SelectionDAG.cpp revision 9901e73caec653599f27d04075961afe4a7c29a1
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallSet.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/StringExtras.h"
40#include <algorithm>
41#include <cmath>
42using namespace llvm;
43
44/// makeVTList - Return an instance of the SDVTList struct initialized with the
45/// specified members.
46static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
47  SDVTList Res = {VTs, NumVTs};
48  return Res;
49}
50
51static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
52  switch (VT.getSimpleVT()) {
53  default: assert(0 && "Unknown FP format");
54  case MVT::f32:     return &APFloat::IEEEsingle;
55  case MVT::f64:     return &APFloat::IEEEdouble;
56  case MVT::f80:     return &APFloat::x87DoubleExtended;
57  case MVT::f128:    return &APFloat::IEEEquad;
58  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
59  }
60}
61
62SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
63
64//===----------------------------------------------------------------------===//
65//                              ConstantFPSDNode Class
66//===----------------------------------------------------------------------===//
67
68/// isExactlyValue - We don't rely on operator== working on double values, as
69/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
70/// As such, this method can be used to do an exact bit-for-bit comparison of
71/// two floating point values.
72bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
73  return getValueAPF().bitwiseIsEqual(V);
74}
75
76bool ConstantFPSDNode::isValueValidForType(MVT VT,
77                                           const APFloat& Val) {
78  assert(VT.isFloatingPoint() && "Can only convert between FP types");
79
80  // PPC long double cannot be converted to any other type.
81  if (VT == MVT::ppcf128 ||
82      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
83    return false;
84
85  // convert modifies in place, so make a copy.
86  APFloat Val2 = APFloat(Val);
87  bool losesInfo;
88  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
89                      &losesInfo);
90  return !losesInfo;
91}
92
93//===----------------------------------------------------------------------===//
94//                              ISD Namespace
95//===----------------------------------------------------------------------===//
96
97/// isBuildVectorAllOnes - Return true if the specified node is a
98/// BUILD_VECTOR where all of the elements are ~0 or undef.
99bool ISD::isBuildVectorAllOnes(const SDNode *N) {
100  // Look through a bit convert.
101  if (N->getOpcode() == ISD::BIT_CONVERT)
102    N = N->getOperand(0).getNode();
103
104  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
105
106  unsigned i = 0, e = N->getNumOperands();
107
108  // Skip over all of the undef values.
109  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
110    ++i;
111
112  // Do not accept an all-undef vector.
113  if (i == e) return false;
114
115  // Do not accept build_vectors that aren't all constants or which have non-~0
116  // elements.
117  SDValue NotZero = N->getOperand(i);
118  if (isa<ConstantSDNode>(NotZero)) {
119    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
120      return false;
121  } else if (isa<ConstantFPSDNode>(NotZero)) {
122    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
123                bitcastToAPInt().isAllOnesValue())
124      return false;
125  } else
126    return false;
127
128  // Okay, we have at least one ~0 value, check to see if the rest match or are
129  // undefs.
130  for (++i; i != e; ++i)
131    if (N->getOperand(i) != NotZero &&
132        N->getOperand(i).getOpcode() != ISD::UNDEF)
133      return false;
134  return true;
135}
136
137
138/// isBuildVectorAllZeros - Return true if the specified node is a
139/// BUILD_VECTOR where all of the elements are 0 or undef.
140bool ISD::isBuildVectorAllZeros(const SDNode *N) {
141  // Look through a bit convert.
142  if (N->getOpcode() == ISD::BIT_CONVERT)
143    N = N->getOperand(0).getNode();
144
145  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
146
147  unsigned i = 0, e = N->getNumOperands();
148
149  // Skip over all of the undef values.
150  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
151    ++i;
152
153  // Do not accept an all-undef vector.
154  if (i == e) return false;
155
156  // Do not accept build_vectors that aren't all constants or which have non-~0
157  // elements.
158  SDValue Zero = N->getOperand(i);
159  if (isa<ConstantSDNode>(Zero)) {
160    if (!cast<ConstantSDNode>(Zero)->isNullValue())
161      return false;
162  } else if (isa<ConstantFPSDNode>(Zero)) {
163    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
164      return false;
165  } else
166    return false;
167
168  // Okay, we have at least one ~0 value, check to see if the rest match or are
169  // undefs.
170  for (++i; i != e; ++i)
171    if (N->getOperand(i) != Zero &&
172        N->getOperand(i).getOpcode() != ISD::UNDEF)
173      return false;
174  return true;
175}
176
177/// isScalarToVector - Return true if the specified node is a
178/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
179/// element is not an undef.
180bool ISD::isScalarToVector(const SDNode *N) {
181  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
182    return true;
183
184  if (N->getOpcode() != ISD::BUILD_VECTOR)
185    return false;
186  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
187    return false;
188  unsigned NumElems = N->getNumOperands();
189  for (unsigned i = 1; i < NumElems; ++i) {
190    SDValue V = N->getOperand(i);
191    if (V.getOpcode() != ISD::UNDEF)
192      return false;
193  }
194  return true;
195}
196
197
198/// isDebugLabel - Return true if the specified node represents a debug
199/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
200bool ISD::isDebugLabel(const SDNode *N) {
201  SDValue Zero;
202  if (N->getOpcode() == ISD::DBG_LABEL)
203    return true;
204  if (N->isMachineOpcode() &&
205      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
206    return true;
207  return false;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: assert(0 && "Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309const TargetMachine &SelectionDAG::getTarget() const {
310  return MF->getTarget();
311}
312
313//===----------------------------------------------------------------------===//
314//                           SDNode Profile Support
315//===----------------------------------------------------------------------===//
316
317/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
318///
319static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
320  ID.AddInteger(OpC);
321}
322
323/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
324/// solely with their pointer.
325static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
326  ID.AddPointer(VTList.VTs);
327}
328
329/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
330///
331static void AddNodeIDOperands(FoldingSetNodeID &ID,
332                              const SDValue *Ops, unsigned NumOps) {
333  for (; NumOps; --NumOps, ++Ops) {
334    ID.AddPointer(Ops->getNode());
335    ID.AddInteger(Ops->getResNo());
336  }
337}
338
339/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
340///
341static void AddNodeIDOperands(FoldingSetNodeID &ID,
342                              const SDUse *Ops, unsigned NumOps) {
343  for (; NumOps; --NumOps, ++Ops) {
344    ID.AddPointer(Ops->getVal());
345    ID.AddInteger(Ops->getSDValue().getResNo());
346  }
347}
348
349static void AddNodeIDNode(FoldingSetNodeID &ID,
350                          unsigned short OpC, SDVTList VTList,
351                          const SDValue *OpList, unsigned N) {
352  AddNodeIDOpcode(ID, OpC);
353  AddNodeIDValueTypes(ID, VTList);
354  AddNodeIDOperands(ID, OpList, N);
355}
356
357/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
358/// the NodeID data.
359static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
360  switch (N->getOpcode()) {
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::ARG_FLAGS:
363    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
364    break;
365  case ISD::TargetConstant:
366  case ISD::Constant:
367    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
368    break;
369  case ISD::TargetConstantFP:
370  case ISD::ConstantFP: {
371    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
372    break;
373  }
374  case ISD::TargetGlobalAddress:
375  case ISD::GlobalAddress:
376  case ISD::TargetGlobalTLSAddress:
377  case ISD::GlobalTLSAddress: {
378    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
379    ID.AddPointer(GA->getGlobal());
380    ID.AddInteger(GA->getOffset());
381    break;
382  }
383  case ISD::BasicBlock:
384    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
385    break;
386  case ISD::Register:
387    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
388    break;
389  case ISD::DBG_STOPPOINT: {
390    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
391    ID.AddInteger(DSP->getLine());
392    ID.AddInteger(DSP->getColumn());
393    ID.AddPointer(DSP->getCompileUnit());
394    break;
395  }
396  case ISD::SRCVALUE:
397    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
398    break;
399  case ISD::MEMOPERAND: {
400    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
401    MO.Profile(ID);
402    break;
403  }
404  case ISD::FrameIndex:
405  case ISD::TargetFrameIndex:
406    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
407    break;
408  case ISD::JumpTable:
409  case ISD::TargetJumpTable:
410    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
411    break;
412  case ISD::ConstantPool:
413  case ISD::TargetConstantPool: {
414    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
415    ID.AddInteger(CP->getAlignment());
416    ID.AddInteger(CP->getOffset());
417    if (CP->isMachineConstantPoolEntry())
418      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
419    else
420      ID.AddPointer(CP->getConstVal());
421    break;
422  }
423  case ISD::CALL: {
424    const CallSDNode *Call = cast<CallSDNode>(N);
425    ID.AddInteger(Call->getCallingConv());
426    ID.AddInteger(Call->isVarArg());
427    break;
428  }
429  case ISD::LOAD: {
430    const LoadSDNode *LD = cast<LoadSDNode>(N);
431    ID.AddInteger(LD->getAddressingMode());
432    ID.AddInteger(LD->getExtensionType());
433    ID.AddInteger(LD->getMemoryVT().getRawBits());
434    ID.AddInteger(LD->getRawFlags());
435    break;
436  }
437  case ISD::STORE: {
438    const StoreSDNode *ST = cast<StoreSDNode>(N);
439    ID.AddInteger(ST->getAddressingMode());
440    ID.AddInteger(ST->isTruncatingStore());
441    ID.AddInteger(ST->getMemoryVT().getRawBits());
442    ID.AddInteger(ST->getRawFlags());
443    break;
444  }
445  case ISD::ATOMIC_CMP_SWAP_8:
446  case ISD::ATOMIC_SWAP_8:
447  case ISD::ATOMIC_LOAD_ADD_8:
448  case ISD::ATOMIC_LOAD_SUB_8:
449  case ISD::ATOMIC_LOAD_AND_8:
450  case ISD::ATOMIC_LOAD_OR_8:
451  case ISD::ATOMIC_LOAD_XOR_8:
452  case ISD::ATOMIC_LOAD_NAND_8:
453  case ISD::ATOMIC_LOAD_MIN_8:
454  case ISD::ATOMIC_LOAD_MAX_8:
455  case ISD::ATOMIC_LOAD_UMIN_8:
456  case ISD::ATOMIC_LOAD_UMAX_8:
457  case ISD::ATOMIC_CMP_SWAP_16:
458  case ISD::ATOMIC_SWAP_16:
459  case ISD::ATOMIC_LOAD_ADD_16:
460  case ISD::ATOMIC_LOAD_SUB_16:
461  case ISD::ATOMIC_LOAD_AND_16:
462  case ISD::ATOMIC_LOAD_OR_16:
463  case ISD::ATOMIC_LOAD_XOR_16:
464  case ISD::ATOMIC_LOAD_NAND_16:
465  case ISD::ATOMIC_LOAD_MIN_16:
466  case ISD::ATOMIC_LOAD_MAX_16:
467  case ISD::ATOMIC_LOAD_UMIN_16:
468  case ISD::ATOMIC_LOAD_UMAX_16:
469  case ISD::ATOMIC_CMP_SWAP_32:
470  case ISD::ATOMIC_SWAP_32:
471  case ISD::ATOMIC_LOAD_ADD_32:
472  case ISD::ATOMIC_LOAD_SUB_32:
473  case ISD::ATOMIC_LOAD_AND_32:
474  case ISD::ATOMIC_LOAD_OR_32:
475  case ISD::ATOMIC_LOAD_XOR_32:
476  case ISD::ATOMIC_LOAD_NAND_32:
477  case ISD::ATOMIC_LOAD_MIN_32:
478  case ISD::ATOMIC_LOAD_MAX_32:
479  case ISD::ATOMIC_LOAD_UMIN_32:
480  case ISD::ATOMIC_LOAD_UMAX_32:
481  case ISD::ATOMIC_CMP_SWAP_64:
482  case ISD::ATOMIC_SWAP_64:
483  case ISD::ATOMIC_LOAD_ADD_64:
484  case ISD::ATOMIC_LOAD_SUB_64:
485  case ISD::ATOMIC_LOAD_AND_64:
486  case ISD::ATOMIC_LOAD_OR_64:
487  case ISD::ATOMIC_LOAD_XOR_64:
488  case ISD::ATOMIC_LOAD_NAND_64:
489  case ISD::ATOMIC_LOAD_MIN_64:
490  case ISD::ATOMIC_LOAD_MAX_64:
491  case ISD::ATOMIC_LOAD_UMIN_64:
492  case ISD::ATOMIC_LOAD_UMAX_64: {
493    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
494    ID.AddInteger(AT->getRawFlags());
495    break;
496  }
497  } // end switch (N->getOpcode())
498}
499
500/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
501/// data.
502static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
503  AddNodeIDOpcode(ID, N->getOpcode());
504  // Add the return value info.
505  AddNodeIDValueTypes(ID, N->getVTList());
506  // Add the operand info.
507  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
508
509  // Handle SDNode leafs with special info.
510  AddNodeIDCustom(ID, N);
511}
512
513/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
514/// the CSE map that carries both alignment and volatility information.
515///
516static inline unsigned
517encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
518  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
519}
520
521//===----------------------------------------------------------------------===//
522//                              SelectionDAG Class
523//===----------------------------------------------------------------------===//
524
525/// doNotCSE - Return true if CSE should not be performed for this node.
526static bool doNotCSE(SDNode *N) {
527  if (N->getValueType(0) == MVT::Flag)
528    return true; // Never CSE anything that produces a flag.
529
530  switch (N->getOpcode()) {
531  default: break;
532  case ISD::HANDLENODE:
533  case ISD::DBG_LABEL:
534  case ISD::DBG_STOPPOINT:
535  case ISD::EH_LABEL:
536  case ISD::DECLARE:
537    return true;   // Never CSE these nodes.
538  }
539
540  // Check that remaining values produced are not flags.
541  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
542    if (N->getValueType(i) == MVT::Flag)
543      return true; // Never CSE anything that produces a flag.
544
545  return false;
546}
547
548/// RemoveDeadNodes - This method deletes all unreachable nodes in the
549/// SelectionDAG.
550void SelectionDAG::RemoveDeadNodes() {
551  // Create a dummy node (which is not added to allnodes), that adds a reference
552  // to the root node, preventing it from being deleted.
553  HandleSDNode Dummy(getRoot());
554
555  SmallVector<SDNode*, 128> DeadNodes;
556
557  // Add all obviously-dead nodes to the DeadNodes worklist.
558  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
559    if (I->use_empty())
560      DeadNodes.push_back(I);
561
562  RemoveDeadNodes(DeadNodes);
563
564  // If the root changed (e.g. it was a dead load, update the root).
565  setRoot(Dummy.getValue());
566}
567
568/// RemoveDeadNodes - This method deletes the unreachable nodes in the
569/// given list, and any nodes that become unreachable as a result.
570void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
571                                   DAGUpdateListener *UpdateListener) {
572
573  // Process the worklist, deleting the nodes and adding their uses to the
574  // worklist.
575  while (!DeadNodes.empty()) {
576    SDNode *N = DeadNodes.back();
577    DeadNodes.pop_back();
578
579    if (UpdateListener)
580      UpdateListener->NodeDeleted(N, 0);
581
582    // Take the node out of the appropriate CSE map.
583    RemoveNodeFromCSEMaps(N);
584
585    // Next, brutally remove the operand list.  This is safe to do, as there are
586    // no cycles in the graph.
587    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
588      SDNode *Operand = I->getVal();
589      Operand->removeUser(std::distance(N->op_begin(), I), N);
590
591      // Now that we removed this operand, see if there are no uses of it left.
592      if (Operand->use_empty())
593        DeadNodes.push_back(Operand);
594    }
595
596    if (N->OperandsNeedDelete)
597      delete[] N->OperandList;
598
599    N->OperandList = 0;
600    N->NumOperands = 0;
601
602    // Finally, remove N itself.
603    NodeAllocator.Deallocate(AllNodes.remove(N));
604  }
605}
606
607void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
608  SmallVector<SDNode*, 16> DeadNodes(1, N);
609  RemoveDeadNodes(DeadNodes, UpdateListener);
610}
611
612void SelectionDAG::DeleteNode(SDNode *N) {
613  assert(N->use_empty() && "Cannot delete a node that is not dead!");
614
615  // First take this out of the appropriate CSE map.
616  RemoveNodeFromCSEMaps(N);
617
618  // Finally, remove uses due to operands of this node, remove from the
619  // AllNodes list, and delete the node.
620  DeleteNodeNotInCSEMaps(N);
621}
622
623void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
624  // Drop all of the operands and decrement used node's use counts.
625  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
626    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
627
628  if (N->OperandsNeedDelete) {
629    delete[] N->OperandList;
630    N->OperandList = 0;
631  }
632
633  assert(N != AllNodes.begin());
634  NodeAllocator.Deallocate(AllNodes.remove(N));
635}
636
637/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
638/// correspond to it.  This is useful when we're about to delete or repurpose
639/// the node.  We don't want future request for structurally identical nodes
640/// to return N anymore.
641bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
642  bool Erased = false;
643  switch (N->getOpcode()) {
644  case ISD::EntryToken:
645    assert(0 && "EntryToken should not be in CSEMaps!");
646    return false;
647  case ISD::HANDLENODE: return false;  // noop.
648  case ISD::CONDCODE:
649    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
650           "Cond code doesn't exist!");
651    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
652    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
653    break;
654  case ISD::ExternalSymbol:
655    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
656    break;
657  case ISD::TargetExternalSymbol:
658    Erased =
659      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
660    break;
661  case ISD::VALUETYPE: {
662    MVT VT = cast<VTSDNode>(N)->getVT();
663    if (VT.isExtended()) {
664      Erased = ExtendedValueTypeNodes.erase(VT);
665    } else {
666      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
667      ValueTypeNodes[VT.getSimpleVT()] = 0;
668    }
669    break;
670  }
671  default:
672    // Remove it from the CSE Map.
673    Erased = CSEMap.RemoveNode(N);
674    break;
675  }
676#ifndef NDEBUG
677  // Verify that the node was actually in one of the CSE maps, unless it has a
678  // flag result (which cannot be CSE'd) or is one of the special cases that are
679  // not subject to CSE.
680  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
681      !N->isMachineOpcode() && !doNotCSE(N)) {
682    N->dump(this);
683    cerr << "\n";
684    assert(0 && "Node is not in map!");
685  }
686#endif
687  return Erased;
688}
689
690/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
691/// has been taken out and modified in some way.  If the specified node already
692/// exists in the CSE maps, do not modify the maps, but return the existing node
693/// instead.  If it doesn't exist, add it and return null.
694///
695SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
696  assert(N->getNumOperands() && "This is a leaf node!");
697
698  if (doNotCSE(N))
699    return 0;
700
701  SDNode *New = CSEMap.GetOrInsertNode(N);
702  if (New != N) return New;  // Node already existed.
703  return 0;
704}
705
706/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
707/// were replaced with those specified.  If this node is never memoized,
708/// return null, otherwise return a pointer to the slot it would take.  If a
709/// node already exists with these operands, the slot will be non-null.
710SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
711                                           void *&InsertPos) {
712  if (doNotCSE(N))
713    return 0;
714
715  SDValue Ops[] = { Op };
716  FoldingSetNodeID ID;
717  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
718  AddNodeIDCustom(ID, N);
719  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
720}
721
722/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
723/// were replaced with those specified.  If this node is never memoized,
724/// return null, otherwise return a pointer to the slot it would take.  If a
725/// node already exists with these operands, the slot will be non-null.
726SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
727                                           SDValue Op1, SDValue Op2,
728                                           void *&InsertPos) {
729  if (doNotCSE(N))
730    return 0;
731
732  SDValue Ops[] = { Op1, Op2 };
733  FoldingSetNodeID ID;
734  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
735  AddNodeIDCustom(ID, N);
736  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
737}
738
739
740/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
741/// were replaced with those specified.  If this node is never memoized,
742/// return null, otherwise return a pointer to the slot it would take.  If a
743/// node already exists with these operands, the slot will be non-null.
744SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
745                                           const SDValue *Ops,unsigned NumOps,
746                                           void *&InsertPos) {
747  if (doNotCSE(N))
748    return 0;
749
750  FoldingSetNodeID ID;
751  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
752  AddNodeIDCustom(ID, N);
753  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
754}
755
756/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
757void SelectionDAG::VerifyNode(SDNode *N) {
758  switch (N->getOpcode()) {
759  default:
760    break;
761  case ISD::BUILD_PAIR: {
762    MVT VT = N->getValueType(0);
763    assert(N->getNumValues() == 1 && "Too many results!");
764    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
765           "Wrong return type!");
766    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
767    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
768           "Mismatched operand types!");
769    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
770           "Wrong operand type!");
771    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
772           "Wrong return type size");
773    break;
774  }
775  case ISD::BUILD_VECTOR: {
776    assert(N->getNumValues() == 1 && "Too many results!");
777    assert(N->getValueType(0).isVector() && "Wrong return type!");
778    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
779           "Wrong number of operands!");
780    // FIXME: Change vector_shuffle to a variadic node with mask elements being
781    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
782    // operand, and it is not always possible to legalize it.  Turning off the
783    // following checks at least makes it possible to legalize most of the time.
784//    MVT EltVT = N->getValueType(0).getVectorElementType();
785//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
786//      assert(I->getSDValue().getValueType() == EltVT &&
787//             "Wrong operand type!");
788    break;
789  }
790  }
791}
792
793/// getMVTAlignment - Compute the default alignment value for the
794/// given type.
795///
796unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
797  const Type *Ty = VT == MVT::iPTR ?
798                   PointerType::get(Type::Int8Ty, 0) :
799                   VT.getTypeForMVT();
800
801  return TLI.getTargetData()->getABITypeAlignment(Ty);
802}
803
804SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
805  : TLI(tli), FLI(fli),
806    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
807    Root(getEntryNode()) {
808  AllNodes.push_back(&EntryNode);
809}
810
811void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
812  MF = &mf;
813  MMI = mmi;
814}
815
816SelectionDAG::~SelectionDAG() {
817  allnodes_clear();
818}
819
820void SelectionDAG::allnodes_clear() {
821  assert(&*AllNodes.begin() == &EntryNode);
822  AllNodes.remove(AllNodes.begin());
823  while (!AllNodes.empty()) {
824    SDNode *N = AllNodes.remove(AllNodes.begin());
825    N->SetNextInBucket(0);
826
827    if (N->OperandsNeedDelete) {
828      delete [] N->OperandList;
829      N->OperandList = 0;
830    }
831
832    NodeAllocator.Deallocate(N);
833  }
834}
835
836void SelectionDAG::clear() {
837  allnodes_clear();
838  OperandAllocator.Reset();
839  CSEMap.clear();
840
841  ExtendedValueTypeNodes.clear();
842  ExternalSymbols.clear();
843  TargetExternalSymbols.clear();
844  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
845            static_cast<CondCodeSDNode*>(0));
846  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
847            static_cast<SDNode*>(0));
848
849  EntryNode.Uses = 0;
850  AllNodes.push_back(&EntryNode);
851  Root = getEntryNode();
852}
853
854SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
855  if (Op.getValueType() == VT) return Op;
856  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
857                                   VT.getSizeInBits());
858  return getNode(ISD::AND, Op.getValueType(), Op,
859                 getConstant(Imm, Op.getValueType()));
860}
861
862SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
863  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
864  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
865}
866
867SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
868  return getConstant(*ConstantInt::get(Val), VT, isT);
869}
870
871SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
872  assert(VT.isInteger() && "Cannot create FP integer constant!");
873
874  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
875  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
876         "APInt size does not match type size!");
877
878  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
879  FoldingSetNodeID ID;
880  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
881  ID.AddPointer(&Val);
882  void *IP = 0;
883  SDNode *N = NULL;
884  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
885    if (!VT.isVector())
886      return SDValue(N, 0);
887  if (!N) {
888    N = NodeAllocator.Allocate<ConstantSDNode>();
889    new (N) ConstantSDNode(isT, &Val, EltVT);
890    CSEMap.InsertNode(N, IP);
891    AllNodes.push_back(N);
892  }
893
894  SDValue Result(N, 0);
895  if (VT.isVector()) {
896    SmallVector<SDValue, 8> Ops;
897    Ops.assign(VT.getVectorNumElements(), Result);
898    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
899  }
900  return Result;
901}
902
903SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
904  return getConstant(Val, TLI.getPointerTy(), isTarget);
905}
906
907
908SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
909  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
910}
911
912SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
913  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
914
915  MVT EltVT =
916    VT.isVector() ? VT.getVectorElementType() : VT;
917
918  // Do the map lookup using the actual bit pattern for the floating point
919  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
920  // we don't have issues with SNANs.
921  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
922  FoldingSetNodeID ID;
923  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
924  ID.AddPointer(&V);
925  void *IP = 0;
926  SDNode *N = NULL;
927  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
928    if (!VT.isVector())
929      return SDValue(N, 0);
930  if (!N) {
931    N = NodeAllocator.Allocate<ConstantFPSDNode>();
932    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
933    CSEMap.InsertNode(N, IP);
934    AllNodes.push_back(N);
935  }
936
937  SDValue Result(N, 0);
938  if (VT.isVector()) {
939    SmallVector<SDValue, 8> Ops;
940    Ops.assign(VT.getVectorNumElements(), Result);
941    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
942  }
943  return Result;
944}
945
946SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
947  MVT EltVT =
948    VT.isVector() ? VT.getVectorElementType() : VT;
949  if (EltVT==MVT::f32)
950    return getConstantFP(APFloat((float)Val), VT, isTarget);
951  else
952    return getConstantFP(APFloat(Val), VT, isTarget);
953}
954
955SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
956                                       MVT VT, int64_t Offset,
957                                       bool isTargetGA) {
958  unsigned Opc;
959
960  // Truncate (with sign-extension) the offset value to the pointer size.
961  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
962  if (BitWidth < 64)
963    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
964
965  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
966  if (!GVar) {
967    // If GV is an alias then use the aliasee for determining thread-localness.
968    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
969      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
970  }
971
972  if (GVar && GVar->isThreadLocal())
973    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
974  else
975    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
976
977  FoldingSetNodeID ID;
978  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
979  ID.AddPointer(GV);
980  ID.AddInteger(Offset);
981  void *IP = 0;
982  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
983   return SDValue(E, 0);
984  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
985  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
986  CSEMap.InsertNode(N, IP);
987  AllNodes.push_back(N);
988  return SDValue(N, 0);
989}
990
991SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
992  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
993  FoldingSetNodeID ID;
994  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
995  ID.AddInteger(FI);
996  void *IP = 0;
997  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
998    return SDValue(E, 0);
999  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1000  new (N) FrameIndexSDNode(FI, VT, isTarget);
1001  CSEMap.InsertNode(N, IP);
1002  AllNodes.push_back(N);
1003  return SDValue(N, 0);
1004}
1005
1006SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1007  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1008  FoldingSetNodeID ID;
1009  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1010  ID.AddInteger(JTI);
1011  void *IP = 0;
1012  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1013    return SDValue(E, 0);
1014  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1015  new (N) JumpTableSDNode(JTI, VT, isTarget);
1016  CSEMap.InsertNode(N, IP);
1017  AllNodes.push_back(N);
1018  return SDValue(N, 0);
1019}
1020
1021SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1022                                      unsigned Alignment, int Offset,
1023                                      bool isTarget) {
1024  if (Alignment == 0)
1025    Alignment =
1026      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1027  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1028  FoldingSetNodeID ID;
1029  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1030  ID.AddInteger(Alignment);
1031  ID.AddInteger(Offset);
1032  ID.AddPointer(C);
1033  void *IP = 0;
1034  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1035    return SDValue(E, 0);
1036  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1037  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1038  CSEMap.InsertNode(N, IP);
1039  AllNodes.push_back(N);
1040  return SDValue(N, 0);
1041}
1042
1043
1044SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1045                                      unsigned Alignment, int Offset,
1046                                      bool isTarget) {
1047  if (Alignment == 0)
1048    Alignment =
1049      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1050  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1051  FoldingSetNodeID ID;
1052  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1053  ID.AddInteger(Alignment);
1054  ID.AddInteger(Offset);
1055  C->AddSelectionDAGCSEId(ID);
1056  void *IP = 0;
1057  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1058    return SDValue(E, 0);
1059  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1060  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1061  CSEMap.InsertNode(N, IP);
1062  AllNodes.push_back(N);
1063  return SDValue(N, 0);
1064}
1065
1066
1067SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1068  FoldingSetNodeID ID;
1069  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1070  ID.AddPointer(MBB);
1071  void *IP = 0;
1072  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1073    return SDValue(E, 0);
1074  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1075  new (N) BasicBlockSDNode(MBB);
1076  CSEMap.InsertNode(N, IP);
1077  AllNodes.push_back(N);
1078  return SDValue(N, 0);
1079}
1080
1081SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1082  FoldingSetNodeID ID;
1083  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1084  ID.AddInteger(Flags.getRawBits());
1085  void *IP = 0;
1086  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1087    return SDValue(E, 0);
1088  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1089  new (N) ARG_FLAGSSDNode(Flags);
1090  CSEMap.InsertNode(N, IP);
1091  AllNodes.push_back(N);
1092  return SDValue(N, 0);
1093}
1094
1095SDValue SelectionDAG::getValueType(MVT VT) {
1096  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1097    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1098
1099  SDNode *&N = VT.isExtended() ?
1100    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1101
1102  if (N) return SDValue(N, 0);
1103  N = NodeAllocator.Allocate<VTSDNode>();
1104  new (N) VTSDNode(VT);
1105  AllNodes.push_back(N);
1106  return SDValue(N, 0);
1107}
1108
1109SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1110  SDNode *&N = ExternalSymbols[Sym];
1111  if (N) return SDValue(N, 0);
1112  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1113  new (N) ExternalSymbolSDNode(false, Sym, VT);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1119  SDNode *&N = TargetExternalSymbols[Sym];
1120  if (N) return SDValue(N, 0);
1121  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1122  new (N) ExternalSymbolSDNode(true, Sym, VT);
1123  AllNodes.push_back(N);
1124  return SDValue(N, 0);
1125}
1126
1127SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1128  if ((unsigned)Cond >= CondCodeNodes.size())
1129    CondCodeNodes.resize(Cond+1);
1130
1131  if (CondCodeNodes[Cond] == 0) {
1132    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1133    new (N) CondCodeSDNode(Cond);
1134    CondCodeNodes[Cond] = N;
1135    AllNodes.push_back(N);
1136  }
1137  return SDValue(CondCodeNodes[Cond], 0);
1138}
1139
1140SDValue SelectionDAG::getConvertRndSat(MVT VT, SDValue Val, SDValue DTy,
1141                                       SDValue STy, SDValue Rnd, SDValue Sat,
1142                                       ISD::CvtCode Code) {
1143  FoldingSetNodeID ID;
1144  void* IP = 0;
1145  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1146    return SDValue(E, 0);
1147  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1148  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1149  new (N) CvtRndSatSDNode(VT, Ops, 5, Code);
1150  CSEMap.InsertNode(N, IP);
1151  AllNodes.push_back(N);
1152  return SDValue(N, 0);
1153}
1154
1155SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1156  FoldingSetNodeID ID;
1157  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1158  ID.AddInteger(RegNo);
1159  void *IP = 0;
1160  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1161    return SDValue(E, 0);
1162  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1163  new (N) RegisterSDNode(RegNo, VT);
1164  CSEMap.InsertNode(N, IP);
1165  AllNodes.push_back(N);
1166  return SDValue(N, 0);
1167}
1168
1169SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1170                                        unsigned Line, unsigned Col,
1171                                        const CompileUnitDesc *CU) {
1172  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1173  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1174  AllNodes.push_back(N);
1175  return SDValue(N, 0);
1176}
1177
1178SDValue SelectionDAG::getLabel(unsigned Opcode,
1179                               SDValue Root,
1180                               unsigned LabelID) {
1181  FoldingSetNodeID ID;
1182  SDValue Ops[] = { Root };
1183  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1184  ID.AddInteger(LabelID);
1185  void *IP = 0;
1186  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1187    return SDValue(E, 0);
1188  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1189  new (N) LabelSDNode(Opcode, Root, LabelID);
1190  CSEMap.InsertNode(N, IP);
1191  AllNodes.push_back(N);
1192  return SDValue(N, 0);
1193}
1194
1195SDValue SelectionDAG::getSrcValue(const Value *V) {
1196  assert((!V || isa<PointerType>(V->getType())) &&
1197         "SrcValue is not a pointer?");
1198
1199  FoldingSetNodeID ID;
1200  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1201  ID.AddPointer(V);
1202
1203  void *IP = 0;
1204  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1205    return SDValue(E, 0);
1206
1207  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1208  new (N) SrcValueSDNode(V);
1209  CSEMap.InsertNode(N, IP);
1210  AllNodes.push_back(N);
1211  return SDValue(N, 0);
1212}
1213
1214SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1215#ifndef NDEBUG
1216  const Value *v = MO.getValue();
1217  assert((!v || isa<PointerType>(v->getType())) &&
1218         "SrcValue is not a pointer?");
1219#endif
1220
1221  FoldingSetNodeID ID;
1222  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1223  MO.Profile(ID);
1224
1225  void *IP = 0;
1226  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1227    return SDValue(E, 0);
1228
1229  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1230  new (N) MemOperandSDNode(MO);
1231  CSEMap.InsertNode(N, IP);
1232  AllNodes.push_back(N);
1233  return SDValue(N, 0);
1234}
1235
1236/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1237/// specified value type.
1238SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1239  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1240  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1241  const Type *Ty = VT.getTypeForMVT();
1242  unsigned StackAlign =
1243  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1244
1245  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1246  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1247}
1248
1249SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1250                                SDValue N2, ISD::CondCode Cond) {
1251  // These setcc operations always fold.
1252  switch (Cond) {
1253  default: break;
1254  case ISD::SETFALSE:
1255  case ISD::SETFALSE2: return getConstant(0, VT);
1256  case ISD::SETTRUE:
1257  case ISD::SETTRUE2:  return getConstant(1, VT);
1258
1259  case ISD::SETOEQ:
1260  case ISD::SETOGT:
1261  case ISD::SETOGE:
1262  case ISD::SETOLT:
1263  case ISD::SETOLE:
1264  case ISD::SETONE:
1265  case ISD::SETO:
1266  case ISD::SETUO:
1267  case ISD::SETUEQ:
1268  case ISD::SETUNE:
1269    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1270    break;
1271  }
1272
1273  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1274    const APInt &C2 = N2C->getAPIntValue();
1275    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1276      const APInt &C1 = N1C->getAPIntValue();
1277
1278      switch (Cond) {
1279      default: assert(0 && "Unknown integer setcc!");
1280      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1281      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1282      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1283      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1284      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1285      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1286      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1287      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1288      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1289      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1290      }
1291    }
1292  }
1293  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1294    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1295      // No compile time operations on this type yet.
1296      if (N1C->getValueType(0) == MVT::ppcf128)
1297        return SDValue();
1298
1299      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1300      switch (Cond) {
1301      default: break;
1302      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1303                          return getNode(ISD::UNDEF, VT);
1304                        // fall through
1305      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1306      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1307                          return getNode(ISD::UNDEF, VT);
1308                        // fall through
1309      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1310                                           R==APFloat::cmpLessThan, VT);
1311      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1312                          return getNode(ISD::UNDEF, VT);
1313                        // fall through
1314      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1315      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1316                          return getNode(ISD::UNDEF, VT);
1317                        // fall through
1318      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1319      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1320                          return getNode(ISD::UNDEF, VT);
1321                        // fall through
1322      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1323                                           R==APFloat::cmpEqual, VT);
1324      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1325                          return getNode(ISD::UNDEF, VT);
1326                        // fall through
1327      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1328                                           R==APFloat::cmpEqual, VT);
1329      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1330      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1331      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1332                                           R==APFloat::cmpEqual, VT);
1333      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1334      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1335                                           R==APFloat::cmpLessThan, VT);
1336      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1337                                           R==APFloat::cmpUnordered, VT);
1338      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1339      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1340      }
1341    } else {
1342      // Ensure that the constant occurs on the RHS.
1343      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1344    }
1345  }
1346
1347  // Could not fold it.
1348  return SDValue();
1349}
1350
1351/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1352/// use this predicate to simplify operations downstream.
1353bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1354  unsigned BitWidth = Op.getValueSizeInBits();
1355  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1356}
1357
1358/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1359/// this predicate to simplify operations downstream.  Mask is known to be zero
1360/// for bits that V cannot have.
1361bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1362                                     unsigned Depth) const {
1363  APInt KnownZero, KnownOne;
1364  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1365  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1366  return (KnownZero & Mask) == Mask;
1367}
1368
1369/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1370/// known to be either zero or one and return them in the KnownZero/KnownOne
1371/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1372/// processing.
1373void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1374                                     APInt &KnownZero, APInt &KnownOne,
1375                                     unsigned Depth) const {
1376  unsigned BitWidth = Mask.getBitWidth();
1377  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1378         "Mask size mismatches value type size!");
1379
1380  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1381  if (Depth == 6 || Mask == 0)
1382    return;  // Limit search depth.
1383
1384  APInt KnownZero2, KnownOne2;
1385
1386  switch (Op.getOpcode()) {
1387  case ISD::Constant:
1388    // We know all of the bits for a constant!
1389    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1390    KnownZero = ~KnownOne & Mask;
1391    return;
1392  case ISD::AND:
1393    // If either the LHS or the RHS are Zero, the result is zero.
1394    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1395    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1396                      KnownZero2, KnownOne2, Depth+1);
1397    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1398    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1399
1400    // Output known-1 bits are only known if set in both the LHS & RHS.
1401    KnownOne &= KnownOne2;
1402    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1403    KnownZero |= KnownZero2;
1404    return;
1405  case ISD::OR:
1406    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1407    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1408                      KnownZero2, KnownOne2, Depth+1);
1409    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1410    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1411
1412    // Output known-0 bits are only known if clear in both the LHS & RHS.
1413    KnownZero &= KnownZero2;
1414    // Output known-1 are known to be set if set in either the LHS | RHS.
1415    KnownOne |= KnownOne2;
1416    return;
1417  case ISD::XOR: {
1418    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1419    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1420    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1421    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1422
1423    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1424    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1425    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1426    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1427    KnownZero = KnownZeroOut;
1428    return;
1429  }
1430  case ISD::MUL: {
1431    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1432    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1433    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1434    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1435    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1436
1437    // If low bits are zero in either operand, output low known-0 bits.
1438    // Also compute a conserative estimate for high known-0 bits.
1439    // More trickiness is possible, but this is sufficient for the
1440    // interesting case of alignment computation.
1441    KnownOne.clear();
1442    unsigned TrailZ = KnownZero.countTrailingOnes() +
1443                      KnownZero2.countTrailingOnes();
1444    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1445                               KnownZero2.countLeadingOnes(),
1446                               BitWidth) - BitWidth;
1447
1448    TrailZ = std::min(TrailZ, BitWidth);
1449    LeadZ = std::min(LeadZ, BitWidth);
1450    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1451                APInt::getHighBitsSet(BitWidth, LeadZ);
1452    KnownZero &= Mask;
1453    return;
1454  }
1455  case ISD::UDIV: {
1456    // For the purposes of computing leading zeros we can conservatively
1457    // treat a udiv as a logical right shift by the power of 2 known to
1458    // be less than the denominator.
1459    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1460    ComputeMaskedBits(Op.getOperand(0),
1461                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1462    unsigned LeadZ = KnownZero2.countLeadingOnes();
1463
1464    KnownOne2.clear();
1465    KnownZero2.clear();
1466    ComputeMaskedBits(Op.getOperand(1),
1467                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1468    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1469    if (RHSUnknownLeadingOnes != BitWidth)
1470      LeadZ = std::min(BitWidth,
1471                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1472
1473    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1474    return;
1475  }
1476  case ISD::SELECT:
1477    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1478    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1479    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1480    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1481
1482    // Only known if known in both the LHS and RHS.
1483    KnownOne &= KnownOne2;
1484    KnownZero &= KnownZero2;
1485    return;
1486  case ISD::SELECT_CC:
1487    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1488    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1489    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1490    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1491
1492    // Only known if known in both the LHS and RHS.
1493    KnownOne &= KnownOne2;
1494    KnownZero &= KnownZero2;
1495    return;
1496  case ISD::SADDO:
1497  case ISD::UADDO:
1498    if (Op.getResNo() != 1)
1499      return;
1500    // The boolean result conforms to getBooleanContents.  Fall through.
1501  case ISD::SETCC:
1502    // If we know the result of a setcc has the top bits zero, use this info.
1503    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1504        BitWidth > 1)
1505      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1506    return;
1507  case ISD::SHL:
1508    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1509    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1510      unsigned ShAmt = SA->getZExtValue();
1511
1512      // If the shift count is an invalid immediate, don't do anything.
1513      if (ShAmt >= BitWidth)
1514        return;
1515
1516      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1517                        KnownZero, KnownOne, Depth+1);
1518      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1519      KnownZero <<= ShAmt;
1520      KnownOne  <<= ShAmt;
1521      // low bits known zero.
1522      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1523    }
1524    return;
1525  case ISD::SRL:
1526    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1527    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1528      unsigned ShAmt = SA->getZExtValue();
1529
1530      // If the shift count is an invalid immediate, don't do anything.
1531      if (ShAmt >= BitWidth)
1532        return;
1533
1534      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1535                        KnownZero, KnownOne, Depth+1);
1536      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1537      KnownZero = KnownZero.lshr(ShAmt);
1538      KnownOne  = KnownOne.lshr(ShAmt);
1539
1540      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1541      KnownZero |= HighBits;  // High bits known zero.
1542    }
1543    return;
1544  case ISD::SRA:
1545    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1546      unsigned ShAmt = SA->getZExtValue();
1547
1548      // If the shift count is an invalid immediate, don't do anything.
1549      if (ShAmt >= BitWidth)
1550        return;
1551
1552      APInt InDemandedMask = (Mask << ShAmt);
1553      // If any of the demanded bits are produced by the sign extension, we also
1554      // demand the input sign bit.
1555      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1556      if (HighBits.getBoolValue())
1557        InDemandedMask |= APInt::getSignBit(BitWidth);
1558
1559      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1560                        Depth+1);
1561      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1562      KnownZero = KnownZero.lshr(ShAmt);
1563      KnownOne  = KnownOne.lshr(ShAmt);
1564
1565      // Handle the sign bits.
1566      APInt SignBit = APInt::getSignBit(BitWidth);
1567      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1568
1569      if (KnownZero.intersects(SignBit)) {
1570        KnownZero |= HighBits;  // New bits are known zero.
1571      } else if (KnownOne.intersects(SignBit)) {
1572        KnownOne  |= HighBits;  // New bits are known one.
1573      }
1574    }
1575    return;
1576  case ISD::SIGN_EXTEND_INREG: {
1577    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1578    unsigned EBits = EVT.getSizeInBits();
1579
1580    // Sign extension.  Compute the demanded bits in the result that are not
1581    // present in the input.
1582    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1583
1584    APInt InSignBit = APInt::getSignBit(EBits);
1585    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1586
1587    // If the sign extended bits are demanded, we know that the sign
1588    // bit is demanded.
1589    InSignBit.zext(BitWidth);
1590    if (NewBits.getBoolValue())
1591      InputDemandedBits |= InSignBit;
1592
1593    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1594                      KnownZero, KnownOne, Depth+1);
1595    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1596
1597    // If the sign bit of the input is known set or clear, then we know the
1598    // top bits of the result.
1599    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1600      KnownZero |= NewBits;
1601      KnownOne  &= ~NewBits;
1602    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1603      KnownOne  |= NewBits;
1604      KnownZero &= ~NewBits;
1605    } else {                              // Input sign bit unknown
1606      KnownZero &= ~NewBits;
1607      KnownOne  &= ~NewBits;
1608    }
1609    return;
1610  }
1611  case ISD::CTTZ:
1612  case ISD::CTLZ:
1613  case ISD::CTPOP: {
1614    unsigned LowBits = Log2_32(BitWidth)+1;
1615    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1616    KnownOne.clear();
1617    return;
1618  }
1619  case ISD::LOAD: {
1620    if (ISD::isZEXTLoad(Op.getNode())) {
1621      LoadSDNode *LD = cast<LoadSDNode>(Op);
1622      MVT VT = LD->getMemoryVT();
1623      unsigned MemBits = VT.getSizeInBits();
1624      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1625    }
1626    return;
1627  }
1628  case ISD::ZERO_EXTEND: {
1629    MVT InVT = Op.getOperand(0).getValueType();
1630    unsigned InBits = InVT.getSizeInBits();
1631    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1632    APInt InMask    = Mask;
1633    InMask.trunc(InBits);
1634    KnownZero.trunc(InBits);
1635    KnownOne.trunc(InBits);
1636    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1637    KnownZero.zext(BitWidth);
1638    KnownOne.zext(BitWidth);
1639    KnownZero |= NewBits;
1640    return;
1641  }
1642  case ISD::SIGN_EXTEND: {
1643    MVT InVT = Op.getOperand(0).getValueType();
1644    unsigned InBits = InVT.getSizeInBits();
1645    APInt InSignBit = APInt::getSignBit(InBits);
1646    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1647    APInt InMask = Mask;
1648    InMask.trunc(InBits);
1649
1650    // If any of the sign extended bits are demanded, we know that the sign
1651    // bit is demanded. Temporarily set this bit in the mask for our callee.
1652    if (NewBits.getBoolValue())
1653      InMask |= InSignBit;
1654
1655    KnownZero.trunc(InBits);
1656    KnownOne.trunc(InBits);
1657    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1658
1659    // Note if the sign bit is known to be zero or one.
1660    bool SignBitKnownZero = KnownZero.isNegative();
1661    bool SignBitKnownOne  = KnownOne.isNegative();
1662    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1663           "Sign bit can't be known to be both zero and one!");
1664
1665    // If the sign bit wasn't actually demanded by our caller, we don't
1666    // want it set in the KnownZero and KnownOne result values. Reset the
1667    // mask and reapply it to the result values.
1668    InMask = Mask;
1669    InMask.trunc(InBits);
1670    KnownZero &= InMask;
1671    KnownOne  &= InMask;
1672
1673    KnownZero.zext(BitWidth);
1674    KnownOne.zext(BitWidth);
1675
1676    // If the sign bit is known zero or one, the top bits match.
1677    if (SignBitKnownZero)
1678      KnownZero |= NewBits;
1679    else if (SignBitKnownOne)
1680      KnownOne  |= NewBits;
1681    return;
1682  }
1683  case ISD::ANY_EXTEND: {
1684    MVT InVT = Op.getOperand(0).getValueType();
1685    unsigned InBits = InVT.getSizeInBits();
1686    APInt InMask = Mask;
1687    InMask.trunc(InBits);
1688    KnownZero.trunc(InBits);
1689    KnownOne.trunc(InBits);
1690    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1691    KnownZero.zext(BitWidth);
1692    KnownOne.zext(BitWidth);
1693    return;
1694  }
1695  case ISD::TRUNCATE: {
1696    MVT InVT = Op.getOperand(0).getValueType();
1697    unsigned InBits = InVT.getSizeInBits();
1698    APInt InMask = Mask;
1699    InMask.zext(InBits);
1700    KnownZero.zext(InBits);
1701    KnownOne.zext(InBits);
1702    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1703    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1704    KnownZero.trunc(BitWidth);
1705    KnownOne.trunc(BitWidth);
1706    break;
1707  }
1708  case ISD::AssertZext: {
1709    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1710    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1711    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1712                      KnownOne, Depth+1);
1713    KnownZero |= (~InMask) & Mask;
1714    return;
1715  }
1716  case ISD::FGETSIGN:
1717    // All bits are zero except the low bit.
1718    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1719    return;
1720
1721  case ISD::SUB: {
1722    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1723      // We know that the top bits of C-X are clear if X contains less bits
1724      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1725      // positive if we can prove that X is >= 0 and < 16.
1726      if (CLHS->getAPIntValue().isNonNegative()) {
1727        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1728        // NLZ can't be BitWidth with no sign bit
1729        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1730        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1731                          Depth+1);
1732
1733        // If all of the MaskV bits are known to be zero, then we know the
1734        // output top bits are zero, because we now know that the output is
1735        // from [0-C].
1736        if ((KnownZero2 & MaskV) == MaskV) {
1737          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1738          // Top bits known zero.
1739          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1740        }
1741      }
1742    }
1743  }
1744  // fall through
1745  case ISD::ADD: {
1746    // Output known-0 bits are known if clear or set in both the low clear bits
1747    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1748    // low 3 bits clear.
1749    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1750    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1751    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1752    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1753
1754    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1755    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1756    KnownZeroOut = std::min(KnownZeroOut,
1757                            KnownZero2.countTrailingOnes());
1758
1759    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1760    return;
1761  }
1762  case ISD::SREM:
1763    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1764      const APInt &RA = Rem->getAPIntValue();
1765      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1766        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1767        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1768        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1769
1770        // If the sign bit of the first operand is zero, the sign bit of
1771        // the result is zero. If the first operand has no one bits below
1772        // the second operand's single 1 bit, its sign will be zero.
1773        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1774          KnownZero2 |= ~LowBits;
1775
1776        KnownZero |= KnownZero2 & Mask;
1777
1778        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1779      }
1780    }
1781    return;
1782  case ISD::UREM: {
1783    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1784      const APInt &RA = Rem->getAPIntValue();
1785      if (RA.isPowerOf2()) {
1786        APInt LowBits = (RA - 1);
1787        APInt Mask2 = LowBits & Mask;
1788        KnownZero |= ~LowBits & Mask;
1789        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1790        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1791        break;
1792      }
1793    }
1794
1795    // Since the result is less than or equal to either operand, any leading
1796    // zero bits in either operand must also exist in the result.
1797    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1798    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1799                      Depth+1);
1800    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1801                      Depth+1);
1802
1803    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1804                                KnownZero2.countLeadingOnes());
1805    KnownOne.clear();
1806    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1807    return;
1808  }
1809  default:
1810    // Allow the target to implement this method for its nodes.
1811    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1812  case ISD::INTRINSIC_WO_CHAIN:
1813  case ISD::INTRINSIC_W_CHAIN:
1814  case ISD::INTRINSIC_VOID:
1815      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1816    }
1817    return;
1818  }
1819}
1820
1821/// ComputeNumSignBits - Return the number of times the sign bit of the
1822/// register is replicated into the other bits.  We know that at least 1 bit
1823/// is always equal to the sign bit (itself), but other cases can give us
1824/// information.  For example, immediately after an "SRA X, 2", we know that
1825/// the top 3 bits are all equal to each other, so we return 3.
1826unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1827  MVT VT = Op.getValueType();
1828  assert(VT.isInteger() && "Invalid VT!");
1829  unsigned VTBits = VT.getSizeInBits();
1830  unsigned Tmp, Tmp2;
1831  unsigned FirstAnswer = 1;
1832
1833  if (Depth == 6)
1834    return 1;  // Limit search depth.
1835
1836  switch (Op.getOpcode()) {
1837  default: break;
1838  case ISD::AssertSext:
1839    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1840    return VTBits-Tmp+1;
1841  case ISD::AssertZext:
1842    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1843    return VTBits-Tmp;
1844
1845  case ISD::Constant: {
1846    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1847    // If negative, return # leading ones.
1848    if (Val.isNegative())
1849      return Val.countLeadingOnes();
1850
1851    // Return # leading zeros.
1852    return Val.countLeadingZeros();
1853  }
1854
1855  case ISD::SIGN_EXTEND:
1856    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1857    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1858
1859  case ISD::SIGN_EXTEND_INREG:
1860    // Max of the input and what this extends.
1861    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1862    Tmp = VTBits-Tmp+1;
1863
1864    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1865    return std::max(Tmp, Tmp2);
1866
1867  case ISD::SRA:
1868    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1869    // SRA X, C   -> adds C sign bits.
1870    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1871      Tmp += C->getZExtValue();
1872      if (Tmp > VTBits) Tmp = VTBits;
1873    }
1874    return Tmp;
1875  case ISD::SHL:
1876    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1877      // shl destroys sign bits.
1878      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1879      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1880          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1881      return Tmp - C->getZExtValue();
1882    }
1883    break;
1884  case ISD::AND:
1885  case ISD::OR:
1886  case ISD::XOR:    // NOT is handled here.
1887    // Logical binary ops preserve the number of sign bits at the worst.
1888    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1889    if (Tmp != 1) {
1890      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1891      FirstAnswer = std::min(Tmp, Tmp2);
1892      // We computed what we know about the sign bits as our first
1893      // answer. Now proceed to the generic code that uses
1894      // ComputeMaskedBits, and pick whichever answer is better.
1895    }
1896    break;
1897
1898  case ISD::SELECT:
1899    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1900    if (Tmp == 1) return 1;  // Early out.
1901    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1902    return std::min(Tmp, Tmp2);
1903
1904  case ISD::SADDO:
1905  case ISD::UADDO:
1906    if (Op.getResNo() != 1)
1907      break;
1908    // The boolean result conforms to getBooleanContents.  Fall through.
1909  case ISD::SETCC:
1910    // If setcc returns 0/-1, all bits are sign bits.
1911    if (TLI.getBooleanContents() ==
1912        TargetLowering::ZeroOrNegativeOneBooleanContent)
1913      return VTBits;
1914    break;
1915  case ISD::ROTL:
1916  case ISD::ROTR:
1917    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1918      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1919
1920      // Handle rotate right by N like a rotate left by 32-N.
1921      if (Op.getOpcode() == ISD::ROTR)
1922        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1923
1924      // If we aren't rotating out all of the known-in sign bits, return the
1925      // number that are left.  This handles rotl(sext(x), 1) for example.
1926      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1927      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1928    }
1929    break;
1930  case ISD::ADD:
1931    // Add can have at most one carry bit.  Thus we know that the output
1932    // is, at worst, one more bit than the inputs.
1933    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1934    if (Tmp == 1) return 1;  // Early out.
1935
1936    // Special case decrementing a value (ADD X, -1):
1937    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1938      if (CRHS->isAllOnesValue()) {
1939        APInt KnownZero, KnownOne;
1940        APInt Mask = APInt::getAllOnesValue(VTBits);
1941        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1942
1943        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1944        // sign bits set.
1945        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1946          return VTBits;
1947
1948        // If we are subtracting one from a positive number, there is no carry
1949        // out of the result.
1950        if (KnownZero.isNegative())
1951          return Tmp;
1952      }
1953
1954    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1955    if (Tmp2 == 1) return 1;
1956      return std::min(Tmp, Tmp2)-1;
1957    break;
1958
1959  case ISD::SUB:
1960    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1961    if (Tmp2 == 1) return 1;
1962
1963    // Handle NEG.
1964    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1965      if (CLHS->isNullValue()) {
1966        APInt KnownZero, KnownOne;
1967        APInt Mask = APInt::getAllOnesValue(VTBits);
1968        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1969        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1970        // sign bits set.
1971        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1972          return VTBits;
1973
1974        // If the input is known to be positive (the sign bit is known clear),
1975        // the output of the NEG has the same number of sign bits as the input.
1976        if (KnownZero.isNegative())
1977          return Tmp2;
1978
1979        // Otherwise, we treat this like a SUB.
1980      }
1981
1982    // Sub can have at most one carry bit.  Thus we know that the output
1983    // is, at worst, one more bit than the inputs.
1984    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1985    if (Tmp == 1) return 1;  // Early out.
1986      return std::min(Tmp, Tmp2)-1;
1987    break;
1988  case ISD::TRUNCATE:
1989    // FIXME: it's tricky to do anything useful for this, but it is an important
1990    // case for targets like X86.
1991    break;
1992  }
1993
1994  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1995  if (Op.getOpcode() == ISD::LOAD) {
1996    LoadSDNode *LD = cast<LoadSDNode>(Op);
1997    unsigned ExtType = LD->getExtensionType();
1998    switch (ExtType) {
1999    default: break;
2000    case ISD::SEXTLOAD:    // '17' bits known
2001      Tmp = LD->getMemoryVT().getSizeInBits();
2002      return VTBits-Tmp+1;
2003    case ISD::ZEXTLOAD:    // '16' bits known
2004      Tmp = LD->getMemoryVT().getSizeInBits();
2005      return VTBits-Tmp;
2006    }
2007  }
2008
2009  // Allow the target to implement this method for its nodes.
2010  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2011      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2012      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2013      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2014    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2015    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2016  }
2017
2018  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2019  // use this information.
2020  APInt KnownZero, KnownOne;
2021  APInt Mask = APInt::getAllOnesValue(VTBits);
2022  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2023
2024  if (KnownZero.isNegative()) {        // sign bit is 0
2025    Mask = KnownZero;
2026  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2027    Mask = KnownOne;
2028  } else {
2029    // Nothing known.
2030    return FirstAnswer;
2031  }
2032
2033  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2034  // the number of identical bits in the top of the input value.
2035  Mask = ~Mask;
2036  Mask <<= Mask.getBitWidth()-VTBits;
2037  // Return # leading zeros.  We use 'min' here in case Val was zero before
2038  // shifting.  We don't want to return '64' as for an i32 "0".
2039  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2040}
2041
2042
2043bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2044  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2045  if (!GA) return false;
2046  if (GA->getOffset() != 0) return false;
2047  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2048  if (!GV) return false;
2049  MachineModuleInfo *MMI = getMachineModuleInfo();
2050  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2051}
2052
2053
2054/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2055/// element of the result of the vector shuffle.
2056SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2057  MVT VT = N->getValueType(0);
2058  SDValue PermMask = N->getOperand(2);
2059  SDValue Idx = PermMask.getOperand(i);
2060  if (Idx.getOpcode() == ISD::UNDEF)
2061    return getNode(ISD::UNDEF, VT.getVectorElementType());
2062  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2063  unsigned NumElems = PermMask.getNumOperands();
2064  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2065  Index %= NumElems;
2066
2067  if (V.getOpcode() == ISD::BIT_CONVERT) {
2068    V = V.getOperand(0);
2069    MVT VVT = V.getValueType();
2070    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2071      return SDValue();
2072  }
2073  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2074    return (Index == 0) ? V.getOperand(0)
2075                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2076  if (V.getOpcode() == ISD::BUILD_VECTOR)
2077    return V.getOperand(Index);
2078  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2079    return getShuffleScalarElt(V.getNode(), Index);
2080  return SDValue();
2081}
2082
2083
2084/// getNode - Gets or creates the specified node.
2085///
2086SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2087  FoldingSetNodeID ID;
2088  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2089  void *IP = 0;
2090  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2091    return SDValue(E, 0);
2092  SDNode *N = NodeAllocator.Allocate<SDNode>();
2093  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2094  CSEMap.InsertNode(N, IP);
2095
2096  AllNodes.push_back(N);
2097#ifndef NDEBUG
2098  VerifyNode(N);
2099#endif
2100  return SDValue(N, 0);
2101}
2102
2103SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2104  // Constant fold unary operations with an integer constant operand.
2105  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2106    const APInt &Val = C->getAPIntValue();
2107    unsigned BitWidth = VT.getSizeInBits();
2108    switch (Opcode) {
2109    default: break;
2110    case ISD::SIGN_EXTEND:
2111      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2112    case ISD::ANY_EXTEND:
2113    case ISD::ZERO_EXTEND:
2114    case ISD::TRUNCATE:
2115      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2116    case ISD::UINT_TO_FP:
2117    case ISD::SINT_TO_FP: {
2118      const uint64_t zero[] = {0, 0};
2119      // No compile time operations on this type.
2120      if (VT==MVT::ppcf128)
2121        break;
2122      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2123      (void)apf.convertFromAPInt(Val,
2124                                 Opcode==ISD::SINT_TO_FP,
2125                                 APFloat::rmNearestTiesToEven);
2126      return getConstantFP(apf, VT);
2127    }
2128    case ISD::BIT_CONVERT:
2129      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2130        return getConstantFP(Val.bitsToFloat(), VT);
2131      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2132        return getConstantFP(Val.bitsToDouble(), VT);
2133      break;
2134    case ISD::BSWAP:
2135      return getConstant(Val.byteSwap(), VT);
2136    case ISD::CTPOP:
2137      return getConstant(Val.countPopulation(), VT);
2138    case ISD::CTLZ:
2139      return getConstant(Val.countLeadingZeros(), VT);
2140    case ISD::CTTZ:
2141      return getConstant(Val.countTrailingZeros(), VT);
2142    }
2143  }
2144
2145  // Constant fold unary operations with a floating point constant operand.
2146  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2147    APFloat V = C->getValueAPF();    // make copy
2148    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2149      switch (Opcode) {
2150      case ISD::FNEG:
2151        V.changeSign();
2152        return getConstantFP(V, VT);
2153      case ISD::FABS:
2154        V.clearSign();
2155        return getConstantFP(V, VT);
2156      case ISD::FP_ROUND:
2157      case ISD::FP_EXTEND: {
2158        bool ignored;
2159        // This can return overflow, underflow, or inexact; we don't care.
2160        // FIXME need to be more flexible about rounding mode.
2161        (void)V.convert(*MVTToAPFloatSemantics(VT),
2162                        APFloat::rmNearestTiesToEven, &ignored);
2163        return getConstantFP(V, VT);
2164      }
2165      case ISD::FP_TO_SINT:
2166      case ISD::FP_TO_UINT: {
2167        integerPart x;
2168        bool ignored;
2169        assert(integerPartWidth >= 64);
2170        // FIXME need to be more flexible about rounding mode.
2171        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2172                              Opcode==ISD::FP_TO_SINT,
2173                              APFloat::rmTowardZero, &ignored);
2174        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2175          break;
2176        return getConstant(x, VT);
2177      }
2178      case ISD::BIT_CONVERT:
2179        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2180          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2181        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2182          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2183        break;
2184      }
2185    }
2186  }
2187
2188  unsigned OpOpcode = Operand.getNode()->getOpcode();
2189  switch (Opcode) {
2190  case ISD::TokenFactor:
2191  case ISD::MERGE_VALUES:
2192  case ISD::CONCAT_VECTORS:
2193    return Operand;         // Factor, merge or concat of one node?  No need.
2194  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2195  case ISD::FP_EXTEND:
2196    assert(VT.isFloatingPoint() &&
2197           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2198    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2199    if (Operand.getOpcode() == ISD::UNDEF)
2200      return getNode(ISD::UNDEF, VT);
2201    break;
2202  case ISD::SIGN_EXTEND:
2203    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2204           "Invalid SIGN_EXTEND!");
2205    if (Operand.getValueType() == VT) return Operand;   // noop extension
2206    assert(Operand.getValueType().bitsLT(VT)
2207           && "Invalid sext node, dst < src!");
2208    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2209      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2210    break;
2211  case ISD::ZERO_EXTEND:
2212    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2213           "Invalid ZERO_EXTEND!");
2214    if (Operand.getValueType() == VT) return Operand;   // noop extension
2215    assert(Operand.getValueType().bitsLT(VT)
2216           && "Invalid zext node, dst < src!");
2217    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2218      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2219    break;
2220  case ISD::ANY_EXTEND:
2221    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2222           "Invalid ANY_EXTEND!");
2223    if (Operand.getValueType() == VT) return Operand;   // noop extension
2224    assert(Operand.getValueType().bitsLT(VT)
2225           && "Invalid anyext node, dst < src!");
2226    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2227      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2228      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2229    break;
2230  case ISD::TRUNCATE:
2231    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2232           "Invalid TRUNCATE!");
2233    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2234    assert(Operand.getValueType().bitsGT(VT)
2235           && "Invalid truncate node, src < dst!");
2236    if (OpOpcode == ISD::TRUNCATE)
2237      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2238    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2239             OpOpcode == ISD::ANY_EXTEND) {
2240      // If the source is smaller than the dest, we still need an extend.
2241      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2242        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2243      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2244        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2245      else
2246        return Operand.getNode()->getOperand(0);
2247    }
2248    break;
2249  case ISD::BIT_CONVERT:
2250    // Basic sanity checking.
2251    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2252           && "Cannot BIT_CONVERT between types of different sizes!");
2253    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2254    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2255      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2256    if (OpOpcode == ISD::UNDEF)
2257      return getNode(ISD::UNDEF, VT);
2258    break;
2259  case ISD::SCALAR_TO_VECTOR:
2260    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2261           VT.getVectorElementType() == Operand.getValueType() &&
2262           "Illegal SCALAR_TO_VECTOR node!");
2263    if (OpOpcode == ISD::UNDEF)
2264      return getNode(ISD::UNDEF, VT);
2265    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2266    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2267        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2268        Operand.getConstantOperandVal(1) == 0 &&
2269        Operand.getOperand(0).getValueType() == VT)
2270      return Operand.getOperand(0);
2271    break;
2272  case ISD::FNEG:
2273    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2274      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2275                     Operand.getNode()->getOperand(0));
2276    if (OpOpcode == ISD::FNEG)  // --X -> X
2277      return Operand.getNode()->getOperand(0);
2278    break;
2279  case ISD::FABS:
2280    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2281      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2282    break;
2283  }
2284
2285  SDNode *N;
2286  SDVTList VTs = getVTList(VT);
2287  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2288    FoldingSetNodeID ID;
2289    SDValue Ops[1] = { Operand };
2290    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2291    void *IP = 0;
2292    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2293      return SDValue(E, 0);
2294    N = NodeAllocator.Allocate<UnarySDNode>();
2295    new (N) UnarySDNode(Opcode, VTs, Operand);
2296    CSEMap.InsertNode(N, IP);
2297  } else {
2298    N = NodeAllocator.Allocate<UnarySDNode>();
2299    new (N) UnarySDNode(Opcode, VTs, Operand);
2300  }
2301
2302  AllNodes.push_back(N);
2303#ifndef NDEBUG
2304  VerifyNode(N);
2305#endif
2306  return SDValue(N, 0);
2307}
2308
2309SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2310                                             MVT VT,
2311                                             ConstantSDNode *Cst1,
2312                                             ConstantSDNode *Cst2) {
2313  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2314
2315  switch (Opcode) {
2316  case ISD::ADD:  return getConstant(C1 + C2, VT);
2317  case ISD::SUB:  return getConstant(C1 - C2, VT);
2318  case ISD::MUL:  return getConstant(C1 * C2, VT);
2319  case ISD::UDIV:
2320    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2321    break;
2322  case ISD::UREM:
2323    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2324    break;
2325  case ISD::SDIV:
2326    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2327    break;
2328  case ISD::SREM:
2329    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2330    break;
2331  case ISD::AND:  return getConstant(C1 & C2, VT);
2332  case ISD::OR:   return getConstant(C1 | C2, VT);
2333  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2334  case ISD::SHL:  return getConstant(C1 << C2, VT);
2335  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2336  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2337  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2338  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2339  default: break;
2340  }
2341
2342  return SDValue();
2343}
2344
2345SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2346                              SDValue N1, SDValue N2) {
2347  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2348  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2349  switch (Opcode) {
2350  default: break;
2351  case ISD::TokenFactor:
2352    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2353           N2.getValueType() == MVT::Other && "Invalid token factor!");
2354    // Fold trivial token factors.
2355    if (N1.getOpcode() == ISD::EntryToken) return N2;
2356    if (N2.getOpcode() == ISD::EntryToken) return N1;
2357    if (N1 == N2) return N1;
2358    break;
2359  case ISD::CONCAT_VECTORS:
2360    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2361    // one big BUILD_VECTOR.
2362    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2363        N2.getOpcode() == ISD::BUILD_VECTOR) {
2364      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2365      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2366      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2367    }
2368    break;
2369  case ISD::AND:
2370    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2371           N1.getValueType() == VT && "Binary operator types must match!");
2372    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2373    // worth handling here.
2374    if (N2C && N2C->isNullValue())
2375      return N2;
2376    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2377      return N1;
2378    break;
2379  case ISD::OR:
2380  case ISD::XOR:
2381  case ISD::ADD:
2382  case ISD::SUB:
2383    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2384           N1.getValueType() == VT && "Binary operator types must match!");
2385    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2386    // it's worth handling here.
2387    if (N2C && N2C->isNullValue())
2388      return N1;
2389    break;
2390  case ISD::UDIV:
2391  case ISD::UREM:
2392  case ISD::MULHU:
2393  case ISD::MULHS:
2394    assert(VT.isInteger() && "This operator does not apply to FP types!");
2395    // fall through
2396  case ISD::MUL:
2397  case ISD::SDIV:
2398  case ISD::SREM:
2399  case ISD::FADD:
2400  case ISD::FSUB:
2401  case ISD::FMUL:
2402  case ISD::FDIV:
2403  case ISD::FREM:
2404    assert(N1.getValueType() == N2.getValueType() &&
2405           N1.getValueType() == VT && "Binary operator types must match!");
2406    break;
2407  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2408    assert(N1.getValueType() == VT &&
2409           N1.getValueType().isFloatingPoint() &&
2410           N2.getValueType().isFloatingPoint() &&
2411           "Invalid FCOPYSIGN!");
2412    break;
2413  case ISD::SHL:
2414  case ISD::SRA:
2415  case ISD::SRL:
2416  case ISD::ROTL:
2417  case ISD::ROTR:
2418    assert(VT == N1.getValueType() &&
2419           "Shift operators return type must be the same as their first arg");
2420    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2421           "Shifts only work on integers");
2422    assert((N2.getValueType() == TLI.getShiftAmountTy() ||
2423            (N2.getValueType().isVector() && N2.getValueType().isInteger())) &&
2424           "Wrong type for shift amount");
2425
2426    // Always fold shifts of i1 values so the code generator doesn't need to
2427    // handle them.  Since we know the size of the shift has to be less than the
2428    // size of the value, the shift/rotate count is guaranteed to be zero.
2429    if (VT == MVT::i1)
2430      return N1;
2431    break;
2432  case ISD::FP_ROUND_INREG: {
2433    MVT EVT = cast<VTSDNode>(N2)->getVT();
2434    assert(VT == N1.getValueType() && "Not an inreg round!");
2435    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2436           "Cannot FP_ROUND_INREG integer types");
2437    assert(EVT.bitsLE(VT) && "Not rounding down!");
2438    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2439    break;
2440  }
2441  case ISD::FP_ROUND:
2442    assert(VT.isFloatingPoint() &&
2443           N1.getValueType().isFloatingPoint() &&
2444           VT.bitsLE(N1.getValueType()) &&
2445           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2446    if (N1.getValueType() == VT) return N1;  // noop conversion.
2447    break;
2448  case ISD::AssertSext:
2449  case ISD::AssertZext: {
2450    MVT EVT = cast<VTSDNode>(N2)->getVT();
2451    assert(VT == N1.getValueType() && "Not an inreg extend!");
2452    assert(VT.isInteger() && EVT.isInteger() &&
2453           "Cannot *_EXTEND_INREG FP types");
2454    assert(EVT.bitsLE(VT) && "Not extending!");
2455    if (VT == EVT) return N1; // noop assertion.
2456    break;
2457  }
2458  case ISD::SIGN_EXTEND_INREG: {
2459    MVT EVT = cast<VTSDNode>(N2)->getVT();
2460    assert(VT == N1.getValueType() && "Not an inreg extend!");
2461    assert(VT.isInteger() && EVT.isInteger() &&
2462           "Cannot *_EXTEND_INREG FP types");
2463    assert(EVT.bitsLE(VT) && "Not extending!");
2464    if (EVT == VT) return N1;  // Not actually extending
2465
2466    if (N1C) {
2467      APInt Val = N1C->getAPIntValue();
2468      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2469      Val <<= Val.getBitWidth()-FromBits;
2470      Val = Val.ashr(Val.getBitWidth()-FromBits);
2471      return getConstant(Val, VT);
2472    }
2473    break;
2474  }
2475  case ISD::EXTRACT_VECTOR_ELT:
2476    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2477    if (N1.getOpcode() == ISD::UNDEF)
2478      return getNode(ISD::UNDEF, VT);
2479
2480    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2481    // expanding copies of large vectors from registers.
2482    if (N2C &&
2483        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2484        N1.getNumOperands() > 0) {
2485      unsigned Factor =
2486        N1.getOperand(0).getValueType().getVectorNumElements();
2487      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2488                     N1.getOperand(N2C->getZExtValue() / Factor),
2489                     getConstant(N2C->getZExtValue() % Factor,
2490                                 N2.getValueType()));
2491    }
2492
2493    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2494    // expanding large vector constants.
2495    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2496      return N1.getOperand(N2C->getZExtValue());
2497
2498    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2499    // operations are lowered to scalars.
2500    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2501      if (N1.getOperand(2) == N2)
2502        return N1.getOperand(1);
2503      else
2504        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2505    }
2506    break;
2507  case ISD::EXTRACT_ELEMENT:
2508    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2509    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2510           (N1.getValueType().isInteger() == VT.isInteger()) &&
2511           "Wrong types for EXTRACT_ELEMENT!");
2512
2513    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2514    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2515    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2516    if (N1.getOpcode() == ISD::BUILD_PAIR)
2517      return N1.getOperand(N2C->getZExtValue());
2518
2519    // EXTRACT_ELEMENT of a constant int is also very common.
2520    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2521      unsigned ElementSize = VT.getSizeInBits();
2522      unsigned Shift = ElementSize * N2C->getZExtValue();
2523      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2524      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2525    }
2526    break;
2527  case ISD::EXTRACT_SUBVECTOR:
2528    if (N1.getValueType() == VT) // Trivial extraction.
2529      return N1;
2530    break;
2531  }
2532
2533  if (N1C) {
2534    if (N2C) {
2535      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2536      if (SV.getNode()) return SV;
2537    } else {      // Cannonicalize constant to RHS if commutative
2538      if (isCommutativeBinOp(Opcode)) {
2539        std::swap(N1C, N2C);
2540        std::swap(N1, N2);
2541      }
2542    }
2543  }
2544
2545  // Constant fold FP operations.
2546  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2547  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2548  if (N1CFP) {
2549    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2550      // Cannonicalize constant to RHS if commutative
2551      std::swap(N1CFP, N2CFP);
2552      std::swap(N1, N2);
2553    } else if (N2CFP && VT != MVT::ppcf128) {
2554      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2555      APFloat::opStatus s;
2556      switch (Opcode) {
2557      case ISD::FADD:
2558        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2559        if (s != APFloat::opInvalidOp)
2560          return getConstantFP(V1, VT);
2561        break;
2562      case ISD::FSUB:
2563        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2564        if (s!=APFloat::opInvalidOp)
2565          return getConstantFP(V1, VT);
2566        break;
2567      case ISD::FMUL:
2568        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2569        if (s!=APFloat::opInvalidOp)
2570          return getConstantFP(V1, VT);
2571        break;
2572      case ISD::FDIV:
2573        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2574        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2575          return getConstantFP(V1, VT);
2576        break;
2577      case ISD::FREM :
2578        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2579        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2580          return getConstantFP(V1, VT);
2581        break;
2582      case ISD::FCOPYSIGN:
2583        V1.copySign(V2);
2584        return getConstantFP(V1, VT);
2585      default: break;
2586      }
2587    }
2588  }
2589
2590  // Canonicalize an UNDEF to the RHS, even over a constant.
2591  if (N1.getOpcode() == ISD::UNDEF) {
2592    if (isCommutativeBinOp(Opcode)) {
2593      std::swap(N1, N2);
2594    } else {
2595      switch (Opcode) {
2596      case ISD::FP_ROUND_INREG:
2597      case ISD::SIGN_EXTEND_INREG:
2598      case ISD::SUB:
2599      case ISD::FSUB:
2600      case ISD::FDIV:
2601      case ISD::FREM:
2602      case ISD::SRA:
2603        return N1;     // fold op(undef, arg2) -> undef
2604      case ISD::UDIV:
2605      case ISD::SDIV:
2606      case ISD::UREM:
2607      case ISD::SREM:
2608      case ISD::SRL:
2609      case ISD::SHL:
2610        if (!VT.isVector())
2611          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2612        // For vectors, we can't easily build an all zero vector, just return
2613        // the LHS.
2614        return N2;
2615      }
2616    }
2617  }
2618
2619  // Fold a bunch of operators when the RHS is undef.
2620  if (N2.getOpcode() == ISD::UNDEF) {
2621    switch (Opcode) {
2622    case ISD::XOR:
2623      if (N1.getOpcode() == ISD::UNDEF)
2624        // Handle undef ^ undef -> 0 special case. This is a common
2625        // idiom (misuse).
2626        return getConstant(0, VT);
2627      // fallthrough
2628    case ISD::ADD:
2629    case ISD::ADDC:
2630    case ISD::ADDE:
2631    case ISD::SUB:
2632    case ISD::FADD:
2633    case ISD::FSUB:
2634    case ISD::FMUL:
2635    case ISD::FDIV:
2636    case ISD::FREM:
2637    case ISD::UDIV:
2638    case ISD::SDIV:
2639    case ISD::UREM:
2640    case ISD::SREM:
2641      return N2;       // fold op(arg1, undef) -> undef
2642    case ISD::MUL:
2643    case ISD::AND:
2644    case ISD::SRL:
2645    case ISD::SHL:
2646      if (!VT.isVector())
2647        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2648      // For vectors, we can't easily build an all zero vector, just return
2649      // the LHS.
2650      return N1;
2651    case ISD::OR:
2652      if (!VT.isVector())
2653        return getConstant(VT.getIntegerVTBitMask(), VT);
2654      // For vectors, we can't easily build an all one vector, just return
2655      // the LHS.
2656      return N1;
2657    case ISD::SRA:
2658      return N1;
2659    }
2660  }
2661
2662  // Memoize this node if possible.
2663  SDNode *N;
2664  SDVTList VTs = getVTList(VT);
2665  if (VT != MVT::Flag) {
2666    SDValue Ops[] = { N1, N2 };
2667    FoldingSetNodeID ID;
2668    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2669    void *IP = 0;
2670    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2671      return SDValue(E, 0);
2672    N = NodeAllocator.Allocate<BinarySDNode>();
2673    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2674    CSEMap.InsertNode(N, IP);
2675  } else {
2676    N = NodeAllocator.Allocate<BinarySDNode>();
2677    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2678  }
2679
2680  AllNodes.push_back(N);
2681#ifndef NDEBUG
2682  VerifyNode(N);
2683#endif
2684  return SDValue(N, 0);
2685}
2686
2687SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2688                              SDValue N1, SDValue N2, SDValue N3) {
2689  // Perform various simplifications.
2690  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2691  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2692  switch (Opcode) {
2693  case ISD::CONCAT_VECTORS:
2694    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2695    // one big BUILD_VECTOR.
2696    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2697        N2.getOpcode() == ISD::BUILD_VECTOR &&
2698        N3.getOpcode() == ISD::BUILD_VECTOR) {
2699      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2700      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2701      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2702      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2703    }
2704    break;
2705  case ISD::SETCC: {
2706    // Use FoldSetCC to simplify SETCC's.
2707    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2708    if (Simp.getNode()) return Simp;
2709    break;
2710  }
2711  case ISD::SELECT:
2712    if (N1C) {
2713     if (N1C->getZExtValue())
2714        return N2;             // select true, X, Y -> X
2715      else
2716        return N3;             // select false, X, Y -> Y
2717    }
2718
2719    if (N2 == N3) return N2;   // select C, X, X -> X
2720    break;
2721  case ISD::BRCOND:
2722    if (N2C) {
2723      if (N2C->getZExtValue()) // Unconditional branch
2724        return getNode(ISD::BR, MVT::Other, N1, N3);
2725      else
2726        return N1;         // Never-taken branch
2727    }
2728    break;
2729  case ISD::VECTOR_SHUFFLE:
2730    assert(N1.getValueType() == N2.getValueType() &&
2731           N1.getValueType().isVector() &&
2732           VT.isVector() && N3.getValueType().isVector() &&
2733           N3.getOpcode() == ISD::BUILD_VECTOR &&
2734           VT.getVectorNumElements() == N3.getNumOperands() &&
2735           "Illegal VECTOR_SHUFFLE node!");
2736    break;
2737  case ISD::BIT_CONVERT:
2738    // Fold bit_convert nodes from a type to themselves.
2739    if (N1.getValueType() == VT)
2740      return N1;
2741    break;
2742  }
2743
2744  // Memoize node if it doesn't produce a flag.
2745  SDNode *N;
2746  SDVTList VTs = getVTList(VT);
2747  if (VT != MVT::Flag) {
2748    SDValue Ops[] = { N1, N2, N3 };
2749    FoldingSetNodeID ID;
2750    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2751    void *IP = 0;
2752    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2753      return SDValue(E, 0);
2754    N = NodeAllocator.Allocate<TernarySDNode>();
2755    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2756    CSEMap.InsertNode(N, IP);
2757  } else {
2758    N = NodeAllocator.Allocate<TernarySDNode>();
2759    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2760  }
2761  AllNodes.push_back(N);
2762#ifndef NDEBUG
2763  VerifyNode(N);
2764#endif
2765  return SDValue(N, 0);
2766}
2767
2768SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2769                              SDValue N1, SDValue N2, SDValue N3,
2770                              SDValue N4) {
2771  SDValue Ops[] = { N1, N2, N3, N4 };
2772  return getNode(Opcode, VT, Ops, 4);
2773}
2774
2775SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2776                              SDValue N1, SDValue N2, SDValue N3,
2777                              SDValue N4, SDValue N5) {
2778  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2779  return getNode(Opcode, VT, Ops, 5);
2780}
2781
2782/// getMemsetValue - Vectorized representation of the memset value
2783/// operand.
2784static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2785  unsigned NumBits = VT.isVector() ?
2786    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2787  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2788    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2789    unsigned Shift = 8;
2790    for (unsigned i = NumBits; i > 8; i >>= 1) {
2791      Val = (Val << Shift) | Val;
2792      Shift <<= 1;
2793    }
2794    if (VT.isInteger())
2795      return DAG.getConstant(Val, VT);
2796    return DAG.getConstantFP(APFloat(Val), VT);
2797  }
2798
2799  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2800  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2801  unsigned Shift = 8;
2802  for (unsigned i = NumBits; i > 8; i >>= 1) {
2803    Value = DAG.getNode(ISD::OR, VT,
2804                        DAG.getNode(ISD::SHL, VT, Value,
2805                                    DAG.getConstant(Shift,
2806                                                    TLI.getShiftAmountTy())),
2807                        Value);
2808    Shift <<= 1;
2809  }
2810
2811  return Value;
2812}
2813
2814/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2815/// used when a memcpy is turned into a memset when the source is a constant
2816/// string ptr.
2817static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2818                                    const TargetLowering &TLI,
2819                                    std::string &Str, unsigned Offset) {
2820  // Handle vector with all elements zero.
2821  if (Str.empty()) {
2822    if (VT.isInteger())
2823      return DAG.getConstant(0, VT);
2824    unsigned NumElts = VT.getVectorNumElements();
2825    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2826    return DAG.getNode(ISD::BIT_CONVERT, VT,
2827                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2828  }
2829
2830  assert(!VT.isVector() && "Can't handle vector type here!");
2831  unsigned NumBits = VT.getSizeInBits();
2832  unsigned MSB = NumBits / 8;
2833  uint64_t Val = 0;
2834  if (TLI.isLittleEndian())
2835    Offset = Offset + MSB - 1;
2836  for (unsigned i = 0; i != MSB; ++i) {
2837    Val = (Val << 8) | (unsigned char)Str[Offset];
2838    Offset += TLI.isLittleEndian() ? -1 : 1;
2839  }
2840  return DAG.getConstant(Val, VT);
2841}
2842
2843/// getMemBasePlusOffset - Returns base and offset node for the
2844///
2845static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2846                                      SelectionDAG &DAG) {
2847  MVT VT = Base.getValueType();
2848  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2849}
2850
2851/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2852///
2853static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2854  unsigned SrcDelta = 0;
2855  GlobalAddressSDNode *G = NULL;
2856  if (Src.getOpcode() == ISD::GlobalAddress)
2857    G = cast<GlobalAddressSDNode>(Src);
2858  else if (Src.getOpcode() == ISD::ADD &&
2859           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2860           Src.getOperand(1).getOpcode() == ISD::Constant) {
2861    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2862    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2863  }
2864  if (!G)
2865    return false;
2866
2867  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2868  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2869    return true;
2870
2871  return false;
2872}
2873
2874/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2875/// to replace the memset / memcpy is below the threshold. It also returns the
2876/// types of the sequence of memory ops to perform memset / memcpy.
2877static
2878bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2879                              SDValue Dst, SDValue Src,
2880                              unsigned Limit, uint64_t Size, unsigned &Align,
2881                              std::string &Str, bool &isSrcStr,
2882                              SelectionDAG &DAG,
2883                              const TargetLowering &TLI) {
2884  isSrcStr = isMemSrcFromString(Src, Str);
2885  bool isSrcConst = isa<ConstantSDNode>(Src);
2886  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2887  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2888  if (VT != MVT::iAny) {
2889    unsigned NewAlign = (unsigned)
2890      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2891    // If source is a string constant, this will require an unaligned load.
2892    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2893      if (Dst.getOpcode() != ISD::FrameIndex) {
2894        // Can't change destination alignment. It requires a unaligned store.
2895        if (AllowUnalign)
2896          VT = MVT::iAny;
2897      } else {
2898        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2899        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2900        if (MFI->isFixedObjectIndex(FI)) {
2901          // Can't change destination alignment. It requires a unaligned store.
2902          if (AllowUnalign)
2903            VT = MVT::iAny;
2904        } else {
2905          // Give the stack frame object a larger alignment if needed.
2906          if (MFI->getObjectAlignment(FI) < NewAlign)
2907            MFI->setObjectAlignment(FI, NewAlign);
2908          Align = NewAlign;
2909        }
2910      }
2911    }
2912  }
2913
2914  if (VT == MVT::iAny) {
2915    if (AllowUnalign) {
2916      VT = MVT::i64;
2917    } else {
2918      switch (Align & 7) {
2919      case 0:  VT = MVT::i64; break;
2920      case 4:  VT = MVT::i32; break;
2921      case 2:  VT = MVT::i16; break;
2922      default: VT = MVT::i8;  break;
2923      }
2924    }
2925
2926    MVT LVT = MVT::i64;
2927    while (!TLI.isTypeLegal(LVT))
2928      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2929    assert(LVT.isInteger());
2930
2931    if (VT.bitsGT(LVT))
2932      VT = LVT;
2933  }
2934
2935  unsigned NumMemOps = 0;
2936  while (Size != 0) {
2937    unsigned VTSize = VT.getSizeInBits() / 8;
2938    while (VTSize > Size) {
2939      // For now, only use non-vector load / store's for the left-over pieces.
2940      if (VT.isVector()) {
2941        VT = MVT::i64;
2942        while (!TLI.isTypeLegal(VT))
2943          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2944        VTSize = VT.getSizeInBits() / 8;
2945      } else {
2946        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2947        VTSize >>= 1;
2948      }
2949    }
2950
2951    if (++NumMemOps > Limit)
2952      return false;
2953    MemOps.push_back(VT);
2954    Size -= VTSize;
2955  }
2956
2957  return true;
2958}
2959
2960static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2961                                         SDValue Chain, SDValue Dst,
2962                                         SDValue Src, uint64_t Size,
2963                                         unsigned Align, bool AlwaysInline,
2964                                         const Value *DstSV, uint64_t DstSVOff,
2965                                         const Value *SrcSV, uint64_t SrcSVOff){
2966  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2967
2968  // Expand memcpy to a series of load and store ops if the size operand falls
2969  // below a certain threshold.
2970  std::vector<MVT> MemOps;
2971  uint64_t Limit = -1ULL;
2972  if (!AlwaysInline)
2973    Limit = TLI.getMaxStoresPerMemcpy();
2974  unsigned DstAlign = Align;  // Destination alignment can change.
2975  std::string Str;
2976  bool CopyFromStr;
2977  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2978                                Str, CopyFromStr, DAG, TLI))
2979    return SDValue();
2980
2981
2982  bool isZeroStr = CopyFromStr && Str.empty();
2983  SmallVector<SDValue, 8> OutChains;
2984  unsigned NumMemOps = MemOps.size();
2985  uint64_t SrcOff = 0, DstOff = 0;
2986  for (unsigned i = 0; i < NumMemOps; i++) {
2987    MVT VT = MemOps[i];
2988    unsigned VTSize = VT.getSizeInBits() / 8;
2989    SDValue Value, Store;
2990
2991    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2992      // It's unlikely a store of a vector immediate can be done in a single
2993      // instruction. It would require a load from a constantpool first.
2994      // We also handle store a vector with all zero's.
2995      // FIXME: Handle other cases where store of vector immediate is done in
2996      // a single instruction.
2997      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2998      Store = DAG.getStore(Chain, Value,
2999                           getMemBasePlusOffset(Dst, DstOff, DAG),
3000                           DstSV, DstSVOff + DstOff, false, DstAlign);
3001    } else {
3002      Value = DAG.getLoad(VT, Chain,
3003                          getMemBasePlusOffset(Src, SrcOff, DAG),
3004                          SrcSV, SrcSVOff + SrcOff, false, Align);
3005      Store = DAG.getStore(Chain, Value,
3006                           getMemBasePlusOffset(Dst, DstOff, DAG),
3007                           DstSV, DstSVOff + DstOff, false, DstAlign);
3008    }
3009    OutChains.push_back(Store);
3010    SrcOff += VTSize;
3011    DstOff += VTSize;
3012  }
3013
3014  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3015                     &OutChains[0], OutChains.size());
3016}
3017
3018static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
3019                                          SDValue Chain, SDValue Dst,
3020                                          SDValue Src, uint64_t Size,
3021                                          unsigned Align, bool AlwaysInline,
3022                                          const Value *DstSV, uint64_t DstSVOff,
3023                                          const Value *SrcSV, uint64_t SrcSVOff){
3024  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3025
3026  // Expand memmove to a series of load and store ops if the size operand falls
3027  // below a certain threshold.
3028  std::vector<MVT> MemOps;
3029  uint64_t Limit = -1ULL;
3030  if (!AlwaysInline)
3031    Limit = TLI.getMaxStoresPerMemmove();
3032  unsigned DstAlign = Align;  // Destination alignment can change.
3033  std::string Str;
3034  bool CopyFromStr;
3035  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3036                                Str, CopyFromStr, DAG, TLI))
3037    return SDValue();
3038
3039  uint64_t SrcOff = 0, DstOff = 0;
3040
3041  SmallVector<SDValue, 8> LoadValues;
3042  SmallVector<SDValue, 8> LoadChains;
3043  SmallVector<SDValue, 8> OutChains;
3044  unsigned NumMemOps = MemOps.size();
3045  for (unsigned i = 0; i < NumMemOps; i++) {
3046    MVT VT = MemOps[i];
3047    unsigned VTSize = VT.getSizeInBits() / 8;
3048    SDValue Value, Store;
3049
3050    Value = DAG.getLoad(VT, Chain,
3051                        getMemBasePlusOffset(Src, SrcOff, DAG),
3052                        SrcSV, SrcSVOff + SrcOff, false, Align);
3053    LoadValues.push_back(Value);
3054    LoadChains.push_back(Value.getValue(1));
3055    SrcOff += VTSize;
3056  }
3057  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3058                      &LoadChains[0], LoadChains.size());
3059  OutChains.clear();
3060  for (unsigned i = 0; i < NumMemOps; i++) {
3061    MVT VT = MemOps[i];
3062    unsigned VTSize = VT.getSizeInBits() / 8;
3063    SDValue Value, Store;
3064
3065    Store = DAG.getStore(Chain, LoadValues[i],
3066                         getMemBasePlusOffset(Dst, DstOff, DAG),
3067                         DstSV, DstSVOff + DstOff, false, DstAlign);
3068    OutChains.push_back(Store);
3069    DstOff += VTSize;
3070  }
3071
3072  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3073                     &OutChains[0], OutChains.size());
3074}
3075
3076static SDValue getMemsetStores(SelectionDAG &DAG,
3077                                 SDValue Chain, SDValue Dst,
3078                                 SDValue Src, uint64_t Size,
3079                                 unsigned Align,
3080                                 const Value *DstSV, uint64_t DstSVOff) {
3081  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3082
3083  // Expand memset to a series of load/store ops if the size operand
3084  // falls below a certain threshold.
3085  std::vector<MVT> MemOps;
3086  std::string Str;
3087  bool CopyFromStr;
3088  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3089                                Size, Align, Str, CopyFromStr, DAG, TLI))
3090    return SDValue();
3091
3092  SmallVector<SDValue, 8> OutChains;
3093  uint64_t DstOff = 0;
3094
3095  unsigned NumMemOps = MemOps.size();
3096  for (unsigned i = 0; i < NumMemOps; i++) {
3097    MVT VT = MemOps[i];
3098    unsigned VTSize = VT.getSizeInBits() / 8;
3099    SDValue Value = getMemsetValue(Src, VT, DAG);
3100    SDValue Store = DAG.getStore(Chain, Value,
3101                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3102                                 DstSV, DstSVOff + DstOff);
3103    OutChains.push_back(Store);
3104    DstOff += VTSize;
3105  }
3106
3107  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3108                     &OutChains[0], OutChains.size());
3109}
3110
3111SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3112                                SDValue Src, SDValue Size,
3113                                unsigned Align, bool AlwaysInline,
3114                                const Value *DstSV, uint64_t DstSVOff,
3115                                const Value *SrcSV, uint64_t SrcSVOff) {
3116
3117  // Check to see if we should lower the memcpy to loads and stores first.
3118  // For cases within the target-specified limits, this is the best choice.
3119  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3120  if (ConstantSize) {
3121    // Memcpy with size zero? Just return the original chain.
3122    if (ConstantSize->isNullValue())
3123      return Chain;
3124
3125    SDValue Result =
3126      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3127                              ConstantSize->getZExtValue(),
3128                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3129    if (Result.getNode())
3130      return Result;
3131  }
3132
3133  // Then check to see if we should lower the memcpy with target-specific
3134  // code. If the target chooses to do this, this is the next best.
3135  SDValue Result =
3136    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3137                                AlwaysInline,
3138                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3139  if (Result.getNode())
3140    return Result;
3141
3142  // If we really need inline code and the target declined to provide it,
3143  // use a (potentially long) sequence of loads and stores.
3144  if (AlwaysInline) {
3145    assert(ConstantSize && "AlwaysInline requires a constant size!");
3146    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3147                                   ConstantSize->getZExtValue(), Align, true,
3148                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3149  }
3150
3151  // Emit a library call.
3152  TargetLowering::ArgListTy Args;
3153  TargetLowering::ArgListEntry Entry;
3154  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3155  Entry.Node = Dst; Args.push_back(Entry);
3156  Entry.Node = Src; Args.push_back(Entry);
3157  Entry.Node = Size; Args.push_back(Entry);
3158  std::pair<SDValue,SDValue> CallResult =
3159    TLI.LowerCallTo(Chain, Type::VoidTy,
3160                    false, false, false, false, CallingConv::C, false,
3161                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3162                    Args, *this);
3163  return CallResult.second;
3164}
3165
3166SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3167                                 SDValue Src, SDValue Size,
3168                                 unsigned Align,
3169                                 const Value *DstSV, uint64_t DstSVOff,
3170                                 const Value *SrcSV, uint64_t SrcSVOff) {
3171
3172  // Check to see if we should lower the memmove to loads and stores first.
3173  // For cases within the target-specified limits, this is the best choice.
3174  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3175  if (ConstantSize) {
3176    // Memmove with size zero? Just return the original chain.
3177    if (ConstantSize->isNullValue())
3178      return Chain;
3179
3180    SDValue Result =
3181      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3182                               ConstantSize->getZExtValue(),
3183                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3184    if (Result.getNode())
3185      return Result;
3186  }
3187
3188  // Then check to see if we should lower the memmove with target-specific
3189  // code. If the target chooses to do this, this is the next best.
3190  SDValue Result =
3191    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3192                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3193  if (Result.getNode())
3194    return Result;
3195
3196  // Emit a library call.
3197  TargetLowering::ArgListTy Args;
3198  TargetLowering::ArgListEntry Entry;
3199  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3200  Entry.Node = Dst; Args.push_back(Entry);
3201  Entry.Node = Src; Args.push_back(Entry);
3202  Entry.Node = Size; Args.push_back(Entry);
3203  std::pair<SDValue,SDValue> CallResult =
3204    TLI.LowerCallTo(Chain, Type::VoidTy,
3205                    false, false, false, false, CallingConv::C, false,
3206                    getExternalSymbol("memmove", TLI.getPointerTy()),
3207                    Args, *this);
3208  return CallResult.second;
3209}
3210
3211SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3212                                SDValue Src, SDValue Size,
3213                                unsigned Align,
3214                                const Value *DstSV, uint64_t DstSVOff) {
3215
3216  // Check to see if we should lower the memset to stores first.
3217  // For cases within the target-specified limits, this is the best choice.
3218  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3219  if (ConstantSize) {
3220    // Memset with size zero? Just return the original chain.
3221    if (ConstantSize->isNullValue())
3222      return Chain;
3223
3224    SDValue Result =
3225      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3226                      Align, DstSV, DstSVOff);
3227    if (Result.getNode())
3228      return Result;
3229  }
3230
3231  // Then check to see if we should lower the memset with target-specific
3232  // code. If the target chooses to do this, this is the next best.
3233  SDValue Result =
3234    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3235                                DstSV, DstSVOff);
3236  if (Result.getNode())
3237    return Result;
3238
3239  // Emit a library call.
3240  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3241  TargetLowering::ArgListTy Args;
3242  TargetLowering::ArgListEntry Entry;
3243  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3244  Args.push_back(Entry);
3245  // Extend or truncate the argument to be an i32 value for the call.
3246  if (Src.getValueType().bitsGT(MVT::i32))
3247    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3248  else
3249    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3250  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3251  Args.push_back(Entry);
3252  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3253  Args.push_back(Entry);
3254  std::pair<SDValue,SDValue> CallResult =
3255    TLI.LowerCallTo(Chain, Type::VoidTy,
3256                    false, false, false, false, CallingConv::C, false,
3257                    getExternalSymbol("memset", TLI.getPointerTy()),
3258                    Args, *this);
3259  return CallResult.second;
3260}
3261
3262SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3263                                SDValue Ptr, SDValue Cmp,
3264                                SDValue Swp, const Value* PtrVal,
3265                                unsigned Alignment) {
3266  assert((Opcode == ISD::ATOMIC_CMP_SWAP_8  ||
3267          Opcode == ISD::ATOMIC_CMP_SWAP_16 ||
3268          Opcode == ISD::ATOMIC_CMP_SWAP_32 ||
3269          Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op");
3270  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3271
3272  MVT VT = Cmp.getValueType();
3273
3274  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3275    Alignment = getMVTAlignment(VT);
3276
3277  SDVTList VTs = getVTList(VT, MVT::Other);
3278  FoldingSetNodeID ID;
3279  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3280  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3281  void* IP = 0;
3282  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3283    return SDValue(E, 0);
3284  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3285  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3286  CSEMap.InsertNode(N, IP);
3287  AllNodes.push_back(N);
3288  return SDValue(N, 0);
3289}
3290
3291SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3292                                SDValue Ptr, SDValue Val,
3293                                const Value* PtrVal,
3294                                unsigned Alignment) {
3295  assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 ||
3296          Opcode == ISD::ATOMIC_LOAD_SUB_8 ||
3297          Opcode == ISD::ATOMIC_LOAD_AND_8 ||
3298          Opcode == ISD::ATOMIC_LOAD_OR_8 ||
3299          Opcode == ISD::ATOMIC_LOAD_XOR_8 ||
3300          Opcode == ISD::ATOMIC_LOAD_NAND_8 ||
3301          Opcode == ISD::ATOMIC_LOAD_MIN_8 ||
3302          Opcode == ISD::ATOMIC_LOAD_MAX_8 ||
3303          Opcode == ISD::ATOMIC_LOAD_UMIN_8 ||
3304          Opcode == ISD::ATOMIC_LOAD_UMAX_8 ||
3305          Opcode == ISD::ATOMIC_SWAP_8 ||
3306          Opcode == ISD::ATOMIC_LOAD_ADD_16 ||
3307          Opcode == ISD::ATOMIC_LOAD_SUB_16 ||
3308          Opcode == ISD::ATOMIC_LOAD_AND_16 ||
3309          Opcode == ISD::ATOMIC_LOAD_OR_16 ||
3310          Opcode == ISD::ATOMIC_LOAD_XOR_16 ||
3311          Opcode == ISD::ATOMIC_LOAD_NAND_16 ||
3312          Opcode == ISD::ATOMIC_LOAD_MIN_16 ||
3313          Opcode == ISD::ATOMIC_LOAD_MAX_16 ||
3314          Opcode == ISD::ATOMIC_LOAD_UMIN_16 ||
3315          Opcode == ISD::ATOMIC_LOAD_UMAX_16 ||
3316          Opcode == ISD::ATOMIC_SWAP_16 ||
3317          Opcode == ISD::ATOMIC_LOAD_ADD_32 ||
3318          Opcode == ISD::ATOMIC_LOAD_SUB_32 ||
3319          Opcode == ISD::ATOMIC_LOAD_AND_32 ||
3320          Opcode == ISD::ATOMIC_LOAD_OR_32 ||
3321          Opcode == ISD::ATOMIC_LOAD_XOR_32 ||
3322          Opcode == ISD::ATOMIC_LOAD_NAND_32 ||
3323          Opcode == ISD::ATOMIC_LOAD_MIN_32 ||
3324          Opcode == ISD::ATOMIC_LOAD_MAX_32 ||
3325          Opcode == ISD::ATOMIC_LOAD_UMIN_32 ||
3326          Opcode == ISD::ATOMIC_LOAD_UMAX_32 ||
3327          Opcode == ISD::ATOMIC_SWAP_32 ||
3328          Opcode == ISD::ATOMIC_LOAD_ADD_64 ||
3329          Opcode == ISD::ATOMIC_LOAD_SUB_64 ||
3330          Opcode == ISD::ATOMIC_LOAD_AND_64 ||
3331          Opcode == ISD::ATOMIC_LOAD_OR_64 ||
3332          Opcode == ISD::ATOMIC_LOAD_XOR_64 ||
3333          Opcode == ISD::ATOMIC_LOAD_NAND_64 ||
3334          Opcode == ISD::ATOMIC_LOAD_MIN_64 ||
3335          Opcode == ISD::ATOMIC_LOAD_MAX_64 ||
3336          Opcode == ISD::ATOMIC_LOAD_UMIN_64 ||
3337          Opcode == ISD::ATOMIC_LOAD_UMAX_64 ||
3338          Opcode == ISD::ATOMIC_SWAP_64)        && "Invalid Atomic Op");
3339
3340  MVT VT = Val.getValueType();
3341
3342  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3343    Alignment = getMVTAlignment(VT);
3344
3345  SDVTList VTs = getVTList(VT, MVT::Other);
3346  FoldingSetNodeID ID;
3347  SDValue Ops[] = {Chain, Ptr, Val};
3348  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3349  void* IP = 0;
3350  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3351    return SDValue(E, 0);
3352  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3353  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3354  CSEMap.InsertNode(N, IP);
3355  AllNodes.push_back(N);
3356  return SDValue(N, 0);
3357}
3358
3359/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3360/// Allowed to return something different (and simpler) if Simplify is true.
3361SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps) {
3362  if (NumOps == 1)
3363    return Ops[0];
3364
3365  SmallVector<MVT, 4> VTs;
3366  VTs.reserve(NumOps);
3367  for (unsigned i = 0; i < NumOps; ++i)
3368    VTs.push_back(Ops[i].getValueType());
3369  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3370}
3371
3372SDValue
3373SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3374                                  const MVT *VTs, unsigned NumVTs,
3375                                  const SDValue *Ops, unsigned NumOps,
3376                                  MVT MemVT, const Value *srcValue, int SVOff,
3377                                  unsigned Align, bool Vol,
3378                                  bool ReadMem, bool WriteMem) {
3379  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3380                             MemVT, srcValue, SVOff, Align, Vol,
3381                             ReadMem, WriteMem);
3382}
3383
3384SDValue
3385SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3386                                  const SDValue *Ops, unsigned NumOps,
3387                                  MVT MemVT, const Value *srcValue, int SVOff,
3388                                  unsigned Align, bool Vol,
3389                                  bool ReadMem, bool WriteMem) {
3390  // Memoize the node unless it returns a flag.
3391  MemIntrinsicSDNode *N;
3392  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3393    FoldingSetNodeID ID;
3394    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3395    void *IP = 0;
3396    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3397      return SDValue(E, 0);
3398
3399    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3400    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3401                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3402    CSEMap.InsertNode(N, IP);
3403  } else {
3404    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3405    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3406                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3407  }
3408  AllNodes.push_back(N);
3409  return SDValue(N, 0);
3410}
3411
3412SDValue
3413SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3414                      bool IsInreg, SDVTList VTs,
3415                      const SDValue *Operands, unsigned NumOperands) {
3416  // Do not include isTailCall in the folding set profile.
3417  FoldingSetNodeID ID;
3418  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3419  ID.AddInteger(CallingConv);
3420  ID.AddInteger(IsVarArgs);
3421  void *IP = 0;
3422  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3423    // Instead of including isTailCall in the folding set, we just
3424    // set the flag of the existing node.
3425    if (!IsTailCall)
3426      cast<CallSDNode>(E)->setNotTailCall();
3427    return SDValue(E, 0);
3428  }
3429  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3430  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3431                     VTs, Operands, NumOperands);
3432  CSEMap.InsertNode(N, IP);
3433  AllNodes.push_back(N);
3434  return SDValue(N, 0);
3435}
3436
3437SDValue
3438SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3439                      MVT VT, SDValue Chain,
3440                      SDValue Ptr, SDValue Offset,
3441                      const Value *SV, int SVOffset, MVT EVT,
3442                      bool isVolatile, unsigned Alignment) {
3443  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3444    Alignment = getMVTAlignment(VT);
3445
3446  if (VT == EVT) {
3447    ExtType = ISD::NON_EXTLOAD;
3448  } else if (ExtType == ISD::NON_EXTLOAD) {
3449    assert(VT == EVT && "Non-extending load from different memory type!");
3450  } else {
3451    // Extending load.
3452    if (VT.isVector())
3453      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3454             "Invalid vector extload!");
3455    else
3456      assert(EVT.bitsLT(VT) &&
3457             "Should only be an extending load, not truncating!");
3458    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3459           "Cannot sign/zero extend a FP/Vector load!");
3460    assert(VT.isInteger() == EVT.isInteger() &&
3461           "Cannot convert from FP to Int or Int -> FP!");
3462  }
3463
3464  bool Indexed = AM != ISD::UNINDEXED;
3465  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3466         "Unindexed load with an offset!");
3467
3468  SDVTList VTs = Indexed ?
3469    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3470  SDValue Ops[] = { Chain, Ptr, Offset };
3471  FoldingSetNodeID ID;
3472  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3473  ID.AddInteger(AM);
3474  ID.AddInteger(ExtType);
3475  ID.AddInteger(EVT.getRawBits());
3476  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3477  void *IP = 0;
3478  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3479    return SDValue(E, 0);
3480  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3481  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3482                     Alignment, isVolatile);
3483  CSEMap.InsertNode(N, IP);
3484  AllNodes.push_back(N);
3485  return SDValue(N, 0);
3486}
3487
3488SDValue SelectionDAG::getLoad(MVT VT,
3489                              SDValue Chain, SDValue Ptr,
3490                              const Value *SV, int SVOffset,
3491                              bool isVolatile, unsigned Alignment) {
3492  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3493  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3494                 SV, SVOffset, VT, isVolatile, Alignment);
3495}
3496
3497SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3498                                 SDValue Chain, SDValue Ptr,
3499                                 const Value *SV,
3500                                 int SVOffset, MVT EVT,
3501                                 bool isVolatile, unsigned Alignment) {
3502  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3503  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3504                 SV, SVOffset, EVT, isVolatile, Alignment);
3505}
3506
3507SDValue
3508SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3509                             SDValue Offset, ISD::MemIndexedMode AM) {
3510  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3511  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3512         "Load is already a indexed load!");
3513  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3514                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3515                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3516                 LD->isVolatile(), LD->getAlignment());
3517}
3518
3519SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3520                               SDValue Ptr, const Value *SV, int SVOffset,
3521                               bool isVolatile, unsigned Alignment) {
3522  MVT VT = Val.getValueType();
3523
3524  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3525    Alignment = getMVTAlignment(VT);
3526
3527  SDVTList VTs = getVTList(MVT::Other);
3528  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3529  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3530  FoldingSetNodeID ID;
3531  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3532  ID.AddInteger(ISD::UNINDEXED);
3533  ID.AddInteger(false);
3534  ID.AddInteger(VT.getRawBits());
3535  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3536  void *IP = 0;
3537  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3538    return SDValue(E, 0);
3539  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3540  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3541                      VT, SV, SVOffset, Alignment, isVolatile);
3542  CSEMap.InsertNode(N, IP);
3543  AllNodes.push_back(N);
3544  return SDValue(N, 0);
3545}
3546
3547SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3548                                    SDValue Ptr, const Value *SV,
3549                                    int SVOffset, MVT SVT,
3550                                    bool isVolatile, unsigned Alignment) {
3551  MVT VT = Val.getValueType();
3552
3553  if (VT == SVT)
3554    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3555
3556  assert(VT.bitsGT(SVT) && "Not a truncation?");
3557  assert(VT.isInteger() == SVT.isInteger() &&
3558         "Can't do FP-INT conversion!");
3559
3560  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3561    Alignment = getMVTAlignment(VT);
3562
3563  SDVTList VTs = getVTList(MVT::Other);
3564  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3565  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3566  FoldingSetNodeID ID;
3567  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3568  ID.AddInteger(ISD::UNINDEXED);
3569  ID.AddInteger(1);
3570  ID.AddInteger(SVT.getRawBits());
3571  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3572  void *IP = 0;
3573  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3574    return SDValue(E, 0);
3575  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3576  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3577                      SVT, SV, SVOffset, Alignment, isVolatile);
3578  CSEMap.InsertNode(N, IP);
3579  AllNodes.push_back(N);
3580  return SDValue(N, 0);
3581}
3582
3583SDValue
3584SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3585                              SDValue Offset, ISD::MemIndexedMode AM) {
3586  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3587  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3588         "Store is already a indexed store!");
3589  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3590  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3591  FoldingSetNodeID ID;
3592  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3593  ID.AddInteger(AM);
3594  ID.AddInteger(ST->isTruncatingStore());
3595  ID.AddInteger(ST->getMemoryVT().getRawBits());
3596  ID.AddInteger(ST->getRawFlags());
3597  void *IP = 0;
3598  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3599    return SDValue(E, 0);
3600  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3601  new (N) StoreSDNode(Ops, VTs, AM,
3602                      ST->isTruncatingStore(), ST->getMemoryVT(),
3603                      ST->getSrcValue(), ST->getSrcValueOffset(),
3604                      ST->getAlignment(), ST->isVolatile());
3605  CSEMap.InsertNode(N, IP);
3606  AllNodes.push_back(N);
3607  return SDValue(N, 0);
3608}
3609
3610SDValue SelectionDAG::getVAArg(MVT VT,
3611                               SDValue Chain, SDValue Ptr,
3612                               SDValue SV) {
3613  SDValue Ops[] = { Chain, Ptr, SV };
3614  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3615}
3616
3617SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3618                              const SDUse *Ops, unsigned NumOps) {
3619  switch (NumOps) {
3620  case 0: return getNode(Opcode, VT);
3621  case 1: return getNode(Opcode, VT, Ops[0]);
3622  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3623  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3624  default: break;
3625  }
3626
3627  // Copy from an SDUse array into an SDValue array for use with
3628  // the regular getNode logic.
3629  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3630  return getNode(Opcode, VT, &NewOps[0], NumOps);
3631}
3632
3633SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3634                              const SDValue *Ops, unsigned NumOps) {
3635  switch (NumOps) {
3636  case 0: return getNode(Opcode, VT);
3637  case 1: return getNode(Opcode, VT, Ops[0]);
3638  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3639  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3640  default: break;
3641  }
3642
3643  switch (Opcode) {
3644  default: break;
3645  case ISD::SELECT_CC: {
3646    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3647    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3648           "LHS and RHS of condition must have same type!");
3649    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3650           "True and False arms of SelectCC must have same type!");
3651    assert(Ops[2].getValueType() == VT &&
3652           "select_cc node must be of same type as true and false value!");
3653    break;
3654  }
3655  case ISD::BR_CC: {
3656    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3657    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3658           "LHS/RHS of comparison should match types!");
3659    break;
3660  }
3661  }
3662
3663  // Memoize nodes.
3664  SDNode *N;
3665  SDVTList VTs = getVTList(VT);
3666  if (VT != MVT::Flag) {
3667    FoldingSetNodeID ID;
3668    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3669    void *IP = 0;
3670    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3671      return SDValue(E, 0);
3672    N = NodeAllocator.Allocate<SDNode>();
3673    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3674    CSEMap.InsertNode(N, IP);
3675  } else {
3676    N = NodeAllocator.Allocate<SDNode>();
3677    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3678  }
3679  AllNodes.push_back(N);
3680#ifndef NDEBUG
3681  VerifyNode(N);
3682#endif
3683  return SDValue(N, 0);
3684}
3685
3686SDValue SelectionDAG::getNode(unsigned Opcode,
3687                              const std::vector<MVT> &ResultTys,
3688                              const SDValue *Ops, unsigned NumOps) {
3689  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3690                 Ops, NumOps);
3691}
3692
3693SDValue SelectionDAG::getNode(unsigned Opcode,
3694                              const MVT *VTs, unsigned NumVTs,
3695                              const SDValue *Ops, unsigned NumOps) {
3696  if (NumVTs == 1)
3697    return getNode(Opcode, VTs[0], Ops, NumOps);
3698  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3699}
3700
3701SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3702                              const SDValue *Ops, unsigned NumOps) {
3703  if (VTList.NumVTs == 1)
3704    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3705
3706  switch (Opcode) {
3707  // FIXME: figure out how to safely handle things like
3708  // int foo(int x) { return 1 << (x & 255); }
3709  // int bar() { return foo(256); }
3710#if 0
3711  case ISD::SRA_PARTS:
3712  case ISD::SRL_PARTS:
3713  case ISD::SHL_PARTS:
3714    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3715        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3716      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3717    else if (N3.getOpcode() == ISD::AND)
3718      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3719        // If the and is only masking out bits that cannot effect the shift,
3720        // eliminate the and.
3721        unsigned NumBits = VT.getSizeInBits()*2;
3722        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3723          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3724      }
3725    break;
3726#endif
3727  }
3728
3729  // Memoize the node unless it returns a flag.
3730  SDNode *N;
3731  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3732    FoldingSetNodeID ID;
3733    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3734    void *IP = 0;
3735    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3736      return SDValue(E, 0);
3737    if (NumOps == 1) {
3738      N = NodeAllocator.Allocate<UnarySDNode>();
3739      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3740    } else if (NumOps == 2) {
3741      N = NodeAllocator.Allocate<BinarySDNode>();
3742      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3743    } else if (NumOps == 3) {
3744      N = NodeAllocator.Allocate<TernarySDNode>();
3745      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3746    } else {
3747      N = NodeAllocator.Allocate<SDNode>();
3748      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3749    }
3750    CSEMap.InsertNode(N, IP);
3751  } else {
3752    if (NumOps == 1) {
3753      N = NodeAllocator.Allocate<UnarySDNode>();
3754      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3755    } else if (NumOps == 2) {
3756      N = NodeAllocator.Allocate<BinarySDNode>();
3757      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3758    } else if (NumOps == 3) {
3759      N = NodeAllocator.Allocate<TernarySDNode>();
3760      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3761    } else {
3762      N = NodeAllocator.Allocate<SDNode>();
3763      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3764    }
3765  }
3766  AllNodes.push_back(N);
3767#ifndef NDEBUG
3768  VerifyNode(N);
3769#endif
3770  return SDValue(N, 0);
3771}
3772
3773SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3774  return getNode(Opcode, VTList, 0, 0);
3775}
3776
3777SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3778                                SDValue N1) {
3779  SDValue Ops[] = { N1 };
3780  return getNode(Opcode, VTList, Ops, 1);
3781}
3782
3783SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3784                              SDValue N1, SDValue N2) {
3785  SDValue Ops[] = { N1, N2 };
3786  return getNode(Opcode, VTList, Ops, 2);
3787}
3788
3789SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3790                              SDValue N1, SDValue N2, SDValue N3) {
3791  SDValue Ops[] = { N1, N2, N3 };
3792  return getNode(Opcode, VTList, Ops, 3);
3793}
3794
3795SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3796                              SDValue N1, SDValue N2, SDValue N3,
3797                              SDValue N4) {
3798  SDValue Ops[] = { N1, N2, N3, N4 };
3799  return getNode(Opcode, VTList, Ops, 4);
3800}
3801
3802SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3803                              SDValue N1, SDValue N2, SDValue N3,
3804                              SDValue N4, SDValue N5) {
3805  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3806  return getNode(Opcode, VTList, Ops, 5);
3807}
3808
3809SDVTList SelectionDAG::getVTList(MVT VT) {
3810  return makeVTList(SDNode::getValueTypeList(VT), 1);
3811}
3812
3813SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3814  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3815       E = VTList.rend(); I != E; ++I)
3816    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3817      return *I;
3818
3819  MVT *Array = Allocator.Allocate<MVT>(2);
3820  Array[0] = VT1;
3821  Array[1] = VT2;
3822  SDVTList Result = makeVTList(Array, 2);
3823  VTList.push_back(Result);
3824  return Result;
3825}
3826
3827SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3828  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3829       E = VTList.rend(); I != E; ++I)
3830    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3831                          I->VTs[2] == VT3)
3832      return *I;
3833
3834  MVT *Array = Allocator.Allocate<MVT>(3);
3835  Array[0] = VT1;
3836  Array[1] = VT2;
3837  Array[2] = VT3;
3838  SDVTList Result = makeVTList(Array, 3);
3839  VTList.push_back(Result);
3840  return Result;
3841}
3842
3843SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3844  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3845       E = VTList.rend(); I != E; ++I)
3846    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3847                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3848      return *I;
3849
3850  MVT *Array = Allocator.Allocate<MVT>(3);
3851  Array[0] = VT1;
3852  Array[1] = VT2;
3853  Array[2] = VT3;
3854  Array[3] = VT4;
3855  SDVTList Result = makeVTList(Array, 4);
3856  VTList.push_back(Result);
3857  return Result;
3858}
3859
3860SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3861  switch (NumVTs) {
3862    case 0: assert(0 && "Cannot have nodes without results!");
3863    case 1: return getVTList(VTs[0]);
3864    case 2: return getVTList(VTs[0], VTs[1]);
3865    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3866    default: break;
3867  }
3868
3869  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3870       E = VTList.rend(); I != E; ++I) {
3871    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3872      continue;
3873
3874    bool NoMatch = false;
3875    for (unsigned i = 2; i != NumVTs; ++i)
3876      if (VTs[i] != I->VTs[i]) {
3877        NoMatch = true;
3878        break;
3879      }
3880    if (!NoMatch)
3881      return *I;
3882  }
3883
3884  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3885  std::copy(VTs, VTs+NumVTs, Array);
3886  SDVTList Result = makeVTList(Array, NumVTs);
3887  VTList.push_back(Result);
3888  return Result;
3889}
3890
3891
3892/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3893/// specified operands.  If the resultant node already exists in the DAG,
3894/// this does not modify the specified node, instead it returns the node that
3895/// already exists.  If the resultant node does not exist in the DAG, the
3896/// input node is returned.  As a degenerate case, if you specify the same
3897/// input operands as the node already has, the input node is returned.
3898SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3899  SDNode *N = InN.getNode();
3900  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3901
3902  // Check to see if there is no change.
3903  if (Op == N->getOperand(0)) return InN;
3904
3905  // See if the modified node already exists.
3906  void *InsertPos = 0;
3907  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3908    return SDValue(Existing, InN.getResNo());
3909
3910  // Nope it doesn't.  Remove the node from its current place in the maps.
3911  if (InsertPos)
3912    if (!RemoveNodeFromCSEMaps(N))
3913      InsertPos = 0;
3914
3915  // Now we update the operands.
3916  N->OperandList[0].getVal()->removeUser(0, N);
3917  N->OperandList[0] = Op;
3918  N->OperandList[0].setUser(N);
3919  Op.getNode()->addUser(0, N);
3920
3921  // If this gets put into a CSE map, add it.
3922  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3923  return InN;
3924}
3925
3926SDValue SelectionDAG::
3927UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3928  SDNode *N = InN.getNode();
3929  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3930
3931  // Check to see if there is no change.
3932  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3933    return InN;   // No operands changed, just return the input node.
3934
3935  // See if the modified node already exists.
3936  void *InsertPos = 0;
3937  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3938    return SDValue(Existing, InN.getResNo());
3939
3940  // Nope it doesn't.  Remove the node from its current place in the maps.
3941  if (InsertPos)
3942    if (!RemoveNodeFromCSEMaps(N))
3943      InsertPos = 0;
3944
3945  // Now we update the operands.
3946  if (N->OperandList[0] != Op1) {
3947    N->OperandList[0].getVal()->removeUser(0, N);
3948    N->OperandList[0] = Op1;
3949    N->OperandList[0].setUser(N);
3950    Op1.getNode()->addUser(0, N);
3951  }
3952  if (N->OperandList[1] != Op2) {
3953    N->OperandList[1].getVal()->removeUser(1, N);
3954    N->OperandList[1] = Op2;
3955    N->OperandList[1].setUser(N);
3956    Op2.getNode()->addUser(1, N);
3957  }
3958
3959  // If this gets put into a CSE map, add it.
3960  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3961  return InN;
3962}
3963
3964SDValue SelectionDAG::
3965UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3966  SDValue Ops[] = { Op1, Op2, Op3 };
3967  return UpdateNodeOperands(N, Ops, 3);
3968}
3969
3970SDValue SelectionDAG::
3971UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3972                   SDValue Op3, SDValue Op4) {
3973  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3974  return UpdateNodeOperands(N, Ops, 4);
3975}
3976
3977SDValue SelectionDAG::
3978UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3979                   SDValue Op3, SDValue Op4, SDValue Op5) {
3980  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3981  return UpdateNodeOperands(N, Ops, 5);
3982}
3983
3984SDValue SelectionDAG::
3985UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3986  SDNode *N = InN.getNode();
3987  assert(N->getNumOperands() == NumOps &&
3988         "Update with wrong number of operands");
3989
3990  // Check to see if there is no change.
3991  bool AnyChange = false;
3992  for (unsigned i = 0; i != NumOps; ++i) {
3993    if (Ops[i] != N->getOperand(i)) {
3994      AnyChange = true;
3995      break;
3996    }
3997  }
3998
3999  // No operands changed, just return the input node.
4000  if (!AnyChange) return InN;
4001
4002  // See if the modified node already exists.
4003  void *InsertPos = 0;
4004  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4005    return SDValue(Existing, InN.getResNo());
4006
4007  // Nope it doesn't.  Remove the node from its current place in the maps.
4008  if (InsertPos)
4009    if (!RemoveNodeFromCSEMaps(N))
4010      InsertPos = 0;
4011
4012  // Now we update the operands.
4013  for (unsigned i = 0; i != NumOps; ++i) {
4014    if (N->OperandList[i] != Ops[i]) {
4015      N->OperandList[i].getVal()->removeUser(i, N);
4016      N->OperandList[i] = Ops[i];
4017      N->OperandList[i].setUser(N);
4018      Ops[i].getNode()->addUser(i, N);
4019    }
4020  }
4021
4022  // If this gets put into a CSE map, add it.
4023  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4024  return InN;
4025}
4026
4027/// DropOperands - Release the operands and set this node to have
4028/// zero operands.
4029void SDNode::DropOperands() {
4030  // Unlike the code in MorphNodeTo that does this, we don't need to
4031  // watch for dead nodes here.
4032  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
4033    I->getVal()->removeUser(std::distance(op_begin(), I), this);
4034
4035  NumOperands = 0;
4036}
4037
4038/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4039/// machine opcode.
4040///
4041SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4042                                   MVT VT) {
4043  SDVTList VTs = getVTList(VT);
4044  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4045}
4046
4047SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4048                                   MVT VT, SDValue Op1) {
4049  SDVTList VTs = getVTList(VT);
4050  SDValue Ops[] = { Op1 };
4051  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4052}
4053
4054SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4055                                   MVT VT, SDValue Op1,
4056                                   SDValue Op2) {
4057  SDVTList VTs = getVTList(VT);
4058  SDValue Ops[] = { Op1, Op2 };
4059  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4060}
4061
4062SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4063                                   MVT VT, SDValue Op1,
4064                                   SDValue Op2, SDValue Op3) {
4065  SDVTList VTs = getVTList(VT);
4066  SDValue Ops[] = { Op1, Op2, Op3 };
4067  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4068}
4069
4070SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4071                                   MVT VT, const SDValue *Ops,
4072                                   unsigned NumOps) {
4073  SDVTList VTs = getVTList(VT);
4074  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4075}
4076
4077SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4078                                   MVT VT1, MVT VT2, const SDValue *Ops,
4079                                   unsigned NumOps) {
4080  SDVTList VTs = getVTList(VT1, VT2);
4081  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4082}
4083
4084SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4085                                   MVT VT1, MVT VT2) {
4086  SDVTList VTs = getVTList(VT1, VT2);
4087  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4088}
4089
4090SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4091                                   MVT VT1, MVT VT2, MVT VT3,
4092                                   const SDValue *Ops, unsigned NumOps) {
4093  SDVTList VTs = getVTList(VT1, VT2, VT3);
4094  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4095}
4096
4097SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4098                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4099                                   const SDValue *Ops, unsigned NumOps) {
4100  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4101  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4102}
4103
4104SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4105                                   MVT VT1, MVT VT2,
4106                                   SDValue Op1) {
4107  SDVTList VTs = getVTList(VT1, VT2);
4108  SDValue Ops[] = { Op1 };
4109  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4110}
4111
4112SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4113                                   MVT VT1, MVT VT2,
4114                                   SDValue Op1, SDValue Op2) {
4115  SDVTList VTs = getVTList(VT1, VT2);
4116  SDValue Ops[] = { Op1, Op2 };
4117  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4118}
4119
4120SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4121                                   MVT VT1, MVT VT2,
4122                                   SDValue Op1, SDValue Op2,
4123                                   SDValue Op3) {
4124  SDVTList VTs = getVTList(VT1, VT2);
4125  SDValue Ops[] = { Op1, Op2, Op3 };
4126  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4127}
4128
4129SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4130                                   MVT VT1, MVT VT2, MVT VT3,
4131                                   SDValue Op1, SDValue Op2,
4132                                   SDValue Op3) {
4133  SDVTList VTs = getVTList(VT1, VT2, VT3);
4134  SDValue Ops[] = { Op1, Op2, Op3 };
4135  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4136}
4137
4138SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4139                                   SDVTList VTs, const SDValue *Ops,
4140                                   unsigned NumOps) {
4141  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4142}
4143
4144SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4145                                  MVT VT) {
4146  SDVTList VTs = getVTList(VT);
4147  return MorphNodeTo(N, Opc, VTs, 0, 0);
4148}
4149
4150SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4151                                  MVT VT, SDValue Op1) {
4152  SDVTList VTs = getVTList(VT);
4153  SDValue Ops[] = { Op1 };
4154  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4155}
4156
4157SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4158                                  MVT VT, SDValue Op1,
4159                                  SDValue Op2) {
4160  SDVTList VTs = getVTList(VT);
4161  SDValue Ops[] = { Op1, Op2 };
4162  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4163}
4164
4165SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4166                                  MVT VT, SDValue Op1,
4167                                  SDValue Op2, SDValue Op3) {
4168  SDVTList VTs = getVTList(VT);
4169  SDValue Ops[] = { Op1, Op2, Op3 };
4170  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4171}
4172
4173SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4174                                  MVT VT, const SDValue *Ops,
4175                                  unsigned NumOps) {
4176  SDVTList VTs = getVTList(VT);
4177  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4178}
4179
4180SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4181                                  MVT VT1, MVT VT2, const SDValue *Ops,
4182                                  unsigned NumOps) {
4183  SDVTList VTs = getVTList(VT1, VT2);
4184  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4185}
4186
4187SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4188                                  MVT VT1, MVT VT2) {
4189  SDVTList VTs = getVTList(VT1, VT2);
4190  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4191}
4192
4193SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4194                                  MVT VT1, MVT VT2, MVT VT3,
4195                                  const SDValue *Ops, unsigned NumOps) {
4196  SDVTList VTs = getVTList(VT1, VT2, VT3);
4197  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4198}
4199
4200SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4201                                  MVT VT1, MVT VT2,
4202                                  SDValue Op1) {
4203  SDVTList VTs = getVTList(VT1, VT2);
4204  SDValue Ops[] = { Op1 };
4205  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4206}
4207
4208SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4209                                  MVT VT1, MVT VT2,
4210                                  SDValue Op1, SDValue Op2) {
4211  SDVTList VTs = getVTList(VT1, VT2);
4212  SDValue Ops[] = { Op1, Op2 };
4213  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4214}
4215
4216SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4217                                  MVT VT1, MVT VT2,
4218                                  SDValue Op1, SDValue Op2,
4219                                  SDValue Op3) {
4220  SDVTList VTs = getVTList(VT1, VT2);
4221  SDValue Ops[] = { Op1, Op2, Op3 };
4222  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4223}
4224
4225/// MorphNodeTo - These *mutate* the specified node to have the specified
4226/// return type, opcode, and operands.
4227///
4228/// Note that MorphNodeTo returns the resultant node.  If there is already a
4229/// node of the specified opcode and operands, it returns that node instead of
4230/// the current one.
4231///
4232/// Using MorphNodeTo is faster than creating a new node and swapping it in
4233/// with ReplaceAllUsesWith both because it often avoids allocating a new
4234/// node, and because it doesn't require CSE recalculation for any of
4235/// the node's users.
4236///
4237SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4238                                  SDVTList VTs, const SDValue *Ops,
4239                                  unsigned NumOps) {
4240  // If an identical node already exists, use it.
4241  void *IP = 0;
4242  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4243    FoldingSetNodeID ID;
4244    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4245    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4246      return ON;
4247  }
4248
4249  if (!RemoveNodeFromCSEMaps(N))
4250    IP = 0;
4251
4252  // Start the morphing.
4253  N->NodeType = Opc;
4254  N->ValueList = VTs.VTs;
4255  N->NumValues = VTs.NumVTs;
4256
4257  // Clear the operands list, updating used nodes to remove this from their
4258  // use list.  Keep track of any operands that become dead as a result.
4259  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4260  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4261       I != E; ++I) {
4262    SDNode *Used = I->getVal();
4263    Used->removeUser(std::distance(B, I), N);
4264    if (Used->use_empty())
4265      DeadNodeSet.insert(Used);
4266  }
4267
4268  // If NumOps is larger than the # of operands we currently have, reallocate
4269  // the operand list.
4270  if (NumOps > N->NumOperands) {
4271    if (N->OperandsNeedDelete)
4272      delete[] N->OperandList;
4273
4274    if (N->isMachineOpcode()) {
4275      // We're creating a final node that will live unmorphed for the
4276      // remainder of the current SelectionDAG iteration, so we can allocate
4277      // the operands directly out of a pool with no recycling metadata.
4278      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4279      N->OperandsNeedDelete = false;
4280    } else {
4281      N->OperandList = new SDUse[NumOps];
4282      N->OperandsNeedDelete = true;
4283    }
4284  }
4285
4286  // Assign the new operands.
4287  N->NumOperands = NumOps;
4288  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4289    N->OperandList[i] = Ops[i];
4290    N->OperandList[i].setUser(N);
4291    SDNode *ToUse = N->OperandList[i].getVal();
4292    ToUse->addUser(i, N);
4293  }
4294
4295  // Delete any nodes that are still dead after adding the uses for the
4296  // new operands.
4297  SmallVector<SDNode *, 16> DeadNodes;
4298  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4299       E = DeadNodeSet.end(); I != E; ++I)
4300    if ((*I)->use_empty())
4301      DeadNodes.push_back(*I);
4302  RemoveDeadNodes(DeadNodes);
4303
4304  if (IP)
4305    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4306  return N;
4307}
4308
4309
4310/// getTargetNode - These are used for target selectors to create a new node
4311/// with specified return type(s), target opcode, and operands.
4312///
4313/// Note that getTargetNode returns the resultant node.  If there is already a
4314/// node of the specified opcode and operands, it returns that node instead of
4315/// the current one.
4316SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4317  return getNode(~Opcode, VT).getNode();
4318}
4319SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4320  return getNode(~Opcode, VT, Op1).getNode();
4321}
4322SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4323                                    SDValue Op1, SDValue Op2) {
4324  return getNode(~Opcode, VT, Op1, Op2).getNode();
4325}
4326SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4327                                    SDValue Op1, SDValue Op2,
4328                                    SDValue Op3) {
4329  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4330}
4331SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4332                                    const SDValue *Ops, unsigned NumOps) {
4333  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4334}
4335SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4336  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4337  SDValue Op;
4338  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4339}
4340SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4341                                    MVT VT2, SDValue Op1) {
4342  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4343  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4344}
4345SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4346                                    MVT VT2, SDValue Op1,
4347                                    SDValue Op2) {
4348  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4349  SDValue Ops[] = { Op1, Op2 };
4350  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4351}
4352SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4353                                    MVT VT2, SDValue Op1,
4354                                    SDValue Op2, SDValue Op3) {
4355  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4356  SDValue Ops[] = { Op1, Op2, Op3 };
4357  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4358}
4359SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4360                                    const SDValue *Ops, unsigned NumOps) {
4361  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4362  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4363}
4364SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4365                                    SDValue Op1, SDValue Op2) {
4366  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4367  SDValue Ops[] = { Op1, Op2 };
4368  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4369}
4370SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4371                                    SDValue Op1, SDValue Op2,
4372                                    SDValue Op3) {
4373  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4374  SDValue Ops[] = { Op1, Op2, Op3 };
4375  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4376}
4377SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4378                                    const SDValue *Ops, unsigned NumOps) {
4379  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4380  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4381}
4382SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4383                                    MVT VT2, MVT VT3, MVT VT4,
4384                                    const SDValue *Ops, unsigned NumOps) {
4385  std::vector<MVT> VTList;
4386  VTList.push_back(VT1);
4387  VTList.push_back(VT2);
4388  VTList.push_back(VT3);
4389  VTList.push_back(VT4);
4390  const MVT *VTs = getNodeValueTypes(VTList);
4391  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4392}
4393SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4394                                    const std::vector<MVT> &ResultTys,
4395                                    const SDValue *Ops, unsigned NumOps) {
4396  const MVT *VTs = getNodeValueTypes(ResultTys);
4397  return getNode(~Opcode, VTs, ResultTys.size(),
4398                 Ops, NumOps).getNode();
4399}
4400
4401/// getNodeIfExists - Get the specified node if it's already available, or
4402/// else return NULL.
4403SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4404                                      const SDValue *Ops, unsigned NumOps) {
4405  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4406    FoldingSetNodeID ID;
4407    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4408    void *IP = 0;
4409    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4410      return E;
4411  }
4412  return NULL;
4413}
4414
4415
4416/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4417/// This can cause recursive merging of nodes in the DAG.
4418///
4419/// This version assumes From has a single result value.
4420///
4421void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4422                                      DAGUpdateListener *UpdateListener) {
4423  SDNode *From = FromN.getNode();
4424  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4425         "Cannot replace with this method!");
4426  assert(From != To.getNode() && "Cannot replace uses of with self");
4427
4428  while (!From->use_empty()) {
4429    SDNode::use_iterator UI = From->use_begin();
4430    SDNode *U = *UI;
4431
4432    // This node is about to morph, remove its old self from the CSE maps.
4433    RemoveNodeFromCSEMaps(U);
4434    int operandNum = 0;
4435    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4436         I != E; ++I, ++operandNum)
4437      if (I->getVal() == From) {
4438        From->removeUser(operandNum, U);
4439        *I = To;
4440        I->setUser(U);
4441        To.getNode()->addUser(operandNum, U);
4442      }
4443
4444    // Now that we have modified U, add it back to the CSE maps.  If it already
4445    // exists there, recursively merge the results together.
4446    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4447      ReplaceAllUsesWith(U, Existing, UpdateListener);
4448      // U is now dead.  Inform the listener if it exists and delete it.
4449      if (UpdateListener)
4450        UpdateListener->NodeDeleted(U, Existing);
4451      DeleteNodeNotInCSEMaps(U);
4452    } else {
4453      // If the node doesn't already exist, we updated it.  Inform a listener if
4454      // it exists.
4455      if (UpdateListener)
4456        UpdateListener->NodeUpdated(U);
4457    }
4458  }
4459}
4460
4461/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4462/// This can cause recursive merging of nodes in the DAG.
4463///
4464/// This version assumes From/To have matching types and numbers of result
4465/// values.
4466///
4467void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4468                                      DAGUpdateListener *UpdateListener) {
4469  assert(From->getVTList().VTs == To->getVTList().VTs &&
4470         From->getNumValues() == To->getNumValues() &&
4471         "Cannot use this version of ReplaceAllUsesWith!");
4472
4473  // Handle the trivial case.
4474  if (From == To)
4475    return;
4476
4477  while (!From->use_empty()) {
4478    SDNode::use_iterator UI = From->use_begin();
4479    SDNode *U = *UI;
4480
4481    // This node is about to morph, remove its old self from the CSE maps.
4482    RemoveNodeFromCSEMaps(U);
4483    int operandNum = 0;
4484    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4485         I != E; ++I, ++operandNum)
4486      if (I->getVal() == From) {
4487        From->removeUser(operandNum, U);
4488        I->getSDValue().setNode(To);
4489        To->addUser(operandNum, U);
4490      }
4491
4492    // Now that we have modified U, add it back to the CSE maps.  If it already
4493    // exists there, recursively merge the results together.
4494    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4495      ReplaceAllUsesWith(U, Existing, UpdateListener);
4496      // U is now dead.  Inform the listener if it exists and delete it.
4497      if (UpdateListener)
4498        UpdateListener->NodeDeleted(U, Existing);
4499      DeleteNodeNotInCSEMaps(U);
4500    } else {
4501      // If the node doesn't already exist, we updated it.  Inform a listener if
4502      // it exists.
4503      if (UpdateListener)
4504        UpdateListener->NodeUpdated(U);
4505    }
4506  }
4507}
4508
4509/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4510/// This can cause recursive merging of nodes in the DAG.
4511///
4512/// This version can replace From with any result values.  To must match the
4513/// number and types of values returned by From.
4514void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4515                                      const SDValue *To,
4516                                      DAGUpdateListener *UpdateListener) {
4517  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4518    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4519
4520  while (!From->use_empty()) {
4521    SDNode::use_iterator UI = From->use_begin();
4522    SDNode *U = *UI;
4523
4524    // This node is about to morph, remove its old self from the CSE maps.
4525    RemoveNodeFromCSEMaps(U);
4526    int operandNum = 0;
4527    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4528         I != E; ++I, ++operandNum)
4529      if (I->getVal() == From) {
4530        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4531        From->removeUser(operandNum, U);
4532        *I = ToOp;
4533        I->setUser(U);
4534        ToOp.getNode()->addUser(operandNum, U);
4535      }
4536
4537    // Now that we have modified U, add it back to the CSE maps.  If it already
4538    // exists there, recursively merge the results together.
4539    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4540      ReplaceAllUsesWith(U, Existing, UpdateListener);
4541      // U is now dead.  Inform the listener if it exists and delete it.
4542      if (UpdateListener)
4543        UpdateListener->NodeDeleted(U, Existing);
4544      DeleteNodeNotInCSEMaps(U);
4545    } else {
4546      // If the node doesn't already exist, we updated it.  Inform a listener if
4547      // it exists.
4548      if (UpdateListener)
4549        UpdateListener->NodeUpdated(U);
4550    }
4551  }
4552}
4553
4554/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4555/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4556/// handled the same way as for ReplaceAllUsesWith.
4557void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4558                                             DAGUpdateListener *UpdateListener){
4559  // Handle the really simple, really trivial case efficiently.
4560  if (From == To) return;
4561
4562  // Handle the simple, trivial, case efficiently.
4563  if (From.getNode()->getNumValues() == 1) {
4564    ReplaceAllUsesWith(From, To, UpdateListener);
4565    return;
4566  }
4567
4568  // Get all of the users of From.getNode().  We want these in a nice,
4569  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4570  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4571
4572  while (!Users.empty()) {
4573    // We know that this user uses some value of From.  If it is the right
4574    // value, update it.
4575    SDNode *User = Users.back();
4576    Users.pop_back();
4577
4578    // Scan for an operand that matches From.
4579    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4580    for (; Op != E; ++Op)
4581      if (*Op == From) break;
4582
4583    // If there are no matches, the user must use some other result of From.
4584    if (Op == E) continue;
4585
4586    // Okay, we know this user needs to be updated.  Remove its old self
4587    // from the CSE maps.
4588    RemoveNodeFromCSEMaps(User);
4589
4590    // Update all operands that match "From" in case there are multiple uses.
4591    for (; Op != E; ++Op) {
4592      if (*Op == From) {
4593        From.getNode()->removeUser(Op-User->op_begin(), User);
4594        *Op = To;
4595        Op->setUser(User);
4596        To.getNode()->addUser(Op-User->op_begin(), User);
4597      }
4598    }
4599
4600    // Now that we have modified User, add it back to the CSE maps.  If it
4601    // already exists there, recursively merge the results together.
4602    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4603    if (!Existing) {
4604      if (UpdateListener) UpdateListener->NodeUpdated(User);
4605      continue;  // Continue on to next user.
4606    }
4607
4608    // If there was already an existing matching node, use ReplaceAllUsesWith
4609    // to replace the dead one with the existing one.  This can cause
4610    // recursive merging of other unrelated nodes down the line.
4611    ReplaceAllUsesWith(User, Existing, UpdateListener);
4612
4613    // User is now dead.  Notify a listener if present.
4614    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4615    DeleteNodeNotInCSEMaps(User);
4616  }
4617}
4618
4619/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4620/// uses of other values produced by From.getVal() alone.  The same value may
4621/// appear in both the From and To list.  The Deleted vector is
4622/// handled the same way as for ReplaceAllUsesWith.
4623void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4624                                              const SDValue *To,
4625                                              unsigned Num,
4626                                              DAGUpdateListener *UpdateListener){
4627  // Handle the simple, trivial case efficiently.
4628  if (Num == 1)
4629    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4630
4631  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4632  for (unsigned i = 0; i != Num; ++i)
4633    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4634         E = From[i].getNode()->use_end(); UI != E; ++UI)
4635      Users.push_back(std::make_pair(*UI, i));
4636
4637  while (!Users.empty()) {
4638    // We know that this user uses some value of From.  If it is the right
4639    // value, update it.
4640    SDNode *User = Users.back().first;
4641    unsigned i = Users.back().second;
4642    Users.pop_back();
4643
4644    // Scan for an operand that matches From.
4645    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4646    for (; Op != E; ++Op)
4647      if (*Op == From[i]) break;
4648
4649    // If there are no matches, the user must use some other result of From.
4650    if (Op == E) continue;
4651
4652    // Okay, we know this user needs to be updated.  Remove its old self
4653    // from the CSE maps.
4654    RemoveNodeFromCSEMaps(User);
4655
4656    // Update all operands that match "From" in case there are multiple uses.
4657    for (; Op != E; ++Op) {
4658      if (*Op == From[i]) {
4659        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4660        *Op = To[i];
4661        Op->setUser(User);
4662        To[i].getNode()->addUser(Op-User->op_begin(), User);
4663      }
4664    }
4665
4666    // Now that we have modified User, add it back to the CSE maps.  If it
4667    // already exists there, recursively merge the results together.
4668    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4669    if (!Existing) {
4670      if (UpdateListener) UpdateListener->NodeUpdated(User);
4671      continue;  // Continue on to next user.
4672    }
4673
4674    // If there was already an existing matching node, use ReplaceAllUsesWith
4675    // to replace the dead one with the existing one.  This can cause
4676    // recursive merging of other unrelated nodes down the line.
4677    ReplaceAllUsesWith(User, Existing, UpdateListener);
4678
4679    // User is now dead.  Notify a listener if present.
4680    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4681    DeleteNodeNotInCSEMaps(User);
4682  }
4683}
4684
4685/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4686/// based on their topological order. It returns the maximum id and a vector
4687/// of the SDNodes* in assigned order by reference.
4688unsigned SelectionDAG::AssignTopologicalOrder() {
4689
4690  unsigned DAGSize = 0;
4691
4692  // SortedPos tracks the progress of the algorithm. Nodes before it are
4693  // sorted, nodes after it are unsorted. When the algorithm completes
4694  // it is at the end of the list.
4695  allnodes_iterator SortedPos = allnodes_begin();
4696
4697  // Visit all the nodes. Move nodes with no operands to the front of
4698  // the list immediately. Annotate nodes that do have operands with their
4699  // operand count. Before we do this, the Node Id fields of the nodes
4700  // may contain arbitrary values. After, the Node Id fields for nodes
4701  // before SortedPos will contain the topological sort index, and the
4702  // Node Id fields for nodes At SortedPos and after will contain the
4703  // count of outstanding operands.
4704  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4705    SDNode *N = I++;
4706    unsigned Degree = N->getNumOperands();
4707    if (Degree == 0) {
4708      // A node with no uses, add it to the result array immediately.
4709      N->setNodeId(DAGSize++);
4710      allnodes_iterator Q = N;
4711      if (Q != SortedPos)
4712        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4713      ++SortedPos;
4714    } else {
4715      // Temporarily use the Node Id as scratch space for the degree count.
4716      N->setNodeId(Degree);
4717    }
4718  }
4719
4720  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4721  // such that by the time the end is reached all nodes will be sorted.
4722  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4723    SDNode *N = I;
4724    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4725         UI != UE; ++UI) {
4726      SDNode *P = *UI;
4727      unsigned Degree = P->getNodeId();
4728      --Degree;
4729      if (Degree == 0) {
4730        // All of P's operands are sorted, so P may sorted now.
4731        P->setNodeId(DAGSize++);
4732        if (P != SortedPos)
4733          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4734        ++SortedPos;
4735      } else {
4736        // Update P's outstanding operand count.
4737        P->setNodeId(Degree);
4738      }
4739    }
4740  }
4741
4742  assert(SortedPos == AllNodes.end() &&
4743         "Topological sort incomplete!");
4744  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4745         "First node in topological sort is not the entry token!");
4746  assert(AllNodes.front().getNodeId() == 0 &&
4747         "First node in topological sort has non-zero id!");
4748  assert(AllNodes.front().getNumOperands() == 0 &&
4749         "First node in topological sort has operands!");
4750  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4751         "Last node in topologic sort has unexpected id!");
4752  assert(AllNodes.back().use_empty() &&
4753         "Last node in topologic sort has users!");
4754  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4755  return DAGSize;
4756}
4757
4758
4759
4760//===----------------------------------------------------------------------===//
4761//                              SDNode Class
4762//===----------------------------------------------------------------------===//
4763
4764// Out-of-line virtual method to give class a home.
4765void SDNode::ANCHOR() {}
4766void UnarySDNode::ANCHOR() {}
4767void BinarySDNode::ANCHOR() {}
4768void TernarySDNode::ANCHOR() {}
4769void HandleSDNode::ANCHOR() {}
4770void ConstantSDNode::ANCHOR() {}
4771void ConstantFPSDNode::ANCHOR() {}
4772void GlobalAddressSDNode::ANCHOR() {}
4773void FrameIndexSDNode::ANCHOR() {}
4774void JumpTableSDNode::ANCHOR() {}
4775void ConstantPoolSDNode::ANCHOR() {}
4776void BasicBlockSDNode::ANCHOR() {}
4777void SrcValueSDNode::ANCHOR() {}
4778void MemOperandSDNode::ANCHOR() {}
4779void RegisterSDNode::ANCHOR() {}
4780void DbgStopPointSDNode::ANCHOR() {}
4781void LabelSDNode::ANCHOR() {}
4782void ExternalSymbolSDNode::ANCHOR() {}
4783void CondCodeSDNode::ANCHOR() {}
4784void ARG_FLAGSSDNode::ANCHOR() {}
4785void VTSDNode::ANCHOR() {}
4786void MemSDNode::ANCHOR() {}
4787void LoadSDNode::ANCHOR() {}
4788void StoreSDNode::ANCHOR() {}
4789void AtomicSDNode::ANCHOR() {}
4790void MemIntrinsicSDNode::ANCHOR() {}
4791void CallSDNode::ANCHOR() {}
4792void CvtRndSatSDNode::ANCHOR() {}
4793
4794HandleSDNode::~HandleSDNode() {
4795  DropOperands();
4796}
4797
4798GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4799                                         MVT VT, int64_t o)
4800  : SDNode(isa<GlobalVariable>(GA) &&
4801           cast<GlobalVariable>(GA)->isThreadLocal() ?
4802           // Thread Local
4803           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4804           // Non Thread Local
4805           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4806           getSDVTList(VT)), Offset(o) {
4807  TheGlobal = const_cast<GlobalValue*>(GA);
4808}
4809
4810MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4811                     const Value *srcValue, int SVO,
4812                     unsigned alignment, bool vol)
4813 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4814   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4815
4816  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4817  assert(getAlignment() == alignment && "Alignment representation error!");
4818  assert(isVolatile() == vol && "Volatile representation error!");
4819}
4820
4821MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4822                     unsigned NumOps, MVT memvt, const Value *srcValue,
4823                     int SVO, unsigned alignment, bool vol)
4824   : SDNode(Opc, VTs, Ops, NumOps),
4825     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4826     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
4827  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4828  assert(getAlignment() == alignment && "Alignment representation error!");
4829  assert(isVolatile() == vol && "Volatile representation error!");
4830}
4831
4832/// getMemOperand - Return a MachineMemOperand object describing the memory
4833/// reference performed by this memory reference.
4834MachineMemOperand MemSDNode::getMemOperand() const {
4835  int Flags = 0;
4836  if (isa<LoadSDNode>(this))
4837    Flags = MachineMemOperand::MOLoad;
4838  else if (isa<StoreSDNode>(this))
4839    Flags = MachineMemOperand::MOStore;
4840  else if (isa<AtomicSDNode>(this)) {
4841    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4842  }
4843  else {
4844    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4845    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4846    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4847    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4848  }
4849
4850  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4851  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4852
4853  // Check if the memory reference references a frame index
4854  const FrameIndexSDNode *FI =
4855  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4856  if (!getSrcValue() && FI)
4857    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4858                             Flags, 0, Size, getAlignment());
4859  else
4860    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4861                             Size, getAlignment());
4862}
4863
4864/// Profile - Gather unique data for the node.
4865///
4866void SDNode::Profile(FoldingSetNodeID &ID) const {
4867  AddNodeIDNode(ID, this);
4868}
4869
4870/// getValueTypeList - Return a pointer to the specified value type.
4871///
4872const MVT *SDNode::getValueTypeList(MVT VT) {
4873  if (VT.isExtended()) {
4874    static std::set<MVT, MVT::compareRawBits> EVTs;
4875    return &(*EVTs.insert(VT).first);
4876  } else {
4877    static MVT VTs[MVT::LAST_VALUETYPE];
4878    VTs[VT.getSimpleVT()] = VT;
4879    return &VTs[VT.getSimpleVT()];
4880  }
4881}
4882
4883/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4884/// indicated value.  This method ignores uses of other values defined by this
4885/// operation.
4886bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4887  assert(Value < getNumValues() && "Bad value!");
4888
4889  // TODO: Only iterate over uses of a given value of the node
4890  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4891    if (UI.getUse().getSDValue().getResNo() == Value) {
4892      if (NUses == 0)
4893        return false;
4894      --NUses;
4895    }
4896  }
4897
4898  // Found exactly the right number of uses?
4899  return NUses == 0;
4900}
4901
4902
4903/// hasAnyUseOfValue - Return true if there are any use of the indicated
4904/// value. This method ignores uses of other values defined by this operation.
4905bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4906  assert(Value < getNumValues() && "Bad value!");
4907
4908  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4909    if (UI.getUse().getSDValue().getResNo() == Value)
4910      return true;
4911
4912  return false;
4913}
4914
4915
4916/// isOnlyUserOf - Return true if this node is the only use of N.
4917///
4918bool SDNode::isOnlyUserOf(SDNode *N) const {
4919  bool Seen = false;
4920  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4921    SDNode *User = *I;
4922    if (User == this)
4923      Seen = true;
4924    else
4925      return false;
4926  }
4927
4928  return Seen;
4929}
4930
4931/// isOperand - Return true if this node is an operand of N.
4932///
4933bool SDValue::isOperandOf(SDNode *N) const {
4934  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4935    if (*this == N->getOperand(i))
4936      return true;
4937  return false;
4938}
4939
4940bool SDNode::isOperandOf(SDNode *N) const {
4941  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4942    if (this == N->OperandList[i].getVal())
4943      return true;
4944  return false;
4945}
4946
4947/// reachesChainWithoutSideEffects - Return true if this operand (which must
4948/// be a chain) reaches the specified operand without crossing any
4949/// side-effecting instructions.  In practice, this looks through token
4950/// factors and non-volatile loads.  In order to remain efficient, this only
4951/// looks a couple of nodes in, it does not do an exhaustive search.
4952bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4953                                               unsigned Depth) const {
4954  if (*this == Dest) return true;
4955
4956  // Don't search too deeply, we just want to be able to see through
4957  // TokenFactor's etc.
4958  if (Depth == 0) return false;
4959
4960  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4961  // of the operands of the TF reach dest, then we can do the xform.
4962  if (getOpcode() == ISD::TokenFactor) {
4963    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4964      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4965        return true;
4966    return false;
4967  }
4968
4969  // Loads don't have side effects, look through them.
4970  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4971    if (!Ld->isVolatile())
4972      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4973  }
4974  return false;
4975}
4976
4977
4978static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4979                            SmallPtrSet<SDNode *, 32> &Visited) {
4980  if (found || !Visited.insert(N))
4981    return;
4982
4983  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4984    SDNode *Op = N->getOperand(i).getNode();
4985    if (Op == P) {
4986      found = true;
4987      return;
4988    }
4989    findPredecessor(Op, P, found, Visited);
4990  }
4991}
4992
4993/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4994/// is either an operand of N or it can be reached by recursively traversing
4995/// up the operands.
4996/// NOTE: this is an expensive method. Use it carefully.
4997bool SDNode::isPredecessorOf(SDNode *N) const {
4998  SmallPtrSet<SDNode *, 32> Visited;
4999  bool found = false;
5000  findPredecessor(N, this, found, Visited);
5001  return found;
5002}
5003
5004uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5005  assert(Num < NumOperands && "Invalid child # of SDNode!");
5006  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5007}
5008
5009std::string SDNode::getOperationName(const SelectionDAG *G) const {
5010  switch (getOpcode()) {
5011  default:
5012    if (getOpcode() < ISD::BUILTIN_OP_END)
5013      return "<<Unknown DAG Node>>";
5014    if (isMachineOpcode()) {
5015      if (G)
5016        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5017          if (getMachineOpcode() < TII->getNumOpcodes())
5018            return TII->get(getMachineOpcode()).getName();
5019      return "<<Unknown Machine Node>>";
5020    }
5021    if (G) {
5022      TargetLowering &TLI = G->getTargetLoweringInfo();
5023      const char *Name = TLI.getTargetNodeName(getOpcode());
5024      if (Name) return Name;
5025      return "<<Unknown Target Node>>";
5026    }
5027    return "<<Unknown Node>>";
5028
5029#ifndef NDEBUG
5030  case ISD::DELETED_NODE:
5031    return "<<Deleted Node!>>";
5032#endif
5033  case ISD::PREFETCH:      return "Prefetch";
5034  case ISD::MEMBARRIER:    return "MemBarrier";
5035  case ISD::ATOMIC_CMP_SWAP_8:  return "AtomicCmpSwap8";
5036  case ISD::ATOMIC_SWAP_8:      return "AtomicSwap8";
5037  case ISD::ATOMIC_LOAD_ADD_8:  return "AtomicLoadAdd8";
5038  case ISD::ATOMIC_LOAD_SUB_8:  return "AtomicLoadSub8";
5039  case ISD::ATOMIC_LOAD_AND_8:  return "AtomicLoadAnd8";
5040  case ISD::ATOMIC_LOAD_OR_8:   return "AtomicLoadOr8";
5041  case ISD::ATOMIC_LOAD_XOR_8:  return "AtomicLoadXor8";
5042  case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8";
5043  case ISD::ATOMIC_LOAD_MIN_8:  return "AtomicLoadMin8";
5044  case ISD::ATOMIC_LOAD_MAX_8:  return "AtomicLoadMax8";
5045  case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8";
5046  case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8";
5047  case ISD::ATOMIC_CMP_SWAP_16:  return "AtomicCmpSwap16";
5048  case ISD::ATOMIC_SWAP_16:      return "AtomicSwap16";
5049  case ISD::ATOMIC_LOAD_ADD_16:  return "AtomicLoadAdd16";
5050  case ISD::ATOMIC_LOAD_SUB_16:  return "AtomicLoadSub16";
5051  case ISD::ATOMIC_LOAD_AND_16:  return "AtomicLoadAnd16";
5052  case ISD::ATOMIC_LOAD_OR_16:   return "AtomicLoadOr16";
5053  case ISD::ATOMIC_LOAD_XOR_16:  return "AtomicLoadXor16";
5054  case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16";
5055  case ISD::ATOMIC_LOAD_MIN_16:  return "AtomicLoadMin16";
5056  case ISD::ATOMIC_LOAD_MAX_16:  return "AtomicLoadMax16";
5057  case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16";
5058  case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16";
5059  case ISD::ATOMIC_CMP_SWAP_32:  return "AtomicCmpSwap32";
5060  case ISD::ATOMIC_SWAP_32:      return "AtomicSwap32";
5061  case ISD::ATOMIC_LOAD_ADD_32:  return "AtomicLoadAdd32";
5062  case ISD::ATOMIC_LOAD_SUB_32:  return "AtomicLoadSub32";
5063  case ISD::ATOMIC_LOAD_AND_32:  return "AtomicLoadAnd32";
5064  case ISD::ATOMIC_LOAD_OR_32:   return "AtomicLoadOr32";
5065  case ISD::ATOMIC_LOAD_XOR_32:  return "AtomicLoadXor32";
5066  case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32";
5067  case ISD::ATOMIC_LOAD_MIN_32:  return "AtomicLoadMin32";
5068  case ISD::ATOMIC_LOAD_MAX_32:  return "AtomicLoadMax32";
5069  case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32";
5070  case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32";
5071  case ISD::ATOMIC_CMP_SWAP_64:  return "AtomicCmpSwap64";
5072  case ISD::ATOMIC_SWAP_64:      return "AtomicSwap64";
5073  case ISD::ATOMIC_LOAD_ADD_64:  return "AtomicLoadAdd64";
5074  case ISD::ATOMIC_LOAD_SUB_64:  return "AtomicLoadSub64";
5075  case ISD::ATOMIC_LOAD_AND_64:  return "AtomicLoadAnd64";
5076  case ISD::ATOMIC_LOAD_OR_64:   return "AtomicLoadOr64";
5077  case ISD::ATOMIC_LOAD_XOR_64:  return "AtomicLoadXor64";
5078  case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64";
5079  case ISD::ATOMIC_LOAD_MIN_64:  return "AtomicLoadMin64";
5080  case ISD::ATOMIC_LOAD_MAX_64:  return "AtomicLoadMax64";
5081  case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64";
5082  case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64";
5083  case ISD::PCMARKER:      return "PCMarker";
5084  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5085  case ISD::SRCVALUE:      return "SrcValue";
5086  case ISD::MEMOPERAND:    return "MemOperand";
5087  case ISD::EntryToken:    return "EntryToken";
5088  case ISD::TokenFactor:   return "TokenFactor";
5089  case ISD::AssertSext:    return "AssertSext";
5090  case ISD::AssertZext:    return "AssertZext";
5091
5092  case ISD::BasicBlock:    return "BasicBlock";
5093  case ISD::ARG_FLAGS:     return "ArgFlags";
5094  case ISD::VALUETYPE:     return "ValueType";
5095  case ISD::Register:      return "Register";
5096
5097  case ISD::Constant:      return "Constant";
5098  case ISD::ConstantFP:    return "ConstantFP";
5099  case ISD::GlobalAddress: return "GlobalAddress";
5100  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5101  case ISD::FrameIndex:    return "FrameIndex";
5102  case ISD::JumpTable:     return "JumpTable";
5103  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5104  case ISD::RETURNADDR: return "RETURNADDR";
5105  case ISD::FRAMEADDR: return "FRAMEADDR";
5106  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5107  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5108  case ISD::EHSELECTION: return "EHSELECTION";
5109  case ISD::EH_RETURN: return "EH_RETURN";
5110  case ISD::ConstantPool:  return "ConstantPool";
5111  case ISD::ExternalSymbol: return "ExternalSymbol";
5112  case ISD::INTRINSIC_WO_CHAIN: {
5113    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5114    return Intrinsic::getName((Intrinsic::ID)IID);
5115  }
5116  case ISD::INTRINSIC_VOID:
5117  case ISD::INTRINSIC_W_CHAIN: {
5118    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5119    return Intrinsic::getName((Intrinsic::ID)IID);
5120  }
5121
5122  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5123  case ISD::TargetConstant: return "TargetConstant";
5124  case ISD::TargetConstantFP:return "TargetConstantFP";
5125  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5126  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5127  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5128  case ISD::TargetJumpTable:  return "TargetJumpTable";
5129  case ISD::TargetConstantPool:  return "TargetConstantPool";
5130  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5131
5132  case ISD::CopyToReg:     return "CopyToReg";
5133  case ISD::CopyFromReg:   return "CopyFromReg";
5134  case ISD::UNDEF:         return "undef";
5135  case ISD::MERGE_VALUES:  return "merge_values";
5136  case ISD::INLINEASM:     return "inlineasm";
5137  case ISD::DBG_LABEL:     return "dbg_label";
5138  case ISD::EH_LABEL:      return "eh_label";
5139  case ISD::DECLARE:       return "declare";
5140  case ISD::HANDLENODE:    return "handlenode";
5141  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5142  case ISD::CALL:          return "call";
5143
5144  // Unary operators
5145  case ISD::FABS:   return "fabs";
5146  case ISD::FNEG:   return "fneg";
5147  case ISD::FSQRT:  return "fsqrt";
5148  case ISD::FSIN:   return "fsin";
5149  case ISD::FCOS:   return "fcos";
5150  case ISD::FPOWI:  return "fpowi";
5151  case ISD::FPOW:   return "fpow";
5152  case ISD::FTRUNC: return "ftrunc";
5153  case ISD::FFLOOR: return "ffloor";
5154  case ISD::FCEIL:  return "fceil";
5155  case ISD::FRINT:  return "frint";
5156  case ISD::FNEARBYINT: return "fnearbyint";
5157
5158  // Binary operators
5159  case ISD::ADD:    return "add";
5160  case ISD::SUB:    return "sub";
5161  case ISD::MUL:    return "mul";
5162  case ISD::MULHU:  return "mulhu";
5163  case ISD::MULHS:  return "mulhs";
5164  case ISD::SDIV:   return "sdiv";
5165  case ISD::UDIV:   return "udiv";
5166  case ISD::SREM:   return "srem";
5167  case ISD::UREM:   return "urem";
5168  case ISD::SMUL_LOHI:  return "smul_lohi";
5169  case ISD::UMUL_LOHI:  return "umul_lohi";
5170  case ISD::SDIVREM:    return "sdivrem";
5171  case ISD::UDIVREM:    return "udivrem";
5172  case ISD::AND:    return "and";
5173  case ISD::OR:     return "or";
5174  case ISD::XOR:    return "xor";
5175  case ISD::SHL:    return "shl";
5176  case ISD::SRA:    return "sra";
5177  case ISD::SRL:    return "srl";
5178  case ISD::ROTL:   return "rotl";
5179  case ISD::ROTR:   return "rotr";
5180  case ISD::FADD:   return "fadd";
5181  case ISD::FSUB:   return "fsub";
5182  case ISD::FMUL:   return "fmul";
5183  case ISD::FDIV:   return "fdiv";
5184  case ISD::FREM:   return "frem";
5185  case ISD::FCOPYSIGN: return "fcopysign";
5186  case ISD::FGETSIGN:  return "fgetsign";
5187
5188  case ISD::SETCC:       return "setcc";
5189  case ISD::VSETCC:      return "vsetcc";
5190  case ISD::SELECT:      return "select";
5191  case ISD::SELECT_CC:   return "select_cc";
5192  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5193  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5194  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5195  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5196  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5197  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5198  case ISD::CARRY_FALSE:         return "carry_false";
5199  case ISD::ADDC:        return "addc";
5200  case ISD::ADDE:        return "adde";
5201  case ISD::SADDO:       return "saddo";
5202  case ISD::UADDO:       return "uaddo";
5203  case ISD::SUBC:        return "subc";
5204  case ISD::SUBE:        return "sube";
5205  case ISD::SHL_PARTS:   return "shl_parts";
5206  case ISD::SRA_PARTS:   return "sra_parts";
5207  case ISD::SRL_PARTS:   return "srl_parts";
5208
5209  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5210  case ISD::INSERT_SUBREG:      return "insert_subreg";
5211
5212  // Conversion operators.
5213  case ISD::SIGN_EXTEND: return "sign_extend";
5214  case ISD::ZERO_EXTEND: return "zero_extend";
5215  case ISD::ANY_EXTEND:  return "any_extend";
5216  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5217  case ISD::TRUNCATE:    return "truncate";
5218  case ISD::FP_ROUND:    return "fp_round";
5219  case ISD::FLT_ROUNDS_: return "flt_rounds";
5220  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5221  case ISD::FP_EXTEND:   return "fp_extend";
5222
5223  case ISD::SINT_TO_FP:  return "sint_to_fp";
5224  case ISD::UINT_TO_FP:  return "uint_to_fp";
5225  case ISD::FP_TO_SINT:  return "fp_to_sint";
5226  case ISD::FP_TO_UINT:  return "fp_to_uint";
5227  case ISD::BIT_CONVERT: return "bit_convert";
5228
5229  case ISD::CONVERT_RNDSAT: {
5230    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5231    default: assert(0 && "Unknown cvt code!");
5232    case ISD::CVT_FF:  return "cvt_ff";
5233    case ISD::CVT_FS:  return "cvt_fs";
5234    case ISD::CVT_FU:  return "cvt_fu";
5235    case ISD::CVT_SF:  return "cvt_sf";
5236    case ISD::CVT_UF:  return "cvt_uf";
5237    case ISD::CVT_SS:  return "cvt_ss";
5238    case ISD::CVT_SU:  return "cvt_su";
5239    case ISD::CVT_US:  return "cvt_us";
5240    case ISD::CVT_UU:  return "cvt_uu";
5241    }
5242  }
5243
5244    // Control flow instructions
5245  case ISD::BR:      return "br";
5246  case ISD::BRIND:   return "brind";
5247  case ISD::BR_JT:   return "br_jt";
5248  case ISD::BRCOND:  return "brcond";
5249  case ISD::BR_CC:   return "br_cc";
5250  case ISD::RET:     return "ret";
5251  case ISD::CALLSEQ_START:  return "callseq_start";
5252  case ISD::CALLSEQ_END:    return "callseq_end";
5253
5254    // Other operators
5255  case ISD::LOAD:               return "load";
5256  case ISD::STORE:              return "store";
5257  case ISD::VAARG:              return "vaarg";
5258  case ISD::VACOPY:             return "vacopy";
5259  case ISD::VAEND:              return "vaend";
5260  case ISD::VASTART:            return "vastart";
5261  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5262  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5263  case ISD::BUILD_PAIR:         return "build_pair";
5264  case ISD::STACKSAVE:          return "stacksave";
5265  case ISD::STACKRESTORE:       return "stackrestore";
5266  case ISD::TRAP:               return "trap";
5267
5268  // Bit manipulation
5269  case ISD::BSWAP:   return "bswap";
5270  case ISD::CTPOP:   return "ctpop";
5271  case ISD::CTTZ:    return "cttz";
5272  case ISD::CTLZ:    return "ctlz";
5273
5274  // Debug info
5275  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5276  case ISD::DEBUG_LOC: return "debug_loc";
5277
5278  // Trampolines
5279  case ISD::TRAMPOLINE: return "trampoline";
5280
5281  case ISD::CONDCODE:
5282    switch (cast<CondCodeSDNode>(this)->get()) {
5283    default: assert(0 && "Unknown setcc condition!");
5284    case ISD::SETOEQ:  return "setoeq";
5285    case ISD::SETOGT:  return "setogt";
5286    case ISD::SETOGE:  return "setoge";
5287    case ISD::SETOLT:  return "setolt";
5288    case ISD::SETOLE:  return "setole";
5289    case ISD::SETONE:  return "setone";
5290
5291    case ISD::SETO:    return "seto";
5292    case ISD::SETUO:   return "setuo";
5293    case ISD::SETUEQ:  return "setue";
5294    case ISD::SETUGT:  return "setugt";
5295    case ISD::SETUGE:  return "setuge";
5296    case ISD::SETULT:  return "setult";
5297    case ISD::SETULE:  return "setule";
5298    case ISD::SETUNE:  return "setune";
5299
5300    case ISD::SETEQ:   return "seteq";
5301    case ISD::SETGT:   return "setgt";
5302    case ISD::SETGE:   return "setge";
5303    case ISD::SETLT:   return "setlt";
5304    case ISD::SETLE:   return "setle";
5305    case ISD::SETNE:   return "setne";
5306    }
5307  }
5308}
5309
5310const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5311  switch (AM) {
5312  default:
5313    return "";
5314  case ISD::PRE_INC:
5315    return "<pre-inc>";
5316  case ISD::PRE_DEC:
5317    return "<pre-dec>";
5318  case ISD::POST_INC:
5319    return "<post-inc>";
5320  case ISD::POST_DEC:
5321    return "<post-dec>";
5322  }
5323}
5324
5325std::string ISD::ArgFlagsTy::getArgFlagsString() {
5326  std::string S = "< ";
5327
5328  if (isZExt())
5329    S += "zext ";
5330  if (isSExt())
5331    S += "sext ";
5332  if (isInReg())
5333    S += "inreg ";
5334  if (isSRet())
5335    S += "sret ";
5336  if (isByVal())
5337    S += "byval ";
5338  if (isNest())
5339    S += "nest ";
5340  if (getByValAlign())
5341    S += "byval-align:" + utostr(getByValAlign()) + " ";
5342  if (getOrigAlign())
5343    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5344  if (getByValSize())
5345    S += "byval-size:" + utostr(getByValSize()) + " ";
5346  return S + ">";
5347}
5348
5349void SDNode::dump() const { dump(0); }
5350void SDNode::dump(const SelectionDAG *G) const {
5351  print(errs(), G);
5352  errs().flush();
5353}
5354
5355void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5356  OS << (void*)this << ": ";
5357
5358  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5359    if (i) OS << ",";
5360    if (getValueType(i) == MVT::Other)
5361      OS << "ch";
5362    else
5363      OS << getValueType(i).getMVTString();
5364  }
5365  OS << " = " << getOperationName(G);
5366
5367  OS << " ";
5368  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5369    if (i) OS << ", ";
5370    OS << (void*)getOperand(i).getNode();
5371    if (unsigned RN = getOperand(i).getResNo())
5372      OS << ":" << RN;
5373  }
5374
5375  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5376    SDNode *Mask = getOperand(2).getNode();
5377    OS << "<";
5378    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5379      if (i) OS << ",";
5380      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5381        OS << "u";
5382      else
5383        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5384    }
5385    OS << ">";
5386  }
5387
5388  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5389    OS << '<' << CSDN->getAPIntValue() << '>';
5390  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5391    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5392      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5393    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5394      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5395    else {
5396      OS << "<APFloat(";
5397      CSDN->getValueAPF().bitcastToAPInt().dump();
5398      OS << ")>";
5399    }
5400  } else if (const GlobalAddressSDNode *GADN =
5401             dyn_cast<GlobalAddressSDNode>(this)) {
5402    int64_t offset = GADN->getOffset();
5403    OS << '<';
5404    WriteAsOperand(OS, GADN->getGlobal());
5405    OS << '>';
5406    if (offset > 0)
5407      OS << " + " << offset;
5408    else
5409      OS << " " << offset;
5410  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5411    OS << "<" << FIDN->getIndex() << ">";
5412  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5413    OS << "<" << JTDN->getIndex() << ">";
5414  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5415    int offset = CP->getOffset();
5416    if (CP->isMachineConstantPoolEntry())
5417      OS << "<" << *CP->getMachineCPVal() << ">";
5418    else
5419      OS << "<" << *CP->getConstVal() << ">";
5420    if (offset > 0)
5421      OS << " + " << offset;
5422    else
5423      OS << " " << offset;
5424  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5425    OS << "<";
5426    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5427    if (LBB)
5428      OS << LBB->getName() << " ";
5429    OS << (const void*)BBDN->getBasicBlock() << ">";
5430  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5431    if (G && R->getReg() &&
5432        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5433      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5434    } else {
5435      OS << " #" << R->getReg();
5436    }
5437  } else if (const ExternalSymbolSDNode *ES =
5438             dyn_cast<ExternalSymbolSDNode>(this)) {
5439    OS << "'" << ES->getSymbol() << "'";
5440  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5441    if (M->getValue())
5442      OS << "<" << M->getValue() << ">";
5443    else
5444      OS << "<null>";
5445  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5446    if (M->MO.getValue())
5447      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5448    else
5449      OS << "<null:" << M->MO.getOffset() << ">";
5450  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5451    OS << N->getArgFlags().getArgFlagsString();
5452  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5453    OS << ":" << N->getVT().getMVTString();
5454  }
5455  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5456    const Value *SrcValue = LD->getSrcValue();
5457    int SrcOffset = LD->getSrcValueOffset();
5458    OS << " <";
5459    if (SrcValue)
5460      OS << SrcValue;
5461    else
5462      OS << "null";
5463    OS << ":" << SrcOffset << ">";
5464
5465    bool doExt = true;
5466    switch (LD->getExtensionType()) {
5467    default: doExt = false; break;
5468    case ISD::EXTLOAD: OS << " <anyext "; break;
5469    case ISD::SEXTLOAD: OS << " <sext "; break;
5470    case ISD::ZEXTLOAD: OS << " <zext "; break;
5471    }
5472    if (doExt)
5473      OS << LD->getMemoryVT().getMVTString() << ">";
5474
5475    const char *AM = getIndexedModeName(LD->getAddressingMode());
5476    if (*AM)
5477      OS << " " << AM;
5478    if (LD->isVolatile())
5479      OS << " <volatile>";
5480    OS << " alignment=" << LD->getAlignment();
5481  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5482    const Value *SrcValue = ST->getSrcValue();
5483    int SrcOffset = ST->getSrcValueOffset();
5484    OS << " <";
5485    if (SrcValue)
5486      OS << SrcValue;
5487    else
5488      OS << "null";
5489    OS << ":" << SrcOffset << ">";
5490
5491    if (ST->isTruncatingStore())
5492      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5493
5494    const char *AM = getIndexedModeName(ST->getAddressingMode());
5495    if (*AM)
5496      OS << " " << AM;
5497    if (ST->isVolatile())
5498      OS << " <volatile>";
5499    OS << " alignment=" << ST->getAlignment();
5500  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5501    const Value *SrcValue = AT->getSrcValue();
5502    int SrcOffset = AT->getSrcValueOffset();
5503    OS << " <";
5504    if (SrcValue)
5505      OS << SrcValue;
5506    else
5507      OS << "null";
5508    OS << ":" << SrcOffset << ">";
5509    if (AT->isVolatile())
5510      OS << " <volatile>";
5511    OS << " alignment=" << AT->getAlignment();
5512  }
5513}
5514
5515static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5516  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5517    if (N->getOperand(i).getNode()->hasOneUse())
5518      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5519    else
5520      cerr << "\n" << std::string(indent+2, ' ')
5521           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5522
5523
5524  cerr << "\n" << std::string(indent, ' ');
5525  N->dump(G);
5526}
5527
5528void SelectionDAG::dump() const {
5529  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5530
5531  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5532       I != E; ++I) {
5533    const SDNode *N = I;
5534    if (!N->hasOneUse() && N != getRoot().getNode())
5535      DumpNodes(N, 2, this);
5536  }
5537
5538  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5539
5540  cerr << "\n\n";
5541}
5542
5543const Type *ConstantPoolSDNode::getType() const {
5544  if (isMachineConstantPoolEntry())
5545    return Val.MachineCPVal->getType();
5546  return Val.ConstVal->getType();
5547}
5548