SelectionDAG.cpp revision 9db817fd0ce0949d0358f5cedfd9ca5a9f1726dd
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetSelectionDAGInfo.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetIntrinsicInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/ManagedStatic.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Support/Mutex.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallPtrSet.h"
49#include "llvm/ADT/SmallSet.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/StringExtras.h"
52#include <algorithm>
53#include <cmath>
54using namespace llvm;
55
56/// makeVTList - Return an instance of the SDVTList struct initialized with the
57/// specified members.
58static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59  SDVTList Res = {VTs, NumVTs};
60  return Res;
61}
62
63static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
64  switch (VT.getSimpleVT().SimpleTy) {
65  default: llvm_unreachable("Unknown FP format");
66  case MVT::f32:     return &APFloat::IEEEsingle;
67  case MVT::f64:     return &APFloat::IEEEdouble;
68  case MVT::f80:     return &APFloat::x87DoubleExtended;
69  case MVT::f128:    return &APFloat::IEEEquad;
70  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
71  }
72}
73
74SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
75
76//===----------------------------------------------------------------------===//
77//                              ConstantFPSDNode Class
78//===----------------------------------------------------------------------===//
79
80/// isExactlyValue - We don't rely on operator== working on double values, as
81/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
82/// As such, this method can be used to do an exact bit-for-bit comparison of
83/// two floating point values.
84bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
85  return getValueAPF().bitwiseIsEqual(V);
86}
87
88bool ConstantFPSDNode::isValueValidForType(EVT VT,
89                                           const APFloat& Val) {
90  assert(VT.isFloatingPoint() && "Can only convert between FP types");
91
92  // PPC long double cannot be converted to any other type.
93  if (VT == MVT::ppcf128 ||
94      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
95    return false;
96
97  // convert modifies in place, so make a copy.
98  APFloat Val2 = APFloat(Val);
99  bool losesInfo;
100  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
101                      &losesInfo);
102  return !losesInfo;
103}
104
105//===----------------------------------------------------------------------===//
106//                              ISD Namespace
107//===----------------------------------------------------------------------===//
108
109/// isBuildVectorAllOnes - Return true if the specified node is a
110/// BUILD_VECTOR where all of the elements are ~0 or undef.
111bool ISD::isBuildVectorAllOnes(const SDNode *N) {
112  // Look through a bit convert.
113  if (N->getOpcode() == ISD::BITCAST)
114    N = N->getOperand(0).getNode();
115
116  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
117
118  unsigned i = 0, e = N->getNumOperands();
119
120  // Skip over all of the undef values.
121  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
122    ++i;
123
124  // Do not accept an all-undef vector.
125  if (i == e) return false;
126
127  // Do not accept build_vectors that aren't all constants or which have non-~0
128  // elements.
129  SDValue NotZero = N->getOperand(i);
130  if (isa<ConstantSDNode>(NotZero)) {
131    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
132      return false;
133  } else if (isa<ConstantFPSDNode>(NotZero)) {
134    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
135                bitcastToAPInt().isAllOnesValue())
136      return false;
137  } else
138    return false;
139
140  // Okay, we have at least one ~0 value, check to see if the rest match or are
141  // undefs.
142  for (++i; i != e; ++i)
143    if (N->getOperand(i) != NotZero &&
144        N->getOperand(i).getOpcode() != ISD::UNDEF)
145      return false;
146  return true;
147}
148
149
150/// isBuildVectorAllZeros - Return true if the specified node is a
151/// BUILD_VECTOR where all of the elements are 0 or undef.
152bool ISD::isBuildVectorAllZeros(const SDNode *N) {
153  // Look through a bit convert.
154  if (N->getOpcode() == ISD::BITCAST)
155    N = N->getOperand(0).getNode();
156
157  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158
159  unsigned i = 0, e = N->getNumOperands();
160
161  // Skip over all of the undef values.
162  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
163    ++i;
164
165  // Do not accept an all-undef vector.
166  if (i == e) return false;
167
168  // Do not accept build_vectors that aren't all constants or which have non-0
169  // elements.
170  SDValue Zero = N->getOperand(i);
171  if (isa<ConstantSDNode>(Zero)) {
172    if (!cast<ConstantSDNode>(Zero)->isNullValue())
173      return false;
174  } else if (isa<ConstantFPSDNode>(Zero)) {
175    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
176      return false;
177  } else
178    return false;
179
180  // Okay, we have at least one 0 value, check to see if the rest match or are
181  // undefs.
182  for (++i; i != e; ++i)
183    if (N->getOperand(i) != Zero &&
184        N->getOperand(i).getOpcode() != ISD::UNDEF)
185      return false;
186  return true;
187}
188
189/// isScalarToVector - Return true if the specified node is a
190/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191/// element is not an undef.
192bool ISD::isScalarToVector(const SDNode *N) {
193  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
194    return true;
195
196  if (N->getOpcode() != ISD::BUILD_VECTOR)
197    return false;
198  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
199    return false;
200  unsigned NumElems = N->getNumOperands();
201  if (NumElems == 1)
202    return false;
203  for (unsigned i = 1; i < NumElems; ++i) {
204    SDValue V = N->getOperand(i);
205    if (V.getOpcode() != ISD::UNDEF)
206      return false;
207  }
208  return true;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: llvm_unreachable("Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX:
436  case ISD::ATOMIC_LOAD:
437  case ISD::ATOMIC_STORE: {
438    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
439    ID.AddInteger(AT->getMemoryVT().getRawBits());
440    ID.AddInteger(AT->getRawSubclassData());
441    break;
442  }
443  case ISD::VECTOR_SHUFFLE: {
444    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
445    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
446         i != e; ++i)
447      ID.AddInteger(SVN->getMaskElt(i));
448    break;
449  }
450  case ISD::TargetBlockAddress:
451  case ISD::BlockAddress: {
452    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
453    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
454    break;
455  }
456  } // end switch (N->getOpcode())
457}
458
459/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
460/// data.
461static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
462  AddNodeIDOpcode(ID, N->getOpcode());
463  // Add the return value info.
464  AddNodeIDValueTypes(ID, N->getVTList());
465  // Add the operand info.
466  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
467
468  // Handle SDNode leafs with special info.
469  AddNodeIDCustom(ID, N);
470}
471
472/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
473/// the CSE map that carries volatility, temporalness, indexing mode, and
474/// extension/truncation information.
475///
476static inline unsigned
477encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
478                     bool isNonTemporal) {
479  assert((ConvType & 3) == ConvType &&
480         "ConvType may not require more than 2 bits!");
481  assert((AM & 7) == AM &&
482         "AM may not require more than 3 bits!");
483  return ConvType |
484         (AM << 2) |
485         (isVolatile << 5) |
486         (isNonTemporal << 6);
487}
488
489//===----------------------------------------------------------------------===//
490//                              SelectionDAG Class
491//===----------------------------------------------------------------------===//
492
493/// doNotCSE - Return true if CSE should not be performed for this node.
494static bool doNotCSE(SDNode *N) {
495  if (N->getValueType(0) == MVT::Glue)
496    return true; // Never CSE anything that produces a flag.
497
498  switch (N->getOpcode()) {
499  default: break;
500  case ISD::HANDLENODE:
501  case ISD::EH_LABEL:
502    return true;   // Never CSE these nodes.
503  }
504
505  // Check that remaining values produced are not flags.
506  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
507    if (N->getValueType(i) == MVT::Glue)
508      return true; // Never CSE anything that produces a flag.
509
510  return false;
511}
512
513/// RemoveDeadNodes - This method deletes all unreachable nodes in the
514/// SelectionDAG.
515void SelectionDAG::RemoveDeadNodes() {
516  // Create a dummy node (which is not added to allnodes), that adds a reference
517  // to the root node, preventing it from being deleted.
518  HandleSDNode Dummy(getRoot());
519
520  SmallVector<SDNode*, 128> DeadNodes;
521
522  // Add all obviously-dead nodes to the DeadNodes worklist.
523  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
524    if (I->use_empty())
525      DeadNodes.push_back(I);
526
527  RemoveDeadNodes(DeadNodes);
528
529  // If the root changed (e.g. it was a dead load, update the root).
530  setRoot(Dummy.getValue());
531}
532
533/// RemoveDeadNodes - This method deletes the unreachable nodes in the
534/// given list, and any nodes that become unreachable as a result.
535void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
536                                   DAGUpdateListener *UpdateListener) {
537
538  // Process the worklist, deleting the nodes and adding their uses to the
539  // worklist.
540  while (!DeadNodes.empty()) {
541    SDNode *N = DeadNodes.pop_back_val();
542
543    if (UpdateListener)
544      UpdateListener->NodeDeleted(N, 0);
545
546    // Take the node out of the appropriate CSE map.
547    RemoveNodeFromCSEMaps(N);
548
549    // Next, brutally remove the operand list.  This is safe to do, as there are
550    // no cycles in the graph.
551    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
552      SDUse &Use = *I++;
553      SDNode *Operand = Use.getNode();
554      Use.set(SDValue());
555
556      // Now that we removed this operand, see if there are no uses of it left.
557      if (Operand->use_empty())
558        DeadNodes.push_back(Operand);
559    }
560
561    DeallocateNode(N);
562  }
563}
564
565void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
566  SmallVector<SDNode*, 16> DeadNodes(1, N);
567  RemoveDeadNodes(DeadNodes, UpdateListener);
568}
569
570void SelectionDAG::DeleteNode(SDNode *N) {
571  // First take this out of the appropriate CSE map.
572  RemoveNodeFromCSEMaps(N);
573
574  // Finally, remove uses due to operands of this node, remove from the
575  // AllNodes list, and delete the node.
576  DeleteNodeNotInCSEMaps(N);
577}
578
579void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
580  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
581  assert(N->use_empty() && "Cannot delete a node that is not dead!");
582
583  // Drop all of the operands and decrement used node's use counts.
584  N->DropOperands();
585
586  DeallocateNode(N);
587}
588
589void SelectionDAG::DeallocateNode(SDNode *N) {
590  if (N->OperandsNeedDelete)
591    delete[] N->OperandList;
592
593  // Set the opcode to DELETED_NODE to help catch bugs when node
594  // memory is reallocated.
595  N->NodeType = ISD::DELETED_NODE;
596
597  NodeAllocator.Deallocate(AllNodes.remove(N));
598
599  // Remove the ordering of this node.
600  Ordering->remove(N);
601
602  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
603  ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N);
604  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
605    DbgVals[i]->setIsInvalidated();
606}
607
608/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
609/// correspond to it.  This is useful when we're about to delete or repurpose
610/// the node.  We don't want future request for structurally identical nodes
611/// to return N anymore.
612bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
613  bool Erased = false;
614  switch (N->getOpcode()) {
615  case ISD::HANDLENODE: return false;  // noop.
616  case ISD::CONDCODE:
617    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
618           "Cond code doesn't exist!");
619    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
620    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
621    break;
622  case ISD::ExternalSymbol:
623    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624    break;
625  case ISD::TargetExternalSymbol: {
626    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
627    Erased = TargetExternalSymbols.erase(
628               std::pair<std::string,unsigned char>(ESN->getSymbol(),
629                                                    ESN->getTargetFlags()));
630    break;
631  }
632  case ISD::VALUETYPE: {
633    EVT VT = cast<VTSDNode>(N)->getVT();
634    if (VT.isExtended()) {
635      Erased = ExtendedValueTypeNodes.erase(VT);
636    } else {
637      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
638      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
639    }
640    break;
641  }
642  default:
643    // Remove it from the CSE Map.
644    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
645    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
646    Erased = CSEMap.RemoveNode(N);
647    break;
648  }
649#ifndef NDEBUG
650  // Verify that the node was actually in one of the CSE maps, unless it has a
651  // flag result (which cannot be CSE'd) or is one of the special cases that are
652  // not subject to CSE.
653  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
654      !N->isMachineOpcode() && !doNotCSE(N)) {
655    N->dump(this);
656    dbgs() << "\n";
657    llvm_unreachable("Node is not in map!");
658  }
659#endif
660  return Erased;
661}
662
663/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
664/// maps and modified in place. Add it back to the CSE maps, unless an identical
665/// node already exists, in which case transfer all its users to the existing
666/// node. This transfer can potentially trigger recursive merging.
667///
668void
669SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
670                                       DAGUpdateListener *UpdateListener) {
671  // For node types that aren't CSE'd, just act as if no identical node
672  // already exists.
673  if (!doNotCSE(N)) {
674    SDNode *Existing = CSEMap.GetOrInsertNode(N);
675    if (Existing != N) {
676      // If there was already an existing matching node, use ReplaceAllUsesWith
677      // to replace the dead one with the existing one.  This can cause
678      // recursive merging of other unrelated nodes down the line.
679      ReplaceAllUsesWith(N, Existing, UpdateListener);
680
681      // N is now dead.  Inform the listener if it exists and delete it.
682      if (UpdateListener)
683        UpdateListener->NodeDeleted(N, Existing);
684      DeleteNodeNotInCSEMaps(N);
685      return;
686    }
687  }
688
689  // If the node doesn't already exist, we updated it.  Inform a listener if
690  // it exists.
691  if (UpdateListener)
692    UpdateListener->NodeUpdated(N);
693}
694
695/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
696/// were replaced with those specified.  If this node is never memoized,
697/// return null, otherwise return a pointer to the slot it would take.  If a
698/// node already exists with these operands, the slot will be non-null.
699SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
700                                           void *&InsertPos) {
701  if (doNotCSE(N))
702    return 0;
703
704  SDValue Ops[] = { Op };
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707  AddNodeIDCustom(ID, N);
708  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
709  return Node;
710}
711
712/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
713/// were replaced with those specified.  If this node is never memoized,
714/// return null, otherwise return a pointer to the slot it would take.  If a
715/// node already exists with these operands, the slot will be non-null.
716SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
717                                           SDValue Op1, SDValue Op2,
718                                           void *&InsertPos) {
719  if (doNotCSE(N))
720    return 0;
721
722  SDValue Ops[] = { Op1, Op2 };
723  FoldingSetNodeID ID;
724  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
725  AddNodeIDCustom(ID, N);
726  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
727  return Node;
728}
729
730
731/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
732/// were replaced with those specified.  If this node is never memoized,
733/// return null, otherwise return a pointer to the slot it would take.  If a
734/// node already exists with these operands, the slot will be non-null.
735SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
736                                           const SDValue *Ops,unsigned NumOps,
737                                           void *&InsertPos) {
738  if (doNotCSE(N))
739    return 0;
740
741  FoldingSetNodeID ID;
742  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
743  AddNodeIDCustom(ID, N);
744  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
745  return Node;
746}
747
748#ifndef NDEBUG
749/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
750static void VerifyNodeCommon(SDNode *N) {
751  switch (N->getOpcode()) {
752  default:
753    break;
754  case ISD::BUILD_PAIR: {
755    EVT VT = N->getValueType(0);
756    assert(N->getNumValues() == 1 && "Too many results!");
757    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
758           "Wrong return type!");
759    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
760    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
761           "Mismatched operand types!");
762    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
763           "Wrong operand type!");
764    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
765           "Wrong return type size");
766    break;
767  }
768  case ISD::BUILD_VECTOR: {
769    assert(N->getNumValues() == 1 && "Too many results!");
770    assert(N->getValueType(0).isVector() && "Wrong return type!");
771    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
772           "Wrong number of operands!");
773    EVT EltVT = N->getValueType(0).getVectorElementType();
774    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
775      assert((I->getValueType() == EltVT ||
776             (EltVT.isInteger() && I->getValueType().isInteger() &&
777              EltVT.bitsLE(I->getValueType()))) &&
778            "Wrong operand type!");
779      assert(I->getValueType() == N->getOperand(0).getValueType() &&
780             "Operands must all have the same type");
781    }
782    break;
783  }
784  }
785}
786
787/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
788static void VerifySDNode(SDNode *N) {
789  // The SDNode allocators cannot be used to allocate nodes with fields that are
790  // not present in an SDNode!
791  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
792  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
793  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
794  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
795  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
796  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
797  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
798  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
799  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
800  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
801  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
802  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
803  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
804  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
805  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
806  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
807  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
808  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
809  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
810
811  VerifyNodeCommon(N);
812}
813
814/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
815/// invalid.
816static void VerifyMachineNode(SDNode *N) {
817  // The MachineNode allocators cannot be used to allocate nodes with fields
818  // that are not present in a MachineNode!
819  // Currently there are no such nodes.
820
821  VerifyNodeCommon(N);
822}
823#endif // NDEBUG
824
825/// getEVTAlignment - Compute the default alignment value for the
826/// given type.
827///
828unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
829  Type *Ty = VT == MVT::iPTR ?
830                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
831                   VT.getTypeForEVT(*getContext());
832
833  return TLI.getTargetData()->getABITypeAlignment(Ty);
834}
835
836// EntryNode could meaningfully have debug info if we can find it...
837SelectionDAG::SelectionDAG(const TargetMachine &tm)
838  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
839    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
840    Root(getEntryNode()), Ordering(0) {
841  AllNodes.push_back(&EntryNode);
842  Ordering = new SDNodeOrdering();
843  DbgInfo = new SDDbgInfo();
844}
845
846void SelectionDAG::init(MachineFunction &mf) {
847  MF = &mf;
848  Context = &mf.getFunction()->getContext();
849}
850
851SelectionDAG::~SelectionDAG() {
852  allnodes_clear();
853  delete Ordering;
854  delete DbgInfo;
855}
856
857void SelectionDAG::allnodes_clear() {
858  assert(&*AllNodes.begin() == &EntryNode);
859  AllNodes.remove(AllNodes.begin());
860  while (!AllNodes.empty())
861    DeallocateNode(AllNodes.begin());
862}
863
864void SelectionDAG::clear() {
865  allnodes_clear();
866  OperandAllocator.Reset();
867  CSEMap.clear();
868
869  ExtendedValueTypeNodes.clear();
870  ExternalSymbols.clear();
871  TargetExternalSymbols.clear();
872  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
873            static_cast<CondCodeSDNode*>(0));
874  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
875            static_cast<SDNode*>(0));
876
877  EntryNode.UseList = 0;
878  AllNodes.push_back(&EntryNode);
879  Root = getEntryNode();
880  Ordering->clear();
881  DbgInfo->clear();
882}
883
884SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
885  return VT.bitsGT(Op.getValueType()) ?
886    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
887    getNode(ISD::TRUNCATE, DL, VT, Op);
888}
889
890SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
891  return VT.bitsGT(Op.getValueType()) ?
892    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
893    getNode(ISD::TRUNCATE, DL, VT, Op);
894}
895
896SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
897  assert(!VT.isVector() &&
898         "getZeroExtendInReg should use the vector element type instead of "
899         "the vector type!");
900  if (Op.getValueType() == VT) return Op;
901  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
902  APInt Imm = APInt::getLowBitsSet(BitWidth,
903                                   VT.getSizeInBits());
904  return getNode(ISD::AND, DL, Op.getValueType(), Op,
905                 getConstant(Imm, Op.getValueType()));
906}
907
908/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
909///
910SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
911  EVT EltVT = VT.getScalarType();
912  SDValue NegOne =
913    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
914  return getNode(ISD::XOR, DL, VT, Val, NegOne);
915}
916
917SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
918  EVT EltVT = VT.getScalarType();
919  assert((EltVT.getSizeInBits() >= 64 ||
920         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
921         "getConstant with a uint64_t value that doesn't fit in the type!");
922  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
923}
924
925SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
926  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
927}
928
929SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
930  assert(VT.isInteger() && "Cannot create FP integer constant!");
931
932  EVT EltVT = VT.getScalarType();
933  const ConstantInt *Elt = &Val;
934
935  // In some cases the vector type is legal but the element type is illegal and
936  // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
937  // inserted value (the type does not need to match the vector element type).
938  // Any extra bits introduced will be truncated away.
939  if (VT.isVector() && TLI.getTypeAction(*getContext(), EltVT) ==
940      TargetLowering::TypePromoteInteger) {
941   EltVT = TLI.getTypeToTransformTo(*getContext(), EltVT);
942   APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
943   Elt = ConstantInt::get(*getContext(), NewVal);
944  }
945
946  assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
947         "APInt size does not match type size!");
948  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
949  FoldingSetNodeID ID;
950  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
951  ID.AddPointer(Elt);
952  void *IP = 0;
953  SDNode *N = NULL;
954  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
955    if (!VT.isVector())
956      return SDValue(N, 0);
957
958  if (!N) {
959    N = new (NodeAllocator) ConstantSDNode(isT, Elt, EltVT);
960    CSEMap.InsertNode(N, IP);
961    AllNodes.push_back(N);
962  }
963
964  SDValue Result(N, 0);
965  if (VT.isVector()) {
966    SmallVector<SDValue, 8> Ops;
967    Ops.assign(VT.getVectorNumElements(), Result);
968    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
969  }
970  return Result;
971}
972
973SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
974  return getConstant(Val, TLI.getPointerTy(), isTarget);
975}
976
977
978SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
979  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
980}
981
982SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
983  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
984
985  EVT EltVT = VT.getScalarType();
986
987  // Do the map lookup using the actual bit pattern for the floating point
988  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
989  // we don't have issues with SNANs.
990  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
991  FoldingSetNodeID ID;
992  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
993  ID.AddPointer(&V);
994  void *IP = 0;
995  SDNode *N = NULL;
996  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
997    if (!VT.isVector())
998      return SDValue(N, 0);
999
1000  if (!N) {
1001    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
1002    CSEMap.InsertNode(N, IP);
1003    AllNodes.push_back(N);
1004  }
1005
1006  SDValue Result(N, 0);
1007  if (VT.isVector()) {
1008    SmallVector<SDValue, 8> Ops;
1009    Ops.assign(VT.getVectorNumElements(), Result);
1010    // FIXME DebugLoc info might be appropriate here
1011    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
1012  }
1013  return Result;
1014}
1015
1016SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1017  EVT EltVT = VT.getScalarType();
1018  if (EltVT==MVT::f32)
1019    return getConstantFP(APFloat((float)Val), VT, isTarget);
1020  else if (EltVT==MVT::f64)
1021    return getConstantFP(APFloat(Val), VT, isTarget);
1022  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1023    bool ignored;
1024    APFloat apf = APFloat(Val);
1025    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1026                &ignored);
1027    return getConstantFP(apf, VT, isTarget);
1028  } else {
1029    assert(0 && "Unsupported type in getConstantFP");
1030    return SDValue();
1031  }
1032}
1033
1034SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1035                                       EVT VT, int64_t Offset,
1036                                       bool isTargetGA,
1037                                       unsigned char TargetFlags) {
1038  assert((TargetFlags == 0 || isTargetGA) &&
1039         "Cannot set target flags on target-independent globals");
1040
1041  // Truncate (with sign-extension) the offset value to the pointer size.
1042  EVT PTy = TLI.getPointerTy();
1043  unsigned BitWidth = PTy.getSizeInBits();
1044  if (BitWidth < 64)
1045    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1046
1047  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1048  if (!GVar) {
1049    // If GV is an alias then use the aliasee for determining thread-localness.
1050    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1051      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1052  }
1053
1054  unsigned Opc;
1055  if (GVar && GVar->isThreadLocal())
1056    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1057  else
1058    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1059
1060  FoldingSetNodeID ID;
1061  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1062  ID.AddPointer(GV);
1063  ID.AddInteger(Offset);
1064  ID.AddInteger(TargetFlags);
1065  void *IP = 0;
1066  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1067    return SDValue(E, 0);
1068
1069  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1070                                                      Offset, TargetFlags);
1071  CSEMap.InsertNode(N, IP);
1072  AllNodes.push_back(N);
1073  return SDValue(N, 0);
1074}
1075
1076SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1077  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1078  FoldingSetNodeID ID;
1079  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1080  ID.AddInteger(FI);
1081  void *IP = 0;
1082  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1083    return SDValue(E, 0);
1084
1085  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1086  CSEMap.InsertNode(N, IP);
1087  AllNodes.push_back(N);
1088  return SDValue(N, 0);
1089}
1090
1091SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1092                                   unsigned char TargetFlags) {
1093  assert((TargetFlags == 0 || isTarget) &&
1094         "Cannot set target flags on target-independent jump tables");
1095  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1096  FoldingSetNodeID ID;
1097  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1098  ID.AddInteger(JTI);
1099  ID.AddInteger(TargetFlags);
1100  void *IP = 0;
1101  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1102    return SDValue(E, 0);
1103
1104  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1105                                                  TargetFlags);
1106  CSEMap.InsertNode(N, IP);
1107  AllNodes.push_back(N);
1108  return SDValue(N, 0);
1109}
1110
1111SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1112                                      unsigned Alignment, int Offset,
1113                                      bool isTarget,
1114                                      unsigned char TargetFlags) {
1115  assert((TargetFlags == 0 || isTarget) &&
1116         "Cannot set target flags on target-independent globals");
1117  if (Alignment == 0)
1118    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1119  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1120  FoldingSetNodeID ID;
1121  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1122  ID.AddInteger(Alignment);
1123  ID.AddInteger(Offset);
1124  ID.AddPointer(C);
1125  ID.AddInteger(TargetFlags);
1126  void *IP = 0;
1127  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1128    return SDValue(E, 0);
1129
1130  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1131                                                     Alignment, TargetFlags);
1132  CSEMap.InsertNode(N, IP);
1133  AllNodes.push_back(N);
1134  return SDValue(N, 0);
1135}
1136
1137
1138SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1139                                      unsigned Alignment, int Offset,
1140                                      bool isTarget,
1141                                      unsigned char TargetFlags) {
1142  assert((TargetFlags == 0 || isTarget) &&
1143         "Cannot set target flags on target-independent globals");
1144  if (Alignment == 0)
1145    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1146  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1147  FoldingSetNodeID ID;
1148  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1149  ID.AddInteger(Alignment);
1150  ID.AddInteger(Offset);
1151  C->AddSelectionDAGCSEId(ID);
1152  ID.AddInteger(TargetFlags);
1153  void *IP = 0;
1154  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1155    return SDValue(E, 0);
1156
1157  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1158                                                     Alignment, TargetFlags);
1159  CSEMap.InsertNode(N, IP);
1160  AllNodes.push_back(N);
1161  return SDValue(N, 0);
1162}
1163
1164SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1165  FoldingSetNodeID ID;
1166  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1167  ID.AddPointer(MBB);
1168  void *IP = 0;
1169  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1170    return SDValue(E, 0);
1171
1172  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1173  CSEMap.InsertNode(N, IP);
1174  AllNodes.push_back(N);
1175  return SDValue(N, 0);
1176}
1177
1178SDValue SelectionDAG::getValueType(EVT VT) {
1179  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1180      ValueTypeNodes.size())
1181    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1182
1183  SDNode *&N = VT.isExtended() ?
1184    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1185
1186  if (N) return SDValue(N, 0);
1187  N = new (NodeAllocator) VTSDNode(VT);
1188  AllNodes.push_back(N);
1189  return SDValue(N, 0);
1190}
1191
1192SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1193  SDNode *&N = ExternalSymbols[Sym];
1194  if (N) return SDValue(N, 0);
1195  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1196  AllNodes.push_back(N);
1197  return SDValue(N, 0);
1198}
1199
1200SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1201                                              unsigned char TargetFlags) {
1202  SDNode *&N =
1203    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1204                                                               TargetFlags)];
1205  if (N) return SDValue(N, 0);
1206  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1207  AllNodes.push_back(N);
1208  return SDValue(N, 0);
1209}
1210
1211SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1212  if ((unsigned)Cond >= CondCodeNodes.size())
1213    CondCodeNodes.resize(Cond+1);
1214
1215  if (CondCodeNodes[Cond] == 0) {
1216    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1217    CondCodeNodes[Cond] = N;
1218    AllNodes.push_back(N);
1219  }
1220
1221  return SDValue(CondCodeNodes[Cond], 0);
1222}
1223
1224// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1225// the shuffle mask M that point at N1 to point at N2, and indices that point
1226// N2 to point at N1.
1227static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1228  std::swap(N1, N2);
1229  int NElts = M.size();
1230  for (int i = 0; i != NElts; ++i) {
1231    if (M[i] >= NElts)
1232      M[i] -= NElts;
1233    else if (M[i] >= 0)
1234      M[i] += NElts;
1235  }
1236}
1237
1238SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1239                                       SDValue N2, const int *Mask) {
1240  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1241  assert(VT.isVector() && N1.getValueType().isVector() &&
1242         "Vector Shuffle VTs must be a vectors");
1243  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1244         && "Vector Shuffle VTs must have same element type");
1245
1246  // Canonicalize shuffle undef, undef -> undef
1247  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1248    return getUNDEF(VT);
1249
1250  // Validate that all indices in Mask are within the range of the elements
1251  // input to the shuffle.
1252  unsigned NElts = VT.getVectorNumElements();
1253  SmallVector<int, 8> MaskVec;
1254  for (unsigned i = 0; i != NElts; ++i) {
1255    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1256    MaskVec.push_back(Mask[i]);
1257  }
1258
1259  // Canonicalize shuffle v, v -> v, undef
1260  if (N1 == N2) {
1261    N2 = getUNDEF(VT);
1262    for (unsigned i = 0; i != NElts; ++i)
1263      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1264  }
1265
1266  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1267  if (N1.getOpcode() == ISD::UNDEF)
1268    commuteShuffle(N1, N2, MaskVec);
1269
1270  // Canonicalize all index into lhs, -> shuffle lhs, undef
1271  // Canonicalize all index into rhs, -> shuffle rhs, undef
1272  bool AllLHS = true, AllRHS = true;
1273  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1274  for (unsigned i = 0; i != NElts; ++i) {
1275    if (MaskVec[i] >= (int)NElts) {
1276      if (N2Undef)
1277        MaskVec[i] = -1;
1278      else
1279        AllLHS = false;
1280    } else if (MaskVec[i] >= 0) {
1281      AllRHS = false;
1282    }
1283  }
1284  if (AllLHS && AllRHS)
1285    return getUNDEF(VT);
1286  if (AllLHS && !N2Undef)
1287    N2 = getUNDEF(VT);
1288  if (AllRHS) {
1289    N1 = getUNDEF(VT);
1290    commuteShuffle(N1, N2, MaskVec);
1291  }
1292
1293  // If Identity shuffle, or all shuffle in to undef, return that node.
1294  bool AllUndef = true;
1295  bool Identity = true;
1296  for (unsigned i = 0; i != NElts; ++i) {
1297    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1298    if (MaskVec[i] >= 0) AllUndef = false;
1299  }
1300  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1301    return N1;
1302  if (AllUndef)
1303    return getUNDEF(VT);
1304
1305  FoldingSetNodeID ID;
1306  SDValue Ops[2] = { N1, N2 };
1307  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1308  for (unsigned i = 0; i != NElts; ++i)
1309    ID.AddInteger(MaskVec[i]);
1310
1311  void* IP = 0;
1312  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1313    return SDValue(E, 0);
1314
1315  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1316  // SDNode doesn't have access to it.  This memory will be "leaked" when
1317  // the node is deallocated, but recovered when the NodeAllocator is released.
1318  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1319  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1320
1321  ShuffleVectorSDNode *N =
1322    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1323  CSEMap.InsertNode(N, IP);
1324  AllNodes.push_back(N);
1325  return SDValue(N, 0);
1326}
1327
1328SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1329                                       SDValue Val, SDValue DTy,
1330                                       SDValue STy, SDValue Rnd, SDValue Sat,
1331                                       ISD::CvtCode Code) {
1332  // If the src and dest types are the same and the conversion is between
1333  // integer types of the same sign or two floats, no conversion is necessary.
1334  if (DTy == STy &&
1335      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1336    return Val;
1337
1338  FoldingSetNodeID ID;
1339  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1340  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1341  void* IP = 0;
1342  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1343    return SDValue(E, 0);
1344
1345  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1346                                                           Code);
1347  CSEMap.InsertNode(N, IP);
1348  AllNodes.push_back(N);
1349  return SDValue(N, 0);
1350}
1351
1352SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1353  FoldingSetNodeID ID;
1354  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1355  ID.AddInteger(RegNo);
1356  void *IP = 0;
1357  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1358    return SDValue(E, 0);
1359
1360  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1361  CSEMap.InsertNode(N, IP);
1362  AllNodes.push_back(N);
1363  return SDValue(N, 0);
1364}
1365
1366SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1367  FoldingSetNodeID ID;
1368  SDValue Ops[] = { Root };
1369  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1370  ID.AddPointer(Label);
1371  void *IP = 0;
1372  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1373    return SDValue(E, 0);
1374
1375  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1376  CSEMap.InsertNode(N, IP);
1377  AllNodes.push_back(N);
1378  return SDValue(N, 0);
1379}
1380
1381
1382SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1383                                      bool isTarget,
1384                                      unsigned char TargetFlags) {
1385  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1386
1387  FoldingSetNodeID ID;
1388  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1389  ID.AddPointer(BA);
1390  ID.AddInteger(TargetFlags);
1391  void *IP = 0;
1392  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1393    return SDValue(E, 0);
1394
1395  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1396  CSEMap.InsertNode(N, IP);
1397  AllNodes.push_back(N);
1398  return SDValue(N, 0);
1399}
1400
1401SDValue SelectionDAG::getSrcValue(const Value *V) {
1402  assert((!V || V->getType()->isPointerTy()) &&
1403         "SrcValue is not a pointer?");
1404
1405  FoldingSetNodeID ID;
1406  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1407  ID.AddPointer(V);
1408
1409  void *IP = 0;
1410  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1411    return SDValue(E, 0);
1412
1413  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1414  CSEMap.InsertNode(N, IP);
1415  AllNodes.push_back(N);
1416  return SDValue(N, 0);
1417}
1418
1419/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1420SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1421  FoldingSetNodeID ID;
1422  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1423  ID.AddPointer(MD);
1424
1425  void *IP = 0;
1426  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1427    return SDValue(E, 0);
1428
1429  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1430  CSEMap.InsertNode(N, IP);
1431  AllNodes.push_back(N);
1432  return SDValue(N, 0);
1433}
1434
1435
1436/// getShiftAmountOperand - Return the specified value casted to
1437/// the target's desired shift amount type.
1438SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1439  EVT OpTy = Op.getValueType();
1440  MVT ShTy = TLI.getShiftAmountTy(LHSTy);
1441  if (OpTy == ShTy || OpTy.isVector()) return Op;
1442
1443  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1444  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1445}
1446
1447/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1448/// specified value type.
1449SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1450  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1451  unsigned ByteSize = VT.getStoreSize();
1452  Type *Ty = VT.getTypeForEVT(*getContext());
1453  unsigned StackAlign =
1454  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1455
1456  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1457  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1458}
1459
1460/// CreateStackTemporary - Create a stack temporary suitable for holding
1461/// either of the specified value types.
1462SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1463  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1464                            VT2.getStoreSizeInBits())/8;
1465  Type *Ty1 = VT1.getTypeForEVT(*getContext());
1466  Type *Ty2 = VT2.getTypeForEVT(*getContext());
1467  const TargetData *TD = TLI.getTargetData();
1468  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1469                            TD->getPrefTypeAlignment(Ty2));
1470
1471  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1472  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1473  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1474}
1475
1476SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1477                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1478  // These setcc operations always fold.
1479  switch (Cond) {
1480  default: break;
1481  case ISD::SETFALSE:
1482  case ISD::SETFALSE2: return getConstant(0, VT);
1483  case ISD::SETTRUE:
1484  case ISD::SETTRUE2:  return getConstant(1, VT);
1485
1486  case ISD::SETOEQ:
1487  case ISD::SETOGT:
1488  case ISD::SETOGE:
1489  case ISD::SETOLT:
1490  case ISD::SETOLE:
1491  case ISD::SETONE:
1492  case ISD::SETO:
1493  case ISD::SETUO:
1494  case ISD::SETUEQ:
1495  case ISD::SETUNE:
1496    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1497    break;
1498  }
1499
1500  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1501    const APInt &C2 = N2C->getAPIntValue();
1502    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1503      const APInt &C1 = N1C->getAPIntValue();
1504
1505      switch (Cond) {
1506      default: llvm_unreachable("Unknown integer setcc!");
1507      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1508      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1509      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1510      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1511      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1512      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1513      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1514      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1515      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1516      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1517      }
1518    }
1519  }
1520  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1521    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1522      // No compile time operations on this type yet.
1523      if (N1C->getValueType(0) == MVT::ppcf128)
1524        return SDValue();
1525
1526      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1527      switch (Cond) {
1528      default: break;
1529      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1530                          return getUNDEF(VT);
1531                        // fall through
1532      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1533      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1534                          return getUNDEF(VT);
1535                        // fall through
1536      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1537                                           R==APFloat::cmpLessThan, VT);
1538      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1539                          return getUNDEF(VT);
1540                        // fall through
1541      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1542      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1543                          return getUNDEF(VT);
1544                        // fall through
1545      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1546      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1547                          return getUNDEF(VT);
1548                        // fall through
1549      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1550                                           R==APFloat::cmpEqual, VT);
1551      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1552                          return getUNDEF(VT);
1553                        // fall through
1554      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1555                                           R==APFloat::cmpEqual, VT);
1556      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1557      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1558      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1559                                           R==APFloat::cmpEqual, VT);
1560      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1561      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1562                                           R==APFloat::cmpLessThan, VT);
1563      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1564                                           R==APFloat::cmpUnordered, VT);
1565      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1566      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1567      }
1568    } else {
1569      // Ensure that the constant occurs on the RHS.
1570      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1571    }
1572  }
1573
1574  // Could not fold it.
1575  return SDValue();
1576}
1577
1578/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1579/// use this predicate to simplify operations downstream.
1580bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1581  // This predicate is not safe for vector operations.
1582  if (Op.getValueType().isVector())
1583    return false;
1584
1585  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1586  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1587}
1588
1589/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1590/// this predicate to simplify operations downstream.  Mask is known to be zero
1591/// for bits that V cannot have.
1592bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1593                                     unsigned Depth) const {
1594  APInt KnownZero, KnownOne;
1595  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1596  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1597  return (KnownZero & Mask) == Mask;
1598}
1599
1600/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1601/// known to be either zero or one and return them in the KnownZero/KnownOne
1602/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1603/// processing.
1604void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1605                                     APInt &KnownZero, APInt &KnownOne,
1606                                     unsigned Depth) const {
1607  unsigned BitWidth = Mask.getBitWidth();
1608  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1609         "Mask size mismatches value type size!");
1610
1611  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1612  if (Depth == 6 || Mask == 0)
1613    return;  // Limit search depth.
1614
1615  APInt KnownZero2, KnownOne2;
1616
1617  switch (Op.getOpcode()) {
1618  case ISD::Constant:
1619    // We know all of the bits for a constant!
1620    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1621    KnownZero = ~KnownOne & Mask;
1622    return;
1623  case ISD::AND:
1624    // If either the LHS or the RHS are Zero, the result is zero.
1625    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1626    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1627                      KnownZero2, KnownOne2, Depth+1);
1628    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1629    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1630
1631    // Output known-1 bits are only known if set in both the LHS & RHS.
1632    KnownOne &= KnownOne2;
1633    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1634    KnownZero |= KnownZero2;
1635    return;
1636  case ISD::OR:
1637    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1638    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1639                      KnownZero2, KnownOne2, Depth+1);
1640    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1641    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1642
1643    // Output known-0 bits are only known if clear in both the LHS & RHS.
1644    KnownZero &= KnownZero2;
1645    // Output known-1 are known to be set if set in either the LHS | RHS.
1646    KnownOne |= KnownOne2;
1647    return;
1648  case ISD::XOR: {
1649    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1650    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1651    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1652    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1653
1654    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1655    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1656    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1657    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1658    KnownZero = KnownZeroOut;
1659    return;
1660  }
1661  case ISD::MUL: {
1662    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1663    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1664    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1665    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1666    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1667
1668    // If low bits are zero in either operand, output low known-0 bits.
1669    // Also compute a conserative estimate for high known-0 bits.
1670    // More trickiness is possible, but this is sufficient for the
1671    // interesting case of alignment computation.
1672    KnownOne.clearAllBits();
1673    unsigned TrailZ = KnownZero.countTrailingOnes() +
1674                      KnownZero2.countTrailingOnes();
1675    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1676                               KnownZero2.countLeadingOnes(),
1677                               BitWidth) - BitWidth;
1678
1679    TrailZ = std::min(TrailZ, BitWidth);
1680    LeadZ = std::min(LeadZ, BitWidth);
1681    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1682                APInt::getHighBitsSet(BitWidth, LeadZ);
1683    KnownZero &= Mask;
1684    return;
1685  }
1686  case ISD::UDIV: {
1687    // For the purposes of computing leading zeros we can conservatively
1688    // treat a udiv as a logical right shift by the power of 2 known to
1689    // be less than the denominator.
1690    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1691    ComputeMaskedBits(Op.getOperand(0),
1692                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1693    unsigned LeadZ = KnownZero2.countLeadingOnes();
1694
1695    KnownOne2.clearAllBits();
1696    KnownZero2.clearAllBits();
1697    ComputeMaskedBits(Op.getOperand(1),
1698                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1699    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1700    if (RHSUnknownLeadingOnes != BitWidth)
1701      LeadZ = std::min(BitWidth,
1702                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1703
1704    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1705    return;
1706  }
1707  case ISD::SELECT:
1708    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1709    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1710    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1711    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1712
1713    // Only known if known in both the LHS and RHS.
1714    KnownOne &= KnownOne2;
1715    KnownZero &= KnownZero2;
1716    return;
1717  case ISD::SELECT_CC:
1718    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1719    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1720    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1721    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1722
1723    // Only known if known in both the LHS and RHS.
1724    KnownOne &= KnownOne2;
1725    KnownZero &= KnownZero2;
1726    return;
1727  case ISD::SADDO:
1728  case ISD::UADDO:
1729  case ISD::SSUBO:
1730  case ISD::USUBO:
1731  case ISD::SMULO:
1732  case ISD::UMULO:
1733    if (Op.getResNo() != 1)
1734      return;
1735    // The boolean result conforms to getBooleanContents.  Fall through.
1736  case ISD::SETCC:
1737    // If we know the result of a setcc has the top bits zero, use this info.
1738    if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
1739        TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1)
1740      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1741    return;
1742  case ISD::SHL:
1743    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1744    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1745      unsigned ShAmt = SA->getZExtValue();
1746
1747      // If the shift count is an invalid immediate, don't do anything.
1748      if (ShAmt >= BitWidth)
1749        return;
1750
1751      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1752                        KnownZero, KnownOne, Depth+1);
1753      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1754      KnownZero <<= ShAmt;
1755      KnownOne  <<= ShAmt;
1756      // low bits known zero.
1757      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1758    }
1759    return;
1760  case ISD::SRL:
1761    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1762    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1763      unsigned ShAmt = SA->getZExtValue();
1764
1765      // If the shift count is an invalid immediate, don't do anything.
1766      if (ShAmt >= BitWidth)
1767        return;
1768
1769      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1770                        KnownZero, KnownOne, Depth+1);
1771      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1772      KnownZero = KnownZero.lshr(ShAmt);
1773      KnownOne  = KnownOne.lshr(ShAmt);
1774
1775      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1776      KnownZero |= HighBits;  // High bits known zero.
1777    }
1778    return;
1779  case ISD::SRA:
1780    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1781      unsigned ShAmt = SA->getZExtValue();
1782
1783      // If the shift count is an invalid immediate, don't do anything.
1784      if (ShAmt >= BitWidth)
1785        return;
1786
1787      APInt InDemandedMask = (Mask << ShAmt);
1788      // If any of the demanded bits are produced by the sign extension, we also
1789      // demand the input sign bit.
1790      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1791      if (HighBits.getBoolValue())
1792        InDemandedMask |= APInt::getSignBit(BitWidth);
1793
1794      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1795                        Depth+1);
1796      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1797      KnownZero = KnownZero.lshr(ShAmt);
1798      KnownOne  = KnownOne.lshr(ShAmt);
1799
1800      // Handle the sign bits.
1801      APInt SignBit = APInt::getSignBit(BitWidth);
1802      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1803
1804      if (KnownZero.intersects(SignBit)) {
1805        KnownZero |= HighBits;  // New bits are known zero.
1806      } else if (KnownOne.intersects(SignBit)) {
1807        KnownOne  |= HighBits;  // New bits are known one.
1808      }
1809    }
1810    return;
1811  case ISD::SIGN_EXTEND_INREG: {
1812    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1813    unsigned EBits = EVT.getScalarType().getSizeInBits();
1814
1815    // Sign extension.  Compute the demanded bits in the result that are not
1816    // present in the input.
1817    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1818
1819    APInt InSignBit = APInt::getSignBit(EBits);
1820    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1821
1822    // If the sign extended bits are demanded, we know that the sign
1823    // bit is demanded.
1824    InSignBit = InSignBit.zext(BitWidth);
1825    if (NewBits.getBoolValue())
1826      InputDemandedBits |= InSignBit;
1827
1828    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1829                      KnownZero, KnownOne, Depth+1);
1830    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1831
1832    // If the sign bit of the input is known set or clear, then we know the
1833    // top bits of the result.
1834    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1835      KnownZero |= NewBits;
1836      KnownOne  &= ~NewBits;
1837    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1838      KnownOne  |= NewBits;
1839      KnownZero &= ~NewBits;
1840    } else {                              // Input sign bit unknown
1841      KnownZero &= ~NewBits;
1842      KnownOne  &= ~NewBits;
1843    }
1844    return;
1845  }
1846  case ISD::CTTZ:
1847  case ISD::CTLZ:
1848  case ISD::CTPOP: {
1849    unsigned LowBits = Log2_32(BitWidth)+1;
1850    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1851    KnownOne.clearAllBits();
1852    return;
1853  }
1854  case ISD::LOAD: {
1855    if (ISD::isZEXTLoad(Op.getNode())) {
1856      LoadSDNode *LD = cast<LoadSDNode>(Op);
1857      EVT VT = LD->getMemoryVT();
1858      unsigned MemBits = VT.getScalarType().getSizeInBits();
1859      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1860    }
1861    return;
1862  }
1863  case ISD::ZERO_EXTEND: {
1864    EVT InVT = Op.getOperand(0).getValueType();
1865    unsigned InBits = InVT.getScalarType().getSizeInBits();
1866    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1867    APInt InMask    = Mask.trunc(InBits);
1868    KnownZero = KnownZero.trunc(InBits);
1869    KnownOne = KnownOne.trunc(InBits);
1870    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1871    KnownZero = KnownZero.zext(BitWidth);
1872    KnownOne = KnownOne.zext(BitWidth);
1873    KnownZero |= NewBits;
1874    return;
1875  }
1876  case ISD::SIGN_EXTEND: {
1877    EVT InVT = Op.getOperand(0).getValueType();
1878    unsigned InBits = InVT.getScalarType().getSizeInBits();
1879    APInt InSignBit = APInt::getSignBit(InBits);
1880    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1881    APInt InMask = Mask.trunc(InBits);
1882
1883    // If any of the sign extended bits are demanded, we know that the sign
1884    // bit is demanded. Temporarily set this bit in the mask for our callee.
1885    if (NewBits.getBoolValue())
1886      InMask |= InSignBit;
1887
1888    KnownZero = KnownZero.trunc(InBits);
1889    KnownOne = KnownOne.trunc(InBits);
1890    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1891
1892    // Note if the sign bit is known to be zero or one.
1893    bool SignBitKnownZero = KnownZero.isNegative();
1894    bool SignBitKnownOne  = KnownOne.isNegative();
1895    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1896           "Sign bit can't be known to be both zero and one!");
1897
1898    // If the sign bit wasn't actually demanded by our caller, we don't
1899    // want it set in the KnownZero and KnownOne result values. Reset the
1900    // mask and reapply it to the result values.
1901    InMask = Mask.trunc(InBits);
1902    KnownZero &= InMask;
1903    KnownOne  &= InMask;
1904
1905    KnownZero = KnownZero.zext(BitWidth);
1906    KnownOne = KnownOne.zext(BitWidth);
1907
1908    // If the sign bit is known zero or one, the top bits match.
1909    if (SignBitKnownZero)
1910      KnownZero |= NewBits;
1911    else if (SignBitKnownOne)
1912      KnownOne  |= NewBits;
1913    return;
1914  }
1915  case ISD::ANY_EXTEND: {
1916    EVT InVT = Op.getOperand(0).getValueType();
1917    unsigned InBits = InVT.getScalarType().getSizeInBits();
1918    APInt InMask = Mask.trunc(InBits);
1919    KnownZero = KnownZero.trunc(InBits);
1920    KnownOne = KnownOne.trunc(InBits);
1921    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1922    KnownZero = KnownZero.zext(BitWidth);
1923    KnownOne = KnownOne.zext(BitWidth);
1924    return;
1925  }
1926  case ISD::TRUNCATE: {
1927    EVT InVT = Op.getOperand(0).getValueType();
1928    unsigned InBits = InVT.getScalarType().getSizeInBits();
1929    APInt InMask = Mask.zext(InBits);
1930    KnownZero = KnownZero.zext(InBits);
1931    KnownOne = KnownOne.zext(InBits);
1932    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1933    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1934    KnownZero = KnownZero.trunc(BitWidth);
1935    KnownOne = KnownOne.trunc(BitWidth);
1936    break;
1937  }
1938  case ISD::AssertZext: {
1939    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1940    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1941    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1942                      KnownOne, Depth+1);
1943    KnownZero |= (~InMask) & Mask;
1944    return;
1945  }
1946  case ISD::FGETSIGN:
1947    // All bits are zero except the low bit.
1948    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1949    return;
1950
1951  case ISD::SUB: {
1952    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1953      // We know that the top bits of C-X are clear if X contains less bits
1954      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1955      // positive if we can prove that X is >= 0 and < 16.
1956      if (CLHS->getAPIntValue().isNonNegative()) {
1957        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1958        // NLZ can't be BitWidth with no sign bit
1959        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1960        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1961                          Depth+1);
1962
1963        // If all of the MaskV bits are known to be zero, then we know the
1964        // output top bits are zero, because we now know that the output is
1965        // from [0-C].
1966        if ((KnownZero2 & MaskV) == MaskV) {
1967          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1968          // Top bits known zero.
1969          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1970        }
1971      }
1972    }
1973  }
1974  // fall through
1975  case ISD::ADD:
1976  case ISD::ADDE: {
1977    // Output known-0 bits are known if clear or set in both the low clear bits
1978    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1979    // low 3 bits clear.
1980    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1981                                       BitWidth - Mask.countLeadingZeros());
1982    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1983    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1984    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1985
1986    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1987    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1988    KnownZeroOut = std::min(KnownZeroOut,
1989                            KnownZero2.countTrailingOnes());
1990
1991    if (Op.getOpcode() == ISD::ADD) {
1992      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1993      return;
1994    }
1995
1996    // With ADDE, a carry bit may be added in, so we can only use this
1997    // information if we know (at least) that the low two bits are clear.  We
1998    // then return to the caller that the low bit is unknown but that other bits
1999    // are known zero.
2000    if (KnownZeroOut >= 2) // ADDE
2001      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
2002    return;
2003  }
2004  case ISD::SREM:
2005    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2006      const APInt &RA = Rem->getAPIntValue().abs();
2007      if (RA.isPowerOf2()) {
2008        APInt LowBits = RA - 1;
2009        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
2010        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
2011
2012        // The low bits of the first operand are unchanged by the srem.
2013        KnownZero = KnownZero2 & LowBits;
2014        KnownOne = KnownOne2 & LowBits;
2015
2016        // If the first operand is non-negative or has all low bits zero, then
2017        // the upper bits are all zero.
2018        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2019          KnownZero |= ~LowBits;
2020
2021        // If the first operand is negative and not all low bits are zero, then
2022        // the upper bits are all one.
2023        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2024          KnownOne |= ~LowBits;
2025
2026        KnownZero &= Mask;
2027        KnownOne &= Mask;
2028
2029        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2030      }
2031    }
2032    return;
2033  case ISD::UREM: {
2034    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2035      const APInt &RA = Rem->getAPIntValue();
2036      if (RA.isPowerOf2()) {
2037        APInt LowBits = (RA - 1);
2038        APInt Mask2 = LowBits & Mask;
2039        KnownZero |= ~LowBits & Mask;
2040        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2041        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2042        break;
2043      }
2044    }
2045
2046    // Since the result is less than or equal to either operand, any leading
2047    // zero bits in either operand must also exist in the result.
2048    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2049    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2050                      Depth+1);
2051    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2052                      Depth+1);
2053
2054    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2055                                KnownZero2.countLeadingOnes());
2056    KnownOne.clearAllBits();
2057    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2058    return;
2059  }
2060  case ISD::FrameIndex:
2061  case ISD::TargetFrameIndex:
2062    if (unsigned Align = InferPtrAlignment(Op)) {
2063      // The low bits are known zero if the pointer is aligned.
2064      KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2065      return;
2066    }
2067    break;
2068
2069  default:
2070    if (Op.getOpcode() < ISD::BUILTIN_OP_END)
2071      break;
2072    // Fallthrough
2073  case ISD::INTRINSIC_WO_CHAIN:
2074  case ISD::INTRINSIC_W_CHAIN:
2075  case ISD::INTRINSIC_VOID:
2076    // Allow the target to implement this method for its nodes.
2077    TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2078                                       Depth);
2079    return;
2080  }
2081}
2082
2083/// ComputeNumSignBits - Return the number of times the sign bit of the
2084/// register is replicated into the other bits.  We know that at least 1 bit
2085/// is always equal to the sign bit (itself), but other cases can give us
2086/// information.  For example, immediately after an "SRA X, 2", we know that
2087/// the top 3 bits are all equal to each other, so we return 3.
2088unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2089  EVT VT = Op.getValueType();
2090  assert(VT.isInteger() && "Invalid VT!");
2091  unsigned VTBits = VT.getScalarType().getSizeInBits();
2092  unsigned Tmp, Tmp2;
2093  unsigned FirstAnswer = 1;
2094
2095  if (Depth == 6)
2096    return 1;  // Limit search depth.
2097
2098  switch (Op.getOpcode()) {
2099  default: break;
2100  case ISD::AssertSext:
2101    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2102    return VTBits-Tmp+1;
2103  case ISD::AssertZext:
2104    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2105    return VTBits-Tmp;
2106
2107  case ISD::Constant: {
2108    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2109    return Val.getNumSignBits();
2110  }
2111
2112  case ISD::SIGN_EXTEND:
2113    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2114    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2115
2116  case ISD::SIGN_EXTEND_INREG:
2117    // Max of the input and what this extends.
2118    Tmp =
2119      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2120    Tmp = VTBits-Tmp+1;
2121
2122    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2123    return std::max(Tmp, Tmp2);
2124
2125  case ISD::SRA:
2126    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2127    // SRA X, C   -> adds C sign bits.
2128    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2129      Tmp += C->getZExtValue();
2130      if (Tmp > VTBits) Tmp = VTBits;
2131    }
2132    return Tmp;
2133  case ISD::SHL:
2134    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2135      // shl destroys sign bits.
2136      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2137      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2138          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2139      return Tmp - C->getZExtValue();
2140    }
2141    break;
2142  case ISD::AND:
2143  case ISD::OR:
2144  case ISD::XOR:    // NOT is handled here.
2145    // Logical binary ops preserve the number of sign bits at the worst.
2146    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2147    if (Tmp != 1) {
2148      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2149      FirstAnswer = std::min(Tmp, Tmp2);
2150      // We computed what we know about the sign bits as our first
2151      // answer. Now proceed to the generic code that uses
2152      // ComputeMaskedBits, and pick whichever answer is better.
2153    }
2154    break;
2155
2156  case ISD::SELECT:
2157    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2158    if (Tmp == 1) return 1;  // Early out.
2159    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2160    return std::min(Tmp, Tmp2);
2161
2162  case ISD::SADDO:
2163  case ISD::UADDO:
2164  case ISD::SSUBO:
2165  case ISD::USUBO:
2166  case ISD::SMULO:
2167  case ISD::UMULO:
2168    if (Op.getResNo() != 1)
2169      break;
2170    // The boolean result conforms to getBooleanContents.  Fall through.
2171  case ISD::SETCC:
2172    // If setcc returns 0/-1, all bits are sign bits.
2173    if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
2174        TargetLowering::ZeroOrNegativeOneBooleanContent)
2175      return VTBits;
2176    break;
2177  case ISD::ROTL:
2178  case ISD::ROTR:
2179    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2180      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2181
2182      // Handle rotate right by N like a rotate left by 32-N.
2183      if (Op.getOpcode() == ISD::ROTR)
2184        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2185
2186      // If we aren't rotating out all of the known-in sign bits, return the
2187      // number that are left.  This handles rotl(sext(x), 1) for example.
2188      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2189      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2190    }
2191    break;
2192  case ISD::ADD:
2193    // Add can have at most one carry bit.  Thus we know that the output
2194    // is, at worst, one more bit than the inputs.
2195    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2196    if (Tmp == 1) return 1;  // Early out.
2197
2198    // Special case decrementing a value (ADD X, -1):
2199    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2200      if (CRHS->isAllOnesValue()) {
2201        APInt KnownZero, KnownOne;
2202        APInt Mask = APInt::getAllOnesValue(VTBits);
2203        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2204
2205        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2206        // sign bits set.
2207        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2208          return VTBits;
2209
2210        // If we are subtracting one from a positive number, there is no carry
2211        // out of the result.
2212        if (KnownZero.isNegative())
2213          return Tmp;
2214      }
2215
2216    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2217    if (Tmp2 == 1) return 1;
2218      return std::min(Tmp, Tmp2)-1;
2219    break;
2220
2221  case ISD::SUB:
2222    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2223    if (Tmp2 == 1) return 1;
2224
2225    // Handle NEG.
2226    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2227      if (CLHS->isNullValue()) {
2228        APInt KnownZero, KnownOne;
2229        APInt Mask = APInt::getAllOnesValue(VTBits);
2230        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2231        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2232        // sign bits set.
2233        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2234          return VTBits;
2235
2236        // If the input is known to be positive (the sign bit is known clear),
2237        // the output of the NEG has the same number of sign bits as the input.
2238        if (KnownZero.isNegative())
2239          return Tmp2;
2240
2241        // Otherwise, we treat this like a SUB.
2242      }
2243
2244    // Sub can have at most one carry bit.  Thus we know that the output
2245    // is, at worst, one more bit than the inputs.
2246    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2247    if (Tmp == 1) return 1;  // Early out.
2248      return std::min(Tmp, Tmp2)-1;
2249    break;
2250  case ISD::TRUNCATE:
2251    // FIXME: it's tricky to do anything useful for this, but it is an important
2252    // case for targets like X86.
2253    break;
2254  }
2255
2256  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2257  if (Op.getOpcode() == ISD::LOAD) {
2258    LoadSDNode *LD = cast<LoadSDNode>(Op);
2259    unsigned ExtType = LD->getExtensionType();
2260    switch (ExtType) {
2261    default: break;
2262    case ISD::SEXTLOAD:    // '17' bits known
2263      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2264      return VTBits-Tmp+1;
2265    case ISD::ZEXTLOAD:    // '16' bits known
2266      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2267      return VTBits-Tmp;
2268    }
2269  }
2270
2271  // Allow the target to implement this method for its nodes.
2272  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2273      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2274      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2275      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2276    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2277    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2278  }
2279
2280  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2281  // use this information.
2282  APInt KnownZero, KnownOne;
2283  APInt Mask = APInt::getAllOnesValue(VTBits);
2284  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2285
2286  if (KnownZero.isNegative()) {        // sign bit is 0
2287    Mask = KnownZero;
2288  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2289    Mask = KnownOne;
2290  } else {
2291    // Nothing known.
2292    return FirstAnswer;
2293  }
2294
2295  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2296  // the number of identical bits in the top of the input value.
2297  Mask = ~Mask;
2298  Mask <<= Mask.getBitWidth()-VTBits;
2299  // Return # leading zeros.  We use 'min' here in case Val was zero before
2300  // shifting.  We don't want to return '64' as for an i32 "0".
2301  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2302}
2303
2304/// isBaseWithConstantOffset - Return true if the specified operand is an
2305/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2306/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2307/// semantics as an ADD.  This handles the equivalence:
2308///     X|Cst == X+Cst iff X&Cst = 0.
2309bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2310  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2311      !isa<ConstantSDNode>(Op.getOperand(1)))
2312    return false;
2313
2314  if (Op.getOpcode() == ISD::OR &&
2315      !MaskedValueIsZero(Op.getOperand(0),
2316                     cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2317    return false;
2318
2319  return true;
2320}
2321
2322
2323bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2324  // If we're told that NaNs won't happen, assume they won't.
2325  if (NoNaNsFPMath)
2326    return true;
2327
2328  // If the value is a constant, we can obviously see if it is a NaN or not.
2329  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2330    return !C->getValueAPF().isNaN();
2331
2332  // TODO: Recognize more cases here.
2333
2334  return false;
2335}
2336
2337bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2338  // If the value is a constant, we can obviously see if it is a zero or not.
2339  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2340    return !C->isZero();
2341
2342  // TODO: Recognize more cases here.
2343  switch (Op.getOpcode()) {
2344  default: break;
2345  case ISD::OR:
2346    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2347      return !C->isNullValue();
2348    break;
2349  }
2350
2351  return false;
2352}
2353
2354bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2355  // Check the obvious case.
2356  if (A == B) return true;
2357
2358  // For for negative and positive zero.
2359  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2360    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2361      if (CA->isZero() && CB->isZero()) return true;
2362
2363  // Otherwise they may not be equal.
2364  return false;
2365}
2366
2367/// getNode - Gets or creates the specified node.
2368///
2369SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2370  FoldingSetNodeID ID;
2371  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2372  void *IP = 0;
2373  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2374    return SDValue(E, 0);
2375
2376  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2377  CSEMap.InsertNode(N, IP);
2378
2379  AllNodes.push_back(N);
2380#ifndef NDEBUG
2381  VerifySDNode(N);
2382#endif
2383  return SDValue(N, 0);
2384}
2385
2386SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2387                              EVT VT, SDValue Operand) {
2388  // Constant fold unary operations with an integer constant operand.
2389  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2390    const APInt &Val = C->getAPIntValue();
2391    switch (Opcode) {
2392    default: break;
2393    case ISD::SIGN_EXTEND:
2394      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2395    case ISD::ANY_EXTEND:
2396    case ISD::ZERO_EXTEND:
2397    case ISD::TRUNCATE:
2398      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2399    case ISD::UINT_TO_FP:
2400    case ISD::SINT_TO_FP: {
2401      // No compile time operations on ppcf128.
2402      if (VT == MVT::ppcf128) break;
2403      APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2404      (void)apf.convertFromAPInt(Val,
2405                                 Opcode==ISD::SINT_TO_FP,
2406                                 APFloat::rmNearestTiesToEven);
2407      return getConstantFP(apf, VT);
2408    }
2409    case ISD::BITCAST:
2410      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2411        return getConstantFP(Val.bitsToFloat(), VT);
2412      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2413        return getConstantFP(Val.bitsToDouble(), VT);
2414      break;
2415    case ISD::BSWAP:
2416      return getConstant(Val.byteSwap(), VT);
2417    case ISD::CTPOP:
2418      return getConstant(Val.countPopulation(), VT);
2419    case ISD::CTLZ:
2420      return getConstant(Val.countLeadingZeros(), VT);
2421    case ISD::CTTZ:
2422      return getConstant(Val.countTrailingZeros(), VT);
2423    }
2424  }
2425
2426  // Constant fold unary operations with a floating point constant operand.
2427  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2428    APFloat V = C->getValueAPF();    // make copy
2429    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2430      switch (Opcode) {
2431      case ISD::FNEG:
2432        V.changeSign();
2433        return getConstantFP(V, VT);
2434      case ISD::FABS:
2435        V.clearSign();
2436        return getConstantFP(V, VT);
2437      case ISD::FP_ROUND:
2438      case ISD::FP_EXTEND: {
2439        bool ignored;
2440        // This can return overflow, underflow, or inexact; we don't care.
2441        // FIXME need to be more flexible about rounding mode.
2442        (void)V.convert(*EVTToAPFloatSemantics(VT),
2443                        APFloat::rmNearestTiesToEven, &ignored);
2444        return getConstantFP(V, VT);
2445      }
2446      case ISD::FP_TO_SINT:
2447      case ISD::FP_TO_UINT: {
2448        integerPart x[2];
2449        bool ignored;
2450        assert(integerPartWidth >= 64);
2451        // FIXME need to be more flexible about rounding mode.
2452        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2453                              Opcode==ISD::FP_TO_SINT,
2454                              APFloat::rmTowardZero, &ignored);
2455        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2456          break;
2457        APInt api(VT.getSizeInBits(), x);
2458        return getConstant(api, VT);
2459      }
2460      case ISD::BITCAST:
2461        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2462          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2463        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2464          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2465        break;
2466      }
2467    }
2468  }
2469
2470  unsigned OpOpcode = Operand.getNode()->getOpcode();
2471  switch (Opcode) {
2472  case ISD::TokenFactor:
2473  case ISD::MERGE_VALUES:
2474  case ISD::CONCAT_VECTORS:
2475    return Operand;         // Factor, merge or concat of one node?  No need.
2476  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2477  case ISD::FP_EXTEND:
2478    assert(VT.isFloatingPoint() &&
2479           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2480    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2481    assert((!VT.isVector() ||
2482            VT.getVectorNumElements() ==
2483            Operand.getValueType().getVectorNumElements()) &&
2484           "Vector element count mismatch!");
2485    if (Operand.getOpcode() == ISD::UNDEF)
2486      return getUNDEF(VT);
2487    break;
2488  case ISD::SIGN_EXTEND:
2489    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2490           "Invalid SIGN_EXTEND!");
2491    if (Operand.getValueType() == VT) return Operand;   // noop extension
2492    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2493           "Invalid sext node, dst < src!");
2494    assert((!VT.isVector() ||
2495            VT.getVectorNumElements() ==
2496            Operand.getValueType().getVectorNumElements()) &&
2497           "Vector element count mismatch!");
2498    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2499      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2500    else if (OpOpcode == ISD::UNDEF)
2501      // sext(undef) = 0, because the top bits will all be the same.
2502      return getConstant(0, VT);
2503    break;
2504  case ISD::ZERO_EXTEND:
2505    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2506           "Invalid ZERO_EXTEND!");
2507    if (Operand.getValueType() == VT) return Operand;   // noop extension
2508    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2509           "Invalid zext node, dst < src!");
2510    assert((!VT.isVector() ||
2511            VT.getVectorNumElements() ==
2512            Operand.getValueType().getVectorNumElements()) &&
2513           "Vector element count mismatch!");
2514    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2515      return getNode(ISD::ZERO_EXTEND, DL, VT,
2516                     Operand.getNode()->getOperand(0));
2517    else if (OpOpcode == ISD::UNDEF)
2518      // zext(undef) = 0, because the top bits will be zero.
2519      return getConstant(0, VT);
2520    break;
2521  case ISD::ANY_EXTEND:
2522    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2523           "Invalid ANY_EXTEND!");
2524    if (Operand.getValueType() == VT) return Operand;   // noop extension
2525    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2526           "Invalid anyext node, dst < src!");
2527    assert((!VT.isVector() ||
2528            VT.getVectorNumElements() ==
2529            Operand.getValueType().getVectorNumElements()) &&
2530           "Vector element count mismatch!");
2531
2532    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2533        OpOpcode == ISD::ANY_EXTEND)
2534      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2535      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2536    else if (OpOpcode == ISD::UNDEF)
2537      return getUNDEF(VT);
2538
2539    // (ext (trunx x)) -> x
2540    if (OpOpcode == ISD::TRUNCATE) {
2541      SDValue OpOp = Operand.getNode()->getOperand(0);
2542      if (OpOp.getValueType() == VT)
2543        return OpOp;
2544    }
2545    break;
2546  case ISD::TRUNCATE:
2547    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2548           "Invalid TRUNCATE!");
2549    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2550    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2551           "Invalid truncate node, src < dst!");
2552    assert((!VT.isVector() ||
2553            VT.getVectorNumElements() ==
2554            Operand.getValueType().getVectorNumElements()) &&
2555           "Vector element count mismatch!");
2556    if (OpOpcode == ISD::TRUNCATE)
2557      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2558    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2559             OpOpcode == ISD::ANY_EXTEND) {
2560      // If the source is smaller than the dest, we still need an extend.
2561      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2562            .bitsLT(VT.getScalarType()))
2563        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2564      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2565        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2566      else
2567        return Operand.getNode()->getOperand(0);
2568    }
2569    break;
2570  case ISD::BITCAST:
2571    // Basic sanity checking.
2572    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2573           && "Cannot BITCAST between types of different sizes!");
2574    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2575    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2576      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2577    if (OpOpcode == ISD::UNDEF)
2578      return getUNDEF(VT);
2579    break;
2580  case ISD::SCALAR_TO_VECTOR:
2581    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2582           (VT.getVectorElementType() == Operand.getValueType() ||
2583            (VT.getVectorElementType().isInteger() &&
2584             Operand.getValueType().isInteger() &&
2585             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2586           "Illegal SCALAR_TO_VECTOR node!");
2587    if (OpOpcode == ISD::UNDEF)
2588      return getUNDEF(VT);
2589    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2590    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2591        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2592        Operand.getConstantOperandVal(1) == 0 &&
2593        Operand.getOperand(0).getValueType() == VT)
2594      return Operand.getOperand(0);
2595    break;
2596  case ISD::FNEG:
2597    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2598    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2599      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2600                     Operand.getNode()->getOperand(0));
2601    if (OpOpcode == ISD::FNEG)  // --X -> X
2602      return Operand.getNode()->getOperand(0);
2603    break;
2604  case ISD::FABS:
2605    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2606      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2607    break;
2608  }
2609
2610  SDNode *N;
2611  SDVTList VTs = getVTList(VT);
2612  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2613    FoldingSetNodeID ID;
2614    SDValue Ops[1] = { Operand };
2615    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2616    void *IP = 0;
2617    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2618      return SDValue(E, 0);
2619
2620    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2621    CSEMap.InsertNode(N, IP);
2622  } else {
2623    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2624  }
2625
2626  AllNodes.push_back(N);
2627#ifndef NDEBUG
2628  VerifySDNode(N);
2629#endif
2630  return SDValue(N, 0);
2631}
2632
2633SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2634                                             EVT VT,
2635                                             ConstantSDNode *Cst1,
2636                                             ConstantSDNode *Cst2) {
2637  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2638
2639  switch (Opcode) {
2640  case ISD::ADD:  return getConstant(C1 + C2, VT);
2641  case ISD::SUB:  return getConstant(C1 - C2, VT);
2642  case ISD::MUL:  return getConstant(C1 * C2, VT);
2643  case ISD::UDIV:
2644    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2645    break;
2646  case ISD::UREM:
2647    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2648    break;
2649  case ISD::SDIV:
2650    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2651    break;
2652  case ISD::SREM:
2653    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2654    break;
2655  case ISD::AND:  return getConstant(C1 & C2, VT);
2656  case ISD::OR:   return getConstant(C1 | C2, VT);
2657  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2658  case ISD::SHL:  return getConstant(C1 << C2, VT);
2659  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2660  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2661  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2662  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2663  default: break;
2664  }
2665
2666  return SDValue();
2667}
2668
2669SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2670                              SDValue N1, SDValue N2) {
2671  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2672  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2673  switch (Opcode) {
2674  default: break;
2675  case ISD::TokenFactor:
2676    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2677           N2.getValueType() == MVT::Other && "Invalid token factor!");
2678    // Fold trivial token factors.
2679    if (N1.getOpcode() == ISD::EntryToken) return N2;
2680    if (N2.getOpcode() == ISD::EntryToken) return N1;
2681    if (N1 == N2) return N1;
2682    break;
2683  case ISD::CONCAT_VECTORS:
2684    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2685    // one big BUILD_VECTOR.
2686    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2687        N2.getOpcode() == ISD::BUILD_VECTOR) {
2688      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2689                                    N1.getNode()->op_end());
2690      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2691      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2692    }
2693    break;
2694  case ISD::AND:
2695    assert(VT.isInteger() && "This operator does not apply to FP types!");
2696    assert(N1.getValueType() == N2.getValueType() &&
2697           N1.getValueType() == VT && "Binary operator types must match!");
2698    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2699    // worth handling here.
2700    if (N2C && N2C->isNullValue())
2701      return N2;
2702    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2703      return N1;
2704    break;
2705  case ISD::OR:
2706  case ISD::XOR:
2707  case ISD::ADD:
2708  case ISD::SUB:
2709    assert(VT.isInteger() && "This operator does not apply to FP types!");
2710    assert(N1.getValueType() == N2.getValueType() &&
2711           N1.getValueType() == VT && "Binary operator types must match!");
2712    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2713    // it's worth handling here.
2714    if (N2C && N2C->isNullValue())
2715      return N1;
2716    break;
2717  case ISD::UDIV:
2718  case ISD::UREM:
2719  case ISD::MULHU:
2720  case ISD::MULHS:
2721  case ISD::MUL:
2722  case ISD::SDIV:
2723  case ISD::SREM:
2724    assert(VT.isInteger() && "This operator does not apply to FP types!");
2725    assert(N1.getValueType() == N2.getValueType() &&
2726           N1.getValueType() == VT && "Binary operator types must match!");
2727    break;
2728  case ISD::FADD:
2729  case ISD::FSUB:
2730  case ISD::FMUL:
2731  case ISD::FDIV:
2732  case ISD::FREM:
2733    if (UnsafeFPMath) {
2734      if (Opcode == ISD::FADD) {
2735        // 0+x --> x
2736        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2737          if (CFP->getValueAPF().isZero())
2738            return N2;
2739        // x+0 --> x
2740        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2741          if (CFP->getValueAPF().isZero())
2742            return N1;
2743      } else if (Opcode == ISD::FSUB) {
2744        // x-0 --> x
2745        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2746          if (CFP->getValueAPF().isZero())
2747            return N1;
2748      }
2749    }
2750    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2751    assert(N1.getValueType() == N2.getValueType() &&
2752           N1.getValueType() == VT && "Binary operator types must match!");
2753    break;
2754  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2755    assert(N1.getValueType() == VT &&
2756           N1.getValueType().isFloatingPoint() &&
2757           N2.getValueType().isFloatingPoint() &&
2758           "Invalid FCOPYSIGN!");
2759    break;
2760  case ISD::SHL:
2761  case ISD::SRA:
2762  case ISD::SRL:
2763  case ISD::ROTL:
2764  case ISD::ROTR:
2765    assert(VT == N1.getValueType() &&
2766           "Shift operators return type must be the same as their first arg");
2767    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2768           "Shifts only work on integers");
2769    // Verify that the shift amount VT is bit enough to hold valid shift
2770    // amounts.  This catches things like trying to shift an i1024 value by an
2771    // i8, which is easy to fall into in generic code that uses
2772    // TLI.getShiftAmount().
2773    assert(N2.getValueType().getSizeInBits() >=
2774                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2775           "Invalid use of small shift amount with oversized value!");
2776
2777    // Always fold shifts of i1 values so the code generator doesn't need to
2778    // handle them.  Since we know the size of the shift has to be less than the
2779    // size of the value, the shift/rotate count is guaranteed to be zero.
2780    if (VT == MVT::i1)
2781      return N1;
2782    if (N2C && N2C->isNullValue())
2783      return N1;
2784    break;
2785  case ISD::FP_ROUND_INREG: {
2786    EVT EVT = cast<VTSDNode>(N2)->getVT();
2787    assert(VT == N1.getValueType() && "Not an inreg round!");
2788    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2789           "Cannot FP_ROUND_INREG integer types");
2790    assert(EVT.isVector() == VT.isVector() &&
2791           "FP_ROUND_INREG type should be vector iff the operand "
2792           "type is vector!");
2793    assert((!EVT.isVector() ||
2794            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2795           "Vector element counts must match in FP_ROUND_INREG");
2796    assert(EVT.bitsLE(VT) && "Not rounding down!");
2797    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2798    break;
2799  }
2800  case ISD::FP_ROUND:
2801    assert(VT.isFloatingPoint() &&
2802           N1.getValueType().isFloatingPoint() &&
2803           VT.bitsLE(N1.getValueType()) &&
2804           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2805    if (N1.getValueType() == VT) return N1;  // noop conversion.
2806    break;
2807  case ISD::AssertSext:
2808  case ISD::AssertZext: {
2809    EVT EVT = cast<VTSDNode>(N2)->getVT();
2810    assert(VT == N1.getValueType() && "Not an inreg extend!");
2811    assert(VT.isInteger() && EVT.isInteger() &&
2812           "Cannot *_EXTEND_INREG FP types");
2813    assert(!EVT.isVector() &&
2814           "AssertSExt/AssertZExt type should be the vector element type "
2815           "rather than the vector type!");
2816    assert(EVT.bitsLE(VT) && "Not extending!");
2817    if (VT == EVT) return N1; // noop assertion.
2818    break;
2819  }
2820  case ISD::SIGN_EXTEND_INREG: {
2821    EVT EVT = cast<VTSDNode>(N2)->getVT();
2822    assert(VT == N1.getValueType() && "Not an inreg extend!");
2823    assert(VT.isInteger() && EVT.isInteger() &&
2824           "Cannot *_EXTEND_INREG FP types");
2825    assert(EVT.isVector() == VT.isVector() &&
2826           "SIGN_EXTEND_INREG type should be vector iff the operand "
2827           "type is vector!");
2828    assert((!EVT.isVector() ||
2829            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2830           "Vector element counts must match in SIGN_EXTEND_INREG");
2831    assert(EVT.bitsLE(VT) && "Not extending!");
2832    if (EVT == VT) return N1;  // Not actually extending
2833
2834    if (N1C) {
2835      APInt Val = N1C->getAPIntValue();
2836      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2837      Val <<= Val.getBitWidth()-FromBits;
2838      Val = Val.ashr(Val.getBitWidth()-FromBits);
2839      return getConstant(Val, VT);
2840    }
2841    break;
2842  }
2843  case ISD::EXTRACT_VECTOR_ELT:
2844    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2845    if (N1.getOpcode() == ISD::UNDEF)
2846      return getUNDEF(VT);
2847
2848    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2849    // expanding copies of large vectors from registers.
2850    if (N2C &&
2851        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2852        N1.getNumOperands() > 0) {
2853      unsigned Factor =
2854        N1.getOperand(0).getValueType().getVectorNumElements();
2855      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2856                     N1.getOperand(N2C->getZExtValue() / Factor),
2857                     getConstant(N2C->getZExtValue() % Factor,
2858                                 N2.getValueType()));
2859    }
2860
2861    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2862    // expanding large vector constants.
2863    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2864      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2865      EVT VEltTy = N1.getValueType().getVectorElementType();
2866      if (Elt.getValueType() != VEltTy) {
2867        // If the vector element type is not legal, the BUILD_VECTOR operands
2868        // are promoted and implicitly truncated.  Make that explicit here.
2869        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2870      }
2871      if (VT != VEltTy) {
2872        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2873        // result is implicitly extended.
2874        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2875      }
2876      return Elt;
2877    }
2878
2879    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2880    // operations are lowered to scalars.
2881    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2882      // If the indices are the same, return the inserted element else
2883      // if the indices are known different, extract the element from
2884      // the original vector.
2885      SDValue N1Op2 = N1.getOperand(2);
2886      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2887
2888      if (N1Op2C && N2C) {
2889        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2890          if (VT == N1.getOperand(1).getValueType())
2891            return N1.getOperand(1);
2892          else
2893            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2894        }
2895
2896        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2897      }
2898    }
2899    break;
2900  case ISD::EXTRACT_ELEMENT:
2901    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2902    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2903           (N1.getValueType().isInteger() == VT.isInteger()) &&
2904           N1.getValueType() != VT &&
2905           "Wrong types for EXTRACT_ELEMENT!");
2906
2907    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2908    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2909    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2910    if (N1.getOpcode() == ISD::BUILD_PAIR)
2911      return N1.getOperand(N2C->getZExtValue());
2912
2913    // EXTRACT_ELEMENT of a constant int is also very common.
2914    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2915      unsigned ElementSize = VT.getSizeInBits();
2916      unsigned Shift = ElementSize * N2C->getZExtValue();
2917      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2918      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2919    }
2920    break;
2921  case ISD::EXTRACT_SUBVECTOR: {
2922    SDValue Index = N2;
2923    if (VT.isSimple() && N1.getValueType().isSimple()) {
2924      assert(VT.isVector() && N1.getValueType().isVector() &&
2925             "Extract subvector VTs must be a vectors!");
2926      assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
2927             "Extract subvector VTs must have the same element type!");
2928      assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
2929             "Extract subvector must be from larger vector to smaller vector!");
2930
2931      if (isa<ConstantSDNode>(Index.getNode())) {
2932        assert((VT.getVectorNumElements() +
2933                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
2934                <= N1.getValueType().getVectorNumElements())
2935               && "Extract subvector overflow!");
2936      }
2937
2938      // Trivial extraction.
2939      if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
2940        return N1;
2941    }
2942    break;
2943  }
2944  }
2945
2946  if (N1C) {
2947    if (N2C) {
2948      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2949      if (SV.getNode()) return SV;
2950    } else {      // Cannonicalize constant to RHS if commutative
2951      if (isCommutativeBinOp(Opcode)) {
2952        std::swap(N1C, N2C);
2953        std::swap(N1, N2);
2954      }
2955    }
2956  }
2957
2958  // Constant fold FP operations.
2959  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2960  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2961  if (N1CFP) {
2962    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2963      // Cannonicalize constant to RHS if commutative
2964      std::swap(N1CFP, N2CFP);
2965      std::swap(N1, N2);
2966    } else if (N2CFP && VT != MVT::ppcf128) {
2967      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2968      APFloat::opStatus s;
2969      switch (Opcode) {
2970      case ISD::FADD:
2971        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2972        if (s != APFloat::opInvalidOp)
2973          return getConstantFP(V1, VT);
2974        break;
2975      case ISD::FSUB:
2976        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2977        if (s!=APFloat::opInvalidOp)
2978          return getConstantFP(V1, VT);
2979        break;
2980      case ISD::FMUL:
2981        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2982        if (s!=APFloat::opInvalidOp)
2983          return getConstantFP(V1, VT);
2984        break;
2985      case ISD::FDIV:
2986        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2987        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2988          return getConstantFP(V1, VT);
2989        break;
2990      case ISD::FREM :
2991        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2992        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2993          return getConstantFP(V1, VT);
2994        break;
2995      case ISD::FCOPYSIGN:
2996        V1.copySign(V2);
2997        return getConstantFP(V1, VT);
2998      default: break;
2999      }
3000    }
3001  }
3002
3003  // Canonicalize an UNDEF to the RHS, even over a constant.
3004  if (N1.getOpcode() == ISD::UNDEF) {
3005    if (isCommutativeBinOp(Opcode)) {
3006      std::swap(N1, N2);
3007    } else {
3008      switch (Opcode) {
3009      case ISD::FP_ROUND_INREG:
3010      case ISD::SIGN_EXTEND_INREG:
3011      case ISD::SUB:
3012      case ISD::FSUB:
3013      case ISD::FDIV:
3014      case ISD::FREM:
3015      case ISD::SRA:
3016        return N1;     // fold op(undef, arg2) -> undef
3017      case ISD::UDIV:
3018      case ISD::SDIV:
3019      case ISD::UREM:
3020      case ISD::SREM:
3021      case ISD::SRL:
3022      case ISD::SHL:
3023        if (!VT.isVector())
3024          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
3025        // For vectors, we can't easily build an all zero vector, just return
3026        // the LHS.
3027        return N2;
3028      }
3029    }
3030  }
3031
3032  // Fold a bunch of operators when the RHS is undef.
3033  if (N2.getOpcode() == ISD::UNDEF) {
3034    switch (Opcode) {
3035    case ISD::XOR:
3036      if (N1.getOpcode() == ISD::UNDEF)
3037        // Handle undef ^ undef -> 0 special case. This is a common
3038        // idiom (misuse).
3039        return getConstant(0, VT);
3040      // fallthrough
3041    case ISD::ADD:
3042    case ISD::ADDC:
3043    case ISD::ADDE:
3044    case ISD::SUB:
3045    case ISD::UDIV:
3046    case ISD::SDIV:
3047    case ISD::UREM:
3048    case ISD::SREM:
3049      return N2;       // fold op(arg1, undef) -> undef
3050    case ISD::FADD:
3051    case ISD::FSUB:
3052    case ISD::FMUL:
3053    case ISD::FDIV:
3054    case ISD::FREM:
3055      if (UnsafeFPMath)
3056        return N2;
3057      break;
3058    case ISD::MUL:
3059    case ISD::AND:
3060    case ISD::SRL:
3061    case ISD::SHL:
3062      if (!VT.isVector())
3063        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3064      // For vectors, we can't easily build an all zero vector, just return
3065      // the LHS.
3066      return N1;
3067    case ISD::OR:
3068      if (!VT.isVector())
3069        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3070      // For vectors, we can't easily build an all one vector, just return
3071      // the LHS.
3072      return N1;
3073    case ISD::SRA:
3074      return N1;
3075    }
3076  }
3077
3078  // Memoize this node if possible.
3079  SDNode *N;
3080  SDVTList VTs = getVTList(VT);
3081  if (VT != MVT::Glue) {
3082    SDValue Ops[] = { N1, N2 };
3083    FoldingSetNodeID ID;
3084    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3085    void *IP = 0;
3086    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3087      return SDValue(E, 0);
3088
3089    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3090    CSEMap.InsertNode(N, IP);
3091  } else {
3092    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3093  }
3094
3095  AllNodes.push_back(N);
3096#ifndef NDEBUG
3097  VerifySDNode(N);
3098#endif
3099  return SDValue(N, 0);
3100}
3101
3102SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3103                              SDValue N1, SDValue N2, SDValue N3) {
3104  // Perform various simplifications.
3105  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3106  switch (Opcode) {
3107  case ISD::CONCAT_VECTORS:
3108    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3109    // one big BUILD_VECTOR.
3110    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3111        N2.getOpcode() == ISD::BUILD_VECTOR &&
3112        N3.getOpcode() == ISD::BUILD_VECTOR) {
3113      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3114                                    N1.getNode()->op_end());
3115      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3116      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3117      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3118    }
3119    break;
3120  case ISD::SETCC: {
3121    // Use FoldSetCC to simplify SETCC's.
3122    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3123    if (Simp.getNode()) return Simp;
3124    break;
3125  }
3126  case ISD::SELECT:
3127    if (N1C) {
3128     if (N1C->getZExtValue())
3129        return N2;             // select true, X, Y -> X
3130      else
3131        return N3;             // select false, X, Y -> Y
3132    }
3133
3134    if (N2 == N3) return N2;   // select C, X, X -> X
3135    break;
3136  case ISD::VECTOR_SHUFFLE:
3137    llvm_unreachable("should use getVectorShuffle constructor!");
3138    break;
3139  case ISD::INSERT_SUBVECTOR: {
3140    SDValue Index = N3;
3141    if (VT.isSimple() && N1.getValueType().isSimple()
3142        && N2.getValueType().isSimple()) {
3143      assert(VT.isVector() && N1.getValueType().isVector() &&
3144             N2.getValueType().isVector() &&
3145             "Insert subvector VTs must be a vectors");
3146      assert(VT == N1.getValueType() &&
3147             "Dest and insert subvector source types must match!");
3148      assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3149             "Insert subvector must be from smaller vector to larger vector!");
3150      if (isa<ConstantSDNode>(Index.getNode())) {
3151        assert((N2.getValueType().getVectorNumElements() +
3152                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3153                <= VT.getVectorNumElements())
3154               && "Insert subvector overflow!");
3155      }
3156
3157      // Trivial insertion.
3158      if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3159        return N2;
3160    }
3161    break;
3162  }
3163  case ISD::BITCAST:
3164    // Fold bit_convert nodes from a type to themselves.
3165    if (N1.getValueType() == VT)
3166      return N1;
3167    break;
3168  }
3169
3170  // Memoize node if it doesn't produce a flag.
3171  SDNode *N;
3172  SDVTList VTs = getVTList(VT);
3173  if (VT != MVT::Glue) {
3174    SDValue Ops[] = { N1, N2, N3 };
3175    FoldingSetNodeID ID;
3176    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3177    void *IP = 0;
3178    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3179      return SDValue(E, 0);
3180
3181    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3182    CSEMap.InsertNode(N, IP);
3183  } else {
3184    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3185  }
3186
3187  AllNodes.push_back(N);
3188#ifndef NDEBUG
3189  VerifySDNode(N);
3190#endif
3191  return SDValue(N, 0);
3192}
3193
3194SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3195                              SDValue N1, SDValue N2, SDValue N3,
3196                              SDValue N4) {
3197  SDValue Ops[] = { N1, N2, N3, N4 };
3198  return getNode(Opcode, DL, VT, Ops, 4);
3199}
3200
3201SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3202                              SDValue N1, SDValue N2, SDValue N3,
3203                              SDValue N4, SDValue N5) {
3204  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3205  return getNode(Opcode, DL, VT, Ops, 5);
3206}
3207
3208/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3209/// the incoming stack arguments to be loaded from the stack.
3210SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3211  SmallVector<SDValue, 8> ArgChains;
3212
3213  // Include the original chain at the beginning of the list. When this is
3214  // used by target LowerCall hooks, this helps legalize find the
3215  // CALLSEQ_BEGIN node.
3216  ArgChains.push_back(Chain);
3217
3218  // Add a chain value for each stack argument.
3219  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3220       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3221    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3222      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3223        if (FI->getIndex() < 0)
3224          ArgChains.push_back(SDValue(L, 1));
3225
3226  // Build a tokenfactor for all the chains.
3227  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3228                 &ArgChains[0], ArgChains.size());
3229}
3230
3231/// SplatByte - Distribute ByteVal over NumBits bits.
3232static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
3233  APInt Val = APInt(NumBits, ByteVal);
3234  unsigned Shift = 8;
3235  for (unsigned i = NumBits; i > 8; i >>= 1) {
3236    Val = (Val << Shift) | Val;
3237    Shift <<= 1;
3238  }
3239  return Val;
3240}
3241
3242/// getMemsetValue - Vectorized representation of the memset value
3243/// operand.
3244static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3245                              DebugLoc dl) {
3246  assert(Value.getOpcode() != ISD::UNDEF);
3247
3248  unsigned NumBits = VT.getScalarType().getSizeInBits();
3249  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3250    APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
3251    if (VT.isInteger())
3252      return DAG.getConstant(Val, VT);
3253    return DAG.getConstantFP(APFloat(Val), VT);
3254  }
3255
3256  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3257  if (NumBits > 8) {
3258    // Use a multiplication with 0x010101... to extend the input to the
3259    // required length.
3260    APInt Magic = SplatByte(NumBits, 0x01);
3261    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3262  }
3263
3264  return Value;
3265}
3266
3267/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3268/// used when a memcpy is turned into a memset when the source is a constant
3269/// string ptr.
3270static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3271                                  const TargetLowering &TLI,
3272                                  std::string &Str, unsigned Offset) {
3273  // Handle vector with all elements zero.
3274  if (Str.empty()) {
3275    if (VT.isInteger())
3276      return DAG.getConstant(0, VT);
3277    else if (VT == MVT::f32 || VT == MVT::f64)
3278      return DAG.getConstantFP(0.0, VT);
3279    else if (VT.isVector()) {
3280      unsigned NumElts = VT.getVectorNumElements();
3281      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3282      return DAG.getNode(ISD::BITCAST, dl, VT,
3283                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3284                                                             EltVT, NumElts)));
3285    } else
3286      llvm_unreachable("Expected type!");
3287  }
3288
3289  assert(!VT.isVector() && "Can't handle vector type here!");
3290  unsigned NumBits = VT.getSizeInBits();
3291  unsigned MSB = NumBits / 8;
3292  uint64_t Val = 0;
3293  if (TLI.isLittleEndian())
3294    Offset = Offset + MSB - 1;
3295  for (unsigned i = 0; i != MSB; ++i) {
3296    Val = (Val << 8) | (unsigned char)Str[Offset];
3297    Offset += TLI.isLittleEndian() ? -1 : 1;
3298  }
3299  return DAG.getConstant(Val, VT);
3300}
3301
3302/// getMemBasePlusOffset - Returns base and offset node for the
3303///
3304static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3305                                      SelectionDAG &DAG) {
3306  EVT VT = Base.getValueType();
3307  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3308                     VT, Base, DAG.getConstant(Offset, VT));
3309}
3310
3311/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3312///
3313static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3314  unsigned SrcDelta = 0;
3315  GlobalAddressSDNode *G = NULL;
3316  if (Src.getOpcode() == ISD::GlobalAddress)
3317    G = cast<GlobalAddressSDNode>(Src);
3318  else if (Src.getOpcode() == ISD::ADD &&
3319           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3320           Src.getOperand(1).getOpcode() == ISD::Constant) {
3321    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3322    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3323  }
3324  if (!G)
3325    return false;
3326
3327  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3328  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3329    return true;
3330
3331  return false;
3332}
3333
3334/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3335/// to replace the memset / memcpy. Return true if the number of memory ops
3336/// is below the threshold. It returns the types of the sequence of
3337/// memory ops to perform memset / memcpy by reference.
3338static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3339                                     unsigned Limit, uint64_t Size,
3340                                     unsigned DstAlign, unsigned SrcAlign,
3341                                     bool NonScalarIntSafe,
3342                                     bool MemcpyStrSrc,
3343                                     SelectionDAG &DAG,
3344                                     const TargetLowering &TLI) {
3345  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3346         "Expecting memcpy / memset source to meet alignment requirement!");
3347  // If 'SrcAlign' is zero, that means the memory operation does not need to
3348  // load the value, i.e. memset or memcpy from constant string. Otherwise,
3349  // it's the inferred alignment of the source. 'DstAlign', on the other hand,
3350  // is the specified alignment of the memory operation. If it is zero, that
3351  // means it's possible to change the alignment of the destination.
3352  // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
3353  // not need to be loaded.
3354  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3355                                   NonScalarIntSafe, MemcpyStrSrc,
3356                                   DAG.getMachineFunction());
3357
3358  if (VT == MVT::Other) {
3359    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3360        TLI.allowsUnalignedMemoryAccesses(VT)) {
3361      VT = TLI.getPointerTy();
3362    } else {
3363      switch (DstAlign & 7) {
3364      case 0:  VT = MVT::i64; break;
3365      case 4:  VT = MVT::i32; break;
3366      case 2:  VT = MVT::i16; break;
3367      default: VT = MVT::i8;  break;
3368      }
3369    }
3370
3371    MVT LVT = MVT::i64;
3372    while (!TLI.isTypeLegal(LVT))
3373      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3374    assert(LVT.isInteger());
3375
3376    if (VT.bitsGT(LVT))
3377      VT = LVT;
3378  }
3379
3380  unsigned NumMemOps = 0;
3381  while (Size != 0) {
3382    unsigned VTSize = VT.getSizeInBits() / 8;
3383    while (VTSize > Size) {
3384      // For now, only use non-vector load / store's for the left-over pieces.
3385      if (VT.isVector() || VT.isFloatingPoint()) {
3386        VT = MVT::i64;
3387        while (!TLI.isTypeLegal(VT))
3388          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3389        VTSize = VT.getSizeInBits() / 8;
3390      } else {
3391        // This can result in a type that is not legal on the target, e.g.
3392        // 1 or 2 bytes on PPC.
3393        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3394        VTSize >>= 1;
3395      }
3396    }
3397
3398    if (++NumMemOps > Limit)
3399      return false;
3400    MemOps.push_back(VT);
3401    Size -= VTSize;
3402  }
3403
3404  return true;
3405}
3406
3407static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3408                                       SDValue Chain, SDValue Dst,
3409                                       SDValue Src, uint64_t Size,
3410                                       unsigned Align, bool isVol,
3411                                       bool AlwaysInline,
3412                                       MachinePointerInfo DstPtrInfo,
3413                                       MachinePointerInfo SrcPtrInfo) {
3414  // Turn a memcpy of undef to nop.
3415  if (Src.getOpcode() == ISD::UNDEF)
3416    return Chain;
3417
3418  // Expand memcpy to a series of load and store ops if the size operand falls
3419  // below a certain threshold.
3420  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3421  // rather than maybe a humongous number of loads and stores.
3422  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3423  std::vector<EVT> MemOps;
3424  bool DstAlignCanChange = false;
3425  MachineFunction &MF = DAG.getMachineFunction();
3426  MachineFrameInfo *MFI = MF.getFrameInfo();
3427  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3428  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3429  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3430    DstAlignCanChange = true;
3431  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3432  if (Align > SrcAlign)
3433    SrcAlign = Align;
3434  std::string Str;
3435  bool CopyFromStr = isMemSrcFromString(Src, Str);
3436  bool isZeroStr = CopyFromStr && Str.empty();
3437  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3438
3439  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3440                                (DstAlignCanChange ? 0 : Align),
3441                                (isZeroStr ? 0 : SrcAlign),
3442                                true, CopyFromStr, DAG, TLI))
3443    return SDValue();
3444
3445  if (DstAlignCanChange) {
3446    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3447    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3448    if (NewAlign > Align) {
3449      // Give the stack frame object a larger alignment if needed.
3450      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3451        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3452      Align = NewAlign;
3453    }
3454  }
3455
3456  SmallVector<SDValue, 8> OutChains;
3457  unsigned NumMemOps = MemOps.size();
3458  uint64_t SrcOff = 0, DstOff = 0;
3459  for (unsigned i = 0; i != NumMemOps; ++i) {
3460    EVT VT = MemOps[i];
3461    unsigned VTSize = VT.getSizeInBits() / 8;
3462    SDValue Value, Store;
3463
3464    if (CopyFromStr &&
3465        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3466      // It's unlikely a store of a vector immediate can be done in a single
3467      // instruction. It would require a load from a constantpool first.
3468      // We only handle zero vectors here.
3469      // FIXME: Handle other cases where store of vector immediate is done in
3470      // a single instruction.
3471      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3472      Store = DAG.getStore(Chain, dl, Value,
3473                           getMemBasePlusOffset(Dst, DstOff, DAG),
3474                           DstPtrInfo.getWithOffset(DstOff), isVol,
3475                           false, Align);
3476    } else {
3477      // The type might not be legal for the target.  This should only happen
3478      // if the type is smaller than a legal type, as on PPC, so the right
3479      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3480      // to Load/Store if NVT==VT.
3481      // FIXME does the case above also need this?
3482      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3483      assert(NVT.bitsGE(VT));
3484      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3485                             getMemBasePlusOffset(Src, SrcOff, DAG),
3486                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3487                             MinAlign(SrcAlign, SrcOff));
3488      Store = DAG.getTruncStore(Chain, dl, Value,
3489                                getMemBasePlusOffset(Dst, DstOff, DAG),
3490                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3491                                false, Align);
3492    }
3493    OutChains.push_back(Store);
3494    SrcOff += VTSize;
3495    DstOff += VTSize;
3496  }
3497
3498  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3499                     &OutChains[0], OutChains.size());
3500}
3501
3502static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3503                                        SDValue Chain, SDValue Dst,
3504                                        SDValue Src, uint64_t Size,
3505                                        unsigned Align,  bool isVol,
3506                                        bool AlwaysInline,
3507                                        MachinePointerInfo DstPtrInfo,
3508                                        MachinePointerInfo SrcPtrInfo) {
3509  // Turn a memmove of undef to nop.
3510  if (Src.getOpcode() == ISD::UNDEF)
3511    return Chain;
3512
3513  // Expand memmove to a series of load and store ops if the size operand falls
3514  // below a certain threshold.
3515  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3516  std::vector<EVT> MemOps;
3517  bool DstAlignCanChange = false;
3518  MachineFunction &MF = DAG.getMachineFunction();
3519  MachineFrameInfo *MFI = MF.getFrameInfo();
3520  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3521  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3522  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3523    DstAlignCanChange = true;
3524  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3525  if (Align > SrcAlign)
3526    SrcAlign = Align;
3527  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3528
3529  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3530                                (DstAlignCanChange ? 0 : Align),
3531                                SrcAlign, true, false, DAG, TLI))
3532    return SDValue();
3533
3534  if (DstAlignCanChange) {
3535    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3536    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3537    if (NewAlign > Align) {
3538      // Give the stack frame object a larger alignment if needed.
3539      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3540        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3541      Align = NewAlign;
3542    }
3543  }
3544
3545  uint64_t SrcOff = 0, DstOff = 0;
3546  SmallVector<SDValue, 8> LoadValues;
3547  SmallVector<SDValue, 8> LoadChains;
3548  SmallVector<SDValue, 8> OutChains;
3549  unsigned NumMemOps = MemOps.size();
3550  for (unsigned i = 0; i < NumMemOps; i++) {
3551    EVT VT = MemOps[i];
3552    unsigned VTSize = VT.getSizeInBits() / 8;
3553    SDValue Value, Store;
3554
3555    Value = DAG.getLoad(VT, dl, Chain,
3556                        getMemBasePlusOffset(Src, SrcOff, DAG),
3557                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3558                        false, SrcAlign);
3559    LoadValues.push_back(Value);
3560    LoadChains.push_back(Value.getValue(1));
3561    SrcOff += VTSize;
3562  }
3563  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3564                      &LoadChains[0], LoadChains.size());
3565  OutChains.clear();
3566  for (unsigned i = 0; i < NumMemOps; i++) {
3567    EVT VT = MemOps[i];
3568    unsigned VTSize = VT.getSizeInBits() / 8;
3569    SDValue Value, Store;
3570
3571    Store = DAG.getStore(Chain, dl, LoadValues[i],
3572                         getMemBasePlusOffset(Dst, DstOff, DAG),
3573                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3574    OutChains.push_back(Store);
3575    DstOff += VTSize;
3576  }
3577
3578  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3579                     &OutChains[0], OutChains.size());
3580}
3581
3582static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3583                               SDValue Chain, SDValue Dst,
3584                               SDValue Src, uint64_t Size,
3585                               unsigned Align, bool isVol,
3586                               MachinePointerInfo DstPtrInfo) {
3587  // Turn a memset of undef to nop.
3588  if (Src.getOpcode() == ISD::UNDEF)
3589    return Chain;
3590
3591  // Expand memset to a series of load/store ops if the size operand
3592  // falls below a certain threshold.
3593  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3594  std::vector<EVT> MemOps;
3595  bool DstAlignCanChange = false;
3596  MachineFunction &MF = DAG.getMachineFunction();
3597  MachineFrameInfo *MFI = MF.getFrameInfo();
3598  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3599  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3600  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3601    DstAlignCanChange = true;
3602  bool NonScalarIntSafe =
3603    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3604  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3605                                Size, (DstAlignCanChange ? 0 : Align), 0,
3606                                NonScalarIntSafe, false, DAG, TLI))
3607    return SDValue();
3608
3609  if (DstAlignCanChange) {
3610    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3611    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3612    if (NewAlign > Align) {
3613      // Give the stack frame object a larger alignment if needed.
3614      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3615        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3616      Align = NewAlign;
3617    }
3618  }
3619
3620  SmallVector<SDValue, 8> OutChains;
3621  uint64_t DstOff = 0;
3622  unsigned NumMemOps = MemOps.size();
3623
3624  // Find the largest store and generate the bit pattern for it.
3625  EVT LargestVT = MemOps[0];
3626  for (unsigned i = 1; i < NumMemOps; i++)
3627    if (MemOps[i].bitsGT(LargestVT))
3628      LargestVT = MemOps[i];
3629  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3630
3631  for (unsigned i = 0; i < NumMemOps; i++) {
3632    EVT VT = MemOps[i];
3633
3634    // If this store is smaller than the largest store see whether we can get
3635    // the smaller value for free with a truncate.
3636    SDValue Value = MemSetValue;
3637    if (VT.bitsLT(LargestVT)) {
3638      if (!LargestVT.isVector() && !VT.isVector() &&
3639          TLI.isTruncateFree(LargestVT, VT))
3640        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3641      else
3642        Value = getMemsetValue(Src, VT, DAG, dl);
3643    }
3644    assert(Value.getValueType() == VT && "Value with wrong type.");
3645    SDValue Store = DAG.getStore(Chain, dl, Value,
3646                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3647                                 DstPtrInfo.getWithOffset(DstOff),
3648                                 isVol, false, Align);
3649    OutChains.push_back(Store);
3650    DstOff += VT.getSizeInBits() / 8;
3651  }
3652
3653  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3654                     &OutChains[0], OutChains.size());
3655}
3656
3657SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3658                                SDValue Src, SDValue Size,
3659                                unsigned Align, bool isVol, bool AlwaysInline,
3660                                MachinePointerInfo DstPtrInfo,
3661                                MachinePointerInfo SrcPtrInfo) {
3662
3663  // Check to see if we should lower the memcpy to loads and stores first.
3664  // For cases within the target-specified limits, this is the best choice.
3665  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3666  if (ConstantSize) {
3667    // Memcpy with size zero? Just return the original chain.
3668    if (ConstantSize->isNullValue())
3669      return Chain;
3670
3671    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3672                                             ConstantSize->getZExtValue(),Align,
3673                                isVol, false, DstPtrInfo, SrcPtrInfo);
3674    if (Result.getNode())
3675      return Result;
3676  }
3677
3678  // Then check to see if we should lower the memcpy with target-specific
3679  // code. If the target chooses to do this, this is the next best.
3680  SDValue Result =
3681    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3682                                isVol, AlwaysInline,
3683                                DstPtrInfo, SrcPtrInfo);
3684  if (Result.getNode())
3685    return Result;
3686
3687  // If we really need inline code and the target declined to provide it,
3688  // use a (potentially long) sequence of loads and stores.
3689  if (AlwaysInline) {
3690    assert(ConstantSize && "AlwaysInline requires a constant size!");
3691    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3692                                   ConstantSize->getZExtValue(), Align, isVol,
3693                                   true, DstPtrInfo, SrcPtrInfo);
3694  }
3695
3696  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3697  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3698  // respect volatile, so they may do things like read or write memory
3699  // beyond the given memory regions. But fixing this isn't easy, and most
3700  // people don't care.
3701
3702  // Emit a library call.
3703  TargetLowering::ArgListTy Args;
3704  TargetLowering::ArgListEntry Entry;
3705  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3706  Entry.Node = Dst; Args.push_back(Entry);
3707  Entry.Node = Src; Args.push_back(Entry);
3708  Entry.Node = Size; Args.push_back(Entry);
3709  // FIXME: pass in DebugLoc
3710  std::pair<SDValue,SDValue> CallResult =
3711    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3712                    false, false, false, false, 0,
3713                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3714                    /*isReturnValueUsed=*/false,
3715                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3716                                      TLI.getPointerTy()),
3717                    Args, *this, dl);
3718  return CallResult.second;
3719}
3720
3721SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3722                                 SDValue Src, SDValue Size,
3723                                 unsigned Align, bool isVol,
3724                                 MachinePointerInfo DstPtrInfo,
3725                                 MachinePointerInfo SrcPtrInfo) {
3726
3727  // Check to see if we should lower the memmove to loads and stores first.
3728  // For cases within the target-specified limits, this is the best choice.
3729  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3730  if (ConstantSize) {
3731    // Memmove with size zero? Just return the original chain.
3732    if (ConstantSize->isNullValue())
3733      return Chain;
3734
3735    SDValue Result =
3736      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3737                               ConstantSize->getZExtValue(), Align, isVol,
3738                               false, DstPtrInfo, SrcPtrInfo);
3739    if (Result.getNode())
3740      return Result;
3741  }
3742
3743  // Then check to see if we should lower the memmove with target-specific
3744  // code. If the target chooses to do this, this is the next best.
3745  SDValue Result =
3746    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3747                                 DstPtrInfo, SrcPtrInfo);
3748  if (Result.getNode())
3749    return Result;
3750
3751  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3752  // not be safe.  See memcpy above for more details.
3753
3754  // Emit a library call.
3755  TargetLowering::ArgListTy Args;
3756  TargetLowering::ArgListEntry Entry;
3757  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3758  Entry.Node = Dst; Args.push_back(Entry);
3759  Entry.Node = Src; Args.push_back(Entry);
3760  Entry.Node = Size; Args.push_back(Entry);
3761  // FIXME:  pass in DebugLoc
3762  std::pair<SDValue,SDValue> CallResult =
3763    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3764                    false, false, false, false, 0,
3765                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3766                    /*isReturnValueUsed=*/false,
3767                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3768                                      TLI.getPointerTy()),
3769                    Args, *this, dl);
3770  return CallResult.second;
3771}
3772
3773SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3774                                SDValue Src, SDValue Size,
3775                                unsigned Align, bool isVol,
3776                                MachinePointerInfo DstPtrInfo) {
3777
3778  // Check to see if we should lower the memset to stores first.
3779  // For cases within the target-specified limits, this is the best choice.
3780  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3781  if (ConstantSize) {
3782    // Memset with size zero? Just return the original chain.
3783    if (ConstantSize->isNullValue())
3784      return Chain;
3785
3786    SDValue Result =
3787      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3788                      Align, isVol, DstPtrInfo);
3789
3790    if (Result.getNode())
3791      return Result;
3792  }
3793
3794  // Then check to see if we should lower the memset with target-specific
3795  // code. If the target chooses to do this, this is the next best.
3796  SDValue Result =
3797    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3798                                DstPtrInfo);
3799  if (Result.getNode())
3800    return Result;
3801
3802  // Emit a library call.
3803  Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3804  TargetLowering::ArgListTy Args;
3805  TargetLowering::ArgListEntry Entry;
3806  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3807  Args.push_back(Entry);
3808  // Extend or truncate the argument to be an i32 value for the call.
3809  if (Src.getValueType().bitsGT(MVT::i32))
3810    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3811  else
3812    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3813  Entry.Node = Src;
3814  Entry.Ty = Type::getInt32Ty(*getContext());
3815  Entry.isSExt = true;
3816  Args.push_back(Entry);
3817  Entry.Node = Size;
3818  Entry.Ty = IntPtrTy;
3819  Entry.isSExt = false;
3820  Args.push_back(Entry);
3821  // FIXME: pass in DebugLoc
3822  std::pair<SDValue,SDValue> CallResult =
3823    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3824                    false, false, false, false, 0,
3825                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3826                    /*isReturnValueUsed=*/false,
3827                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3828                                      TLI.getPointerTy()),
3829                    Args, *this, dl);
3830  return CallResult.second;
3831}
3832
3833SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3834                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3835                                SDValue Swp, MachinePointerInfo PtrInfo,
3836                                unsigned Alignment,
3837                                AtomicOrdering Ordering,
3838                                SynchronizationScope SynchScope) {
3839  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3840    Alignment = getEVTAlignment(MemVT);
3841
3842  MachineFunction &MF = getMachineFunction();
3843  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3844
3845  // For now, atomics are considered to be volatile always.
3846  // FIXME: Volatile isn't really correct; we should keep track of atomic
3847  // orderings in the memoperand.
3848  Flags |= MachineMemOperand::MOVolatile;
3849
3850  MachineMemOperand *MMO =
3851    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3852
3853  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO,
3854                   Ordering, SynchScope);
3855}
3856
3857SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3858                                SDValue Chain,
3859                                SDValue Ptr, SDValue Cmp,
3860                                SDValue Swp, MachineMemOperand *MMO,
3861                                AtomicOrdering Ordering,
3862                                SynchronizationScope SynchScope) {
3863  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3864  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3865
3866  EVT VT = Cmp.getValueType();
3867
3868  SDVTList VTs = getVTList(VT, MVT::Other);
3869  FoldingSetNodeID ID;
3870  ID.AddInteger(MemVT.getRawBits());
3871  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3872  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3873  void* IP = 0;
3874  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3875    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3876    return SDValue(E, 0);
3877  }
3878  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3879                                               Ptr, Cmp, Swp, MMO, Ordering,
3880                                               SynchScope);
3881  CSEMap.InsertNode(N, IP);
3882  AllNodes.push_back(N);
3883  return SDValue(N, 0);
3884}
3885
3886SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3887                                SDValue Chain,
3888                                SDValue Ptr, SDValue Val,
3889                                const Value* PtrVal,
3890                                unsigned Alignment,
3891                                AtomicOrdering Ordering,
3892                                SynchronizationScope SynchScope) {
3893  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3894    Alignment = getEVTAlignment(MemVT);
3895
3896  MachineFunction &MF = getMachineFunction();
3897  // A monotonic store does not load; a release store "loads" in the sense
3898  // that other stores cannot be sunk past it.
3899  // (An atomicrmw obviously both loads and stores.)
3900  unsigned Flags = MachineMemOperand::MOStore;
3901  if (Opcode != ISD::ATOMIC_STORE || Ordering > Monotonic)
3902    Flags |= MachineMemOperand::MOLoad;
3903
3904  // For now, atomics are considered to be volatile always.
3905  // FIXME: Volatile isn't really correct; we should keep track of atomic
3906  // orderings in the memoperand.
3907  Flags |= MachineMemOperand::MOVolatile;
3908
3909  MachineMemOperand *MMO =
3910    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3911                            MemVT.getStoreSize(), Alignment);
3912
3913  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
3914                   Ordering, SynchScope);
3915}
3916
3917SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3918                                SDValue Chain,
3919                                SDValue Ptr, SDValue Val,
3920                                MachineMemOperand *MMO,
3921                                AtomicOrdering Ordering,
3922                                SynchronizationScope SynchScope) {
3923  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3924          Opcode == ISD::ATOMIC_LOAD_SUB ||
3925          Opcode == ISD::ATOMIC_LOAD_AND ||
3926          Opcode == ISD::ATOMIC_LOAD_OR ||
3927          Opcode == ISD::ATOMIC_LOAD_XOR ||
3928          Opcode == ISD::ATOMIC_LOAD_NAND ||
3929          Opcode == ISD::ATOMIC_LOAD_MIN ||
3930          Opcode == ISD::ATOMIC_LOAD_MAX ||
3931          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3932          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3933          Opcode == ISD::ATOMIC_SWAP ||
3934          Opcode == ISD::ATOMIC_STORE) &&
3935         "Invalid Atomic Op");
3936
3937  EVT VT = Val.getValueType();
3938
3939  SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
3940                                               getVTList(VT, MVT::Other);
3941  FoldingSetNodeID ID;
3942  ID.AddInteger(MemVT.getRawBits());
3943  SDValue Ops[] = {Chain, Ptr, Val};
3944  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3945  void* IP = 0;
3946  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3947    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3948    return SDValue(E, 0);
3949  }
3950  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3951                                               Ptr, Val, MMO,
3952                                               Ordering, SynchScope);
3953  CSEMap.InsertNode(N, IP);
3954  AllNodes.push_back(N);
3955  return SDValue(N, 0);
3956}
3957
3958SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3959                                EVT VT, SDValue Chain,
3960                                SDValue Ptr,
3961                                const Value* PtrVal,
3962                                unsigned Alignment,
3963                                AtomicOrdering Ordering,
3964                                SynchronizationScope SynchScope) {
3965  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3966    Alignment = getEVTAlignment(MemVT);
3967
3968  MachineFunction &MF = getMachineFunction();
3969  // A monotonic load does not store; an acquire load "stores" in the sense
3970  // that other loads cannot be hoisted past it.
3971  unsigned Flags = MachineMemOperand::MOLoad;
3972  if (Ordering > Monotonic)
3973    Flags |= MachineMemOperand::MOStore;
3974
3975  // For now, atomics are considered to be volatile always.
3976  // FIXME: Volatile isn't really correct; we should keep track of atomic
3977  // orderings in the memoperand.
3978  Flags |= MachineMemOperand::MOVolatile;
3979
3980  MachineMemOperand *MMO =
3981    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3982                            MemVT.getStoreSize(), Alignment);
3983
3984  return getAtomic(Opcode, dl, MemVT, VT, Chain, Ptr, MMO,
3985                   Ordering, SynchScope);
3986}
3987
3988SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3989                                EVT VT, SDValue Chain,
3990                                SDValue Ptr,
3991                                MachineMemOperand *MMO,
3992                                AtomicOrdering Ordering,
3993                                SynchronizationScope SynchScope) {
3994  assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
3995
3996  SDVTList VTs = getVTList(VT, MVT::Other);
3997  FoldingSetNodeID ID;
3998  ID.AddInteger(MemVT.getRawBits());
3999  SDValue Ops[] = {Chain, Ptr};
4000  AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
4001  void* IP = 0;
4002  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4003    cast<AtomicSDNode>(E)->refineAlignment(MMO);
4004    return SDValue(E, 0);
4005  }
4006  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
4007                                               Ptr, MMO, Ordering, SynchScope);
4008  CSEMap.InsertNode(N, IP);
4009  AllNodes.push_back(N);
4010  return SDValue(N, 0);
4011}
4012
4013/// getMergeValues - Create a MERGE_VALUES node from the given operands.
4014SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
4015                                     DebugLoc dl) {
4016  if (NumOps == 1)
4017    return Ops[0];
4018
4019  SmallVector<EVT, 4> VTs;
4020  VTs.reserve(NumOps);
4021  for (unsigned i = 0; i < NumOps; ++i)
4022    VTs.push_back(Ops[i].getValueType());
4023  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
4024                 Ops, NumOps);
4025}
4026
4027SDValue
4028SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
4029                                  const EVT *VTs, unsigned NumVTs,
4030                                  const SDValue *Ops, unsigned NumOps,
4031                                  EVT MemVT, MachinePointerInfo PtrInfo,
4032                                  unsigned Align, bool Vol,
4033                                  bool ReadMem, bool WriteMem) {
4034  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
4035                             MemVT, PtrInfo, Align, Vol,
4036                             ReadMem, WriteMem);
4037}
4038
4039SDValue
4040SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4041                                  const SDValue *Ops, unsigned NumOps,
4042                                  EVT MemVT, MachinePointerInfo PtrInfo,
4043                                  unsigned Align, bool Vol,
4044                                  bool ReadMem, bool WriteMem) {
4045  if (Align == 0)  // Ensure that codegen never sees alignment 0
4046    Align = getEVTAlignment(MemVT);
4047
4048  MachineFunction &MF = getMachineFunction();
4049  unsigned Flags = 0;
4050  if (WriteMem)
4051    Flags |= MachineMemOperand::MOStore;
4052  if (ReadMem)
4053    Flags |= MachineMemOperand::MOLoad;
4054  if (Vol)
4055    Flags |= MachineMemOperand::MOVolatile;
4056  MachineMemOperand *MMO =
4057    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
4058
4059  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
4060}
4061
4062SDValue
4063SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4064                                  const SDValue *Ops, unsigned NumOps,
4065                                  EVT MemVT, MachineMemOperand *MMO) {
4066  assert((Opcode == ISD::INTRINSIC_VOID ||
4067          Opcode == ISD::INTRINSIC_W_CHAIN ||
4068          Opcode == ISD::PREFETCH ||
4069          (Opcode <= INT_MAX &&
4070           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
4071         "Opcode is not a memory-accessing opcode!");
4072
4073  // Memoize the node unless it returns a flag.
4074  MemIntrinsicSDNode *N;
4075  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4076    FoldingSetNodeID ID;
4077    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4078    void *IP = 0;
4079    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4080      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
4081      return SDValue(E, 0);
4082    }
4083
4084    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4085                                               MemVT, MMO);
4086    CSEMap.InsertNode(N, IP);
4087  } else {
4088    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4089                                               MemVT, MMO);
4090  }
4091  AllNodes.push_back(N);
4092  return SDValue(N, 0);
4093}
4094
4095/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4096/// MachinePointerInfo record from it.  This is particularly useful because the
4097/// code generator has many cases where it doesn't bother passing in a
4098/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4099static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
4100  // If this is FI+Offset, we can model it.
4101  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4102    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4103
4104  // If this is (FI+Offset1)+Offset2, we can model it.
4105  if (Ptr.getOpcode() != ISD::ADD ||
4106      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4107      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4108    return MachinePointerInfo();
4109
4110  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4111  return MachinePointerInfo::getFixedStack(FI, Offset+
4112                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4113}
4114
4115/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4116/// MachinePointerInfo record from it.  This is particularly useful because the
4117/// code generator has many cases where it doesn't bother passing in a
4118/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4119static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4120  // If the 'Offset' value isn't a constant, we can't handle this.
4121  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4122    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4123  if (OffsetOp.getOpcode() == ISD::UNDEF)
4124    return InferPointerInfo(Ptr);
4125  return MachinePointerInfo();
4126}
4127
4128
4129SDValue
4130SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4131                      EVT VT, DebugLoc dl, SDValue Chain,
4132                      SDValue Ptr, SDValue Offset,
4133                      MachinePointerInfo PtrInfo, EVT MemVT,
4134                      bool isVolatile, bool isNonTemporal,
4135                      unsigned Alignment, const MDNode *TBAAInfo) {
4136  assert(Chain.getValueType() == MVT::Other &&
4137        "Invalid chain type");
4138  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4139    Alignment = getEVTAlignment(VT);
4140
4141  unsigned Flags = MachineMemOperand::MOLoad;
4142  if (isVolatile)
4143    Flags |= MachineMemOperand::MOVolatile;
4144  if (isNonTemporal)
4145    Flags |= MachineMemOperand::MONonTemporal;
4146
4147  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4148  // clients.
4149  if (PtrInfo.V == 0)
4150    PtrInfo = InferPointerInfo(Ptr, Offset);
4151
4152  MachineFunction &MF = getMachineFunction();
4153  MachineMemOperand *MMO =
4154    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4155                            TBAAInfo);
4156  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4157}
4158
4159SDValue
4160SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4161                      EVT VT, DebugLoc dl, SDValue Chain,
4162                      SDValue Ptr, SDValue Offset, EVT MemVT,
4163                      MachineMemOperand *MMO) {
4164  if (VT == MemVT) {
4165    ExtType = ISD::NON_EXTLOAD;
4166  } else if (ExtType == ISD::NON_EXTLOAD) {
4167    assert(VT == MemVT && "Non-extending load from different memory type!");
4168  } else {
4169    // Extending load.
4170    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4171           "Should only be an extending load, not truncating!");
4172    assert(VT.isInteger() == MemVT.isInteger() &&
4173           "Cannot convert from FP to Int or Int -> FP!");
4174    assert(VT.isVector() == MemVT.isVector() &&
4175           "Cannot use trunc store to convert to or from a vector!");
4176    assert((!VT.isVector() ||
4177            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4178           "Cannot use trunc store to change the number of vector elements!");
4179  }
4180
4181  bool Indexed = AM != ISD::UNINDEXED;
4182  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4183         "Unindexed load with an offset!");
4184
4185  SDVTList VTs = Indexed ?
4186    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4187  SDValue Ops[] = { Chain, Ptr, Offset };
4188  FoldingSetNodeID ID;
4189  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4190  ID.AddInteger(MemVT.getRawBits());
4191  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4192                                     MMO->isNonTemporal()));
4193  void *IP = 0;
4194  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4195    cast<LoadSDNode>(E)->refineAlignment(MMO);
4196    return SDValue(E, 0);
4197  }
4198  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4199                                             MemVT, MMO);
4200  CSEMap.InsertNode(N, IP);
4201  AllNodes.push_back(N);
4202  return SDValue(N, 0);
4203}
4204
4205SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4206                              SDValue Chain, SDValue Ptr,
4207                              MachinePointerInfo PtrInfo,
4208                              bool isVolatile, bool isNonTemporal,
4209                              unsigned Alignment, const MDNode *TBAAInfo) {
4210  SDValue Undef = getUNDEF(Ptr.getValueType());
4211  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4212                 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
4213}
4214
4215SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
4216                                 SDValue Chain, SDValue Ptr,
4217                                 MachinePointerInfo PtrInfo, EVT MemVT,
4218                                 bool isVolatile, bool isNonTemporal,
4219                                 unsigned Alignment, const MDNode *TBAAInfo) {
4220  SDValue Undef = getUNDEF(Ptr.getValueType());
4221  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4222                 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
4223                 TBAAInfo);
4224}
4225
4226
4227SDValue
4228SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4229                             SDValue Offset, ISD::MemIndexedMode AM) {
4230  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4231  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4232         "Load is already a indexed load!");
4233  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4234                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4235                 LD->getMemoryVT(),
4236                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4237}
4238
4239SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4240                               SDValue Ptr, MachinePointerInfo PtrInfo,
4241                               bool isVolatile, bool isNonTemporal,
4242                               unsigned Alignment, const MDNode *TBAAInfo) {
4243  assert(Chain.getValueType() == MVT::Other &&
4244        "Invalid chain type");
4245  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4246    Alignment = getEVTAlignment(Val.getValueType());
4247
4248  unsigned Flags = MachineMemOperand::MOStore;
4249  if (isVolatile)
4250    Flags |= MachineMemOperand::MOVolatile;
4251  if (isNonTemporal)
4252    Flags |= MachineMemOperand::MONonTemporal;
4253
4254  if (PtrInfo.V == 0)
4255    PtrInfo = InferPointerInfo(Ptr);
4256
4257  MachineFunction &MF = getMachineFunction();
4258  MachineMemOperand *MMO =
4259    MF.getMachineMemOperand(PtrInfo, Flags,
4260                            Val.getValueType().getStoreSize(), Alignment,
4261                            TBAAInfo);
4262
4263  return getStore(Chain, dl, Val, Ptr, MMO);
4264}
4265
4266SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4267                               SDValue Ptr, MachineMemOperand *MMO) {
4268  assert(Chain.getValueType() == MVT::Other &&
4269        "Invalid chain type");
4270  EVT VT = Val.getValueType();
4271  SDVTList VTs = getVTList(MVT::Other);
4272  SDValue Undef = getUNDEF(Ptr.getValueType());
4273  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4274  FoldingSetNodeID ID;
4275  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4276  ID.AddInteger(VT.getRawBits());
4277  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4278                                     MMO->isNonTemporal()));
4279  void *IP = 0;
4280  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4281    cast<StoreSDNode>(E)->refineAlignment(MMO);
4282    return SDValue(E, 0);
4283  }
4284  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4285                                              false, VT, MMO);
4286  CSEMap.InsertNode(N, IP);
4287  AllNodes.push_back(N);
4288  return SDValue(N, 0);
4289}
4290
4291SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4292                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4293                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4294                                    unsigned Alignment,
4295                                    const MDNode *TBAAInfo) {
4296  assert(Chain.getValueType() == MVT::Other &&
4297        "Invalid chain type");
4298  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4299    Alignment = getEVTAlignment(SVT);
4300
4301  unsigned Flags = MachineMemOperand::MOStore;
4302  if (isVolatile)
4303    Flags |= MachineMemOperand::MOVolatile;
4304  if (isNonTemporal)
4305    Flags |= MachineMemOperand::MONonTemporal;
4306
4307  if (PtrInfo.V == 0)
4308    PtrInfo = InferPointerInfo(Ptr);
4309
4310  MachineFunction &MF = getMachineFunction();
4311  MachineMemOperand *MMO =
4312    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4313                            TBAAInfo);
4314
4315  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4316}
4317
4318SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4319                                    SDValue Ptr, EVT SVT,
4320                                    MachineMemOperand *MMO) {
4321  EVT VT = Val.getValueType();
4322
4323  assert(Chain.getValueType() == MVT::Other &&
4324        "Invalid chain type");
4325  if (VT == SVT)
4326    return getStore(Chain, dl, Val, Ptr, MMO);
4327
4328  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4329         "Should only be a truncating store, not extending!");
4330  assert(VT.isInteger() == SVT.isInteger() &&
4331         "Can't do FP-INT conversion!");
4332  assert(VT.isVector() == SVT.isVector() &&
4333         "Cannot use trunc store to convert to or from a vector!");
4334  assert((!VT.isVector() ||
4335          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4336         "Cannot use trunc store to change the number of vector elements!");
4337
4338  SDVTList VTs = getVTList(MVT::Other);
4339  SDValue Undef = getUNDEF(Ptr.getValueType());
4340  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4341  FoldingSetNodeID ID;
4342  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4343  ID.AddInteger(SVT.getRawBits());
4344  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4345                                     MMO->isNonTemporal()));
4346  void *IP = 0;
4347  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4348    cast<StoreSDNode>(E)->refineAlignment(MMO);
4349    return SDValue(E, 0);
4350  }
4351  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4352                                              true, SVT, MMO);
4353  CSEMap.InsertNode(N, IP);
4354  AllNodes.push_back(N);
4355  return SDValue(N, 0);
4356}
4357
4358SDValue
4359SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4360                              SDValue Offset, ISD::MemIndexedMode AM) {
4361  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4362  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4363         "Store is already a indexed store!");
4364  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4365  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4366  FoldingSetNodeID ID;
4367  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4368  ID.AddInteger(ST->getMemoryVT().getRawBits());
4369  ID.AddInteger(ST->getRawSubclassData());
4370  void *IP = 0;
4371  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4372    return SDValue(E, 0);
4373
4374  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4375                                              ST->isTruncatingStore(),
4376                                              ST->getMemoryVT(),
4377                                              ST->getMemOperand());
4378  CSEMap.InsertNode(N, IP);
4379  AllNodes.push_back(N);
4380  return SDValue(N, 0);
4381}
4382
4383SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4384                               SDValue Chain, SDValue Ptr,
4385                               SDValue SV,
4386                               unsigned Align) {
4387  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4388  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4389}
4390
4391SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4392                              const SDUse *Ops, unsigned NumOps) {
4393  switch (NumOps) {
4394  case 0: return getNode(Opcode, DL, VT);
4395  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4396  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4397  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4398  default: break;
4399  }
4400
4401  // Copy from an SDUse array into an SDValue array for use with
4402  // the regular getNode logic.
4403  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4404  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4405}
4406
4407SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4408                              const SDValue *Ops, unsigned NumOps) {
4409  switch (NumOps) {
4410  case 0: return getNode(Opcode, DL, VT);
4411  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4412  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4413  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4414  default: break;
4415  }
4416
4417  switch (Opcode) {
4418  default: break;
4419  case ISD::SELECT_CC: {
4420    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4421    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4422           "LHS and RHS of condition must have same type!");
4423    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4424           "True and False arms of SelectCC must have same type!");
4425    assert(Ops[2].getValueType() == VT &&
4426           "select_cc node must be of same type as true and false value!");
4427    break;
4428  }
4429  case ISD::BR_CC: {
4430    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4431    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4432           "LHS/RHS of comparison should match types!");
4433    break;
4434  }
4435  }
4436
4437  // Memoize nodes.
4438  SDNode *N;
4439  SDVTList VTs = getVTList(VT);
4440
4441  if (VT != MVT::Glue) {
4442    FoldingSetNodeID ID;
4443    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4444    void *IP = 0;
4445
4446    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4447      return SDValue(E, 0);
4448
4449    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4450    CSEMap.InsertNode(N, IP);
4451  } else {
4452    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4453  }
4454
4455  AllNodes.push_back(N);
4456#ifndef NDEBUG
4457  VerifySDNode(N);
4458#endif
4459  return SDValue(N, 0);
4460}
4461
4462SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4463                              const std::vector<EVT> &ResultTys,
4464                              const SDValue *Ops, unsigned NumOps) {
4465  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4466                 Ops, NumOps);
4467}
4468
4469SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4470                              const EVT *VTs, unsigned NumVTs,
4471                              const SDValue *Ops, unsigned NumOps) {
4472  if (NumVTs == 1)
4473    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4474  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4475}
4476
4477SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4478                              const SDValue *Ops, unsigned NumOps) {
4479  if (VTList.NumVTs == 1)
4480    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4481
4482#if 0
4483  switch (Opcode) {
4484  // FIXME: figure out how to safely handle things like
4485  // int foo(int x) { return 1 << (x & 255); }
4486  // int bar() { return foo(256); }
4487  case ISD::SRA_PARTS:
4488  case ISD::SRL_PARTS:
4489  case ISD::SHL_PARTS:
4490    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4491        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4492      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4493    else if (N3.getOpcode() == ISD::AND)
4494      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4495        // If the and is only masking out bits that cannot effect the shift,
4496        // eliminate the and.
4497        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4498        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4499          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4500      }
4501    break;
4502  }
4503#endif
4504
4505  // Memoize the node unless it returns a flag.
4506  SDNode *N;
4507  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4508    FoldingSetNodeID ID;
4509    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4510    void *IP = 0;
4511    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4512      return SDValue(E, 0);
4513
4514    if (NumOps == 1) {
4515      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4516    } else if (NumOps == 2) {
4517      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4518    } else if (NumOps == 3) {
4519      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4520                                            Ops[2]);
4521    } else {
4522      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4523    }
4524    CSEMap.InsertNode(N, IP);
4525  } else {
4526    if (NumOps == 1) {
4527      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4528    } else if (NumOps == 2) {
4529      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4530    } else if (NumOps == 3) {
4531      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4532                                            Ops[2]);
4533    } else {
4534      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4535    }
4536  }
4537  AllNodes.push_back(N);
4538#ifndef NDEBUG
4539  VerifySDNode(N);
4540#endif
4541  return SDValue(N, 0);
4542}
4543
4544SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4545  return getNode(Opcode, DL, VTList, 0, 0);
4546}
4547
4548SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4549                              SDValue N1) {
4550  SDValue Ops[] = { N1 };
4551  return getNode(Opcode, DL, VTList, Ops, 1);
4552}
4553
4554SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4555                              SDValue N1, SDValue N2) {
4556  SDValue Ops[] = { N1, N2 };
4557  return getNode(Opcode, DL, VTList, Ops, 2);
4558}
4559
4560SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4561                              SDValue N1, SDValue N2, SDValue N3) {
4562  SDValue Ops[] = { N1, N2, N3 };
4563  return getNode(Opcode, DL, VTList, Ops, 3);
4564}
4565
4566SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4567                              SDValue N1, SDValue N2, SDValue N3,
4568                              SDValue N4) {
4569  SDValue Ops[] = { N1, N2, N3, N4 };
4570  return getNode(Opcode, DL, VTList, Ops, 4);
4571}
4572
4573SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4574                              SDValue N1, SDValue N2, SDValue N3,
4575                              SDValue N4, SDValue N5) {
4576  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4577  return getNode(Opcode, DL, VTList, Ops, 5);
4578}
4579
4580SDVTList SelectionDAG::getVTList(EVT VT) {
4581  return makeVTList(SDNode::getValueTypeList(VT), 1);
4582}
4583
4584SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4585  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4586       E = VTList.rend(); I != E; ++I)
4587    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4588      return *I;
4589
4590  EVT *Array = Allocator.Allocate<EVT>(2);
4591  Array[0] = VT1;
4592  Array[1] = VT2;
4593  SDVTList Result = makeVTList(Array, 2);
4594  VTList.push_back(Result);
4595  return Result;
4596}
4597
4598SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4599  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4600       E = VTList.rend(); I != E; ++I)
4601    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4602                          I->VTs[2] == VT3)
4603      return *I;
4604
4605  EVT *Array = Allocator.Allocate<EVT>(3);
4606  Array[0] = VT1;
4607  Array[1] = VT2;
4608  Array[2] = VT3;
4609  SDVTList Result = makeVTList(Array, 3);
4610  VTList.push_back(Result);
4611  return Result;
4612}
4613
4614SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4615  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4616       E = VTList.rend(); I != E; ++I)
4617    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4618                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4619      return *I;
4620
4621  EVT *Array = Allocator.Allocate<EVT>(4);
4622  Array[0] = VT1;
4623  Array[1] = VT2;
4624  Array[2] = VT3;
4625  Array[3] = VT4;
4626  SDVTList Result = makeVTList(Array, 4);
4627  VTList.push_back(Result);
4628  return Result;
4629}
4630
4631SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4632  switch (NumVTs) {
4633    case 0: llvm_unreachable("Cannot have nodes without results!");
4634    case 1: return getVTList(VTs[0]);
4635    case 2: return getVTList(VTs[0], VTs[1]);
4636    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4637    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4638    default: break;
4639  }
4640
4641  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4642       E = VTList.rend(); I != E; ++I) {
4643    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4644      continue;
4645
4646    bool NoMatch = false;
4647    for (unsigned i = 2; i != NumVTs; ++i)
4648      if (VTs[i] != I->VTs[i]) {
4649        NoMatch = true;
4650        break;
4651      }
4652    if (!NoMatch)
4653      return *I;
4654  }
4655
4656  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4657  std::copy(VTs, VTs+NumVTs, Array);
4658  SDVTList Result = makeVTList(Array, NumVTs);
4659  VTList.push_back(Result);
4660  return Result;
4661}
4662
4663
4664/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4665/// specified operands.  If the resultant node already exists in the DAG,
4666/// this does not modify the specified node, instead it returns the node that
4667/// already exists.  If the resultant node does not exist in the DAG, the
4668/// input node is returned.  As a degenerate case, if you specify the same
4669/// input operands as the node already has, the input node is returned.
4670SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4671  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4672
4673  // Check to see if there is no change.
4674  if (Op == N->getOperand(0)) return N;
4675
4676  // See if the modified node already exists.
4677  void *InsertPos = 0;
4678  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4679    return Existing;
4680
4681  // Nope it doesn't.  Remove the node from its current place in the maps.
4682  if (InsertPos)
4683    if (!RemoveNodeFromCSEMaps(N))
4684      InsertPos = 0;
4685
4686  // Now we update the operands.
4687  N->OperandList[0].set(Op);
4688
4689  // If this gets put into a CSE map, add it.
4690  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4691  return N;
4692}
4693
4694SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4695  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4696
4697  // Check to see if there is no change.
4698  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4699    return N;   // No operands changed, just return the input node.
4700
4701  // See if the modified node already exists.
4702  void *InsertPos = 0;
4703  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4704    return Existing;
4705
4706  // Nope it doesn't.  Remove the node from its current place in the maps.
4707  if (InsertPos)
4708    if (!RemoveNodeFromCSEMaps(N))
4709      InsertPos = 0;
4710
4711  // Now we update the operands.
4712  if (N->OperandList[0] != Op1)
4713    N->OperandList[0].set(Op1);
4714  if (N->OperandList[1] != Op2)
4715    N->OperandList[1].set(Op2);
4716
4717  // If this gets put into a CSE map, add it.
4718  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4719  return N;
4720}
4721
4722SDNode *SelectionDAG::
4723UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4724  SDValue Ops[] = { Op1, Op2, Op3 };
4725  return UpdateNodeOperands(N, Ops, 3);
4726}
4727
4728SDNode *SelectionDAG::
4729UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4730                   SDValue Op3, SDValue Op4) {
4731  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4732  return UpdateNodeOperands(N, Ops, 4);
4733}
4734
4735SDNode *SelectionDAG::
4736UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4737                   SDValue Op3, SDValue Op4, SDValue Op5) {
4738  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4739  return UpdateNodeOperands(N, Ops, 5);
4740}
4741
4742SDNode *SelectionDAG::
4743UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4744  assert(N->getNumOperands() == NumOps &&
4745         "Update with wrong number of operands");
4746
4747  // Check to see if there is no change.
4748  bool AnyChange = false;
4749  for (unsigned i = 0; i != NumOps; ++i) {
4750    if (Ops[i] != N->getOperand(i)) {
4751      AnyChange = true;
4752      break;
4753    }
4754  }
4755
4756  // No operands changed, just return the input node.
4757  if (!AnyChange) return N;
4758
4759  // See if the modified node already exists.
4760  void *InsertPos = 0;
4761  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4762    return Existing;
4763
4764  // Nope it doesn't.  Remove the node from its current place in the maps.
4765  if (InsertPos)
4766    if (!RemoveNodeFromCSEMaps(N))
4767      InsertPos = 0;
4768
4769  // Now we update the operands.
4770  for (unsigned i = 0; i != NumOps; ++i)
4771    if (N->OperandList[i] != Ops[i])
4772      N->OperandList[i].set(Ops[i]);
4773
4774  // If this gets put into a CSE map, add it.
4775  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4776  return N;
4777}
4778
4779/// DropOperands - Release the operands and set this node to have
4780/// zero operands.
4781void SDNode::DropOperands() {
4782  // Unlike the code in MorphNodeTo that does this, we don't need to
4783  // watch for dead nodes here.
4784  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4785    SDUse &Use = *I++;
4786    Use.set(SDValue());
4787  }
4788}
4789
4790/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4791/// machine opcode.
4792///
4793SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4794                                   EVT VT) {
4795  SDVTList VTs = getVTList(VT);
4796  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4797}
4798
4799SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4800                                   EVT VT, SDValue Op1) {
4801  SDVTList VTs = getVTList(VT);
4802  SDValue Ops[] = { Op1 };
4803  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4804}
4805
4806SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4807                                   EVT VT, SDValue Op1,
4808                                   SDValue Op2) {
4809  SDVTList VTs = getVTList(VT);
4810  SDValue Ops[] = { Op1, Op2 };
4811  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4812}
4813
4814SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4815                                   EVT VT, SDValue Op1,
4816                                   SDValue Op2, SDValue Op3) {
4817  SDVTList VTs = getVTList(VT);
4818  SDValue Ops[] = { Op1, Op2, Op3 };
4819  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4820}
4821
4822SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4823                                   EVT VT, const SDValue *Ops,
4824                                   unsigned NumOps) {
4825  SDVTList VTs = getVTList(VT);
4826  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4827}
4828
4829SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4830                                   EVT VT1, EVT VT2, const SDValue *Ops,
4831                                   unsigned NumOps) {
4832  SDVTList VTs = getVTList(VT1, VT2);
4833  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4834}
4835
4836SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4837                                   EVT VT1, EVT VT2) {
4838  SDVTList VTs = getVTList(VT1, VT2);
4839  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4840}
4841
4842SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4843                                   EVT VT1, EVT VT2, EVT VT3,
4844                                   const SDValue *Ops, unsigned NumOps) {
4845  SDVTList VTs = getVTList(VT1, VT2, VT3);
4846  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4847}
4848
4849SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4850                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4851                                   const SDValue *Ops, unsigned NumOps) {
4852  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4853  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4854}
4855
4856SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4857                                   EVT VT1, EVT VT2,
4858                                   SDValue Op1) {
4859  SDVTList VTs = getVTList(VT1, VT2);
4860  SDValue Ops[] = { Op1 };
4861  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4862}
4863
4864SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4865                                   EVT VT1, EVT VT2,
4866                                   SDValue Op1, SDValue Op2) {
4867  SDVTList VTs = getVTList(VT1, VT2);
4868  SDValue Ops[] = { Op1, Op2 };
4869  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4870}
4871
4872SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4873                                   EVT VT1, EVT VT2,
4874                                   SDValue Op1, SDValue Op2,
4875                                   SDValue Op3) {
4876  SDVTList VTs = getVTList(VT1, VT2);
4877  SDValue Ops[] = { Op1, Op2, Op3 };
4878  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4879}
4880
4881SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4882                                   EVT VT1, EVT VT2, EVT VT3,
4883                                   SDValue Op1, SDValue Op2,
4884                                   SDValue Op3) {
4885  SDVTList VTs = getVTList(VT1, VT2, VT3);
4886  SDValue Ops[] = { Op1, Op2, Op3 };
4887  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4888}
4889
4890SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4891                                   SDVTList VTs, const SDValue *Ops,
4892                                   unsigned NumOps) {
4893  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4894  // Reset the NodeID to -1.
4895  N->setNodeId(-1);
4896  return N;
4897}
4898
4899/// MorphNodeTo - This *mutates* the specified node to have the specified
4900/// return type, opcode, and operands.
4901///
4902/// Note that MorphNodeTo returns the resultant node.  If there is already a
4903/// node of the specified opcode and operands, it returns that node instead of
4904/// the current one.  Note that the DebugLoc need not be the same.
4905///
4906/// Using MorphNodeTo is faster than creating a new node and swapping it in
4907/// with ReplaceAllUsesWith both because it often avoids allocating a new
4908/// node, and because it doesn't require CSE recalculation for any of
4909/// the node's users.
4910///
4911SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4912                                  SDVTList VTs, const SDValue *Ops,
4913                                  unsigned NumOps) {
4914  // If an identical node already exists, use it.
4915  void *IP = 0;
4916  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
4917    FoldingSetNodeID ID;
4918    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4919    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4920      return ON;
4921  }
4922
4923  if (!RemoveNodeFromCSEMaps(N))
4924    IP = 0;
4925
4926  // Start the morphing.
4927  N->NodeType = Opc;
4928  N->ValueList = VTs.VTs;
4929  N->NumValues = VTs.NumVTs;
4930
4931  // Clear the operands list, updating used nodes to remove this from their
4932  // use list.  Keep track of any operands that become dead as a result.
4933  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4934  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4935    SDUse &Use = *I++;
4936    SDNode *Used = Use.getNode();
4937    Use.set(SDValue());
4938    if (Used->use_empty())
4939      DeadNodeSet.insert(Used);
4940  }
4941
4942  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4943    // Initialize the memory references information.
4944    MN->setMemRefs(0, 0);
4945    // If NumOps is larger than the # of operands we can have in a
4946    // MachineSDNode, reallocate the operand list.
4947    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4948      if (MN->OperandsNeedDelete)
4949        delete[] MN->OperandList;
4950      if (NumOps > array_lengthof(MN->LocalOperands))
4951        // We're creating a final node that will live unmorphed for the
4952        // remainder of the current SelectionDAG iteration, so we can allocate
4953        // the operands directly out of a pool with no recycling metadata.
4954        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4955                         Ops, NumOps);
4956      else
4957        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4958      MN->OperandsNeedDelete = false;
4959    } else
4960      MN->InitOperands(MN->OperandList, Ops, NumOps);
4961  } else {
4962    // If NumOps is larger than the # of operands we currently have, reallocate
4963    // the operand list.
4964    if (NumOps > N->NumOperands) {
4965      if (N->OperandsNeedDelete)
4966        delete[] N->OperandList;
4967      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4968      N->OperandsNeedDelete = true;
4969    } else
4970      N->InitOperands(N->OperandList, Ops, NumOps);
4971  }
4972
4973  // Delete any nodes that are still dead after adding the uses for the
4974  // new operands.
4975  if (!DeadNodeSet.empty()) {
4976    SmallVector<SDNode *, 16> DeadNodes;
4977    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4978         E = DeadNodeSet.end(); I != E; ++I)
4979      if ((*I)->use_empty())
4980        DeadNodes.push_back(*I);
4981    RemoveDeadNodes(DeadNodes);
4982  }
4983
4984  if (IP)
4985    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4986  return N;
4987}
4988
4989
4990/// getMachineNode - These are used for target selectors to create a new node
4991/// with specified return type(s), MachineInstr opcode, and operands.
4992///
4993/// Note that getMachineNode returns the resultant node.  If there is already a
4994/// node of the specified opcode and operands, it returns that node instead of
4995/// the current one.
4996MachineSDNode *
4997SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4998  SDVTList VTs = getVTList(VT);
4999  return getMachineNode(Opcode, dl, VTs, 0, 0);
5000}
5001
5002MachineSDNode *
5003SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
5004  SDVTList VTs = getVTList(VT);
5005  SDValue Ops[] = { Op1 };
5006  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5007}
5008
5009MachineSDNode *
5010SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5011                             SDValue Op1, SDValue Op2) {
5012  SDVTList VTs = getVTList(VT);
5013  SDValue Ops[] = { Op1, Op2 };
5014  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5015}
5016
5017MachineSDNode *
5018SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5019                             SDValue Op1, SDValue Op2, SDValue Op3) {
5020  SDVTList VTs = getVTList(VT);
5021  SDValue Ops[] = { Op1, Op2, Op3 };
5022  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5023}
5024
5025MachineSDNode *
5026SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5027                             const SDValue *Ops, unsigned NumOps) {
5028  SDVTList VTs = getVTList(VT);
5029  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5030}
5031
5032MachineSDNode *
5033SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
5034  SDVTList VTs = getVTList(VT1, VT2);
5035  return getMachineNode(Opcode, dl, VTs, 0, 0);
5036}
5037
5038MachineSDNode *
5039SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5040                             EVT VT1, EVT VT2, SDValue Op1) {
5041  SDVTList VTs = getVTList(VT1, VT2);
5042  SDValue Ops[] = { Op1 };
5043  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5044}
5045
5046MachineSDNode *
5047SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5048                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
5049  SDVTList VTs = getVTList(VT1, VT2);
5050  SDValue Ops[] = { Op1, Op2 };
5051  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5052}
5053
5054MachineSDNode *
5055SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5056                             EVT VT1, EVT VT2, SDValue Op1,
5057                             SDValue Op2, SDValue Op3) {
5058  SDVTList VTs = getVTList(VT1, VT2);
5059  SDValue Ops[] = { Op1, Op2, Op3 };
5060  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5061}
5062
5063MachineSDNode *
5064SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5065                             EVT VT1, EVT VT2,
5066                             const SDValue *Ops, unsigned NumOps) {
5067  SDVTList VTs = getVTList(VT1, VT2);
5068  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5069}
5070
5071MachineSDNode *
5072SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5073                             EVT VT1, EVT VT2, EVT VT3,
5074                             SDValue Op1, SDValue Op2) {
5075  SDVTList VTs = getVTList(VT1, VT2, VT3);
5076  SDValue Ops[] = { Op1, Op2 };
5077  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5078}
5079
5080MachineSDNode *
5081SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5082                             EVT VT1, EVT VT2, EVT VT3,
5083                             SDValue Op1, SDValue Op2, SDValue Op3) {
5084  SDVTList VTs = getVTList(VT1, VT2, VT3);
5085  SDValue Ops[] = { Op1, Op2, Op3 };
5086  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5087}
5088
5089MachineSDNode *
5090SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5091                             EVT VT1, EVT VT2, EVT VT3,
5092                             const SDValue *Ops, unsigned NumOps) {
5093  SDVTList VTs = getVTList(VT1, VT2, VT3);
5094  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5095}
5096
5097MachineSDNode *
5098SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
5099                             EVT VT2, EVT VT3, EVT VT4,
5100                             const SDValue *Ops, unsigned NumOps) {
5101  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
5102  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5103}
5104
5105MachineSDNode *
5106SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5107                             const std::vector<EVT> &ResultTys,
5108                             const SDValue *Ops, unsigned NumOps) {
5109  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
5110  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5111}
5112
5113MachineSDNode *
5114SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
5115                             const SDValue *Ops, unsigned NumOps) {
5116  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5117  MachineSDNode *N;
5118  void *IP = 0;
5119
5120  if (DoCSE) {
5121    FoldingSetNodeID ID;
5122    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5123    IP = 0;
5124    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5125      return cast<MachineSDNode>(E);
5126  }
5127
5128  // Allocate a new MachineSDNode.
5129  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
5130
5131  // Initialize the operands list.
5132  if (NumOps > array_lengthof(N->LocalOperands))
5133    // We're creating a final node that will live unmorphed for the
5134    // remainder of the current SelectionDAG iteration, so we can allocate
5135    // the operands directly out of a pool with no recycling metadata.
5136    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5137                    Ops, NumOps);
5138  else
5139    N->InitOperands(N->LocalOperands, Ops, NumOps);
5140  N->OperandsNeedDelete = false;
5141
5142  if (DoCSE)
5143    CSEMap.InsertNode(N, IP);
5144
5145  AllNodes.push_back(N);
5146#ifndef NDEBUG
5147  VerifyMachineNode(N);
5148#endif
5149  return N;
5150}
5151
5152/// getTargetExtractSubreg - A convenience function for creating
5153/// TargetOpcode::EXTRACT_SUBREG nodes.
5154SDValue
5155SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5156                                     SDValue Operand) {
5157  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5158  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5159                                  VT, Operand, SRIdxVal);
5160  return SDValue(Subreg, 0);
5161}
5162
5163/// getTargetInsertSubreg - A convenience function for creating
5164/// TargetOpcode::INSERT_SUBREG nodes.
5165SDValue
5166SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5167                                    SDValue Operand, SDValue Subreg) {
5168  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5169  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5170                                  VT, Operand, Subreg, SRIdxVal);
5171  return SDValue(Result, 0);
5172}
5173
5174/// getNodeIfExists - Get the specified node if it's already available, or
5175/// else return NULL.
5176SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5177                                      const SDValue *Ops, unsigned NumOps) {
5178  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5179    FoldingSetNodeID ID;
5180    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5181    void *IP = 0;
5182    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5183      return E;
5184  }
5185  return NULL;
5186}
5187
5188/// getDbgValue - Creates a SDDbgValue node.
5189///
5190SDDbgValue *
5191SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5192                          DebugLoc DL, unsigned O) {
5193  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5194}
5195
5196SDDbgValue *
5197SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5198                          DebugLoc DL, unsigned O) {
5199  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5200}
5201
5202SDDbgValue *
5203SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5204                          DebugLoc DL, unsigned O) {
5205  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5206}
5207
5208namespace {
5209
5210/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5211/// pointed to by a use iterator is deleted, increment the use iterator
5212/// so that it doesn't dangle.
5213///
5214/// This class also manages a "downlink" DAGUpdateListener, to forward
5215/// messages to ReplaceAllUsesWith's callers.
5216///
5217class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5218  SelectionDAG::DAGUpdateListener *DownLink;
5219  SDNode::use_iterator &UI;
5220  SDNode::use_iterator &UE;
5221
5222  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5223    // Increment the iterator as needed.
5224    while (UI != UE && N == *UI)
5225      ++UI;
5226
5227    // Then forward the message.
5228    if (DownLink) DownLink->NodeDeleted(N, E);
5229  }
5230
5231  virtual void NodeUpdated(SDNode *N) {
5232    // Just forward the message.
5233    if (DownLink) DownLink->NodeUpdated(N);
5234  }
5235
5236public:
5237  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5238                     SDNode::use_iterator &ui,
5239                     SDNode::use_iterator &ue)
5240    : DownLink(dl), UI(ui), UE(ue) {}
5241};
5242
5243}
5244
5245/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5246/// This can cause recursive merging of nodes in the DAG.
5247///
5248/// This version assumes From has a single result value.
5249///
5250void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5251                                      DAGUpdateListener *UpdateListener) {
5252  SDNode *From = FromN.getNode();
5253  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5254         "Cannot replace with this method!");
5255  assert(From != To.getNode() && "Cannot replace uses of with self");
5256
5257  // Iterate over all the existing uses of From. New uses will be added
5258  // to the beginning of the use list, which we avoid visiting.
5259  // This specifically avoids visiting uses of From that arise while the
5260  // replacement is happening, because any such uses would be the result
5261  // of CSE: If an existing node looks like From after one of its operands
5262  // is replaced by To, we don't want to replace of all its users with To
5263  // too. See PR3018 for more info.
5264  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5265  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5266  while (UI != UE) {
5267    SDNode *User = *UI;
5268
5269    // This node is about to morph, remove its old self from the CSE maps.
5270    RemoveNodeFromCSEMaps(User);
5271
5272    // A user can appear in a use list multiple times, and when this
5273    // happens the uses are usually next to each other in the list.
5274    // To help reduce the number of CSE recomputations, process all
5275    // the uses of this user that we can find this way.
5276    do {
5277      SDUse &Use = UI.getUse();
5278      ++UI;
5279      Use.set(To);
5280    } while (UI != UE && *UI == User);
5281
5282    // Now that we have modified User, add it back to the CSE maps.  If it
5283    // already exists there, recursively merge the results together.
5284    AddModifiedNodeToCSEMaps(User, &Listener);
5285  }
5286}
5287
5288/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5289/// This can cause recursive merging of nodes in the DAG.
5290///
5291/// This version assumes that for each value of From, there is a
5292/// corresponding value in To in the same position with the same type.
5293///
5294void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5295                                      DAGUpdateListener *UpdateListener) {
5296#ifndef NDEBUG
5297  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5298    assert((!From->hasAnyUseOfValue(i) ||
5299            From->getValueType(i) == To->getValueType(i)) &&
5300           "Cannot use this version of ReplaceAllUsesWith!");
5301#endif
5302
5303  // Handle the trivial case.
5304  if (From == To)
5305    return;
5306
5307  // Iterate over just the existing users of From. See the comments in
5308  // the ReplaceAllUsesWith above.
5309  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5310  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5311  while (UI != UE) {
5312    SDNode *User = *UI;
5313
5314    // This node is about to morph, remove its old self from the CSE maps.
5315    RemoveNodeFromCSEMaps(User);
5316
5317    // A user can appear in a use list multiple times, and when this
5318    // happens the uses are usually next to each other in the list.
5319    // To help reduce the number of CSE recomputations, process all
5320    // the uses of this user that we can find this way.
5321    do {
5322      SDUse &Use = UI.getUse();
5323      ++UI;
5324      Use.setNode(To);
5325    } while (UI != UE && *UI == User);
5326
5327    // Now that we have modified User, add it back to the CSE maps.  If it
5328    // already exists there, recursively merge the results together.
5329    AddModifiedNodeToCSEMaps(User, &Listener);
5330  }
5331}
5332
5333/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5334/// This can cause recursive merging of nodes in the DAG.
5335///
5336/// This version can replace From with any result values.  To must match the
5337/// number and types of values returned by From.
5338void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5339                                      const SDValue *To,
5340                                      DAGUpdateListener *UpdateListener) {
5341  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5342    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5343
5344  // Iterate over just the existing users of From. See the comments in
5345  // the ReplaceAllUsesWith above.
5346  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5347  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5348  while (UI != UE) {
5349    SDNode *User = *UI;
5350
5351    // This node is about to morph, remove its old self from the CSE maps.
5352    RemoveNodeFromCSEMaps(User);
5353
5354    // A user can appear in a use list multiple times, and when this
5355    // happens the uses are usually next to each other in the list.
5356    // To help reduce the number of CSE recomputations, process all
5357    // the uses of this user that we can find this way.
5358    do {
5359      SDUse &Use = UI.getUse();
5360      const SDValue &ToOp = To[Use.getResNo()];
5361      ++UI;
5362      Use.set(ToOp);
5363    } while (UI != UE && *UI == User);
5364
5365    // Now that we have modified User, add it back to the CSE maps.  If it
5366    // already exists there, recursively merge the results together.
5367    AddModifiedNodeToCSEMaps(User, &Listener);
5368  }
5369}
5370
5371/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5372/// uses of other values produced by From.getNode() alone.  The Deleted
5373/// vector is handled the same way as for ReplaceAllUsesWith.
5374void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5375                                             DAGUpdateListener *UpdateListener){
5376  // Handle the really simple, really trivial case efficiently.
5377  if (From == To) return;
5378
5379  // Handle the simple, trivial, case efficiently.
5380  if (From.getNode()->getNumValues() == 1) {
5381    ReplaceAllUsesWith(From, To, UpdateListener);
5382    return;
5383  }
5384
5385  // Iterate over just the existing users of From. See the comments in
5386  // the ReplaceAllUsesWith above.
5387  SDNode::use_iterator UI = From.getNode()->use_begin(),
5388                       UE = From.getNode()->use_end();
5389  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5390  while (UI != UE) {
5391    SDNode *User = *UI;
5392    bool UserRemovedFromCSEMaps = false;
5393
5394    // A user can appear in a use list multiple times, and when this
5395    // happens the uses are usually next to each other in the list.
5396    // To help reduce the number of CSE recomputations, process all
5397    // the uses of this user that we can find this way.
5398    do {
5399      SDUse &Use = UI.getUse();
5400
5401      // Skip uses of different values from the same node.
5402      if (Use.getResNo() != From.getResNo()) {
5403        ++UI;
5404        continue;
5405      }
5406
5407      // If this node hasn't been modified yet, it's still in the CSE maps,
5408      // so remove its old self from the CSE maps.
5409      if (!UserRemovedFromCSEMaps) {
5410        RemoveNodeFromCSEMaps(User);
5411        UserRemovedFromCSEMaps = true;
5412      }
5413
5414      ++UI;
5415      Use.set(To);
5416    } while (UI != UE && *UI == User);
5417
5418    // We are iterating over all uses of the From node, so if a use
5419    // doesn't use the specific value, no changes are made.
5420    if (!UserRemovedFromCSEMaps)
5421      continue;
5422
5423    // Now that we have modified User, add it back to the CSE maps.  If it
5424    // already exists there, recursively merge the results together.
5425    AddModifiedNodeToCSEMaps(User, &Listener);
5426  }
5427}
5428
5429namespace {
5430  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5431  /// to record information about a use.
5432  struct UseMemo {
5433    SDNode *User;
5434    unsigned Index;
5435    SDUse *Use;
5436  };
5437
5438  /// operator< - Sort Memos by User.
5439  bool operator<(const UseMemo &L, const UseMemo &R) {
5440    return (intptr_t)L.User < (intptr_t)R.User;
5441  }
5442}
5443
5444/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5445/// uses of other values produced by From.getNode() alone.  The same value
5446/// may appear in both the From and To list.  The Deleted vector is
5447/// handled the same way as for ReplaceAllUsesWith.
5448void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5449                                              const SDValue *To,
5450                                              unsigned Num,
5451                                              DAGUpdateListener *UpdateListener){
5452  // Handle the simple, trivial case efficiently.
5453  if (Num == 1)
5454    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5455
5456  // Read up all the uses and make records of them. This helps
5457  // processing new uses that are introduced during the
5458  // replacement process.
5459  SmallVector<UseMemo, 4> Uses;
5460  for (unsigned i = 0; i != Num; ++i) {
5461    unsigned FromResNo = From[i].getResNo();
5462    SDNode *FromNode = From[i].getNode();
5463    for (SDNode::use_iterator UI = FromNode->use_begin(),
5464         E = FromNode->use_end(); UI != E; ++UI) {
5465      SDUse &Use = UI.getUse();
5466      if (Use.getResNo() == FromResNo) {
5467        UseMemo Memo = { *UI, i, &Use };
5468        Uses.push_back(Memo);
5469      }
5470    }
5471  }
5472
5473  // Sort the uses, so that all the uses from a given User are together.
5474  std::sort(Uses.begin(), Uses.end());
5475
5476  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5477       UseIndex != UseIndexEnd; ) {
5478    // We know that this user uses some value of From.  If it is the right
5479    // value, update it.
5480    SDNode *User = Uses[UseIndex].User;
5481
5482    // This node is about to morph, remove its old self from the CSE maps.
5483    RemoveNodeFromCSEMaps(User);
5484
5485    // The Uses array is sorted, so all the uses for a given User
5486    // are next to each other in the list.
5487    // To help reduce the number of CSE recomputations, process all
5488    // the uses of this user that we can find this way.
5489    do {
5490      unsigned i = Uses[UseIndex].Index;
5491      SDUse &Use = *Uses[UseIndex].Use;
5492      ++UseIndex;
5493
5494      Use.set(To[i]);
5495    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5496
5497    // Now that we have modified User, add it back to the CSE maps.  If it
5498    // already exists there, recursively merge the results together.
5499    AddModifiedNodeToCSEMaps(User, UpdateListener);
5500  }
5501}
5502
5503/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5504/// based on their topological order. It returns the maximum id and a vector
5505/// of the SDNodes* in assigned order by reference.
5506unsigned SelectionDAG::AssignTopologicalOrder() {
5507
5508  unsigned DAGSize = 0;
5509
5510  // SortedPos tracks the progress of the algorithm. Nodes before it are
5511  // sorted, nodes after it are unsorted. When the algorithm completes
5512  // it is at the end of the list.
5513  allnodes_iterator SortedPos = allnodes_begin();
5514
5515  // Visit all the nodes. Move nodes with no operands to the front of
5516  // the list immediately. Annotate nodes that do have operands with their
5517  // operand count. Before we do this, the Node Id fields of the nodes
5518  // may contain arbitrary values. After, the Node Id fields for nodes
5519  // before SortedPos will contain the topological sort index, and the
5520  // Node Id fields for nodes At SortedPos and after will contain the
5521  // count of outstanding operands.
5522  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5523    SDNode *N = I++;
5524    checkForCycles(N);
5525    unsigned Degree = N->getNumOperands();
5526    if (Degree == 0) {
5527      // A node with no uses, add it to the result array immediately.
5528      N->setNodeId(DAGSize++);
5529      allnodes_iterator Q = N;
5530      if (Q != SortedPos)
5531        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5532      assert(SortedPos != AllNodes.end() && "Overran node list");
5533      ++SortedPos;
5534    } else {
5535      // Temporarily use the Node Id as scratch space for the degree count.
5536      N->setNodeId(Degree);
5537    }
5538  }
5539
5540  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5541  // such that by the time the end is reached all nodes will be sorted.
5542  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5543    SDNode *N = I;
5544    checkForCycles(N);
5545    // N is in sorted position, so all its uses have one less operand
5546    // that needs to be sorted.
5547    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5548         UI != UE; ++UI) {
5549      SDNode *P = *UI;
5550      unsigned Degree = P->getNodeId();
5551      assert(Degree != 0 && "Invalid node degree");
5552      --Degree;
5553      if (Degree == 0) {
5554        // All of P's operands are sorted, so P may sorted now.
5555        P->setNodeId(DAGSize++);
5556        if (P != SortedPos)
5557          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5558        assert(SortedPos != AllNodes.end() && "Overran node list");
5559        ++SortedPos;
5560      } else {
5561        // Update P's outstanding operand count.
5562        P->setNodeId(Degree);
5563      }
5564    }
5565    if (I == SortedPos) {
5566#ifndef NDEBUG
5567      SDNode *S = ++I;
5568      dbgs() << "Overran sorted position:\n";
5569      S->dumprFull();
5570#endif
5571      llvm_unreachable(0);
5572    }
5573  }
5574
5575  assert(SortedPos == AllNodes.end() &&
5576         "Topological sort incomplete!");
5577  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5578         "First node in topological sort is not the entry token!");
5579  assert(AllNodes.front().getNodeId() == 0 &&
5580         "First node in topological sort has non-zero id!");
5581  assert(AllNodes.front().getNumOperands() == 0 &&
5582         "First node in topological sort has operands!");
5583  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5584         "Last node in topologic sort has unexpected id!");
5585  assert(AllNodes.back().use_empty() &&
5586         "Last node in topologic sort has users!");
5587  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5588  return DAGSize;
5589}
5590
5591/// AssignOrdering - Assign an order to the SDNode.
5592void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5593  assert(SD && "Trying to assign an order to a null node!");
5594  Ordering->add(SD, Order);
5595}
5596
5597/// GetOrdering - Get the order for the SDNode.
5598unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5599  assert(SD && "Trying to get the order of a null node!");
5600  return Ordering->getOrder(SD);
5601}
5602
5603/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5604/// value is produced by SD.
5605void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5606  DbgInfo->add(DB, SD, isParameter);
5607  if (SD)
5608    SD->setHasDebugValue(true);
5609}
5610
5611/// TransferDbgValues - Transfer SDDbgValues.
5612void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5613  if (From == To || !From.getNode()->getHasDebugValue())
5614    return;
5615  SDNode *FromNode = From.getNode();
5616  SDNode *ToNode = To.getNode();
5617  ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
5618  SmallVector<SDDbgValue *, 2> ClonedDVs;
5619  for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
5620       I != E; ++I) {
5621    SDDbgValue *Dbg = *I;
5622    if (Dbg->getKind() == SDDbgValue::SDNODE) {
5623      SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
5624                                      Dbg->getOffset(), Dbg->getDebugLoc(),
5625                                      Dbg->getOrder());
5626      ClonedDVs.push_back(Clone);
5627    }
5628  }
5629  for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
5630         E = ClonedDVs.end(); I != E; ++I)
5631    AddDbgValue(*I, ToNode, false);
5632}
5633
5634//===----------------------------------------------------------------------===//
5635//                              SDNode Class
5636//===----------------------------------------------------------------------===//
5637
5638HandleSDNode::~HandleSDNode() {
5639  DropOperands();
5640}
5641
5642GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5643                                         const GlobalValue *GA,
5644                                         EVT VT, int64_t o, unsigned char TF)
5645  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5646  TheGlobal = GA;
5647}
5648
5649MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5650                     MachineMemOperand *mmo)
5651 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5652  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5653                                      MMO->isNonTemporal());
5654  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5655  assert(isNonTemporal() == MMO->isNonTemporal() &&
5656         "Non-temporal encoding error!");
5657  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5658}
5659
5660MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5661                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5662                     MachineMemOperand *mmo)
5663   : SDNode(Opc, dl, VTs, Ops, NumOps),
5664     MemoryVT(memvt), MMO(mmo) {
5665  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5666                                      MMO->isNonTemporal());
5667  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5668  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5669}
5670
5671/// Profile - Gather unique data for the node.
5672///
5673void SDNode::Profile(FoldingSetNodeID &ID) const {
5674  AddNodeIDNode(ID, this);
5675}
5676
5677namespace {
5678  struct EVTArray {
5679    std::vector<EVT> VTs;
5680
5681    EVTArray() {
5682      VTs.reserve(MVT::LAST_VALUETYPE);
5683      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5684        VTs.push_back(MVT((MVT::SimpleValueType)i));
5685    }
5686  };
5687}
5688
5689static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5690static ManagedStatic<EVTArray> SimpleVTArray;
5691static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5692
5693/// getValueTypeList - Return a pointer to the specified value type.
5694///
5695const EVT *SDNode::getValueTypeList(EVT VT) {
5696  if (VT.isExtended()) {
5697    sys::SmartScopedLock<true> Lock(*VTMutex);
5698    return &(*EVTs->insert(VT).first);
5699  } else {
5700    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5701           "Value type out of range!");
5702    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5703  }
5704}
5705
5706/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5707/// indicated value.  This method ignores uses of other values defined by this
5708/// operation.
5709bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5710  assert(Value < getNumValues() && "Bad value!");
5711
5712  // TODO: Only iterate over uses of a given value of the node
5713  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5714    if (UI.getUse().getResNo() == Value) {
5715      if (NUses == 0)
5716        return false;
5717      --NUses;
5718    }
5719  }
5720
5721  // Found exactly the right number of uses?
5722  return NUses == 0;
5723}
5724
5725
5726/// hasAnyUseOfValue - Return true if there are any use of the indicated
5727/// value. This method ignores uses of other values defined by this operation.
5728bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5729  assert(Value < getNumValues() && "Bad value!");
5730
5731  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5732    if (UI.getUse().getResNo() == Value)
5733      return true;
5734
5735  return false;
5736}
5737
5738
5739/// isOnlyUserOf - Return true if this node is the only use of N.
5740///
5741bool SDNode::isOnlyUserOf(SDNode *N) const {
5742  bool Seen = false;
5743  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5744    SDNode *User = *I;
5745    if (User == this)
5746      Seen = true;
5747    else
5748      return false;
5749  }
5750
5751  return Seen;
5752}
5753
5754/// isOperand - Return true if this node is an operand of N.
5755///
5756bool SDValue::isOperandOf(SDNode *N) const {
5757  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5758    if (*this == N->getOperand(i))
5759      return true;
5760  return false;
5761}
5762
5763bool SDNode::isOperandOf(SDNode *N) const {
5764  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5765    if (this == N->OperandList[i].getNode())
5766      return true;
5767  return false;
5768}
5769
5770/// reachesChainWithoutSideEffects - Return true if this operand (which must
5771/// be a chain) reaches the specified operand without crossing any
5772/// side-effecting instructions on any chain path.  In practice, this looks
5773/// through token factors and non-volatile loads.  In order to remain efficient,
5774/// this only looks a couple of nodes in, it does not do an exhaustive search.
5775bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5776                                               unsigned Depth) const {
5777  if (*this == Dest) return true;
5778
5779  // Don't search too deeply, we just want to be able to see through
5780  // TokenFactor's etc.
5781  if (Depth == 0) return false;
5782
5783  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5784  // of the operands of the TF does not reach dest, then we cannot do the xform.
5785  if (getOpcode() == ISD::TokenFactor) {
5786    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5787      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5788        return false;
5789    return true;
5790  }
5791
5792  // Loads don't have side effects, look through them.
5793  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5794    if (!Ld->isVolatile())
5795      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5796  }
5797  return false;
5798}
5799
5800/// hasPredecessor - Return true if N is a predecessor of this node.
5801/// N is either an operand of this node, or can be reached by recursively
5802/// traversing up the operands.
5803/// NOTE: This is an expensive method. Use it carefully.
5804bool SDNode::hasPredecessor(const SDNode *N) const {
5805  SmallPtrSet<const SDNode *, 32> Visited;
5806  SmallVector<const SDNode *, 16> Worklist;
5807  return hasPredecessorHelper(N, Visited, Worklist);
5808}
5809
5810bool SDNode::hasPredecessorHelper(const SDNode *N,
5811                                  SmallPtrSet<const SDNode *, 32> &Visited,
5812                                  SmallVector<const SDNode *, 16> &Worklist) const {
5813  if (Visited.empty()) {
5814    Worklist.push_back(this);
5815  } else {
5816    // Take a look in the visited set. If we've already encountered this node
5817    // we needn't search further.
5818    if (Visited.count(N))
5819      return true;
5820  }
5821
5822  // Haven't visited N yet. Continue the search.
5823  while (!Worklist.empty()) {
5824    const SDNode *M = Worklist.pop_back_val();
5825    for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
5826      SDNode *Op = M->getOperand(i).getNode();
5827      if (Visited.insert(Op))
5828        Worklist.push_back(Op);
5829      if (Op == N)
5830        return true;
5831    }
5832  }
5833
5834  return false;
5835}
5836
5837uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5838  assert(Num < NumOperands && "Invalid child # of SDNode!");
5839  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5840}
5841
5842std::string SDNode::getOperationName(const SelectionDAG *G) const {
5843  switch (getOpcode()) {
5844  default:
5845    if (getOpcode() < ISD::BUILTIN_OP_END)
5846      return "<<Unknown DAG Node>>";
5847    if (isMachineOpcode()) {
5848      if (G)
5849        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5850          if (getMachineOpcode() < TII->getNumOpcodes())
5851            return TII->get(getMachineOpcode()).getName();
5852      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5853    }
5854    if (G) {
5855      const TargetLowering &TLI = G->getTargetLoweringInfo();
5856      const char *Name = TLI.getTargetNodeName(getOpcode());
5857      if (Name) return Name;
5858      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5859    }
5860    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5861
5862#ifndef NDEBUG
5863  case ISD::DELETED_NODE:
5864    return "<<Deleted Node!>>";
5865#endif
5866  case ISD::PREFETCH:      return "Prefetch";
5867  case ISD::MEMBARRIER:    return "MemBarrier";
5868  case ISD::ATOMIC_FENCE:    return "AtomicFence";
5869  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5870  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5871  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5872  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5873  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5874  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5875  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5876  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5877  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5878  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5879  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5880  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5881  case ISD::ATOMIC_LOAD:        return "AtomicLoad";
5882  case ISD::ATOMIC_STORE:       return "AtomicStore";
5883  case ISD::PCMARKER:      return "PCMarker";
5884  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5885  case ISD::SRCVALUE:      return "SrcValue";
5886  case ISD::MDNODE_SDNODE: return "MDNode";
5887  case ISD::EntryToken:    return "EntryToken";
5888  case ISD::TokenFactor:   return "TokenFactor";
5889  case ISD::AssertSext:    return "AssertSext";
5890  case ISD::AssertZext:    return "AssertZext";
5891
5892  case ISD::BasicBlock:    return "BasicBlock";
5893  case ISD::VALUETYPE:     return "ValueType";
5894  case ISD::Register:      return "Register";
5895
5896  case ISD::Constant:      return "Constant";
5897  case ISD::ConstantFP:    return "ConstantFP";
5898  case ISD::GlobalAddress: return "GlobalAddress";
5899  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5900  case ISD::FrameIndex:    return "FrameIndex";
5901  case ISD::JumpTable:     return "JumpTable";
5902  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5903  case ISD::RETURNADDR: return "RETURNADDR";
5904  case ISD::FRAMEADDR: return "FRAMEADDR";
5905  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5906  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5907  case ISD::LSDAADDR: return "LSDAADDR";
5908  case ISD::EHSELECTION: return "EHSELECTION";
5909  case ISD::EH_RETURN: return "EH_RETURN";
5910  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5911  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5912  case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5913  case ISD::ConstantPool:  return "ConstantPool";
5914  case ISD::ExternalSymbol: return "ExternalSymbol";
5915  case ISD::BlockAddress:  return "BlockAddress";
5916  case ISD::INTRINSIC_WO_CHAIN:
5917  case ISD::INTRINSIC_VOID:
5918  case ISD::INTRINSIC_W_CHAIN: {
5919    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5920    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5921    if (IID < Intrinsic::num_intrinsics)
5922      return Intrinsic::getName((Intrinsic::ID)IID);
5923    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5924      return TII->getName(IID);
5925    llvm_unreachable("Invalid intrinsic ID");
5926  }
5927
5928  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5929  case ISD::TargetConstant: return "TargetConstant";
5930  case ISD::TargetConstantFP:return "TargetConstantFP";
5931  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5932  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5933  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5934  case ISD::TargetJumpTable:  return "TargetJumpTable";
5935  case ISD::TargetConstantPool:  return "TargetConstantPool";
5936  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5937  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5938
5939  case ISD::CopyToReg:     return "CopyToReg";
5940  case ISD::CopyFromReg:   return "CopyFromReg";
5941  case ISD::UNDEF:         return "undef";
5942  case ISD::MERGE_VALUES:  return "merge_values";
5943  case ISD::INLINEASM:     return "inlineasm";
5944  case ISD::EH_LABEL:      return "eh_label";
5945  case ISD::HANDLENODE:    return "handlenode";
5946
5947  // Unary operators
5948  case ISD::FABS:   return "fabs";
5949  case ISD::FNEG:   return "fneg";
5950  case ISD::FSQRT:  return "fsqrt";
5951  case ISD::FSIN:   return "fsin";
5952  case ISD::FCOS:   return "fcos";
5953  case ISD::FTRUNC: return "ftrunc";
5954  case ISD::FFLOOR: return "ffloor";
5955  case ISD::FCEIL:  return "fceil";
5956  case ISD::FRINT:  return "frint";
5957  case ISD::FNEARBYINT: return "fnearbyint";
5958  case ISD::FEXP:   return "fexp";
5959  case ISD::FEXP2:  return "fexp2";
5960  case ISD::FLOG:   return "flog";
5961  case ISD::FLOG2:  return "flog2";
5962  case ISD::FLOG10: return "flog10";
5963
5964  // Binary operators
5965  case ISD::ADD:    return "add";
5966  case ISD::SUB:    return "sub";
5967  case ISD::MUL:    return "mul";
5968  case ISD::MULHU:  return "mulhu";
5969  case ISD::MULHS:  return "mulhs";
5970  case ISD::SDIV:   return "sdiv";
5971  case ISD::UDIV:   return "udiv";
5972  case ISD::SREM:   return "srem";
5973  case ISD::UREM:   return "urem";
5974  case ISD::SMUL_LOHI:  return "smul_lohi";
5975  case ISD::UMUL_LOHI:  return "umul_lohi";
5976  case ISD::SDIVREM:    return "sdivrem";
5977  case ISD::UDIVREM:    return "udivrem";
5978  case ISD::AND:    return "and";
5979  case ISD::OR:     return "or";
5980  case ISD::XOR:    return "xor";
5981  case ISD::SHL:    return "shl";
5982  case ISD::SRA:    return "sra";
5983  case ISD::SRL:    return "srl";
5984  case ISD::ROTL:   return "rotl";
5985  case ISD::ROTR:   return "rotr";
5986  case ISD::FADD:   return "fadd";
5987  case ISD::FSUB:   return "fsub";
5988  case ISD::FMUL:   return "fmul";
5989  case ISD::FDIV:   return "fdiv";
5990  case ISD::FMA:    return "fma";
5991  case ISD::FREM:   return "frem";
5992  case ISD::FCOPYSIGN: return "fcopysign";
5993  case ISD::FGETSIGN:  return "fgetsign";
5994  case ISD::FPOW:   return "fpow";
5995
5996  case ISD::FPOWI:  return "fpowi";
5997  case ISD::SETCC:       return "setcc";
5998  case ISD::SELECT:      return "select";
5999  case ISD::VSELECT:     return "vselect";
6000  case ISD::SELECT_CC:   return "select_cc";
6001  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
6002  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
6003  case ISD::CONCAT_VECTORS:      return "concat_vectors";
6004  case ISD::INSERT_SUBVECTOR:    return "insert_subvector";
6005  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
6006  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
6007  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
6008  case ISD::CARRY_FALSE:         return "carry_false";
6009  case ISD::ADDC:        return "addc";
6010  case ISD::ADDE:        return "adde";
6011  case ISD::SADDO:       return "saddo";
6012  case ISD::UADDO:       return "uaddo";
6013  case ISD::SSUBO:       return "ssubo";
6014  case ISD::USUBO:       return "usubo";
6015  case ISD::SMULO:       return "smulo";
6016  case ISD::UMULO:       return "umulo";
6017  case ISD::SUBC:        return "subc";
6018  case ISD::SUBE:        return "sube";
6019  case ISD::SHL_PARTS:   return "shl_parts";
6020  case ISD::SRA_PARTS:   return "sra_parts";
6021  case ISD::SRL_PARTS:   return "srl_parts";
6022
6023  // Conversion operators.
6024  case ISD::SIGN_EXTEND: return "sign_extend";
6025  case ISD::ZERO_EXTEND: return "zero_extend";
6026  case ISD::ANY_EXTEND:  return "any_extend";
6027  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
6028  case ISD::TRUNCATE:    return "truncate";
6029  case ISD::FP_ROUND:    return "fp_round";
6030  case ISD::FLT_ROUNDS_: return "flt_rounds";
6031  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
6032  case ISD::FP_EXTEND:   return "fp_extend";
6033
6034  case ISD::SINT_TO_FP:  return "sint_to_fp";
6035  case ISD::UINT_TO_FP:  return "uint_to_fp";
6036  case ISD::FP_TO_SINT:  return "fp_to_sint";
6037  case ISD::FP_TO_UINT:  return "fp_to_uint";
6038  case ISD::BITCAST:     return "bitcast";
6039  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
6040  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
6041
6042  case ISD::CONVERT_RNDSAT: {
6043    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
6044    default: llvm_unreachable("Unknown cvt code!");
6045    case ISD::CVT_FF:  return "cvt_ff";
6046    case ISD::CVT_FS:  return "cvt_fs";
6047    case ISD::CVT_FU:  return "cvt_fu";
6048    case ISD::CVT_SF:  return "cvt_sf";
6049    case ISD::CVT_UF:  return "cvt_uf";
6050    case ISD::CVT_SS:  return "cvt_ss";
6051    case ISD::CVT_SU:  return "cvt_su";
6052    case ISD::CVT_US:  return "cvt_us";
6053    case ISD::CVT_UU:  return "cvt_uu";
6054    }
6055  }
6056
6057    // Control flow instructions
6058  case ISD::BR:      return "br";
6059  case ISD::BRIND:   return "brind";
6060  case ISD::BR_JT:   return "br_jt";
6061  case ISD::BRCOND:  return "brcond";
6062  case ISD::BR_CC:   return "br_cc";
6063  case ISD::CALLSEQ_START:  return "callseq_start";
6064  case ISD::CALLSEQ_END:    return "callseq_end";
6065
6066    // Other operators
6067  case ISD::LOAD:               return "load";
6068  case ISD::STORE:              return "store";
6069  case ISD::VAARG:              return "vaarg";
6070  case ISD::VACOPY:             return "vacopy";
6071  case ISD::VAEND:              return "vaend";
6072  case ISD::VASTART:            return "vastart";
6073  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
6074  case ISD::EXTRACT_ELEMENT:    return "extract_element";
6075  case ISD::BUILD_PAIR:         return "build_pair";
6076  case ISD::STACKSAVE:          return "stacksave";
6077  case ISD::STACKRESTORE:       return "stackrestore";
6078  case ISD::TRAP:               return "trap";
6079
6080  // Bit manipulation
6081  case ISD::BSWAP:   return "bswap";
6082  case ISD::CTPOP:   return "ctpop";
6083  case ISD::CTTZ:    return "cttz";
6084  case ISD::CTLZ:    return "ctlz";
6085
6086  // Trampolines
6087  case ISD::INIT_TRAMPOLINE: return "init_trampoline";
6088  case ISD::ADJUST_TRAMPOLINE: return "adjust_trampoline";
6089
6090  case ISD::CONDCODE:
6091    switch (cast<CondCodeSDNode>(this)->get()) {
6092    default: llvm_unreachable("Unknown setcc condition!");
6093    case ISD::SETOEQ:  return "setoeq";
6094    case ISD::SETOGT:  return "setogt";
6095    case ISD::SETOGE:  return "setoge";
6096    case ISD::SETOLT:  return "setolt";
6097    case ISD::SETOLE:  return "setole";
6098    case ISD::SETONE:  return "setone";
6099
6100    case ISD::SETO:    return "seto";
6101    case ISD::SETUO:   return "setuo";
6102    case ISD::SETUEQ:  return "setue";
6103    case ISD::SETUGT:  return "setugt";
6104    case ISD::SETUGE:  return "setuge";
6105    case ISD::SETULT:  return "setult";
6106    case ISD::SETULE:  return "setule";
6107    case ISD::SETUNE:  return "setune";
6108
6109    case ISD::SETEQ:   return "seteq";
6110    case ISD::SETGT:   return "setgt";
6111    case ISD::SETGE:   return "setge";
6112    case ISD::SETLT:   return "setlt";
6113    case ISD::SETLE:   return "setle";
6114    case ISD::SETNE:   return "setne";
6115    }
6116  }
6117}
6118
6119const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
6120  switch (AM) {
6121  default:
6122    return "";
6123  case ISD::PRE_INC:
6124    return "<pre-inc>";
6125  case ISD::PRE_DEC:
6126    return "<pre-dec>";
6127  case ISD::POST_INC:
6128    return "<post-inc>";
6129  case ISD::POST_DEC:
6130    return "<post-dec>";
6131  }
6132}
6133
6134std::string ISD::ArgFlagsTy::getArgFlagsString() {
6135  std::string S = "< ";
6136
6137  if (isZExt())
6138    S += "zext ";
6139  if (isSExt())
6140    S += "sext ";
6141  if (isInReg())
6142    S += "inreg ";
6143  if (isSRet())
6144    S += "sret ";
6145  if (isByVal())
6146    S += "byval ";
6147  if (isNest())
6148    S += "nest ";
6149  if (getByValAlign())
6150    S += "byval-align:" + utostr(getByValAlign()) + " ";
6151  if (getOrigAlign())
6152    S += "orig-align:" + utostr(getOrigAlign()) + " ";
6153  if (getByValSize())
6154    S += "byval-size:" + utostr(getByValSize()) + " ";
6155  return S + ">";
6156}
6157
6158void SDNode::dump() const { dump(0); }
6159void SDNode::dump(const SelectionDAG *G) const {
6160  print(dbgs(), G);
6161  dbgs() << '\n';
6162}
6163
6164void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
6165  OS << (void*)this << ": ";
6166
6167  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
6168    if (i) OS << ",";
6169    if (getValueType(i) == MVT::Other)
6170      OS << "ch";
6171    else
6172      OS << getValueType(i).getEVTString();
6173  }
6174  OS << " = " << getOperationName(G);
6175}
6176
6177void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
6178  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
6179    if (!MN->memoperands_empty()) {
6180      OS << "<";
6181      OS << "Mem:";
6182      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
6183           e = MN->memoperands_end(); i != e; ++i) {
6184        OS << **i;
6185        if (llvm::next(i) != e)
6186          OS << " ";
6187      }
6188      OS << ">";
6189    }
6190  } else if (const ShuffleVectorSDNode *SVN =
6191               dyn_cast<ShuffleVectorSDNode>(this)) {
6192    OS << "<";
6193    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
6194      int Idx = SVN->getMaskElt(i);
6195      if (i) OS << ",";
6196      if (Idx < 0)
6197        OS << "u";
6198      else
6199        OS << Idx;
6200    }
6201    OS << ">";
6202  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
6203    OS << '<' << CSDN->getAPIntValue() << '>';
6204  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
6205    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
6206      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
6207    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
6208      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
6209    else {
6210      OS << "<APFloat(";
6211      CSDN->getValueAPF().bitcastToAPInt().dump();
6212      OS << ")>";
6213    }
6214  } else if (const GlobalAddressSDNode *GADN =
6215             dyn_cast<GlobalAddressSDNode>(this)) {
6216    int64_t offset = GADN->getOffset();
6217    OS << '<';
6218    WriteAsOperand(OS, GADN->getGlobal());
6219    OS << '>';
6220    if (offset > 0)
6221      OS << " + " << offset;
6222    else
6223      OS << " " << offset;
6224    if (unsigned int TF = GADN->getTargetFlags())
6225      OS << " [TF=" << TF << ']';
6226  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
6227    OS << "<" << FIDN->getIndex() << ">";
6228  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
6229    OS << "<" << JTDN->getIndex() << ">";
6230    if (unsigned int TF = JTDN->getTargetFlags())
6231      OS << " [TF=" << TF << ']';
6232  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
6233    int offset = CP->getOffset();
6234    if (CP->isMachineConstantPoolEntry())
6235      OS << "<" << *CP->getMachineCPVal() << ">";
6236    else
6237      OS << "<" << *CP->getConstVal() << ">";
6238    if (offset > 0)
6239      OS << " + " << offset;
6240    else
6241      OS << " " << offset;
6242    if (unsigned int TF = CP->getTargetFlags())
6243      OS << " [TF=" << TF << ']';
6244  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
6245    OS << "<";
6246    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
6247    if (LBB)
6248      OS << LBB->getName() << " ";
6249    OS << (const void*)BBDN->getBasicBlock() << ">";
6250  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
6251    OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
6252  } else if (const ExternalSymbolSDNode *ES =
6253             dyn_cast<ExternalSymbolSDNode>(this)) {
6254    OS << "'" << ES->getSymbol() << "'";
6255    if (unsigned int TF = ES->getTargetFlags())
6256      OS << " [TF=" << TF << ']';
6257  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
6258    if (M->getValue())
6259      OS << "<" << M->getValue() << ">";
6260    else
6261      OS << "<null>";
6262  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
6263    if (MD->getMD())
6264      OS << "<" << MD->getMD() << ">";
6265    else
6266      OS << "<null>";
6267  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6268    OS << ":" << N->getVT().getEVTString();
6269  }
6270  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6271    OS << "<" << *LD->getMemOperand();
6272
6273    bool doExt = true;
6274    switch (LD->getExtensionType()) {
6275    default: doExt = false; break;
6276    case ISD::EXTLOAD: OS << ", anyext"; break;
6277    case ISD::SEXTLOAD: OS << ", sext"; break;
6278    case ISD::ZEXTLOAD: OS << ", zext"; break;
6279    }
6280    if (doExt)
6281      OS << " from " << LD->getMemoryVT().getEVTString();
6282
6283    const char *AM = getIndexedModeName(LD->getAddressingMode());
6284    if (*AM)
6285      OS << ", " << AM;
6286
6287    OS << ">";
6288  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6289    OS << "<" << *ST->getMemOperand();
6290
6291    if (ST->isTruncatingStore())
6292      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6293
6294    const char *AM = getIndexedModeName(ST->getAddressingMode());
6295    if (*AM)
6296      OS << ", " << AM;
6297
6298    OS << ">";
6299  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6300    OS << "<" << *M->getMemOperand() << ">";
6301  } else if (const BlockAddressSDNode *BA =
6302               dyn_cast<BlockAddressSDNode>(this)) {
6303    OS << "<";
6304    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6305    OS << ", ";
6306    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6307    OS << ">";
6308    if (unsigned int TF = BA->getTargetFlags())
6309      OS << " [TF=" << TF << ']';
6310  }
6311
6312  if (G)
6313    if (unsigned Order = G->GetOrdering(this))
6314      OS << " [ORD=" << Order << ']';
6315
6316  if (getNodeId() != -1)
6317    OS << " [ID=" << getNodeId() << ']';
6318
6319  DebugLoc dl = getDebugLoc();
6320  if (G && !dl.isUnknown()) {
6321    DIScope
6322      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6323    OS << " dbg:";
6324    // Omit the directory, since it's usually long and uninteresting.
6325    if (Scope.Verify())
6326      OS << Scope.getFilename();
6327    else
6328      OS << "<unknown>";
6329    OS << ':' << dl.getLine();
6330    if (dl.getCol() != 0)
6331      OS << ':' << dl.getCol();
6332  }
6333}
6334
6335void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6336  print_types(OS, G);
6337  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6338    if (i) OS << ", "; else OS << " ";
6339    OS << (void*)getOperand(i).getNode();
6340    if (unsigned RN = getOperand(i).getResNo())
6341      OS << ":" << RN;
6342  }
6343  print_details(OS, G);
6344}
6345
6346static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6347                                  const SelectionDAG *G, unsigned depth,
6348                                  unsigned indent)
6349{
6350  if (depth == 0)
6351    return;
6352
6353  OS.indent(indent);
6354
6355  N->print(OS, G);
6356
6357  if (depth < 1)
6358    return;
6359
6360  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6361    // Don't follow chain operands.
6362    if (N->getOperand(i).getValueType() == MVT::Other)
6363      continue;
6364    OS << '\n';
6365    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6366  }
6367}
6368
6369void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6370                            unsigned depth) const {
6371  printrWithDepthHelper(OS, this, G, depth, 0);
6372}
6373
6374void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6375  // Don't print impossibly deep things.
6376  printrWithDepth(OS, G, 10);
6377}
6378
6379void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6380  printrWithDepth(dbgs(), G, depth);
6381}
6382
6383void SDNode::dumprFull(const SelectionDAG *G) const {
6384  // Don't print impossibly deep things.
6385  dumprWithDepth(G, 10);
6386}
6387
6388static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6389  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6390    if (N->getOperand(i).getNode()->hasOneUse())
6391      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6392    else
6393      dbgs() << "\n" << std::string(indent+2, ' ')
6394           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6395
6396
6397  dbgs() << "\n";
6398  dbgs().indent(indent);
6399  N->dump(G);
6400}
6401
6402SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6403  assert(N->getNumValues() == 1 &&
6404         "Can't unroll a vector with multiple results!");
6405
6406  EVT VT = N->getValueType(0);
6407  unsigned NE = VT.getVectorNumElements();
6408  EVT EltVT = VT.getVectorElementType();
6409  DebugLoc dl = N->getDebugLoc();
6410
6411  SmallVector<SDValue, 8> Scalars;
6412  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6413
6414  // If ResNE is 0, fully unroll the vector op.
6415  if (ResNE == 0)
6416    ResNE = NE;
6417  else if (NE > ResNE)
6418    NE = ResNE;
6419
6420  unsigned i;
6421  for (i= 0; i != NE; ++i) {
6422    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6423      SDValue Operand = N->getOperand(j);
6424      EVT OperandVT = Operand.getValueType();
6425      if (OperandVT.isVector()) {
6426        // A vector operand; extract a single element.
6427        EVT OperandEltVT = OperandVT.getVectorElementType();
6428        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6429                              OperandEltVT,
6430                              Operand,
6431                              getConstant(i, TLI.getPointerTy()));
6432      } else {
6433        // A scalar operand; just use it as is.
6434        Operands[j] = Operand;
6435      }
6436    }
6437
6438    switch (N->getOpcode()) {
6439    default:
6440      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6441                                &Operands[0], Operands.size()));
6442      break;
6443    case ISD::SHL:
6444    case ISD::SRA:
6445    case ISD::SRL:
6446    case ISD::ROTL:
6447    case ISD::ROTR:
6448      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6449                                getShiftAmountOperand(Operands[0].getValueType(),
6450                                                      Operands[1])));
6451      break;
6452    case ISD::SIGN_EXTEND_INREG:
6453    case ISD::FP_ROUND_INREG: {
6454      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6455      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6456                                Operands[0],
6457                                getValueType(ExtVT)));
6458    }
6459    }
6460  }
6461
6462  for (; i < ResNE; ++i)
6463    Scalars.push_back(getUNDEF(EltVT));
6464
6465  return getNode(ISD::BUILD_VECTOR, dl,
6466                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6467                 &Scalars[0], Scalars.size());
6468}
6469
6470
6471/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6472/// location that is 'Dist' units away from the location that the 'Base' load
6473/// is loading from.
6474bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6475                                     unsigned Bytes, int Dist) const {
6476  if (LD->getChain() != Base->getChain())
6477    return false;
6478  EVT VT = LD->getValueType(0);
6479  if (VT.getSizeInBits() / 8 != Bytes)
6480    return false;
6481
6482  SDValue Loc = LD->getOperand(1);
6483  SDValue BaseLoc = Base->getOperand(1);
6484  if (Loc.getOpcode() == ISD::FrameIndex) {
6485    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6486      return false;
6487    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6488    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6489    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6490    int FS  = MFI->getObjectSize(FI);
6491    int BFS = MFI->getObjectSize(BFI);
6492    if (FS != BFS || FS != (int)Bytes) return false;
6493    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6494  }
6495
6496  // Handle X+C
6497  if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6498      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6499    return true;
6500
6501  const GlobalValue *GV1 = NULL;
6502  const GlobalValue *GV2 = NULL;
6503  int64_t Offset1 = 0;
6504  int64_t Offset2 = 0;
6505  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6506  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6507  if (isGA1 && isGA2 && GV1 == GV2)
6508    return Offset1 == (Offset2 + Dist*Bytes);
6509  return false;
6510}
6511
6512
6513/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6514/// it cannot be inferred.
6515unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6516  // If this is a GlobalAddress + cst, return the alignment.
6517  const GlobalValue *GV;
6518  int64_t GVOffset = 0;
6519  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6520    // If GV has specified alignment, then use it. Otherwise, use the preferred
6521    // alignment.
6522    unsigned Align = GV->getAlignment();
6523    if (!Align) {
6524      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6525        if (GVar->hasInitializer()) {
6526          const TargetData *TD = TLI.getTargetData();
6527          Align = TD->getPreferredAlignment(GVar);
6528        }
6529      }
6530    }
6531    return MinAlign(Align, GVOffset);
6532  }
6533
6534  // If this is a direct reference to a stack slot, use information about the
6535  // stack slot's alignment.
6536  int FrameIdx = 1 << 31;
6537  int64_t FrameOffset = 0;
6538  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6539    FrameIdx = FI->getIndex();
6540  } else if (isBaseWithConstantOffset(Ptr) &&
6541             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6542    // Handle FI+Cst
6543    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6544    FrameOffset = Ptr.getConstantOperandVal(1);
6545  }
6546
6547  if (FrameIdx != (1 << 31)) {
6548    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6549    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6550                                    FrameOffset);
6551    return FIInfoAlign;
6552  }
6553
6554  return 0;
6555}
6556
6557void SelectionDAG::dump() const {
6558  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6559
6560  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6561       I != E; ++I) {
6562    const SDNode *N = I;
6563    if (!N->hasOneUse() && N != getRoot().getNode())
6564      DumpNodes(N, 2, this);
6565  }
6566
6567  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6568
6569  dbgs() << "\n\n";
6570}
6571
6572void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6573  print_types(OS, G);
6574  print_details(OS, G);
6575}
6576
6577typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6578static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6579                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6580  if (!once.insert(N))          // If we've been here before, return now.
6581    return;
6582
6583  // Dump the current SDNode, but don't end the line yet.
6584  OS << std::string(indent, ' ');
6585  N->printr(OS, G);
6586
6587  // Having printed this SDNode, walk the children:
6588  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6589    const SDNode *child = N->getOperand(i).getNode();
6590
6591    if (i) OS << ",";
6592    OS << " ";
6593
6594    if (child->getNumOperands() == 0) {
6595      // This child has no grandchildren; print it inline right here.
6596      child->printr(OS, G);
6597      once.insert(child);
6598    } else {         // Just the address. FIXME: also print the child's opcode.
6599      OS << (void*)child;
6600      if (unsigned RN = N->getOperand(i).getResNo())
6601        OS << ":" << RN;
6602    }
6603  }
6604
6605  OS << "\n";
6606
6607  // Dump children that have grandchildren on their own line(s).
6608  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6609    const SDNode *child = N->getOperand(i).getNode();
6610    DumpNodesr(OS, child, indent+2, G, once);
6611  }
6612}
6613
6614void SDNode::dumpr() const {
6615  VisitedSDNodeSet once;
6616  DumpNodesr(dbgs(), this, 0, 0, once);
6617}
6618
6619void SDNode::dumpr(const SelectionDAG *G) const {
6620  VisitedSDNodeSet once;
6621  DumpNodesr(dbgs(), this, 0, G, once);
6622}
6623
6624
6625// getAddressSpace - Return the address space this GlobalAddress belongs to.
6626unsigned GlobalAddressSDNode::getAddressSpace() const {
6627  return getGlobal()->getType()->getAddressSpace();
6628}
6629
6630
6631Type *ConstantPoolSDNode::getType() const {
6632  if (isMachineConstantPoolEntry())
6633    return Val.MachineCPVal->getType();
6634  return Val.ConstVal->getType();
6635}
6636
6637bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6638                                        APInt &SplatUndef,
6639                                        unsigned &SplatBitSize,
6640                                        bool &HasAnyUndefs,
6641                                        unsigned MinSplatBits,
6642                                        bool isBigEndian) {
6643  EVT VT = getValueType(0);
6644  assert(VT.isVector() && "Expected a vector type");
6645  unsigned sz = VT.getSizeInBits();
6646  if (MinSplatBits > sz)
6647    return false;
6648
6649  SplatValue = APInt(sz, 0);
6650  SplatUndef = APInt(sz, 0);
6651
6652  // Get the bits.  Bits with undefined values (when the corresponding element
6653  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6654  // in SplatValue.  If any of the values are not constant, give up and return
6655  // false.
6656  unsigned int nOps = getNumOperands();
6657  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6658  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6659
6660  for (unsigned j = 0; j < nOps; ++j) {
6661    unsigned i = isBigEndian ? nOps-1-j : j;
6662    SDValue OpVal = getOperand(i);
6663    unsigned BitPos = j * EltBitSize;
6664
6665    if (OpVal.getOpcode() == ISD::UNDEF)
6666      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6667    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6668      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6669                    zextOrTrunc(sz) << BitPos;
6670    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6671      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6672     else
6673      return false;
6674  }
6675
6676  // The build_vector is all constants or undefs.  Find the smallest element
6677  // size that splats the vector.
6678
6679  HasAnyUndefs = (SplatUndef != 0);
6680  while (sz > 8) {
6681
6682    unsigned HalfSize = sz / 2;
6683    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6684    APInt LowValue = SplatValue.trunc(HalfSize);
6685    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6686    APInt LowUndef = SplatUndef.trunc(HalfSize);
6687
6688    // If the two halves do not match (ignoring undef bits), stop here.
6689    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6690        MinSplatBits > HalfSize)
6691      break;
6692
6693    SplatValue = HighValue | LowValue;
6694    SplatUndef = HighUndef & LowUndef;
6695
6696    sz = HalfSize;
6697  }
6698
6699  SplatBitSize = sz;
6700  return true;
6701}
6702
6703bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6704  // Find the first non-undef value in the shuffle mask.
6705  unsigned i, e;
6706  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6707    /* search */;
6708
6709  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6710
6711  // Make sure all remaining elements are either undef or the same as the first
6712  // non-undef value.
6713  for (int Idx = Mask[i]; i != e; ++i)
6714    if (Mask[i] >= 0 && Mask[i] != Idx)
6715      return false;
6716  return true;
6717}
6718
6719#ifdef XDEBUG
6720static void checkForCyclesHelper(const SDNode *N,
6721                                 SmallPtrSet<const SDNode*, 32> &Visited,
6722                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6723  // If this node has already been checked, don't check it again.
6724  if (Checked.count(N))
6725    return;
6726
6727  // If a node has already been visited on this depth-first walk, reject it as
6728  // a cycle.
6729  if (!Visited.insert(N)) {
6730    dbgs() << "Offending node:\n";
6731    N->dumprFull();
6732    errs() << "Detected cycle in SelectionDAG\n";
6733    abort();
6734  }
6735
6736  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6737    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6738
6739  Checked.insert(N);
6740  Visited.erase(N);
6741}
6742#endif
6743
6744void llvm::checkForCycles(const llvm::SDNode *N) {
6745#ifdef XDEBUG
6746  assert(N && "Checking nonexistant SDNode");
6747  SmallPtrSet<const SDNode*, 32> visited;
6748  SmallPtrSet<const SDNode*, 32> checked;
6749  checkForCyclesHelper(N, visited, checked);
6750#endif
6751}
6752
6753void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6754  checkForCycles(DAG->getRoot().getNode());
6755}
6756