SelectionDAG.cpp revision a30b7d2c707b5720691f7aea0652e37bd333d3af
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetSelectionDAGInfo.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetIntrinsicInfo.h"
40#include "llvm/Target/TargetMachine.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/ManagedStatic.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/Support/Mutex.h"
48#include "llvm/ADT/SetVector.h"
49#include "llvm/ADT/SmallPtrSet.h"
50#include "llvm/ADT/SmallSet.h"
51#include "llvm/ADT/SmallVector.h"
52#include "llvm/ADT/StringExtras.h"
53#include <algorithm>
54#include <cmath>
55using namespace llvm;
56
57/// makeVTList - Return an instance of the SDVTList struct initialized with the
58/// specified members.
59static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
60  SDVTList Res = {VTs, NumVTs};
61  return Res;
62}
63
64static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
65  switch (VT.getSimpleVT().SimpleTy) {
66  default: llvm_unreachable("Unknown FP format");
67  case MVT::f32:     return &APFloat::IEEEsingle;
68  case MVT::f64:     return &APFloat::IEEEdouble;
69  case MVT::f80:     return &APFloat::x87DoubleExtended;
70  case MVT::f128:    return &APFloat::IEEEquad;
71  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
72  }
73}
74
75SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
76
77//===----------------------------------------------------------------------===//
78//                              ConstantFPSDNode Class
79//===----------------------------------------------------------------------===//
80
81/// isExactlyValue - We don't rely on operator== working on double values, as
82/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
83/// As such, this method can be used to do an exact bit-for-bit comparison of
84/// two floating point values.
85bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
86  return getValueAPF().bitwiseIsEqual(V);
87}
88
89bool ConstantFPSDNode::isValueValidForType(EVT VT,
90                                           const APFloat& Val) {
91  assert(VT.isFloatingPoint() && "Can only convert between FP types");
92
93  // PPC long double cannot be converted to any other type.
94  if (VT == MVT::ppcf128 ||
95      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
96    return false;
97
98  // convert modifies in place, so make a copy.
99  APFloat Val2 = APFloat(Val);
100  bool losesInfo;
101  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
102                      &losesInfo);
103  return !losesInfo;
104}
105
106//===----------------------------------------------------------------------===//
107//                              ISD Namespace
108//===----------------------------------------------------------------------===//
109
110/// isBuildVectorAllOnes - Return true if the specified node is a
111/// BUILD_VECTOR where all of the elements are ~0 or undef.
112bool ISD::isBuildVectorAllOnes(const SDNode *N) {
113  // Look through a bit convert.
114  if (N->getOpcode() == ISD::BITCAST)
115    N = N->getOperand(0).getNode();
116
117  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118
119  unsigned i = 0, e = N->getNumOperands();
120
121  // Skip over all of the undef values.
122  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
123    ++i;
124
125  // Do not accept an all-undef vector.
126  if (i == e) return false;
127
128  // Do not accept build_vectors that aren't all constants or which have non-~0
129  // elements.
130  SDValue NotZero = N->getOperand(i);
131  if (isa<ConstantSDNode>(NotZero)) {
132    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
133      return false;
134  } else if (isa<ConstantFPSDNode>(NotZero)) {
135    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
136                bitcastToAPInt().isAllOnesValue())
137      return false;
138  } else
139    return false;
140
141  // Okay, we have at least one ~0 value, check to see if the rest match or are
142  // undefs.
143  for (++i; i != e; ++i)
144    if (N->getOperand(i) != NotZero &&
145        N->getOperand(i).getOpcode() != ISD::UNDEF)
146      return false;
147  return true;
148}
149
150
151/// isBuildVectorAllZeros - Return true if the specified node is a
152/// BUILD_VECTOR where all of the elements are 0 or undef.
153bool ISD::isBuildVectorAllZeros(const SDNode *N) {
154  // Look through a bit convert.
155  if (N->getOpcode() == ISD::BITCAST)
156    N = N->getOperand(0).getNode();
157
158  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
159
160  unsigned i = 0, e = N->getNumOperands();
161
162  // Skip over all of the undef values.
163  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
164    ++i;
165
166  // Do not accept an all-undef vector.
167  if (i == e) return false;
168
169  // Do not accept build_vectors that aren't all constants or which have non-0
170  // elements.
171  SDValue Zero = N->getOperand(i);
172  if (isa<ConstantSDNode>(Zero)) {
173    if (!cast<ConstantSDNode>(Zero)->isNullValue())
174      return false;
175  } else if (isa<ConstantFPSDNode>(Zero)) {
176    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
177      return false;
178  } else
179    return false;
180
181  // Okay, we have at least one 0 value, check to see if the rest match or are
182  // undefs.
183  for (++i; i != e; ++i)
184    if (N->getOperand(i) != Zero &&
185        N->getOperand(i).getOpcode() != ISD::UNDEF)
186      return false;
187  return true;
188}
189
190/// isScalarToVector - Return true if the specified node is a
191/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
192/// element is not an undef.
193bool ISD::isScalarToVector(const SDNode *N) {
194  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
195    return true;
196
197  if (N->getOpcode() != ISD::BUILD_VECTOR)
198    return false;
199  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
200    return false;
201  unsigned NumElems = N->getNumOperands();
202  if (NumElems == 1)
203    return false;
204  for (unsigned i = 1; i < NumElems; ++i) {
205    SDValue V = N->getOperand(i);
206    if (V.getOpcode() != ISD::UNDEF)
207      return false;
208  }
209  return true;
210}
211
212/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
213/// when given the operation for (X op Y).
214ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
215  // To perform this operation, we just need to swap the L and G bits of the
216  // operation.
217  unsigned OldL = (Operation >> 2) & 1;
218  unsigned OldG = (Operation >> 1) & 1;
219  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
220                       (OldL << 1) |       // New G bit
221                       (OldG << 2));       // New L bit.
222}
223
224/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
225/// 'op' is a valid SetCC operation.
226ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
227  unsigned Operation = Op;
228  if (isInteger)
229    Operation ^= 7;   // Flip L, G, E bits, but not U.
230  else
231    Operation ^= 15;  // Flip all of the condition bits.
232
233  if (Operation > ISD::SETTRUE2)
234    Operation &= ~8;  // Don't let N and U bits get set.
235
236  return ISD::CondCode(Operation);
237}
238
239
240/// isSignedOp - For an integer comparison, return 1 if the comparison is a
241/// signed operation and 2 if the result is an unsigned comparison.  Return zero
242/// if the operation does not depend on the sign of the input (setne and seteq).
243static int isSignedOp(ISD::CondCode Opcode) {
244  switch (Opcode) {
245  default: llvm_unreachable("Illegal integer setcc operation!");
246  case ISD::SETEQ:
247  case ISD::SETNE: return 0;
248  case ISD::SETLT:
249  case ISD::SETLE:
250  case ISD::SETGT:
251  case ISD::SETGE: return 1;
252  case ISD::SETULT:
253  case ISD::SETULE:
254  case ISD::SETUGT:
255  case ISD::SETUGE: return 2;
256  }
257}
258
259/// getSetCCOrOperation - Return the result of a logical OR between different
260/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
261/// returns SETCC_INVALID if it is not possible to represent the resultant
262/// comparison.
263ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
264                                       bool isInteger) {
265  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
266    // Cannot fold a signed integer setcc with an unsigned integer setcc.
267    return ISD::SETCC_INVALID;
268
269  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
270
271  // If the N and U bits get set then the resultant comparison DOES suddenly
272  // care about orderedness, and is true when ordered.
273  if (Op > ISD::SETTRUE2)
274    Op &= ~16;     // Clear the U bit if the N bit is set.
275
276  // Canonicalize illegal integer setcc's.
277  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
278    Op = ISD::SETNE;
279
280  return ISD::CondCode(Op);
281}
282
283/// getSetCCAndOperation - Return the result of a logical AND between different
284/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
285/// function returns zero if it is not possible to represent the resultant
286/// comparison.
287ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
288                                        bool isInteger) {
289  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
290    // Cannot fold a signed setcc with an unsigned setcc.
291    return ISD::SETCC_INVALID;
292
293  // Combine all of the condition bits.
294  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
295
296  // Canonicalize illegal integer setcc's.
297  if (isInteger) {
298    switch (Result) {
299    default: break;
300    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
301    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
302    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
303    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
304    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
305    }
306  }
307
308  return Result;
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              const SDValue *Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->getNode());
333    ID.AddInteger(Ops->getResNo());
334  }
335}
336
337/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338///
339static void AddNodeIDOperands(FoldingSetNodeID &ID,
340                              const SDUse *Ops, unsigned NumOps) {
341  for (; NumOps; --NumOps, ++Ops) {
342    ID.AddPointer(Ops->getNode());
343    ID.AddInteger(Ops->getResNo());
344  }
345}
346
347static void AddNodeIDNode(FoldingSetNodeID &ID,
348                          unsigned short OpC, SDVTList VTList,
349                          const SDValue *OpList, unsigned N) {
350  AddNodeIDOpcode(ID, OpC);
351  AddNodeIDValueTypes(ID, VTList);
352  AddNodeIDOperands(ID, OpList, N);
353}
354
355/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
356/// the NodeID data.
357static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
358  switch (N->getOpcode()) {
359  case ISD::TargetExternalSymbol:
360  case ISD::ExternalSymbol:
361    llvm_unreachable("Should only be used on nodes with operands");
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::TargetConstant:
364  case ISD::Constant:
365    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
366    break;
367  case ISD::TargetConstantFP:
368  case ISD::ConstantFP: {
369    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
370    break;
371  }
372  case ISD::TargetGlobalAddress:
373  case ISD::GlobalAddress:
374  case ISD::TargetGlobalTLSAddress:
375  case ISD::GlobalTLSAddress: {
376    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
377    ID.AddPointer(GA->getGlobal());
378    ID.AddInteger(GA->getOffset());
379    ID.AddInteger(GA->getTargetFlags());
380    break;
381  }
382  case ISD::BasicBlock:
383    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
384    break;
385  case ISD::Register:
386    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
387    break;
388
389  case ISD::SRCVALUE:
390    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
391    break;
392  case ISD::FrameIndex:
393  case ISD::TargetFrameIndex:
394    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
395    break;
396  case ISD::JumpTable:
397  case ISD::TargetJumpTable:
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
399    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
400    break;
401  case ISD::ConstantPool:
402  case ISD::TargetConstantPool: {
403    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
404    ID.AddInteger(CP->getAlignment());
405    ID.AddInteger(CP->getOffset());
406    if (CP->isMachineConstantPoolEntry())
407      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
408    else
409      ID.AddPointer(CP->getConstVal());
410    ID.AddInteger(CP->getTargetFlags());
411    break;
412  }
413  case ISD::LOAD: {
414    const LoadSDNode *LD = cast<LoadSDNode>(N);
415    ID.AddInteger(LD->getMemoryVT().getRawBits());
416    ID.AddInteger(LD->getRawSubclassData());
417    break;
418  }
419  case ISD::STORE: {
420    const StoreSDNode *ST = cast<StoreSDNode>(N);
421    ID.AddInteger(ST->getMemoryVT().getRawBits());
422    ID.AddInteger(ST->getRawSubclassData());
423    break;
424  }
425  case ISD::ATOMIC_CMP_SWAP:
426  case ISD::ATOMIC_SWAP:
427  case ISD::ATOMIC_LOAD_ADD:
428  case ISD::ATOMIC_LOAD_SUB:
429  case ISD::ATOMIC_LOAD_AND:
430  case ISD::ATOMIC_LOAD_OR:
431  case ISD::ATOMIC_LOAD_XOR:
432  case ISD::ATOMIC_LOAD_NAND:
433  case ISD::ATOMIC_LOAD_MIN:
434  case ISD::ATOMIC_LOAD_MAX:
435  case ISD::ATOMIC_LOAD_UMIN:
436  case ISD::ATOMIC_LOAD_UMAX: {
437    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
438    ID.AddInteger(AT->getMemoryVT().getRawBits());
439    ID.AddInteger(AT->getRawSubclassData());
440    break;
441  }
442  case ISD::VECTOR_SHUFFLE: {
443    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
444    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
445         i != e; ++i)
446      ID.AddInteger(SVN->getMaskElt(i));
447    break;
448  }
449  case ISD::TargetBlockAddress:
450  case ISD::BlockAddress: {
451    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
452    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
453    break;
454  }
455  } // end switch (N->getOpcode())
456}
457
458/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
459/// data.
460static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
461  AddNodeIDOpcode(ID, N->getOpcode());
462  // Add the return value info.
463  AddNodeIDValueTypes(ID, N->getVTList());
464  // Add the operand info.
465  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
466
467  // Handle SDNode leafs with special info.
468  AddNodeIDCustom(ID, N);
469}
470
471/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
472/// the CSE map that carries volatility, temporalness, indexing mode, and
473/// extension/truncation information.
474///
475static inline unsigned
476encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
477                     bool isNonTemporal) {
478  assert((ConvType & 3) == ConvType &&
479         "ConvType may not require more than 2 bits!");
480  assert((AM & 7) == AM &&
481         "AM may not require more than 3 bits!");
482  return ConvType |
483         (AM << 2) |
484         (isVolatile << 5) |
485         (isNonTemporal << 6);
486}
487
488//===----------------------------------------------------------------------===//
489//                              SelectionDAG Class
490//===----------------------------------------------------------------------===//
491
492/// doNotCSE - Return true if CSE should not be performed for this node.
493static bool doNotCSE(SDNode *N) {
494  if (N->getValueType(0) == MVT::Flag)
495    return true; // Never CSE anything that produces a flag.
496
497  switch (N->getOpcode()) {
498  default: break;
499  case ISD::HANDLENODE:
500  case ISD::EH_LABEL:
501    return true;   // Never CSE these nodes.
502  }
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return true; // Never CSE anything that produces a flag.
508
509  return false;
510}
511
512/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513/// SelectionDAG.
514void SelectionDAG::RemoveDeadNodes() {
515  // Create a dummy node (which is not added to allnodes), that adds a reference
516  // to the root node, preventing it from being deleted.
517  HandleSDNode Dummy(getRoot());
518
519  SmallVector<SDNode*, 128> DeadNodes;
520
521  // Add all obviously-dead nodes to the DeadNodes worklist.
522  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523    if (I->use_empty())
524      DeadNodes.push_back(I);
525
526  RemoveDeadNodes(DeadNodes);
527
528  // If the root changed (e.g. it was a dead load, update the root).
529  setRoot(Dummy.getValue());
530}
531
532/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533/// given list, and any nodes that become unreachable as a result.
534void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535                                   DAGUpdateListener *UpdateListener) {
536
537  // Process the worklist, deleting the nodes and adding their uses to the
538  // worklist.
539  while (!DeadNodes.empty()) {
540    SDNode *N = DeadNodes.pop_back_val();
541
542    if (UpdateListener)
543      UpdateListener->NodeDeleted(N, 0);
544
545    // Take the node out of the appropriate CSE map.
546    RemoveNodeFromCSEMaps(N);
547
548    // Next, brutally remove the operand list.  This is safe to do, as there are
549    // no cycles in the graph.
550    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
551      SDUse &Use = *I++;
552      SDNode *Operand = Use.getNode();
553      Use.set(SDValue());
554
555      // Now that we removed this operand, see if there are no uses of it left.
556      if (Operand->use_empty())
557        DeadNodes.push_back(Operand);
558    }
559
560    DeallocateNode(N);
561  }
562}
563
564void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
565  SmallVector<SDNode*, 16> DeadNodes(1, N);
566  RemoveDeadNodes(DeadNodes, UpdateListener);
567}
568
569void SelectionDAG::DeleteNode(SDNode *N) {
570  // First take this out of the appropriate CSE map.
571  RemoveNodeFromCSEMaps(N);
572
573  // Finally, remove uses due to operands of this node, remove from the
574  // AllNodes list, and delete the node.
575  DeleteNodeNotInCSEMaps(N);
576}
577
578void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
579  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
580  assert(N->use_empty() && "Cannot delete a node that is not dead!");
581
582  // Drop all of the operands and decrement used node's use counts.
583  N->DropOperands();
584
585  DeallocateNode(N);
586}
587
588void SelectionDAG::DeallocateNode(SDNode *N) {
589  if (N->OperandsNeedDelete)
590    delete[] N->OperandList;
591
592  // Set the opcode to DELETED_NODE to help catch bugs when node
593  // memory is reallocated.
594  N->NodeType = ISD::DELETED_NODE;
595
596  NodeAllocator.Deallocate(AllNodes.remove(N));
597
598  // Remove the ordering of this node.
599  Ordering->remove(N);
600
601  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
602  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
603  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
604    DbgVals[i]->setIsInvalidated();
605}
606
607/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
608/// correspond to it.  This is useful when we're about to delete or repurpose
609/// the node.  We don't want future request for structurally identical nodes
610/// to return N anymore.
611bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
612  bool Erased = false;
613  switch (N->getOpcode()) {
614  case ISD::HANDLENODE: return false;  // noop.
615  case ISD::CONDCODE:
616    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
617           "Cond code doesn't exist!");
618    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
619    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
620    break;
621  case ISD::ExternalSymbol:
622    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
623    break;
624  case ISD::TargetExternalSymbol: {
625    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
626    Erased = TargetExternalSymbols.erase(
627               std::pair<std::string,unsigned char>(ESN->getSymbol(),
628                                                    ESN->getTargetFlags()));
629    break;
630  }
631  case ISD::VALUETYPE: {
632    EVT VT = cast<VTSDNode>(N)->getVT();
633    if (VT.isExtended()) {
634      Erased = ExtendedValueTypeNodes.erase(VT);
635    } else {
636      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
637      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
638    }
639    break;
640  }
641  default:
642    // Remove it from the CSE Map.
643    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
644    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
645    Erased = CSEMap.RemoveNode(N);
646    break;
647  }
648#ifndef NDEBUG
649  // Verify that the node was actually in one of the CSE maps, unless it has a
650  // flag result (which cannot be CSE'd) or is one of the special cases that are
651  // not subject to CSE.
652  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
653      !N->isMachineOpcode() && !doNotCSE(N)) {
654    N->dump(this);
655    dbgs() << "\n";
656    llvm_unreachable("Node is not in map!");
657  }
658#endif
659  return Erased;
660}
661
662/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
663/// maps and modified in place. Add it back to the CSE maps, unless an identical
664/// node already exists, in which case transfer all its users to the existing
665/// node. This transfer can potentially trigger recursive merging.
666///
667void
668SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
669                                       DAGUpdateListener *UpdateListener) {
670  // For node types that aren't CSE'd, just act as if no identical node
671  // already exists.
672  if (!doNotCSE(N)) {
673    SDNode *Existing = CSEMap.GetOrInsertNode(N);
674    if (Existing != N) {
675      // If there was already an existing matching node, use ReplaceAllUsesWith
676      // to replace the dead one with the existing one.  This can cause
677      // recursive merging of other unrelated nodes down the line.
678      ReplaceAllUsesWith(N, Existing, UpdateListener);
679
680      // N is now dead.  Inform the listener if it exists and delete it.
681      if (UpdateListener)
682        UpdateListener->NodeDeleted(N, Existing);
683      DeleteNodeNotInCSEMaps(N);
684      return;
685    }
686  }
687
688  // If the node doesn't already exist, we updated it.  Inform a listener if
689  // it exists.
690  if (UpdateListener)
691    UpdateListener->NodeUpdated(N);
692}
693
694/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
695/// were replaced with those specified.  If this node is never memoized,
696/// return null, otherwise return a pointer to the slot it would take.  If a
697/// node already exists with these operands, the slot will be non-null.
698SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
699                                           void *&InsertPos) {
700  if (doNotCSE(N))
701    return 0;
702
703  SDValue Ops[] = { Op };
704  FoldingSetNodeID ID;
705  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
706  AddNodeIDCustom(ID, N);
707  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
708  return Node;
709}
710
711/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
712/// were replaced with those specified.  If this node is never memoized,
713/// return null, otherwise return a pointer to the slot it would take.  If a
714/// node already exists with these operands, the slot will be non-null.
715SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
716                                           SDValue Op1, SDValue Op2,
717                                           void *&InsertPos) {
718  if (doNotCSE(N))
719    return 0;
720
721  SDValue Ops[] = { Op1, Op2 };
722  FoldingSetNodeID ID;
723  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
724  AddNodeIDCustom(ID, N);
725  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
726  return Node;
727}
728
729
730/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
731/// were replaced with those specified.  If this node is never memoized,
732/// return null, otherwise return a pointer to the slot it would take.  If a
733/// node already exists with these operands, the slot will be non-null.
734SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
735                                           const SDValue *Ops,unsigned NumOps,
736                                           void *&InsertPos) {
737  if (doNotCSE(N))
738    return 0;
739
740  FoldingSetNodeID ID;
741  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
742  AddNodeIDCustom(ID, N);
743  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
744  return Node;
745}
746
747#ifndef NDEBUG
748/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
749static void VerifyNodeCommon(SDNode *N) {
750  switch (N->getOpcode()) {
751  default:
752    break;
753  case ISD::BUILD_PAIR: {
754    EVT VT = N->getValueType(0);
755    assert(N->getNumValues() == 1 && "Too many results!");
756    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
757           "Wrong return type!");
758    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
759    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
760           "Mismatched operand types!");
761    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
762           "Wrong operand type!");
763    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
764           "Wrong return type size");
765    break;
766  }
767  case ISD::BUILD_VECTOR: {
768    assert(N->getNumValues() == 1 && "Too many results!");
769    assert(N->getValueType(0).isVector() && "Wrong return type!");
770    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
771           "Wrong number of operands!");
772    EVT EltVT = N->getValueType(0).getVectorElementType();
773    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
774      assert((I->getValueType() == EltVT ||
775             (EltVT.isInteger() && I->getValueType().isInteger() &&
776              EltVT.bitsLE(I->getValueType()))) &&
777            "Wrong operand type!");
778    break;
779  }
780  }
781}
782
783/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
784static void VerifySDNode(SDNode *N) {
785  // The SDNode allocators cannot be used to allocate nodes with fields that are
786  // not present in an SDNode!
787  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
788  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
789  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
790  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
791  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
792  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
793  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
794  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
795  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
796  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
797  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
798  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
799  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
800  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
801  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
802  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
803  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
804  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
805  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
806
807  VerifyNodeCommon(N);
808}
809
810/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
811/// invalid.
812static void VerifyMachineNode(SDNode *N) {
813  // The MachineNode allocators cannot be used to allocate nodes with fields
814  // that are not present in a MachineNode!
815  // Currently there are no such nodes.
816
817  VerifyNodeCommon(N);
818}
819#endif // NDEBUG
820
821/// getEVTAlignment - Compute the default alignment value for the
822/// given type.
823///
824unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
825  const Type *Ty = VT == MVT::iPTR ?
826                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
827                   VT.getTypeForEVT(*getContext());
828
829  return TLI.getTargetData()->getABITypeAlignment(Ty);
830}
831
832// EntryNode could meaningfully have debug info if we can find it...
833SelectionDAG::SelectionDAG(const TargetMachine &tm)
834  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
835    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
836    Root(getEntryNode()), Ordering(0) {
837  AllNodes.push_back(&EntryNode);
838  Ordering = new SDNodeOrdering();
839  DbgInfo = new SDDbgInfo();
840}
841
842void SelectionDAG::init(MachineFunction &mf) {
843  MF = &mf;
844  Context = &mf.getFunction()->getContext();
845}
846
847SelectionDAG::~SelectionDAG() {
848  allnodes_clear();
849  delete Ordering;
850  delete DbgInfo;
851}
852
853void SelectionDAG::allnodes_clear() {
854  assert(&*AllNodes.begin() == &EntryNode);
855  AllNodes.remove(AllNodes.begin());
856  while (!AllNodes.empty())
857    DeallocateNode(AllNodes.begin());
858}
859
860void SelectionDAG::clear() {
861  allnodes_clear();
862  OperandAllocator.Reset();
863  CSEMap.clear();
864
865  ExtendedValueTypeNodes.clear();
866  ExternalSymbols.clear();
867  TargetExternalSymbols.clear();
868  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
869            static_cast<CondCodeSDNode*>(0));
870  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
871            static_cast<SDNode*>(0));
872
873  EntryNode.UseList = 0;
874  AllNodes.push_back(&EntryNode);
875  Root = getEntryNode();
876  Ordering->clear();
877  DbgInfo->clear();
878}
879
880SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
881  return VT.bitsGT(Op.getValueType()) ?
882    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
883    getNode(ISD::TRUNCATE, DL, VT, Op);
884}
885
886SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
887  return VT.bitsGT(Op.getValueType()) ?
888    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
889    getNode(ISD::TRUNCATE, DL, VT, Op);
890}
891
892SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
893  assert(!VT.isVector() &&
894         "getZeroExtendInReg should use the vector element type instead of "
895         "the vector type!");
896  if (Op.getValueType() == VT) return Op;
897  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
898  APInt Imm = APInt::getLowBitsSet(BitWidth,
899                                   VT.getSizeInBits());
900  return getNode(ISD::AND, DL, Op.getValueType(), Op,
901                 getConstant(Imm, Op.getValueType()));
902}
903
904/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
905///
906SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
907  EVT EltVT = VT.getScalarType();
908  SDValue NegOne =
909    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
910  return getNode(ISD::XOR, DL, VT, Val, NegOne);
911}
912
913SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
914  EVT EltVT = VT.getScalarType();
915  assert((EltVT.getSizeInBits() >= 64 ||
916         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
917         "getConstant with a uint64_t value that doesn't fit in the type!");
918  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
919}
920
921SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
922  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
923}
924
925SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
926  assert(VT.isInteger() && "Cannot create FP integer constant!");
927
928  EVT EltVT = VT.getScalarType();
929  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
930         "APInt size does not match type size!");
931
932  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
933  FoldingSetNodeID ID;
934  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
935  ID.AddPointer(&Val);
936  void *IP = 0;
937  SDNode *N = NULL;
938  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
939    if (!VT.isVector())
940      return SDValue(N, 0);
941
942  if (!N) {
943    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
944    CSEMap.InsertNode(N, IP);
945    AllNodes.push_back(N);
946  }
947
948  SDValue Result(N, 0);
949  if (VT.isVector()) {
950    SmallVector<SDValue, 8> Ops;
951    Ops.assign(VT.getVectorNumElements(), Result);
952    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
953  }
954  return Result;
955}
956
957SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
958  return getConstant(Val, TLI.getPointerTy(), isTarget);
959}
960
961
962SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
963  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
964}
965
966SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
967  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
968
969  EVT EltVT = VT.getScalarType();
970
971  // Do the map lookup using the actual bit pattern for the floating point
972  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
973  // we don't have issues with SNANs.
974  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
975  FoldingSetNodeID ID;
976  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
977  ID.AddPointer(&V);
978  void *IP = 0;
979  SDNode *N = NULL;
980  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
981    if (!VT.isVector())
982      return SDValue(N, 0);
983
984  if (!N) {
985    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
986    CSEMap.InsertNode(N, IP);
987    AllNodes.push_back(N);
988  }
989
990  SDValue Result(N, 0);
991  if (VT.isVector()) {
992    SmallVector<SDValue, 8> Ops;
993    Ops.assign(VT.getVectorNumElements(), Result);
994    // FIXME DebugLoc info might be appropriate here
995    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
996  }
997  return Result;
998}
999
1000SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1001  EVT EltVT = VT.getScalarType();
1002  if (EltVT==MVT::f32)
1003    return getConstantFP(APFloat((float)Val), VT, isTarget);
1004  else if (EltVT==MVT::f64)
1005    return getConstantFP(APFloat(Val), VT, isTarget);
1006  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1007    bool ignored;
1008    APFloat apf = APFloat(Val);
1009    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1010                &ignored);
1011    return getConstantFP(apf, VT, isTarget);
1012  } else {
1013    assert(0 && "Unsupported type in getConstantFP");
1014    return SDValue();
1015  }
1016}
1017
1018SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1019                                       EVT VT, int64_t Offset,
1020                                       bool isTargetGA,
1021                                       unsigned char TargetFlags) {
1022  assert((TargetFlags == 0 || isTargetGA) &&
1023         "Cannot set target flags on target-independent globals");
1024
1025  // Truncate (with sign-extension) the offset value to the pointer size.
1026  EVT PTy = TLI.getPointerTy();
1027  unsigned BitWidth = PTy.getSizeInBits();
1028  if (BitWidth < 64)
1029    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1030
1031  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1032  if (!GVar) {
1033    // If GV is an alias then use the aliasee for determining thread-localness.
1034    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1035      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1036  }
1037
1038  unsigned Opc;
1039  if (GVar && GVar->isThreadLocal())
1040    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1041  else
1042    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1043
1044  FoldingSetNodeID ID;
1045  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1046  ID.AddPointer(GV);
1047  ID.AddInteger(Offset);
1048  ID.AddInteger(TargetFlags);
1049  void *IP = 0;
1050  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1051    return SDValue(E, 0);
1052
1053  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1054                                                      Offset, TargetFlags);
1055  CSEMap.InsertNode(N, IP);
1056  AllNodes.push_back(N);
1057  return SDValue(N, 0);
1058}
1059
1060SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1061  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1062  FoldingSetNodeID ID;
1063  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1064  ID.AddInteger(FI);
1065  void *IP = 0;
1066  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1067    return SDValue(E, 0);
1068
1069  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1070  CSEMap.InsertNode(N, IP);
1071  AllNodes.push_back(N);
1072  return SDValue(N, 0);
1073}
1074
1075SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1076                                   unsigned char TargetFlags) {
1077  assert((TargetFlags == 0 || isTarget) &&
1078         "Cannot set target flags on target-independent jump tables");
1079  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1080  FoldingSetNodeID ID;
1081  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1082  ID.AddInteger(JTI);
1083  ID.AddInteger(TargetFlags);
1084  void *IP = 0;
1085  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1086    return SDValue(E, 0);
1087
1088  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1089                                                  TargetFlags);
1090  CSEMap.InsertNode(N, IP);
1091  AllNodes.push_back(N);
1092  return SDValue(N, 0);
1093}
1094
1095SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1096                                      unsigned Alignment, int Offset,
1097                                      bool isTarget,
1098                                      unsigned char TargetFlags) {
1099  assert((TargetFlags == 0 || isTarget) &&
1100         "Cannot set target flags on target-independent globals");
1101  if (Alignment == 0)
1102    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1103  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1104  FoldingSetNodeID ID;
1105  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1106  ID.AddInteger(Alignment);
1107  ID.AddInteger(Offset);
1108  ID.AddPointer(C);
1109  ID.AddInteger(TargetFlags);
1110  void *IP = 0;
1111  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1112    return SDValue(E, 0);
1113
1114  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1115                                                     Alignment, TargetFlags);
1116  CSEMap.InsertNode(N, IP);
1117  AllNodes.push_back(N);
1118  return SDValue(N, 0);
1119}
1120
1121
1122SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1123                                      unsigned Alignment, int Offset,
1124                                      bool isTarget,
1125                                      unsigned char TargetFlags) {
1126  assert((TargetFlags == 0 || isTarget) &&
1127         "Cannot set target flags on target-independent globals");
1128  if (Alignment == 0)
1129    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1130  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1131  FoldingSetNodeID ID;
1132  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1133  ID.AddInteger(Alignment);
1134  ID.AddInteger(Offset);
1135  C->AddSelectionDAGCSEId(ID);
1136  ID.AddInteger(TargetFlags);
1137  void *IP = 0;
1138  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1139    return SDValue(E, 0);
1140
1141  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1142                                                     Alignment, TargetFlags);
1143  CSEMap.InsertNode(N, IP);
1144  AllNodes.push_back(N);
1145  return SDValue(N, 0);
1146}
1147
1148SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1149  FoldingSetNodeID ID;
1150  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1151  ID.AddPointer(MBB);
1152  void *IP = 0;
1153  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1154    return SDValue(E, 0);
1155
1156  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1157  CSEMap.InsertNode(N, IP);
1158  AllNodes.push_back(N);
1159  return SDValue(N, 0);
1160}
1161
1162SDValue SelectionDAG::getValueType(EVT VT) {
1163  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1164      ValueTypeNodes.size())
1165    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1166
1167  SDNode *&N = VT.isExtended() ?
1168    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1169
1170  if (N) return SDValue(N, 0);
1171  N = new (NodeAllocator) VTSDNode(VT);
1172  AllNodes.push_back(N);
1173  return SDValue(N, 0);
1174}
1175
1176SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1177  SDNode *&N = ExternalSymbols[Sym];
1178  if (N) return SDValue(N, 0);
1179  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1180  AllNodes.push_back(N);
1181  return SDValue(N, 0);
1182}
1183
1184SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1185                                              unsigned char TargetFlags) {
1186  SDNode *&N =
1187    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1188                                                               TargetFlags)];
1189  if (N) return SDValue(N, 0);
1190  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1191  AllNodes.push_back(N);
1192  return SDValue(N, 0);
1193}
1194
1195SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1196  if ((unsigned)Cond >= CondCodeNodes.size())
1197    CondCodeNodes.resize(Cond+1);
1198
1199  if (CondCodeNodes[Cond] == 0) {
1200    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1201    CondCodeNodes[Cond] = N;
1202    AllNodes.push_back(N);
1203  }
1204
1205  return SDValue(CondCodeNodes[Cond], 0);
1206}
1207
1208// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1209// the shuffle mask M that point at N1 to point at N2, and indices that point
1210// N2 to point at N1.
1211static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1212  std::swap(N1, N2);
1213  int NElts = M.size();
1214  for (int i = 0; i != NElts; ++i) {
1215    if (M[i] >= NElts)
1216      M[i] -= NElts;
1217    else if (M[i] >= 0)
1218      M[i] += NElts;
1219  }
1220}
1221
1222SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1223                                       SDValue N2, const int *Mask) {
1224  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1225  assert(VT.isVector() && N1.getValueType().isVector() &&
1226         "Vector Shuffle VTs must be a vectors");
1227  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1228         && "Vector Shuffle VTs must have same element type");
1229
1230  // Canonicalize shuffle undef, undef -> undef
1231  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1232    return getUNDEF(VT);
1233
1234  // Validate that all indices in Mask are within the range of the elements
1235  // input to the shuffle.
1236  unsigned NElts = VT.getVectorNumElements();
1237  SmallVector<int, 8> MaskVec;
1238  for (unsigned i = 0; i != NElts; ++i) {
1239    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1240    MaskVec.push_back(Mask[i]);
1241  }
1242
1243  // Canonicalize shuffle v, v -> v, undef
1244  if (N1 == N2) {
1245    N2 = getUNDEF(VT);
1246    for (unsigned i = 0; i != NElts; ++i)
1247      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1248  }
1249
1250  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1251  if (N1.getOpcode() == ISD::UNDEF)
1252    commuteShuffle(N1, N2, MaskVec);
1253
1254  // Canonicalize all index into lhs, -> shuffle lhs, undef
1255  // Canonicalize all index into rhs, -> shuffle rhs, undef
1256  bool AllLHS = true, AllRHS = true;
1257  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1258  for (unsigned i = 0; i != NElts; ++i) {
1259    if (MaskVec[i] >= (int)NElts) {
1260      if (N2Undef)
1261        MaskVec[i] = -1;
1262      else
1263        AllLHS = false;
1264    } else if (MaskVec[i] >= 0) {
1265      AllRHS = false;
1266    }
1267  }
1268  if (AllLHS && AllRHS)
1269    return getUNDEF(VT);
1270  if (AllLHS && !N2Undef)
1271    N2 = getUNDEF(VT);
1272  if (AllRHS) {
1273    N1 = getUNDEF(VT);
1274    commuteShuffle(N1, N2, MaskVec);
1275  }
1276
1277  // If Identity shuffle, or all shuffle in to undef, return that node.
1278  bool AllUndef = true;
1279  bool Identity = true;
1280  for (unsigned i = 0; i != NElts; ++i) {
1281    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1282    if (MaskVec[i] >= 0) AllUndef = false;
1283  }
1284  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1285    return N1;
1286  if (AllUndef)
1287    return getUNDEF(VT);
1288
1289  FoldingSetNodeID ID;
1290  SDValue Ops[2] = { N1, N2 };
1291  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1292  for (unsigned i = 0; i != NElts; ++i)
1293    ID.AddInteger(MaskVec[i]);
1294
1295  void* IP = 0;
1296  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1297    return SDValue(E, 0);
1298
1299  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1300  // SDNode doesn't have access to it.  This memory will be "leaked" when
1301  // the node is deallocated, but recovered when the NodeAllocator is released.
1302  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1303  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1304
1305  ShuffleVectorSDNode *N =
1306    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1307  CSEMap.InsertNode(N, IP);
1308  AllNodes.push_back(N);
1309  return SDValue(N, 0);
1310}
1311
1312SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1313                                       SDValue Val, SDValue DTy,
1314                                       SDValue STy, SDValue Rnd, SDValue Sat,
1315                                       ISD::CvtCode Code) {
1316  // If the src and dest types are the same and the conversion is between
1317  // integer types of the same sign or two floats, no conversion is necessary.
1318  if (DTy == STy &&
1319      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1320    return Val;
1321
1322  FoldingSetNodeID ID;
1323  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1324  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1325  void* IP = 0;
1326  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1327    return SDValue(E, 0);
1328
1329  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1330                                                           Code);
1331  CSEMap.InsertNode(N, IP);
1332  AllNodes.push_back(N);
1333  return SDValue(N, 0);
1334}
1335
1336SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1337  FoldingSetNodeID ID;
1338  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1339  ID.AddInteger(RegNo);
1340  void *IP = 0;
1341  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1342    return SDValue(E, 0);
1343
1344  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1345  CSEMap.InsertNode(N, IP);
1346  AllNodes.push_back(N);
1347  return SDValue(N, 0);
1348}
1349
1350SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1351  FoldingSetNodeID ID;
1352  SDValue Ops[] = { Root };
1353  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1354  ID.AddPointer(Label);
1355  void *IP = 0;
1356  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1357    return SDValue(E, 0);
1358
1359  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1360  CSEMap.InsertNode(N, IP);
1361  AllNodes.push_back(N);
1362  return SDValue(N, 0);
1363}
1364
1365
1366SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1367                                      bool isTarget,
1368                                      unsigned char TargetFlags) {
1369  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1370
1371  FoldingSetNodeID ID;
1372  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1373  ID.AddPointer(BA);
1374  ID.AddInteger(TargetFlags);
1375  void *IP = 0;
1376  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1377    return SDValue(E, 0);
1378
1379  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1380  CSEMap.InsertNode(N, IP);
1381  AllNodes.push_back(N);
1382  return SDValue(N, 0);
1383}
1384
1385SDValue SelectionDAG::getSrcValue(const Value *V) {
1386  assert((!V || V->getType()->isPointerTy()) &&
1387         "SrcValue is not a pointer?");
1388
1389  FoldingSetNodeID ID;
1390  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1391  ID.AddPointer(V);
1392
1393  void *IP = 0;
1394  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1395    return SDValue(E, 0);
1396
1397  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1398  CSEMap.InsertNode(N, IP);
1399  AllNodes.push_back(N);
1400  return SDValue(N, 0);
1401}
1402
1403/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1404SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1405  FoldingSetNodeID ID;
1406  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1407  ID.AddPointer(MD);
1408
1409  void *IP = 0;
1410  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1411    return SDValue(E, 0);
1412
1413  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1414  CSEMap.InsertNode(N, IP);
1415  AllNodes.push_back(N);
1416  return SDValue(N, 0);
1417}
1418
1419
1420/// getShiftAmountOperand - Return the specified value casted to
1421/// the target's desired shift amount type.
1422SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1423  EVT OpTy = Op.getValueType();
1424  MVT ShTy = TLI.getShiftAmountTy();
1425  if (OpTy == ShTy || OpTy.isVector()) return Op;
1426
1427  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1428  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1429}
1430
1431/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1432/// specified value type.
1433SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1434  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1435  unsigned ByteSize = VT.getStoreSize();
1436  const Type *Ty = VT.getTypeForEVT(*getContext());
1437  unsigned StackAlign =
1438  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1439
1440  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1441  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1442}
1443
1444/// CreateStackTemporary - Create a stack temporary suitable for holding
1445/// either of the specified value types.
1446SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1447  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1448                            VT2.getStoreSizeInBits())/8;
1449  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1450  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1451  const TargetData *TD = TLI.getTargetData();
1452  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1453                            TD->getPrefTypeAlignment(Ty2));
1454
1455  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1456  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1457  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1458}
1459
1460SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1461                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1462  // These setcc operations always fold.
1463  switch (Cond) {
1464  default: break;
1465  case ISD::SETFALSE:
1466  case ISD::SETFALSE2: return getConstant(0, VT);
1467  case ISD::SETTRUE:
1468  case ISD::SETTRUE2:  return getConstant(1, VT);
1469
1470  case ISD::SETOEQ:
1471  case ISD::SETOGT:
1472  case ISD::SETOGE:
1473  case ISD::SETOLT:
1474  case ISD::SETOLE:
1475  case ISD::SETONE:
1476  case ISD::SETO:
1477  case ISD::SETUO:
1478  case ISD::SETUEQ:
1479  case ISD::SETUNE:
1480    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1481    break;
1482  }
1483
1484  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1485    const APInt &C2 = N2C->getAPIntValue();
1486    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1487      const APInt &C1 = N1C->getAPIntValue();
1488
1489      switch (Cond) {
1490      default: llvm_unreachable("Unknown integer setcc!");
1491      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1492      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1493      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1494      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1495      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1496      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1497      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1498      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1499      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1500      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1501      }
1502    }
1503  }
1504  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1505    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1506      // No compile time operations on this type yet.
1507      if (N1C->getValueType(0) == MVT::ppcf128)
1508        return SDValue();
1509
1510      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1511      switch (Cond) {
1512      default: break;
1513      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1514                          return getUNDEF(VT);
1515                        // fall through
1516      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1517      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1518                          return getUNDEF(VT);
1519                        // fall through
1520      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1521                                           R==APFloat::cmpLessThan, VT);
1522      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1523                          return getUNDEF(VT);
1524                        // fall through
1525      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1526      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1527                          return getUNDEF(VT);
1528                        // fall through
1529      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1530      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1531                          return getUNDEF(VT);
1532                        // fall through
1533      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1534                                           R==APFloat::cmpEqual, VT);
1535      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1536                          return getUNDEF(VT);
1537                        // fall through
1538      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1539                                           R==APFloat::cmpEqual, VT);
1540      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1541      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1542      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1543                                           R==APFloat::cmpEqual, VT);
1544      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1545      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1546                                           R==APFloat::cmpLessThan, VT);
1547      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1548                                           R==APFloat::cmpUnordered, VT);
1549      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1550      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1551      }
1552    } else {
1553      // Ensure that the constant occurs on the RHS.
1554      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1555    }
1556  }
1557
1558  // Could not fold it.
1559  return SDValue();
1560}
1561
1562/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1563/// use this predicate to simplify operations downstream.
1564bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1565  // This predicate is not safe for vector operations.
1566  if (Op.getValueType().isVector())
1567    return false;
1568
1569  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1570  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1571}
1572
1573/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1574/// this predicate to simplify operations downstream.  Mask is known to be zero
1575/// for bits that V cannot have.
1576bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1577                                     unsigned Depth) const {
1578  APInt KnownZero, KnownOne;
1579  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1580  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1581  return (KnownZero & Mask) == Mask;
1582}
1583
1584/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1585/// known to be either zero or one and return them in the KnownZero/KnownOne
1586/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1587/// processing.
1588void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1589                                     APInt &KnownZero, APInt &KnownOne,
1590                                     unsigned Depth) const {
1591  unsigned BitWidth = Mask.getBitWidth();
1592  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1593         "Mask size mismatches value type size!");
1594
1595  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1596  if (Depth == 6 || Mask == 0)
1597    return;  // Limit search depth.
1598
1599  APInt KnownZero2, KnownOne2;
1600
1601  switch (Op.getOpcode()) {
1602  case ISD::Constant:
1603    // We know all of the bits for a constant!
1604    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1605    KnownZero = ~KnownOne & Mask;
1606    return;
1607  case ISD::AND:
1608    // If either the LHS or the RHS are Zero, the result is zero.
1609    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1610    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1611                      KnownZero2, KnownOne2, Depth+1);
1612    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1613    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1614
1615    // Output known-1 bits are only known if set in both the LHS & RHS.
1616    KnownOne &= KnownOne2;
1617    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1618    KnownZero |= KnownZero2;
1619    return;
1620  case ISD::OR:
1621    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1622    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1623                      KnownZero2, KnownOne2, Depth+1);
1624    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1625    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1626
1627    // Output known-0 bits are only known if clear in both the LHS & RHS.
1628    KnownZero &= KnownZero2;
1629    // Output known-1 are known to be set if set in either the LHS | RHS.
1630    KnownOne |= KnownOne2;
1631    return;
1632  case ISD::XOR: {
1633    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1634    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1635    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1636    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1637
1638    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1639    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1640    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1641    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1642    KnownZero = KnownZeroOut;
1643    return;
1644  }
1645  case ISD::MUL: {
1646    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1647    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1648    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1649    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1650    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1651
1652    // If low bits are zero in either operand, output low known-0 bits.
1653    // Also compute a conserative estimate for high known-0 bits.
1654    // More trickiness is possible, but this is sufficient for the
1655    // interesting case of alignment computation.
1656    KnownOne.clearAllBits();
1657    unsigned TrailZ = KnownZero.countTrailingOnes() +
1658                      KnownZero2.countTrailingOnes();
1659    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1660                               KnownZero2.countLeadingOnes(),
1661                               BitWidth) - BitWidth;
1662
1663    TrailZ = std::min(TrailZ, BitWidth);
1664    LeadZ = std::min(LeadZ, BitWidth);
1665    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1666                APInt::getHighBitsSet(BitWidth, LeadZ);
1667    KnownZero &= Mask;
1668    return;
1669  }
1670  case ISD::UDIV: {
1671    // For the purposes of computing leading zeros we can conservatively
1672    // treat a udiv as a logical right shift by the power of 2 known to
1673    // be less than the denominator.
1674    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1675    ComputeMaskedBits(Op.getOperand(0),
1676                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1677    unsigned LeadZ = KnownZero2.countLeadingOnes();
1678
1679    KnownOne2.clearAllBits();
1680    KnownZero2.clearAllBits();
1681    ComputeMaskedBits(Op.getOperand(1),
1682                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1683    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1684    if (RHSUnknownLeadingOnes != BitWidth)
1685      LeadZ = std::min(BitWidth,
1686                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1687
1688    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1689    return;
1690  }
1691  case ISD::SELECT:
1692    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1693    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1694    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1695    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1696
1697    // Only known if known in both the LHS and RHS.
1698    KnownOne &= KnownOne2;
1699    KnownZero &= KnownZero2;
1700    return;
1701  case ISD::SELECT_CC:
1702    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1703    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1704    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1705    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1706
1707    // Only known if known in both the LHS and RHS.
1708    KnownOne &= KnownOne2;
1709    KnownZero &= KnownZero2;
1710    return;
1711  case ISD::SADDO:
1712  case ISD::UADDO:
1713  case ISD::SSUBO:
1714  case ISD::USUBO:
1715  case ISD::SMULO:
1716  case ISD::UMULO:
1717    if (Op.getResNo() != 1)
1718      return;
1719    // The boolean result conforms to getBooleanContents.  Fall through.
1720  case ISD::SETCC:
1721    // If we know the result of a setcc has the top bits zero, use this info.
1722    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1723        BitWidth > 1)
1724      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1725    return;
1726  case ISD::SHL:
1727    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1728    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1729      unsigned ShAmt = SA->getZExtValue();
1730
1731      // If the shift count is an invalid immediate, don't do anything.
1732      if (ShAmt >= BitWidth)
1733        return;
1734
1735      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1736                        KnownZero, KnownOne, Depth+1);
1737      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1738      KnownZero <<= ShAmt;
1739      KnownOne  <<= ShAmt;
1740      // low bits known zero.
1741      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1742    }
1743    return;
1744  case ISD::SRL:
1745    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1746    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1747      unsigned ShAmt = SA->getZExtValue();
1748
1749      // If the shift count is an invalid immediate, don't do anything.
1750      if (ShAmt >= BitWidth)
1751        return;
1752
1753      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1754                        KnownZero, KnownOne, Depth+1);
1755      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1756      KnownZero = KnownZero.lshr(ShAmt);
1757      KnownOne  = KnownOne.lshr(ShAmt);
1758
1759      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1760      KnownZero |= HighBits;  // High bits known zero.
1761    }
1762    return;
1763  case ISD::SRA:
1764    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1765      unsigned ShAmt = SA->getZExtValue();
1766
1767      // If the shift count is an invalid immediate, don't do anything.
1768      if (ShAmt >= BitWidth)
1769        return;
1770
1771      APInt InDemandedMask = (Mask << ShAmt);
1772      // If any of the demanded bits are produced by the sign extension, we also
1773      // demand the input sign bit.
1774      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1775      if (HighBits.getBoolValue())
1776        InDemandedMask |= APInt::getSignBit(BitWidth);
1777
1778      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1779                        Depth+1);
1780      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1781      KnownZero = KnownZero.lshr(ShAmt);
1782      KnownOne  = KnownOne.lshr(ShAmt);
1783
1784      // Handle the sign bits.
1785      APInt SignBit = APInt::getSignBit(BitWidth);
1786      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1787
1788      if (KnownZero.intersects(SignBit)) {
1789        KnownZero |= HighBits;  // New bits are known zero.
1790      } else if (KnownOne.intersects(SignBit)) {
1791        KnownOne  |= HighBits;  // New bits are known one.
1792      }
1793    }
1794    return;
1795  case ISD::SIGN_EXTEND_INREG: {
1796    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1797    unsigned EBits = EVT.getScalarType().getSizeInBits();
1798
1799    // Sign extension.  Compute the demanded bits in the result that are not
1800    // present in the input.
1801    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1802
1803    APInt InSignBit = APInt::getSignBit(EBits);
1804    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1805
1806    // If the sign extended bits are demanded, we know that the sign
1807    // bit is demanded.
1808    InSignBit = InSignBit.zext(BitWidth);
1809    if (NewBits.getBoolValue())
1810      InputDemandedBits |= InSignBit;
1811
1812    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1813                      KnownZero, KnownOne, Depth+1);
1814    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1815
1816    // If the sign bit of the input is known set or clear, then we know the
1817    // top bits of the result.
1818    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1819      KnownZero |= NewBits;
1820      KnownOne  &= ~NewBits;
1821    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1822      KnownOne  |= NewBits;
1823      KnownZero &= ~NewBits;
1824    } else {                              // Input sign bit unknown
1825      KnownZero &= ~NewBits;
1826      KnownOne  &= ~NewBits;
1827    }
1828    return;
1829  }
1830  case ISD::CTTZ:
1831  case ISD::CTLZ:
1832  case ISD::CTPOP: {
1833    unsigned LowBits = Log2_32(BitWidth)+1;
1834    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1835    KnownOne.clearAllBits();
1836    return;
1837  }
1838  case ISD::LOAD: {
1839    if (ISD::isZEXTLoad(Op.getNode())) {
1840      LoadSDNode *LD = cast<LoadSDNode>(Op);
1841      EVT VT = LD->getMemoryVT();
1842      unsigned MemBits = VT.getScalarType().getSizeInBits();
1843      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1844    }
1845    return;
1846  }
1847  case ISD::ZERO_EXTEND: {
1848    EVT InVT = Op.getOperand(0).getValueType();
1849    unsigned InBits = InVT.getScalarType().getSizeInBits();
1850    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1851    APInt InMask    = Mask.trunc(InBits);
1852    KnownZero = KnownZero.trunc(InBits);
1853    KnownOne = KnownOne.trunc(InBits);
1854    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1855    KnownZero = KnownZero.zext(BitWidth);
1856    KnownOne = KnownOne.zext(BitWidth);
1857    KnownZero |= NewBits;
1858    return;
1859  }
1860  case ISD::SIGN_EXTEND: {
1861    EVT InVT = Op.getOperand(0).getValueType();
1862    unsigned InBits = InVT.getScalarType().getSizeInBits();
1863    APInt InSignBit = APInt::getSignBit(InBits);
1864    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1865    APInt InMask = Mask.trunc(InBits);
1866
1867    // If any of the sign extended bits are demanded, we know that the sign
1868    // bit is demanded. Temporarily set this bit in the mask for our callee.
1869    if (NewBits.getBoolValue())
1870      InMask |= InSignBit;
1871
1872    KnownZero = KnownZero.trunc(InBits);
1873    KnownOne = KnownOne.trunc(InBits);
1874    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1875
1876    // Note if the sign bit is known to be zero or one.
1877    bool SignBitKnownZero = KnownZero.isNegative();
1878    bool SignBitKnownOne  = KnownOne.isNegative();
1879    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1880           "Sign bit can't be known to be both zero and one!");
1881
1882    // If the sign bit wasn't actually demanded by our caller, we don't
1883    // want it set in the KnownZero and KnownOne result values. Reset the
1884    // mask and reapply it to the result values.
1885    InMask = Mask.trunc(InBits);
1886    KnownZero &= InMask;
1887    KnownOne  &= InMask;
1888
1889    KnownZero = KnownZero.zext(BitWidth);
1890    KnownOne = KnownOne.zext(BitWidth);
1891
1892    // If the sign bit is known zero or one, the top bits match.
1893    if (SignBitKnownZero)
1894      KnownZero |= NewBits;
1895    else if (SignBitKnownOne)
1896      KnownOne  |= NewBits;
1897    return;
1898  }
1899  case ISD::ANY_EXTEND: {
1900    EVT InVT = Op.getOperand(0).getValueType();
1901    unsigned InBits = InVT.getScalarType().getSizeInBits();
1902    APInt InMask = Mask.trunc(InBits);
1903    KnownZero = KnownZero.trunc(InBits);
1904    KnownOne = KnownOne.trunc(InBits);
1905    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1906    KnownZero = KnownZero.zext(BitWidth);
1907    KnownOne = KnownOne.zext(BitWidth);
1908    return;
1909  }
1910  case ISD::TRUNCATE: {
1911    EVT InVT = Op.getOperand(0).getValueType();
1912    unsigned InBits = InVT.getScalarType().getSizeInBits();
1913    APInt InMask = Mask.zext(InBits);
1914    KnownZero = KnownZero.zext(InBits);
1915    KnownOne = KnownOne.zext(InBits);
1916    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1917    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1918    KnownZero = KnownZero.trunc(BitWidth);
1919    KnownOne = KnownOne.trunc(BitWidth);
1920    break;
1921  }
1922  case ISD::AssertZext: {
1923    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1924    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1925    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1926                      KnownOne, Depth+1);
1927    KnownZero |= (~InMask) & Mask;
1928    return;
1929  }
1930  case ISD::FGETSIGN:
1931    // All bits are zero except the low bit.
1932    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1933    return;
1934
1935  case ISD::SUB: {
1936    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1937      // We know that the top bits of C-X are clear if X contains less bits
1938      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1939      // positive if we can prove that X is >= 0 and < 16.
1940      if (CLHS->getAPIntValue().isNonNegative()) {
1941        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1942        // NLZ can't be BitWidth with no sign bit
1943        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1944        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1945                          Depth+1);
1946
1947        // If all of the MaskV bits are known to be zero, then we know the
1948        // output top bits are zero, because we now know that the output is
1949        // from [0-C].
1950        if ((KnownZero2 & MaskV) == MaskV) {
1951          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1952          // Top bits known zero.
1953          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1954        }
1955      }
1956    }
1957  }
1958  // fall through
1959  case ISD::ADD: {
1960    // Output known-0 bits are known if clear or set in both the low clear bits
1961    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1962    // low 3 bits clear.
1963    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1964                                       BitWidth - Mask.countLeadingZeros());
1965    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1966    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1967    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1968
1969    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1970    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1971    KnownZeroOut = std::min(KnownZeroOut,
1972                            KnownZero2.countTrailingOnes());
1973
1974    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1975    return;
1976  }
1977  case ISD::SREM:
1978    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1979      const APInt &RA = Rem->getAPIntValue().abs();
1980      if (RA.isPowerOf2()) {
1981        APInt LowBits = RA - 1;
1982        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1983        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1984
1985        // The low bits of the first operand are unchanged by the srem.
1986        KnownZero = KnownZero2 & LowBits;
1987        KnownOne = KnownOne2 & LowBits;
1988
1989        // If the first operand is non-negative or has all low bits zero, then
1990        // the upper bits are all zero.
1991        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1992          KnownZero |= ~LowBits;
1993
1994        // If the first operand is negative and not all low bits are zero, then
1995        // the upper bits are all one.
1996        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1997          KnownOne |= ~LowBits;
1998
1999        KnownZero &= Mask;
2000        KnownOne &= Mask;
2001
2002        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2003      }
2004    }
2005    return;
2006  case ISD::UREM: {
2007    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2008      const APInt &RA = Rem->getAPIntValue();
2009      if (RA.isPowerOf2()) {
2010        APInt LowBits = (RA - 1);
2011        APInt Mask2 = LowBits & Mask;
2012        KnownZero |= ~LowBits & Mask;
2013        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2014        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2015        break;
2016      }
2017    }
2018
2019    // Since the result is less than or equal to either operand, any leading
2020    // zero bits in either operand must also exist in the result.
2021    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2022    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2023                      Depth+1);
2024    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2025                      Depth+1);
2026
2027    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2028                                KnownZero2.countLeadingOnes());
2029    KnownOne.clearAllBits();
2030    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2031    return;
2032  }
2033  default:
2034    // Allow the target to implement this method for its nodes.
2035    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2036  case ISD::INTRINSIC_WO_CHAIN:
2037  case ISD::INTRINSIC_W_CHAIN:
2038  case ISD::INTRINSIC_VOID:
2039      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2040                                         Depth);
2041    }
2042    return;
2043  }
2044}
2045
2046/// ComputeNumSignBits - Return the number of times the sign bit of the
2047/// register is replicated into the other bits.  We know that at least 1 bit
2048/// is always equal to the sign bit (itself), but other cases can give us
2049/// information.  For example, immediately after an "SRA X, 2", we know that
2050/// the top 3 bits are all equal to each other, so we return 3.
2051unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2052  EVT VT = Op.getValueType();
2053  assert(VT.isInteger() && "Invalid VT!");
2054  unsigned VTBits = VT.getScalarType().getSizeInBits();
2055  unsigned Tmp, Tmp2;
2056  unsigned FirstAnswer = 1;
2057
2058  if (Depth == 6)
2059    return 1;  // Limit search depth.
2060
2061  switch (Op.getOpcode()) {
2062  default: break;
2063  case ISD::AssertSext:
2064    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2065    return VTBits-Tmp+1;
2066  case ISD::AssertZext:
2067    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2068    return VTBits-Tmp;
2069
2070  case ISD::Constant: {
2071    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2072    // If negative, return # leading ones.
2073    if (Val.isNegative())
2074      return Val.countLeadingOnes();
2075
2076    // Return # leading zeros.
2077    return Val.countLeadingZeros();
2078  }
2079
2080  case ISD::SIGN_EXTEND:
2081    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2082    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2083
2084  case ISD::SIGN_EXTEND_INREG:
2085    // Max of the input and what this extends.
2086    Tmp =
2087      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2088    Tmp = VTBits-Tmp+1;
2089
2090    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2091    return std::max(Tmp, Tmp2);
2092
2093  case ISD::SRA:
2094    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2095    // SRA X, C   -> adds C sign bits.
2096    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2097      Tmp += C->getZExtValue();
2098      if (Tmp > VTBits) Tmp = VTBits;
2099    }
2100    return Tmp;
2101  case ISD::SHL:
2102    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2103      // shl destroys sign bits.
2104      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2105      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2106          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2107      return Tmp - C->getZExtValue();
2108    }
2109    break;
2110  case ISD::AND:
2111  case ISD::OR:
2112  case ISD::XOR:    // NOT is handled here.
2113    // Logical binary ops preserve the number of sign bits at the worst.
2114    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2115    if (Tmp != 1) {
2116      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2117      FirstAnswer = std::min(Tmp, Tmp2);
2118      // We computed what we know about the sign bits as our first
2119      // answer. Now proceed to the generic code that uses
2120      // ComputeMaskedBits, and pick whichever answer is better.
2121    }
2122    break;
2123
2124  case ISD::SELECT:
2125    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2126    if (Tmp == 1) return 1;  // Early out.
2127    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2128    return std::min(Tmp, Tmp2);
2129
2130  case ISD::SADDO:
2131  case ISD::UADDO:
2132  case ISD::SSUBO:
2133  case ISD::USUBO:
2134  case ISD::SMULO:
2135  case ISD::UMULO:
2136    if (Op.getResNo() != 1)
2137      break;
2138    // The boolean result conforms to getBooleanContents.  Fall through.
2139  case ISD::SETCC:
2140    // If setcc returns 0/-1, all bits are sign bits.
2141    if (TLI.getBooleanContents() ==
2142        TargetLowering::ZeroOrNegativeOneBooleanContent)
2143      return VTBits;
2144    break;
2145  case ISD::ROTL:
2146  case ISD::ROTR:
2147    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2148      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2149
2150      // Handle rotate right by N like a rotate left by 32-N.
2151      if (Op.getOpcode() == ISD::ROTR)
2152        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2153
2154      // If we aren't rotating out all of the known-in sign bits, return the
2155      // number that are left.  This handles rotl(sext(x), 1) for example.
2156      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2157      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2158    }
2159    break;
2160  case ISD::ADD:
2161    // Add can have at most one carry bit.  Thus we know that the output
2162    // is, at worst, one more bit than the inputs.
2163    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2164    if (Tmp == 1) return 1;  // Early out.
2165
2166    // Special case decrementing a value (ADD X, -1):
2167    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2168      if (CRHS->isAllOnesValue()) {
2169        APInt KnownZero, KnownOne;
2170        APInt Mask = APInt::getAllOnesValue(VTBits);
2171        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2172
2173        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2174        // sign bits set.
2175        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2176          return VTBits;
2177
2178        // If we are subtracting one from a positive number, there is no carry
2179        // out of the result.
2180        if (KnownZero.isNegative())
2181          return Tmp;
2182      }
2183
2184    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2185    if (Tmp2 == 1) return 1;
2186      return std::min(Tmp, Tmp2)-1;
2187    break;
2188
2189  case ISD::SUB:
2190    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2191    if (Tmp2 == 1) return 1;
2192
2193    // Handle NEG.
2194    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2195      if (CLHS->isNullValue()) {
2196        APInt KnownZero, KnownOne;
2197        APInt Mask = APInt::getAllOnesValue(VTBits);
2198        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2199        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2200        // sign bits set.
2201        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2202          return VTBits;
2203
2204        // If the input is known to be positive (the sign bit is known clear),
2205        // the output of the NEG has the same number of sign bits as the input.
2206        if (KnownZero.isNegative())
2207          return Tmp2;
2208
2209        // Otherwise, we treat this like a SUB.
2210      }
2211
2212    // Sub can have at most one carry bit.  Thus we know that the output
2213    // is, at worst, one more bit than the inputs.
2214    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2215    if (Tmp == 1) return 1;  // Early out.
2216      return std::min(Tmp, Tmp2)-1;
2217    break;
2218  case ISD::TRUNCATE:
2219    // FIXME: it's tricky to do anything useful for this, but it is an important
2220    // case for targets like X86.
2221    break;
2222  }
2223
2224  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2225  if (Op.getOpcode() == ISD::LOAD) {
2226    LoadSDNode *LD = cast<LoadSDNode>(Op);
2227    unsigned ExtType = LD->getExtensionType();
2228    switch (ExtType) {
2229    default: break;
2230    case ISD::SEXTLOAD:    // '17' bits known
2231      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2232      return VTBits-Tmp+1;
2233    case ISD::ZEXTLOAD:    // '16' bits known
2234      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2235      return VTBits-Tmp;
2236    }
2237  }
2238
2239  // Allow the target to implement this method for its nodes.
2240  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2241      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2242      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2243      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2244    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2245    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2246  }
2247
2248  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2249  // use this information.
2250  APInt KnownZero, KnownOne;
2251  APInt Mask = APInt::getAllOnesValue(VTBits);
2252  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2253
2254  if (KnownZero.isNegative()) {        // sign bit is 0
2255    Mask = KnownZero;
2256  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2257    Mask = KnownOne;
2258  } else {
2259    // Nothing known.
2260    return FirstAnswer;
2261  }
2262
2263  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2264  // the number of identical bits in the top of the input value.
2265  Mask = ~Mask;
2266  Mask <<= Mask.getBitWidth()-VTBits;
2267  // Return # leading zeros.  We use 'min' here in case Val was zero before
2268  // shifting.  We don't want to return '64' as for an i32 "0".
2269  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2270}
2271
2272bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2273  // If we're told that NaNs won't happen, assume they won't.
2274  if (NoNaNsFPMath)
2275    return true;
2276
2277  // If the value is a constant, we can obviously see if it is a NaN or not.
2278  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2279    return !C->getValueAPF().isNaN();
2280
2281  // TODO: Recognize more cases here.
2282
2283  return false;
2284}
2285
2286bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2287  // If the value is a constant, we can obviously see if it is a zero or not.
2288  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2289    return !C->isZero();
2290
2291  // TODO: Recognize more cases here.
2292
2293  return false;
2294}
2295
2296bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2297  // Check the obvious case.
2298  if (A == B) return true;
2299
2300  // For for negative and positive zero.
2301  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2302    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2303      if (CA->isZero() && CB->isZero()) return true;
2304
2305  // Otherwise they may not be equal.
2306  return false;
2307}
2308
2309bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2310  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2311  if (!GA) return false;
2312  if (GA->getOffset() != 0) return false;
2313  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2314  if (!GV) return false;
2315  return MF->getMMI().hasDebugInfo();
2316}
2317
2318
2319/// getNode - Gets or creates the specified node.
2320///
2321SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2322  FoldingSetNodeID ID;
2323  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2324  void *IP = 0;
2325  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2326    return SDValue(E, 0);
2327
2328  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2329  CSEMap.InsertNode(N, IP);
2330
2331  AllNodes.push_back(N);
2332#ifndef NDEBUG
2333  VerifySDNode(N);
2334#endif
2335  return SDValue(N, 0);
2336}
2337
2338SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2339                              EVT VT, SDValue Operand) {
2340  // Constant fold unary operations with an integer constant operand.
2341  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2342    const APInt &Val = C->getAPIntValue();
2343    switch (Opcode) {
2344    default: break;
2345    case ISD::SIGN_EXTEND:
2346      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2347    case ISD::ANY_EXTEND:
2348    case ISD::ZERO_EXTEND:
2349    case ISD::TRUNCATE:
2350      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2351    case ISD::UINT_TO_FP:
2352    case ISD::SINT_TO_FP: {
2353      // No compile time operations on ppcf128.
2354      if (VT == MVT::ppcf128) break;
2355      APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2356      (void)apf.convertFromAPInt(Val,
2357                                 Opcode==ISD::SINT_TO_FP,
2358                                 APFloat::rmNearestTiesToEven);
2359      return getConstantFP(apf, VT);
2360    }
2361    case ISD::BITCAST:
2362      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2363        return getConstantFP(Val.bitsToFloat(), VT);
2364      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2365        return getConstantFP(Val.bitsToDouble(), VT);
2366      break;
2367    case ISD::BSWAP:
2368      return getConstant(Val.byteSwap(), VT);
2369    case ISD::CTPOP:
2370      return getConstant(Val.countPopulation(), VT);
2371    case ISD::CTLZ:
2372      return getConstant(Val.countLeadingZeros(), VT);
2373    case ISD::CTTZ:
2374      return getConstant(Val.countTrailingZeros(), VT);
2375    }
2376  }
2377
2378  // Constant fold unary operations with a floating point constant operand.
2379  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2380    APFloat V = C->getValueAPF();    // make copy
2381    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2382      switch (Opcode) {
2383      case ISD::FNEG:
2384        V.changeSign();
2385        return getConstantFP(V, VT);
2386      case ISD::FABS:
2387        V.clearSign();
2388        return getConstantFP(V, VT);
2389      case ISD::FP_ROUND:
2390      case ISD::FP_EXTEND: {
2391        bool ignored;
2392        // This can return overflow, underflow, or inexact; we don't care.
2393        // FIXME need to be more flexible about rounding mode.
2394        (void)V.convert(*EVTToAPFloatSemantics(VT),
2395                        APFloat::rmNearestTiesToEven, &ignored);
2396        return getConstantFP(V, VT);
2397      }
2398      case ISD::FP_TO_SINT:
2399      case ISD::FP_TO_UINT: {
2400        integerPart x[2];
2401        bool ignored;
2402        assert(integerPartWidth >= 64);
2403        // FIXME need to be more flexible about rounding mode.
2404        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2405                              Opcode==ISD::FP_TO_SINT,
2406                              APFloat::rmTowardZero, &ignored);
2407        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2408          break;
2409        APInt api(VT.getSizeInBits(), 2, x);
2410        return getConstant(api, VT);
2411      }
2412      case ISD::BITCAST:
2413        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2414          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2415        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2416          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2417        break;
2418      }
2419    }
2420  }
2421
2422  unsigned OpOpcode = Operand.getNode()->getOpcode();
2423  switch (Opcode) {
2424  case ISD::TokenFactor:
2425  case ISD::MERGE_VALUES:
2426  case ISD::CONCAT_VECTORS:
2427    return Operand;         // Factor, merge or concat of one node?  No need.
2428  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2429  case ISD::FP_EXTEND:
2430    assert(VT.isFloatingPoint() &&
2431           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2432    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2433    assert((!VT.isVector() ||
2434            VT.getVectorNumElements() ==
2435            Operand.getValueType().getVectorNumElements()) &&
2436           "Vector element count mismatch!");
2437    if (Operand.getOpcode() == ISD::UNDEF)
2438      return getUNDEF(VT);
2439    break;
2440  case ISD::SIGN_EXTEND:
2441    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2442           "Invalid SIGN_EXTEND!");
2443    if (Operand.getValueType() == VT) return Operand;   // noop extension
2444    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2445           "Invalid sext node, dst < src!");
2446    assert((!VT.isVector() ||
2447            VT.getVectorNumElements() ==
2448            Operand.getValueType().getVectorNumElements()) &&
2449           "Vector element count mismatch!");
2450    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2451      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2452    break;
2453  case ISD::ZERO_EXTEND:
2454    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2455           "Invalid ZERO_EXTEND!");
2456    if (Operand.getValueType() == VT) return Operand;   // noop extension
2457    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2458           "Invalid zext node, dst < src!");
2459    assert((!VT.isVector() ||
2460            VT.getVectorNumElements() ==
2461            Operand.getValueType().getVectorNumElements()) &&
2462           "Vector element count mismatch!");
2463    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2464      return getNode(ISD::ZERO_EXTEND, DL, VT,
2465                     Operand.getNode()->getOperand(0));
2466    break;
2467  case ISD::ANY_EXTEND:
2468    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2469           "Invalid ANY_EXTEND!");
2470    if (Operand.getValueType() == VT) return Operand;   // noop extension
2471    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2472           "Invalid anyext node, dst < src!");
2473    assert((!VT.isVector() ||
2474            VT.getVectorNumElements() ==
2475            Operand.getValueType().getVectorNumElements()) &&
2476           "Vector element count mismatch!");
2477
2478    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2479        OpOpcode == ISD::ANY_EXTEND)
2480      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2481      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2482
2483    // (ext (trunx x)) -> x
2484    if (OpOpcode == ISD::TRUNCATE) {
2485      SDValue OpOp = Operand.getNode()->getOperand(0);
2486      if (OpOp.getValueType() == VT)
2487        return OpOp;
2488    }
2489    break;
2490  case ISD::TRUNCATE:
2491    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2492           "Invalid TRUNCATE!");
2493    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2494    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2495           "Invalid truncate node, src < dst!");
2496    assert((!VT.isVector() ||
2497            VT.getVectorNumElements() ==
2498            Operand.getValueType().getVectorNumElements()) &&
2499           "Vector element count mismatch!");
2500    if (OpOpcode == ISD::TRUNCATE)
2501      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2502    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2503             OpOpcode == ISD::ANY_EXTEND) {
2504      // If the source is smaller than the dest, we still need an extend.
2505      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2506            .bitsLT(VT.getScalarType()))
2507        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2508      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2509        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2510      else
2511        return Operand.getNode()->getOperand(0);
2512    }
2513    break;
2514  case ISD::BITCAST:
2515    // Basic sanity checking.
2516    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2517           && "Cannot BITCAST between types of different sizes!");
2518    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2519    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2520      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2521    if (OpOpcode == ISD::UNDEF)
2522      return getUNDEF(VT);
2523    break;
2524  case ISD::SCALAR_TO_VECTOR:
2525    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2526           (VT.getVectorElementType() == Operand.getValueType() ||
2527            (VT.getVectorElementType().isInteger() &&
2528             Operand.getValueType().isInteger() &&
2529             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2530           "Illegal SCALAR_TO_VECTOR node!");
2531    if (OpOpcode == ISD::UNDEF)
2532      return getUNDEF(VT);
2533    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2534    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2535        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2536        Operand.getConstantOperandVal(1) == 0 &&
2537        Operand.getOperand(0).getValueType() == VT)
2538      return Operand.getOperand(0);
2539    break;
2540  case ISD::FNEG:
2541    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2542    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2543      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2544                     Operand.getNode()->getOperand(0));
2545    if (OpOpcode == ISD::FNEG)  // --X -> X
2546      return Operand.getNode()->getOperand(0);
2547    break;
2548  case ISD::FABS:
2549    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2550      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2551    break;
2552  }
2553
2554  SDNode *N;
2555  SDVTList VTs = getVTList(VT);
2556  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2557    FoldingSetNodeID ID;
2558    SDValue Ops[1] = { Operand };
2559    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2560    void *IP = 0;
2561    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2562      return SDValue(E, 0);
2563
2564    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2565    CSEMap.InsertNode(N, IP);
2566  } else {
2567    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2568  }
2569
2570  AllNodes.push_back(N);
2571#ifndef NDEBUG
2572  VerifySDNode(N);
2573#endif
2574  return SDValue(N, 0);
2575}
2576
2577SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2578                                             EVT VT,
2579                                             ConstantSDNode *Cst1,
2580                                             ConstantSDNode *Cst2) {
2581  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2582
2583  switch (Opcode) {
2584  case ISD::ADD:  return getConstant(C1 + C2, VT);
2585  case ISD::SUB:  return getConstant(C1 - C2, VT);
2586  case ISD::MUL:  return getConstant(C1 * C2, VT);
2587  case ISD::UDIV:
2588    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2589    break;
2590  case ISD::UREM:
2591    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2592    break;
2593  case ISD::SDIV:
2594    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2595    break;
2596  case ISD::SREM:
2597    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2598    break;
2599  case ISD::AND:  return getConstant(C1 & C2, VT);
2600  case ISD::OR:   return getConstant(C1 | C2, VT);
2601  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2602  case ISD::SHL:  return getConstant(C1 << C2, VT);
2603  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2604  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2605  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2606  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2607  default: break;
2608  }
2609
2610  return SDValue();
2611}
2612
2613SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2614                              SDValue N1, SDValue N2) {
2615  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2616  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2617  switch (Opcode) {
2618  default: break;
2619  case ISD::TokenFactor:
2620    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2621           N2.getValueType() == MVT::Other && "Invalid token factor!");
2622    // Fold trivial token factors.
2623    if (N1.getOpcode() == ISD::EntryToken) return N2;
2624    if (N2.getOpcode() == ISD::EntryToken) return N1;
2625    if (N1 == N2) return N1;
2626    break;
2627  case ISD::CONCAT_VECTORS:
2628    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2629    // one big BUILD_VECTOR.
2630    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2631        N2.getOpcode() == ISD::BUILD_VECTOR) {
2632      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2633                                    N1.getNode()->op_end());
2634      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2635      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2636    }
2637    break;
2638  case ISD::AND:
2639    assert(VT.isInteger() && "This operator does not apply to FP types!");
2640    assert(N1.getValueType() == N2.getValueType() &&
2641           N1.getValueType() == VT && "Binary operator types must match!");
2642    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2643    // worth handling here.
2644    if (N2C && N2C->isNullValue())
2645      return N2;
2646    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2647      return N1;
2648    break;
2649  case ISD::OR:
2650  case ISD::XOR:
2651  case ISD::ADD:
2652  case ISD::SUB:
2653    assert(VT.isInteger() && "This operator does not apply to FP types!");
2654    assert(N1.getValueType() == N2.getValueType() &&
2655           N1.getValueType() == VT && "Binary operator types must match!");
2656    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2657    // it's worth handling here.
2658    if (N2C && N2C->isNullValue())
2659      return N1;
2660    break;
2661  case ISD::UDIV:
2662  case ISD::UREM:
2663  case ISD::MULHU:
2664  case ISD::MULHS:
2665  case ISD::MUL:
2666  case ISD::SDIV:
2667  case ISD::SREM:
2668    assert(VT.isInteger() && "This operator does not apply to FP types!");
2669    assert(N1.getValueType() == N2.getValueType() &&
2670           N1.getValueType() == VT && "Binary operator types must match!");
2671    break;
2672  case ISD::FADD:
2673  case ISD::FSUB:
2674  case ISD::FMUL:
2675  case ISD::FDIV:
2676  case ISD::FREM:
2677    if (UnsafeFPMath) {
2678      if (Opcode == ISD::FADD) {
2679        // 0+x --> x
2680        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2681          if (CFP->getValueAPF().isZero())
2682            return N2;
2683        // x+0 --> x
2684        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2685          if (CFP->getValueAPF().isZero())
2686            return N1;
2687      } else if (Opcode == ISD::FSUB) {
2688        // x-0 --> x
2689        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2690          if (CFP->getValueAPF().isZero())
2691            return N1;
2692      }
2693    }
2694    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2695    assert(N1.getValueType() == N2.getValueType() &&
2696           N1.getValueType() == VT && "Binary operator types must match!");
2697    break;
2698  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2699    assert(N1.getValueType() == VT &&
2700           N1.getValueType().isFloatingPoint() &&
2701           N2.getValueType().isFloatingPoint() &&
2702           "Invalid FCOPYSIGN!");
2703    break;
2704  case ISD::SHL:
2705  case ISD::SRA:
2706  case ISD::SRL:
2707  case ISD::ROTL:
2708  case ISD::ROTR:
2709    assert(VT == N1.getValueType() &&
2710           "Shift operators return type must be the same as their first arg");
2711    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2712           "Shifts only work on integers");
2713
2714    // Always fold shifts of i1 values so the code generator doesn't need to
2715    // handle them.  Since we know the size of the shift has to be less than the
2716    // size of the value, the shift/rotate count is guaranteed to be zero.
2717    if (VT == MVT::i1)
2718      return N1;
2719    if (N2C && N2C->isNullValue())
2720      return N1;
2721    break;
2722  case ISD::FP_ROUND_INREG: {
2723    EVT EVT = cast<VTSDNode>(N2)->getVT();
2724    assert(VT == N1.getValueType() && "Not an inreg round!");
2725    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2726           "Cannot FP_ROUND_INREG integer types");
2727    assert(EVT.isVector() == VT.isVector() &&
2728           "FP_ROUND_INREG type should be vector iff the operand "
2729           "type is vector!");
2730    assert((!EVT.isVector() ||
2731            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2732           "Vector element counts must match in FP_ROUND_INREG");
2733    assert(EVT.bitsLE(VT) && "Not rounding down!");
2734    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2735    break;
2736  }
2737  case ISD::FP_ROUND:
2738    assert(VT.isFloatingPoint() &&
2739           N1.getValueType().isFloatingPoint() &&
2740           VT.bitsLE(N1.getValueType()) &&
2741           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2742    if (N1.getValueType() == VT) return N1;  // noop conversion.
2743    break;
2744  case ISD::AssertSext:
2745  case ISD::AssertZext: {
2746    EVT EVT = cast<VTSDNode>(N2)->getVT();
2747    assert(VT == N1.getValueType() && "Not an inreg extend!");
2748    assert(VT.isInteger() && EVT.isInteger() &&
2749           "Cannot *_EXTEND_INREG FP types");
2750    assert(!EVT.isVector() &&
2751           "AssertSExt/AssertZExt type should be the vector element type "
2752           "rather than the vector type!");
2753    assert(EVT.bitsLE(VT) && "Not extending!");
2754    if (VT == EVT) return N1; // noop assertion.
2755    break;
2756  }
2757  case ISD::SIGN_EXTEND_INREG: {
2758    EVT EVT = cast<VTSDNode>(N2)->getVT();
2759    assert(VT == N1.getValueType() && "Not an inreg extend!");
2760    assert(VT.isInteger() && EVT.isInteger() &&
2761           "Cannot *_EXTEND_INREG FP types");
2762    assert(EVT.isVector() == VT.isVector() &&
2763           "SIGN_EXTEND_INREG type should be vector iff the operand "
2764           "type is vector!");
2765    assert((!EVT.isVector() ||
2766            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2767           "Vector element counts must match in SIGN_EXTEND_INREG");
2768    assert(EVT.bitsLE(VT) && "Not extending!");
2769    if (EVT == VT) return N1;  // Not actually extending
2770
2771    if (N1C) {
2772      APInt Val = N1C->getAPIntValue();
2773      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2774      Val <<= Val.getBitWidth()-FromBits;
2775      Val = Val.ashr(Val.getBitWidth()-FromBits);
2776      return getConstant(Val, VT);
2777    }
2778    break;
2779  }
2780  case ISD::EXTRACT_VECTOR_ELT:
2781    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2782    if (N1.getOpcode() == ISD::UNDEF)
2783      return getUNDEF(VT);
2784
2785    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2786    // expanding copies of large vectors from registers.
2787    if (N2C &&
2788        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2789        N1.getNumOperands() > 0) {
2790      unsigned Factor =
2791        N1.getOperand(0).getValueType().getVectorNumElements();
2792      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2793                     N1.getOperand(N2C->getZExtValue() / Factor),
2794                     getConstant(N2C->getZExtValue() % Factor,
2795                                 N2.getValueType()));
2796    }
2797
2798    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2799    // expanding large vector constants.
2800    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2801      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2802      EVT VEltTy = N1.getValueType().getVectorElementType();
2803      if (Elt.getValueType() != VEltTy) {
2804        // If the vector element type is not legal, the BUILD_VECTOR operands
2805        // are promoted and implicitly truncated.  Make that explicit here.
2806        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2807      }
2808      if (VT != VEltTy) {
2809        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2810        // result is implicitly extended.
2811        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2812      }
2813      return Elt;
2814    }
2815
2816    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2817    // operations are lowered to scalars.
2818    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2819      // If the indices are the same, return the inserted element else
2820      // if the indices are known different, extract the element from
2821      // the original vector.
2822      SDValue N1Op2 = N1.getOperand(2);
2823      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2824
2825      if (N1Op2C && N2C) {
2826        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2827          if (VT == N1.getOperand(1).getValueType())
2828            return N1.getOperand(1);
2829          else
2830            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2831        }
2832
2833        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2834      }
2835    }
2836    break;
2837  case ISD::EXTRACT_ELEMENT:
2838    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2839    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2840           (N1.getValueType().isInteger() == VT.isInteger()) &&
2841           "Wrong types for EXTRACT_ELEMENT!");
2842
2843    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2844    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2845    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2846    if (N1.getOpcode() == ISD::BUILD_PAIR)
2847      return N1.getOperand(N2C->getZExtValue());
2848
2849    // EXTRACT_ELEMENT of a constant int is also very common.
2850    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2851      unsigned ElementSize = VT.getSizeInBits();
2852      unsigned Shift = ElementSize * N2C->getZExtValue();
2853      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2854      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2855    }
2856    break;
2857  case ISD::EXTRACT_SUBVECTOR:
2858    if (N1.getValueType() == VT) // Trivial extraction.
2859      return N1;
2860    break;
2861  }
2862
2863  if (N1C) {
2864    if (N2C) {
2865      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2866      if (SV.getNode()) return SV;
2867    } else {      // Cannonicalize constant to RHS if commutative
2868      if (isCommutativeBinOp(Opcode)) {
2869        std::swap(N1C, N2C);
2870        std::swap(N1, N2);
2871      }
2872    }
2873  }
2874
2875  // Constant fold FP operations.
2876  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2877  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2878  if (N1CFP) {
2879    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2880      // Cannonicalize constant to RHS if commutative
2881      std::swap(N1CFP, N2CFP);
2882      std::swap(N1, N2);
2883    } else if (N2CFP && VT != MVT::ppcf128) {
2884      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2885      APFloat::opStatus s;
2886      switch (Opcode) {
2887      case ISD::FADD:
2888        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2889        if (s != APFloat::opInvalidOp)
2890          return getConstantFP(V1, VT);
2891        break;
2892      case ISD::FSUB:
2893        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2894        if (s!=APFloat::opInvalidOp)
2895          return getConstantFP(V1, VT);
2896        break;
2897      case ISD::FMUL:
2898        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2899        if (s!=APFloat::opInvalidOp)
2900          return getConstantFP(V1, VT);
2901        break;
2902      case ISD::FDIV:
2903        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2904        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2905          return getConstantFP(V1, VT);
2906        break;
2907      case ISD::FREM :
2908        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2909        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2910          return getConstantFP(V1, VT);
2911        break;
2912      case ISD::FCOPYSIGN:
2913        V1.copySign(V2);
2914        return getConstantFP(V1, VT);
2915      default: break;
2916      }
2917    }
2918  }
2919
2920  // Canonicalize an UNDEF to the RHS, even over a constant.
2921  if (N1.getOpcode() == ISD::UNDEF) {
2922    if (isCommutativeBinOp(Opcode)) {
2923      std::swap(N1, N2);
2924    } else {
2925      switch (Opcode) {
2926      case ISD::FP_ROUND_INREG:
2927      case ISD::SIGN_EXTEND_INREG:
2928      case ISD::SUB:
2929      case ISD::FSUB:
2930      case ISD::FDIV:
2931      case ISD::FREM:
2932      case ISD::SRA:
2933        return N1;     // fold op(undef, arg2) -> undef
2934      case ISD::UDIV:
2935      case ISD::SDIV:
2936      case ISD::UREM:
2937      case ISD::SREM:
2938      case ISD::SRL:
2939      case ISD::SHL:
2940        if (!VT.isVector())
2941          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2942        // For vectors, we can't easily build an all zero vector, just return
2943        // the LHS.
2944        return N2;
2945      }
2946    }
2947  }
2948
2949  // Fold a bunch of operators when the RHS is undef.
2950  if (N2.getOpcode() == ISD::UNDEF) {
2951    switch (Opcode) {
2952    case ISD::XOR:
2953      if (N1.getOpcode() == ISD::UNDEF)
2954        // Handle undef ^ undef -> 0 special case. This is a common
2955        // idiom (misuse).
2956        return getConstant(0, VT);
2957      // fallthrough
2958    case ISD::ADD:
2959    case ISD::ADDC:
2960    case ISD::ADDE:
2961    case ISD::SUB:
2962    case ISD::UDIV:
2963    case ISD::SDIV:
2964    case ISD::UREM:
2965    case ISD::SREM:
2966      return N2;       // fold op(arg1, undef) -> undef
2967    case ISD::FADD:
2968    case ISD::FSUB:
2969    case ISD::FMUL:
2970    case ISD::FDIV:
2971    case ISD::FREM:
2972      if (UnsafeFPMath)
2973        return N2;
2974      break;
2975    case ISD::MUL:
2976    case ISD::AND:
2977    case ISD::SRL:
2978    case ISD::SHL:
2979      if (!VT.isVector())
2980        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2981      // For vectors, we can't easily build an all zero vector, just return
2982      // the LHS.
2983      return N1;
2984    case ISD::OR:
2985      if (!VT.isVector())
2986        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2987      // For vectors, we can't easily build an all one vector, just return
2988      // the LHS.
2989      return N1;
2990    case ISD::SRA:
2991      return N1;
2992    }
2993  }
2994
2995  // Memoize this node if possible.
2996  SDNode *N;
2997  SDVTList VTs = getVTList(VT);
2998  if (VT != MVT::Flag) {
2999    SDValue Ops[] = { N1, N2 };
3000    FoldingSetNodeID ID;
3001    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3002    void *IP = 0;
3003    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3004      return SDValue(E, 0);
3005
3006    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3007    CSEMap.InsertNode(N, IP);
3008  } else {
3009    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3010  }
3011
3012  AllNodes.push_back(N);
3013#ifndef NDEBUG
3014  VerifySDNode(N);
3015#endif
3016  return SDValue(N, 0);
3017}
3018
3019SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3020                              SDValue N1, SDValue N2, SDValue N3) {
3021  // Perform various simplifications.
3022  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3023  switch (Opcode) {
3024  case ISD::CONCAT_VECTORS:
3025    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3026    // one big BUILD_VECTOR.
3027    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3028        N2.getOpcode() == ISD::BUILD_VECTOR &&
3029        N3.getOpcode() == ISD::BUILD_VECTOR) {
3030      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3031                                    N1.getNode()->op_end());
3032      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3033      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3034      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3035    }
3036    break;
3037  case ISD::SETCC: {
3038    // Use FoldSetCC to simplify SETCC's.
3039    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3040    if (Simp.getNode()) return Simp;
3041    break;
3042  }
3043  case ISD::SELECT:
3044    if (N1C) {
3045     if (N1C->getZExtValue())
3046        return N2;             // select true, X, Y -> X
3047      else
3048        return N3;             // select false, X, Y -> Y
3049    }
3050
3051    if (N2 == N3) return N2;   // select C, X, X -> X
3052    break;
3053  case ISD::VECTOR_SHUFFLE:
3054    llvm_unreachable("should use getVectorShuffle constructor!");
3055    break;
3056  case ISD::BITCAST:
3057    // Fold bit_convert nodes from a type to themselves.
3058    if (N1.getValueType() == VT)
3059      return N1;
3060    break;
3061  }
3062
3063  // Memoize node if it doesn't produce a flag.
3064  SDNode *N;
3065  SDVTList VTs = getVTList(VT);
3066  if (VT != MVT::Flag) {
3067    SDValue Ops[] = { N1, N2, N3 };
3068    FoldingSetNodeID ID;
3069    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3070    void *IP = 0;
3071    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3072      return SDValue(E, 0);
3073
3074    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3075    CSEMap.InsertNode(N, IP);
3076  } else {
3077    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3078  }
3079
3080  AllNodes.push_back(N);
3081#ifndef NDEBUG
3082  VerifySDNode(N);
3083#endif
3084  return SDValue(N, 0);
3085}
3086
3087SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3088                              SDValue N1, SDValue N2, SDValue N3,
3089                              SDValue N4) {
3090  SDValue Ops[] = { N1, N2, N3, N4 };
3091  return getNode(Opcode, DL, VT, Ops, 4);
3092}
3093
3094SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3095                              SDValue N1, SDValue N2, SDValue N3,
3096                              SDValue N4, SDValue N5) {
3097  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3098  return getNode(Opcode, DL, VT, Ops, 5);
3099}
3100
3101/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3102/// the incoming stack arguments to be loaded from the stack.
3103SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3104  SmallVector<SDValue, 8> ArgChains;
3105
3106  // Include the original chain at the beginning of the list. When this is
3107  // used by target LowerCall hooks, this helps legalize find the
3108  // CALLSEQ_BEGIN node.
3109  ArgChains.push_back(Chain);
3110
3111  // Add a chain value for each stack argument.
3112  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3113       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3114    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3115      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3116        if (FI->getIndex() < 0)
3117          ArgChains.push_back(SDValue(L, 1));
3118
3119  // Build a tokenfactor for all the chains.
3120  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3121                 &ArgChains[0], ArgChains.size());
3122}
3123
3124/// getMemsetValue - Vectorized representation of the memset value
3125/// operand.
3126static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3127                              DebugLoc dl) {
3128  assert(Value.getOpcode() != ISD::UNDEF);
3129
3130  unsigned NumBits = VT.getScalarType().getSizeInBits();
3131  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3132    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3133    unsigned Shift = 8;
3134    for (unsigned i = NumBits; i > 8; i >>= 1) {
3135      Val = (Val << Shift) | Val;
3136      Shift <<= 1;
3137    }
3138    if (VT.isInteger())
3139      return DAG.getConstant(Val, VT);
3140    return DAG.getConstantFP(APFloat(Val), VT);
3141  }
3142
3143  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3144  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3145  unsigned Shift = 8;
3146  for (unsigned i = NumBits; i > 8; i >>= 1) {
3147    Value = DAG.getNode(ISD::OR, dl, VT,
3148                        DAG.getNode(ISD::SHL, dl, VT, Value,
3149                                    DAG.getConstant(Shift,
3150                                                    TLI.getShiftAmountTy())),
3151                        Value);
3152    Shift <<= 1;
3153  }
3154
3155  return Value;
3156}
3157
3158/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3159/// used when a memcpy is turned into a memset when the source is a constant
3160/// string ptr.
3161static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3162                                  const TargetLowering &TLI,
3163                                  std::string &Str, unsigned Offset) {
3164  // Handle vector with all elements zero.
3165  if (Str.empty()) {
3166    if (VT.isInteger())
3167      return DAG.getConstant(0, VT);
3168    else if (VT == MVT::f32 || VT == MVT::f64)
3169      return DAG.getConstantFP(0.0, VT);
3170    else if (VT.isVector()) {
3171      unsigned NumElts = VT.getVectorNumElements();
3172      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3173      return DAG.getNode(ISD::BITCAST, dl, VT,
3174                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3175                                                             EltVT, NumElts)));
3176    } else
3177      llvm_unreachable("Expected type!");
3178  }
3179
3180  assert(!VT.isVector() && "Can't handle vector type here!");
3181  unsigned NumBits = VT.getSizeInBits();
3182  unsigned MSB = NumBits / 8;
3183  uint64_t Val = 0;
3184  if (TLI.isLittleEndian())
3185    Offset = Offset + MSB - 1;
3186  for (unsigned i = 0; i != MSB; ++i) {
3187    Val = (Val << 8) | (unsigned char)Str[Offset];
3188    Offset += TLI.isLittleEndian() ? -1 : 1;
3189  }
3190  return DAG.getConstant(Val, VT);
3191}
3192
3193/// getMemBasePlusOffset - Returns base and offset node for the
3194///
3195static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3196                                      SelectionDAG &DAG) {
3197  EVT VT = Base.getValueType();
3198  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3199                     VT, Base, DAG.getConstant(Offset, VT));
3200}
3201
3202/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3203///
3204static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3205  unsigned SrcDelta = 0;
3206  GlobalAddressSDNode *G = NULL;
3207  if (Src.getOpcode() == ISD::GlobalAddress)
3208    G = cast<GlobalAddressSDNode>(Src);
3209  else if (Src.getOpcode() == ISD::ADD &&
3210           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3211           Src.getOperand(1).getOpcode() == ISD::Constant) {
3212    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3213    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3214  }
3215  if (!G)
3216    return false;
3217
3218  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3219  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3220    return true;
3221
3222  return false;
3223}
3224
3225/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3226/// to replace the memset / memcpy. Return true if the number of memory ops
3227/// is below the threshold. It returns the types of the sequence of
3228/// memory ops to perform memset / memcpy by reference.
3229static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3230                                     unsigned Limit, uint64_t Size,
3231                                     unsigned DstAlign, unsigned SrcAlign,
3232                                     bool NonScalarIntSafe,
3233                                     bool MemcpyStrSrc,
3234                                     SelectionDAG &DAG,
3235                                     const TargetLowering &TLI) {
3236  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3237         "Expecting memcpy / memset source to meet alignment requirement!");
3238  // If 'SrcAlign' is zero, that means the memory operation does not need load
3239  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3240  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3241  // specified alignment of the memory operation. If it is zero, that means
3242  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3243  // indicates whether the memcpy source is constant so it does not need to be
3244  // loaded.
3245  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3246                                   NonScalarIntSafe, MemcpyStrSrc,
3247                                   DAG.getMachineFunction());
3248
3249  if (VT == MVT::Other) {
3250    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3251        TLI.allowsUnalignedMemoryAccesses(VT)) {
3252      VT = TLI.getPointerTy();
3253    } else {
3254      switch (DstAlign & 7) {
3255      case 0:  VT = MVT::i64; break;
3256      case 4:  VT = MVT::i32; break;
3257      case 2:  VT = MVT::i16; break;
3258      default: VT = MVT::i8;  break;
3259      }
3260    }
3261
3262    MVT LVT = MVT::i64;
3263    while (!TLI.isTypeLegal(LVT))
3264      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3265    assert(LVT.isInteger());
3266
3267    if (VT.bitsGT(LVT))
3268      VT = LVT;
3269  }
3270
3271  // If we're optimizing for size, and there is a limit, bump the maximum number
3272  // of operations inserted down to 4.  This is a wild guess that approximates
3273  // the size of a call to memcpy or memset (3 arguments + call).
3274  if (Limit != ~0U) {
3275    const Function *F = DAG.getMachineFunction().getFunction();
3276    if (F->hasFnAttr(Attribute::OptimizeForSize))
3277      Limit = 4;
3278  }
3279
3280  unsigned NumMemOps = 0;
3281  while (Size != 0) {
3282    unsigned VTSize = VT.getSizeInBits() / 8;
3283    while (VTSize > Size) {
3284      // For now, only use non-vector load / store's for the left-over pieces.
3285      if (VT.isVector() || VT.isFloatingPoint()) {
3286        VT = MVT::i64;
3287        while (!TLI.isTypeLegal(VT))
3288          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3289        VTSize = VT.getSizeInBits() / 8;
3290      } else {
3291        // This can result in a type that is not legal on the target, e.g.
3292        // 1 or 2 bytes on PPC.
3293        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3294        VTSize >>= 1;
3295      }
3296    }
3297
3298    if (++NumMemOps > Limit)
3299      return false;
3300    MemOps.push_back(VT);
3301    Size -= VTSize;
3302  }
3303
3304  return true;
3305}
3306
3307static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3308                                       SDValue Chain, SDValue Dst,
3309                                       SDValue Src, uint64_t Size,
3310                                       unsigned Align, bool isVol,
3311                                       bool AlwaysInline,
3312                                       MachinePointerInfo DstPtrInfo,
3313                                       MachinePointerInfo SrcPtrInfo) {
3314  // Turn a memcpy of undef to nop.
3315  if (Src.getOpcode() == ISD::UNDEF)
3316    return Chain;
3317
3318  // Expand memcpy to a series of load and store ops if the size operand falls
3319  // below a certain threshold.
3320  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3321  // rather than maybe a humongous number of loads and stores.
3322  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3323  std::vector<EVT> MemOps;
3324  bool DstAlignCanChange = false;
3325  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3326  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3327  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3328    DstAlignCanChange = true;
3329  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3330  if (Align > SrcAlign)
3331    SrcAlign = Align;
3332  std::string Str;
3333  bool CopyFromStr = isMemSrcFromString(Src, Str);
3334  bool isZeroStr = CopyFromStr && Str.empty();
3335  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy();
3336
3337  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3338                                (DstAlignCanChange ? 0 : Align),
3339                                (isZeroStr ? 0 : SrcAlign),
3340                                true, CopyFromStr, DAG, TLI))
3341    return SDValue();
3342
3343  if (DstAlignCanChange) {
3344    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3345    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3346    if (NewAlign > Align) {
3347      // Give the stack frame object a larger alignment if needed.
3348      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3349        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3350      Align = NewAlign;
3351    }
3352  }
3353
3354  SmallVector<SDValue, 8> OutChains;
3355  unsigned NumMemOps = MemOps.size();
3356  uint64_t SrcOff = 0, DstOff = 0;
3357  for (unsigned i = 0; i != NumMemOps; ++i) {
3358    EVT VT = MemOps[i];
3359    unsigned VTSize = VT.getSizeInBits() / 8;
3360    SDValue Value, Store;
3361
3362    if (CopyFromStr &&
3363        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3364      // It's unlikely a store of a vector immediate can be done in a single
3365      // instruction. It would require a load from a constantpool first.
3366      // We only handle zero vectors here.
3367      // FIXME: Handle other cases where store of vector immediate is done in
3368      // a single instruction.
3369      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3370      Store = DAG.getStore(Chain, dl, Value,
3371                           getMemBasePlusOffset(Dst, DstOff, DAG),
3372                           DstPtrInfo.getWithOffset(DstOff), isVol,
3373                           false, Align);
3374    } else {
3375      // The type might not be legal for the target.  This should only happen
3376      // if the type is smaller than a legal type, as on PPC, so the right
3377      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3378      // to Load/Store if NVT==VT.
3379      // FIXME does the case above also need this?
3380      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3381      assert(NVT.bitsGE(VT));
3382      Value = DAG.getExtLoad(ISD::EXTLOAD, NVT, dl, Chain,
3383                             getMemBasePlusOffset(Src, SrcOff, DAG),
3384                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3385                             MinAlign(SrcAlign, SrcOff));
3386      Store = DAG.getTruncStore(Chain, dl, Value,
3387                                getMemBasePlusOffset(Dst, DstOff, DAG),
3388                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3389                                false, Align);
3390    }
3391    OutChains.push_back(Store);
3392    SrcOff += VTSize;
3393    DstOff += VTSize;
3394  }
3395
3396  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3397                     &OutChains[0], OutChains.size());
3398}
3399
3400static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3401                                        SDValue Chain, SDValue Dst,
3402                                        SDValue Src, uint64_t Size,
3403                                        unsigned Align,  bool isVol,
3404                                        bool AlwaysInline,
3405                                        MachinePointerInfo DstPtrInfo,
3406                                        MachinePointerInfo SrcPtrInfo) {
3407  // Turn a memmove of undef to nop.
3408  if (Src.getOpcode() == ISD::UNDEF)
3409    return Chain;
3410
3411  // Expand memmove to a series of load and store ops if the size operand falls
3412  // below a certain threshold.
3413  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3414  std::vector<EVT> MemOps;
3415  bool DstAlignCanChange = false;
3416  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3417  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3418  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3419    DstAlignCanChange = true;
3420  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3421  if (Align > SrcAlign)
3422    SrcAlign = Align;
3423  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove();
3424
3425  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3426                                (DstAlignCanChange ? 0 : Align),
3427                                SrcAlign, true, false, DAG, TLI))
3428    return SDValue();
3429
3430  if (DstAlignCanChange) {
3431    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3432    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3433    if (NewAlign > Align) {
3434      // Give the stack frame object a larger alignment if needed.
3435      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3436        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3437      Align = NewAlign;
3438    }
3439  }
3440
3441  uint64_t SrcOff = 0, DstOff = 0;
3442  SmallVector<SDValue, 8> LoadValues;
3443  SmallVector<SDValue, 8> LoadChains;
3444  SmallVector<SDValue, 8> OutChains;
3445  unsigned NumMemOps = MemOps.size();
3446  for (unsigned i = 0; i < NumMemOps; i++) {
3447    EVT VT = MemOps[i];
3448    unsigned VTSize = VT.getSizeInBits() / 8;
3449    SDValue Value, Store;
3450
3451    Value = DAG.getLoad(VT, dl, Chain,
3452                        getMemBasePlusOffset(Src, SrcOff, DAG),
3453                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3454                        false, SrcAlign);
3455    LoadValues.push_back(Value);
3456    LoadChains.push_back(Value.getValue(1));
3457    SrcOff += VTSize;
3458  }
3459  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3460                      &LoadChains[0], LoadChains.size());
3461  OutChains.clear();
3462  for (unsigned i = 0; i < NumMemOps; i++) {
3463    EVT VT = MemOps[i];
3464    unsigned VTSize = VT.getSizeInBits() / 8;
3465    SDValue Value, Store;
3466
3467    Store = DAG.getStore(Chain, dl, LoadValues[i],
3468                         getMemBasePlusOffset(Dst, DstOff, DAG),
3469                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3470    OutChains.push_back(Store);
3471    DstOff += VTSize;
3472  }
3473
3474  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3475                     &OutChains[0], OutChains.size());
3476}
3477
3478static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3479                               SDValue Chain, SDValue Dst,
3480                               SDValue Src, uint64_t Size,
3481                               unsigned Align, bool isVol,
3482                               MachinePointerInfo DstPtrInfo) {
3483  // Turn a memset of undef to nop.
3484  if (Src.getOpcode() == ISD::UNDEF)
3485    return Chain;
3486
3487  // Expand memset to a series of load/store ops if the size operand
3488  // falls below a certain threshold.
3489  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3490  std::vector<EVT> MemOps;
3491  bool DstAlignCanChange = false;
3492  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3493  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3494  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3495    DstAlignCanChange = true;
3496  bool NonScalarIntSafe =
3497    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3498  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3499                                Size, (DstAlignCanChange ? 0 : Align), 0,
3500                                NonScalarIntSafe, false, DAG, TLI))
3501    return SDValue();
3502
3503  if (DstAlignCanChange) {
3504    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3505    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3506    if (NewAlign > Align) {
3507      // Give the stack frame object a larger alignment if needed.
3508      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3509        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3510      Align = NewAlign;
3511    }
3512  }
3513
3514  SmallVector<SDValue, 8> OutChains;
3515  uint64_t DstOff = 0;
3516  unsigned NumMemOps = MemOps.size();
3517  for (unsigned i = 0; i < NumMemOps; i++) {
3518    EVT VT = MemOps[i];
3519    unsigned VTSize = VT.getSizeInBits() / 8;
3520    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3521    SDValue Store = DAG.getStore(Chain, dl, Value,
3522                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3523                                 DstPtrInfo.getWithOffset(DstOff),
3524                                 isVol, false, Align);
3525    OutChains.push_back(Store);
3526    DstOff += VTSize;
3527  }
3528
3529  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3530                     &OutChains[0], OutChains.size());
3531}
3532
3533SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3534                                SDValue Src, SDValue Size,
3535                                unsigned Align, bool isVol, bool AlwaysInline,
3536                                MachinePointerInfo DstPtrInfo,
3537                                MachinePointerInfo SrcPtrInfo) {
3538
3539  // Check to see if we should lower the memcpy to loads and stores first.
3540  // For cases within the target-specified limits, this is the best choice.
3541  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3542  if (ConstantSize) {
3543    // Memcpy with size zero? Just return the original chain.
3544    if (ConstantSize->isNullValue())
3545      return Chain;
3546
3547    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3548                                             ConstantSize->getZExtValue(),Align,
3549                                isVol, false, DstPtrInfo, SrcPtrInfo);
3550    if (Result.getNode())
3551      return Result;
3552  }
3553
3554  // Then check to see if we should lower the memcpy with target-specific
3555  // code. If the target chooses to do this, this is the next best.
3556  SDValue Result =
3557    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3558                                isVol, AlwaysInline,
3559                                DstPtrInfo, SrcPtrInfo);
3560  if (Result.getNode())
3561    return Result;
3562
3563  // If we really need inline code and the target declined to provide it,
3564  // use a (potentially long) sequence of loads and stores.
3565  if (AlwaysInline) {
3566    assert(ConstantSize && "AlwaysInline requires a constant size!");
3567    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3568                                   ConstantSize->getZExtValue(), Align, isVol,
3569                                   true, DstPtrInfo, SrcPtrInfo);
3570  }
3571
3572  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3573  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3574  // respect volatile, so they may do things like read or write memory
3575  // beyond the given memory regions. But fixing this isn't easy, and most
3576  // people don't care.
3577
3578  // Emit a library call.
3579  TargetLowering::ArgListTy Args;
3580  TargetLowering::ArgListEntry Entry;
3581  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3582  Entry.Node = Dst; Args.push_back(Entry);
3583  Entry.Node = Src; Args.push_back(Entry);
3584  Entry.Node = Size; Args.push_back(Entry);
3585  // FIXME: pass in DebugLoc
3586  std::pair<SDValue,SDValue> CallResult =
3587    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3588                    false, false, false, false, 0,
3589                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3590                    /*isReturnValueUsed=*/false,
3591                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3592                                      TLI.getPointerTy()),
3593                    Args, *this, dl);
3594  return CallResult.second;
3595}
3596
3597SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3598                                 SDValue Src, SDValue Size,
3599                                 unsigned Align, bool isVol,
3600                                 MachinePointerInfo DstPtrInfo,
3601                                 MachinePointerInfo SrcPtrInfo) {
3602
3603  // Check to see if we should lower the memmove to loads and stores first.
3604  // For cases within the target-specified limits, this is the best choice.
3605  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3606  if (ConstantSize) {
3607    // Memmove with size zero? Just return the original chain.
3608    if (ConstantSize->isNullValue())
3609      return Chain;
3610
3611    SDValue Result =
3612      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3613                               ConstantSize->getZExtValue(), Align, isVol,
3614                               false, DstPtrInfo, SrcPtrInfo);
3615    if (Result.getNode())
3616      return Result;
3617  }
3618
3619  // Then check to see if we should lower the memmove with target-specific
3620  // code. If the target chooses to do this, this is the next best.
3621  SDValue Result =
3622    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3623                                 DstPtrInfo, SrcPtrInfo);
3624  if (Result.getNode())
3625    return Result;
3626
3627  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3628  // not be safe.  See memcpy above for more details.
3629
3630  // Emit a library call.
3631  TargetLowering::ArgListTy Args;
3632  TargetLowering::ArgListEntry Entry;
3633  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3634  Entry.Node = Dst; Args.push_back(Entry);
3635  Entry.Node = Src; Args.push_back(Entry);
3636  Entry.Node = Size; Args.push_back(Entry);
3637  // FIXME:  pass in DebugLoc
3638  std::pair<SDValue,SDValue> CallResult =
3639    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3640                    false, false, false, false, 0,
3641                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3642                    /*isReturnValueUsed=*/false,
3643                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3644                                      TLI.getPointerTy()),
3645                    Args, *this, dl);
3646  return CallResult.second;
3647}
3648
3649SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3650                                SDValue Src, SDValue Size,
3651                                unsigned Align, bool isVol,
3652                                MachinePointerInfo DstPtrInfo) {
3653
3654  // Check to see if we should lower the memset to stores first.
3655  // For cases within the target-specified limits, this is the best choice.
3656  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3657  if (ConstantSize) {
3658    // Memset with size zero? Just return the original chain.
3659    if (ConstantSize->isNullValue())
3660      return Chain;
3661
3662    SDValue Result =
3663      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3664                      Align, isVol, DstPtrInfo);
3665
3666    if (Result.getNode())
3667      return Result;
3668  }
3669
3670  // Then check to see if we should lower the memset with target-specific
3671  // code. If the target chooses to do this, this is the next best.
3672  SDValue Result =
3673    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3674                                DstPtrInfo);
3675  if (Result.getNode())
3676    return Result;
3677
3678  // Emit a library call.
3679  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3680  TargetLowering::ArgListTy Args;
3681  TargetLowering::ArgListEntry Entry;
3682  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3683  Args.push_back(Entry);
3684  // Extend or truncate the argument to be an i32 value for the call.
3685  if (Src.getValueType().bitsGT(MVT::i32))
3686    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3687  else
3688    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3689  Entry.Node = Src;
3690  Entry.Ty = Type::getInt32Ty(*getContext());
3691  Entry.isSExt = true;
3692  Args.push_back(Entry);
3693  Entry.Node = Size;
3694  Entry.Ty = IntPtrTy;
3695  Entry.isSExt = false;
3696  Args.push_back(Entry);
3697  // FIXME: pass in DebugLoc
3698  std::pair<SDValue,SDValue> CallResult =
3699    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3700                    false, false, false, false, 0,
3701                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3702                    /*isReturnValueUsed=*/false,
3703                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3704                                      TLI.getPointerTy()),
3705                    Args, *this, dl);
3706  return CallResult.second;
3707}
3708
3709SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3710                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3711                                SDValue Swp, MachinePointerInfo PtrInfo,
3712                                unsigned Alignment) {
3713  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3714    Alignment = getEVTAlignment(MemVT);
3715
3716  MachineFunction &MF = getMachineFunction();
3717  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3718
3719  // For now, atomics are considered to be volatile always.
3720  Flags |= MachineMemOperand::MOVolatile;
3721
3722  MachineMemOperand *MMO =
3723    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3724
3725  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3726}
3727
3728SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3729                                SDValue Chain,
3730                                SDValue Ptr, SDValue Cmp,
3731                                SDValue Swp, MachineMemOperand *MMO) {
3732  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3733  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3734
3735  EVT VT = Cmp.getValueType();
3736
3737  SDVTList VTs = getVTList(VT, MVT::Other);
3738  FoldingSetNodeID ID;
3739  ID.AddInteger(MemVT.getRawBits());
3740  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3741  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3742  void* IP = 0;
3743  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3744    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3745    return SDValue(E, 0);
3746  }
3747  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3748                                               Ptr, Cmp, Swp, MMO);
3749  CSEMap.InsertNode(N, IP);
3750  AllNodes.push_back(N);
3751  return SDValue(N, 0);
3752}
3753
3754SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3755                                SDValue Chain,
3756                                SDValue Ptr, SDValue Val,
3757                                const Value* PtrVal,
3758                                unsigned Alignment) {
3759  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3760    Alignment = getEVTAlignment(MemVT);
3761
3762  MachineFunction &MF = getMachineFunction();
3763  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3764
3765  // For now, atomics are considered to be volatile always.
3766  Flags |= MachineMemOperand::MOVolatile;
3767
3768  MachineMemOperand *MMO =
3769    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3770                            MemVT.getStoreSize(), Alignment);
3771
3772  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3773}
3774
3775SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3776                                SDValue Chain,
3777                                SDValue Ptr, SDValue Val,
3778                                MachineMemOperand *MMO) {
3779  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3780          Opcode == ISD::ATOMIC_LOAD_SUB ||
3781          Opcode == ISD::ATOMIC_LOAD_AND ||
3782          Opcode == ISD::ATOMIC_LOAD_OR ||
3783          Opcode == ISD::ATOMIC_LOAD_XOR ||
3784          Opcode == ISD::ATOMIC_LOAD_NAND ||
3785          Opcode == ISD::ATOMIC_LOAD_MIN ||
3786          Opcode == ISD::ATOMIC_LOAD_MAX ||
3787          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3788          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3789          Opcode == ISD::ATOMIC_SWAP) &&
3790         "Invalid Atomic Op");
3791
3792  EVT VT = Val.getValueType();
3793
3794  SDVTList VTs = getVTList(VT, MVT::Other);
3795  FoldingSetNodeID ID;
3796  ID.AddInteger(MemVT.getRawBits());
3797  SDValue Ops[] = {Chain, Ptr, Val};
3798  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3799  void* IP = 0;
3800  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3801    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3802    return SDValue(E, 0);
3803  }
3804  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3805                                               Ptr, Val, MMO);
3806  CSEMap.InsertNode(N, IP);
3807  AllNodes.push_back(N);
3808  return SDValue(N, 0);
3809}
3810
3811/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3812/// Allowed to return something different (and simpler) if Simplify is true.
3813SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3814                                     DebugLoc dl) {
3815  if (NumOps == 1)
3816    return Ops[0];
3817
3818  SmallVector<EVT, 4> VTs;
3819  VTs.reserve(NumOps);
3820  for (unsigned i = 0; i < NumOps; ++i)
3821    VTs.push_back(Ops[i].getValueType());
3822  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3823                 Ops, NumOps);
3824}
3825
3826SDValue
3827SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3828                                  const EVT *VTs, unsigned NumVTs,
3829                                  const SDValue *Ops, unsigned NumOps,
3830                                  EVT MemVT, MachinePointerInfo PtrInfo,
3831                                  unsigned Align, bool Vol,
3832                                  bool ReadMem, bool WriteMem) {
3833  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3834                             MemVT, PtrInfo, Align, Vol,
3835                             ReadMem, WriteMem);
3836}
3837
3838SDValue
3839SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3840                                  const SDValue *Ops, unsigned NumOps,
3841                                  EVT MemVT, MachinePointerInfo PtrInfo,
3842                                  unsigned Align, bool Vol,
3843                                  bool ReadMem, bool WriteMem) {
3844  if (Align == 0)  // Ensure that codegen never sees alignment 0
3845    Align = getEVTAlignment(MemVT);
3846
3847  MachineFunction &MF = getMachineFunction();
3848  unsigned Flags = 0;
3849  if (WriteMem)
3850    Flags |= MachineMemOperand::MOStore;
3851  if (ReadMem)
3852    Flags |= MachineMemOperand::MOLoad;
3853  if (Vol)
3854    Flags |= MachineMemOperand::MOVolatile;
3855  MachineMemOperand *MMO =
3856    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
3857
3858  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3859}
3860
3861SDValue
3862SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3863                                  const SDValue *Ops, unsigned NumOps,
3864                                  EVT MemVT, MachineMemOperand *MMO) {
3865  assert((Opcode == ISD::INTRINSIC_VOID ||
3866          Opcode == ISD::INTRINSIC_W_CHAIN ||
3867          Opcode == ISD::PREFETCH ||
3868          (Opcode <= INT_MAX &&
3869           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3870         "Opcode is not a memory-accessing opcode!");
3871
3872  // Memoize the node unless it returns a flag.
3873  MemIntrinsicSDNode *N;
3874  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3875    FoldingSetNodeID ID;
3876    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3877    void *IP = 0;
3878    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3879      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3880      return SDValue(E, 0);
3881    }
3882
3883    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3884                                               MemVT, MMO);
3885    CSEMap.InsertNode(N, IP);
3886  } else {
3887    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3888                                               MemVT, MMO);
3889  }
3890  AllNodes.push_back(N);
3891  return SDValue(N, 0);
3892}
3893
3894/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
3895/// MachinePointerInfo record from it.  This is particularly useful because the
3896/// code generator has many cases where it doesn't bother passing in a
3897/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
3898static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
3899  // If this is FI+Offset, we can model it.
3900  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
3901    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
3902
3903  // If this is (FI+Offset1)+Offset2, we can model it.
3904  if (Ptr.getOpcode() != ISD::ADD ||
3905      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
3906      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
3907    return MachinePointerInfo();
3908
3909  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3910  return MachinePointerInfo::getFixedStack(FI, Offset+
3911                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
3912}
3913
3914/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
3915/// MachinePointerInfo record from it.  This is particularly useful because the
3916/// code generator has many cases where it doesn't bother passing in a
3917/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
3918static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
3919  // If the 'Offset' value isn't a constant, we can't handle this.
3920  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
3921    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
3922  if (OffsetOp.getOpcode() == ISD::UNDEF)
3923    return InferPointerInfo(Ptr);
3924  return MachinePointerInfo();
3925}
3926
3927
3928SDValue
3929SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3930                      EVT VT, DebugLoc dl, SDValue Chain,
3931                      SDValue Ptr, SDValue Offset,
3932                      MachinePointerInfo PtrInfo, EVT MemVT,
3933                      bool isVolatile, bool isNonTemporal,
3934                      unsigned Alignment, const MDNode *TBAAInfo) {
3935  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3936    Alignment = getEVTAlignment(VT);
3937
3938  unsigned Flags = MachineMemOperand::MOLoad;
3939  if (isVolatile)
3940    Flags |= MachineMemOperand::MOVolatile;
3941  if (isNonTemporal)
3942    Flags |= MachineMemOperand::MONonTemporal;
3943
3944  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
3945  // clients.
3946  if (PtrInfo.V == 0)
3947    PtrInfo = InferPointerInfo(Ptr, Offset);
3948
3949  MachineFunction &MF = getMachineFunction();
3950  MachineMemOperand *MMO =
3951    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
3952                            TBAAInfo);
3953  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
3954}
3955
3956SDValue
3957SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3958                      EVT VT, DebugLoc dl, SDValue Chain,
3959                      SDValue Ptr, SDValue Offset, EVT MemVT,
3960                      MachineMemOperand *MMO) {
3961  if (VT == MemVT) {
3962    ExtType = ISD::NON_EXTLOAD;
3963  } else if (ExtType == ISD::NON_EXTLOAD) {
3964    assert(VT == MemVT && "Non-extending load from different memory type!");
3965  } else {
3966    // Extending load.
3967    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3968           "Should only be an extending load, not truncating!");
3969    assert(VT.isInteger() == MemVT.isInteger() &&
3970           "Cannot convert from FP to Int or Int -> FP!");
3971    assert(VT.isVector() == MemVT.isVector() &&
3972           "Cannot use trunc store to convert to or from a vector!");
3973    assert((!VT.isVector() ||
3974            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3975           "Cannot use trunc store to change the number of vector elements!");
3976  }
3977
3978  bool Indexed = AM != ISD::UNINDEXED;
3979  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3980         "Unindexed load with an offset!");
3981
3982  SDVTList VTs = Indexed ?
3983    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3984  SDValue Ops[] = { Chain, Ptr, Offset };
3985  FoldingSetNodeID ID;
3986  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3987  ID.AddInteger(MemVT.getRawBits());
3988  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3989                                     MMO->isNonTemporal()));
3990  void *IP = 0;
3991  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3992    cast<LoadSDNode>(E)->refineAlignment(MMO);
3993    return SDValue(E, 0);
3994  }
3995  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3996                                             MemVT, MMO);
3997  CSEMap.InsertNode(N, IP);
3998  AllNodes.push_back(N);
3999  return SDValue(N, 0);
4000}
4001
4002SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4003                              SDValue Chain, SDValue Ptr,
4004                              MachinePointerInfo PtrInfo,
4005                              bool isVolatile, bool isNonTemporal,
4006                              unsigned Alignment, const MDNode *TBAAInfo) {
4007  SDValue Undef = getUNDEF(Ptr.getValueType());
4008  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4009                 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
4010}
4011
4012SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, EVT VT, DebugLoc dl,
4013                                 SDValue Chain, SDValue Ptr,
4014                                 MachinePointerInfo PtrInfo, EVT MemVT,
4015                                 bool isVolatile, bool isNonTemporal,
4016                                 unsigned Alignment, const MDNode *TBAAInfo) {
4017  SDValue Undef = getUNDEF(Ptr.getValueType());
4018  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4019                 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
4020                 TBAAInfo);
4021}
4022
4023
4024SDValue
4025SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4026                             SDValue Offset, ISD::MemIndexedMode AM) {
4027  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4028  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4029         "Load is already a indexed load!");
4030  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4031                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4032                 LD->getMemoryVT(),
4033                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4034}
4035
4036SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4037                               SDValue Ptr, MachinePointerInfo PtrInfo,
4038                               bool isVolatile, bool isNonTemporal,
4039                               unsigned Alignment, const MDNode *TBAAInfo) {
4040  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4041    Alignment = getEVTAlignment(Val.getValueType());
4042
4043  unsigned Flags = MachineMemOperand::MOStore;
4044  if (isVolatile)
4045    Flags |= MachineMemOperand::MOVolatile;
4046  if (isNonTemporal)
4047    Flags |= MachineMemOperand::MONonTemporal;
4048
4049  if (PtrInfo.V == 0)
4050    PtrInfo = InferPointerInfo(Ptr);
4051
4052  MachineFunction &MF = getMachineFunction();
4053  MachineMemOperand *MMO =
4054    MF.getMachineMemOperand(PtrInfo, Flags,
4055                            Val.getValueType().getStoreSize(), Alignment,
4056                            TBAAInfo);
4057
4058  return getStore(Chain, dl, Val, Ptr, MMO);
4059}
4060
4061SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4062                               SDValue Ptr, MachineMemOperand *MMO) {
4063  EVT VT = Val.getValueType();
4064  SDVTList VTs = getVTList(MVT::Other);
4065  SDValue Undef = getUNDEF(Ptr.getValueType());
4066  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4067  FoldingSetNodeID ID;
4068  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4069  ID.AddInteger(VT.getRawBits());
4070  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4071                                     MMO->isNonTemporal()));
4072  void *IP = 0;
4073  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4074    cast<StoreSDNode>(E)->refineAlignment(MMO);
4075    return SDValue(E, 0);
4076  }
4077  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4078                                              false, VT, MMO);
4079  CSEMap.InsertNode(N, IP);
4080  AllNodes.push_back(N);
4081  return SDValue(N, 0);
4082}
4083
4084SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4085                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4086                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4087                                    unsigned Alignment,
4088                                    const MDNode *TBAAInfo) {
4089  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4090    Alignment = getEVTAlignment(SVT);
4091
4092  unsigned Flags = MachineMemOperand::MOStore;
4093  if (isVolatile)
4094    Flags |= MachineMemOperand::MOVolatile;
4095  if (isNonTemporal)
4096    Flags |= MachineMemOperand::MONonTemporal;
4097
4098  if (PtrInfo.V == 0)
4099    PtrInfo = InferPointerInfo(Ptr);
4100
4101  MachineFunction &MF = getMachineFunction();
4102  MachineMemOperand *MMO =
4103    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4104                            TBAAInfo);
4105
4106  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4107}
4108
4109SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4110                                    SDValue Ptr, EVT SVT,
4111                                    MachineMemOperand *MMO) {
4112  EVT VT = Val.getValueType();
4113
4114  if (VT == SVT)
4115    return getStore(Chain, dl, Val, Ptr, MMO);
4116
4117  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4118         "Should only be a truncating store, not extending!");
4119  assert(VT.isInteger() == SVT.isInteger() &&
4120         "Can't do FP-INT conversion!");
4121  assert(VT.isVector() == SVT.isVector() &&
4122         "Cannot use trunc store to convert to or from a vector!");
4123  assert((!VT.isVector() ||
4124          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4125         "Cannot use trunc store to change the number of vector elements!");
4126
4127  SDVTList VTs = getVTList(MVT::Other);
4128  SDValue Undef = getUNDEF(Ptr.getValueType());
4129  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4130  FoldingSetNodeID ID;
4131  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4132  ID.AddInteger(SVT.getRawBits());
4133  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4134                                     MMO->isNonTemporal()));
4135  void *IP = 0;
4136  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4137    cast<StoreSDNode>(E)->refineAlignment(MMO);
4138    return SDValue(E, 0);
4139  }
4140  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4141                                              true, SVT, MMO);
4142  CSEMap.InsertNode(N, IP);
4143  AllNodes.push_back(N);
4144  return SDValue(N, 0);
4145}
4146
4147SDValue
4148SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4149                              SDValue Offset, ISD::MemIndexedMode AM) {
4150  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4151  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4152         "Store is already a indexed store!");
4153  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4154  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4155  FoldingSetNodeID ID;
4156  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4157  ID.AddInteger(ST->getMemoryVT().getRawBits());
4158  ID.AddInteger(ST->getRawSubclassData());
4159  void *IP = 0;
4160  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4161    return SDValue(E, 0);
4162
4163  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4164                                              ST->isTruncatingStore(),
4165                                              ST->getMemoryVT(),
4166                                              ST->getMemOperand());
4167  CSEMap.InsertNode(N, IP);
4168  AllNodes.push_back(N);
4169  return SDValue(N, 0);
4170}
4171
4172SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4173                               SDValue Chain, SDValue Ptr,
4174                               SDValue SV,
4175                               unsigned Align) {
4176  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4177  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4178}
4179
4180SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4181                              const SDUse *Ops, unsigned NumOps) {
4182  switch (NumOps) {
4183  case 0: return getNode(Opcode, DL, VT);
4184  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4185  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4186  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4187  default: break;
4188  }
4189
4190  // Copy from an SDUse array into an SDValue array for use with
4191  // the regular getNode logic.
4192  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4193  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4194}
4195
4196SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4197                              const SDValue *Ops, unsigned NumOps) {
4198  switch (NumOps) {
4199  case 0: return getNode(Opcode, DL, VT);
4200  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4201  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4202  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4203  default: break;
4204  }
4205
4206  switch (Opcode) {
4207  default: break;
4208  case ISD::SELECT_CC: {
4209    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4210    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4211           "LHS and RHS of condition must have same type!");
4212    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4213           "True and False arms of SelectCC must have same type!");
4214    assert(Ops[2].getValueType() == VT &&
4215           "select_cc node must be of same type as true and false value!");
4216    break;
4217  }
4218  case ISD::BR_CC: {
4219    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4220    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4221           "LHS/RHS of comparison should match types!");
4222    break;
4223  }
4224  }
4225
4226  // Memoize nodes.
4227  SDNode *N;
4228  SDVTList VTs = getVTList(VT);
4229
4230  if (VT != MVT::Flag) {
4231    FoldingSetNodeID ID;
4232    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4233    void *IP = 0;
4234
4235    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4236      return SDValue(E, 0);
4237
4238    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4239    CSEMap.InsertNode(N, IP);
4240  } else {
4241    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4242  }
4243
4244  AllNodes.push_back(N);
4245#ifndef NDEBUG
4246  VerifySDNode(N);
4247#endif
4248  return SDValue(N, 0);
4249}
4250
4251SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4252                              const std::vector<EVT> &ResultTys,
4253                              const SDValue *Ops, unsigned NumOps) {
4254  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4255                 Ops, NumOps);
4256}
4257
4258SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4259                              const EVT *VTs, unsigned NumVTs,
4260                              const SDValue *Ops, unsigned NumOps) {
4261  if (NumVTs == 1)
4262    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4263  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4264}
4265
4266SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4267                              const SDValue *Ops, unsigned NumOps) {
4268  if (VTList.NumVTs == 1)
4269    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4270
4271#if 0
4272  switch (Opcode) {
4273  // FIXME: figure out how to safely handle things like
4274  // int foo(int x) { return 1 << (x & 255); }
4275  // int bar() { return foo(256); }
4276  case ISD::SRA_PARTS:
4277  case ISD::SRL_PARTS:
4278  case ISD::SHL_PARTS:
4279    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4280        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4281      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4282    else if (N3.getOpcode() == ISD::AND)
4283      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4284        // If the and is only masking out bits that cannot effect the shift,
4285        // eliminate the and.
4286        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4287        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4288          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4289      }
4290    break;
4291  }
4292#endif
4293
4294  // Memoize the node unless it returns a flag.
4295  SDNode *N;
4296  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4297    FoldingSetNodeID ID;
4298    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4299    void *IP = 0;
4300    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4301      return SDValue(E, 0);
4302
4303    if (NumOps == 1) {
4304      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4305    } else if (NumOps == 2) {
4306      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4307    } else if (NumOps == 3) {
4308      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4309                                            Ops[2]);
4310    } else {
4311      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4312    }
4313    CSEMap.InsertNode(N, IP);
4314  } else {
4315    if (NumOps == 1) {
4316      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4317    } else if (NumOps == 2) {
4318      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4319    } else if (NumOps == 3) {
4320      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4321                                            Ops[2]);
4322    } else {
4323      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4324    }
4325  }
4326  AllNodes.push_back(N);
4327#ifndef NDEBUG
4328  VerifySDNode(N);
4329#endif
4330  return SDValue(N, 0);
4331}
4332
4333SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4334  return getNode(Opcode, DL, VTList, 0, 0);
4335}
4336
4337SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4338                              SDValue N1) {
4339  SDValue Ops[] = { N1 };
4340  return getNode(Opcode, DL, VTList, Ops, 1);
4341}
4342
4343SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4344                              SDValue N1, SDValue N2) {
4345  SDValue Ops[] = { N1, N2 };
4346  return getNode(Opcode, DL, VTList, Ops, 2);
4347}
4348
4349SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4350                              SDValue N1, SDValue N2, SDValue N3) {
4351  SDValue Ops[] = { N1, N2, N3 };
4352  return getNode(Opcode, DL, VTList, Ops, 3);
4353}
4354
4355SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4356                              SDValue N1, SDValue N2, SDValue N3,
4357                              SDValue N4) {
4358  SDValue Ops[] = { N1, N2, N3, N4 };
4359  return getNode(Opcode, DL, VTList, Ops, 4);
4360}
4361
4362SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4363                              SDValue N1, SDValue N2, SDValue N3,
4364                              SDValue N4, SDValue N5) {
4365  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4366  return getNode(Opcode, DL, VTList, Ops, 5);
4367}
4368
4369SDVTList SelectionDAG::getVTList(EVT VT) {
4370  return makeVTList(SDNode::getValueTypeList(VT), 1);
4371}
4372
4373SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4374  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4375       E = VTList.rend(); I != E; ++I)
4376    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4377      return *I;
4378
4379  EVT *Array = Allocator.Allocate<EVT>(2);
4380  Array[0] = VT1;
4381  Array[1] = VT2;
4382  SDVTList Result = makeVTList(Array, 2);
4383  VTList.push_back(Result);
4384  return Result;
4385}
4386
4387SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4388  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4389       E = VTList.rend(); I != E; ++I)
4390    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4391                          I->VTs[2] == VT3)
4392      return *I;
4393
4394  EVT *Array = Allocator.Allocate<EVT>(3);
4395  Array[0] = VT1;
4396  Array[1] = VT2;
4397  Array[2] = VT3;
4398  SDVTList Result = makeVTList(Array, 3);
4399  VTList.push_back(Result);
4400  return Result;
4401}
4402
4403SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4404  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4405       E = VTList.rend(); I != E; ++I)
4406    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4407                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4408      return *I;
4409
4410  EVT *Array = Allocator.Allocate<EVT>(4);
4411  Array[0] = VT1;
4412  Array[1] = VT2;
4413  Array[2] = VT3;
4414  Array[3] = VT4;
4415  SDVTList Result = makeVTList(Array, 4);
4416  VTList.push_back(Result);
4417  return Result;
4418}
4419
4420SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4421  switch (NumVTs) {
4422    case 0: llvm_unreachable("Cannot have nodes without results!");
4423    case 1: return getVTList(VTs[0]);
4424    case 2: return getVTList(VTs[0], VTs[1]);
4425    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4426    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4427    default: break;
4428  }
4429
4430  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4431       E = VTList.rend(); I != E; ++I) {
4432    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4433      continue;
4434
4435    bool NoMatch = false;
4436    for (unsigned i = 2; i != NumVTs; ++i)
4437      if (VTs[i] != I->VTs[i]) {
4438        NoMatch = true;
4439        break;
4440      }
4441    if (!NoMatch)
4442      return *I;
4443  }
4444
4445  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4446  std::copy(VTs, VTs+NumVTs, Array);
4447  SDVTList Result = makeVTList(Array, NumVTs);
4448  VTList.push_back(Result);
4449  return Result;
4450}
4451
4452
4453/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4454/// specified operands.  If the resultant node already exists in the DAG,
4455/// this does not modify the specified node, instead it returns the node that
4456/// already exists.  If the resultant node does not exist in the DAG, the
4457/// input node is returned.  As a degenerate case, if you specify the same
4458/// input operands as the node already has, the input node is returned.
4459SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4460  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4461
4462  // Check to see if there is no change.
4463  if (Op == N->getOperand(0)) return N;
4464
4465  // See if the modified node already exists.
4466  void *InsertPos = 0;
4467  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4468    return Existing;
4469
4470  // Nope it doesn't.  Remove the node from its current place in the maps.
4471  if (InsertPos)
4472    if (!RemoveNodeFromCSEMaps(N))
4473      InsertPos = 0;
4474
4475  // Now we update the operands.
4476  N->OperandList[0].set(Op);
4477
4478  // If this gets put into a CSE map, add it.
4479  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4480  return N;
4481}
4482
4483SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4484  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4485
4486  // Check to see if there is no change.
4487  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4488    return N;   // No operands changed, just return the input node.
4489
4490  // See if the modified node already exists.
4491  void *InsertPos = 0;
4492  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4493    return Existing;
4494
4495  // Nope it doesn't.  Remove the node from its current place in the maps.
4496  if (InsertPos)
4497    if (!RemoveNodeFromCSEMaps(N))
4498      InsertPos = 0;
4499
4500  // Now we update the operands.
4501  if (N->OperandList[0] != Op1)
4502    N->OperandList[0].set(Op1);
4503  if (N->OperandList[1] != Op2)
4504    N->OperandList[1].set(Op2);
4505
4506  // If this gets put into a CSE map, add it.
4507  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4508  return N;
4509}
4510
4511SDNode *SelectionDAG::
4512UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4513  SDValue Ops[] = { Op1, Op2, Op3 };
4514  return UpdateNodeOperands(N, Ops, 3);
4515}
4516
4517SDNode *SelectionDAG::
4518UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4519                   SDValue Op3, SDValue Op4) {
4520  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4521  return UpdateNodeOperands(N, Ops, 4);
4522}
4523
4524SDNode *SelectionDAG::
4525UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4526                   SDValue Op3, SDValue Op4, SDValue Op5) {
4527  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4528  return UpdateNodeOperands(N, Ops, 5);
4529}
4530
4531SDNode *SelectionDAG::
4532UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4533  assert(N->getNumOperands() == NumOps &&
4534         "Update with wrong number of operands");
4535
4536  // Check to see if there is no change.
4537  bool AnyChange = false;
4538  for (unsigned i = 0; i != NumOps; ++i) {
4539    if (Ops[i] != N->getOperand(i)) {
4540      AnyChange = true;
4541      break;
4542    }
4543  }
4544
4545  // No operands changed, just return the input node.
4546  if (!AnyChange) return N;
4547
4548  // See if the modified node already exists.
4549  void *InsertPos = 0;
4550  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4551    return Existing;
4552
4553  // Nope it doesn't.  Remove the node from its current place in the maps.
4554  if (InsertPos)
4555    if (!RemoveNodeFromCSEMaps(N))
4556      InsertPos = 0;
4557
4558  // Now we update the operands.
4559  for (unsigned i = 0; i != NumOps; ++i)
4560    if (N->OperandList[i] != Ops[i])
4561      N->OperandList[i].set(Ops[i]);
4562
4563  // If this gets put into a CSE map, add it.
4564  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4565  return N;
4566}
4567
4568/// DropOperands - Release the operands and set this node to have
4569/// zero operands.
4570void SDNode::DropOperands() {
4571  // Unlike the code in MorphNodeTo that does this, we don't need to
4572  // watch for dead nodes here.
4573  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4574    SDUse &Use = *I++;
4575    Use.set(SDValue());
4576  }
4577}
4578
4579/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4580/// machine opcode.
4581///
4582SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4583                                   EVT VT) {
4584  SDVTList VTs = getVTList(VT);
4585  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4586}
4587
4588SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4589                                   EVT VT, SDValue Op1) {
4590  SDVTList VTs = getVTList(VT);
4591  SDValue Ops[] = { Op1 };
4592  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4593}
4594
4595SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4596                                   EVT VT, SDValue Op1,
4597                                   SDValue Op2) {
4598  SDVTList VTs = getVTList(VT);
4599  SDValue Ops[] = { Op1, Op2 };
4600  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4601}
4602
4603SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4604                                   EVT VT, SDValue Op1,
4605                                   SDValue Op2, SDValue Op3) {
4606  SDVTList VTs = getVTList(VT);
4607  SDValue Ops[] = { Op1, Op2, Op3 };
4608  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4609}
4610
4611SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4612                                   EVT VT, const SDValue *Ops,
4613                                   unsigned NumOps) {
4614  SDVTList VTs = getVTList(VT);
4615  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4616}
4617
4618SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4619                                   EVT VT1, EVT VT2, const SDValue *Ops,
4620                                   unsigned NumOps) {
4621  SDVTList VTs = getVTList(VT1, VT2);
4622  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4623}
4624
4625SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4626                                   EVT VT1, EVT VT2) {
4627  SDVTList VTs = getVTList(VT1, VT2);
4628  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4629}
4630
4631SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4632                                   EVT VT1, EVT VT2, EVT VT3,
4633                                   const SDValue *Ops, unsigned NumOps) {
4634  SDVTList VTs = getVTList(VT1, VT2, VT3);
4635  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4636}
4637
4638SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4639                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4640                                   const SDValue *Ops, unsigned NumOps) {
4641  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4642  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4643}
4644
4645SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4646                                   EVT VT1, EVT VT2,
4647                                   SDValue Op1) {
4648  SDVTList VTs = getVTList(VT1, VT2);
4649  SDValue Ops[] = { Op1 };
4650  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4651}
4652
4653SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4654                                   EVT VT1, EVT VT2,
4655                                   SDValue Op1, SDValue Op2) {
4656  SDVTList VTs = getVTList(VT1, VT2);
4657  SDValue Ops[] = { Op1, Op2 };
4658  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4659}
4660
4661SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4662                                   EVT VT1, EVT VT2,
4663                                   SDValue Op1, SDValue Op2,
4664                                   SDValue Op3) {
4665  SDVTList VTs = getVTList(VT1, VT2);
4666  SDValue Ops[] = { Op1, Op2, Op3 };
4667  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4668}
4669
4670SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4671                                   EVT VT1, EVT VT2, EVT VT3,
4672                                   SDValue Op1, SDValue Op2,
4673                                   SDValue Op3) {
4674  SDVTList VTs = getVTList(VT1, VT2, VT3);
4675  SDValue Ops[] = { Op1, Op2, Op3 };
4676  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4677}
4678
4679SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4680                                   SDVTList VTs, const SDValue *Ops,
4681                                   unsigned NumOps) {
4682  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4683  // Reset the NodeID to -1.
4684  N->setNodeId(-1);
4685  return N;
4686}
4687
4688/// MorphNodeTo - This *mutates* the specified node to have the specified
4689/// return type, opcode, and operands.
4690///
4691/// Note that MorphNodeTo returns the resultant node.  If there is already a
4692/// node of the specified opcode and operands, it returns that node instead of
4693/// the current one.  Note that the DebugLoc need not be the same.
4694///
4695/// Using MorphNodeTo is faster than creating a new node and swapping it in
4696/// with ReplaceAllUsesWith both because it often avoids allocating a new
4697/// node, and because it doesn't require CSE recalculation for any of
4698/// the node's users.
4699///
4700SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4701                                  SDVTList VTs, const SDValue *Ops,
4702                                  unsigned NumOps) {
4703  // If an identical node already exists, use it.
4704  void *IP = 0;
4705  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4706    FoldingSetNodeID ID;
4707    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4708    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4709      return ON;
4710  }
4711
4712  if (!RemoveNodeFromCSEMaps(N))
4713    IP = 0;
4714
4715  // Start the morphing.
4716  N->NodeType = Opc;
4717  N->ValueList = VTs.VTs;
4718  N->NumValues = VTs.NumVTs;
4719
4720  // Clear the operands list, updating used nodes to remove this from their
4721  // use list.  Keep track of any operands that become dead as a result.
4722  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4723  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4724    SDUse &Use = *I++;
4725    SDNode *Used = Use.getNode();
4726    Use.set(SDValue());
4727    if (Used->use_empty())
4728      DeadNodeSet.insert(Used);
4729  }
4730
4731  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4732    // Initialize the memory references information.
4733    MN->setMemRefs(0, 0);
4734    // If NumOps is larger than the # of operands we can have in a
4735    // MachineSDNode, reallocate the operand list.
4736    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4737      if (MN->OperandsNeedDelete)
4738        delete[] MN->OperandList;
4739      if (NumOps > array_lengthof(MN->LocalOperands))
4740        // We're creating a final node that will live unmorphed for the
4741        // remainder of the current SelectionDAG iteration, so we can allocate
4742        // the operands directly out of a pool with no recycling metadata.
4743        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4744                         Ops, NumOps);
4745      else
4746        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4747      MN->OperandsNeedDelete = false;
4748    } else
4749      MN->InitOperands(MN->OperandList, Ops, NumOps);
4750  } else {
4751    // If NumOps is larger than the # of operands we currently have, reallocate
4752    // the operand list.
4753    if (NumOps > N->NumOperands) {
4754      if (N->OperandsNeedDelete)
4755        delete[] N->OperandList;
4756      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4757      N->OperandsNeedDelete = true;
4758    } else
4759      N->InitOperands(N->OperandList, Ops, NumOps);
4760  }
4761
4762  // Delete any nodes that are still dead after adding the uses for the
4763  // new operands.
4764  if (!DeadNodeSet.empty()) {
4765    SmallVector<SDNode *, 16> DeadNodes;
4766    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4767         E = DeadNodeSet.end(); I != E; ++I)
4768      if ((*I)->use_empty())
4769        DeadNodes.push_back(*I);
4770    RemoveDeadNodes(DeadNodes);
4771  }
4772
4773  if (IP)
4774    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4775  return N;
4776}
4777
4778
4779/// getMachineNode - These are used for target selectors to create a new node
4780/// with specified return type(s), MachineInstr opcode, and operands.
4781///
4782/// Note that getMachineNode returns the resultant node.  If there is already a
4783/// node of the specified opcode and operands, it returns that node instead of
4784/// the current one.
4785MachineSDNode *
4786SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4787  SDVTList VTs = getVTList(VT);
4788  return getMachineNode(Opcode, dl, VTs, 0, 0);
4789}
4790
4791MachineSDNode *
4792SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4793  SDVTList VTs = getVTList(VT);
4794  SDValue Ops[] = { Op1 };
4795  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4796}
4797
4798MachineSDNode *
4799SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4800                             SDValue Op1, SDValue Op2) {
4801  SDVTList VTs = getVTList(VT);
4802  SDValue Ops[] = { Op1, Op2 };
4803  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4804}
4805
4806MachineSDNode *
4807SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4808                             SDValue Op1, SDValue Op2, SDValue Op3) {
4809  SDVTList VTs = getVTList(VT);
4810  SDValue Ops[] = { Op1, Op2, Op3 };
4811  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4812}
4813
4814MachineSDNode *
4815SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4816                             const SDValue *Ops, unsigned NumOps) {
4817  SDVTList VTs = getVTList(VT);
4818  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4819}
4820
4821MachineSDNode *
4822SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4823  SDVTList VTs = getVTList(VT1, VT2);
4824  return getMachineNode(Opcode, dl, VTs, 0, 0);
4825}
4826
4827MachineSDNode *
4828SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4829                             EVT VT1, EVT VT2, SDValue Op1) {
4830  SDVTList VTs = getVTList(VT1, VT2);
4831  SDValue Ops[] = { Op1 };
4832  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4833}
4834
4835MachineSDNode *
4836SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4837                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4838  SDVTList VTs = getVTList(VT1, VT2);
4839  SDValue Ops[] = { Op1, Op2 };
4840  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4841}
4842
4843MachineSDNode *
4844SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4845                             EVT VT1, EVT VT2, SDValue Op1,
4846                             SDValue Op2, SDValue Op3) {
4847  SDVTList VTs = getVTList(VT1, VT2);
4848  SDValue Ops[] = { Op1, Op2, Op3 };
4849  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4850}
4851
4852MachineSDNode *
4853SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4854                             EVT VT1, EVT VT2,
4855                             const SDValue *Ops, unsigned NumOps) {
4856  SDVTList VTs = getVTList(VT1, VT2);
4857  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4858}
4859
4860MachineSDNode *
4861SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4862                             EVT VT1, EVT VT2, EVT VT3,
4863                             SDValue Op1, SDValue Op2) {
4864  SDVTList VTs = getVTList(VT1, VT2, VT3);
4865  SDValue Ops[] = { Op1, Op2 };
4866  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4867}
4868
4869MachineSDNode *
4870SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4871                             EVT VT1, EVT VT2, EVT VT3,
4872                             SDValue Op1, SDValue Op2, SDValue Op3) {
4873  SDVTList VTs = getVTList(VT1, VT2, VT3);
4874  SDValue Ops[] = { Op1, Op2, Op3 };
4875  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4876}
4877
4878MachineSDNode *
4879SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4880                             EVT VT1, EVT VT2, EVT VT3,
4881                             const SDValue *Ops, unsigned NumOps) {
4882  SDVTList VTs = getVTList(VT1, VT2, VT3);
4883  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4884}
4885
4886MachineSDNode *
4887SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4888                             EVT VT2, EVT VT3, EVT VT4,
4889                             const SDValue *Ops, unsigned NumOps) {
4890  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4891  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4892}
4893
4894MachineSDNode *
4895SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4896                             const std::vector<EVT> &ResultTys,
4897                             const SDValue *Ops, unsigned NumOps) {
4898  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4899  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4900}
4901
4902MachineSDNode *
4903SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4904                             const SDValue *Ops, unsigned NumOps) {
4905  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4906  MachineSDNode *N;
4907  void *IP;
4908
4909  if (DoCSE) {
4910    FoldingSetNodeID ID;
4911    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4912    IP = 0;
4913    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4914      return cast<MachineSDNode>(E);
4915  }
4916
4917  // Allocate a new MachineSDNode.
4918  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4919
4920  // Initialize the operands list.
4921  if (NumOps > array_lengthof(N->LocalOperands))
4922    // We're creating a final node that will live unmorphed for the
4923    // remainder of the current SelectionDAG iteration, so we can allocate
4924    // the operands directly out of a pool with no recycling metadata.
4925    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4926                    Ops, NumOps);
4927  else
4928    N->InitOperands(N->LocalOperands, Ops, NumOps);
4929  N->OperandsNeedDelete = false;
4930
4931  if (DoCSE)
4932    CSEMap.InsertNode(N, IP);
4933
4934  AllNodes.push_back(N);
4935#ifndef NDEBUG
4936  VerifyMachineNode(N);
4937#endif
4938  return N;
4939}
4940
4941/// getTargetExtractSubreg - A convenience function for creating
4942/// TargetOpcode::EXTRACT_SUBREG nodes.
4943SDValue
4944SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4945                                     SDValue Operand) {
4946  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4947  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4948                                  VT, Operand, SRIdxVal);
4949  return SDValue(Subreg, 0);
4950}
4951
4952/// getTargetInsertSubreg - A convenience function for creating
4953/// TargetOpcode::INSERT_SUBREG nodes.
4954SDValue
4955SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4956                                    SDValue Operand, SDValue Subreg) {
4957  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4958  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4959                                  VT, Operand, Subreg, SRIdxVal);
4960  return SDValue(Result, 0);
4961}
4962
4963/// getNodeIfExists - Get the specified node if it's already available, or
4964/// else return NULL.
4965SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4966                                      const SDValue *Ops, unsigned NumOps) {
4967  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4968    FoldingSetNodeID ID;
4969    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4970    void *IP = 0;
4971    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4972      return E;
4973  }
4974  return NULL;
4975}
4976
4977/// getDbgValue - Creates a SDDbgValue node.
4978///
4979SDDbgValue *
4980SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4981                          DebugLoc DL, unsigned O) {
4982  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4983}
4984
4985SDDbgValue *
4986SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4987                          DebugLoc DL, unsigned O) {
4988  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4989}
4990
4991SDDbgValue *
4992SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4993                          DebugLoc DL, unsigned O) {
4994  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4995}
4996
4997namespace {
4998
4999/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5000/// pointed to by a use iterator is deleted, increment the use iterator
5001/// so that it doesn't dangle.
5002///
5003/// This class also manages a "downlink" DAGUpdateListener, to forward
5004/// messages to ReplaceAllUsesWith's callers.
5005///
5006class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5007  SelectionDAG::DAGUpdateListener *DownLink;
5008  SDNode::use_iterator &UI;
5009  SDNode::use_iterator &UE;
5010
5011  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5012    // Increment the iterator as needed.
5013    while (UI != UE && N == *UI)
5014      ++UI;
5015
5016    // Then forward the message.
5017    if (DownLink) DownLink->NodeDeleted(N, E);
5018  }
5019
5020  virtual void NodeUpdated(SDNode *N) {
5021    // Just forward the message.
5022    if (DownLink) DownLink->NodeUpdated(N);
5023  }
5024
5025public:
5026  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5027                     SDNode::use_iterator &ui,
5028                     SDNode::use_iterator &ue)
5029    : DownLink(dl), UI(ui), UE(ue) {}
5030};
5031
5032}
5033
5034/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5035/// This can cause recursive merging of nodes in the DAG.
5036///
5037/// This version assumes From has a single result value.
5038///
5039void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5040                                      DAGUpdateListener *UpdateListener) {
5041  SDNode *From = FromN.getNode();
5042  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5043         "Cannot replace with this method!");
5044  assert(From != To.getNode() && "Cannot replace uses of with self");
5045
5046  // Iterate over all the existing uses of From. New uses will be added
5047  // to the beginning of the use list, which we avoid visiting.
5048  // This specifically avoids visiting uses of From that arise while the
5049  // replacement is happening, because any such uses would be the result
5050  // of CSE: If an existing node looks like From after one of its operands
5051  // is replaced by To, we don't want to replace of all its users with To
5052  // too. See PR3018 for more info.
5053  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5054  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5055  while (UI != UE) {
5056    SDNode *User = *UI;
5057
5058    // This node is about to morph, remove its old self from the CSE maps.
5059    RemoveNodeFromCSEMaps(User);
5060
5061    // A user can appear in a use list multiple times, and when this
5062    // happens the uses are usually next to each other in the list.
5063    // To help reduce the number of CSE recomputations, process all
5064    // the uses of this user that we can find this way.
5065    do {
5066      SDUse &Use = UI.getUse();
5067      ++UI;
5068      Use.set(To);
5069    } while (UI != UE && *UI == User);
5070
5071    // Now that we have modified User, add it back to the CSE maps.  If it
5072    // already exists there, recursively merge the results together.
5073    AddModifiedNodeToCSEMaps(User, &Listener);
5074  }
5075}
5076
5077/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5078/// This can cause recursive merging of nodes in the DAG.
5079///
5080/// This version assumes that for each value of From, there is a
5081/// corresponding value in To in the same position with the same type.
5082///
5083void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5084                                      DAGUpdateListener *UpdateListener) {
5085#ifndef NDEBUG
5086  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5087    assert((!From->hasAnyUseOfValue(i) ||
5088            From->getValueType(i) == To->getValueType(i)) &&
5089           "Cannot use this version of ReplaceAllUsesWith!");
5090#endif
5091
5092  // Handle the trivial case.
5093  if (From == To)
5094    return;
5095
5096  // Iterate over just the existing users of From. See the comments in
5097  // the ReplaceAllUsesWith above.
5098  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5099  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5100  while (UI != UE) {
5101    SDNode *User = *UI;
5102
5103    // This node is about to morph, remove its old self from the CSE maps.
5104    RemoveNodeFromCSEMaps(User);
5105
5106    // A user can appear in a use list multiple times, and when this
5107    // happens the uses are usually next to each other in the list.
5108    // To help reduce the number of CSE recomputations, process all
5109    // the uses of this user that we can find this way.
5110    do {
5111      SDUse &Use = UI.getUse();
5112      ++UI;
5113      Use.setNode(To);
5114    } while (UI != UE && *UI == User);
5115
5116    // Now that we have modified User, add it back to the CSE maps.  If it
5117    // already exists there, recursively merge the results together.
5118    AddModifiedNodeToCSEMaps(User, &Listener);
5119  }
5120}
5121
5122/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5123/// This can cause recursive merging of nodes in the DAG.
5124///
5125/// This version can replace From with any result values.  To must match the
5126/// number and types of values returned by From.
5127void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5128                                      const SDValue *To,
5129                                      DAGUpdateListener *UpdateListener) {
5130  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5131    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5132
5133  // Iterate over just the existing users of From. See the comments in
5134  // the ReplaceAllUsesWith above.
5135  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5136  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5137  while (UI != UE) {
5138    SDNode *User = *UI;
5139
5140    // This node is about to morph, remove its old self from the CSE maps.
5141    RemoveNodeFromCSEMaps(User);
5142
5143    // A user can appear in a use list multiple times, and when this
5144    // happens the uses are usually next to each other in the list.
5145    // To help reduce the number of CSE recomputations, process all
5146    // the uses of this user that we can find this way.
5147    do {
5148      SDUse &Use = UI.getUse();
5149      const SDValue &ToOp = To[Use.getResNo()];
5150      ++UI;
5151      Use.set(ToOp);
5152    } while (UI != UE && *UI == User);
5153
5154    // Now that we have modified User, add it back to the CSE maps.  If it
5155    // already exists there, recursively merge the results together.
5156    AddModifiedNodeToCSEMaps(User, &Listener);
5157  }
5158}
5159
5160/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5161/// uses of other values produced by From.getNode() alone.  The Deleted
5162/// vector is handled the same way as for ReplaceAllUsesWith.
5163void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5164                                             DAGUpdateListener *UpdateListener){
5165  // Handle the really simple, really trivial case efficiently.
5166  if (From == To) return;
5167
5168  // Handle the simple, trivial, case efficiently.
5169  if (From.getNode()->getNumValues() == 1) {
5170    ReplaceAllUsesWith(From, To, UpdateListener);
5171    return;
5172  }
5173
5174  // Iterate over just the existing users of From. See the comments in
5175  // the ReplaceAllUsesWith above.
5176  SDNode::use_iterator UI = From.getNode()->use_begin(),
5177                       UE = From.getNode()->use_end();
5178  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5179  while (UI != UE) {
5180    SDNode *User = *UI;
5181    bool UserRemovedFromCSEMaps = false;
5182
5183    // A user can appear in a use list multiple times, and when this
5184    // happens the uses are usually next to each other in the list.
5185    // To help reduce the number of CSE recomputations, process all
5186    // the uses of this user that we can find this way.
5187    do {
5188      SDUse &Use = UI.getUse();
5189
5190      // Skip uses of different values from the same node.
5191      if (Use.getResNo() != From.getResNo()) {
5192        ++UI;
5193        continue;
5194      }
5195
5196      // If this node hasn't been modified yet, it's still in the CSE maps,
5197      // so remove its old self from the CSE maps.
5198      if (!UserRemovedFromCSEMaps) {
5199        RemoveNodeFromCSEMaps(User);
5200        UserRemovedFromCSEMaps = true;
5201      }
5202
5203      ++UI;
5204      Use.set(To);
5205    } while (UI != UE && *UI == User);
5206
5207    // We are iterating over all uses of the From node, so if a use
5208    // doesn't use the specific value, no changes are made.
5209    if (!UserRemovedFromCSEMaps)
5210      continue;
5211
5212    // Now that we have modified User, add it back to the CSE maps.  If it
5213    // already exists there, recursively merge the results together.
5214    AddModifiedNodeToCSEMaps(User, &Listener);
5215  }
5216}
5217
5218namespace {
5219  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5220  /// to record information about a use.
5221  struct UseMemo {
5222    SDNode *User;
5223    unsigned Index;
5224    SDUse *Use;
5225  };
5226
5227  /// operator< - Sort Memos by User.
5228  bool operator<(const UseMemo &L, const UseMemo &R) {
5229    return (intptr_t)L.User < (intptr_t)R.User;
5230  }
5231}
5232
5233/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5234/// uses of other values produced by From.getNode() alone.  The same value
5235/// may appear in both the From and To list.  The Deleted vector is
5236/// handled the same way as for ReplaceAllUsesWith.
5237void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5238                                              const SDValue *To,
5239                                              unsigned Num,
5240                                              DAGUpdateListener *UpdateListener){
5241  // Handle the simple, trivial case efficiently.
5242  if (Num == 1)
5243    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5244
5245  // Read up all the uses and make records of them. This helps
5246  // processing new uses that are introduced during the
5247  // replacement process.
5248  SmallVector<UseMemo, 4> Uses;
5249  for (unsigned i = 0; i != Num; ++i) {
5250    unsigned FromResNo = From[i].getResNo();
5251    SDNode *FromNode = From[i].getNode();
5252    for (SDNode::use_iterator UI = FromNode->use_begin(),
5253         E = FromNode->use_end(); UI != E; ++UI) {
5254      SDUse &Use = UI.getUse();
5255      if (Use.getResNo() == FromResNo) {
5256        UseMemo Memo = { *UI, i, &Use };
5257        Uses.push_back(Memo);
5258      }
5259    }
5260  }
5261
5262  // Sort the uses, so that all the uses from a given User are together.
5263  std::sort(Uses.begin(), Uses.end());
5264
5265  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5266       UseIndex != UseIndexEnd; ) {
5267    // We know that this user uses some value of From.  If it is the right
5268    // value, update it.
5269    SDNode *User = Uses[UseIndex].User;
5270
5271    // This node is about to morph, remove its old self from the CSE maps.
5272    RemoveNodeFromCSEMaps(User);
5273
5274    // The Uses array is sorted, so all the uses for a given User
5275    // are next to each other in the list.
5276    // To help reduce the number of CSE recomputations, process all
5277    // the uses of this user that we can find this way.
5278    do {
5279      unsigned i = Uses[UseIndex].Index;
5280      SDUse &Use = *Uses[UseIndex].Use;
5281      ++UseIndex;
5282
5283      Use.set(To[i]);
5284    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5285
5286    // Now that we have modified User, add it back to the CSE maps.  If it
5287    // already exists there, recursively merge the results together.
5288    AddModifiedNodeToCSEMaps(User, UpdateListener);
5289  }
5290}
5291
5292/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5293/// based on their topological order. It returns the maximum id and a vector
5294/// of the SDNodes* in assigned order by reference.
5295unsigned SelectionDAG::AssignTopologicalOrder() {
5296
5297  unsigned DAGSize = 0;
5298
5299  // SortedPos tracks the progress of the algorithm. Nodes before it are
5300  // sorted, nodes after it are unsorted. When the algorithm completes
5301  // it is at the end of the list.
5302  allnodes_iterator SortedPos = allnodes_begin();
5303
5304  // Visit all the nodes. Move nodes with no operands to the front of
5305  // the list immediately. Annotate nodes that do have operands with their
5306  // operand count. Before we do this, the Node Id fields of the nodes
5307  // may contain arbitrary values. After, the Node Id fields for nodes
5308  // before SortedPos will contain the topological sort index, and the
5309  // Node Id fields for nodes At SortedPos and after will contain the
5310  // count of outstanding operands.
5311  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5312    SDNode *N = I++;
5313    checkForCycles(N);
5314    unsigned Degree = N->getNumOperands();
5315    if (Degree == 0) {
5316      // A node with no uses, add it to the result array immediately.
5317      N->setNodeId(DAGSize++);
5318      allnodes_iterator Q = N;
5319      if (Q != SortedPos)
5320        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5321      assert(SortedPos != AllNodes.end() && "Overran node list");
5322      ++SortedPos;
5323    } else {
5324      // Temporarily use the Node Id as scratch space for the degree count.
5325      N->setNodeId(Degree);
5326    }
5327  }
5328
5329  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5330  // such that by the time the end is reached all nodes will be sorted.
5331  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5332    SDNode *N = I;
5333    checkForCycles(N);
5334    // N is in sorted position, so all its uses have one less operand
5335    // that needs to be sorted.
5336    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5337         UI != UE; ++UI) {
5338      SDNode *P = *UI;
5339      unsigned Degree = P->getNodeId();
5340      assert(Degree != 0 && "Invalid node degree");
5341      --Degree;
5342      if (Degree == 0) {
5343        // All of P's operands are sorted, so P may sorted now.
5344        P->setNodeId(DAGSize++);
5345        if (P != SortedPos)
5346          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5347        assert(SortedPos != AllNodes.end() && "Overran node list");
5348        ++SortedPos;
5349      } else {
5350        // Update P's outstanding operand count.
5351        P->setNodeId(Degree);
5352      }
5353    }
5354    if (I == SortedPos) {
5355#ifndef NDEBUG
5356      SDNode *S = ++I;
5357      dbgs() << "Overran sorted position:\n";
5358      S->dumprFull();
5359#endif
5360      llvm_unreachable(0);
5361    }
5362  }
5363
5364  assert(SortedPos == AllNodes.end() &&
5365         "Topological sort incomplete!");
5366  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5367         "First node in topological sort is not the entry token!");
5368  assert(AllNodes.front().getNodeId() == 0 &&
5369         "First node in topological sort has non-zero id!");
5370  assert(AllNodes.front().getNumOperands() == 0 &&
5371         "First node in topological sort has operands!");
5372  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5373         "Last node in topologic sort has unexpected id!");
5374  assert(AllNodes.back().use_empty() &&
5375         "Last node in topologic sort has users!");
5376  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5377  return DAGSize;
5378}
5379
5380/// AssignOrdering - Assign an order to the SDNode.
5381void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5382  assert(SD && "Trying to assign an order to a null node!");
5383  Ordering->add(SD, Order);
5384}
5385
5386/// GetOrdering - Get the order for the SDNode.
5387unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5388  assert(SD && "Trying to get the order of a null node!");
5389  return Ordering->getOrder(SD);
5390}
5391
5392/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5393/// value is produced by SD.
5394void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5395  DbgInfo->add(DB, SD, isParameter);
5396  if (SD)
5397    SD->setHasDebugValue(true);
5398}
5399
5400//===----------------------------------------------------------------------===//
5401//                              SDNode Class
5402//===----------------------------------------------------------------------===//
5403
5404HandleSDNode::~HandleSDNode() {
5405  DropOperands();
5406}
5407
5408GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5409                                         const GlobalValue *GA,
5410                                         EVT VT, int64_t o, unsigned char TF)
5411  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5412  TheGlobal = GA;
5413}
5414
5415MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5416                     MachineMemOperand *mmo)
5417 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5418  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5419                                      MMO->isNonTemporal());
5420  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5421  assert(isNonTemporal() == MMO->isNonTemporal() &&
5422         "Non-temporal encoding error!");
5423  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5424}
5425
5426MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5427                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5428                     MachineMemOperand *mmo)
5429   : SDNode(Opc, dl, VTs, Ops, NumOps),
5430     MemoryVT(memvt), MMO(mmo) {
5431  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5432                                      MMO->isNonTemporal());
5433  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5434  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5435}
5436
5437/// Profile - Gather unique data for the node.
5438///
5439void SDNode::Profile(FoldingSetNodeID &ID) const {
5440  AddNodeIDNode(ID, this);
5441}
5442
5443namespace {
5444  struct EVTArray {
5445    std::vector<EVT> VTs;
5446
5447    EVTArray() {
5448      VTs.reserve(MVT::LAST_VALUETYPE);
5449      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5450        VTs.push_back(MVT((MVT::SimpleValueType)i));
5451    }
5452  };
5453}
5454
5455static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5456static ManagedStatic<EVTArray> SimpleVTArray;
5457static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5458
5459/// getValueTypeList - Return a pointer to the specified value type.
5460///
5461const EVT *SDNode::getValueTypeList(EVT VT) {
5462  if (VT.isExtended()) {
5463    sys::SmartScopedLock<true> Lock(*VTMutex);
5464    return &(*EVTs->insert(VT).first);
5465  } else {
5466    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5467           "Value type out of range!");
5468    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5469  }
5470}
5471
5472/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5473/// indicated value.  This method ignores uses of other values defined by this
5474/// operation.
5475bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5476  assert(Value < getNumValues() && "Bad value!");
5477
5478  // TODO: Only iterate over uses of a given value of the node
5479  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5480    if (UI.getUse().getResNo() == Value) {
5481      if (NUses == 0)
5482        return false;
5483      --NUses;
5484    }
5485  }
5486
5487  // Found exactly the right number of uses?
5488  return NUses == 0;
5489}
5490
5491
5492/// hasAnyUseOfValue - Return true if there are any use of the indicated
5493/// value. This method ignores uses of other values defined by this operation.
5494bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5495  assert(Value < getNumValues() && "Bad value!");
5496
5497  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5498    if (UI.getUse().getResNo() == Value)
5499      return true;
5500
5501  return false;
5502}
5503
5504
5505/// isOnlyUserOf - Return true if this node is the only use of N.
5506///
5507bool SDNode::isOnlyUserOf(SDNode *N) const {
5508  bool Seen = false;
5509  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5510    SDNode *User = *I;
5511    if (User == this)
5512      Seen = true;
5513    else
5514      return false;
5515  }
5516
5517  return Seen;
5518}
5519
5520/// isOperand - Return true if this node is an operand of N.
5521///
5522bool SDValue::isOperandOf(SDNode *N) const {
5523  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5524    if (*this == N->getOperand(i))
5525      return true;
5526  return false;
5527}
5528
5529bool SDNode::isOperandOf(SDNode *N) const {
5530  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5531    if (this == N->OperandList[i].getNode())
5532      return true;
5533  return false;
5534}
5535
5536/// reachesChainWithoutSideEffects - Return true if this operand (which must
5537/// be a chain) reaches the specified operand without crossing any
5538/// side-effecting instructions on any chain path.  In practice, this looks
5539/// through token factors and non-volatile loads.  In order to remain efficient,
5540/// this only looks a couple of nodes in, it does not do an exhaustive search.
5541bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5542                                               unsigned Depth) const {
5543  if (*this == Dest) return true;
5544
5545  // Don't search too deeply, we just want to be able to see through
5546  // TokenFactor's etc.
5547  if (Depth == 0) return false;
5548
5549  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5550  // of the operands of the TF does not reach dest, then we cannot do the xform.
5551  if (getOpcode() == ISD::TokenFactor) {
5552    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5553      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5554        return false;
5555    return true;
5556  }
5557
5558  // Loads don't have side effects, look through them.
5559  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5560    if (!Ld->isVolatile())
5561      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5562  }
5563  return false;
5564}
5565
5566/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5567/// is either an operand of N or it can be reached by traversing up the operands.
5568/// NOTE: this is an expensive method. Use it carefully.
5569bool SDNode::isPredecessorOf(SDNode *N) const {
5570  SmallPtrSet<SDNode *, 32> Visited;
5571  SmallVector<SDNode *, 16> Worklist;
5572  Worklist.push_back(N);
5573
5574  do {
5575    N = Worklist.pop_back_val();
5576    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5577      SDNode *Op = N->getOperand(i).getNode();
5578      if (Op == this)
5579        return true;
5580      if (Visited.insert(Op))
5581        Worklist.push_back(Op);
5582    }
5583  } while (!Worklist.empty());
5584
5585  return false;
5586}
5587
5588uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5589  assert(Num < NumOperands && "Invalid child # of SDNode!");
5590  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5591}
5592
5593std::string SDNode::getOperationName(const SelectionDAG *G) const {
5594  switch (getOpcode()) {
5595  default:
5596    if (getOpcode() < ISD::BUILTIN_OP_END)
5597      return "<<Unknown DAG Node>>";
5598    if (isMachineOpcode()) {
5599      if (G)
5600        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5601          if (getMachineOpcode() < TII->getNumOpcodes())
5602            return TII->get(getMachineOpcode()).getName();
5603      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5604    }
5605    if (G) {
5606      const TargetLowering &TLI = G->getTargetLoweringInfo();
5607      const char *Name = TLI.getTargetNodeName(getOpcode());
5608      if (Name) return Name;
5609      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5610    }
5611    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5612
5613#ifndef NDEBUG
5614  case ISD::DELETED_NODE:
5615    return "<<Deleted Node!>>";
5616#endif
5617  case ISD::PREFETCH:      return "Prefetch";
5618  case ISD::MEMBARRIER:    return "MemBarrier";
5619  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5620  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5621  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5622  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5623  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5624  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5625  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5626  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5627  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5628  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5629  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5630  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5631  case ISD::PCMARKER:      return "PCMarker";
5632  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5633  case ISD::SRCVALUE:      return "SrcValue";
5634  case ISD::MDNODE_SDNODE: return "MDNode";
5635  case ISD::EntryToken:    return "EntryToken";
5636  case ISD::TokenFactor:   return "TokenFactor";
5637  case ISD::AssertSext:    return "AssertSext";
5638  case ISD::AssertZext:    return "AssertZext";
5639
5640  case ISD::BasicBlock:    return "BasicBlock";
5641  case ISD::VALUETYPE:     return "ValueType";
5642  case ISD::Register:      return "Register";
5643
5644  case ISD::Constant:      return "Constant";
5645  case ISD::ConstantFP:    return "ConstantFP";
5646  case ISD::GlobalAddress: return "GlobalAddress";
5647  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5648  case ISD::FrameIndex:    return "FrameIndex";
5649  case ISD::JumpTable:     return "JumpTable";
5650  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5651  case ISD::RETURNADDR: return "RETURNADDR";
5652  case ISD::FRAMEADDR: return "FRAMEADDR";
5653  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5654  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5655  case ISD::LSDAADDR: return "LSDAADDR";
5656  case ISD::EHSELECTION: return "EHSELECTION";
5657  case ISD::EH_RETURN: return "EH_RETURN";
5658  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5659  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5660  case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5661  case ISD::ConstantPool:  return "ConstantPool";
5662  case ISD::ExternalSymbol: return "ExternalSymbol";
5663  case ISD::BlockAddress:  return "BlockAddress";
5664  case ISD::INTRINSIC_WO_CHAIN:
5665  case ISD::INTRINSIC_VOID:
5666  case ISD::INTRINSIC_W_CHAIN: {
5667    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5668    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5669    if (IID < Intrinsic::num_intrinsics)
5670      return Intrinsic::getName((Intrinsic::ID)IID);
5671    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5672      return TII->getName(IID);
5673    llvm_unreachable("Invalid intrinsic ID");
5674  }
5675
5676  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5677  case ISD::TargetConstant: return "TargetConstant";
5678  case ISD::TargetConstantFP:return "TargetConstantFP";
5679  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5680  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5681  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5682  case ISD::TargetJumpTable:  return "TargetJumpTable";
5683  case ISD::TargetConstantPool:  return "TargetConstantPool";
5684  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5685  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5686
5687  case ISD::CopyToReg:     return "CopyToReg";
5688  case ISD::CopyFromReg:   return "CopyFromReg";
5689  case ISD::UNDEF:         return "undef";
5690  case ISD::MERGE_VALUES:  return "merge_values";
5691  case ISD::INLINEASM:     return "inlineasm";
5692  case ISD::EH_LABEL:      return "eh_label";
5693  case ISD::HANDLENODE:    return "handlenode";
5694
5695  // Unary operators
5696  case ISD::FABS:   return "fabs";
5697  case ISD::FNEG:   return "fneg";
5698  case ISD::FSQRT:  return "fsqrt";
5699  case ISD::FSIN:   return "fsin";
5700  case ISD::FCOS:   return "fcos";
5701  case ISD::FTRUNC: return "ftrunc";
5702  case ISD::FFLOOR: return "ffloor";
5703  case ISD::FCEIL:  return "fceil";
5704  case ISD::FRINT:  return "frint";
5705  case ISD::FNEARBYINT: return "fnearbyint";
5706  case ISD::FEXP:   return "fexp";
5707  case ISD::FEXP2:  return "fexp2";
5708  case ISD::FLOG:   return "flog";
5709  case ISD::FLOG2:  return "flog2";
5710  case ISD::FLOG10: return "flog10";
5711
5712  // Binary operators
5713  case ISD::ADD:    return "add";
5714  case ISD::SUB:    return "sub";
5715  case ISD::MUL:    return "mul";
5716  case ISD::MULHU:  return "mulhu";
5717  case ISD::MULHS:  return "mulhs";
5718  case ISD::SDIV:   return "sdiv";
5719  case ISD::UDIV:   return "udiv";
5720  case ISD::SREM:   return "srem";
5721  case ISD::UREM:   return "urem";
5722  case ISD::SMUL_LOHI:  return "smul_lohi";
5723  case ISD::UMUL_LOHI:  return "umul_lohi";
5724  case ISD::SDIVREM:    return "sdivrem";
5725  case ISD::UDIVREM:    return "udivrem";
5726  case ISD::AND:    return "and";
5727  case ISD::OR:     return "or";
5728  case ISD::XOR:    return "xor";
5729  case ISD::SHL:    return "shl";
5730  case ISD::SRA:    return "sra";
5731  case ISD::SRL:    return "srl";
5732  case ISD::ROTL:   return "rotl";
5733  case ISD::ROTR:   return "rotr";
5734  case ISD::FADD:   return "fadd";
5735  case ISD::FSUB:   return "fsub";
5736  case ISD::FMUL:   return "fmul";
5737  case ISD::FDIV:   return "fdiv";
5738  case ISD::FREM:   return "frem";
5739  case ISD::FCOPYSIGN: return "fcopysign";
5740  case ISD::FGETSIGN:  return "fgetsign";
5741  case ISD::FPOW:   return "fpow";
5742
5743  case ISD::FPOWI:  return "fpowi";
5744  case ISD::SETCC:       return "setcc";
5745  case ISD::VSETCC:      return "vsetcc";
5746  case ISD::SELECT:      return "select";
5747  case ISD::SELECT_CC:   return "select_cc";
5748  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5749  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5750  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5751  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5752  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5753  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5754  case ISD::CARRY_FALSE:         return "carry_false";
5755  case ISD::ADDC:        return "addc";
5756  case ISD::ADDE:        return "adde";
5757  case ISD::SADDO:       return "saddo";
5758  case ISD::UADDO:       return "uaddo";
5759  case ISD::SSUBO:       return "ssubo";
5760  case ISD::USUBO:       return "usubo";
5761  case ISD::SMULO:       return "smulo";
5762  case ISD::UMULO:       return "umulo";
5763  case ISD::SUBC:        return "subc";
5764  case ISD::SUBE:        return "sube";
5765  case ISD::SHL_PARTS:   return "shl_parts";
5766  case ISD::SRA_PARTS:   return "sra_parts";
5767  case ISD::SRL_PARTS:   return "srl_parts";
5768
5769  // Conversion operators.
5770  case ISD::SIGN_EXTEND: return "sign_extend";
5771  case ISD::ZERO_EXTEND: return "zero_extend";
5772  case ISD::ANY_EXTEND:  return "any_extend";
5773  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5774  case ISD::TRUNCATE:    return "truncate";
5775  case ISD::FP_ROUND:    return "fp_round";
5776  case ISD::FLT_ROUNDS_: return "flt_rounds";
5777  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5778  case ISD::FP_EXTEND:   return "fp_extend";
5779
5780  case ISD::SINT_TO_FP:  return "sint_to_fp";
5781  case ISD::UINT_TO_FP:  return "uint_to_fp";
5782  case ISD::FP_TO_SINT:  return "fp_to_sint";
5783  case ISD::FP_TO_UINT:  return "fp_to_uint";
5784  case ISD::BITCAST:     return "bit_convert";
5785  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5786  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5787
5788  case ISD::CONVERT_RNDSAT: {
5789    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5790    default: llvm_unreachable("Unknown cvt code!");
5791    case ISD::CVT_FF:  return "cvt_ff";
5792    case ISD::CVT_FS:  return "cvt_fs";
5793    case ISD::CVT_FU:  return "cvt_fu";
5794    case ISD::CVT_SF:  return "cvt_sf";
5795    case ISD::CVT_UF:  return "cvt_uf";
5796    case ISD::CVT_SS:  return "cvt_ss";
5797    case ISD::CVT_SU:  return "cvt_su";
5798    case ISD::CVT_US:  return "cvt_us";
5799    case ISD::CVT_UU:  return "cvt_uu";
5800    }
5801  }
5802
5803    // Control flow instructions
5804  case ISD::BR:      return "br";
5805  case ISD::BRIND:   return "brind";
5806  case ISD::BR_JT:   return "br_jt";
5807  case ISD::BRCOND:  return "brcond";
5808  case ISD::BR_CC:   return "br_cc";
5809  case ISD::CALLSEQ_START:  return "callseq_start";
5810  case ISD::CALLSEQ_END:    return "callseq_end";
5811
5812    // Other operators
5813  case ISD::LOAD:               return "load";
5814  case ISD::STORE:              return "store";
5815  case ISD::VAARG:              return "vaarg";
5816  case ISD::VACOPY:             return "vacopy";
5817  case ISD::VAEND:              return "vaend";
5818  case ISD::VASTART:            return "vastart";
5819  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5820  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5821  case ISD::BUILD_PAIR:         return "build_pair";
5822  case ISD::STACKSAVE:          return "stacksave";
5823  case ISD::STACKRESTORE:       return "stackrestore";
5824  case ISD::TRAP:               return "trap";
5825
5826  // Bit manipulation
5827  case ISD::BSWAP:   return "bswap";
5828  case ISD::CTPOP:   return "ctpop";
5829  case ISD::CTTZ:    return "cttz";
5830  case ISD::CTLZ:    return "ctlz";
5831
5832  // Trampolines
5833  case ISD::TRAMPOLINE: return "trampoline";
5834
5835  case ISD::CONDCODE:
5836    switch (cast<CondCodeSDNode>(this)->get()) {
5837    default: llvm_unreachable("Unknown setcc condition!");
5838    case ISD::SETOEQ:  return "setoeq";
5839    case ISD::SETOGT:  return "setogt";
5840    case ISD::SETOGE:  return "setoge";
5841    case ISD::SETOLT:  return "setolt";
5842    case ISD::SETOLE:  return "setole";
5843    case ISD::SETONE:  return "setone";
5844
5845    case ISD::SETO:    return "seto";
5846    case ISD::SETUO:   return "setuo";
5847    case ISD::SETUEQ:  return "setue";
5848    case ISD::SETUGT:  return "setugt";
5849    case ISD::SETUGE:  return "setuge";
5850    case ISD::SETULT:  return "setult";
5851    case ISD::SETULE:  return "setule";
5852    case ISD::SETUNE:  return "setune";
5853
5854    case ISD::SETEQ:   return "seteq";
5855    case ISD::SETGT:   return "setgt";
5856    case ISD::SETGE:   return "setge";
5857    case ISD::SETLT:   return "setlt";
5858    case ISD::SETLE:   return "setle";
5859    case ISD::SETNE:   return "setne";
5860    }
5861  }
5862}
5863
5864const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5865  switch (AM) {
5866  default:
5867    return "";
5868  case ISD::PRE_INC:
5869    return "<pre-inc>";
5870  case ISD::PRE_DEC:
5871    return "<pre-dec>";
5872  case ISD::POST_INC:
5873    return "<post-inc>";
5874  case ISD::POST_DEC:
5875    return "<post-dec>";
5876  }
5877}
5878
5879std::string ISD::ArgFlagsTy::getArgFlagsString() {
5880  std::string S = "< ";
5881
5882  if (isZExt())
5883    S += "zext ";
5884  if (isSExt())
5885    S += "sext ";
5886  if (isInReg())
5887    S += "inreg ";
5888  if (isSRet())
5889    S += "sret ";
5890  if (isByVal())
5891    S += "byval ";
5892  if (isNest())
5893    S += "nest ";
5894  if (getByValAlign())
5895    S += "byval-align:" + utostr(getByValAlign()) + " ";
5896  if (getOrigAlign())
5897    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5898  if (getByValSize())
5899    S += "byval-size:" + utostr(getByValSize()) + " ";
5900  return S + ">";
5901}
5902
5903void SDNode::dump() const { dump(0); }
5904void SDNode::dump(const SelectionDAG *G) const {
5905  print(dbgs(), G);
5906  dbgs() << '\n';
5907}
5908
5909void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5910  OS << (void*)this << ": ";
5911
5912  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5913    if (i) OS << ",";
5914    if (getValueType(i) == MVT::Other)
5915      OS << "ch";
5916    else
5917      OS << getValueType(i).getEVTString();
5918  }
5919  OS << " = " << getOperationName(G);
5920}
5921
5922void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5923  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5924    if (!MN->memoperands_empty()) {
5925      OS << "<";
5926      OS << "Mem:";
5927      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5928           e = MN->memoperands_end(); i != e; ++i) {
5929        OS << **i;
5930        if (llvm::next(i) != e)
5931          OS << " ";
5932      }
5933      OS << ">";
5934    }
5935  } else if (const ShuffleVectorSDNode *SVN =
5936               dyn_cast<ShuffleVectorSDNode>(this)) {
5937    OS << "<";
5938    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5939      int Idx = SVN->getMaskElt(i);
5940      if (i) OS << ",";
5941      if (Idx < 0)
5942        OS << "u";
5943      else
5944        OS << Idx;
5945    }
5946    OS << ">";
5947  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5948    OS << '<' << CSDN->getAPIntValue() << '>';
5949  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5950    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5951      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5952    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5953      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5954    else {
5955      OS << "<APFloat(";
5956      CSDN->getValueAPF().bitcastToAPInt().dump();
5957      OS << ")>";
5958    }
5959  } else if (const GlobalAddressSDNode *GADN =
5960             dyn_cast<GlobalAddressSDNode>(this)) {
5961    int64_t offset = GADN->getOffset();
5962    OS << '<';
5963    WriteAsOperand(OS, GADN->getGlobal());
5964    OS << '>';
5965    if (offset > 0)
5966      OS << " + " << offset;
5967    else
5968      OS << " " << offset;
5969    if (unsigned int TF = GADN->getTargetFlags())
5970      OS << " [TF=" << TF << ']';
5971  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5972    OS << "<" << FIDN->getIndex() << ">";
5973  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5974    OS << "<" << JTDN->getIndex() << ">";
5975    if (unsigned int TF = JTDN->getTargetFlags())
5976      OS << " [TF=" << TF << ']';
5977  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5978    int offset = CP->getOffset();
5979    if (CP->isMachineConstantPoolEntry())
5980      OS << "<" << *CP->getMachineCPVal() << ">";
5981    else
5982      OS << "<" << *CP->getConstVal() << ">";
5983    if (offset > 0)
5984      OS << " + " << offset;
5985    else
5986      OS << " " << offset;
5987    if (unsigned int TF = CP->getTargetFlags())
5988      OS << " [TF=" << TF << ']';
5989  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5990    OS << "<";
5991    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5992    if (LBB)
5993      OS << LBB->getName() << " ";
5994    OS << (const void*)BBDN->getBasicBlock() << ">";
5995  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5996    if (G && R->getReg() &&
5997        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5998      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5999    } else {
6000      OS << " %reg" << R->getReg();
6001    }
6002  } else if (const ExternalSymbolSDNode *ES =
6003             dyn_cast<ExternalSymbolSDNode>(this)) {
6004    OS << "'" << ES->getSymbol() << "'";
6005    if (unsigned int TF = ES->getTargetFlags())
6006      OS << " [TF=" << TF << ']';
6007  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
6008    if (M->getValue())
6009      OS << "<" << M->getValue() << ">";
6010    else
6011      OS << "<null>";
6012  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
6013    if (MD->getMD())
6014      OS << "<" << MD->getMD() << ">";
6015    else
6016      OS << "<null>";
6017  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6018    OS << ":" << N->getVT().getEVTString();
6019  }
6020  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6021    OS << "<" << *LD->getMemOperand();
6022
6023    bool doExt = true;
6024    switch (LD->getExtensionType()) {
6025    default: doExt = false; break;
6026    case ISD::EXTLOAD: OS << ", anyext"; break;
6027    case ISD::SEXTLOAD: OS << ", sext"; break;
6028    case ISD::ZEXTLOAD: OS << ", zext"; break;
6029    }
6030    if (doExt)
6031      OS << " from " << LD->getMemoryVT().getEVTString();
6032
6033    const char *AM = getIndexedModeName(LD->getAddressingMode());
6034    if (*AM)
6035      OS << ", " << AM;
6036
6037    OS << ">";
6038  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6039    OS << "<" << *ST->getMemOperand();
6040
6041    if (ST->isTruncatingStore())
6042      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6043
6044    const char *AM = getIndexedModeName(ST->getAddressingMode());
6045    if (*AM)
6046      OS << ", " << AM;
6047
6048    OS << ">";
6049  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6050    OS << "<" << *M->getMemOperand() << ">";
6051  } else if (const BlockAddressSDNode *BA =
6052               dyn_cast<BlockAddressSDNode>(this)) {
6053    OS << "<";
6054    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6055    OS << ", ";
6056    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6057    OS << ">";
6058    if (unsigned int TF = BA->getTargetFlags())
6059      OS << " [TF=" << TF << ']';
6060  }
6061
6062  if (G)
6063    if (unsigned Order = G->GetOrdering(this))
6064      OS << " [ORD=" << Order << ']';
6065
6066  if (getNodeId() != -1)
6067    OS << " [ID=" << getNodeId() << ']';
6068
6069  DebugLoc dl = getDebugLoc();
6070  if (G && !dl.isUnknown()) {
6071    DIScope
6072      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6073    OS << " dbg:";
6074    // Omit the directory, since it's usually long and uninteresting.
6075    if (Scope.Verify())
6076      OS << Scope.getFilename();
6077    else
6078      OS << "<unknown>";
6079    OS << ':' << dl.getLine();
6080    if (dl.getCol() != 0)
6081      OS << ':' << dl.getCol();
6082  }
6083}
6084
6085void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6086  print_types(OS, G);
6087  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6088    if (i) OS << ", "; else OS << " ";
6089    OS << (void*)getOperand(i).getNode();
6090    if (unsigned RN = getOperand(i).getResNo())
6091      OS << ":" << RN;
6092  }
6093  print_details(OS, G);
6094}
6095
6096static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6097                                  const SelectionDAG *G, unsigned depth,
6098                                  unsigned indent)
6099{
6100  if (depth == 0)
6101    return;
6102
6103  OS.indent(indent);
6104
6105  N->print(OS, G);
6106
6107  if (depth < 1)
6108    return;
6109
6110  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6111    OS << '\n';
6112    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6113  }
6114}
6115
6116void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6117                            unsigned depth) const {
6118  printrWithDepthHelper(OS, this, G, depth, 0);
6119}
6120
6121void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6122  // Don't print impossibly deep things.
6123  printrWithDepth(OS, G, 100);
6124}
6125
6126void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6127  printrWithDepth(dbgs(), G, depth);
6128}
6129
6130void SDNode::dumprFull(const SelectionDAG *G) const {
6131  // Don't print impossibly deep things.
6132  dumprWithDepth(G, 100);
6133}
6134
6135static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6136  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6137    if (N->getOperand(i).getNode()->hasOneUse())
6138      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6139    else
6140      dbgs() << "\n" << std::string(indent+2, ' ')
6141           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6142
6143
6144  dbgs() << "\n";
6145  dbgs().indent(indent);
6146  N->dump(G);
6147}
6148
6149SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6150  assert(N->getNumValues() == 1 &&
6151         "Can't unroll a vector with multiple results!");
6152
6153  EVT VT = N->getValueType(0);
6154  unsigned NE = VT.getVectorNumElements();
6155  EVT EltVT = VT.getVectorElementType();
6156  DebugLoc dl = N->getDebugLoc();
6157
6158  SmallVector<SDValue, 8> Scalars;
6159  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6160
6161  // If ResNE is 0, fully unroll the vector op.
6162  if (ResNE == 0)
6163    ResNE = NE;
6164  else if (NE > ResNE)
6165    NE = ResNE;
6166
6167  unsigned i;
6168  for (i= 0; i != NE; ++i) {
6169    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6170      SDValue Operand = N->getOperand(j);
6171      EVT OperandVT = Operand.getValueType();
6172      if (OperandVT.isVector()) {
6173        // A vector operand; extract a single element.
6174        EVT OperandEltVT = OperandVT.getVectorElementType();
6175        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6176                              OperandEltVT,
6177                              Operand,
6178                              getConstant(i, MVT::i32));
6179      } else {
6180        // A scalar operand; just use it as is.
6181        Operands[j] = Operand;
6182      }
6183    }
6184
6185    switch (N->getOpcode()) {
6186    default:
6187      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6188                                &Operands[0], Operands.size()));
6189      break;
6190    case ISD::SHL:
6191    case ISD::SRA:
6192    case ISD::SRL:
6193    case ISD::ROTL:
6194    case ISD::ROTR:
6195      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6196                                getShiftAmountOperand(Operands[1])));
6197      break;
6198    case ISD::SIGN_EXTEND_INREG:
6199    case ISD::FP_ROUND_INREG: {
6200      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6201      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6202                                Operands[0],
6203                                getValueType(ExtVT)));
6204    }
6205    }
6206  }
6207
6208  for (; i < ResNE; ++i)
6209    Scalars.push_back(getUNDEF(EltVT));
6210
6211  return getNode(ISD::BUILD_VECTOR, dl,
6212                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6213                 &Scalars[0], Scalars.size());
6214}
6215
6216
6217/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6218/// location that is 'Dist' units away from the location that the 'Base' load
6219/// is loading from.
6220bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6221                                     unsigned Bytes, int Dist) const {
6222  if (LD->getChain() != Base->getChain())
6223    return false;
6224  EVT VT = LD->getValueType(0);
6225  if (VT.getSizeInBits() / 8 != Bytes)
6226    return false;
6227
6228  SDValue Loc = LD->getOperand(1);
6229  SDValue BaseLoc = Base->getOperand(1);
6230  if (Loc.getOpcode() == ISD::FrameIndex) {
6231    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6232      return false;
6233    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6234    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6235    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6236    int FS  = MFI->getObjectSize(FI);
6237    int BFS = MFI->getObjectSize(BFI);
6238    if (FS != BFS || FS != (int)Bytes) return false;
6239    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6240  }
6241  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6242    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6243    if (V && (V->getSExtValue() == Dist*Bytes))
6244      return true;
6245  }
6246
6247  const GlobalValue *GV1 = NULL;
6248  const GlobalValue *GV2 = NULL;
6249  int64_t Offset1 = 0;
6250  int64_t Offset2 = 0;
6251  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6252  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6253  if (isGA1 && isGA2 && GV1 == GV2)
6254    return Offset1 == (Offset2 + Dist*Bytes);
6255  return false;
6256}
6257
6258
6259/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6260/// it cannot be inferred.
6261unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6262  // If this is a GlobalAddress + cst, return the alignment.
6263  const GlobalValue *GV;
6264  int64_t GVOffset = 0;
6265  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6266    // If GV has specified alignment, then use it. Otherwise, use the preferred
6267    // alignment.
6268    unsigned Align = GV->getAlignment();
6269    if (!Align) {
6270      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6271        if (GVar->hasInitializer()) {
6272          const TargetData *TD = TLI.getTargetData();
6273          Align = TD->getPreferredAlignment(GVar);
6274        }
6275      }
6276    }
6277    return MinAlign(Align, GVOffset);
6278  }
6279
6280  // If this is a direct reference to a stack slot, use information about the
6281  // stack slot's alignment.
6282  int FrameIdx = 1 << 31;
6283  int64_t FrameOffset = 0;
6284  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6285    FrameIdx = FI->getIndex();
6286  } else if (Ptr.getOpcode() == ISD::ADD &&
6287             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6288             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6289    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6290    FrameOffset = Ptr.getConstantOperandVal(1);
6291  }
6292
6293  if (FrameIdx != (1 << 31)) {
6294    // FIXME: Handle FI+CST.
6295    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6296    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6297                                    FrameOffset);
6298    return FIInfoAlign;
6299  }
6300
6301  return 0;
6302}
6303
6304void SelectionDAG::dump() const {
6305  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6306
6307  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6308       I != E; ++I) {
6309    const SDNode *N = I;
6310    if (!N->hasOneUse() && N != getRoot().getNode())
6311      DumpNodes(N, 2, this);
6312  }
6313
6314  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6315
6316  dbgs() << "\n\n";
6317}
6318
6319void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6320  print_types(OS, G);
6321  print_details(OS, G);
6322}
6323
6324typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6325static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6326                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6327  if (!once.insert(N))          // If we've been here before, return now.
6328    return;
6329
6330  // Dump the current SDNode, but don't end the line yet.
6331  OS << std::string(indent, ' ');
6332  N->printr(OS, G);
6333
6334  // Having printed this SDNode, walk the children:
6335  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6336    const SDNode *child = N->getOperand(i).getNode();
6337
6338    if (i) OS << ",";
6339    OS << " ";
6340
6341    if (child->getNumOperands() == 0) {
6342      // This child has no grandchildren; print it inline right here.
6343      child->printr(OS, G);
6344      once.insert(child);
6345    } else {         // Just the address. FIXME: also print the child's opcode.
6346      OS << (void*)child;
6347      if (unsigned RN = N->getOperand(i).getResNo())
6348        OS << ":" << RN;
6349    }
6350  }
6351
6352  OS << "\n";
6353
6354  // Dump children that have grandchildren on their own line(s).
6355  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6356    const SDNode *child = N->getOperand(i).getNode();
6357    DumpNodesr(OS, child, indent+2, G, once);
6358  }
6359}
6360
6361void SDNode::dumpr() const {
6362  VisitedSDNodeSet once;
6363  DumpNodesr(dbgs(), this, 0, 0, once);
6364}
6365
6366void SDNode::dumpr(const SelectionDAG *G) const {
6367  VisitedSDNodeSet once;
6368  DumpNodesr(dbgs(), this, 0, G, once);
6369}
6370
6371
6372// getAddressSpace - Return the address space this GlobalAddress belongs to.
6373unsigned GlobalAddressSDNode::getAddressSpace() const {
6374  return getGlobal()->getType()->getAddressSpace();
6375}
6376
6377
6378const Type *ConstantPoolSDNode::getType() const {
6379  if (isMachineConstantPoolEntry())
6380    return Val.MachineCPVal->getType();
6381  return Val.ConstVal->getType();
6382}
6383
6384bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6385                                        APInt &SplatUndef,
6386                                        unsigned &SplatBitSize,
6387                                        bool &HasAnyUndefs,
6388                                        unsigned MinSplatBits,
6389                                        bool isBigEndian) {
6390  EVT VT = getValueType(0);
6391  assert(VT.isVector() && "Expected a vector type");
6392  unsigned sz = VT.getSizeInBits();
6393  if (MinSplatBits > sz)
6394    return false;
6395
6396  SplatValue = APInt(sz, 0);
6397  SplatUndef = APInt(sz, 0);
6398
6399  // Get the bits.  Bits with undefined values (when the corresponding element
6400  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6401  // in SplatValue.  If any of the values are not constant, give up and return
6402  // false.
6403  unsigned int nOps = getNumOperands();
6404  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6405  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6406
6407  for (unsigned j = 0; j < nOps; ++j) {
6408    unsigned i = isBigEndian ? nOps-1-j : j;
6409    SDValue OpVal = getOperand(i);
6410    unsigned BitPos = j * EltBitSize;
6411
6412    if (OpVal.getOpcode() == ISD::UNDEF)
6413      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6414    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6415      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6416                    zextOrTrunc(sz) << BitPos;
6417    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6418      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6419     else
6420      return false;
6421  }
6422
6423  // The build_vector is all constants or undefs.  Find the smallest element
6424  // size that splats the vector.
6425
6426  HasAnyUndefs = (SplatUndef != 0);
6427  while (sz > 8) {
6428
6429    unsigned HalfSize = sz / 2;
6430    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6431    APInt LowValue = SplatValue.trunc(HalfSize);
6432    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6433    APInt LowUndef = SplatUndef.trunc(HalfSize);
6434
6435    // If the two halves do not match (ignoring undef bits), stop here.
6436    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6437        MinSplatBits > HalfSize)
6438      break;
6439
6440    SplatValue = HighValue | LowValue;
6441    SplatUndef = HighUndef & LowUndef;
6442
6443    sz = HalfSize;
6444  }
6445
6446  SplatBitSize = sz;
6447  return true;
6448}
6449
6450bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6451  // Find the first non-undef value in the shuffle mask.
6452  unsigned i, e;
6453  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6454    /* search */;
6455
6456  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6457
6458  // Make sure all remaining elements are either undef or the same as the first
6459  // non-undef value.
6460  for (int Idx = Mask[i]; i != e; ++i)
6461    if (Mask[i] >= 0 && Mask[i] != Idx)
6462      return false;
6463  return true;
6464}
6465
6466#ifdef XDEBUG
6467static void checkForCyclesHelper(const SDNode *N,
6468                                 SmallPtrSet<const SDNode*, 32> &Visited,
6469                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6470  // If this node has already been checked, don't check it again.
6471  if (Checked.count(N))
6472    return;
6473
6474  // If a node has already been visited on this depth-first walk, reject it as
6475  // a cycle.
6476  if (!Visited.insert(N)) {
6477    dbgs() << "Offending node:\n";
6478    N->dumprFull();
6479    errs() << "Detected cycle in SelectionDAG\n";
6480    abort();
6481  }
6482
6483  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6484    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6485
6486  Checked.insert(N);
6487  Visited.erase(N);
6488}
6489#endif
6490
6491void llvm::checkForCycles(const llvm::SDNode *N) {
6492#ifdef XDEBUG
6493  assert(N && "Checking nonexistant SDNode");
6494  SmallPtrSet<const SDNode*, 32> visited;
6495  SmallPtrSet<const SDNode*, 32> checked;
6496  checkForCyclesHelper(N, visited, checked);
6497#endif
6498}
6499
6500void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6501  checkForCycles(DAG->getRoot().getNode());
6502}
6503