SelectionDAG.cpp revision 9cac5259fe237120a0c347d6d14e549005148f1b
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/GlobalAlias.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CallingConv.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineModuleInfo.h"
25#include "llvm/CodeGen/PseudoSourceValue.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/ADT/SetVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringExtras.h"
37#include <algorithm>
38#include <cmath>
39using namespace llvm;
40
41/// makeVTList - Return an instance of the SDVTList struct initialized with the
42/// specified members.
43static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
44  SDVTList Res = {VTs, NumVTs};
45  return Res;
46}
47
48static const fltSemantics *MVTToAPFloatSemantics(MVT::ValueType VT) {
49  switch (VT) {
50  default: assert(0 && "Unknown FP format");
51  case MVT::f32:     return &APFloat::IEEEsingle;
52  case MVT::f64:     return &APFloat::IEEEdouble;
53  case MVT::f80:     return &APFloat::x87DoubleExtended;
54  case MVT::f128:    return &APFloat::IEEEquad;
55  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
56  }
57}
58
59SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
60
61//===----------------------------------------------------------------------===//
62//                              ConstantFPSDNode Class
63//===----------------------------------------------------------------------===//
64
65/// isExactlyValue - We don't rely on operator== working on double values, as
66/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
67/// As such, this method can be used to do an exact bit-for-bit comparison of
68/// two floating point values.
69bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
70  return Value.bitwiseIsEqual(V);
71}
72
73bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
74                                           const APFloat& Val) {
75  assert(MVT::isFloatingPoint(VT) && "Can only convert between FP types");
76
77  // Anything can be extended to ppc long double.
78  if (VT == MVT::ppcf128)
79    return true;
80
81  // PPC long double cannot be shrunk to anything though.
82  if (&Val.getSemantics() == &APFloat::PPCDoubleDouble)
83    return false;
84
85  // convert modifies in place, so make a copy.
86  APFloat Val2 = APFloat(Val);
87  return Val2.convert(*MVTToAPFloatSemantics(VT),
88                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
89}
90
91//===----------------------------------------------------------------------===//
92//                              ISD Namespace
93//===----------------------------------------------------------------------===//
94
95/// isBuildVectorAllOnes - Return true if the specified node is a
96/// BUILD_VECTOR where all of the elements are ~0 or undef.
97bool ISD::isBuildVectorAllOnes(const SDNode *N) {
98  // Look through a bit convert.
99  if (N->getOpcode() == ISD::BIT_CONVERT)
100    N = N->getOperand(0).Val;
101
102  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
103
104  unsigned i = 0, e = N->getNumOperands();
105
106  // Skip over all of the undef values.
107  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
108    ++i;
109
110  // Do not accept an all-undef vector.
111  if (i == e) return false;
112
113  // Do not accept build_vectors that aren't all constants or which have non-~0
114  // elements.
115  SDOperand NotZero = N->getOperand(i);
116  if (isa<ConstantSDNode>(NotZero)) {
117    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
118      return false;
119  } else if (isa<ConstantFPSDNode>(NotZero)) {
120    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
121                convertToAPInt().isAllOnesValue())
122      return false;
123  } else
124    return false;
125
126  // Okay, we have at least one ~0 value, check to see if the rest match or are
127  // undefs.
128  for (++i; i != e; ++i)
129    if (N->getOperand(i) != NotZero &&
130        N->getOperand(i).getOpcode() != ISD::UNDEF)
131      return false;
132  return true;
133}
134
135
136/// isBuildVectorAllZeros - Return true if the specified node is a
137/// BUILD_VECTOR where all of the elements are 0 or undef.
138bool ISD::isBuildVectorAllZeros(const SDNode *N) {
139  // Look through a bit convert.
140  if (N->getOpcode() == ISD::BIT_CONVERT)
141    N = N->getOperand(0).Val;
142
143  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
144
145  unsigned i = 0, e = N->getNumOperands();
146
147  // Skip over all of the undef values.
148  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
149    ++i;
150
151  // Do not accept an all-undef vector.
152  if (i == e) return false;
153
154  // Do not accept build_vectors that aren't all constants or which have non-~0
155  // elements.
156  SDOperand Zero = N->getOperand(i);
157  if (isa<ConstantSDNode>(Zero)) {
158    if (!cast<ConstantSDNode>(Zero)->isNullValue())
159      return false;
160  } else if (isa<ConstantFPSDNode>(Zero)) {
161    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
162      return false;
163  } else
164    return false;
165
166  // Okay, we have at least one ~0 value, check to see if the rest match or are
167  // undefs.
168  for (++i; i != e; ++i)
169    if (N->getOperand(i) != Zero &&
170        N->getOperand(i).getOpcode() != ISD::UNDEF)
171      return false;
172  return true;
173}
174
175/// isScalarToVector - Return true if the specified node is a
176/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
177/// element is not an undef.
178bool ISD::isScalarToVector(const SDNode *N) {
179  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
180    return true;
181
182  if (N->getOpcode() != ISD::BUILD_VECTOR)
183    return false;
184  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
185    return false;
186  unsigned NumElems = N->getNumOperands();
187  for (unsigned i = 1; i < NumElems; ++i) {
188    SDOperand V = N->getOperand(i);
189    if (V.getOpcode() != ISD::UNDEF)
190      return false;
191  }
192  return true;
193}
194
195
196/// isDebugLabel - Return true if the specified node represents a debug
197/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
198/// is 0).
199bool ISD::isDebugLabel(const SDNode *N) {
200  SDOperand Zero;
201  if (N->getOpcode() == ISD::LABEL)
202    Zero = N->getOperand(2);
203  else if (N->isTargetOpcode() &&
204           N->getTargetOpcode() == TargetInstrInfo::LABEL)
205    // Chain moved to last operand.
206    Zero = N->getOperand(1);
207  else
208    return false;
209  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
210}
211
212/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
213/// when given the operation for (X op Y).
214ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
215  // To perform this operation, we just need to swap the L and G bits of the
216  // operation.
217  unsigned OldL = (Operation >> 2) & 1;
218  unsigned OldG = (Operation >> 1) & 1;
219  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
220                       (OldL << 1) |       // New G bit
221                       (OldG << 2));        // New L bit.
222}
223
224/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
225/// 'op' is a valid SetCC operation.
226ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
227  unsigned Operation = Op;
228  if (isInteger)
229    Operation ^= 7;   // Flip L, G, E bits, but not U.
230  else
231    Operation ^= 15;  // Flip all of the condition bits.
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;     // Don't let N and U bits get set.
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: assert(0 && "Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
300    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
301    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
302    }
303  }
304
305  return Result;
306}
307
308const TargetMachine &SelectionDAG::getTarget() const {
309  return TLI.getTargetMachine();
310}
311
312//===----------------------------------------------------------------------===//
313//                           SDNode Profile Support
314//===----------------------------------------------------------------------===//
315
316/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
317///
318static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
319  ID.AddInteger(OpC);
320}
321
322/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
323/// solely with their pointer.
324void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
325  ID.AddPointer(VTList.VTs);
326}
327
328/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
329///
330static void AddNodeIDOperands(FoldingSetNodeID &ID,
331                              SDOperandPtr Ops, unsigned NumOps) {
332  for (; NumOps; --NumOps, ++Ops) {
333    ID.AddPointer(Ops->Val);
334    ID.AddInteger(Ops->ResNo);
335  }
336}
337
338static void AddNodeIDNode(FoldingSetNodeID &ID,
339                          unsigned short OpC, SDVTList VTList,
340                          const SDOperand *OpList, unsigned N) {
341  AddNodeIDOpcode(ID, OpC);
342  AddNodeIDValueTypes(ID, VTList);
343  AddNodeIDOperands(ID, OpList, N);
344}
345
346
347/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
348/// data.
349static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
350  AddNodeIDOpcode(ID, N->getOpcode());
351  // Add the return value info.
352  AddNodeIDValueTypes(ID, N->getVTList());
353  // Add the operand info.
354  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
355
356  // Handle SDNode leafs with special info.
357  switch (N->getOpcode()) {
358  default: break;  // Normal nodes don't need extra info.
359  case ISD::ARG_FLAGS:
360    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
361    break;
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    break;
379  }
380  case ISD::BasicBlock:
381    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
382    break;
383  case ISD::Register:
384    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
385    break;
386  case ISD::SRCVALUE:
387    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
388    break;
389  case ISD::MEMOPERAND: {
390    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
391    ID.AddPointer(MO.getValue());
392    ID.AddInteger(MO.getFlags());
393    ID.AddInteger(MO.getOffset());
394    ID.AddInteger(MO.getSize());
395    ID.AddInteger(MO.getAlignment());
396    break;
397  }
398  case ISD::FrameIndex:
399  case ISD::TargetFrameIndex:
400    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
401    break;
402  case ISD::JumpTable:
403  case ISD::TargetJumpTable:
404    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
405    break;
406  case ISD::ConstantPool:
407  case ISD::TargetConstantPool: {
408    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
409    ID.AddInteger(CP->getAlignment());
410    ID.AddInteger(CP->getOffset());
411    if (CP->isMachineConstantPoolEntry())
412      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
413    else
414      ID.AddPointer(CP->getConstVal());
415    break;
416  }
417  case ISD::LOAD: {
418    LoadSDNode *LD = cast<LoadSDNode>(N);
419    ID.AddInteger(LD->getAddressingMode());
420    ID.AddInteger(LD->getExtensionType());
421    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
422    ID.AddInteger(LD->getAlignment());
423    ID.AddInteger(LD->isVolatile());
424    break;
425  }
426  case ISD::STORE: {
427    StoreSDNode *ST = cast<StoreSDNode>(N);
428    ID.AddInteger(ST->getAddressingMode());
429    ID.AddInteger(ST->isTruncatingStore());
430    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
431    ID.AddInteger(ST->getAlignment());
432    ID.AddInteger(ST->isVolatile());
433    break;
434  }
435  }
436}
437
438//===----------------------------------------------------------------------===//
439//                              SelectionDAG Class
440//===----------------------------------------------------------------------===//
441
442/// RemoveDeadNodes - This method deletes all unreachable nodes in the
443/// SelectionDAG.
444void SelectionDAG::RemoveDeadNodes() {
445  // Create a dummy node (which is not added to allnodes), that adds a reference
446  // to the root node, preventing it from being deleted.
447  HandleSDNode Dummy(getRoot());
448
449  SmallVector<SDNode*, 128> DeadNodes;
450
451  // Add all obviously-dead nodes to the DeadNodes worklist.
452  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
453    if (I->use_empty())
454      DeadNodes.push_back(I);
455
456  // Process the worklist, deleting the nodes and adding their uses to the
457  // worklist.
458  while (!DeadNodes.empty()) {
459    SDNode *N = DeadNodes.back();
460    DeadNodes.pop_back();
461
462    // Take the node out of the appropriate CSE map.
463    RemoveNodeFromCSEMaps(N);
464
465    // Next, brutally remove the operand list.  This is safe to do, as there are
466    // no cycles in the graph.
467    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
468      SDNode *Operand = I->getVal();
469      Operand->removeUser(std::distance(N->op_begin(), I), N);
470
471      // Now that we removed this operand, see if there are no uses of it left.
472      if (Operand->use_empty())
473        DeadNodes.push_back(Operand);
474    }
475    if (N->OperandsNeedDelete) {
476      delete[] N->OperandList;
477    }
478    N->OperandList = 0;
479    N->NumOperands = 0;
480
481    // Finally, remove N itself.
482    AllNodes.erase(N);
483  }
484
485  // If the root changed (e.g. it was a dead load, update the root).
486  setRoot(Dummy.getValue());
487}
488
489void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
490  SmallVector<SDNode*, 16> DeadNodes;
491  DeadNodes.push_back(N);
492
493  // Process the worklist, deleting the nodes and adding their uses to the
494  // worklist.
495  while (!DeadNodes.empty()) {
496    SDNode *N = DeadNodes.back();
497    DeadNodes.pop_back();
498
499    if (UpdateListener)
500      UpdateListener->NodeDeleted(N);
501
502    // Take the node out of the appropriate CSE map.
503    RemoveNodeFromCSEMaps(N);
504
505    // Next, brutally remove the operand list.  This is safe to do, as there are
506    // no cycles in the graph.
507    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
508      SDNode *Operand = I->getVal();
509      Operand->removeUser(std::distance(N->op_begin(), I), N);
510
511      // Now that we removed this operand, see if there are no uses of it left.
512      if (Operand->use_empty())
513        DeadNodes.push_back(Operand);
514    }
515    if (N->OperandsNeedDelete) {
516      delete[] N->OperandList;
517    }
518    N->OperandList = 0;
519    N->NumOperands = 0;
520
521    // Finally, remove N itself.
522    AllNodes.erase(N);
523  }
524}
525
526void SelectionDAG::DeleteNode(SDNode *N) {
527  assert(N->use_empty() && "Cannot delete a node that is not dead!");
528
529  // First take this out of the appropriate CSE map.
530  RemoveNodeFromCSEMaps(N);
531
532  // Finally, remove uses due to operands of this node, remove from the
533  // AllNodes list, and delete the node.
534  DeleteNodeNotInCSEMaps(N);
535}
536
537void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
538
539  // Remove it from the AllNodes list.
540  AllNodes.remove(N);
541
542  // Drop all of the operands and decrement used nodes use counts.
543  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
544    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
545  if (N->OperandsNeedDelete) {
546    delete[] N->OperandList;
547  }
548  N->OperandList = 0;
549  N->NumOperands = 0;
550
551  delete N;
552}
553
554/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
555/// correspond to it.  This is useful when we're about to delete or repurpose
556/// the node.  We don't want future request for structurally identical nodes
557/// to return N anymore.
558void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
559  bool Erased = false;
560  switch (N->getOpcode()) {
561  case ISD::HANDLENODE: return;  // noop.
562  case ISD::STRING:
563    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
564    break;
565  case ISD::CONDCODE:
566    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
567           "Cond code doesn't exist!");
568    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
569    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
570    break;
571  case ISD::ExternalSymbol:
572    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
573    break;
574  case ISD::TargetExternalSymbol:
575    Erased =
576      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
577    break;
578  case ISD::VALUETYPE: {
579    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
580    if (MVT::isExtendedVT(VT)) {
581      Erased = ExtendedValueTypeNodes.erase(VT);
582    } else {
583      Erased = ValueTypeNodes[VT] != 0;
584      ValueTypeNodes[VT] = 0;
585    }
586    break;
587  }
588  default:
589    // Remove it from the CSE Map.
590    Erased = CSEMap.RemoveNode(N);
591    break;
592  }
593#ifndef NDEBUG
594  // Verify that the node was actually in one of the CSE maps, unless it has a
595  // flag result (which cannot be CSE'd) or is one of the special cases that are
596  // not subject to CSE.
597  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
598      !N->isTargetOpcode()) {
599    N->dump(this);
600    cerr << "\n";
601    assert(0 && "Node is not in map!");
602  }
603#endif
604}
605
606/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
607/// has been taken out and modified in some way.  If the specified node already
608/// exists in the CSE maps, do not modify the maps, but return the existing node
609/// instead.  If it doesn't exist, add it and return null.
610///
611SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
612  assert(N->getNumOperands() && "This is a leaf node!");
613  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
614    return 0;    // Never add these nodes.
615
616  // Check that remaining values produced are not flags.
617  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
618    if (N->getValueType(i) == MVT::Flag)
619      return 0;   // Never CSE anything that produces a flag.
620
621  SDNode *New = CSEMap.GetOrInsertNode(N);
622  if (New != N) return New;  // Node already existed.
623  return 0;
624}
625
626/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
627/// were replaced with those specified.  If this node is never memoized,
628/// return null, otherwise return a pointer to the slot it would take.  If a
629/// node already exists with these operands, the slot will be non-null.
630SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
631                                           void *&InsertPos) {
632  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
633    return 0;    // Never add these nodes.
634
635  // Check that remaining values produced are not flags.
636  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
637    if (N->getValueType(i) == MVT::Flag)
638      return 0;   // Never CSE anything that produces a flag.
639
640  SDOperand Ops[] = { Op };
641  FoldingSetNodeID ID;
642  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
643  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
644}
645
646/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
647/// were replaced with those specified.  If this node is never memoized,
648/// return null, otherwise return a pointer to the slot it would take.  If a
649/// node already exists with these operands, the slot will be non-null.
650SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
651                                           SDOperand Op1, SDOperand Op2,
652                                           void *&InsertPos) {
653  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
654    return 0;    // Never add these nodes.
655
656  // Check that remaining values produced are not flags.
657  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
658    if (N->getValueType(i) == MVT::Flag)
659      return 0;   // Never CSE anything that produces a flag.
660
661  SDOperand Ops[] = { Op1, Op2 };
662  FoldingSetNodeID ID;
663  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
664  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
665}
666
667
668/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
669/// were replaced with those specified.  If this node is never memoized,
670/// return null, otherwise return a pointer to the slot it would take.  If a
671/// node already exists with these operands, the slot will be non-null.
672SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
673                                           SDOperandPtr Ops,unsigned NumOps,
674                                           void *&InsertPos) {
675  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
676    return 0;    // Never add these nodes.
677
678  // Check that remaining values produced are not flags.
679  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
680    if (N->getValueType(i) == MVT::Flag)
681      return 0;   // Never CSE anything that produces a flag.
682
683  FoldingSetNodeID ID;
684  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
685
686  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
687    ID.AddInteger(LD->getAddressingMode());
688    ID.AddInteger(LD->getExtensionType());
689    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
690    ID.AddInteger(LD->getAlignment());
691    ID.AddInteger(LD->isVolatile());
692  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
693    ID.AddInteger(ST->getAddressingMode());
694    ID.AddInteger(ST->isTruncatingStore());
695    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
696    ID.AddInteger(ST->getAlignment());
697    ID.AddInteger(ST->isVolatile());
698  }
699
700  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
701}
702
703
704SelectionDAG::~SelectionDAG() {
705  while (!AllNodes.empty()) {
706    SDNode *N = AllNodes.begin();
707    N->SetNextInBucket(0);
708    if (N->OperandsNeedDelete) {
709      delete [] N->OperandList;
710    }
711    N->OperandList = 0;
712    N->NumOperands = 0;
713    AllNodes.pop_front();
714  }
715}
716
717SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
718  if (Op.getValueType() == VT) return Op;
719  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
720                                   MVT::getSizeInBits(VT));
721  return getNode(ISD::AND, Op.getValueType(), Op,
722                 getConstant(Imm, Op.getValueType()));
723}
724
725SDOperand SelectionDAG::getString(const std::string &Val) {
726  StringSDNode *&N = StringNodes[Val];
727  if (!N) {
728    N = new StringSDNode(Val);
729    AllNodes.push_back(N);
730  }
731  return SDOperand(N, 0);
732}
733
734SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
735  MVT::ValueType EltVT =
736    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
737
738  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
739}
740
741SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
742  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
743
744  MVT::ValueType EltVT =
745    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
746
747  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
748         "APInt size does not match type size!");
749
750  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
751  FoldingSetNodeID ID;
752  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
753  ID.Add(Val);
754  void *IP = 0;
755  SDNode *N = NULL;
756  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
757    if (!MVT::isVector(VT))
758      return SDOperand(N, 0);
759  if (!N) {
760    N = new ConstantSDNode(isT, Val, EltVT);
761    CSEMap.InsertNode(N, IP);
762    AllNodes.push_back(N);
763  }
764
765  SDOperand Result(N, 0);
766  if (MVT::isVector(VT)) {
767    SmallVector<SDOperand, 8> Ops;
768    Ops.assign(MVT::getVectorNumElements(VT), Result);
769    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
770  }
771  return Result;
772}
773
774SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
775  return getConstant(Val, TLI.getPointerTy(), isTarget);
776}
777
778
779SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
780                                      bool isTarget) {
781  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
782
783  MVT::ValueType EltVT =
784    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
785
786  // Do the map lookup using the actual bit pattern for the floating point
787  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
788  // we don't have issues with SNANs.
789  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
790  FoldingSetNodeID ID;
791  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
792  ID.Add(V);
793  void *IP = 0;
794  SDNode *N = NULL;
795  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
796    if (!MVT::isVector(VT))
797      return SDOperand(N, 0);
798  if (!N) {
799    N = new ConstantFPSDNode(isTarget, V, EltVT);
800    CSEMap.InsertNode(N, IP);
801    AllNodes.push_back(N);
802  }
803
804  SDOperand Result(N, 0);
805  if (MVT::isVector(VT)) {
806    SmallVector<SDOperand, 8> Ops;
807    Ops.assign(MVT::getVectorNumElements(VT), Result);
808    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
809  }
810  return Result;
811}
812
813SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
814                                      bool isTarget) {
815  MVT::ValueType EltVT =
816    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
817  if (EltVT==MVT::f32)
818    return getConstantFP(APFloat((float)Val), VT, isTarget);
819  else
820    return getConstantFP(APFloat(Val), VT, isTarget);
821}
822
823SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
824                                         MVT::ValueType VT, int Offset,
825                                         bool isTargetGA) {
826  unsigned Opc;
827
828  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
829  if (!GVar) {
830    // If GV is an alias then use the aliasee for determining thread-localness.
831    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
832      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
833  }
834
835  if (GVar && GVar->isThreadLocal())
836    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
837  else
838    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
839
840  FoldingSetNodeID ID;
841  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
842  ID.AddPointer(GV);
843  ID.AddInteger(Offset);
844  void *IP = 0;
845  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
846   return SDOperand(E, 0);
847  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
848  CSEMap.InsertNode(N, IP);
849  AllNodes.push_back(N);
850  return SDOperand(N, 0);
851}
852
853SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
854                                      bool isTarget) {
855  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
856  FoldingSetNodeID ID;
857  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
858  ID.AddInteger(FI);
859  void *IP = 0;
860  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
861    return SDOperand(E, 0);
862  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
863  CSEMap.InsertNode(N, IP);
864  AllNodes.push_back(N);
865  return SDOperand(N, 0);
866}
867
868SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
869  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
870  FoldingSetNodeID ID;
871  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
872  ID.AddInteger(JTI);
873  void *IP = 0;
874  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
875    return SDOperand(E, 0);
876  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
877  CSEMap.InsertNode(N, IP);
878  AllNodes.push_back(N);
879  return SDOperand(N, 0);
880}
881
882SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
883                                        unsigned Alignment, int Offset,
884                                        bool isTarget) {
885  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
886  FoldingSetNodeID ID;
887  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
888  ID.AddInteger(Alignment);
889  ID.AddInteger(Offset);
890  ID.AddPointer(C);
891  void *IP = 0;
892  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
893    return SDOperand(E, 0);
894  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
895  CSEMap.InsertNode(N, IP);
896  AllNodes.push_back(N);
897  return SDOperand(N, 0);
898}
899
900
901SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
902                                        MVT::ValueType VT,
903                                        unsigned Alignment, int Offset,
904                                        bool isTarget) {
905  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
906  FoldingSetNodeID ID;
907  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
908  ID.AddInteger(Alignment);
909  ID.AddInteger(Offset);
910  C->AddSelectionDAGCSEId(ID);
911  void *IP = 0;
912  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
913    return SDOperand(E, 0);
914  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
915  CSEMap.InsertNode(N, IP);
916  AllNodes.push_back(N);
917  return SDOperand(N, 0);
918}
919
920
921SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
922  FoldingSetNodeID ID;
923  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), (SDOperand*)0, 0);
924  ID.AddPointer(MBB);
925  void *IP = 0;
926  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
927    return SDOperand(E, 0);
928  SDNode *N = new BasicBlockSDNode(MBB);
929  CSEMap.InsertNode(N, IP);
930  AllNodes.push_back(N);
931  return SDOperand(N, 0);
932}
933
934SDOperand SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
935  FoldingSetNodeID ID;
936  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), (SDOperand*)0, 0);
937  ID.AddInteger(Flags.getRawBits());
938  void *IP = 0;
939  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
940    return SDOperand(E, 0);
941  SDNode *N = new ARG_FLAGSSDNode(Flags);
942  CSEMap.InsertNode(N, IP);
943  AllNodes.push_back(N);
944  return SDOperand(N, 0);
945}
946
947SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
948  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
949    ValueTypeNodes.resize(VT+1);
950
951  SDNode *&N = MVT::isExtendedVT(VT) ?
952    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
953
954  if (N) return SDOperand(N, 0);
955  N = new VTSDNode(VT);
956  AllNodes.push_back(N);
957  return SDOperand(N, 0);
958}
959
960SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
961  SDNode *&N = ExternalSymbols[Sym];
962  if (N) return SDOperand(N, 0);
963  N = new ExternalSymbolSDNode(false, Sym, VT);
964  AllNodes.push_back(N);
965  return SDOperand(N, 0);
966}
967
968SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
969                                                MVT::ValueType VT) {
970  SDNode *&N = TargetExternalSymbols[Sym];
971  if (N) return SDOperand(N, 0);
972  N = new ExternalSymbolSDNode(true, Sym, VT);
973  AllNodes.push_back(N);
974  return SDOperand(N, 0);
975}
976
977SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
978  if ((unsigned)Cond >= CondCodeNodes.size())
979    CondCodeNodes.resize(Cond+1);
980
981  if (CondCodeNodes[Cond] == 0) {
982    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
983    AllNodes.push_back(CondCodeNodes[Cond]);
984  }
985  return SDOperand(CondCodeNodes[Cond], 0);
986}
987
988SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
989  FoldingSetNodeID ID;
990  AddNodeIDNode(ID, ISD::Register, getVTList(VT), (SDOperand*)0, 0);
991  ID.AddInteger(RegNo);
992  void *IP = 0;
993  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
994    return SDOperand(E, 0);
995  SDNode *N = new RegisterSDNode(RegNo, VT);
996  CSEMap.InsertNode(N, IP);
997  AllNodes.push_back(N);
998  return SDOperand(N, 0);
999}
1000
1001SDOperand SelectionDAG::getSrcValue(const Value *V) {
1002  assert((!V || isa<PointerType>(V->getType())) &&
1003         "SrcValue is not a pointer?");
1004
1005  FoldingSetNodeID ID;
1006  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), (SDOperand*)0, 0);
1007  ID.AddPointer(V);
1008
1009  void *IP = 0;
1010  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1011    return SDOperand(E, 0);
1012
1013  SDNode *N = new SrcValueSDNode(V);
1014  CSEMap.InsertNode(N, IP);
1015  AllNodes.push_back(N);
1016  return SDOperand(N, 0);
1017}
1018
1019SDOperand SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1020  const Value *v = MO.getValue();
1021  assert((!v || isa<PointerType>(v->getType())) &&
1022         "SrcValue is not a pointer?");
1023
1024  FoldingSetNodeID ID;
1025  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), (SDOperand*)0, 0);
1026  ID.AddPointer(v);
1027  ID.AddInteger(MO.getFlags());
1028  ID.AddInteger(MO.getOffset());
1029  ID.AddInteger(MO.getSize());
1030  ID.AddInteger(MO.getAlignment());
1031
1032  void *IP = 0;
1033  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1034    return SDOperand(E, 0);
1035
1036  SDNode *N = new MemOperandSDNode(MO);
1037  CSEMap.InsertNode(N, IP);
1038  AllNodes.push_back(N);
1039  return SDOperand(N, 0);
1040}
1041
1042/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1043/// specified value type.
1044SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
1045  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1046  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1047  const Type *Ty = MVT::getTypeForValueType(VT);
1048  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1049  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1050  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1051}
1052
1053
1054SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1055                                  SDOperand N2, ISD::CondCode Cond) {
1056  // These setcc operations always fold.
1057  switch (Cond) {
1058  default: break;
1059  case ISD::SETFALSE:
1060  case ISD::SETFALSE2: return getConstant(0, VT);
1061  case ISD::SETTRUE:
1062  case ISD::SETTRUE2:  return getConstant(1, VT);
1063
1064  case ISD::SETOEQ:
1065  case ISD::SETOGT:
1066  case ISD::SETOGE:
1067  case ISD::SETOLT:
1068  case ISD::SETOLE:
1069  case ISD::SETONE:
1070  case ISD::SETO:
1071  case ISD::SETUO:
1072  case ISD::SETUEQ:
1073  case ISD::SETUNE:
1074    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1075    break;
1076  }
1077
1078  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1079    const APInt &C2 = N2C->getAPIntValue();
1080    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1081      const APInt &C1 = N1C->getAPIntValue();
1082
1083      switch (Cond) {
1084      default: assert(0 && "Unknown integer setcc!");
1085      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1086      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1087      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1088      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1089      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1090      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1091      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1092      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1093      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1094      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1095      }
1096    }
1097  }
1098  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1099    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1100      // No compile time operations on this type yet.
1101      if (N1C->getValueType(0) == MVT::ppcf128)
1102        return SDOperand();
1103
1104      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1105      switch (Cond) {
1106      default: break;
1107      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1108                          return getNode(ISD::UNDEF, VT);
1109                        // fall through
1110      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1111      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1112                          return getNode(ISD::UNDEF, VT);
1113                        // fall through
1114      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1115                                           R==APFloat::cmpLessThan, VT);
1116      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1117                          return getNode(ISD::UNDEF, VT);
1118                        // fall through
1119      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1120      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1121                          return getNode(ISD::UNDEF, VT);
1122                        // fall through
1123      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1124      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1125                          return getNode(ISD::UNDEF, VT);
1126                        // fall through
1127      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1128                                           R==APFloat::cmpEqual, VT);
1129      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1130                          return getNode(ISD::UNDEF, VT);
1131                        // fall through
1132      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1133                                           R==APFloat::cmpEqual, VT);
1134      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1135      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1136      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1137                                           R==APFloat::cmpEqual, VT);
1138      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1139      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1140                                           R==APFloat::cmpLessThan, VT);
1141      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1142                                           R==APFloat::cmpUnordered, VT);
1143      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1144      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1145      }
1146    } else {
1147      // Ensure that the constant occurs on the RHS.
1148      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1149    }
1150  }
1151
1152  // Could not fold it.
1153  return SDOperand();
1154}
1155
1156/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1157/// use this predicate to simplify operations downstream.
1158bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1159  unsigned BitWidth = Op.getValueSizeInBits();
1160  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1161}
1162
1163/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1164/// this predicate to simplify operations downstream.  Mask is known to be zero
1165/// for bits that V cannot have.
1166bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1167                                     unsigned Depth) const {
1168  APInt KnownZero, KnownOne;
1169  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1170  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1171  return (KnownZero & Mask) == Mask;
1172}
1173
1174/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1175/// known to be either zero or one and return them in the KnownZero/KnownOne
1176/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1177/// processing.
1178void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1179                                     APInt &KnownZero, APInt &KnownOne,
1180                                     unsigned Depth) const {
1181  unsigned BitWidth = Mask.getBitWidth();
1182  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1183         "Mask size mismatches value type size!");
1184
1185  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1186  if (Depth == 6 || Mask == 0)
1187    return;  // Limit search depth.
1188
1189  APInt KnownZero2, KnownOne2;
1190
1191  switch (Op.getOpcode()) {
1192  case ISD::Constant:
1193    // We know all of the bits for a constant!
1194    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1195    KnownZero = ~KnownOne & Mask;
1196    return;
1197  case ISD::AND:
1198    // If either the LHS or the RHS are Zero, the result is zero.
1199    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1200    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1201                      KnownZero2, KnownOne2, Depth+1);
1202    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1203    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1204
1205    // Output known-1 bits are only known if set in both the LHS & RHS.
1206    KnownOne &= KnownOne2;
1207    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1208    KnownZero |= KnownZero2;
1209    return;
1210  case ISD::OR:
1211    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1212    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1213                      KnownZero2, KnownOne2, Depth+1);
1214    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1215    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1216
1217    // Output known-0 bits are only known if clear in both the LHS & RHS.
1218    KnownZero &= KnownZero2;
1219    // Output known-1 are known to be set if set in either the LHS | RHS.
1220    KnownOne |= KnownOne2;
1221    return;
1222  case ISD::XOR: {
1223    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1224    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1225    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1226    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1227
1228    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1229    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1230    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1231    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1232    KnownZero = KnownZeroOut;
1233    return;
1234  }
1235  case ISD::SELECT:
1236    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1237    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1238    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1239    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1240
1241    // Only known if known in both the LHS and RHS.
1242    KnownOne &= KnownOne2;
1243    KnownZero &= KnownZero2;
1244    return;
1245  case ISD::SELECT_CC:
1246    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1247    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1248    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1249    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1250
1251    // Only known if known in both the LHS and RHS.
1252    KnownOne &= KnownOne2;
1253    KnownZero &= KnownZero2;
1254    return;
1255  case ISD::SETCC:
1256    // If we know the result of a setcc has the top bits zero, use this info.
1257    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1258        BitWidth > 1)
1259      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1260    return;
1261  case ISD::SHL:
1262    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1263    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1264      unsigned ShAmt = SA->getValue();
1265
1266      // If the shift count is an invalid immediate, don't do anything.
1267      if (ShAmt >= BitWidth)
1268        return;
1269
1270      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1271                        KnownZero, KnownOne, Depth+1);
1272      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1273      KnownZero <<= ShAmt;
1274      KnownOne  <<= ShAmt;
1275      // low bits known zero.
1276      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1277    }
1278    return;
1279  case ISD::SRL:
1280    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1281    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1282      unsigned ShAmt = SA->getValue();
1283
1284      // If the shift count is an invalid immediate, don't do anything.
1285      if (ShAmt >= BitWidth)
1286        return;
1287
1288      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1289                        KnownZero, KnownOne, Depth+1);
1290      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1291      KnownZero = KnownZero.lshr(ShAmt);
1292      KnownOne  = KnownOne.lshr(ShAmt);
1293
1294      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1295      KnownZero |= HighBits;  // High bits known zero.
1296    }
1297    return;
1298  case ISD::SRA:
1299    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1300      unsigned ShAmt = SA->getValue();
1301
1302      // If the shift count is an invalid immediate, don't do anything.
1303      if (ShAmt >= BitWidth)
1304        return;
1305
1306      APInt InDemandedMask = (Mask << ShAmt);
1307      // If any of the demanded bits are produced by the sign extension, we also
1308      // demand the input sign bit.
1309      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1310      if (HighBits.getBoolValue())
1311        InDemandedMask |= APInt::getSignBit(BitWidth);
1312
1313      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1314                        Depth+1);
1315      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1316      KnownZero = KnownZero.lshr(ShAmt);
1317      KnownOne  = KnownOne.lshr(ShAmt);
1318
1319      // Handle the sign bits.
1320      APInt SignBit = APInt::getSignBit(BitWidth);
1321      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1322
1323      if (KnownZero.intersects(SignBit)) {
1324        KnownZero |= HighBits;  // New bits are known zero.
1325      } else if (KnownOne.intersects(SignBit)) {
1326        KnownOne  |= HighBits;  // New bits are known one.
1327      }
1328    }
1329    return;
1330  case ISD::SIGN_EXTEND_INREG: {
1331    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1332    unsigned EBits = MVT::getSizeInBits(EVT);
1333
1334    // Sign extension.  Compute the demanded bits in the result that are not
1335    // present in the input.
1336    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1337
1338    APInt InSignBit = APInt::getSignBit(EBits);
1339    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1340
1341    // If the sign extended bits are demanded, we know that the sign
1342    // bit is demanded.
1343    InSignBit.zext(BitWidth);
1344    if (NewBits.getBoolValue())
1345      InputDemandedBits |= InSignBit;
1346
1347    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1348                      KnownZero, KnownOne, Depth+1);
1349    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1350
1351    // If the sign bit of the input is known set or clear, then we know the
1352    // top bits of the result.
1353    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1354      KnownZero |= NewBits;
1355      KnownOne  &= ~NewBits;
1356    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1357      KnownOne  |= NewBits;
1358      KnownZero &= ~NewBits;
1359    } else {                              // Input sign bit unknown
1360      KnownZero &= ~NewBits;
1361      KnownOne  &= ~NewBits;
1362    }
1363    return;
1364  }
1365  case ISD::CTTZ:
1366  case ISD::CTLZ:
1367  case ISD::CTPOP: {
1368    unsigned LowBits = Log2_32(BitWidth)+1;
1369    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1370    KnownOne  = APInt(BitWidth, 0);
1371    return;
1372  }
1373  case ISD::LOAD: {
1374    if (ISD::isZEXTLoad(Op.Val)) {
1375      LoadSDNode *LD = cast<LoadSDNode>(Op);
1376      MVT::ValueType VT = LD->getMemoryVT();
1377      unsigned MemBits = MVT::getSizeInBits(VT);
1378      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1379    }
1380    return;
1381  }
1382  case ISD::ZERO_EXTEND: {
1383    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1384    unsigned InBits = MVT::getSizeInBits(InVT);
1385    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1386    APInt InMask    = Mask;
1387    InMask.trunc(InBits);
1388    KnownZero.trunc(InBits);
1389    KnownOne.trunc(InBits);
1390    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1391    KnownZero.zext(BitWidth);
1392    KnownOne.zext(BitWidth);
1393    KnownZero |= NewBits;
1394    return;
1395  }
1396  case ISD::SIGN_EXTEND: {
1397    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1398    unsigned InBits = MVT::getSizeInBits(InVT);
1399    APInt InSignBit = APInt::getSignBit(InBits);
1400    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1401    APInt InMask = Mask;
1402    InMask.trunc(InBits);
1403
1404    // If any of the sign extended bits are demanded, we know that the sign
1405    // bit is demanded. Temporarily set this bit in the mask for our callee.
1406    if (NewBits.getBoolValue())
1407      InMask |= InSignBit;
1408
1409    KnownZero.trunc(InBits);
1410    KnownOne.trunc(InBits);
1411    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1412
1413    // Note if the sign bit is known to be zero or one.
1414    bool SignBitKnownZero = KnownZero.isNegative();
1415    bool SignBitKnownOne  = KnownOne.isNegative();
1416    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1417           "Sign bit can't be known to be both zero and one!");
1418
1419    // If the sign bit wasn't actually demanded by our caller, we don't
1420    // want it set in the KnownZero and KnownOne result values. Reset the
1421    // mask and reapply it to the result values.
1422    InMask = Mask;
1423    InMask.trunc(InBits);
1424    KnownZero &= InMask;
1425    KnownOne  &= InMask;
1426
1427    KnownZero.zext(BitWidth);
1428    KnownOne.zext(BitWidth);
1429
1430    // If the sign bit is known zero or one, the top bits match.
1431    if (SignBitKnownZero)
1432      KnownZero |= NewBits;
1433    else if (SignBitKnownOne)
1434      KnownOne  |= NewBits;
1435    return;
1436  }
1437  case ISD::ANY_EXTEND: {
1438    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1439    unsigned InBits = MVT::getSizeInBits(InVT);
1440    APInt InMask = Mask;
1441    InMask.trunc(InBits);
1442    KnownZero.trunc(InBits);
1443    KnownOne.trunc(InBits);
1444    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1445    KnownZero.zext(BitWidth);
1446    KnownOne.zext(BitWidth);
1447    return;
1448  }
1449  case ISD::TRUNCATE: {
1450    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1451    unsigned InBits = MVT::getSizeInBits(InVT);
1452    APInt InMask = Mask;
1453    InMask.zext(InBits);
1454    KnownZero.zext(InBits);
1455    KnownOne.zext(InBits);
1456    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1457    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1458    KnownZero.trunc(BitWidth);
1459    KnownOne.trunc(BitWidth);
1460    break;
1461  }
1462  case ISD::AssertZext: {
1463    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1464    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1465    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1466                      KnownOne, Depth+1);
1467    KnownZero |= (~InMask) & Mask;
1468    return;
1469  }
1470  case ISD::FGETSIGN:
1471    // All bits are zero except the low bit.
1472    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1473    return;
1474
1475  case ISD::ADD: {
1476    // If either the LHS or the RHS are Zero, the result is zero.
1477    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1478    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1479    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1480    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1481
1482    // Output known-0 bits are known if clear or set in both the low clear bits
1483    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1484    // low 3 bits clear.
1485    unsigned KnownZeroOut = std::min(KnownZero.countTrailingOnes(),
1486                                     KnownZero2.countTrailingOnes());
1487
1488    KnownZero = APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1489    KnownOne = APInt(BitWidth, 0);
1490    return;
1491  }
1492  case ISD::SUB: {
1493    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1494    if (!CLHS) return;
1495
1496    // We know that the top bits of C-X are clear if X contains less bits
1497    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1498    // positive if we can prove that X is >= 0 and < 16.
1499    if (CLHS->getAPIntValue().isNonNegative()) {
1500      unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1501      // NLZ can't be BitWidth with no sign bit
1502      APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1503      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1504
1505      // If all of the MaskV bits are known to be zero, then we know the output
1506      // top bits are zero, because we now know that the output is from [0-C].
1507      if ((KnownZero & MaskV) == MaskV) {
1508        unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1509        // Top bits known zero.
1510        KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1511        KnownOne = APInt(BitWidth, 0);   // No one bits known.
1512      } else {
1513        KnownZero = KnownOne = APInt(BitWidth, 0);  // Otherwise, nothing known.
1514      }
1515    }
1516    return;
1517  }
1518  default:
1519    // Allow the target to implement this method for its nodes.
1520    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1521  case ISD::INTRINSIC_WO_CHAIN:
1522  case ISD::INTRINSIC_W_CHAIN:
1523  case ISD::INTRINSIC_VOID:
1524      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1525    }
1526    return;
1527  }
1528}
1529
1530/// ComputeNumSignBits - Return the number of times the sign bit of the
1531/// register is replicated into the other bits.  We know that at least 1 bit
1532/// is always equal to the sign bit (itself), but other cases can give us
1533/// information.  For example, immediately after an "SRA X, 2", we know that
1534/// the top 3 bits are all equal to each other, so we return 3.
1535unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1536  MVT::ValueType VT = Op.getValueType();
1537  assert(MVT::isInteger(VT) && "Invalid VT!");
1538  unsigned VTBits = MVT::getSizeInBits(VT);
1539  unsigned Tmp, Tmp2;
1540
1541  if (Depth == 6)
1542    return 1;  // Limit search depth.
1543
1544  switch (Op.getOpcode()) {
1545  default: break;
1546  case ISD::AssertSext:
1547    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1548    return VTBits-Tmp+1;
1549  case ISD::AssertZext:
1550    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1551    return VTBits-Tmp;
1552
1553  case ISD::Constant: {
1554    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1555    // If negative, return # leading ones.
1556    if (Val.isNegative())
1557      return Val.countLeadingOnes();
1558
1559    // Return # leading zeros.
1560    return Val.countLeadingZeros();
1561  }
1562
1563  case ISD::SIGN_EXTEND:
1564    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1565    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1566
1567  case ISD::SIGN_EXTEND_INREG:
1568    // Max of the input and what this extends.
1569    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1570    Tmp = VTBits-Tmp+1;
1571
1572    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1573    return std::max(Tmp, Tmp2);
1574
1575  case ISD::SRA:
1576    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1577    // SRA X, C   -> adds C sign bits.
1578    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1579      Tmp += C->getValue();
1580      if (Tmp > VTBits) Tmp = VTBits;
1581    }
1582    return Tmp;
1583  case ISD::SHL:
1584    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1585      // shl destroys sign bits.
1586      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1587      if (C->getValue() >= VTBits ||      // Bad shift.
1588          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1589      return Tmp - C->getValue();
1590    }
1591    break;
1592  case ISD::AND:
1593  case ISD::OR:
1594  case ISD::XOR:    // NOT is handled here.
1595    // Logical binary ops preserve the number of sign bits.
1596    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1597    if (Tmp == 1) return 1;  // Early out.
1598    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1599    return std::min(Tmp, Tmp2);
1600
1601  case ISD::SELECT:
1602    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1603    if (Tmp == 1) return 1;  // Early out.
1604    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1605    return std::min(Tmp, Tmp2);
1606
1607  case ISD::SETCC:
1608    // If setcc returns 0/-1, all bits are sign bits.
1609    if (TLI.getSetCCResultContents() ==
1610        TargetLowering::ZeroOrNegativeOneSetCCResult)
1611      return VTBits;
1612    break;
1613  case ISD::ROTL:
1614  case ISD::ROTR:
1615    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1616      unsigned RotAmt = C->getValue() & (VTBits-1);
1617
1618      // Handle rotate right by N like a rotate left by 32-N.
1619      if (Op.getOpcode() == ISD::ROTR)
1620        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1621
1622      // If we aren't rotating out all of the known-in sign bits, return the
1623      // number that are left.  This handles rotl(sext(x), 1) for example.
1624      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1625      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1626    }
1627    break;
1628  case ISD::ADD:
1629    // Add can have at most one carry bit.  Thus we know that the output
1630    // is, at worst, one more bit than the inputs.
1631    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1632    if (Tmp == 1) return 1;  // Early out.
1633
1634    // Special case decrementing a value (ADD X, -1):
1635    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1636      if (CRHS->isAllOnesValue()) {
1637        APInt KnownZero, KnownOne;
1638        APInt Mask = APInt::getAllOnesValue(VTBits);
1639        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1640
1641        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1642        // sign bits set.
1643        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1644          return VTBits;
1645
1646        // If we are subtracting one from a positive number, there is no carry
1647        // out of the result.
1648        if (KnownZero.isNegative())
1649          return Tmp;
1650      }
1651
1652    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1653    if (Tmp2 == 1) return 1;
1654      return std::min(Tmp, Tmp2)-1;
1655    break;
1656
1657  case ISD::SUB:
1658    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1659    if (Tmp2 == 1) return 1;
1660
1661    // Handle NEG.
1662    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1663      if (CLHS->isNullValue()) {
1664        APInt KnownZero, KnownOne;
1665        APInt Mask = APInt::getAllOnesValue(VTBits);
1666        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1667        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1668        // sign bits set.
1669        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1670          return VTBits;
1671
1672        // If the input is known to be positive (the sign bit is known clear),
1673        // the output of the NEG has the same number of sign bits as the input.
1674        if (KnownZero.isNegative())
1675          return Tmp2;
1676
1677        // Otherwise, we treat this like a SUB.
1678      }
1679
1680    // Sub can have at most one carry bit.  Thus we know that the output
1681    // is, at worst, one more bit than the inputs.
1682    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1683    if (Tmp == 1) return 1;  // Early out.
1684      return std::min(Tmp, Tmp2)-1;
1685    break;
1686  case ISD::TRUNCATE:
1687    // FIXME: it's tricky to do anything useful for this, but it is an important
1688    // case for targets like X86.
1689    break;
1690  }
1691
1692  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1693  if (Op.getOpcode() == ISD::LOAD) {
1694    LoadSDNode *LD = cast<LoadSDNode>(Op);
1695    unsigned ExtType = LD->getExtensionType();
1696    switch (ExtType) {
1697    default: break;
1698    case ISD::SEXTLOAD:    // '17' bits known
1699      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1700      return VTBits-Tmp+1;
1701    case ISD::ZEXTLOAD:    // '16' bits known
1702      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1703      return VTBits-Tmp;
1704    }
1705  }
1706
1707  // Allow the target to implement this method for its nodes.
1708  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1709      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1710      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1711      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1712    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1713    if (NumBits > 1) return NumBits;
1714  }
1715
1716  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1717  // use this information.
1718  APInt KnownZero, KnownOne;
1719  APInt Mask = APInt::getAllOnesValue(VTBits);
1720  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1721
1722  if (KnownZero.isNegative()) {        // sign bit is 0
1723    Mask = KnownZero;
1724  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1725    Mask = KnownOne;
1726  } else {
1727    // Nothing known.
1728    return 1;
1729  }
1730
1731  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1732  // the number of identical bits in the top of the input value.
1733  Mask = ~Mask;
1734  Mask <<= Mask.getBitWidth()-VTBits;
1735  // Return # leading zeros.  We use 'min' here in case Val was zero before
1736  // shifting.  We don't want to return '64' as for an i32 "0".
1737  return std::min(VTBits, Mask.countLeadingZeros());
1738}
1739
1740
1741bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1742  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1743  if (!GA) return false;
1744  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1745  if (!GV) return false;
1746  MachineModuleInfo *MMI = getMachineModuleInfo();
1747  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1748}
1749
1750
1751/// getNode - Gets or creates the specified node.
1752///
1753SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1754  FoldingSetNodeID ID;
1755  AddNodeIDNode(ID, Opcode, getVTList(VT), (SDOperand*)0, 0);
1756  void *IP = 0;
1757  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1758    return SDOperand(E, 0);
1759  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1760  CSEMap.InsertNode(N, IP);
1761
1762  AllNodes.push_back(N);
1763  return SDOperand(N, 0);
1764}
1765
1766SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1767                                SDOperand Operand) {
1768  // Constant fold unary operations with an integer constant operand.
1769  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1770    const APInt &Val = C->getAPIntValue();
1771    unsigned BitWidth = MVT::getSizeInBits(VT);
1772    switch (Opcode) {
1773    default: break;
1774    case ISD::SIGN_EXTEND:
1775      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1776    case ISD::ANY_EXTEND:
1777    case ISD::ZERO_EXTEND:
1778    case ISD::TRUNCATE:
1779      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1780    case ISD::UINT_TO_FP:
1781    case ISD::SINT_TO_FP: {
1782      const uint64_t zero[] = {0, 0};
1783      // No compile time operations on this type.
1784      if (VT==MVT::ppcf128)
1785        break;
1786      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1787      (void)apf.convertFromAPInt(Val,
1788                                 Opcode==ISD::SINT_TO_FP,
1789                                 APFloat::rmNearestTiesToEven);
1790      return getConstantFP(apf, VT);
1791    }
1792    case ISD::BIT_CONVERT:
1793      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1794        return getConstantFP(Val.bitsToFloat(), VT);
1795      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1796        return getConstantFP(Val.bitsToDouble(), VT);
1797      break;
1798    case ISD::BSWAP:
1799      return getConstant(Val.byteSwap(), VT);
1800    case ISD::CTPOP:
1801      return getConstant(Val.countPopulation(), VT);
1802    case ISD::CTLZ:
1803      return getConstant(Val.countLeadingZeros(), VT);
1804    case ISD::CTTZ:
1805      return getConstant(Val.countTrailingZeros(), VT);
1806    }
1807  }
1808
1809  // Constant fold unary operations with a floating point constant operand.
1810  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1811    APFloat V = C->getValueAPF();    // make copy
1812    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1813      switch (Opcode) {
1814      case ISD::FNEG:
1815        V.changeSign();
1816        return getConstantFP(V, VT);
1817      case ISD::FABS:
1818        V.clearSign();
1819        return getConstantFP(V, VT);
1820      case ISD::FP_ROUND:
1821      case ISD::FP_EXTEND:
1822        // This can return overflow, underflow, or inexact; we don't care.
1823        // FIXME need to be more flexible about rounding mode.
1824        (void)V.convert(*MVTToAPFloatSemantics(VT),
1825                        APFloat::rmNearestTiesToEven);
1826        return getConstantFP(V, VT);
1827      case ISD::FP_TO_SINT:
1828      case ISD::FP_TO_UINT: {
1829        integerPart x;
1830        assert(integerPartWidth >= 64);
1831        // FIXME need to be more flexible about rounding mode.
1832        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1833                              Opcode==ISD::FP_TO_SINT,
1834                              APFloat::rmTowardZero);
1835        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1836          break;
1837        return getConstant(x, VT);
1838      }
1839      case ISD::BIT_CONVERT:
1840        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1841          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1842        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1843          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1844        break;
1845      }
1846    }
1847  }
1848
1849  unsigned OpOpcode = Operand.Val->getOpcode();
1850  switch (Opcode) {
1851  case ISD::TokenFactor:
1852  case ISD::MERGE_VALUES:
1853    return Operand;         // Factor or merge of one node?  No need.
1854  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1855  case ISD::FP_EXTEND:
1856    assert(MVT::isFloatingPoint(VT) &&
1857           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1858    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1859    if (Operand.getOpcode() == ISD::UNDEF)
1860      return getNode(ISD::UNDEF, VT);
1861    break;
1862  case ISD::SIGN_EXTEND:
1863    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1864           "Invalid SIGN_EXTEND!");
1865    if (Operand.getValueType() == VT) return Operand;   // noop extension
1866    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1867           && "Invalid sext node, dst < src!");
1868    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1869      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1870    break;
1871  case ISD::ZERO_EXTEND:
1872    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1873           "Invalid ZERO_EXTEND!");
1874    if (Operand.getValueType() == VT) return Operand;   // noop extension
1875    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1876           && "Invalid zext node, dst < src!");
1877    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1878      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1879    break;
1880  case ISD::ANY_EXTEND:
1881    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1882           "Invalid ANY_EXTEND!");
1883    if (Operand.getValueType() == VT) return Operand;   // noop extension
1884    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1885           && "Invalid anyext node, dst < src!");
1886    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1887      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1888      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1889    break;
1890  case ISD::TRUNCATE:
1891    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1892           "Invalid TRUNCATE!");
1893    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1894    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1895           && "Invalid truncate node, src < dst!");
1896    if (OpOpcode == ISD::TRUNCATE)
1897      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1898    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1899             OpOpcode == ISD::ANY_EXTEND) {
1900      // If the source is smaller than the dest, we still need an extend.
1901      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1902          < MVT::getSizeInBits(VT))
1903        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1904      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1905               > MVT::getSizeInBits(VT))
1906        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1907      else
1908        return Operand.Val->getOperand(0);
1909    }
1910    break;
1911  case ISD::BIT_CONVERT:
1912    // Basic sanity checking.
1913    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1914           && "Cannot BIT_CONVERT between types of different sizes!");
1915    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1916    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1917      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1918    if (OpOpcode == ISD::UNDEF)
1919      return getNode(ISD::UNDEF, VT);
1920    break;
1921  case ISD::SCALAR_TO_VECTOR:
1922    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1923           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1924           "Illegal SCALAR_TO_VECTOR node!");
1925    if (OpOpcode == ISD::UNDEF)
1926      return getNode(ISD::UNDEF, VT);
1927    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
1928    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
1929        isa<ConstantSDNode>(Operand.getOperand(1)) &&
1930        Operand.getConstantOperandVal(1) == 0 &&
1931        Operand.getOperand(0).getValueType() == VT)
1932      return Operand.getOperand(0);
1933    break;
1934  case ISD::FNEG:
1935    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1936      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1937                     Operand.Val->getOperand(0));
1938    if (OpOpcode == ISD::FNEG)  // --X -> X
1939      return Operand.Val->getOperand(0);
1940    break;
1941  case ISD::FABS:
1942    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1943      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1944    break;
1945  }
1946
1947  SDNode *N;
1948  SDVTList VTs = getVTList(VT);
1949  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1950    FoldingSetNodeID ID;
1951    SDOperand Ops[1] = { Operand };
1952    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1953    void *IP = 0;
1954    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1955      return SDOperand(E, 0);
1956    N = new UnarySDNode(Opcode, VTs, Operand);
1957    CSEMap.InsertNode(N, IP);
1958  } else {
1959    N = new UnarySDNode(Opcode, VTs, Operand);
1960  }
1961  AllNodes.push_back(N);
1962  return SDOperand(N, 0);
1963}
1964
1965
1966
1967SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1968                                SDOperand N1, SDOperand N2) {
1969  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1970  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1971  switch (Opcode) {
1972  default: break;
1973  case ISD::TokenFactor:
1974    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1975           N2.getValueType() == MVT::Other && "Invalid token factor!");
1976    // Fold trivial token factors.
1977    if (N1.getOpcode() == ISD::EntryToken) return N2;
1978    if (N2.getOpcode() == ISD::EntryToken) return N1;
1979    break;
1980  case ISD::AND:
1981    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1982           N1.getValueType() == VT && "Binary operator types must match!");
1983    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1984    // worth handling here.
1985    if (N2C && N2C->isNullValue())
1986      return N2;
1987    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
1988      return N1;
1989    break;
1990  case ISD::OR:
1991  case ISD::XOR:
1992    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1993           N1.getValueType() == VT && "Binary operator types must match!");
1994    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1995    // worth handling here.
1996    if (N2C && N2C->isNullValue())
1997      return N1;
1998    break;
1999  case ISD::UDIV:
2000  case ISD::UREM:
2001  case ISD::MULHU:
2002  case ISD::MULHS:
2003    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
2004    // fall through
2005  case ISD::ADD:
2006  case ISD::SUB:
2007  case ISD::MUL:
2008  case ISD::SDIV:
2009  case ISD::SREM:
2010  case ISD::FADD:
2011  case ISD::FSUB:
2012  case ISD::FMUL:
2013  case ISD::FDIV:
2014  case ISD::FREM:
2015    assert(N1.getValueType() == N2.getValueType() &&
2016           N1.getValueType() == VT && "Binary operator types must match!");
2017    break;
2018  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2019    assert(N1.getValueType() == VT &&
2020           MVT::isFloatingPoint(N1.getValueType()) &&
2021           MVT::isFloatingPoint(N2.getValueType()) &&
2022           "Invalid FCOPYSIGN!");
2023    break;
2024  case ISD::SHL:
2025  case ISD::SRA:
2026  case ISD::SRL:
2027  case ISD::ROTL:
2028  case ISD::ROTR:
2029    assert(VT == N1.getValueType() &&
2030           "Shift operators return type must be the same as their first arg");
2031    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
2032           VT != MVT::i1 && "Shifts only work on integers");
2033    break;
2034  case ISD::FP_ROUND_INREG: {
2035    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2036    assert(VT == N1.getValueType() && "Not an inreg round!");
2037    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2038           "Cannot FP_ROUND_INREG integer types");
2039    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2040           "Not rounding down!");
2041    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2042    break;
2043  }
2044  case ISD::FP_ROUND:
2045    assert(MVT::isFloatingPoint(VT) &&
2046           MVT::isFloatingPoint(N1.getValueType()) &&
2047           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2048           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2049    if (N1.getValueType() == VT) return N1;  // noop conversion.
2050    break;
2051  case ISD::AssertSext:
2052  case ISD::AssertZext: {
2053    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2054    assert(VT == N1.getValueType() && "Not an inreg extend!");
2055    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2056           "Cannot *_EXTEND_INREG FP types");
2057    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2058           "Not extending!");
2059    if (VT == EVT) return N1; // noop assertion.
2060    break;
2061  }
2062  case ISD::SIGN_EXTEND_INREG: {
2063    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2064    assert(VT == N1.getValueType() && "Not an inreg extend!");
2065    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2066           "Cannot *_EXTEND_INREG FP types");
2067    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2068           "Not extending!");
2069    if (EVT == VT) return N1;  // Not actually extending
2070
2071    if (N1C) {
2072      APInt Val = N1C->getAPIntValue();
2073      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2074      Val <<= Val.getBitWidth()-FromBits;
2075      Val = Val.ashr(Val.getBitWidth()-FromBits);
2076      return getConstant(Val, VT);
2077    }
2078    break;
2079  }
2080  case ISD::EXTRACT_VECTOR_ELT:
2081    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2082
2083    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2084    if (N1.getOpcode() == ISD::UNDEF)
2085      return getNode(ISD::UNDEF, VT);
2086
2087    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2088    // expanding copies of large vectors from registers.
2089    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2090        N1.getNumOperands() > 0) {
2091      unsigned Factor =
2092        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2093      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2094                     N1.getOperand(N2C->getValue() / Factor),
2095                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2096    }
2097
2098    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2099    // expanding large vector constants.
2100    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2101      return N1.getOperand(N2C->getValue());
2102
2103    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2104    // operations are lowered to scalars.
2105    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2106      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2107        if (IEC == N2C)
2108          return N1.getOperand(1);
2109        else
2110          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2111      }
2112    break;
2113  case ISD::EXTRACT_ELEMENT:
2114    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2115    assert(!MVT::isVector(N1.getValueType()) &&
2116           MVT::isInteger(N1.getValueType()) &&
2117           !MVT::isVector(VT) && MVT::isInteger(VT) &&
2118           "EXTRACT_ELEMENT only applies to integers!");
2119
2120    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2121    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2122    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2123    if (N1.getOpcode() == ISD::BUILD_PAIR)
2124      return N1.getOperand(N2C->getValue());
2125
2126    // EXTRACT_ELEMENT of a constant int is also very common.
2127    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2128      unsigned ElementSize = MVT::getSizeInBits(VT);
2129      unsigned Shift = ElementSize * N2C->getValue();
2130      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2131      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2132    }
2133    break;
2134  case ISD::EXTRACT_SUBVECTOR:
2135    if (N1.getValueType() == VT) // Trivial extraction.
2136      return N1;
2137    break;
2138  }
2139
2140  if (N1C) {
2141    if (N2C) {
2142      APInt C1 = N1C->getAPIntValue(), C2 = N2C->getAPIntValue();
2143      switch (Opcode) {
2144      case ISD::ADD: return getConstant(C1 + C2, VT);
2145      case ISD::SUB: return getConstant(C1 - C2, VT);
2146      case ISD::MUL: return getConstant(C1 * C2, VT);
2147      case ISD::UDIV:
2148        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2149        break;
2150      case ISD::UREM :
2151        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2152        break;
2153      case ISD::SDIV :
2154        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2155        break;
2156      case ISD::SREM :
2157        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2158        break;
2159      case ISD::AND  : return getConstant(C1 & C2, VT);
2160      case ISD::OR   : return getConstant(C1 | C2, VT);
2161      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2162      case ISD::SHL  : return getConstant(C1 << C2, VT);
2163      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2164      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2165      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2166      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2167      default: break;
2168      }
2169    } else {      // Cannonicalize constant to RHS if commutative
2170      if (isCommutativeBinOp(Opcode)) {
2171        std::swap(N1C, N2C);
2172        std::swap(N1, N2);
2173      }
2174    }
2175  }
2176
2177  // Constant fold FP operations.
2178  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2179  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2180  if (N1CFP) {
2181    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2182      // Cannonicalize constant to RHS if commutative
2183      std::swap(N1CFP, N2CFP);
2184      std::swap(N1, N2);
2185    } else if (N2CFP && VT != MVT::ppcf128) {
2186      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2187      APFloat::opStatus s;
2188      switch (Opcode) {
2189      case ISD::FADD:
2190        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2191        if (s != APFloat::opInvalidOp)
2192          return getConstantFP(V1, VT);
2193        break;
2194      case ISD::FSUB:
2195        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2196        if (s!=APFloat::opInvalidOp)
2197          return getConstantFP(V1, VT);
2198        break;
2199      case ISD::FMUL:
2200        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2201        if (s!=APFloat::opInvalidOp)
2202          return getConstantFP(V1, VT);
2203        break;
2204      case ISD::FDIV:
2205        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2206        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2207          return getConstantFP(V1, VT);
2208        break;
2209      case ISD::FREM :
2210        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2211        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2212          return getConstantFP(V1, VT);
2213        break;
2214      case ISD::FCOPYSIGN:
2215        V1.copySign(V2);
2216        return getConstantFP(V1, VT);
2217      default: break;
2218      }
2219    }
2220  }
2221
2222  // Canonicalize an UNDEF to the RHS, even over a constant.
2223  if (N1.getOpcode() == ISD::UNDEF) {
2224    if (isCommutativeBinOp(Opcode)) {
2225      std::swap(N1, N2);
2226    } else {
2227      switch (Opcode) {
2228      case ISD::FP_ROUND_INREG:
2229      case ISD::SIGN_EXTEND_INREG:
2230      case ISD::SUB:
2231      case ISD::FSUB:
2232      case ISD::FDIV:
2233      case ISD::FREM:
2234      case ISD::SRA:
2235        return N1;     // fold op(undef, arg2) -> undef
2236      case ISD::UDIV:
2237      case ISD::SDIV:
2238      case ISD::UREM:
2239      case ISD::SREM:
2240      case ISD::SRL:
2241      case ISD::SHL:
2242        if (!MVT::isVector(VT))
2243          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2244        // For vectors, we can't easily build an all zero vector, just return
2245        // the LHS.
2246        return N2;
2247      }
2248    }
2249  }
2250
2251  // Fold a bunch of operators when the RHS is undef.
2252  if (N2.getOpcode() == ISD::UNDEF) {
2253    switch (Opcode) {
2254    case ISD::XOR:
2255      if (N1.getOpcode() == ISD::UNDEF)
2256        // Handle undef ^ undef -> 0 special case. This is a common
2257        // idiom (misuse).
2258        return getConstant(0, VT);
2259      // fallthrough
2260    case ISD::ADD:
2261    case ISD::ADDC:
2262    case ISD::ADDE:
2263    case ISD::SUB:
2264    case ISD::FADD:
2265    case ISD::FSUB:
2266    case ISD::FMUL:
2267    case ISD::FDIV:
2268    case ISD::FREM:
2269    case ISD::UDIV:
2270    case ISD::SDIV:
2271    case ISD::UREM:
2272    case ISD::SREM:
2273      return N2;       // fold op(arg1, undef) -> undef
2274    case ISD::MUL:
2275    case ISD::AND:
2276    case ISD::SRL:
2277    case ISD::SHL:
2278      if (!MVT::isVector(VT))
2279        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2280      // For vectors, we can't easily build an all zero vector, just return
2281      // the LHS.
2282      return N1;
2283    case ISD::OR:
2284      if (!MVT::isVector(VT))
2285        return getConstant(MVT::getIntVTBitMask(VT), VT);
2286      // For vectors, we can't easily build an all one vector, just return
2287      // the LHS.
2288      return N1;
2289    case ISD::SRA:
2290      return N1;
2291    }
2292  }
2293
2294  // Memoize this node if possible.
2295  SDNode *N;
2296  SDVTList VTs = getVTList(VT);
2297  if (VT != MVT::Flag) {
2298    SDOperand Ops[] = { N1, N2 };
2299    FoldingSetNodeID ID;
2300    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2301    void *IP = 0;
2302    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2303      return SDOperand(E, 0);
2304    N = new BinarySDNode(Opcode, VTs, N1, N2);
2305    CSEMap.InsertNode(N, IP);
2306  } else {
2307    N = new BinarySDNode(Opcode, VTs, N1, N2);
2308  }
2309
2310  AllNodes.push_back(N);
2311  return SDOperand(N, 0);
2312}
2313
2314SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2315                                SDOperand N1, SDOperand N2, SDOperand N3) {
2316  // Perform various simplifications.
2317  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2318  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2319  switch (Opcode) {
2320  case ISD::SETCC: {
2321    // Use FoldSetCC to simplify SETCC's.
2322    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2323    if (Simp.Val) return Simp;
2324    break;
2325  }
2326  case ISD::SELECT:
2327    if (N1C) {
2328     if (N1C->getValue())
2329        return N2;             // select true, X, Y -> X
2330      else
2331        return N3;             // select false, X, Y -> Y
2332    }
2333
2334    if (N2 == N3) return N2;   // select C, X, X -> X
2335    break;
2336  case ISD::BRCOND:
2337    if (N2C) {
2338      if (N2C->getValue()) // Unconditional branch
2339        return getNode(ISD::BR, MVT::Other, N1, N3);
2340      else
2341        return N1;         // Never-taken branch
2342    }
2343    break;
2344  case ISD::VECTOR_SHUFFLE:
2345    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2346           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2347           N3.getOpcode() == ISD::BUILD_VECTOR &&
2348           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2349           "Illegal VECTOR_SHUFFLE node!");
2350    break;
2351  case ISD::BIT_CONVERT:
2352    // Fold bit_convert nodes from a type to themselves.
2353    if (N1.getValueType() == VT)
2354      return N1;
2355    break;
2356  }
2357
2358  // Memoize node if it doesn't produce a flag.
2359  SDNode *N;
2360  SDVTList VTs = getVTList(VT);
2361  if (VT != MVT::Flag) {
2362    SDOperand Ops[] = { N1, N2, N3 };
2363    FoldingSetNodeID ID;
2364    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2365    void *IP = 0;
2366    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2367      return SDOperand(E, 0);
2368    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2369    CSEMap.InsertNode(N, IP);
2370  } else {
2371    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2372  }
2373  AllNodes.push_back(N);
2374  return SDOperand(N, 0);
2375}
2376
2377SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2378                                SDOperand N1, SDOperand N2, SDOperand N3,
2379                                SDOperand N4) {
2380  SDOperand Ops[] = { N1, N2, N3, N4 };
2381  return getNode(Opcode, VT, Ops, 4);
2382}
2383
2384SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2385                                SDOperand N1, SDOperand N2, SDOperand N3,
2386                                SDOperand N4, SDOperand N5) {
2387  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2388  return getNode(Opcode, VT, Ops, 5);
2389}
2390
2391/// getMemsetValue - Vectorized representation of the memset value
2392/// operand.
2393static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2394                                SelectionDAG &DAG) {
2395  MVT::ValueType CurVT = VT;
2396  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2397    uint64_t Val   = C->getValue() & 255;
2398    unsigned Shift = 8;
2399    while (CurVT != MVT::i8) {
2400      Val = (Val << Shift) | Val;
2401      Shift <<= 1;
2402      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2403    }
2404    return DAG.getConstant(Val, VT);
2405  } else {
2406    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2407    unsigned Shift = 8;
2408    while (CurVT != MVT::i8) {
2409      Value =
2410        DAG.getNode(ISD::OR, VT,
2411                    DAG.getNode(ISD::SHL, VT, Value,
2412                                DAG.getConstant(Shift, MVT::i8)), Value);
2413      Shift <<= 1;
2414      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2415    }
2416
2417    return Value;
2418  }
2419}
2420
2421/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2422/// used when a memcpy is turned into a memset when the source is a constant
2423/// string ptr.
2424static SDOperand getMemsetStringVal(MVT::ValueType VT,
2425                                    SelectionDAG &DAG,
2426                                    const TargetLowering &TLI,
2427                                    std::string &Str, unsigned Offset) {
2428  uint64_t Val = 0;
2429  unsigned MSB = MVT::getSizeInBits(VT) / 8;
2430  if (TLI.isLittleEndian())
2431    Offset = Offset + MSB - 1;
2432  for (unsigned i = 0; i != MSB; ++i) {
2433    Val = (Val << 8) | (unsigned char)Str[Offset];
2434    Offset += TLI.isLittleEndian() ? -1 : 1;
2435  }
2436  return DAG.getConstant(Val, VT);
2437}
2438
2439/// getMemBasePlusOffset - Returns base and offset node for the
2440static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2441                                      SelectionDAG &DAG) {
2442  MVT::ValueType VT = Base.getValueType();
2443  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2444}
2445
2446/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2447/// to replace the memset / memcpy is below the threshold. It also returns the
2448/// types of the sequence of memory ops to perform memset / memcpy.
2449static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2450                                     unsigned Limit, uint64_t Size,
2451                                     unsigned Align,
2452                                     const TargetLowering &TLI) {
2453  MVT::ValueType VT;
2454
2455  if (TLI.allowsUnalignedMemoryAccesses()) {
2456    VT = MVT::i64;
2457  } else {
2458    switch (Align & 7) {
2459    case 0:
2460      VT = MVT::i64;
2461      break;
2462    case 4:
2463      VT = MVT::i32;
2464      break;
2465    case 2:
2466      VT = MVT::i16;
2467      break;
2468    default:
2469      VT = MVT::i8;
2470      break;
2471    }
2472  }
2473
2474  MVT::ValueType LVT = MVT::i64;
2475  while (!TLI.isTypeLegal(LVT))
2476    LVT = (MVT::ValueType)((unsigned)LVT - 1);
2477  assert(MVT::isInteger(LVT));
2478
2479  if (VT > LVT)
2480    VT = LVT;
2481
2482  unsigned NumMemOps = 0;
2483  while (Size != 0) {
2484    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2485    while (VTSize > Size) {
2486      VT = (MVT::ValueType)((unsigned)VT - 1);
2487      VTSize >>= 1;
2488    }
2489    assert(MVT::isInteger(VT));
2490
2491    if (++NumMemOps > Limit)
2492      return false;
2493    MemOps.push_back(VT);
2494    Size -= VTSize;
2495  }
2496
2497  return true;
2498}
2499
2500static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
2501                                         SDOperand Chain, SDOperand Dst,
2502                                         SDOperand Src, uint64_t Size,
2503                                         unsigned Align,
2504                                         bool AlwaysInline,
2505                                         const Value *DstSV, uint64_t DstOff,
2506                                         const Value *SrcSV, uint64_t SrcOff) {
2507  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2508
2509  // Expand memcpy to a series of store ops if the size operand falls below
2510  // a certain threshold.
2511  std::vector<MVT::ValueType> MemOps;
2512  uint64_t Limit = -1;
2513  if (!AlwaysInline)
2514    Limit = TLI.getMaxStoresPerMemcpy();
2515  if (!MeetsMaxMemopRequirement(MemOps, Limit, Size, Align, TLI))
2516    return SDOperand();
2517
2518  SmallVector<SDOperand, 8> OutChains;
2519
2520  unsigned NumMemOps = MemOps.size();
2521  unsigned SrcDelta = 0;
2522  GlobalAddressSDNode *G = NULL;
2523  std::string Str;
2524  bool CopyFromStr = false;
2525
2526  if (Src.getOpcode() == ISD::GlobalAddress)
2527    G = cast<GlobalAddressSDNode>(Src);
2528  else if (Src.getOpcode() == ISD::ADD &&
2529           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2530           Src.getOperand(1).getOpcode() == ISD::Constant) {
2531    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2532    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
2533  }
2534  if (G) {
2535    GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2536    if (GV && GV->isConstant()) {
2537      Str = GV->getStringValue(false);
2538      if (!Str.empty()) {
2539        CopyFromStr = true;
2540        SrcOff += SrcDelta;
2541      }
2542    }
2543  }
2544
2545  for (unsigned i = 0; i < NumMemOps; i++) {
2546    MVT::ValueType VT = MemOps[i];
2547    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2548    SDOperand Value, Store;
2549
2550    if (CopyFromStr) {
2551      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2552      Store =
2553        DAG.getStore(Chain, Value,
2554                     getMemBasePlusOffset(Dst, DstOff, DAG),
2555                     DstSV, DstOff);
2556    } else {
2557      Value = DAG.getLoad(VT, Chain,
2558                          getMemBasePlusOffset(Src, SrcOff, DAG),
2559                          SrcSV, SrcOff, false, Align);
2560      Store =
2561        DAG.getStore(Chain, Value,
2562                     getMemBasePlusOffset(Dst, DstOff, DAG),
2563                     DstSV, DstOff, false, Align);
2564    }
2565    OutChains.push_back(Store);
2566    SrcOff += VTSize;
2567    DstOff += VTSize;
2568  }
2569
2570  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2571                     &OutChains[0], OutChains.size());
2572}
2573
2574static SDOperand getMemsetStores(SelectionDAG &DAG,
2575                                 SDOperand Chain, SDOperand Dst,
2576                                 SDOperand Src, uint64_t Size,
2577                                 unsigned Align,
2578                                 const Value *DstSV, uint64_t DstOff) {
2579  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2580
2581  // Expand memset to a series of load/store ops if the size operand
2582  // falls below a certain threshold.
2583  std::vector<MVT::ValueType> MemOps;
2584  if (!MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
2585                                Size, Align, TLI))
2586    return SDOperand();
2587
2588  SmallVector<SDOperand, 8> OutChains;
2589
2590  unsigned NumMemOps = MemOps.size();
2591  for (unsigned i = 0; i < NumMemOps; i++) {
2592    MVT::ValueType VT = MemOps[i];
2593    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2594    SDOperand Value = getMemsetValue(Src, VT, DAG);
2595    SDOperand Store = DAG.getStore(Chain, Value,
2596                                   getMemBasePlusOffset(Dst, DstOff, DAG),
2597                                   DstSV, DstOff);
2598    OutChains.push_back(Store);
2599    DstOff += VTSize;
2600  }
2601
2602  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2603                     &OutChains[0], OutChains.size());
2604}
2605
2606SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dst,
2607                                  SDOperand Src, SDOperand Size,
2608                                  unsigned Align, bool AlwaysInline,
2609                                  const Value *DstSV, uint64_t DstOff,
2610                                  const Value *SrcSV, uint64_t SrcOff) {
2611
2612  // Check to see if we should lower the memcpy to loads and stores first.
2613  // For cases within the target-specified limits, this is the best choice.
2614  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2615  if (ConstantSize) {
2616    // Memcpy with size zero? Just return the original chain.
2617    if (ConstantSize->isNullValue())
2618      return Chain;
2619
2620    SDOperand Result =
2621      getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2622                              Align, false, DstSV, DstOff, SrcSV, SrcOff);
2623    if (Result.Val)
2624      return Result;
2625  }
2626
2627  // Then check to see if we should lower the memcpy with target-specific
2628  // code. If the target chooses to do this, this is the next best.
2629  SDOperand Result =
2630    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
2631                                AlwaysInline,
2632                                DstSV, DstOff, SrcSV, SrcOff);
2633  if (Result.Val)
2634    return Result;
2635
2636  // If we really need inline code and the target declined to provide it,
2637  // use a (potentially long) sequence of loads and stores.
2638  if (AlwaysInline) {
2639    assert(ConstantSize && "AlwaysInline requires a constant size!");
2640    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
2641                                   ConstantSize->getValue(), Align, true,
2642                                   DstSV, DstOff, SrcSV, SrcOff);
2643  }
2644
2645  // Emit a library call.
2646  TargetLowering::ArgListTy Args;
2647  TargetLowering::ArgListEntry Entry;
2648  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2649  Entry.Node = Dst; Args.push_back(Entry);
2650  Entry.Node = Src; Args.push_back(Entry);
2651  Entry.Node = Size; Args.push_back(Entry);
2652  std::pair<SDOperand,SDOperand> CallResult =
2653    TLI.LowerCallTo(Chain, Type::VoidTy,
2654                    false, false, false, CallingConv::C, false,
2655                    getExternalSymbol("memcpy", TLI.getPointerTy()),
2656                    Args, *this);
2657  return CallResult.second;
2658}
2659
2660SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dst,
2661                                   SDOperand Src, SDOperand Size,
2662                                   unsigned Align,
2663                                   const Value *DstSV, uint64_t DstOff,
2664                                   const Value *SrcSV, uint64_t SrcOff) {
2665
2666  // TODO: Optimize small memmove cases with simple loads and stores,
2667  // ensuring that all loads precede all stores. This can cause severe
2668  // register pressure, so targets should be careful with the size limit.
2669
2670  // Then check to see if we should lower the memmove with target-specific
2671  // code. If the target chooses to do this, this is the next best.
2672  SDOperand Result =
2673    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
2674                                 DstSV, DstOff, SrcSV, SrcOff);
2675  if (Result.Val)
2676    return Result;
2677
2678  // Emit a library call.
2679  TargetLowering::ArgListTy Args;
2680  TargetLowering::ArgListEntry Entry;
2681  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2682  Entry.Node = Dst; Args.push_back(Entry);
2683  Entry.Node = Src; Args.push_back(Entry);
2684  Entry.Node = Size; Args.push_back(Entry);
2685  std::pair<SDOperand,SDOperand> CallResult =
2686    TLI.LowerCallTo(Chain, Type::VoidTy,
2687                    false, false, false, CallingConv::C, false,
2688                    getExternalSymbol("memmove", TLI.getPointerTy()),
2689                    Args, *this);
2690  return CallResult.second;
2691}
2692
2693SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dst,
2694                                  SDOperand Src, SDOperand Size,
2695                                  unsigned Align,
2696                                  const Value *DstSV, uint64_t DstOff) {
2697
2698  // Check to see if we should lower the memset to stores first.
2699  // For cases within the target-specified limits, this is the best choice.
2700  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2701  if (ConstantSize) {
2702    // Memset with size zero? Just return the original chain.
2703    if (ConstantSize->isNullValue())
2704      return Chain;
2705
2706    SDOperand Result =
2707      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
2708                      DstSV, DstOff);
2709    if (Result.Val)
2710      return Result;
2711  }
2712
2713  // Then check to see if we should lower the memset with target-specific
2714  // code. If the target chooses to do this, this is the next best.
2715  SDOperand Result =
2716    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
2717                                DstSV, DstOff);
2718  if (Result.Val)
2719    return Result;
2720
2721  // Emit a library call.
2722  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
2723  TargetLowering::ArgListTy Args;
2724  TargetLowering::ArgListEntry Entry;
2725  Entry.Node = Dst; Entry.Ty = IntPtrTy;
2726  Args.push_back(Entry);
2727  // Extend or truncate the argument to be an i32 value for the call.
2728  if (Src.getValueType() > MVT::i32)
2729    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
2730  else
2731    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
2732  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
2733  Args.push_back(Entry);
2734  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
2735  Args.push_back(Entry);
2736  std::pair<SDOperand,SDOperand> CallResult =
2737    TLI.LowerCallTo(Chain, Type::VoidTy,
2738                    false, false, false, CallingConv::C, false,
2739                    getExternalSymbol("memset", TLI.getPointerTy()),
2740                    Args, *this);
2741  return CallResult.second;
2742}
2743
2744SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2745                                  SDOperand Ptr, SDOperand Cmp,
2746                                  SDOperand Swp, MVT::ValueType VT) {
2747  assert(Opcode == ISD::ATOMIC_LCS && "Invalid Atomic Op");
2748  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
2749  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
2750  FoldingSetNodeID ID;
2751  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
2752  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
2753  ID.AddInteger((unsigned int)VT);
2754  void* IP = 0;
2755  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2756    return SDOperand(E, 0);
2757  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, VT);
2758  CSEMap.InsertNode(N, IP);
2759  AllNodes.push_back(N);
2760  return SDOperand(N, 0);
2761}
2762
2763SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2764                                  SDOperand Ptr, SDOperand Val,
2765                                  MVT::ValueType VT) {
2766  assert((Opcode == ISD::ATOMIC_LAS || Opcode == ISD::ATOMIC_SWAP)
2767         && "Invalid Atomic Op");
2768  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
2769  FoldingSetNodeID ID;
2770  SDOperand Ops[] = {Chain, Ptr, Val};
2771  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2772  ID.AddInteger((unsigned int)VT);
2773  void* IP = 0;
2774  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2775    return SDOperand(E, 0);
2776  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, VT);
2777  CSEMap.InsertNode(N, IP);
2778  AllNodes.push_back(N);
2779  return SDOperand(N, 0);
2780}
2781
2782SDOperand
2783SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
2784                      MVT::ValueType VT, SDOperand Chain,
2785                      SDOperand Ptr, SDOperand Offset,
2786                      const Value *SV, int SVOffset, MVT::ValueType EVT,
2787                      bool isVolatile, unsigned Alignment) {
2788  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2789    const Type *Ty = 0;
2790    if (VT != MVT::iPTR) {
2791      Ty = MVT::getTypeForValueType(VT);
2792    } else if (SV) {
2793      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2794      assert(PT && "Value for load must be a pointer");
2795      Ty = PT->getElementType();
2796    }
2797    assert(Ty && "Could not get type information for load");
2798    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2799  }
2800
2801  if (VT == EVT) {
2802    ExtType = ISD::NON_EXTLOAD;
2803  } else if (ExtType == ISD::NON_EXTLOAD) {
2804    assert(VT == EVT && "Non-extending load from different memory type!");
2805  } else {
2806    // Extending load.
2807    if (MVT::isVector(VT))
2808      assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2809    else
2810      assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2811             "Should only be an extending load, not truncating!");
2812    assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2813           "Cannot sign/zero extend a FP/Vector load!");
2814    assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2815           "Cannot convert from FP to Int or Int -> FP!");
2816  }
2817
2818  bool Indexed = AM != ISD::UNINDEXED;
2819  assert(Indexed || Offset.getOpcode() == ISD::UNDEF &&
2820         "Unindexed load with an offset!");
2821
2822  SDVTList VTs = Indexed ?
2823    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
2824  SDOperand Ops[] = { Chain, Ptr, Offset };
2825  FoldingSetNodeID ID;
2826  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2827  ID.AddInteger(AM);
2828  ID.AddInteger(ExtType);
2829  ID.AddInteger((unsigned int)EVT);
2830  ID.AddInteger(Alignment);
2831  ID.AddInteger(isVolatile);
2832  void *IP = 0;
2833  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2834    return SDOperand(E, 0);
2835  SDNode *N = new LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
2836                             Alignment, isVolatile);
2837  CSEMap.InsertNode(N, IP);
2838  AllNodes.push_back(N);
2839  return SDOperand(N, 0);
2840}
2841
2842SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2843                                SDOperand Chain, SDOperand Ptr,
2844                                const Value *SV, int SVOffset,
2845                                bool isVolatile, unsigned Alignment) {
2846  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2847  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
2848                 SV, SVOffset, VT, isVolatile, Alignment);
2849}
2850
2851SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2852                                   SDOperand Chain, SDOperand Ptr,
2853                                   const Value *SV,
2854                                   int SVOffset, MVT::ValueType EVT,
2855                                   bool isVolatile, unsigned Alignment) {
2856  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2857  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
2858                 SV, SVOffset, EVT, isVolatile, Alignment);
2859}
2860
2861SDOperand
2862SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2863                             SDOperand Offset, ISD::MemIndexedMode AM) {
2864  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2865  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2866         "Load is already a indexed load!");
2867  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
2868                 LD->getChain(), Base, Offset, LD->getSrcValue(),
2869                 LD->getSrcValueOffset(), LD->getMemoryVT(),
2870                 LD->isVolatile(), LD->getAlignment());
2871}
2872
2873SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2874                                 SDOperand Ptr, const Value *SV, int SVOffset,
2875                                 bool isVolatile, unsigned Alignment) {
2876  MVT::ValueType VT = Val.getValueType();
2877
2878  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2879    const Type *Ty = 0;
2880    if (VT != MVT::iPTR) {
2881      Ty = MVT::getTypeForValueType(VT);
2882    } else if (SV) {
2883      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2884      assert(PT && "Value for store must be a pointer");
2885      Ty = PT->getElementType();
2886    }
2887    assert(Ty && "Could not get type information for store");
2888    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2889  }
2890  SDVTList VTs = getVTList(MVT::Other);
2891  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2892  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2893  FoldingSetNodeID ID;
2894  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2895  ID.AddInteger(ISD::UNINDEXED);
2896  ID.AddInteger(false);
2897  ID.AddInteger((unsigned int)VT);
2898  ID.AddInteger(Alignment);
2899  ID.AddInteger(isVolatile);
2900  void *IP = 0;
2901  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2902    return SDOperand(E, 0);
2903  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2904                              VT, SV, SVOffset, Alignment, isVolatile);
2905  CSEMap.InsertNode(N, IP);
2906  AllNodes.push_back(N);
2907  return SDOperand(N, 0);
2908}
2909
2910SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2911                                      SDOperand Ptr, const Value *SV,
2912                                      int SVOffset, MVT::ValueType SVT,
2913                                      bool isVolatile, unsigned Alignment) {
2914  MVT::ValueType VT = Val.getValueType();
2915
2916  if (VT == SVT)
2917    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2918
2919  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2920         "Not a truncation?");
2921  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2922         "Can't do FP-INT conversion!");
2923
2924  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2925    const Type *Ty = 0;
2926    if (VT != MVT::iPTR) {
2927      Ty = MVT::getTypeForValueType(VT);
2928    } else if (SV) {
2929      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2930      assert(PT && "Value for store must be a pointer");
2931      Ty = PT->getElementType();
2932    }
2933    assert(Ty && "Could not get type information for store");
2934    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2935  }
2936  SDVTList VTs = getVTList(MVT::Other);
2937  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2938  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2939  FoldingSetNodeID ID;
2940  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2941  ID.AddInteger(ISD::UNINDEXED);
2942  ID.AddInteger(1);
2943  ID.AddInteger((unsigned int)SVT);
2944  ID.AddInteger(Alignment);
2945  ID.AddInteger(isVolatile);
2946  void *IP = 0;
2947  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2948    return SDOperand(E, 0);
2949  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2950                              SVT, SV, SVOffset, Alignment, isVolatile);
2951  CSEMap.InsertNode(N, IP);
2952  AllNodes.push_back(N);
2953  return SDOperand(N, 0);
2954}
2955
2956SDOperand
2957SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2958                              SDOperand Offset, ISD::MemIndexedMode AM) {
2959  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2960  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2961         "Store is already a indexed store!");
2962  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2963  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2964  FoldingSetNodeID ID;
2965  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2966  ID.AddInteger(AM);
2967  ID.AddInteger(ST->isTruncatingStore());
2968  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
2969  ID.AddInteger(ST->getAlignment());
2970  ID.AddInteger(ST->isVolatile());
2971  void *IP = 0;
2972  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2973    return SDOperand(E, 0);
2974  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2975                              ST->isTruncatingStore(), ST->getMemoryVT(),
2976                              ST->getSrcValue(), ST->getSrcValueOffset(),
2977                              ST->getAlignment(), ST->isVolatile());
2978  CSEMap.InsertNode(N, IP);
2979  AllNodes.push_back(N);
2980  return SDOperand(N, 0);
2981}
2982
2983SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2984                                 SDOperand Chain, SDOperand Ptr,
2985                                 SDOperand SV) {
2986  SDOperand Ops[] = { Chain, Ptr, SV };
2987  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2988}
2989
2990SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2991                                SDOperandPtr Ops, unsigned NumOps) {
2992  switch (NumOps) {
2993  case 0: return getNode(Opcode, VT);
2994  case 1: return getNode(Opcode, VT, Ops[0]);
2995  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2996  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2997  default: break;
2998  }
2999
3000  switch (Opcode) {
3001  default: break;
3002  case ISD::SELECT_CC: {
3003    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3004    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3005           "LHS and RHS of condition must have same type!");
3006    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3007           "True and False arms of SelectCC must have same type!");
3008    assert(Ops[2].getValueType() == VT &&
3009           "select_cc node must be of same type as true and false value!");
3010    break;
3011  }
3012  case ISD::BR_CC: {
3013    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3014    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3015           "LHS/RHS of comparison should match types!");
3016    break;
3017  }
3018  }
3019
3020  // Memoize nodes.
3021  SDNode *N;
3022  SDVTList VTs = getVTList(VT);
3023  if (VT != MVT::Flag) {
3024    FoldingSetNodeID ID;
3025    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3026    void *IP = 0;
3027    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3028      return SDOperand(E, 0);
3029    N = new SDNode(Opcode, VTs, Ops, NumOps);
3030    CSEMap.InsertNode(N, IP);
3031  } else {
3032    N = new SDNode(Opcode, VTs, Ops, NumOps);
3033  }
3034  AllNodes.push_back(N);
3035  return SDOperand(N, 0);
3036}
3037
3038SDOperand SelectionDAG::getNode(unsigned Opcode,
3039                                std::vector<MVT::ValueType> &ResultTys,
3040                                SDOperandPtr Ops, unsigned NumOps) {
3041  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3042                 Ops, NumOps);
3043}
3044
3045SDOperand SelectionDAG::getNode(unsigned Opcode,
3046                                const MVT::ValueType *VTs, unsigned NumVTs,
3047                                SDOperandPtr Ops, unsigned NumOps) {
3048  if (NumVTs == 1)
3049    return getNode(Opcode, VTs[0], Ops, NumOps);
3050  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3051}
3052
3053SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3054                                SDOperandPtr Ops, unsigned NumOps) {
3055  if (VTList.NumVTs == 1)
3056    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3057
3058  switch (Opcode) {
3059  // FIXME: figure out how to safely handle things like
3060  // int foo(int x) { return 1 << (x & 255); }
3061  // int bar() { return foo(256); }
3062#if 0
3063  case ISD::SRA_PARTS:
3064  case ISD::SRL_PARTS:
3065  case ISD::SHL_PARTS:
3066    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3067        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3068      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3069    else if (N3.getOpcode() == ISD::AND)
3070      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3071        // If the and is only masking out bits that cannot effect the shift,
3072        // eliminate the and.
3073        unsigned NumBits = MVT::getSizeInBits(VT)*2;
3074        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3075          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3076      }
3077    break;
3078#endif
3079  }
3080
3081  // Memoize the node unless it returns a flag.
3082  SDNode *N;
3083  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3084    FoldingSetNodeID ID;
3085    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3086    void *IP = 0;
3087    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3088      return SDOperand(E, 0);
3089    if (NumOps == 1)
3090      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3091    else if (NumOps == 2)
3092      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3093    else if (NumOps == 3)
3094      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3095    else
3096      N = new SDNode(Opcode, VTList, Ops, NumOps);
3097    CSEMap.InsertNode(N, IP);
3098  } else {
3099    if (NumOps == 1)
3100      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3101    else if (NumOps == 2)
3102      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3103    else if (NumOps == 3)
3104      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3105    else
3106      N = new SDNode(Opcode, VTList, Ops, NumOps);
3107  }
3108  AllNodes.push_back(N);
3109  return SDOperand(N, 0);
3110}
3111
3112SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3113  return getNode(Opcode, VTList, (SDOperand*)0, 0);
3114}
3115
3116SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3117                                SDOperand N1) {
3118  SDOperand Ops[] = { N1 };
3119  return getNode(Opcode, VTList, Ops, 1);
3120}
3121
3122SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3123                                SDOperand N1, SDOperand N2) {
3124  SDOperand Ops[] = { N1, N2 };
3125  return getNode(Opcode, VTList, Ops, 2);
3126}
3127
3128SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3129                                SDOperand N1, SDOperand N2, SDOperand N3) {
3130  SDOperand Ops[] = { N1, N2, N3 };
3131  return getNode(Opcode, VTList, Ops, 3);
3132}
3133
3134SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3135                                SDOperand N1, SDOperand N2, SDOperand N3,
3136                                SDOperand N4) {
3137  SDOperand Ops[] = { N1, N2, N3, N4 };
3138  return getNode(Opcode, VTList, Ops, 4);
3139}
3140
3141SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3142                                SDOperand N1, SDOperand N2, SDOperand N3,
3143                                SDOperand N4, SDOperand N5) {
3144  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
3145  return getNode(Opcode, VTList, Ops, 5);
3146}
3147
3148SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
3149  return makeVTList(SDNode::getValueTypeList(VT), 1);
3150}
3151
3152SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
3153  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3154       E = VTList.end(); I != E; ++I) {
3155    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
3156      return makeVTList(&(*I)[0], 2);
3157  }
3158  std::vector<MVT::ValueType> V;
3159  V.push_back(VT1);
3160  V.push_back(VT2);
3161  VTList.push_front(V);
3162  return makeVTList(&(*VTList.begin())[0], 2);
3163}
3164SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
3165                                 MVT::ValueType VT3) {
3166  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3167       E = VTList.end(); I != E; ++I) {
3168    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
3169        (*I)[2] == VT3)
3170      return makeVTList(&(*I)[0], 3);
3171  }
3172  std::vector<MVT::ValueType> V;
3173  V.push_back(VT1);
3174  V.push_back(VT2);
3175  V.push_back(VT3);
3176  VTList.push_front(V);
3177  return makeVTList(&(*VTList.begin())[0], 3);
3178}
3179
3180SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
3181  switch (NumVTs) {
3182    case 0: assert(0 && "Cannot have nodes without results!");
3183    case 1: return getVTList(VTs[0]);
3184    case 2: return getVTList(VTs[0], VTs[1]);
3185    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3186    default: break;
3187  }
3188
3189  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3190       E = VTList.end(); I != E; ++I) {
3191    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
3192
3193    bool NoMatch = false;
3194    for (unsigned i = 2; i != NumVTs; ++i)
3195      if (VTs[i] != (*I)[i]) {
3196        NoMatch = true;
3197        break;
3198      }
3199    if (!NoMatch)
3200      return makeVTList(&*I->begin(), NumVTs);
3201  }
3202
3203  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
3204  return makeVTList(&*VTList.begin()->begin(), NumVTs);
3205}
3206
3207
3208/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3209/// specified operands.  If the resultant node already exists in the DAG,
3210/// this does not modify the specified node, instead it returns the node that
3211/// already exists.  If the resultant node does not exist in the DAG, the
3212/// input node is returned.  As a degenerate case, if you specify the same
3213/// input operands as the node already has, the input node is returned.
3214SDOperand SelectionDAG::
3215UpdateNodeOperands(SDOperand InN, SDOperand Op) {
3216  SDNode *N = InN.Val;
3217  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3218
3219  // Check to see if there is no change.
3220  if (Op == N->getOperand(0)) return InN;
3221
3222  // See if the modified node already exists.
3223  void *InsertPos = 0;
3224  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3225    return SDOperand(Existing, InN.ResNo);
3226
3227  // Nope it doesn't.  Remove the node from it's current place in the maps.
3228  if (InsertPos)
3229    RemoveNodeFromCSEMaps(N);
3230
3231  // Now we update the operands.
3232  N->OperandList[0].getVal()->removeUser(0, N);
3233  N->OperandList[0] = Op;
3234  N->OperandList[0].setUser(N);
3235  Op.Val->addUser(0, N);
3236
3237  // If this gets put into a CSE map, add it.
3238  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3239  return InN;
3240}
3241
3242SDOperand SelectionDAG::
3243UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
3244  SDNode *N = InN.Val;
3245  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3246
3247  // Check to see if there is no change.
3248  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3249    return InN;   // No operands changed, just return the input node.
3250
3251  // See if the modified node already exists.
3252  void *InsertPos = 0;
3253  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3254    return SDOperand(Existing, InN.ResNo);
3255
3256  // Nope it doesn't.  Remove the node from it's current place in the maps.
3257  if (InsertPos)
3258    RemoveNodeFromCSEMaps(N);
3259
3260  // Now we update the operands.
3261  if (N->OperandList[0] != Op1) {
3262    N->OperandList[0].getVal()->removeUser(0, N);
3263    N->OperandList[0] = Op1;
3264    N->OperandList[0].setUser(N);
3265    Op1.Val->addUser(0, N);
3266  }
3267  if (N->OperandList[1] != Op2) {
3268    N->OperandList[1].getVal()->removeUser(1, N);
3269    N->OperandList[1] = Op2;
3270    N->OperandList[1].setUser(N);
3271    Op2.Val->addUser(1, N);
3272  }
3273
3274  // If this gets put into a CSE map, add it.
3275  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3276  return InN;
3277}
3278
3279SDOperand SelectionDAG::
3280UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
3281  SDOperand Ops[] = { Op1, Op2, Op3 };
3282  return UpdateNodeOperands(N, Ops, 3);
3283}
3284
3285SDOperand SelectionDAG::
3286UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3287                   SDOperand Op3, SDOperand Op4) {
3288  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
3289  return UpdateNodeOperands(N, Ops, 4);
3290}
3291
3292SDOperand SelectionDAG::
3293UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3294                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
3295  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3296  return UpdateNodeOperands(N, Ops, 5);
3297}
3298
3299SDOperand SelectionDAG::
3300UpdateNodeOperands(SDOperand InN, SDOperandPtr Ops, unsigned NumOps) {
3301  SDNode *N = InN.Val;
3302  assert(N->getNumOperands() == NumOps &&
3303         "Update with wrong number of operands");
3304
3305  // Check to see if there is no change.
3306  bool AnyChange = false;
3307  for (unsigned i = 0; i != NumOps; ++i) {
3308    if (Ops[i] != N->getOperand(i)) {
3309      AnyChange = true;
3310      break;
3311    }
3312  }
3313
3314  // No operands changed, just return the input node.
3315  if (!AnyChange) return InN;
3316
3317  // See if the modified node already exists.
3318  void *InsertPos = 0;
3319  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3320    return SDOperand(Existing, InN.ResNo);
3321
3322  // Nope it doesn't.  Remove the node from it's current place in the maps.
3323  if (InsertPos)
3324    RemoveNodeFromCSEMaps(N);
3325
3326  // Now we update the operands.
3327  for (unsigned i = 0; i != NumOps; ++i) {
3328    if (N->OperandList[i] != Ops[i]) {
3329      N->OperandList[i].getVal()->removeUser(i, N);
3330      N->OperandList[i] = Ops[i];
3331      N->OperandList[i].setUser(N);
3332      Ops[i].Val->addUser(i, N);
3333    }
3334  }
3335
3336  // If this gets put into a CSE map, add it.
3337  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3338  return InN;
3339}
3340
3341/// MorphNodeTo - This frees the operands of the current node, resets the
3342/// opcode, types, and operands to the specified value.  This should only be
3343/// used by the SelectionDAG class.
3344void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3345                         const SDOperand *Ops, unsigned NumOps) {
3346  NodeType = Opc;
3347  ValueList = L.VTs;
3348  NumValues = L.NumVTs;
3349
3350  // Clear the operands list, updating used nodes to remove this from their
3351  // use list.
3352  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3353    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3354
3355  // If NumOps is larger than the # of operands we currently have, reallocate
3356  // the operand list.
3357  if (NumOps > NumOperands) {
3358    if (OperandsNeedDelete) {
3359      delete [] OperandList;
3360    }
3361    OperandList = new SDUse[NumOps];
3362    OperandsNeedDelete = true;
3363  }
3364
3365  // Assign the new operands.
3366  NumOperands = NumOps;
3367
3368  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3369    OperandList[i] = Ops[i];
3370    OperandList[i].setUser(this);
3371    SDNode *N = OperandList[i].getVal();
3372    N->addUser(i, this);
3373    ++N->UsesSize;
3374  }
3375}
3376
3377/// SelectNodeTo - These are used for target selectors to *mutate* the
3378/// specified node to have the specified return type, Target opcode, and
3379/// operands.  Note that target opcodes are stored as
3380/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3381///
3382/// Note that SelectNodeTo returns the resultant node.  If there is already a
3383/// node of the specified opcode and operands, it returns that node instead of
3384/// the current one.
3385SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3386                                   MVT::ValueType VT) {
3387  SDVTList VTs = getVTList(VT);
3388  FoldingSetNodeID ID;
3389  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, (SDOperand*)0, 0);
3390  void *IP = 0;
3391  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3392    return ON;
3393
3394  RemoveNodeFromCSEMaps(N);
3395
3396  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3397
3398  CSEMap.InsertNode(N, IP);
3399  return N;
3400}
3401
3402SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3403                                   MVT::ValueType VT, SDOperand Op1) {
3404  // If an identical node already exists, use it.
3405  SDVTList VTs = getVTList(VT);
3406  SDOperand Ops[] = { Op1 };
3407
3408  FoldingSetNodeID ID;
3409  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3410  void *IP = 0;
3411  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3412    return ON;
3413
3414  RemoveNodeFromCSEMaps(N);
3415  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3416  CSEMap.InsertNode(N, IP);
3417  return N;
3418}
3419
3420SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3421                                   MVT::ValueType VT, SDOperand Op1,
3422                                   SDOperand Op2) {
3423  // If an identical node already exists, use it.
3424  SDVTList VTs = getVTList(VT);
3425  SDOperand Ops[] = { Op1, Op2 };
3426
3427  FoldingSetNodeID ID;
3428  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3429  void *IP = 0;
3430  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3431    return ON;
3432
3433  RemoveNodeFromCSEMaps(N);
3434
3435  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3436
3437  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3438  return N;
3439}
3440
3441SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3442                                   MVT::ValueType VT, SDOperand Op1,
3443                                   SDOperand Op2, SDOperand Op3) {
3444  // If an identical node already exists, use it.
3445  SDVTList VTs = getVTList(VT);
3446  SDOperand Ops[] = { Op1, Op2, Op3 };
3447  FoldingSetNodeID ID;
3448  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3449  void *IP = 0;
3450  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3451    return ON;
3452
3453  RemoveNodeFromCSEMaps(N);
3454
3455  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3456
3457  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3458  return N;
3459}
3460
3461SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3462                                   MVT::ValueType VT, SDOperandPtr Ops,
3463                                   unsigned NumOps) {
3464  // If an identical node already exists, use it.
3465  SDVTList VTs = getVTList(VT);
3466  FoldingSetNodeID ID;
3467  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3468  void *IP = 0;
3469  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3470    return ON;
3471
3472  RemoveNodeFromCSEMaps(N);
3473  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3474
3475  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3476  return N;
3477}
3478
3479SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3480                                   MVT::ValueType VT1, MVT::ValueType VT2,
3481                                   SDOperand Op1, SDOperand Op2) {
3482  SDVTList VTs = getVTList(VT1, VT2);
3483  FoldingSetNodeID ID;
3484  SDOperand Ops[] = { Op1, Op2 };
3485  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3486  void *IP = 0;
3487  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3488    return ON;
3489
3490  RemoveNodeFromCSEMaps(N);
3491  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3492  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3493  return N;
3494}
3495
3496SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3497                                   MVT::ValueType VT1, MVT::ValueType VT2,
3498                                   SDOperand Op1, SDOperand Op2,
3499                                   SDOperand Op3) {
3500  // If an identical node already exists, use it.
3501  SDVTList VTs = getVTList(VT1, VT2);
3502  SDOperand Ops[] = { Op1, Op2, Op3 };
3503  FoldingSetNodeID ID;
3504  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3505  void *IP = 0;
3506  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3507    return ON;
3508
3509  RemoveNodeFromCSEMaps(N);
3510
3511  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3512  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3513  return N;
3514}
3515
3516
3517/// getTargetNode - These are used for target selectors to create a new node
3518/// with specified return type(s), target opcode, and operands.
3519///
3520/// Note that getTargetNode returns the resultant node.  If there is already a
3521/// node of the specified opcode and operands, it returns that node instead of
3522/// the current one.
3523SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3524  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3525}
3526SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3527                                    SDOperand Op1) {
3528  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3529}
3530SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3531                                    SDOperand Op1, SDOperand Op2) {
3532  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3533}
3534SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3535                                    SDOperand Op1, SDOperand Op2,
3536                                    SDOperand Op3) {
3537  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3538}
3539SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3540                                    SDOperandPtr Ops, unsigned NumOps) {
3541  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3542}
3543SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3544                                    MVT::ValueType VT2) {
3545  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3546  SDOperand Op;
3547  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3548}
3549SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3550                                    MVT::ValueType VT2, SDOperand Op1) {
3551  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3552  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3553}
3554SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3555                                    MVT::ValueType VT2, SDOperand Op1,
3556                                    SDOperand Op2) {
3557  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3558  SDOperand Ops[] = { Op1, Op2 };
3559  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3560}
3561SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3562                                    MVT::ValueType VT2, SDOperand Op1,
3563                                    SDOperand Op2, SDOperand Op3) {
3564  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3565  SDOperand Ops[] = { Op1, Op2, Op3 };
3566  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3567}
3568SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3569                                    MVT::ValueType VT2,
3570                                    SDOperandPtr Ops, unsigned NumOps) {
3571  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3572  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3573}
3574SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3575                                    MVT::ValueType VT2, MVT::ValueType VT3,
3576                                    SDOperand Op1, SDOperand Op2) {
3577  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3578  SDOperand Ops[] = { Op1, Op2 };
3579  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3580}
3581SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3582                                    MVT::ValueType VT2, MVT::ValueType VT3,
3583                                    SDOperand Op1, SDOperand Op2,
3584                                    SDOperand Op3) {
3585  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3586  SDOperand Ops[] = { Op1, Op2, Op3 };
3587  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3588}
3589SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3590                                    MVT::ValueType VT2, MVT::ValueType VT3,
3591                                    SDOperandPtr Ops, unsigned NumOps) {
3592  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3593  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3594}
3595SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3596                                    MVT::ValueType VT2, MVT::ValueType VT3,
3597                                    MVT::ValueType VT4,
3598                                    SDOperandPtr Ops, unsigned NumOps) {
3599  std::vector<MVT::ValueType> VTList;
3600  VTList.push_back(VT1);
3601  VTList.push_back(VT2);
3602  VTList.push_back(VT3);
3603  VTList.push_back(VT4);
3604  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3605  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3606}
3607SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3608                                    std::vector<MVT::ValueType> &ResultTys,
3609                                    SDOperandPtr Ops, unsigned NumOps) {
3610  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3611  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3612                 Ops, NumOps).Val;
3613}
3614
3615/// getNodeIfExists - Get the specified node if it's already available, or
3616/// else return NULL.
3617SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
3618                                      SDOperandPtr Ops, unsigned NumOps) {
3619  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3620    FoldingSetNodeID ID;
3621    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3622    void *IP = 0;
3623    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3624      return E;
3625  }
3626  return NULL;
3627}
3628
3629
3630/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3631/// This can cause recursive merging of nodes in the DAG.
3632///
3633/// This version assumes From has a single result value.
3634///
3635void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3636                                      DAGUpdateListener *UpdateListener) {
3637  SDNode *From = FromN.Val;
3638  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3639         "Cannot replace with this method!");
3640  assert(From != To.Val && "Cannot replace uses of with self");
3641
3642  while (!From->use_empty()) {
3643    SDNode::use_iterator UI = From->use_begin();
3644    SDNode *U = UI->getUser();
3645
3646    // This node is about to morph, remove its old self from the CSE maps.
3647    RemoveNodeFromCSEMaps(U);
3648    int operandNum = 0;
3649    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3650         I != E; ++I, ++operandNum)
3651      if (I->getVal() == From) {
3652        From->removeUser(operandNum, U);
3653        *I = To;
3654        I->setUser(U);
3655        To.Val->addUser(operandNum, U);
3656      }
3657
3658    // Now that we have modified U, add it back to the CSE maps.  If it already
3659    // exists there, recursively merge the results together.
3660    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3661      ReplaceAllUsesWith(U, Existing, UpdateListener);
3662      // U is now dead.  Inform the listener if it exists and delete it.
3663      if (UpdateListener)
3664        UpdateListener->NodeDeleted(U);
3665      DeleteNodeNotInCSEMaps(U);
3666    } else {
3667      // If the node doesn't already exist, we updated it.  Inform a listener if
3668      // it exists.
3669      if (UpdateListener)
3670        UpdateListener->NodeUpdated(U);
3671    }
3672  }
3673}
3674
3675/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3676/// This can cause recursive merging of nodes in the DAG.
3677///
3678/// This version assumes From/To have matching types and numbers of result
3679/// values.
3680///
3681void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3682                                      DAGUpdateListener *UpdateListener) {
3683  assert(From != To && "Cannot replace uses of with self");
3684  assert(From->getNumValues() == To->getNumValues() &&
3685         "Cannot use this version of ReplaceAllUsesWith!");
3686  if (From->getNumValues() == 1)   // If possible, use the faster version.
3687    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3688                              UpdateListener);
3689
3690  while (!From->use_empty()) {
3691    SDNode::use_iterator UI = From->use_begin();
3692    SDNode *U = UI->getUser();
3693
3694    // This node is about to morph, remove its old self from the CSE maps.
3695    RemoveNodeFromCSEMaps(U);
3696    int operandNum = 0;
3697    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3698         I != E; ++I, ++operandNum)
3699      if (I->getVal() == From) {
3700        From->removeUser(operandNum, U);
3701        I->getVal() = To;
3702        To->addUser(operandNum, U);
3703      }
3704
3705    // Now that we have modified U, add it back to the CSE maps.  If it already
3706    // exists there, recursively merge the results together.
3707    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3708      ReplaceAllUsesWith(U, Existing, UpdateListener);
3709      // U is now dead.  Inform the listener if it exists and delete it.
3710      if (UpdateListener)
3711        UpdateListener->NodeDeleted(U);
3712      DeleteNodeNotInCSEMaps(U);
3713    } else {
3714      // If the node doesn't already exist, we updated it.  Inform a listener if
3715      // it exists.
3716      if (UpdateListener)
3717        UpdateListener->NodeUpdated(U);
3718    }
3719  }
3720}
3721
3722/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3723/// This can cause recursive merging of nodes in the DAG.
3724///
3725/// This version can replace From with any result values.  To must match the
3726/// number and types of values returned by From.
3727void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3728                                      SDOperandPtr To,
3729                                      DAGUpdateListener *UpdateListener) {
3730  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3731    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3732
3733  while (!From->use_empty()) {
3734    SDNode::use_iterator UI = From->use_begin();
3735    SDNode *U = UI->getUser();
3736
3737    // This node is about to morph, remove its old self from the CSE maps.
3738    RemoveNodeFromCSEMaps(U);
3739    int operandNum = 0;
3740    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3741         I != E; ++I, ++operandNum)
3742      if (I->getVal() == From) {
3743        const SDOperand &ToOp = To[I->getSDOperand().ResNo];
3744        From->removeUser(operandNum, U);
3745        *I = ToOp;
3746        I->setUser(U);
3747        ToOp.Val->addUser(operandNum, U);
3748      }
3749
3750    // Now that we have modified U, add it back to the CSE maps.  If it already
3751    // exists there, recursively merge the results together.
3752    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3753      ReplaceAllUsesWith(U, Existing, UpdateListener);
3754      // U is now dead.  Inform the listener if it exists and delete it.
3755      if (UpdateListener)
3756        UpdateListener->NodeDeleted(U);
3757      DeleteNodeNotInCSEMaps(U);
3758    } else {
3759      // If the node doesn't already exist, we updated it.  Inform a listener if
3760      // it exists.
3761      if (UpdateListener)
3762        UpdateListener->NodeUpdated(U);
3763    }
3764  }
3765}
3766
3767namespace {
3768  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3769  /// any deleted nodes from the set passed into its constructor and recursively
3770  /// notifies another update listener if specified.
3771  class ChainedSetUpdaterListener :
3772  public SelectionDAG::DAGUpdateListener {
3773    SmallSetVector<SDNode*, 16> &Set;
3774    SelectionDAG::DAGUpdateListener *Chain;
3775  public:
3776    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3777                              SelectionDAG::DAGUpdateListener *chain)
3778      : Set(set), Chain(chain) {}
3779
3780    virtual void NodeDeleted(SDNode *N) {
3781      Set.remove(N);
3782      if (Chain) Chain->NodeDeleted(N);
3783    }
3784    virtual void NodeUpdated(SDNode *N) {
3785      if (Chain) Chain->NodeUpdated(N);
3786    }
3787  };
3788}
3789
3790/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3791/// uses of other values produced by From.Val alone.  The Deleted vector is
3792/// handled the same way as for ReplaceAllUsesWith.
3793void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3794                                             DAGUpdateListener *UpdateListener){
3795  assert(From != To && "Cannot replace a value with itself");
3796
3797  // Handle the simple, trivial, case efficiently.
3798  if (From.Val->getNumValues() == 1) {
3799    ReplaceAllUsesWith(From, To, UpdateListener);
3800    return;
3801  }
3802
3803  if (From.use_empty()) return;
3804
3805  // Get all of the users of From.Val.  We want these in a nice,
3806  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3807  SmallSetVector<SDNode*, 16> Users;
3808  for (SDNode::use_iterator UI = From.Val->use_begin(),
3809      E = From.Val->use_end(); UI != E; ++UI) {
3810    SDNode *User = UI->getUser();
3811    if (!Users.count(User))
3812      Users.insert(User);
3813  }
3814
3815  // When one of the recursive merges deletes nodes from the graph, we need to
3816  // make sure that UpdateListener is notified *and* that the node is removed
3817  // from Users if present.  CSUL does this.
3818  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3819
3820  while (!Users.empty()) {
3821    // We know that this user uses some value of From.  If it is the right
3822    // value, update it.
3823    SDNode *User = Users.back();
3824    Users.pop_back();
3825
3826    // Scan for an operand that matches From.
3827    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
3828    for (; Op != E; ++Op)
3829      if (*Op == From) break;
3830
3831    // If there are no matches, the user must use some other result of From.
3832    if (Op == E) continue;
3833
3834    // Okay, we know this user needs to be updated.  Remove its old self
3835    // from the CSE maps.
3836    RemoveNodeFromCSEMaps(User);
3837
3838    // Update all operands that match "From" in case there are multiple uses.
3839    for (; Op != E; ++Op) {
3840      if (*Op == From) {
3841        From.Val->removeUser(Op-User->op_begin(), User);
3842        *Op = To;
3843        Op->setUser(User);
3844        To.Val->addUser(Op-User->op_begin(), User);
3845      }
3846    }
3847
3848    // Now that we have modified User, add it back to the CSE maps.  If it
3849    // already exists there, recursively merge the results together.
3850    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3851    if (!Existing) {
3852      if (UpdateListener) UpdateListener->NodeUpdated(User);
3853      continue;  // Continue on to next user.
3854    }
3855
3856    // If there was already an existing matching node, use ReplaceAllUsesWith
3857    // to replace the dead one with the existing one.  This can cause
3858    // recursive merging of other unrelated nodes down the line.  The merging
3859    // can cause deletion of nodes that used the old value.  To handle this, we
3860    // use CSUL to remove them from the Users set.
3861    ReplaceAllUsesWith(User, Existing, &CSUL);
3862
3863    // User is now dead.  Notify a listener if present.
3864    if (UpdateListener) UpdateListener->NodeDeleted(User);
3865    DeleteNodeNotInCSEMaps(User);
3866  }
3867}
3868
3869/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3870/// their allnodes order. It returns the maximum id.
3871unsigned SelectionDAG::AssignNodeIds() {
3872  unsigned Id = 0;
3873  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3874    SDNode *N = I;
3875    N->setNodeId(Id++);
3876  }
3877  return Id;
3878}
3879
3880/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3881/// based on their topological order. It returns the maximum id and a vector
3882/// of the SDNodes* in assigned order by reference.
3883unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3884  unsigned DAGSize = AllNodes.size();
3885  std::vector<unsigned> InDegree(DAGSize);
3886  std::vector<SDNode*> Sources;
3887
3888  // Use a two pass approach to avoid using a std::map which is slow.
3889  unsigned Id = 0;
3890  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3891    SDNode *N = I;
3892    N->setNodeId(Id++);
3893    unsigned Degree = N->use_size();
3894    InDegree[N->getNodeId()] = Degree;
3895    if (Degree == 0)
3896      Sources.push_back(N);
3897  }
3898
3899  TopOrder.clear();
3900  while (!Sources.empty()) {
3901    SDNode *N = Sources.back();
3902    Sources.pop_back();
3903    TopOrder.push_back(N);
3904    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3905      SDNode *P = I->getVal();
3906      unsigned Degree = --InDegree[P->getNodeId()];
3907      if (Degree == 0)
3908        Sources.push_back(P);
3909    }
3910  }
3911
3912  // Second pass, assign the actual topological order as node ids.
3913  Id = 0;
3914  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3915       TI != TE; ++TI)
3916    (*TI)->setNodeId(Id++);
3917
3918  return Id;
3919}
3920
3921
3922
3923//===----------------------------------------------------------------------===//
3924//                              SDNode Class
3925//===----------------------------------------------------------------------===//
3926
3927// Out-of-line virtual method to give class a home.
3928void SDNode::ANCHOR() {}
3929void UnarySDNode::ANCHOR() {}
3930void BinarySDNode::ANCHOR() {}
3931void TernarySDNode::ANCHOR() {}
3932void HandleSDNode::ANCHOR() {}
3933void StringSDNode::ANCHOR() {}
3934void ConstantSDNode::ANCHOR() {}
3935void ConstantFPSDNode::ANCHOR() {}
3936void GlobalAddressSDNode::ANCHOR() {}
3937void FrameIndexSDNode::ANCHOR() {}
3938void JumpTableSDNode::ANCHOR() {}
3939void ConstantPoolSDNode::ANCHOR() {}
3940void BasicBlockSDNode::ANCHOR() {}
3941void SrcValueSDNode::ANCHOR() {}
3942void MemOperandSDNode::ANCHOR() {}
3943void RegisterSDNode::ANCHOR() {}
3944void ExternalSymbolSDNode::ANCHOR() {}
3945void CondCodeSDNode::ANCHOR() {}
3946void ARG_FLAGSSDNode::ANCHOR() {}
3947void VTSDNode::ANCHOR() {}
3948void LoadSDNode::ANCHOR() {}
3949void StoreSDNode::ANCHOR() {}
3950void AtomicSDNode::ANCHOR() {}
3951
3952HandleSDNode::~HandleSDNode() {
3953  SDVTList VTs = { 0, 0 };
3954  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3955}
3956
3957GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3958                                         MVT::ValueType VT, int o)
3959  : SDNode(isa<GlobalVariable>(GA) &&
3960           cast<GlobalVariable>(GA)->isThreadLocal() ?
3961           // Thread Local
3962           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3963           // Non Thread Local
3964           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3965           getSDVTList(VT)), Offset(o) {
3966  TheGlobal = const_cast<GlobalValue*>(GA);
3967}
3968
3969/// getMemOperand - Return a MachineMemOperand object describing the memory
3970/// reference performed by this load or store.
3971MachineMemOperand LSBaseSDNode::getMemOperand() const {
3972  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
3973  int Flags =
3974    getOpcode() == ISD::LOAD ? MachineMemOperand::MOLoad :
3975                               MachineMemOperand::MOStore;
3976  if (IsVolatile) Flags |= MachineMemOperand::MOVolatile;
3977
3978  // Check if the load references a frame index, and does not have
3979  // an SV attached.
3980  const FrameIndexSDNode *FI =
3981    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
3982  if (!getSrcValue() && FI)
3983    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
3984                             FI->getIndex(), Size, Alignment);
3985  else
3986    return MachineMemOperand(getSrcValue(), Flags,
3987                             getSrcValueOffset(), Size, Alignment);
3988}
3989
3990/// Profile - Gather unique data for the node.
3991///
3992void SDNode::Profile(FoldingSetNodeID &ID) {
3993  AddNodeIDNode(ID, this);
3994}
3995
3996/// getValueTypeList - Return a pointer to the specified value type.
3997///
3998const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3999  if (MVT::isExtendedVT(VT)) {
4000    static std::set<MVT::ValueType> EVTs;
4001    return &(*EVTs.insert(VT).first);
4002  } else {
4003    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
4004    VTs[VT] = VT;
4005    return &VTs[VT];
4006  }
4007}
4008
4009/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4010/// indicated value.  This method ignores uses of other values defined by this
4011/// operation.
4012bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4013  assert(Value < getNumValues() && "Bad value!");
4014
4015  // If there is only one value, this is easy.
4016  if (getNumValues() == 1)
4017    return use_size() == NUses;
4018  if (use_size() < NUses) return false;
4019
4020  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4021
4022  SmallPtrSet<SDNode*, 32> UsersHandled;
4023
4024  // TODO: Only iterate over uses of a given value of the node
4025  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4026    if (*UI == TheValue) {
4027      if (NUses == 0)
4028        return false;
4029      --NUses;
4030    }
4031  }
4032
4033  // Found exactly the right number of uses?
4034  return NUses == 0;
4035}
4036
4037
4038/// hasAnyUseOfValue - Return true if there are any use of the indicated
4039/// value. This method ignores uses of other values defined by this operation.
4040bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4041  assert(Value < getNumValues() && "Bad value!");
4042
4043  if (use_empty()) return false;
4044
4045  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4046
4047  SmallPtrSet<SDNode*, 32> UsersHandled;
4048
4049  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4050    SDNode *User = UI->getUser();
4051    if (User->getNumOperands() == 1 ||
4052        UsersHandled.insert(User))     // First time we've seen this?
4053      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
4054        if (User->getOperand(i) == TheValue) {
4055          return true;
4056        }
4057  }
4058
4059  return false;
4060}
4061
4062
4063/// isOnlyUseOf - Return true if this node is the only use of N.
4064///
4065bool SDNode::isOnlyUseOf(SDNode *N) const {
4066  bool Seen = false;
4067  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4068    SDNode *User = I->getUser();
4069    if (User == this)
4070      Seen = true;
4071    else
4072      return false;
4073  }
4074
4075  return Seen;
4076}
4077
4078/// isOperand - Return true if this node is an operand of N.
4079///
4080bool SDOperand::isOperandOf(SDNode *N) const {
4081  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4082    if (*this == N->getOperand(i))
4083      return true;
4084  return false;
4085}
4086
4087bool SDNode::isOperandOf(SDNode *N) const {
4088  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4089    if (this == N->OperandList[i].getVal())
4090      return true;
4091  return false;
4092}
4093
4094/// reachesChainWithoutSideEffects - Return true if this operand (which must
4095/// be a chain) reaches the specified operand without crossing any
4096/// side-effecting instructions.  In practice, this looks through token
4097/// factors and non-volatile loads.  In order to remain efficient, this only
4098/// looks a couple of nodes in, it does not do an exhaustive search.
4099bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
4100                                               unsigned Depth) const {
4101  if (*this == Dest) return true;
4102
4103  // Don't search too deeply, we just want to be able to see through
4104  // TokenFactor's etc.
4105  if (Depth == 0) return false;
4106
4107  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4108  // of the operands of the TF reach dest, then we can do the xform.
4109  if (getOpcode() == ISD::TokenFactor) {
4110    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4111      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4112        return true;
4113    return false;
4114  }
4115
4116  // Loads don't have side effects, look through them.
4117  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4118    if (!Ld->isVolatile())
4119      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4120  }
4121  return false;
4122}
4123
4124
4125static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4126                            SmallPtrSet<SDNode *, 32> &Visited) {
4127  if (found || !Visited.insert(N))
4128    return;
4129
4130  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4131    SDNode *Op = N->getOperand(i).Val;
4132    if (Op == P) {
4133      found = true;
4134      return;
4135    }
4136    findPredecessor(Op, P, found, Visited);
4137  }
4138}
4139
4140/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4141/// is either an operand of N or it can be reached by recursively traversing
4142/// up the operands.
4143/// NOTE: this is an expensive method. Use it carefully.
4144bool SDNode::isPredecessorOf(SDNode *N) const {
4145  SmallPtrSet<SDNode *, 32> Visited;
4146  bool found = false;
4147  findPredecessor(N, this, found, Visited);
4148  return found;
4149}
4150
4151uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4152  assert(Num < NumOperands && "Invalid child # of SDNode!");
4153  return cast<ConstantSDNode>(OperandList[Num])->getValue();
4154}
4155
4156std::string SDNode::getOperationName(const SelectionDAG *G) const {
4157  switch (getOpcode()) {
4158  default:
4159    if (getOpcode() < ISD::BUILTIN_OP_END)
4160      return "<<Unknown DAG Node>>";
4161    else {
4162      if (G) {
4163        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4164          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
4165            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
4166
4167        TargetLowering &TLI = G->getTargetLoweringInfo();
4168        const char *Name =
4169          TLI.getTargetNodeName(getOpcode());
4170        if (Name) return Name;
4171      }
4172
4173      return "<<Unknown Target Node>>";
4174    }
4175
4176  case ISD::PREFETCH:      return "Prefetch";
4177  case ISD::MEMBARRIER:    return "MemBarrier";
4178  case ISD::ATOMIC_LCS:    return "AtomicLCS";
4179  case ISD::ATOMIC_LAS:    return "AtomicLAS";
4180  case ISD::ATOMIC_SWAP:    return "AtomicSWAP";
4181  case ISD::PCMARKER:      return "PCMarker";
4182  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4183  case ISD::SRCVALUE:      return "SrcValue";
4184  case ISD::MEMOPERAND:    return "MemOperand";
4185  case ISD::EntryToken:    return "EntryToken";
4186  case ISD::TokenFactor:   return "TokenFactor";
4187  case ISD::AssertSext:    return "AssertSext";
4188  case ISD::AssertZext:    return "AssertZext";
4189
4190  case ISD::STRING:        return "String";
4191  case ISD::BasicBlock:    return "BasicBlock";
4192  case ISD::ARG_FLAGS:     return "ArgFlags";
4193  case ISD::VALUETYPE:     return "ValueType";
4194  case ISD::Register:      return "Register";
4195
4196  case ISD::Constant:      return "Constant";
4197  case ISD::ConstantFP:    return "ConstantFP";
4198  case ISD::GlobalAddress: return "GlobalAddress";
4199  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4200  case ISD::FrameIndex:    return "FrameIndex";
4201  case ISD::JumpTable:     return "JumpTable";
4202  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4203  case ISD::RETURNADDR: return "RETURNADDR";
4204  case ISD::FRAMEADDR: return "FRAMEADDR";
4205  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4206  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4207  case ISD::EHSELECTION: return "EHSELECTION";
4208  case ISD::EH_RETURN: return "EH_RETURN";
4209  case ISD::ConstantPool:  return "ConstantPool";
4210  case ISD::ExternalSymbol: return "ExternalSymbol";
4211  case ISD::INTRINSIC_WO_CHAIN: {
4212    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
4213    return Intrinsic::getName((Intrinsic::ID)IID);
4214  }
4215  case ISD::INTRINSIC_VOID:
4216  case ISD::INTRINSIC_W_CHAIN: {
4217    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
4218    return Intrinsic::getName((Intrinsic::ID)IID);
4219  }
4220
4221  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4222  case ISD::TargetConstant: return "TargetConstant";
4223  case ISD::TargetConstantFP:return "TargetConstantFP";
4224  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4225  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4226  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4227  case ISD::TargetJumpTable:  return "TargetJumpTable";
4228  case ISD::TargetConstantPool:  return "TargetConstantPool";
4229  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4230
4231  case ISD::CopyToReg:     return "CopyToReg";
4232  case ISD::CopyFromReg:   return "CopyFromReg";
4233  case ISD::UNDEF:         return "undef";
4234  case ISD::MERGE_VALUES:  return "merge_values";
4235  case ISD::INLINEASM:     return "inlineasm";
4236  case ISD::LABEL:         return "label";
4237  case ISD::DECLARE:       return "declare";
4238  case ISD::HANDLENODE:    return "handlenode";
4239  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4240  case ISD::CALL:          return "call";
4241
4242  // Unary operators
4243  case ISD::FABS:   return "fabs";
4244  case ISD::FNEG:   return "fneg";
4245  case ISD::FSQRT:  return "fsqrt";
4246  case ISD::FSIN:   return "fsin";
4247  case ISD::FCOS:   return "fcos";
4248  case ISD::FPOWI:  return "fpowi";
4249  case ISD::FPOW:   return "fpow";
4250
4251  // Binary operators
4252  case ISD::ADD:    return "add";
4253  case ISD::SUB:    return "sub";
4254  case ISD::MUL:    return "mul";
4255  case ISD::MULHU:  return "mulhu";
4256  case ISD::MULHS:  return "mulhs";
4257  case ISD::SDIV:   return "sdiv";
4258  case ISD::UDIV:   return "udiv";
4259  case ISD::SREM:   return "srem";
4260  case ISD::UREM:   return "urem";
4261  case ISD::SMUL_LOHI:  return "smul_lohi";
4262  case ISD::UMUL_LOHI:  return "umul_lohi";
4263  case ISD::SDIVREM:    return "sdivrem";
4264  case ISD::UDIVREM:    return "divrem";
4265  case ISD::AND:    return "and";
4266  case ISD::OR:     return "or";
4267  case ISD::XOR:    return "xor";
4268  case ISD::SHL:    return "shl";
4269  case ISD::SRA:    return "sra";
4270  case ISD::SRL:    return "srl";
4271  case ISD::ROTL:   return "rotl";
4272  case ISD::ROTR:   return "rotr";
4273  case ISD::FADD:   return "fadd";
4274  case ISD::FSUB:   return "fsub";
4275  case ISD::FMUL:   return "fmul";
4276  case ISD::FDIV:   return "fdiv";
4277  case ISD::FREM:   return "frem";
4278  case ISD::FCOPYSIGN: return "fcopysign";
4279  case ISD::FGETSIGN:  return "fgetsign";
4280
4281  case ISD::SETCC:       return "setcc";
4282  case ISD::SELECT:      return "select";
4283  case ISD::SELECT_CC:   return "select_cc";
4284  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
4285  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
4286  case ISD::CONCAT_VECTORS:      return "concat_vectors";
4287  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
4288  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
4289  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
4290  case ISD::CARRY_FALSE:         return "carry_false";
4291  case ISD::ADDC:        return "addc";
4292  case ISD::ADDE:        return "adde";
4293  case ISD::SUBC:        return "subc";
4294  case ISD::SUBE:        return "sube";
4295  case ISD::SHL_PARTS:   return "shl_parts";
4296  case ISD::SRA_PARTS:   return "sra_parts";
4297  case ISD::SRL_PARTS:   return "srl_parts";
4298
4299  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
4300  case ISD::INSERT_SUBREG:      return "insert_subreg";
4301
4302  // Conversion operators.
4303  case ISD::SIGN_EXTEND: return "sign_extend";
4304  case ISD::ZERO_EXTEND: return "zero_extend";
4305  case ISD::ANY_EXTEND:  return "any_extend";
4306  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
4307  case ISD::TRUNCATE:    return "truncate";
4308  case ISD::FP_ROUND:    return "fp_round";
4309  case ISD::FLT_ROUNDS_: return "flt_rounds";
4310  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
4311  case ISD::FP_EXTEND:   return "fp_extend";
4312
4313  case ISD::SINT_TO_FP:  return "sint_to_fp";
4314  case ISD::UINT_TO_FP:  return "uint_to_fp";
4315  case ISD::FP_TO_SINT:  return "fp_to_sint";
4316  case ISD::FP_TO_UINT:  return "fp_to_uint";
4317  case ISD::BIT_CONVERT: return "bit_convert";
4318
4319    // Control flow instructions
4320  case ISD::BR:      return "br";
4321  case ISD::BRIND:   return "brind";
4322  case ISD::BR_JT:   return "br_jt";
4323  case ISD::BRCOND:  return "brcond";
4324  case ISD::BR_CC:   return "br_cc";
4325  case ISD::RET:     return "ret";
4326  case ISD::CALLSEQ_START:  return "callseq_start";
4327  case ISD::CALLSEQ_END:    return "callseq_end";
4328
4329    // Other operators
4330  case ISD::LOAD:               return "load";
4331  case ISD::STORE:              return "store";
4332  case ISD::VAARG:              return "vaarg";
4333  case ISD::VACOPY:             return "vacopy";
4334  case ISD::VAEND:              return "vaend";
4335  case ISD::VASTART:            return "vastart";
4336  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4337  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4338  case ISD::BUILD_PAIR:         return "build_pair";
4339  case ISD::STACKSAVE:          return "stacksave";
4340  case ISD::STACKRESTORE:       return "stackrestore";
4341  case ISD::TRAP:               return "trap";
4342
4343  // Bit manipulation
4344  case ISD::BSWAP:   return "bswap";
4345  case ISD::CTPOP:   return "ctpop";
4346  case ISD::CTTZ:    return "cttz";
4347  case ISD::CTLZ:    return "ctlz";
4348
4349  // Debug info
4350  case ISD::LOCATION: return "location";
4351  case ISD::DEBUG_LOC: return "debug_loc";
4352
4353  // Trampolines
4354  case ISD::TRAMPOLINE: return "trampoline";
4355
4356  case ISD::CONDCODE:
4357    switch (cast<CondCodeSDNode>(this)->get()) {
4358    default: assert(0 && "Unknown setcc condition!");
4359    case ISD::SETOEQ:  return "setoeq";
4360    case ISD::SETOGT:  return "setogt";
4361    case ISD::SETOGE:  return "setoge";
4362    case ISD::SETOLT:  return "setolt";
4363    case ISD::SETOLE:  return "setole";
4364    case ISD::SETONE:  return "setone";
4365
4366    case ISD::SETO:    return "seto";
4367    case ISD::SETUO:   return "setuo";
4368    case ISD::SETUEQ:  return "setue";
4369    case ISD::SETUGT:  return "setugt";
4370    case ISD::SETUGE:  return "setuge";
4371    case ISD::SETULT:  return "setult";
4372    case ISD::SETULE:  return "setule";
4373    case ISD::SETUNE:  return "setune";
4374
4375    case ISD::SETEQ:   return "seteq";
4376    case ISD::SETGT:   return "setgt";
4377    case ISD::SETGE:   return "setge";
4378    case ISD::SETLT:   return "setlt";
4379    case ISD::SETLE:   return "setle";
4380    case ISD::SETNE:   return "setne";
4381    }
4382  }
4383}
4384
4385const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4386  switch (AM) {
4387  default:
4388    return "";
4389  case ISD::PRE_INC:
4390    return "<pre-inc>";
4391  case ISD::PRE_DEC:
4392    return "<pre-dec>";
4393  case ISD::POST_INC:
4394    return "<post-inc>";
4395  case ISD::POST_DEC:
4396    return "<post-dec>";
4397  }
4398}
4399
4400std::string ISD::ArgFlagsTy::getArgFlagsString() {
4401  std::string S = "< ";
4402
4403  if (isZExt())
4404    S += "zext ";
4405  if (isSExt())
4406    S += "sext ";
4407  if (isInReg())
4408    S += "inreg ";
4409  if (isSRet())
4410    S += "sret ";
4411  if (isByVal())
4412    S += "byval ";
4413  if (isNest())
4414    S += "nest ";
4415  if (getByValAlign())
4416    S += "byval-align:" + utostr(getByValAlign()) + " ";
4417  if (getOrigAlign())
4418    S += "orig-align:" + utostr(getOrigAlign()) + " ";
4419  if (getByValSize())
4420    S += "byval-size:" + utostr(getByValSize()) + " ";
4421  return S + ">";
4422}
4423
4424void SDNode::dump() const { dump(0); }
4425void SDNode::dump(const SelectionDAG *G) const {
4426  cerr << (void*)this << ": ";
4427
4428  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4429    if (i) cerr << ",";
4430    if (getValueType(i) == MVT::Other)
4431      cerr << "ch";
4432    else
4433      cerr << MVT::getValueTypeString(getValueType(i));
4434  }
4435  cerr << " = " << getOperationName(G);
4436
4437  cerr << " ";
4438  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4439    if (i) cerr << ", ";
4440    cerr << (void*)getOperand(i).Val;
4441    if (unsigned RN = getOperand(i).ResNo)
4442      cerr << ":" << RN;
4443  }
4444
4445  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4446    SDNode *Mask = getOperand(2).Val;
4447    cerr << "<";
4448    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4449      if (i) cerr << ",";
4450      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4451        cerr << "u";
4452      else
4453        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4454    }
4455    cerr << ">";
4456  }
4457
4458  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4459    cerr << "<" << CSDN->getValue() << ">";
4460  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4461    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4462      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4463    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4464      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4465    else {
4466      cerr << "<APFloat(";
4467      CSDN->getValueAPF().convertToAPInt().dump();
4468      cerr << ")>";
4469    }
4470  } else if (const GlobalAddressSDNode *GADN =
4471             dyn_cast<GlobalAddressSDNode>(this)) {
4472    int offset = GADN->getOffset();
4473    cerr << "<";
4474    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4475    if (offset > 0)
4476      cerr << " + " << offset;
4477    else
4478      cerr << " " << offset;
4479  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4480    cerr << "<" << FIDN->getIndex() << ">";
4481  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4482    cerr << "<" << JTDN->getIndex() << ">";
4483  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4484    int offset = CP->getOffset();
4485    if (CP->isMachineConstantPoolEntry())
4486      cerr << "<" << *CP->getMachineCPVal() << ">";
4487    else
4488      cerr << "<" << *CP->getConstVal() << ">";
4489    if (offset > 0)
4490      cerr << " + " << offset;
4491    else
4492      cerr << " " << offset;
4493  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4494    cerr << "<";
4495    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4496    if (LBB)
4497      cerr << LBB->getName() << " ";
4498    cerr << (const void*)BBDN->getBasicBlock() << ">";
4499  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4500    if (G && R->getReg() &&
4501        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4502      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4503    } else {
4504      cerr << " #" << R->getReg();
4505    }
4506  } else if (const ExternalSymbolSDNode *ES =
4507             dyn_cast<ExternalSymbolSDNode>(this)) {
4508    cerr << "'" << ES->getSymbol() << "'";
4509  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4510    if (M->getValue())
4511      cerr << "<" << M->getValue() << ">";
4512    else
4513      cerr << "<null>";
4514  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4515    if (M->MO.getValue())
4516      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4517    else
4518      cerr << "<null:" << M->MO.getOffset() << ">";
4519  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
4520    cerr << N->getArgFlags().getArgFlagsString();
4521  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4522    cerr << ":" << MVT::getValueTypeString(N->getVT());
4523  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4524    const Value *SrcValue = LD->getSrcValue();
4525    int SrcOffset = LD->getSrcValueOffset();
4526    cerr << " <";
4527    if (SrcValue)
4528      cerr << SrcValue;
4529    else
4530      cerr << "null";
4531    cerr << ":" << SrcOffset << ">";
4532
4533    bool doExt = true;
4534    switch (LD->getExtensionType()) {
4535    default: doExt = false; break;
4536    case ISD::EXTLOAD:
4537      cerr << " <anyext ";
4538      break;
4539    case ISD::SEXTLOAD:
4540      cerr << " <sext ";
4541      break;
4542    case ISD::ZEXTLOAD:
4543      cerr << " <zext ";
4544      break;
4545    }
4546    if (doExt)
4547      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4548
4549    const char *AM = getIndexedModeName(LD->getAddressingMode());
4550    if (*AM)
4551      cerr << " " << AM;
4552    if (LD->isVolatile())
4553      cerr << " <volatile>";
4554    cerr << " alignment=" << LD->getAlignment();
4555  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4556    const Value *SrcValue = ST->getSrcValue();
4557    int SrcOffset = ST->getSrcValueOffset();
4558    cerr << " <";
4559    if (SrcValue)
4560      cerr << SrcValue;
4561    else
4562      cerr << "null";
4563    cerr << ":" << SrcOffset << ">";
4564
4565    if (ST->isTruncatingStore())
4566      cerr << " <trunc "
4567           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4568
4569    const char *AM = getIndexedModeName(ST->getAddressingMode());
4570    if (*AM)
4571      cerr << " " << AM;
4572    if (ST->isVolatile())
4573      cerr << " <volatile>";
4574    cerr << " alignment=" << ST->getAlignment();
4575  }
4576}
4577
4578static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4579  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4580    if (N->getOperand(i).Val->hasOneUse())
4581      DumpNodes(N->getOperand(i).Val, indent+2, G);
4582    else
4583      cerr << "\n" << std::string(indent+2, ' ')
4584           << (void*)N->getOperand(i).Val << ": <multiple use>";
4585
4586
4587  cerr << "\n" << std::string(indent, ' ');
4588  N->dump(G);
4589}
4590
4591void SelectionDAG::dump() const {
4592  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4593  std::vector<const SDNode*> Nodes;
4594  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4595       I != E; ++I)
4596    Nodes.push_back(I);
4597
4598  std::sort(Nodes.begin(), Nodes.end());
4599
4600  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4601    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4602      DumpNodes(Nodes[i], 2, this);
4603  }
4604
4605  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4606
4607  cerr << "\n\n";
4608}
4609
4610const Type *ConstantPoolSDNode::getType() const {
4611  if (isMachineConstantPoolEntry())
4612    return Val.MachineCPVal->getType();
4613  return Val.ConstVal->getType();
4614}
4615