT);
1121  AllNodes.push_back(N);
1122  return SDOperand(N, 0);
1123}
1124
1125SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1126                                SDOperand N1, SDOperand N2, SDOperand N3) {
1127  // Perform various simplifications.
1128  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1129  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1130  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1131  switch (Opcode) {
1132  case ISD::SETCC: {
1133    // Use SimplifySetCC  to simplify SETCC's.
1134    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1135    if (Simp.Val) return Simp;
1136    break;
1137  }
1138  case ISD::SELECT:
1139    if (N1C)
1140      if (N1C->getValue())
1141        return N2;             // select true, X, Y -> X
1142      else
1143        return N3;             // select false, X, Y -> Y
1144
1145    if (N2 == N3) return N2;   // select C, X, X -> X
1146    break;
1147  case ISD::BRCOND:
1148    if (N2C)
1149      if (N2C->getValue()) // Unconditional branch
1150        return getNode(ISD::BR, MVT::Other, N1, N3);
1151      else
1152        return N1;         // Never-taken branch
1153    break;
1154  }
1155
1156  std::vector<SDOperand> Ops;
1157  Ops.reserve(3);
1158  Ops.push_back(N1);
1159  Ops.push_back(N2);
1160  Ops.push_back(N3);
1161
1162  // Memoize node if it doesn't produce a flag.
1163  SDNode *N;
1164  if (VT != MVT::Flag) {
1165    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1166    if (E) return SDOperand(E, 0);
1167    E = N = new SDNode(Opcode, N1, N2, N3);
1168  } else {
1169    N = new SDNode(Opcode, N1, N2, N3);
1170  }
1171  N->setValueTypes(VT);
1172  AllNodes.push_back(N);
1173  return SDOperand(N, 0);
1174}
1175
1176SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1177                                SDOperand N1, SDOperand N2, SDOperand N3,
1178                                SDOperand N4) {
1179  std::vector<SDOperand> Ops;
1180  Ops.reserve(4);
1181  Ops.push_back(N1);
1182  Ops.push_back(N2);
1183  Ops.push_back(N3);
1184  Ops.push_back(N4);
1185  return getNode(Opcode, VT, Ops);
1186}
1187
1188SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1189                                SDOperand N1, SDOperand N2, SDOperand N3,
1190                                SDOperand N4, SDOperand N5) {
1191  std::vector<SDOperand> Ops;
1192  Ops.reserve(5);
1193  Ops.push_back(N1);
1194  Ops.push_back(N2);
1195  Ops.push_back(N3);
1196  Ops.push_back(N4);
1197  Ops.push_back(N5);
1198  return getNode(Opcode, VT, Ops);
1199}
1200
1201SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1202                                SDOperand N1, SDOperand N2, SDOperand N3,
1203                                SDOperand N4, SDOperand N5, SDOperand N6) {
1204  std::vector<SDOperand> Ops;
1205  Ops.reserve(6);
1206  Ops.push_back(N1);
1207  Ops.push_back(N2);
1208  Ops.push_back(N3);
1209  Ops.push_back(N4);
1210  Ops.push_back(N5);
1211  Ops.push_back(N6);
1212  return getNode(Opcode, VT, Ops);
1213}
1214
1215// setAdjCallChain - This method changes the token chain of an
1216// CALLSEQ_START/END node to be the specified operand.
1217void SDNode::setAdjCallChain(SDOperand N) {
1218  assert(N.getValueType() == MVT::Other);
1219  assert((getOpcode() == ISD::CALLSEQ_START ||
1220          getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!");
1221
1222  OperandList[0].Val->removeUser(this);
1223  OperandList[0] = N;
1224  OperandList[0].Val->Uses.push_back(this);
1225}
1226
1227
1228
1229SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1230                                SDOperand Chain, SDOperand Ptr,
1231                                SDOperand SV) {
1232  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1233  if (N) return SDOperand(N, 0);
1234  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1235
1236  // Loads have a token chain.
1237  setNodeValueTypes(N, VT, MVT::Other);
1238  AllNodes.push_back(N);
1239  return SDOperand(N, 0);
1240}
1241
1242SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1243                                   SDOperand Chain, SDOperand Ptr,
1244                                   SDOperand SV) {
1245  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, EVT))];
1246  if (N) return SDOperand(N, 0);
1247  std::vector<SDOperand> Ops;
1248  Ops.reserve(5);
1249  Ops.push_back(Chain);
1250  Ops.push_back(Ptr);
1251  Ops.push_back(getConstant(Count, MVT::i32));
1252  Ops.push_back(getValueType(EVT));
1253  Ops.push_back(SV);
1254  std::vector<MVT::ValueType> VTs;
1255  VTs.reserve(2);
1256  VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other);  // Add token chain.
1257  return getNode(ISD::VLOAD, VTs, Ops);
1258}
1259
1260SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1261                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1262                                   MVT::ValueType EVT) {
1263  std::vector<SDOperand> Ops;
1264  Ops.reserve(4);
1265  Ops.push_back(Chain);
1266  Ops.push_back(Ptr);
1267  Ops.push_back(SV);
1268  Ops.push_back(getValueType(EVT));
1269  std::vector<MVT::ValueType> VTs;
1270  VTs.reserve(2);
1271  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1272  return getNode(Opcode, VTs, Ops);
1273}
1274
1275SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1276  assert((!V || isa<PointerType>(V->getType())) &&
1277         "SrcValue is not a pointer?");
1278  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1279  if (N) return SDOperand(N, 0);
1280
1281  N = new SrcValueSDNode(V, Offset);
1282  AllNodes.push_back(N);
1283  return SDOperand(N, 0);
1284}
1285
1286SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1287                                std::vector<SDOperand> &Ops) {
1288  switch (Ops.size()) {
1289  case 0: return getNode(Opcode, VT);
1290  case 1: return getNode(Opcode, VT, Ops[0]);
1291  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1292  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1293  default: break;
1294  }
1295
1296  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1297  switch (Opcode) {
1298  default: break;
1299  case ISD::BRCONDTWOWAY:
1300    if (N1C)
1301      if (N1C->getValue()) // Unconditional branch to true dest.
1302        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
1303      else                 // Unconditional branch to false dest.
1304        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
1305    break;
1306  case ISD::BRTWOWAY_CC:
1307    assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
1308    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1309           "LHS and RHS of comparison must have same type!");
1310    break;
1311  case ISD::TRUNCSTORE: {
1312    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1313    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1314#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1315    // If this is a truncating store of a constant, convert to the desired type
1316    // and store it instead.
1317    if (isa<Constant>(Ops[0])) {
1318      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1319      if (isa<Constant>(Op))
1320        N1 = Op;
1321    }
1322    // Also for ConstantFP?
1323#endif
1324    if (Ops[0].getValueType() == EVT)       // Normal store?
1325      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1326    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1327    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1328           "Can't do FP-INT conversion!");
1329    break;
1330  }
1331  case ISD::SELECT_CC: {
1332    assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
1333    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1334           "LHS and RHS of condition must have same type!");
1335    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1336           "True and False arms of SelectCC must have same type!");
1337    assert(Ops[2].getValueType() == VT &&
1338           "select_cc node must be of same type as true and false value!");
1339    break;
1340  }
1341  case ISD::BR_CC: {
1342    assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
1343    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1344           "LHS/RHS of comparison should match types!");
1345    break;
1346  }
1347  }
1348
1349  // Memoize nodes.
1350  SDNode *N;
1351  if (VT != MVT::Flag) {
1352    SDNode *&E =
1353      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1354    if (E) return SDOperand(E, 0);
1355    E = N = new SDNode(Opcode, Ops);
1356  } else {
1357    N = new SDNode(Opcode, Ops);
1358  }
1359  N->setValueTypes(VT);
1360  AllNodes.push_back(N);
1361  return SDOperand(N, 0);
1362}
1363
1364SDOperand SelectionDAG::getNode(unsigned Opcode,
1365                                std::vector<MVT::ValueType> &ResultTys,
1366                                std::vector<SDOperand> &Ops) {
1367  if (ResultTys.size() == 1)
1368    return getNode(Opcode, ResultTys[0], Ops);
1369
1370  switch (Opcode) {
1371  case ISD::EXTLOAD:
1372  case ISD::SEXTLOAD:
1373  case ISD::ZEXTLOAD: {
1374    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1375    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1376    // If they are asking for an extending load from/to the same thing, return a
1377    // normal load.
1378    if (ResultTys[0] == EVT)
1379      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1380    assert(EVT < ResultTys[0] &&
1381           "Should only be an extending load, not truncating!");
1382    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1383           "Cannot sign/zero extend a FP load!");
1384    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1385           "Cannot convert from FP to Int or Int -> FP!");
1386    break;
1387  }
1388
1389  // FIXME: figure out how to safely handle things like
1390  // int foo(int x) { return 1 << (x & 255); }
1391  // int bar() { return foo(256); }
1392#if 0
1393  case ISD::SRA_PARTS:
1394  case ISD::SRL_PARTS:
1395  case ISD::SHL_PARTS:
1396    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1397        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1398      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1399    else if (N3.getOpcode() == ISD::AND)
1400      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1401        // If the and is only masking out bits that cannot effect the shift,
1402        // eliminate the and.
1403        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1404        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1405          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1406      }
1407    break;
1408#endif
1409  }
1410
1411  // Memoize the node unless it returns a flag.
1412  SDNode *N;
1413  if (ResultTys.back() != MVT::Flag) {
1414    SDNode *&E =
1415      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
1416    if (E) return SDOperand(E, 0);
1417    E = N = new SDNode(Opcode, Ops);
1418  } else {
1419    N = new SDNode(Opcode, Ops);
1420  }
1421  setNodeValueTypes(N, ResultTys);
1422  AllNodes.push_back(N);
1423  return SDOperand(N, 0);
1424}
1425
1426void SelectionDAG::setNodeValueTypes(SDNode *N,
1427                                     std::vector<MVT::ValueType> &RetVals) {
1428  switch (RetVals.size()) {
1429  case 0: return;
1430  case 1: N->setValueTypes(RetVals[0]); return;
1431  case 2: setNodeValueTypes(N, RetVals[0], RetVals[1]); return;
1432  default: break;
1433  }
1434
1435  std::list<std::vector<MVT::ValueType> >::iterator I =
1436    std::find(VTList.begin(), VTList.end(), RetVals);
1437  if (I == VTList.end()) {
1438    VTList.push_front(RetVals);
1439    I = VTList.begin();
1440  }
1441
1442  N->setValueTypes(&(*I)[0], I->size());
1443}
1444
1445void SelectionDAG::setNodeValueTypes(SDNode *N, MVT::ValueType VT1,
1446                                     MVT::ValueType VT2) {
1447  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1448       E = VTList.end(); I != E; ++I) {
1449    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) {
1450      N->setValueTypes(&(*I)[0], 2);
1451      return;
1452    }
1453  }
1454  std::vector<MVT::ValueType> V;
1455  V.push_back(VT1);
1456  V.push_back(VT2);
1457  VTList.push_front(V);
1458  N->setValueTypes(&(*VTList.begin())[0], 2);
1459}
1460
1461
1462/// SelectNodeTo - These are used for target selectors to *mutate* the
1463/// specified node to have the specified return type, Target opcode, and
1464/// operands.  Note that target opcodes are stored as
1465/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1466///
1467/// Note that SelectNodeTo returns the resultant node.  If there is already a
1468/// node of the specified opcode and operands, it returns that node instead of
1469/// the current one.
1470SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1471                                     MVT::ValueType VT) {
1472  // If an identical node already exists, use it.
1473  SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)];
1474  if (ON) return SDOperand(ON, 0);
1475
1476  RemoveNodeFromCSEMaps(N);
1477
1478  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1479  N->setValueTypes(VT);
1480
1481  ON = N;   // Memoize the new node.
1482  return SDOperand(N, 0);
1483}
1484
1485SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1486                                     MVT::ValueType VT, SDOperand Op1) {
1487  // If an identical node already exists, use it.
1488  SDNode *&ON = UnaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1489                                        std::make_pair(Op1, VT))];
1490  if (ON) return SDOperand(ON, 0);
1491
1492  RemoveNodeFromCSEMaps(N);
1493  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1494  N->setValueTypes(VT);
1495  N->setOperands(Op1);
1496
1497  ON = N;   // Memoize the new node.
1498  return SDOperand(N, 0);
1499}
1500
1501SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1502                                     MVT::ValueType VT, SDOperand Op1,
1503                                     SDOperand Op2) {
1504  // If an identical node already exists, use it.
1505  SDNode *&ON = BinaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1506                                         std::make_pair(Op1, Op2))];
1507  if (ON) return SDOperand(ON, 0);
1508
1509  RemoveNodeFromCSEMaps(N);
1510  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1511  N->setValueTypes(VT);
1512  N->setOperands(Op1, Op2);
1513
1514  ON = N;   // Memoize the new node.
1515  return SDOperand(N, 0);
1516}
1517
1518SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1519                                     MVT::ValueType VT, SDOperand Op1,
1520                                     SDOperand Op2, SDOperand Op3) {
1521  // If an identical node already exists, use it.
1522  std::vector<SDOperand> OpList;
1523  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1524  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1525                                              std::make_pair(VT, OpList))];
1526  if (ON) return SDOperand(ON, 0);
1527
1528  RemoveNodeFromCSEMaps(N);
1529  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1530  N->setValueTypes(VT);
1531  N->setOperands(Op1, Op2, Op3);
1532
1533  ON = N;   // Memoize the new node.
1534  return SDOperand(N, 0);
1535}
1536
1537SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1538                                     MVT::ValueType VT, SDOperand Op1,
1539                                     SDOperand Op2, SDOperand Op3,
1540                                     SDOperand Op4) {
1541  // If an identical node already exists, use it.
1542  std::vector<SDOperand> OpList;
1543  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1544  OpList.push_back(Op4);
1545  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1546                                              std::make_pair(VT, OpList))];
1547  if (ON) return SDOperand(ON, 0);
1548
1549  RemoveNodeFromCSEMaps(N);
1550  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1551  N->setValueTypes(VT);
1552  N->setOperands(Op1, Op2, Op3, Op4);
1553
1554  ON = N;   // Memoize the new node.
1555  return SDOperand(N, 0);
1556}
1557
1558SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1559                                     MVT::ValueType VT, SDOperand Op1,
1560                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1561                                     SDOperand Op5) {
1562  // If an identical node already exists, use it.
1563  std::vector<SDOperand> OpList;
1564  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1565  OpList.push_back(Op4); OpList.push_back(Op5);
1566  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1567                                              std::make_pair(VT, OpList))];
1568  if (ON) return SDOperand(ON, 0);
1569
1570  RemoveNodeFromCSEMaps(N);
1571  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1572  N->setValueTypes(VT);
1573  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1574
1575  ON = N;   // Memoize the new node.
1576  return SDOperand(N, 0);
1577}
1578
1579SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1580                                     MVT::ValueType VT, SDOperand Op1,
1581                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1582                                     SDOperand Op5, SDOperand Op6) {
1583  // If an identical node already exists, use it.
1584  std::vector<SDOperand> OpList;
1585  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1586  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1587  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1588                                              std::make_pair(VT, OpList))];
1589  if (ON) return SDOperand(ON, 0);
1590
1591  RemoveNodeFromCSEMaps(N);
1592  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1593  N->setValueTypes(VT);
1594  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
1595
1596  ON = N;   // Memoize the new node.
1597  return SDOperand(N, 0);
1598}
1599
1600SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1601                                     MVT::ValueType VT1, MVT::ValueType VT2,
1602                                     SDOperand Op1, SDOperand Op2) {
1603  // If an identical node already exists, use it.
1604  std::vector<SDOperand> OpList;
1605  OpList.push_back(Op1); OpList.push_back(Op2);
1606  std::vector<MVT::ValueType> VTList;
1607  VTList.push_back(VT1); VTList.push_back(VT2);
1608  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1609                                              std::make_pair(VTList, OpList))];
1610  if (ON) return SDOperand(ON, 0);
1611
1612  RemoveNodeFromCSEMaps(N);
1613  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1614  setNodeValueTypes(N, VT1, VT2);
1615  N->setOperands(Op1, Op2);
1616
1617  ON = N;   // Memoize the new node.
1618  return SDOperand(N, 0);
1619}
1620
1621SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1622                                     MVT::ValueType VT1, MVT::ValueType VT2,
1623                                     SDOperand Op1, SDOperand Op2,
1624                                     SDOperand Op3) {
1625  // If an identical node already exists, use it.
1626  std::vector<SDOperand> OpList;
1627  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1628  std::vector<MVT::ValueType> VTList;
1629  VTList.push_back(VT1); VTList.push_back(VT2);
1630  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1631                                              std::make_pair(VTList, OpList))];
1632  if (ON) return SDOperand(ON, 0);
1633
1634  RemoveNodeFromCSEMaps(N);
1635  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1636  setNodeValueTypes(N, VT1, VT2);
1637  N->setOperands(Op1, Op2, Op3);
1638
1639  ON = N;   // Memoize the new node.
1640  return SDOperand(N, 0);
1641}
1642
1643SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1644                                     MVT::ValueType VT1, MVT::ValueType VT2,
1645                                     SDOperand Op1, SDOperand Op2,
1646                                     SDOperand Op3, SDOperand Op4) {
1647  // If an identical node already exists, use it.
1648  std::vector<SDOperand> OpList;
1649  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1650  OpList.push_back(Op4);
1651  std::vector<MVT::ValueType> VTList;
1652  VTList.push_back(VT1); VTList.push_back(VT2);
1653  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1654                                              std::make_pair(VTList, OpList))];
1655  if (ON) return SDOperand(ON, 0);
1656
1657  RemoveNodeFromCSEMaps(N);
1658  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1659  setNodeValueTypes(N, VT1, VT2);
1660  N->setOperands(Op1, Op2, Op3, Op4);
1661
1662  ON = N;   // Memoize the new node.
1663  return SDOperand(N, 0);
1664}
1665
1666SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1667                                     MVT::ValueType VT1, MVT::ValueType VT2,
1668                                     SDOperand Op1, SDOperand Op2,
1669                                     SDOperand Op3, SDOperand Op4,
1670                                     SDOperand Op5) {
1671  // If an identical node already exists, use it.
1672  std::vector<SDOperand> OpList;
1673  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1674  OpList.push_back(Op4); OpList.push_back(Op5);
1675  std::vector<MVT::ValueType> VTList;
1676  VTList.push_back(VT1); VTList.push_back(VT2);
1677  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1678                                              std::make_pair(VTList, OpList))];
1679  if (ON) return SDOperand(ON, 0);
1680
1681  RemoveNodeFromCSEMaps(N);
1682  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1683  setNodeValueTypes(N, VT1, VT2);
1684  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1685
1686  ON = N;   // Memoize the new node.
1687  return SDOperand(N, 0);
1688}
1689
1690// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
1691/// This can cause recursive merging of nodes in the DAG.
1692///
1693/// This version assumes From/To have a single result value.
1694///
1695void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
1696                                      std::vector<SDNode*> *Deleted) {
1697  SDNode *From = FromN.Val, *To = ToN.Val;
1698  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
1699         "Cannot replace with this method!");
1700  assert(From != To && "Cannot replace uses of with self");
1701
1702  while (!From->use_empty()) {
1703    // Process users until they are all gone.
1704    SDNode *U = *From->use_begin();
1705
1706    // This node is about to morph, remove its old self from the CSE maps.
1707    RemoveNodeFromCSEMaps(U);
1708
1709    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
1710         I != E; ++I)
1711      if (I->Val == From) {
1712        From->removeUser(U);
1713        I->Val = To;
1714        To->addUser(U);
1715      }
1716
1717    // Now that we have modified U, add it back to the CSE maps.  If it already
1718    // exists there, recursively merge the results together.
1719    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
1720      ReplaceAllUsesWith(U, Existing, Deleted);
1721      // U is now dead.
1722      if (Deleted) Deleted->push_back(U);
1723      DeleteNodeNotInCSEMaps(U);
1724    }
1725  }
1726}
1727
1728/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
1729/// This can cause recursive merging of nodes in the DAG.
1730///
1731/// This version assumes From/To have matching types and numbers of result
1732/// values.
1733///
1734void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
1735                                      std::vector<SDNode*> *Deleted) {
1736  assert(From != To && "Cannot replace uses of with self");
1737  assert(From->getNumValues() == To->getNumValues() &&
1738         "Cannot use this version of ReplaceAllUsesWith!");
1739  if (From->getNumValues() == 1) {  // If possible, use the faster version.
1740    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
1741    return;
1742  }
1743
1744  while (!From->use_empty()) {
1745    // Process users until they are all gone.
1746    SDNode *U = *From->use_begin();
1747
1748    // This node is about to morph, remove its old self from the CSE maps.
1749    RemoveNodeFromCSEMaps(U);
1750
1751    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
1752         I != E; ++I)
1753      if (I->Val == From) {
1754        From->removeUser(U);
1755        I->Val = To;
1756        To->addUser(U);
1757      }
1758
1759    // Now that we have modified U, add it back to the CSE maps.  If it already
1760    // exists there, recursively merge the results together.
1761    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
1762      ReplaceAllUsesWith(U, Existing, Deleted);
1763      // U is now dead.
1764      if (Deleted) Deleted->push_back(U);
1765      DeleteNodeNotInCSEMaps(U);
1766    }
1767  }
1768}
1769
1770/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
1771/// This can cause recursive merging of nodes in the DAG.
1772///
1773/// This version can replace From with any result values.  To must match the
1774/// number and types of values returned by From.
1775void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
1776                                      const std::vector<SDOperand> &To,
1777                                      std::vector<SDNode*> *Deleted) {
1778  assert(From->getNumValues() == To.size() &&
1779         "Incorrect number of values to replace with!");
1780  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
1781    // Degenerate case handled above.
1782    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
1783    return;
1784  }
1785
1786  while (!From->use_empty()) {
1787    // Process users until they are all gone.
1788    SDNode *U = *From->use_begin();
1789
1790    // This node is about to morph, remove its old self from the CSE maps.
1791    RemoveNodeFromCSEMaps(U);
1792
1793    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
1794         I != E; ++I)
1795      if (I->Val == From) {
1796        const SDOperand &ToOp = To[I->ResNo];
1797        From->removeUser(U);
1798        *I = ToOp;
1799        ToOp.Val->addUser(U);
1800      }
1801
1802    // Now that we have modified U, add it back to the CSE maps.  If it already
1803    // exists there, recursively merge the results together.
1804    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
1805      ReplaceAllUsesWith(U, Existing, Deleted);
1806      // U is now dead.
1807      if (Deleted) Deleted->push_back(U);
1808      DeleteNodeNotInCSEMaps(U);
1809    }
1810  }
1811}
1812
1813
1814//===----------------------------------------------------------------------===//
1815//                              SDNode Class
1816//===----------------------------------------------------------------------===//
1817
1818
1819/// getValueTypeList - Return a pointer to the specified value type.
1820///
1821MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
1822  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
1823  VTs[VT] = VT;
1824  return &VTs[VT];
1825}
1826
1827/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1828/// indicated value.  This method ignores uses of other values defined by this
1829/// operation.
1830bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) {
1831  assert(Value < getNumValues() && "Bad value!");
1832
1833  // If there is only one value, this is easy.
1834  if (getNumValues() == 1)
1835    return use_size() == NUses;
1836  if (Uses.size() < NUses) return false;
1837
1838  SDOperand TheValue(this, Value);
1839
1840  std::set<SDNode*> UsersHandled;
1841
1842  for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end();
1843       UI != E; ++UI) {
1844    SDNode *User = *UI;
1845    if (User->getNumOperands() == 1 ||
1846        UsersHandled.insert(User).second)     // First time we've seen this?
1847      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
1848        if (User->getOperand(i) == TheValue) {
1849          if (NUses == 0)
1850            return false;   // too many uses
1851          --NUses;
1852        }
1853  }
1854
1855  // Found exactly the right number of uses?
1856  return NUses == 0;
1857}
1858
1859
1860const char *SDNode::getOperationName(const SelectionDAG *G) const {
1861  switch (getOpcode()) {
1862  default:
1863    if (getOpcode() < ISD::BUILTIN_OP_END)
1864      return "<<Unknown DAG Node>>";
1865    else {
1866      if (G) {
1867        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
1868          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
1869            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
1870
1871        TargetLowering &TLI = G->getTargetLoweringInfo();
1872        const char *Name =
1873          TLI.getTargetNodeName(getOpcode());
1874        if (Name) return Name;
1875      }
1876
1877      return "<<Unknown Target Node>>";
1878    }
1879
1880  case ISD::PCMARKER:      return "PCMarker";
1881  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
1882  case ISD::SRCVALUE:      return "SrcValue";
1883  case ISD::VALUETYPE:     return "ValueType";
1884  case ISD::STRING:        return "String";
1885  case ISD::EntryToken:    return "EntryToken";
1886  case ISD::TokenFactor:   return "TokenFactor";
1887  case ISD::AssertSext:    return "AssertSext";
1888  case ISD::AssertZext:    return "AssertZext";
1889  case ISD::Constant:      return "Constant";
1890  case ISD::TargetConstant: return "TargetConstant";
1891  case ISD::ConstantFP:    return "ConstantFP";
1892  case ISD::ConstantVec:   return "ConstantVec";
1893  case ISD::GlobalAddress: return "GlobalAddress";
1894  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
1895  case ISD::FrameIndex:    return "FrameIndex";
1896  case ISD::TargetFrameIndex: return "TargetFrameIndex";
1897  case ISD::BasicBlock:    return "BasicBlock";
1898  case ISD::Register:      return "Register";
1899  case ISD::ExternalSymbol: return "ExternalSymbol";
1900  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
1901  case ISD::ConstantPool:  return "ConstantPool";
1902  case ISD::TargetConstantPool:  return "TargetConstantPool";
1903  case ISD::CopyToReg:     return "CopyToReg";
1904  case ISD::CopyFromReg:   return "CopyFromReg";
1905  case ISD::UNDEF:         return "undef";
1906
1907  // Unary operators
1908  case ISD::FABS:   return "fabs";
1909  case ISD::FNEG:   return "fneg";
1910  case ISD::FSQRT:  return "fsqrt";
1911  case ISD::FSIN:   return "fsin";
1912  case ISD::FCOS:   return "fcos";
1913
1914  // Binary operators
1915  case ISD::ADD:    return "add";
1916  case ISD::SUB:    return "sub";
1917  case ISD::MUL:    return "mul";
1918  case ISD::MULHU:  return "mulhu";
1919  case ISD::MULHS:  return "mulhs";
1920  case ISD::SDIV:   return "sdiv";
1921  case ISD::UDIV:   return "udiv";
1922  case ISD::SREM:   return "srem";
1923  case ISD::UREM:   return "urem";
1924  case ISD::AND:    return "and";
1925  case ISD::OR:     return "or";
1926  case ISD::XOR:    return "xor";
1927  case ISD::SHL:    return "shl";
1928  case ISD::SRA:    return "sra";
1929  case ISD::SRL:    return "srl";
1930  case ISD::FADD:   return "fadd";
1931  case ISD::FSUB:   return "fsub";
1932  case ISD::FMUL:   return "fmul";
1933  case ISD::FDIV:   return "fdiv";
1934  case ISD::FREM:   return "frem";
1935  case ISD::VADD:   return "vadd";
1936  case ISD::VSUB:   return "vsub";
1937  case ISD::VMUL:   return "vmul";
1938
1939  case ISD::SETCC:       return "setcc";
1940  case ISD::SELECT:      return "select";
1941  case ISD::SELECT_CC:   return "select_cc";
1942  case ISD::ADD_PARTS:   return "add_parts";
1943  case ISD::SUB_PARTS:   return "sub_parts";
1944  case ISD::SHL_PARTS:   return "shl_parts";
1945  case ISD::SRA_PARTS:   return "sra_parts";
1946  case ISD::SRL_PARTS:   return "srl_parts";
1947
1948  // Conversion operators.
1949  case ISD::SIGN_EXTEND: return "sign_extend";
1950  case ISD::ZERO_EXTEND: return "zero_extend";
1951  case ISD::ANY_EXTEND:  return "any_extend";
1952  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
1953  case ISD::TRUNCATE:    return "truncate";
1954  case ISD::FP_ROUND:    return "fp_round";
1955  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
1956  case ISD::FP_EXTEND:   return "fp_extend";
1957
1958  case ISD::SINT_TO_FP:  return "sint_to_fp";
1959  case ISD::UINT_TO_FP:  return "uint_to_fp";
1960  case ISD::FP_TO_SINT:  return "fp_to_sint";
1961  case ISD::FP_TO_UINT:  return "fp_to_uint";
1962  case ISD::BIT_CONVERT: return "bit_convert";
1963
1964    // Control flow instructions
1965  case ISD::BR:      return "br";
1966  case ISD::BRCOND:  return "brcond";
1967  case ISD::BRCONDTWOWAY:  return "brcondtwoway";
1968  case ISD::BR_CC:  return "br_cc";
1969  case ISD::BRTWOWAY_CC:  return "brtwoway_cc";
1970  case ISD::RET:     return "ret";
1971  case ISD::CALL:    return "call";
1972  case ISD::TAILCALL:return "tailcall";
1973  case ISD::CALLSEQ_START:  return "callseq_start";
1974  case ISD::CALLSEQ_END:    return "callseq_end";
1975
1976    // Other operators
1977  case ISD::LOAD:    return "load";
1978  case ISD::STORE:   return "store";
1979  case ISD::VLOAD:   return "vload";
1980  case ISD::EXTLOAD:    return "extload";
1981  case ISD::SEXTLOAD:   return "sextload";
1982  case ISD::ZEXTLOAD:   return "zextload";
1983  case ISD::TRUNCSTORE: return "truncstore";
1984
1985  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
1986  case ISD::EXTRACT_ELEMENT: return "extract_element";
1987  case ISD::BUILD_PAIR: return "build_pair";
1988  case ISD::MEMSET:  return "memset";
1989  case ISD::MEMCPY:  return "memcpy";
1990  case ISD::MEMMOVE: return "memmove";
1991
1992  // Bit counting
1993  case ISD::CTPOP:   return "ctpop";
1994  case ISD::CTTZ:    return "cttz";
1995  case ISD::CTLZ:    return "ctlz";
1996
1997  // IO Intrinsics
1998  case ISD::READPORT: return "readport";
1999  case ISD::WRITEPORT: return "writeport";
2000  case ISD::READIO: return "readio";
2001  case ISD::WRITEIO: return "writeio";
2002
2003  // Debug info
2004  case ISD::LOCATION: return "location";
2005  case ISD::DEBUG_LOC: return "debug_loc";
2006
2007  case ISD::CONDCODE:
2008    switch (cast<CondCodeSDNode>(this)->get()) {
2009    default: assert(0 && "Unknown setcc condition!");
2010    case ISD::SETOEQ:  return "setoeq";
2011    case ISD::SETOGT:  return "setogt";
2012    case ISD::SETOGE:  return "setoge";
2013    case ISD::SETOLT:  return "setolt";
2014    case ISD::SETOLE:  return "setole";
2015    case ISD::SETONE:  return "setone";
2016
2017    case ISD::SETO:    return "seto";
2018    case ISD::SETUO:   return "setuo";
2019    case ISD::SETUEQ:  return "setue";
2020    case ISD::SETUGT:  return "setugt";
2021    case ISD::SETUGE:  return "setuge";
2022    case ISD::SETULT:  return "setult";
2023    case ISD::SETULE:  return "setule";
2024    case ISD::SETUNE:  return "setune";
2025
2026    case ISD::SETEQ:   return "seteq";
2027    case ISD::SETGT:   return "setgt";
2028    case ISD::SETGE:   return "setge";
2029    case ISD::SETLT:   return "setlt";
2030    case ISD::SETLE:   return "setle";
2031    case ISD::SETNE:   return "setne";
2032    }
2033  }
2034}
2035
2036void SDNode::dump() const { dump(0); }
2037void SDNode::dump(const SelectionDAG *G) const {
2038  std::cerr << (void*)this << ": ";
2039
2040  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2041    if (i) std::cerr << ",";
2042    if (getValueType(i) == MVT::Other)
2043      std::cerr << "ch";
2044    else
2045      std::cerr << MVT::getValueTypeString(getValueType(i));
2046  }
2047  std::cerr << " = " << getOperationName(G);
2048
2049  std::cerr << " ";
2050  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2051    if (i) std::cerr << ", ";
2052    std::cerr << (void*)getOperand(i).Val;
2053    if (unsigned RN = getOperand(i).ResNo)
2054      std::cerr << ":" << RN;
2055  }
2056
2057  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2058    std::cerr << "<" << CSDN->getValue() << ">";
2059  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2060    std::cerr << "<" << CSDN->getValue() << ">";
2061  } else if (const GlobalAddressSDNode *GADN =
2062             dyn_cast<GlobalAddressSDNode>(this)) {
2063    int offset = GADN->getOffset();
2064    std::cerr << "<";
2065    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2066    if (offset > 0)
2067      std::cerr << " + " << offset;
2068    else
2069      std::cerr << " " << offset;
2070  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2071    std::cerr << "<" << FIDN->getIndex() << ">";
2072  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2073    std::cerr << "<" << *CP->get() << ">";
2074  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2075    std::cerr << "<";
2076    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2077    if (LBB)
2078      std::cerr << LBB->getName() << " ";
2079    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2080  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2081    if (G && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2082      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2083    } else {
2084      std::cerr << " #" << R->getReg();
2085    }
2086  } else if (const ExternalSymbolSDNode *ES =
2087             dyn_cast<ExternalSymbolSDNode>(this)) {
2088    std::cerr << "'" << ES->getSymbol() << "'";
2089  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2090    if (M->getValue())
2091      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2092    else
2093      std::cerr << "<null:" << M->getOffset() << ">";
2094  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2095    std::cerr << ":" << getValueTypeString(N->getVT());
2096  }
2097}
2098
2099static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2100  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2101    if (N->getOperand(i).Val->hasOneUse())
2102      DumpNodes(N->getOperand(i).Val, indent+2, G);
2103    else
2104      std::cerr << "\n" << std::string(indent+2, ' ')
2105                << (void*)N->getOperand(i).Val << ": <multiple use>";
2106
2107
2108  std::cerr << "\n" << std::string(indent, ' ');
2109  N->dump(G);
2110}
2111
2112void SelectionDAG::dump() const {
2113  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2114  std::vector<const SDNode*> Nodes;
2115  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2116       I != E; ++I)
2117    Nodes.push_back(I);
2118
2119  std::sort(Nodes.begin(), Nodes.end());
2120
2121  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2122    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2123      DumpNodes(Nodes[i], 2, this);
2124  }
2125
2126  DumpNodes(getRoot().Val, 2, this);
2127
2128  std::cerr << "\n\n";
2129}
2130
2131