SelectionDAG.cpp revision a415e0ebca988dfbb3377b7369c02f80fec7b46e
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetIntrinsicInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/ManagedStatic.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/System/Mutex.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallPtrSet.h"
49#include "llvm/ADT/SmallSet.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/StringExtras.h"
52#include <algorithm>
53#include <cmath>
54using namespace llvm;
55
56/// makeVTList - Return an instance of the SDVTList struct initialized with the
57/// specified members.
58static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59  SDVTList Res = {VTs, NumVTs};
60  return Res;
61}
62
63static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
64  switch (VT.getSimpleVT().SimpleTy) {
65  default: llvm_unreachable("Unknown FP format");
66  case MVT::f32:     return &APFloat::IEEEsingle;
67  case MVT::f64:     return &APFloat::IEEEdouble;
68  case MVT::f80:     return &APFloat::x87DoubleExtended;
69  case MVT::f128:    return &APFloat::IEEEquad;
70  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
71  }
72}
73
74SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
75
76//===----------------------------------------------------------------------===//
77//                              ConstantFPSDNode Class
78//===----------------------------------------------------------------------===//
79
80/// isExactlyValue - We don't rely on operator== working on double values, as
81/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
82/// As such, this method can be used to do an exact bit-for-bit comparison of
83/// two floating point values.
84bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
85  return getValueAPF().bitwiseIsEqual(V);
86}
87
88bool ConstantFPSDNode::isValueValidForType(EVT VT,
89                                           const APFloat& Val) {
90  assert(VT.isFloatingPoint() && "Can only convert between FP types");
91
92  // PPC long double cannot be converted to any other type.
93  if (VT == MVT::ppcf128 ||
94      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
95    return false;
96
97  // convert modifies in place, so make a copy.
98  APFloat Val2 = APFloat(Val);
99  bool losesInfo;
100  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
101                      &losesInfo);
102  return !losesInfo;
103}
104
105//===----------------------------------------------------------------------===//
106//                              ISD Namespace
107//===----------------------------------------------------------------------===//
108
109/// isBuildVectorAllOnes - Return true if the specified node is a
110/// BUILD_VECTOR where all of the elements are ~0 or undef.
111bool ISD::isBuildVectorAllOnes(const SDNode *N) {
112  // Look through a bit convert.
113  if (N->getOpcode() == ISD::BIT_CONVERT)
114    N = N->getOperand(0).getNode();
115
116  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
117
118  unsigned i = 0, e = N->getNumOperands();
119
120  // Skip over all of the undef values.
121  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
122    ++i;
123
124  // Do not accept an all-undef vector.
125  if (i == e) return false;
126
127  // Do not accept build_vectors that aren't all constants or which have non-~0
128  // elements.
129  SDValue NotZero = N->getOperand(i);
130  if (isa<ConstantSDNode>(NotZero)) {
131    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
132      return false;
133  } else if (isa<ConstantFPSDNode>(NotZero)) {
134    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
135                bitcastToAPInt().isAllOnesValue())
136      return false;
137  } else
138    return false;
139
140  // Okay, we have at least one ~0 value, check to see if the rest match or are
141  // undefs.
142  for (++i; i != e; ++i)
143    if (N->getOperand(i) != NotZero &&
144        N->getOperand(i).getOpcode() != ISD::UNDEF)
145      return false;
146  return true;
147}
148
149
150/// isBuildVectorAllZeros - Return true if the specified node is a
151/// BUILD_VECTOR where all of the elements are 0 or undef.
152bool ISD::isBuildVectorAllZeros(const SDNode *N) {
153  // Look through a bit convert.
154  if (N->getOpcode() == ISD::BIT_CONVERT)
155    N = N->getOperand(0).getNode();
156
157  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158
159  unsigned i = 0, e = N->getNumOperands();
160
161  // Skip over all of the undef values.
162  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
163    ++i;
164
165  // Do not accept an all-undef vector.
166  if (i == e) return false;
167
168  // Do not accept build_vectors that aren't all constants or which have non-0
169  // elements.
170  SDValue Zero = N->getOperand(i);
171  if (isa<ConstantSDNode>(Zero)) {
172    if (!cast<ConstantSDNode>(Zero)->isNullValue())
173      return false;
174  } else if (isa<ConstantFPSDNode>(Zero)) {
175    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
176      return false;
177  } else
178    return false;
179
180  // Okay, we have at least one 0 value, check to see if the rest match or are
181  // undefs.
182  for (++i; i != e; ++i)
183    if (N->getOperand(i) != Zero &&
184        N->getOperand(i).getOpcode() != ISD::UNDEF)
185      return false;
186  return true;
187}
188
189/// isScalarToVector - Return true if the specified node is a
190/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191/// element is not an undef.
192bool ISD::isScalarToVector(const SDNode *N) {
193  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
194    return true;
195
196  if (N->getOpcode() != ISD::BUILD_VECTOR)
197    return false;
198  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
199    return false;
200  unsigned NumElems = N->getNumOperands();
201  for (unsigned i = 1; i < NumElems; ++i) {
202    SDValue V = N->getOperand(i);
203    if (V.getOpcode() != ISD::UNDEF)
204      return false;
205  }
206  return true;
207}
208
209/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
210/// when given the operation for (X op Y).
211ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
212  // To perform this operation, we just need to swap the L and G bits of the
213  // operation.
214  unsigned OldL = (Operation >> 2) & 1;
215  unsigned OldG = (Operation >> 1) & 1;
216  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
217                       (OldL << 1) |       // New G bit
218                       (OldG << 2));       // New L bit.
219}
220
221/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
222/// 'op' is a valid SetCC operation.
223ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
224  unsigned Operation = Op;
225  if (isInteger)
226    Operation ^= 7;   // Flip L, G, E bits, but not U.
227  else
228    Operation ^= 15;  // Flip all of the condition bits.
229
230  if (Operation > ISD::SETTRUE2)
231    Operation &= ~8;  // Don't let N and U bits get set.
232
233  return ISD::CondCode(Operation);
234}
235
236
237/// isSignedOp - For an integer comparison, return 1 if the comparison is a
238/// signed operation and 2 if the result is an unsigned comparison.  Return zero
239/// if the operation does not depend on the sign of the input (setne and seteq).
240static int isSignedOp(ISD::CondCode Opcode) {
241  switch (Opcode) {
242  default: llvm_unreachable("Illegal integer setcc operation!");
243  case ISD::SETEQ:
244  case ISD::SETNE: return 0;
245  case ISD::SETLT:
246  case ISD::SETLE:
247  case ISD::SETGT:
248  case ISD::SETGE: return 1;
249  case ISD::SETULT:
250  case ISD::SETULE:
251  case ISD::SETUGT:
252  case ISD::SETUGE: return 2;
253  }
254}
255
256/// getSetCCOrOperation - Return the result of a logical OR between different
257/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
258/// returns SETCC_INVALID if it is not possible to represent the resultant
259/// comparison.
260ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
261                                       bool isInteger) {
262  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
263    // Cannot fold a signed integer setcc with an unsigned integer setcc.
264    return ISD::SETCC_INVALID;
265
266  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
267
268  // If the N and U bits get set then the resultant comparison DOES suddenly
269  // care about orderedness, and is true when ordered.
270  if (Op > ISD::SETTRUE2)
271    Op &= ~16;     // Clear the U bit if the N bit is set.
272
273  // Canonicalize illegal integer setcc's.
274  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
275    Op = ISD::SETNE;
276
277  return ISD::CondCode(Op);
278}
279
280/// getSetCCAndOperation - Return the result of a logical AND between different
281/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
282/// function returns zero if it is not possible to represent the resultant
283/// comparison.
284ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
285                                        bool isInteger) {
286  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
287    // Cannot fold a signed setcc with an unsigned setcc.
288    return ISD::SETCC_INVALID;
289
290  // Combine all of the condition bits.
291  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
292
293  // Canonicalize illegal integer setcc's.
294  if (isInteger) {
295    switch (Result) {
296    default: break;
297    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
298    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
299    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
300    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
301    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
302    }
303  }
304
305  return Result;
306}
307
308//===----------------------------------------------------------------------===//
309//                           SDNode Profile Support
310//===----------------------------------------------------------------------===//
311
312/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
313///
314static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
315  ID.AddInteger(OpC);
316}
317
318/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
319/// solely with their pointer.
320static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
321  ID.AddPointer(VTList.VTs);
322}
323
324/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
325///
326static void AddNodeIDOperands(FoldingSetNodeID &ID,
327                              const SDValue *Ops, unsigned NumOps) {
328  for (; NumOps; --NumOps, ++Ops) {
329    ID.AddPointer(Ops->getNode());
330    ID.AddInteger(Ops->getResNo());
331  }
332}
333
334/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
335///
336static void AddNodeIDOperands(FoldingSetNodeID &ID,
337                              const SDUse *Ops, unsigned NumOps) {
338  for (; NumOps; --NumOps, ++Ops) {
339    ID.AddPointer(Ops->getNode());
340    ID.AddInteger(Ops->getResNo());
341  }
342}
343
344static void AddNodeIDNode(FoldingSetNodeID &ID,
345                          unsigned short OpC, SDVTList VTList,
346                          const SDValue *OpList, unsigned N) {
347  AddNodeIDOpcode(ID, OpC);
348  AddNodeIDValueTypes(ID, VTList);
349  AddNodeIDOperands(ID, OpList, N);
350}
351
352/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
353/// the NodeID data.
354static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
355  switch (N->getOpcode()) {
356  case ISD::TargetExternalSymbol:
357  case ISD::ExternalSymbol:
358    llvm_unreachable("Should only be used on nodes with operands");
359  default: break;  // Normal nodes don't need extra info.
360  case ISD::TargetConstant:
361  case ISD::Constant:
362    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
363    break;
364  case ISD::TargetConstantFP:
365  case ISD::ConstantFP: {
366    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
367    break;
368  }
369  case ISD::TargetGlobalAddress:
370  case ISD::GlobalAddress:
371  case ISD::TargetGlobalTLSAddress:
372  case ISD::GlobalTLSAddress: {
373    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
374    ID.AddPointer(GA->getGlobal());
375    ID.AddInteger(GA->getOffset());
376    ID.AddInteger(GA->getTargetFlags());
377    break;
378  }
379  case ISD::BasicBlock:
380    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
381    break;
382  case ISD::Register:
383    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
384    break;
385
386  case ISD::SRCVALUE:
387    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
388    break;
389  case ISD::FrameIndex:
390  case ISD::TargetFrameIndex:
391    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
392    break;
393  case ISD::JumpTable:
394  case ISD::TargetJumpTable:
395    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
396    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
397    break;
398  case ISD::ConstantPool:
399  case ISD::TargetConstantPool: {
400    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
401    ID.AddInteger(CP->getAlignment());
402    ID.AddInteger(CP->getOffset());
403    if (CP->isMachineConstantPoolEntry())
404      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
405    else
406      ID.AddPointer(CP->getConstVal());
407    ID.AddInteger(CP->getTargetFlags());
408    break;
409  }
410  case ISD::LOAD: {
411    const LoadSDNode *LD = cast<LoadSDNode>(N);
412    ID.AddInteger(LD->getMemoryVT().getRawBits());
413    ID.AddInteger(LD->getRawSubclassData());
414    break;
415  }
416  case ISD::STORE: {
417    const StoreSDNode *ST = cast<StoreSDNode>(N);
418    ID.AddInteger(ST->getMemoryVT().getRawBits());
419    ID.AddInteger(ST->getRawSubclassData());
420    break;
421  }
422  case ISD::ATOMIC_CMP_SWAP:
423  case ISD::ATOMIC_SWAP:
424  case ISD::ATOMIC_LOAD_ADD:
425  case ISD::ATOMIC_LOAD_SUB:
426  case ISD::ATOMIC_LOAD_AND:
427  case ISD::ATOMIC_LOAD_OR:
428  case ISD::ATOMIC_LOAD_XOR:
429  case ISD::ATOMIC_LOAD_NAND:
430  case ISD::ATOMIC_LOAD_MIN:
431  case ISD::ATOMIC_LOAD_MAX:
432  case ISD::ATOMIC_LOAD_UMIN:
433  case ISD::ATOMIC_LOAD_UMAX: {
434    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
435    ID.AddInteger(AT->getMemoryVT().getRawBits());
436    ID.AddInteger(AT->getRawSubclassData());
437    break;
438  }
439  case ISD::VECTOR_SHUFFLE: {
440    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
441    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
442         i != e; ++i)
443      ID.AddInteger(SVN->getMaskElt(i));
444    break;
445  }
446  case ISD::TargetBlockAddress:
447  case ISD::BlockAddress: {
448    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
449    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
450    break;
451  }
452  } // end switch (N->getOpcode())
453}
454
455/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
456/// data.
457static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
458  AddNodeIDOpcode(ID, N->getOpcode());
459  // Add the return value info.
460  AddNodeIDValueTypes(ID, N->getVTList());
461  // Add the operand info.
462  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
463
464  // Handle SDNode leafs with special info.
465  AddNodeIDCustom(ID, N);
466}
467
468/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
469/// the CSE map that carries volatility, temporalness, indexing mode, and
470/// extension/truncation information.
471///
472static inline unsigned
473encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
474                     bool isNonTemporal) {
475  assert((ConvType & 3) == ConvType &&
476         "ConvType may not require more than 2 bits!");
477  assert((AM & 7) == AM &&
478         "AM may not require more than 3 bits!");
479  return ConvType |
480         (AM << 2) |
481         (isVolatile << 5) |
482         (isNonTemporal << 6);
483}
484
485//===----------------------------------------------------------------------===//
486//                              SelectionDAG Class
487//===----------------------------------------------------------------------===//
488
489/// doNotCSE - Return true if CSE should not be performed for this node.
490static bool doNotCSE(SDNode *N) {
491  if (N->getValueType(0) == MVT::Flag)
492    return true; // Never CSE anything that produces a flag.
493
494  switch (N->getOpcode()) {
495  default: break;
496  case ISD::HANDLENODE:
497  case ISD::EH_LABEL:
498    return true;   // Never CSE these nodes.
499  }
500
501  // Check that remaining values produced are not flags.
502  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
503    if (N->getValueType(i) == MVT::Flag)
504      return true; // Never CSE anything that produces a flag.
505
506  return false;
507}
508
509/// RemoveDeadNodes - This method deletes all unreachable nodes in the
510/// SelectionDAG.
511void SelectionDAG::RemoveDeadNodes() {
512  // Create a dummy node (which is not added to allnodes), that adds a reference
513  // to the root node, preventing it from being deleted.
514  HandleSDNode Dummy(getRoot());
515
516  SmallVector<SDNode*, 128> DeadNodes;
517
518  // Add all obviously-dead nodes to the DeadNodes worklist.
519  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
520    if (I->use_empty())
521      DeadNodes.push_back(I);
522
523  RemoveDeadNodes(DeadNodes);
524
525  // If the root changed (e.g. it was a dead load, update the root).
526  setRoot(Dummy.getValue());
527}
528
529/// RemoveDeadNodes - This method deletes the unreachable nodes in the
530/// given list, and any nodes that become unreachable as a result.
531void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
532                                   DAGUpdateListener *UpdateListener) {
533
534  // Process the worklist, deleting the nodes and adding their uses to the
535  // worklist.
536  while (!DeadNodes.empty()) {
537    SDNode *N = DeadNodes.pop_back_val();
538
539    if (UpdateListener)
540      UpdateListener->NodeDeleted(N, 0);
541
542    // Take the node out of the appropriate CSE map.
543    RemoveNodeFromCSEMaps(N);
544
545    // Next, brutally remove the operand list.  This is safe to do, as there are
546    // no cycles in the graph.
547    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
548      SDUse &Use = *I++;
549      SDNode *Operand = Use.getNode();
550      Use.set(SDValue());
551
552      // Now that we removed this operand, see if there are no uses of it left.
553      if (Operand->use_empty())
554        DeadNodes.push_back(Operand);
555    }
556
557    DeallocateNode(N);
558  }
559}
560
561void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
562  SmallVector<SDNode*, 16> DeadNodes(1, N);
563  RemoveDeadNodes(DeadNodes, UpdateListener);
564}
565
566void SelectionDAG::DeleteNode(SDNode *N) {
567  // First take this out of the appropriate CSE map.
568  RemoveNodeFromCSEMaps(N);
569
570  // Finally, remove uses due to operands of this node, remove from the
571  // AllNodes list, and delete the node.
572  DeleteNodeNotInCSEMaps(N);
573}
574
575void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
576  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
577  assert(N->use_empty() && "Cannot delete a node that is not dead!");
578
579  // Drop all of the operands and decrement used node's use counts.
580  N->DropOperands();
581
582  DeallocateNode(N);
583}
584
585void SelectionDAG::DeallocateNode(SDNode *N) {
586  if (N->OperandsNeedDelete)
587    delete[] N->OperandList;
588
589  // Set the opcode to DELETED_NODE to help catch bugs when node
590  // memory is reallocated.
591  N->NodeType = ISD::DELETED_NODE;
592
593  NodeAllocator.Deallocate(AllNodes.remove(N));
594
595  // Remove the ordering of this node.
596  Ordering->remove(N);
597
598  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
599  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
600  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
601    DbgVals[i]->setIsInvalidated();
602}
603
604/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
605/// correspond to it.  This is useful when we're about to delete or repurpose
606/// the node.  We don't want future request for structurally identical nodes
607/// to return N anymore.
608bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
609  bool Erased = false;
610  switch (N->getOpcode()) {
611  case ISD::EntryToken:
612    llvm_unreachable("EntryToken should not be in CSEMaps!");
613    return false;
614  case ISD::HANDLENODE: return false;  // noop.
615  case ISD::CONDCODE:
616    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
617           "Cond code doesn't exist!");
618    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
619    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
620    break;
621  case ISD::ExternalSymbol:
622    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
623    break;
624  case ISD::TargetExternalSymbol: {
625    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
626    Erased = TargetExternalSymbols.erase(
627               std::pair<std::string,unsigned char>(ESN->getSymbol(),
628                                                    ESN->getTargetFlags()));
629    break;
630  }
631  case ISD::VALUETYPE: {
632    EVT VT = cast<VTSDNode>(N)->getVT();
633    if (VT.isExtended()) {
634      Erased = ExtendedValueTypeNodes.erase(VT);
635    } else {
636      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
637      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
638    }
639    break;
640  }
641  default:
642    // Remove it from the CSE Map.
643    Erased = CSEMap.RemoveNode(N);
644    break;
645  }
646#ifndef NDEBUG
647  // Verify that the node was actually in one of the CSE maps, unless it has a
648  // flag result (which cannot be CSE'd) or is one of the special cases that are
649  // not subject to CSE.
650  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
651      !N->isMachineOpcode() && !doNotCSE(N)) {
652    N->dump(this);
653    dbgs() << "\n";
654    llvm_unreachable("Node is not in map!");
655  }
656#endif
657  return Erased;
658}
659
660/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
661/// maps and modified in place. Add it back to the CSE maps, unless an identical
662/// node already exists, in which case transfer all its users to the existing
663/// node. This transfer can potentially trigger recursive merging.
664///
665void
666SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
667                                       DAGUpdateListener *UpdateListener) {
668  // For node types that aren't CSE'd, just act as if no identical node
669  // already exists.
670  if (!doNotCSE(N)) {
671    SDNode *Existing = CSEMap.GetOrInsertNode(N);
672    if (Existing != N) {
673      // If there was already an existing matching node, use ReplaceAllUsesWith
674      // to replace the dead one with the existing one.  This can cause
675      // recursive merging of other unrelated nodes down the line.
676      ReplaceAllUsesWith(N, Existing, UpdateListener);
677
678      // N is now dead.  Inform the listener if it exists and delete it.
679      if (UpdateListener)
680        UpdateListener->NodeDeleted(N, Existing);
681      DeleteNodeNotInCSEMaps(N);
682      return;
683    }
684  }
685
686  // If the node doesn't already exist, we updated it.  Inform a listener if
687  // it exists.
688  if (UpdateListener)
689    UpdateListener->NodeUpdated(N);
690}
691
692/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
693/// were replaced with those specified.  If this node is never memoized,
694/// return null, otherwise return a pointer to the slot it would take.  If a
695/// node already exists with these operands, the slot will be non-null.
696SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
697                                           void *&InsertPos) {
698  if (doNotCSE(N))
699    return 0;
700
701  SDValue Ops[] = { Op };
702  FoldingSetNodeID ID;
703  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
704  AddNodeIDCustom(ID, N);
705  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
706  return Node;
707}
708
709/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
710/// were replaced with those specified.  If this node is never memoized,
711/// return null, otherwise return a pointer to the slot it would take.  If a
712/// node already exists with these operands, the slot will be non-null.
713SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
714                                           SDValue Op1, SDValue Op2,
715                                           void *&InsertPos) {
716  if (doNotCSE(N))
717    return 0;
718
719  SDValue Ops[] = { Op1, Op2 };
720  FoldingSetNodeID ID;
721  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
722  AddNodeIDCustom(ID, N);
723  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
724  return Node;
725}
726
727
728/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
729/// were replaced with those specified.  If this node is never memoized,
730/// return null, otherwise return a pointer to the slot it would take.  If a
731/// node already exists with these operands, the slot will be non-null.
732SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
733                                           const SDValue *Ops,unsigned NumOps,
734                                           void *&InsertPos) {
735  if (doNotCSE(N))
736    return 0;
737
738  FoldingSetNodeID ID;
739  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
740  AddNodeIDCustom(ID, N);
741  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
742  return Node;
743}
744
745/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
746void SelectionDAG::VerifyNode(SDNode *N) {
747  switch (N->getOpcode()) {
748  default:
749    break;
750  case ISD::BUILD_PAIR: {
751    EVT VT = N->getValueType(0);
752    assert(N->getNumValues() == 1 && "Too many results!");
753    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
754           "Wrong return type!");
755    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
756    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
757           "Mismatched operand types!");
758    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
759           "Wrong operand type!");
760    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
761           "Wrong return type size");
762    break;
763  }
764  case ISD::BUILD_VECTOR: {
765    assert(N->getNumValues() == 1 && "Too many results!");
766    assert(N->getValueType(0).isVector() && "Wrong return type!");
767    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
768           "Wrong number of operands!");
769    EVT EltVT = N->getValueType(0).getVectorElementType();
770    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
771      assert((I->getValueType() == EltVT ||
772             (EltVT.isInteger() && I->getValueType().isInteger() &&
773              EltVT.bitsLE(I->getValueType()))) &&
774            "Wrong operand type!");
775    break;
776  }
777  }
778}
779
780/// getEVTAlignment - Compute the default alignment value for the
781/// given type.
782///
783unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
784  const Type *Ty = VT == MVT::iPTR ?
785                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
786                   VT.getTypeForEVT(*getContext());
787
788  return TLI.getTargetData()->getABITypeAlignment(Ty);
789}
790
791// EntryNode could meaningfully have debug info if we can find it...
792SelectionDAG::SelectionDAG(const TargetMachine &tm, FunctionLoweringInfo &fli)
793  : TM(tm), TLI(*tm.getTargetLowering()), FLI(fli),
794    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
795    Root(getEntryNode()), Ordering(0) {
796  AllNodes.push_back(&EntryNode);
797  Ordering = new SDNodeOrdering();
798  DbgInfo = new SDDbgInfo();
799}
800
801void SelectionDAG::init(MachineFunction &mf) {
802  MF = &mf;
803  Context = &mf.getFunction()->getContext();
804}
805
806SelectionDAG::~SelectionDAG() {
807  allnodes_clear();
808  delete Ordering;
809  DbgInfo->clear();
810  delete DbgInfo;
811}
812
813void SelectionDAG::allnodes_clear() {
814  assert(&*AllNodes.begin() == &EntryNode);
815  AllNodes.remove(AllNodes.begin());
816  while (!AllNodes.empty())
817    DeallocateNode(AllNodes.begin());
818}
819
820void SelectionDAG::clear() {
821  allnodes_clear();
822  OperandAllocator.Reset();
823  CSEMap.clear();
824
825  ExtendedValueTypeNodes.clear();
826  ExternalSymbols.clear();
827  TargetExternalSymbols.clear();
828  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
829            static_cast<CondCodeSDNode*>(0));
830  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
831            static_cast<SDNode*>(0));
832
833  EntryNode.UseList = 0;
834  AllNodes.push_back(&EntryNode);
835  Root = getEntryNode();
836  delete Ordering;
837  Ordering = new SDNodeOrdering();
838  DbgInfo->clear();
839  delete DbgInfo;
840  DbgInfo = new SDDbgInfo();
841}
842
843SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
844  return VT.bitsGT(Op.getValueType()) ?
845    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
846    getNode(ISD::TRUNCATE, DL, VT, Op);
847}
848
849SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
850  return VT.bitsGT(Op.getValueType()) ?
851    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
852    getNode(ISD::TRUNCATE, DL, VT, Op);
853}
854
855SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
856  assert(!VT.isVector() &&
857         "getZeroExtendInReg should use the vector element type instead of "
858         "the vector type!");
859  if (Op.getValueType() == VT) return Op;
860  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
861  APInt Imm = APInt::getLowBitsSet(BitWidth,
862                                   VT.getSizeInBits());
863  return getNode(ISD::AND, DL, Op.getValueType(), Op,
864                 getConstant(Imm, Op.getValueType()));
865}
866
867/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
868///
869SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
870  EVT EltVT = VT.getScalarType();
871  SDValue NegOne =
872    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
873  return getNode(ISD::XOR, DL, VT, Val, NegOne);
874}
875
876SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
877  EVT EltVT = VT.getScalarType();
878  assert((EltVT.getSizeInBits() >= 64 ||
879         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
880         "getConstant with a uint64_t value that doesn't fit in the type!");
881  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
882}
883
884SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
885  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
886}
887
888SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
889  assert(VT.isInteger() && "Cannot create FP integer constant!");
890
891  EVT EltVT = VT.getScalarType();
892  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
893         "APInt size does not match type size!");
894
895  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
896  FoldingSetNodeID ID;
897  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
898  ID.AddPointer(&Val);
899  void *IP = 0;
900  SDNode *N = NULL;
901  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
902    if (!VT.isVector())
903      return SDValue(N, 0);
904
905  if (!N) {
906    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
907    CSEMap.InsertNode(N, IP);
908    AllNodes.push_back(N);
909  }
910
911  SDValue Result(N, 0);
912  if (VT.isVector()) {
913    SmallVector<SDValue, 8> Ops;
914    Ops.assign(VT.getVectorNumElements(), Result);
915    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
916  }
917  return Result;
918}
919
920SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
921  return getConstant(Val, TLI.getPointerTy(), isTarget);
922}
923
924
925SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
926  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
927}
928
929SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
930  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
931
932  EVT EltVT = VT.getScalarType();
933
934  // Do the map lookup using the actual bit pattern for the floating point
935  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
936  // we don't have issues with SNANs.
937  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
938  FoldingSetNodeID ID;
939  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
940  ID.AddPointer(&V);
941  void *IP = 0;
942  SDNode *N = NULL;
943  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
944    if (!VT.isVector())
945      return SDValue(N, 0);
946
947  if (!N) {
948    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
949    CSEMap.InsertNode(N, IP);
950    AllNodes.push_back(N);
951  }
952
953  SDValue Result(N, 0);
954  if (VT.isVector()) {
955    SmallVector<SDValue, 8> Ops;
956    Ops.assign(VT.getVectorNumElements(), Result);
957    // FIXME DebugLoc info might be appropriate here
958    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
959  }
960  return Result;
961}
962
963SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
964  EVT EltVT = VT.getScalarType();
965  if (EltVT==MVT::f32)
966    return getConstantFP(APFloat((float)Val), VT, isTarget);
967  else if (EltVT==MVT::f64)
968    return getConstantFP(APFloat(Val), VT, isTarget);
969  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
970    bool ignored;
971    APFloat apf = APFloat(Val);
972    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
973                &ignored);
974    return getConstantFP(apf, VT, isTarget);
975  } else {
976    assert(0 && "Unsupported type in getConstantFP");
977    return SDValue();
978  }
979}
980
981SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
982                                       EVT VT, int64_t Offset,
983                                       bool isTargetGA,
984                                       unsigned char TargetFlags) {
985  assert((TargetFlags == 0 || isTargetGA) &&
986         "Cannot set target flags on target-independent globals");
987
988  // Truncate (with sign-extension) the offset value to the pointer size.
989  EVT PTy = TLI.getPointerTy();
990  unsigned BitWidth = PTy.getSizeInBits();
991  if (BitWidth < 64)
992    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
993
994  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
995  if (!GVar) {
996    // If GV is an alias then use the aliasee for determining thread-localness.
997    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
998      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
999  }
1000
1001  unsigned Opc;
1002  if (GVar && GVar->isThreadLocal())
1003    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1004  else
1005    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1006
1007  FoldingSetNodeID ID;
1008  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1009  ID.AddPointer(GV);
1010  ID.AddInteger(Offset);
1011  ID.AddInteger(TargetFlags);
1012  void *IP = 0;
1013  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1014    return SDValue(E, 0);
1015
1016  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1017                                                      Offset, TargetFlags);
1018  CSEMap.InsertNode(N, IP);
1019  AllNodes.push_back(N);
1020  return SDValue(N, 0);
1021}
1022
1023SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1024  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1025  FoldingSetNodeID ID;
1026  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1027  ID.AddInteger(FI);
1028  void *IP = 0;
1029  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1030    return SDValue(E, 0);
1031
1032  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1033  CSEMap.InsertNode(N, IP);
1034  AllNodes.push_back(N);
1035  return SDValue(N, 0);
1036}
1037
1038SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1039                                   unsigned char TargetFlags) {
1040  assert((TargetFlags == 0 || isTarget) &&
1041         "Cannot set target flags on target-independent jump tables");
1042  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1043  FoldingSetNodeID ID;
1044  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1045  ID.AddInteger(JTI);
1046  ID.AddInteger(TargetFlags);
1047  void *IP = 0;
1048  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1049    return SDValue(E, 0);
1050
1051  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1052                                                  TargetFlags);
1053  CSEMap.InsertNode(N, IP);
1054  AllNodes.push_back(N);
1055  return SDValue(N, 0);
1056}
1057
1058SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1059                                      unsigned Alignment, int Offset,
1060                                      bool isTarget,
1061                                      unsigned char TargetFlags) {
1062  assert((TargetFlags == 0 || isTarget) &&
1063         "Cannot set target flags on target-independent globals");
1064  if (Alignment == 0)
1065    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1066  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1067  FoldingSetNodeID ID;
1068  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1069  ID.AddInteger(Alignment);
1070  ID.AddInteger(Offset);
1071  ID.AddPointer(C);
1072  ID.AddInteger(TargetFlags);
1073  void *IP = 0;
1074  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1075    return SDValue(E, 0);
1076
1077  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1078                                                     Alignment, TargetFlags);
1079  CSEMap.InsertNode(N, IP);
1080  AllNodes.push_back(N);
1081  return SDValue(N, 0);
1082}
1083
1084
1085SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1086                                      unsigned Alignment, int Offset,
1087                                      bool isTarget,
1088                                      unsigned char TargetFlags) {
1089  assert((TargetFlags == 0 || isTarget) &&
1090         "Cannot set target flags on target-independent globals");
1091  if (Alignment == 0)
1092    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1093  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1094  FoldingSetNodeID ID;
1095  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1096  ID.AddInteger(Alignment);
1097  ID.AddInteger(Offset);
1098  C->AddSelectionDAGCSEId(ID);
1099  ID.AddInteger(TargetFlags);
1100  void *IP = 0;
1101  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1102    return SDValue(E, 0);
1103
1104  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1105                                                     Alignment, TargetFlags);
1106  CSEMap.InsertNode(N, IP);
1107  AllNodes.push_back(N);
1108  return SDValue(N, 0);
1109}
1110
1111SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1112  FoldingSetNodeID ID;
1113  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1114  ID.AddPointer(MBB);
1115  void *IP = 0;
1116  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1117    return SDValue(E, 0);
1118
1119  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1120  CSEMap.InsertNode(N, IP);
1121  AllNodes.push_back(N);
1122  return SDValue(N, 0);
1123}
1124
1125SDValue SelectionDAG::getValueType(EVT VT) {
1126  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1127      ValueTypeNodes.size())
1128    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1129
1130  SDNode *&N = VT.isExtended() ?
1131    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1132
1133  if (N) return SDValue(N, 0);
1134  N = new (NodeAllocator) VTSDNode(VT);
1135  AllNodes.push_back(N);
1136  return SDValue(N, 0);
1137}
1138
1139SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1140  SDNode *&N = ExternalSymbols[Sym];
1141  if (N) return SDValue(N, 0);
1142  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1143  AllNodes.push_back(N);
1144  return SDValue(N, 0);
1145}
1146
1147SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1148                                              unsigned char TargetFlags) {
1149  SDNode *&N =
1150    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1151                                                               TargetFlags)];
1152  if (N) return SDValue(N, 0);
1153  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1154  AllNodes.push_back(N);
1155  return SDValue(N, 0);
1156}
1157
1158SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1159  if ((unsigned)Cond >= CondCodeNodes.size())
1160    CondCodeNodes.resize(Cond+1);
1161
1162  if (CondCodeNodes[Cond] == 0) {
1163    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1164    CondCodeNodes[Cond] = N;
1165    AllNodes.push_back(N);
1166  }
1167
1168  return SDValue(CondCodeNodes[Cond], 0);
1169}
1170
1171// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1172// the shuffle mask M that point at N1 to point at N2, and indices that point
1173// N2 to point at N1.
1174static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1175  std::swap(N1, N2);
1176  int NElts = M.size();
1177  for (int i = 0; i != NElts; ++i) {
1178    if (M[i] >= NElts)
1179      M[i] -= NElts;
1180    else if (M[i] >= 0)
1181      M[i] += NElts;
1182  }
1183}
1184
1185SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1186                                       SDValue N2, const int *Mask) {
1187  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1188  assert(VT.isVector() && N1.getValueType().isVector() &&
1189         "Vector Shuffle VTs must be a vectors");
1190  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1191         && "Vector Shuffle VTs must have same element type");
1192
1193  // Canonicalize shuffle undef, undef -> undef
1194  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1195    return getUNDEF(VT);
1196
1197  // Validate that all indices in Mask are within the range of the elements
1198  // input to the shuffle.
1199  unsigned NElts = VT.getVectorNumElements();
1200  SmallVector<int, 8> MaskVec;
1201  for (unsigned i = 0; i != NElts; ++i) {
1202    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1203    MaskVec.push_back(Mask[i]);
1204  }
1205
1206  // Canonicalize shuffle v, v -> v, undef
1207  if (N1 == N2) {
1208    N2 = getUNDEF(VT);
1209    for (unsigned i = 0; i != NElts; ++i)
1210      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1211  }
1212
1213  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1214  if (N1.getOpcode() == ISD::UNDEF)
1215    commuteShuffle(N1, N2, MaskVec);
1216
1217  // Canonicalize all index into lhs, -> shuffle lhs, undef
1218  // Canonicalize all index into rhs, -> shuffle rhs, undef
1219  bool AllLHS = true, AllRHS = true;
1220  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1221  for (unsigned i = 0; i != NElts; ++i) {
1222    if (MaskVec[i] >= (int)NElts) {
1223      if (N2Undef)
1224        MaskVec[i] = -1;
1225      else
1226        AllLHS = false;
1227    } else if (MaskVec[i] >= 0) {
1228      AllRHS = false;
1229    }
1230  }
1231  if (AllLHS && AllRHS)
1232    return getUNDEF(VT);
1233  if (AllLHS && !N2Undef)
1234    N2 = getUNDEF(VT);
1235  if (AllRHS) {
1236    N1 = getUNDEF(VT);
1237    commuteShuffle(N1, N2, MaskVec);
1238  }
1239
1240  // If Identity shuffle, or all shuffle in to undef, return that node.
1241  bool AllUndef = true;
1242  bool Identity = true;
1243  for (unsigned i = 0; i != NElts; ++i) {
1244    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1245    if (MaskVec[i] >= 0) AllUndef = false;
1246  }
1247  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1248    return N1;
1249  if (AllUndef)
1250    return getUNDEF(VT);
1251
1252  FoldingSetNodeID ID;
1253  SDValue Ops[2] = { N1, N2 };
1254  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1255  for (unsigned i = 0; i != NElts; ++i)
1256    ID.AddInteger(MaskVec[i]);
1257
1258  void* IP = 0;
1259  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1260    return SDValue(E, 0);
1261
1262  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1263  // SDNode doesn't have access to it.  This memory will be "leaked" when
1264  // the node is deallocated, but recovered when the NodeAllocator is released.
1265  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1266  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1267
1268  ShuffleVectorSDNode *N =
1269    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1270  CSEMap.InsertNode(N, IP);
1271  AllNodes.push_back(N);
1272  return SDValue(N, 0);
1273}
1274
1275SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1276                                       SDValue Val, SDValue DTy,
1277                                       SDValue STy, SDValue Rnd, SDValue Sat,
1278                                       ISD::CvtCode Code) {
1279  // If the src and dest types are the same and the conversion is between
1280  // integer types of the same sign or two floats, no conversion is necessary.
1281  if (DTy == STy &&
1282      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1283    return Val;
1284
1285  FoldingSetNodeID ID;
1286  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1287  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1288  void* IP = 0;
1289  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1290    return SDValue(E, 0);
1291
1292  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1293                                                           Code);
1294  CSEMap.InsertNode(N, IP);
1295  AllNodes.push_back(N);
1296  return SDValue(N, 0);
1297}
1298
1299SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1300  FoldingSetNodeID ID;
1301  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1302  ID.AddInteger(RegNo);
1303  void *IP = 0;
1304  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1305    return SDValue(E, 0);
1306
1307  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1308  CSEMap.InsertNode(N, IP);
1309  AllNodes.push_back(N);
1310  return SDValue(N, 0);
1311}
1312
1313SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1314  FoldingSetNodeID ID;
1315  SDValue Ops[] = { Root };
1316  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1317  ID.AddPointer(Label);
1318  void *IP = 0;
1319  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1320    return SDValue(E, 0);
1321
1322  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1323  CSEMap.InsertNode(N, IP);
1324  AllNodes.push_back(N);
1325  return SDValue(N, 0);
1326}
1327
1328
1329SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1330                                      bool isTarget,
1331                                      unsigned char TargetFlags) {
1332  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1333
1334  FoldingSetNodeID ID;
1335  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1336  ID.AddPointer(BA);
1337  ID.AddInteger(TargetFlags);
1338  void *IP = 0;
1339  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1340    return SDValue(E, 0);
1341
1342  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1343  CSEMap.InsertNode(N, IP);
1344  AllNodes.push_back(N);
1345  return SDValue(N, 0);
1346}
1347
1348SDValue SelectionDAG::getSrcValue(const Value *V) {
1349  assert((!V || V->getType()->isPointerTy()) &&
1350         "SrcValue is not a pointer?");
1351
1352  FoldingSetNodeID ID;
1353  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1354  ID.AddPointer(V);
1355
1356  void *IP = 0;
1357  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1358    return SDValue(E, 0);
1359
1360  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1361  CSEMap.InsertNode(N, IP);
1362  AllNodes.push_back(N);
1363  return SDValue(N, 0);
1364}
1365
1366/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1367SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1368  FoldingSetNodeID ID;
1369  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1370  ID.AddPointer(MD);
1371
1372  void *IP = 0;
1373  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1374    return SDValue(E, 0);
1375
1376  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1377  CSEMap.InsertNode(N, IP);
1378  AllNodes.push_back(N);
1379  return SDValue(N, 0);
1380}
1381
1382
1383/// getShiftAmountOperand - Return the specified value casted to
1384/// the target's desired shift amount type.
1385SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1386  EVT OpTy = Op.getValueType();
1387  MVT ShTy = TLI.getShiftAmountTy();
1388  if (OpTy == ShTy || OpTy.isVector()) return Op;
1389
1390  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1391  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1392}
1393
1394/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1395/// specified value type.
1396SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1397  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1398  unsigned ByteSize = VT.getStoreSize();
1399  const Type *Ty = VT.getTypeForEVT(*getContext());
1400  unsigned StackAlign =
1401  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1402
1403  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1404  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1405}
1406
1407/// CreateStackTemporary - Create a stack temporary suitable for holding
1408/// either of the specified value types.
1409SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1410  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1411                            VT2.getStoreSizeInBits())/8;
1412  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1413  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1414  const TargetData *TD = TLI.getTargetData();
1415  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1416                            TD->getPrefTypeAlignment(Ty2));
1417
1418  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1419  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1420  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1421}
1422
1423SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1424                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1425  // These setcc operations always fold.
1426  switch (Cond) {
1427  default: break;
1428  case ISD::SETFALSE:
1429  case ISD::SETFALSE2: return getConstant(0, VT);
1430  case ISD::SETTRUE:
1431  case ISD::SETTRUE2:  return getConstant(1, VT);
1432
1433  case ISD::SETOEQ:
1434  case ISD::SETOGT:
1435  case ISD::SETOGE:
1436  case ISD::SETOLT:
1437  case ISD::SETOLE:
1438  case ISD::SETONE:
1439  case ISD::SETO:
1440  case ISD::SETUO:
1441  case ISD::SETUEQ:
1442  case ISD::SETUNE:
1443    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1444    break;
1445  }
1446
1447  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1448    const APInt &C2 = N2C->getAPIntValue();
1449    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1450      const APInt &C1 = N1C->getAPIntValue();
1451
1452      switch (Cond) {
1453      default: llvm_unreachable("Unknown integer setcc!");
1454      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1455      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1456      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1457      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1458      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1459      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1460      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1461      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1462      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1463      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1464      }
1465    }
1466  }
1467  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1468    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1469      // No compile time operations on this type yet.
1470      if (N1C->getValueType(0) == MVT::ppcf128)
1471        return SDValue();
1472
1473      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1474      switch (Cond) {
1475      default: break;
1476      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1477                          return getUNDEF(VT);
1478                        // fall through
1479      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1480      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1481                          return getUNDEF(VT);
1482                        // fall through
1483      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1484                                           R==APFloat::cmpLessThan, VT);
1485      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1486                          return getUNDEF(VT);
1487                        // fall through
1488      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1489      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1490                          return getUNDEF(VT);
1491                        // fall through
1492      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1493      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1494                          return getUNDEF(VT);
1495                        // fall through
1496      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1497                                           R==APFloat::cmpEqual, VT);
1498      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1499                          return getUNDEF(VT);
1500                        // fall through
1501      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1502                                           R==APFloat::cmpEqual, VT);
1503      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1504      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1505      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1506                                           R==APFloat::cmpEqual, VT);
1507      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1508      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1509                                           R==APFloat::cmpLessThan, VT);
1510      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1511                                           R==APFloat::cmpUnordered, VT);
1512      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1513      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1514      }
1515    } else {
1516      // Ensure that the constant occurs on the RHS.
1517      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1518    }
1519  }
1520
1521  // Could not fold it.
1522  return SDValue();
1523}
1524
1525/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1526/// use this predicate to simplify operations downstream.
1527bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1528  // This predicate is not safe for vector operations.
1529  if (Op.getValueType().isVector())
1530    return false;
1531
1532  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1533  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1534}
1535
1536/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1537/// this predicate to simplify operations downstream.  Mask is known to be zero
1538/// for bits that V cannot have.
1539bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1540                                     unsigned Depth) const {
1541  APInt KnownZero, KnownOne;
1542  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1543  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1544  return (KnownZero & Mask) == Mask;
1545}
1546
1547/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1548/// known to be either zero or one and return them in the KnownZero/KnownOne
1549/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1550/// processing.
1551void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1552                                     APInt &KnownZero, APInt &KnownOne,
1553                                     unsigned Depth) const {
1554  unsigned BitWidth = Mask.getBitWidth();
1555  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1556         "Mask size mismatches value type size!");
1557
1558  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1559  if (Depth == 6 || Mask == 0)
1560    return;  // Limit search depth.
1561
1562  APInt KnownZero2, KnownOne2;
1563
1564  switch (Op.getOpcode()) {
1565  case ISD::Constant:
1566    // We know all of the bits for a constant!
1567    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1568    KnownZero = ~KnownOne & Mask;
1569    return;
1570  case ISD::AND:
1571    // If either the LHS or the RHS are Zero, the result is zero.
1572    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1573    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1574                      KnownZero2, KnownOne2, Depth+1);
1575    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1576    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1577
1578    // Output known-1 bits are only known if set in both the LHS & RHS.
1579    KnownOne &= KnownOne2;
1580    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1581    KnownZero |= KnownZero2;
1582    return;
1583  case ISD::OR:
1584    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1585    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1586                      KnownZero2, KnownOne2, Depth+1);
1587    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1588    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1589
1590    // Output known-0 bits are only known if clear in both the LHS & RHS.
1591    KnownZero &= KnownZero2;
1592    // Output known-1 are known to be set if set in either the LHS | RHS.
1593    KnownOne |= KnownOne2;
1594    return;
1595  case ISD::XOR: {
1596    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1597    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1598    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1599    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1600
1601    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1602    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1603    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1604    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1605    KnownZero = KnownZeroOut;
1606    return;
1607  }
1608  case ISD::MUL: {
1609    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1610    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1611    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1612    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1613    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1614
1615    // If low bits are zero in either operand, output low known-0 bits.
1616    // Also compute a conserative estimate for high known-0 bits.
1617    // More trickiness is possible, but this is sufficient for the
1618    // interesting case of alignment computation.
1619    KnownOne.clear();
1620    unsigned TrailZ = KnownZero.countTrailingOnes() +
1621                      KnownZero2.countTrailingOnes();
1622    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1623                               KnownZero2.countLeadingOnes(),
1624                               BitWidth) - BitWidth;
1625
1626    TrailZ = std::min(TrailZ, BitWidth);
1627    LeadZ = std::min(LeadZ, BitWidth);
1628    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1629                APInt::getHighBitsSet(BitWidth, LeadZ);
1630    KnownZero &= Mask;
1631    return;
1632  }
1633  case ISD::UDIV: {
1634    // For the purposes of computing leading zeros we can conservatively
1635    // treat a udiv as a logical right shift by the power of 2 known to
1636    // be less than the denominator.
1637    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1638    ComputeMaskedBits(Op.getOperand(0),
1639                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1640    unsigned LeadZ = KnownZero2.countLeadingOnes();
1641
1642    KnownOne2.clear();
1643    KnownZero2.clear();
1644    ComputeMaskedBits(Op.getOperand(1),
1645                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1646    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1647    if (RHSUnknownLeadingOnes != BitWidth)
1648      LeadZ = std::min(BitWidth,
1649                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1650
1651    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1652    return;
1653  }
1654  case ISD::SELECT:
1655    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1656    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1657    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1658    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1659
1660    // Only known if known in both the LHS and RHS.
1661    KnownOne &= KnownOne2;
1662    KnownZero &= KnownZero2;
1663    return;
1664  case ISD::SELECT_CC:
1665    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1666    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1667    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1668    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1669
1670    // Only known if known in both the LHS and RHS.
1671    KnownOne &= KnownOne2;
1672    KnownZero &= KnownZero2;
1673    return;
1674  case ISD::SADDO:
1675  case ISD::UADDO:
1676  case ISD::SSUBO:
1677  case ISD::USUBO:
1678  case ISD::SMULO:
1679  case ISD::UMULO:
1680    if (Op.getResNo() != 1)
1681      return;
1682    // The boolean result conforms to getBooleanContents.  Fall through.
1683  case ISD::SETCC:
1684    // If we know the result of a setcc has the top bits zero, use this info.
1685    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1686        BitWidth > 1)
1687      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1688    return;
1689  case ISD::SHL:
1690    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1691    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1692      unsigned ShAmt = SA->getZExtValue();
1693
1694      // If the shift count is an invalid immediate, don't do anything.
1695      if (ShAmt >= BitWidth)
1696        return;
1697
1698      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1699                        KnownZero, KnownOne, Depth+1);
1700      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1701      KnownZero <<= ShAmt;
1702      KnownOne  <<= ShAmt;
1703      // low bits known zero.
1704      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1705    }
1706    return;
1707  case ISD::SRL:
1708    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1709    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1710      unsigned ShAmt = SA->getZExtValue();
1711
1712      // If the shift count is an invalid immediate, don't do anything.
1713      if (ShAmt >= BitWidth)
1714        return;
1715
1716      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1717                        KnownZero, KnownOne, Depth+1);
1718      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1719      KnownZero = KnownZero.lshr(ShAmt);
1720      KnownOne  = KnownOne.lshr(ShAmt);
1721
1722      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1723      KnownZero |= HighBits;  // High bits known zero.
1724    }
1725    return;
1726  case ISD::SRA:
1727    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1728      unsigned ShAmt = SA->getZExtValue();
1729
1730      // If the shift count is an invalid immediate, don't do anything.
1731      if (ShAmt >= BitWidth)
1732        return;
1733
1734      APInt InDemandedMask = (Mask << ShAmt);
1735      // If any of the demanded bits are produced by the sign extension, we also
1736      // demand the input sign bit.
1737      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1738      if (HighBits.getBoolValue())
1739        InDemandedMask |= APInt::getSignBit(BitWidth);
1740
1741      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1742                        Depth+1);
1743      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1744      KnownZero = KnownZero.lshr(ShAmt);
1745      KnownOne  = KnownOne.lshr(ShAmt);
1746
1747      // Handle the sign bits.
1748      APInt SignBit = APInt::getSignBit(BitWidth);
1749      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1750
1751      if (KnownZero.intersects(SignBit)) {
1752        KnownZero |= HighBits;  // New bits are known zero.
1753      } else if (KnownOne.intersects(SignBit)) {
1754        KnownOne  |= HighBits;  // New bits are known one.
1755      }
1756    }
1757    return;
1758  case ISD::SIGN_EXTEND_INREG: {
1759    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1760    unsigned EBits = EVT.getScalarType().getSizeInBits();
1761
1762    // Sign extension.  Compute the demanded bits in the result that are not
1763    // present in the input.
1764    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1765
1766    APInt InSignBit = APInt::getSignBit(EBits);
1767    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1768
1769    // If the sign extended bits are demanded, we know that the sign
1770    // bit is demanded.
1771    InSignBit.zext(BitWidth);
1772    if (NewBits.getBoolValue())
1773      InputDemandedBits |= InSignBit;
1774
1775    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1776                      KnownZero, KnownOne, Depth+1);
1777    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1778
1779    // If the sign bit of the input is known set or clear, then we know the
1780    // top bits of the result.
1781    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1782      KnownZero |= NewBits;
1783      KnownOne  &= ~NewBits;
1784    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1785      KnownOne  |= NewBits;
1786      KnownZero &= ~NewBits;
1787    } else {                              // Input sign bit unknown
1788      KnownZero &= ~NewBits;
1789      KnownOne  &= ~NewBits;
1790    }
1791    return;
1792  }
1793  case ISD::CTTZ:
1794  case ISD::CTLZ:
1795  case ISD::CTPOP: {
1796    unsigned LowBits = Log2_32(BitWidth)+1;
1797    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1798    KnownOne.clear();
1799    return;
1800  }
1801  case ISD::LOAD: {
1802    if (ISD::isZEXTLoad(Op.getNode())) {
1803      LoadSDNode *LD = cast<LoadSDNode>(Op);
1804      EVT VT = LD->getMemoryVT();
1805      unsigned MemBits = VT.getScalarType().getSizeInBits();
1806      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1807    }
1808    return;
1809  }
1810  case ISD::ZERO_EXTEND: {
1811    EVT InVT = Op.getOperand(0).getValueType();
1812    unsigned InBits = InVT.getScalarType().getSizeInBits();
1813    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1814    APInt InMask    = Mask;
1815    InMask.trunc(InBits);
1816    KnownZero.trunc(InBits);
1817    KnownOne.trunc(InBits);
1818    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1819    KnownZero.zext(BitWidth);
1820    KnownOne.zext(BitWidth);
1821    KnownZero |= NewBits;
1822    return;
1823  }
1824  case ISD::SIGN_EXTEND: {
1825    EVT InVT = Op.getOperand(0).getValueType();
1826    unsigned InBits = InVT.getScalarType().getSizeInBits();
1827    APInt InSignBit = APInt::getSignBit(InBits);
1828    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1829    APInt InMask = Mask;
1830    InMask.trunc(InBits);
1831
1832    // If any of the sign extended bits are demanded, we know that the sign
1833    // bit is demanded. Temporarily set this bit in the mask for our callee.
1834    if (NewBits.getBoolValue())
1835      InMask |= InSignBit;
1836
1837    KnownZero.trunc(InBits);
1838    KnownOne.trunc(InBits);
1839    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1840
1841    // Note if the sign bit is known to be zero or one.
1842    bool SignBitKnownZero = KnownZero.isNegative();
1843    bool SignBitKnownOne  = KnownOne.isNegative();
1844    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1845           "Sign bit can't be known to be both zero and one!");
1846
1847    // If the sign bit wasn't actually demanded by our caller, we don't
1848    // want it set in the KnownZero and KnownOne result values. Reset the
1849    // mask and reapply it to the result values.
1850    InMask = Mask;
1851    InMask.trunc(InBits);
1852    KnownZero &= InMask;
1853    KnownOne  &= InMask;
1854
1855    KnownZero.zext(BitWidth);
1856    KnownOne.zext(BitWidth);
1857
1858    // If the sign bit is known zero or one, the top bits match.
1859    if (SignBitKnownZero)
1860      KnownZero |= NewBits;
1861    else if (SignBitKnownOne)
1862      KnownOne  |= NewBits;
1863    return;
1864  }
1865  case ISD::ANY_EXTEND: {
1866    EVT InVT = Op.getOperand(0).getValueType();
1867    unsigned InBits = InVT.getScalarType().getSizeInBits();
1868    APInt InMask = Mask;
1869    InMask.trunc(InBits);
1870    KnownZero.trunc(InBits);
1871    KnownOne.trunc(InBits);
1872    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1873    KnownZero.zext(BitWidth);
1874    KnownOne.zext(BitWidth);
1875    return;
1876  }
1877  case ISD::TRUNCATE: {
1878    EVT InVT = Op.getOperand(0).getValueType();
1879    unsigned InBits = InVT.getScalarType().getSizeInBits();
1880    APInt InMask = Mask;
1881    InMask.zext(InBits);
1882    KnownZero.zext(InBits);
1883    KnownOne.zext(InBits);
1884    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1885    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1886    KnownZero.trunc(BitWidth);
1887    KnownOne.trunc(BitWidth);
1888    break;
1889  }
1890  case ISD::AssertZext: {
1891    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1892    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1893    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1894                      KnownOne, Depth+1);
1895    KnownZero |= (~InMask) & Mask;
1896    return;
1897  }
1898  case ISD::FGETSIGN:
1899    // All bits are zero except the low bit.
1900    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1901    return;
1902
1903  case ISD::SUB: {
1904    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1905      // We know that the top bits of C-X are clear if X contains less bits
1906      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1907      // positive if we can prove that X is >= 0 and < 16.
1908      if (CLHS->getAPIntValue().isNonNegative()) {
1909        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1910        // NLZ can't be BitWidth with no sign bit
1911        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1912        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1913                          Depth+1);
1914
1915        // If all of the MaskV bits are known to be zero, then we know the
1916        // output top bits are zero, because we now know that the output is
1917        // from [0-C].
1918        if ((KnownZero2 & MaskV) == MaskV) {
1919          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1920          // Top bits known zero.
1921          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1922        }
1923      }
1924    }
1925  }
1926  // fall through
1927  case ISD::ADD: {
1928    // Output known-0 bits are known if clear or set in both the low clear bits
1929    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1930    // low 3 bits clear.
1931    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1932                                       BitWidth - Mask.countLeadingZeros());
1933    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1934    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1935    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1936
1937    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1938    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1939    KnownZeroOut = std::min(KnownZeroOut,
1940                            KnownZero2.countTrailingOnes());
1941
1942    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1943    return;
1944  }
1945  case ISD::SREM:
1946    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1947      const APInt &RA = Rem->getAPIntValue().abs();
1948      if (RA.isPowerOf2()) {
1949        APInt LowBits = RA - 1;
1950        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1951        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1952
1953        // The low bits of the first operand are unchanged by the srem.
1954        KnownZero = KnownZero2 & LowBits;
1955        KnownOne = KnownOne2 & LowBits;
1956
1957        // If the first operand is non-negative or has all low bits zero, then
1958        // the upper bits are all zero.
1959        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1960          KnownZero |= ~LowBits;
1961
1962        // If the first operand is negative and not all low bits are zero, then
1963        // the upper bits are all one.
1964        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1965          KnownOne |= ~LowBits;
1966
1967        KnownZero &= Mask;
1968        KnownOne &= Mask;
1969
1970        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1971      }
1972    }
1973    return;
1974  case ISD::UREM: {
1975    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1976      const APInt &RA = Rem->getAPIntValue();
1977      if (RA.isPowerOf2()) {
1978        APInt LowBits = (RA - 1);
1979        APInt Mask2 = LowBits & Mask;
1980        KnownZero |= ~LowBits & Mask;
1981        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1982        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1983        break;
1984      }
1985    }
1986
1987    // Since the result is less than or equal to either operand, any leading
1988    // zero bits in either operand must also exist in the result.
1989    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1990    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1991                      Depth+1);
1992    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1993                      Depth+1);
1994
1995    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1996                                KnownZero2.countLeadingOnes());
1997    KnownOne.clear();
1998    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1999    return;
2000  }
2001  default:
2002    // Allow the target to implement this method for its nodes.
2003    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2004  case ISD::INTRINSIC_WO_CHAIN:
2005  case ISD::INTRINSIC_W_CHAIN:
2006  case ISD::INTRINSIC_VOID:
2007      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2008                                         Depth);
2009    }
2010    return;
2011  }
2012}
2013
2014/// ComputeNumSignBits - Return the number of times the sign bit of the
2015/// register is replicated into the other bits.  We know that at least 1 bit
2016/// is always equal to the sign bit (itself), but other cases can give us
2017/// information.  For example, immediately after an "SRA X, 2", we know that
2018/// the top 3 bits are all equal to each other, so we return 3.
2019unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2020  EVT VT = Op.getValueType();
2021  assert(VT.isInteger() && "Invalid VT!");
2022  unsigned VTBits = VT.getScalarType().getSizeInBits();
2023  unsigned Tmp, Tmp2;
2024  unsigned FirstAnswer = 1;
2025
2026  if (Depth == 6)
2027    return 1;  // Limit search depth.
2028
2029  switch (Op.getOpcode()) {
2030  default: break;
2031  case ISD::AssertSext:
2032    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2033    return VTBits-Tmp+1;
2034  case ISD::AssertZext:
2035    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2036    return VTBits-Tmp;
2037
2038  case ISD::Constant: {
2039    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2040    // If negative, return # leading ones.
2041    if (Val.isNegative())
2042      return Val.countLeadingOnes();
2043
2044    // Return # leading zeros.
2045    return Val.countLeadingZeros();
2046  }
2047
2048  case ISD::SIGN_EXTEND:
2049    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2050    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2051
2052  case ISD::SIGN_EXTEND_INREG:
2053    // Max of the input and what this extends.
2054    Tmp =
2055      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2056    Tmp = VTBits-Tmp+1;
2057
2058    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2059    return std::max(Tmp, Tmp2);
2060
2061  case ISD::SRA:
2062    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2063    // SRA X, C   -> adds C sign bits.
2064    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2065      Tmp += C->getZExtValue();
2066      if (Tmp > VTBits) Tmp = VTBits;
2067    }
2068    return Tmp;
2069  case ISD::SHL:
2070    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2071      // shl destroys sign bits.
2072      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2073      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2074          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2075      return Tmp - C->getZExtValue();
2076    }
2077    break;
2078  case ISD::AND:
2079  case ISD::OR:
2080  case ISD::XOR:    // NOT is handled here.
2081    // Logical binary ops preserve the number of sign bits at the worst.
2082    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2083    if (Tmp != 1) {
2084      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2085      FirstAnswer = std::min(Tmp, Tmp2);
2086      // We computed what we know about the sign bits as our first
2087      // answer. Now proceed to the generic code that uses
2088      // ComputeMaskedBits, and pick whichever answer is better.
2089    }
2090    break;
2091
2092  case ISD::SELECT:
2093    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2094    if (Tmp == 1) return 1;  // Early out.
2095    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2096    return std::min(Tmp, Tmp2);
2097
2098  case ISD::SADDO:
2099  case ISD::UADDO:
2100  case ISD::SSUBO:
2101  case ISD::USUBO:
2102  case ISD::SMULO:
2103  case ISD::UMULO:
2104    if (Op.getResNo() != 1)
2105      break;
2106    // The boolean result conforms to getBooleanContents.  Fall through.
2107  case ISD::SETCC:
2108    // If setcc returns 0/-1, all bits are sign bits.
2109    if (TLI.getBooleanContents() ==
2110        TargetLowering::ZeroOrNegativeOneBooleanContent)
2111      return VTBits;
2112    break;
2113  case ISD::ROTL:
2114  case ISD::ROTR:
2115    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2116      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2117
2118      // Handle rotate right by N like a rotate left by 32-N.
2119      if (Op.getOpcode() == ISD::ROTR)
2120        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2121
2122      // If we aren't rotating out all of the known-in sign bits, return the
2123      // number that are left.  This handles rotl(sext(x), 1) for example.
2124      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2125      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2126    }
2127    break;
2128  case ISD::ADD:
2129    // Add can have at most one carry bit.  Thus we know that the output
2130    // is, at worst, one more bit than the inputs.
2131    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2132    if (Tmp == 1) return 1;  // Early out.
2133
2134    // Special case decrementing a value (ADD X, -1):
2135    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2136      if (CRHS->isAllOnesValue()) {
2137        APInt KnownZero, KnownOne;
2138        APInt Mask = APInt::getAllOnesValue(VTBits);
2139        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2140
2141        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2142        // sign bits set.
2143        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2144          return VTBits;
2145
2146        // If we are subtracting one from a positive number, there is no carry
2147        // out of the result.
2148        if (KnownZero.isNegative())
2149          return Tmp;
2150      }
2151
2152    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2153    if (Tmp2 == 1) return 1;
2154      return std::min(Tmp, Tmp2)-1;
2155    break;
2156
2157  case ISD::SUB:
2158    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2159    if (Tmp2 == 1) return 1;
2160
2161    // Handle NEG.
2162    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2163      if (CLHS->isNullValue()) {
2164        APInt KnownZero, KnownOne;
2165        APInt Mask = APInt::getAllOnesValue(VTBits);
2166        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2167        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2168        // sign bits set.
2169        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2170          return VTBits;
2171
2172        // If the input is known to be positive (the sign bit is known clear),
2173        // the output of the NEG has the same number of sign bits as the input.
2174        if (KnownZero.isNegative())
2175          return Tmp2;
2176
2177        // Otherwise, we treat this like a SUB.
2178      }
2179
2180    // Sub can have at most one carry bit.  Thus we know that the output
2181    // is, at worst, one more bit than the inputs.
2182    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2183    if (Tmp == 1) return 1;  // Early out.
2184      return std::min(Tmp, Tmp2)-1;
2185    break;
2186  case ISD::TRUNCATE:
2187    // FIXME: it's tricky to do anything useful for this, but it is an important
2188    // case for targets like X86.
2189    break;
2190  }
2191
2192  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2193  if (Op.getOpcode() == ISD::LOAD) {
2194    LoadSDNode *LD = cast<LoadSDNode>(Op);
2195    unsigned ExtType = LD->getExtensionType();
2196    switch (ExtType) {
2197    default: break;
2198    case ISD::SEXTLOAD:    // '17' bits known
2199      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2200      return VTBits-Tmp+1;
2201    case ISD::ZEXTLOAD:    // '16' bits known
2202      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2203      return VTBits-Tmp;
2204    }
2205  }
2206
2207  // Allow the target to implement this method for its nodes.
2208  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2209      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2210      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2211      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2212    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2213    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2214  }
2215
2216  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2217  // use this information.
2218  APInt KnownZero, KnownOne;
2219  APInt Mask = APInt::getAllOnesValue(VTBits);
2220  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2221
2222  if (KnownZero.isNegative()) {        // sign bit is 0
2223    Mask = KnownZero;
2224  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2225    Mask = KnownOne;
2226  } else {
2227    // Nothing known.
2228    return FirstAnswer;
2229  }
2230
2231  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2232  // the number of identical bits in the top of the input value.
2233  Mask = ~Mask;
2234  Mask <<= Mask.getBitWidth()-VTBits;
2235  // Return # leading zeros.  We use 'min' here in case Val was zero before
2236  // shifting.  We don't want to return '64' as for an i32 "0".
2237  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2238}
2239
2240bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2241  // If we're told that NaNs won't happen, assume they won't.
2242  if (FiniteOnlyFPMath())
2243    return true;
2244
2245  // If the value is a constant, we can obviously see if it is a NaN or not.
2246  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2247    return !C->getValueAPF().isNaN();
2248
2249  // TODO: Recognize more cases here.
2250
2251  return false;
2252}
2253
2254bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2255  // If the value is a constant, we can obviously see if it is a zero or not.
2256  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2257    return !C->isZero();
2258
2259  // TODO: Recognize more cases here.
2260
2261  return false;
2262}
2263
2264bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2265  // Check the obvious case.
2266  if (A == B) return true;
2267
2268  // For for negative and positive zero.
2269  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2270    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2271      if (CA->isZero() && CB->isZero()) return true;
2272
2273  // Otherwise they may not be equal.
2274  return false;
2275}
2276
2277bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2278  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2279  if (!GA) return false;
2280  if (GA->getOffset() != 0) return false;
2281  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2282  if (!GV) return false;
2283  return MF->getMMI().hasDebugInfo();
2284}
2285
2286
2287/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2288/// element of the result of the vector shuffle.
2289SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2290                                          unsigned i) {
2291  EVT VT = N->getValueType(0);
2292  DebugLoc dl = N->getDebugLoc();
2293  if (N->getMaskElt(i) < 0)
2294    return getUNDEF(VT.getVectorElementType());
2295  unsigned Index = N->getMaskElt(i);
2296  unsigned NumElems = VT.getVectorNumElements();
2297  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2298  Index %= NumElems;
2299
2300  if (V.getOpcode() == ISD::BIT_CONVERT) {
2301    V = V.getOperand(0);
2302    EVT VVT = V.getValueType();
2303    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2304      return SDValue();
2305  }
2306  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2307    return (Index == 0) ? V.getOperand(0)
2308                      : getUNDEF(VT.getVectorElementType());
2309  if (V.getOpcode() == ISD::BUILD_VECTOR)
2310    return V.getOperand(Index);
2311  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2312    return getShuffleScalarElt(SVN, Index);
2313  return SDValue();
2314}
2315
2316
2317/// getNode - Gets or creates the specified node.
2318///
2319SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2320  FoldingSetNodeID ID;
2321  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2322  void *IP = 0;
2323  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2324    return SDValue(E, 0);
2325
2326  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2327  CSEMap.InsertNode(N, IP);
2328
2329  AllNodes.push_back(N);
2330#ifndef NDEBUG
2331  VerifyNode(N);
2332#endif
2333  return SDValue(N, 0);
2334}
2335
2336SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2337                              EVT VT, SDValue Operand) {
2338  // Constant fold unary operations with an integer constant operand.
2339  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2340    const APInt &Val = C->getAPIntValue();
2341    switch (Opcode) {
2342    default: break;
2343    case ISD::SIGN_EXTEND:
2344      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2345    case ISD::ANY_EXTEND:
2346    case ISD::ZERO_EXTEND:
2347    case ISD::TRUNCATE:
2348      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2349    case ISD::UINT_TO_FP:
2350    case ISD::SINT_TO_FP: {
2351      const uint64_t zero[] = {0, 0};
2352      // No compile time operations on ppcf128.
2353      if (VT == MVT::ppcf128) break;
2354      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2355      (void)apf.convertFromAPInt(Val,
2356                                 Opcode==ISD::SINT_TO_FP,
2357                                 APFloat::rmNearestTiesToEven);
2358      return getConstantFP(apf, VT);
2359    }
2360    case ISD::BIT_CONVERT:
2361      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2362        return getConstantFP(Val.bitsToFloat(), VT);
2363      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2364        return getConstantFP(Val.bitsToDouble(), VT);
2365      break;
2366    case ISD::BSWAP:
2367      return getConstant(Val.byteSwap(), VT);
2368    case ISD::CTPOP:
2369      return getConstant(Val.countPopulation(), VT);
2370    case ISD::CTLZ:
2371      return getConstant(Val.countLeadingZeros(), VT);
2372    case ISD::CTTZ:
2373      return getConstant(Val.countTrailingZeros(), VT);
2374    }
2375  }
2376
2377  // Constant fold unary operations with a floating point constant operand.
2378  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2379    APFloat V = C->getValueAPF();    // make copy
2380    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2381      switch (Opcode) {
2382      case ISD::FNEG:
2383        V.changeSign();
2384        return getConstantFP(V, VT);
2385      case ISD::FABS:
2386        V.clearSign();
2387        return getConstantFP(V, VT);
2388      case ISD::FP_ROUND:
2389      case ISD::FP_EXTEND: {
2390        bool ignored;
2391        // This can return overflow, underflow, or inexact; we don't care.
2392        // FIXME need to be more flexible about rounding mode.
2393        (void)V.convert(*EVTToAPFloatSemantics(VT),
2394                        APFloat::rmNearestTiesToEven, &ignored);
2395        return getConstantFP(V, VT);
2396      }
2397      case ISD::FP_TO_SINT:
2398      case ISD::FP_TO_UINT: {
2399        integerPart x[2];
2400        bool ignored;
2401        assert(integerPartWidth >= 64);
2402        // FIXME need to be more flexible about rounding mode.
2403        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2404                              Opcode==ISD::FP_TO_SINT,
2405                              APFloat::rmTowardZero, &ignored);
2406        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2407          break;
2408        APInt api(VT.getSizeInBits(), 2, x);
2409        return getConstant(api, VT);
2410      }
2411      case ISD::BIT_CONVERT:
2412        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2413          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2414        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2415          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2416        break;
2417      }
2418    }
2419  }
2420
2421  unsigned OpOpcode = Operand.getNode()->getOpcode();
2422  switch (Opcode) {
2423  case ISD::TokenFactor:
2424  case ISD::MERGE_VALUES:
2425  case ISD::CONCAT_VECTORS:
2426    return Operand;         // Factor, merge or concat of one node?  No need.
2427  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2428  case ISD::FP_EXTEND:
2429    assert(VT.isFloatingPoint() &&
2430           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2431    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2432    assert((!VT.isVector() ||
2433            VT.getVectorNumElements() ==
2434            Operand.getValueType().getVectorNumElements()) &&
2435           "Vector element count mismatch!");
2436    if (Operand.getOpcode() == ISD::UNDEF)
2437      return getUNDEF(VT);
2438    break;
2439  case ISD::SIGN_EXTEND:
2440    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2441           "Invalid SIGN_EXTEND!");
2442    if (Operand.getValueType() == VT) return Operand;   // noop extension
2443    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2444           "Invalid sext node, dst < src!");
2445    assert((!VT.isVector() ||
2446            VT.getVectorNumElements() ==
2447            Operand.getValueType().getVectorNumElements()) &&
2448           "Vector element count mismatch!");
2449    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2450      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2451    break;
2452  case ISD::ZERO_EXTEND:
2453    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2454           "Invalid ZERO_EXTEND!");
2455    if (Operand.getValueType() == VT) return Operand;   // noop extension
2456    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2457           "Invalid zext node, dst < src!");
2458    assert((!VT.isVector() ||
2459            VT.getVectorNumElements() ==
2460            Operand.getValueType().getVectorNumElements()) &&
2461           "Vector element count mismatch!");
2462    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2463      return getNode(ISD::ZERO_EXTEND, DL, VT,
2464                     Operand.getNode()->getOperand(0));
2465    break;
2466  case ISD::ANY_EXTEND:
2467    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2468           "Invalid ANY_EXTEND!");
2469    if (Operand.getValueType() == VT) return Operand;   // noop extension
2470    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2471           "Invalid anyext node, dst < src!");
2472    assert((!VT.isVector() ||
2473            VT.getVectorNumElements() ==
2474            Operand.getValueType().getVectorNumElements()) &&
2475           "Vector element count mismatch!");
2476    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2477      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2478      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2479    break;
2480  case ISD::TRUNCATE:
2481    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2482           "Invalid TRUNCATE!");
2483    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2484    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2485           "Invalid truncate node, src < dst!");
2486    assert((!VT.isVector() ||
2487            VT.getVectorNumElements() ==
2488            Operand.getValueType().getVectorNumElements()) &&
2489           "Vector element count mismatch!");
2490    if (OpOpcode == ISD::TRUNCATE)
2491      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2492    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2493             OpOpcode == ISD::ANY_EXTEND) {
2494      // If the source is smaller than the dest, we still need an extend.
2495      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2496            .bitsLT(VT.getScalarType()))
2497        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2498      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2499        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2500      else
2501        return Operand.getNode()->getOperand(0);
2502    }
2503    break;
2504  case ISD::BIT_CONVERT:
2505    // Basic sanity checking.
2506    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2507           && "Cannot BIT_CONVERT between types of different sizes!");
2508    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2509    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2510      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2511    if (OpOpcode == ISD::UNDEF)
2512      return getUNDEF(VT);
2513    break;
2514  case ISD::SCALAR_TO_VECTOR:
2515    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2516           (VT.getVectorElementType() == Operand.getValueType() ||
2517            (VT.getVectorElementType().isInteger() &&
2518             Operand.getValueType().isInteger() &&
2519             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2520           "Illegal SCALAR_TO_VECTOR node!");
2521    if (OpOpcode == ISD::UNDEF)
2522      return getUNDEF(VT);
2523    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2524    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2525        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2526        Operand.getConstantOperandVal(1) == 0 &&
2527        Operand.getOperand(0).getValueType() == VT)
2528      return Operand.getOperand(0);
2529    break;
2530  case ISD::FNEG:
2531    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2532    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2533      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2534                     Operand.getNode()->getOperand(0));
2535    if (OpOpcode == ISD::FNEG)  // --X -> X
2536      return Operand.getNode()->getOperand(0);
2537    break;
2538  case ISD::FABS:
2539    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2540      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2541    break;
2542  }
2543
2544  SDNode *N;
2545  SDVTList VTs = getVTList(VT);
2546  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2547    FoldingSetNodeID ID;
2548    SDValue Ops[1] = { Operand };
2549    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2550    void *IP = 0;
2551    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2552      return SDValue(E, 0);
2553
2554    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2555    CSEMap.InsertNode(N, IP);
2556  } else {
2557    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2558  }
2559
2560  AllNodes.push_back(N);
2561#ifndef NDEBUG
2562  VerifyNode(N);
2563#endif
2564  return SDValue(N, 0);
2565}
2566
2567SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2568                                             EVT VT,
2569                                             ConstantSDNode *Cst1,
2570                                             ConstantSDNode *Cst2) {
2571  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2572
2573  switch (Opcode) {
2574  case ISD::ADD:  return getConstant(C1 + C2, VT);
2575  case ISD::SUB:  return getConstant(C1 - C2, VT);
2576  case ISD::MUL:  return getConstant(C1 * C2, VT);
2577  case ISD::UDIV:
2578    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2579    break;
2580  case ISD::UREM:
2581    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2582    break;
2583  case ISD::SDIV:
2584    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2585    break;
2586  case ISD::SREM:
2587    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2588    break;
2589  case ISD::AND:  return getConstant(C1 & C2, VT);
2590  case ISD::OR:   return getConstant(C1 | C2, VT);
2591  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2592  case ISD::SHL:  return getConstant(C1 << C2, VT);
2593  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2594  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2595  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2596  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2597  default: break;
2598  }
2599
2600  return SDValue();
2601}
2602
2603SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2604                              SDValue N1, SDValue N2) {
2605  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2606  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2607  switch (Opcode) {
2608  default: break;
2609  case ISD::TokenFactor:
2610    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2611           N2.getValueType() == MVT::Other && "Invalid token factor!");
2612    // Fold trivial token factors.
2613    if (N1.getOpcode() == ISD::EntryToken) return N2;
2614    if (N2.getOpcode() == ISD::EntryToken) return N1;
2615    if (N1 == N2) return N1;
2616    break;
2617  case ISD::CONCAT_VECTORS:
2618    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2619    // one big BUILD_VECTOR.
2620    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2621        N2.getOpcode() == ISD::BUILD_VECTOR) {
2622      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2623      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2624      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2625    }
2626    break;
2627  case ISD::AND:
2628    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2629           N1.getValueType() == VT && "Binary operator types must match!");
2630    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2631    // worth handling here.
2632    if (N2C && N2C->isNullValue())
2633      return N2;
2634    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2635      return N1;
2636    break;
2637  case ISD::OR:
2638  case ISD::XOR:
2639  case ISD::ADD:
2640  case ISD::SUB:
2641    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2642           N1.getValueType() == VT && "Binary operator types must match!");
2643    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2644    // it's worth handling here.
2645    if (N2C && N2C->isNullValue())
2646      return N1;
2647    break;
2648  case ISD::UDIV:
2649  case ISD::UREM:
2650  case ISD::MULHU:
2651  case ISD::MULHS:
2652  case ISD::MUL:
2653  case ISD::SDIV:
2654  case ISD::SREM:
2655    assert(VT.isInteger() && "This operator does not apply to FP types!");
2656    // fall through
2657  case ISD::FADD:
2658  case ISD::FSUB:
2659  case ISD::FMUL:
2660  case ISD::FDIV:
2661  case ISD::FREM:
2662    if (UnsafeFPMath) {
2663      if (Opcode == ISD::FADD) {
2664        // 0+x --> x
2665        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2666          if (CFP->getValueAPF().isZero())
2667            return N2;
2668        // x+0 --> x
2669        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2670          if (CFP->getValueAPF().isZero())
2671            return N1;
2672      } else if (Opcode == ISD::FSUB) {
2673        // x-0 --> x
2674        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2675          if (CFP->getValueAPF().isZero())
2676            return N1;
2677      }
2678    }
2679    assert(N1.getValueType() == N2.getValueType() &&
2680           N1.getValueType() == VT && "Binary operator types must match!");
2681    break;
2682  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2683    assert(N1.getValueType() == VT &&
2684           N1.getValueType().isFloatingPoint() &&
2685           N2.getValueType().isFloatingPoint() &&
2686           "Invalid FCOPYSIGN!");
2687    break;
2688  case ISD::SHL:
2689  case ISD::SRA:
2690  case ISD::SRL:
2691  case ISD::ROTL:
2692  case ISD::ROTR:
2693    assert(VT == N1.getValueType() &&
2694           "Shift operators return type must be the same as their first arg");
2695    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2696           "Shifts only work on integers");
2697
2698    // Always fold shifts of i1 values so the code generator doesn't need to
2699    // handle them.  Since we know the size of the shift has to be less than the
2700    // size of the value, the shift/rotate count is guaranteed to be zero.
2701    if (VT == MVT::i1)
2702      return N1;
2703    if (N2C && N2C->isNullValue())
2704      return N1;
2705    break;
2706  case ISD::FP_ROUND_INREG: {
2707    EVT EVT = cast<VTSDNode>(N2)->getVT();
2708    assert(VT == N1.getValueType() && "Not an inreg round!");
2709    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2710           "Cannot FP_ROUND_INREG integer types");
2711    assert(EVT.isVector() == VT.isVector() &&
2712           "FP_ROUND_INREG type should be vector iff the operand "
2713           "type is vector!");
2714    assert((!EVT.isVector() ||
2715            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2716           "Vector element counts must match in FP_ROUND_INREG");
2717    assert(EVT.bitsLE(VT) && "Not rounding down!");
2718    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2719    break;
2720  }
2721  case ISD::FP_ROUND:
2722    assert(VT.isFloatingPoint() &&
2723           N1.getValueType().isFloatingPoint() &&
2724           VT.bitsLE(N1.getValueType()) &&
2725           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2726    if (N1.getValueType() == VT) return N1;  // noop conversion.
2727    break;
2728  case ISD::AssertSext:
2729  case ISD::AssertZext: {
2730    EVT EVT = cast<VTSDNode>(N2)->getVT();
2731    assert(VT == N1.getValueType() && "Not an inreg extend!");
2732    assert(VT.isInteger() && EVT.isInteger() &&
2733           "Cannot *_EXTEND_INREG FP types");
2734    assert(!EVT.isVector() &&
2735           "AssertSExt/AssertZExt type should be the vector element type "
2736           "rather than the vector type!");
2737    assert(EVT.bitsLE(VT) && "Not extending!");
2738    if (VT == EVT) return N1; // noop assertion.
2739    break;
2740  }
2741  case ISD::SIGN_EXTEND_INREG: {
2742    EVT EVT = cast<VTSDNode>(N2)->getVT();
2743    assert(VT == N1.getValueType() && "Not an inreg extend!");
2744    assert(VT.isInteger() && EVT.isInteger() &&
2745           "Cannot *_EXTEND_INREG FP types");
2746    assert(EVT.isVector() == VT.isVector() &&
2747           "SIGN_EXTEND_INREG type should be vector iff the operand "
2748           "type is vector!");
2749    assert((!EVT.isVector() ||
2750            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2751           "Vector element counts must match in SIGN_EXTEND_INREG");
2752    assert(EVT.bitsLE(VT) && "Not extending!");
2753    if (EVT == VT) return N1;  // Not actually extending
2754
2755    if (N1C) {
2756      APInt Val = N1C->getAPIntValue();
2757      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2758      Val <<= Val.getBitWidth()-FromBits;
2759      Val = Val.ashr(Val.getBitWidth()-FromBits);
2760      return getConstant(Val, VT);
2761    }
2762    break;
2763  }
2764  case ISD::EXTRACT_VECTOR_ELT:
2765    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2766    if (N1.getOpcode() == ISD::UNDEF)
2767      return getUNDEF(VT);
2768
2769    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2770    // expanding copies of large vectors from registers.
2771    if (N2C &&
2772        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2773        N1.getNumOperands() > 0) {
2774      unsigned Factor =
2775        N1.getOperand(0).getValueType().getVectorNumElements();
2776      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2777                     N1.getOperand(N2C->getZExtValue() / Factor),
2778                     getConstant(N2C->getZExtValue() % Factor,
2779                                 N2.getValueType()));
2780    }
2781
2782    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2783    // expanding large vector constants.
2784    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2785      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2786      EVT VEltTy = N1.getValueType().getVectorElementType();
2787      if (Elt.getValueType() != VEltTy) {
2788        // If the vector element type is not legal, the BUILD_VECTOR operands
2789        // are promoted and implicitly truncated.  Make that explicit here.
2790        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2791      }
2792      if (VT != VEltTy) {
2793        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2794        // result is implicitly extended.
2795        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2796      }
2797      return Elt;
2798    }
2799
2800    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2801    // operations are lowered to scalars.
2802    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2803      // If the indices are the same, return the inserted element else
2804      // if the indices are known different, extract the element from
2805      // the original vector.
2806      SDValue N1Op2 = N1.getOperand(2);
2807      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2808
2809      if (N1Op2C && N2C) {
2810        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2811          if (VT == N1.getOperand(1).getValueType())
2812            return N1.getOperand(1);
2813          else
2814            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2815        }
2816
2817        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2818      }
2819    }
2820    break;
2821  case ISD::EXTRACT_ELEMENT:
2822    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2823    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2824           (N1.getValueType().isInteger() == VT.isInteger()) &&
2825           "Wrong types for EXTRACT_ELEMENT!");
2826
2827    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2828    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2829    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2830    if (N1.getOpcode() == ISD::BUILD_PAIR)
2831      return N1.getOperand(N2C->getZExtValue());
2832
2833    // EXTRACT_ELEMENT of a constant int is also very common.
2834    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2835      unsigned ElementSize = VT.getSizeInBits();
2836      unsigned Shift = ElementSize * N2C->getZExtValue();
2837      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2838      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2839    }
2840    break;
2841  case ISD::EXTRACT_SUBVECTOR:
2842    if (N1.getValueType() == VT) // Trivial extraction.
2843      return N1;
2844    break;
2845  }
2846
2847  if (N1C) {
2848    if (N2C) {
2849      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2850      if (SV.getNode()) return SV;
2851    } else {      // Cannonicalize constant to RHS if commutative
2852      if (isCommutativeBinOp(Opcode)) {
2853        std::swap(N1C, N2C);
2854        std::swap(N1, N2);
2855      }
2856    }
2857  }
2858
2859  // Constant fold FP operations.
2860  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2861  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2862  if (N1CFP) {
2863    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2864      // Cannonicalize constant to RHS if commutative
2865      std::swap(N1CFP, N2CFP);
2866      std::swap(N1, N2);
2867    } else if (N2CFP && VT != MVT::ppcf128) {
2868      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2869      APFloat::opStatus s;
2870      switch (Opcode) {
2871      case ISD::FADD:
2872        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2873        if (s != APFloat::opInvalidOp)
2874          return getConstantFP(V1, VT);
2875        break;
2876      case ISD::FSUB:
2877        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2878        if (s!=APFloat::opInvalidOp)
2879          return getConstantFP(V1, VT);
2880        break;
2881      case ISD::FMUL:
2882        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2883        if (s!=APFloat::opInvalidOp)
2884          return getConstantFP(V1, VT);
2885        break;
2886      case ISD::FDIV:
2887        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2888        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2889          return getConstantFP(V1, VT);
2890        break;
2891      case ISD::FREM :
2892        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2893        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2894          return getConstantFP(V1, VT);
2895        break;
2896      case ISD::FCOPYSIGN:
2897        V1.copySign(V2);
2898        return getConstantFP(V1, VT);
2899      default: break;
2900      }
2901    }
2902  }
2903
2904  // Canonicalize an UNDEF to the RHS, even over a constant.
2905  if (N1.getOpcode() == ISD::UNDEF) {
2906    if (isCommutativeBinOp(Opcode)) {
2907      std::swap(N1, N2);
2908    } else {
2909      switch (Opcode) {
2910      case ISD::FP_ROUND_INREG:
2911      case ISD::SIGN_EXTEND_INREG:
2912      case ISD::SUB:
2913      case ISD::FSUB:
2914      case ISD::FDIV:
2915      case ISD::FREM:
2916      case ISD::SRA:
2917        return N1;     // fold op(undef, arg2) -> undef
2918      case ISD::UDIV:
2919      case ISD::SDIV:
2920      case ISD::UREM:
2921      case ISD::SREM:
2922      case ISD::SRL:
2923      case ISD::SHL:
2924        if (!VT.isVector())
2925          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2926        // For vectors, we can't easily build an all zero vector, just return
2927        // the LHS.
2928        return N2;
2929      }
2930    }
2931  }
2932
2933  // Fold a bunch of operators when the RHS is undef.
2934  if (N2.getOpcode() == ISD::UNDEF) {
2935    switch (Opcode) {
2936    case ISD::XOR:
2937      if (N1.getOpcode() == ISD::UNDEF)
2938        // Handle undef ^ undef -> 0 special case. This is a common
2939        // idiom (misuse).
2940        return getConstant(0, VT);
2941      // fallthrough
2942    case ISD::ADD:
2943    case ISD::ADDC:
2944    case ISD::ADDE:
2945    case ISD::SUB:
2946    case ISD::UDIV:
2947    case ISD::SDIV:
2948    case ISD::UREM:
2949    case ISD::SREM:
2950      return N2;       // fold op(arg1, undef) -> undef
2951    case ISD::FADD:
2952    case ISD::FSUB:
2953    case ISD::FMUL:
2954    case ISD::FDIV:
2955    case ISD::FREM:
2956      if (UnsafeFPMath)
2957        return N2;
2958      break;
2959    case ISD::MUL:
2960    case ISD::AND:
2961    case ISD::SRL:
2962    case ISD::SHL:
2963      if (!VT.isVector())
2964        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2965      // For vectors, we can't easily build an all zero vector, just return
2966      // the LHS.
2967      return N1;
2968    case ISD::OR:
2969      if (!VT.isVector())
2970        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2971      // For vectors, we can't easily build an all one vector, just return
2972      // the LHS.
2973      return N1;
2974    case ISD::SRA:
2975      return N1;
2976    }
2977  }
2978
2979  // Memoize this node if possible.
2980  SDNode *N;
2981  SDVTList VTs = getVTList(VT);
2982  if (VT != MVT::Flag) {
2983    SDValue Ops[] = { N1, N2 };
2984    FoldingSetNodeID ID;
2985    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2986    void *IP = 0;
2987    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2988      return SDValue(E, 0);
2989
2990    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2991    CSEMap.InsertNode(N, IP);
2992  } else {
2993    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2994  }
2995
2996  AllNodes.push_back(N);
2997#ifndef NDEBUG
2998  VerifyNode(N);
2999#endif
3000  return SDValue(N, 0);
3001}
3002
3003SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3004                              SDValue N1, SDValue N2, SDValue N3) {
3005  // Perform various simplifications.
3006  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3007  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
3008  switch (Opcode) {
3009  case ISD::CONCAT_VECTORS:
3010    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3011    // one big BUILD_VECTOR.
3012    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3013        N2.getOpcode() == ISD::BUILD_VECTOR &&
3014        N3.getOpcode() == ISD::BUILD_VECTOR) {
3015      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
3016      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
3017      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
3018      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3019    }
3020    break;
3021  case ISD::SETCC: {
3022    // Use FoldSetCC to simplify SETCC's.
3023    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3024    if (Simp.getNode()) return Simp;
3025    break;
3026  }
3027  case ISD::SELECT:
3028    if (N1C) {
3029     if (N1C->getZExtValue())
3030        return N2;             // select true, X, Y -> X
3031      else
3032        return N3;             // select false, X, Y -> Y
3033    }
3034
3035    if (N2 == N3) return N2;   // select C, X, X -> X
3036    break;
3037  case ISD::BRCOND:
3038    if (N2C) {
3039      if (N2C->getZExtValue()) // Unconditional branch
3040        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3041      else
3042        return N1;         // Never-taken branch
3043    }
3044    break;
3045  case ISD::VECTOR_SHUFFLE:
3046    llvm_unreachable("should use getVectorShuffle constructor!");
3047    break;
3048  case ISD::BIT_CONVERT:
3049    // Fold bit_convert nodes from a type to themselves.
3050    if (N1.getValueType() == VT)
3051      return N1;
3052    break;
3053  }
3054
3055  // Memoize node if it doesn't produce a flag.
3056  SDNode *N;
3057  SDVTList VTs = getVTList(VT);
3058  if (VT != MVT::Flag) {
3059    SDValue Ops[] = { N1, N2, N3 };
3060    FoldingSetNodeID ID;
3061    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3062    void *IP = 0;
3063    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3064      return SDValue(E, 0);
3065
3066    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3067    CSEMap.InsertNode(N, IP);
3068  } else {
3069    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3070  }
3071
3072  AllNodes.push_back(N);
3073#ifndef NDEBUG
3074  VerifyNode(N);
3075#endif
3076  return SDValue(N, 0);
3077}
3078
3079SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3080                              SDValue N1, SDValue N2, SDValue N3,
3081                              SDValue N4) {
3082  SDValue Ops[] = { N1, N2, N3, N4 };
3083  return getNode(Opcode, DL, VT, Ops, 4);
3084}
3085
3086SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3087                              SDValue N1, SDValue N2, SDValue N3,
3088                              SDValue N4, SDValue N5) {
3089  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3090  return getNode(Opcode, DL, VT, Ops, 5);
3091}
3092
3093/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3094/// the incoming stack arguments to be loaded from the stack.
3095SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3096  SmallVector<SDValue, 8> ArgChains;
3097
3098  // Include the original chain at the beginning of the list. When this is
3099  // used by target LowerCall hooks, this helps legalize find the
3100  // CALLSEQ_BEGIN node.
3101  ArgChains.push_back(Chain);
3102
3103  // Add a chain value for each stack argument.
3104  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3105       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3106    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3107      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3108        if (FI->getIndex() < 0)
3109          ArgChains.push_back(SDValue(L, 1));
3110
3111  // Build a tokenfactor for all the chains.
3112  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3113                 &ArgChains[0], ArgChains.size());
3114}
3115
3116/// getMemsetValue - Vectorized representation of the memset value
3117/// operand.
3118static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3119                              DebugLoc dl) {
3120  assert(Value.getOpcode() != ISD::UNDEF);
3121
3122  unsigned NumBits = VT.getScalarType().getSizeInBits();
3123  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3124    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3125    unsigned Shift = 8;
3126    for (unsigned i = NumBits; i > 8; i >>= 1) {
3127      Val = (Val << Shift) | Val;
3128      Shift <<= 1;
3129    }
3130    if (VT.isInteger())
3131      return DAG.getConstant(Val, VT);
3132    return DAG.getConstantFP(APFloat(Val), VT);
3133  }
3134
3135  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3136  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3137  unsigned Shift = 8;
3138  for (unsigned i = NumBits; i > 8; i >>= 1) {
3139    Value = DAG.getNode(ISD::OR, dl, VT,
3140                        DAG.getNode(ISD::SHL, dl, VT, Value,
3141                                    DAG.getConstant(Shift,
3142                                                    TLI.getShiftAmountTy())),
3143                        Value);
3144    Shift <<= 1;
3145  }
3146
3147  return Value;
3148}
3149
3150/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3151/// used when a memcpy is turned into a memset when the source is a constant
3152/// string ptr.
3153static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3154                                  const TargetLowering &TLI,
3155                                  std::string &Str, unsigned Offset) {
3156  // Handle vector with all elements zero.
3157  if (Str.empty()) {
3158    if (VT.isInteger())
3159      return DAG.getConstant(0, VT);
3160    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3161             VT.getSimpleVT().SimpleTy == MVT::f64)
3162      return DAG.getConstantFP(0.0, VT);
3163    else if (VT.isVector()) {
3164      unsigned NumElts = VT.getVectorNumElements();
3165      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3166      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3167                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3168                                                             EltVT, NumElts)));
3169    } else
3170      llvm_unreachable("Expected type!");
3171  }
3172
3173  assert(!VT.isVector() && "Can't handle vector type here!");
3174  unsigned NumBits = VT.getSizeInBits();
3175  unsigned MSB = NumBits / 8;
3176  uint64_t Val = 0;
3177  if (TLI.isLittleEndian())
3178    Offset = Offset + MSB - 1;
3179  for (unsigned i = 0; i != MSB; ++i) {
3180    Val = (Val << 8) | (unsigned char)Str[Offset];
3181    Offset += TLI.isLittleEndian() ? -1 : 1;
3182  }
3183  return DAG.getConstant(Val, VT);
3184}
3185
3186/// getMemBasePlusOffset - Returns base and offset node for the
3187///
3188static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3189                                      SelectionDAG &DAG) {
3190  EVT VT = Base.getValueType();
3191  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3192                     VT, Base, DAG.getConstant(Offset, VT));
3193}
3194
3195/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3196///
3197static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3198  unsigned SrcDelta = 0;
3199  GlobalAddressSDNode *G = NULL;
3200  if (Src.getOpcode() == ISD::GlobalAddress)
3201    G = cast<GlobalAddressSDNode>(Src);
3202  else if (Src.getOpcode() == ISD::ADD &&
3203           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3204           Src.getOperand(1).getOpcode() == ISD::Constant) {
3205    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3206    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3207  }
3208  if (!G)
3209    return false;
3210
3211  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3212  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3213    return true;
3214
3215  return false;
3216}
3217
3218/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3219/// to replace the memset / memcpy. Return true if the number of memory ops
3220/// is below the threshold. It returns the types of the sequence of
3221/// memory ops to perform memset / memcpy by reference.
3222static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3223                                     unsigned Limit, uint64_t Size,
3224                                     unsigned DstAlign, unsigned SrcAlign,
3225                                     bool NonScalarIntSafe,
3226                                     bool MemcpyStrSrc,
3227                                     SelectionDAG &DAG,
3228                                     const TargetLowering &TLI) {
3229  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3230         "Expecting memcpy / memset source to meet alignment requirement!");
3231  // If 'SrcAlign' is zero, that means the memory operation does not need load
3232  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3233  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3234  // specified alignment of the memory operation. If it is zero, that means
3235  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3236  // indicates whether the memcpy source is constant so it does not need to be
3237  // loaded.
3238  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3239                                   NonScalarIntSafe, MemcpyStrSrc,
3240                                   DAG.getMachineFunction());
3241
3242  if (VT == MVT::Other) {
3243    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3244        TLI.allowsUnalignedMemoryAccesses(VT)) {
3245      VT = TLI.getPointerTy();
3246    } else {
3247      switch (DstAlign & 7) {
3248      case 0:  VT = MVT::i64; break;
3249      case 4:  VT = MVT::i32; break;
3250      case 2:  VT = MVT::i16; break;
3251      default: VT = MVT::i8;  break;
3252      }
3253    }
3254
3255    MVT LVT = MVT::i64;
3256    while (!TLI.isTypeLegal(LVT))
3257      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3258    assert(LVT.isInteger());
3259
3260    if (VT.bitsGT(LVT))
3261      VT = LVT;
3262  }
3263
3264  unsigned NumMemOps = 0;
3265  while (Size != 0) {
3266    unsigned VTSize = VT.getSizeInBits() / 8;
3267    while (VTSize > Size) {
3268      // For now, only use non-vector load / store's for the left-over pieces.
3269      if (VT.isVector() || VT.isFloatingPoint()) {
3270        VT = MVT::i64;
3271        while (!TLI.isTypeLegal(VT))
3272          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3273        VTSize = VT.getSizeInBits() / 8;
3274      } else {
3275        // This can result in a type that is not legal on the target, e.g.
3276        // 1 or 2 bytes on PPC.
3277        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3278        VTSize >>= 1;
3279      }
3280    }
3281
3282    if (++NumMemOps > Limit)
3283      return false;
3284    MemOps.push_back(VT);
3285    Size -= VTSize;
3286  }
3287
3288  return true;
3289}
3290
3291static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3292                                       SDValue Chain, SDValue Dst,
3293                                       SDValue Src, uint64_t Size,
3294                                       unsigned Align, bool isVol,
3295                                       bool AlwaysInline,
3296                                       const Value *DstSV, uint64_t DstSVOff,
3297                                       const Value *SrcSV, uint64_t SrcSVOff) {
3298  // Turn a memcpy of undef to nop.
3299  if (Src.getOpcode() == ISD::UNDEF)
3300    return Chain;
3301
3302  // Expand memcpy to a series of load and store ops if the size operand falls
3303  // below a certain threshold.
3304  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3305  std::vector<EVT> MemOps;
3306  bool DstAlignCanChange = false;
3307  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3308  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3309  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3310    DstAlignCanChange = true;
3311  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3312  if (Align > SrcAlign)
3313    SrcAlign = Align;
3314  std::string Str;
3315  bool CopyFromStr = isMemSrcFromString(Src, Str);
3316  bool isZeroStr = CopyFromStr && Str.empty();
3317  uint64_t Limit = -1ULL;
3318  if (!AlwaysInline)
3319    Limit = TLI.getMaxStoresPerMemcpy();
3320  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3321                                (DstAlignCanChange ? 0 : Align),
3322                                (isZeroStr ? 0 : SrcAlign),
3323                                true, CopyFromStr, DAG, TLI))
3324    return SDValue();
3325
3326  if (DstAlignCanChange) {
3327    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3328    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3329    if (NewAlign > Align) {
3330      // Give the stack frame object a larger alignment if needed.
3331      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3332        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3333      Align = NewAlign;
3334    }
3335  }
3336
3337  SmallVector<SDValue, 8> OutChains;
3338  unsigned NumMemOps = MemOps.size();
3339  uint64_t SrcOff = 0, DstOff = 0;
3340  for (unsigned i = 0; i != NumMemOps; ++i) {
3341    EVT VT = MemOps[i];
3342    unsigned VTSize = VT.getSizeInBits() / 8;
3343    SDValue Value, Store;
3344
3345    if (CopyFromStr &&
3346        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3347      // It's unlikely a store of a vector immediate can be done in a single
3348      // instruction. It would require a load from a constantpool first.
3349      // We only handle zero vectors here.
3350      // FIXME: Handle other cases where store of vector immediate is done in
3351      // a single instruction.
3352      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3353      Store = DAG.getStore(Chain, dl, Value,
3354                           getMemBasePlusOffset(Dst, DstOff, DAG),
3355                           DstSV, DstSVOff + DstOff, isVol, false, Align);
3356    } else {
3357      // The type might not be legal for the target.  This should only happen
3358      // if the type is smaller than a legal type, as on PPC, so the right
3359      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3360      // to Load/Store if NVT==VT.
3361      // FIXME does the case above also need this?
3362      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3363      assert(NVT.bitsGE(VT));
3364      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3365                             getMemBasePlusOffset(Src, SrcOff, DAG),
3366                             SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3367                             MinAlign(SrcAlign, SrcOff));
3368      Store = DAG.getTruncStore(Chain, dl, Value,
3369                                getMemBasePlusOffset(Dst, DstOff, DAG),
3370                                DstSV, DstSVOff + DstOff, VT, isVol, false,
3371                                Align);
3372    }
3373    OutChains.push_back(Store);
3374    SrcOff += VTSize;
3375    DstOff += VTSize;
3376  }
3377
3378  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3379                     &OutChains[0], OutChains.size());
3380}
3381
3382static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3383                                        SDValue Chain, SDValue Dst,
3384                                        SDValue Src, uint64_t Size,
3385                                        unsigned Align,  bool isVol,
3386                                        bool AlwaysInline,
3387                                        const Value *DstSV, uint64_t DstSVOff,
3388                                        const Value *SrcSV, uint64_t SrcSVOff) {
3389  // Turn a memmove of undef to nop.
3390  if (Src.getOpcode() == ISD::UNDEF)
3391    return Chain;
3392
3393  // Expand memmove to a series of load and store ops if the size operand falls
3394  // below a certain threshold.
3395  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3396  std::vector<EVT> MemOps;
3397  uint64_t Limit = -1ULL;
3398  if (!AlwaysInline)
3399    Limit = TLI.getMaxStoresPerMemmove();
3400  bool DstAlignCanChange = false;
3401  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3402  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3403  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3404    DstAlignCanChange = true;
3405  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3406  if (Align > SrcAlign)
3407    SrcAlign = Align;
3408
3409  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3410                                (DstAlignCanChange ? 0 : Align),
3411                                SrcAlign, true, false, DAG, TLI))
3412    return SDValue();
3413
3414  if (DstAlignCanChange) {
3415    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3416    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3417    if (NewAlign > Align) {
3418      // Give the stack frame object a larger alignment if needed.
3419      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3420        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3421      Align = NewAlign;
3422    }
3423  }
3424
3425  uint64_t SrcOff = 0, DstOff = 0;
3426  SmallVector<SDValue, 8> LoadValues;
3427  SmallVector<SDValue, 8> LoadChains;
3428  SmallVector<SDValue, 8> OutChains;
3429  unsigned NumMemOps = MemOps.size();
3430  for (unsigned i = 0; i < NumMemOps; i++) {
3431    EVT VT = MemOps[i];
3432    unsigned VTSize = VT.getSizeInBits() / 8;
3433    SDValue Value, Store;
3434
3435    Value = DAG.getLoad(VT, dl, Chain,
3436                        getMemBasePlusOffset(Src, SrcOff, DAG),
3437                        SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3438    LoadValues.push_back(Value);
3439    LoadChains.push_back(Value.getValue(1));
3440    SrcOff += VTSize;
3441  }
3442  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3443                      &LoadChains[0], LoadChains.size());
3444  OutChains.clear();
3445  for (unsigned i = 0; i < NumMemOps; i++) {
3446    EVT VT = MemOps[i];
3447    unsigned VTSize = VT.getSizeInBits() / 8;
3448    SDValue Value, Store;
3449
3450    Store = DAG.getStore(Chain, dl, LoadValues[i],
3451                         getMemBasePlusOffset(Dst, DstOff, DAG),
3452                         DstSV, DstSVOff + DstOff, isVol, false, Align);
3453    OutChains.push_back(Store);
3454    DstOff += VTSize;
3455  }
3456
3457  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3458                     &OutChains[0], OutChains.size());
3459}
3460
3461static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3462                               SDValue Chain, SDValue Dst,
3463                               SDValue Src, uint64_t Size,
3464                               unsigned Align, bool isVol,
3465                               const Value *DstSV, uint64_t DstSVOff) {
3466  // Turn a memset of undef to nop.
3467  if (Src.getOpcode() == ISD::UNDEF)
3468    return Chain;
3469
3470  // Expand memset to a series of load/store ops if the size operand
3471  // falls below a certain threshold.
3472  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3473  std::vector<EVT> MemOps;
3474  bool DstAlignCanChange = false;
3475  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3476  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3477  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3478    DstAlignCanChange = true;
3479  bool NonScalarIntSafe =
3480    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3481  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3482                                Size, (DstAlignCanChange ? 0 : Align), 0,
3483                                NonScalarIntSafe, false, DAG, TLI))
3484    return SDValue();
3485
3486  if (DstAlignCanChange) {
3487    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3488    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3489    if (NewAlign > Align) {
3490      // Give the stack frame object a larger alignment if needed.
3491      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3492        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3493      Align = NewAlign;
3494    }
3495  }
3496
3497  SmallVector<SDValue, 8> OutChains;
3498  uint64_t DstOff = 0;
3499  unsigned NumMemOps = MemOps.size();
3500  for (unsigned i = 0; i < NumMemOps; i++) {
3501    EVT VT = MemOps[i];
3502    unsigned VTSize = VT.getSizeInBits() / 8;
3503    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3504    SDValue Store = DAG.getStore(Chain, dl, Value,
3505                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3506                                 DstSV, DstSVOff + DstOff, isVol, false, 0);
3507    OutChains.push_back(Store);
3508    DstOff += VTSize;
3509  }
3510
3511  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3512                     &OutChains[0], OutChains.size());
3513}
3514
3515SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3516                                SDValue Src, SDValue Size,
3517                                unsigned Align, bool isVol, bool AlwaysInline,
3518                                const Value *DstSV, uint64_t DstSVOff,
3519                                const Value *SrcSV, uint64_t SrcSVOff) {
3520
3521  // Check to see if we should lower the memcpy to loads and stores first.
3522  // For cases within the target-specified limits, this is the best choice.
3523  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3524  if (ConstantSize) {
3525    // Memcpy with size zero? Just return the original chain.
3526    if (ConstantSize->isNullValue())
3527      return Chain;
3528
3529    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3530                                             ConstantSize->getZExtValue(),Align,
3531                                isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3532    if (Result.getNode())
3533      return Result;
3534  }
3535
3536  // Then check to see if we should lower the memcpy with target-specific
3537  // code. If the target chooses to do this, this is the next best.
3538  SDValue Result =
3539    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3540                                isVol, AlwaysInline,
3541                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3542  if (Result.getNode())
3543    return Result;
3544
3545  // If we really need inline code and the target declined to provide it,
3546  // use a (potentially long) sequence of loads and stores.
3547  if (AlwaysInline) {
3548    assert(ConstantSize && "AlwaysInline requires a constant size!");
3549    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3550                                   ConstantSize->getZExtValue(), Align, isVol,
3551                                   true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3552  }
3553
3554  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3555  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3556  // respect volatile, so they may do things like read or write memory
3557  // beyond the given memory regions. But fixing this isn't easy, and most
3558  // people don't care.
3559
3560  // Emit a library call.
3561  TargetLowering::ArgListTy Args;
3562  TargetLowering::ArgListEntry Entry;
3563  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3564  Entry.Node = Dst; Args.push_back(Entry);
3565  Entry.Node = Src; Args.push_back(Entry);
3566  Entry.Node = Size; Args.push_back(Entry);
3567  // FIXME: pass in DebugLoc
3568  std::pair<SDValue,SDValue> CallResult =
3569    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3570                    false, false, false, false, 0,
3571                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3572                    /*isReturnValueUsed=*/false,
3573                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3574                                      TLI.getPointerTy()),
3575                    Args, *this, dl);
3576  return CallResult.second;
3577}
3578
3579SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3580                                 SDValue Src, SDValue Size,
3581                                 unsigned Align, bool isVol,
3582                                 const Value *DstSV, uint64_t DstSVOff,
3583                                 const Value *SrcSV, uint64_t SrcSVOff) {
3584
3585  // Check to see if we should lower the memmove to loads and stores first.
3586  // For cases within the target-specified limits, this is the best choice.
3587  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3588  if (ConstantSize) {
3589    // Memmove with size zero? Just return the original chain.
3590    if (ConstantSize->isNullValue())
3591      return Chain;
3592
3593    SDValue Result =
3594      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3595                               ConstantSize->getZExtValue(), Align, isVol,
3596                               false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3597    if (Result.getNode())
3598      return Result;
3599  }
3600
3601  // Then check to see if we should lower the memmove with target-specific
3602  // code. If the target chooses to do this, this is the next best.
3603  SDValue Result =
3604    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3605                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3606  if (Result.getNode())
3607    return Result;
3608
3609  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3610  // not be safe.  See memcpy above for more details.
3611
3612  // Emit a library call.
3613  TargetLowering::ArgListTy Args;
3614  TargetLowering::ArgListEntry Entry;
3615  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3616  Entry.Node = Dst; Args.push_back(Entry);
3617  Entry.Node = Src; Args.push_back(Entry);
3618  Entry.Node = Size; Args.push_back(Entry);
3619  // FIXME:  pass in DebugLoc
3620  std::pair<SDValue,SDValue> CallResult =
3621    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3622                    false, false, false, false, 0,
3623                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3624                    /*isReturnValueUsed=*/false,
3625                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3626                                      TLI.getPointerTy()),
3627                    Args, *this, dl);
3628  return CallResult.second;
3629}
3630
3631SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3632                                SDValue Src, SDValue Size,
3633                                unsigned Align, bool isVol,
3634                                const Value *DstSV, uint64_t DstSVOff) {
3635
3636  // Check to see if we should lower the memset to stores first.
3637  // For cases within the target-specified limits, this is the best choice.
3638  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3639  if (ConstantSize) {
3640    // Memset with size zero? Just return the original chain.
3641    if (ConstantSize->isNullValue())
3642      return Chain;
3643
3644    SDValue Result =
3645      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3646                      Align, isVol, DstSV, DstSVOff);
3647
3648    if (Result.getNode())
3649      return Result;
3650  }
3651
3652  // Then check to see if we should lower the memset with target-specific
3653  // code. If the target chooses to do this, this is the next best.
3654  SDValue Result =
3655    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3656                                DstSV, DstSVOff);
3657  if (Result.getNode())
3658    return Result;
3659
3660  // Emit a library call.
3661  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3662  TargetLowering::ArgListTy Args;
3663  TargetLowering::ArgListEntry Entry;
3664  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3665  Args.push_back(Entry);
3666  // Extend or truncate the argument to be an i32 value for the call.
3667  if (Src.getValueType().bitsGT(MVT::i32))
3668    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3669  else
3670    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3671  Entry.Node = Src;
3672  Entry.Ty = Type::getInt32Ty(*getContext());
3673  Entry.isSExt = true;
3674  Args.push_back(Entry);
3675  Entry.Node = Size;
3676  Entry.Ty = IntPtrTy;
3677  Entry.isSExt = false;
3678  Args.push_back(Entry);
3679  // FIXME: pass in DebugLoc
3680  std::pair<SDValue,SDValue> CallResult =
3681    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3682                    false, false, false, false, 0,
3683                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3684                    /*isReturnValueUsed=*/false,
3685                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3686                                      TLI.getPointerTy()),
3687                    Args, *this, dl);
3688  return CallResult.second;
3689}
3690
3691SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3692                                SDValue Chain,
3693                                SDValue Ptr, SDValue Cmp,
3694                                SDValue Swp, const Value* PtrVal,
3695                                unsigned Alignment) {
3696  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3697    Alignment = getEVTAlignment(MemVT);
3698
3699  // Check if the memory reference references a frame index
3700  if (!PtrVal)
3701    if (const FrameIndexSDNode *FI =
3702          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3703      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3704
3705  MachineFunction &MF = getMachineFunction();
3706  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3707
3708  // For now, atomics are considered to be volatile always.
3709  Flags |= MachineMemOperand::MOVolatile;
3710
3711  MachineMemOperand *MMO =
3712    MF.getMachineMemOperand(PtrVal, Flags, 0,
3713                            MemVT.getStoreSize(), Alignment);
3714
3715  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3716}
3717
3718SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3719                                SDValue Chain,
3720                                SDValue Ptr, SDValue Cmp,
3721                                SDValue Swp, MachineMemOperand *MMO) {
3722  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3723  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3724
3725  EVT VT = Cmp.getValueType();
3726
3727  SDVTList VTs = getVTList(VT, MVT::Other);
3728  FoldingSetNodeID ID;
3729  ID.AddInteger(MemVT.getRawBits());
3730  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3731  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3732  void* IP = 0;
3733  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3734    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3735    return SDValue(E, 0);
3736  }
3737  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3738                                               Ptr, Cmp, Swp, MMO);
3739  CSEMap.InsertNode(N, IP);
3740  AllNodes.push_back(N);
3741  return SDValue(N, 0);
3742}
3743
3744SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3745                                SDValue Chain,
3746                                SDValue Ptr, SDValue Val,
3747                                const Value* PtrVal,
3748                                unsigned Alignment) {
3749  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3750    Alignment = getEVTAlignment(MemVT);
3751
3752  // Check if the memory reference references a frame index
3753  if (!PtrVal)
3754    if (const FrameIndexSDNode *FI =
3755          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3756      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3757
3758  MachineFunction &MF = getMachineFunction();
3759  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3760
3761  // For now, atomics are considered to be volatile always.
3762  Flags |= MachineMemOperand::MOVolatile;
3763
3764  MachineMemOperand *MMO =
3765    MF.getMachineMemOperand(PtrVal, Flags, 0,
3766                            MemVT.getStoreSize(), Alignment);
3767
3768  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3769}
3770
3771SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3772                                SDValue Chain,
3773                                SDValue Ptr, SDValue Val,
3774                                MachineMemOperand *MMO) {
3775  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3776          Opcode == ISD::ATOMIC_LOAD_SUB ||
3777          Opcode == ISD::ATOMIC_LOAD_AND ||
3778          Opcode == ISD::ATOMIC_LOAD_OR ||
3779          Opcode == ISD::ATOMIC_LOAD_XOR ||
3780          Opcode == ISD::ATOMIC_LOAD_NAND ||
3781          Opcode == ISD::ATOMIC_LOAD_MIN ||
3782          Opcode == ISD::ATOMIC_LOAD_MAX ||
3783          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3784          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3785          Opcode == ISD::ATOMIC_SWAP) &&
3786         "Invalid Atomic Op");
3787
3788  EVT VT = Val.getValueType();
3789
3790  SDVTList VTs = getVTList(VT, MVT::Other);
3791  FoldingSetNodeID ID;
3792  ID.AddInteger(MemVT.getRawBits());
3793  SDValue Ops[] = {Chain, Ptr, Val};
3794  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3795  void* IP = 0;
3796  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3797    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3798    return SDValue(E, 0);
3799  }
3800  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3801                                               Ptr, Val, MMO);
3802  CSEMap.InsertNode(N, IP);
3803  AllNodes.push_back(N);
3804  return SDValue(N, 0);
3805}
3806
3807/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3808/// Allowed to return something different (and simpler) if Simplify is true.
3809SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3810                                     DebugLoc dl) {
3811  if (NumOps == 1)
3812    return Ops[0];
3813
3814  SmallVector<EVT, 4> VTs;
3815  VTs.reserve(NumOps);
3816  for (unsigned i = 0; i < NumOps; ++i)
3817    VTs.push_back(Ops[i].getValueType());
3818  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3819                 Ops, NumOps);
3820}
3821
3822SDValue
3823SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3824                                  const EVT *VTs, unsigned NumVTs,
3825                                  const SDValue *Ops, unsigned NumOps,
3826                                  EVT MemVT, const Value *srcValue, int SVOff,
3827                                  unsigned Align, bool Vol,
3828                                  bool ReadMem, bool WriteMem) {
3829  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3830                             MemVT, srcValue, SVOff, Align, Vol,
3831                             ReadMem, WriteMem);
3832}
3833
3834SDValue
3835SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3836                                  const SDValue *Ops, unsigned NumOps,
3837                                  EVT MemVT, const Value *srcValue, int SVOff,
3838                                  unsigned Align, bool Vol,
3839                                  bool ReadMem, bool WriteMem) {
3840  if (Align == 0)  // Ensure that codegen never sees alignment 0
3841    Align = getEVTAlignment(MemVT);
3842
3843  MachineFunction &MF = getMachineFunction();
3844  unsigned Flags = 0;
3845  if (WriteMem)
3846    Flags |= MachineMemOperand::MOStore;
3847  if (ReadMem)
3848    Flags |= MachineMemOperand::MOLoad;
3849  if (Vol)
3850    Flags |= MachineMemOperand::MOVolatile;
3851  MachineMemOperand *MMO =
3852    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3853                            MemVT.getStoreSize(), Align);
3854
3855  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3856}
3857
3858SDValue
3859SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3860                                  const SDValue *Ops, unsigned NumOps,
3861                                  EVT MemVT, MachineMemOperand *MMO) {
3862  assert((Opcode == ISD::INTRINSIC_VOID ||
3863          Opcode == ISD::INTRINSIC_W_CHAIN ||
3864          (Opcode <= INT_MAX &&
3865           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3866         "Opcode is not a memory-accessing opcode!");
3867
3868  // Memoize the node unless it returns a flag.
3869  MemIntrinsicSDNode *N;
3870  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3871    FoldingSetNodeID ID;
3872    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3873    void *IP = 0;
3874    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3875      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3876      return SDValue(E, 0);
3877    }
3878
3879    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3880                                               MemVT, MMO);
3881    CSEMap.InsertNode(N, IP);
3882  } else {
3883    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3884                                               MemVT, MMO);
3885  }
3886  AllNodes.push_back(N);
3887  return SDValue(N, 0);
3888}
3889
3890SDValue
3891SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3892                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3893                      SDValue Ptr, SDValue Offset,
3894                      const Value *SV, int SVOffset, EVT MemVT,
3895                      bool isVolatile, bool isNonTemporal,
3896                      unsigned Alignment) {
3897  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3898    Alignment = getEVTAlignment(VT);
3899
3900  // Check if the memory reference references a frame index
3901  if (!SV)
3902    if (const FrameIndexSDNode *FI =
3903          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3904      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3905
3906  MachineFunction &MF = getMachineFunction();
3907  unsigned Flags = MachineMemOperand::MOLoad;
3908  if (isVolatile)
3909    Flags |= MachineMemOperand::MOVolatile;
3910  if (isNonTemporal)
3911    Flags |= MachineMemOperand::MONonTemporal;
3912  MachineMemOperand *MMO =
3913    MF.getMachineMemOperand(SV, Flags, SVOffset,
3914                            MemVT.getStoreSize(), Alignment);
3915  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3916}
3917
3918SDValue
3919SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3920                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3921                      SDValue Ptr, SDValue Offset, EVT MemVT,
3922                      MachineMemOperand *MMO) {
3923  if (VT == MemVT) {
3924    ExtType = ISD::NON_EXTLOAD;
3925  } else if (ExtType == ISD::NON_EXTLOAD) {
3926    assert(VT == MemVT && "Non-extending load from different memory type!");
3927  } else {
3928    // Extending load.
3929    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3930           "Should only be an extending load, not truncating!");
3931    assert(VT.isInteger() == MemVT.isInteger() &&
3932           "Cannot convert from FP to Int or Int -> FP!");
3933    assert(VT.isVector() == MemVT.isVector() &&
3934           "Cannot use trunc store to convert to or from a vector!");
3935    assert((!VT.isVector() ||
3936            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3937           "Cannot use trunc store to change the number of vector elements!");
3938  }
3939
3940  bool Indexed = AM != ISD::UNINDEXED;
3941  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3942         "Unindexed load with an offset!");
3943
3944  SDVTList VTs = Indexed ?
3945    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3946  SDValue Ops[] = { Chain, Ptr, Offset };
3947  FoldingSetNodeID ID;
3948  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3949  ID.AddInteger(MemVT.getRawBits());
3950  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3951                                     MMO->isNonTemporal()));
3952  void *IP = 0;
3953  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3954    cast<LoadSDNode>(E)->refineAlignment(MMO);
3955    return SDValue(E, 0);
3956  }
3957  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3958                                             MemVT, MMO);
3959  CSEMap.InsertNode(N, IP);
3960  AllNodes.push_back(N);
3961  return SDValue(N, 0);
3962}
3963
3964SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3965                              SDValue Chain, SDValue Ptr,
3966                              const Value *SV, int SVOffset,
3967                              bool isVolatile, bool isNonTemporal,
3968                              unsigned Alignment) {
3969  SDValue Undef = getUNDEF(Ptr.getValueType());
3970  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3971                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3972}
3973
3974SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3975                                 SDValue Chain, SDValue Ptr,
3976                                 const Value *SV,
3977                                 int SVOffset, EVT MemVT,
3978                                 bool isVolatile, bool isNonTemporal,
3979                                 unsigned Alignment) {
3980  SDValue Undef = getUNDEF(Ptr.getValueType());
3981  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3982                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3983}
3984
3985SDValue
3986SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3987                             SDValue Offset, ISD::MemIndexedMode AM) {
3988  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3989  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3990         "Load is already a indexed load!");
3991  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3992                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3993                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3994                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3995}
3996
3997SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3998                               SDValue Ptr, const Value *SV, int SVOffset,
3999                               bool isVolatile, bool isNonTemporal,
4000                               unsigned Alignment) {
4001  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4002    Alignment = getEVTAlignment(Val.getValueType());
4003
4004  // Check if the memory reference references a frame index
4005  if (!SV)
4006    if (const FrameIndexSDNode *FI =
4007          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4008      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4009
4010  MachineFunction &MF = getMachineFunction();
4011  unsigned Flags = MachineMemOperand::MOStore;
4012  if (isVolatile)
4013    Flags |= MachineMemOperand::MOVolatile;
4014  if (isNonTemporal)
4015    Flags |= MachineMemOperand::MONonTemporal;
4016  MachineMemOperand *MMO =
4017    MF.getMachineMemOperand(SV, Flags, SVOffset,
4018                            Val.getValueType().getStoreSize(), Alignment);
4019
4020  return getStore(Chain, dl, Val, Ptr, MMO);
4021}
4022
4023SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4024                               SDValue Ptr, MachineMemOperand *MMO) {
4025  EVT VT = Val.getValueType();
4026  SDVTList VTs = getVTList(MVT::Other);
4027  SDValue Undef = getUNDEF(Ptr.getValueType());
4028  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4029  FoldingSetNodeID ID;
4030  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4031  ID.AddInteger(VT.getRawBits());
4032  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4033                                     MMO->isNonTemporal()));
4034  void *IP = 0;
4035  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4036    cast<StoreSDNode>(E)->refineAlignment(MMO);
4037    return SDValue(E, 0);
4038  }
4039  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4040                                              false, VT, MMO);
4041  CSEMap.InsertNode(N, IP);
4042  AllNodes.push_back(N);
4043  return SDValue(N, 0);
4044}
4045
4046SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4047                                    SDValue Ptr, const Value *SV,
4048                                    int SVOffset, EVT SVT,
4049                                    bool isVolatile, bool isNonTemporal,
4050                                    unsigned Alignment) {
4051  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4052    Alignment = getEVTAlignment(SVT);
4053
4054  // Check if the memory reference references a frame index
4055  if (!SV)
4056    if (const FrameIndexSDNode *FI =
4057          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4058      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4059
4060  MachineFunction &MF = getMachineFunction();
4061  unsigned Flags = MachineMemOperand::MOStore;
4062  if (isVolatile)
4063    Flags |= MachineMemOperand::MOVolatile;
4064  if (isNonTemporal)
4065    Flags |= MachineMemOperand::MONonTemporal;
4066  MachineMemOperand *MMO =
4067    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4068
4069  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4070}
4071
4072SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4073                                    SDValue Ptr, EVT SVT,
4074                                    MachineMemOperand *MMO) {
4075  EVT VT = Val.getValueType();
4076
4077  if (VT == SVT)
4078    return getStore(Chain, dl, Val, Ptr, MMO);
4079
4080  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4081         "Should only be a truncating store, not extending!");
4082  assert(VT.isInteger() == SVT.isInteger() &&
4083         "Can't do FP-INT conversion!");
4084  assert(VT.isVector() == SVT.isVector() &&
4085         "Cannot use trunc store to convert to or from a vector!");
4086  assert((!VT.isVector() ||
4087          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4088         "Cannot use trunc store to change the number of vector elements!");
4089
4090  SDVTList VTs = getVTList(MVT::Other);
4091  SDValue Undef = getUNDEF(Ptr.getValueType());
4092  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4093  FoldingSetNodeID ID;
4094  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4095  ID.AddInteger(SVT.getRawBits());
4096  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4097                                     MMO->isNonTemporal()));
4098  void *IP = 0;
4099  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4100    cast<StoreSDNode>(E)->refineAlignment(MMO);
4101    return SDValue(E, 0);
4102  }
4103  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4104                                              true, SVT, MMO);
4105  CSEMap.InsertNode(N, IP);
4106  AllNodes.push_back(N);
4107  return SDValue(N, 0);
4108}
4109
4110SDValue
4111SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4112                              SDValue Offset, ISD::MemIndexedMode AM) {
4113  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4114  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4115         "Store is already a indexed store!");
4116  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4117  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4118  FoldingSetNodeID ID;
4119  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4120  ID.AddInteger(ST->getMemoryVT().getRawBits());
4121  ID.AddInteger(ST->getRawSubclassData());
4122  void *IP = 0;
4123  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4124    return SDValue(E, 0);
4125
4126  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4127                                              ST->isTruncatingStore(),
4128                                              ST->getMemoryVT(),
4129                                              ST->getMemOperand());
4130  CSEMap.InsertNode(N, IP);
4131  AllNodes.push_back(N);
4132  return SDValue(N, 0);
4133}
4134
4135SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4136                               SDValue Chain, SDValue Ptr,
4137                               SDValue SV) {
4138  SDValue Ops[] = { Chain, Ptr, SV };
4139  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4140}
4141
4142SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4143                              const SDUse *Ops, unsigned NumOps) {
4144  switch (NumOps) {
4145  case 0: return getNode(Opcode, DL, VT);
4146  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4147  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4148  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4149  default: break;
4150  }
4151
4152  // Copy from an SDUse array into an SDValue array for use with
4153  // the regular getNode logic.
4154  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4155  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4156}
4157
4158SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4159                              const SDValue *Ops, unsigned NumOps) {
4160  switch (NumOps) {
4161  case 0: return getNode(Opcode, DL, VT);
4162  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4163  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4164  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4165  default: break;
4166  }
4167
4168  switch (Opcode) {
4169  default: break;
4170  case ISD::SELECT_CC: {
4171    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4172    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4173           "LHS and RHS of condition must have same type!");
4174    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4175           "True and False arms of SelectCC must have same type!");
4176    assert(Ops[2].getValueType() == VT &&
4177           "select_cc node must be of same type as true and false value!");
4178    break;
4179  }
4180  case ISD::BR_CC: {
4181    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4182    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4183           "LHS/RHS of comparison should match types!");
4184    break;
4185  }
4186  }
4187
4188  // Memoize nodes.
4189  SDNode *N;
4190  SDVTList VTs = getVTList(VT);
4191
4192  if (VT != MVT::Flag) {
4193    FoldingSetNodeID ID;
4194    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4195    void *IP = 0;
4196
4197    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4198      return SDValue(E, 0);
4199
4200    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4201    CSEMap.InsertNode(N, IP);
4202  } else {
4203    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4204  }
4205
4206  AllNodes.push_back(N);
4207#ifndef NDEBUG
4208  VerifyNode(N);
4209#endif
4210  return SDValue(N, 0);
4211}
4212
4213SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4214                              const std::vector<EVT> &ResultTys,
4215                              const SDValue *Ops, unsigned NumOps) {
4216  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4217                 Ops, NumOps);
4218}
4219
4220SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4221                              const EVT *VTs, unsigned NumVTs,
4222                              const SDValue *Ops, unsigned NumOps) {
4223  if (NumVTs == 1)
4224    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4225  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4226}
4227
4228SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4229                              const SDValue *Ops, unsigned NumOps) {
4230  if (VTList.NumVTs == 1)
4231    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4232
4233#if 0
4234  switch (Opcode) {
4235  // FIXME: figure out how to safely handle things like
4236  // int foo(int x) { return 1 << (x & 255); }
4237  // int bar() { return foo(256); }
4238  case ISD::SRA_PARTS:
4239  case ISD::SRL_PARTS:
4240  case ISD::SHL_PARTS:
4241    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4242        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4243      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4244    else if (N3.getOpcode() == ISD::AND)
4245      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4246        // If the and is only masking out bits that cannot effect the shift,
4247        // eliminate the and.
4248        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4249        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4250          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4251      }
4252    break;
4253  }
4254#endif
4255
4256  // Memoize the node unless it returns a flag.
4257  SDNode *N;
4258  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4259    FoldingSetNodeID ID;
4260    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4261    void *IP = 0;
4262    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4263      return SDValue(E, 0);
4264
4265    if (NumOps == 1) {
4266      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4267    } else if (NumOps == 2) {
4268      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4269    } else if (NumOps == 3) {
4270      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4271                                            Ops[2]);
4272    } else {
4273      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4274    }
4275    CSEMap.InsertNode(N, IP);
4276  } else {
4277    if (NumOps == 1) {
4278      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4279    } else if (NumOps == 2) {
4280      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4281    } else if (NumOps == 3) {
4282      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4283                                            Ops[2]);
4284    } else {
4285      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4286    }
4287  }
4288  AllNodes.push_back(N);
4289#ifndef NDEBUG
4290  VerifyNode(N);
4291#endif
4292  return SDValue(N, 0);
4293}
4294
4295SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4296  return getNode(Opcode, DL, VTList, 0, 0);
4297}
4298
4299SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4300                              SDValue N1) {
4301  SDValue Ops[] = { N1 };
4302  return getNode(Opcode, DL, VTList, Ops, 1);
4303}
4304
4305SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4306                              SDValue N1, SDValue N2) {
4307  SDValue Ops[] = { N1, N2 };
4308  return getNode(Opcode, DL, VTList, Ops, 2);
4309}
4310
4311SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4312                              SDValue N1, SDValue N2, SDValue N3) {
4313  SDValue Ops[] = { N1, N2, N3 };
4314  return getNode(Opcode, DL, VTList, Ops, 3);
4315}
4316
4317SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4318                              SDValue N1, SDValue N2, SDValue N3,
4319                              SDValue N4) {
4320  SDValue Ops[] = { N1, N2, N3, N4 };
4321  return getNode(Opcode, DL, VTList, Ops, 4);
4322}
4323
4324SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4325                              SDValue N1, SDValue N2, SDValue N3,
4326                              SDValue N4, SDValue N5) {
4327  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4328  return getNode(Opcode, DL, VTList, Ops, 5);
4329}
4330
4331SDVTList SelectionDAG::getVTList(EVT VT) {
4332  return makeVTList(SDNode::getValueTypeList(VT), 1);
4333}
4334
4335SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4336  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4337       E = VTList.rend(); I != E; ++I)
4338    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4339      return *I;
4340
4341  EVT *Array = Allocator.Allocate<EVT>(2);
4342  Array[0] = VT1;
4343  Array[1] = VT2;
4344  SDVTList Result = makeVTList(Array, 2);
4345  VTList.push_back(Result);
4346  return Result;
4347}
4348
4349SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4350  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4351       E = VTList.rend(); I != E; ++I)
4352    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4353                          I->VTs[2] == VT3)
4354      return *I;
4355
4356  EVT *Array = Allocator.Allocate<EVT>(3);
4357  Array[0] = VT1;
4358  Array[1] = VT2;
4359  Array[2] = VT3;
4360  SDVTList Result = makeVTList(Array, 3);
4361  VTList.push_back(Result);
4362  return Result;
4363}
4364
4365SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4366  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4367       E = VTList.rend(); I != E; ++I)
4368    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4369                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4370      return *I;
4371
4372  EVT *Array = Allocator.Allocate<EVT>(4);
4373  Array[0] = VT1;
4374  Array[1] = VT2;
4375  Array[2] = VT3;
4376  Array[3] = VT4;
4377  SDVTList Result = makeVTList(Array, 4);
4378  VTList.push_back(Result);
4379  return Result;
4380}
4381
4382SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4383  switch (NumVTs) {
4384    case 0: llvm_unreachable("Cannot have nodes without results!");
4385    case 1: return getVTList(VTs[0]);
4386    case 2: return getVTList(VTs[0], VTs[1]);
4387    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4388    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4389    default: break;
4390  }
4391
4392  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4393       E = VTList.rend(); I != E; ++I) {
4394    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4395      continue;
4396
4397    bool NoMatch = false;
4398    for (unsigned i = 2; i != NumVTs; ++i)
4399      if (VTs[i] != I->VTs[i]) {
4400        NoMatch = true;
4401        break;
4402      }
4403    if (!NoMatch)
4404      return *I;
4405  }
4406
4407  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4408  std::copy(VTs, VTs+NumVTs, Array);
4409  SDVTList Result = makeVTList(Array, NumVTs);
4410  VTList.push_back(Result);
4411  return Result;
4412}
4413
4414
4415/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4416/// specified operands.  If the resultant node already exists in the DAG,
4417/// this does not modify the specified node, instead it returns the node that
4418/// already exists.  If the resultant node does not exist in the DAG, the
4419/// input node is returned.  As a degenerate case, if you specify the same
4420/// input operands as the node already has, the input node is returned.
4421SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4422  SDNode *N = InN.getNode();
4423  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4424
4425  // Check to see if there is no change.
4426  if (Op == N->getOperand(0)) return InN;
4427
4428  // See if the modified node already exists.
4429  void *InsertPos = 0;
4430  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4431    return SDValue(Existing, InN.getResNo());
4432
4433  // Nope it doesn't.  Remove the node from its current place in the maps.
4434  if (InsertPos)
4435    if (!RemoveNodeFromCSEMaps(N))
4436      InsertPos = 0;
4437
4438  // Now we update the operands.
4439  N->OperandList[0].set(Op);
4440
4441  // If this gets put into a CSE map, add it.
4442  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4443  return InN;
4444}
4445
4446SDValue SelectionDAG::
4447UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4448  SDNode *N = InN.getNode();
4449  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4450
4451  // Check to see if there is no change.
4452  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4453    return InN;   // No operands changed, just return the input node.
4454
4455  // See if the modified node already exists.
4456  void *InsertPos = 0;
4457  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4458    return SDValue(Existing, InN.getResNo());
4459
4460  // Nope it doesn't.  Remove the node from its current place in the maps.
4461  if (InsertPos)
4462    if (!RemoveNodeFromCSEMaps(N))
4463      InsertPos = 0;
4464
4465  // Now we update the operands.
4466  if (N->OperandList[0] != Op1)
4467    N->OperandList[0].set(Op1);
4468  if (N->OperandList[1] != Op2)
4469    N->OperandList[1].set(Op2);
4470
4471  // If this gets put into a CSE map, add it.
4472  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4473  return InN;
4474}
4475
4476SDValue SelectionDAG::
4477UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4478  SDValue Ops[] = { Op1, Op2, Op3 };
4479  return UpdateNodeOperands(N, Ops, 3);
4480}
4481
4482SDValue SelectionDAG::
4483UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4484                   SDValue Op3, SDValue Op4) {
4485  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4486  return UpdateNodeOperands(N, Ops, 4);
4487}
4488
4489SDValue SelectionDAG::
4490UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4491                   SDValue Op3, SDValue Op4, SDValue Op5) {
4492  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4493  return UpdateNodeOperands(N, Ops, 5);
4494}
4495
4496SDValue SelectionDAG::
4497UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4498  SDNode *N = InN.getNode();
4499  assert(N->getNumOperands() == NumOps &&
4500         "Update with wrong number of operands");
4501
4502  // Check to see if there is no change.
4503  bool AnyChange = false;
4504  for (unsigned i = 0; i != NumOps; ++i) {
4505    if (Ops[i] != N->getOperand(i)) {
4506      AnyChange = true;
4507      break;
4508    }
4509  }
4510
4511  // No operands changed, just return the input node.
4512  if (!AnyChange) return InN;
4513
4514  // See if the modified node already exists.
4515  void *InsertPos = 0;
4516  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4517    return SDValue(Existing, InN.getResNo());
4518
4519  // Nope it doesn't.  Remove the node from its current place in the maps.
4520  if (InsertPos)
4521    if (!RemoveNodeFromCSEMaps(N))
4522      InsertPos = 0;
4523
4524  // Now we update the operands.
4525  for (unsigned i = 0; i != NumOps; ++i)
4526    if (N->OperandList[i] != Ops[i])
4527      N->OperandList[i].set(Ops[i]);
4528
4529  // If this gets put into a CSE map, add it.
4530  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4531  return InN;
4532}
4533
4534/// DropOperands - Release the operands and set this node to have
4535/// zero operands.
4536void SDNode::DropOperands() {
4537  // Unlike the code in MorphNodeTo that does this, we don't need to
4538  // watch for dead nodes here.
4539  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4540    SDUse &Use = *I++;
4541    Use.set(SDValue());
4542  }
4543}
4544
4545/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4546/// machine opcode.
4547///
4548SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4549                                   EVT VT) {
4550  SDVTList VTs = getVTList(VT);
4551  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4552}
4553
4554SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4555                                   EVT VT, SDValue Op1) {
4556  SDVTList VTs = getVTList(VT);
4557  SDValue Ops[] = { Op1 };
4558  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4559}
4560
4561SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4562                                   EVT VT, SDValue Op1,
4563                                   SDValue Op2) {
4564  SDVTList VTs = getVTList(VT);
4565  SDValue Ops[] = { Op1, Op2 };
4566  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4567}
4568
4569SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4570                                   EVT VT, SDValue Op1,
4571                                   SDValue Op2, SDValue Op3) {
4572  SDVTList VTs = getVTList(VT);
4573  SDValue Ops[] = { Op1, Op2, Op3 };
4574  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4575}
4576
4577SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4578                                   EVT VT, const SDValue *Ops,
4579                                   unsigned NumOps) {
4580  SDVTList VTs = getVTList(VT);
4581  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4582}
4583
4584SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4585                                   EVT VT1, EVT VT2, const SDValue *Ops,
4586                                   unsigned NumOps) {
4587  SDVTList VTs = getVTList(VT1, VT2);
4588  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4589}
4590
4591SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4592                                   EVT VT1, EVT VT2) {
4593  SDVTList VTs = getVTList(VT1, VT2);
4594  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4595}
4596
4597SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4598                                   EVT VT1, EVT VT2, EVT VT3,
4599                                   const SDValue *Ops, unsigned NumOps) {
4600  SDVTList VTs = getVTList(VT1, VT2, VT3);
4601  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4602}
4603
4604SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4605                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4606                                   const SDValue *Ops, unsigned NumOps) {
4607  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4608  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4609}
4610
4611SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4612                                   EVT VT1, EVT VT2,
4613                                   SDValue Op1) {
4614  SDVTList VTs = getVTList(VT1, VT2);
4615  SDValue Ops[] = { Op1 };
4616  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4617}
4618
4619SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4620                                   EVT VT1, EVT VT2,
4621                                   SDValue Op1, SDValue Op2) {
4622  SDVTList VTs = getVTList(VT1, VT2);
4623  SDValue Ops[] = { Op1, Op2 };
4624  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4625}
4626
4627SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4628                                   EVT VT1, EVT VT2,
4629                                   SDValue Op1, SDValue Op2,
4630                                   SDValue Op3) {
4631  SDVTList VTs = getVTList(VT1, VT2);
4632  SDValue Ops[] = { Op1, Op2, Op3 };
4633  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4634}
4635
4636SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4637                                   EVT VT1, EVT VT2, EVT VT3,
4638                                   SDValue Op1, SDValue Op2,
4639                                   SDValue Op3) {
4640  SDVTList VTs = getVTList(VT1, VT2, VT3);
4641  SDValue Ops[] = { Op1, Op2, Op3 };
4642  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4643}
4644
4645SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4646                                   SDVTList VTs, const SDValue *Ops,
4647                                   unsigned NumOps) {
4648  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4649  // Reset the NodeID to -1.
4650  N->setNodeId(-1);
4651  return N;
4652}
4653
4654/// MorphNodeTo - This *mutates* the specified node to have the specified
4655/// return type, opcode, and operands.
4656///
4657/// Note that MorphNodeTo returns the resultant node.  If there is already a
4658/// node of the specified opcode and operands, it returns that node instead of
4659/// the current one.  Note that the DebugLoc need not be the same.
4660///
4661/// Using MorphNodeTo is faster than creating a new node and swapping it in
4662/// with ReplaceAllUsesWith both because it often avoids allocating a new
4663/// node, and because it doesn't require CSE recalculation for any of
4664/// the node's users.
4665///
4666SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4667                                  SDVTList VTs, const SDValue *Ops,
4668                                  unsigned NumOps) {
4669  // If an identical node already exists, use it.
4670  void *IP = 0;
4671  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4672    FoldingSetNodeID ID;
4673    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4674    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4675      return ON;
4676  }
4677
4678  if (!RemoveNodeFromCSEMaps(N))
4679    IP = 0;
4680
4681  // Start the morphing.
4682  N->NodeType = Opc;
4683  N->ValueList = VTs.VTs;
4684  N->NumValues = VTs.NumVTs;
4685
4686  // Clear the operands list, updating used nodes to remove this from their
4687  // use list.  Keep track of any operands that become dead as a result.
4688  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4689  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4690    SDUse &Use = *I++;
4691    SDNode *Used = Use.getNode();
4692    Use.set(SDValue());
4693    if (Used->use_empty())
4694      DeadNodeSet.insert(Used);
4695  }
4696
4697  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4698    // Initialize the memory references information.
4699    MN->setMemRefs(0, 0);
4700    // If NumOps is larger than the # of operands we can have in a
4701    // MachineSDNode, reallocate the operand list.
4702    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4703      if (MN->OperandsNeedDelete)
4704        delete[] MN->OperandList;
4705      if (NumOps > array_lengthof(MN->LocalOperands))
4706        // We're creating a final node that will live unmorphed for the
4707        // remainder of the current SelectionDAG iteration, so we can allocate
4708        // the operands directly out of a pool with no recycling metadata.
4709        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4710                         Ops, NumOps);
4711      else
4712        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4713      MN->OperandsNeedDelete = false;
4714    } else
4715      MN->InitOperands(MN->OperandList, Ops, NumOps);
4716  } else {
4717    // If NumOps is larger than the # of operands we currently have, reallocate
4718    // the operand list.
4719    if (NumOps > N->NumOperands) {
4720      if (N->OperandsNeedDelete)
4721        delete[] N->OperandList;
4722      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4723      N->OperandsNeedDelete = true;
4724    } else
4725      N->InitOperands(N->OperandList, Ops, NumOps);
4726  }
4727
4728  // Delete any nodes that are still dead after adding the uses for the
4729  // new operands.
4730  if (!DeadNodeSet.empty()) {
4731    SmallVector<SDNode *, 16> DeadNodes;
4732    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4733         E = DeadNodeSet.end(); I != E; ++I)
4734      if ((*I)->use_empty())
4735        DeadNodes.push_back(*I);
4736    RemoveDeadNodes(DeadNodes);
4737  }
4738
4739  if (IP)
4740    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4741  return N;
4742}
4743
4744
4745/// getMachineNode - These are used for target selectors to create a new node
4746/// with specified return type(s), MachineInstr opcode, and operands.
4747///
4748/// Note that getMachineNode returns the resultant node.  If there is already a
4749/// node of the specified opcode and operands, it returns that node instead of
4750/// the current one.
4751MachineSDNode *
4752SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4753  SDVTList VTs = getVTList(VT);
4754  return getMachineNode(Opcode, dl, VTs, 0, 0);
4755}
4756
4757MachineSDNode *
4758SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4759  SDVTList VTs = getVTList(VT);
4760  SDValue Ops[] = { Op1 };
4761  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4762}
4763
4764MachineSDNode *
4765SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4766                             SDValue Op1, SDValue Op2) {
4767  SDVTList VTs = getVTList(VT);
4768  SDValue Ops[] = { Op1, Op2 };
4769  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4770}
4771
4772MachineSDNode *
4773SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4774                             SDValue Op1, SDValue Op2, SDValue Op3) {
4775  SDVTList VTs = getVTList(VT);
4776  SDValue Ops[] = { Op1, Op2, Op3 };
4777  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4778}
4779
4780MachineSDNode *
4781SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4782                             const SDValue *Ops, unsigned NumOps) {
4783  SDVTList VTs = getVTList(VT);
4784  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4785}
4786
4787MachineSDNode *
4788SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4789  SDVTList VTs = getVTList(VT1, VT2);
4790  return getMachineNode(Opcode, dl, VTs, 0, 0);
4791}
4792
4793MachineSDNode *
4794SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4795                             EVT VT1, EVT VT2, SDValue Op1) {
4796  SDVTList VTs = getVTList(VT1, VT2);
4797  SDValue Ops[] = { Op1 };
4798  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4799}
4800
4801MachineSDNode *
4802SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4803                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4804  SDVTList VTs = getVTList(VT1, VT2);
4805  SDValue Ops[] = { Op1, Op2 };
4806  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4807}
4808
4809MachineSDNode *
4810SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4811                             EVT VT1, EVT VT2, SDValue Op1,
4812                             SDValue Op2, SDValue Op3) {
4813  SDVTList VTs = getVTList(VT1, VT2);
4814  SDValue Ops[] = { Op1, Op2, Op3 };
4815  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4816}
4817
4818MachineSDNode *
4819SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4820                             EVT VT1, EVT VT2,
4821                             const SDValue *Ops, unsigned NumOps) {
4822  SDVTList VTs = getVTList(VT1, VT2);
4823  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4824}
4825
4826MachineSDNode *
4827SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4828                             EVT VT1, EVT VT2, EVT VT3,
4829                             SDValue Op1, SDValue Op2) {
4830  SDVTList VTs = getVTList(VT1, VT2, VT3);
4831  SDValue Ops[] = { Op1, Op2 };
4832  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4833}
4834
4835MachineSDNode *
4836SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4837                             EVT VT1, EVT VT2, EVT VT3,
4838                             SDValue Op1, SDValue Op2, SDValue Op3) {
4839  SDVTList VTs = getVTList(VT1, VT2, VT3);
4840  SDValue Ops[] = { Op1, Op2, Op3 };
4841  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4842}
4843
4844MachineSDNode *
4845SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4846                             EVT VT1, EVT VT2, EVT VT3,
4847                             const SDValue *Ops, unsigned NumOps) {
4848  SDVTList VTs = getVTList(VT1, VT2, VT3);
4849  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4850}
4851
4852MachineSDNode *
4853SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4854                             EVT VT2, EVT VT3, EVT VT4,
4855                             const SDValue *Ops, unsigned NumOps) {
4856  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4857  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4858}
4859
4860MachineSDNode *
4861SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4862                             const std::vector<EVT> &ResultTys,
4863                             const SDValue *Ops, unsigned NumOps) {
4864  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4865  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4866}
4867
4868MachineSDNode *
4869SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4870                             const SDValue *Ops, unsigned NumOps) {
4871  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4872  MachineSDNode *N;
4873  void *IP;
4874
4875  if (DoCSE) {
4876    FoldingSetNodeID ID;
4877    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4878    IP = 0;
4879    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4880      return cast<MachineSDNode>(E);
4881  }
4882
4883  // Allocate a new MachineSDNode.
4884  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4885
4886  // Initialize the operands list.
4887  if (NumOps > array_lengthof(N->LocalOperands))
4888    // We're creating a final node that will live unmorphed for the
4889    // remainder of the current SelectionDAG iteration, so we can allocate
4890    // the operands directly out of a pool with no recycling metadata.
4891    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4892                    Ops, NumOps);
4893  else
4894    N->InitOperands(N->LocalOperands, Ops, NumOps);
4895  N->OperandsNeedDelete = false;
4896
4897  if (DoCSE)
4898    CSEMap.InsertNode(N, IP);
4899
4900  AllNodes.push_back(N);
4901#ifndef NDEBUG
4902  VerifyNode(N);
4903#endif
4904  return N;
4905}
4906
4907/// getTargetExtractSubreg - A convenience function for creating
4908/// TargetOpcode::EXTRACT_SUBREG nodes.
4909SDValue
4910SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4911                                     SDValue Operand) {
4912  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4913  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4914                                  VT, Operand, SRIdxVal);
4915  return SDValue(Subreg, 0);
4916}
4917
4918/// getTargetInsertSubreg - A convenience function for creating
4919/// TargetOpcode::INSERT_SUBREG nodes.
4920SDValue
4921SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4922                                    SDValue Operand, SDValue Subreg) {
4923  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4924  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4925                                  VT, Operand, Subreg, SRIdxVal);
4926  return SDValue(Result, 0);
4927}
4928
4929/// getNodeIfExists - Get the specified node if it's already available, or
4930/// else return NULL.
4931SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4932                                      const SDValue *Ops, unsigned NumOps) {
4933  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4934    FoldingSetNodeID ID;
4935    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4936    void *IP = 0;
4937    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4938      return E;
4939  }
4940  return NULL;
4941}
4942
4943/// getDbgValue - Creates a SDDbgValue node.
4944///
4945SDDbgValue *
4946SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4947                          DebugLoc DL, unsigned O) {
4948  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4949}
4950
4951SDDbgValue *
4952SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4953                          DebugLoc DL, unsigned O) {
4954  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4955}
4956
4957SDDbgValue *
4958SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4959                          DebugLoc DL, unsigned O) {
4960  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4961}
4962
4963namespace {
4964
4965/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4966/// pointed to by a use iterator is deleted, increment the use iterator
4967/// so that it doesn't dangle.
4968///
4969/// This class also manages a "downlink" DAGUpdateListener, to forward
4970/// messages to ReplaceAllUsesWith's callers.
4971///
4972class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4973  SelectionDAG::DAGUpdateListener *DownLink;
4974  SDNode::use_iterator &UI;
4975  SDNode::use_iterator &UE;
4976
4977  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4978    // Increment the iterator as needed.
4979    while (UI != UE && N == *UI)
4980      ++UI;
4981
4982    // Then forward the message.
4983    if (DownLink) DownLink->NodeDeleted(N, E);
4984  }
4985
4986  virtual void NodeUpdated(SDNode *N) {
4987    // Just forward the message.
4988    if (DownLink) DownLink->NodeUpdated(N);
4989  }
4990
4991public:
4992  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4993                     SDNode::use_iterator &ui,
4994                     SDNode::use_iterator &ue)
4995    : DownLink(dl), UI(ui), UE(ue) {}
4996};
4997
4998}
4999
5000/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5001/// This can cause recursive merging of nodes in the DAG.
5002///
5003/// This version assumes From has a single result value.
5004///
5005void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5006                                      DAGUpdateListener *UpdateListener) {
5007  SDNode *From = FromN.getNode();
5008  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5009         "Cannot replace with this method!");
5010  assert(From != To.getNode() && "Cannot replace uses of with self");
5011
5012  // Iterate over all the existing uses of From. New uses will be added
5013  // to the beginning of the use list, which we avoid visiting.
5014  // This specifically avoids visiting uses of From that arise while the
5015  // replacement is happening, because any such uses would be the result
5016  // of CSE: If an existing node looks like From after one of its operands
5017  // is replaced by To, we don't want to replace of all its users with To
5018  // too. See PR3018 for more info.
5019  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5020  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5021  while (UI != UE) {
5022    SDNode *User = *UI;
5023
5024    // This node is about to morph, remove its old self from the CSE maps.
5025    RemoveNodeFromCSEMaps(User);
5026
5027    // A user can appear in a use list multiple times, and when this
5028    // happens the uses are usually next to each other in the list.
5029    // To help reduce the number of CSE recomputations, process all
5030    // the uses of this user that we can find this way.
5031    do {
5032      SDUse &Use = UI.getUse();
5033      ++UI;
5034      Use.set(To);
5035    } while (UI != UE && *UI == User);
5036
5037    // Now that we have modified User, add it back to the CSE maps.  If it
5038    // already exists there, recursively merge the results together.
5039    AddModifiedNodeToCSEMaps(User, &Listener);
5040  }
5041}
5042
5043/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5044/// This can cause recursive merging of nodes in the DAG.
5045///
5046/// This version assumes that for each value of From, there is a
5047/// corresponding value in To in the same position with the same type.
5048///
5049void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5050                                      DAGUpdateListener *UpdateListener) {
5051#ifndef NDEBUG
5052  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5053    assert((!From->hasAnyUseOfValue(i) ||
5054            From->getValueType(i) == To->getValueType(i)) &&
5055           "Cannot use this version of ReplaceAllUsesWith!");
5056#endif
5057
5058  // Handle the trivial case.
5059  if (From == To)
5060    return;
5061
5062  // Iterate over just the existing users of From. See the comments in
5063  // the ReplaceAllUsesWith above.
5064  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5065  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5066  while (UI != UE) {
5067    SDNode *User = *UI;
5068
5069    // This node is about to morph, remove its old self from the CSE maps.
5070    RemoveNodeFromCSEMaps(User);
5071
5072    // A user can appear in a use list multiple times, and when this
5073    // happens the uses are usually next to each other in the list.
5074    // To help reduce the number of CSE recomputations, process all
5075    // the uses of this user that we can find this way.
5076    do {
5077      SDUse &Use = UI.getUse();
5078      ++UI;
5079      Use.setNode(To);
5080    } while (UI != UE && *UI == User);
5081
5082    // Now that we have modified User, add it back to the CSE maps.  If it
5083    // already exists there, recursively merge the results together.
5084    AddModifiedNodeToCSEMaps(User, &Listener);
5085  }
5086}
5087
5088/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5089/// This can cause recursive merging of nodes in the DAG.
5090///
5091/// This version can replace From with any result values.  To must match the
5092/// number and types of values returned by From.
5093void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5094                                      const SDValue *To,
5095                                      DAGUpdateListener *UpdateListener) {
5096  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5097    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5098
5099  // Iterate over just the existing users of From. See the comments in
5100  // the ReplaceAllUsesWith above.
5101  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5102  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5103  while (UI != UE) {
5104    SDNode *User = *UI;
5105
5106    // This node is about to morph, remove its old self from the CSE maps.
5107    RemoveNodeFromCSEMaps(User);
5108
5109    // A user can appear in a use list multiple times, and when this
5110    // happens the uses are usually next to each other in the list.
5111    // To help reduce the number of CSE recomputations, process all
5112    // the uses of this user that we can find this way.
5113    do {
5114      SDUse &Use = UI.getUse();
5115      const SDValue &ToOp = To[Use.getResNo()];
5116      ++UI;
5117      Use.set(ToOp);
5118    } while (UI != UE && *UI == User);
5119
5120    // Now that we have modified User, add it back to the CSE maps.  If it
5121    // already exists there, recursively merge the results together.
5122    AddModifiedNodeToCSEMaps(User, &Listener);
5123  }
5124}
5125
5126/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5127/// uses of other values produced by From.getNode() alone.  The Deleted
5128/// vector is handled the same way as for ReplaceAllUsesWith.
5129void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5130                                             DAGUpdateListener *UpdateListener){
5131  // Handle the really simple, really trivial case efficiently.
5132  if (From == To) return;
5133
5134  // Handle the simple, trivial, case efficiently.
5135  if (From.getNode()->getNumValues() == 1) {
5136    ReplaceAllUsesWith(From, To, UpdateListener);
5137    return;
5138  }
5139
5140  // Iterate over just the existing users of From. See the comments in
5141  // the ReplaceAllUsesWith above.
5142  SDNode::use_iterator UI = From.getNode()->use_begin(),
5143                       UE = From.getNode()->use_end();
5144  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5145  while (UI != UE) {
5146    SDNode *User = *UI;
5147    bool UserRemovedFromCSEMaps = false;
5148
5149    // A user can appear in a use list multiple times, and when this
5150    // happens the uses are usually next to each other in the list.
5151    // To help reduce the number of CSE recomputations, process all
5152    // the uses of this user that we can find this way.
5153    do {
5154      SDUse &Use = UI.getUse();
5155
5156      // Skip uses of different values from the same node.
5157      if (Use.getResNo() != From.getResNo()) {
5158        ++UI;
5159        continue;
5160      }
5161
5162      // If this node hasn't been modified yet, it's still in the CSE maps,
5163      // so remove its old self from the CSE maps.
5164      if (!UserRemovedFromCSEMaps) {
5165        RemoveNodeFromCSEMaps(User);
5166        UserRemovedFromCSEMaps = true;
5167      }
5168
5169      ++UI;
5170      Use.set(To);
5171    } while (UI != UE && *UI == User);
5172
5173    // We are iterating over all uses of the From node, so if a use
5174    // doesn't use the specific value, no changes are made.
5175    if (!UserRemovedFromCSEMaps)
5176      continue;
5177
5178    // Now that we have modified User, add it back to the CSE maps.  If it
5179    // already exists there, recursively merge the results together.
5180    AddModifiedNodeToCSEMaps(User, &Listener);
5181  }
5182}
5183
5184namespace {
5185  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5186  /// to record information about a use.
5187  struct UseMemo {
5188    SDNode *User;
5189    unsigned Index;
5190    SDUse *Use;
5191  };
5192
5193  /// operator< - Sort Memos by User.
5194  bool operator<(const UseMemo &L, const UseMemo &R) {
5195    return (intptr_t)L.User < (intptr_t)R.User;
5196  }
5197}
5198
5199/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5200/// uses of other values produced by From.getNode() alone.  The same value
5201/// may appear in both the From and To list.  The Deleted vector is
5202/// handled the same way as for ReplaceAllUsesWith.
5203void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5204                                              const SDValue *To,
5205                                              unsigned Num,
5206                                              DAGUpdateListener *UpdateListener){
5207  // Handle the simple, trivial case efficiently.
5208  if (Num == 1)
5209    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5210
5211  // Read up all the uses and make records of them. This helps
5212  // processing new uses that are introduced during the
5213  // replacement process.
5214  SmallVector<UseMemo, 4> Uses;
5215  for (unsigned i = 0; i != Num; ++i) {
5216    unsigned FromResNo = From[i].getResNo();
5217    SDNode *FromNode = From[i].getNode();
5218    for (SDNode::use_iterator UI = FromNode->use_begin(),
5219         E = FromNode->use_end(); UI != E; ++UI) {
5220      SDUse &Use = UI.getUse();
5221      if (Use.getResNo() == FromResNo) {
5222        UseMemo Memo = { *UI, i, &Use };
5223        Uses.push_back(Memo);
5224      }
5225    }
5226  }
5227
5228  // Sort the uses, so that all the uses from a given User are together.
5229  std::sort(Uses.begin(), Uses.end());
5230
5231  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5232       UseIndex != UseIndexEnd; ) {
5233    // We know that this user uses some value of From.  If it is the right
5234    // value, update it.
5235    SDNode *User = Uses[UseIndex].User;
5236
5237    // This node is about to morph, remove its old self from the CSE maps.
5238    RemoveNodeFromCSEMaps(User);
5239
5240    // The Uses array is sorted, so all the uses for a given User
5241    // are next to each other in the list.
5242    // To help reduce the number of CSE recomputations, process all
5243    // the uses of this user that we can find this way.
5244    do {
5245      unsigned i = Uses[UseIndex].Index;
5246      SDUse &Use = *Uses[UseIndex].Use;
5247      ++UseIndex;
5248
5249      Use.set(To[i]);
5250    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5251
5252    // Now that we have modified User, add it back to the CSE maps.  If it
5253    // already exists there, recursively merge the results together.
5254    AddModifiedNodeToCSEMaps(User, UpdateListener);
5255  }
5256}
5257
5258/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5259/// based on their topological order. It returns the maximum id and a vector
5260/// of the SDNodes* in assigned order by reference.
5261unsigned SelectionDAG::AssignTopologicalOrder() {
5262
5263  unsigned DAGSize = 0;
5264
5265  // SortedPos tracks the progress of the algorithm. Nodes before it are
5266  // sorted, nodes after it are unsorted. When the algorithm completes
5267  // it is at the end of the list.
5268  allnodes_iterator SortedPos = allnodes_begin();
5269
5270  // Visit all the nodes. Move nodes with no operands to the front of
5271  // the list immediately. Annotate nodes that do have operands with their
5272  // operand count. Before we do this, the Node Id fields of the nodes
5273  // may contain arbitrary values. After, the Node Id fields for nodes
5274  // before SortedPos will contain the topological sort index, and the
5275  // Node Id fields for nodes At SortedPos and after will contain the
5276  // count of outstanding operands.
5277  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5278    SDNode *N = I++;
5279    checkForCycles(N);
5280    unsigned Degree = N->getNumOperands();
5281    if (Degree == 0) {
5282      // A node with no uses, add it to the result array immediately.
5283      N->setNodeId(DAGSize++);
5284      allnodes_iterator Q = N;
5285      if (Q != SortedPos)
5286        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5287      assert(SortedPos != AllNodes.end() && "Overran node list");
5288      ++SortedPos;
5289    } else {
5290      // Temporarily use the Node Id as scratch space for the degree count.
5291      N->setNodeId(Degree);
5292    }
5293  }
5294
5295  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5296  // such that by the time the end is reached all nodes will be sorted.
5297  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5298    SDNode *N = I;
5299    checkForCycles(N);
5300    // N is in sorted position, so all its uses have one less operand
5301    // that needs to be sorted.
5302    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5303         UI != UE; ++UI) {
5304      SDNode *P = *UI;
5305      unsigned Degree = P->getNodeId();
5306      assert(Degree != 0 && "Invalid node degree");
5307      --Degree;
5308      if (Degree == 0) {
5309        // All of P's operands are sorted, so P may sorted now.
5310        P->setNodeId(DAGSize++);
5311        if (P != SortedPos)
5312          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5313        assert(SortedPos != AllNodes.end() && "Overran node list");
5314        ++SortedPos;
5315      } else {
5316        // Update P's outstanding operand count.
5317        P->setNodeId(Degree);
5318      }
5319    }
5320    if (I == SortedPos) {
5321#ifndef NDEBUG
5322      SDNode *S = ++I;
5323      dbgs() << "Overran sorted position:\n";
5324      S->dumprFull();
5325#endif
5326      llvm_unreachable(0);
5327    }
5328  }
5329
5330  assert(SortedPos == AllNodes.end() &&
5331         "Topological sort incomplete!");
5332  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5333         "First node in topological sort is not the entry token!");
5334  assert(AllNodes.front().getNodeId() == 0 &&
5335         "First node in topological sort has non-zero id!");
5336  assert(AllNodes.front().getNumOperands() == 0 &&
5337         "First node in topological sort has operands!");
5338  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5339         "Last node in topologic sort has unexpected id!");
5340  assert(AllNodes.back().use_empty() &&
5341         "Last node in topologic sort has users!");
5342  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5343  return DAGSize;
5344}
5345
5346/// AssignOrdering - Assign an order to the SDNode.
5347void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5348  assert(SD && "Trying to assign an order to a null node!");
5349  Ordering->add(SD, Order);
5350}
5351
5352/// GetOrdering - Get the order for the SDNode.
5353unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5354  assert(SD && "Trying to get the order of a null node!");
5355  return Ordering->getOrder(SD);
5356}
5357
5358/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5359/// value is produced by SD.
5360void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5361  DbgInfo->add(DB, SD, isParameter);
5362  if (SD)
5363    SD->setHasDebugValue(true);
5364}
5365
5366//===----------------------------------------------------------------------===//
5367//                              SDNode Class
5368//===----------------------------------------------------------------------===//
5369
5370HandleSDNode::~HandleSDNode() {
5371  DropOperands();
5372}
5373
5374GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5375                                         EVT VT, int64_t o, unsigned char TF)
5376  : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5377  TheGlobal = GA;
5378}
5379
5380MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5381                     MachineMemOperand *mmo)
5382 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5383  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5384                                      MMO->isNonTemporal());
5385  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5386  assert(isNonTemporal() == MMO->isNonTemporal() &&
5387         "Non-temporal encoding error!");
5388  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5389}
5390
5391MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5392                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5393                     MachineMemOperand *mmo)
5394   : SDNode(Opc, dl, VTs, Ops, NumOps),
5395     MemoryVT(memvt), MMO(mmo) {
5396  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5397                                      MMO->isNonTemporal());
5398  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5399  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5400}
5401
5402/// Profile - Gather unique data for the node.
5403///
5404void SDNode::Profile(FoldingSetNodeID &ID) const {
5405  AddNodeIDNode(ID, this);
5406}
5407
5408namespace {
5409  struct EVTArray {
5410    std::vector<EVT> VTs;
5411
5412    EVTArray() {
5413      VTs.reserve(MVT::LAST_VALUETYPE);
5414      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5415        VTs.push_back(MVT((MVT::SimpleValueType)i));
5416    }
5417  };
5418}
5419
5420static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5421static ManagedStatic<EVTArray> SimpleVTArray;
5422static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5423
5424/// getValueTypeList - Return a pointer to the specified value type.
5425///
5426const EVT *SDNode::getValueTypeList(EVT VT) {
5427  if (VT.isExtended()) {
5428    sys::SmartScopedLock<true> Lock(*VTMutex);
5429    return &(*EVTs->insert(VT).first);
5430  } else {
5431    assert(VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
5432           "Value type out of range!");
5433    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5434  }
5435}
5436
5437/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5438/// indicated value.  This method ignores uses of other values defined by this
5439/// operation.
5440bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5441  assert(Value < getNumValues() && "Bad value!");
5442
5443  // TODO: Only iterate over uses of a given value of the node
5444  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5445    if (UI.getUse().getResNo() == Value) {
5446      if (NUses == 0)
5447        return false;
5448      --NUses;
5449    }
5450  }
5451
5452  // Found exactly the right number of uses?
5453  return NUses == 0;
5454}
5455
5456
5457/// hasAnyUseOfValue - Return true if there are any use of the indicated
5458/// value. This method ignores uses of other values defined by this operation.
5459bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5460  assert(Value < getNumValues() && "Bad value!");
5461
5462  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5463    if (UI.getUse().getResNo() == Value)
5464      return true;
5465
5466  return false;
5467}
5468
5469
5470/// isOnlyUserOf - Return true if this node is the only use of N.
5471///
5472bool SDNode::isOnlyUserOf(SDNode *N) const {
5473  bool Seen = false;
5474  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5475    SDNode *User = *I;
5476    if (User == this)
5477      Seen = true;
5478    else
5479      return false;
5480  }
5481
5482  return Seen;
5483}
5484
5485/// isOperand - Return true if this node is an operand of N.
5486///
5487bool SDValue::isOperandOf(SDNode *N) const {
5488  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5489    if (*this == N->getOperand(i))
5490      return true;
5491  return false;
5492}
5493
5494bool SDNode::isOperandOf(SDNode *N) const {
5495  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5496    if (this == N->OperandList[i].getNode())
5497      return true;
5498  return false;
5499}
5500
5501/// reachesChainWithoutSideEffects - Return true if this operand (which must
5502/// be a chain) reaches the specified operand without crossing any
5503/// side-effecting instructions.  In practice, this looks through token
5504/// factors and non-volatile loads.  In order to remain efficient, this only
5505/// looks a couple of nodes in, it does not do an exhaustive search.
5506bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5507                                               unsigned Depth) const {
5508  if (*this == Dest) return true;
5509
5510  // Don't search too deeply, we just want to be able to see through
5511  // TokenFactor's etc.
5512  if (Depth == 0) return false;
5513
5514  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5515  // of the operands of the TF reach dest, then we can do the xform.
5516  if (getOpcode() == ISD::TokenFactor) {
5517    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5518      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5519        return true;
5520    return false;
5521  }
5522
5523  // Loads don't have side effects, look through them.
5524  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5525    if (!Ld->isVolatile())
5526      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5527  }
5528  return false;
5529}
5530
5531/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5532/// is either an operand of N or it can be reached by traversing up the operands.
5533/// NOTE: this is an expensive method. Use it carefully.
5534bool SDNode::isPredecessorOf(SDNode *N) const {
5535  SmallPtrSet<SDNode *, 32> Visited;
5536  SmallVector<SDNode *, 16> Worklist;
5537  Worklist.push_back(N);
5538
5539  do {
5540    N = Worklist.pop_back_val();
5541    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5542      SDNode *Op = N->getOperand(i).getNode();
5543      if (Op == this)
5544        return true;
5545      if (Visited.insert(Op))
5546        Worklist.push_back(Op);
5547    }
5548  } while (!Worklist.empty());
5549
5550  return false;
5551}
5552
5553uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5554  assert(Num < NumOperands && "Invalid child # of SDNode!");
5555  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5556}
5557
5558std::string SDNode::getOperationName(const SelectionDAG *G) const {
5559  switch (getOpcode()) {
5560  default:
5561    if (getOpcode() < ISD::BUILTIN_OP_END)
5562      return "<<Unknown DAG Node>>";
5563    if (isMachineOpcode()) {
5564      if (G)
5565        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5566          if (getMachineOpcode() < TII->getNumOpcodes())
5567            return TII->get(getMachineOpcode()).getName();
5568      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5569    }
5570    if (G) {
5571      const TargetLowering &TLI = G->getTargetLoweringInfo();
5572      const char *Name = TLI.getTargetNodeName(getOpcode());
5573      if (Name) return Name;
5574      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5575    }
5576    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5577
5578#ifndef NDEBUG
5579  case ISD::DELETED_NODE:
5580    return "<<Deleted Node!>>";
5581#endif
5582  case ISD::PREFETCH:      return "Prefetch";
5583  case ISD::MEMBARRIER:    return "MemBarrier";
5584  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5585  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5586  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5587  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5588  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5589  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5590  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5591  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5592  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5593  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5594  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5595  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5596  case ISD::PCMARKER:      return "PCMarker";
5597  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5598  case ISD::SRCVALUE:      return "SrcValue";
5599  case ISD::MDNODE_SDNODE: return "MDNode";
5600  case ISD::EntryToken:    return "EntryToken";
5601  case ISD::TokenFactor:   return "TokenFactor";
5602  case ISD::AssertSext:    return "AssertSext";
5603  case ISD::AssertZext:    return "AssertZext";
5604
5605  case ISD::BasicBlock:    return "BasicBlock";
5606  case ISD::VALUETYPE:     return "ValueType";
5607  case ISD::Register:      return "Register";
5608
5609  case ISD::Constant:      return "Constant";
5610  case ISD::ConstantFP:    return "ConstantFP";
5611  case ISD::GlobalAddress: return "GlobalAddress";
5612  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5613  case ISD::FrameIndex:    return "FrameIndex";
5614  case ISD::JumpTable:     return "JumpTable";
5615  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5616  case ISD::RETURNADDR: return "RETURNADDR";
5617  case ISD::FRAMEADDR: return "FRAMEADDR";
5618  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5619  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5620  case ISD::LSDAADDR: return "LSDAADDR";
5621  case ISD::EHSELECTION: return "EHSELECTION";
5622  case ISD::EH_RETURN: return "EH_RETURN";
5623  case ISD::ConstantPool:  return "ConstantPool";
5624  case ISD::ExternalSymbol: return "ExternalSymbol";
5625  case ISD::BlockAddress:  return "BlockAddress";
5626  case ISD::INTRINSIC_WO_CHAIN:
5627  case ISD::INTRINSIC_VOID:
5628  case ISD::INTRINSIC_W_CHAIN: {
5629    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5630    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5631    if (IID < Intrinsic::num_intrinsics)
5632      return Intrinsic::getName((Intrinsic::ID)IID);
5633    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5634      return TII->getName(IID);
5635    llvm_unreachable("Invalid intrinsic ID");
5636  }
5637
5638  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5639  case ISD::TargetConstant: return "TargetConstant";
5640  case ISD::TargetConstantFP:return "TargetConstantFP";
5641  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5642  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5643  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5644  case ISD::TargetJumpTable:  return "TargetJumpTable";
5645  case ISD::TargetConstantPool:  return "TargetConstantPool";
5646  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5647  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5648
5649  case ISD::CopyToReg:     return "CopyToReg";
5650  case ISD::CopyFromReg:   return "CopyFromReg";
5651  case ISD::UNDEF:         return "undef";
5652  case ISD::MERGE_VALUES:  return "merge_values";
5653  case ISD::INLINEASM:     return "inlineasm";
5654  case ISD::EH_LABEL:      return "eh_label";
5655  case ISD::HANDLENODE:    return "handlenode";
5656
5657  // Unary operators
5658  case ISD::FABS:   return "fabs";
5659  case ISD::FNEG:   return "fneg";
5660  case ISD::FSQRT:  return "fsqrt";
5661  case ISD::FSIN:   return "fsin";
5662  case ISD::FCOS:   return "fcos";
5663  case ISD::FPOWI:  return "fpowi";
5664  case ISD::FPOW:   return "fpow";
5665  case ISD::FTRUNC: return "ftrunc";
5666  case ISD::FFLOOR: return "ffloor";
5667  case ISD::FCEIL:  return "fceil";
5668  case ISD::FRINT:  return "frint";
5669  case ISD::FNEARBYINT: return "fnearbyint";
5670
5671  // Binary operators
5672  case ISD::ADD:    return "add";
5673  case ISD::SUB:    return "sub";
5674  case ISD::MUL:    return "mul";
5675  case ISD::MULHU:  return "mulhu";
5676  case ISD::MULHS:  return "mulhs";
5677  case ISD::SDIV:   return "sdiv";
5678  case ISD::UDIV:   return "udiv";
5679  case ISD::SREM:   return "srem";
5680  case ISD::UREM:   return "urem";
5681  case ISD::SMUL_LOHI:  return "smul_lohi";
5682  case ISD::UMUL_LOHI:  return "umul_lohi";
5683  case ISD::SDIVREM:    return "sdivrem";
5684  case ISD::UDIVREM:    return "udivrem";
5685  case ISD::AND:    return "and";
5686  case ISD::OR:     return "or";
5687  case ISD::XOR:    return "xor";
5688  case ISD::SHL:    return "shl";
5689  case ISD::SRA:    return "sra";
5690  case ISD::SRL:    return "srl";
5691  case ISD::ROTL:   return "rotl";
5692  case ISD::ROTR:   return "rotr";
5693  case ISD::FADD:   return "fadd";
5694  case ISD::FSUB:   return "fsub";
5695  case ISD::FMUL:   return "fmul";
5696  case ISD::FDIV:   return "fdiv";
5697  case ISD::FREM:   return "frem";
5698  case ISD::FCOPYSIGN: return "fcopysign";
5699  case ISD::FGETSIGN:  return "fgetsign";
5700
5701  case ISD::SETCC:       return "setcc";
5702  case ISD::VSETCC:      return "vsetcc";
5703  case ISD::SELECT:      return "select";
5704  case ISD::SELECT_CC:   return "select_cc";
5705  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5706  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5707  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5708  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5709  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5710  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5711  case ISD::CARRY_FALSE:         return "carry_false";
5712  case ISD::ADDC:        return "addc";
5713  case ISD::ADDE:        return "adde";
5714  case ISD::SADDO:       return "saddo";
5715  case ISD::UADDO:       return "uaddo";
5716  case ISD::SSUBO:       return "ssubo";
5717  case ISD::USUBO:       return "usubo";
5718  case ISD::SMULO:       return "smulo";
5719  case ISD::UMULO:       return "umulo";
5720  case ISD::SUBC:        return "subc";
5721  case ISD::SUBE:        return "sube";
5722  case ISD::SHL_PARTS:   return "shl_parts";
5723  case ISD::SRA_PARTS:   return "sra_parts";
5724  case ISD::SRL_PARTS:   return "srl_parts";
5725
5726  // Conversion operators.
5727  case ISD::SIGN_EXTEND: return "sign_extend";
5728  case ISD::ZERO_EXTEND: return "zero_extend";
5729  case ISD::ANY_EXTEND:  return "any_extend";
5730  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5731  case ISD::TRUNCATE:    return "truncate";
5732  case ISD::FP_ROUND:    return "fp_round";
5733  case ISD::FLT_ROUNDS_: return "flt_rounds";
5734  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5735  case ISD::FP_EXTEND:   return "fp_extend";
5736
5737  case ISD::SINT_TO_FP:  return "sint_to_fp";
5738  case ISD::UINT_TO_FP:  return "uint_to_fp";
5739  case ISD::FP_TO_SINT:  return "fp_to_sint";
5740  case ISD::FP_TO_UINT:  return "fp_to_uint";
5741  case ISD::BIT_CONVERT: return "bit_convert";
5742  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5743  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5744
5745  case ISD::CONVERT_RNDSAT: {
5746    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5747    default: llvm_unreachable("Unknown cvt code!");
5748    case ISD::CVT_FF:  return "cvt_ff";
5749    case ISD::CVT_FS:  return "cvt_fs";
5750    case ISD::CVT_FU:  return "cvt_fu";
5751    case ISD::CVT_SF:  return "cvt_sf";
5752    case ISD::CVT_UF:  return "cvt_uf";
5753    case ISD::CVT_SS:  return "cvt_ss";
5754    case ISD::CVT_SU:  return "cvt_su";
5755    case ISD::CVT_US:  return "cvt_us";
5756    case ISD::CVT_UU:  return "cvt_uu";
5757    }
5758  }
5759
5760    // Control flow instructions
5761  case ISD::BR:      return "br";
5762  case ISD::BRIND:   return "brind";
5763  case ISD::BR_JT:   return "br_jt";
5764  case ISD::BRCOND:  return "brcond";
5765  case ISD::BR_CC:   return "br_cc";
5766  case ISD::CALLSEQ_START:  return "callseq_start";
5767  case ISD::CALLSEQ_END:    return "callseq_end";
5768
5769    // Other operators
5770  case ISD::LOAD:               return "load";
5771  case ISD::STORE:              return "store";
5772  case ISD::VAARG:              return "vaarg";
5773  case ISD::VACOPY:             return "vacopy";
5774  case ISD::VAEND:              return "vaend";
5775  case ISD::VASTART:            return "vastart";
5776  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5777  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5778  case ISD::BUILD_PAIR:         return "build_pair";
5779  case ISD::STACKSAVE:          return "stacksave";
5780  case ISD::STACKRESTORE:       return "stackrestore";
5781  case ISD::TRAP:               return "trap";
5782
5783  // Bit manipulation
5784  case ISD::BSWAP:   return "bswap";
5785  case ISD::CTPOP:   return "ctpop";
5786  case ISD::CTTZ:    return "cttz";
5787  case ISD::CTLZ:    return "ctlz";
5788
5789  // Trampolines
5790  case ISD::TRAMPOLINE: return "trampoline";
5791
5792  case ISD::CONDCODE:
5793    switch (cast<CondCodeSDNode>(this)->get()) {
5794    default: llvm_unreachable("Unknown setcc condition!");
5795    case ISD::SETOEQ:  return "setoeq";
5796    case ISD::SETOGT:  return "setogt";
5797    case ISD::SETOGE:  return "setoge";
5798    case ISD::SETOLT:  return "setolt";
5799    case ISD::SETOLE:  return "setole";
5800    case ISD::SETONE:  return "setone";
5801
5802    case ISD::SETO:    return "seto";
5803    case ISD::SETUO:   return "setuo";
5804    case ISD::SETUEQ:  return "setue";
5805    case ISD::SETUGT:  return "setugt";
5806    case ISD::SETUGE:  return "setuge";
5807    case ISD::SETULT:  return "setult";
5808    case ISD::SETULE:  return "setule";
5809    case ISD::SETUNE:  return "setune";
5810
5811    case ISD::SETEQ:   return "seteq";
5812    case ISD::SETGT:   return "setgt";
5813    case ISD::SETGE:   return "setge";
5814    case ISD::SETLT:   return "setlt";
5815    case ISD::SETLE:   return "setle";
5816    case ISD::SETNE:   return "setne";
5817    }
5818  }
5819}
5820
5821const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5822  switch (AM) {
5823  default:
5824    return "";
5825  case ISD::PRE_INC:
5826    return "<pre-inc>";
5827  case ISD::PRE_DEC:
5828    return "<pre-dec>";
5829  case ISD::POST_INC:
5830    return "<post-inc>";
5831  case ISD::POST_DEC:
5832    return "<post-dec>";
5833  }
5834}
5835
5836std::string ISD::ArgFlagsTy::getArgFlagsString() {
5837  std::string S = "< ";
5838
5839  if (isZExt())
5840    S += "zext ";
5841  if (isSExt())
5842    S += "sext ";
5843  if (isInReg())
5844    S += "inreg ";
5845  if (isSRet())
5846    S += "sret ";
5847  if (isByVal())
5848    S += "byval ";
5849  if (isNest())
5850    S += "nest ";
5851  if (getByValAlign())
5852    S += "byval-align:" + utostr(getByValAlign()) + " ";
5853  if (getOrigAlign())
5854    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5855  if (getByValSize())
5856    S += "byval-size:" + utostr(getByValSize()) + " ";
5857  return S + ">";
5858}
5859
5860void SDNode::dump() const { dump(0); }
5861void SDNode::dump(const SelectionDAG *G) const {
5862  print(dbgs(), G);
5863}
5864
5865void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5866  OS << (void*)this << ": ";
5867
5868  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5869    if (i) OS << ",";
5870    if (getValueType(i) == MVT::Other)
5871      OS << "ch";
5872    else
5873      OS << getValueType(i).getEVTString();
5874  }
5875  OS << " = " << getOperationName(G);
5876}
5877
5878void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5879  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5880    if (!MN->memoperands_empty()) {
5881      OS << "<";
5882      OS << "Mem:";
5883      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5884           e = MN->memoperands_end(); i != e; ++i) {
5885        OS << **i;
5886        if (next(i) != e)
5887          OS << " ";
5888      }
5889      OS << ">";
5890    }
5891  } else if (const ShuffleVectorSDNode *SVN =
5892               dyn_cast<ShuffleVectorSDNode>(this)) {
5893    OS << "<";
5894    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5895      int Idx = SVN->getMaskElt(i);
5896      if (i) OS << ",";
5897      if (Idx < 0)
5898        OS << "u";
5899      else
5900        OS << Idx;
5901    }
5902    OS << ">";
5903  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5904    OS << '<' << CSDN->getAPIntValue() << '>';
5905  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5906    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5907      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5908    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5909      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5910    else {
5911      OS << "<APFloat(";
5912      CSDN->getValueAPF().bitcastToAPInt().dump();
5913      OS << ")>";
5914    }
5915  } else if (const GlobalAddressSDNode *GADN =
5916             dyn_cast<GlobalAddressSDNode>(this)) {
5917    int64_t offset = GADN->getOffset();
5918    OS << '<';
5919    WriteAsOperand(OS, GADN->getGlobal());
5920    OS << '>';
5921    if (offset > 0)
5922      OS << " + " << offset;
5923    else
5924      OS << " " << offset;
5925    if (unsigned int TF = GADN->getTargetFlags())
5926      OS << " [TF=" << TF << ']';
5927  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5928    OS << "<" << FIDN->getIndex() << ">";
5929  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5930    OS << "<" << JTDN->getIndex() << ">";
5931    if (unsigned int TF = JTDN->getTargetFlags())
5932      OS << " [TF=" << TF << ']';
5933  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5934    int offset = CP->getOffset();
5935    if (CP->isMachineConstantPoolEntry())
5936      OS << "<" << *CP->getMachineCPVal() << ">";
5937    else
5938      OS << "<" << *CP->getConstVal() << ">";
5939    if (offset > 0)
5940      OS << " + " << offset;
5941    else
5942      OS << " " << offset;
5943    if (unsigned int TF = CP->getTargetFlags())
5944      OS << " [TF=" << TF << ']';
5945  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5946    OS << "<";
5947    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5948    if (LBB)
5949      OS << LBB->getName() << " ";
5950    OS << (const void*)BBDN->getBasicBlock() << ">";
5951  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5952    if (G && R->getReg() &&
5953        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5954      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5955    } else {
5956      OS << " %reg" << R->getReg();
5957    }
5958  } else if (const ExternalSymbolSDNode *ES =
5959             dyn_cast<ExternalSymbolSDNode>(this)) {
5960    OS << "'" << ES->getSymbol() << "'";
5961    if (unsigned int TF = ES->getTargetFlags())
5962      OS << " [TF=" << TF << ']';
5963  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5964    if (M->getValue())
5965      OS << "<" << M->getValue() << ">";
5966    else
5967      OS << "<null>";
5968  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
5969    if (MD->getMD())
5970      OS << "<" << MD->getMD() << ">";
5971    else
5972      OS << "<null>";
5973  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5974    OS << ":" << N->getVT().getEVTString();
5975  }
5976  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5977    OS << "<" << *LD->getMemOperand();
5978
5979    bool doExt = true;
5980    switch (LD->getExtensionType()) {
5981    default: doExt = false; break;
5982    case ISD::EXTLOAD: OS << ", anyext"; break;
5983    case ISD::SEXTLOAD: OS << ", sext"; break;
5984    case ISD::ZEXTLOAD: OS << ", zext"; break;
5985    }
5986    if (doExt)
5987      OS << " from " << LD->getMemoryVT().getEVTString();
5988
5989    const char *AM = getIndexedModeName(LD->getAddressingMode());
5990    if (*AM)
5991      OS << ", " << AM;
5992
5993    OS << ">";
5994  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5995    OS << "<" << *ST->getMemOperand();
5996
5997    if (ST->isTruncatingStore())
5998      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5999
6000    const char *AM = getIndexedModeName(ST->getAddressingMode());
6001    if (*AM)
6002      OS << ", " << AM;
6003
6004    OS << ">";
6005  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6006    OS << "<" << *M->getMemOperand() << ">";
6007  } else if (const BlockAddressSDNode *BA =
6008               dyn_cast<BlockAddressSDNode>(this)) {
6009    OS << "<";
6010    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6011    OS << ", ";
6012    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6013    OS << ">";
6014    if (unsigned int TF = BA->getTargetFlags())
6015      OS << " [TF=" << TF << ']';
6016  }
6017
6018  if (G)
6019    if (unsigned Order = G->GetOrdering(this))
6020      OS << " [ORD=" << Order << ']';
6021
6022  if (getNodeId() != -1)
6023    OS << " [ID=" << getNodeId() << ']';
6024
6025  DebugLoc dl = getDebugLoc();
6026  if (G && !dl.isUnknown()) {
6027    DIScope
6028      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6029    OS << " dbg:";
6030    // Omit the directory, since it's usually long and uninteresting.
6031    if (Scope.Verify())
6032      OS << Scope.getFilename();
6033    else
6034      OS << "<unknown>";
6035    OS << ':' << dl.getLine();
6036    if (dl.getCol() != 0)
6037      OS << ':' << dl.getCol();
6038  }
6039}
6040
6041void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6042  print_types(OS, G);
6043  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6044    if (i) OS << ", "; else OS << " ";
6045    OS << (void*)getOperand(i).getNode();
6046    if (unsigned RN = getOperand(i).getResNo())
6047      OS << ":" << RN;
6048  }
6049  print_details(OS, G);
6050}
6051
6052static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6053                                  const SelectionDAG *G, unsigned depth,
6054                                  unsigned indent)
6055{
6056  if (depth == 0)
6057    return;
6058
6059  OS.indent(indent);
6060
6061  N->print(OS, G);
6062
6063  if (depth < 1)
6064    return;
6065
6066  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6067    OS << '\n';
6068    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6069  }
6070}
6071
6072void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6073                            unsigned depth) const {
6074  printrWithDepthHelper(OS, this, G, depth, 0);
6075}
6076
6077void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6078  // Don't print impossibly deep things.
6079  printrWithDepth(OS, G, 100);
6080}
6081
6082void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6083  printrWithDepth(dbgs(), G, depth);
6084}
6085
6086void SDNode::dumprFull(const SelectionDAG *G) const {
6087  // Don't print impossibly deep things.
6088  dumprWithDepth(G, 100);
6089}
6090
6091static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6092  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6093    if (N->getOperand(i).getNode()->hasOneUse())
6094      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6095    else
6096      dbgs() << "\n" << std::string(indent+2, ' ')
6097           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6098
6099
6100  dbgs() << "\n";
6101  dbgs().indent(indent);
6102  N->dump(G);
6103}
6104
6105SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6106  assert(N->getNumValues() == 1 &&
6107         "Can't unroll a vector with multiple results!");
6108
6109  EVT VT = N->getValueType(0);
6110  unsigned NE = VT.getVectorNumElements();
6111  EVT EltVT = VT.getVectorElementType();
6112  DebugLoc dl = N->getDebugLoc();
6113
6114  SmallVector<SDValue, 8> Scalars;
6115  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6116
6117  // If ResNE is 0, fully unroll the vector op.
6118  if (ResNE == 0)
6119    ResNE = NE;
6120  else if (NE > ResNE)
6121    NE = ResNE;
6122
6123  unsigned i;
6124  for (i= 0; i != NE; ++i) {
6125    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6126      SDValue Operand = N->getOperand(j);
6127      EVT OperandVT = Operand.getValueType();
6128      if (OperandVT.isVector()) {
6129        // A vector operand; extract a single element.
6130        EVT OperandEltVT = OperandVT.getVectorElementType();
6131        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6132                              OperandEltVT,
6133                              Operand,
6134                              getConstant(i, MVT::i32));
6135      } else {
6136        // A scalar operand; just use it as is.
6137        Operands[j] = Operand;
6138      }
6139    }
6140
6141    switch (N->getOpcode()) {
6142    default:
6143      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6144                                &Operands[0], Operands.size()));
6145      break;
6146    case ISD::SHL:
6147    case ISD::SRA:
6148    case ISD::SRL:
6149    case ISD::ROTL:
6150    case ISD::ROTR:
6151      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6152                                getShiftAmountOperand(Operands[1])));
6153      break;
6154    case ISD::SIGN_EXTEND_INREG:
6155    case ISD::FP_ROUND_INREG: {
6156      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6157      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6158                                Operands[0],
6159                                getValueType(ExtVT)));
6160    }
6161    }
6162  }
6163
6164  for (; i < ResNE; ++i)
6165    Scalars.push_back(getUNDEF(EltVT));
6166
6167  return getNode(ISD::BUILD_VECTOR, dl,
6168                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6169                 &Scalars[0], Scalars.size());
6170}
6171
6172
6173/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6174/// location that is 'Dist' units away from the location that the 'Base' load
6175/// is loading from.
6176bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6177                                     unsigned Bytes, int Dist) const {
6178  if (LD->getChain() != Base->getChain())
6179    return false;
6180  EVT VT = LD->getValueType(0);
6181  if (VT.getSizeInBits() / 8 != Bytes)
6182    return false;
6183
6184  SDValue Loc = LD->getOperand(1);
6185  SDValue BaseLoc = Base->getOperand(1);
6186  if (Loc.getOpcode() == ISD::FrameIndex) {
6187    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6188      return false;
6189    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6190    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6191    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6192    int FS  = MFI->getObjectSize(FI);
6193    int BFS = MFI->getObjectSize(BFI);
6194    if (FS != BFS || FS != (int)Bytes) return false;
6195    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6196  }
6197  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6198    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6199    if (V && (V->getSExtValue() == Dist*Bytes))
6200      return true;
6201  }
6202
6203  const GlobalValue *GV1 = NULL;
6204  const GlobalValue *GV2 = NULL;
6205  int64_t Offset1 = 0;
6206  int64_t Offset2 = 0;
6207  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6208  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6209  if (isGA1 && isGA2 && GV1 == GV2)
6210    return Offset1 == (Offset2 + Dist*Bytes);
6211  return false;
6212}
6213
6214
6215/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6216/// it cannot be inferred.
6217unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6218  // If this is a GlobalAddress + cst, return the alignment.
6219  const GlobalValue *GV;
6220  int64_t GVOffset = 0;
6221  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6222    // If GV has specified alignment, then use it. Otherwise, use the preferred
6223    // alignment.
6224    unsigned Align = GV->getAlignment();
6225    if (!Align) {
6226      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6227        if (GVar->hasInitializer()) {
6228          const TargetData *TD = TLI.getTargetData();
6229          Align = TD->getPreferredAlignment(GVar);
6230        }
6231      }
6232    }
6233    return MinAlign(Align, GVOffset);
6234  }
6235
6236  // If this is a direct reference to a stack slot, use information about the
6237  // stack slot's alignment.
6238  int FrameIdx = 1 << 31;
6239  int64_t FrameOffset = 0;
6240  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6241    FrameIdx = FI->getIndex();
6242  } else if (Ptr.getOpcode() == ISD::ADD &&
6243             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6244             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6245    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6246    FrameOffset = Ptr.getConstantOperandVal(1);
6247  }
6248
6249  if (FrameIdx != (1 << 31)) {
6250    // FIXME: Handle FI+CST.
6251    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6252    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6253                                    FrameOffset);
6254    if (MFI.isFixedObjectIndex(FrameIdx)) {
6255      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6256
6257      // The alignment of the frame index can be determined from its offset from
6258      // the incoming frame position.  If the frame object is at offset 32 and
6259      // the stack is guaranteed to be 16-byte aligned, then we know that the
6260      // object is 16-byte aligned.
6261      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6262      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6263
6264      // Finally, the frame object itself may have a known alignment.  Factor
6265      // the alignment + offset into a new alignment.  For example, if we know
6266      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6267      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6268      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6269      return std::max(Align, FIInfoAlign);
6270    }
6271    return FIInfoAlign;
6272  }
6273
6274  return 0;
6275}
6276
6277void SelectionDAG::dump() const {
6278  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6279
6280  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6281       I != E; ++I) {
6282    const SDNode *N = I;
6283    if (!N->hasOneUse() && N != getRoot().getNode())
6284      DumpNodes(N, 2, this);
6285  }
6286
6287  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6288
6289  dbgs() << "\n\n";
6290}
6291
6292void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6293  print_types(OS, G);
6294  print_details(OS, G);
6295}
6296
6297typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6298static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6299                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6300  if (!once.insert(N))          // If we've been here before, return now.
6301    return;
6302
6303  // Dump the current SDNode, but don't end the line yet.
6304  OS << std::string(indent, ' ');
6305  N->printr(OS, G);
6306
6307  // Having printed this SDNode, walk the children:
6308  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6309    const SDNode *child = N->getOperand(i).getNode();
6310
6311    if (i) OS << ",";
6312    OS << " ";
6313
6314    if (child->getNumOperands() == 0) {
6315      // This child has no grandchildren; print it inline right here.
6316      child->printr(OS, G);
6317      once.insert(child);
6318    } else {         // Just the address. FIXME: also print the child's opcode.
6319      OS << (void*)child;
6320      if (unsigned RN = N->getOperand(i).getResNo())
6321        OS << ":" << RN;
6322    }
6323  }
6324
6325  OS << "\n";
6326
6327  // Dump children that have grandchildren on their own line(s).
6328  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6329    const SDNode *child = N->getOperand(i).getNode();
6330    DumpNodesr(OS, child, indent+2, G, once);
6331  }
6332}
6333
6334void SDNode::dumpr() const {
6335  VisitedSDNodeSet once;
6336  DumpNodesr(dbgs(), this, 0, 0, once);
6337}
6338
6339void SDNode::dumpr(const SelectionDAG *G) const {
6340  VisitedSDNodeSet once;
6341  DumpNodesr(dbgs(), this, 0, G, once);
6342}
6343
6344
6345// getAddressSpace - Return the address space this GlobalAddress belongs to.
6346unsigned GlobalAddressSDNode::getAddressSpace() const {
6347  return getGlobal()->getType()->getAddressSpace();
6348}
6349
6350
6351const Type *ConstantPoolSDNode::getType() const {
6352  if (isMachineConstantPoolEntry())
6353    return Val.MachineCPVal->getType();
6354  return Val.ConstVal->getType();
6355}
6356
6357bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6358                                        APInt &SplatUndef,
6359                                        unsigned &SplatBitSize,
6360                                        bool &HasAnyUndefs,
6361                                        unsigned MinSplatBits,
6362                                        bool isBigEndian) {
6363  EVT VT = getValueType(0);
6364  assert(VT.isVector() && "Expected a vector type");
6365  unsigned sz = VT.getSizeInBits();
6366  if (MinSplatBits > sz)
6367    return false;
6368
6369  SplatValue = APInt(sz, 0);
6370  SplatUndef = APInt(sz, 0);
6371
6372  // Get the bits.  Bits with undefined values (when the corresponding element
6373  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6374  // in SplatValue.  If any of the values are not constant, give up and return
6375  // false.
6376  unsigned int nOps = getNumOperands();
6377  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6378  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6379
6380  for (unsigned j = 0; j < nOps; ++j) {
6381    unsigned i = isBigEndian ? nOps-1-j : j;
6382    SDValue OpVal = getOperand(i);
6383    unsigned BitPos = j * EltBitSize;
6384
6385    if (OpVal.getOpcode() == ISD::UNDEF)
6386      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6387    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6388      SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6389                    zextOrTrunc(sz) << BitPos;
6390    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6391      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6392     else
6393      return false;
6394  }
6395
6396  // The build_vector is all constants or undefs.  Find the smallest element
6397  // size that splats the vector.
6398
6399  HasAnyUndefs = (SplatUndef != 0);
6400  while (sz > 8) {
6401
6402    unsigned HalfSize = sz / 2;
6403    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6404    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6405    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6406    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6407
6408    // If the two halves do not match (ignoring undef bits), stop here.
6409    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6410        MinSplatBits > HalfSize)
6411      break;
6412
6413    SplatValue = HighValue | LowValue;
6414    SplatUndef = HighUndef & LowUndef;
6415
6416    sz = HalfSize;
6417  }
6418
6419  SplatBitSize = sz;
6420  return true;
6421}
6422
6423bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6424  // Find the first non-undef value in the shuffle mask.
6425  unsigned i, e;
6426  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6427    /* search */;
6428
6429  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6430
6431  // Make sure all remaining elements are either undef or the same as the first
6432  // non-undef value.
6433  for (int Idx = Mask[i]; i != e; ++i)
6434    if (Mask[i] >= 0 && Mask[i] != Idx)
6435      return false;
6436  return true;
6437}
6438
6439#ifdef XDEBUG
6440static void checkForCyclesHelper(const SDNode *N,
6441                                 SmallPtrSet<const SDNode*, 32> &Visited,
6442                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6443  // If this node has already been checked, don't check it again.
6444  if (Checked.count(N))
6445    return;
6446
6447  // If a node has already been visited on this depth-first walk, reject it as
6448  // a cycle.
6449  if (!Visited.insert(N)) {
6450    dbgs() << "Offending node:\n";
6451    N->dumprFull();
6452    errs() << "Detected cycle in SelectionDAG\n";
6453    abort();
6454  }
6455
6456  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6457    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6458
6459  Checked.insert(N);
6460  Visited.erase(N);
6461}
6462#endif
6463
6464void llvm::checkForCycles(const llvm::SDNode *N) {
6465#ifdef XDEBUG
6466  assert(N && "Checking nonexistant SDNode");
6467  SmallPtrSet<const SDNode*, 32> visited;
6468  SmallPtrSet<const SDNode*, 32> checked;
6469  checkForCyclesHelper(N, visited, checked);
6470#endif
6471}
6472
6473void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6474  checkForCycles(DAG->getRoot().getNode());
6475}
6476