SelectionDAG.cpp revision a3518a1d6a6a9a7519d3a8d434cde51617c1dc22
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getNode());
346    ID.AddInteger(Ops->getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getMemoryVT().getRawBits());
433    ID.AddInteger(LD->getRawSubclassData());
434    break;
435  }
436  case ISD::STORE: {
437    const StoreSDNode *ST = cast<StoreSDNode>(N);
438    ID.AddInteger(ST->getMemoryVT().getRawBits());
439    ID.AddInteger(ST->getRawSubclassData());
440    break;
441  }
442  case ISD::ATOMIC_CMP_SWAP:
443  case ISD::ATOMIC_SWAP:
444  case ISD::ATOMIC_LOAD_ADD:
445  case ISD::ATOMIC_LOAD_SUB:
446  case ISD::ATOMIC_LOAD_AND:
447  case ISD::ATOMIC_LOAD_OR:
448  case ISD::ATOMIC_LOAD_XOR:
449  case ISD::ATOMIC_LOAD_NAND:
450  case ISD::ATOMIC_LOAD_MIN:
451  case ISD::ATOMIC_LOAD_MAX:
452  case ISD::ATOMIC_LOAD_UMIN:
453  case ISD::ATOMIC_LOAD_UMAX: {
454    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
455    ID.AddInteger(AT->getMemoryVT().getRawBits());
456    ID.AddInteger(AT->getRawSubclassData());
457    break;
458  }
459  case ISD::VECTOR_SHUFFLE: {
460    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
461    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
462         i != e; ++i)
463      ID.AddInteger(SVN->getMaskElt(i));
464    break;
465  }
466  } // end switch (N->getOpcode())
467}
468
469/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
470/// data.
471static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
472  AddNodeIDOpcode(ID, N->getOpcode());
473  // Add the return value info.
474  AddNodeIDValueTypes(ID, N->getVTList());
475  // Add the operand info.
476  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
477
478  // Handle SDNode leafs with special info.
479  AddNodeIDCustom(ID, N);
480}
481
482/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
483/// the CSE map that carries alignment, volatility, indexing mode, and
484/// extension/truncation information.
485///
486static inline unsigned
487encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
488                     bool isVolatile, unsigned Alignment) {
489  assert((ConvType & 3) == ConvType &&
490         "ConvType may not require more than 2 bits!");
491  assert((AM & 7) == AM &&
492         "AM may not require more than 3 bits!");
493  return ConvType |
494         (AM << 2) |
495         (isVolatile << 5) |
496         ((Log2_32(Alignment) + 1) << 6);
497}
498
499//===----------------------------------------------------------------------===//
500//                              SelectionDAG Class
501//===----------------------------------------------------------------------===//
502
503/// doNotCSE - Return true if CSE should not be performed for this node.
504static bool doNotCSE(SDNode *N) {
505  if (N->getValueType(0) == MVT::Flag)
506    return true; // Never CSE anything that produces a flag.
507
508  switch (N->getOpcode()) {
509  default: break;
510  case ISD::HANDLENODE:
511  case ISD::DBG_LABEL:
512  case ISD::DBG_STOPPOINT:
513  case ISD::EH_LABEL:
514  case ISD::DECLARE:
515    return true;   // Never CSE these nodes.
516  }
517
518  // Check that remaining values produced are not flags.
519  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
520    if (N->getValueType(i) == MVT::Flag)
521      return true; // Never CSE anything that produces a flag.
522
523  return false;
524}
525
526/// RemoveDeadNodes - This method deletes all unreachable nodes in the
527/// SelectionDAG.
528void SelectionDAG::RemoveDeadNodes() {
529  // Create a dummy node (which is not added to allnodes), that adds a reference
530  // to the root node, preventing it from being deleted.
531  HandleSDNode Dummy(getRoot());
532
533  SmallVector<SDNode*, 128> DeadNodes;
534
535  // Add all obviously-dead nodes to the DeadNodes worklist.
536  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
537    if (I->use_empty())
538      DeadNodes.push_back(I);
539
540  RemoveDeadNodes(DeadNodes);
541
542  // If the root changed (e.g. it was a dead load, update the root).
543  setRoot(Dummy.getValue());
544}
545
546/// RemoveDeadNodes - This method deletes the unreachable nodes in the
547/// given list, and any nodes that become unreachable as a result.
548void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
549                                   DAGUpdateListener *UpdateListener) {
550
551  // Process the worklist, deleting the nodes and adding their uses to the
552  // worklist.
553  while (!DeadNodes.empty()) {
554    SDNode *N = DeadNodes.pop_back_val();
555
556    if (UpdateListener)
557      UpdateListener->NodeDeleted(N, 0);
558
559    // Take the node out of the appropriate CSE map.
560    RemoveNodeFromCSEMaps(N);
561
562    // Next, brutally remove the operand list.  This is safe to do, as there are
563    // no cycles in the graph.
564    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
565      SDUse &Use = *I++;
566      SDNode *Operand = Use.getNode();
567      Use.set(SDValue());
568
569      // Now that we removed this operand, see if there are no uses of it left.
570      if (Operand->use_empty())
571        DeadNodes.push_back(Operand);
572    }
573
574    DeallocateNode(N);
575  }
576}
577
578void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
579  SmallVector<SDNode*, 16> DeadNodes(1, N);
580  RemoveDeadNodes(DeadNodes, UpdateListener);
581}
582
583void SelectionDAG::DeleteNode(SDNode *N) {
584  // First take this out of the appropriate CSE map.
585  RemoveNodeFromCSEMaps(N);
586
587  // Finally, remove uses due to operands of this node, remove from the
588  // AllNodes list, and delete the node.
589  DeleteNodeNotInCSEMaps(N);
590}
591
592void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
593  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
594  assert(N->use_empty() && "Cannot delete a node that is not dead!");
595
596  // Drop all of the operands and decrement used node's use counts.
597  N->DropOperands();
598
599  DeallocateNode(N);
600}
601
602void SelectionDAG::DeallocateNode(SDNode *N) {
603  if (N->OperandsNeedDelete)
604    delete[] N->OperandList;
605
606  // Set the opcode to DELETED_NODE to help catch bugs when node
607  // memory is reallocated.
608  N->NodeType = ISD::DELETED_NODE;
609
610  NodeAllocator.Deallocate(AllNodes.remove(N));
611}
612
613/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
614/// correspond to it.  This is useful when we're about to delete or repurpose
615/// the node.  We don't want future request for structurally identical nodes
616/// to return N anymore.
617bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
618  bool Erased = false;
619  switch (N->getOpcode()) {
620  case ISD::EntryToken:
621    assert(0 && "EntryToken should not be in CSEMaps!");
622    return false;
623  case ISD::HANDLENODE: return false;  // noop.
624  case ISD::CONDCODE:
625    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
626           "Cond code doesn't exist!");
627    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
628    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
629    break;
630  case ISD::ExternalSymbol:
631    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
632    break;
633  case ISD::TargetExternalSymbol:
634    Erased =
635      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
636    break;
637  case ISD::VALUETYPE: {
638    MVT VT = cast<VTSDNode>(N)->getVT();
639    if (VT.isExtended()) {
640      Erased = ExtendedValueTypeNodes.erase(VT);
641    } else {
642      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
643      ValueTypeNodes[VT.getSimpleVT()] = 0;
644    }
645    break;
646  }
647  default:
648    // Remove it from the CSE Map.
649    Erased = CSEMap.RemoveNode(N);
650    break;
651  }
652#ifndef NDEBUG
653  // Verify that the node was actually in one of the CSE maps, unless it has a
654  // flag result (which cannot be CSE'd) or is one of the special cases that are
655  // not subject to CSE.
656  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
657      !N->isMachineOpcode() && !doNotCSE(N)) {
658    N->dump(this);
659    cerr << "\n";
660    assert(0 && "Node is not in map!");
661  }
662#endif
663  return Erased;
664}
665
666/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
667/// maps and modified in place. Add it back to the CSE maps, unless an identical
668/// node already exists, in which case transfer all its users to the existing
669/// node. This transfer can potentially trigger recursive merging.
670///
671void
672SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
673                                       DAGUpdateListener *UpdateListener) {
674  // For node types that aren't CSE'd, just act as if no identical node
675  // already exists.
676  if (!doNotCSE(N)) {
677    SDNode *Existing = CSEMap.GetOrInsertNode(N);
678    if (Existing != N) {
679      // If there was already an existing matching node, use ReplaceAllUsesWith
680      // to replace the dead one with the existing one.  This can cause
681      // recursive merging of other unrelated nodes down the line.
682      ReplaceAllUsesWith(N, Existing, UpdateListener);
683
684      // N is now dead.  Inform the listener if it exists and delete it.
685      if (UpdateListener)
686        UpdateListener->NodeDeleted(N, Existing);
687      DeleteNodeNotInCSEMaps(N);
688      return;
689    }
690  }
691
692  // If the node doesn't already exist, we updated it.  Inform a listener if
693  // it exists.
694  if (UpdateListener)
695    UpdateListener->NodeUpdated(N);
696}
697
698/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
699/// were replaced with those specified.  If this node is never memoized,
700/// return null, otherwise return a pointer to the slot it would take.  If a
701/// node already exists with these operands, the slot will be non-null.
702SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
703                                           void *&InsertPos) {
704  if (doNotCSE(N))
705    return 0;
706
707  SDValue Ops[] = { Op };
708  FoldingSetNodeID ID;
709  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
710  AddNodeIDCustom(ID, N);
711  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
712}
713
714/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
715/// were replaced with those specified.  If this node is never memoized,
716/// return null, otherwise return a pointer to the slot it would take.  If a
717/// node already exists with these operands, the slot will be non-null.
718SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
719                                           SDValue Op1, SDValue Op2,
720                                           void *&InsertPos) {
721  if (doNotCSE(N))
722    return 0;
723
724  SDValue Ops[] = { Op1, Op2 };
725  FoldingSetNodeID ID;
726  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
727  AddNodeIDCustom(ID, N);
728  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
729}
730
731
732/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
733/// were replaced with those specified.  If this node is never memoized,
734/// return null, otherwise return a pointer to the slot it would take.  If a
735/// node already exists with these operands, the slot will be non-null.
736SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
737                                           const SDValue *Ops,unsigned NumOps,
738                                           void *&InsertPos) {
739  if (doNotCSE(N))
740    return 0;
741
742  FoldingSetNodeID ID;
743  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
744  AddNodeIDCustom(ID, N);
745  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
746}
747
748/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
749void SelectionDAG::VerifyNode(SDNode *N) {
750  switch (N->getOpcode()) {
751  default:
752    break;
753  case ISD::BUILD_PAIR: {
754    MVT VT = N->getValueType(0);
755    assert(N->getNumValues() == 1 && "Too many results!");
756    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
757           "Wrong return type!");
758    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
759    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
760           "Mismatched operand types!");
761    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
762           "Wrong operand type!");
763    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
764           "Wrong return type size");
765    break;
766  }
767  case ISD::BUILD_VECTOR: {
768    assert(N->getNumValues() == 1 && "Too many results!");
769    assert(N->getValueType(0).isVector() && "Wrong return type!");
770    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
771           "Wrong number of operands!");
772    MVT EltVT = N->getValueType(0).getVectorElementType();
773    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
774      assert((I->getValueType() == EltVT ||
775             (EltVT.isInteger() && I->getValueType().isInteger() &&
776              EltVT.bitsLE(I->getValueType()))) &&
777            "Wrong operand type!");
778    break;
779  }
780  }
781}
782
783/// getMVTAlignment - Compute the default alignment value for the
784/// given type.
785///
786unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
787  const Type *Ty = VT == MVT::iPTR ?
788                   PointerType::get(Type::Int8Ty, 0) :
789                   VT.getTypeForMVT();
790
791  return TLI.getTargetData()->getABITypeAlignment(Ty);
792}
793
794// EntryNode could meaningfully have debug info if we can find it...
795SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
796  : TLI(tli), FLI(fli), DW(0),
797    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
798    getVTList(MVT::Other)), Root(getEntryNode()) {
799  AllNodes.push_back(&EntryNode);
800}
801
802void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
803                        DwarfWriter *dw) {
804  MF = &mf;
805  MMI = mmi;
806  DW = dw;
807}
808
809SelectionDAG::~SelectionDAG() {
810  allnodes_clear();
811}
812
813void SelectionDAG::allnodes_clear() {
814  assert(&*AllNodes.begin() == &EntryNode);
815  AllNodes.remove(AllNodes.begin());
816  while (!AllNodes.empty())
817    DeallocateNode(AllNodes.begin());
818}
819
820void SelectionDAG::clear() {
821  allnodes_clear();
822  OperandAllocator.Reset();
823  CSEMap.clear();
824
825  ExtendedValueTypeNodes.clear();
826  ExternalSymbols.clear();
827  TargetExternalSymbols.clear();
828  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
829            static_cast<CondCodeSDNode*>(0));
830  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
831            static_cast<SDNode*>(0));
832
833  EntryNode.UseList = 0;
834  AllNodes.push_back(&EntryNode);
835  Root = getEntryNode();
836}
837
838SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
839  if (Op.getValueType() == VT) return Op;
840  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
841                                   VT.getSizeInBits());
842  return getNode(ISD::AND, DL, Op.getValueType(), Op,
843                 getConstant(Imm, Op.getValueType()));
844}
845
846/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
847///
848SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
849  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
850  SDValue NegOne =
851    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
852  return getNode(ISD::XOR, DL, VT, Val, NegOne);
853}
854
855SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
856  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
857  assert((EltVT.getSizeInBits() >= 64 ||
858         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
859         "getConstant with a uint64_t value that doesn't fit in the type!");
860  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
861}
862
863SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
864  return getConstant(*ConstantInt::get(Val), VT, isT);
865}
866
867SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
868  assert(VT.isInteger() && "Cannot create FP integer constant!");
869
870  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
871  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
872         "APInt size does not match type size!");
873
874  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
875  FoldingSetNodeID ID;
876  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
877  ID.AddPointer(&Val);
878  void *IP = 0;
879  SDNode *N = NULL;
880  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
881    if (!VT.isVector())
882      return SDValue(N, 0);
883  if (!N) {
884    N = NodeAllocator.Allocate<ConstantSDNode>();
885    new (N) ConstantSDNode(isT, &Val, EltVT);
886    CSEMap.InsertNode(N, IP);
887    AllNodes.push_back(N);
888  }
889
890  SDValue Result(N, 0);
891  if (VT.isVector()) {
892    SmallVector<SDValue, 8> Ops;
893    Ops.assign(VT.getVectorNumElements(), Result);
894    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
895                     VT, &Ops[0], Ops.size());
896  }
897  return Result;
898}
899
900SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
901  return getConstant(Val, TLI.getPointerTy(), isTarget);
902}
903
904
905SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
906  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
907}
908
909SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
910  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
911
912  MVT EltVT =
913    VT.isVector() ? VT.getVectorElementType() : VT;
914
915  // Do the map lookup using the actual bit pattern for the floating point
916  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
917  // we don't have issues with SNANs.
918  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
919  FoldingSetNodeID ID;
920  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
921  ID.AddPointer(&V);
922  void *IP = 0;
923  SDNode *N = NULL;
924  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
925    if (!VT.isVector())
926      return SDValue(N, 0);
927  if (!N) {
928    N = NodeAllocator.Allocate<ConstantFPSDNode>();
929    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
930    CSEMap.InsertNode(N, IP);
931    AllNodes.push_back(N);
932  }
933
934  SDValue Result(N, 0);
935  if (VT.isVector()) {
936    SmallVector<SDValue, 8> Ops;
937    Ops.assign(VT.getVectorNumElements(), Result);
938    // FIXME DebugLoc info might be appropriate here
939    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
940                     VT, &Ops[0], Ops.size());
941  }
942  return Result;
943}
944
945SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
946  MVT EltVT =
947    VT.isVector() ? VT.getVectorElementType() : VT;
948  if (EltVT==MVT::f32)
949    return getConstantFP(APFloat((float)Val), VT, isTarget);
950  else
951    return getConstantFP(APFloat(Val), VT, isTarget);
952}
953
954SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
955                                       MVT VT, int64_t Offset,
956                                       bool isTargetGA) {
957  unsigned Opc;
958
959  // Truncate (with sign-extension) the offset value to the pointer size.
960  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
961  if (BitWidth < 64)
962    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
963
964  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
965  if (!GVar) {
966    // If GV is an alias then use the aliasee for determining thread-localness.
967    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
968      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
969  }
970
971  if (GVar && GVar->isThreadLocal())
972    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
973  else
974    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
975
976  FoldingSetNodeID ID;
977  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
978  ID.AddPointer(GV);
979  ID.AddInteger(Offset);
980  void *IP = 0;
981  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
982    return SDValue(E, 0);
983  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
984  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
985  CSEMap.InsertNode(N, IP);
986  AllNodes.push_back(N);
987  return SDValue(N, 0);
988}
989
990SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
991  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
992  FoldingSetNodeID ID;
993  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
994  ID.AddInteger(FI);
995  void *IP = 0;
996  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
997    return SDValue(E, 0);
998  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
999  new (N) FrameIndexSDNode(FI, VT, isTarget);
1000  CSEMap.InsertNode(N, IP);
1001  AllNodes.push_back(N);
1002  return SDValue(N, 0);
1003}
1004
1005SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1006  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1007  FoldingSetNodeID ID;
1008  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1009  ID.AddInteger(JTI);
1010  void *IP = 0;
1011  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1012    return SDValue(E, 0);
1013  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1014  new (N) JumpTableSDNode(JTI, VT, isTarget);
1015  CSEMap.InsertNode(N, IP);
1016  AllNodes.push_back(N);
1017  return SDValue(N, 0);
1018}
1019
1020SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1021                                      unsigned Alignment, int Offset,
1022                                      bool isTarget) {
1023  if (Alignment == 0)
1024    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1025  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1026  FoldingSetNodeID ID;
1027  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1028  ID.AddInteger(Alignment);
1029  ID.AddInteger(Offset);
1030  ID.AddPointer(C);
1031  void *IP = 0;
1032  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1033    return SDValue(E, 0);
1034  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1035  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1036  CSEMap.InsertNode(N, IP);
1037  AllNodes.push_back(N);
1038  return SDValue(N, 0);
1039}
1040
1041
1042SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1043                                      unsigned Alignment, int Offset,
1044                                      bool isTarget) {
1045  if (Alignment == 0)
1046    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1047  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1048  FoldingSetNodeID ID;
1049  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1050  ID.AddInteger(Alignment);
1051  ID.AddInteger(Offset);
1052  C->AddSelectionDAGCSEId(ID);
1053  void *IP = 0;
1054  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1055    return SDValue(E, 0);
1056  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1057  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1058  CSEMap.InsertNode(N, IP);
1059  AllNodes.push_back(N);
1060  return SDValue(N, 0);
1061}
1062
1063SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1064  FoldingSetNodeID ID;
1065  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1066  ID.AddPointer(MBB);
1067  void *IP = 0;
1068  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1069    return SDValue(E, 0);
1070  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1071  new (N) BasicBlockSDNode(MBB);
1072  CSEMap.InsertNode(N, IP);
1073  AllNodes.push_back(N);
1074  return SDValue(N, 0);
1075}
1076
1077SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1078  FoldingSetNodeID ID;
1079  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1080  ID.AddInteger(Flags.getRawBits());
1081  void *IP = 0;
1082  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1083    return SDValue(E, 0);
1084  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1085  new (N) ARG_FLAGSSDNode(Flags);
1086  CSEMap.InsertNode(N, IP);
1087  AllNodes.push_back(N);
1088  return SDValue(N, 0);
1089}
1090
1091SDValue SelectionDAG::getValueType(MVT VT) {
1092  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1093    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1094
1095  SDNode *&N = VT.isExtended() ?
1096    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1097
1098  if (N) return SDValue(N, 0);
1099  N = NodeAllocator.Allocate<VTSDNode>();
1100  new (N) VTSDNode(VT);
1101  AllNodes.push_back(N);
1102  return SDValue(N, 0);
1103}
1104
1105SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1106  SDNode *&N = ExternalSymbols[Sym];
1107  if (N) return SDValue(N, 0);
1108  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1109  new (N) ExternalSymbolSDNode(false, Sym, VT);
1110  AllNodes.push_back(N);
1111  return SDValue(N, 0);
1112}
1113
1114SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1115  SDNode *&N = TargetExternalSymbols[Sym];
1116  if (N) return SDValue(N, 0);
1117  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1118  new (N) ExternalSymbolSDNode(true, Sym, VT);
1119  AllNodes.push_back(N);
1120  return SDValue(N, 0);
1121}
1122
1123SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1124  if ((unsigned)Cond >= CondCodeNodes.size())
1125    CondCodeNodes.resize(Cond+1);
1126
1127  if (CondCodeNodes[Cond] == 0) {
1128    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1129    new (N) CondCodeSDNode(Cond);
1130    CondCodeNodes[Cond] = N;
1131    AllNodes.push_back(N);
1132  }
1133  return SDValue(CondCodeNodes[Cond], 0);
1134}
1135
1136static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1137  std::swap(N1, N2);
1138  int NElts = M.size();
1139  for (int i = 0; i != NElts; ++i) {
1140    if (M[i] >= NElts)
1141      M[i] -= NElts;
1142    else if (M[i] >= 0)
1143      M[i] += NElts;
1144  }
1145}
1146
1147SDValue SelectionDAG::getVectorShuffle(MVT VT, DebugLoc dl, SDValue N1,
1148                                       SDValue N2, const int *Mask) {
1149  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1150  assert(VT.isVector() && N1.getValueType().isVector() &&
1151         "Vector Shuffle VTs must be a vectors");
1152  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1153         && "Vector Shuffle VTs must have same element type");
1154
1155  // Canonicalize shuffle undef, undef -> undef
1156  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1157    return N1;
1158
1159  // Validate that all indices in Mask are within the range of the elements
1160  // input to the shuffle.
1161  int NElts = VT.getVectorNumElements();
1162  SmallVector<int, 8> MaskVec;
1163  for (int i = 0; i != NElts; ++i) {
1164    if (Mask[i] >= (NElts * 2)) {
1165      assert(0 && "Index out of range");
1166      return SDValue();
1167    }
1168    MaskVec.push_back(Mask[i]);
1169  }
1170
1171  // Canonicalize shuffle v, v -> v, undef
1172  if (N1 == N2) {
1173    N2 = getUNDEF(VT);
1174    for (int i = 0; i != NElts; ++i)
1175      if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1176  }
1177
1178  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1179  if (N1.getOpcode() == ISD::UNDEF)
1180    commuteShuffle(N1, N2, MaskVec);
1181
1182  // Canonicalize all index into lhs, -> shuffle lhs, undef
1183  // Canonicalize all index into rhs, -> shuffle rhs, undef
1184  bool AllLHS = true, AllRHS = true;
1185  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1186  for (int i = 0; i != NElts; ++i) {
1187    if (MaskVec[i] >= NElts) {
1188      if (N2Undef)
1189        MaskVec[i] = -1;
1190      else
1191        AllLHS = false;
1192    } else if (MaskVec[i] >= 0) {
1193      AllRHS = false;
1194    }
1195  }
1196  if (AllLHS && AllRHS)
1197    return getUNDEF(VT);
1198  if (AllLHS)
1199    N2 = getUNDEF(VT);
1200  if (AllRHS) {
1201    N1 = getUNDEF(VT);
1202    commuteShuffle(N1, N2, MaskVec);
1203  }
1204
1205  // If Identity shuffle, or all shuffle in to undef, return that node.
1206  bool AllUndef = true;
1207  bool Identity = true;
1208  for (int i = 0; i < NElts; ++i) {
1209    if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1210    if (MaskVec[i] >= 0) AllUndef = false;
1211  }
1212  if (Identity)
1213    return N1;
1214  if (AllUndef)
1215    return getUNDEF(VT);
1216
1217  FoldingSetNodeID ID;
1218  SDValue Ops[2] = { N1, N2 };
1219  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1220  for (int i = 0; i != NElts; ++i)
1221    ID.AddInteger(MaskVec[i]);
1222
1223  void* IP = 0;
1224  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1225    return SDValue(E, 0);
1226
1227  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1228  // SDNode doesn't have access to it.  This memory will be "leaked" when
1229  // the node is deallocated, but recovered when the NodeAllocator is released.
1230  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1231  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1232
1233  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1234  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1235  CSEMap.InsertNode(N, IP);
1236  AllNodes.push_back(N);
1237  return SDValue(N, 0);
1238}
1239
1240SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1241                                       SDValue Val, SDValue DTy,
1242                                       SDValue STy, SDValue Rnd, SDValue Sat,
1243                                       ISD::CvtCode Code) {
1244  // If the src and dest types are the same and the conversion is between
1245  // integer types of the same sign or two floats, no conversion is necessary.
1246  if (DTy == STy &&
1247      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1248    return Val;
1249
1250  FoldingSetNodeID ID;
1251  void* IP = 0;
1252  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1253    return SDValue(E, 0);
1254  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1255  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1256  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1257  CSEMap.InsertNode(N, IP);
1258  AllNodes.push_back(N);
1259  return SDValue(N, 0);
1260}
1261
1262SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1263  FoldingSetNodeID ID;
1264  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1265  ID.AddInteger(RegNo);
1266  void *IP = 0;
1267  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1268    return SDValue(E, 0);
1269  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1270  new (N) RegisterSDNode(RegNo, VT);
1271  CSEMap.InsertNode(N, IP);
1272  AllNodes.push_back(N);
1273  return SDValue(N, 0);
1274}
1275
1276SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1277                                      unsigned Line, unsigned Col,
1278                                      Value *CU) {
1279  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1280  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1281  AllNodes.push_back(N);
1282  return SDValue(N, 0);
1283}
1284
1285SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1286                               SDValue Root,
1287                               unsigned LabelID) {
1288  FoldingSetNodeID ID;
1289  SDValue Ops[] = { Root };
1290  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1291  ID.AddInteger(LabelID);
1292  void *IP = 0;
1293  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1294    return SDValue(E, 0);
1295  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1296  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1297  CSEMap.InsertNode(N, IP);
1298  AllNodes.push_back(N);
1299  return SDValue(N, 0);
1300}
1301
1302SDValue SelectionDAG::getSrcValue(const Value *V) {
1303  assert((!V || isa<PointerType>(V->getType())) &&
1304         "SrcValue is not a pointer?");
1305
1306  FoldingSetNodeID ID;
1307  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1308  ID.AddPointer(V);
1309
1310  void *IP = 0;
1311  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1312    return SDValue(E, 0);
1313
1314  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1315  new (N) SrcValueSDNode(V);
1316  CSEMap.InsertNode(N, IP);
1317  AllNodes.push_back(N);
1318  return SDValue(N, 0);
1319}
1320
1321SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1322#ifndef NDEBUG
1323  const Value *v = MO.getValue();
1324  assert((!v || isa<PointerType>(v->getType())) &&
1325         "SrcValue is not a pointer?");
1326#endif
1327
1328  FoldingSetNodeID ID;
1329  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1330  MO.Profile(ID);
1331
1332  void *IP = 0;
1333  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1334    return SDValue(E, 0);
1335
1336  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1337  new (N) MemOperandSDNode(MO);
1338  CSEMap.InsertNode(N, IP);
1339  AllNodes.push_back(N);
1340  return SDValue(N, 0);
1341}
1342
1343/// getShiftAmountOperand - Return the specified value casted to
1344/// the target's desired shift amount type.
1345SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1346  MVT OpTy = Op.getValueType();
1347  MVT ShTy = TLI.getShiftAmountTy();
1348  if (OpTy == ShTy || OpTy.isVector()) return Op;
1349
1350  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1351  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1352}
1353
1354/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1355/// specified value type.
1356SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1357  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1358  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1359  const Type *Ty = VT.getTypeForMVT();
1360  unsigned StackAlign =
1361  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1362
1363  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1364  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1365}
1366
1367/// CreateStackTemporary - Create a stack temporary suitable for holding
1368/// either of the specified value types.
1369SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1370  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1371                            VT2.getStoreSizeInBits())/8;
1372  const Type *Ty1 = VT1.getTypeForMVT();
1373  const Type *Ty2 = VT2.getTypeForMVT();
1374  const TargetData *TD = TLI.getTargetData();
1375  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1376                            TD->getPrefTypeAlignment(Ty2));
1377
1378  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1379  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1380  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1381}
1382
1383SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1384                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1385  // These setcc operations always fold.
1386  switch (Cond) {
1387  default: break;
1388  case ISD::SETFALSE:
1389  case ISD::SETFALSE2: return getConstant(0, VT);
1390  case ISD::SETTRUE:
1391  case ISD::SETTRUE2:  return getConstant(1, VT);
1392
1393  case ISD::SETOEQ:
1394  case ISD::SETOGT:
1395  case ISD::SETOGE:
1396  case ISD::SETOLT:
1397  case ISD::SETOLE:
1398  case ISD::SETONE:
1399  case ISD::SETO:
1400  case ISD::SETUO:
1401  case ISD::SETUEQ:
1402  case ISD::SETUNE:
1403    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1404    break;
1405  }
1406
1407  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1408    const APInt &C2 = N2C->getAPIntValue();
1409    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1410      const APInt &C1 = N1C->getAPIntValue();
1411
1412      switch (Cond) {
1413      default: assert(0 && "Unknown integer setcc!");
1414      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1415      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1416      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1417      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1418      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1419      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1420      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1421      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1422      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1423      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1424      }
1425    }
1426  }
1427  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1428    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1429      // No compile time operations on this type yet.
1430      if (N1C->getValueType(0) == MVT::ppcf128)
1431        return SDValue();
1432
1433      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1434      switch (Cond) {
1435      default: break;
1436      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1437                          return getUNDEF(VT);
1438                        // fall through
1439      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1440      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1441                          return getUNDEF(VT);
1442                        // fall through
1443      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1444                                           R==APFloat::cmpLessThan, VT);
1445      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1446                          return getUNDEF(VT);
1447                        // fall through
1448      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1449      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1450                          return getUNDEF(VT);
1451                        // fall through
1452      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1453      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1454                          return getUNDEF(VT);
1455                        // fall through
1456      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1457                                           R==APFloat::cmpEqual, VT);
1458      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1459                          return getUNDEF(VT);
1460                        // fall through
1461      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1462                                           R==APFloat::cmpEqual, VT);
1463      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1464      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1465      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1466                                           R==APFloat::cmpEqual, VT);
1467      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1468      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1469                                           R==APFloat::cmpLessThan, VT);
1470      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1471                                           R==APFloat::cmpUnordered, VT);
1472      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1473      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1474      }
1475    } else {
1476      // Ensure that the constant occurs on the RHS.
1477      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1478    }
1479  }
1480
1481  // Could not fold it.
1482  return SDValue();
1483}
1484
1485/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1486/// use this predicate to simplify operations downstream.
1487bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1488  unsigned BitWidth = Op.getValueSizeInBits();
1489  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1490}
1491
1492/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1493/// this predicate to simplify operations downstream.  Mask is known to be zero
1494/// for bits that V cannot have.
1495bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1496                                     unsigned Depth) const {
1497  APInt KnownZero, KnownOne;
1498  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1499  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1500  return (KnownZero & Mask) == Mask;
1501}
1502
1503/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1504/// known to be either zero or one and return them in the KnownZero/KnownOne
1505/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1506/// processing.
1507void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1508                                     APInt &KnownZero, APInt &KnownOne,
1509                                     unsigned Depth) const {
1510  unsigned BitWidth = Mask.getBitWidth();
1511  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1512         "Mask size mismatches value type size!");
1513
1514  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1515  if (Depth == 6 || Mask == 0)
1516    return;  // Limit search depth.
1517
1518  APInt KnownZero2, KnownOne2;
1519
1520  switch (Op.getOpcode()) {
1521  case ISD::Constant:
1522    // We know all of the bits for a constant!
1523    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1524    KnownZero = ~KnownOne & Mask;
1525    return;
1526  case ISD::AND:
1527    // If either the LHS or the RHS are Zero, the result is zero.
1528    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1529    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1530                      KnownZero2, KnownOne2, Depth+1);
1531    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1532    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1533
1534    // Output known-1 bits are only known if set in both the LHS & RHS.
1535    KnownOne &= KnownOne2;
1536    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1537    KnownZero |= KnownZero2;
1538    return;
1539  case ISD::OR:
1540    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1541    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1542                      KnownZero2, KnownOne2, Depth+1);
1543    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1544    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1545
1546    // Output known-0 bits are only known if clear in both the LHS & RHS.
1547    KnownZero &= KnownZero2;
1548    // Output known-1 are known to be set if set in either the LHS | RHS.
1549    KnownOne |= KnownOne2;
1550    return;
1551  case ISD::XOR: {
1552    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1553    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1554    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1555    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1556
1557    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1558    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1559    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1560    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1561    KnownZero = KnownZeroOut;
1562    return;
1563  }
1564  case ISD::MUL: {
1565    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1566    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1567    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1568    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1569    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1570
1571    // If low bits are zero in either operand, output low known-0 bits.
1572    // Also compute a conserative estimate for high known-0 bits.
1573    // More trickiness is possible, but this is sufficient for the
1574    // interesting case of alignment computation.
1575    KnownOne.clear();
1576    unsigned TrailZ = KnownZero.countTrailingOnes() +
1577                      KnownZero2.countTrailingOnes();
1578    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1579                               KnownZero2.countLeadingOnes(),
1580                               BitWidth) - BitWidth;
1581
1582    TrailZ = std::min(TrailZ, BitWidth);
1583    LeadZ = std::min(LeadZ, BitWidth);
1584    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1585                APInt::getHighBitsSet(BitWidth, LeadZ);
1586    KnownZero &= Mask;
1587    return;
1588  }
1589  case ISD::UDIV: {
1590    // For the purposes of computing leading zeros we can conservatively
1591    // treat a udiv as a logical right shift by the power of 2 known to
1592    // be less than the denominator.
1593    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1594    ComputeMaskedBits(Op.getOperand(0),
1595                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1596    unsigned LeadZ = KnownZero2.countLeadingOnes();
1597
1598    KnownOne2.clear();
1599    KnownZero2.clear();
1600    ComputeMaskedBits(Op.getOperand(1),
1601                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1602    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1603    if (RHSUnknownLeadingOnes != BitWidth)
1604      LeadZ = std::min(BitWidth,
1605                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1606
1607    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1608    return;
1609  }
1610  case ISD::SELECT:
1611    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1612    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1613    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1614    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1615
1616    // Only known if known in both the LHS and RHS.
1617    KnownOne &= KnownOne2;
1618    KnownZero &= KnownZero2;
1619    return;
1620  case ISD::SELECT_CC:
1621    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1622    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1623    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1624    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1625
1626    // Only known if known in both the LHS and RHS.
1627    KnownOne &= KnownOne2;
1628    KnownZero &= KnownZero2;
1629    return;
1630  case ISD::SADDO:
1631  case ISD::UADDO:
1632  case ISD::SSUBO:
1633  case ISD::USUBO:
1634  case ISD::SMULO:
1635  case ISD::UMULO:
1636    if (Op.getResNo() != 1)
1637      return;
1638    // The boolean result conforms to getBooleanContents.  Fall through.
1639  case ISD::SETCC:
1640    // If we know the result of a setcc has the top bits zero, use this info.
1641    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1642        BitWidth > 1)
1643      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1644    return;
1645  case ISD::SHL:
1646    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1647    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1648      unsigned ShAmt = SA->getZExtValue();
1649
1650      // If the shift count is an invalid immediate, don't do anything.
1651      if (ShAmt >= BitWidth)
1652        return;
1653
1654      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1655                        KnownZero, KnownOne, Depth+1);
1656      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1657      KnownZero <<= ShAmt;
1658      KnownOne  <<= ShAmt;
1659      // low bits known zero.
1660      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1661    }
1662    return;
1663  case ISD::SRL:
1664    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1665    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1666      unsigned ShAmt = SA->getZExtValue();
1667
1668      // If the shift count is an invalid immediate, don't do anything.
1669      if (ShAmt >= BitWidth)
1670        return;
1671
1672      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1673                        KnownZero, KnownOne, Depth+1);
1674      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1675      KnownZero = KnownZero.lshr(ShAmt);
1676      KnownOne  = KnownOne.lshr(ShAmt);
1677
1678      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1679      KnownZero |= HighBits;  // High bits known zero.
1680    }
1681    return;
1682  case ISD::SRA:
1683    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1684      unsigned ShAmt = SA->getZExtValue();
1685
1686      // If the shift count is an invalid immediate, don't do anything.
1687      if (ShAmt >= BitWidth)
1688        return;
1689
1690      APInt InDemandedMask = (Mask << ShAmt);
1691      // If any of the demanded bits are produced by the sign extension, we also
1692      // demand the input sign bit.
1693      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1694      if (HighBits.getBoolValue())
1695        InDemandedMask |= APInt::getSignBit(BitWidth);
1696
1697      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1698                        Depth+1);
1699      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1700      KnownZero = KnownZero.lshr(ShAmt);
1701      KnownOne  = KnownOne.lshr(ShAmt);
1702
1703      // Handle the sign bits.
1704      APInt SignBit = APInt::getSignBit(BitWidth);
1705      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1706
1707      if (KnownZero.intersects(SignBit)) {
1708        KnownZero |= HighBits;  // New bits are known zero.
1709      } else if (KnownOne.intersects(SignBit)) {
1710        KnownOne  |= HighBits;  // New bits are known one.
1711      }
1712    }
1713    return;
1714  case ISD::SIGN_EXTEND_INREG: {
1715    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1716    unsigned EBits = EVT.getSizeInBits();
1717
1718    // Sign extension.  Compute the demanded bits in the result that are not
1719    // present in the input.
1720    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1721
1722    APInt InSignBit = APInt::getSignBit(EBits);
1723    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1724
1725    // If the sign extended bits are demanded, we know that the sign
1726    // bit is demanded.
1727    InSignBit.zext(BitWidth);
1728    if (NewBits.getBoolValue())
1729      InputDemandedBits |= InSignBit;
1730
1731    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1732                      KnownZero, KnownOne, Depth+1);
1733    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1734
1735    // If the sign bit of the input is known set or clear, then we know the
1736    // top bits of the result.
1737    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1738      KnownZero |= NewBits;
1739      KnownOne  &= ~NewBits;
1740    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1741      KnownOne  |= NewBits;
1742      KnownZero &= ~NewBits;
1743    } else {                              // Input sign bit unknown
1744      KnownZero &= ~NewBits;
1745      KnownOne  &= ~NewBits;
1746    }
1747    return;
1748  }
1749  case ISD::CTTZ:
1750  case ISD::CTLZ:
1751  case ISD::CTPOP: {
1752    unsigned LowBits = Log2_32(BitWidth)+1;
1753    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1754    KnownOne.clear();
1755    return;
1756  }
1757  case ISD::LOAD: {
1758    if (ISD::isZEXTLoad(Op.getNode())) {
1759      LoadSDNode *LD = cast<LoadSDNode>(Op);
1760      MVT VT = LD->getMemoryVT();
1761      unsigned MemBits = VT.getSizeInBits();
1762      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1763    }
1764    return;
1765  }
1766  case ISD::ZERO_EXTEND: {
1767    MVT InVT = Op.getOperand(0).getValueType();
1768    unsigned InBits = InVT.getSizeInBits();
1769    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1770    APInt InMask    = Mask;
1771    InMask.trunc(InBits);
1772    KnownZero.trunc(InBits);
1773    KnownOne.trunc(InBits);
1774    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1775    KnownZero.zext(BitWidth);
1776    KnownOne.zext(BitWidth);
1777    KnownZero |= NewBits;
1778    return;
1779  }
1780  case ISD::SIGN_EXTEND: {
1781    MVT InVT = Op.getOperand(0).getValueType();
1782    unsigned InBits = InVT.getSizeInBits();
1783    APInt InSignBit = APInt::getSignBit(InBits);
1784    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1785    APInt InMask = Mask;
1786    InMask.trunc(InBits);
1787
1788    // If any of the sign extended bits are demanded, we know that the sign
1789    // bit is demanded. Temporarily set this bit in the mask for our callee.
1790    if (NewBits.getBoolValue())
1791      InMask |= InSignBit;
1792
1793    KnownZero.trunc(InBits);
1794    KnownOne.trunc(InBits);
1795    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1796
1797    // Note if the sign bit is known to be zero or one.
1798    bool SignBitKnownZero = KnownZero.isNegative();
1799    bool SignBitKnownOne  = KnownOne.isNegative();
1800    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1801           "Sign bit can't be known to be both zero and one!");
1802
1803    // If the sign bit wasn't actually demanded by our caller, we don't
1804    // want it set in the KnownZero and KnownOne result values. Reset the
1805    // mask and reapply it to the result values.
1806    InMask = Mask;
1807    InMask.trunc(InBits);
1808    KnownZero &= InMask;
1809    KnownOne  &= InMask;
1810
1811    KnownZero.zext(BitWidth);
1812    KnownOne.zext(BitWidth);
1813
1814    // If the sign bit is known zero or one, the top bits match.
1815    if (SignBitKnownZero)
1816      KnownZero |= NewBits;
1817    else if (SignBitKnownOne)
1818      KnownOne  |= NewBits;
1819    return;
1820  }
1821  case ISD::ANY_EXTEND: {
1822    MVT InVT = Op.getOperand(0).getValueType();
1823    unsigned InBits = InVT.getSizeInBits();
1824    APInt InMask = Mask;
1825    InMask.trunc(InBits);
1826    KnownZero.trunc(InBits);
1827    KnownOne.trunc(InBits);
1828    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1829    KnownZero.zext(BitWidth);
1830    KnownOne.zext(BitWidth);
1831    return;
1832  }
1833  case ISD::TRUNCATE: {
1834    MVT InVT = Op.getOperand(0).getValueType();
1835    unsigned InBits = InVT.getSizeInBits();
1836    APInt InMask = Mask;
1837    InMask.zext(InBits);
1838    KnownZero.zext(InBits);
1839    KnownOne.zext(InBits);
1840    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1841    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1842    KnownZero.trunc(BitWidth);
1843    KnownOne.trunc(BitWidth);
1844    break;
1845  }
1846  case ISD::AssertZext: {
1847    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1848    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1849    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1850                      KnownOne, Depth+1);
1851    KnownZero |= (~InMask) & Mask;
1852    return;
1853  }
1854  case ISD::FGETSIGN:
1855    // All bits are zero except the low bit.
1856    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1857    return;
1858
1859  case ISD::SUB: {
1860    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1861      // We know that the top bits of C-X are clear if X contains less bits
1862      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1863      // positive if we can prove that X is >= 0 and < 16.
1864      if (CLHS->getAPIntValue().isNonNegative()) {
1865        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1866        // NLZ can't be BitWidth with no sign bit
1867        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1868        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1869                          Depth+1);
1870
1871        // If all of the MaskV bits are known to be zero, then we know the
1872        // output top bits are zero, because we now know that the output is
1873        // from [0-C].
1874        if ((KnownZero2 & MaskV) == MaskV) {
1875          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1876          // Top bits known zero.
1877          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1878        }
1879      }
1880    }
1881  }
1882  // fall through
1883  case ISD::ADD: {
1884    // Output known-0 bits are known if clear or set in both the low clear bits
1885    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1886    // low 3 bits clear.
1887    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1888    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1889    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1890    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1891
1892    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1893    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1894    KnownZeroOut = std::min(KnownZeroOut,
1895                            KnownZero2.countTrailingOnes());
1896
1897    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1898    return;
1899  }
1900  case ISD::SREM:
1901    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1902      const APInt &RA = Rem->getAPIntValue();
1903      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1904        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1905        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1906        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1907
1908        // If the sign bit of the first operand is zero, the sign bit of
1909        // the result is zero. If the first operand has no one bits below
1910        // the second operand's single 1 bit, its sign will be zero.
1911        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1912          KnownZero2 |= ~LowBits;
1913
1914        KnownZero |= KnownZero2 & Mask;
1915
1916        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1917      }
1918    }
1919    return;
1920  case ISD::UREM: {
1921    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1922      const APInt &RA = Rem->getAPIntValue();
1923      if (RA.isPowerOf2()) {
1924        APInt LowBits = (RA - 1);
1925        APInt Mask2 = LowBits & Mask;
1926        KnownZero |= ~LowBits & Mask;
1927        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1928        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1929        break;
1930      }
1931    }
1932
1933    // Since the result is less than or equal to either operand, any leading
1934    // zero bits in either operand must also exist in the result.
1935    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1936    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1937                      Depth+1);
1938    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1939                      Depth+1);
1940
1941    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1942                                KnownZero2.countLeadingOnes());
1943    KnownOne.clear();
1944    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1945    return;
1946  }
1947  default:
1948    // Allow the target to implement this method for its nodes.
1949    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1950  case ISD::INTRINSIC_WO_CHAIN:
1951  case ISD::INTRINSIC_W_CHAIN:
1952  case ISD::INTRINSIC_VOID:
1953      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1954    }
1955    return;
1956  }
1957}
1958
1959/// ComputeNumSignBits - Return the number of times the sign bit of the
1960/// register is replicated into the other bits.  We know that at least 1 bit
1961/// is always equal to the sign bit (itself), but other cases can give us
1962/// information.  For example, immediately after an "SRA X, 2", we know that
1963/// the top 3 bits are all equal to each other, so we return 3.
1964unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1965  MVT VT = Op.getValueType();
1966  assert(VT.isInteger() && "Invalid VT!");
1967  unsigned VTBits = VT.getSizeInBits();
1968  unsigned Tmp, Tmp2;
1969  unsigned FirstAnswer = 1;
1970
1971  if (Depth == 6)
1972    return 1;  // Limit search depth.
1973
1974  switch (Op.getOpcode()) {
1975  default: break;
1976  case ISD::AssertSext:
1977    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1978    return VTBits-Tmp+1;
1979  case ISD::AssertZext:
1980    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1981    return VTBits-Tmp;
1982
1983  case ISD::Constant: {
1984    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1985    // If negative, return # leading ones.
1986    if (Val.isNegative())
1987      return Val.countLeadingOnes();
1988
1989    // Return # leading zeros.
1990    return Val.countLeadingZeros();
1991  }
1992
1993  case ISD::SIGN_EXTEND:
1994    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1995    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1996
1997  case ISD::SIGN_EXTEND_INREG:
1998    // Max of the input and what this extends.
1999    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2000    Tmp = VTBits-Tmp+1;
2001
2002    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2003    return std::max(Tmp, Tmp2);
2004
2005  case ISD::SRA:
2006    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2007    // SRA X, C   -> adds C sign bits.
2008    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2009      Tmp += C->getZExtValue();
2010      if (Tmp > VTBits) Tmp = VTBits;
2011    }
2012    return Tmp;
2013  case ISD::SHL:
2014    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2015      // shl destroys sign bits.
2016      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2017      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2018          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2019      return Tmp - C->getZExtValue();
2020    }
2021    break;
2022  case ISD::AND:
2023  case ISD::OR:
2024  case ISD::XOR:    // NOT is handled here.
2025    // Logical binary ops preserve the number of sign bits at the worst.
2026    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2027    if (Tmp != 1) {
2028      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2029      FirstAnswer = std::min(Tmp, Tmp2);
2030      // We computed what we know about the sign bits as our first
2031      // answer. Now proceed to the generic code that uses
2032      // ComputeMaskedBits, and pick whichever answer is better.
2033    }
2034    break;
2035
2036  case ISD::SELECT:
2037    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2038    if (Tmp == 1) return 1;  // Early out.
2039    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2040    return std::min(Tmp, Tmp2);
2041
2042  case ISD::SADDO:
2043  case ISD::UADDO:
2044  case ISD::SSUBO:
2045  case ISD::USUBO:
2046  case ISD::SMULO:
2047  case ISD::UMULO:
2048    if (Op.getResNo() != 1)
2049      break;
2050    // The boolean result conforms to getBooleanContents.  Fall through.
2051  case ISD::SETCC:
2052    // If setcc returns 0/-1, all bits are sign bits.
2053    if (TLI.getBooleanContents() ==
2054        TargetLowering::ZeroOrNegativeOneBooleanContent)
2055      return VTBits;
2056    break;
2057  case ISD::ROTL:
2058  case ISD::ROTR:
2059    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2060      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2061
2062      // Handle rotate right by N like a rotate left by 32-N.
2063      if (Op.getOpcode() == ISD::ROTR)
2064        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2065
2066      // If we aren't rotating out all of the known-in sign bits, return the
2067      // number that are left.  This handles rotl(sext(x), 1) for example.
2068      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2069      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2070    }
2071    break;
2072  case ISD::ADD:
2073    // Add can have at most one carry bit.  Thus we know that the output
2074    // is, at worst, one more bit than the inputs.
2075    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2076    if (Tmp == 1) return 1;  // Early out.
2077
2078    // Special case decrementing a value (ADD X, -1):
2079    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2080      if (CRHS->isAllOnesValue()) {
2081        APInt KnownZero, KnownOne;
2082        APInt Mask = APInt::getAllOnesValue(VTBits);
2083        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2084
2085        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2086        // sign bits set.
2087        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2088          return VTBits;
2089
2090        // If we are subtracting one from a positive number, there is no carry
2091        // out of the result.
2092        if (KnownZero.isNegative())
2093          return Tmp;
2094      }
2095
2096    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2097    if (Tmp2 == 1) return 1;
2098      return std::min(Tmp, Tmp2)-1;
2099    break;
2100
2101  case ISD::SUB:
2102    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2103    if (Tmp2 == 1) return 1;
2104
2105    // Handle NEG.
2106    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2107      if (CLHS->isNullValue()) {
2108        APInt KnownZero, KnownOne;
2109        APInt Mask = APInt::getAllOnesValue(VTBits);
2110        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2111        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2112        // sign bits set.
2113        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2114          return VTBits;
2115
2116        // If the input is known to be positive (the sign bit is known clear),
2117        // the output of the NEG has the same number of sign bits as the input.
2118        if (KnownZero.isNegative())
2119          return Tmp2;
2120
2121        // Otherwise, we treat this like a SUB.
2122      }
2123
2124    // Sub can have at most one carry bit.  Thus we know that the output
2125    // is, at worst, one more bit than the inputs.
2126    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2127    if (Tmp == 1) return 1;  // Early out.
2128      return std::min(Tmp, Tmp2)-1;
2129    break;
2130  case ISD::TRUNCATE:
2131    // FIXME: it's tricky to do anything useful for this, but it is an important
2132    // case for targets like X86.
2133    break;
2134  }
2135
2136  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2137  if (Op.getOpcode() == ISD::LOAD) {
2138    LoadSDNode *LD = cast<LoadSDNode>(Op);
2139    unsigned ExtType = LD->getExtensionType();
2140    switch (ExtType) {
2141    default: break;
2142    case ISD::SEXTLOAD:    // '17' bits known
2143      Tmp = LD->getMemoryVT().getSizeInBits();
2144      return VTBits-Tmp+1;
2145    case ISD::ZEXTLOAD:    // '16' bits known
2146      Tmp = LD->getMemoryVT().getSizeInBits();
2147      return VTBits-Tmp;
2148    }
2149  }
2150
2151  // Allow the target to implement this method for its nodes.
2152  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2153      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2154      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2155      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2156    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2157    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2158  }
2159
2160  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2161  // use this information.
2162  APInt KnownZero, KnownOne;
2163  APInt Mask = APInt::getAllOnesValue(VTBits);
2164  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2165
2166  if (KnownZero.isNegative()) {        // sign bit is 0
2167    Mask = KnownZero;
2168  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2169    Mask = KnownOne;
2170  } else {
2171    // Nothing known.
2172    return FirstAnswer;
2173  }
2174
2175  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2176  // the number of identical bits in the top of the input value.
2177  Mask = ~Mask;
2178  Mask <<= Mask.getBitWidth()-VTBits;
2179  // Return # leading zeros.  We use 'min' here in case Val was zero before
2180  // shifting.  We don't want to return '64' as for an i32 "0".
2181  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2182}
2183
2184
2185bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2186  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2187  if (!GA) return false;
2188  if (GA->getOffset() != 0) return false;
2189  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2190  if (!GV) return false;
2191  MachineModuleInfo *MMI = getMachineModuleInfo();
2192  return MMI && MMI->hasDebugInfo();
2193}
2194
2195
2196/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2197/// element of the result of the vector shuffle.
2198SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2199  MVT VT = N->getValueType(0);
2200  DebugLoc dl = N->getDebugLoc();
2201  const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
2202  int Index = SVN->getMaskElt(i);
2203  if (Index < 0)
2204    return getUNDEF(VT.getVectorElementType());
2205  int NumElems = VT.getVectorNumElements();
2206  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2207  Index %= NumElems;
2208
2209  if (V.getOpcode() == ISD::BIT_CONVERT) {
2210    V = V.getOperand(0);
2211    MVT VVT = V.getValueType();
2212    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2213      return SDValue();
2214  }
2215  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2216    return (Index == 0) ? V.getOperand(0)
2217                      : getUNDEF(VT.getVectorElementType());
2218  if (V.getOpcode() == ISD::BUILD_VECTOR)
2219    return V.getOperand(Index);
2220  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2221    return getShuffleScalarElt(V.getNode(), Index);
2222  return SDValue();
2223}
2224
2225
2226/// getNode - Gets or creates the specified node.
2227///
2228SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2229  FoldingSetNodeID ID;
2230  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2231  void *IP = 0;
2232  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2233    return SDValue(E, 0);
2234  SDNode *N = NodeAllocator.Allocate<SDNode>();
2235  new (N) SDNode(Opcode, DL, getVTList(VT));
2236  CSEMap.InsertNode(N, IP);
2237
2238  AllNodes.push_back(N);
2239#ifndef NDEBUG
2240  VerifyNode(N);
2241#endif
2242  return SDValue(N, 0);
2243}
2244
2245SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2246                              MVT VT, SDValue Operand) {
2247  // Constant fold unary operations with an integer constant operand.
2248  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2249    const APInt &Val = C->getAPIntValue();
2250    unsigned BitWidth = VT.getSizeInBits();
2251    switch (Opcode) {
2252    default: break;
2253    case ISD::SIGN_EXTEND:
2254      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2255    case ISD::ANY_EXTEND:
2256    case ISD::ZERO_EXTEND:
2257    case ISD::TRUNCATE:
2258      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2259    case ISD::UINT_TO_FP:
2260    case ISD::SINT_TO_FP: {
2261      const uint64_t zero[] = {0, 0};
2262      // No compile time operations on this type.
2263      if (VT==MVT::ppcf128)
2264        break;
2265      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2266      (void)apf.convertFromAPInt(Val,
2267                                 Opcode==ISD::SINT_TO_FP,
2268                                 APFloat::rmNearestTiesToEven);
2269      return getConstantFP(apf, VT);
2270    }
2271    case ISD::BIT_CONVERT:
2272      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2273        return getConstantFP(Val.bitsToFloat(), VT);
2274      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2275        return getConstantFP(Val.bitsToDouble(), VT);
2276      break;
2277    case ISD::BSWAP:
2278      return getConstant(Val.byteSwap(), VT);
2279    case ISD::CTPOP:
2280      return getConstant(Val.countPopulation(), VT);
2281    case ISD::CTLZ:
2282      return getConstant(Val.countLeadingZeros(), VT);
2283    case ISD::CTTZ:
2284      return getConstant(Val.countTrailingZeros(), VT);
2285    }
2286  }
2287
2288  // Constant fold unary operations with a floating point constant operand.
2289  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2290    APFloat V = C->getValueAPF();    // make copy
2291    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2292      switch (Opcode) {
2293      case ISD::FNEG:
2294        V.changeSign();
2295        return getConstantFP(V, VT);
2296      case ISD::FABS:
2297        V.clearSign();
2298        return getConstantFP(V, VT);
2299      case ISD::FP_ROUND:
2300      case ISD::FP_EXTEND: {
2301        bool ignored;
2302        // This can return overflow, underflow, or inexact; we don't care.
2303        // FIXME need to be more flexible about rounding mode.
2304        (void)V.convert(*MVTToAPFloatSemantics(VT),
2305                        APFloat::rmNearestTiesToEven, &ignored);
2306        return getConstantFP(V, VT);
2307      }
2308      case ISD::FP_TO_SINT:
2309      case ISD::FP_TO_UINT: {
2310        integerPart x[2];
2311        bool ignored;
2312        assert(integerPartWidth >= 64);
2313        // FIXME need to be more flexible about rounding mode.
2314        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2315                              Opcode==ISD::FP_TO_SINT,
2316                              APFloat::rmTowardZero, &ignored);
2317        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2318          break;
2319        APInt api(VT.getSizeInBits(), 2, x);
2320        return getConstant(api, VT);
2321      }
2322      case ISD::BIT_CONVERT:
2323        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2324          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2325        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2326          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2327        break;
2328      }
2329    }
2330  }
2331
2332  unsigned OpOpcode = Operand.getNode()->getOpcode();
2333  switch (Opcode) {
2334  case ISD::TokenFactor:
2335  case ISD::MERGE_VALUES:
2336  case ISD::CONCAT_VECTORS:
2337    return Operand;         // Factor, merge or concat of one node?  No need.
2338  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2339  case ISD::FP_EXTEND:
2340    assert(VT.isFloatingPoint() &&
2341           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2342    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2343    if (Operand.getOpcode() == ISD::UNDEF)
2344      return getUNDEF(VT);
2345    break;
2346  case ISD::SIGN_EXTEND:
2347    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2348           "Invalid SIGN_EXTEND!");
2349    if (Operand.getValueType() == VT) return Operand;   // noop extension
2350    assert(Operand.getValueType().bitsLT(VT)
2351           && "Invalid sext node, dst < src!");
2352    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2353      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2354    break;
2355  case ISD::ZERO_EXTEND:
2356    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2357           "Invalid ZERO_EXTEND!");
2358    if (Operand.getValueType() == VT) return Operand;   // noop extension
2359    assert(Operand.getValueType().bitsLT(VT)
2360           && "Invalid zext node, dst < src!");
2361    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2362      return getNode(ISD::ZERO_EXTEND, DL, VT,
2363                     Operand.getNode()->getOperand(0));
2364    break;
2365  case ISD::ANY_EXTEND:
2366    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2367           "Invalid ANY_EXTEND!");
2368    if (Operand.getValueType() == VT) return Operand;   // noop extension
2369    assert(Operand.getValueType().bitsLT(VT)
2370           && "Invalid anyext node, dst < src!");
2371    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2372      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2373      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2374    break;
2375  case ISD::TRUNCATE:
2376    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2377           "Invalid TRUNCATE!");
2378    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2379    assert(Operand.getValueType().bitsGT(VT)
2380           && "Invalid truncate node, src < dst!");
2381    if (OpOpcode == ISD::TRUNCATE)
2382      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2383    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2384             OpOpcode == ISD::ANY_EXTEND) {
2385      // If the source is smaller than the dest, we still need an extend.
2386      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2387        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2388      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2389        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2390      else
2391        return Operand.getNode()->getOperand(0);
2392    }
2393    break;
2394  case ISD::BIT_CONVERT:
2395    // Basic sanity checking.
2396    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2397           && "Cannot BIT_CONVERT between types of different sizes!");
2398    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2399    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2400      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2401    if (OpOpcode == ISD::UNDEF)
2402      return getUNDEF(VT);
2403    break;
2404  case ISD::SCALAR_TO_VECTOR:
2405    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2406           (VT.getVectorElementType() == Operand.getValueType() ||
2407            (VT.getVectorElementType().isInteger() &&
2408             Operand.getValueType().isInteger() &&
2409             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2410           "Illegal SCALAR_TO_VECTOR node!");
2411    if (OpOpcode == ISD::UNDEF)
2412      return getUNDEF(VT);
2413    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2414    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2415        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2416        Operand.getConstantOperandVal(1) == 0 &&
2417        Operand.getOperand(0).getValueType() == VT)
2418      return Operand.getOperand(0);
2419    break;
2420  case ISD::FNEG:
2421    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2422    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2423      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2424                     Operand.getNode()->getOperand(0));
2425    if (OpOpcode == ISD::FNEG)  // --X -> X
2426      return Operand.getNode()->getOperand(0);
2427    break;
2428  case ISD::FABS:
2429    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2430      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2431    break;
2432  }
2433
2434  SDNode *N;
2435  SDVTList VTs = getVTList(VT);
2436  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2437    FoldingSetNodeID ID;
2438    SDValue Ops[1] = { Operand };
2439    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2440    void *IP = 0;
2441    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2442      return SDValue(E, 0);
2443    N = NodeAllocator.Allocate<UnarySDNode>();
2444    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2445    CSEMap.InsertNode(N, IP);
2446  } else {
2447    N = NodeAllocator.Allocate<UnarySDNode>();
2448    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2449  }
2450
2451  AllNodes.push_back(N);
2452#ifndef NDEBUG
2453  VerifyNode(N);
2454#endif
2455  return SDValue(N, 0);
2456}
2457
2458SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2459                                             MVT VT,
2460                                             ConstantSDNode *Cst1,
2461                                             ConstantSDNode *Cst2) {
2462  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2463
2464  switch (Opcode) {
2465  case ISD::ADD:  return getConstant(C1 + C2, VT);
2466  case ISD::SUB:  return getConstant(C1 - C2, VT);
2467  case ISD::MUL:  return getConstant(C1 * C2, VT);
2468  case ISD::UDIV:
2469    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2470    break;
2471  case ISD::UREM:
2472    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2473    break;
2474  case ISD::SDIV:
2475    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2476    break;
2477  case ISD::SREM:
2478    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2479    break;
2480  case ISD::AND:  return getConstant(C1 & C2, VT);
2481  case ISD::OR:   return getConstant(C1 | C2, VT);
2482  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2483  case ISD::SHL:  return getConstant(C1 << C2, VT);
2484  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2485  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2486  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2487  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2488  default: break;
2489  }
2490
2491  return SDValue();
2492}
2493
2494SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2495                              SDValue N1, SDValue N2) {
2496  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2497  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2498  switch (Opcode) {
2499  default: break;
2500  case ISD::TokenFactor:
2501    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2502           N2.getValueType() == MVT::Other && "Invalid token factor!");
2503    // Fold trivial token factors.
2504    if (N1.getOpcode() == ISD::EntryToken) return N2;
2505    if (N2.getOpcode() == ISD::EntryToken) return N1;
2506    if (N1 == N2) return N1;
2507    break;
2508  case ISD::CONCAT_VECTORS:
2509    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2510    // one big BUILD_VECTOR.
2511    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2512        N2.getOpcode() == ISD::BUILD_VECTOR) {
2513      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2514      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2515      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2516    }
2517    break;
2518  case ISD::AND:
2519    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2520           N1.getValueType() == VT && "Binary operator types must match!");
2521    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2522    // worth handling here.
2523    if (N2C && N2C->isNullValue())
2524      return N2;
2525    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2526      return N1;
2527    break;
2528  case ISD::OR:
2529  case ISD::XOR:
2530  case ISD::ADD:
2531  case ISD::SUB:
2532    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2533           N1.getValueType() == VT && "Binary operator types must match!");
2534    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2535    // it's worth handling here.
2536    if (N2C && N2C->isNullValue())
2537      return N1;
2538    break;
2539  case ISD::UDIV:
2540  case ISD::UREM:
2541  case ISD::MULHU:
2542  case ISD::MULHS:
2543  case ISD::MUL:
2544  case ISD::SDIV:
2545  case ISD::SREM:
2546    assert(VT.isInteger() && "This operator does not apply to FP types!");
2547    // fall through
2548  case ISD::FADD:
2549  case ISD::FSUB:
2550  case ISD::FMUL:
2551  case ISD::FDIV:
2552  case ISD::FREM:
2553    if (UnsafeFPMath) {
2554      if (Opcode == ISD::FADD) {
2555        // 0+x --> x
2556        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2557          if (CFP->getValueAPF().isZero())
2558            return N2;
2559        // x+0 --> x
2560        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2561          if (CFP->getValueAPF().isZero())
2562            return N1;
2563      } else if (Opcode == ISD::FSUB) {
2564        // x-0 --> x
2565        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2566          if (CFP->getValueAPF().isZero())
2567            return N1;
2568      }
2569    }
2570    assert(N1.getValueType() == N2.getValueType() &&
2571           N1.getValueType() == VT && "Binary operator types must match!");
2572    break;
2573  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2574    assert(N1.getValueType() == VT &&
2575           N1.getValueType().isFloatingPoint() &&
2576           N2.getValueType().isFloatingPoint() &&
2577           "Invalid FCOPYSIGN!");
2578    break;
2579  case ISD::SHL:
2580  case ISD::SRA:
2581  case ISD::SRL:
2582  case ISD::ROTL:
2583  case ISD::ROTR:
2584    assert(VT == N1.getValueType() &&
2585           "Shift operators return type must be the same as their first arg");
2586    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2587           "Shifts only work on integers");
2588
2589    // Always fold shifts of i1 values so the code generator doesn't need to
2590    // handle them.  Since we know the size of the shift has to be less than the
2591    // size of the value, the shift/rotate count is guaranteed to be zero.
2592    if (VT == MVT::i1)
2593      return N1;
2594    break;
2595  case ISD::FP_ROUND_INREG: {
2596    MVT EVT = cast<VTSDNode>(N2)->getVT();
2597    assert(VT == N1.getValueType() && "Not an inreg round!");
2598    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2599           "Cannot FP_ROUND_INREG integer types");
2600    assert(EVT.bitsLE(VT) && "Not rounding down!");
2601    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2602    break;
2603  }
2604  case ISD::FP_ROUND:
2605    assert(VT.isFloatingPoint() &&
2606           N1.getValueType().isFloatingPoint() &&
2607           VT.bitsLE(N1.getValueType()) &&
2608           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2609    if (N1.getValueType() == VT) return N1;  // noop conversion.
2610    break;
2611  case ISD::AssertSext:
2612  case ISD::AssertZext: {
2613    MVT EVT = cast<VTSDNode>(N2)->getVT();
2614    assert(VT == N1.getValueType() && "Not an inreg extend!");
2615    assert(VT.isInteger() && EVT.isInteger() &&
2616           "Cannot *_EXTEND_INREG FP types");
2617    assert(EVT.bitsLE(VT) && "Not extending!");
2618    if (VT == EVT) return N1; // noop assertion.
2619    break;
2620  }
2621  case ISD::SIGN_EXTEND_INREG: {
2622    MVT EVT = cast<VTSDNode>(N2)->getVT();
2623    assert(VT == N1.getValueType() && "Not an inreg extend!");
2624    assert(VT.isInteger() && EVT.isInteger() &&
2625           "Cannot *_EXTEND_INREG FP types");
2626    assert(EVT.bitsLE(VT) && "Not extending!");
2627    if (EVT == VT) return N1;  // Not actually extending
2628
2629    if (N1C) {
2630      APInt Val = N1C->getAPIntValue();
2631      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2632      Val <<= Val.getBitWidth()-FromBits;
2633      Val = Val.ashr(Val.getBitWidth()-FromBits);
2634      return getConstant(Val, VT);
2635    }
2636    break;
2637  }
2638  case ISD::EXTRACT_VECTOR_ELT:
2639    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2640    if (N1.getOpcode() == ISD::UNDEF)
2641      return getUNDEF(VT);
2642
2643    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2644    // expanding copies of large vectors from registers.
2645    if (N2C &&
2646        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2647        N1.getNumOperands() > 0) {
2648      unsigned Factor =
2649        N1.getOperand(0).getValueType().getVectorNumElements();
2650      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2651                     N1.getOperand(N2C->getZExtValue() / Factor),
2652                     getConstant(N2C->getZExtValue() % Factor,
2653                                 N2.getValueType()));
2654    }
2655
2656    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2657    // expanding large vector constants.
2658    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2659      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2660      if (Elt.getValueType() != VT) {
2661        // If the vector element type is not legal, the BUILD_VECTOR operands
2662        // are promoted and implicitly truncated.  Make that explicit here.
2663        assert(VT.isInteger() && Elt.getValueType().isInteger() &&
2664               VT.bitsLE(Elt.getValueType()) &&
2665               "Bad type for BUILD_VECTOR operand");
2666        Elt = getNode(ISD::TRUNCATE, DL, VT, Elt);
2667      }
2668      return Elt;
2669    }
2670
2671    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2672    // operations are lowered to scalars.
2673    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2674      // If the indices are the same, return the inserted element.
2675      if (N1.getOperand(2) == N2)
2676        return N1.getOperand(1);
2677      // If the indices are known different, extract the element from
2678      // the original vector.
2679      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2680               isa<ConstantSDNode>(N2))
2681        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2682    }
2683    break;
2684  case ISD::EXTRACT_ELEMENT:
2685    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2686    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2687           (N1.getValueType().isInteger() == VT.isInteger()) &&
2688           "Wrong types for EXTRACT_ELEMENT!");
2689
2690    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2691    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2692    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2693    if (N1.getOpcode() == ISD::BUILD_PAIR)
2694      return N1.getOperand(N2C->getZExtValue());
2695
2696    // EXTRACT_ELEMENT of a constant int is also very common.
2697    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2698      unsigned ElementSize = VT.getSizeInBits();
2699      unsigned Shift = ElementSize * N2C->getZExtValue();
2700      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2701      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2702    }
2703    break;
2704  case ISD::EXTRACT_SUBVECTOR:
2705    if (N1.getValueType() == VT) // Trivial extraction.
2706      return N1;
2707    break;
2708  }
2709
2710  if (N1C) {
2711    if (N2C) {
2712      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2713      if (SV.getNode()) return SV;
2714    } else {      // Cannonicalize constant to RHS if commutative
2715      if (isCommutativeBinOp(Opcode)) {
2716        std::swap(N1C, N2C);
2717        std::swap(N1, N2);
2718      }
2719    }
2720  }
2721
2722  // Constant fold FP operations.
2723  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2724  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2725  if (N1CFP) {
2726    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2727      // Cannonicalize constant to RHS if commutative
2728      std::swap(N1CFP, N2CFP);
2729      std::swap(N1, N2);
2730    } else if (N2CFP && VT != MVT::ppcf128) {
2731      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2732      APFloat::opStatus s;
2733      switch (Opcode) {
2734      case ISD::FADD:
2735        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2736        if (s != APFloat::opInvalidOp)
2737          return getConstantFP(V1, VT);
2738        break;
2739      case ISD::FSUB:
2740        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2741        if (s!=APFloat::opInvalidOp)
2742          return getConstantFP(V1, VT);
2743        break;
2744      case ISD::FMUL:
2745        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2746        if (s!=APFloat::opInvalidOp)
2747          return getConstantFP(V1, VT);
2748        break;
2749      case ISD::FDIV:
2750        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2751        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2752          return getConstantFP(V1, VT);
2753        break;
2754      case ISD::FREM :
2755        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2756        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2757          return getConstantFP(V1, VT);
2758        break;
2759      case ISD::FCOPYSIGN:
2760        V1.copySign(V2);
2761        return getConstantFP(V1, VT);
2762      default: break;
2763      }
2764    }
2765  }
2766
2767  // Canonicalize an UNDEF to the RHS, even over a constant.
2768  if (N1.getOpcode() == ISD::UNDEF) {
2769    if (isCommutativeBinOp(Opcode)) {
2770      std::swap(N1, N2);
2771    } else {
2772      switch (Opcode) {
2773      case ISD::FP_ROUND_INREG:
2774      case ISD::SIGN_EXTEND_INREG:
2775      case ISD::SUB:
2776      case ISD::FSUB:
2777      case ISD::FDIV:
2778      case ISD::FREM:
2779      case ISD::SRA:
2780        return N1;     // fold op(undef, arg2) -> undef
2781      case ISD::UDIV:
2782      case ISD::SDIV:
2783      case ISD::UREM:
2784      case ISD::SREM:
2785      case ISD::SRL:
2786      case ISD::SHL:
2787        if (!VT.isVector())
2788          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2789        // For vectors, we can't easily build an all zero vector, just return
2790        // the LHS.
2791        return N2;
2792      }
2793    }
2794  }
2795
2796  // Fold a bunch of operators when the RHS is undef.
2797  if (N2.getOpcode() == ISD::UNDEF) {
2798    switch (Opcode) {
2799    case ISD::XOR:
2800      if (N1.getOpcode() == ISD::UNDEF)
2801        // Handle undef ^ undef -> 0 special case. This is a common
2802        // idiom (misuse).
2803        return getConstant(0, VT);
2804      // fallthrough
2805    case ISD::ADD:
2806    case ISD::ADDC:
2807    case ISD::ADDE:
2808    case ISD::SUB:
2809    case ISD::FADD:
2810    case ISD::FSUB:
2811    case ISD::FMUL:
2812    case ISD::FDIV:
2813    case ISD::FREM:
2814    case ISD::UDIV:
2815    case ISD::SDIV:
2816    case ISD::UREM:
2817    case ISD::SREM:
2818      return N2;       // fold op(arg1, undef) -> undef
2819    case ISD::MUL:
2820    case ISD::AND:
2821    case ISD::SRL:
2822    case ISD::SHL:
2823      if (!VT.isVector())
2824        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2825      // For vectors, we can't easily build an all zero vector, just return
2826      // the LHS.
2827      return N1;
2828    case ISD::OR:
2829      if (!VT.isVector())
2830        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2831      // For vectors, we can't easily build an all one vector, just return
2832      // the LHS.
2833      return N1;
2834    case ISD::SRA:
2835      return N1;
2836    }
2837  }
2838
2839  // Memoize this node if possible.
2840  SDNode *N;
2841  SDVTList VTs = getVTList(VT);
2842  if (VT != MVT::Flag) {
2843    SDValue Ops[] = { N1, N2 };
2844    FoldingSetNodeID ID;
2845    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2846    void *IP = 0;
2847    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2848      return SDValue(E, 0);
2849    N = NodeAllocator.Allocate<BinarySDNode>();
2850    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2851    CSEMap.InsertNode(N, IP);
2852  } else {
2853    N = NodeAllocator.Allocate<BinarySDNode>();
2854    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2855  }
2856
2857  AllNodes.push_back(N);
2858#ifndef NDEBUG
2859  VerifyNode(N);
2860#endif
2861  return SDValue(N, 0);
2862}
2863
2864SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2865                              SDValue N1, SDValue N2, SDValue N3) {
2866  // Perform various simplifications.
2867  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2868  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2869  switch (Opcode) {
2870  case ISD::CONCAT_VECTORS:
2871    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2872    // one big BUILD_VECTOR.
2873    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2874        N2.getOpcode() == ISD::BUILD_VECTOR &&
2875        N3.getOpcode() == ISD::BUILD_VECTOR) {
2876      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2877      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2878      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2879      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2880    }
2881    break;
2882  case ISD::SETCC: {
2883    // Use FoldSetCC to simplify SETCC's.
2884    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2885    if (Simp.getNode()) return Simp;
2886    break;
2887  }
2888  case ISD::SELECT:
2889    if (N1C) {
2890     if (N1C->getZExtValue())
2891        return N2;             // select true, X, Y -> X
2892      else
2893        return N3;             // select false, X, Y -> Y
2894    }
2895
2896    if (N2 == N3) return N2;   // select C, X, X -> X
2897    break;
2898  case ISD::BRCOND:
2899    if (N2C) {
2900      if (N2C->getZExtValue()) // Unconditional branch
2901        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2902      else
2903        return N1;         // Never-taken branch
2904    }
2905    break;
2906  case ISD::VECTOR_SHUFFLE:
2907    assert(0 && "should use getVectorShuffle constructor!");
2908    break;
2909  case ISD::BIT_CONVERT:
2910    // Fold bit_convert nodes from a type to themselves.
2911    if (N1.getValueType() == VT)
2912      return N1;
2913    break;
2914  }
2915
2916  // Memoize node if it doesn't produce a flag.
2917  SDNode *N;
2918  SDVTList VTs = getVTList(VT);
2919  if (VT != MVT::Flag) {
2920    SDValue Ops[] = { N1, N2, N3 };
2921    FoldingSetNodeID ID;
2922    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2923    void *IP = 0;
2924    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2925      return SDValue(E, 0);
2926    N = NodeAllocator.Allocate<TernarySDNode>();
2927    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2928    CSEMap.InsertNode(N, IP);
2929  } else {
2930    N = NodeAllocator.Allocate<TernarySDNode>();
2931    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2932  }
2933  AllNodes.push_back(N);
2934#ifndef NDEBUG
2935  VerifyNode(N);
2936#endif
2937  return SDValue(N, 0);
2938}
2939
2940SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2941                              SDValue N1, SDValue N2, SDValue N3,
2942                              SDValue N4) {
2943  SDValue Ops[] = { N1, N2, N3, N4 };
2944  return getNode(Opcode, DL, VT, Ops, 4);
2945}
2946
2947SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2948                              SDValue N1, SDValue N2, SDValue N3,
2949                              SDValue N4, SDValue N5) {
2950  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2951  return getNode(Opcode, DL, VT, Ops, 5);
2952}
2953
2954/// getMemsetValue - Vectorized representation of the memset value
2955/// operand.
2956static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2957                              DebugLoc dl) {
2958  unsigned NumBits = VT.isVector() ?
2959    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2960  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2961    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2962    unsigned Shift = 8;
2963    for (unsigned i = NumBits; i > 8; i >>= 1) {
2964      Val = (Val << Shift) | Val;
2965      Shift <<= 1;
2966    }
2967    if (VT.isInteger())
2968      return DAG.getConstant(Val, VT);
2969    return DAG.getConstantFP(APFloat(Val), VT);
2970  }
2971
2972  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2973  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
2974  unsigned Shift = 8;
2975  for (unsigned i = NumBits; i > 8; i >>= 1) {
2976    Value = DAG.getNode(ISD::OR, dl, VT,
2977                        DAG.getNode(ISD::SHL, dl, VT, Value,
2978                                    DAG.getConstant(Shift,
2979                                                    TLI.getShiftAmountTy())),
2980                        Value);
2981    Shift <<= 1;
2982  }
2983
2984  return Value;
2985}
2986
2987/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2988/// used when a memcpy is turned into a memset when the source is a constant
2989/// string ptr.
2990static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
2991                                    const TargetLowering &TLI,
2992                                    std::string &Str, unsigned Offset) {
2993  // Handle vector with all elements zero.
2994  if (Str.empty()) {
2995    if (VT.isInteger())
2996      return DAG.getConstant(0, VT);
2997    unsigned NumElts = VT.getVectorNumElements();
2998    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2999    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3000                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
3001  }
3002
3003  assert(!VT.isVector() && "Can't handle vector type here!");
3004  unsigned NumBits = VT.getSizeInBits();
3005  unsigned MSB = NumBits / 8;
3006  uint64_t Val = 0;
3007  if (TLI.isLittleEndian())
3008    Offset = Offset + MSB - 1;
3009  for (unsigned i = 0; i != MSB; ++i) {
3010    Val = (Val << 8) | (unsigned char)Str[Offset];
3011    Offset += TLI.isLittleEndian() ? -1 : 1;
3012  }
3013  return DAG.getConstant(Val, VT);
3014}
3015
3016/// getMemBasePlusOffset - Returns base and offset node for the
3017///
3018static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3019                                      SelectionDAG &DAG) {
3020  MVT VT = Base.getValueType();
3021  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3022                     VT, Base, DAG.getConstant(Offset, VT));
3023}
3024
3025/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3026///
3027static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3028  unsigned SrcDelta = 0;
3029  GlobalAddressSDNode *G = NULL;
3030  if (Src.getOpcode() == ISD::GlobalAddress)
3031    G = cast<GlobalAddressSDNode>(Src);
3032  else if (Src.getOpcode() == ISD::ADD &&
3033           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3034           Src.getOperand(1).getOpcode() == ISD::Constant) {
3035    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3036    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3037  }
3038  if (!G)
3039    return false;
3040
3041  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3042  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3043    return true;
3044
3045  return false;
3046}
3047
3048/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3049/// to replace the memset / memcpy is below the threshold. It also returns the
3050/// types of the sequence of memory ops to perform memset / memcpy.
3051static
3052bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
3053                              SDValue Dst, SDValue Src,
3054                              unsigned Limit, uint64_t Size, unsigned &Align,
3055                              std::string &Str, bool &isSrcStr,
3056                              SelectionDAG &DAG,
3057                              const TargetLowering &TLI) {
3058  isSrcStr = isMemSrcFromString(Src, Str);
3059  bool isSrcConst = isa<ConstantSDNode>(Src);
3060  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
3061  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
3062  if (VT != MVT::iAny) {
3063    unsigned NewAlign = (unsigned)
3064      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
3065    // If source is a string constant, this will require an unaligned load.
3066    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3067      if (Dst.getOpcode() != ISD::FrameIndex) {
3068        // Can't change destination alignment. It requires a unaligned store.
3069        if (AllowUnalign)
3070          VT = MVT::iAny;
3071      } else {
3072        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3073        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3074        if (MFI->isFixedObjectIndex(FI)) {
3075          // Can't change destination alignment. It requires a unaligned store.
3076          if (AllowUnalign)
3077            VT = MVT::iAny;
3078        } else {
3079          // Give the stack frame object a larger alignment if needed.
3080          if (MFI->getObjectAlignment(FI) < NewAlign)
3081            MFI->setObjectAlignment(FI, NewAlign);
3082          Align = NewAlign;
3083        }
3084      }
3085    }
3086  }
3087
3088  if (VT == MVT::iAny) {
3089    if (AllowUnalign) {
3090      VT = MVT::i64;
3091    } else {
3092      switch (Align & 7) {
3093      case 0:  VT = MVT::i64; break;
3094      case 4:  VT = MVT::i32; break;
3095      case 2:  VT = MVT::i16; break;
3096      default: VT = MVT::i8;  break;
3097      }
3098    }
3099
3100    MVT LVT = MVT::i64;
3101    while (!TLI.isTypeLegal(LVT))
3102      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3103    assert(LVT.isInteger());
3104
3105    if (VT.bitsGT(LVT))
3106      VT = LVT;
3107  }
3108
3109  unsigned NumMemOps = 0;
3110  while (Size != 0) {
3111    unsigned VTSize = VT.getSizeInBits() / 8;
3112    while (VTSize > Size) {
3113      // For now, only use non-vector load / store's for the left-over pieces.
3114      if (VT.isVector()) {
3115        VT = MVT::i64;
3116        while (!TLI.isTypeLegal(VT))
3117          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3118        VTSize = VT.getSizeInBits() / 8;
3119      } else {
3120        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3121        VTSize >>= 1;
3122      }
3123    }
3124
3125    if (++NumMemOps > Limit)
3126      return false;
3127    MemOps.push_back(VT);
3128    Size -= VTSize;
3129  }
3130
3131  return true;
3132}
3133
3134static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3135                                         SDValue Chain, SDValue Dst,
3136                                         SDValue Src, uint64_t Size,
3137                                         unsigned Align, bool AlwaysInline,
3138                                         const Value *DstSV, uint64_t DstSVOff,
3139                                         const Value *SrcSV, uint64_t SrcSVOff){
3140  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3141
3142  // Expand memcpy to a series of load and store ops if the size operand falls
3143  // below a certain threshold.
3144  std::vector<MVT> MemOps;
3145  uint64_t Limit = -1ULL;
3146  if (!AlwaysInline)
3147    Limit = TLI.getMaxStoresPerMemcpy();
3148  unsigned DstAlign = Align;  // Destination alignment can change.
3149  std::string Str;
3150  bool CopyFromStr;
3151  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3152                                Str, CopyFromStr, DAG, TLI))
3153    return SDValue();
3154
3155
3156  bool isZeroStr = CopyFromStr && Str.empty();
3157  SmallVector<SDValue, 8> OutChains;
3158  unsigned NumMemOps = MemOps.size();
3159  uint64_t SrcOff = 0, DstOff = 0;
3160  for (unsigned i = 0; i < NumMemOps; i++) {
3161    MVT VT = MemOps[i];
3162    unsigned VTSize = VT.getSizeInBits() / 8;
3163    SDValue Value, Store;
3164
3165    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3166      // It's unlikely a store of a vector immediate can be done in a single
3167      // instruction. It would require a load from a constantpool first.
3168      // We also handle store a vector with all zero's.
3169      // FIXME: Handle other cases where store of vector immediate is done in
3170      // a single instruction.
3171      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3172      Store = DAG.getStore(Chain, dl, Value,
3173                           getMemBasePlusOffset(Dst, DstOff, DAG),
3174                           DstSV, DstSVOff + DstOff, false, DstAlign);
3175    } else {
3176      Value = DAG.getLoad(VT, dl, Chain,
3177                          getMemBasePlusOffset(Src, SrcOff, DAG),
3178                          SrcSV, SrcSVOff + SrcOff, false, Align);
3179      Store = DAG.getStore(Chain, dl, Value,
3180                           getMemBasePlusOffset(Dst, DstOff, DAG),
3181                           DstSV, DstSVOff + DstOff, false, DstAlign);
3182    }
3183    OutChains.push_back(Store);
3184    SrcOff += VTSize;
3185    DstOff += VTSize;
3186  }
3187
3188  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3189                     &OutChains[0], OutChains.size());
3190}
3191
3192static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3193                                          SDValue Chain, SDValue Dst,
3194                                          SDValue Src, uint64_t Size,
3195                                          unsigned Align, bool AlwaysInline,
3196                                          const Value *DstSV, uint64_t DstSVOff,
3197                                          const Value *SrcSV, uint64_t SrcSVOff){
3198  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3199
3200  // Expand memmove to a series of load and store ops if the size operand falls
3201  // below a certain threshold.
3202  std::vector<MVT> MemOps;
3203  uint64_t Limit = -1ULL;
3204  if (!AlwaysInline)
3205    Limit = TLI.getMaxStoresPerMemmove();
3206  unsigned DstAlign = Align;  // Destination alignment can change.
3207  std::string Str;
3208  bool CopyFromStr;
3209  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3210                                Str, CopyFromStr, DAG, TLI))
3211    return SDValue();
3212
3213  uint64_t SrcOff = 0, DstOff = 0;
3214
3215  SmallVector<SDValue, 8> LoadValues;
3216  SmallVector<SDValue, 8> LoadChains;
3217  SmallVector<SDValue, 8> OutChains;
3218  unsigned NumMemOps = MemOps.size();
3219  for (unsigned i = 0; i < NumMemOps; i++) {
3220    MVT VT = MemOps[i];
3221    unsigned VTSize = VT.getSizeInBits() / 8;
3222    SDValue Value, Store;
3223
3224    Value = DAG.getLoad(VT, dl, Chain,
3225                        getMemBasePlusOffset(Src, SrcOff, DAG),
3226                        SrcSV, SrcSVOff + SrcOff, false, Align);
3227    LoadValues.push_back(Value);
3228    LoadChains.push_back(Value.getValue(1));
3229    SrcOff += VTSize;
3230  }
3231  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3232                      &LoadChains[0], LoadChains.size());
3233  OutChains.clear();
3234  for (unsigned i = 0; i < NumMemOps; i++) {
3235    MVT VT = MemOps[i];
3236    unsigned VTSize = VT.getSizeInBits() / 8;
3237    SDValue Value, Store;
3238
3239    Store = DAG.getStore(Chain, dl, LoadValues[i],
3240                         getMemBasePlusOffset(Dst, DstOff, DAG),
3241                         DstSV, DstSVOff + DstOff, false, DstAlign);
3242    OutChains.push_back(Store);
3243    DstOff += VTSize;
3244  }
3245
3246  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3247                     &OutChains[0], OutChains.size());
3248}
3249
3250static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3251                                 SDValue Chain, SDValue Dst,
3252                                 SDValue Src, uint64_t Size,
3253                                 unsigned Align,
3254                                 const Value *DstSV, uint64_t DstSVOff) {
3255  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3256
3257  // Expand memset to a series of load/store ops if the size operand
3258  // falls below a certain threshold.
3259  std::vector<MVT> MemOps;
3260  std::string Str;
3261  bool CopyFromStr;
3262  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3263                                Size, Align, Str, CopyFromStr, DAG, TLI))
3264    return SDValue();
3265
3266  SmallVector<SDValue, 8> OutChains;
3267  uint64_t DstOff = 0;
3268
3269  unsigned NumMemOps = MemOps.size();
3270  for (unsigned i = 0; i < NumMemOps; i++) {
3271    MVT VT = MemOps[i];
3272    unsigned VTSize = VT.getSizeInBits() / 8;
3273    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3274    SDValue Store = DAG.getStore(Chain, dl, Value,
3275                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3276                                 DstSV, DstSVOff + DstOff);
3277    OutChains.push_back(Store);
3278    DstOff += VTSize;
3279  }
3280
3281  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3282                     &OutChains[0], OutChains.size());
3283}
3284
3285SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3286                                SDValue Src, SDValue Size,
3287                                unsigned Align, bool AlwaysInline,
3288                                const Value *DstSV, uint64_t DstSVOff,
3289                                const Value *SrcSV, uint64_t SrcSVOff) {
3290
3291  // Check to see if we should lower the memcpy to loads and stores first.
3292  // For cases within the target-specified limits, this is the best choice.
3293  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3294  if (ConstantSize) {
3295    // Memcpy with size zero? Just return the original chain.
3296    if (ConstantSize->isNullValue())
3297      return Chain;
3298
3299    SDValue Result =
3300      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3301                              ConstantSize->getZExtValue(),
3302                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3303    if (Result.getNode())
3304      return Result;
3305  }
3306
3307  // Then check to see if we should lower the memcpy with target-specific
3308  // code. If the target chooses to do this, this is the next best.
3309  SDValue Result =
3310    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3311                                AlwaysInline,
3312                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3313  if (Result.getNode())
3314    return Result;
3315
3316  // If we really need inline code and the target declined to provide it,
3317  // use a (potentially long) sequence of loads and stores.
3318  if (AlwaysInline) {
3319    assert(ConstantSize && "AlwaysInline requires a constant size!");
3320    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3321                                   ConstantSize->getZExtValue(), Align, true,
3322                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3323  }
3324
3325  // Emit a library call.
3326  TargetLowering::ArgListTy Args;
3327  TargetLowering::ArgListEntry Entry;
3328  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3329  Entry.Node = Dst; Args.push_back(Entry);
3330  Entry.Node = Src; Args.push_back(Entry);
3331  Entry.Node = Size; Args.push_back(Entry);
3332  // FIXME: pass in DebugLoc
3333  std::pair<SDValue,SDValue> CallResult =
3334    TLI.LowerCallTo(Chain, Type::VoidTy,
3335                    false, false, false, false, CallingConv::C, false,
3336                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3337                    Args, *this, dl);
3338  return CallResult.second;
3339}
3340
3341SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3342                                 SDValue Src, SDValue Size,
3343                                 unsigned Align,
3344                                 const Value *DstSV, uint64_t DstSVOff,
3345                                 const Value *SrcSV, uint64_t SrcSVOff) {
3346
3347  // Check to see if we should lower the memmove to loads and stores first.
3348  // For cases within the target-specified limits, this is the best choice.
3349  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3350  if (ConstantSize) {
3351    // Memmove with size zero? Just return the original chain.
3352    if (ConstantSize->isNullValue())
3353      return Chain;
3354
3355    SDValue Result =
3356      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3357                               ConstantSize->getZExtValue(),
3358                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3359    if (Result.getNode())
3360      return Result;
3361  }
3362
3363  // Then check to see if we should lower the memmove with target-specific
3364  // code. If the target chooses to do this, this is the next best.
3365  SDValue Result =
3366    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3367                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3368  if (Result.getNode())
3369    return Result;
3370
3371  // Emit a library call.
3372  TargetLowering::ArgListTy Args;
3373  TargetLowering::ArgListEntry Entry;
3374  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3375  Entry.Node = Dst; Args.push_back(Entry);
3376  Entry.Node = Src; Args.push_back(Entry);
3377  Entry.Node = Size; Args.push_back(Entry);
3378  // FIXME:  pass in DebugLoc
3379  std::pair<SDValue,SDValue> CallResult =
3380    TLI.LowerCallTo(Chain, Type::VoidTy,
3381                    false, false, false, false, CallingConv::C, false,
3382                    getExternalSymbol("memmove", TLI.getPointerTy()),
3383                    Args, *this, dl);
3384  return CallResult.second;
3385}
3386
3387SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3388                                SDValue Src, SDValue Size,
3389                                unsigned Align,
3390                                const Value *DstSV, uint64_t DstSVOff) {
3391
3392  // Check to see if we should lower the memset to stores first.
3393  // For cases within the target-specified limits, this is the best choice.
3394  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3395  if (ConstantSize) {
3396    // Memset with size zero? Just return the original chain.
3397    if (ConstantSize->isNullValue())
3398      return Chain;
3399
3400    SDValue Result =
3401      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3402                      Align, DstSV, DstSVOff);
3403    if (Result.getNode())
3404      return Result;
3405  }
3406
3407  // Then check to see if we should lower the memset with target-specific
3408  // code. If the target chooses to do this, this is the next best.
3409  SDValue Result =
3410    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3411                                DstSV, DstSVOff);
3412  if (Result.getNode())
3413    return Result;
3414
3415  // Emit a library call.
3416  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3417  TargetLowering::ArgListTy Args;
3418  TargetLowering::ArgListEntry Entry;
3419  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3420  Args.push_back(Entry);
3421  // Extend or truncate the argument to be an i32 value for the call.
3422  if (Src.getValueType().bitsGT(MVT::i32))
3423    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3424  else
3425    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3426  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3427  Args.push_back(Entry);
3428  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3429  Args.push_back(Entry);
3430  // FIXME: pass in DebugLoc
3431  std::pair<SDValue,SDValue> CallResult =
3432    TLI.LowerCallTo(Chain, Type::VoidTy,
3433                    false, false, false, false, CallingConv::C, false,
3434                    getExternalSymbol("memset", TLI.getPointerTy()),
3435                    Args, *this, dl);
3436  return CallResult.second;
3437}
3438
3439SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3440                                SDValue Chain,
3441                                SDValue Ptr, SDValue Cmp,
3442                                SDValue Swp, const Value* PtrVal,
3443                                unsigned Alignment) {
3444  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3445  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3446
3447  MVT VT = Cmp.getValueType();
3448
3449  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3450    Alignment = getMVTAlignment(MemVT);
3451
3452  SDVTList VTs = getVTList(VT, MVT::Other);
3453  FoldingSetNodeID ID;
3454  ID.AddInteger(MemVT.getRawBits());
3455  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3456  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3457  void* IP = 0;
3458  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3459    return SDValue(E, 0);
3460  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3461  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3462                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3463  CSEMap.InsertNode(N, IP);
3464  AllNodes.push_back(N);
3465  return SDValue(N, 0);
3466}
3467
3468SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3469                                SDValue Chain,
3470                                SDValue Ptr, SDValue Val,
3471                                const Value* PtrVal,
3472                                unsigned Alignment) {
3473  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3474          Opcode == ISD::ATOMIC_LOAD_SUB ||
3475          Opcode == ISD::ATOMIC_LOAD_AND ||
3476          Opcode == ISD::ATOMIC_LOAD_OR ||
3477          Opcode == ISD::ATOMIC_LOAD_XOR ||
3478          Opcode == ISD::ATOMIC_LOAD_NAND ||
3479          Opcode == ISD::ATOMIC_LOAD_MIN ||
3480          Opcode == ISD::ATOMIC_LOAD_MAX ||
3481          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3482          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3483          Opcode == ISD::ATOMIC_SWAP) &&
3484         "Invalid Atomic Op");
3485
3486  MVT VT = Val.getValueType();
3487
3488  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3489    Alignment = getMVTAlignment(MemVT);
3490
3491  SDVTList VTs = getVTList(VT, MVT::Other);
3492  FoldingSetNodeID ID;
3493  ID.AddInteger(MemVT.getRawBits());
3494  SDValue Ops[] = {Chain, Ptr, Val};
3495  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3496  void* IP = 0;
3497  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3498    return SDValue(E, 0);
3499  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3500  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3501                       Chain, Ptr, Val, PtrVal, Alignment);
3502  CSEMap.InsertNode(N, IP);
3503  AllNodes.push_back(N);
3504  return SDValue(N, 0);
3505}
3506
3507/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3508/// Allowed to return something different (and simpler) if Simplify is true.
3509SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3510                                     DebugLoc dl) {
3511  if (NumOps == 1)
3512    return Ops[0];
3513
3514  SmallVector<MVT, 4> VTs;
3515  VTs.reserve(NumOps);
3516  for (unsigned i = 0; i < NumOps; ++i)
3517    VTs.push_back(Ops[i].getValueType());
3518  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3519                 Ops, NumOps);
3520}
3521
3522SDValue
3523SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3524                                  const MVT *VTs, unsigned NumVTs,
3525                                  const SDValue *Ops, unsigned NumOps,
3526                                  MVT MemVT, const Value *srcValue, int SVOff,
3527                                  unsigned Align, bool Vol,
3528                                  bool ReadMem, bool WriteMem) {
3529  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3530                             MemVT, srcValue, SVOff, Align, Vol,
3531                             ReadMem, WriteMem);
3532}
3533
3534SDValue
3535SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3536                                  const SDValue *Ops, unsigned NumOps,
3537                                  MVT MemVT, const Value *srcValue, int SVOff,
3538                                  unsigned Align, bool Vol,
3539                                  bool ReadMem, bool WriteMem) {
3540  // Memoize the node unless it returns a flag.
3541  MemIntrinsicSDNode *N;
3542  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3543    FoldingSetNodeID ID;
3544    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3545    void *IP = 0;
3546    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3547      return SDValue(E, 0);
3548
3549    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3550    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3551                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3552    CSEMap.InsertNode(N, IP);
3553  } else {
3554    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3555    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3556                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3557  }
3558  AllNodes.push_back(N);
3559  return SDValue(N, 0);
3560}
3561
3562SDValue
3563SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3564                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3565                      const SDValue *Operands, unsigned NumOperands) {
3566  // Do not include isTailCall in the folding set profile.
3567  FoldingSetNodeID ID;
3568  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3569  ID.AddInteger(CallingConv);
3570  ID.AddInteger(IsVarArgs);
3571  void *IP = 0;
3572  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3573    // Instead of including isTailCall in the folding set, we just
3574    // set the flag of the existing node.
3575    if (!IsTailCall)
3576      cast<CallSDNode>(E)->setNotTailCall();
3577    return SDValue(E, 0);
3578  }
3579  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3580  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3581                     VTs, Operands, NumOperands);
3582  CSEMap.InsertNode(N, IP);
3583  AllNodes.push_back(N);
3584  return SDValue(N, 0);
3585}
3586
3587SDValue
3588SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3589                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3590                      SDValue Ptr, SDValue Offset,
3591                      const Value *SV, int SVOffset, MVT EVT,
3592                      bool isVolatile, unsigned Alignment) {
3593  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3594    Alignment = getMVTAlignment(VT);
3595
3596  if (VT == EVT) {
3597    ExtType = ISD::NON_EXTLOAD;
3598  } else if (ExtType == ISD::NON_EXTLOAD) {
3599    assert(VT == EVT && "Non-extending load from different memory type!");
3600  } else {
3601    // Extending load.
3602    if (VT.isVector())
3603      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3604             "Invalid vector extload!");
3605    else
3606      assert(EVT.bitsLT(VT) &&
3607             "Should only be an extending load, not truncating!");
3608    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3609           "Cannot sign/zero extend a FP/Vector load!");
3610    assert(VT.isInteger() == EVT.isInteger() &&
3611           "Cannot convert from FP to Int or Int -> FP!");
3612  }
3613
3614  bool Indexed = AM != ISD::UNINDEXED;
3615  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3616         "Unindexed load with an offset!");
3617
3618  SDVTList VTs = Indexed ?
3619    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3620  SDValue Ops[] = { Chain, Ptr, Offset };
3621  FoldingSetNodeID ID;
3622  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3623  ID.AddInteger(EVT.getRawBits());
3624  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3625  void *IP = 0;
3626  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3627    return SDValue(E, 0);
3628  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3629  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3630                     Alignment, isVolatile);
3631  CSEMap.InsertNode(N, IP);
3632  AllNodes.push_back(N);
3633  return SDValue(N, 0);
3634}
3635
3636SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3637                              SDValue Chain, SDValue Ptr,
3638                              const Value *SV, int SVOffset,
3639                              bool isVolatile, unsigned Alignment) {
3640  SDValue Undef = getUNDEF(Ptr.getValueType());
3641  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3642                 SV, SVOffset, VT, isVolatile, Alignment);
3643}
3644
3645SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3646                                 SDValue Chain, SDValue Ptr,
3647                                 const Value *SV,
3648                                 int SVOffset, MVT EVT,
3649                                 bool isVolatile, unsigned Alignment) {
3650  SDValue Undef = getUNDEF(Ptr.getValueType());
3651  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3652                 SV, SVOffset, EVT, isVolatile, Alignment);
3653}
3654
3655SDValue
3656SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3657                             SDValue Offset, ISD::MemIndexedMode AM) {
3658  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3659  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3660         "Load is already a indexed load!");
3661  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3662                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3663                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3664                 LD->isVolatile(), LD->getAlignment());
3665}
3666
3667SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3668                               SDValue Ptr, const Value *SV, int SVOffset,
3669                               bool isVolatile, unsigned Alignment) {
3670  MVT VT = Val.getValueType();
3671
3672  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3673    Alignment = getMVTAlignment(VT);
3674
3675  SDVTList VTs = getVTList(MVT::Other);
3676  SDValue Undef = getUNDEF(Ptr.getValueType());
3677  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3678  FoldingSetNodeID ID;
3679  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3680  ID.AddInteger(VT.getRawBits());
3681  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3682                                     isVolatile, Alignment));
3683  void *IP = 0;
3684  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3685    return SDValue(E, 0);
3686  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3687  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3688                      VT, SV, SVOffset, Alignment, isVolatile);
3689  CSEMap.InsertNode(N, IP);
3690  AllNodes.push_back(N);
3691  return SDValue(N, 0);
3692}
3693
3694SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3695                                    SDValue Ptr, const Value *SV,
3696                                    int SVOffset, MVT SVT,
3697                                    bool isVolatile, unsigned Alignment) {
3698  MVT VT = Val.getValueType();
3699
3700  if (VT == SVT)
3701    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3702
3703  assert(VT.bitsGT(SVT) && "Not a truncation?");
3704  assert(VT.isInteger() == SVT.isInteger() &&
3705         "Can't do FP-INT conversion!");
3706
3707  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3708    Alignment = getMVTAlignment(VT);
3709
3710  SDVTList VTs = getVTList(MVT::Other);
3711  SDValue Undef = getUNDEF(Ptr.getValueType());
3712  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3713  FoldingSetNodeID ID;
3714  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3715  ID.AddInteger(SVT.getRawBits());
3716  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3717                                     isVolatile, Alignment));
3718  void *IP = 0;
3719  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3720    return SDValue(E, 0);
3721  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3722  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3723                      SVT, SV, SVOffset, Alignment, isVolatile);
3724  CSEMap.InsertNode(N, IP);
3725  AllNodes.push_back(N);
3726  return SDValue(N, 0);
3727}
3728
3729SDValue
3730SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3731                              SDValue Offset, ISD::MemIndexedMode AM) {
3732  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3733  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3734         "Store is already a indexed store!");
3735  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3736  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3737  FoldingSetNodeID ID;
3738  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3739  ID.AddInteger(ST->getMemoryVT().getRawBits());
3740  ID.AddInteger(ST->getRawSubclassData());
3741  void *IP = 0;
3742  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3743    return SDValue(E, 0);
3744  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3745  new (N) StoreSDNode(Ops, dl, VTs, AM,
3746                      ST->isTruncatingStore(), ST->getMemoryVT(),
3747                      ST->getSrcValue(), ST->getSrcValueOffset(),
3748                      ST->getAlignment(), ST->isVolatile());
3749  CSEMap.InsertNode(N, IP);
3750  AllNodes.push_back(N);
3751  return SDValue(N, 0);
3752}
3753
3754SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3755                               SDValue Chain, SDValue Ptr,
3756                               SDValue SV) {
3757  SDValue Ops[] = { Chain, Ptr, SV };
3758  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3759}
3760
3761SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3762                              const SDUse *Ops, unsigned NumOps) {
3763  switch (NumOps) {
3764  case 0: return getNode(Opcode, DL, VT);
3765  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3766  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3767  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3768  default: break;
3769  }
3770
3771  // Copy from an SDUse array into an SDValue array for use with
3772  // the regular getNode logic.
3773  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3774  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3775}
3776
3777SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3778                              const SDValue *Ops, unsigned NumOps) {
3779  switch (NumOps) {
3780  case 0: return getNode(Opcode, DL, VT);
3781  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3782  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3783  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3784  default: break;
3785  }
3786
3787  switch (Opcode) {
3788  default: break;
3789  case ISD::SELECT_CC: {
3790    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3791    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3792           "LHS and RHS of condition must have same type!");
3793    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3794           "True and False arms of SelectCC must have same type!");
3795    assert(Ops[2].getValueType() == VT &&
3796           "select_cc node must be of same type as true and false value!");
3797    break;
3798  }
3799  case ISD::BR_CC: {
3800    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3801    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3802           "LHS/RHS of comparison should match types!");
3803    break;
3804  }
3805  }
3806
3807  // Memoize nodes.
3808  SDNode *N;
3809  SDVTList VTs = getVTList(VT);
3810
3811  if (VT != MVT::Flag) {
3812    FoldingSetNodeID ID;
3813    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3814    void *IP = 0;
3815
3816    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3817      return SDValue(E, 0);
3818
3819    N = NodeAllocator.Allocate<SDNode>();
3820    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3821    CSEMap.InsertNode(N, IP);
3822  } else {
3823    N = NodeAllocator.Allocate<SDNode>();
3824    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3825  }
3826
3827  AllNodes.push_back(N);
3828#ifndef NDEBUG
3829  VerifyNode(N);
3830#endif
3831  return SDValue(N, 0);
3832}
3833
3834SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3835                              const std::vector<MVT> &ResultTys,
3836                              const SDValue *Ops, unsigned NumOps) {
3837  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
3838                 Ops, NumOps);
3839}
3840
3841SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3842                              const MVT *VTs, unsigned NumVTs,
3843                              const SDValue *Ops, unsigned NumOps) {
3844  if (NumVTs == 1)
3845    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3846  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3847}
3848
3849SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3850                              const SDValue *Ops, unsigned NumOps) {
3851  if (VTList.NumVTs == 1)
3852    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3853
3854  switch (Opcode) {
3855  // FIXME: figure out how to safely handle things like
3856  // int foo(int x) { return 1 << (x & 255); }
3857  // int bar() { return foo(256); }
3858#if 0
3859  case ISD::SRA_PARTS:
3860  case ISD::SRL_PARTS:
3861  case ISD::SHL_PARTS:
3862    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3863        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3864      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3865    else if (N3.getOpcode() == ISD::AND)
3866      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3867        // If the and is only masking out bits that cannot effect the shift,
3868        // eliminate the and.
3869        unsigned NumBits = VT.getSizeInBits()*2;
3870        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3871          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3872      }
3873    break;
3874#endif
3875  }
3876
3877  // Memoize the node unless it returns a flag.
3878  SDNode *N;
3879  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3880    FoldingSetNodeID ID;
3881    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3882    void *IP = 0;
3883    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3884      return SDValue(E, 0);
3885    if (NumOps == 1) {
3886      N = NodeAllocator.Allocate<UnarySDNode>();
3887      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3888    } else if (NumOps == 2) {
3889      N = NodeAllocator.Allocate<BinarySDNode>();
3890      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3891    } else if (NumOps == 3) {
3892      N = NodeAllocator.Allocate<TernarySDNode>();
3893      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3894    } else {
3895      N = NodeAllocator.Allocate<SDNode>();
3896      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3897    }
3898    CSEMap.InsertNode(N, IP);
3899  } else {
3900    if (NumOps == 1) {
3901      N = NodeAllocator.Allocate<UnarySDNode>();
3902      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3903    } else if (NumOps == 2) {
3904      N = NodeAllocator.Allocate<BinarySDNode>();
3905      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3906    } else if (NumOps == 3) {
3907      N = NodeAllocator.Allocate<TernarySDNode>();
3908      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3909    } else {
3910      N = NodeAllocator.Allocate<SDNode>();
3911      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3912    }
3913  }
3914  AllNodes.push_back(N);
3915#ifndef NDEBUG
3916  VerifyNode(N);
3917#endif
3918  return SDValue(N, 0);
3919}
3920
3921SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3922  return getNode(Opcode, DL, VTList, 0, 0);
3923}
3924
3925SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3926                              SDValue N1) {
3927  SDValue Ops[] = { N1 };
3928  return getNode(Opcode, DL, VTList, Ops, 1);
3929}
3930
3931SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3932                              SDValue N1, SDValue N2) {
3933  SDValue Ops[] = { N1, N2 };
3934  return getNode(Opcode, DL, VTList, Ops, 2);
3935}
3936
3937SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3938                              SDValue N1, SDValue N2, SDValue N3) {
3939  SDValue Ops[] = { N1, N2, N3 };
3940  return getNode(Opcode, DL, VTList, Ops, 3);
3941}
3942
3943SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3944                              SDValue N1, SDValue N2, SDValue N3,
3945                              SDValue N4) {
3946  SDValue Ops[] = { N1, N2, N3, N4 };
3947  return getNode(Opcode, DL, VTList, Ops, 4);
3948}
3949
3950SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3951                              SDValue N1, SDValue N2, SDValue N3,
3952                              SDValue N4, SDValue N5) {
3953  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3954  return getNode(Opcode, DL, VTList, Ops, 5);
3955}
3956
3957SDVTList SelectionDAG::getVTList(MVT VT) {
3958  return makeVTList(SDNode::getValueTypeList(VT), 1);
3959}
3960
3961SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3962  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3963       E = VTList.rend(); I != E; ++I)
3964    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3965      return *I;
3966
3967  MVT *Array = Allocator.Allocate<MVT>(2);
3968  Array[0] = VT1;
3969  Array[1] = VT2;
3970  SDVTList Result = makeVTList(Array, 2);
3971  VTList.push_back(Result);
3972  return Result;
3973}
3974
3975SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3976  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3977       E = VTList.rend(); I != E; ++I)
3978    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3979                          I->VTs[2] == VT3)
3980      return *I;
3981
3982  MVT *Array = Allocator.Allocate<MVT>(3);
3983  Array[0] = VT1;
3984  Array[1] = VT2;
3985  Array[2] = VT3;
3986  SDVTList Result = makeVTList(Array, 3);
3987  VTList.push_back(Result);
3988  return Result;
3989}
3990
3991SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3992  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3993       E = VTList.rend(); I != E; ++I)
3994    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3995                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3996      return *I;
3997
3998  MVT *Array = Allocator.Allocate<MVT>(3);
3999  Array[0] = VT1;
4000  Array[1] = VT2;
4001  Array[2] = VT3;
4002  Array[3] = VT4;
4003  SDVTList Result = makeVTList(Array, 4);
4004  VTList.push_back(Result);
4005  return Result;
4006}
4007
4008SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
4009  switch (NumVTs) {
4010    case 0: assert(0 && "Cannot have nodes without results!");
4011    case 1: return getVTList(VTs[0]);
4012    case 2: return getVTList(VTs[0], VTs[1]);
4013    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4014    default: break;
4015  }
4016
4017  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4018       E = VTList.rend(); I != E; ++I) {
4019    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4020      continue;
4021
4022    bool NoMatch = false;
4023    for (unsigned i = 2; i != NumVTs; ++i)
4024      if (VTs[i] != I->VTs[i]) {
4025        NoMatch = true;
4026        break;
4027      }
4028    if (!NoMatch)
4029      return *I;
4030  }
4031
4032  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
4033  std::copy(VTs, VTs+NumVTs, Array);
4034  SDVTList Result = makeVTList(Array, NumVTs);
4035  VTList.push_back(Result);
4036  return Result;
4037}
4038
4039
4040/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4041/// specified operands.  If the resultant node already exists in the DAG,
4042/// this does not modify the specified node, instead it returns the node that
4043/// already exists.  If the resultant node does not exist in the DAG, the
4044/// input node is returned.  As a degenerate case, if you specify the same
4045/// input operands as the node already has, the input node is returned.
4046SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4047  SDNode *N = InN.getNode();
4048  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4049
4050  // Check to see if there is no change.
4051  if (Op == N->getOperand(0)) return InN;
4052
4053  // See if the modified node already exists.
4054  void *InsertPos = 0;
4055  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4056    return SDValue(Existing, InN.getResNo());
4057
4058  // Nope it doesn't.  Remove the node from its current place in the maps.
4059  if (InsertPos)
4060    if (!RemoveNodeFromCSEMaps(N))
4061      InsertPos = 0;
4062
4063  // Now we update the operands.
4064  N->OperandList[0].set(Op);
4065
4066  // If this gets put into a CSE map, add it.
4067  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4068  return InN;
4069}
4070
4071SDValue SelectionDAG::
4072UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4073  SDNode *N = InN.getNode();
4074  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4075
4076  // Check to see if there is no change.
4077  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4078    return InN;   // No operands changed, just return the input node.
4079
4080  // See if the modified node already exists.
4081  void *InsertPos = 0;
4082  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4083    return SDValue(Existing, InN.getResNo());
4084
4085  // Nope it doesn't.  Remove the node from its current place in the maps.
4086  if (InsertPos)
4087    if (!RemoveNodeFromCSEMaps(N))
4088      InsertPos = 0;
4089
4090  // Now we update the operands.
4091  if (N->OperandList[0] != Op1)
4092    N->OperandList[0].set(Op1);
4093  if (N->OperandList[1] != Op2)
4094    N->OperandList[1].set(Op2);
4095
4096  // If this gets put into a CSE map, add it.
4097  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4098  return InN;
4099}
4100
4101SDValue SelectionDAG::
4102UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4103  SDValue Ops[] = { Op1, Op2, Op3 };
4104  return UpdateNodeOperands(N, Ops, 3);
4105}
4106
4107SDValue SelectionDAG::
4108UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4109                   SDValue Op3, SDValue Op4) {
4110  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4111  return UpdateNodeOperands(N, Ops, 4);
4112}
4113
4114SDValue SelectionDAG::
4115UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4116                   SDValue Op3, SDValue Op4, SDValue Op5) {
4117  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4118  return UpdateNodeOperands(N, Ops, 5);
4119}
4120
4121SDValue SelectionDAG::
4122UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4123  SDNode *N = InN.getNode();
4124  assert(N->getNumOperands() == NumOps &&
4125         "Update with wrong number of operands");
4126
4127  // Check to see if there is no change.
4128  bool AnyChange = false;
4129  for (unsigned i = 0; i != NumOps; ++i) {
4130    if (Ops[i] != N->getOperand(i)) {
4131      AnyChange = true;
4132      break;
4133    }
4134  }
4135
4136  // No operands changed, just return the input node.
4137  if (!AnyChange) return InN;
4138
4139  // See if the modified node already exists.
4140  void *InsertPos = 0;
4141  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4142    return SDValue(Existing, InN.getResNo());
4143
4144  // Nope it doesn't.  Remove the node from its current place in the maps.
4145  if (InsertPos)
4146    if (!RemoveNodeFromCSEMaps(N))
4147      InsertPos = 0;
4148
4149  // Now we update the operands.
4150  for (unsigned i = 0; i != NumOps; ++i)
4151    if (N->OperandList[i] != Ops[i])
4152      N->OperandList[i].set(Ops[i]);
4153
4154  // If this gets put into a CSE map, add it.
4155  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4156  return InN;
4157}
4158
4159/// DropOperands - Release the operands and set this node to have
4160/// zero operands.
4161void SDNode::DropOperands() {
4162  // Unlike the code in MorphNodeTo that does this, we don't need to
4163  // watch for dead nodes here.
4164  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4165    SDUse &Use = *I++;
4166    Use.set(SDValue());
4167  }
4168}
4169
4170/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4171/// machine opcode.
4172///
4173SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4174                                   MVT VT) {
4175  SDVTList VTs = getVTList(VT);
4176  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4177}
4178
4179SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4180                                   MVT VT, SDValue Op1) {
4181  SDVTList VTs = getVTList(VT);
4182  SDValue Ops[] = { Op1 };
4183  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4184}
4185
4186SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4187                                   MVT VT, SDValue Op1,
4188                                   SDValue Op2) {
4189  SDVTList VTs = getVTList(VT);
4190  SDValue Ops[] = { Op1, Op2 };
4191  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4192}
4193
4194SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4195                                   MVT VT, SDValue Op1,
4196                                   SDValue Op2, SDValue Op3) {
4197  SDVTList VTs = getVTList(VT);
4198  SDValue Ops[] = { Op1, Op2, Op3 };
4199  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4200}
4201
4202SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4203                                   MVT VT, const SDValue *Ops,
4204                                   unsigned NumOps) {
4205  SDVTList VTs = getVTList(VT);
4206  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4207}
4208
4209SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4210                                   MVT VT1, MVT VT2, const SDValue *Ops,
4211                                   unsigned NumOps) {
4212  SDVTList VTs = getVTList(VT1, VT2);
4213  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4214}
4215
4216SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4217                                   MVT VT1, MVT VT2) {
4218  SDVTList VTs = getVTList(VT1, VT2);
4219  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4220}
4221
4222SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4223                                   MVT VT1, MVT VT2, MVT VT3,
4224                                   const SDValue *Ops, unsigned NumOps) {
4225  SDVTList VTs = getVTList(VT1, VT2, VT3);
4226  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4227}
4228
4229SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4230                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4231                                   const SDValue *Ops, unsigned NumOps) {
4232  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4233  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4234}
4235
4236SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4237                                   MVT VT1, MVT VT2,
4238                                   SDValue Op1) {
4239  SDVTList VTs = getVTList(VT1, VT2);
4240  SDValue Ops[] = { Op1 };
4241  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4242}
4243
4244SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4245                                   MVT VT1, MVT VT2,
4246                                   SDValue Op1, SDValue Op2) {
4247  SDVTList VTs = getVTList(VT1, VT2);
4248  SDValue Ops[] = { Op1, Op2 };
4249  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4250}
4251
4252SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4253                                   MVT VT1, MVT VT2,
4254                                   SDValue Op1, SDValue Op2,
4255                                   SDValue Op3) {
4256  SDVTList VTs = getVTList(VT1, VT2);
4257  SDValue Ops[] = { Op1, Op2, Op3 };
4258  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4259}
4260
4261SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4262                                   MVT VT1, MVT VT2, MVT VT3,
4263                                   SDValue Op1, SDValue Op2,
4264                                   SDValue Op3) {
4265  SDVTList VTs = getVTList(VT1, VT2, VT3);
4266  SDValue Ops[] = { Op1, Op2, Op3 };
4267  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4268}
4269
4270SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4271                                   SDVTList VTs, const SDValue *Ops,
4272                                   unsigned NumOps) {
4273  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4274}
4275
4276SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4277                                  MVT VT) {
4278  SDVTList VTs = getVTList(VT);
4279  return MorphNodeTo(N, Opc, VTs, 0, 0);
4280}
4281
4282SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4283                                  MVT VT, SDValue Op1) {
4284  SDVTList VTs = getVTList(VT);
4285  SDValue Ops[] = { Op1 };
4286  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4287}
4288
4289SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4290                                  MVT VT, SDValue Op1,
4291                                  SDValue Op2) {
4292  SDVTList VTs = getVTList(VT);
4293  SDValue Ops[] = { Op1, Op2 };
4294  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4295}
4296
4297SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4298                                  MVT VT, SDValue Op1,
4299                                  SDValue Op2, SDValue Op3) {
4300  SDVTList VTs = getVTList(VT);
4301  SDValue Ops[] = { Op1, Op2, Op3 };
4302  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4303}
4304
4305SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4306                                  MVT VT, const SDValue *Ops,
4307                                  unsigned NumOps) {
4308  SDVTList VTs = getVTList(VT);
4309  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4310}
4311
4312SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4313                                  MVT VT1, MVT VT2, const SDValue *Ops,
4314                                  unsigned NumOps) {
4315  SDVTList VTs = getVTList(VT1, VT2);
4316  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4317}
4318
4319SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4320                                  MVT VT1, MVT VT2) {
4321  SDVTList VTs = getVTList(VT1, VT2);
4322  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4323}
4324
4325SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4326                                  MVT VT1, MVT VT2, MVT VT3,
4327                                  const SDValue *Ops, unsigned NumOps) {
4328  SDVTList VTs = getVTList(VT1, VT2, VT3);
4329  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4330}
4331
4332SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4333                                  MVT VT1, MVT VT2,
4334                                  SDValue Op1) {
4335  SDVTList VTs = getVTList(VT1, VT2);
4336  SDValue Ops[] = { Op1 };
4337  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4338}
4339
4340SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4341                                  MVT VT1, MVT VT2,
4342                                  SDValue Op1, SDValue Op2) {
4343  SDVTList VTs = getVTList(VT1, VT2);
4344  SDValue Ops[] = { Op1, Op2 };
4345  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4346}
4347
4348SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4349                                  MVT VT1, MVT VT2,
4350                                  SDValue Op1, SDValue Op2,
4351                                  SDValue Op3) {
4352  SDVTList VTs = getVTList(VT1, VT2);
4353  SDValue Ops[] = { Op1, Op2, Op3 };
4354  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4355}
4356
4357/// MorphNodeTo - These *mutate* the specified node to have the specified
4358/// return type, opcode, and operands.
4359///
4360/// Note that MorphNodeTo returns the resultant node.  If there is already a
4361/// node of the specified opcode and operands, it returns that node instead of
4362/// the current one.  Note that the DebugLoc need not be the same.
4363///
4364/// Using MorphNodeTo is faster than creating a new node and swapping it in
4365/// with ReplaceAllUsesWith both because it often avoids allocating a new
4366/// node, and because it doesn't require CSE recalculation for any of
4367/// the node's users.
4368///
4369SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4370                                  SDVTList VTs, const SDValue *Ops,
4371                                  unsigned NumOps) {
4372  // If an identical node already exists, use it.
4373  void *IP = 0;
4374  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4375    FoldingSetNodeID ID;
4376    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4377    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4378      return ON;
4379  }
4380
4381  if (!RemoveNodeFromCSEMaps(N))
4382    IP = 0;
4383
4384  // Start the morphing.
4385  N->NodeType = Opc;
4386  N->ValueList = VTs.VTs;
4387  N->NumValues = VTs.NumVTs;
4388
4389  // Clear the operands list, updating used nodes to remove this from their
4390  // use list.  Keep track of any operands that become dead as a result.
4391  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4392  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4393    SDUse &Use = *I++;
4394    SDNode *Used = Use.getNode();
4395    Use.set(SDValue());
4396    if (Used->use_empty())
4397      DeadNodeSet.insert(Used);
4398  }
4399
4400  // If NumOps is larger than the # of operands we currently have, reallocate
4401  // the operand list.
4402  if (NumOps > N->NumOperands) {
4403    if (N->OperandsNeedDelete)
4404      delete[] N->OperandList;
4405
4406    if (N->isMachineOpcode()) {
4407      // We're creating a final node that will live unmorphed for the
4408      // remainder of the current SelectionDAG iteration, so we can allocate
4409      // the operands directly out of a pool with no recycling metadata.
4410      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4411      N->OperandsNeedDelete = false;
4412    } else {
4413      N->OperandList = new SDUse[NumOps];
4414      N->OperandsNeedDelete = true;
4415    }
4416  }
4417
4418  // Assign the new operands.
4419  N->NumOperands = NumOps;
4420  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4421    N->OperandList[i].setUser(N);
4422    N->OperandList[i].setInitial(Ops[i]);
4423  }
4424
4425  // Delete any nodes that are still dead after adding the uses for the
4426  // new operands.
4427  SmallVector<SDNode *, 16> DeadNodes;
4428  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4429       E = DeadNodeSet.end(); I != E; ++I)
4430    if ((*I)->use_empty())
4431      DeadNodes.push_back(*I);
4432  RemoveDeadNodes(DeadNodes);
4433
4434  if (IP)
4435    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4436  return N;
4437}
4438
4439
4440/// getTargetNode - These are used for target selectors to create a new node
4441/// with specified return type(s), target opcode, and operands.
4442///
4443/// Note that getTargetNode returns the resultant node.  If there is already a
4444/// node of the specified opcode and operands, it returns that node instead of
4445/// the current one.
4446SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4447  return getNode(~Opcode, dl, VT).getNode();
4448}
4449
4450SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4451                                    SDValue Op1) {
4452  return getNode(~Opcode, dl, VT, Op1).getNode();
4453}
4454
4455SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4456                                    SDValue Op1, SDValue Op2) {
4457  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4458}
4459
4460SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4461                                    SDValue Op1, SDValue Op2,
4462                                    SDValue Op3) {
4463  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4464}
4465
4466SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4467                                    const SDValue *Ops, unsigned NumOps) {
4468  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4469}
4470
4471SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4472                                    MVT VT1, MVT VT2) {
4473  SDVTList VTs = getVTList(VT1, VT2);
4474  SDValue Op;
4475  return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
4476}
4477
4478SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4479                                    MVT VT2, SDValue Op1) {
4480  SDVTList VTs = getVTList(VT1, VT2);
4481  return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
4482}
4483
4484SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4485                                    MVT VT2, SDValue Op1,
4486                                    SDValue Op2) {
4487  SDVTList VTs = getVTList(VT1, VT2);
4488  SDValue Ops[] = { Op1, Op2 };
4489  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4490}
4491
4492SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4493                                    MVT VT2, SDValue Op1,
4494                                    SDValue Op2, SDValue Op3) {
4495  SDVTList VTs = getVTList(VT1, VT2);
4496  SDValue Ops[] = { Op1, Op2, Op3 };
4497  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4498}
4499
4500SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4501                                    MVT VT1, MVT VT2,
4502                                    const SDValue *Ops, unsigned NumOps) {
4503  SDVTList VTs = getVTList(VT1, VT2);
4504  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4505}
4506
4507SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4508                                    MVT VT1, MVT VT2, MVT VT3,
4509                                    SDValue Op1, SDValue Op2) {
4510  SDVTList VTs = getVTList(VT1, VT2, VT3);
4511  SDValue Ops[] = { Op1, Op2 };
4512  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4513}
4514
4515SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4516                                    MVT VT1, MVT VT2, MVT VT3,
4517                                    SDValue Op1, SDValue Op2,
4518                                    SDValue Op3) {
4519  SDVTList VTs = getVTList(VT1, VT2, VT3);
4520  SDValue Ops[] = { Op1, Op2, Op3 };
4521  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4522}
4523
4524SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4525                                    MVT VT1, MVT VT2, MVT VT3,
4526                                    const SDValue *Ops, unsigned NumOps) {
4527  SDVTList VTs = getVTList(VT1, VT2, VT3);
4528  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4529}
4530
4531SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4532                                    MVT VT2, MVT VT3, MVT VT4,
4533                                    const SDValue *Ops, unsigned NumOps) {
4534  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4535  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4536}
4537
4538SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4539                                    const std::vector<MVT> &ResultTys,
4540                                    const SDValue *Ops, unsigned NumOps) {
4541  return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
4542}
4543
4544/// getNodeIfExists - Get the specified node if it's already available, or
4545/// else return NULL.
4546SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4547                                      const SDValue *Ops, unsigned NumOps) {
4548  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4549    FoldingSetNodeID ID;
4550    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4551    void *IP = 0;
4552    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4553      return E;
4554  }
4555  return NULL;
4556}
4557
4558/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4559/// This can cause recursive merging of nodes in the DAG.
4560///
4561/// This version assumes From has a single result value.
4562///
4563void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4564                                      DAGUpdateListener *UpdateListener) {
4565  SDNode *From = FromN.getNode();
4566  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4567         "Cannot replace with this method!");
4568  assert(From != To.getNode() && "Cannot replace uses of with self");
4569
4570  // Iterate over all the existing uses of From. New uses will be added
4571  // to the beginning of the use list, which we avoid visiting.
4572  // This specifically avoids visiting uses of From that arise while the
4573  // replacement is happening, because any such uses would be the result
4574  // of CSE: If an existing node looks like From after one of its operands
4575  // is replaced by To, we don't want to replace of all its users with To
4576  // too. See PR3018 for more info.
4577  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4578  while (UI != UE) {
4579    SDNode *User = *UI;
4580
4581    // This node is about to morph, remove its old self from the CSE maps.
4582    RemoveNodeFromCSEMaps(User);
4583
4584    // A user can appear in a use list multiple times, and when this
4585    // happens the uses are usually next to each other in the list.
4586    // To help reduce the number of CSE recomputations, process all
4587    // the uses of this user that we can find this way.
4588    do {
4589      SDUse &Use = UI.getUse();
4590      ++UI;
4591      Use.set(To);
4592    } while (UI != UE && *UI == User);
4593
4594    // Now that we have modified User, add it back to the CSE maps.  If it
4595    // already exists there, recursively merge the results together.
4596    AddModifiedNodeToCSEMaps(User, UpdateListener);
4597  }
4598}
4599
4600/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4601/// This can cause recursive merging of nodes in the DAG.
4602///
4603/// This version assumes that for each value of From, there is a
4604/// corresponding value in To in the same position with the same type.
4605///
4606void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4607                                      DAGUpdateListener *UpdateListener) {
4608#ifndef NDEBUG
4609  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4610    assert((!From->hasAnyUseOfValue(i) ||
4611            From->getValueType(i) == To->getValueType(i)) &&
4612           "Cannot use this version of ReplaceAllUsesWith!");
4613#endif
4614
4615  // Handle the trivial case.
4616  if (From == To)
4617    return;
4618
4619  // Iterate over just the existing users of From. See the comments in
4620  // the ReplaceAllUsesWith above.
4621  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4622  while (UI != UE) {
4623    SDNode *User = *UI;
4624
4625    // This node is about to morph, remove its old self from the CSE maps.
4626    RemoveNodeFromCSEMaps(User);
4627
4628    // A user can appear in a use list multiple times, and when this
4629    // happens the uses are usually next to each other in the list.
4630    // To help reduce the number of CSE recomputations, process all
4631    // the uses of this user that we can find this way.
4632    do {
4633      SDUse &Use = UI.getUse();
4634      ++UI;
4635      Use.setNode(To);
4636    } while (UI != UE && *UI == User);
4637
4638    // Now that we have modified User, add it back to the CSE maps.  If it
4639    // already exists there, recursively merge the results together.
4640    AddModifiedNodeToCSEMaps(User, UpdateListener);
4641  }
4642}
4643
4644/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4645/// This can cause recursive merging of nodes in the DAG.
4646///
4647/// This version can replace From with any result values.  To must match the
4648/// number and types of values returned by From.
4649void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4650                                      const SDValue *To,
4651                                      DAGUpdateListener *UpdateListener) {
4652  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4653    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4654
4655  // Iterate over just the existing users of From. See the comments in
4656  // the ReplaceAllUsesWith above.
4657  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4658  while (UI != UE) {
4659    SDNode *User = *UI;
4660
4661    // This node is about to morph, remove its old self from the CSE maps.
4662    RemoveNodeFromCSEMaps(User);
4663
4664    // A user can appear in a use list multiple times, and when this
4665    // happens the uses are usually next to each other in the list.
4666    // To help reduce the number of CSE recomputations, process all
4667    // the uses of this user that we can find this way.
4668    do {
4669      SDUse &Use = UI.getUse();
4670      const SDValue &ToOp = To[Use.getResNo()];
4671      ++UI;
4672      Use.set(ToOp);
4673    } while (UI != UE && *UI == User);
4674
4675    // Now that we have modified User, add it back to the CSE maps.  If it
4676    // already exists there, recursively merge the results together.
4677    AddModifiedNodeToCSEMaps(User, UpdateListener);
4678  }
4679}
4680
4681/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4682/// uses of other values produced by From.getNode() alone.  The Deleted
4683/// vector is handled the same way as for ReplaceAllUsesWith.
4684void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4685                                             DAGUpdateListener *UpdateListener){
4686  // Handle the really simple, really trivial case efficiently.
4687  if (From == To) return;
4688
4689  // Handle the simple, trivial, case efficiently.
4690  if (From.getNode()->getNumValues() == 1) {
4691    ReplaceAllUsesWith(From, To, UpdateListener);
4692    return;
4693  }
4694
4695  // Iterate over just the existing users of From. See the comments in
4696  // the ReplaceAllUsesWith above.
4697  SDNode::use_iterator UI = From.getNode()->use_begin(),
4698                       UE = From.getNode()->use_end();
4699  while (UI != UE) {
4700    SDNode *User = *UI;
4701    bool UserRemovedFromCSEMaps = false;
4702
4703    // A user can appear in a use list multiple times, and when this
4704    // happens the uses are usually next to each other in the list.
4705    // To help reduce the number of CSE recomputations, process all
4706    // the uses of this user that we can find this way.
4707    do {
4708      SDUse &Use = UI.getUse();
4709
4710      // Skip uses of different values from the same node.
4711      if (Use.getResNo() != From.getResNo()) {
4712        ++UI;
4713        continue;
4714      }
4715
4716      // If this node hasn't been modified yet, it's still in the CSE maps,
4717      // so remove its old self from the CSE maps.
4718      if (!UserRemovedFromCSEMaps) {
4719        RemoveNodeFromCSEMaps(User);
4720        UserRemovedFromCSEMaps = true;
4721      }
4722
4723      ++UI;
4724      Use.set(To);
4725    } while (UI != UE && *UI == User);
4726
4727    // We are iterating over all uses of the From node, so if a use
4728    // doesn't use the specific value, no changes are made.
4729    if (!UserRemovedFromCSEMaps)
4730      continue;
4731
4732    // Now that we have modified User, add it back to the CSE maps.  If it
4733    // already exists there, recursively merge the results together.
4734    AddModifiedNodeToCSEMaps(User, UpdateListener);
4735  }
4736}
4737
4738namespace {
4739  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4740  /// to record information about a use.
4741  struct UseMemo {
4742    SDNode *User;
4743    unsigned Index;
4744    SDUse *Use;
4745  };
4746
4747  /// operator< - Sort Memos by User.
4748  bool operator<(const UseMemo &L, const UseMemo &R) {
4749    return (intptr_t)L.User < (intptr_t)R.User;
4750  }
4751}
4752
4753/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4754/// uses of other values produced by From.getNode() alone.  The same value
4755/// may appear in both the From and To list.  The Deleted vector is
4756/// handled the same way as for ReplaceAllUsesWith.
4757void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4758                                              const SDValue *To,
4759                                              unsigned Num,
4760                                              DAGUpdateListener *UpdateListener){
4761  // Handle the simple, trivial case efficiently.
4762  if (Num == 1)
4763    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4764
4765  // Read up all the uses and make records of them. This helps
4766  // processing new uses that are introduced during the
4767  // replacement process.
4768  SmallVector<UseMemo, 4> Uses;
4769  for (unsigned i = 0; i != Num; ++i) {
4770    unsigned FromResNo = From[i].getResNo();
4771    SDNode *FromNode = From[i].getNode();
4772    for (SDNode::use_iterator UI = FromNode->use_begin(),
4773         E = FromNode->use_end(); UI != E; ++UI) {
4774      SDUse &Use = UI.getUse();
4775      if (Use.getResNo() == FromResNo) {
4776        UseMemo Memo = { *UI, i, &Use };
4777        Uses.push_back(Memo);
4778      }
4779    }
4780  }
4781
4782  // Sort the uses, so that all the uses from a given User are together.
4783  std::sort(Uses.begin(), Uses.end());
4784
4785  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4786       UseIndex != UseIndexEnd; ) {
4787    // We know that this user uses some value of From.  If it is the right
4788    // value, update it.
4789    SDNode *User = Uses[UseIndex].User;
4790
4791    // This node is about to morph, remove its old self from the CSE maps.
4792    RemoveNodeFromCSEMaps(User);
4793
4794    // The Uses array is sorted, so all the uses for a given User
4795    // are next to each other in the list.
4796    // To help reduce the number of CSE recomputations, process all
4797    // the uses of this user that we can find this way.
4798    do {
4799      unsigned i = Uses[UseIndex].Index;
4800      SDUse &Use = *Uses[UseIndex].Use;
4801      ++UseIndex;
4802
4803      Use.set(To[i]);
4804    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4805
4806    // Now that we have modified User, add it back to the CSE maps.  If it
4807    // already exists there, recursively merge the results together.
4808    AddModifiedNodeToCSEMaps(User, UpdateListener);
4809  }
4810}
4811
4812/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4813/// based on their topological order. It returns the maximum id and a vector
4814/// of the SDNodes* in assigned order by reference.
4815unsigned SelectionDAG::AssignTopologicalOrder() {
4816
4817  unsigned DAGSize = 0;
4818
4819  // SortedPos tracks the progress of the algorithm. Nodes before it are
4820  // sorted, nodes after it are unsorted. When the algorithm completes
4821  // it is at the end of the list.
4822  allnodes_iterator SortedPos = allnodes_begin();
4823
4824  // Visit all the nodes. Move nodes with no operands to the front of
4825  // the list immediately. Annotate nodes that do have operands with their
4826  // operand count. Before we do this, the Node Id fields of the nodes
4827  // may contain arbitrary values. After, the Node Id fields for nodes
4828  // before SortedPos will contain the topological sort index, and the
4829  // Node Id fields for nodes At SortedPos and after will contain the
4830  // count of outstanding operands.
4831  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4832    SDNode *N = I++;
4833    unsigned Degree = N->getNumOperands();
4834    if (Degree == 0) {
4835      // A node with no uses, add it to the result array immediately.
4836      N->setNodeId(DAGSize++);
4837      allnodes_iterator Q = N;
4838      if (Q != SortedPos)
4839        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4840      ++SortedPos;
4841    } else {
4842      // Temporarily use the Node Id as scratch space for the degree count.
4843      N->setNodeId(Degree);
4844    }
4845  }
4846
4847  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4848  // such that by the time the end is reached all nodes will be sorted.
4849  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4850    SDNode *N = I;
4851    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4852         UI != UE; ++UI) {
4853      SDNode *P = *UI;
4854      unsigned Degree = P->getNodeId();
4855      --Degree;
4856      if (Degree == 0) {
4857        // All of P's operands are sorted, so P may sorted now.
4858        P->setNodeId(DAGSize++);
4859        if (P != SortedPos)
4860          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4861        ++SortedPos;
4862      } else {
4863        // Update P's outstanding operand count.
4864        P->setNodeId(Degree);
4865      }
4866    }
4867  }
4868
4869  assert(SortedPos == AllNodes.end() &&
4870         "Topological sort incomplete!");
4871  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4872         "First node in topological sort is not the entry token!");
4873  assert(AllNodes.front().getNodeId() == 0 &&
4874         "First node in topological sort has non-zero id!");
4875  assert(AllNodes.front().getNumOperands() == 0 &&
4876         "First node in topological sort has operands!");
4877  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4878         "Last node in topologic sort has unexpected id!");
4879  assert(AllNodes.back().use_empty() &&
4880         "Last node in topologic sort has users!");
4881  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4882  return DAGSize;
4883}
4884
4885
4886
4887//===----------------------------------------------------------------------===//
4888//                              SDNode Class
4889//===----------------------------------------------------------------------===//
4890
4891HandleSDNode::~HandleSDNode() {
4892  DropOperands();
4893}
4894
4895GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4896                                         MVT VT, int64_t o)
4897  : SDNode(isa<GlobalVariable>(GA) &&
4898           cast<GlobalVariable>(GA)->isThreadLocal() ?
4899           // Thread Local
4900           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4901           // Non Thread Local
4902           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4903           DebugLoc::getUnknownLoc(), getSDVTList(VT)), Offset(o) {
4904  TheGlobal = const_cast<GlobalValue*>(GA);
4905}
4906
4907MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4908                     const Value *srcValue, int SVO,
4909                     unsigned alignment, bool vol)
4910 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4911  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4912  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4913  assert(getAlignment() == alignment && "Alignment representation error!");
4914  assert(isVolatile() == vol && "Volatile representation error!");
4915}
4916
4917MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4918                     const SDValue *Ops,
4919                     unsigned NumOps, MVT memvt, const Value *srcValue,
4920                     int SVO, unsigned alignment, bool vol)
4921   : SDNode(Opc, dl, VTs, Ops, NumOps),
4922     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4923  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4924  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4925  assert(getAlignment() == alignment && "Alignment representation error!");
4926  assert(isVolatile() == vol && "Volatile representation error!");
4927}
4928
4929/// getMemOperand - Return a MachineMemOperand object describing the memory
4930/// reference performed by this memory reference.
4931MachineMemOperand MemSDNode::getMemOperand() const {
4932  int Flags = 0;
4933  if (isa<LoadSDNode>(this))
4934    Flags = MachineMemOperand::MOLoad;
4935  else if (isa<StoreSDNode>(this))
4936    Flags = MachineMemOperand::MOStore;
4937  else if (isa<AtomicSDNode>(this)) {
4938    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4939  }
4940  else {
4941    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4942    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4943    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4944    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4945  }
4946
4947  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4948  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4949
4950  // Check if the memory reference references a frame index
4951  const FrameIndexSDNode *FI =
4952  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4953  if (!getSrcValue() && FI)
4954    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4955                             Flags, 0, Size, getAlignment());
4956  else
4957    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4958                             Size, getAlignment());
4959}
4960
4961/// Profile - Gather unique data for the node.
4962///
4963void SDNode::Profile(FoldingSetNodeID &ID) const {
4964  AddNodeIDNode(ID, this);
4965}
4966
4967/// getValueTypeList - Return a pointer to the specified value type.
4968///
4969const MVT *SDNode::getValueTypeList(MVT VT) {
4970  if (VT.isExtended()) {
4971    static std::set<MVT, MVT::compareRawBits> EVTs;
4972    return &(*EVTs.insert(VT).first);
4973  } else {
4974    static MVT VTs[MVT::LAST_VALUETYPE];
4975    VTs[VT.getSimpleVT()] = VT;
4976    return &VTs[VT.getSimpleVT()];
4977  }
4978}
4979
4980/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4981/// indicated value.  This method ignores uses of other values defined by this
4982/// operation.
4983bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4984  assert(Value < getNumValues() && "Bad value!");
4985
4986  // TODO: Only iterate over uses of a given value of the node
4987  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4988    if (UI.getUse().getResNo() == Value) {
4989      if (NUses == 0)
4990        return false;
4991      --NUses;
4992    }
4993  }
4994
4995  // Found exactly the right number of uses?
4996  return NUses == 0;
4997}
4998
4999
5000/// hasAnyUseOfValue - Return true if there are any use of the indicated
5001/// value. This method ignores uses of other values defined by this operation.
5002bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5003  assert(Value < getNumValues() && "Bad value!");
5004
5005  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5006    if (UI.getUse().getResNo() == Value)
5007      return true;
5008
5009  return false;
5010}
5011
5012
5013/// isOnlyUserOf - Return true if this node is the only use of N.
5014///
5015bool SDNode::isOnlyUserOf(SDNode *N) const {
5016  bool Seen = false;
5017  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5018    SDNode *User = *I;
5019    if (User == this)
5020      Seen = true;
5021    else
5022      return false;
5023  }
5024
5025  return Seen;
5026}
5027
5028/// isOperand - Return true if this node is an operand of N.
5029///
5030bool SDValue::isOperandOf(SDNode *N) const {
5031  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5032    if (*this == N->getOperand(i))
5033      return true;
5034  return false;
5035}
5036
5037bool SDNode::isOperandOf(SDNode *N) const {
5038  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5039    if (this == N->OperandList[i].getNode())
5040      return true;
5041  return false;
5042}
5043
5044/// reachesChainWithoutSideEffects - Return true if this operand (which must
5045/// be a chain) reaches the specified operand without crossing any
5046/// side-effecting instructions.  In practice, this looks through token
5047/// factors and non-volatile loads.  In order to remain efficient, this only
5048/// looks a couple of nodes in, it does not do an exhaustive search.
5049bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5050                                               unsigned Depth) const {
5051  if (*this == Dest) return true;
5052
5053  // Don't search too deeply, we just want to be able to see through
5054  // TokenFactor's etc.
5055  if (Depth == 0) return false;
5056
5057  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5058  // of the operands of the TF reach dest, then we can do the xform.
5059  if (getOpcode() == ISD::TokenFactor) {
5060    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5061      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5062        return true;
5063    return false;
5064  }
5065
5066  // Loads don't have side effects, look through them.
5067  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5068    if (!Ld->isVolatile())
5069      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5070  }
5071  return false;
5072}
5073
5074
5075static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5076                            SmallPtrSet<SDNode *, 32> &Visited) {
5077  if (found || !Visited.insert(N))
5078    return;
5079
5080  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5081    SDNode *Op = N->getOperand(i).getNode();
5082    if (Op == P) {
5083      found = true;
5084      return;
5085    }
5086    findPredecessor(Op, P, found, Visited);
5087  }
5088}
5089
5090/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5091/// is either an operand of N or it can be reached by recursively traversing
5092/// up the operands.
5093/// NOTE: this is an expensive method. Use it carefully.
5094bool SDNode::isPredecessorOf(SDNode *N) const {
5095  SmallPtrSet<SDNode *, 32> Visited;
5096  bool found = false;
5097  findPredecessor(N, this, found, Visited);
5098  return found;
5099}
5100
5101uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5102  assert(Num < NumOperands && "Invalid child # of SDNode!");
5103  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5104}
5105
5106std::string SDNode::getOperationName(const SelectionDAG *G) const {
5107  switch (getOpcode()) {
5108  default:
5109    if (getOpcode() < ISD::BUILTIN_OP_END)
5110      return "<<Unknown DAG Node>>";
5111    if (isMachineOpcode()) {
5112      if (G)
5113        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5114          if (getMachineOpcode() < TII->getNumOpcodes())
5115            return TII->get(getMachineOpcode()).getName();
5116      return "<<Unknown Machine Node>>";
5117    }
5118    if (G) {
5119      const TargetLowering &TLI = G->getTargetLoweringInfo();
5120      const char *Name = TLI.getTargetNodeName(getOpcode());
5121      if (Name) return Name;
5122      return "<<Unknown Target Node>>";
5123    }
5124    return "<<Unknown Node>>";
5125
5126#ifndef NDEBUG
5127  case ISD::DELETED_NODE:
5128    return "<<Deleted Node!>>";
5129#endif
5130  case ISD::PREFETCH:      return "Prefetch";
5131  case ISD::MEMBARRIER:    return "MemBarrier";
5132  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5133  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5134  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5135  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5136  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5137  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5138  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5139  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5140  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5141  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5142  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5143  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5144  case ISD::PCMARKER:      return "PCMarker";
5145  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5146  case ISD::SRCVALUE:      return "SrcValue";
5147  case ISD::MEMOPERAND:    return "MemOperand";
5148  case ISD::EntryToken:    return "EntryToken";
5149  case ISD::TokenFactor:   return "TokenFactor";
5150  case ISD::AssertSext:    return "AssertSext";
5151  case ISD::AssertZext:    return "AssertZext";
5152
5153  case ISD::BasicBlock:    return "BasicBlock";
5154  case ISD::ARG_FLAGS:     return "ArgFlags";
5155  case ISD::VALUETYPE:     return "ValueType";
5156  case ISD::Register:      return "Register";
5157
5158  case ISD::Constant:      return "Constant";
5159  case ISD::ConstantFP:    return "ConstantFP";
5160  case ISD::GlobalAddress: return "GlobalAddress";
5161  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5162  case ISD::FrameIndex:    return "FrameIndex";
5163  case ISD::JumpTable:     return "JumpTable";
5164  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5165  case ISD::RETURNADDR: return "RETURNADDR";
5166  case ISD::FRAMEADDR: return "FRAMEADDR";
5167  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5168  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5169  case ISD::EHSELECTION: return "EHSELECTION";
5170  case ISD::EH_RETURN: return "EH_RETURN";
5171  case ISD::ConstantPool:  return "ConstantPool";
5172  case ISD::ExternalSymbol: return "ExternalSymbol";
5173  case ISD::INTRINSIC_WO_CHAIN: {
5174    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5175    return Intrinsic::getName((Intrinsic::ID)IID);
5176  }
5177  case ISD::INTRINSIC_VOID:
5178  case ISD::INTRINSIC_W_CHAIN: {
5179    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5180    return Intrinsic::getName((Intrinsic::ID)IID);
5181  }
5182
5183  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5184  case ISD::TargetConstant: return "TargetConstant";
5185  case ISD::TargetConstantFP:return "TargetConstantFP";
5186  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5187  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5188  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5189  case ISD::TargetJumpTable:  return "TargetJumpTable";
5190  case ISD::TargetConstantPool:  return "TargetConstantPool";
5191  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5192
5193  case ISD::CopyToReg:     return "CopyToReg";
5194  case ISD::CopyFromReg:   return "CopyFromReg";
5195  case ISD::UNDEF:         return "undef";
5196  case ISD::MERGE_VALUES:  return "merge_values";
5197  case ISD::INLINEASM:     return "inlineasm";
5198  case ISD::DBG_LABEL:     return "dbg_label";
5199  case ISD::EH_LABEL:      return "eh_label";
5200  case ISD::DECLARE:       return "declare";
5201  case ISD::HANDLENODE:    return "handlenode";
5202  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5203  case ISD::CALL:          return "call";
5204
5205  // Unary operators
5206  case ISD::FABS:   return "fabs";
5207  case ISD::FNEG:   return "fneg";
5208  case ISD::FSQRT:  return "fsqrt";
5209  case ISD::FSIN:   return "fsin";
5210  case ISD::FCOS:   return "fcos";
5211  case ISD::FPOWI:  return "fpowi";
5212  case ISD::FPOW:   return "fpow";
5213  case ISD::FTRUNC: return "ftrunc";
5214  case ISD::FFLOOR: return "ffloor";
5215  case ISD::FCEIL:  return "fceil";
5216  case ISD::FRINT:  return "frint";
5217  case ISD::FNEARBYINT: return "fnearbyint";
5218
5219  // Binary operators
5220  case ISD::ADD:    return "add";
5221  case ISD::SUB:    return "sub";
5222  case ISD::MUL:    return "mul";
5223  case ISD::MULHU:  return "mulhu";
5224  case ISD::MULHS:  return "mulhs";
5225  case ISD::SDIV:   return "sdiv";
5226  case ISD::UDIV:   return "udiv";
5227  case ISD::SREM:   return "srem";
5228  case ISD::UREM:   return "urem";
5229  case ISD::SMUL_LOHI:  return "smul_lohi";
5230  case ISD::UMUL_LOHI:  return "umul_lohi";
5231  case ISD::SDIVREM:    return "sdivrem";
5232  case ISD::UDIVREM:    return "udivrem";
5233  case ISD::AND:    return "and";
5234  case ISD::OR:     return "or";
5235  case ISD::XOR:    return "xor";
5236  case ISD::SHL:    return "shl";
5237  case ISD::SRA:    return "sra";
5238  case ISD::SRL:    return "srl";
5239  case ISD::ROTL:   return "rotl";
5240  case ISD::ROTR:   return "rotr";
5241  case ISD::FADD:   return "fadd";
5242  case ISD::FSUB:   return "fsub";
5243  case ISD::FMUL:   return "fmul";
5244  case ISD::FDIV:   return "fdiv";
5245  case ISD::FREM:   return "frem";
5246  case ISD::FCOPYSIGN: return "fcopysign";
5247  case ISD::FGETSIGN:  return "fgetsign";
5248
5249  case ISD::SETCC:       return "setcc";
5250  case ISD::VSETCC:      return "vsetcc";
5251  case ISD::SELECT:      return "select";
5252  case ISD::SELECT_CC:   return "select_cc";
5253  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5254  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5255  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5256  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5257  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5258  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5259  case ISD::CARRY_FALSE:         return "carry_false";
5260  case ISD::ADDC:        return "addc";
5261  case ISD::ADDE:        return "adde";
5262  case ISD::SADDO:       return "saddo";
5263  case ISD::UADDO:       return "uaddo";
5264  case ISD::SSUBO:       return "ssubo";
5265  case ISD::USUBO:       return "usubo";
5266  case ISD::SMULO:       return "smulo";
5267  case ISD::UMULO:       return "umulo";
5268  case ISD::SUBC:        return "subc";
5269  case ISD::SUBE:        return "sube";
5270  case ISD::SHL_PARTS:   return "shl_parts";
5271  case ISD::SRA_PARTS:   return "sra_parts";
5272  case ISD::SRL_PARTS:   return "srl_parts";
5273
5274  // Conversion operators.
5275  case ISD::SIGN_EXTEND: return "sign_extend";
5276  case ISD::ZERO_EXTEND: return "zero_extend";
5277  case ISD::ANY_EXTEND:  return "any_extend";
5278  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5279  case ISD::TRUNCATE:    return "truncate";
5280  case ISD::FP_ROUND:    return "fp_round";
5281  case ISD::FLT_ROUNDS_: return "flt_rounds";
5282  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5283  case ISD::FP_EXTEND:   return "fp_extend";
5284
5285  case ISD::SINT_TO_FP:  return "sint_to_fp";
5286  case ISD::UINT_TO_FP:  return "uint_to_fp";
5287  case ISD::FP_TO_SINT:  return "fp_to_sint";
5288  case ISD::FP_TO_UINT:  return "fp_to_uint";
5289  case ISD::BIT_CONVERT: return "bit_convert";
5290
5291  case ISD::CONVERT_RNDSAT: {
5292    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5293    default: assert(0 && "Unknown cvt code!");
5294    case ISD::CVT_FF:  return "cvt_ff";
5295    case ISD::CVT_FS:  return "cvt_fs";
5296    case ISD::CVT_FU:  return "cvt_fu";
5297    case ISD::CVT_SF:  return "cvt_sf";
5298    case ISD::CVT_UF:  return "cvt_uf";
5299    case ISD::CVT_SS:  return "cvt_ss";
5300    case ISD::CVT_SU:  return "cvt_su";
5301    case ISD::CVT_US:  return "cvt_us";
5302    case ISD::CVT_UU:  return "cvt_uu";
5303    }
5304  }
5305
5306    // Control flow instructions
5307  case ISD::BR:      return "br";
5308  case ISD::BRIND:   return "brind";
5309  case ISD::BR_JT:   return "br_jt";
5310  case ISD::BRCOND:  return "brcond";
5311  case ISD::BR_CC:   return "br_cc";
5312  case ISD::RET:     return "ret";
5313  case ISD::CALLSEQ_START:  return "callseq_start";
5314  case ISD::CALLSEQ_END:    return "callseq_end";
5315
5316    // Other operators
5317  case ISD::LOAD:               return "load";
5318  case ISD::STORE:              return "store";
5319  case ISD::VAARG:              return "vaarg";
5320  case ISD::VACOPY:             return "vacopy";
5321  case ISD::VAEND:              return "vaend";
5322  case ISD::VASTART:            return "vastart";
5323  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5324  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5325  case ISD::BUILD_PAIR:         return "build_pair";
5326  case ISD::STACKSAVE:          return "stacksave";
5327  case ISD::STACKRESTORE:       return "stackrestore";
5328  case ISD::TRAP:               return "trap";
5329
5330  // Bit manipulation
5331  case ISD::BSWAP:   return "bswap";
5332  case ISD::CTPOP:   return "ctpop";
5333  case ISD::CTTZ:    return "cttz";
5334  case ISD::CTLZ:    return "ctlz";
5335
5336  // Debug info
5337  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5338  case ISD::DEBUG_LOC: return "debug_loc";
5339
5340  // Trampolines
5341  case ISD::TRAMPOLINE: return "trampoline";
5342
5343  case ISD::CONDCODE:
5344    switch (cast<CondCodeSDNode>(this)->get()) {
5345    default: assert(0 && "Unknown setcc condition!");
5346    case ISD::SETOEQ:  return "setoeq";
5347    case ISD::SETOGT:  return "setogt";
5348    case ISD::SETOGE:  return "setoge";
5349    case ISD::SETOLT:  return "setolt";
5350    case ISD::SETOLE:  return "setole";
5351    case ISD::SETONE:  return "setone";
5352
5353    case ISD::SETO:    return "seto";
5354    case ISD::SETUO:   return "setuo";
5355    case ISD::SETUEQ:  return "setue";
5356    case ISD::SETUGT:  return "setugt";
5357    case ISD::SETUGE:  return "setuge";
5358    case ISD::SETULT:  return "setult";
5359    case ISD::SETULE:  return "setule";
5360    case ISD::SETUNE:  return "setune";
5361
5362    case ISD::SETEQ:   return "seteq";
5363    case ISD::SETGT:   return "setgt";
5364    case ISD::SETGE:   return "setge";
5365    case ISD::SETLT:   return "setlt";
5366    case ISD::SETLE:   return "setle";
5367    case ISD::SETNE:   return "setne";
5368    }
5369  }
5370}
5371
5372const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5373  switch (AM) {
5374  default:
5375    return "";
5376  case ISD::PRE_INC:
5377    return "<pre-inc>";
5378  case ISD::PRE_DEC:
5379    return "<pre-dec>";
5380  case ISD::POST_INC:
5381    return "<post-inc>";
5382  case ISD::POST_DEC:
5383    return "<post-dec>";
5384  }
5385}
5386
5387std::string ISD::ArgFlagsTy::getArgFlagsString() {
5388  std::string S = "< ";
5389
5390  if (isZExt())
5391    S += "zext ";
5392  if (isSExt())
5393    S += "sext ";
5394  if (isInReg())
5395    S += "inreg ";
5396  if (isSRet())
5397    S += "sret ";
5398  if (isByVal())
5399    S += "byval ";
5400  if (isNest())
5401    S += "nest ";
5402  if (getByValAlign())
5403    S += "byval-align:" + utostr(getByValAlign()) + " ";
5404  if (getOrigAlign())
5405    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5406  if (getByValSize())
5407    S += "byval-size:" + utostr(getByValSize()) + " ";
5408  return S + ">";
5409}
5410
5411void SDNode::dump() const { dump(0); }
5412void SDNode::dump(const SelectionDAG *G) const {
5413  print(errs(), G);
5414}
5415
5416void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5417  OS << (void*)this << ": ";
5418
5419  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5420    if (i) OS << ",";
5421    if (getValueType(i) == MVT::Other)
5422      OS << "ch";
5423    else
5424      OS << getValueType(i).getMVTString();
5425  }
5426  OS << " = " << getOperationName(G);
5427}
5428
5429void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5430  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5431    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(this);
5432    OS << "<";
5433    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5434      int Idx = SVN->getMaskElt(i);
5435      if (i) OS << ",";
5436      if (Idx < 0)
5437        OS << "u";
5438      else
5439        OS << Idx;
5440    }
5441    OS << ">";
5442  }
5443
5444  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5445    OS << '<' << CSDN->getAPIntValue() << '>';
5446  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5447    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5448      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5449    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5450      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5451    else {
5452      OS << "<APFloat(";
5453      CSDN->getValueAPF().bitcastToAPInt().dump();
5454      OS << ")>";
5455    }
5456  } else if (const GlobalAddressSDNode *GADN =
5457             dyn_cast<GlobalAddressSDNode>(this)) {
5458    int64_t offset = GADN->getOffset();
5459    OS << '<';
5460    WriteAsOperand(OS, GADN->getGlobal());
5461    OS << '>';
5462    if (offset > 0)
5463      OS << " + " << offset;
5464    else
5465      OS << " " << offset;
5466  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5467    OS << "<" << FIDN->getIndex() << ">";
5468  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5469    OS << "<" << JTDN->getIndex() << ">";
5470  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5471    int offset = CP->getOffset();
5472    if (CP->isMachineConstantPoolEntry())
5473      OS << "<" << *CP->getMachineCPVal() << ">";
5474    else
5475      OS << "<" << *CP->getConstVal() << ">";
5476    if (offset > 0)
5477      OS << " + " << offset;
5478    else
5479      OS << " " << offset;
5480  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5481    OS << "<";
5482    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5483    if (LBB)
5484      OS << LBB->getName() << " ";
5485    OS << (const void*)BBDN->getBasicBlock() << ">";
5486  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5487    if (G && R->getReg() &&
5488        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5489      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5490    } else {
5491      OS << " #" << R->getReg();
5492    }
5493  } else if (const ExternalSymbolSDNode *ES =
5494             dyn_cast<ExternalSymbolSDNode>(this)) {
5495    OS << "'" << ES->getSymbol() << "'";
5496  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5497    if (M->getValue())
5498      OS << "<" << M->getValue() << ">";
5499    else
5500      OS << "<null>";
5501  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5502    if (M->MO.getValue())
5503      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5504    else
5505      OS << "<null:" << M->MO.getOffset() << ">";
5506  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5507    OS << N->getArgFlags().getArgFlagsString();
5508  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5509    OS << ":" << N->getVT().getMVTString();
5510  }
5511  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5512    const Value *SrcValue = LD->getSrcValue();
5513    int SrcOffset = LD->getSrcValueOffset();
5514    OS << " <";
5515    if (SrcValue)
5516      OS << SrcValue;
5517    else
5518      OS << "null";
5519    OS << ":" << SrcOffset << ">";
5520
5521    bool doExt = true;
5522    switch (LD->getExtensionType()) {
5523    default: doExt = false; break;
5524    case ISD::EXTLOAD: OS << " <anyext "; break;
5525    case ISD::SEXTLOAD: OS << " <sext "; break;
5526    case ISD::ZEXTLOAD: OS << " <zext "; break;
5527    }
5528    if (doExt)
5529      OS << LD->getMemoryVT().getMVTString() << ">";
5530
5531    const char *AM = getIndexedModeName(LD->getAddressingMode());
5532    if (*AM)
5533      OS << " " << AM;
5534    if (LD->isVolatile())
5535      OS << " <volatile>";
5536    OS << " alignment=" << LD->getAlignment();
5537  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5538    const Value *SrcValue = ST->getSrcValue();
5539    int SrcOffset = ST->getSrcValueOffset();
5540    OS << " <";
5541    if (SrcValue)
5542      OS << SrcValue;
5543    else
5544      OS << "null";
5545    OS << ":" << SrcOffset << ">";
5546
5547    if (ST->isTruncatingStore())
5548      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5549
5550    const char *AM = getIndexedModeName(ST->getAddressingMode());
5551    if (*AM)
5552      OS << " " << AM;
5553    if (ST->isVolatile())
5554      OS << " <volatile>";
5555    OS << " alignment=" << ST->getAlignment();
5556  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5557    const Value *SrcValue = AT->getSrcValue();
5558    int SrcOffset = AT->getSrcValueOffset();
5559    OS << " <";
5560    if (SrcValue)
5561      OS << SrcValue;
5562    else
5563      OS << "null";
5564    OS << ":" << SrcOffset << ">";
5565    if (AT->isVolatile())
5566      OS << " <volatile>";
5567    OS << " alignment=" << AT->getAlignment();
5568  }
5569}
5570
5571void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5572  print_types(OS, G);
5573  OS << " ";
5574  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5575    if (i) OS << ", ";
5576    OS << (void*)getOperand(i).getNode();
5577    if (unsigned RN = getOperand(i).getResNo())
5578      OS << ":" << RN;
5579  }
5580  print_details(OS, G);
5581}
5582
5583static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5584  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5585    if (N->getOperand(i).getNode()->hasOneUse())
5586      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5587    else
5588      cerr << "\n" << std::string(indent+2, ' ')
5589           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5590
5591
5592  cerr << "\n" << std::string(indent, ' ');
5593  N->dump(G);
5594}
5595
5596void SelectionDAG::dump() const {
5597  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5598
5599  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5600       I != E; ++I) {
5601    const SDNode *N = I;
5602    if (!N->hasOneUse() && N != getRoot().getNode())
5603      DumpNodes(N, 2, this);
5604  }
5605
5606  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5607
5608  cerr << "\n\n";
5609}
5610
5611void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5612  print_types(OS, G);
5613  print_details(OS, G);
5614}
5615
5616typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5617static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5618		       const SelectionDAG *G, VisitedSDNodeSet &once) {
5619  if (!once.insert(N))	// If we've been here before, return now.
5620    return;
5621  // Dump the current SDNode, but don't end the line yet.
5622  OS << std::string(indent, ' ');
5623  N->printr(OS, G);
5624  // Having printed this SDNode, walk the children:
5625  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5626    const SDNode *child = N->getOperand(i).getNode();
5627    if (i) OS << ",";
5628    OS << " ";
5629    if (child->getNumOperands() == 0) {
5630      // This child has no grandchildren; print it inline right here.
5631      child->printr(OS, G);
5632      once.insert(child);
5633    } else {	// Just the address.  FIXME: also print the child's opcode
5634      OS << (void*)child;
5635      if (unsigned RN = N->getOperand(i).getResNo())
5636	OS << ":" << RN;
5637    }
5638  }
5639  OS << "\n";
5640  // Dump children that have grandchildren on their own line(s).
5641  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5642    const SDNode *child = N->getOperand(i).getNode();
5643    DumpNodesr(OS, child, indent+2, G, once);
5644  }
5645}
5646
5647void SDNode::dumpr() const {
5648  VisitedSDNodeSet once;
5649  DumpNodesr(errs(), this, 0, 0, once);
5650}
5651
5652
5653// getAddressSpace - Return the address space this GlobalAddress belongs to.
5654unsigned GlobalAddressSDNode::getAddressSpace() const {
5655  return getGlobal()->getType()->getAddressSpace();
5656}
5657
5658
5659const Type *ConstantPoolSDNode::getType() const {
5660  if (isMachineConstantPoolEntry())
5661    return Val.MachineCPVal->getType();
5662  return Val.ConstVal->getType();
5663}
5664
5665bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5666                                        APInt &SplatUndef,
5667                                        unsigned &SplatBitSize,
5668                                        bool &HasAnyUndefs,
5669                                        unsigned MinSplatBits) {
5670  MVT VT = getValueType(0);
5671  assert(VT.isVector() && "Expected a vector type");
5672  unsigned sz = VT.getSizeInBits();
5673  if (MinSplatBits > sz)
5674    return false;
5675
5676  SplatValue = APInt(sz, 0);
5677  SplatUndef = APInt(sz, 0);
5678
5679  // Get the bits.  Bits with undefined values (when the corresponding element
5680  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5681  // in SplatValue.  If any of the values are not constant, give up and return
5682  // false.
5683  unsigned int nOps = getNumOperands();
5684  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5685  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5686  for (unsigned i = 0; i < nOps; ++i) {
5687    SDValue OpVal = getOperand(i);
5688    unsigned BitPos = i * EltBitSize;
5689
5690    if (OpVal.getOpcode() == ISD::UNDEF)
5691      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5692    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5693      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5694                     zextOrTrunc(sz) << BitPos);
5695    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5696      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5697     else
5698      return false;
5699  }
5700
5701  // The build_vector is all constants or undefs.  Find the smallest element
5702  // size that splats the vector.
5703
5704  HasAnyUndefs = (SplatUndef != 0);
5705  while (sz > 8) {
5706
5707    unsigned HalfSize = sz / 2;
5708    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5709    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5710    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5711    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5712
5713    // If the two halves do not match (ignoring undef bits), stop here.
5714    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5715        MinSplatBits > HalfSize)
5716      break;
5717
5718    SplatValue = HighValue | LowValue;
5719    SplatUndef = HighUndef & LowUndef;
5720
5721    sz = HalfSize;
5722  }
5723
5724  SplatBitSize = sz;
5725  return true;
5726}
5727
5728bool ShuffleVectorSDNode::isSplatMask(const int *Mask, MVT VT) {
5729  int Idx = -1;
5730  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5731    if (Idx < 0) Idx = Mask[i];
5732    if (Mask[i] >= 0 && Mask[i] != Idx)
5733      return false;
5734  }
5735  return true;
5736}
5737