SelectionDAG.cpp revision a1461ccfa0f19b2a81afb401c1d772f751edf7ae
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "llvm/Constants.h"
17#include "llvm/Analysis/ValueTracking.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalAlias.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Assembly/Writer.h"
24#include "llvm/CallingConv.h"
25#include "llvm/CodeGen/MachineBasicBlock.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Target/TargetFrameInfo.h"
33#include "llvm/Target/TargetLowering.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetIntrinsicInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/ManagedStatic.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/System/Mutex.h"
45#include "llvm/ADT/SetVector.h"
46#include "llvm/ADT/SmallPtrSet.h"
47#include "llvm/ADT/SmallSet.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/StringExtras.h"
50#include <algorithm>
51#include <cmath>
52using namespace llvm;
53
54/// makeVTList - Return an instance of the SDVTList struct initialized with the
55/// specified members.
56static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
57  SDVTList Res = {VTs, NumVTs};
58  return Res;
59}
60
61static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
62  switch (VT.getSimpleVT().SimpleTy) {
63  default: llvm_unreachable("Unknown FP format");
64  case MVT::f32:     return &APFloat::IEEEsingle;
65  case MVT::f64:     return &APFloat::IEEEdouble;
66  case MVT::f80:     return &APFloat::x87DoubleExtended;
67  case MVT::f128:    return &APFloat::IEEEquad;
68  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
69  }
70}
71
72SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
73
74//===----------------------------------------------------------------------===//
75//                              ConstantFPSDNode Class
76//===----------------------------------------------------------------------===//
77
78/// isExactlyValue - We don't rely on operator== working on double values, as
79/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
80/// As such, this method can be used to do an exact bit-for-bit comparison of
81/// two floating point values.
82bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
83  return getValueAPF().bitwiseIsEqual(V);
84}
85
86bool ConstantFPSDNode::isValueValidForType(EVT VT,
87                                           const APFloat& Val) {
88  assert(VT.isFloatingPoint() && "Can only convert between FP types");
89
90  // PPC long double cannot be converted to any other type.
91  if (VT == MVT::ppcf128 ||
92      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
93    return false;
94
95  // convert modifies in place, so make a copy.
96  APFloat Val2 = APFloat(Val);
97  bool losesInfo;
98  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
99                      &losesInfo);
100  return !losesInfo;
101}
102
103//===----------------------------------------------------------------------===//
104//                              ISD Namespace
105//===----------------------------------------------------------------------===//
106
107/// isBuildVectorAllOnes - Return true if the specified node is a
108/// BUILD_VECTOR where all of the elements are ~0 or undef.
109bool ISD::isBuildVectorAllOnes(const SDNode *N) {
110  // Look through a bit convert.
111  if (N->getOpcode() == ISD::BIT_CONVERT)
112    N = N->getOperand(0).getNode();
113
114  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
115
116  unsigned i = 0, e = N->getNumOperands();
117
118  // Skip over all of the undef values.
119  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
120    ++i;
121
122  // Do not accept an all-undef vector.
123  if (i == e) return false;
124
125  // Do not accept build_vectors that aren't all constants or which have non-~0
126  // elements.
127  SDValue NotZero = N->getOperand(i);
128  if (isa<ConstantSDNode>(NotZero)) {
129    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
130      return false;
131  } else if (isa<ConstantFPSDNode>(NotZero)) {
132    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
133                bitcastToAPInt().isAllOnesValue())
134      return false;
135  } else
136    return false;
137
138  // Okay, we have at least one ~0 value, check to see if the rest match or are
139  // undefs.
140  for (++i; i != e; ++i)
141    if (N->getOperand(i) != NotZero &&
142        N->getOperand(i).getOpcode() != ISD::UNDEF)
143      return false;
144  return true;
145}
146
147
148/// isBuildVectorAllZeros - Return true if the specified node is a
149/// BUILD_VECTOR where all of the elements are 0 or undef.
150bool ISD::isBuildVectorAllZeros(const SDNode *N) {
151  // Look through a bit convert.
152  if (N->getOpcode() == ISD::BIT_CONVERT)
153    N = N->getOperand(0).getNode();
154
155  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
156
157  unsigned i = 0, e = N->getNumOperands();
158
159  // Skip over all of the undef values.
160  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
161    ++i;
162
163  // Do not accept an all-undef vector.
164  if (i == e) return false;
165
166  // Do not accept build_vectors that aren't all constants or which have non-0
167  // elements.
168  SDValue Zero = N->getOperand(i);
169  if (isa<ConstantSDNode>(Zero)) {
170    if (!cast<ConstantSDNode>(Zero)->isNullValue())
171      return false;
172  } else if (isa<ConstantFPSDNode>(Zero)) {
173    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
174      return false;
175  } else
176    return false;
177
178  // Okay, we have at least one 0 value, check to see if the rest match or are
179  // undefs.
180  for (++i; i != e; ++i)
181    if (N->getOperand(i) != Zero &&
182        N->getOperand(i).getOpcode() != ISD::UNDEF)
183      return false;
184  return true;
185}
186
187/// isScalarToVector - Return true if the specified node is a
188/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
189/// element is not an undef.
190bool ISD::isScalarToVector(const SDNode *N) {
191  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
192    return true;
193
194  if (N->getOpcode() != ISD::BUILD_VECTOR)
195    return false;
196  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
197    return false;
198  unsigned NumElems = N->getNumOperands();
199  for (unsigned i = 1; i < NumElems; ++i) {
200    SDValue V = N->getOperand(i);
201    if (V.getOpcode() != ISD::UNDEF)
202      return false;
203  }
204  return true;
205}
206
207/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
208/// when given the operation for (X op Y).
209ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
210  // To perform this operation, we just need to swap the L and G bits of the
211  // operation.
212  unsigned OldL = (Operation >> 2) & 1;
213  unsigned OldG = (Operation >> 1) & 1;
214  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
215                       (OldL << 1) |       // New G bit
216                       (OldG << 2));       // New L bit.
217}
218
219/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
220/// 'op' is a valid SetCC operation.
221ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
222  unsigned Operation = Op;
223  if (isInteger)
224    Operation ^= 7;   // Flip L, G, E bits, but not U.
225  else
226    Operation ^= 15;  // Flip all of the condition bits.
227
228  if (Operation > ISD::SETTRUE2)
229    Operation &= ~8;  // Don't let N and U bits get set.
230
231  return ISD::CondCode(Operation);
232}
233
234
235/// isSignedOp - For an integer comparison, return 1 if the comparison is a
236/// signed operation and 2 if the result is an unsigned comparison.  Return zero
237/// if the operation does not depend on the sign of the input (setne and seteq).
238static int isSignedOp(ISD::CondCode Opcode) {
239  switch (Opcode) {
240  default: llvm_unreachable("Illegal integer setcc operation!");
241  case ISD::SETEQ:
242  case ISD::SETNE: return 0;
243  case ISD::SETLT:
244  case ISD::SETLE:
245  case ISD::SETGT:
246  case ISD::SETGE: return 1;
247  case ISD::SETULT:
248  case ISD::SETULE:
249  case ISD::SETUGT:
250  case ISD::SETUGE: return 2;
251  }
252}
253
254/// getSetCCOrOperation - Return the result of a logical OR between different
255/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
256/// returns SETCC_INVALID if it is not possible to represent the resultant
257/// comparison.
258ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
259                                       bool isInteger) {
260  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
261    // Cannot fold a signed integer setcc with an unsigned integer setcc.
262    return ISD::SETCC_INVALID;
263
264  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
265
266  // If the N and U bits get set then the resultant comparison DOES suddenly
267  // care about orderedness, and is true when ordered.
268  if (Op > ISD::SETTRUE2)
269    Op &= ~16;     // Clear the U bit if the N bit is set.
270
271  // Canonicalize illegal integer setcc's.
272  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
273    Op = ISD::SETNE;
274
275  return ISD::CondCode(Op);
276}
277
278/// getSetCCAndOperation - Return the result of a logical AND between different
279/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
280/// function returns zero if it is not possible to represent the resultant
281/// comparison.
282ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
283                                        bool isInteger) {
284  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
285    // Cannot fold a signed setcc with an unsigned setcc.
286    return ISD::SETCC_INVALID;
287
288  // Combine all of the condition bits.
289  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
290
291  // Canonicalize illegal integer setcc's.
292  if (isInteger) {
293    switch (Result) {
294    default: break;
295    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
296    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
297    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
298    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
299    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
300    }
301  }
302
303  return Result;
304}
305
306const TargetMachine &SelectionDAG::getTarget() const {
307  return MF->getTarget();
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX: {
436    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437    ID.AddInteger(AT->getMemoryVT().getRawBits());
438    ID.AddInteger(AT->getRawSubclassData());
439    break;
440  }
441  case ISD::VECTOR_SHUFFLE: {
442    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444         i != e; ++i)
445      ID.AddInteger(SVN->getMaskElt(i));
446    break;
447  }
448  case ISD::TargetBlockAddress:
449  case ISD::BlockAddress: {
450    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452    break;
453  }
454  } // end switch (N->getOpcode())
455}
456
457/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458/// data.
459static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460  AddNodeIDOpcode(ID, N->getOpcode());
461  // Add the return value info.
462  AddNodeIDValueTypes(ID, N->getVTList());
463  // Add the operand info.
464  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465
466  // Handle SDNode leafs with special info.
467  AddNodeIDCustom(ID, N);
468}
469
470/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471/// the CSE map that carries volatility, temporalness, indexing mode, and
472/// extension/truncation information.
473///
474static inline unsigned
475encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
476                     bool isNonTemporal) {
477  assert((ConvType & 3) == ConvType &&
478         "ConvType may not require more than 2 bits!");
479  assert((AM & 7) == AM &&
480         "AM may not require more than 3 bits!");
481  return ConvType |
482         (AM << 2) |
483         (isVolatile << 5) |
484         (isNonTemporal << 6);
485}
486
487//===----------------------------------------------------------------------===//
488//                              SelectionDAG Class
489//===----------------------------------------------------------------------===//
490
491/// doNotCSE - Return true if CSE should not be performed for this node.
492static bool doNotCSE(SDNode *N) {
493  if (N->getValueType(0) == MVT::Flag)
494    return true; // Never CSE anything that produces a flag.
495
496  switch (N->getOpcode()) {
497  default: break;
498  case ISD::HANDLENODE:
499  case ISD::EH_LABEL:
500    return true;   // Never CSE these nodes.
501  }
502
503  // Check that remaining values produced are not flags.
504  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
505    if (N->getValueType(i) == MVT::Flag)
506      return true; // Never CSE anything that produces a flag.
507
508  return false;
509}
510
511/// RemoveDeadNodes - This method deletes all unreachable nodes in the
512/// SelectionDAG.
513void SelectionDAG::RemoveDeadNodes() {
514  // Create a dummy node (which is not added to allnodes), that adds a reference
515  // to the root node, preventing it from being deleted.
516  HandleSDNode Dummy(getRoot());
517
518  SmallVector<SDNode*, 128> DeadNodes;
519
520  // Add all obviously-dead nodes to the DeadNodes worklist.
521  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
522    if (I->use_empty())
523      DeadNodes.push_back(I);
524
525  RemoveDeadNodes(DeadNodes);
526
527  // If the root changed (e.g. it was a dead load, update the root).
528  setRoot(Dummy.getValue());
529}
530
531/// RemoveDeadNodes - This method deletes the unreachable nodes in the
532/// given list, and any nodes that become unreachable as a result.
533void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
534                                   DAGUpdateListener *UpdateListener) {
535
536  // Process the worklist, deleting the nodes and adding their uses to the
537  // worklist.
538  while (!DeadNodes.empty()) {
539    SDNode *N = DeadNodes.pop_back_val();
540
541    if (UpdateListener)
542      UpdateListener->NodeDeleted(N, 0);
543
544    // Take the node out of the appropriate CSE map.
545    RemoveNodeFromCSEMaps(N);
546
547    // Next, brutally remove the operand list.  This is safe to do, as there are
548    // no cycles in the graph.
549    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
550      SDUse &Use = *I++;
551      SDNode *Operand = Use.getNode();
552      Use.set(SDValue());
553
554      // Now that we removed this operand, see if there are no uses of it left.
555      if (Operand->use_empty())
556        DeadNodes.push_back(Operand);
557    }
558
559    DeallocateNode(N);
560  }
561}
562
563void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
564  SmallVector<SDNode*, 16> DeadNodes(1, N);
565  RemoveDeadNodes(DeadNodes, UpdateListener);
566}
567
568void SelectionDAG::DeleteNode(SDNode *N) {
569  // First take this out of the appropriate CSE map.
570  RemoveNodeFromCSEMaps(N);
571
572  // Finally, remove uses due to operands of this node, remove from the
573  // AllNodes list, and delete the node.
574  DeleteNodeNotInCSEMaps(N);
575}
576
577void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
578  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
579  assert(N->use_empty() && "Cannot delete a node that is not dead!");
580
581  // Drop all of the operands and decrement used node's use counts.
582  N->DropOperands();
583
584  DeallocateNode(N);
585}
586
587void SelectionDAG::DeallocateNode(SDNode *N) {
588  if (N->OperandsNeedDelete)
589    delete[] N->OperandList;
590
591  // Set the opcode to DELETED_NODE to help catch bugs when node
592  // memory is reallocated.
593  N->NodeType = ISD::DELETED_NODE;
594
595  NodeAllocator.Deallocate(AllNodes.remove(N));
596
597  // Remove the ordering of this node.
598  Ordering->remove(N);
599}
600
601/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
602/// correspond to it.  This is useful when we're about to delete or repurpose
603/// the node.  We don't want future request for structurally identical nodes
604/// to return N anymore.
605bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
606  bool Erased = false;
607  switch (N->getOpcode()) {
608  case ISD::EntryToken:
609    llvm_unreachable("EntryToken should not be in CSEMaps!");
610    return false;
611  case ISD::HANDLENODE: return false;  // noop.
612  case ISD::CONDCODE:
613    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
614           "Cond code doesn't exist!");
615    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
616    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
617    break;
618  case ISD::ExternalSymbol:
619    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
620    break;
621  case ISD::TargetExternalSymbol: {
622    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
623    Erased = TargetExternalSymbols.erase(
624               std::pair<std::string,unsigned char>(ESN->getSymbol(),
625                                                    ESN->getTargetFlags()));
626    break;
627  }
628  case ISD::VALUETYPE: {
629    EVT VT = cast<VTSDNode>(N)->getVT();
630    if (VT.isExtended()) {
631      Erased = ExtendedValueTypeNodes.erase(VT);
632    } else {
633      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
634      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
635    }
636    break;
637  }
638  default:
639    // Remove it from the CSE Map.
640    Erased = CSEMap.RemoveNode(N);
641    break;
642  }
643#ifndef NDEBUG
644  // Verify that the node was actually in one of the CSE maps, unless it has a
645  // flag result (which cannot be CSE'd) or is one of the special cases that are
646  // not subject to CSE.
647  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
648      !N->isMachineOpcode() && !doNotCSE(N)) {
649    N->dump(this);
650    dbgs() << "\n";
651    llvm_unreachable("Node is not in map!");
652  }
653#endif
654  return Erased;
655}
656
657/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
658/// maps and modified in place. Add it back to the CSE maps, unless an identical
659/// node already exists, in which case transfer all its users to the existing
660/// node. This transfer can potentially trigger recursive merging.
661///
662void
663SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
664                                       DAGUpdateListener *UpdateListener) {
665  // For node types that aren't CSE'd, just act as if no identical node
666  // already exists.
667  if (!doNotCSE(N)) {
668    SDNode *Existing = CSEMap.GetOrInsertNode(N);
669    if (Existing != N) {
670      // If there was already an existing matching node, use ReplaceAllUsesWith
671      // to replace the dead one with the existing one.  This can cause
672      // recursive merging of other unrelated nodes down the line.
673      ReplaceAllUsesWith(N, Existing, UpdateListener);
674
675      // N is now dead.  Inform the listener if it exists and delete it.
676      if (UpdateListener)
677        UpdateListener->NodeDeleted(N, Existing);
678      DeleteNodeNotInCSEMaps(N);
679      return;
680    }
681  }
682
683  // If the node doesn't already exist, we updated it.  Inform a listener if
684  // it exists.
685  if (UpdateListener)
686    UpdateListener->NodeUpdated(N);
687}
688
689/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
690/// were replaced with those specified.  If this node is never memoized,
691/// return null, otherwise return a pointer to the slot it would take.  If a
692/// node already exists with these operands, the slot will be non-null.
693SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
694                                           void *&InsertPos) {
695  if (doNotCSE(N))
696    return 0;
697
698  SDValue Ops[] = { Op };
699  FoldingSetNodeID ID;
700  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
701  AddNodeIDCustom(ID, N);
702  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
703  return Node;
704}
705
706/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
707/// were replaced with those specified.  If this node is never memoized,
708/// return null, otherwise return a pointer to the slot it would take.  If a
709/// node already exists with these operands, the slot will be non-null.
710SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
711                                           SDValue Op1, SDValue Op2,
712                                           void *&InsertPos) {
713  if (doNotCSE(N))
714    return 0;
715
716  SDValue Ops[] = { Op1, Op2 };
717  FoldingSetNodeID ID;
718  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
719  AddNodeIDCustom(ID, N);
720  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
721  return Node;
722}
723
724
725/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726/// were replaced with those specified.  If this node is never memoized,
727/// return null, otherwise return a pointer to the slot it would take.  If a
728/// node already exists with these operands, the slot will be non-null.
729SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730                                           const SDValue *Ops,unsigned NumOps,
731                                           void *&InsertPos) {
732  if (doNotCSE(N))
733    return 0;
734
735  FoldingSetNodeID ID;
736  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
737  AddNodeIDCustom(ID, N);
738  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
739  return Node;
740}
741
742/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
743void SelectionDAG::VerifyNode(SDNode *N) {
744  switch (N->getOpcode()) {
745  default:
746    break;
747  case ISD::BUILD_PAIR: {
748    EVT VT = N->getValueType(0);
749    assert(N->getNumValues() == 1 && "Too many results!");
750    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
751           "Wrong return type!");
752    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
753    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
754           "Mismatched operand types!");
755    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
756           "Wrong operand type!");
757    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
758           "Wrong return type size");
759    break;
760  }
761  case ISD::BUILD_VECTOR: {
762    assert(N->getNumValues() == 1 && "Too many results!");
763    assert(N->getValueType(0).isVector() && "Wrong return type!");
764    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
765           "Wrong number of operands!");
766    EVT EltVT = N->getValueType(0).getVectorElementType();
767    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
768      assert((I->getValueType() == EltVT ||
769             (EltVT.isInteger() && I->getValueType().isInteger() &&
770              EltVT.bitsLE(I->getValueType()))) &&
771            "Wrong operand type!");
772    break;
773  }
774  }
775}
776
777/// getEVTAlignment - Compute the default alignment value for the
778/// given type.
779///
780unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
781  const Type *Ty = VT == MVT::iPTR ?
782                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
783                   VT.getTypeForEVT(*getContext());
784
785  return TLI.getTargetData()->getABITypeAlignment(Ty);
786}
787
788// EntryNode could meaningfully have debug info if we can find it...
789SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
790  : TLI(tli), FLI(fli), DW(0),
791    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
792              getVTList(MVT::Other)),
793    Root(getEntryNode()), Ordering(0) {
794  AllNodes.push_back(&EntryNode);
795  Ordering = new SDNodeOrdering();
796}
797
798void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
799                        DwarfWriter *dw) {
800  MF = &mf;
801  MMI = mmi;
802  DW = dw;
803  Context = &mf.getFunction()->getContext();
804}
805
806SelectionDAG::~SelectionDAG() {
807  allnodes_clear();
808  delete Ordering;
809}
810
811void SelectionDAG::allnodes_clear() {
812  assert(&*AllNodes.begin() == &EntryNode);
813  AllNodes.remove(AllNodes.begin());
814  while (!AllNodes.empty())
815    DeallocateNode(AllNodes.begin());
816}
817
818void SelectionDAG::clear() {
819  allnodes_clear();
820  OperandAllocator.Reset();
821  CSEMap.clear();
822
823  ExtendedValueTypeNodes.clear();
824  ExternalSymbols.clear();
825  TargetExternalSymbols.clear();
826  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
827            static_cast<CondCodeSDNode*>(0));
828  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
829            static_cast<SDNode*>(0));
830
831  EntryNode.UseList = 0;
832  AllNodes.push_back(&EntryNode);
833  Root = getEntryNode();
834  delete Ordering;
835  Ordering = new SDNodeOrdering();
836}
837
838SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
839  return VT.bitsGT(Op.getValueType()) ?
840    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
841    getNode(ISD::TRUNCATE, DL, VT, Op);
842}
843
844SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
845  return VT.bitsGT(Op.getValueType()) ?
846    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
847    getNode(ISD::TRUNCATE, DL, VT, Op);
848}
849
850SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
851  assert(!VT.isVector() &&
852         "getZeroExtendInReg should use the vector element type instead of "
853         "the vector type!");
854  if (Op.getValueType() == VT) return Op;
855  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
856  APInt Imm = APInt::getLowBitsSet(BitWidth,
857                                   VT.getSizeInBits());
858  return getNode(ISD::AND, DL, Op.getValueType(), Op,
859                 getConstant(Imm, Op.getValueType()));
860}
861
862/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
863///
864SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
865  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
866  SDValue NegOne =
867    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
868  return getNode(ISD::XOR, DL, VT, Val, NegOne);
869}
870
871SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
872  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
873  assert((EltVT.getSizeInBits() >= 64 ||
874         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
875         "getConstant with a uint64_t value that doesn't fit in the type!");
876  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
877}
878
879SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
880  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
881}
882
883SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
884  assert(VT.isInteger() && "Cannot create FP integer constant!");
885
886  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
887  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
888         "APInt size does not match type size!");
889
890  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
891  FoldingSetNodeID ID;
892  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
893  ID.AddPointer(&Val);
894  void *IP = 0;
895  SDNode *N = NULL;
896  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
897    if (!VT.isVector())
898      return SDValue(N, 0);
899
900  if (!N) {
901    N = NodeAllocator.Allocate<ConstantSDNode>();
902    new (N) ConstantSDNode(isT, &Val, EltVT);
903    CSEMap.InsertNode(N, IP);
904    AllNodes.push_back(N);
905  }
906
907  SDValue Result(N, 0);
908  if (VT.isVector()) {
909    SmallVector<SDValue, 8> Ops;
910    Ops.assign(VT.getVectorNumElements(), Result);
911    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
912                     VT, &Ops[0], Ops.size());
913  }
914  return Result;
915}
916
917SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
918  return getConstant(Val, TLI.getPointerTy(), isTarget);
919}
920
921
922SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
923  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
924}
925
926SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
927  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
928
929  EVT EltVT =
930    VT.isVector() ? VT.getVectorElementType() : VT;
931
932  // Do the map lookup using the actual bit pattern for the floating point
933  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
934  // we don't have issues with SNANs.
935  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
936  FoldingSetNodeID ID;
937  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
938  ID.AddPointer(&V);
939  void *IP = 0;
940  SDNode *N = NULL;
941  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
942    if (!VT.isVector())
943      return SDValue(N, 0);
944
945  if (!N) {
946    N = NodeAllocator.Allocate<ConstantFPSDNode>();
947    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
948    CSEMap.InsertNode(N, IP);
949    AllNodes.push_back(N);
950  }
951
952  SDValue Result(N, 0);
953  if (VT.isVector()) {
954    SmallVector<SDValue, 8> Ops;
955    Ops.assign(VT.getVectorNumElements(), Result);
956    // FIXME DebugLoc info might be appropriate here
957    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
958                     VT, &Ops[0], Ops.size());
959  }
960  return Result;
961}
962
963SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
964  EVT EltVT =
965    VT.isVector() ? VT.getVectorElementType() : VT;
966  if (EltVT==MVT::f32)
967    return getConstantFP(APFloat((float)Val), VT, isTarget);
968  else
969    return getConstantFP(APFloat(Val), VT, isTarget);
970}
971
972SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
973                                       EVT VT, int64_t Offset,
974                                       bool isTargetGA,
975                                       unsigned char TargetFlags) {
976  assert((TargetFlags == 0 || isTargetGA) &&
977         "Cannot set target flags on target-independent globals");
978
979  // Truncate (with sign-extension) the offset value to the pointer size.
980  EVT PTy = TLI.getPointerTy();
981  unsigned BitWidth = PTy.getSizeInBits();
982  if (BitWidth < 64)
983    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
984
985  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
986  if (!GVar) {
987    // If GV is an alias then use the aliasee for determining thread-localness.
988    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
989      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
990  }
991
992  unsigned Opc;
993  if (GVar && GVar->isThreadLocal())
994    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
995  else
996    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
997
998  FoldingSetNodeID ID;
999  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1000  ID.AddPointer(GV);
1001  ID.AddInteger(Offset);
1002  ID.AddInteger(TargetFlags);
1003  void *IP = 0;
1004  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1005    return SDValue(E, 0);
1006
1007  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1008  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1009  CSEMap.InsertNode(N, IP);
1010  AllNodes.push_back(N);
1011  return SDValue(N, 0);
1012}
1013
1014SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1015  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1016  FoldingSetNodeID ID;
1017  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1018  ID.AddInteger(FI);
1019  void *IP = 0;
1020  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1021    return SDValue(E, 0);
1022
1023  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1024  new (N) FrameIndexSDNode(FI, VT, isTarget);
1025  CSEMap.InsertNode(N, IP);
1026  AllNodes.push_back(N);
1027  return SDValue(N, 0);
1028}
1029
1030SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1031                                   unsigned char TargetFlags) {
1032  assert((TargetFlags == 0 || isTarget) &&
1033         "Cannot set target flags on target-independent jump tables");
1034  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1035  FoldingSetNodeID ID;
1036  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1037  ID.AddInteger(JTI);
1038  ID.AddInteger(TargetFlags);
1039  void *IP = 0;
1040  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1041    return SDValue(E, 0);
1042
1043  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1044  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1045  CSEMap.InsertNode(N, IP);
1046  AllNodes.push_back(N);
1047  return SDValue(N, 0);
1048}
1049
1050SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1051                                      unsigned Alignment, int Offset,
1052                                      bool isTarget,
1053                                      unsigned char TargetFlags) {
1054  assert((TargetFlags == 0 || isTarget) &&
1055         "Cannot set target flags on target-independent globals");
1056  if (Alignment == 0)
1057    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1058  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1059  FoldingSetNodeID ID;
1060  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1061  ID.AddInteger(Alignment);
1062  ID.AddInteger(Offset);
1063  ID.AddPointer(C);
1064  ID.AddInteger(TargetFlags);
1065  void *IP = 0;
1066  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1067    return SDValue(E, 0);
1068
1069  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1070  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1071  CSEMap.InsertNode(N, IP);
1072  AllNodes.push_back(N);
1073  return SDValue(N, 0);
1074}
1075
1076
1077SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1078                                      unsigned Alignment, int Offset,
1079                                      bool isTarget,
1080                                      unsigned char TargetFlags) {
1081  assert((TargetFlags == 0 || isTarget) &&
1082         "Cannot set target flags on target-independent globals");
1083  if (Alignment == 0)
1084    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1085  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1086  FoldingSetNodeID ID;
1087  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1088  ID.AddInteger(Alignment);
1089  ID.AddInteger(Offset);
1090  C->AddSelectionDAGCSEId(ID);
1091  ID.AddInteger(TargetFlags);
1092  void *IP = 0;
1093  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1094    return SDValue(E, 0);
1095
1096  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1097  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1098  CSEMap.InsertNode(N, IP);
1099  AllNodes.push_back(N);
1100  return SDValue(N, 0);
1101}
1102
1103SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1104  FoldingSetNodeID ID;
1105  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1106  ID.AddPointer(MBB);
1107  void *IP = 0;
1108  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1109    return SDValue(E, 0);
1110
1111  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1112  new (N) BasicBlockSDNode(MBB);
1113  CSEMap.InsertNode(N, IP);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getValueType(EVT VT) {
1119  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1120      ValueTypeNodes.size())
1121    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1122
1123  SDNode *&N = VT.isExtended() ?
1124    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1125
1126  if (N) return SDValue(N, 0);
1127  N = NodeAllocator.Allocate<VTSDNode>();
1128  new (N) VTSDNode(VT);
1129  AllNodes.push_back(N);
1130  return SDValue(N, 0);
1131}
1132
1133SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1134  SDNode *&N = ExternalSymbols[Sym];
1135  if (N) return SDValue(N, 0);
1136  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1137  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1138  AllNodes.push_back(N);
1139  return SDValue(N, 0);
1140}
1141
1142SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1143                                              unsigned char TargetFlags) {
1144  SDNode *&N =
1145    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1146                                                               TargetFlags)];
1147  if (N) return SDValue(N, 0);
1148  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1149  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1150  AllNodes.push_back(N);
1151  return SDValue(N, 0);
1152}
1153
1154SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1155  if ((unsigned)Cond >= CondCodeNodes.size())
1156    CondCodeNodes.resize(Cond+1);
1157
1158  if (CondCodeNodes[Cond] == 0) {
1159    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1160    new (N) CondCodeSDNode(Cond);
1161    CondCodeNodes[Cond] = N;
1162    AllNodes.push_back(N);
1163  }
1164
1165  return SDValue(CondCodeNodes[Cond], 0);
1166}
1167
1168// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1169// the shuffle mask M that point at N1 to point at N2, and indices that point
1170// N2 to point at N1.
1171static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1172  std::swap(N1, N2);
1173  int NElts = M.size();
1174  for (int i = 0; i != NElts; ++i) {
1175    if (M[i] >= NElts)
1176      M[i] -= NElts;
1177    else if (M[i] >= 0)
1178      M[i] += NElts;
1179  }
1180}
1181
1182SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1183                                       SDValue N2, const int *Mask) {
1184  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1185  assert(VT.isVector() && N1.getValueType().isVector() &&
1186         "Vector Shuffle VTs must be a vectors");
1187  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1188         && "Vector Shuffle VTs must have same element type");
1189
1190  // Canonicalize shuffle undef, undef -> undef
1191  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1192    return getUNDEF(VT);
1193
1194  // Validate that all indices in Mask are within the range of the elements
1195  // input to the shuffle.
1196  unsigned NElts = VT.getVectorNumElements();
1197  SmallVector<int, 8> MaskVec;
1198  for (unsigned i = 0; i != NElts; ++i) {
1199    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1200    MaskVec.push_back(Mask[i]);
1201  }
1202
1203  // Canonicalize shuffle v, v -> v, undef
1204  if (N1 == N2) {
1205    N2 = getUNDEF(VT);
1206    for (unsigned i = 0; i != NElts; ++i)
1207      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1208  }
1209
1210  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1211  if (N1.getOpcode() == ISD::UNDEF)
1212    commuteShuffle(N1, N2, MaskVec);
1213
1214  // Canonicalize all index into lhs, -> shuffle lhs, undef
1215  // Canonicalize all index into rhs, -> shuffle rhs, undef
1216  bool AllLHS = true, AllRHS = true;
1217  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1218  for (unsigned i = 0; i != NElts; ++i) {
1219    if (MaskVec[i] >= (int)NElts) {
1220      if (N2Undef)
1221        MaskVec[i] = -1;
1222      else
1223        AllLHS = false;
1224    } else if (MaskVec[i] >= 0) {
1225      AllRHS = false;
1226    }
1227  }
1228  if (AllLHS && AllRHS)
1229    return getUNDEF(VT);
1230  if (AllLHS && !N2Undef)
1231    N2 = getUNDEF(VT);
1232  if (AllRHS) {
1233    N1 = getUNDEF(VT);
1234    commuteShuffle(N1, N2, MaskVec);
1235  }
1236
1237  // If Identity shuffle, or all shuffle in to undef, return that node.
1238  bool AllUndef = true;
1239  bool Identity = true;
1240  for (unsigned i = 0; i != NElts; ++i) {
1241    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1242    if (MaskVec[i] >= 0) AllUndef = false;
1243  }
1244  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1245    return N1;
1246  if (AllUndef)
1247    return getUNDEF(VT);
1248
1249  FoldingSetNodeID ID;
1250  SDValue Ops[2] = { N1, N2 };
1251  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1252  for (unsigned i = 0; i != NElts; ++i)
1253    ID.AddInteger(MaskVec[i]);
1254
1255  void* IP = 0;
1256  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1257    return SDValue(E, 0);
1258
1259  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1260  // SDNode doesn't have access to it.  This memory will be "leaked" when
1261  // the node is deallocated, but recovered when the NodeAllocator is released.
1262  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1263  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1264
1265  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1266  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1267  CSEMap.InsertNode(N, IP);
1268  AllNodes.push_back(N);
1269  return SDValue(N, 0);
1270}
1271
1272SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1273                                       SDValue Val, SDValue DTy,
1274                                       SDValue STy, SDValue Rnd, SDValue Sat,
1275                                       ISD::CvtCode Code) {
1276  // If the src and dest types are the same and the conversion is between
1277  // integer types of the same sign or two floats, no conversion is necessary.
1278  if (DTy == STy &&
1279      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1280    return Val;
1281
1282  FoldingSetNodeID ID;
1283  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1284  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1285  void* IP = 0;
1286  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1287    return SDValue(E, 0);
1288
1289  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1290  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1291  CSEMap.InsertNode(N, IP);
1292  AllNodes.push_back(N);
1293  return SDValue(N, 0);
1294}
1295
1296SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1297  FoldingSetNodeID ID;
1298  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1299  ID.AddInteger(RegNo);
1300  void *IP = 0;
1301  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1302    return SDValue(E, 0);
1303
1304  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1305  new (N) RegisterSDNode(RegNo, VT);
1306  CSEMap.InsertNode(N, IP);
1307  AllNodes.push_back(N);
1308  return SDValue(N, 0);
1309}
1310
1311SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1312                               SDValue Root,
1313                               unsigned LabelID) {
1314  FoldingSetNodeID ID;
1315  SDValue Ops[] = { Root };
1316  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1317  ID.AddInteger(LabelID);
1318  void *IP = 0;
1319  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1320    return SDValue(E, 0);
1321
1322  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1323  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1324  CSEMap.InsertNode(N, IP);
1325  AllNodes.push_back(N);
1326  return SDValue(N, 0);
1327}
1328
1329SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1330                                      bool isTarget,
1331                                      unsigned char TargetFlags) {
1332  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1333
1334  FoldingSetNodeID ID;
1335  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1336  ID.AddPointer(BA);
1337  ID.AddInteger(TargetFlags);
1338  void *IP = 0;
1339  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1340    return SDValue(E, 0);
1341
1342  SDNode *N = NodeAllocator.Allocate<BlockAddressSDNode>();
1343  new (N) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1344  CSEMap.InsertNode(N, IP);
1345  AllNodes.push_back(N);
1346  return SDValue(N, 0);
1347}
1348
1349SDValue SelectionDAG::getSrcValue(const Value *V) {
1350  assert((!V || V->getType()->isPointerTy()) &&
1351         "SrcValue is not a pointer?");
1352
1353  FoldingSetNodeID ID;
1354  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1355  ID.AddPointer(V);
1356
1357  void *IP = 0;
1358  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1359    return SDValue(E, 0);
1360
1361  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1362  new (N) SrcValueSDNode(V);
1363  CSEMap.InsertNode(N, IP);
1364  AllNodes.push_back(N);
1365  return SDValue(N, 0);
1366}
1367
1368/// getShiftAmountOperand - Return the specified value casted to
1369/// the target's desired shift amount type.
1370SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1371  EVT OpTy = Op.getValueType();
1372  MVT ShTy = TLI.getShiftAmountTy();
1373  if (OpTy == ShTy || OpTy.isVector()) return Op;
1374
1375  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1376  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1377}
1378
1379/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1380/// specified value type.
1381SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1382  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1383  unsigned ByteSize = VT.getStoreSize();
1384  const Type *Ty = VT.getTypeForEVT(*getContext());
1385  unsigned StackAlign =
1386  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1387
1388  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1389  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1390}
1391
1392/// CreateStackTemporary - Create a stack temporary suitable for holding
1393/// either of the specified value types.
1394SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1395  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1396                            VT2.getStoreSizeInBits())/8;
1397  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1398  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1399  const TargetData *TD = TLI.getTargetData();
1400  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1401                            TD->getPrefTypeAlignment(Ty2));
1402
1403  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1404  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1405  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1406}
1407
1408SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1409                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1410  // These setcc operations always fold.
1411  switch (Cond) {
1412  default: break;
1413  case ISD::SETFALSE:
1414  case ISD::SETFALSE2: return getConstant(0, VT);
1415  case ISD::SETTRUE:
1416  case ISD::SETTRUE2:  return getConstant(1, VT);
1417
1418  case ISD::SETOEQ:
1419  case ISD::SETOGT:
1420  case ISD::SETOGE:
1421  case ISD::SETOLT:
1422  case ISD::SETOLE:
1423  case ISD::SETONE:
1424  case ISD::SETO:
1425  case ISD::SETUO:
1426  case ISD::SETUEQ:
1427  case ISD::SETUNE:
1428    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1429    break;
1430  }
1431
1432  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1433    const APInt &C2 = N2C->getAPIntValue();
1434    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1435      const APInt &C1 = N1C->getAPIntValue();
1436
1437      switch (Cond) {
1438      default: llvm_unreachable("Unknown integer setcc!");
1439      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1440      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1441      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1442      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1443      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1444      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1445      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1446      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1447      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1448      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1449      }
1450    }
1451  }
1452  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1453    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1454      // No compile time operations on this type yet.
1455      if (N1C->getValueType(0) == MVT::ppcf128)
1456        return SDValue();
1457
1458      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1459      switch (Cond) {
1460      default: break;
1461      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1462                          return getUNDEF(VT);
1463                        // fall through
1464      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1465      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1466                          return getUNDEF(VT);
1467                        // fall through
1468      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1469                                           R==APFloat::cmpLessThan, VT);
1470      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1471                          return getUNDEF(VT);
1472                        // fall through
1473      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1474      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1475                          return getUNDEF(VT);
1476                        // fall through
1477      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1478      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1479                          return getUNDEF(VT);
1480                        // fall through
1481      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1482                                           R==APFloat::cmpEqual, VT);
1483      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1484                          return getUNDEF(VT);
1485                        // fall through
1486      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1487                                           R==APFloat::cmpEqual, VT);
1488      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1489      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1490      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1491                                           R==APFloat::cmpEqual, VT);
1492      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1493      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1494                                           R==APFloat::cmpLessThan, VT);
1495      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1496                                           R==APFloat::cmpUnordered, VT);
1497      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1498      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1499      }
1500    } else {
1501      // Ensure that the constant occurs on the RHS.
1502      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1503    }
1504  }
1505
1506  // Could not fold it.
1507  return SDValue();
1508}
1509
1510/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1511/// use this predicate to simplify operations downstream.
1512bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1513  // This predicate is not safe for vector operations.
1514  if (Op.getValueType().isVector())
1515    return false;
1516
1517  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1518  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1519}
1520
1521/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1522/// this predicate to simplify operations downstream.  Mask is known to be zero
1523/// for bits that V cannot have.
1524bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1525                                     unsigned Depth) const {
1526  APInt KnownZero, KnownOne;
1527  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1528  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1529  return (KnownZero & Mask) == Mask;
1530}
1531
1532/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1533/// known to be either zero or one and return them in the KnownZero/KnownOne
1534/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1535/// processing.
1536void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1537                                     APInt &KnownZero, APInt &KnownOne,
1538                                     unsigned Depth) const {
1539  unsigned BitWidth = Mask.getBitWidth();
1540  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1541         "Mask size mismatches value type size!");
1542
1543  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1544  if (Depth == 6 || Mask == 0)
1545    return;  // Limit search depth.
1546
1547  APInt KnownZero2, KnownOne2;
1548
1549  switch (Op.getOpcode()) {
1550  case ISD::Constant:
1551    // We know all of the bits for a constant!
1552    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1553    KnownZero = ~KnownOne & Mask;
1554    return;
1555  case ISD::AND:
1556    // If either the LHS or the RHS are Zero, the result is zero.
1557    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1558    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1559                      KnownZero2, KnownOne2, Depth+1);
1560    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1561    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1562
1563    // Output known-1 bits are only known if set in both the LHS & RHS.
1564    KnownOne &= KnownOne2;
1565    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1566    KnownZero |= KnownZero2;
1567    return;
1568  case ISD::OR:
1569    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1570    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1571                      KnownZero2, KnownOne2, Depth+1);
1572    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1573    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1574
1575    // Output known-0 bits are only known if clear in both the LHS & RHS.
1576    KnownZero &= KnownZero2;
1577    // Output known-1 are known to be set if set in either the LHS | RHS.
1578    KnownOne |= KnownOne2;
1579    return;
1580  case ISD::XOR: {
1581    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1582    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1583    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1584    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1585
1586    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1587    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1588    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1589    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1590    KnownZero = KnownZeroOut;
1591    return;
1592  }
1593  case ISD::MUL: {
1594    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1595    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1596    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1597    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1598    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1599
1600    // If low bits are zero in either operand, output low known-0 bits.
1601    // Also compute a conserative estimate for high known-0 bits.
1602    // More trickiness is possible, but this is sufficient for the
1603    // interesting case of alignment computation.
1604    KnownOne.clear();
1605    unsigned TrailZ = KnownZero.countTrailingOnes() +
1606                      KnownZero2.countTrailingOnes();
1607    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1608                               KnownZero2.countLeadingOnes(),
1609                               BitWidth) - BitWidth;
1610
1611    TrailZ = std::min(TrailZ, BitWidth);
1612    LeadZ = std::min(LeadZ, BitWidth);
1613    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1614                APInt::getHighBitsSet(BitWidth, LeadZ);
1615    KnownZero &= Mask;
1616    return;
1617  }
1618  case ISD::UDIV: {
1619    // For the purposes of computing leading zeros we can conservatively
1620    // treat a udiv as a logical right shift by the power of 2 known to
1621    // be less than the denominator.
1622    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1623    ComputeMaskedBits(Op.getOperand(0),
1624                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1625    unsigned LeadZ = KnownZero2.countLeadingOnes();
1626
1627    KnownOne2.clear();
1628    KnownZero2.clear();
1629    ComputeMaskedBits(Op.getOperand(1),
1630                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1631    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1632    if (RHSUnknownLeadingOnes != BitWidth)
1633      LeadZ = std::min(BitWidth,
1634                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1635
1636    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1637    return;
1638  }
1639  case ISD::SELECT:
1640    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1641    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1642    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1643    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1644
1645    // Only known if known in both the LHS and RHS.
1646    KnownOne &= KnownOne2;
1647    KnownZero &= KnownZero2;
1648    return;
1649  case ISD::SELECT_CC:
1650    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1651    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1652    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1653    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1654
1655    // Only known if known in both the LHS and RHS.
1656    KnownOne &= KnownOne2;
1657    KnownZero &= KnownZero2;
1658    return;
1659  case ISD::SADDO:
1660  case ISD::UADDO:
1661  case ISD::SSUBO:
1662  case ISD::USUBO:
1663  case ISD::SMULO:
1664  case ISD::UMULO:
1665    if (Op.getResNo() != 1)
1666      return;
1667    // The boolean result conforms to getBooleanContents.  Fall through.
1668  case ISD::SETCC:
1669    // If we know the result of a setcc has the top bits zero, use this info.
1670    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1671        BitWidth > 1)
1672      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1673    return;
1674  case ISD::SHL:
1675    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1676    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1677      unsigned ShAmt = SA->getZExtValue();
1678
1679      // If the shift count is an invalid immediate, don't do anything.
1680      if (ShAmt >= BitWidth)
1681        return;
1682
1683      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1684                        KnownZero, KnownOne, Depth+1);
1685      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1686      KnownZero <<= ShAmt;
1687      KnownOne  <<= ShAmt;
1688      // low bits known zero.
1689      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1690    }
1691    return;
1692  case ISD::SRL:
1693    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1694    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1695      unsigned ShAmt = SA->getZExtValue();
1696
1697      // If the shift count is an invalid immediate, don't do anything.
1698      if (ShAmt >= BitWidth)
1699        return;
1700
1701      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1702                        KnownZero, KnownOne, Depth+1);
1703      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1704      KnownZero = KnownZero.lshr(ShAmt);
1705      KnownOne  = KnownOne.lshr(ShAmt);
1706
1707      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1708      KnownZero |= HighBits;  // High bits known zero.
1709    }
1710    return;
1711  case ISD::SRA:
1712    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1713      unsigned ShAmt = SA->getZExtValue();
1714
1715      // If the shift count is an invalid immediate, don't do anything.
1716      if (ShAmt >= BitWidth)
1717        return;
1718
1719      APInt InDemandedMask = (Mask << ShAmt);
1720      // If any of the demanded bits are produced by the sign extension, we also
1721      // demand the input sign bit.
1722      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1723      if (HighBits.getBoolValue())
1724        InDemandedMask |= APInt::getSignBit(BitWidth);
1725
1726      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1727                        Depth+1);
1728      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1729      KnownZero = KnownZero.lshr(ShAmt);
1730      KnownOne  = KnownOne.lshr(ShAmt);
1731
1732      // Handle the sign bits.
1733      APInt SignBit = APInt::getSignBit(BitWidth);
1734      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1735
1736      if (KnownZero.intersects(SignBit)) {
1737        KnownZero |= HighBits;  // New bits are known zero.
1738      } else if (KnownOne.intersects(SignBit)) {
1739        KnownOne  |= HighBits;  // New bits are known one.
1740      }
1741    }
1742    return;
1743  case ISD::SIGN_EXTEND_INREG: {
1744    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1745    unsigned EBits = EVT.getScalarType().getSizeInBits();
1746
1747    // Sign extension.  Compute the demanded bits in the result that are not
1748    // present in the input.
1749    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1750
1751    APInt InSignBit = APInt::getSignBit(EBits);
1752    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1753
1754    // If the sign extended bits are demanded, we know that the sign
1755    // bit is demanded.
1756    InSignBit.zext(BitWidth);
1757    if (NewBits.getBoolValue())
1758      InputDemandedBits |= InSignBit;
1759
1760    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1761                      KnownZero, KnownOne, Depth+1);
1762    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1763
1764    // If the sign bit of the input is known set or clear, then we know the
1765    // top bits of the result.
1766    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1767      KnownZero |= NewBits;
1768      KnownOne  &= ~NewBits;
1769    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1770      KnownOne  |= NewBits;
1771      KnownZero &= ~NewBits;
1772    } else {                              // Input sign bit unknown
1773      KnownZero &= ~NewBits;
1774      KnownOne  &= ~NewBits;
1775    }
1776    return;
1777  }
1778  case ISD::CTTZ:
1779  case ISD::CTLZ:
1780  case ISD::CTPOP: {
1781    unsigned LowBits = Log2_32(BitWidth)+1;
1782    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1783    KnownOne.clear();
1784    return;
1785  }
1786  case ISD::LOAD: {
1787    if (ISD::isZEXTLoad(Op.getNode())) {
1788      LoadSDNode *LD = cast<LoadSDNode>(Op);
1789      EVT VT = LD->getMemoryVT();
1790      unsigned MemBits = VT.getScalarType().getSizeInBits();
1791      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1792    }
1793    return;
1794  }
1795  case ISD::ZERO_EXTEND: {
1796    EVT InVT = Op.getOperand(0).getValueType();
1797    unsigned InBits = InVT.getScalarType().getSizeInBits();
1798    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1799    APInt InMask    = Mask;
1800    InMask.trunc(InBits);
1801    KnownZero.trunc(InBits);
1802    KnownOne.trunc(InBits);
1803    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1804    KnownZero.zext(BitWidth);
1805    KnownOne.zext(BitWidth);
1806    KnownZero |= NewBits;
1807    return;
1808  }
1809  case ISD::SIGN_EXTEND: {
1810    EVT InVT = Op.getOperand(0).getValueType();
1811    unsigned InBits = InVT.getScalarType().getSizeInBits();
1812    APInt InSignBit = APInt::getSignBit(InBits);
1813    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1814    APInt InMask = Mask;
1815    InMask.trunc(InBits);
1816
1817    // If any of the sign extended bits are demanded, we know that the sign
1818    // bit is demanded. Temporarily set this bit in the mask for our callee.
1819    if (NewBits.getBoolValue())
1820      InMask |= InSignBit;
1821
1822    KnownZero.trunc(InBits);
1823    KnownOne.trunc(InBits);
1824    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1825
1826    // Note if the sign bit is known to be zero or one.
1827    bool SignBitKnownZero = KnownZero.isNegative();
1828    bool SignBitKnownOne  = KnownOne.isNegative();
1829    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1830           "Sign bit can't be known to be both zero and one!");
1831
1832    // If the sign bit wasn't actually demanded by our caller, we don't
1833    // want it set in the KnownZero and KnownOne result values. Reset the
1834    // mask and reapply it to the result values.
1835    InMask = Mask;
1836    InMask.trunc(InBits);
1837    KnownZero &= InMask;
1838    KnownOne  &= InMask;
1839
1840    KnownZero.zext(BitWidth);
1841    KnownOne.zext(BitWidth);
1842
1843    // If the sign bit is known zero or one, the top bits match.
1844    if (SignBitKnownZero)
1845      KnownZero |= NewBits;
1846    else if (SignBitKnownOne)
1847      KnownOne  |= NewBits;
1848    return;
1849  }
1850  case ISD::ANY_EXTEND: {
1851    EVT InVT = Op.getOperand(0).getValueType();
1852    unsigned InBits = InVT.getScalarType().getSizeInBits();
1853    APInt InMask = Mask;
1854    InMask.trunc(InBits);
1855    KnownZero.trunc(InBits);
1856    KnownOne.trunc(InBits);
1857    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1858    KnownZero.zext(BitWidth);
1859    KnownOne.zext(BitWidth);
1860    return;
1861  }
1862  case ISD::TRUNCATE: {
1863    EVT InVT = Op.getOperand(0).getValueType();
1864    unsigned InBits = InVT.getScalarType().getSizeInBits();
1865    APInt InMask = Mask;
1866    InMask.zext(InBits);
1867    KnownZero.zext(InBits);
1868    KnownOne.zext(InBits);
1869    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1870    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1871    KnownZero.trunc(BitWidth);
1872    KnownOne.trunc(BitWidth);
1873    break;
1874  }
1875  case ISD::AssertZext: {
1876    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1877    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1878    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1879                      KnownOne, Depth+1);
1880    KnownZero |= (~InMask) & Mask;
1881    return;
1882  }
1883  case ISD::FGETSIGN:
1884    // All bits are zero except the low bit.
1885    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1886    return;
1887
1888  case ISD::SUB: {
1889    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1890      // We know that the top bits of C-X are clear if X contains less bits
1891      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1892      // positive if we can prove that X is >= 0 and < 16.
1893      if (CLHS->getAPIntValue().isNonNegative()) {
1894        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1895        // NLZ can't be BitWidth with no sign bit
1896        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1897        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1898                          Depth+1);
1899
1900        // If all of the MaskV bits are known to be zero, then we know the
1901        // output top bits are zero, because we now know that the output is
1902        // from [0-C].
1903        if ((KnownZero2 & MaskV) == MaskV) {
1904          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1905          // Top bits known zero.
1906          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1907        }
1908      }
1909    }
1910  }
1911  // fall through
1912  case ISD::ADD: {
1913    // Output known-0 bits are known if clear or set in both the low clear bits
1914    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1915    // low 3 bits clear.
1916    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1917    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1918    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1919    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1920
1921    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1922    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1923    KnownZeroOut = std::min(KnownZeroOut,
1924                            KnownZero2.countTrailingOnes());
1925
1926    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1927    return;
1928  }
1929  case ISD::SREM:
1930    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1931      const APInt &RA = Rem->getAPIntValue().abs();
1932      if (RA.isPowerOf2()) {
1933        APInt LowBits = RA - 1;
1934        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1935        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1936
1937        // The low bits of the first operand are unchanged by the srem.
1938        KnownZero = KnownZero2 & LowBits;
1939        KnownOne = KnownOne2 & LowBits;
1940
1941        // If the first operand is non-negative or has all low bits zero, then
1942        // the upper bits are all zero.
1943        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1944          KnownZero |= ~LowBits;
1945
1946        // If the first operand is negative and not all low bits are zero, then
1947        // the upper bits are all one.
1948        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1949          KnownOne |= ~LowBits;
1950
1951        KnownZero &= Mask;
1952        KnownOne &= Mask;
1953
1954        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1955      }
1956    }
1957    return;
1958  case ISD::UREM: {
1959    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1960      const APInt &RA = Rem->getAPIntValue();
1961      if (RA.isPowerOf2()) {
1962        APInt LowBits = (RA - 1);
1963        APInt Mask2 = LowBits & Mask;
1964        KnownZero |= ~LowBits & Mask;
1965        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1966        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1967        break;
1968      }
1969    }
1970
1971    // Since the result is less than or equal to either operand, any leading
1972    // zero bits in either operand must also exist in the result.
1973    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1974    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1975                      Depth+1);
1976    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1977                      Depth+1);
1978
1979    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1980                                KnownZero2.countLeadingOnes());
1981    KnownOne.clear();
1982    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1983    return;
1984  }
1985  default:
1986    // Allow the target to implement this method for its nodes.
1987    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1988  case ISD::INTRINSIC_WO_CHAIN:
1989  case ISD::INTRINSIC_W_CHAIN:
1990  case ISD::INTRINSIC_VOID:
1991      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1992                                         Depth);
1993    }
1994    return;
1995  }
1996}
1997
1998/// ComputeNumSignBits - Return the number of times the sign bit of the
1999/// register is replicated into the other bits.  We know that at least 1 bit
2000/// is always equal to the sign bit (itself), but other cases can give us
2001/// information.  For example, immediately after an "SRA X, 2", we know that
2002/// the top 3 bits are all equal to each other, so we return 3.
2003unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2004  EVT VT = Op.getValueType();
2005  assert(VT.isInteger() && "Invalid VT!");
2006  unsigned VTBits = VT.getScalarType().getSizeInBits();
2007  unsigned Tmp, Tmp2;
2008  unsigned FirstAnswer = 1;
2009
2010  if (Depth == 6)
2011    return 1;  // Limit search depth.
2012
2013  switch (Op.getOpcode()) {
2014  default: break;
2015  case ISD::AssertSext:
2016    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2017    return VTBits-Tmp+1;
2018  case ISD::AssertZext:
2019    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2020    return VTBits-Tmp;
2021
2022  case ISD::Constant: {
2023    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2024    // If negative, return # leading ones.
2025    if (Val.isNegative())
2026      return Val.countLeadingOnes();
2027
2028    // Return # leading zeros.
2029    return Val.countLeadingZeros();
2030  }
2031
2032  case ISD::SIGN_EXTEND:
2033    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2034    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2035
2036  case ISD::SIGN_EXTEND_INREG:
2037    // Max of the input and what this extends.
2038    Tmp =
2039      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2040    Tmp = VTBits-Tmp+1;
2041
2042    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2043    return std::max(Tmp, Tmp2);
2044
2045  case ISD::SRA:
2046    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2047    // SRA X, C   -> adds C sign bits.
2048    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2049      Tmp += C->getZExtValue();
2050      if (Tmp > VTBits) Tmp = VTBits;
2051    }
2052    return Tmp;
2053  case ISD::SHL:
2054    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2055      // shl destroys sign bits.
2056      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2057      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2058          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2059      return Tmp - C->getZExtValue();
2060    }
2061    break;
2062  case ISD::AND:
2063  case ISD::OR:
2064  case ISD::XOR:    // NOT is handled here.
2065    // Logical binary ops preserve the number of sign bits at the worst.
2066    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2067    if (Tmp != 1) {
2068      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2069      FirstAnswer = std::min(Tmp, Tmp2);
2070      // We computed what we know about the sign bits as our first
2071      // answer. Now proceed to the generic code that uses
2072      // ComputeMaskedBits, and pick whichever answer is better.
2073    }
2074    break;
2075
2076  case ISD::SELECT:
2077    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2078    if (Tmp == 1) return 1;  // Early out.
2079    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2080    return std::min(Tmp, Tmp2);
2081
2082  case ISD::SADDO:
2083  case ISD::UADDO:
2084  case ISD::SSUBO:
2085  case ISD::USUBO:
2086  case ISD::SMULO:
2087  case ISD::UMULO:
2088    if (Op.getResNo() != 1)
2089      break;
2090    // The boolean result conforms to getBooleanContents.  Fall through.
2091  case ISD::SETCC:
2092    // If setcc returns 0/-1, all bits are sign bits.
2093    if (TLI.getBooleanContents() ==
2094        TargetLowering::ZeroOrNegativeOneBooleanContent)
2095      return VTBits;
2096    break;
2097  case ISD::ROTL:
2098  case ISD::ROTR:
2099    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2100      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2101
2102      // Handle rotate right by N like a rotate left by 32-N.
2103      if (Op.getOpcode() == ISD::ROTR)
2104        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2105
2106      // If we aren't rotating out all of the known-in sign bits, return the
2107      // number that are left.  This handles rotl(sext(x), 1) for example.
2108      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2109      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2110    }
2111    break;
2112  case ISD::ADD:
2113    // Add can have at most one carry bit.  Thus we know that the output
2114    // is, at worst, one more bit than the inputs.
2115    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2116    if (Tmp == 1) return 1;  // Early out.
2117
2118    // Special case decrementing a value (ADD X, -1):
2119    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2120      if (CRHS->isAllOnesValue()) {
2121        APInt KnownZero, KnownOne;
2122        APInt Mask = APInt::getAllOnesValue(VTBits);
2123        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2124
2125        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2126        // sign bits set.
2127        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2128          return VTBits;
2129
2130        // If we are subtracting one from a positive number, there is no carry
2131        // out of the result.
2132        if (KnownZero.isNegative())
2133          return Tmp;
2134      }
2135
2136    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2137    if (Tmp2 == 1) return 1;
2138      return std::min(Tmp, Tmp2)-1;
2139    break;
2140
2141  case ISD::SUB:
2142    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2143    if (Tmp2 == 1) return 1;
2144
2145    // Handle NEG.
2146    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2147      if (CLHS->isNullValue()) {
2148        APInt KnownZero, KnownOne;
2149        APInt Mask = APInt::getAllOnesValue(VTBits);
2150        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2151        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2152        // sign bits set.
2153        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2154          return VTBits;
2155
2156        // If the input is known to be positive (the sign bit is known clear),
2157        // the output of the NEG has the same number of sign bits as the input.
2158        if (KnownZero.isNegative())
2159          return Tmp2;
2160
2161        // Otherwise, we treat this like a SUB.
2162      }
2163
2164    // Sub can have at most one carry bit.  Thus we know that the output
2165    // is, at worst, one more bit than the inputs.
2166    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2167    if (Tmp == 1) return 1;  // Early out.
2168      return std::min(Tmp, Tmp2)-1;
2169    break;
2170  case ISD::TRUNCATE:
2171    // FIXME: it's tricky to do anything useful for this, but it is an important
2172    // case for targets like X86.
2173    break;
2174  }
2175
2176  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2177  if (Op.getOpcode() == ISD::LOAD) {
2178    LoadSDNode *LD = cast<LoadSDNode>(Op);
2179    unsigned ExtType = LD->getExtensionType();
2180    switch (ExtType) {
2181    default: break;
2182    case ISD::SEXTLOAD:    // '17' bits known
2183      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2184      return VTBits-Tmp+1;
2185    case ISD::ZEXTLOAD:    // '16' bits known
2186      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2187      return VTBits-Tmp;
2188    }
2189  }
2190
2191  // Allow the target to implement this method for its nodes.
2192  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2193      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2194      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2195      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2196    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2197    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2198  }
2199
2200  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2201  // use this information.
2202  APInt KnownZero, KnownOne;
2203  APInt Mask = APInt::getAllOnesValue(VTBits);
2204  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2205
2206  if (KnownZero.isNegative()) {        // sign bit is 0
2207    Mask = KnownZero;
2208  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2209    Mask = KnownOne;
2210  } else {
2211    // Nothing known.
2212    return FirstAnswer;
2213  }
2214
2215  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2216  // the number of identical bits in the top of the input value.
2217  Mask = ~Mask;
2218  Mask <<= Mask.getBitWidth()-VTBits;
2219  // Return # leading zeros.  We use 'min' here in case Val was zero before
2220  // shifting.  We don't want to return '64' as for an i32 "0".
2221  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2222}
2223
2224bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2225  // If we're told that NaNs won't happen, assume they won't.
2226  if (FiniteOnlyFPMath())
2227    return true;
2228
2229  // If the value is a constant, we can obviously see if it is a NaN or not.
2230  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2231    return !C->getValueAPF().isNaN();
2232
2233  // TODO: Recognize more cases here.
2234
2235  return false;
2236}
2237
2238bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2239  // If the value is a constant, we can obviously see if it is a zero or not.
2240  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2241    return !C->isZero();
2242
2243  // TODO: Recognize more cases here.
2244
2245  return false;
2246}
2247
2248bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2249  // Check the obvious case.
2250  if (A == B) return true;
2251
2252  // For for negative and positive zero.
2253  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2254    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2255      if (CA->isZero() && CB->isZero()) return true;
2256
2257  // Otherwise they may not be equal.
2258  return false;
2259}
2260
2261bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2262  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2263  if (!GA) return false;
2264  if (GA->getOffset() != 0) return false;
2265  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2266  if (!GV) return false;
2267  MachineModuleInfo *MMI = getMachineModuleInfo();
2268  return MMI && MMI->hasDebugInfo();
2269}
2270
2271
2272/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2273/// element of the result of the vector shuffle.
2274SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2275                                          unsigned i) {
2276  EVT VT = N->getValueType(0);
2277  DebugLoc dl = N->getDebugLoc();
2278  if (N->getMaskElt(i) < 0)
2279    return getUNDEF(VT.getVectorElementType());
2280  unsigned Index = N->getMaskElt(i);
2281  unsigned NumElems = VT.getVectorNumElements();
2282  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2283  Index %= NumElems;
2284
2285  if (V.getOpcode() == ISD::BIT_CONVERT) {
2286    V = V.getOperand(0);
2287    EVT VVT = V.getValueType();
2288    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2289      return SDValue();
2290  }
2291  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2292    return (Index == 0) ? V.getOperand(0)
2293                      : getUNDEF(VT.getVectorElementType());
2294  if (V.getOpcode() == ISD::BUILD_VECTOR)
2295    return V.getOperand(Index);
2296  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2297    return getShuffleScalarElt(SVN, Index);
2298  return SDValue();
2299}
2300
2301
2302/// getNode - Gets or creates the specified node.
2303///
2304SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2305  FoldingSetNodeID ID;
2306  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2307  void *IP = 0;
2308  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2309    return SDValue(E, 0);
2310
2311  SDNode *N = NodeAllocator.Allocate<SDNode>();
2312  new (N) SDNode(Opcode, DL, getVTList(VT));
2313  CSEMap.InsertNode(N, IP);
2314
2315  AllNodes.push_back(N);
2316#ifndef NDEBUG
2317  VerifyNode(N);
2318#endif
2319  return SDValue(N, 0);
2320}
2321
2322SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2323                              EVT VT, SDValue Operand) {
2324  // Constant fold unary operations with an integer constant operand.
2325  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2326    const APInt &Val = C->getAPIntValue();
2327    unsigned BitWidth = VT.getSizeInBits();
2328    switch (Opcode) {
2329    default: break;
2330    case ISD::SIGN_EXTEND:
2331      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2332    case ISD::ANY_EXTEND:
2333    case ISD::ZERO_EXTEND:
2334    case ISD::TRUNCATE:
2335      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2336    case ISD::UINT_TO_FP:
2337    case ISD::SINT_TO_FP: {
2338      const uint64_t zero[] = {0, 0};
2339      // No compile time operations on this type.
2340      if (VT==MVT::ppcf128)
2341        break;
2342      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2343      (void)apf.convertFromAPInt(Val,
2344                                 Opcode==ISD::SINT_TO_FP,
2345                                 APFloat::rmNearestTiesToEven);
2346      return getConstantFP(apf, VT);
2347    }
2348    case ISD::BIT_CONVERT:
2349      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2350        return getConstantFP(Val.bitsToFloat(), VT);
2351      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2352        return getConstantFP(Val.bitsToDouble(), VT);
2353      break;
2354    case ISD::BSWAP:
2355      return getConstant(Val.byteSwap(), VT);
2356    case ISD::CTPOP:
2357      return getConstant(Val.countPopulation(), VT);
2358    case ISD::CTLZ:
2359      return getConstant(Val.countLeadingZeros(), VT);
2360    case ISD::CTTZ:
2361      return getConstant(Val.countTrailingZeros(), VT);
2362    }
2363  }
2364
2365  // Constant fold unary operations with a floating point constant operand.
2366  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2367    APFloat V = C->getValueAPF();    // make copy
2368    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2369      switch (Opcode) {
2370      case ISD::FNEG:
2371        V.changeSign();
2372        return getConstantFP(V, VT);
2373      case ISD::FABS:
2374        V.clearSign();
2375        return getConstantFP(V, VT);
2376      case ISD::FP_ROUND:
2377      case ISD::FP_EXTEND: {
2378        bool ignored;
2379        // This can return overflow, underflow, or inexact; we don't care.
2380        // FIXME need to be more flexible about rounding mode.
2381        (void)V.convert(*EVTToAPFloatSemantics(VT),
2382                        APFloat::rmNearestTiesToEven, &ignored);
2383        return getConstantFP(V, VT);
2384      }
2385      case ISD::FP_TO_SINT:
2386      case ISD::FP_TO_UINT: {
2387        integerPart x[2];
2388        bool ignored;
2389        assert(integerPartWidth >= 64);
2390        // FIXME need to be more flexible about rounding mode.
2391        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2392                              Opcode==ISD::FP_TO_SINT,
2393                              APFloat::rmTowardZero, &ignored);
2394        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2395          break;
2396        APInt api(VT.getSizeInBits(), 2, x);
2397        return getConstant(api, VT);
2398      }
2399      case ISD::BIT_CONVERT:
2400        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2401          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2402        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2403          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2404        break;
2405      }
2406    }
2407  }
2408
2409  unsigned OpOpcode = Operand.getNode()->getOpcode();
2410  switch (Opcode) {
2411  case ISD::TokenFactor:
2412  case ISD::MERGE_VALUES:
2413  case ISD::CONCAT_VECTORS:
2414    return Operand;         // Factor, merge or concat of one node?  No need.
2415  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2416  case ISD::FP_EXTEND:
2417    assert(VT.isFloatingPoint() &&
2418           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2419    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2420    assert((!VT.isVector() ||
2421            VT.getVectorNumElements() ==
2422            Operand.getValueType().getVectorNumElements()) &&
2423           "Vector element count mismatch!");
2424    if (Operand.getOpcode() == ISD::UNDEF)
2425      return getUNDEF(VT);
2426    break;
2427  case ISD::SIGN_EXTEND:
2428    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2429           "Invalid SIGN_EXTEND!");
2430    if (Operand.getValueType() == VT) return Operand;   // noop extension
2431    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2432           "Invalid sext node, dst < src!");
2433    assert((!VT.isVector() ||
2434            VT.getVectorNumElements() ==
2435            Operand.getValueType().getVectorNumElements()) &&
2436           "Vector element count mismatch!");
2437    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2438      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2439    break;
2440  case ISD::ZERO_EXTEND:
2441    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2442           "Invalid ZERO_EXTEND!");
2443    if (Operand.getValueType() == VT) return Operand;   // noop extension
2444    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2445           "Invalid zext node, dst < src!");
2446    assert((!VT.isVector() ||
2447            VT.getVectorNumElements() ==
2448            Operand.getValueType().getVectorNumElements()) &&
2449           "Vector element count mismatch!");
2450    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2451      return getNode(ISD::ZERO_EXTEND, DL, VT,
2452                     Operand.getNode()->getOperand(0));
2453    break;
2454  case ISD::ANY_EXTEND:
2455    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2456           "Invalid ANY_EXTEND!");
2457    if (Operand.getValueType() == VT) return Operand;   // noop extension
2458    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2459           "Invalid anyext node, dst < src!");
2460    assert((!VT.isVector() ||
2461            VT.getVectorNumElements() ==
2462            Operand.getValueType().getVectorNumElements()) &&
2463           "Vector element count mismatch!");
2464    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2465      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2466      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2467    break;
2468  case ISD::TRUNCATE:
2469    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2470           "Invalid TRUNCATE!");
2471    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2472    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2473           "Invalid truncate node, src < dst!");
2474    assert((!VT.isVector() ||
2475            VT.getVectorNumElements() ==
2476            Operand.getValueType().getVectorNumElements()) &&
2477           "Vector element count mismatch!");
2478    if (OpOpcode == ISD::TRUNCATE)
2479      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2480    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2481             OpOpcode == ISD::ANY_EXTEND) {
2482      // If the source is smaller than the dest, we still need an extend.
2483      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2484            .bitsLT(VT.getScalarType()))
2485        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2486      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2487        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2488      else
2489        return Operand.getNode()->getOperand(0);
2490    }
2491    break;
2492  case ISD::BIT_CONVERT:
2493    // Basic sanity checking.
2494    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2495           && "Cannot BIT_CONVERT between types of different sizes!");
2496    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2497    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2498      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2499    if (OpOpcode == ISD::UNDEF)
2500      return getUNDEF(VT);
2501    break;
2502  case ISD::SCALAR_TO_VECTOR:
2503    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2504           (VT.getVectorElementType() == Operand.getValueType() ||
2505            (VT.getVectorElementType().isInteger() &&
2506             Operand.getValueType().isInteger() &&
2507             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2508           "Illegal SCALAR_TO_VECTOR node!");
2509    if (OpOpcode == ISD::UNDEF)
2510      return getUNDEF(VT);
2511    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2512    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2513        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2514        Operand.getConstantOperandVal(1) == 0 &&
2515        Operand.getOperand(0).getValueType() == VT)
2516      return Operand.getOperand(0);
2517    break;
2518  case ISD::FNEG:
2519    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2520    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2521      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2522                     Operand.getNode()->getOperand(0));
2523    if (OpOpcode == ISD::FNEG)  // --X -> X
2524      return Operand.getNode()->getOperand(0);
2525    break;
2526  case ISD::FABS:
2527    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2528      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2529    break;
2530  }
2531
2532  SDNode *N;
2533  SDVTList VTs = getVTList(VT);
2534  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2535    FoldingSetNodeID ID;
2536    SDValue Ops[1] = { Operand };
2537    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2538    void *IP = 0;
2539    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2540      return SDValue(E, 0);
2541
2542    N = NodeAllocator.Allocate<UnarySDNode>();
2543    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2544    CSEMap.InsertNode(N, IP);
2545  } else {
2546    N = NodeAllocator.Allocate<UnarySDNode>();
2547    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2548  }
2549
2550  AllNodes.push_back(N);
2551#ifndef NDEBUG
2552  VerifyNode(N);
2553#endif
2554  return SDValue(N, 0);
2555}
2556
2557SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2558                                             EVT VT,
2559                                             ConstantSDNode *Cst1,
2560                                             ConstantSDNode *Cst2) {
2561  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2562
2563  switch (Opcode) {
2564  case ISD::ADD:  return getConstant(C1 + C2, VT);
2565  case ISD::SUB:  return getConstant(C1 - C2, VT);
2566  case ISD::MUL:  return getConstant(C1 * C2, VT);
2567  case ISD::UDIV:
2568    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2569    break;
2570  case ISD::UREM:
2571    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2572    break;
2573  case ISD::SDIV:
2574    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2575    break;
2576  case ISD::SREM:
2577    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2578    break;
2579  case ISD::AND:  return getConstant(C1 & C2, VT);
2580  case ISD::OR:   return getConstant(C1 | C2, VT);
2581  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2582  case ISD::SHL:  return getConstant(C1 << C2, VT);
2583  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2584  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2585  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2586  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2587  default: break;
2588  }
2589
2590  return SDValue();
2591}
2592
2593SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2594                              SDValue N1, SDValue N2) {
2595  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2596  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2597  switch (Opcode) {
2598  default: break;
2599  case ISD::TokenFactor:
2600    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2601           N2.getValueType() == MVT::Other && "Invalid token factor!");
2602    // Fold trivial token factors.
2603    if (N1.getOpcode() == ISD::EntryToken) return N2;
2604    if (N2.getOpcode() == ISD::EntryToken) return N1;
2605    if (N1 == N2) return N1;
2606    break;
2607  case ISD::CONCAT_VECTORS:
2608    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2609    // one big BUILD_VECTOR.
2610    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2611        N2.getOpcode() == ISD::BUILD_VECTOR) {
2612      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2613      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2614      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2615    }
2616    break;
2617  case ISD::AND:
2618    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2619           N1.getValueType() == VT && "Binary operator types must match!");
2620    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2621    // worth handling here.
2622    if (N2C && N2C->isNullValue())
2623      return N2;
2624    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2625      return N1;
2626    break;
2627  case ISD::OR:
2628  case ISD::XOR:
2629  case ISD::ADD:
2630  case ISD::SUB:
2631    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2632           N1.getValueType() == VT && "Binary operator types must match!");
2633    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2634    // it's worth handling here.
2635    if (N2C && N2C->isNullValue())
2636      return N1;
2637    break;
2638  case ISD::UDIV:
2639  case ISD::UREM:
2640  case ISD::MULHU:
2641  case ISD::MULHS:
2642  case ISD::MUL:
2643  case ISD::SDIV:
2644  case ISD::SREM:
2645    assert(VT.isInteger() && "This operator does not apply to FP types!");
2646    // fall through
2647  case ISD::FADD:
2648  case ISD::FSUB:
2649  case ISD::FMUL:
2650  case ISD::FDIV:
2651  case ISD::FREM:
2652    if (UnsafeFPMath) {
2653      if (Opcode == ISD::FADD) {
2654        // 0+x --> x
2655        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2656          if (CFP->getValueAPF().isZero())
2657            return N2;
2658        // x+0 --> x
2659        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2660          if (CFP->getValueAPF().isZero())
2661            return N1;
2662      } else if (Opcode == ISD::FSUB) {
2663        // x-0 --> x
2664        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2665          if (CFP->getValueAPF().isZero())
2666            return N1;
2667      }
2668    }
2669    assert(N1.getValueType() == N2.getValueType() &&
2670           N1.getValueType() == VT && "Binary operator types must match!");
2671    break;
2672  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2673    assert(N1.getValueType() == VT &&
2674           N1.getValueType().isFloatingPoint() &&
2675           N2.getValueType().isFloatingPoint() &&
2676           "Invalid FCOPYSIGN!");
2677    break;
2678  case ISD::SHL:
2679  case ISD::SRA:
2680  case ISD::SRL:
2681  case ISD::ROTL:
2682  case ISD::ROTR:
2683    assert(VT == N1.getValueType() &&
2684           "Shift operators return type must be the same as their first arg");
2685    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2686           "Shifts only work on integers");
2687
2688    // Always fold shifts of i1 values so the code generator doesn't need to
2689    // handle them.  Since we know the size of the shift has to be less than the
2690    // size of the value, the shift/rotate count is guaranteed to be zero.
2691    if (VT == MVT::i1)
2692      return N1;
2693    if (N2C && N2C->isNullValue())
2694      return N1;
2695    break;
2696  case ISD::FP_ROUND_INREG: {
2697    EVT EVT = cast<VTSDNode>(N2)->getVT();
2698    assert(VT == N1.getValueType() && "Not an inreg round!");
2699    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2700           "Cannot FP_ROUND_INREG integer types");
2701    assert(EVT.isVector() == VT.isVector() &&
2702           "FP_ROUND_INREG type should be vector iff the operand "
2703           "type is vector!");
2704    assert((!EVT.isVector() ||
2705            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2706           "Vector element counts must match in FP_ROUND_INREG");
2707    assert(EVT.bitsLE(VT) && "Not rounding down!");
2708    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2709    break;
2710  }
2711  case ISD::FP_ROUND:
2712    assert(VT.isFloatingPoint() &&
2713           N1.getValueType().isFloatingPoint() &&
2714           VT.bitsLE(N1.getValueType()) &&
2715           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2716    if (N1.getValueType() == VT) return N1;  // noop conversion.
2717    break;
2718  case ISD::AssertSext:
2719  case ISD::AssertZext: {
2720    EVT EVT = cast<VTSDNode>(N2)->getVT();
2721    assert(VT == N1.getValueType() && "Not an inreg extend!");
2722    assert(VT.isInteger() && EVT.isInteger() &&
2723           "Cannot *_EXTEND_INREG FP types");
2724    assert(!EVT.isVector() &&
2725           "AssertSExt/AssertZExt type should be the vector element type "
2726           "rather than the vector type!");
2727    assert(EVT.bitsLE(VT) && "Not extending!");
2728    if (VT == EVT) return N1; // noop assertion.
2729    break;
2730  }
2731  case ISD::SIGN_EXTEND_INREG: {
2732    EVT EVT = cast<VTSDNode>(N2)->getVT();
2733    assert(VT == N1.getValueType() && "Not an inreg extend!");
2734    assert(VT.isInteger() && EVT.isInteger() &&
2735           "Cannot *_EXTEND_INREG FP types");
2736    assert(EVT.isVector() == VT.isVector() &&
2737           "SIGN_EXTEND_INREG type should be vector iff the operand "
2738           "type is vector!");
2739    assert((!EVT.isVector() ||
2740            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2741           "Vector element counts must match in SIGN_EXTEND_INREG");
2742    assert(EVT.bitsLE(VT) && "Not extending!");
2743    if (EVT == VT) return N1;  // Not actually extending
2744
2745    if (N1C) {
2746      APInt Val = N1C->getAPIntValue();
2747      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2748      Val <<= Val.getBitWidth()-FromBits;
2749      Val = Val.ashr(Val.getBitWidth()-FromBits);
2750      return getConstant(Val, VT);
2751    }
2752    break;
2753  }
2754  case ISD::EXTRACT_VECTOR_ELT:
2755    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2756    if (N1.getOpcode() == ISD::UNDEF)
2757      return getUNDEF(VT);
2758
2759    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2760    // expanding copies of large vectors from registers.
2761    if (N2C &&
2762        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2763        N1.getNumOperands() > 0) {
2764      unsigned Factor =
2765        N1.getOperand(0).getValueType().getVectorNumElements();
2766      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2767                     N1.getOperand(N2C->getZExtValue() / Factor),
2768                     getConstant(N2C->getZExtValue() % Factor,
2769                                 N2.getValueType()));
2770    }
2771
2772    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2773    // expanding large vector constants.
2774    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2775      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2776      EVT VEltTy = N1.getValueType().getVectorElementType();
2777      if (Elt.getValueType() != VEltTy) {
2778        // If the vector element type is not legal, the BUILD_VECTOR operands
2779        // are promoted and implicitly truncated.  Make that explicit here.
2780        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2781      }
2782      if (VT != VEltTy) {
2783        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2784        // result is implicitly extended.
2785        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2786      }
2787      return Elt;
2788    }
2789
2790    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2791    // operations are lowered to scalars.
2792    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2793      // If the indices are the same, return the inserted element else
2794      // if the indices are known different, extract the element from
2795      // the original vector.
2796      if (N1.getOperand(2) == N2) {
2797        if (VT == N1.getOperand(1).getValueType())
2798          return N1.getOperand(1);
2799        else
2800          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2801      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2802                 isa<ConstantSDNode>(N2))
2803        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2804    }
2805    break;
2806  case ISD::EXTRACT_ELEMENT:
2807    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2808    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2809           (N1.getValueType().isInteger() == VT.isInteger()) &&
2810           "Wrong types for EXTRACT_ELEMENT!");
2811
2812    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2813    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2814    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2815    if (N1.getOpcode() == ISD::BUILD_PAIR)
2816      return N1.getOperand(N2C->getZExtValue());
2817
2818    // EXTRACT_ELEMENT of a constant int is also very common.
2819    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2820      unsigned ElementSize = VT.getSizeInBits();
2821      unsigned Shift = ElementSize * N2C->getZExtValue();
2822      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2823      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2824    }
2825    break;
2826  case ISD::EXTRACT_SUBVECTOR:
2827    if (N1.getValueType() == VT) // Trivial extraction.
2828      return N1;
2829    break;
2830  }
2831
2832  if (N1C) {
2833    if (N2C) {
2834      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2835      if (SV.getNode()) return SV;
2836    } else {      // Cannonicalize constant to RHS if commutative
2837      if (isCommutativeBinOp(Opcode)) {
2838        std::swap(N1C, N2C);
2839        std::swap(N1, N2);
2840      }
2841    }
2842  }
2843
2844  // Constant fold FP operations.
2845  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2846  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2847  if (N1CFP) {
2848    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2849      // Cannonicalize constant to RHS if commutative
2850      std::swap(N1CFP, N2CFP);
2851      std::swap(N1, N2);
2852    } else if (N2CFP && VT != MVT::ppcf128) {
2853      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2854      APFloat::opStatus s;
2855      switch (Opcode) {
2856      case ISD::FADD:
2857        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2858        if (s != APFloat::opInvalidOp)
2859          return getConstantFP(V1, VT);
2860        break;
2861      case ISD::FSUB:
2862        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2863        if (s!=APFloat::opInvalidOp)
2864          return getConstantFP(V1, VT);
2865        break;
2866      case ISD::FMUL:
2867        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2868        if (s!=APFloat::opInvalidOp)
2869          return getConstantFP(V1, VT);
2870        break;
2871      case ISD::FDIV:
2872        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2873        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2874          return getConstantFP(V1, VT);
2875        break;
2876      case ISD::FREM :
2877        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2878        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2879          return getConstantFP(V1, VT);
2880        break;
2881      case ISD::FCOPYSIGN:
2882        V1.copySign(V2);
2883        return getConstantFP(V1, VT);
2884      default: break;
2885      }
2886    }
2887  }
2888
2889  // Canonicalize an UNDEF to the RHS, even over a constant.
2890  if (N1.getOpcode() == ISD::UNDEF) {
2891    if (isCommutativeBinOp(Opcode)) {
2892      std::swap(N1, N2);
2893    } else {
2894      switch (Opcode) {
2895      case ISD::FP_ROUND_INREG:
2896      case ISD::SIGN_EXTEND_INREG:
2897      case ISD::SUB:
2898      case ISD::FSUB:
2899      case ISD::FDIV:
2900      case ISD::FREM:
2901      case ISD::SRA:
2902        return N1;     // fold op(undef, arg2) -> undef
2903      case ISD::UDIV:
2904      case ISD::SDIV:
2905      case ISD::UREM:
2906      case ISD::SREM:
2907      case ISD::SRL:
2908      case ISD::SHL:
2909        if (!VT.isVector())
2910          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2911        // For vectors, we can't easily build an all zero vector, just return
2912        // the LHS.
2913        return N2;
2914      }
2915    }
2916  }
2917
2918  // Fold a bunch of operators when the RHS is undef.
2919  if (N2.getOpcode() == ISD::UNDEF) {
2920    switch (Opcode) {
2921    case ISD::XOR:
2922      if (N1.getOpcode() == ISD::UNDEF)
2923        // Handle undef ^ undef -> 0 special case. This is a common
2924        // idiom (misuse).
2925        return getConstant(0, VT);
2926      // fallthrough
2927    case ISD::ADD:
2928    case ISD::ADDC:
2929    case ISD::ADDE:
2930    case ISD::SUB:
2931    case ISD::UDIV:
2932    case ISD::SDIV:
2933    case ISD::UREM:
2934    case ISD::SREM:
2935      return N2;       // fold op(arg1, undef) -> undef
2936    case ISD::FADD:
2937    case ISD::FSUB:
2938    case ISD::FMUL:
2939    case ISD::FDIV:
2940    case ISD::FREM:
2941      if (UnsafeFPMath)
2942        return N2;
2943      break;
2944    case ISD::MUL:
2945    case ISD::AND:
2946    case ISD::SRL:
2947    case ISD::SHL:
2948      if (!VT.isVector())
2949        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2950      // For vectors, we can't easily build an all zero vector, just return
2951      // the LHS.
2952      return N1;
2953    case ISD::OR:
2954      if (!VT.isVector())
2955        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2956      // For vectors, we can't easily build an all one vector, just return
2957      // the LHS.
2958      return N1;
2959    case ISD::SRA:
2960      return N1;
2961    }
2962  }
2963
2964  // Memoize this node if possible.
2965  SDNode *N;
2966  SDVTList VTs = getVTList(VT);
2967  if (VT != MVT::Flag) {
2968    SDValue Ops[] = { N1, N2 };
2969    FoldingSetNodeID ID;
2970    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2971    void *IP = 0;
2972    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2973      return SDValue(E, 0);
2974
2975    N = NodeAllocator.Allocate<BinarySDNode>();
2976    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2977    CSEMap.InsertNode(N, IP);
2978  } else {
2979    N = NodeAllocator.Allocate<BinarySDNode>();
2980    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2981  }
2982
2983  AllNodes.push_back(N);
2984#ifndef NDEBUG
2985  VerifyNode(N);
2986#endif
2987  return SDValue(N, 0);
2988}
2989
2990SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2991                              SDValue N1, SDValue N2, SDValue N3) {
2992  // Perform various simplifications.
2993  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2994  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2995  switch (Opcode) {
2996  case ISD::CONCAT_VECTORS:
2997    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2998    // one big BUILD_VECTOR.
2999    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3000        N2.getOpcode() == ISD::BUILD_VECTOR &&
3001        N3.getOpcode() == ISD::BUILD_VECTOR) {
3002      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
3003      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
3004      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
3005      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3006    }
3007    break;
3008  case ISD::SETCC: {
3009    // Use FoldSetCC to simplify SETCC's.
3010    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3011    if (Simp.getNode()) return Simp;
3012    break;
3013  }
3014  case ISD::SELECT:
3015    if (N1C) {
3016     if (N1C->getZExtValue())
3017        return N2;             // select true, X, Y -> X
3018      else
3019        return N3;             // select false, X, Y -> Y
3020    }
3021
3022    if (N2 == N3) return N2;   // select C, X, X -> X
3023    break;
3024  case ISD::BRCOND:
3025    if (N2C) {
3026      if (N2C->getZExtValue()) // Unconditional branch
3027        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3028      else
3029        return N1;         // Never-taken branch
3030    }
3031    break;
3032  case ISD::VECTOR_SHUFFLE:
3033    llvm_unreachable("should use getVectorShuffle constructor!");
3034    break;
3035  case ISD::BIT_CONVERT:
3036    // Fold bit_convert nodes from a type to themselves.
3037    if (N1.getValueType() == VT)
3038      return N1;
3039    break;
3040  }
3041
3042  // Memoize node if it doesn't produce a flag.
3043  SDNode *N;
3044  SDVTList VTs = getVTList(VT);
3045  if (VT != MVT::Flag) {
3046    SDValue Ops[] = { N1, N2, N3 };
3047    FoldingSetNodeID ID;
3048    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3049    void *IP = 0;
3050    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3051      return SDValue(E, 0);
3052
3053    N = NodeAllocator.Allocate<TernarySDNode>();
3054    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3055    CSEMap.InsertNode(N, IP);
3056  } else {
3057    N = NodeAllocator.Allocate<TernarySDNode>();
3058    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3059  }
3060
3061  AllNodes.push_back(N);
3062#ifndef NDEBUG
3063  VerifyNode(N);
3064#endif
3065  return SDValue(N, 0);
3066}
3067
3068SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3069                              SDValue N1, SDValue N2, SDValue N3,
3070                              SDValue N4) {
3071  SDValue Ops[] = { N1, N2, N3, N4 };
3072  return getNode(Opcode, DL, VT, Ops, 4);
3073}
3074
3075SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3076                              SDValue N1, SDValue N2, SDValue N3,
3077                              SDValue N4, SDValue N5) {
3078  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3079  return getNode(Opcode, DL, VT, Ops, 5);
3080}
3081
3082/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3083/// the incoming stack arguments to be loaded from the stack.
3084SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3085  SmallVector<SDValue, 8> ArgChains;
3086
3087  // Include the original chain at the beginning of the list. When this is
3088  // used by target LowerCall hooks, this helps legalize find the
3089  // CALLSEQ_BEGIN node.
3090  ArgChains.push_back(Chain);
3091
3092  // Add a chain value for each stack argument.
3093  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3094       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3095    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3096      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3097        if (FI->getIndex() < 0)
3098          ArgChains.push_back(SDValue(L, 1));
3099
3100  // Build a tokenfactor for all the chains.
3101  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3102                 &ArgChains[0], ArgChains.size());
3103}
3104
3105/// getMemsetValue - Vectorized representation of the memset value
3106/// operand.
3107static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3108                              DebugLoc dl) {
3109  unsigned NumBits = VT.isVector() ?
3110    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3111  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3112    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3113    unsigned Shift = 8;
3114    for (unsigned i = NumBits; i > 8; i >>= 1) {
3115      Val = (Val << Shift) | Val;
3116      Shift <<= 1;
3117    }
3118    if (VT.isInteger())
3119      return DAG.getConstant(Val, VT);
3120    return DAG.getConstantFP(APFloat(Val), VT);
3121  }
3122
3123  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3124  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3125  unsigned Shift = 8;
3126  for (unsigned i = NumBits; i > 8; i >>= 1) {
3127    Value = DAG.getNode(ISD::OR, dl, VT,
3128                        DAG.getNode(ISD::SHL, dl, VT, Value,
3129                                    DAG.getConstant(Shift,
3130                                                    TLI.getShiftAmountTy())),
3131                        Value);
3132    Shift <<= 1;
3133  }
3134
3135  return Value;
3136}
3137
3138/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3139/// used when a memcpy is turned into a memset when the source is a constant
3140/// string ptr.
3141static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3142                                  const TargetLowering &TLI,
3143                                  std::string &Str, unsigned Offset) {
3144  // Handle vector with all elements zero.
3145  if (Str.empty()) {
3146    if (VT.isInteger())
3147      return DAG.getConstant(0, VT);
3148    unsigned NumElts = VT.getVectorNumElements();
3149    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3150    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3151                       DAG.getConstant(0,
3152                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3153  }
3154
3155  assert(!VT.isVector() && "Can't handle vector type here!");
3156  unsigned NumBits = VT.getSizeInBits();
3157  unsigned MSB = NumBits / 8;
3158  uint64_t Val = 0;
3159  if (TLI.isLittleEndian())
3160    Offset = Offset + MSB - 1;
3161  for (unsigned i = 0; i != MSB; ++i) {
3162    Val = (Val << 8) | (unsigned char)Str[Offset];
3163    Offset += TLI.isLittleEndian() ? -1 : 1;
3164  }
3165  return DAG.getConstant(Val, VT);
3166}
3167
3168/// getMemBasePlusOffset - Returns base and offset node for the
3169///
3170static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3171                                      SelectionDAG &DAG) {
3172  EVT VT = Base.getValueType();
3173  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3174                     VT, Base, DAG.getConstant(Offset, VT));
3175}
3176
3177/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3178///
3179static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3180  unsigned SrcDelta = 0;
3181  GlobalAddressSDNode *G = NULL;
3182  if (Src.getOpcode() == ISD::GlobalAddress)
3183    G = cast<GlobalAddressSDNode>(Src);
3184  else if (Src.getOpcode() == ISD::ADD &&
3185           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3186           Src.getOperand(1).getOpcode() == ISD::Constant) {
3187    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3188    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3189  }
3190  if (!G)
3191    return false;
3192
3193  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3194  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3195    return true;
3196
3197  return false;
3198}
3199
3200/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3201/// to replace the memset / memcpy is below the threshold. It also returns the
3202/// types of the sequence of memory ops to perform memset / memcpy.
3203static
3204bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3205                              SDValue Dst, SDValue Src,
3206                              unsigned Limit, uint64_t Size, unsigned &Align,
3207                              std::string &Str, bool &isSrcStr,
3208                              SelectionDAG &DAG,
3209                              const TargetLowering &TLI) {
3210  isSrcStr = isMemSrcFromString(Src, Str);
3211  bool isSrcConst = isa<ConstantSDNode>(Src);
3212  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3213  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3214  if (VT != MVT::iAny) {
3215    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3216    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3217    // If source is a string constant, this will require an unaligned load.
3218    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3219      if (Dst.getOpcode() != ISD::FrameIndex) {
3220        // Can't change destination alignment. It requires a unaligned store.
3221        if (AllowUnalign)
3222          VT = MVT::iAny;
3223      } else {
3224        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3225        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3226        if (MFI->isFixedObjectIndex(FI)) {
3227          // Can't change destination alignment. It requires a unaligned store.
3228          if (AllowUnalign)
3229            VT = MVT::iAny;
3230        } else {
3231          // Give the stack frame object a larger alignment if needed.
3232          if (MFI->getObjectAlignment(FI) < NewAlign)
3233            MFI->setObjectAlignment(FI, NewAlign);
3234          Align = NewAlign;
3235        }
3236      }
3237    }
3238  }
3239
3240  if (VT == MVT::iAny) {
3241    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3242      VT = MVT::i64;
3243    } else {
3244      switch (Align & 7) {
3245      case 0:  VT = MVT::i64; break;
3246      case 4:  VT = MVT::i32; break;
3247      case 2:  VT = MVT::i16; break;
3248      default: VT = MVT::i8;  break;
3249      }
3250    }
3251
3252    MVT LVT = MVT::i64;
3253    while (!TLI.isTypeLegal(LVT))
3254      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3255    assert(LVT.isInteger());
3256
3257    if (VT.bitsGT(LVT))
3258      VT = LVT;
3259  }
3260
3261  unsigned NumMemOps = 0;
3262  while (Size != 0) {
3263    unsigned VTSize = VT.getSizeInBits() / 8;
3264    while (VTSize > Size) {
3265      // For now, only use non-vector load / store's for the left-over pieces.
3266      if (VT.isVector()) {
3267        VT = MVT::i64;
3268        while (!TLI.isTypeLegal(VT))
3269          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3270        VTSize = VT.getSizeInBits() / 8;
3271      } else {
3272        // This can result in a type that is not legal on the target, e.g.
3273        // 1 or 2 bytes on PPC.
3274        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3275        VTSize >>= 1;
3276      }
3277    }
3278
3279    if (++NumMemOps > Limit)
3280      return false;
3281    MemOps.push_back(VT);
3282    Size -= VTSize;
3283  }
3284
3285  return true;
3286}
3287
3288static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3289                                         SDValue Chain, SDValue Dst,
3290                                         SDValue Src, uint64_t Size,
3291                                         unsigned Align, bool AlwaysInline,
3292                                         const Value *DstSV, uint64_t DstSVOff,
3293                                         const Value *SrcSV, uint64_t SrcSVOff){
3294  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3295
3296  // Expand memcpy to a series of load and store ops if the size operand falls
3297  // below a certain threshold.
3298  std::vector<EVT> MemOps;
3299  uint64_t Limit = -1ULL;
3300  if (!AlwaysInline)
3301    Limit = TLI.getMaxStoresPerMemcpy();
3302  unsigned DstAlign = Align;  // Destination alignment can change.
3303  std::string Str;
3304  bool CopyFromStr;
3305  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3306                                Str, CopyFromStr, DAG, TLI))
3307    return SDValue();
3308
3309
3310  bool isZeroStr = CopyFromStr && Str.empty();
3311  SmallVector<SDValue, 8> OutChains;
3312  unsigned NumMemOps = MemOps.size();
3313  uint64_t SrcOff = 0, DstOff = 0;
3314  for (unsigned i = 0; i != NumMemOps; ++i) {
3315    EVT VT = MemOps[i];
3316    unsigned VTSize = VT.getSizeInBits() / 8;
3317    SDValue Value, Store;
3318
3319    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3320      // It's unlikely a store of a vector immediate can be done in a single
3321      // instruction. It would require a load from a constantpool first.
3322      // We also handle store a vector with all zero's.
3323      // FIXME: Handle other cases where store of vector immediate is done in
3324      // a single instruction.
3325      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3326      Store = DAG.getStore(Chain, dl, Value,
3327                           getMemBasePlusOffset(Dst, DstOff, DAG),
3328                           DstSV, DstSVOff + DstOff, false, false, DstAlign);
3329    } else {
3330      // The type might not be legal for the target.  This should only happen
3331      // if the type is smaller than a legal type, as on PPC, so the right
3332      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3333      // to Load/Store if NVT==VT.
3334      // FIXME does the case above also need this?
3335      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3336      assert(NVT.bitsGE(VT));
3337      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3338                             getMemBasePlusOffset(Src, SrcOff, DAG),
3339                             SrcSV, SrcSVOff + SrcOff, VT, false, false, Align);
3340      Store = DAG.getTruncStore(Chain, dl, Value,
3341                                getMemBasePlusOffset(Dst, DstOff, DAG),
3342                                DstSV, DstSVOff + DstOff, VT, false, false,
3343                                DstAlign);
3344    }
3345    OutChains.push_back(Store);
3346    SrcOff += VTSize;
3347    DstOff += VTSize;
3348  }
3349
3350  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3351                     &OutChains[0], OutChains.size());
3352}
3353
3354static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3355                                          SDValue Chain, SDValue Dst,
3356                                          SDValue Src, uint64_t Size,
3357                                          unsigned Align, bool AlwaysInline,
3358                                          const Value *DstSV, uint64_t DstSVOff,
3359                                          const Value *SrcSV, uint64_t SrcSVOff){
3360  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3361
3362  // Expand memmove to a series of load and store ops if the size operand falls
3363  // below a certain threshold.
3364  std::vector<EVT> MemOps;
3365  uint64_t Limit = -1ULL;
3366  if (!AlwaysInline)
3367    Limit = TLI.getMaxStoresPerMemmove();
3368  unsigned DstAlign = Align;  // Destination alignment can change.
3369  std::string Str;
3370  bool CopyFromStr;
3371  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3372                                Str, CopyFromStr, DAG, TLI))
3373    return SDValue();
3374
3375  uint64_t SrcOff = 0, DstOff = 0;
3376
3377  SmallVector<SDValue, 8> LoadValues;
3378  SmallVector<SDValue, 8> LoadChains;
3379  SmallVector<SDValue, 8> OutChains;
3380  unsigned NumMemOps = MemOps.size();
3381  for (unsigned i = 0; i < NumMemOps; i++) {
3382    EVT VT = MemOps[i];
3383    unsigned VTSize = VT.getSizeInBits() / 8;
3384    SDValue Value, Store;
3385
3386    Value = DAG.getLoad(VT, dl, Chain,
3387                        getMemBasePlusOffset(Src, SrcOff, DAG),
3388                        SrcSV, SrcSVOff + SrcOff, false, false, Align);
3389    LoadValues.push_back(Value);
3390    LoadChains.push_back(Value.getValue(1));
3391    SrcOff += VTSize;
3392  }
3393  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3394                      &LoadChains[0], LoadChains.size());
3395  OutChains.clear();
3396  for (unsigned i = 0; i < NumMemOps; i++) {
3397    EVT VT = MemOps[i];
3398    unsigned VTSize = VT.getSizeInBits() / 8;
3399    SDValue Value, Store;
3400
3401    Store = DAG.getStore(Chain, dl, LoadValues[i],
3402                         getMemBasePlusOffset(Dst, DstOff, DAG),
3403                         DstSV, DstSVOff + DstOff, false, false, DstAlign);
3404    OutChains.push_back(Store);
3405    DstOff += VTSize;
3406  }
3407
3408  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3409                     &OutChains[0], OutChains.size());
3410}
3411
3412static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3413                                 SDValue Chain, SDValue Dst,
3414                                 SDValue Src, uint64_t Size,
3415                                 unsigned Align,
3416                                 const Value *DstSV, uint64_t DstSVOff) {
3417  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3418
3419  // Expand memset to a series of load/store ops if the size operand
3420  // falls below a certain threshold.
3421  std::vector<EVT> MemOps;
3422  std::string Str;
3423  bool CopyFromStr;
3424  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3425                                Size, Align, Str, CopyFromStr, DAG, TLI))
3426    return SDValue();
3427
3428  SmallVector<SDValue, 8> OutChains;
3429  uint64_t DstOff = 0;
3430
3431  unsigned NumMemOps = MemOps.size();
3432  for (unsigned i = 0; i < NumMemOps; i++) {
3433    EVT VT = MemOps[i];
3434    unsigned VTSize = VT.getSizeInBits() / 8;
3435    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3436    SDValue Store = DAG.getStore(Chain, dl, Value,
3437                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3438                                 DstSV, DstSVOff + DstOff, false, false, 0);
3439    OutChains.push_back(Store);
3440    DstOff += VTSize;
3441  }
3442
3443  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3444                     &OutChains[0], OutChains.size());
3445}
3446
3447SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3448                                SDValue Src, SDValue Size,
3449                                unsigned Align, bool AlwaysInline,
3450                                const Value *DstSV, uint64_t DstSVOff,
3451                                const Value *SrcSV, uint64_t SrcSVOff) {
3452
3453  // Check to see if we should lower the memcpy to loads and stores first.
3454  // For cases within the target-specified limits, this is the best choice.
3455  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3456  if (ConstantSize) {
3457    // Memcpy with size zero? Just return the original chain.
3458    if (ConstantSize->isNullValue())
3459      return Chain;
3460
3461    SDValue Result =
3462      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3463                              ConstantSize->getZExtValue(),
3464                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3465    if (Result.getNode())
3466      return Result;
3467  }
3468
3469  // Then check to see if we should lower the memcpy with target-specific
3470  // code. If the target chooses to do this, this is the next best.
3471  SDValue Result =
3472    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3473                                AlwaysInline,
3474                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3475  if (Result.getNode())
3476    return Result;
3477
3478  // If we really need inline code and the target declined to provide it,
3479  // use a (potentially long) sequence of loads and stores.
3480  if (AlwaysInline) {
3481    assert(ConstantSize && "AlwaysInline requires a constant size!");
3482    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3483                                   ConstantSize->getZExtValue(), Align, true,
3484                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3485  }
3486
3487  // Emit a library call.
3488  TargetLowering::ArgListTy Args;
3489  TargetLowering::ArgListEntry Entry;
3490  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3491  Entry.Node = Dst; Args.push_back(Entry);
3492  Entry.Node = Src; Args.push_back(Entry);
3493  Entry.Node = Size; Args.push_back(Entry);
3494  // FIXME: pass in DebugLoc
3495  std::pair<SDValue,SDValue> CallResult =
3496    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3497                    false, false, false, false, 0,
3498                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3499                    /*isReturnValueUsed=*/false,
3500                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3501                                      TLI.getPointerTy()),
3502                    Args, *this, dl, GetOrdering(Chain.getNode()));
3503  return CallResult.second;
3504}
3505
3506SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3507                                 SDValue Src, SDValue Size,
3508                                 unsigned Align,
3509                                 const Value *DstSV, uint64_t DstSVOff,
3510                                 const Value *SrcSV, uint64_t SrcSVOff) {
3511
3512  // Check to see if we should lower the memmove to loads and stores first.
3513  // For cases within the target-specified limits, this is the best choice.
3514  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3515  if (ConstantSize) {
3516    // Memmove with size zero? Just return the original chain.
3517    if (ConstantSize->isNullValue())
3518      return Chain;
3519
3520    SDValue Result =
3521      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3522                               ConstantSize->getZExtValue(),
3523                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3524    if (Result.getNode())
3525      return Result;
3526  }
3527
3528  // Then check to see if we should lower the memmove with target-specific
3529  // code. If the target chooses to do this, this is the next best.
3530  SDValue Result =
3531    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3532                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3533  if (Result.getNode())
3534    return Result;
3535
3536  // Emit a library call.
3537  TargetLowering::ArgListTy Args;
3538  TargetLowering::ArgListEntry Entry;
3539  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3540  Entry.Node = Dst; Args.push_back(Entry);
3541  Entry.Node = Src; Args.push_back(Entry);
3542  Entry.Node = Size; Args.push_back(Entry);
3543  // FIXME:  pass in DebugLoc
3544  std::pair<SDValue,SDValue> CallResult =
3545    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3546                    false, false, false, false, 0,
3547                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3548                    /*isReturnValueUsed=*/false,
3549                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3550                                      TLI.getPointerTy()),
3551                    Args, *this, dl, GetOrdering(Chain.getNode()));
3552  return CallResult.second;
3553}
3554
3555SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3556                                SDValue Src, SDValue Size,
3557                                unsigned Align,
3558                                const Value *DstSV, uint64_t DstSVOff) {
3559
3560  // Check to see if we should lower the memset to stores first.
3561  // For cases within the target-specified limits, this is the best choice.
3562  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3563  if (ConstantSize) {
3564    // Memset with size zero? Just return the original chain.
3565    if (ConstantSize->isNullValue())
3566      return Chain;
3567
3568    SDValue Result =
3569      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3570                      Align, DstSV, DstSVOff);
3571    if (Result.getNode())
3572      return Result;
3573  }
3574
3575  // Then check to see if we should lower the memset with target-specific
3576  // code. If the target chooses to do this, this is the next best.
3577  SDValue Result =
3578    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3579                                DstSV, DstSVOff);
3580  if (Result.getNode())
3581    return Result;
3582
3583  // Emit a library call.
3584  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3585  TargetLowering::ArgListTy Args;
3586  TargetLowering::ArgListEntry Entry;
3587  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3588  Args.push_back(Entry);
3589  // Extend or truncate the argument to be an i32 value for the call.
3590  if (Src.getValueType().bitsGT(MVT::i32))
3591    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3592  else
3593    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3594  Entry.Node = Src;
3595  Entry.Ty = Type::getInt32Ty(*getContext());
3596  Entry.isSExt = true;
3597  Args.push_back(Entry);
3598  Entry.Node = Size;
3599  Entry.Ty = IntPtrTy;
3600  Entry.isSExt = false;
3601  Args.push_back(Entry);
3602  // FIXME: pass in DebugLoc
3603  std::pair<SDValue,SDValue> CallResult =
3604    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3605                    false, false, false, false, 0,
3606                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3607                    /*isReturnValueUsed=*/false,
3608                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3609                                      TLI.getPointerTy()),
3610                    Args, *this, dl, GetOrdering(Chain.getNode()));
3611  return CallResult.second;
3612}
3613
3614SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3615                                SDValue Chain,
3616                                SDValue Ptr, SDValue Cmp,
3617                                SDValue Swp, const Value* PtrVal,
3618                                unsigned Alignment) {
3619  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3620    Alignment = getEVTAlignment(MemVT);
3621
3622  // Check if the memory reference references a frame index
3623  if (!PtrVal)
3624    if (const FrameIndexSDNode *FI =
3625          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3626      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3627
3628  MachineFunction &MF = getMachineFunction();
3629  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3630
3631  // For now, atomics are considered to be volatile always.
3632  Flags |= MachineMemOperand::MOVolatile;
3633
3634  MachineMemOperand *MMO =
3635    MF.getMachineMemOperand(PtrVal, Flags, 0,
3636                            MemVT.getStoreSize(), Alignment);
3637
3638  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3639}
3640
3641SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3642                                SDValue Chain,
3643                                SDValue Ptr, SDValue Cmp,
3644                                SDValue Swp, MachineMemOperand *MMO) {
3645  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3646  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3647
3648  EVT VT = Cmp.getValueType();
3649
3650  SDVTList VTs = getVTList(VT, MVT::Other);
3651  FoldingSetNodeID ID;
3652  ID.AddInteger(MemVT.getRawBits());
3653  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3654  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3655  void* IP = 0;
3656  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3657    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3658    return SDValue(E, 0);
3659  }
3660  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3661  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3662  CSEMap.InsertNode(N, IP);
3663  AllNodes.push_back(N);
3664  return SDValue(N, 0);
3665}
3666
3667SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3668                                SDValue Chain,
3669                                SDValue Ptr, SDValue Val,
3670                                const Value* PtrVal,
3671                                unsigned Alignment) {
3672  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3673    Alignment = getEVTAlignment(MemVT);
3674
3675  // Check if the memory reference references a frame index
3676  if (!PtrVal)
3677    if (const FrameIndexSDNode *FI =
3678          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3679      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3680
3681  MachineFunction &MF = getMachineFunction();
3682  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3683
3684  // For now, atomics are considered to be volatile always.
3685  Flags |= MachineMemOperand::MOVolatile;
3686
3687  MachineMemOperand *MMO =
3688    MF.getMachineMemOperand(PtrVal, Flags, 0,
3689                            MemVT.getStoreSize(), Alignment);
3690
3691  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3692}
3693
3694SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3695                                SDValue Chain,
3696                                SDValue Ptr, SDValue Val,
3697                                MachineMemOperand *MMO) {
3698  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3699          Opcode == ISD::ATOMIC_LOAD_SUB ||
3700          Opcode == ISD::ATOMIC_LOAD_AND ||
3701          Opcode == ISD::ATOMIC_LOAD_OR ||
3702          Opcode == ISD::ATOMIC_LOAD_XOR ||
3703          Opcode == ISD::ATOMIC_LOAD_NAND ||
3704          Opcode == ISD::ATOMIC_LOAD_MIN ||
3705          Opcode == ISD::ATOMIC_LOAD_MAX ||
3706          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3707          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3708          Opcode == ISD::ATOMIC_SWAP) &&
3709         "Invalid Atomic Op");
3710
3711  EVT VT = Val.getValueType();
3712
3713  SDVTList VTs = getVTList(VT, MVT::Other);
3714  FoldingSetNodeID ID;
3715  ID.AddInteger(MemVT.getRawBits());
3716  SDValue Ops[] = {Chain, Ptr, Val};
3717  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3718  void* IP = 0;
3719  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3720    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3721    return SDValue(E, 0);
3722  }
3723  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3724  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3725  CSEMap.InsertNode(N, IP);
3726  AllNodes.push_back(N);
3727  return SDValue(N, 0);
3728}
3729
3730/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3731/// Allowed to return something different (and simpler) if Simplify is true.
3732SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3733                                     DebugLoc dl) {
3734  if (NumOps == 1)
3735    return Ops[0];
3736
3737  SmallVector<EVT, 4> VTs;
3738  VTs.reserve(NumOps);
3739  for (unsigned i = 0; i < NumOps; ++i)
3740    VTs.push_back(Ops[i].getValueType());
3741  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3742                 Ops, NumOps);
3743}
3744
3745SDValue
3746SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3747                                  const EVT *VTs, unsigned NumVTs,
3748                                  const SDValue *Ops, unsigned NumOps,
3749                                  EVT MemVT, const Value *srcValue, int SVOff,
3750                                  unsigned Align, bool Vol,
3751                                  bool ReadMem, bool WriteMem) {
3752  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3753                             MemVT, srcValue, SVOff, Align, Vol,
3754                             ReadMem, WriteMem);
3755}
3756
3757SDValue
3758SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3759                                  const SDValue *Ops, unsigned NumOps,
3760                                  EVT MemVT, const Value *srcValue, int SVOff,
3761                                  unsigned Align, bool Vol,
3762                                  bool ReadMem, bool WriteMem) {
3763  if (Align == 0)  // Ensure that codegen never sees alignment 0
3764    Align = getEVTAlignment(MemVT);
3765
3766  MachineFunction &MF = getMachineFunction();
3767  unsigned Flags = 0;
3768  if (WriteMem)
3769    Flags |= MachineMemOperand::MOStore;
3770  if (ReadMem)
3771    Flags |= MachineMemOperand::MOLoad;
3772  if (Vol)
3773    Flags |= MachineMemOperand::MOVolatile;
3774  MachineMemOperand *MMO =
3775    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3776                            MemVT.getStoreSize(), Align);
3777
3778  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3779}
3780
3781SDValue
3782SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3783                                  const SDValue *Ops, unsigned NumOps,
3784                                  EVT MemVT, MachineMemOperand *MMO) {
3785  assert((Opcode == ISD::INTRINSIC_VOID ||
3786          Opcode == ISD::INTRINSIC_W_CHAIN ||
3787          (Opcode <= INT_MAX &&
3788           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3789         "Opcode is not a memory-accessing opcode!");
3790
3791  // Memoize the node unless it returns a flag.
3792  MemIntrinsicSDNode *N;
3793  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3794    FoldingSetNodeID ID;
3795    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3796    void *IP = 0;
3797    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3798      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3799      return SDValue(E, 0);
3800    }
3801
3802    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3803    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3804    CSEMap.InsertNode(N, IP);
3805  } else {
3806    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3807    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3808  }
3809  AllNodes.push_back(N);
3810  return SDValue(N, 0);
3811}
3812
3813SDValue
3814SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3815                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3816                      SDValue Ptr, SDValue Offset,
3817                      const Value *SV, int SVOffset, EVT MemVT,
3818                      bool isVolatile, bool isNonTemporal,
3819                      unsigned Alignment) {
3820  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3821    Alignment = getEVTAlignment(VT);
3822
3823  // Check if the memory reference references a frame index
3824  if (!SV)
3825    if (const FrameIndexSDNode *FI =
3826          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3827      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3828
3829  MachineFunction &MF = getMachineFunction();
3830  unsigned Flags = MachineMemOperand::MOLoad;
3831  if (isVolatile)
3832    Flags |= MachineMemOperand::MOVolatile;
3833  if (isNonTemporal)
3834    Flags |= MachineMemOperand::MONonTemporal;
3835  MachineMemOperand *MMO =
3836    MF.getMachineMemOperand(SV, Flags, SVOffset,
3837                            MemVT.getStoreSize(), Alignment);
3838  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3839}
3840
3841SDValue
3842SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3843                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3844                      SDValue Ptr, SDValue Offset, EVT MemVT,
3845                      MachineMemOperand *MMO) {
3846  if (VT == MemVT) {
3847    ExtType = ISD::NON_EXTLOAD;
3848  } else if (ExtType == ISD::NON_EXTLOAD) {
3849    assert(VT == MemVT && "Non-extending load from different memory type!");
3850  } else {
3851    // Extending load.
3852    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3853           "Should only be an extending load, not truncating!");
3854    assert(VT.isInteger() == MemVT.isInteger() &&
3855           "Cannot convert from FP to Int or Int -> FP!");
3856    assert(VT.isVector() == MemVT.isVector() &&
3857           "Cannot use trunc store to convert to or from a vector!");
3858    assert((!VT.isVector() ||
3859            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3860           "Cannot use trunc store to change the number of vector elements!");
3861  }
3862
3863  bool Indexed = AM != ISD::UNINDEXED;
3864  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3865         "Unindexed load with an offset!");
3866
3867  SDVTList VTs = Indexed ?
3868    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3869  SDValue Ops[] = { Chain, Ptr, Offset };
3870  FoldingSetNodeID ID;
3871  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3872  ID.AddInteger(MemVT.getRawBits());
3873  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3874                                     MMO->isNonTemporal()));
3875  void *IP = 0;
3876  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3877    cast<LoadSDNode>(E)->refineAlignment(MMO);
3878    return SDValue(E, 0);
3879  }
3880  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3881  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3882  CSEMap.InsertNode(N, IP);
3883  AllNodes.push_back(N);
3884  return SDValue(N, 0);
3885}
3886
3887SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3888                              SDValue Chain, SDValue Ptr,
3889                              const Value *SV, int SVOffset,
3890                              bool isVolatile, bool isNonTemporal,
3891                              unsigned Alignment) {
3892  SDValue Undef = getUNDEF(Ptr.getValueType());
3893  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3894                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3895}
3896
3897SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3898                                 SDValue Chain, SDValue Ptr,
3899                                 const Value *SV,
3900                                 int SVOffset, EVT MemVT,
3901                                 bool isVolatile, bool isNonTemporal,
3902                                 unsigned Alignment) {
3903  SDValue Undef = getUNDEF(Ptr.getValueType());
3904  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3905                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3906}
3907
3908SDValue
3909SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3910                             SDValue Offset, ISD::MemIndexedMode AM) {
3911  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3912  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3913         "Load is already a indexed load!");
3914  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3915                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3916                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3917                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3918}
3919
3920SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3921                               SDValue Ptr, const Value *SV, int SVOffset,
3922                               bool isVolatile, bool isNonTemporal,
3923                               unsigned Alignment) {
3924  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3925    Alignment = getEVTAlignment(Val.getValueType());
3926
3927  // Check if the memory reference references a frame index
3928  if (!SV)
3929    if (const FrameIndexSDNode *FI =
3930          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3931      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3932
3933  MachineFunction &MF = getMachineFunction();
3934  unsigned Flags = MachineMemOperand::MOStore;
3935  if (isVolatile)
3936    Flags |= MachineMemOperand::MOVolatile;
3937  if (isNonTemporal)
3938    Flags |= MachineMemOperand::MONonTemporal;
3939  MachineMemOperand *MMO =
3940    MF.getMachineMemOperand(SV, Flags, SVOffset,
3941                            Val.getValueType().getStoreSize(), Alignment);
3942
3943  return getStore(Chain, dl, Val, Ptr, MMO);
3944}
3945
3946SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3947                               SDValue Ptr, MachineMemOperand *MMO) {
3948  EVT VT = Val.getValueType();
3949  SDVTList VTs = getVTList(MVT::Other);
3950  SDValue Undef = getUNDEF(Ptr.getValueType());
3951  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3952  FoldingSetNodeID ID;
3953  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3954  ID.AddInteger(VT.getRawBits());
3955  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
3956                                     MMO->isNonTemporal()));
3957  void *IP = 0;
3958  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3959    cast<StoreSDNode>(E)->refineAlignment(MMO);
3960    return SDValue(E, 0);
3961  }
3962  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3963  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3964  CSEMap.InsertNode(N, IP);
3965  AllNodes.push_back(N);
3966  return SDValue(N, 0);
3967}
3968
3969SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3970                                    SDValue Ptr, const Value *SV,
3971                                    int SVOffset, EVT SVT,
3972                                    bool isVolatile, bool isNonTemporal,
3973                                    unsigned Alignment) {
3974  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3975    Alignment = getEVTAlignment(SVT);
3976
3977  // Check if the memory reference references a frame index
3978  if (!SV)
3979    if (const FrameIndexSDNode *FI =
3980          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3981      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3982
3983  MachineFunction &MF = getMachineFunction();
3984  unsigned Flags = MachineMemOperand::MOStore;
3985  if (isVolatile)
3986    Flags |= MachineMemOperand::MOVolatile;
3987  if (isNonTemporal)
3988    Flags |= MachineMemOperand::MONonTemporal;
3989  MachineMemOperand *MMO =
3990    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3991
3992  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3993}
3994
3995SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3996                                    SDValue Ptr, EVT SVT,
3997                                    MachineMemOperand *MMO) {
3998  EVT VT = Val.getValueType();
3999
4000  if (VT == SVT)
4001    return getStore(Chain, dl, Val, Ptr, MMO);
4002
4003  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4004         "Should only be a truncating store, not extending!");
4005  assert(VT.isInteger() == SVT.isInteger() &&
4006         "Can't do FP-INT conversion!");
4007  assert(VT.isVector() == SVT.isVector() &&
4008         "Cannot use trunc store to convert to or from a vector!");
4009  assert((!VT.isVector() ||
4010          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4011         "Cannot use trunc store to change the number of vector elements!");
4012
4013  SDVTList VTs = getVTList(MVT::Other);
4014  SDValue Undef = getUNDEF(Ptr.getValueType());
4015  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4016  FoldingSetNodeID ID;
4017  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4018  ID.AddInteger(SVT.getRawBits());
4019  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4020                                     MMO->isNonTemporal()));
4021  void *IP = 0;
4022  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4023    cast<StoreSDNode>(E)->refineAlignment(MMO);
4024    return SDValue(E, 0);
4025  }
4026  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4027  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
4028  CSEMap.InsertNode(N, IP);
4029  AllNodes.push_back(N);
4030  return SDValue(N, 0);
4031}
4032
4033SDValue
4034SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4035                              SDValue Offset, ISD::MemIndexedMode AM) {
4036  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4037  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4038         "Store is already a indexed store!");
4039  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4040  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4041  FoldingSetNodeID ID;
4042  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4043  ID.AddInteger(ST->getMemoryVT().getRawBits());
4044  ID.AddInteger(ST->getRawSubclassData());
4045  void *IP = 0;
4046  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4047    return SDValue(E, 0);
4048
4049  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4050  new (N) StoreSDNode(Ops, dl, VTs, AM,
4051                      ST->isTruncatingStore(), ST->getMemoryVT(),
4052                      ST->getMemOperand());
4053  CSEMap.InsertNode(N, IP);
4054  AllNodes.push_back(N);
4055  return SDValue(N, 0);
4056}
4057
4058SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4059                               SDValue Chain, SDValue Ptr,
4060                               SDValue SV) {
4061  SDValue Ops[] = { Chain, Ptr, SV };
4062  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4063}
4064
4065SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4066                              const SDUse *Ops, unsigned NumOps) {
4067  switch (NumOps) {
4068  case 0: return getNode(Opcode, DL, VT);
4069  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4070  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4071  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4072  default: break;
4073  }
4074
4075  // Copy from an SDUse array into an SDValue array for use with
4076  // the regular getNode logic.
4077  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4078  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4079}
4080
4081SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4082                              const SDValue *Ops, unsigned NumOps) {
4083  switch (NumOps) {
4084  case 0: return getNode(Opcode, DL, VT);
4085  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4086  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4087  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4088  default: break;
4089  }
4090
4091  switch (Opcode) {
4092  default: break;
4093  case ISD::SELECT_CC: {
4094    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4095    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4096           "LHS and RHS of condition must have same type!");
4097    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4098           "True and False arms of SelectCC must have same type!");
4099    assert(Ops[2].getValueType() == VT &&
4100           "select_cc node must be of same type as true and false value!");
4101    break;
4102  }
4103  case ISD::BR_CC: {
4104    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4105    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4106           "LHS/RHS of comparison should match types!");
4107    break;
4108  }
4109  }
4110
4111  // Memoize nodes.
4112  SDNode *N;
4113  SDVTList VTs = getVTList(VT);
4114
4115  if (VT != MVT::Flag) {
4116    FoldingSetNodeID ID;
4117    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4118    void *IP = 0;
4119
4120    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4121      return SDValue(E, 0);
4122
4123    N = NodeAllocator.Allocate<SDNode>();
4124    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4125    CSEMap.InsertNode(N, IP);
4126  } else {
4127    N = NodeAllocator.Allocate<SDNode>();
4128    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4129  }
4130
4131  AllNodes.push_back(N);
4132#ifndef NDEBUG
4133  VerifyNode(N);
4134#endif
4135  return SDValue(N, 0);
4136}
4137
4138SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4139                              const std::vector<EVT> &ResultTys,
4140                              const SDValue *Ops, unsigned NumOps) {
4141  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4142                 Ops, NumOps);
4143}
4144
4145SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4146                              const EVT *VTs, unsigned NumVTs,
4147                              const SDValue *Ops, unsigned NumOps) {
4148  if (NumVTs == 1)
4149    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4150  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4151}
4152
4153SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4154                              const SDValue *Ops, unsigned NumOps) {
4155  if (VTList.NumVTs == 1)
4156    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4157
4158#if 0
4159  switch (Opcode) {
4160  // FIXME: figure out how to safely handle things like
4161  // int foo(int x) { return 1 << (x & 255); }
4162  // int bar() { return foo(256); }
4163  case ISD::SRA_PARTS:
4164  case ISD::SRL_PARTS:
4165  case ISD::SHL_PARTS:
4166    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4167        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4168      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4169    else if (N3.getOpcode() == ISD::AND)
4170      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4171        // If the and is only masking out bits that cannot effect the shift,
4172        // eliminate the and.
4173        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4174        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4175          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4176      }
4177    break;
4178  }
4179#endif
4180
4181  // Memoize the node unless it returns a flag.
4182  SDNode *N;
4183  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4184    FoldingSetNodeID ID;
4185    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4186    void *IP = 0;
4187    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4188      return SDValue(E, 0);
4189
4190    if (NumOps == 1) {
4191      N = NodeAllocator.Allocate<UnarySDNode>();
4192      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4193    } else if (NumOps == 2) {
4194      N = NodeAllocator.Allocate<BinarySDNode>();
4195      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4196    } else if (NumOps == 3) {
4197      N = NodeAllocator.Allocate<TernarySDNode>();
4198      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4199    } else {
4200      N = NodeAllocator.Allocate<SDNode>();
4201      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4202    }
4203    CSEMap.InsertNode(N, IP);
4204  } else {
4205    if (NumOps == 1) {
4206      N = NodeAllocator.Allocate<UnarySDNode>();
4207      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4208    } else if (NumOps == 2) {
4209      N = NodeAllocator.Allocate<BinarySDNode>();
4210      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4211    } else if (NumOps == 3) {
4212      N = NodeAllocator.Allocate<TernarySDNode>();
4213      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4214    } else {
4215      N = NodeAllocator.Allocate<SDNode>();
4216      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4217    }
4218  }
4219  AllNodes.push_back(N);
4220#ifndef NDEBUG
4221  VerifyNode(N);
4222#endif
4223  return SDValue(N, 0);
4224}
4225
4226SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4227  return getNode(Opcode, DL, VTList, 0, 0);
4228}
4229
4230SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4231                              SDValue N1) {
4232  SDValue Ops[] = { N1 };
4233  return getNode(Opcode, DL, VTList, Ops, 1);
4234}
4235
4236SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4237                              SDValue N1, SDValue N2) {
4238  SDValue Ops[] = { N1, N2 };
4239  return getNode(Opcode, DL, VTList, Ops, 2);
4240}
4241
4242SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4243                              SDValue N1, SDValue N2, SDValue N3) {
4244  SDValue Ops[] = { N1, N2, N3 };
4245  return getNode(Opcode, DL, VTList, Ops, 3);
4246}
4247
4248SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4249                              SDValue N1, SDValue N2, SDValue N3,
4250                              SDValue N4) {
4251  SDValue Ops[] = { N1, N2, N3, N4 };
4252  return getNode(Opcode, DL, VTList, Ops, 4);
4253}
4254
4255SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4256                              SDValue N1, SDValue N2, SDValue N3,
4257                              SDValue N4, SDValue N5) {
4258  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4259  return getNode(Opcode, DL, VTList, Ops, 5);
4260}
4261
4262SDVTList SelectionDAG::getVTList(EVT VT) {
4263  return makeVTList(SDNode::getValueTypeList(VT), 1);
4264}
4265
4266SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4267  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4268       E = VTList.rend(); I != E; ++I)
4269    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4270      return *I;
4271
4272  EVT *Array = Allocator.Allocate<EVT>(2);
4273  Array[0] = VT1;
4274  Array[1] = VT2;
4275  SDVTList Result = makeVTList(Array, 2);
4276  VTList.push_back(Result);
4277  return Result;
4278}
4279
4280SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4281  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4282       E = VTList.rend(); I != E; ++I)
4283    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4284                          I->VTs[2] == VT3)
4285      return *I;
4286
4287  EVT *Array = Allocator.Allocate<EVT>(3);
4288  Array[0] = VT1;
4289  Array[1] = VT2;
4290  Array[2] = VT3;
4291  SDVTList Result = makeVTList(Array, 3);
4292  VTList.push_back(Result);
4293  return Result;
4294}
4295
4296SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4297  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4298       E = VTList.rend(); I != E; ++I)
4299    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4300                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4301      return *I;
4302
4303  EVT *Array = Allocator.Allocate<EVT>(4);
4304  Array[0] = VT1;
4305  Array[1] = VT2;
4306  Array[2] = VT3;
4307  Array[3] = VT4;
4308  SDVTList Result = makeVTList(Array, 4);
4309  VTList.push_back(Result);
4310  return Result;
4311}
4312
4313SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4314  switch (NumVTs) {
4315    case 0: llvm_unreachable("Cannot have nodes without results!");
4316    case 1: return getVTList(VTs[0]);
4317    case 2: return getVTList(VTs[0], VTs[1]);
4318    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4319    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4320    default: break;
4321  }
4322
4323  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4324       E = VTList.rend(); I != E; ++I) {
4325    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4326      continue;
4327
4328    bool NoMatch = false;
4329    for (unsigned i = 2; i != NumVTs; ++i)
4330      if (VTs[i] != I->VTs[i]) {
4331        NoMatch = true;
4332        break;
4333      }
4334    if (!NoMatch)
4335      return *I;
4336  }
4337
4338  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4339  std::copy(VTs, VTs+NumVTs, Array);
4340  SDVTList Result = makeVTList(Array, NumVTs);
4341  VTList.push_back(Result);
4342  return Result;
4343}
4344
4345
4346/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4347/// specified operands.  If the resultant node already exists in the DAG,
4348/// this does not modify the specified node, instead it returns the node that
4349/// already exists.  If the resultant node does not exist in the DAG, the
4350/// input node is returned.  As a degenerate case, if you specify the same
4351/// input operands as the node already has, the input node is returned.
4352SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4353  SDNode *N = InN.getNode();
4354  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4355
4356  // Check to see if there is no change.
4357  if (Op == N->getOperand(0)) return InN;
4358
4359  // See if the modified node already exists.
4360  void *InsertPos = 0;
4361  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4362    return SDValue(Existing, InN.getResNo());
4363
4364  // Nope it doesn't.  Remove the node from its current place in the maps.
4365  if (InsertPos)
4366    if (!RemoveNodeFromCSEMaps(N))
4367      InsertPos = 0;
4368
4369  // Now we update the operands.
4370  N->OperandList[0].set(Op);
4371
4372  // If this gets put into a CSE map, add it.
4373  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4374  return InN;
4375}
4376
4377SDValue SelectionDAG::
4378UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4379  SDNode *N = InN.getNode();
4380  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4381
4382  // Check to see if there is no change.
4383  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4384    return InN;   // No operands changed, just return the input node.
4385
4386  // See if the modified node already exists.
4387  void *InsertPos = 0;
4388  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4389    return SDValue(Existing, InN.getResNo());
4390
4391  // Nope it doesn't.  Remove the node from its current place in the maps.
4392  if (InsertPos)
4393    if (!RemoveNodeFromCSEMaps(N))
4394      InsertPos = 0;
4395
4396  // Now we update the operands.
4397  if (N->OperandList[0] != Op1)
4398    N->OperandList[0].set(Op1);
4399  if (N->OperandList[1] != Op2)
4400    N->OperandList[1].set(Op2);
4401
4402  // If this gets put into a CSE map, add it.
4403  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4404  return InN;
4405}
4406
4407SDValue SelectionDAG::
4408UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4409  SDValue Ops[] = { Op1, Op2, Op3 };
4410  return UpdateNodeOperands(N, Ops, 3);
4411}
4412
4413SDValue SelectionDAG::
4414UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4415                   SDValue Op3, SDValue Op4) {
4416  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4417  return UpdateNodeOperands(N, Ops, 4);
4418}
4419
4420SDValue SelectionDAG::
4421UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4422                   SDValue Op3, SDValue Op4, SDValue Op5) {
4423  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4424  return UpdateNodeOperands(N, Ops, 5);
4425}
4426
4427SDValue SelectionDAG::
4428UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4429  SDNode *N = InN.getNode();
4430  assert(N->getNumOperands() == NumOps &&
4431         "Update with wrong number of operands");
4432
4433  // Check to see if there is no change.
4434  bool AnyChange = false;
4435  for (unsigned i = 0; i != NumOps; ++i) {
4436    if (Ops[i] != N->getOperand(i)) {
4437      AnyChange = true;
4438      break;
4439    }
4440  }
4441
4442  // No operands changed, just return the input node.
4443  if (!AnyChange) return InN;
4444
4445  // See if the modified node already exists.
4446  void *InsertPos = 0;
4447  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4448    return SDValue(Existing, InN.getResNo());
4449
4450  // Nope it doesn't.  Remove the node from its current place in the maps.
4451  if (InsertPos)
4452    if (!RemoveNodeFromCSEMaps(N))
4453      InsertPos = 0;
4454
4455  // Now we update the operands.
4456  for (unsigned i = 0; i != NumOps; ++i)
4457    if (N->OperandList[i] != Ops[i])
4458      N->OperandList[i].set(Ops[i]);
4459
4460  // If this gets put into a CSE map, add it.
4461  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4462  return InN;
4463}
4464
4465/// DropOperands - Release the operands and set this node to have
4466/// zero operands.
4467void SDNode::DropOperands() {
4468  // Unlike the code in MorphNodeTo that does this, we don't need to
4469  // watch for dead nodes here.
4470  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4471    SDUse &Use = *I++;
4472    Use.set(SDValue());
4473  }
4474}
4475
4476/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4477/// machine opcode.
4478///
4479SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4480                                   EVT VT) {
4481  SDVTList VTs = getVTList(VT);
4482  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4483}
4484
4485SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4486                                   EVT VT, SDValue Op1) {
4487  SDVTList VTs = getVTList(VT);
4488  SDValue Ops[] = { Op1 };
4489  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4490}
4491
4492SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4493                                   EVT VT, SDValue Op1,
4494                                   SDValue Op2) {
4495  SDVTList VTs = getVTList(VT);
4496  SDValue Ops[] = { Op1, Op2 };
4497  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4498}
4499
4500SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4501                                   EVT VT, SDValue Op1,
4502                                   SDValue Op2, SDValue Op3) {
4503  SDVTList VTs = getVTList(VT);
4504  SDValue Ops[] = { Op1, Op2, Op3 };
4505  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4506}
4507
4508SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4509                                   EVT VT, const SDValue *Ops,
4510                                   unsigned NumOps) {
4511  SDVTList VTs = getVTList(VT);
4512  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4513}
4514
4515SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4516                                   EVT VT1, EVT VT2, const SDValue *Ops,
4517                                   unsigned NumOps) {
4518  SDVTList VTs = getVTList(VT1, VT2);
4519  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4520}
4521
4522SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4523                                   EVT VT1, EVT VT2) {
4524  SDVTList VTs = getVTList(VT1, VT2);
4525  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4526}
4527
4528SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4529                                   EVT VT1, EVT VT2, EVT VT3,
4530                                   const SDValue *Ops, unsigned NumOps) {
4531  SDVTList VTs = getVTList(VT1, VT2, VT3);
4532  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4533}
4534
4535SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4536                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4537                                   const SDValue *Ops, unsigned NumOps) {
4538  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4539  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4540}
4541
4542SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4543                                   EVT VT1, EVT VT2,
4544                                   SDValue Op1) {
4545  SDVTList VTs = getVTList(VT1, VT2);
4546  SDValue Ops[] = { Op1 };
4547  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4548}
4549
4550SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4551                                   EVT VT1, EVT VT2,
4552                                   SDValue Op1, SDValue Op2) {
4553  SDVTList VTs = getVTList(VT1, VT2);
4554  SDValue Ops[] = { Op1, Op2 };
4555  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4556}
4557
4558SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4559                                   EVT VT1, EVT VT2,
4560                                   SDValue Op1, SDValue Op2,
4561                                   SDValue Op3) {
4562  SDVTList VTs = getVTList(VT1, VT2);
4563  SDValue Ops[] = { Op1, Op2, Op3 };
4564  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4565}
4566
4567SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4568                                   EVT VT1, EVT VT2, EVT VT3,
4569                                   SDValue Op1, SDValue Op2,
4570                                   SDValue Op3) {
4571  SDVTList VTs = getVTList(VT1, VT2, VT3);
4572  SDValue Ops[] = { Op1, Op2, Op3 };
4573  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4574}
4575
4576SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4577                                   SDVTList VTs, const SDValue *Ops,
4578                                   unsigned NumOps) {
4579  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4580  // Reset the NodeID to -1.
4581  N->setNodeId(-1);
4582  return N;
4583}
4584
4585SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4586                                  EVT VT) {
4587  SDVTList VTs = getVTList(VT);
4588  return MorphNodeTo(N, Opc, VTs, 0, 0);
4589}
4590
4591SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4592                                  EVT VT, SDValue Op1) {
4593  SDVTList VTs = getVTList(VT);
4594  SDValue Ops[] = { Op1 };
4595  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4596}
4597
4598SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4599                                  EVT VT, SDValue Op1,
4600                                  SDValue Op2) {
4601  SDVTList VTs = getVTList(VT);
4602  SDValue Ops[] = { Op1, Op2 };
4603  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4604}
4605
4606SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4607                                  EVT VT, SDValue Op1,
4608                                  SDValue Op2, SDValue Op3) {
4609  SDVTList VTs = getVTList(VT);
4610  SDValue Ops[] = { Op1, Op2, Op3 };
4611  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4612}
4613
4614SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4615                                  EVT VT, const SDValue *Ops,
4616                                  unsigned NumOps) {
4617  SDVTList VTs = getVTList(VT);
4618  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4619}
4620
4621SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4622                                  EVT VT1, EVT VT2, const SDValue *Ops,
4623                                  unsigned NumOps) {
4624  SDVTList VTs = getVTList(VT1, VT2);
4625  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4626}
4627
4628SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4629                                  EVT VT1, EVT VT2) {
4630  SDVTList VTs = getVTList(VT1, VT2);
4631  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4632}
4633
4634SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4635                                  EVT VT1, EVT VT2, EVT VT3,
4636                                  const SDValue *Ops, unsigned NumOps) {
4637  SDVTList VTs = getVTList(VT1, VT2, VT3);
4638  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4639}
4640
4641SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4642                                  EVT VT1, EVT VT2,
4643                                  SDValue Op1) {
4644  SDVTList VTs = getVTList(VT1, VT2);
4645  SDValue Ops[] = { Op1 };
4646  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4647}
4648
4649SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4650                                  EVT VT1, EVT VT2,
4651                                  SDValue Op1, SDValue Op2) {
4652  SDVTList VTs = getVTList(VT1, VT2);
4653  SDValue Ops[] = { Op1, Op2 };
4654  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4655}
4656
4657SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4658                                  EVT VT1, EVT VT2,
4659                                  SDValue Op1, SDValue Op2,
4660                                  SDValue Op3) {
4661  SDVTList VTs = getVTList(VT1, VT2);
4662  SDValue Ops[] = { Op1, Op2, Op3 };
4663  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4664}
4665
4666/// MorphNodeTo - These *mutate* the specified node to have the specified
4667/// return type, opcode, and operands.
4668///
4669/// Note that MorphNodeTo returns the resultant node.  If there is already a
4670/// node of the specified opcode and operands, it returns that node instead of
4671/// the current one.  Note that the DebugLoc need not be the same.
4672///
4673/// Using MorphNodeTo is faster than creating a new node and swapping it in
4674/// with ReplaceAllUsesWith both because it often avoids allocating a new
4675/// node, and because it doesn't require CSE recalculation for any of
4676/// the node's users.
4677///
4678SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4679                                  SDVTList VTs, const SDValue *Ops,
4680                                  unsigned NumOps) {
4681  // If an identical node already exists, use it.
4682  void *IP = 0;
4683  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4684    FoldingSetNodeID ID;
4685    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4686    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4687      return ON;
4688  }
4689
4690  if (!RemoveNodeFromCSEMaps(N))
4691    IP = 0;
4692
4693  // Start the morphing.
4694  N->NodeType = Opc;
4695  N->ValueList = VTs.VTs;
4696  N->NumValues = VTs.NumVTs;
4697
4698  // Clear the operands list, updating used nodes to remove this from their
4699  // use list.  Keep track of any operands that become dead as a result.
4700  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4701  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4702    SDUse &Use = *I++;
4703    SDNode *Used = Use.getNode();
4704    Use.set(SDValue());
4705    if (Used->use_empty())
4706      DeadNodeSet.insert(Used);
4707  }
4708
4709  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4710    // Initialize the memory references information.
4711    MN->setMemRefs(0, 0);
4712    // If NumOps is larger than the # of operands we can have in a
4713    // MachineSDNode, reallocate the operand list.
4714    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4715      if (MN->OperandsNeedDelete)
4716        delete[] MN->OperandList;
4717      if (NumOps > array_lengthof(MN->LocalOperands))
4718        // We're creating a final node that will live unmorphed for the
4719        // remainder of the current SelectionDAG iteration, so we can allocate
4720        // the operands directly out of a pool with no recycling metadata.
4721        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4722                        Ops, NumOps);
4723      else
4724        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4725      MN->OperandsNeedDelete = false;
4726    } else
4727      MN->InitOperands(MN->OperandList, Ops, NumOps);
4728  } else {
4729    // If NumOps is larger than the # of operands we currently have, reallocate
4730    // the operand list.
4731    if (NumOps > N->NumOperands) {
4732      if (N->OperandsNeedDelete)
4733        delete[] N->OperandList;
4734      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4735      N->OperandsNeedDelete = true;
4736    } else
4737      N->InitOperands(N->OperandList, Ops, NumOps);
4738  }
4739
4740  // Delete any nodes that are still dead after adding the uses for the
4741  // new operands.
4742  SmallVector<SDNode *, 16> DeadNodes;
4743  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4744       E = DeadNodeSet.end(); I != E; ++I)
4745    if ((*I)->use_empty())
4746      DeadNodes.push_back(*I);
4747  RemoveDeadNodes(DeadNodes);
4748
4749  if (IP)
4750    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4751  return N;
4752}
4753
4754
4755/// getMachineNode - These are used for target selectors to create a new node
4756/// with specified return type(s), MachineInstr opcode, and operands.
4757///
4758/// Note that getMachineNode returns the resultant node.  If there is already a
4759/// node of the specified opcode and operands, it returns that node instead of
4760/// the current one.
4761MachineSDNode *
4762SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4763  SDVTList VTs = getVTList(VT);
4764  return getMachineNode(Opcode, dl, VTs, 0, 0);
4765}
4766
4767MachineSDNode *
4768SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4769  SDVTList VTs = getVTList(VT);
4770  SDValue Ops[] = { Op1 };
4771  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4772}
4773
4774MachineSDNode *
4775SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4776                             SDValue Op1, SDValue Op2) {
4777  SDVTList VTs = getVTList(VT);
4778  SDValue Ops[] = { Op1, Op2 };
4779  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4780}
4781
4782MachineSDNode *
4783SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4784                             SDValue Op1, SDValue Op2, SDValue Op3) {
4785  SDVTList VTs = getVTList(VT);
4786  SDValue Ops[] = { Op1, Op2, Op3 };
4787  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4788}
4789
4790MachineSDNode *
4791SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4792                             const SDValue *Ops, unsigned NumOps) {
4793  SDVTList VTs = getVTList(VT);
4794  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4795}
4796
4797MachineSDNode *
4798SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4799  SDVTList VTs = getVTList(VT1, VT2);
4800  return getMachineNode(Opcode, dl, VTs, 0, 0);
4801}
4802
4803MachineSDNode *
4804SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4805                             EVT VT1, EVT VT2, SDValue Op1) {
4806  SDVTList VTs = getVTList(VT1, VT2);
4807  SDValue Ops[] = { Op1 };
4808  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4809}
4810
4811MachineSDNode *
4812SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4813                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4814  SDVTList VTs = getVTList(VT1, VT2);
4815  SDValue Ops[] = { Op1, Op2 };
4816  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4817}
4818
4819MachineSDNode *
4820SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4821                             EVT VT1, EVT VT2, SDValue Op1,
4822                             SDValue Op2, SDValue Op3) {
4823  SDVTList VTs = getVTList(VT1, VT2);
4824  SDValue Ops[] = { Op1, Op2, Op3 };
4825  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4826}
4827
4828MachineSDNode *
4829SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4830                             EVT VT1, EVT VT2,
4831                             const SDValue *Ops, unsigned NumOps) {
4832  SDVTList VTs = getVTList(VT1, VT2);
4833  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4834}
4835
4836MachineSDNode *
4837SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4838                             EVT VT1, EVT VT2, EVT VT3,
4839                             SDValue Op1, SDValue Op2) {
4840  SDVTList VTs = getVTList(VT1, VT2, VT3);
4841  SDValue Ops[] = { Op1, Op2 };
4842  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4843}
4844
4845MachineSDNode *
4846SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4847                             EVT VT1, EVT VT2, EVT VT3,
4848                             SDValue Op1, SDValue Op2, SDValue Op3) {
4849  SDVTList VTs = getVTList(VT1, VT2, VT3);
4850  SDValue Ops[] = { Op1, Op2, Op3 };
4851  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4852}
4853
4854MachineSDNode *
4855SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4856                             EVT VT1, EVT VT2, EVT VT3,
4857                             const SDValue *Ops, unsigned NumOps) {
4858  SDVTList VTs = getVTList(VT1, VT2, VT3);
4859  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4860}
4861
4862MachineSDNode *
4863SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4864                             EVT VT2, EVT VT3, EVT VT4,
4865                             const SDValue *Ops, unsigned NumOps) {
4866  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4867  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4868}
4869
4870MachineSDNode *
4871SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4872                             const std::vector<EVT> &ResultTys,
4873                             const SDValue *Ops, unsigned NumOps) {
4874  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4875  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4876}
4877
4878MachineSDNode *
4879SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4880                             const SDValue *Ops, unsigned NumOps) {
4881  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4882  MachineSDNode *N;
4883  void *IP;
4884
4885  if (DoCSE) {
4886    FoldingSetNodeID ID;
4887    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4888    IP = 0;
4889    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4890      return cast<MachineSDNode>(E);
4891  }
4892
4893  // Allocate a new MachineSDNode.
4894  N = NodeAllocator.Allocate<MachineSDNode>();
4895  new (N) MachineSDNode(~Opcode, DL, VTs);
4896
4897  // Initialize the operands list.
4898  if (NumOps > array_lengthof(N->LocalOperands))
4899    // We're creating a final node that will live unmorphed for the
4900    // remainder of the current SelectionDAG iteration, so we can allocate
4901    // the operands directly out of a pool with no recycling metadata.
4902    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4903                    Ops, NumOps);
4904  else
4905    N->InitOperands(N->LocalOperands, Ops, NumOps);
4906  N->OperandsNeedDelete = false;
4907
4908  if (DoCSE)
4909    CSEMap.InsertNode(N, IP);
4910
4911  AllNodes.push_back(N);
4912#ifndef NDEBUG
4913  VerifyNode(N);
4914#endif
4915  return N;
4916}
4917
4918/// getTargetExtractSubreg - A convenience function for creating
4919/// TargetOpcode::EXTRACT_SUBREG nodes.
4920SDValue
4921SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4922                                     SDValue Operand) {
4923  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4924  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4925                                  VT, Operand, SRIdxVal);
4926  return SDValue(Subreg, 0);
4927}
4928
4929/// getTargetInsertSubreg - A convenience function for creating
4930/// TargetOpcode::INSERT_SUBREG nodes.
4931SDValue
4932SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4933                                    SDValue Operand, SDValue Subreg) {
4934  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4935  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4936                                  VT, Operand, Subreg, SRIdxVal);
4937  return SDValue(Result, 0);
4938}
4939
4940/// getNodeIfExists - Get the specified node if it's already available, or
4941/// else return NULL.
4942SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4943                                      const SDValue *Ops, unsigned NumOps) {
4944  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4945    FoldingSetNodeID ID;
4946    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4947    void *IP = 0;
4948    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4949      return E;
4950  }
4951  return NULL;
4952}
4953
4954/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4955/// This can cause recursive merging of nodes in the DAG.
4956///
4957/// This version assumes From has a single result value.
4958///
4959void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4960                                      DAGUpdateListener *UpdateListener) {
4961  SDNode *From = FromN.getNode();
4962  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4963         "Cannot replace with this method!");
4964  assert(From != To.getNode() && "Cannot replace uses of with self");
4965
4966  // Iterate over all the existing uses of From. New uses will be added
4967  // to the beginning of the use list, which we avoid visiting.
4968  // This specifically avoids visiting uses of From that arise while the
4969  // replacement is happening, because any such uses would be the result
4970  // of CSE: If an existing node looks like From after one of its operands
4971  // is replaced by To, we don't want to replace of all its users with To
4972  // too. See PR3018 for more info.
4973  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4974  while (UI != UE) {
4975    SDNode *User = *UI;
4976
4977    // This node is about to morph, remove its old self from the CSE maps.
4978    RemoveNodeFromCSEMaps(User);
4979
4980    // A user can appear in a use list multiple times, and when this
4981    // happens the uses are usually next to each other in the list.
4982    // To help reduce the number of CSE recomputations, process all
4983    // the uses of this user that we can find this way.
4984    do {
4985      SDUse &Use = UI.getUse();
4986      ++UI;
4987      Use.set(To);
4988    } while (UI != UE && *UI == User);
4989
4990    // Now that we have modified User, add it back to the CSE maps.  If it
4991    // already exists there, recursively merge the results together.
4992    AddModifiedNodeToCSEMaps(User, UpdateListener);
4993  }
4994}
4995
4996/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4997/// This can cause recursive merging of nodes in the DAG.
4998///
4999/// This version assumes that for each value of From, there is a
5000/// corresponding value in To in the same position with the same type.
5001///
5002void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5003                                      DAGUpdateListener *UpdateListener) {
5004#ifndef NDEBUG
5005  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5006    assert((!From->hasAnyUseOfValue(i) ||
5007            From->getValueType(i) == To->getValueType(i)) &&
5008           "Cannot use this version of ReplaceAllUsesWith!");
5009#endif
5010
5011  // Handle the trivial case.
5012  if (From == To)
5013    return;
5014
5015  // Iterate over just the existing users of From. See the comments in
5016  // the ReplaceAllUsesWith above.
5017  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5018  while (UI != UE) {
5019    SDNode *User = *UI;
5020
5021    // This node is about to morph, remove its old self from the CSE maps.
5022    RemoveNodeFromCSEMaps(User);
5023
5024    // A user can appear in a use list multiple times, and when this
5025    // happens the uses are usually next to each other in the list.
5026    // To help reduce the number of CSE recomputations, process all
5027    // the uses of this user that we can find this way.
5028    do {
5029      SDUse &Use = UI.getUse();
5030      ++UI;
5031      Use.setNode(To);
5032    } while (UI != UE && *UI == User);
5033
5034    // Now that we have modified User, add it back to the CSE maps.  If it
5035    // already exists there, recursively merge the results together.
5036    AddModifiedNodeToCSEMaps(User, UpdateListener);
5037  }
5038}
5039
5040/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5041/// This can cause recursive merging of nodes in the DAG.
5042///
5043/// This version can replace From with any result values.  To must match the
5044/// number and types of values returned by From.
5045void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5046                                      const SDValue *To,
5047                                      DAGUpdateListener *UpdateListener) {
5048  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5049    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5050
5051  // Iterate over just the existing users of From. See the comments in
5052  // the ReplaceAllUsesWith above.
5053  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5054  while (UI != UE) {
5055    SDNode *User = *UI;
5056
5057    // This node is about to morph, remove its old self from the CSE maps.
5058    RemoveNodeFromCSEMaps(User);
5059
5060    // A user can appear in a use list multiple times, and when this
5061    // happens the uses are usually next to each other in the list.
5062    // To help reduce the number of CSE recomputations, process all
5063    // the uses of this user that we can find this way.
5064    do {
5065      SDUse &Use = UI.getUse();
5066      const SDValue &ToOp = To[Use.getResNo()];
5067      ++UI;
5068      Use.set(ToOp);
5069    } while (UI != UE && *UI == User);
5070
5071    // Now that we have modified User, add it back to the CSE maps.  If it
5072    // already exists there, recursively merge the results together.
5073    AddModifiedNodeToCSEMaps(User, UpdateListener);
5074  }
5075}
5076
5077/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5078/// uses of other values produced by From.getNode() alone.  The Deleted
5079/// vector is handled the same way as for ReplaceAllUsesWith.
5080void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5081                                             DAGUpdateListener *UpdateListener){
5082  // Handle the really simple, really trivial case efficiently.
5083  if (From == To) return;
5084
5085  // Handle the simple, trivial, case efficiently.
5086  if (From.getNode()->getNumValues() == 1) {
5087    ReplaceAllUsesWith(From, To, UpdateListener);
5088    return;
5089  }
5090
5091  // Iterate over just the existing users of From. See the comments in
5092  // the ReplaceAllUsesWith above.
5093  SDNode::use_iterator UI = From.getNode()->use_begin(),
5094                       UE = From.getNode()->use_end();
5095  while (UI != UE) {
5096    SDNode *User = *UI;
5097    bool UserRemovedFromCSEMaps = false;
5098
5099    // A user can appear in a use list multiple times, and when this
5100    // happens the uses are usually next to each other in the list.
5101    // To help reduce the number of CSE recomputations, process all
5102    // the uses of this user that we can find this way.
5103    do {
5104      SDUse &Use = UI.getUse();
5105
5106      // Skip uses of different values from the same node.
5107      if (Use.getResNo() != From.getResNo()) {
5108        ++UI;
5109        continue;
5110      }
5111
5112      // If this node hasn't been modified yet, it's still in the CSE maps,
5113      // so remove its old self from the CSE maps.
5114      if (!UserRemovedFromCSEMaps) {
5115        RemoveNodeFromCSEMaps(User);
5116        UserRemovedFromCSEMaps = true;
5117      }
5118
5119      ++UI;
5120      Use.set(To);
5121    } while (UI != UE && *UI == User);
5122
5123    // We are iterating over all uses of the From node, so if a use
5124    // doesn't use the specific value, no changes are made.
5125    if (!UserRemovedFromCSEMaps)
5126      continue;
5127
5128    // Now that we have modified User, add it back to the CSE maps.  If it
5129    // already exists there, recursively merge the results together.
5130    AddModifiedNodeToCSEMaps(User, UpdateListener);
5131  }
5132}
5133
5134namespace {
5135  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5136  /// to record information about a use.
5137  struct UseMemo {
5138    SDNode *User;
5139    unsigned Index;
5140    SDUse *Use;
5141  };
5142
5143  /// operator< - Sort Memos by User.
5144  bool operator<(const UseMemo &L, const UseMemo &R) {
5145    return (intptr_t)L.User < (intptr_t)R.User;
5146  }
5147}
5148
5149/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5150/// uses of other values produced by From.getNode() alone.  The same value
5151/// may appear in both the From and To list.  The Deleted vector is
5152/// handled the same way as for ReplaceAllUsesWith.
5153void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5154                                              const SDValue *To,
5155                                              unsigned Num,
5156                                              DAGUpdateListener *UpdateListener){
5157  // Handle the simple, trivial case efficiently.
5158  if (Num == 1)
5159    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5160
5161  // Read up all the uses and make records of them. This helps
5162  // processing new uses that are introduced during the
5163  // replacement process.
5164  SmallVector<UseMemo, 4> Uses;
5165  for (unsigned i = 0; i != Num; ++i) {
5166    unsigned FromResNo = From[i].getResNo();
5167    SDNode *FromNode = From[i].getNode();
5168    for (SDNode::use_iterator UI = FromNode->use_begin(),
5169         E = FromNode->use_end(); UI != E; ++UI) {
5170      SDUse &Use = UI.getUse();
5171      if (Use.getResNo() == FromResNo) {
5172        UseMemo Memo = { *UI, i, &Use };
5173        Uses.push_back(Memo);
5174      }
5175    }
5176  }
5177
5178  // Sort the uses, so that all the uses from a given User are together.
5179  std::sort(Uses.begin(), Uses.end());
5180
5181  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5182       UseIndex != UseIndexEnd; ) {
5183    // We know that this user uses some value of From.  If it is the right
5184    // value, update it.
5185    SDNode *User = Uses[UseIndex].User;
5186
5187    // This node is about to morph, remove its old self from the CSE maps.
5188    RemoveNodeFromCSEMaps(User);
5189
5190    // The Uses array is sorted, so all the uses for a given User
5191    // are next to each other in the list.
5192    // To help reduce the number of CSE recomputations, process all
5193    // the uses of this user that we can find this way.
5194    do {
5195      unsigned i = Uses[UseIndex].Index;
5196      SDUse &Use = *Uses[UseIndex].Use;
5197      ++UseIndex;
5198
5199      Use.set(To[i]);
5200    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5201
5202    // Now that we have modified User, add it back to the CSE maps.  If it
5203    // already exists there, recursively merge the results together.
5204    AddModifiedNodeToCSEMaps(User, UpdateListener);
5205  }
5206}
5207
5208/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5209/// based on their topological order. It returns the maximum id and a vector
5210/// of the SDNodes* in assigned order by reference.
5211unsigned SelectionDAG::AssignTopologicalOrder() {
5212
5213  unsigned DAGSize = 0;
5214
5215  // SortedPos tracks the progress of the algorithm. Nodes before it are
5216  // sorted, nodes after it are unsorted. When the algorithm completes
5217  // it is at the end of the list.
5218  allnodes_iterator SortedPos = allnodes_begin();
5219
5220  // Visit all the nodes. Move nodes with no operands to the front of
5221  // the list immediately. Annotate nodes that do have operands with their
5222  // operand count. Before we do this, the Node Id fields of the nodes
5223  // may contain arbitrary values. After, the Node Id fields for nodes
5224  // before SortedPos will contain the topological sort index, and the
5225  // Node Id fields for nodes At SortedPos and after will contain the
5226  // count of outstanding operands.
5227  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5228    SDNode *N = I++;
5229    checkForCycles(N);
5230    unsigned Degree = N->getNumOperands();
5231    if (Degree == 0) {
5232      // A node with no uses, add it to the result array immediately.
5233      N->setNodeId(DAGSize++);
5234      allnodes_iterator Q = N;
5235      if (Q != SortedPos)
5236        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5237      assert(SortedPos != AllNodes.end() && "Overran node list");
5238      ++SortedPos;
5239    } else {
5240      // Temporarily use the Node Id as scratch space for the degree count.
5241      N->setNodeId(Degree);
5242    }
5243  }
5244
5245  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5246  // such that by the time the end is reached all nodes will be sorted.
5247  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5248    SDNode *N = I;
5249    checkForCycles(N);
5250    // N is in sorted position, so all its uses have one less operand
5251    // that needs to be sorted.
5252    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5253         UI != UE; ++UI) {
5254      SDNode *P = *UI;
5255      unsigned Degree = P->getNodeId();
5256      assert(Degree != 0 && "Invalid node degree");
5257      --Degree;
5258      if (Degree == 0) {
5259        // All of P's operands are sorted, so P may sorted now.
5260        P->setNodeId(DAGSize++);
5261        if (P != SortedPos)
5262          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5263        assert(SortedPos != AllNodes.end() && "Overran node list");
5264        ++SortedPos;
5265      } else {
5266        // Update P's outstanding operand count.
5267        P->setNodeId(Degree);
5268      }
5269    }
5270    if (I == SortedPos) {
5271#ifndef NDEBUG
5272      SDNode *S = ++I;
5273      dbgs() << "Overran sorted position:\n";
5274      S->dumprFull();
5275#endif
5276      llvm_unreachable(0);
5277    }
5278  }
5279
5280  assert(SortedPos == AllNodes.end() &&
5281         "Topological sort incomplete!");
5282  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5283         "First node in topological sort is not the entry token!");
5284  assert(AllNodes.front().getNodeId() == 0 &&
5285         "First node in topological sort has non-zero id!");
5286  assert(AllNodes.front().getNumOperands() == 0 &&
5287         "First node in topological sort has operands!");
5288  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5289         "Last node in topologic sort has unexpected id!");
5290  assert(AllNodes.back().use_empty() &&
5291         "Last node in topologic sort has users!");
5292  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5293  return DAGSize;
5294}
5295
5296/// AssignOrdering - Assign an order to the SDNode.
5297void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5298  assert(SD && "Trying to assign an order to a null node!");
5299  Ordering->add(SD, Order);
5300}
5301
5302/// GetOrdering - Get the order for the SDNode.
5303unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5304  assert(SD && "Trying to get the order of a null node!");
5305  return Ordering->getOrder(SD);
5306}
5307
5308
5309//===----------------------------------------------------------------------===//
5310//                              SDNode Class
5311//===----------------------------------------------------------------------===//
5312
5313HandleSDNode::~HandleSDNode() {
5314  DropOperands();
5315}
5316
5317GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5318                                         EVT VT, int64_t o, unsigned char TF)
5319  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5320    Offset(o), TargetFlags(TF) {
5321  TheGlobal = const_cast<GlobalValue*>(GA);
5322}
5323
5324MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5325                     MachineMemOperand *mmo)
5326 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5327  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5328                                      MMO->isNonTemporal());
5329  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5330  assert(isNonTemporal() == MMO->isNonTemporal() &&
5331         "Non-temporal encoding error!");
5332  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5333}
5334
5335MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5336                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5337                     MachineMemOperand *mmo)
5338   : SDNode(Opc, dl, VTs, Ops, NumOps),
5339     MemoryVT(memvt), MMO(mmo) {
5340  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5341                                      MMO->isNonTemporal());
5342  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5343  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5344}
5345
5346/// Profile - Gather unique data for the node.
5347///
5348void SDNode::Profile(FoldingSetNodeID &ID) const {
5349  AddNodeIDNode(ID, this);
5350}
5351
5352namespace {
5353  struct EVTArray {
5354    std::vector<EVT> VTs;
5355
5356    EVTArray() {
5357      VTs.reserve(MVT::LAST_VALUETYPE);
5358      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5359        VTs.push_back(MVT((MVT::SimpleValueType)i));
5360    }
5361  };
5362}
5363
5364static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5365static ManagedStatic<EVTArray> SimpleVTArray;
5366static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5367
5368/// getValueTypeList - Return a pointer to the specified value type.
5369///
5370const EVT *SDNode::getValueTypeList(EVT VT) {
5371  if (VT.isExtended()) {
5372    sys::SmartScopedLock<true> Lock(*VTMutex);
5373    return &(*EVTs->insert(VT).first);
5374  } else {
5375    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5376  }
5377}
5378
5379/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5380/// indicated value.  This method ignores uses of other values defined by this
5381/// operation.
5382bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5383  assert(Value < getNumValues() && "Bad value!");
5384
5385  // TODO: Only iterate over uses of a given value of the node
5386  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5387    if (UI.getUse().getResNo() == Value) {
5388      if (NUses == 0)
5389        return false;
5390      --NUses;
5391    }
5392  }
5393
5394  // Found exactly the right number of uses?
5395  return NUses == 0;
5396}
5397
5398
5399/// hasAnyUseOfValue - Return true if there are any use of the indicated
5400/// value. This method ignores uses of other values defined by this operation.
5401bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5402  assert(Value < getNumValues() && "Bad value!");
5403
5404  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5405    if (UI.getUse().getResNo() == Value)
5406      return true;
5407
5408  return false;
5409}
5410
5411
5412/// isOnlyUserOf - Return true if this node is the only use of N.
5413///
5414bool SDNode::isOnlyUserOf(SDNode *N) const {
5415  bool Seen = false;
5416  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5417    SDNode *User = *I;
5418    if (User == this)
5419      Seen = true;
5420    else
5421      return false;
5422  }
5423
5424  return Seen;
5425}
5426
5427/// isOperand - Return true if this node is an operand of N.
5428///
5429bool SDValue::isOperandOf(SDNode *N) const {
5430  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5431    if (*this == N->getOperand(i))
5432      return true;
5433  return false;
5434}
5435
5436bool SDNode::isOperandOf(SDNode *N) const {
5437  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5438    if (this == N->OperandList[i].getNode())
5439      return true;
5440  return false;
5441}
5442
5443/// reachesChainWithoutSideEffects - Return true if this operand (which must
5444/// be a chain) reaches the specified operand without crossing any
5445/// side-effecting instructions.  In practice, this looks through token
5446/// factors and non-volatile loads.  In order to remain efficient, this only
5447/// looks a couple of nodes in, it does not do an exhaustive search.
5448bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5449                                               unsigned Depth) const {
5450  if (*this == Dest) return true;
5451
5452  // Don't search too deeply, we just want to be able to see through
5453  // TokenFactor's etc.
5454  if (Depth == 0) return false;
5455
5456  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5457  // of the operands of the TF reach dest, then we can do the xform.
5458  if (getOpcode() == ISD::TokenFactor) {
5459    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5460      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5461        return true;
5462    return false;
5463  }
5464
5465  // Loads don't have side effects, look through them.
5466  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5467    if (!Ld->isVolatile())
5468      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5469  }
5470  return false;
5471}
5472
5473/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5474/// is either an operand of N or it can be reached by traversing up the operands.
5475/// NOTE: this is an expensive method. Use it carefully.
5476bool SDNode::isPredecessorOf(SDNode *N) const {
5477  SmallPtrSet<SDNode *, 32> Visited;
5478  SmallVector<SDNode *, 16> Worklist;
5479  Worklist.push_back(N);
5480
5481  do {
5482    N = Worklist.pop_back_val();
5483    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5484      SDNode *Op = N->getOperand(i).getNode();
5485      if (Op == this)
5486        return true;
5487      if (Visited.insert(Op))
5488        Worklist.push_back(Op);
5489    }
5490  } while (!Worklist.empty());
5491
5492  return false;
5493}
5494
5495uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5496  assert(Num < NumOperands && "Invalid child # of SDNode!");
5497  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5498}
5499
5500std::string SDNode::getOperationName(const SelectionDAG *G) const {
5501  switch (getOpcode()) {
5502  default:
5503    if (getOpcode() < ISD::BUILTIN_OP_END)
5504      return "<<Unknown DAG Node>>";
5505    if (isMachineOpcode()) {
5506      if (G)
5507        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5508          if (getMachineOpcode() < TII->getNumOpcodes())
5509            return TII->get(getMachineOpcode()).getName();
5510      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5511    }
5512    if (G) {
5513      const TargetLowering &TLI = G->getTargetLoweringInfo();
5514      const char *Name = TLI.getTargetNodeName(getOpcode());
5515      if (Name) return Name;
5516      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5517    }
5518    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5519
5520#ifndef NDEBUG
5521  case ISD::DELETED_NODE:
5522    return "<<Deleted Node!>>";
5523#endif
5524  case ISD::PREFETCH:      return "Prefetch";
5525  case ISD::MEMBARRIER:    return "MemBarrier";
5526  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5527  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5528  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5529  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5530  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5531  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5532  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5533  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5534  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5535  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5536  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5537  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5538  case ISD::PCMARKER:      return "PCMarker";
5539  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5540  case ISD::SRCVALUE:      return "SrcValue";
5541  case ISD::EntryToken:    return "EntryToken";
5542  case ISD::TokenFactor:   return "TokenFactor";
5543  case ISD::AssertSext:    return "AssertSext";
5544  case ISD::AssertZext:    return "AssertZext";
5545
5546  case ISD::BasicBlock:    return "BasicBlock";
5547  case ISD::VALUETYPE:     return "ValueType";
5548  case ISD::Register:      return "Register";
5549
5550  case ISD::Constant:      return "Constant";
5551  case ISD::ConstantFP:    return "ConstantFP";
5552  case ISD::GlobalAddress: return "GlobalAddress";
5553  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5554  case ISD::FrameIndex:    return "FrameIndex";
5555  case ISD::JumpTable:     return "JumpTable";
5556  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5557  case ISD::RETURNADDR: return "RETURNADDR";
5558  case ISD::FRAMEADDR: return "FRAMEADDR";
5559  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5560  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5561  case ISD::LSDAADDR: return "LSDAADDR";
5562  case ISD::EHSELECTION: return "EHSELECTION";
5563  case ISD::EH_RETURN: return "EH_RETURN";
5564  case ISD::ConstantPool:  return "ConstantPool";
5565  case ISD::ExternalSymbol: return "ExternalSymbol";
5566  case ISD::BlockAddress:  return "BlockAddress";
5567  case ISD::INTRINSIC_WO_CHAIN:
5568  case ISD::INTRINSIC_VOID:
5569  case ISD::INTRINSIC_W_CHAIN: {
5570    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5571    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5572    if (IID < Intrinsic::num_intrinsics)
5573      return Intrinsic::getName((Intrinsic::ID)IID);
5574    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5575      return TII->getName(IID);
5576    llvm_unreachable("Invalid intrinsic ID");
5577  }
5578
5579  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5580  case ISD::TargetConstant: return "TargetConstant";
5581  case ISD::TargetConstantFP:return "TargetConstantFP";
5582  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5583  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5584  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5585  case ISD::TargetJumpTable:  return "TargetJumpTable";
5586  case ISD::TargetConstantPool:  return "TargetConstantPool";
5587  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5588  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5589
5590  case ISD::CopyToReg:     return "CopyToReg";
5591  case ISD::CopyFromReg:   return "CopyFromReg";
5592  case ISD::UNDEF:         return "undef";
5593  case ISD::MERGE_VALUES:  return "merge_values";
5594  case ISD::INLINEASM:     return "inlineasm";
5595  case ISD::EH_LABEL:      return "eh_label";
5596  case ISD::HANDLENODE:    return "handlenode";
5597
5598  // Unary operators
5599  case ISD::FABS:   return "fabs";
5600  case ISD::FNEG:   return "fneg";
5601  case ISD::FSQRT:  return "fsqrt";
5602  case ISD::FSIN:   return "fsin";
5603  case ISD::FCOS:   return "fcos";
5604  case ISD::FPOWI:  return "fpowi";
5605  case ISD::FPOW:   return "fpow";
5606  case ISD::FTRUNC: return "ftrunc";
5607  case ISD::FFLOOR: return "ffloor";
5608  case ISD::FCEIL:  return "fceil";
5609  case ISD::FRINT:  return "frint";
5610  case ISD::FNEARBYINT: return "fnearbyint";
5611
5612  // Binary operators
5613  case ISD::ADD:    return "add";
5614  case ISD::SUB:    return "sub";
5615  case ISD::MUL:    return "mul";
5616  case ISD::MULHU:  return "mulhu";
5617  case ISD::MULHS:  return "mulhs";
5618  case ISD::SDIV:   return "sdiv";
5619  case ISD::UDIV:   return "udiv";
5620  case ISD::SREM:   return "srem";
5621  case ISD::UREM:   return "urem";
5622  case ISD::SMUL_LOHI:  return "smul_lohi";
5623  case ISD::UMUL_LOHI:  return "umul_lohi";
5624  case ISD::SDIVREM:    return "sdivrem";
5625  case ISD::UDIVREM:    return "udivrem";
5626  case ISD::AND:    return "and";
5627  case ISD::OR:     return "or";
5628  case ISD::XOR:    return "xor";
5629  case ISD::SHL:    return "shl";
5630  case ISD::SRA:    return "sra";
5631  case ISD::SRL:    return "srl";
5632  case ISD::ROTL:   return "rotl";
5633  case ISD::ROTR:   return "rotr";
5634  case ISD::FADD:   return "fadd";
5635  case ISD::FSUB:   return "fsub";
5636  case ISD::FMUL:   return "fmul";
5637  case ISD::FDIV:   return "fdiv";
5638  case ISD::FREM:   return "frem";
5639  case ISD::FCOPYSIGN: return "fcopysign";
5640  case ISD::FGETSIGN:  return "fgetsign";
5641
5642  case ISD::SETCC:       return "setcc";
5643  case ISD::VSETCC:      return "vsetcc";
5644  case ISD::SELECT:      return "select";
5645  case ISD::SELECT_CC:   return "select_cc";
5646  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5647  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5648  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5649  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5650  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5651  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5652  case ISD::CARRY_FALSE:         return "carry_false";
5653  case ISD::ADDC:        return "addc";
5654  case ISD::ADDE:        return "adde";
5655  case ISD::SADDO:       return "saddo";
5656  case ISD::UADDO:       return "uaddo";
5657  case ISD::SSUBO:       return "ssubo";
5658  case ISD::USUBO:       return "usubo";
5659  case ISD::SMULO:       return "smulo";
5660  case ISD::UMULO:       return "umulo";
5661  case ISD::SUBC:        return "subc";
5662  case ISD::SUBE:        return "sube";
5663  case ISD::SHL_PARTS:   return "shl_parts";
5664  case ISD::SRA_PARTS:   return "sra_parts";
5665  case ISD::SRL_PARTS:   return "srl_parts";
5666
5667  // Conversion operators.
5668  case ISD::SIGN_EXTEND: return "sign_extend";
5669  case ISD::ZERO_EXTEND: return "zero_extend";
5670  case ISD::ANY_EXTEND:  return "any_extend";
5671  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5672  case ISD::TRUNCATE:    return "truncate";
5673  case ISD::FP_ROUND:    return "fp_round";
5674  case ISD::FLT_ROUNDS_: return "flt_rounds";
5675  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5676  case ISD::FP_EXTEND:   return "fp_extend";
5677
5678  case ISD::SINT_TO_FP:  return "sint_to_fp";
5679  case ISD::UINT_TO_FP:  return "uint_to_fp";
5680  case ISD::FP_TO_SINT:  return "fp_to_sint";
5681  case ISD::FP_TO_UINT:  return "fp_to_uint";
5682  case ISD::BIT_CONVERT: return "bit_convert";
5683
5684  case ISD::CONVERT_RNDSAT: {
5685    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5686    default: llvm_unreachable("Unknown cvt code!");
5687    case ISD::CVT_FF:  return "cvt_ff";
5688    case ISD::CVT_FS:  return "cvt_fs";
5689    case ISD::CVT_FU:  return "cvt_fu";
5690    case ISD::CVT_SF:  return "cvt_sf";
5691    case ISD::CVT_UF:  return "cvt_uf";
5692    case ISD::CVT_SS:  return "cvt_ss";
5693    case ISD::CVT_SU:  return "cvt_su";
5694    case ISD::CVT_US:  return "cvt_us";
5695    case ISD::CVT_UU:  return "cvt_uu";
5696    }
5697  }
5698
5699    // Control flow instructions
5700  case ISD::BR:      return "br";
5701  case ISD::BRIND:   return "brind";
5702  case ISD::BR_JT:   return "br_jt";
5703  case ISD::BRCOND:  return "brcond";
5704  case ISD::BR_CC:   return "br_cc";
5705  case ISD::CALLSEQ_START:  return "callseq_start";
5706  case ISD::CALLSEQ_END:    return "callseq_end";
5707
5708    // Other operators
5709  case ISD::LOAD:               return "load";
5710  case ISD::STORE:              return "store";
5711  case ISD::VAARG:              return "vaarg";
5712  case ISD::VACOPY:             return "vacopy";
5713  case ISD::VAEND:              return "vaend";
5714  case ISD::VASTART:            return "vastart";
5715  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5716  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5717  case ISD::BUILD_PAIR:         return "build_pair";
5718  case ISD::STACKSAVE:          return "stacksave";
5719  case ISD::STACKRESTORE:       return "stackrestore";
5720  case ISD::TRAP:               return "trap";
5721
5722  // Bit manipulation
5723  case ISD::BSWAP:   return "bswap";
5724  case ISD::CTPOP:   return "ctpop";
5725  case ISD::CTTZ:    return "cttz";
5726  case ISD::CTLZ:    return "ctlz";
5727
5728  // Trampolines
5729  case ISD::TRAMPOLINE: return "trampoline";
5730
5731  case ISD::CONDCODE:
5732    switch (cast<CondCodeSDNode>(this)->get()) {
5733    default: llvm_unreachable("Unknown setcc condition!");
5734    case ISD::SETOEQ:  return "setoeq";
5735    case ISD::SETOGT:  return "setogt";
5736    case ISD::SETOGE:  return "setoge";
5737    case ISD::SETOLT:  return "setolt";
5738    case ISD::SETOLE:  return "setole";
5739    case ISD::SETONE:  return "setone";
5740
5741    case ISD::SETO:    return "seto";
5742    case ISD::SETUO:   return "setuo";
5743    case ISD::SETUEQ:  return "setue";
5744    case ISD::SETUGT:  return "setugt";
5745    case ISD::SETUGE:  return "setuge";
5746    case ISD::SETULT:  return "setult";
5747    case ISD::SETULE:  return "setule";
5748    case ISD::SETUNE:  return "setune";
5749
5750    case ISD::SETEQ:   return "seteq";
5751    case ISD::SETGT:   return "setgt";
5752    case ISD::SETGE:   return "setge";
5753    case ISD::SETLT:   return "setlt";
5754    case ISD::SETLE:   return "setle";
5755    case ISD::SETNE:   return "setne";
5756    }
5757  }
5758}
5759
5760const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5761  switch (AM) {
5762  default:
5763    return "";
5764  case ISD::PRE_INC:
5765    return "<pre-inc>";
5766  case ISD::PRE_DEC:
5767    return "<pre-dec>";
5768  case ISD::POST_INC:
5769    return "<post-inc>";
5770  case ISD::POST_DEC:
5771    return "<post-dec>";
5772  }
5773}
5774
5775std::string ISD::ArgFlagsTy::getArgFlagsString() {
5776  std::string S = "< ";
5777
5778  if (isZExt())
5779    S += "zext ";
5780  if (isSExt())
5781    S += "sext ";
5782  if (isInReg())
5783    S += "inreg ";
5784  if (isSRet())
5785    S += "sret ";
5786  if (isByVal())
5787    S += "byval ";
5788  if (isNest())
5789    S += "nest ";
5790  if (getByValAlign())
5791    S += "byval-align:" + utostr(getByValAlign()) + " ";
5792  if (getOrigAlign())
5793    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5794  if (getByValSize())
5795    S += "byval-size:" + utostr(getByValSize()) + " ";
5796  return S + ">";
5797}
5798
5799void SDNode::dump() const { dump(0); }
5800void SDNode::dump(const SelectionDAG *G) const {
5801  print(dbgs(), G);
5802}
5803
5804void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5805  OS << (void*)this << ": ";
5806
5807  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5808    if (i) OS << ",";
5809    if (getValueType(i) == MVT::Other)
5810      OS << "ch";
5811    else
5812      OS << getValueType(i).getEVTString();
5813  }
5814  OS << " = " << getOperationName(G);
5815}
5816
5817void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5818  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5819    if (!MN->memoperands_empty()) {
5820      OS << "<";
5821      OS << "Mem:";
5822      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5823           e = MN->memoperands_end(); i != e; ++i) {
5824        OS << **i;
5825        if (next(i) != e)
5826          OS << " ";
5827      }
5828      OS << ">";
5829    }
5830  } else if (const ShuffleVectorSDNode *SVN =
5831               dyn_cast<ShuffleVectorSDNode>(this)) {
5832    OS << "<";
5833    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5834      int Idx = SVN->getMaskElt(i);
5835      if (i) OS << ",";
5836      if (Idx < 0)
5837        OS << "u";
5838      else
5839        OS << Idx;
5840    }
5841    OS << ">";
5842  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5843    OS << '<' << CSDN->getAPIntValue() << '>';
5844  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5845    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5846      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5847    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5848      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5849    else {
5850      OS << "<APFloat(";
5851      CSDN->getValueAPF().bitcastToAPInt().dump();
5852      OS << ")>";
5853    }
5854  } else if (const GlobalAddressSDNode *GADN =
5855             dyn_cast<GlobalAddressSDNode>(this)) {
5856    int64_t offset = GADN->getOffset();
5857    OS << '<';
5858    WriteAsOperand(OS, GADN->getGlobal());
5859    OS << '>';
5860    if (offset > 0)
5861      OS << " + " << offset;
5862    else
5863      OS << " " << offset;
5864    if (unsigned int TF = GADN->getTargetFlags())
5865      OS << " [TF=" << TF << ']';
5866  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5867    OS << "<" << FIDN->getIndex() << ">";
5868  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5869    OS << "<" << JTDN->getIndex() << ">";
5870    if (unsigned int TF = JTDN->getTargetFlags())
5871      OS << " [TF=" << TF << ']';
5872  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5873    int offset = CP->getOffset();
5874    if (CP->isMachineConstantPoolEntry())
5875      OS << "<" << *CP->getMachineCPVal() << ">";
5876    else
5877      OS << "<" << *CP->getConstVal() << ">";
5878    if (offset > 0)
5879      OS << " + " << offset;
5880    else
5881      OS << " " << offset;
5882    if (unsigned int TF = CP->getTargetFlags())
5883      OS << " [TF=" << TF << ']';
5884  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5885    OS << "<";
5886    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5887    if (LBB)
5888      OS << LBB->getName() << " ";
5889    OS << (const void*)BBDN->getBasicBlock() << ">";
5890  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5891    if (G && R->getReg() &&
5892        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5893      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5894    } else {
5895      OS << " %reg" << R->getReg();
5896    }
5897  } else if (const ExternalSymbolSDNode *ES =
5898             dyn_cast<ExternalSymbolSDNode>(this)) {
5899    OS << "'" << ES->getSymbol() << "'";
5900    if (unsigned int TF = ES->getTargetFlags())
5901      OS << " [TF=" << TF << ']';
5902  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5903    if (M->getValue())
5904      OS << "<" << M->getValue() << ">";
5905    else
5906      OS << "<null>";
5907  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5908    OS << ":" << N->getVT().getEVTString();
5909  }
5910  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5911    OS << "<" << *LD->getMemOperand();
5912
5913    bool doExt = true;
5914    switch (LD->getExtensionType()) {
5915    default: doExt = false; break;
5916    case ISD::EXTLOAD: OS << ", anyext"; break;
5917    case ISD::SEXTLOAD: OS << ", sext"; break;
5918    case ISD::ZEXTLOAD: OS << ", zext"; break;
5919    }
5920    if (doExt)
5921      OS << " from " << LD->getMemoryVT().getEVTString();
5922
5923    const char *AM = getIndexedModeName(LD->getAddressingMode());
5924    if (*AM)
5925      OS << ", " << AM;
5926
5927    OS << ">";
5928  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5929    OS << "<" << *ST->getMemOperand();
5930
5931    if (ST->isTruncatingStore())
5932      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5933
5934    const char *AM = getIndexedModeName(ST->getAddressingMode());
5935    if (*AM)
5936      OS << ", " << AM;
5937
5938    OS << ">";
5939  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5940    OS << "<" << *M->getMemOperand() << ">";
5941  } else if (const BlockAddressSDNode *BA =
5942               dyn_cast<BlockAddressSDNode>(this)) {
5943    OS << "<";
5944    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5945    OS << ", ";
5946    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5947    OS << ">";
5948    if (unsigned int TF = BA->getTargetFlags())
5949      OS << " [TF=" << TF << ']';
5950  }
5951
5952  if (G)
5953    if (unsigned Order = G->GetOrdering(this))
5954      OS << " [ORD=" << Order << ']';
5955
5956  if (getNodeId() != -1)
5957    OS << " [ID=" << getNodeId() << ']';
5958}
5959
5960void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5961  print_types(OS, G);
5962  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5963    if (i) OS << ", "; else OS << " ";
5964    OS << (void*)getOperand(i).getNode();
5965    if (unsigned RN = getOperand(i).getResNo())
5966      OS << ":" << RN;
5967  }
5968  print_details(OS, G);
5969}
5970
5971static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5972                                  const SelectionDAG *G, unsigned depth,
5973                                  unsigned indent)
5974{
5975  if (depth == 0)
5976    return;
5977
5978  OS.indent(indent);
5979
5980  N->print(OS, G);
5981
5982  if (depth < 1)
5983    return;
5984
5985  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5986    OS << '\n';
5987    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
5988  }
5989}
5990
5991void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
5992                            unsigned depth) const {
5993  printrWithDepthHelper(OS, this, G, depth, 0);
5994}
5995
5996void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
5997  // Don't print impossibly deep things.
5998  printrWithDepth(OS, G, 100);
5999}
6000
6001void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6002  printrWithDepth(dbgs(), G, depth);
6003}
6004
6005void SDNode::dumprFull(const SelectionDAG *G) const {
6006  // Don't print impossibly deep things.
6007  dumprWithDepth(G, 100);
6008}
6009
6010static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6011  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6012    if (N->getOperand(i).getNode()->hasOneUse())
6013      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6014    else
6015      dbgs() << "\n" << std::string(indent+2, ' ')
6016           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6017
6018
6019  dbgs() << "\n";
6020  dbgs().indent(indent);
6021  N->dump(G);
6022}
6023
6024SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6025  assert(N->getNumValues() == 1 &&
6026         "Can't unroll a vector with multiple results!");
6027
6028  EVT VT = N->getValueType(0);
6029  unsigned NE = VT.getVectorNumElements();
6030  EVT EltVT = VT.getVectorElementType();
6031  DebugLoc dl = N->getDebugLoc();
6032
6033  SmallVector<SDValue, 8> Scalars;
6034  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6035
6036  // If ResNE is 0, fully unroll the vector op.
6037  if (ResNE == 0)
6038    ResNE = NE;
6039  else if (NE > ResNE)
6040    NE = ResNE;
6041
6042  unsigned i;
6043  for (i= 0; i != NE; ++i) {
6044    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6045      SDValue Operand = N->getOperand(j);
6046      EVT OperandVT = Operand.getValueType();
6047      if (OperandVT.isVector()) {
6048        // A vector operand; extract a single element.
6049        EVT OperandEltVT = OperandVT.getVectorElementType();
6050        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6051                              OperandEltVT,
6052                              Operand,
6053                              getConstant(i, MVT::i32));
6054      } else {
6055        // A scalar operand; just use it as is.
6056        Operands[j] = Operand;
6057      }
6058    }
6059
6060    switch (N->getOpcode()) {
6061    default:
6062      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6063                                &Operands[0], Operands.size()));
6064      break;
6065    case ISD::SHL:
6066    case ISD::SRA:
6067    case ISD::SRL:
6068    case ISD::ROTL:
6069    case ISD::ROTR:
6070      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6071                                getShiftAmountOperand(Operands[1])));
6072      break;
6073    case ISD::SIGN_EXTEND_INREG:
6074    case ISD::FP_ROUND_INREG: {
6075      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6076      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6077                                Operands[0],
6078                                getValueType(ExtVT)));
6079    }
6080    }
6081  }
6082
6083  for (; i < ResNE; ++i)
6084    Scalars.push_back(getUNDEF(EltVT));
6085
6086  return getNode(ISD::BUILD_VECTOR, dl,
6087                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6088                 &Scalars[0], Scalars.size());
6089}
6090
6091
6092/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6093/// location that is 'Dist' units away from the location that the 'Base' load
6094/// is loading from.
6095bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6096                                     unsigned Bytes, int Dist) const {
6097  if (LD->getChain() != Base->getChain())
6098    return false;
6099  EVT VT = LD->getValueType(0);
6100  if (VT.getSizeInBits() / 8 != Bytes)
6101    return false;
6102
6103  SDValue Loc = LD->getOperand(1);
6104  SDValue BaseLoc = Base->getOperand(1);
6105  if (Loc.getOpcode() == ISD::FrameIndex) {
6106    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6107      return false;
6108    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6109    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6110    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6111    int FS  = MFI->getObjectSize(FI);
6112    int BFS = MFI->getObjectSize(BFI);
6113    if (FS != BFS || FS != (int)Bytes) return false;
6114    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6115  }
6116  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6117    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6118    if (V && (V->getSExtValue() == Dist*Bytes))
6119      return true;
6120  }
6121
6122  GlobalValue *GV1 = NULL;
6123  GlobalValue *GV2 = NULL;
6124  int64_t Offset1 = 0;
6125  int64_t Offset2 = 0;
6126  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6127  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6128  if (isGA1 && isGA2 && GV1 == GV2)
6129    return Offset1 == (Offset2 + Dist*Bytes);
6130  return false;
6131}
6132
6133
6134/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6135/// it cannot be inferred.
6136unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6137  // If this is a GlobalAddress + cst, return the alignment.
6138  GlobalValue *GV;
6139  int64_t GVOffset = 0;
6140  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset))
6141    return MinAlign(GV->getAlignment(), GVOffset);
6142
6143  // If this is a direct reference to a stack slot, use information about the
6144  // stack slot's alignment.
6145  int FrameIdx = 1 << 31;
6146  int64_t FrameOffset = 0;
6147  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6148    FrameIdx = FI->getIndex();
6149  } else if (Ptr.getOpcode() == ISD::ADD &&
6150             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6151             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6152    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6153    FrameOffset = Ptr.getConstantOperandVal(1);
6154  }
6155
6156  if (FrameIdx != (1 << 31)) {
6157    // FIXME: Handle FI+CST.
6158    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6159    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6160                                    FrameOffset);
6161    if (MFI.isFixedObjectIndex(FrameIdx)) {
6162      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6163
6164      // The alignment of the frame index can be determined from its offset from
6165      // the incoming frame position.  If the frame object is at offset 32 and
6166      // the stack is guaranteed to be 16-byte aligned, then we know that the
6167      // object is 16-byte aligned.
6168      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6169      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6170
6171      // Finally, the frame object itself may have a known alignment.  Factor
6172      // the alignment + offset into a new alignment.  For example, if we know
6173      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6174      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6175      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6176      return std::max(Align, FIInfoAlign);
6177    }
6178    return FIInfoAlign;
6179  }
6180
6181  return 0;
6182}
6183
6184void SelectionDAG::dump() const {
6185  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6186
6187  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6188       I != E; ++I) {
6189    const SDNode *N = I;
6190    if (!N->hasOneUse() && N != getRoot().getNode())
6191      DumpNodes(N, 2, this);
6192  }
6193
6194  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6195
6196  dbgs() << "\n\n";
6197}
6198
6199void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6200  print_types(OS, G);
6201  print_details(OS, G);
6202}
6203
6204typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6205static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6206                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6207  if (!once.insert(N))          // If we've been here before, return now.
6208    return;
6209
6210  // Dump the current SDNode, but don't end the line yet.
6211  OS << std::string(indent, ' ');
6212  N->printr(OS, G);
6213
6214  // Having printed this SDNode, walk the children:
6215  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6216    const SDNode *child = N->getOperand(i).getNode();
6217
6218    if (i) OS << ",";
6219    OS << " ";
6220
6221    if (child->getNumOperands() == 0) {
6222      // This child has no grandchildren; print it inline right here.
6223      child->printr(OS, G);
6224      once.insert(child);
6225    } else {         // Just the address. FIXME: also print the child's opcode.
6226      OS << (void*)child;
6227      if (unsigned RN = N->getOperand(i).getResNo())
6228        OS << ":" << RN;
6229    }
6230  }
6231
6232  OS << "\n";
6233
6234  // Dump children that have grandchildren on their own line(s).
6235  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6236    const SDNode *child = N->getOperand(i).getNode();
6237    DumpNodesr(OS, child, indent+2, G, once);
6238  }
6239}
6240
6241void SDNode::dumpr() const {
6242  VisitedSDNodeSet once;
6243  DumpNodesr(dbgs(), this, 0, 0, once);
6244}
6245
6246void SDNode::dumpr(const SelectionDAG *G) const {
6247  VisitedSDNodeSet once;
6248  DumpNodesr(dbgs(), this, 0, G, once);
6249}
6250
6251
6252// getAddressSpace - Return the address space this GlobalAddress belongs to.
6253unsigned GlobalAddressSDNode::getAddressSpace() const {
6254  return getGlobal()->getType()->getAddressSpace();
6255}
6256
6257
6258const Type *ConstantPoolSDNode::getType() const {
6259  if (isMachineConstantPoolEntry())
6260    return Val.MachineCPVal->getType();
6261  return Val.ConstVal->getType();
6262}
6263
6264bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6265                                        APInt &SplatUndef,
6266                                        unsigned &SplatBitSize,
6267                                        bool &HasAnyUndefs,
6268                                        unsigned MinSplatBits,
6269                                        bool isBigEndian) {
6270  EVT VT = getValueType(0);
6271  assert(VT.isVector() && "Expected a vector type");
6272  unsigned sz = VT.getSizeInBits();
6273  if (MinSplatBits > sz)
6274    return false;
6275
6276  SplatValue = APInt(sz, 0);
6277  SplatUndef = APInt(sz, 0);
6278
6279  // Get the bits.  Bits with undefined values (when the corresponding element
6280  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6281  // in SplatValue.  If any of the values are not constant, give up and return
6282  // false.
6283  unsigned int nOps = getNumOperands();
6284  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6285  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6286
6287  for (unsigned j = 0; j < nOps; ++j) {
6288    unsigned i = isBigEndian ? nOps-1-j : j;
6289    SDValue OpVal = getOperand(i);
6290    unsigned BitPos = j * EltBitSize;
6291
6292    if (OpVal.getOpcode() == ISD::UNDEF)
6293      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6294    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6295      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6296                     zextOrTrunc(sz) << BitPos);
6297    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6298      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6299     else
6300      return false;
6301  }
6302
6303  // The build_vector is all constants or undefs.  Find the smallest element
6304  // size that splats the vector.
6305
6306  HasAnyUndefs = (SplatUndef != 0);
6307  while (sz > 8) {
6308
6309    unsigned HalfSize = sz / 2;
6310    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6311    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6312    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6313    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6314
6315    // If the two halves do not match (ignoring undef bits), stop here.
6316    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6317        MinSplatBits > HalfSize)
6318      break;
6319
6320    SplatValue = HighValue | LowValue;
6321    SplatUndef = HighUndef & LowUndef;
6322
6323    sz = HalfSize;
6324  }
6325
6326  SplatBitSize = sz;
6327  return true;
6328}
6329
6330bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6331  // Find the first non-undef value in the shuffle mask.
6332  unsigned i, e;
6333  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6334    /* search */;
6335
6336  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6337
6338  // Make sure all remaining elements are either undef or the same as the first
6339  // non-undef value.
6340  for (int Idx = Mask[i]; i != e; ++i)
6341    if (Mask[i] >= 0 && Mask[i] != Idx)
6342      return false;
6343  return true;
6344}
6345
6346static void checkForCyclesHelper(const SDNode *N,
6347                                 std::set<const SDNode *> &visited,
6348                                 std::set<const SDNode *> &checked) {
6349  if (checked.find(N) != checked.end())
6350    return;
6351
6352  if (visited.find(N) != visited.end()) {
6353    dbgs() << "Offending node:\n";
6354    N->dumprFull();
6355    assert(0 && "Detected cycle in SelectionDAG");
6356  }
6357
6358  std::set<const SDNode*>::iterator i;
6359  bool inserted;
6360
6361  tie(i, inserted) = visited.insert(N);
6362  assert(inserted && "Missed cycle");
6363
6364  for(unsigned i = 0; i < N->getNumOperands(); ++i) {
6365    checkForCyclesHelper(N->getOperand(i).getNode(), visited, checked);
6366  }
6367  visited.erase(i);
6368  checked.insert(N);
6369}
6370
6371void llvm::checkForCycles(const llvm::SDNode *N) {
6372#ifdef XDEBUG
6373  assert(N && "Checking nonexistant SDNode");
6374  std::set<const SDNode *> visited;
6375  std::set<const SDNode *> checked;
6376  checkForCyclesHelper(N, visited, checked);
6377#endif
6378}
6379
6380void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6381  checkForCycles(DAG->getRoot().getNode());
6382}
6383