SelectionDAG.cpp revision a6b20ced765b67a85d9219d0c8547fc9c133e14f
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeDbgValue.h"
16#include "SDNodeOrdering.h"
17#include "llvm/ADT/SetVector.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/Analysis/TargetTransformInfo.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CodeGen/MachineBasicBlock.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/DebugInfo.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/Constants.h"
32#include "llvm/IR/DataLayout.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/GlobalAlias.h"
36#include "llvm/IR/GlobalVariable.h"
37#include "llvm/IR/Intrinsics.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/ManagedStatic.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/Mutex.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetIntrinsicInfo.h"
47#include "llvm/Target/TargetLowering.h"
48#include "llvm/Target/TargetMachine.h"
49#include "llvm/Target/TargetOptions.h"
50#include "llvm/Target/TargetRegisterInfo.h"
51#include "llvm/Target/TargetSelectionDAGInfo.h"
52#include <algorithm>
53#include <cmath>
54using namespace llvm;
55
56/// makeVTList - Return an instance of the SDVTList struct initialized with the
57/// specified members.
58static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59  SDVTList Res = {VTs, NumVTs};
60  return Res;
61}
62
63// Default null implementations of the callbacks.
64void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
65void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
66
67//===----------------------------------------------------------------------===//
68//                              ConstantFPSDNode Class
69//===----------------------------------------------------------------------===//
70
71/// isExactlyValue - We don't rely on operator== working on double values, as
72/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
73/// As such, this method can be used to do an exact bit-for-bit comparison of
74/// two floating point values.
75bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
76  return getValueAPF().bitwiseIsEqual(V);
77}
78
79bool ConstantFPSDNode::isValueValidForType(EVT VT,
80                                           const APFloat& Val) {
81  assert(VT.isFloatingPoint() && "Can only convert between FP types");
82
83  // convert modifies in place, so make a copy.
84  APFloat Val2 = APFloat(Val);
85  bool losesInfo;
86  (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
87                      APFloat::rmNearestTiesToEven,
88                      &losesInfo);
89  return !losesInfo;
90}
91
92//===----------------------------------------------------------------------===//
93//                              ISD Namespace
94//===----------------------------------------------------------------------===//
95
96/// isBuildVectorAllOnes - Return true if the specified node is a
97/// BUILD_VECTOR where all of the elements are ~0 or undef.
98bool ISD::isBuildVectorAllOnes(const SDNode *N) {
99  // Look through a bit convert.
100  if (N->getOpcode() == ISD::BITCAST)
101    N = N->getOperand(0).getNode();
102
103  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
104
105  unsigned i = 0, e = N->getNumOperands();
106
107  // Skip over all of the undef values.
108  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
109    ++i;
110
111  // Do not accept an all-undef vector.
112  if (i == e) return false;
113
114  // Do not accept build_vectors that aren't all constants or which have non-~0
115  // elements. We have to be a bit careful here, as the type of the constant
116  // may not be the same as the type of the vector elements due to type
117  // legalization (the elements are promoted to a legal type for the target and
118  // a vector of a type may be legal when the base element type is not).
119  // We only want to check enough bits to cover the vector elements, because
120  // we care if the resultant vector is all ones, not whether the individual
121  // constants are.
122  SDValue NotZero = N->getOperand(i);
123  unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
124  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
125    if (CN->getAPIntValue().countTrailingOnes() < EltSize)
126      return false;
127  } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
128    if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
129      return false;
130  } else
131    return false;
132
133  // Okay, we have at least one ~0 value, check to see if the rest match or are
134  // undefs. Even with the above element type twiddling, this should be OK, as
135  // the same type legalization should have applied to all the elements.
136  for (++i; i != e; ++i)
137    if (N->getOperand(i) != NotZero &&
138        N->getOperand(i).getOpcode() != ISD::UNDEF)
139      return false;
140  return true;
141}
142
143
144/// isBuildVectorAllZeros - Return true if the specified node is a
145/// BUILD_VECTOR where all of the elements are 0 or undef.
146bool ISD::isBuildVectorAllZeros(const SDNode *N) {
147  // Look through a bit convert.
148  if (N->getOpcode() == ISD::BITCAST)
149    N = N->getOperand(0).getNode();
150
151  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
152
153  unsigned i = 0, e = N->getNumOperands();
154
155  // Skip over all of the undef values.
156  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
157    ++i;
158
159  // Do not accept an all-undef vector.
160  if (i == e) return false;
161
162  // Do not accept build_vectors that aren't all constants or which have non-0
163  // elements.
164  SDValue Zero = N->getOperand(i);
165  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Zero)) {
166    if (!CN->isNullValue())
167      return false;
168  } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Zero)) {
169    if (!CFPN->getValueAPF().isPosZero())
170      return false;
171  } else
172    return false;
173
174  // Okay, we have at least one 0 value, check to see if the rest match or are
175  // undefs.
176  for (++i; i != e; ++i)
177    if (N->getOperand(i) != Zero &&
178        N->getOperand(i).getOpcode() != ISD::UNDEF)
179      return false;
180  return true;
181}
182
183/// isScalarToVector - Return true if the specified node is a
184/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
185/// element is not an undef.
186bool ISD::isScalarToVector(const SDNode *N) {
187  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
188    return true;
189
190  if (N->getOpcode() != ISD::BUILD_VECTOR)
191    return false;
192  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
193    return false;
194  unsigned NumElems = N->getNumOperands();
195  if (NumElems == 1)
196    return false;
197  for (unsigned i = 1; i < NumElems; ++i) {
198    SDValue V = N->getOperand(i);
199    if (V.getOpcode() != ISD::UNDEF)
200      return false;
201  }
202  return true;
203}
204
205/// allOperandsUndef - Return true if the node has at least one operand
206/// and all operands of the specified node are ISD::UNDEF.
207bool ISD::allOperandsUndef(const SDNode *N) {
208  // Return false if the node has no operands.
209  // This is "logically inconsistent" with the definition of "all" but
210  // is probably the desired behavior.
211  if (N->getNumOperands() == 0)
212    return false;
213
214  for (unsigned i = 0, e = N->getNumOperands(); i != e ; ++i)
215    if (N->getOperand(i).getOpcode() != ISD::UNDEF)
216      return false;
217
218  return true;
219}
220
221/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
222/// when given the operation for (X op Y).
223ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
224  // To perform this operation, we just need to swap the L and G bits of the
225  // operation.
226  unsigned OldL = (Operation >> 2) & 1;
227  unsigned OldG = (Operation >> 1) & 1;
228  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
229                       (OldL << 1) |       // New G bit
230                       (OldG << 2));       // New L bit.
231}
232
233/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
234/// 'op' is a valid SetCC operation.
235ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
236  unsigned Operation = Op;
237  if (isInteger)
238    Operation ^= 7;   // Flip L, G, E bits, but not U.
239  else
240    Operation ^= 15;  // Flip all of the condition bits.
241
242  if (Operation > ISD::SETTRUE2)
243    Operation &= ~8;  // Don't let N and U bits get set.
244
245  return ISD::CondCode(Operation);
246}
247
248
249/// isSignedOp - For an integer comparison, return 1 if the comparison is a
250/// signed operation and 2 if the result is an unsigned comparison.  Return zero
251/// if the operation does not depend on the sign of the input (setne and seteq).
252static int isSignedOp(ISD::CondCode Opcode) {
253  switch (Opcode) {
254  default: llvm_unreachable("Illegal integer setcc operation!");
255  case ISD::SETEQ:
256  case ISD::SETNE: return 0;
257  case ISD::SETLT:
258  case ISD::SETLE:
259  case ISD::SETGT:
260  case ISD::SETGE: return 1;
261  case ISD::SETULT:
262  case ISD::SETULE:
263  case ISD::SETUGT:
264  case ISD::SETUGE: return 2;
265  }
266}
267
268/// getSetCCOrOperation - Return the result of a logical OR between different
269/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
270/// returns SETCC_INVALID if it is not possible to represent the resultant
271/// comparison.
272ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
273                                       bool isInteger) {
274  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
275    // Cannot fold a signed integer setcc with an unsigned integer setcc.
276    return ISD::SETCC_INVALID;
277
278  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
279
280  // If the N and U bits get set then the resultant comparison DOES suddenly
281  // care about orderedness, and is true when ordered.
282  if (Op > ISD::SETTRUE2)
283    Op &= ~16;     // Clear the U bit if the N bit is set.
284
285  // Canonicalize illegal integer setcc's.
286  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
287    Op = ISD::SETNE;
288
289  return ISD::CondCode(Op);
290}
291
292/// getSetCCAndOperation - Return the result of a logical AND between different
293/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
294/// function returns zero if it is not possible to represent the resultant
295/// comparison.
296ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
297                                        bool isInteger) {
298  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
299    // Cannot fold a signed setcc with an unsigned setcc.
300    return ISD::SETCC_INVALID;
301
302  // Combine all of the condition bits.
303  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
304
305  // Canonicalize illegal integer setcc's.
306  if (isInteger) {
307    switch (Result) {
308    default: break;
309    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
310    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
311    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
312    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
313    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
314    }
315  }
316
317  return Result;
318}
319
320//===----------------------------------------------------------------------===//
321//                           SDNode Profile Support
322//===----------------------------------------------------------------------===//
323
324/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
325///
326static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
327  ID.AddInteger(OpC);
328}
329
330/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
331/// solely with their pointer.
332static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
333  ID.AddPointer(VTList.VTs);
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDValue *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
347///
348static void AddNodeIDOperands(FoldingSetNodeID &ID,
349                              const SDUse *Ops, unsigned NumOps) {
350  for (; NumOps; --NumOps, ++Ops) {
351    ID.AddPointer(Ops->getNode());
352    ID.AddInteger(Ops->getResNo());
353  }
354}
355
356static void AddNodeIDNode(FoldingSetNodeID &ID,
357                          unsigned short OpC, SDVTList VTList,
358                          const SDValue *OpList, unsigned N) {
359  AddNodeIDOpcode(ID, OpC);
360  AddNodeIDValueTypes(ID, VTList);
361  AddNodeIDOperands(ID, OpList, N);
362}
363
364/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
365/// the NodeID data.
366static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
367  switch (N->getOpcode()) {
368  case ISD::TargetExternalSymbol:
369  case ISD::ExternalSymbol:
370    llvm_unreachable("Should only be used on nodes with operands");
371  default: break;  // Normal nodes don't need extra info.
372  case ISD::TargetConstant:
373  case ISD::Constant:
374    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
375    break;
376  case ISD::TargetConstantFP:
377  case ISD::ConstantFP: {
378    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
379    break;
380  }
381  case ISD::TargetGlobalAddress:
382  case ISD::GlobalAddress:
383  case ISD::TargetGlobalTLSAddress:
384  case ISD::GlobalTLSAddress: {
385    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
386    ID.AddPointer(GA->getGlobal());
387    ID.AddInteger(GA->getOffset());
388    ID.AddInteger(GA->getTargetFlags());
389    ID.AddInteger(GA->getAddressSpace());
390    break;
391  }
392  case ISD::BasicBlock:
393    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
394    break;
395  case ISD::Register:
396    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
397    break;
398  case ISD::RegisterMask:
399    ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
400    break;
401  case ISD::SRCVALUE:
402    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
403    break;
404  case ISD::FrameIndex:
405  case ISD::TargetFrameIndex:
406    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
407    break;
408  case ISD::JumpTable:
409  case ISD::TargetJumpTable:
410    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    ID.AddInteger(CP->getTargetFlags());
423    break;
424  }
425  case ISD::TargetIndex: {
426    const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
427    ID.AddInteger(TI->getIndex());
428    ID.AddInteger(TI->getOffset());
429    ID.AddInteger(TI->getTargetFlags());
430    break;
431  }
432  case ISD::LOAD: {
433    const LoadSDNode *LD = cast<LoadSDNode>(N);
434    ID.AddInteger(LD->getMemoryVT().getRawBits());
435    ID.AddInteger(LD->getRawSubclassData());
436    ID.AddInteger(LD->getPointerInfo().getAddrSpace());
437    break;
438  }
439  case ISD::STORE: {
440    const StoreSDNode *ST = cast<StoreSDNode>(N);
441    ID.AddInteger(ST->getMemoryVT().getRawBits());
442    ID.AddInteger(ST->getRawSubclassData());
443    ID.AddInteger(ST->getPointerInfo().getAddrSpace());
444    break;
445  }
446  case ISD::ATOMIC_CMP_SWAP:
447  case ISD::ATOMIC_SWAP:
448  case ISD::ATOMIC_LOAD_ADD:
449  case ISD::ATOMIC_LOAD_SUB:
450  case ISD::ATOMIC_LOAD_AND:
451  case ISD::ATOMIC_LOAD_OR:
452  case ISD::ATOMIC_LOAD_XOR:
453  case ISD::ATOMIC_LOAD_NAND:
454  case ISD::ATOMIC_LOAD_MIN:
455  case ISD::ATOMIC_LOAD_MAX:
456  case ISD::ATOMIC_LOAD_UMIN:
457  case ISD::ATOMIC_LOAD_UMAX:
458  case ISD::ATOMIC_LOAD:
459  case ISD::ATOMIC_STORE: {
460    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
461    ID.AddInteger(AT->getMemoryVT().getRawBits());
462    ID.AddInteger(AT->getRawSubclassData());
463    ID.AddInteger(AT->getPointerInfo().getAddrSpace());
464    break;
465  }
466  case ISD::PREFETCH: {
467    const MemSDNode *PF = cast<MemSDNode>(N);
468    ID.AddInteger(PF->getPointerInfo().getAddrSpace());
469    break;
470  }
471  case ISD::VECTOR_SHUFFLE: {
472    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
473    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
474         i != e; ++i)
475      ID.AddInteger(SVN->getMaskElt(i));
476    break;
477  }
478  case ISD::TargetBlockAddress:
479  case ISD::BlockAddress: {
480    const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
481    ID.AddPointer(BA->getBlockAddress());
482    ID.AddInteger(BA->getOffset());
483    ID.AddInteger(BA->getTargetFlags());
484    break;
485  }
486  } // end switch (N->getOpcode())
487
488  // Target specific memory nodes could also have address spaces to check.
489  if (N->isTargetMemoryOpcode())
490    ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
491}
492
493/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
494/// data.
495static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
496  AddNodeIDOpcode(ID, N->getOpcode());
497  // Add the return value info.
498  AddNodeIDValueTypes(ID, N->getVTList());
499  // Add the operand info.
500  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
501
502  // Handle SDNode leafs with special info.
503  AddNodeIDCustom(ID, N);
504}
505
506/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
507/// the CSE map that carries volatility, temporalness, indexing mode, and
508/// extension/truncation information.
509///
510static inline unsigned
511encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
512                     bool isNonTemporal, bool isInvariant) {
513  assert((ConvType & 3) == ConvType &&
514         "ConvType may not require more than 2 bits!");
515  assert((AM & 7) == AM &&
516         "AM may not require more than 3 bits!");
517  return ConvType |
518         (AM << 2) |
519         (isVolatile << 5) |
520         (isNonTemporal << 6) |
521         (isInvariant << 7);
522}
523
524//===----------------------------------------------------------------------===//
525//                              SelectionDAG Class
526//===----------------------------------------------------------------------===//
527
528/// doNotCSE - Return true if CSE should not be performed for this node.
529static bool doNotCSE(SDNode *N) {
530  if (N->getValueType(0) == MVT::Glue)
531    return true; // Never CSE anything that produces a flag.
532
533  switch (N->getOpcode()) {
534  default: break;
535  case ISD::HANDLENODE:
536  case ISD::EH_LABEL:
537    return true;   // Never CSE these nodes.
538  }
539
540  // Check that remaining values produced are not flags.
541  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
542    if (N->getValueType(i) == MVT::Glue)
543      return true; // Never CSE anything that produces a flag.
544
545  return false;
546}
547
548/// RemoveDeadNodes - This method deletes all unreachable nodes in the
549/// SelectionDAG.
550void SelectionDAG::RemoveDeadNodes() {
551  // Create a dummy node (which is not added to allnodes), that adds a reference
552  // to the root node, preventing it from being deleted.
553  HandleSDNode Dummy(getRoot());
554
555  SmallVector<SDNode*, 128> DeadNodes;
556
557  // Add all obviously-dead nodes to the DeadNodes worklist.
558  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
559    if (I->use_empty())
560      DeadNodes.push_back(I);
561
562  RemoveDeadNodes(DeadNodes);
563
564  // If the root changed (e.g. it was a dead load, update the root).
565  setRoot(Dummy.getValue());
566}
567
568/// RemoveDeadNodes - This method deletes the unreachable nodes in the
569/// given list, and any nodes that become unreachable as a result.
570void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
571
572  // Process the worklist, deleting the nodes and adding their uses to the
573  // worklist.
574  while (!DeadNodes.empty()) {
575    SDNode *N = DeadNodes.pop_back_val();
576
577    for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
578      DUL->NodeDeleted(N, 0);
579
580    // Take the node out of the appropriate CSE map.
581    RemoveNodeFromCSEMaps(N);
582
583    // Next, brutally remove the operand list.  This is safe to do, as there are
584    // no cycles in the graph.
585    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
586      SDUse &Use = *I++;
587      SDNode *Operand = Use.getNode();
588      Use.set(SDValue());
589
590      // Now that we removed this operand, see if there are no uses of it left.
591      if (Operand->use_empty())
592        DeadNodes.push_back(Operand);
593    }
594
595    DeallocateNode(N);
596  }
597}
598
599void SelectionDAG::RemoveDeadNode(SDNode *N){
600  SmallVector<SDNode*, 16> DeadNodes(1, N);
601
602  // Create a dummy node that adds a reference to the root node, preventing
603  // it from being deleted.  (This matters if the root is an operand of the
604  // dead node.)
605  HandleSDNode Dummy(getRoot());
606
607  RemoveDeadNodes(DeadNodes);
608}
609
610void SelectionDAG::DeleteNode(SDNode *N) {
611  // First take this out of the appropriate CSE map.
612  RemoveNodeFromCSEMaps(N);
613
614  // Finally, remove uses due to operands of this node, remove from the
615  // AllNodes list, and delete the node.
616  DeleteNodeNotInCSEMaps(N);
617}
618
619void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
620  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
621  assert(N->use_empty() && "Cannot delete a node that is not dead!");
622
623  // Drop all of the operands and decrement used node's use counts.
624  N->DropOperands();
625
626  DeallocateNode(N);
627}
628
629void SelectionDAG::DeallocateNode(SDNode *N) {
630  if (N->OperandsNeedDelete)
631    delete[] N->OperandList;
632
633  // Set the opcode to DELETED_NODE to help catch bugs when node
634  // memory is reallocated.
635  N->NodeType = ISD::DELETED_NODE;
636
637  NodeAllocator.Deallocate(AllNodes.remove(N));
638
639  // Remove the ordering of this node.
640  Ordering->remove(N);
641
642  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
643  ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N);
644  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
645    DbgVals[i]->setIsInvalidated();
646}
647
648/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
649/// correspond to it.  This is useful when we're about to delete or repurpose
650/// the node.  We don't want future request for structurally identical nodes
651/// to return N anymore.
652bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
653  bool Erased = false;
654  switch (N->getOpcode()) {
655  case ISD::HANDLENODE: return false;  // noop.
656  case ISD::CONDCODE:
657    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
658           "Cond code doesn't exist!");
659    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
660    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
661    break;
662  case ISD::ExternalSymbol:
663    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
664    break;
665  case ISD::TargetExternalSymbol: {
666    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
667    Erased = TargetExternalSymbols.erase(
668               std::pair<std::string,unsigned char>(ESN->getSymbol(),
669                                                    ESN->getTargetFlags()));
670    break;
671  }
672  case ISD::VALUETYPE: {
673    EVT VT = cast<VTSDNode>(N)->getVT();
674    if (VT.isExtended()) {
675      Erased = ExtendedValueTypeNodes.erase(VT);
676    } else {
677      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
678      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
679    }
680    break;
681  }
682  default:
683    // Remove it from the CSE Map.
684    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
685    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
686    Erased = CSEMap.RemoveNode(N);
687    break;
688  }
689#ifndef NDEBUG
690  // Verify that the node was actually in one of the CSE maps, unless it has a
691  // flag result (which cannot be CSE'd) or is one of the special cases that are
692  // not subject to CSE.
693  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
694      !N->isMachineOpcode() && !doNotCSE(N)) {
695    N->dump(this);
696    dbgs() << "\n";
697    llvm_unreachable("Node is not in map!");
698  }
699#endif
700  return Erased;
701}
702
703/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
704/// maps and modified in place. Add it back to the CSE maps, unless an identical
705/// node already exists, in which case transfer all its users to the existing
706/// node. This transfer can potentially trigger recursive merging.
707///
708void
709SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
710  // For node types that aren't CSE'd, just act as if no identical node
711  // already exists.
712  if (!doNotCSE(N)) {
713    SDNode *Existing = CSEMap.GetOrInsertNode(N);
714    if (Existing != N) {
715      // If there was already an existing matching node, use ReplaceAllUsesWith
716      // to replace the dead one with the existing one.  This can cause
717      // recursive merging of other unrelated nodes down the line.
718      ReplaceAllUsesWith(N, Existing);
719
720      // N is now dead. Inform the listeners and delete it.
721      for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
722        DUL->NodeDeleted(N, Existing);
723      DeleteNodeNotInCSEMaps(N);
724      return;
725    }
726  }
727
728  // If the node doesn't already exist, we updated it.  Inform listeners.
729  for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
730    DUL->NodeUpdated(N);
731}
732
733/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
734/// were replaced with those specified.  If this node is never memoized,
735/// return null, otherwise return a pointer to the slot it would take.  If a
736/// node already exists with these operands, the slot will be non-null.
737SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
738                                           void *&InsertPos) {
739  if (doNotCSE(N))
740    return 0;
741
742  SDValue Ops[] = { Op };
743  FoldingSetNodeID ID;
744  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
745  AddNodeIDCustom(ID, N);
746  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
747  return Node;
748}
749
750/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
751/// were replaced with those specified.  If this node is never memoized,
752/// return null, otherwise return a pointer to the slot it would take.  If a
753/// node already exists with these operands, the slot will be non-null.
754SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
755                                           SDValue Op1, SDValue Op2,
756                                           void *&InsertPos) {
757  if (doNotCSE(N))
758    return 0;
759
760  SDValue Ops[] = { Op1, Op2 };
761  FoldingSetNodeID ID;
762  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
763  AddNodeIDCustom(ID, N);
764  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
765  return Node;
766}
767
768
769/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
770/// were replaced with those specified.  If this node is never memoized,
771/// return null, otherwise return a pointer to the slot it would take.  If a
772/// node already exists with these operands, the slot will be non-null.
773SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
774                                           const SDValue *Ops,unsigned NumOps,
775                                           void *&InsertPos) {
776  if (doNotCSE(N))
777    return 0;
778
779  FoldingSetNodeID ID;
780  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
781  AddNodeIDCustom(ID, N);
782  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
783  return Node;
784}
785
786#ifndef NDEBUG
787/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
788static void VerifyNodeCommon(SDNode *N) {
789  switch (N->getOpcode()) {
790  default:
791    break;
792  case ISD::BUILD_PAIR: {
793    EVT VT = N->getValueType(0);
794    assert(N->getNumValues() == 1 && "Too many results!");
795    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
796           "Wrong return type!");
797    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
798    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
799           "Mismatched operand types!");
800    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
801           "Wrong operand type!");
802    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
803           "Wrong return type size");
804    break;
805  }
806  case ISD::BUILD_VECTOR: {
807    assert(N->getNumValues() == 1 && "Too many results!");
808    assert(N->getValueType(0).isVector() && "Wrong return type!");
809    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
810           "Wrong number of operands!");
811    EVT EltVT = N->getValueType(0).getVectorElementType();
812    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
813      assert((I->getValueType() == EltVT ||
814             (EltVT.isInteger() && I->getValueType().isInteger() &&
815              EltVT.bitsLE(I->getValueType()))) &&
816            "Wrong operand type!");
817      assert(I->getValueType() == N->getOperand(0).getValueType() &&
818             "Operands must all have the same type");
819    }
820    break;
821  }
822  }
823}
824
825/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
826static void VerifySDNode(SDNode *N) {
827  // The SDNode allocators cannot be used to allocate nodes with fields that are
828  // not present in an SDNode!
829  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
830  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
831  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
832  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
833  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
834  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
835  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
836  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
837  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
838  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
839  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
840  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
841  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
842  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
843  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
844  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
845  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
846  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
847  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
848
849  VerifyNodeCommon(N);
850}
851
852/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
853/// invalid.
854static void VerifyMachineNode(SDNode *N) {
855  // The MachineNode allocators cannot be used to allocate nodes with fields
856  // that are not present in a MachineNode!
857  // Currently there are no such nodes.
858
859  VerifyNodeCommon(N);
860}
861#endif // NDEBUG
862
863/// getEVTAlignment - Compute the default alignment value for the
864/// given type.
865///
866unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
867  Type *Ty = VT == MVT::iPTR ?
868                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
869                   VT.getTypeForEVT(*getContext());
870
871  return TLI.getDataLayout()->getABITypeAlignment(Ty);
872}
873
874// EntryNode could meaningfully have debug info if we can find it...
875SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
876  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
877    TTI(0), OptLevel(OL), EntryNode(ISD::EntryToken, DebugLoc(),
878                                    getVTList(MVT::Other)),
879    Root(getEntryNode()), Ordering(0), UpdateListeners(0) {
880  AllNodes.push_back(&EntryNode);
881  Ordering = new SDNodeOrdering();
882  DbgInfo = new SDDbgInfo();
883}
884
885void SelectionDAG::init(MachineFunction &mf, const TargetTransformInfo *tti) {
886  MF = &mf;
887  TTI = tti;
888  Context = &mf.getFunction()->getContext();
889}
890
891SelectionDAG::~SelectionDAG() {
892  assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
893  allnodes_clear();
894  delete Ordering;
895  delete DbgInfo;
896}
897
898void SelectionDAG::allnodes_clear() {
899  assert(&*AllNodes.begin() == &EntryNode);
900  AllNodes.remove(AllNodes.begin());
901  while (!AllNodes.empty())
902    DeallocateNode(AllNodes.begin());
903}
904
905void SelectionDAG::clear() {
906  allnodes_clear();
907  OperandAllocator.Reset();
908  CSEMap.clear();
909
910  ExtendedValueTypeNodes.clear();
911  ExternalSymbols.clear();
912  TargetExternalSymbols.clear();
913  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
914            static_cast<CondCodeSDNode*>(0));
915  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
916            static_cast<SDNode*>(0));
917
918  EntryNode.UseList = 0;
919  AllNodes.push_back(&EntryNode);
920  Root = getEntryNode();
921  Ordering->clear();
922  DbgInfo->clear();
923}
924
925SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
926  return VT.bitsGT(Op.getValueType()) ?
927    getNode(ISD::ANY_EXTEND, DL, VT, Op) :
928    getNode(ISD::TRUNCATE, DL, VT, Op);
929}
930
931SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
932  return VT.bitsGT(Op.getValueType()) ?
933    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
934    getNode(ISD::TRUNCATE, DL, VT, Op);
935}
936
937SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
938  return VT.bitsGT(Op.getValueType()) ?
939    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
940    getNode(ISD::TRUNCATE, DL, VT, Op);
941}
942
943SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
944  assert(!VT.isVector() &&
945         "getZeroExtendInReg should use the vector element type instead of "
946         "the vector type!");
947  if (Op.getValueType() == VT) return Op;
948  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
949  APInt Imm = APInt::getLowBitsSet(BitWidth,
950                                   VT.getSizeInBits());
951  return getNode(ISD::AND, DL, Op.getValueType(), Op,
952                 getConstant(Imm, Op.getValueType()));
953}
954
955/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
956///
957SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
958  EVT EltVT = VT.getScalarType();
959  SDValue NegOne =
960    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
961  return getNode(ISD::XOR, DL, VT, Val, NegOne);
962}
963
964SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
965  EVT EltVT = VT.getScalarType();
966  assert((EltVT.getSizeInBits() >= 64 ||
967         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
968         "getConstant with a uint64_t value that doesn't fit in the type!");
969  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
970}
971
972SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
973  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
974}
975
976SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
977  assert(VT.isInteger() && "Cannot create FP integer constant!");
978
979  EVT EltVT = VT.getScalarType();
980  const ConstantInt *Elt = &Val;
981
982  // In some cases the vector type is legal but the element type is illegal and
983  // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
984  // inserted value (the type does not need to match the vector element type).
985  // Any extra bits introduced will be truncated away.
986  if (VT.isVector() && TLI.getTypeAction(*getContext(), EltVT) ==
987      TargetLowering::TypePromoteInteger) {
988   EltVT = TLI.getTypeToTransformTo(*getContext(), EltVT);
989   APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
990   Elt = ConstantInt::get(*getContext(), NewVal);
991  }
992
993  assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
994         "APInt size does not match type size!");
995  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
996  FoldingSetNodeID ID;
997  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
998  ID.AddPointer(Elt);
999  void *IP = 0;
1000  SDNode *N = NULL;
1001  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
1002    if (!VT.isVector())
1003      return SDValue(N, 0);
1004
1005  if (!N) {
1006    N = new (NodeAllocator) ConstantSDNode(isT, Elt, EltVT);
1007    CSEMap.InsertNode(N, IP);
1008    AllNodes.push_back(N);
1009  }
1010
1011  SDValue Result(N, 0);
1012  if (VT.isVector()) {
1013    SmallVector<SDValue, 8> Ops;
1014    Ops.assign(VT.getVectorNumElements(), Result);
1015    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
1016  }
1017  return Result;
1018}
1019
1020SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
1021  return getConstant(Val, TLI.getPointerTy(), isTarget);
1022}
1023
1024
1025SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
1026  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
1027}
1028
1029SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
1030  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1031
1032  EVT EltVT = VT.getScalarType();
1033
1034  // Do the map lookup using the actual bit pattern for the floating point
1035  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1036  // we don't have issues with SNANs.
1037  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1038  FoldingSetNodeID ID;
1039  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
1040  ID.AddPointer(&V);
1041  void *IP = 0;
1042  SDNode *N = NULL;
1043  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
1044    if (!VT.isVector())
1045      return SDValue(N, 0);
1046
1047  if (!N) {
1048    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
1049    CSEMap.InsertNode(N, IP);
1050    AllNodes.push_back(N);
1051  }
1052
1053  SDValue Result(N, 0);
1054  if (VT.isVector()) {
1055    SmallVector<SDValue, 8> Ops;
1056    Ops.assign(VT.getVectorNumElements(), Result);
1057    // FIXME DebugLoc info might be appropriate here
1058    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
1059  }
1060  return Result;
1061}
1062
1063SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1064  EVT EltVT = VT.getScalarType();
1065  if (EltVT==MVT::f32)
1066    return getConstantFP(APFloat((float)Val), VT, isTarget);
1067  else if (EltVT==MVT::f64)
1068    return getConstantFP(APFloat(Val), VT, isTarget);
1069  else if (EltVT==MVT::f80 || EltVT==MVT::f128 || EltVT==MVT::ppcf128 ||
1070           EltVT==MVT::f16) {
1071    bool ignored;
1072    APFloat apf = APFloat(Val);
1073    apf.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1074                &ignored);
1075    return getConstantFP(apf, VT, isTarget);
1076  } else
1077    llvm_unreachable("Unsupported type in getConstantFP");
1078}
1079
1080SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1081                                       EVT VT, int64_t Offset,
1082                                       bool isTargetGA,
1083                                       unsigned char TargetFlags) {
1084  assert((TargetFlags == 0 || isTargetGA) &&
1085         "Cannot set target flags on target-independent globals");
1086
1087  // Truncate (with sign-extension) the offset value to the pointer size.
1088  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
1089  if (BitWidth < 64)
1090    Offset = SignExtend64(Offset, BitWidth);
1091
1092  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1093  if (!GVar) {
1094    // If GV is an alias then use the aliasee for determining thread-localness.
1095    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1096      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1097  }
1098
1099  unsigned Opc;
1100  if (GVar && GVar->isThreadLocal())
1101    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1102  else
1103    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1104
1105  FoldingSetNodeID ID;
1106  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1107  ID.AddPointer(GV);
1108  ID.AddInteger(Offset);
1109  ID.AddInteger(TargetFlags);
1110  ID.AddInteger(GV->getType()->getAddressSpace());
1111  void *IP = 0;
1112  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1113    return SDValue(E, 0);
1114
1115  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1116                                                      Offset, TargetFlags);
1117  CSEMap.InsertNode(N, IP);
1118  AllNodes.push_back(N);
1119  return SDValue(N, 0);
1120}
1121
1122SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1123  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1124  FoldingSetNodeID ID;
1125  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1126  ID.AddInteger(FI);
1127  void *IP = 0;
1128  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1129    return SDValue(E, 0);
1130
1131  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1132  CSEMap.InsertNode(N, IP);
1133  AllNodes.push_back(N);
1134  return SDValue(N, 0);
1135}
1136
1137SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1138                                   unsigned char TargetFlags) {
1139  assert((TargetFlags == 0 || isTarget) &&
1140         "Cannot set target flags on target-independent jump tables");
1141  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1142  FoldingSetNodeID ID;
1143  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1144  ID.AddInteger(JTI);
1145  ID.AddInteger(TargetFlags);
1146  void *IP = 0;
1147  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1148    return SDValue(E, 0);
1149
1150  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1151                                                  TargetFlags);
1152  CSEMap.InsertNode(N, IP);
1153  AllNodes.push_back(N);
1154  return SDValue(N, 0);
1155}
1156
1157SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1158                                      unsigned Alignment, int Offset,
1159                                      bool isTarget,
1160                                      unsigned char TargetFlags) {
1161  assert((TargetFlags == 0 || isTarget) &&
1162         "Cannot set target flags on target-independent globals");
1163  if (Alignment == 0)
1164    Alignment = TLI.getDataLayout()->getPrefTypeAlignment(C->getType());
1165  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1166  FoldingSetNodeID ID;
1167  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1168  ID.AddInteger(Alignment);
1169  ID.AddInteger(Offset);
1170  ID.AddPointer(C);
1171  ID.AddInteger(TargetFlags);
1172  void *IP = 0;
1173  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1174    return SDValue(E, 0);
1175
1176  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1177                                                     Alignment, TargetFlags);
1178  CSEMap.InsertNode(N, IP);
1179  AllNodes.push_back(N);
1180  return SDValue(N, 0);
1181}
1182
1183
1184SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1185                                      unsigned Alignment, int Offset,
1186                                      bool isTarget,
1187                                      unsigned char TargetFlags) {
1188  assert((TargetFlags == 0 || isTarget) &&
1189         "Cannot set target flags on target-independent globals");
1190  if (Alignment == 0)
1191    Alignment = TLI.getDataLayout()->getPrefTypeAlignment(C->getType());
1192  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1193  FoldingSetNodeID ID;
1194  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1195  ID.AddInteger(Alignment);
1196  ID.AddInteger(Offset);
1197  C->addSelectionDAGCSEId(ID);
1198  ID.AddInteger(TargetFlags);
1199  void *IP = 0;
1200  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1201    return SDValue(E, 0);
1202
1203  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1204                                                     Alignment, TargetFlags);
1205  CSEMap.InsertNode(N, IP);
1206  AllNodes.push_back(N);
1207  return SDValue(N, 0);
1208}
1209
1210SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1211                                     unsigned char TargetFlags) {
1212  FoldingSetNodeID ID;
1213  AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), 0, 0);
1214  ID.AddInteger(Index);
1215  ID.AddInteger(Offset);
1216  ID.AddInteger(TargetFlags);
1217  void *IP = 0;
1218  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1219    return SDValue(E, 0);
1220
1221  SDNode *N = new (NodeAllocator) TargetIndexSDNode(Index, VT, Offset,
1222                                                    TargetFlags);
1223  CSEMap.InsertNode(N, IP);
1224  AllNodes.push_back(N);
1225  return SDValue(N, 0);
1226}
1227
1228SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1229  FoldingSetNodeID ID;
1230  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1231  ID.AddPointer(MBB);
1232  void *IP = 0;
1233  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1234    return SDValue(E, 0);
1235
1236  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1237  CSEMap.InsertNode(N, IP);
1238  AllNodes.push_back(N);
1239  return SDValue(N, 0);
1240}
1241
1242SDValue SelectionDAG::getValueType(EVT VT) {
1243  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1244      ValueTypeNodes.size())
1245    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1246
1247  SDNode *&N = VT.isExtended() ?
1248    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1249
1250  if (N) return SDValue(N, 0);
1251  N = new (NodeAllocator) VTSDNode(VT);
1252  AllNodes.push_back(N);
1253  return SDValue(N, 0);
1254}
1255
1256SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1257  SDNode *&N = ExternalSymbols[Sym];
1258  if (N) return SDValue(N, 0);
1259  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1260  AllNodes.push_back(N);
1261  return SDValue(N, 0);
1262}
1263
1264SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1265                                              unsigned char TargetFlags) {
1266  SDNode *&N =
1267    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1268                                                               TargetFlags)];
1269  if (N) return SDValue(N, 0);
1270  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1271  AllNodes.push_back(N);
1272  return SDValue(N, 0);
1273}
1274
1275SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1276  if ((unsigned)Cond >= CondCodeNodes.size())
1277    CondCodeNodes.resize(Cond+1);
1278
1279  if (CondCodeNodes[Cond] == 0) {
1280    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1281    CondCodeNodes[Cond] = N;
1282    AllNodes.push_back(N);
1283  }
1284
1285  return SDValue(CondCodeNodes[Cond], 0);
1286}
1287
1288// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1289// the shuffle mask M that point at N1 to point at N2, and indices that point
1290// N2 to point at N1.
1291static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1292  std::swap(N1, N2);
1293  int NElts = M.size();
1294  for (int i = 0; i != NElts; ++i) {
1295    if (M[i] >= NElts)
1296      M[i] -= NElts;
1297    else if (M[i] >= 0)
1298      M[i] += NElts;
1299  }
1300}
1301
1302SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1303                                       SDValue N2, const int *Mask) {
1304  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1305  assert(VT.isVector() && N1.getValueType().isVector() &&
1306         "Vector Shuffle VTs must be a vectors");
1307  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1308         && "Vector Shuffle VTs must have same element type");
1309
1310  // Canonicalize shuffle undef, undef -> undef
1311  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1312    return getUNDEF(VT);
1313
1314  // Validate that all indices in Mask are within the range of the elements
1315  // input to the shuffle.
1316  unsigned NElts = VT.getVectorNumElements();
1317  SmallVector<int, 8> MaskVec;
1318  for (unsigned i = 0; i != NElts; ++i) {
1319    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1320    MaskVec.push_back(Mask[i]);
1321  }
1322
1323  // Canonicalize shuffle v, v -> v, undef
1324  if (N1 == N2) {
1325    N2 = getUNDEF(VT);
1326    for (unsigned i = 0; i != NElts; ++i)
1327      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1328  }
1329
1330  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1331  if (N1.getOpcode() == ISD::UNDEF)
1332    commuteShuffle(N1, N2, MaskVec);
1333
1334  // Canonicalize all index into lhs, -> shuffle lhs, undef
1335  // Canonicalize all index into rhs, -> shuffle rhs, undef
1336  bool AllLHS = true, AllRHS = true;
1337  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1338  for (unsigned i = 0; i != NElts; ++i) {
1339    if (MaskVec[i] >= (int)NElts) {
1340      if (N2Undef)
1341        MaskVec[i] = -1;
1342      else
1343        AllLHS = false;
1344    } else if (MaskVec[i] >= 0) {
1345      AllRHS = false;
1346    }
1347  }
1348  if (AllLHS && AllRHS)
1349    return getUNDEF(VT);
1350  if (AllLHS && !N2Undef)
1351    N2 = getUNDEF(VT);
1352  if (AllRHS) {
1353    N1 = getUNDEF(VT);
1354    commuteShuffle(N1, N2, MaskVec);
1355  }
1356
1357  // If Identity shuffle, or all shuffle in to undef, return that node.
1358  bool AllUndef = true;
1359  bool Identity = true;
1360  for (unsigned i = 0; i != NElts; ++i) {
1361    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1362    if (MaskVec[i] >= 0) AllUndef = false;
1363  }
1364  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1365    return N1;
1366  if (AllUndef)
1367    return getUNDEF(VT);
1368
1369  FoldingSetNodeID ID;
1370  SDValue Ops[2] = { N1, N2 };
1371  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1372  for (unsigned i = 0; i != NElts; ++i)
1373    ID.AddInteger(MaskVec[i]);
1374
1375  void* IP = 0;
1376  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1377    return SDValue(E, 0);
1378
1379  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1380  // SDNode doesn't have access to it.  This memory will be "leaked" when
1381  // the node is deallocated, but recovered when the NodeAllocator is released.
1382  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1383  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1384
1385  ShuffleVectorSDNode *N =
1386    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1387  CSEMap.InsertNode(N, IP);
1388  AllNodes.push_back(N);
1389  return SDValue(N, 0);
1390}
1391
1392SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1393                                       SDValue Val, SDValue DTy,
1394                                       SDValue STy, SDValue Rnd, SDValue Sat,
1395                                       ISD::CvtCode Code) {
1396  // If the src and dest types are the same and the conversion is between
1397  // integer types of the same sign or two floats, no conversion is necessary.
1398  if (DTy == STy &&
1399      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1400    return Val;
1401
1402  FoldingSetNodeID ID;
1403  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1404  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1405  void* IP = 0;
1406  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1407    return SDValue(E, 0);
1408
1409  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1410                                                           Code);
1411  CSEMap.InsertNode(N, IP);
1412  AllNodes.push_back(N);
1413  return SDValue(N, 0);
1414}
1415
1416SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1417  FoldingSetNodeID ID;
1418  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1419  ID.AddInteger(RegNo);
1420  void *IP = 0;
1421  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1422    return SDValue(E, 0);
1423
1424  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1425  CSEMap.InsertNode(N, IP);
1426  AllNodes.push_back(N);
1427  return SDValue(N, 0);
1428}
1429
1430SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1431  FoldingSetNodeID ID;
1432  AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), 0, 0);
1433  ID.AddPointer(RegMask);
1434  void *IP = 0;
1435  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1436    return SDValue(E, 0);
1437
1438  SDNode *N = new (NodeAllocator) RegisterMaskSDNode(RegMask);
1439  CSEMap.InsertNode(N, IP);
1440  AllNodes.push_back(N);
1441  return SDValue(N, 0);
1442}
1443
1444SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1445  FoldingSetNodeID ID;
1446  SDValue Ops[] = { Root };
1447  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1448  ID.AddPointer(Label);
1449  void *IP = 0;
1450  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1451    return SDValue(E, 0);
1452
1453  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1454  CSEMap.InsertNode(N, IP);
1455  AllNodes.push_back(N);
1456  return SDValue(N, 0);
1457}
1458
1459
1460SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1461                                      int64_t Offset,
1462                                      bool isTarget,
1463                                      unsigned char TargetFlags) {
1464  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1465
1466  FoldingSetNodeID ID;
1467  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1468  ID.AddPointer(BA);
1469  ID.AddInteger(Offset);
1470  ID.AddInteger(TargetFlags);
1471  void *IP = 0;
1472  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1473    return SDValue(E, 0);
1474
1475  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, Offset,
1476                                                     TargetFlags);
1477  CSEMap.InsertNode(N, IP);
1478  AllNodes.push_back(N);
1479  return SDValue(N, 0);
1480}
1481
1482SDValue SelectionDAG::getSrcValue(const Value *V) {
1483  assert((!V || V->getType()->isPointerTy()) &&
1484         "SrcValue is not a pointer?");
1485
1486  FoldingSetNodeID ID;
1487  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1488  ID.AddPointer(V);
1489
1490  void *IP = 0;
1491  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1492    return SDValue(E, 0);
1493
1494  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1495  CSEMap.InsertNode(N, IP);
1496  AllNodes.push_back(N);
1497  return SDValue(N, 0);
1498}
1499
1500/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1501SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1502  FoldingSetNodeID ID;
1503  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1504  ID.AddPointer(MD);
1505
1506  void *IP = 0;
1507  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1508    return SDValue(E, 0);
1509
1510  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1511  CSEMap.InsertNode(N, IP);
1512  AllNodes.push_back(N);
1513  return SDValue(N, 0);
1514}
1515
1516
1517/// getShiftAmountOperand - Return the specified value casted to
1518/// the target's desired shift amount type.
1519SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1520  EVT OpTy = Op.getValueType();
1521  EVT ShTy = TLI.getShiftAmountTy(LHSTy);
1522  if (OpTy == ShTy || OpTy.isVector()) return Op;
1523
1524  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1525  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1526}
1527
1528/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1529/// specified value type.
1530SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1531  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1532  unsigned ByteSize = VT.getStoreSize();
1533  Type *Ty = VT.getTypeForEVT(*getContext());
1534  unsigned StackAlign =
1535  std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), minAlign);
1536
1537  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1538  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1539}
1540
1541/// CreateStackTemporary - Create a stack temporary suitable for holding
1542/// either of the specified value types.
1543SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1544  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1545                            VT2.getStoreSizeInBits())/8;
1546  Type *Ty1 = VT1.getTypeForEVT(*getContext());
1547  Type *Ty2 = VT2.getTypeForEVT(*getContext());
1548  const DataLayout *TD = TLI.getDataLayout();
1549  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1550                            TD->getPrefTypeAlignment(Ty2));
1551
1552  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1553  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1554  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1555}
1556
1557SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1558                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1559  // These setcc operations always fold.
1560  switch (Cond) {
1561  default: break;
1562  case ISD::SETFALSE:
1563  case ISD::SETFALSE2: return getConstant(0, VT);
1564  case ISD::SETTRUE:
1565  case ISD::SETTRUE2:  return getConstant(1, VT);
1566
1567  case ISD::SETOEQ:
1568  case ISD::SETOGT:
1569  case ISD::SETOGE:
1570  case ISD::SETOLT:
1571  case ISD::SETOLE:
1572  case ISD::SETONE:
1573  case ISD::SETO:
1574  case ISD::SETUO:
1575  case ISD::SETUEQ:
1576  case ISD::SETUNE:
1577    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1578    break;
1579  }
1580
1581  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1582    const APInt &C2 = N2C->getAPIntValue();
1583    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1584      const APInt &C1 = N1C->getAPIntValue();
1585
1586      switch (Cond) {
1587      default: llvm_unreachable("Unknown integer setcc!");
1588      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1589      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1590      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1591      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1592      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1593      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1594      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1595      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1596      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1597      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1598      }
1599    }
1600  }
1601  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1602    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1603      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1604      switch (Cond) {
1605      default: break;
1606      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1607                          return getUNDEF(VT);
1608                        // fall through
1609      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1610      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1611                          return getUNDEF(VT);
1612                        // fall through
1613      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1614                                           R==APFloat::cmpLessThan, VT);
1615      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1616                          return getUNDEF(VT);
1617                        // fall through
1618      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1619      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1620                          return getUNDEF(VT);
1621                        // fall through
1622      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1623      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1624                          return getUNDEF(VT);
1625                        // fall through
1626      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1627                                           R==APFloat::cmpEqual, VT);
1628      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1629                          return getUNDEF(VT);
1630                        // fall through
1631      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1632                                           R==APFloat::cmpEqual, VT);
1633      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1634      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1635      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1636                                           R==APFloat::cmpEqual, VT);
1637      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1638      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1639                                           R==APFloat::cmpLessThan, VT);
1640      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1641                                           R==APFloat::cmpUnordered, VT);
1642      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1643      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1644      }
1645    } else {
1646      // Ensure that the constant occurs on the RHS.
1647      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1648    }
1649  }
1650
1651  // Could not fold it.
1652  return SDValue();
1653}
1654
1655/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1656/// use this predicate to simplify operations downstream.
1657bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1658  // This predicate is not safe for vector operations.
1659  if (Op.getValueType().isVector())
1660    return false;
1661
1662  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1663  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1664}
1665
1666/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1667/// this predicate to simplify operations downstream.  Mask is known to be zero
1668/// for bits that V cannot have.
1669bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1670                                     unsigned Depth) const {
1671  APInt KnownZero, KnownOne;
1672  ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
1673  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1674  return (KnownZero & Mask) == Mask;
1675}
1676
1677/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1678/// known to be either zero or one and return them in the KnownZero/KnownOne
1679/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1680/// processing.
1681void SelectionDAG::ComputeMaskedBits(SDValue Op, APInt &KnownZero,
1682                                     APInt &KnownOne, unsigned Depth) const {
1683  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1684
1685  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1686  if (Depth == 6)
1687    return;  // Limit search depth.
1688
1689  APInt KnownZero2, KnownOne2;
1690
1691  switch (Op.getOpcode()) {
1692  case ISD::Constant:
1693    // We know all of the bits for a constant!
1694    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
1695    KnownZero = ~KnownOne;
1696    return;
1697  case ISD::AND:
1698    // If either the LHS or the RHS are Zero, the result is zero.
1699    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1700    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1701    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1702    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1703
1704    // Output known-1 bits are only known if set in both the LHS & RHS.
1705    KnownOne &= KnownOne2;
1706    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1707    KnownZero |= KnownZero2;
1708    return;
1709  case ISD::OR:
1710    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1711    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1712    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1713    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1714
1715    // Output known-0 bits are only known if clear in both the LHS & RHS.
1716    KnownZero &= KnownZero2;
1717    // Output known-1 are known to be set if set in either the LHS | RHS.
1718    KnownOne |= KnownOne2;
1719    return;
1720  case ISD::XOR: {
1721    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1722    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1723    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1724    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1725
1726    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1727    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1728    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1729    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1730    KnownZero = KnownZeroOut;
1731    return;
1732  }
1733  case ISD::MUL: {
1734    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1735    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1736    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1737    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1738
1739    // If low bits are zero in either operand, output low known-0 bits.
1740    // Also compute a conserative estimate for high known-0 bits.
1741    // More trickiness is possible, but this is sufficient for the
1742    // interesting case of alignment computation.
1743    KnownOne.clearAllBits();
1744    unsigned TrailZ = KnownZero.countTrailingOnes() +
1745                      KnownZero2.countTrailingOnes();
1746    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1747                               KnownZero2.countLeadingOnes(),
1748                               BitWidth) - BitWidth;
1749
1750    TrailZ = std::min(TrailZ, BitWidth);
1751    LeadZ = std::min(LeadZ, BitWidth);
1752    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1753                APInt::getHighBitsSet(BitWidth, LeadZ);
1754    return;
1755  }
1756  case ISD::UDIV: {
1757    // For the purposes of computing leading zeros we can conservatively
1758    // treat a udiv as a logical right shift by the power of 2 known to
1759    // be less than the denominator.
1760    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1761    unsigned LeadZ = KnownZero2.countLeadingOnes();
1762
1763    KnownOne2.clearAllBits();
1764    KnownZero2.clearAllBits();
1765    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
1766    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1767    if (RHSUnknownLeadingOnes != BitWidth)
1768      LeadZ = std::min(BitWidth,
1769                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1770
1771    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
1772    return;
1773  }
1774  case ISD::SELECT:
1775    ComputeMaskedBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1);
1776    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
1777    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1778    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1779
1780    // Only known if known in both the LHS and RHS.
1781    KnownOne &= KnownOne2;
1782    KnownZero &= KnownZero2;
1783    return;
1784  case ISD::SELECT_CC:
1785    ComputeMaskedBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1);
1786    ComputeMaskedBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1);
1787    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1788    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1789
1790    // Only known if known in both the LHS and RHS.
1791    KnownOne &= KnownOne2;
1792    KnownZero &= KnownZero2;
1793    return;
1794  case ISD::SADDO:
1795  case ISD::UADDO:
1796  case ISD::SSUBO:
1797  case ISD::USUBO:
1798  case ISD::SMULO:
1799  case ISD::UMULO:
1800    if (Op.getResNo() != 1)
1801      return;
1802    // The boolean result conforms to getBooleanContents.  Fall through.
1803  case ISD::SETCC:
1804    // If we know the result of a setcc has the top bits zero, use this info.
1805    if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
1806        TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1)
1807      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1808    return;
1809  case ISD::SHL:
1810    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1811    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1812      unsigned ShAmt = SA->getZExtValue();
1813
1814      // If the shift count is an invalid immediate, don't do anything.
1815      if (ShAmt >= BitWidth)
1816        return;
1817
1818      ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1819      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1820      KnownZero <<= ShAmt;
1821      KnownOne  <<= ShAmt;
1822      // low bits known zero.
1823      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1824    }
1825    return;
1826  case ISD::SRL:
1827    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1828    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1829      unsigned ShAmt = SA->getZExtValue();
1830
1831      // If the shift count is an invalid immediate, don't do anything.
1832      if (ShAmt >= BitWidth)
1833        return;
1834
1835      ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1836      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1837      KnownZero = KnownZero.lshr(ShAmt);
1838      KnownOne  = KnownOne.lshr(ShAmt);
1839
1840      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1841      KnownZero |= HighBits;  // High bits known zero.
1842    }
1843    return;
1844  case ISD::SRA:
1845    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1846      unsigned ShAmt = SA->getZExtValue();
1847
1848      // If the shift count is an invalid immediate, don't do anything.
1849      if (ShAmt >= BitWidth)
1850        return;
1851
1852      // If any of the demanded bits are produced by the sign extension, we also
1853      // demand the input sign bit.
1854      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1855
1856      ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1857      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1858      KnownZero = KnownZero.lshr(ShAmt);
1859      KnownOne  = KnownOne.lshr(ShAmt);
1860
1861      // Handle the sign bits.
1862      APInt SignBit = APInt::getSignBit(BitWidth);
1863      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1864
1865      if (KnownZero.intersects(SignBit)) {
1866        KnownZero |= HighBits;  // New bits are known zero.
1867      } else if (KnownOne.intersects(SignBit)) {
1868        KnownOne  |= HighBits;  // New bits are known one.
1869      }
1870    }
1871    return;
1872  case ISD::SIGN_EXTEND_INREG: {
1873    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1874    unsigned EBits = EVT.getScalarType().getSizeInBits();
1875
1876    // Sign extension.  Compute the demanded bits in the result that are not
1877    // present in the input.
1878    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
1879
1880    APInt InSignBit = APInt::getSignBit(EBits);
1881    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
1882
1883    // If the sign extended bits are demanded, we know that the sign
1884    // bit is demanded.
1885    InSignBit = InSignBit.zext(BitWidth);
1886    if (NewBits.getBoolValue())
1887      InputDemandedBits |= InSignBit;
1888
1889    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1890    KnownOne &= InputDemandedBits;
1891    KnownZero &= InputDemandedBits;
1892    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1893
1894    // If the sign bit of the input is known set or clear, then we know the
1895    // top bits of the result.
1896    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1897      KnownZero |= NewBits;
1898      KnownOne  &= ~NewBits;
1899    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1900      KnownOne  |= NewBits;
1901      KnownZero &= ~NewBits;
1902    } else {                              // Input sign bit unknown
1903      KnownZero &= ~NewBits;
1904      KnownOne  &= ~NewBits;
1905    }
1906    return;
1907  }
1908  case ISD::CTTZ:
1909  case ISD::CTTZ_ZERO_UNDEF:
1910  case ISD::CTLZ:
1911  case ISD::CTLZ_ZERO_UNDEF:
1912  case ISD::CTPOP: {
1913    unsigned LowBits = Log2_32(BitWidth)+1;
1914    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1915    KnownOne.clearAllBits();
1916    return;
1917  }
1918  case ISD::LOAD: {
1919    LoadSDNode *LD = cast<LoadSDNode>(Op);
1920    if (ISD::isZEXTLoad(Op.getNode())) {
1921      EVT VT = LD->getMemoryVT();
1922      unsigned MemBits = VT.getScalarType().getSizeInBits();
1923      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
1924    } else if (const MDNode *Ranges = LD->getRanges()) {
1925      computeMaskedBitsLoad(*Ranges, KnownZero);
1926    }
1927    return;
1928  }
1929  case ISD::ZERO_EXTEND: {
1930    EVT InVT = Op.getOperand(0).getValueType();
1931    unsigned InBits = InVT.getScalarType().getSizeInBits();
1932    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
1933    KnownZero = KnownZero.trunc(InBits);
1934    KnownOne = KnownOne.trunc(InBits);
1935    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1936    KnownZero = KnownZero.zext(BitWidth);
1937    KnownOne = KnownOne.zext(BitWidth);
1938    KnownZero |= NewBits;
1939    return;
1940  }
1941  case ISD::SIGN_EXTEND: {
1942    EVT InVT = Op.getOperand(0).getValueType();
1943    unsigned InBits = InVT.getScalarType().getSizeInBits();
1944    APInt InSignBit = APInt::getSignBit(InBits);
1945    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
1946
1947    KnownZero = KnownZero.trunc(InBits);
1948    KnownOne = KnownOne.trunc(InBits);
1949    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1950
1951    // Note if the sign bit is known to be zero or one.
1952    bool SignBitKnownZero = KnownZero.isNegative();
1953    bool SignBitKnownOne  = KnownOne.isNegative();
1954    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1955           "Sign bit can't be known to be both zero and one!");
1956
1957    KnownZero = KnownZero.zext(BitWidth);
1958    KnownOne = KnownOne.zext(BitWidth);
1959
1960    // If the sign bit is known zero or one, the top bits match.
1961    if (SignBitKnownZero)
1962      KnownZero |= NewBits;
1963    else if (SignBitKnownOne)
1964      KnownOne  |= NewBits;
1965    return;
1966  }
1967  case ISD::ANY_EXTEND: {
1968    EVT InVT = Op.getOperand(0).getValueType();
1969    unsigned InBits = InVT.getScalarType().getSizeInBits();
1970    KnownZero = KnownZero.trunc(InBits);
1971    KnownOne = KnownOne.trunc(InBits);
1972    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1973    KnownZero = KnownZero.zext(BitWidth);
1974    KnownOne = KnownOne.zext(BitWidth);
1975    return;
1976  }
1977  case ISD::TRUNCATE: {
1978    EVT InVT = Op.getOperand(0).getValueType();
1979    unsigned InBits = InVT.getScalarType().getSizeInBits();
1980    KnownZero = KnownZero.zext(InBits);
1981    KnownOne = KnownOne.zext(InBits);
1982    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1983    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1984    KnownZero = KnownZero.trunc(BitWidth);
1985    KnownOne = KnownOne.trunc(BitWidth);
1986    break;
1987  }
1988  case ISD::AssertZext: {
1989    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1990    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1991    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1992    KnownZero |= (~InMask);
1993    KnownOne  &= (~KnownZero);
1994    return;
1995  }
1996  case ISD::FGETSIGN:
1997    // All bits are zero except the low bit.
1998    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1999    return;
2000
2001  case ISD::SUB: {
2002    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
2003      // We know that the top bits of C-X are clear if X contains less bits
2004      // than C (i.e. no wrap-around can happen).  For example, 20-X is
2005      // positive if we can prove that X is >= 0 and < 16.
2006      if (CLHS->getAPIntValue().isNonNegative()) {
2007        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2008        // NLZ can't be BitWidth with no sign bit
2009        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2010        ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2011
2012        // If all of the MaskV bits are known to be zero, then we know the
2013        // output top bits are zero, because we now know that the output is
2014        // from [0-C].
2015        if ((KnownZero2 & MaskV) == MaskV) {
2016          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2017          // Top bits known zero.
2018          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
2019        }
2020      }
2021    }
2022  }
2023  // fall through
2024  case ISD::ADD:
2025  case ISD::ADDE: {
2026    // Output known-0 bits are known if clear or set in both the low clear bits
2027    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2028    // low 3 bits clear.
2029    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
2030    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
2031    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
2032
2033    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2034    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
2035    KnownZeroOut = std::min(KnownZeroOut,
2036                            KnownZero2.countTrailingOnes());
2037
2038    if (Op.getOpcode() == ISD::ADD) {
2039      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
2040      return;
2041    }
2042
2043    // With ADDE, a carry bit may be added in, so we can only use this
2044    // information if we know (at least) that the low two bits are clear.  We
2045    // then return to the caller that the low bit is unknown but that other bits
2046    // are known zero.
2047    if (KnownZeroOut >= 2) // ADDE
2048      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
2049    return;
2050  }
2051  case ISD::SREM:
2052    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2053      const APInt &RA = Rem->getAPIntValue().abs();
2054      if (RA.isPowerOf2()) {
2055        APInt LowBits = RA - 1;
2056        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
2057        ComputeMaskedBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1);
2058
2059        // The low bits of the first operand are unchanged by the srem.
2060        KnownZero = KnownZero2 & LowBits;
2061        KnownOne = KnownOne2 & LowBits;
2062
2063        // If the first operand is non-negative or has all low bits zero, then
2064        // the upper bits are all zero.
2065        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2066          KnownZero |= ~LowBits;
2067
2068        // If the first operand is negative and not all low bits are zero, then
2069        // the upper bits are all one.
2070        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2071          KnownOne |= ~LowBits;
2072        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2073      }
2074    }
2075    return;
2076  case ISD::UREM: {
2077    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2078      const APInt &RA = Rem->getAPIntValue();
2079      if (RA.isPowerOf2()) {
2080        APInt LowBits = (RA - 1);
2081        KnownZero |= ~LowBits;
2082        ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne,Depth+1);
2083        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2084        break;
2085      }
2086    }
2087
2088    // Since the result is less than or equal to either operand, any leading
2089    // zero bits in either operand must also exist in the result.
2090    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2091    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2092
2093    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2094                                KnownZero2.countLeadingOnes());
2095    KnownOne.clearAllBits();
2096    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
2097    return;
2098  }
2099  case ISD::FrameIndex:
2100  case ISD::TargetFrameIndex:
2101    if (unsigned Align = InferPtrAlignment(Op)) {
2102      // The low bits are known zero if the pointer is aligned.
2103      KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2104      return;
2105    }
2106    break;
2107
2108  default:
2109    if (Op.getOpcode() < ISD::BUILTIN_OP_END)
2110      break;
2111    // Fallthrough
2112  case ISD::INTRINSIC_WO_CHAIN:
2113  case ISD::INTRINSIC_W_CHAIN:
2114  case ISD::INTRINSIC_VOID:
2115    // Allow the target to implement this method for its nodes.
2116    TLI.computeMaskedBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth);
2117    return;
2118  }
2119}
2120
2121/// ComputeNumSignBits - Return the number of times the sign bit of the
2122/// register is replicated into the other bits.  We know that at least 1 bit
2123/// is always equal to the sign bit (itself), but other cases can give us
2124/// information.  For example, immediately after an "SRA X, 2", we know that
2125/// the top 3 bits are all equal to each other, so we return 3.
2126unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2127  EVT VT = Op.getValueType();
2128  assert(VT.isInteger() && "Invalid VT!");
2129  unsigned VTBits = VT.getScalarType().getSizeInBits();
2130  unsigned Tmp, Tmp2;
2131  unsigned FirstAnswer = 1;
2132
2133  if (Depth == 6)
2134    return 1;  // Limit search depth.
2135
2136  switch (Op.getOpcode()) {
2137  default: break;
2138  case ISD::AssertSext:
2139    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2140    return VTBits-Tmp+1;
2141  case ISD::AssertZext:
2142    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2143    return VTBits-Tmp;
2144
2145  case ISD::Constant: {
2146    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2147    return Val.getNumSignBits();
2148  }
2149
2150  case ISD::SIGN_EXTEND:
2151    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2152    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2153
2154  case ISD::SIGN_EXTEND_INREG:
2155    // Max of the input and what this extends.
2156    Tmp =
2157      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2158    Tmp = VTBits-Tmp+1;
2159
2160    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2161    return std::max(Tmp, Tmp2);
2162
2163  case ISD::SRA:
2164    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2165    // SRA X, C   -> adds C sign bits.
2166    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2167      Tmp += C->getZExtValue();
2168      if (Tmp > VTBits) Tmp = VTBits;
2169    }
2170    return Tmp;
2171  case ISD::SHL:
2172    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2173      // shl destroys sign bits.
2174      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2175      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2176          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2177      return Tmp - C->getZExtValue();
2178    }
2179    break;
2180  case ISD::AND:
2181  case ISD::OR:
2182  case ISD::XOR:    // NOT is handled here.
2183    // Logical binary ops preserve the number of sign bits at the worst.
2184    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2185    if (Tmp != 1) {
2186      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2187      FirstAnswer = std::min(Tmp, Tmp2);
2188      // We computed what we know about the sign bits as our first
2189      // answer. Now proceed to the generic code that uses
2190      // ComputeMaskedBits, and pick whichever answer is better.
2191    }
2192    break;
2193
2194  case ISD::SELECT:
2195    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2196    if (Tmp == 1) return 1;  // Early out.
2197    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2198    return std::min(Tmp, Tmp2);
2199
2200  case ISD::SADDO:
2201  case ISD::UADDO:
2202  case ISD::SSUBO:
2203  case ISD::USUBO:
2204  case ISD::SMULO:
2205  case ISD::UMULO:
2206    if (Op.getResNo() != 1)
2207      break;
2208    // The boolean result conforms to getBooleanContents.  Fall through.
2209  case ISD::SETCC:
2210    // If setcc returns 0/-1, all bits are sign bits.
2211    if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
2212        TargetLowering::ZeroOrNegativeOneBooleanContent)
2213      return VTBits;
2214    break;
2215  case ISD::ROTL:
2216  case ISD::ROTR:
2217    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2218      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2219
2220      // Handle rotate right by N like a rotate left by 32-N.
2221      if (Op.getOpcode() == ISD::ROTR)
2222        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2223
2224      // If we aren't rotating out all of the known-in sign bits, return the
2225      // number that are left.  This handles rotl(sext(x), 1) for example.
2226      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2227      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2228    }
2229    break;
2230  case ISD::ADD:
2231    // Add can have at most one carry bit.  Thus we know that the output
2232    // is, at worst, one more bit than the inputs.
2233    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2234    if (Tmp == 1) return 1;  // Early out.
2235
2236    // Special case decrementing a value (ADD X, -1):
2237    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2238      if (CRHS->isAllOnesValue()) {
2239        APInt KnownZero, KnownOne;
2240        ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2241
2242        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2243        // sign bits set.
2244        if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2245          return VTBits;
2246
2247        // If we are subtracting one from a positive number, there is no carry
2248        // out of the result.
2249        if (KnownZero.isNegative())
2250          return Tmp;
2251      }
2252
2253    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2254    if (Tmp2 == 1) return 1;
2255    return std::min(Tmp, Tmp2)-1;
2256
2257  case ISD::SUB:
2258    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2259    if (Tmp2 == 1) return 1;
2260
2261    // Handle NEG.
2262    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2263      if (CLHS->isNullValue()) {
2264        APInt KnownZero, KnownOne;
2265        ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
2266        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2267        // sign bits set.
2268        if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2269          return VTBits;
2270
2271        // If the input is known to be positive (the sign bit is known clear),
2272        // the output of the NEG has the same number of sign bits as the input.
2273        if (KnownZero.isNegative())
2274          return Tmp2;
2275
2276        // Otherwise, we treat this like a SUB.
2277      }
2278
2279    // Sub can have at most one carry bit.  Thus we know that the output
2280    // is, at worst, one more bit than the inputs.
2281    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2282    if (Tmp == 1) return 1;  // Early out.
2283    return std::min(Tmp, Tmp2)-1;
2284  case ISD::TRUNCATE:
2285    // FIXME: it's tricky to do anything useful for this, but it is an important
2286    // case for targets like X86.
2287    break;
2288  }
2289
2290  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2291  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
2292    unsigned ExtType = LD->getExtensionType();
2293    switch (ExtType) {
2294    default: break;
2295    case ISD::SEXTLOAD:    // '17' bits known
2296      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2297      return VTBits-Tmp+1;
2298    case ISD::ZEXTLOAD:    // '16' bits known
2299      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2300      return VTBits-Tmp;
2301    }
2302  }
2303
2304  // Allow the target to implement this method for its nodes.
2305  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2306      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2307      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2308      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2309    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2310    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2311  }
2312
2313  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2314  // use this information.
2315  APInt KnownZero, KnownOne;
2316  ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
2317
2318  APInt Mask;
2319  if (KnownZero.isNegative()) {        // sign bit is 0
2320    Mask = KnownZero;
2321  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2322    Mask = KnownOne;
2323  } else {
2324    // Nothing known.
2325    return FirstAnswer;
2326  }
2327
2328  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2329  // the number of identical bits in the top of the input value.
2330  Mask = ~Mask;
2331  Mask <<= Mask.getBitWidth()-VTBits;
2332  // Return # leading zeros.  We use 'min' here in case Val was zero before
2333  // shifting.  We don't want to return '64' as for an i32 "0".
2334  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2335}
2336
2337/// isBaseWithConstantOffset - Return true if the specified operand is an
2338/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2339/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2340/// semantics as an ADD.  This handles the equivalence:
2341///     X|Cst == X+Cst iff X&Cst = 0.
2342bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2343  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2344      !isa<ConstantSDNode>(Op.getOperand(1)))
2345    return false;
2346
2347  if (Op.getOpcode() == ISD::OR &&
2348      !MaskedValueIsZero(Op.getOperand(0),
2349                     cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2350    return false;
2351
2352  return true;
2353}
2354
2355
2356bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2357  // If we're told that NaNs won't happen, assume they won't.
2358  if (getTarget().Options.NoNaNsFPMath)
2359    return true;
2360
2361  // If the value is a constant, we can obviously see if it is a NaN or not.
2362  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2363    return !C->getValueAPF().isNaN();
2364
2365  // TODO: Recognize more cases here.
2366
2367  return false;
2368}
2369
2370bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2371  // If the value is a constant, we can obviously see if it is a zero or not.
2372  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2373    return !C->isZero();
2374
2375  // TODO: Recognize more cases here.
2376  switch (Op.getOpcode()) {
2377  default: break;
2378  case ISD::OR:
2379    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2380      return !C->isNullValue();
2381    break;
2382  }
2383
2384  return false;
2385}
2386
2387bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2388  // Check the obvious case.
2389  if (A == B) return true;
2390
2391  // For for negative and positive zero.
2392  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2393    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2394      if (CA->isZero() && CB->isZero()) return true;
2395
2396  // Otherwise they may not be equal.
2397  return false;
2398}
2399
2400/// getNode - Gets or creates the specified node.
2401///
2402SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2403  FoldingSetNodeID ID;
2404  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2405  void *IP = 0;
2406  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2407    return SDValue(E, 0);
2408
2409  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2410  CSEMap.InsertNode(N, IP);
2411
2412  AllNodes.push_back(N);
2413#ifndef NDEBUG
2414  VerifySDNode(N);
2415#endif
2416  return SDValue(N, 0);
2417}
2418
2419SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2420                              EVT VT, SDValue Operand) {
2421  // Constant fold unary operations with an integer constant operand.
2422  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2423    const APInt &Val = C->getAPIntValue();
2424    switch (Opcode) {
2425    default: break;
2426    case ISD::SIGN_EXTEND:
2427      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2428    case ISD::ANY_EXTEND:
2429    case ISD::ZERO_EXTEND:
2430    case ISD::TRUNCATE:
2431      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2432    case ISD::UINT_TO_FP:
2433    case ISD::SINT_TO_FP: {
2434      APFloat apf(EVTToAPFloatSemantics(VT),
2435                  APInt::getNullValue(VT.getSizeInBits()));
2436      (void)apf.convertFromAPInt(Val,
2437                                 Opcode==ISD::SINT_TO_FP,
2438                                 APFloat::rmNearestTiesToEven);
2439      return getConstantFP(apf, VT);
2440    }
2441    case ISD::BITCAST:
2442      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2443        return getConstantFP(APFloat(APFloat::IEEEsingle, Val), VT);
2444      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2445        return getConstantFP(APFloat(APFloat::IEEEdouble, Val), VT);
2446      break;
2447    case ISD::BSWAP:
2448      return getConstant(Val.byteSwap(), VT);
2449    case ISD::CTPOP:
2450      return getConstant(Val.countPopulation(), VT);
2451    case ISD::CTLZ:
2452    case ISD::CTLZ_ZERO_UNDEF:
2453      return getConstant(Val.countLeadingZeros(), VT);
2454    case ISD::CTTZ:
2455    case ISD::CTTZ_ZERO_UNDEF:
2456      return getConstant(Val.countTrailingZeros(), VT);
2457    }
2458  }
2459
2460  // Constant fold unary operations with a floating point constant operand.
2461  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2462    APFloat V = C->getValueAPF();    // make copy
2463    switch (Opcode) {
2464    case ISD::FNEG:
2465      V.changeSign();
2466      return getConstantFP(V, VT);
2467    case ISD::FABS:
2468      V.clearSign();
2469      return getConstantFP(V, VT);
2470    case ISD::FCEIL: {
2471      APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
2472      if (fs == APFloat::opOK || fs == APFloat::opInexact)
2473        return getConstantFP(V, VT);
2474      break;
2475    }
2476    case ISD::FTRUNC: {
2477      APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
2478      if (fs == APFloat::opOK || fs == APFloat::opInexact)
2479        return getConstantFP(V, VT);
2480      break;
2481    }
2482    case ISD::FFLOOR: {
2483      APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
2484      if (fs == APFloat::opOK || fs == APFloat::opInexact)
2485        return getConstantFP(V, VT);
2486      break;
2487    }
2488    case ISD::FP_EXTEND: {
2489      bool ignored;
2490      // This can return overflow, underflow, or inexact; we don't care.
2491      // FIXME need to be more flexible about rounding mode.
2492      (void)V.convert(EVTToAPFloatSemantics(VT),
2493                      APFloat::rmNearestTiesToEven, &ignored);
2494      return getConstantFP(V, VT);
2495    }
2496    case ISD::FP_TO_SINT:
2497    case ISD::FP_TO_UINT: {
2498      integerPart x[2];
2499      bool ignored;
2500      assert(integerPartWidth >= 64);
2501      // FIXME need to be more flexible about rounding mode.
2502      APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2503                            Opcode==ISD::FP_TO_SINT,
2504                            APFloat::rmTowardZero, &ignored);
2505      if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2506        break;
2507      APInt api(VT.getSizeInBits(), x);
2508      return getConstant(api, VT);
2509    }
2510    case ISD::BITCAST:
2511      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2512        return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2513      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2514        return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2515      break;
2516    }
2517  }
2518
2519  unsigned OpOpcode = Operand.getNode()->getOpcode();
2520  switch (Opcode) {
2521  case ISD::TokenFactor:
2522  case ISD::MERGE_VALUES:
2523  case ISD::CONCAT_VECTORS:
2524    return Operand;         // Factor, merge or concat of one node?  No need.
2525  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2526  case ISD::FP_EXTEND:
2527    assert(VT.isFloatingPoint() &&
2528           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2529    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2530    assert((!VT.isVector() ||
2531            VT.getVectorNumElements() ==
2532            Operand.getValueType().getVectorNumElements()) &&
2533           "Vector element count mismatch!");
2534    if (Operand.getOpcode() == ISD::UNDEF)
2535      return getUNDEF(VT);
2536    break;
2537  case ISD::SIGN_EXTEND:
2538    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2539           "Invalid SIGN_EXTEND!");
2540    if (Operand.getValueType() == VT) return Operand;   // noop extension
2541    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2542           "Invalid sext node, dst < src!");
2543    assert((!VT.isVector() ||
2544            VT.getVectorNumElements() ==
2545            Operand.getValueType().getVectorNumElements()) &&
2546           "Vector element count mismatch!");
2547    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2548      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2549    else if (OpOpcode == ISD::UNDEF)
2550      // sext(undef) = 0, because the top bits will all be the same.
2551      return getConstant(0, VT);
2552    break;
2553  case ISD::ZERO_EXTEND:
2554    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2555           "Invalid ZERO_EXTEND!");
2556    if (Operand.getValueType() == VT) return Operand;   // noop extension
2557    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2558           "Invalid zext node, dst < src!");
2559    assert((!VT.isVector() ||
2560            VT.getVectorNumElements() ==
2561            Operand.getValueType().getVectorNumElements()) &&
2562           "Vector element count mismatch!");
2563    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2564      return getNode(ISD::ZERO_EXTEND, DL, VT,
2565                     Operand.getNode()->getOperand(0));
2566    else if (OpOpcode == ISD::UNDEF)
2567      // zext(undef) = 0, because the top bits will be zero.
2568      return getConstant(0, VT);
2569    break;
2570  case ISD::ANY_EXTEND:
2571    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2572           "Invalid ANY_EXTEND!");
2573    if (Operand.getValueType() == VT) return Operand;   // noop extension
2574    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2575           "Invalid anyext node, dst < src!");
2576    assert((!VT.isVector() ||
2577            VT.getVectorNumElements() ==
2578            Operand.getValueType().getVectorNumElements()) &&
2579           "Vector element count mismatch!");
2580
2581    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2582        OpOpcode == ISD::ANY_EXTEND)
2583      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2584      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2585    else if (OpOpcode == ISD::UNDEF)
2586      return getUNDEF(VT);
2587
2588    // (ext (trunx x)) -> x
2589    if (OpOpcode == ISD::TRUNCATE) {
2590      SDValue OpOp = Operand.getNode()->getOperand(0);
2591      if (OpOp.getValueType() == VT)
2592        return OpOp;
2593    }
2594    break;
2595  case ISD::TRUNCATE:
2596    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2597           "Invalid TRUNCATE!");
2598    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2599    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2600           "Invalid truncate node, src < dst!");
2601    assert((!VT.isVector() ||
2602            VT.getVectorNumElements() ==
2603            Operand.getValueType().getVectorNumElements()) &&
2604           "Vector element count mismatch!");
2605    if (OpOpcode == ISD::TRUNCATE)
2606      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2607    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2608        OpOpcode == ISD::ANY_EXTEND) {
2609      // If the source is smaller than the dest, we still need an extend.
2610      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2611            .bitsLT(VT.getScalarType()))
2612        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2613      if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2614        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2615      return Operand.getNode()->getOperand(0);
2616    }
2617    if (OpOpcode == ISD::UNDEF)
2618      return getUNDEF(VT);
2619    break;
2620  case ISD::BITCAST:
2621    // Basic sanity checking.
2622    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2623           && "Cannot BITCAST between types of different sizes!");
2624    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2625    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2626      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2627    if (OpOpcode == ISD::UNDEF)
2628      return getUNDEF(VT);
2629    break;
2630  case ISD::SCALAR_TO_VECTOR:
2631    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2632           (VT.getVectorElementType() == Operand.getValueType() ||
2633            (VT.getVectorElementType().isInteger() &&
2634             Operand.getValueType().isInteger() &&
2635             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2636           "Illegal SCALAR_TO_VECTOR node!");
2637    if (OpOpcode == ISD::UNDEF)
2638      return getUNDEF(VT);
2639    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2640    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2641        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2642        Operand.getConstantOperandVal(1) == 0 &&
2643        Operand.getOperand(0).getValueType() == VT)
2644      return Operand.getOperand(0);
2645    break;
2646  case ISD::FNEG:
2647    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2648    if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
2649      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2650                     Operand.getNode()->getOperand(0));
2651    if (OpOpcode == ISD::FNEG)  // --X -> X
2652      return Operand.getNode()->getOperand(0);
2653    break;
2654  case ISD::FABS:
2655    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2656      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2657    break;
2658  }
2659
2660  SDNode *N;
2661  SDVTList VTs = getVTList(VT);
2662  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2663    FoldingSetNodeID ID;
2664    SDValue Ops[1] = { Operand };
2665    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2666    void *IP = 0;
2667    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2668      return SDValue(E, 0);
2669
2670    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2671    CSEMap.InsertNode(N, IP);
2672  } else {
2673    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2674  }
2675
2676  AllNodes.push_back(N);
2677#ifndef NDEBUG
2678  VerifySDNode(N);
2679#endif
2680  return SDValue(N, 0);
2681}
2682
2683SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, EVT VT,
2684                                             SDNode *Cst1, SDNode *Cst2) {
2685  SmallVector<std::pair<ConstantSDNode *, ConstantSDNode *>, 4> Inputs;
2686  SmallVector<SDValue, 4> Outputs;
2687  EVT SVT = VT.getScalarType();
2688
2689  ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1);
2690  ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2);
2691  if (Scalar1 && Scalar2) {
2692    // Scalar instruction.
2693    Inputs.push_back(std::make_pair(Scalar1, Scalar2));
2694  } else {
2695    // For vectors extract each constant element into Inputs so we can constant
2696    // fold them individually.
2697    BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
2698    BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
2699    if (!BV1 || !BV2)
2700      return SDValue();
2701
2702    assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
2703
2704    for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
2705      ConstantSDNode *V1 = dyn_cast<ConstantSDNode>(BV1->getOperand(I));
2706      ConstantSDNode *V2 = dyn_cast<ConstantSDNode>(BV2->getOperand(I));
2707      if (!V1 || !V2) // Not a constant, bail.
2708        return SDValue();
2709
2710      // Avoid BUILD_VECTOR nodes that perform implicit truncation.
2711      // FIXME: This is valid and could be handled by truncating the APInts.
2712      if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
2713        return SDValue();
2714
2715      Inputs.push_back(std::make_pair(V1, V2));
2716    }
2717  }
2718
2719  // We have a number of constant values, constant fold them element by element.
2720  for (unsigned I = 0, E = Inputs.size(); I != E; ++I) {
2721    const APInt &C1 = Inputs[I].first->getAPIntValue();
2722    const APInt &C2 = Inputs[I].second->getAPIntValue();
2723
2724    switch (Opcode) {
2725    case ISD::ADD:
2726      Outputs.push_back(getConstant(C1 + C2, SVT));
2727      break;
2728    case ISD::SUB:
2729      Outputs.push_back(getConstant(C1 - C2, SVT));
2730      break;
2731    case ISD::MUL:
2732      Outputs.push_back(getConstant(C1 * C2, SVT));
2733      break;
2734    case ISD::UDIV:
2735      if (!C2.getBoolValue())
2736        return SDValue();
2737      Outputs.push_back(getConstant(C1.udiv(C2), SVT));
2738      break;
2739    case ISD::UREM:
2740      if (!C2.getBoolValue())
2741        return SDValue();
2742      Outputs.push_back(getConstant(C1.urem(C2), SVT));
2743      break;
2744    case ISD::SDIV:
2745      if (!C2.getBoolValue())
2746        return SDValue();
2747      Outputs.push_back(getConstant(C1.sdiv(C2), SVT));
2748      break;
2749    case ISD::SREM:
2750      if (!C2.getBoolValue())
2751        return SDValue();
2752      Outputs.push_back(getConstant(C1.srem(C2), SVT));
2753      break;
2754    case ISD::AND:
2755      Outputs.push_back(getConstant(C1 & C2, SVT));
2756      break;
2757    case ISD::OR:
2758      Outputs.push_back(getConstant(C1 | C2, SVT));
2759      break;
2760    case ISD::XOR:
2761      Outputs.push_back(getConstant(C1 ^ C2, SVT));
2762      break;
2763    case ISD::SHL:
2764      Outputs.push_back(getConstant(C1 << C2, SVT));
2765      break;
2766    case ISD::SRL:
2767      Outputs.push_back(getConstant(C1.lshr(C2), SVT));
2768      break;
2769    case ISD::SRA:
2770      Outputs.push_back(getConstant(C1.ashr(C2), SVT));
2771      break;
2772    case ISD::ROTL:
2773      Outputs.push_back(getConstant(C1.rotl(C2), SVT));
2774      break;
2775    case ISD::ROTR:
2776      Outputs.push_back(getConstant(C1.rotr(C2), SVT));
2777      break;
2778    default:
2779      return SDValue();
2780    }
2781  }
2782
2783  // Handle the scalar case first.
2784  if (Outputs.size() == 1)
2785    return Outputs.back();
2786
2787  // Otherwise build a big vector out of the scalar elements we generated.
2788  return getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, Outputs.data(),
2789                 Outputs.size());
2790}
2791
2792SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT, SDValue N1,
2793                              SDValue N2) {
2794  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2795  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2796  switch (Opcode) {
2797  default: break;
2798  case ISD::TokenFactor:
2799    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2800           N2.getValueType() == MVT::Other && "Invalid token factor!");
2801    // Fold trivial token factors.
2802    if (N1.getOpcode() == ISD::EntryToken) return N2;
2803    if (N2.getOpcode() == ISD::EntryToken) return N1;
2804    if (N1 == N2) return N1;
2805    break;
2806  case ISD::CONCAT_VECTORS:
2807    // Concat of UNDEFs is UNDEF.
2808    if (N1.getOpcode() == ISD::UNDEF &&
2809        N2.getOpcode() == ISD::UNDEF)
2810      return getUNDEF(VT);
2811
2812    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2813    // one big BUILD_VECTOR.
2814    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2815        N2.getOpcode() == ISD::BUILD_VECTOR) {
2816      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2817                                    N1.getNode()->op_end());
2818      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2819      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2820    }
2821    break;
2822  case ISD::AND:
2823    assert(VT.isInteger() && "This operator does not apply to FP types!");
2824    assert(N1.getValueType() == N2.getValueType() &&
2825           N1.getValueType() == VT && "Binary operator types must match!");
2826    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2827    // worth handling here.
2828    if (N2C && N2C->isNullValue())
2829      return N2;
2830    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2831      return N1;
2832    break;
2833  case ISD::OR:
2834  case ISD::XOR:
2835  case ISD::ADD:
2836  case ISD::SUB:
2837    assert(VT.isInteger() && "This operator does not apply to FP types!");
2838    assert(N1.getValueType() == N2.getValueType() &&
2839           N1.getValueType() == VT && "Binary operator types must match!");
2840    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2841    // it's worth handling here.
2842    if (N2C && N2C->isNullValue())
2843      return N1;
2844    break;
2845  case ISD::UDIV:
2846  case ISD::UREM:
2847  case ISD::MULHU:
2848  case ISD::MULHS:
2849  case ISD::MUL:
2850  case ISD::SDIV:
2851  case ISD::SREM:
2852    assert(VT.isInteger() && "This operator does not apply to FP types!");
2853    assert(N1.getValueType() == N2.getValueType() &&
2854           N1.getValueType() == VT && "Binary operator types must match!");
2855    break;
2856  case ISD::FADD:
2857  case ISD::FSUB:
2858  case ISD::FMUL:
2859  case ISD::FDIV:
2860  case ISD::FREM:
2861    if (getTarget().Options.UnsafeFPMath) {
2862      if (Opcode == ISD::FADD) {
2863        // 0+x --> x
2864        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2865          if (CFP->getValueAPF().isZero())
2866            return N2;
2867        // x+0 --> x
2868        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2869          if (CFP->getValueAPF().isZero())
2870            return N1;
2871      } else if (Opcode == ISD::FSUB) {
2872        // x-0 --> x
2873        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2874          if (CFP->getValueAPF().isZero())
2875            return N1;
2876      } else if (Opcode == ISD::FMUL) {
2877        ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1);
2878        SDValue V = N2;
2879
2880        // If the first operand isn't the constant, try the second
2881        if (!CFP) {
2882          CFP = dyn_cast<ConstantFPSDNode>(N2);
2883          V = N1;
2884        }
2885
2886        if (CFP) {
2887          // 0*x --> 0
2888          if (CFP->isZero())
2889            return SDValue(CFP,0);
2890          // 1*x --> x
2891          if (CFP->isExactlyValue(1.0))
2892            return V;
2893        }
2894      }
2895    }
2896    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2897    assert(N1.getValueType() == N2.getValueType() &&
2898           N1.getValueType() == VT && "Binary operator types must match!");
2899    break;
2900  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2901    assert(N1.getValueType() == VT &&
2902           N1.getValueType().isFloatingPoint() &&
2903           N2.getValueType().isFloatingPoint() &&
2904           "Invalid FCOPYSIGN!");
2905    break;
2906  case ISD::SHL:
2907  case ISD::SRA:
2908  case ISD::SRL:
2909  case ISD::ROTL:
2910  case ISD::ROTR:
2911    assert(VT == N1.getValueType() &&
2912           "Shift operators return type must be the same as their first arg");
2913    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2914           "Shifts only work on integers");
2915    assert((!VT.isVector() || VT == N2.getValueType()) &&
2916           "Vector shift amounts must be in the same as their first arg");
2917    // Verify that the shift amount VT is bit enough to hold valid shift
2918    // amounts.  This catches things like trying to shift an i1024 value by an
2919    // i8, which is easy to fall into in generic code that uses
2920    // TLI.getShiftAmount().
2921    assert(N2.getValueType().getSizeInBits() >=
2922                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2923           "Invalid use of small shift amount with oversized value!");
2924
2925    // Always fold shifts of i1 values so the code generator doesn't need to
2926    // handle them.  Since we know the size of the shift has to be less than the
2927    // size of the value, the shift/rotate count is guaranteed to be zero.
2928    if (VT == MVT::i1)
2929      return N1;
2930    if (N2C && N2C->isNullValue())
2931      return N1;
2932    break;
2933  case ISD::FP_ROUND_INREG: {
2934    EVT EVT = cast<VTSDNode>(N2)->getVT();
2935    assert(VT == N1.getValueType() && "Not an inreg round!");
2936    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2937           "Cannot FP_ROUND_INREG integer types");
2938    assert(EVT.isVector() == VT.isVector() &&
2939           "FP_ROUND_INREG type should be vector iff the operand "
2940           "type is vector!");
2941    assert((!EVT.isVector() ||
2942            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2943           "Vector element counts must match in FP_ROUND_INREG");
2944    assert(EVT.bitsLE(VT) && "Not rounding down!");
2945    (void)EVT;
2946    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2947    break;
2948  }
2949  case ISD::FP_ROUND:
2950    assert(VT.isFloatingPoint() &&
2951           N1.getValueType().isFloatingPoint() &&
2952           VT.bitsLE(N1.getValueType()) &&
2953           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2954    if (N1.getValueType() == VT) return N1;  // noop conversion.
2955    break;
2956  case ISD::AssertSext:
2957  case ISD::AssertZext: {
2958    EVT EVT = cast<VTSDNode>(N2)->getVT();
2959    assert(VT == N1.getValueType() && "Not an inreg extend!");
2960    assert(VT.isInteger() && EVT.isInteger() &&
2961           "Cannot *_EXTEND_INREG FP types");
2962    assert(!EVT.isVector() &&
2963           "AssertSExt/AssertZExt type should be the vector element type "
2964           "rather than the vector type!");
2965    assert(EVT.bitsLE(VT) && "Not extending!");
2966    if (VT == EVT) return N1; // noop assertion.
2967    break;
2968  }
2969  case ISD::SIGN_EXTEND_INREG: {
2970    EVT EVT = cast<VTSDNode>(N2)->getVT();
2971    assert(VT == N1.getValueType() && "Not an inreg extend!");
2972    assert(VT.isInteger() && EVT.isInteger() &&
2973           "Cannot *_EXTEND_INREG FP types");
2974    assert(EVT.isVector() == VT.isVector() &&
2975           "SIGN_EXTEND_INREG type should be vector iff the operand "
2976           "type is vector!");
2977    assert((!EVT.isVector() ||
2978            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2979           "Vector element counts must match in SIGN_EXTEND_INREG");
2980    assert(EVT.bitsLE(VT) && "Not extending!");
2981    if (EVT == VT) return N1;  // Not actually extending
2982
2983    if (N1C) {
2984      APInt Val = N1C->getAPIntValue();
2985      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2986      Val <<= Val.getBitWidth()-FromBits;
2987      Val = Val.ashr(Val.getBitWidth()-FromBits);
2988      return getConstant(Val, VT);
2989    }
2990    break;
2991  }
2992  case ISD::EXTRACT_VECTOR_ELT:
2993    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2994    if (N1.getOpcode() == ISD::UNDEF)
2995      return getUNDEF(VT);
2996
2997    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2998    // expanding copies of large vectors from registers.
2999    if (N2C &&
3000        N1.getOpcode() == ISD::CONCAT_VECTORS &&
3001        N1.getNumOperands() > 0) {
3002      unsigned Factor =
3003        N1.getOperand(0).getValueType().getVectorNumElements();
3004      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
3005                     N1.getOperand(N2C->getZExtValue() / Factor),
3006                     getConstant(N2C->getZExtValue() % Factor,
3007                                 N2.getValueType()));
3008    }
3009
3010    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
3011    // expanding large vector constants.
3012    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
3013      SDValue Elt = N1.getOperand(N2C->getZExtValue());
3014
3015      if (VT != Elt.getValueType())
3016        // If the vector element type is not legal, the BUILD_VECTOR operands
3017        // are promoted and implicitly truncated, and the result implicitly
3018        // extended. Make that explicit here.
3019        Elt = getAnyExtOrTrunc(Elt, DL, VT);
3020
3021      return Elt;
3022    }
3023
3024    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
3025    // operations are lowered to scalars.
3026    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
3027      // If the indices are the same, return the inserted element else
3028      // if the indices are known different, extract the element from
3029      // the original vector.
3030      SDValue N1Op2 = N1.getOperand(2);
3031      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
3032
3033      if (N1Op2C && N2C) {
3034        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
3035          if (VT == N1.getOperand(1).getValueType())
3036            return N1.getOperand(1);
3037          else
3038            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
3039        }
3040
3041        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
3042      }
3043    }
3044    break;
3045  case ISD::EXTRACT_ELEMENT:
3046    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
3047    assert(!N1.getValueType().isVector() && !VT.isVector() &&
3048           (N1.getValueType().isInteger() == VT.isInteger()) &&
3049           N1.getValueType() != VT &&
3050           "Wrong types for EXTRACT_ELEMENT!");
3051
3052    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
3053    // 64-bit integers into 32-bit parts.  Instead of building the extract of
3054    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
3055    if (N1.getOpcode() == ISD::BUILD_PAIR)
3056      return N1.getOperand(N2C->getZExtValue());
3057
3058    // EXTRACT_ELEMENT of a constant int is also very common.
3059    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
3060      unsigned ElementSize = VT.getSizeInBits();
3061      unsigned Shift = ElementSize * N2C->getZExtValue();
3062      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
3063      return getConstant(ShiftedVal.trunc(ElementSize), VT);
3064    }
3065    break;
3066  case ISD::EXTRACT_SUBVECTOR: {
3067    SDValue Index = N2;
3068    if (VT.isSimple() && N1.getValueType().isSimple()) {
3069      assert(VT.isVector() && N1.getValueType().isVector() &&
3070             "Extract subvector VTs must be a vectors!");
3071      assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
3072             "Extract subvector VTs must have the same element type!");
3073      assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3074             "Extract subvector must be from larger vector to smaller vector!");
3075
3076      if (isa<ConstantSDNode>(Index.getNode())) {
3077        assert((VT.getVectorNumElements() +
3078                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3079                <= N1.getValueType().getVectorNumElements())
3080               && "Extract subvector overflow!");
3081      }
3082
3083      // Trivial extraction.
3084      if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
3085        return N1;
3086    }
3087    break;
3088  }
3089  }
3090
3091  // Perform trivial constant folding.
3092  SDValue SV = FoldConstantArithmetic(Opcode, VT, N1.getNode(), N2.getNode());
3093  if (SV.getNode()) return SV;
3094
3095  // Canonicalize constant to RHS if commutative.
3096  if (N1C && !N2C && isCommutativeBinOp(Opcode)) {
3097    std::swap(N1C, N2C);
3098    std::swap(N1, N2);
3099  }
3100
3101  // Constant fold FP operations.
3102  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
3103  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
3104  if (N1CFP) {
3105    if (!N2CFP && isCommutativeBinOp(Opcode)) {
3106      // Canonicalize constant to RHS if commutative.
3107      std::swap(N1CFP, N2CFP);
3108      std::swap(N1, N2);
3109    } else if (N2CFP) {
3110      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
3111      APFloat::opStatus s;
3112      switch (Opcode) {
3113      case ISD::FADD:
3114        s = V1.add(V2, APFloat::rmNearestTiesToEven);
3115        if (s != APFloat::opInvalidOp)
3116          return getConstantFP(V1, VT);
3117        break;
3118      case ISD::FSUB:
3119        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
3120        if (s!=APFloat::opInvalidOp)
3121          return getConstantFP(V1, VT);
3122        break;
3123      case ISD::FMUL:
3124        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
3125        if (s!=APFloat::opInvalidOp)
3126          return getConstantFP(V1, VT);
3127        break;
3128      case ISD::FDIV:
3129        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
3130        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
3131          return getConstantFP(V1, VT);
3132        break;
3133      case ISD::FREM :
3134        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
3135        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
3136          return getConstantFP(V1, VT);
3137        break;
3138      case ISD::FCOPYSIGN:
3139        V1.copySign(V2);
3140        return getConstantFP(V1, VT);
3141      default: break;
3142      }
3143    }
3144
3145    if (Opcode == ISD::FP_ROUND) {
3146      APFloat V = N1CFP->getValueAPF();    // make copy
3147      bool ignored;
3148      // This can return overflow, underflow, or inexact; we don't care.
3149      // FIXME need to be more flexible about rounding mode.
3150      (void)V.convert(EVTToAPFloatSemantics(VT),
3151                      APFloat::rmNearestTiesToEven, &ignored);
3152      return getConstantFP(V, VT);
3153    }
3154  }
3155
3156  // Canonicalize an UNDEF to the RHS, even over a constant.
3157  if (N1.getOpcode() == ISD::UNDEF) {
3158    if (isCommutativeBinOp(Opcode)) {
3159      std::swap(N1, N2);
3160    } else {
3161      switch (Opcode) {
3162      case ISD::FP_ROUND_INREG:
3163      case ISD::SIGN_EXTEND_INREG:
3164      case ISD::SUB:
3165      case ISD::FSUB:
3166      case ISD::FDIV:
3167      case ISD::FREM:
3168      case ISD::SRA:
3169        return N1;     // fold op(undef, arg2) -> undef
3170      case ISD::UDIV:
3171      case ISD::SDIV:
3172      case ISD::UREM:
3173      case ISD::SREM:
3174      case ISD::SRL:
3175      case ISD::SHL:
3176        if (!VT.isVector())
3177          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
3178        // For vectors, we can't easily build an all zero vector, just return
3179        // the LHS.
3180        return N2;
3181      }
3182    }
3183  }
3184
3185  // Fold a bunch of operators when the RHS is undef.
3186  if (N2.getOpcode() == ISD::UNDEF) {
3187    switch (Opcode) {
3188    case ISD::XOR:
3189      if (N1.getOpcode() == ISD::UNDEF)
3190        // Handle undef ^ undef -> 0 special case. This is a common
3191        // idiom (misuse).
3192        return getConstant(0, VT);
3193      // fallthrough
3194    case ISD::ADD:
3195    case ISD::ADDC:
3196    case ISD::ADDE:
3197    case ISD::SUB:
3198    case ISD::UDIV:
3199    case ISD::SDIV:
3200    case ISD::UREM:
3201    case ISD::SREM:
3202      return N2;       // fold op(arg1, undef) -> undef
3203    case ISD::FADD:
3204    case ISD::FSUB:
3205    case ISD::FMUL:
3206    case ISD::FDIV:
3207    case ISD::FREM:
3208      if (getTarget().Options.UnsafeFPMath)
3209        return N2;
3210      break;
3211    case ISD::MUL:
3212    case ISD::AND:
3213    case ISD::SRL:
3214    case ISD::SHL:
3215      if (!VT.isVector())
3216        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3217      // For vectors, we can't easily build an all zero vector, just return
3218      // the LHS.
3219      return N1;
3220    case ISD::OR:
3221      if (!VT.isVector())
3222        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3223      // For vectors, we can't easily build an all one vector, just return
3224      // the LHS.
3225      return N1;
3226    case ISD::SRA:
3227      return N1;
3228    }
3229  }
3230
3231  // Memoize this node if possible.
3232  SDNode *N;
3233  SDVTList VTs = getVTList(VT);
3234  if (VT != MVT::Glue) {
3235    SDValue Ops[] = { N1, N2 };
3236    FoldingSetNodeID ID;
3237    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3238    void *IP = 0;
3239    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3240      return SDValue(E, 0);
3241
3242    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3243    CSEMap.InsertNode(N, IP);
3244  } else {
3245    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3246  }
3247
3248  AllNodes.push_back(N);
3249#ifndef NDEBUG
3250  VerifySDNode(N);
3251#endif
3252  return SDValue(N, 0);
3253}
3254
3255SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3256                              SDValue N1, SDValue N2, SDValue N3) {
3257  // Perform various simplifications.
3258  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3259  switch (Opcode) {
3260  case ISD::CONCAT_VECTORS:
3261    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3262    // one big BUILD_VECTOR.
3263    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3264        N2.getOpcode() == ISD::BUILD_VECTOR &&
3265        N3.getOpcode() == ISD::BUILD_VECTOR) {
3266      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3267                                    N1.getNode()->op_end());
3268      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3269      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3270      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3271    }
3272    break;
3273  case ISD::SETCC: {
3274    // Use FoldSetCC to simplify SETCC's.
3275    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3276    if (Simp.getNode()) return Simp;
3277    break;
3278  }
3279  case ISD::SELECT:
3280    if (N1C) {
3281     if (N1C->getZExtValue())
3282       return N2;             // select true, X, Y -> X
3283     return N3;             // select false, X, Y -> Y
3284    }
3285
3286    if (N2 == N3) return N2;   // select C, X, X -> X
3287    break;
3288  case ISD::VECTOR_SHUFFLE:
3289    llvm_unreachable("should use getVectorShuffle constructor!");
3290  case ISD::INSERT_SUBVECTOR: {
3291    SDValue Index = N3;
3292    if (VT.isSimple() && N1.getValueType().isSimple()
3293        && N2.getValueType().isSimple()) {
3294      assert(VT.isVector() && N1.getValueType().isVector() &&
3295             N2.getValueType().isVector() &&
3296             "Insert subvector VTs must be a vectors");
3297      assert(VT == N1.getValueType() &&
3298             "Dest and insert subvector source types must match!");
3299      assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3300             "Insert subvector must be from smaller vector to larger vector!");
3301      if (isa<ConstantSDNode>(Index.getNode())) {
3302        assert((N2.getValueType().getVectorNumElements() +
3303                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3304                <= VT.getVectorNumElements())
3305               && "Insert subvector overflow!");
3306      }
3307
3308      // Trivial insertion.
3309      if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3310        return N2;
3311    }
3312    break;
3313  }
3314  case ISD::BITCAST:
3315    // Fold bit_convert nodes from a type to themselves.
3316    if (N1.getValueType() == VT)
3317      return N1;
3318    break;
3319  }
3320
3321  // Memoize node if it doesn't produce a flag.
3322  SDNode *N;
3323  SDVTList VTs = getVTList(VT);
3324  if (VT != MVT::Glue) {
3325    SDValue Ops[] = { N1, N2, N3 };
3326    FoldingSetNodeID ID;
3327    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3328    void *IP = 0;
3329    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3330      return SDValue(E, 0);
3331
3332    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3333    CSEMap.InsertNode(N, IP);
3334  } else {
3335    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3336  }
3337
3338  AllNodes.push_back(N);
3339#ifndef NDEBUG
3340  VerifySDNode(N);
3341#endif
3342  return SDValue(N, 0);
3343}
3344
3345SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3346                              SDValue N1, SDValue N2, SDValue N3,
3347                              SDValue N4) {
3348  SDValue Ops[] = { N1, N2, N3, N4 };
3349  return getNode(Opcode, DL, VT, Ops, 4);
3350}
3351
3352SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3353                              SDValue N1, SDValue N2, SDValue N3,
3354                              SDValue N4, SDValue N5) {
3355  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3356  return getNode(Opcode, DL, VT, Ops, 5);
3357}
3358
3359/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3360/// the incoming stack arguments to be loaded from the stack.
3361SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3362  SmallVector<SDValue, 8> ArgChains;
3363
3364  // Include the original chain at the beginning of the list. When this is
3365  // used by target LowerCall hooks, this helps legalize find the
3366  // CALLSEQ_BEGIN node.
3367  ArgChains.push_back(Chain);
3368
3369  // Add a chain value for each stack argument.
3370  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3371       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3372    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3373      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3374        if (FI->getIndex() < 0)
3375          ArgChains.push_back(SDValue(L, 1));
3376
3377  // Build a tokenfactor for all the chains.
3378  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3379                 &ArgChains[0], ArgChains.size());
3380}
3381
3382/// getMemsetValue - Vectorized representation of the memset value
3383/// operand.
3384static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3385                              DebugLoc dl) {
3386  assert(Value.getOpcode() != ISD::UNDEF);
3387
3388  unsigned NumBits = VT.getScalarType().getSizeInBits();
3389  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3390    assert(C->getAPIntValue().getBitWidth() == 8);
3391    APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
3392    if (VT.isInteger())
3393      return DAG.getConstant(Val, VT);
3394    return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), VT);
3395  }
3396
3397  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3398  if (NumBits > 8) {
3399    // Use a multiplication with 0x010101... to extend the input to the
3400    // required length.
3401    APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
3402    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3403  }
3404
3405  return Value;
3406}
3407
3408/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3409/// used when a memcpy is turned into a memset when the source is a constant
3410/// string ptr.
3411static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3412                                  const TargetLowering &TLI, StringRef Str) {
3413  // Handle vector with all elements zero.
3414  if (Str.empty()) {
3415    if (VT.isInteger())
3416      return DAG.getConstant(0, VT);
3417    else if (VT == MVT::f32 || VT == MVT::f64)
3418      return DAG.getConstantFP(0.0, VT);
3419    else if (VT.isVector()) {
3420      unsigned NumElts = VT.getVectorNumElements();
3421      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3422      return DAG.getNode(ISD::BITCAST, dl, VT,
3423                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3424                                                             EltVT, NumElts)));
3425    } else
3426      llvm_unreachable("Expected type!");
3427  }
3428
3429  assert(!VT.isVector() && "Can't handle vector type here!");
3430  unsigned NumVTBits = VT.getSizeInBits();
3431  unsigned NumVTBytes = NumVTBits / 8;
3432  unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size()));
3433
3434  APInt Val(NumVTBits, 0);
3435  if (TLI.isLittleEndian()) {
3436    for (unsigned i = 0; i != NumBytes; ++i)
3437      Val |= (uint64_t)(unsigned char)Str[i] << i*8;
3438  } else {
3439    for (unsigned i = 0; i != NumBytes; ++i)
3440      Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8;
3441  }
3442
3443  // If the "cost" of materializing the integer immediate is 1 or free, then
3444  // it is cost effective to turn the load into the immediate.
3445  const TargetTransformInfo *TTI = DAG.getTargetTransformInfo();
3446  if (TTI->getIntImmCost(Val, VT.getTypeForEVT(*DAG.getContext())) < 2)
3447    return DAG.getConstant(Val, VT);
3448  return SDValue(0, 0);
3449}
3450
3451/// getMemBasePlusOffset - Returns base and offset node for the
3452///
3453static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3454                                      SelectionDAG &DAG) {
3455  EVT VT = Base.getValueType();
3456  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3457                     VT, Base, DAG.getConstant(Offset, VT));
3458}
3459
3460/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3461///
3462static bool isMemSrcFromString(SDValue Src, StringRef &Str) {
3463  unsigned SrcDelta = 0;
3464  GlobalAddressSDNode *G = NULL;
3465  if (Src.getOpcode() == ISD::GlobalAddress)
3466    G = cast<GlobalAddressSDNode>(Src);
3467  else if (Src.getOpcode() == ISD::ADD &&
3468           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3469           Src.getOperand(1).getOpcode() == ISD::Constant) {
3470    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3471    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3472  }
3473  if (!G)
3474    return false;
3475
3476  return getConstantStringInfo(G->getGlobal(), Str, SrcDelta, false);
3477}
3478
3479/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3480/// to replace the memset / memcpy. Return true if the number of memory ops
3481/// is below the threshold. It returns the types of the sequence of
3482/// memory ops to perform memset / memcpy by reference.
3483static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3484                                     unsigned Limit, uint64_t Size,
3485                                     unsigned DstAlign, unsigned SrcAlign,
3486                                     bool IsMemset,
3487                                     bool ZeroMemset,
3488                                     bool MemcpyStrSrc,
3489                                     bool AllowOverlap,
3490                                     SelectionDAG &DAG,
3491                                     const TargetLowering &TLI) {
3492  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3493         "Expecting memcpy / memset source to meet alignment requirement!");
3494  // If 'SrcAlign' is zero, that means the memory operation does not need to
3495  // load the value, i.e. memset or memcpy from constant string. Otherwise,
3496  // it's the inferred alignment of the source. 'DstAlign', on the other hand,
3497  // is the specified alignment of the memory operation. If it is zero, that
3498  // means it's possible to change the alignment of the destination.
3499  // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
3500  // not need to be loaded.
3501  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3502                                   IsMemset, ZeroMemset, MemcpyStrSrc,
3503                                   DAG.getMachineFunction());
3504
3505  if (VT == MVT::Other) {
3506    if (DstAlign >= TLI.getDataLayout()->getPointerPrefAlignment() ||
3507        TLI.allowsUnalignedMemoryAccesses(VT)) {
3508      VT = TLI.getPointerTy();
3509    } else {
3510      switch (DstAlign & 7) {
3511      case 0:  VT = MVT::i64; break;
3512      case 4:  VT = MVT::i32; break;
3513      case 2:  VT = MVT::i16; break;
3514      default: VT = MVT::i8;  break;
3515      }
3516    }
3517
3518    MVT LVT = MVT::i64;
3519    while (!TLI.isTypeLegal(LVT))
3520      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3521    assert(LVT.isInteger());
3522
3523    if (VT.bitsGT(LVT))
3524      VT = LVT;
3525  }
3526
3527  unsigned NumMemOps = 0;
3528  while (Size != 0) {
3529    unsigned VTSize = VT.getSizeInBits() / 8;
3530    while (VTSize > Size) {
3531      // For now, only use non-vector load / store's for the left-over pieces.
3532      EVT NewVT = VT;
3533      unsigned NewVTSize;
3534
3535      bool Found = false;
3536      if (VT.isVector() || VT.isFloatingPoint()) {
3537        NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
3538        if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
3539            TLI.isSafeMemOpType(NewVT.getSimpleVT()))
3540          Found = true;
3541        else if (NewVT == MVT::i64 &&
3542                 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
3543                 TLI.isSafeMemOpType(MVT::f64)) {
3544          // i64 is usually not legal on 32-bit targets, but f64 may be.
3545          NewVT = MVT::f64;
3546          Found = true;
3547        }
3548      }
3549
3550      if (!Found) {
3551        do {
3552          NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
3553          if (NewVT == MVT::i8)
3554            break;
3555        } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
3556      }
3557      NewVTSize = NewVT.getSizeInBits() / 8;
3558
3559      // If the new VT cannot cover all of the remaining bits, then consider
3560      // issuing a (or a pair of) unaligned and overlapping load / store.
3561      // FIXME: Only does this for 64-bit or more since we don't have proper
3562      // cost model for unaligned load / store.
3563      bool Fast;
3564      if (NumMemOps && AllowOverlap &&
3565          VTSize >= 8 && NewVTSize < Size &&
3566          TLI.allowsUnalignedMemoryAccesses(VT, &Fast) && Fast)
3567        VTSize = Size;
3568      else {
3569        VT = NewVT;
3570        VTSize = NewVTSize;
3571      }
3572    }
3573
3574    if (++NumMemOps > Limit)
3575      return false;
3576
3577    MemOps.push_back(VT);
3578    Size -= VTSize;
3579  }
3580
3581  return true;
3582}
3583
3584static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3585                                       SDValue Chain, SDValue Dst,
3586                                       SDValue Src, uint64_t Size,
3587                                       unsigned Align, bool isVol,
3588                                       bool AlwaysInline,
3589                                       MachinePointerInfo DstPtrInfo,
3590                                       MachinePointerInfo SrcPtrInfo) {
3591  // Turn a memcpy of undef to nop.
3592  if (Src.getOpcode() == ISD::UNDEF)
3593    return Chain;
3594
3595  // Expand memcpy to a series of load and store ops if the size operand falls
3596  // below a certain threshold.
3597  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3598  // rather than maybe a humongous number of loads and stores.
3599  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3600  std::vector<EVT> MemOps;
3601  bool DstAlignCanChange = false;
3602  MachineFunction &MF = DAG.getMachineFunction();
3603  MachineFrameInfo *MFI = MF.getFrameInfo();
3604  bool OptSize =
3605    MF.getFunction()->getAttributes().
3606      hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
3607  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3608  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3609    DstAlignCanChange = true;
3610  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3611  if (Align > SrcAlign)
3612    SrcAlign = Align;
3613  StringRef Str;
3614  bool CopyFromStr = isMemSrcFromString(Src, Str);
3615  bool isZeroStr = CopyFromStr && Str.empty();
3616  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3617
3618  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3619                                (DstAlignCanChange ? 0 : Align),
3620                                (isZeroStr ? 0 : SrcAlign),
3621                                false, false, CopyFromStr, true, DAG, TLI))
3622    return SDValue();
3623
3624  if (DstAlignCanChange) {
3625    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3626    unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
3627
3628    // Don't promote to an alignment that would require dynamic stack
3629    // realignment.
3630    const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
3631    if (!TRI->needsStackRealignment(MF))
3632       while (NewAlign > Align &&
3633             TLI.getDataLayout()->exceedsNaturalStackAlignment(NewAlign))
3634          NewAlign /= 2;
3635
3636    if (NewAlign > Align) {
3637      // Give the stack frame object a larger alignment if needed.
3638      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3639        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3640      Align = NewAlign;
3641    }
3642  }
3643
3644  SmallVector<SDValue, 8> OutChains;
3645  unsigned NumMemOps = MemOps.size();
3646  uint64_t SrcOff = 0, DstOff = 0;
3647  for (unsigned i = 0; i != NumMemOps; ++i) {
3648    EVT VT = MemOps[i];
3649    unsigned VTSize = VT.getSizeInBits() / 8;
3650    SDValue Value, Store;
3651
3652    if (VTSize > Size) {
3653      // Issuing an unaligned load / store pair  that overlaps with the previous
3654      // pair. Adjust the offset accordingly.
3655      assert(i == NumMemOps-1 && i != 0);
3656      SrcOff -= VTSize - Size;
3657      DstOff -= VTSize - Size;
3658    }
3659
3660    if (CopyFromStr &&
3661        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3662      // It's unlikely a store of a vector immediate can be done in a single
3663      // instruction. It would require a load from a constantpool first.
3664      // We only handle zero vectors here.
3665      // FIXME: Handle other cases where store of vector immediate is done in
3666      // a single instruction.
3667      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff));
3668      if (Value.getNode())
3669        Store = DAG.getStore(Chain, dl, Value,
3670                             getMemBasePlusOffset(Dst, DstOff, DAG),
3671                             DstPtrInfo.getWithOffset(DstOff), isVol,
3672                             false, Align);
3673    }
3674
3675    if (!Store.getNode()) {
3676      // The type might not be legal for the target.  This should only happen
3677      // if the type is smaller than a legal type, as on PPC, so the right
3678      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3679      // to Load/Store if NVT==VT.
3680      // FIXME does the case above also need this?
3681      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3682      assert(NVT.bitsGE(VT));
3683      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3684                             getMemBasePlusOffset(Src, SrcOff, DAG),
3685                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3686                             MinAlign(SrcAlign, SrcOff));
3687      Store = DAG.getTruncStore(Chain, dl, Value,
3688                                getMemBasePlusOffset(Dst, DstOff, DAG),
3689                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3690                                false, Align);
3691    }
3692    OutChains.push_back(Store);
3693    SrcOff += VTSize;
3694    DstOff += VTSize;
3695    Size -= VTSize;
3696  }
3697
3698  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3699                     &OutChains[0], OutChains.size());
3700}
3701
3702static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3703                                        SDValue Chain, SDValue Dst,
3704                                        SDValue Src, uint64_t Size,
3705                                        unsigned Align,  bool isVol,
3706                                        bool AlwaysInline,
3707                                        MachinePointerInfo DstPtrInfo,
3708                                        MachinePointerInfo SrcPtrInfo) {
3709  // Turn a memmove of undef to nop.
3710  if (Src.getOpcode() == ISD::UNDEF)
3711    return Chain;
3712
3713  // Expand memmove to a series of load and store ops if the size operand falls
3714  // below a certain threshold.
3715  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3716  std::vector<EVT> MemOps;
3717  bool DstAlignCanChange = false;
3718  MachineFunction &MF = DAG.getMachineFunction();
3719  MachineFrameInfo *MFI = MF.getFrameInfo();
3720  bool OptSize = MF.getFunction()->getAttributes().
3721    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
3722  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3723  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3724    DstAlignCanChange = true;
3725  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3726  if (Align > SrcAlign)
3727    SrcAlign = Align;
3728  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3729
3730  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3731                                (DstAlignCanChange ? 0 : Align), SrcAlign,
3732                                false, false, false, false, DAG, TLI))
3733    return SDValue();
3734
3735  if (DstAlignCanChange) {
3736    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3737    unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
3738    if (NewAlign > Align) {
3739      // Give the stack frame object a larger alignment if needed.
3740      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3741        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3742      Align = NewAlign;
3743    }
3744  }
3745
3746  uint64_t SrcOff = 0, DstOff = 0;
3747  SmallVector<SDValue, 8> LoadValues;
3748  SmallVector<SDValue, 8> LoadChains;
3749  SmallVector<SDValue, 8> OutChains;
3750  unsigned NumMemOps = MemOps.size();
3751  for (unsigned i = 0; i < NumMemOps; i++) {
3752    EVT VT = MemOps[i];
3753    unsigned VTSize = VT.getSizeInBits() / 8;
3754    SDValue Value, Store;
3755
3756    Value = DAG.getLoad(VT, dl, Chain,
3757                        getMemBasePlusOffset(Src, SrcOff, DAG),
3758                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3759                        false, false, SrcAlign);
3760    LoadValues.push_back(Value);
3761    LoadChains.push_back(Value.getValue(1));
3762    SrcOff += VTSize;
3763  }
3764  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3765                      &LoadChains[0], LoadChains.size());
3766  OutChains.clear();
3767  for (unsigned i = 0; i < NumMemOps; i++) {
3768    EVT VT = MemOps[i];
3769    unsigned VTSize = VT.getSizeInBits() / 8;
3770    SDValue Value, Store;
3771
3772    Store = DAG.getStore(Chain, dl, LoadValues[i],
3773                         getMemBasePlusOffset(Dst, DstOff, DAG),
3774                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3775    OutChains.push_back(Store);
3776    DstOff += VTSize;
3777  }
3778
3779  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3780                     &OutChains[0], OutChains.size());
3781}
3782
3783static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3784                               SDValue Chain, SDValue Dst,
3785                               SDValue Src, uint64_t Size,
3786                               unsigned Align, bool isVol,
3787                               MachinePointerInfo DstPtrInfo) {
3788  // Turn a memset of undef to nop.
3789  if (Src.getOpcode() == ISD::UNDEF)
3790    return Chain;
3791
3792  // Expand memset to a series of load/store ops if the size operand
3793  // falls below a certain threshold.
3794  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3795  std::vector<EVT> MemOps;
3796  bool DstAlignCanChange = false;
3797  MachineFunction &MF = DAG.getMachineFunction();
3798  MachineFrameInfo *MFI = MF.getFrameInfo();
3799  bool OptSize = MF.getFunction()->getAttributes().
3800    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
3801  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3802  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3803    DstAlignCanChange = true;
3804  bool IsZeroVal =
3805    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3806  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3807                                Size, (DstAlignCanChange ? 0 : Align), 0,
3808                                true, IsZeroVal, false, true, DAG, TLI))
3809    return SDValue();
3810
3811  if (DstAlignCanChange) {
3812    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3813    unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
3814    if (NewAlign > Align) {
3815      // Give the stack frame object a larger alignment if needed.
3816      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3817        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3818      Align = NewAlign;
3819    }
3820  }
3821
3822  SmallVector<SDValue, 8> OutChains;
3823  uint64_t DstOff = 0;
3824  unsigned NumMemOps = MemOps.size();
3825
3826  // Find the largest store and generate the bit pattern for it.
3827  EVT LargestVT = MemOps[0];
3828  for (unsigned i = 1; i < NumMemOps; i++)
3829    if (MemOps[i].bitsGT(LargestVT))
3830      LargestVT = MemOps[i];
3831  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3832
3833  for (unsigned i = 0; i < NumMemOps; i++) {
3834    EVT VT = MemOps[i];
3835    unsigned VTSize = VT.getSizeInBits() / 8;
3836    if (VTSize > Size) {
3837      // Issuing an unaligned load / store pair  that overlaps with the previous
3838      // pair. Adjust the offset accordingly.
3839      assert(i == NumMemOps-1 && i != 0);
3840      DstOff -= VTSize - Size;
3841    }
3842
3843    // If this store is smaller than the largest store see whether we can get
3844    // the smaller value for free with a truncate.
3845    SDValue Value = MemSetValue;
3846    if (VT.bitsLT(LargestVT)) {
3847      if (!LargestVT.isVector() && !VT.isVector() &&
3848          TLI.isTruncateFree(LargestVT, VT))
3849        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3850      else
3851        Value = getMemsetValue(Src, VT, DAG, dl);
3852    }
3853    assert(Value.getValueType() == VT && "Value with wrong type.");
3854    SDValue Store = DAG.getStore(Chain, dl, Value,
3855                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3856                                 DstPtrInfo.getWithOffset(DstOff),
3857                                 isVol, false, Align);
3858    OutChains.push_back(Store);
3859    DstOff += VT.getSizeInBits() / 8;
3860    Size -= VTSize;
3861  }
3862
3863  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3864                     &OutChains[0], OutChains.size());
3865}
3866
3867SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3868                                SDValue Src, SDValue Size,
3869                                unsigned Align, bool isVol, bool AlwaysInline,
3870                                MachinePointerInfo DstPtrInfo,
3871                                MachinePointerInfo SrcPtrInfo) {
3872  assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
3873
3874  // Check to see if we should lower the memcpy to loads and stores first.
3875  // For cases within the target-specified limits, this is the best choice.
3876  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3877  if (ConstantSize) {
3878    // Memcpy with size zero? Just return the original chain.
3879    if (ConstantSize->isNullValue())
3880      return Chain;
3881
3882    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3883                                             ConstantSize->getZExtValue(),Align,
3884                                isVol, false, DstPtrInfo, SrcPtrInfo);
3885    if (Result.getNode())
3886      return Result;
3887  }
3888
3889  // Then check to see if we should lower the memcpy with target-specific
3890  // code. If the target chooses to do this, this is the next best.
3891  SDValue Result =
3892    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3893                                isVol, AlwaysInline,
3894                                DstPtrInfo, SrcPtrInfo);
3895  if (Result.getNode())
3896    return Result;
3897
3898  // If we really need inline code and the target declined to provide it,
3899  // use a (potentially long) sequence of loads and stores.
3900  if (AlwaysInline) {
3901    assert(ConstantSize && "AlwaysInline requires a constant size!");
3902    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3903                                   ConstantSize->getZExtValue(), Align, isVol,
3904                                   true, DstPtrInfo, SrcPtrInfo);
3905  }
3906
3907  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3908  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3909  // respect volatile, so they may do things like read or write memory
3910  // beyond the given memory regions. But fixing this isn't easy, and most
3911  // people don't care.
3912
3913  // Emit a library call.
3914  TargetLowering::ArgListTy Args;
3915  TargetLowering::ArgListEntry Entry;
3916  Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext());
3917  Entry.Node = Dst; Args.push_back(Entry);
3918  Entry.Node = Src; Args.push_back(Entry);
3919  Entry.Node = Size; Args.push_back(Entry);
3920  // FIXME: pass in DebugLoc
3921  TargetLowering::
3922  CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
3923                    false, false, false, false, 0,
3924                    TLI.getLibcallCallingConv(RTLIB::MEMCPY),
3925                    /*isTailCall=*/false,
3926                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/false,
3927                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3928                                      TLI.getPointerTy()),
3929                    Args, *this, dl);
3930  std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
3931
3932  return CallResult.second;
3933}
3934
3935SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3936                                 SDValue Src, SDValue Size,
3937                                 unsigned Align, bool isVol,
3938                                 MachinePointerInfo DstPtrInfo,
3939                                 MachinePointerInfo SrcPtrInfo) {
3940  assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
3941
3942  // Check to see if we should lower the memmove to loads and stores first.
3943  // For cases within the target-specified limits, this is the best choice.
3944  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3945  if (ConstantSize) {
3946    // Memmove with size zero? Just return the original chain.
3947    if (ConstantSize->isNullValue())
3948      return Chain;
3949
3950    SDValue Result =
3951      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3952                               ConstantSize->getZExtValue(), Align, isVol,
3953                               false, DstPtrInfo, SrcPtrInfo);
3954    if (Result.getNode())
3955      return Result;
3956  }
3957
3958  // Then check to see if we should lower the memmove with target-specific
3959  // code. If the target chooses to do this, this is the next best.
3960  SDValue Result =
3961    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3962                                 DstPtrInfo, SrcPtrInfo);
3963  if (Result.getNode())
3964    return Result;
3965
3966  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3967  // not be safe.  See memcpy above for more details.
3968
3969  // Emit a library call.
3970  TargetLowering::ArgListTy Args;
3971  TargetLowering::ArgListEntry Entry;
3972  Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext());
3973  Entry.Node = Dst; Args.push_back(Entry);
3974  Entry.Node = Src; Args.push_back(Entry);
3975  Entry.Node = Size; Args.push_back(Entry);
3976  // FIXME:  pass in DebugLoc
3977  TargetLowering::
3978  CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
3979                    false, false, false, false, 0,
3980                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE),
3981                    /*isTailCall=*/false,
3982                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/false,
3983                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3984                                      TLI.getPointerTy()),
3985                    Args, *this, dl);
3986  std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
3987
3988  return CallResult.second;
3989}
3990
3991SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3992                                SDValue Src, SDValue Size,
3993                                unsigned Align, bool isVol,
3994                                MachinePointerInfo DstPtrInfo) {
3995  assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
3996
3997  // Check to see if we should lower the memset to stores first.
3998  // For cases within the target-specified limits, this is the best choice.
3999  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
4000  if (ConstantSize) {
4001    // Memset with size zero? Just return the original chain.
4002    if (ConstantSize->isNullValue())
4003      return Chain;
4004
4005    SDValue Result =
4006      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
4007                      Align, isVol, DstPtrInfo);
4008
4009    if (Result.getNode())
4010      return Result;
4011  }
4012
4013  // Then check to see if we should lower the memset with target-specific
4014  // code. If the target chooses to do this, this is the next best.
4015  SDValue Result =
4016    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
4017                                DstPtrInfo);
4018  if (Result.getNode())
4019    return Result;
4020
4021  // Emit a library call.
4022  Type *IntPtrTy = TLI.getDataLayout()->getIntPtrType(*getContext());
4023  TargetLowering::ArgListTy Args;
4024  TargetLowering::ArgListEntry Entry;
4025  Entry.Node = Dst; Entry.Ty = IntPtrTy;
4026  Args.push_back(Entry);
4027  // Extend or truncate the argument to be an i32 value for the call.
4028  if (Src.getValueType().bitsGT(MVT::i32))
4029    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
4030  else
4031    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
4032  Entry.Node = Src;
4033  Entry.Ty = Type::getInt32Ty(*getContext());
4034  Entry.isSExt = true;
4035  Args.push_back(Entry);
4036  Entry.Node = Size;
4037  Entry.Ty = IntPtrTy;
4038  Entry.isSExt = false;
4039  Args.push_back(Entry);
4040  // FIXME: pass in DebugLoc
4041  TargetLowering::
4042  CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
4043                    false, false, false, false, 0,
4044                    TLI.getLibcallCallingConv(RTLIB::MEMSET),
4045                    /*isTailCall=*/false,
4046                    /*doesNotReturn*/false, /*isReturnValueUsed=*/false,
4047                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
4048                                      TLI.getPointerTy()),
4049                    Args, *this, dl);
4050  std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
4051
4052  return CallResult.second;
4053}
4054
4055SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4056                                SDValue Chain, SDValue Ptr, SDValue Cmp,
4057                                SDValue Swp, MachinePointerInfo PtrInfo,
4058                                unsigned Alignment,
4059                                AtomicOrdering Ordering,
4060                                SynchronizationScope SynchScope) {
4061  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4062    Alignment = getEVTAlignment(MemVT);
4063
4064  MachineFunction &MF = getMachineFunction();
4065
4066  // All atomics are load and store, except for ATMOIC_LOAD and ATOMIC_STORE.
4067  // For now, atomics are considered to be volatile always.
4068  // FIXME: Volatile isn't really correct; we should keep track of atomic
4069  // orderings in the memoperand.
4070  unsigned Flags = MachineMemOperand::MOVolatile;
4071  if (Opcode != ISD::ATOMIC_STORE)
4072    Flags |= MachineMemOperand::MOLoad;
4073  if (Opcode != ISD::ATOMIC_LOAD)
4074    Flags |= MachineMemOperand::MOStore;
4075
4076  MachineMemOperand *MMO =
4077    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
4078
4079  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO,
4080                   Ordering, SynchScope);
4081}
4082
4083SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4084                                SDValue Chain,
4085                                SDValue Ptr, SDValue Cmp,
4086                                SDValue Swp, MachineMemOperand *MMO,
4087                                AtomicOrdering Ordering,
4088                                SynchronizationScope SynchScope) {
4089  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
4090  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
4091
4092  EVT VT = Cmp.getValueType();
4093
4094  SDVTList VTs = getVTList(VT, MVT::Other);
4095  FoldingSetNodeID ID;
4096  ID.AddInteger(MemVT.getRawBits());
4097  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
4098  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
4099  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4100  void* IP = 0;
4101  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4102    cast<AtomicSDNode>(E)->refineAlignment(MMO);
4103    return SDValue(E, 0);
4104  }
4105  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
4106                                               Ptr, Cmp, Swp, MMO, Ordering,
4107                                               SynchScope);
4108  CSEMap.InsertNode(N, IP);
4109  AllNodes.push_back(N);
4110  return SDValue(N, 0);
4111}
4112
4113SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4114                                SDValue Chain,
4115                                SDValue Ptr, SDValue Val,
4116                                const Value* PtrVal,
4117                                unsigned Alignment,
4118                                AtomicOrdering Ordering,
4119                                SynchronizationScope SynchScope) {
4120  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4121    Alignment = getEVTAlignment(MemVT);
4122
4123  MachineFunction &MF = getMachineFunction();
4124  // An atomic store does not load. An atomic load does not store.
4125  // (An atomicrmw obviously both loads and stores.)
4126  // For now, atomics are considered to be volatile always, and they are
4127  // chained as such.
4128  // FIXME: Volatile isn't really correct; we should keep track of atomic
4129  // orderings in the memoperand.
4130  unsigned Flags = MachineMemOperand::MOVolatile;
4131  if (Opcode != ISD::ATOMIC_STORE)
4132    Flags |= MachineMemOperand::MOLoad;
4133  if (Opcode != ISD::ATOMIC_LOAD)
4134    Flags |= MachineMemOperand::MOStore;
4135
4136  MachineMemOperand *MMO =
4137    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
4138                            MemVT.getStoreSize(), Alignment);
4139
4140  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
4141                   Ordering, SynchScope);
4142}
4143
4144SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4145                                SDValue Chain,
4146                                SDValue Ptr, SDValue Val,
4147                                MachineMemOperand *MMO,
4148                                AtomicOrdering Ordering,
4149                                SynchronizationScope SynchScope) {
4150  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
4151          Opcode == ISD::ATOMIC_LOAD_SUB ||
4152          Opcode == ISD::ATOMIC_LOAD_AND ||
4153          Opcode == ISD::ATOMIC_LOAD_OR ||
4154          Opcode == ISD::ATOMIC_LOAD_XOR ||
4155          Opcode == ISD::ATOMIC_LOAD_NAND ||
4156          Opcode == ISD::ATOMIC_LOAD_MIN ||
4157          Opcode == ISD::ATOMIC_LOAD_MAX ||
4158          Opcode == ISD::ATOMIC_LOAD_UMIN ||
4159          Opcode == ISD::ATOMIC_LOAD_UMAX ||
4160          Opcode == ISD::ATOMIC_SWAP ||
4161          Opcode == ISD::ATOMIC_STORE) &&
4162         "Invalid Atomic Op");
4163
4164  EVT VT = Val.getValueType();
4165
4166  SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
4167                                               getVTList(VT, MVT::Other);
4168  FoldingSetNodeID ID;
4169  ID.AddInteger(MemVT.getRawBits());
4170  SDValue Ops[] = {Chain, Ptr, Val};
4171  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
4172  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4173  void* IP = 0;
4174  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4175    cast<AtomicSDNode>(E)->refineAlignment(MMO);
4176    return SDValue(E, 0);
4177  }
4178  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
4179                                               Ptr, Val, MMO,
4180                                               Ordering, SynchScope);
4181  CSEMap.InsertNode(N, IP);
4182  AllNodes.push_back(N);
4183  return SDValue(N, 0);
4184}
4185
4186SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4187                                EVT VT, SDValue Chain,
4188                                SDValue Ptr,
4189                                const Value* PtrVal,
4190                                unsigned Alignment,
4191                                AtomicOrdering Ordering,
4192                                SynchronizationScope SynchScope) {
4193  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4194    Alignment = getEVTAlignment(MemVT);
4195
4196  MachineFunction &MF = getMachineFunction();
4197  // An atomic store does not load. An atomic load does not store.
4198  // (An atomicrmw obviously both loads and stores.)
4199  // For now, atomics are considered to be volatile always, and they are
4200  // chained as such.
4201  // FIXME: Volatile isn't really correct; we should keep track of atomic
4202  // orderings in the memoperand.
4203  unsigned Flags = MachineMemOperand::MOVolatile;
4204  if (Opcode != ISD::ATOMIC_STORE)
4205    Flags |= MachineMemOperand::MOLoad;
4206  if (Opcode != ISD::ATOMIC_LOAD)
4207    Flags |= MachineMemOperand::MOStore;
4208
4209  MachineMemOperand *MMO =
4210    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
4211                            MemVT.getStoreSize(), Alignment);
4212
4213  return getAtomic(Opcode, dl, MemVT, VT, Chain, Ptr, MMO,
4214                   Ordering, SynchScope);
4215}
4216
4217SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4218                                EVT VT, SDValue Chain,
4219                                SDValue Ptr,
4220                                MachineMemOperand *MMO,
4221                                AtomicOrdering Ordering,
4222                                SynchronizationScope SynchScope) {
4223  assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
4224
4225  SDVTList VTs = getVTList(VT, MVT::Other);
4226  FoldingSetNodeID ID;
4227  ID.AddInteger(MemVT.getRawBits());
4228  SDValue Ops[] = {Chain, Ptr};
4229  AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
4230  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4231  void* IP = 0;
4232  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4233    cast<AtomicSDNode>(E)->refineAlignment(MMO);
4234    return SDValue(E, 0);
4235  }
4236  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
4237                                               Ptr, MMO, Ordering, SynchScope);
4238  CSEMap.InsertNode(N, IP);
4239  AllNodes.push_back(N);
4240  return SDValue(N, 0);
4241}
4242
4243/// getMergeValues - Create a MERGE_VALUES node from the given operands.
4244SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
4245                                     DebugLoc dl) {
4246  if (NumOps == 1)
4247    return Ops[0];
4248
4249  SmallVector<EVT, 4> VTs;
4250  VTs.reserve(NumOps);
4251  for (unsigned i = 0; i < NumOps; ++i)
4252    VTs.push_back(Ops[i].getValueType());
4253  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
4254                 Ops, NumOps);
4255}
4256
4257SDValue
4258SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
4259                                  const EVT *VTs, unsigned NumVTs,
4260                                  const SDValue *Ops, unsigned NumOps,
4261                                  EVT MemVT, MachinePointerInfo PtrInfo,
4262                                  unsigned Align, bool Vol,
4263                                  bool ReadMem, bool WriteMem) {
4264  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
4265                             MemVT, PtrInfo, Align, Vol,
4266                             ReadMem, WriteMem);
4267}
4268
4269SDValue
4270SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4271                                  const SDValue *Ops, unsigned NumOps,
4272                                  EVT MemVT, MachinePointerInfo PtrInfo,
4273                                  unsigned Align, bool Vol,
4274                                  bool ReadMem, bool WriteMem) {
4275  if (Align == 0)  // Ensure that codegen never sees alignment 0
4276    Align = getEVTAlignment(MemVT);
4277
4278  MachineFunction &MF = getMachineFunction();
4279  unsigned Flags = 0;
4280  if (WriteMem)
4281    Flags |= MachineMemOperand::MOStore;
4282  if (ReadMem)
4283    Flags |= MachineMemOperand::MOLoad;
4284  if (Vol)
4285    Flags |= MachineMemOperand::MOVolatile;
4286  MachineMemOperand *MMO =
4287    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
4288
4289  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
4290}
4291
4292SDValue
4293SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4294                                  const SDValue *Ops, unsigned NumOps,
4295                                  EVT MemVT, MachineMemOperand *MMO) {
4296  assert((Opcode == ISD::INTRINSIC_VOID ||
4297          Opcode == ISD::INTRINSIC_W_CHAIN ||
4298          Opcode == ISD::PREFETCH ||
4299          Opcode == ISD::LIFETIME_START ||
4300          Opcode == ISD::LIFETIME_END ||
4301          (Opcode <= INT_MAX &&
4302           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
4303         "Opcode is not a memory-accessing opcode!");
4304
4305  // Memoize the node unless it returns a flag.
4306  MemIntrinsicSDNode *N;
4307  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4308    FoldingSetNodeID ID;
4309    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4310    ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4311    void *IP = 0;
4312    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4313      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
4314      return SDValue(E, 0);
4315    }
4316
4317    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4318                                               MemVT, MMO);
4319    CSEMap.InsertNode(N, IP);
4320  } else {
4321    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4322                                               MemVT, MMO);
4323  }
4324  AllNodes.push_back(N);
4325  return SDValue(N, 0);
4326}
4327
4328/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4329/// MachinePointerInfo record from it.  This is particularly useful because the
4330/// code generator has many cases where it doesn't bother passing in a
4331/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4332static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
4333  // If this is FI+Offset, we can model it.
4334  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4335    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4336
4337  // If this is (FI+Offset1)+Offset2, we can model it.
4338  if (Ptr.getOpcode() != ISD::ADD ||
4339      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4340      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4341    return MachinePointerInfo();
4342
4343  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4344  return MachinePointerInfo::getFixedStack(FI, Offset+
4345                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4346}
4347
4348/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4349/// MachinePointerInfo record from it.  This is particularly useful because the
4350/// code generator has many cases where it doesn't bother passing in a
4351/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4352static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4353  // If the 'Offset' value isn't a constant, we can't handle this.
4354  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4355    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4356  if (OffsetOp.getOpcode() == ISD::UNDEF)
4357    return InferPointerInfo(Ptr);
4358  return MachinePointerInfo();
4359}
4360
4361
4362SDValue
4363SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4364                      EVT VT, DebugLoc dl, SDValue Chain,
4365                      SDValue Ptr, SDValue Offset,
4366                      MachinePointerInfo PtrInfo, EVT MemVT,
4367                      bool isVolatile, bool isNonTemporal, bool isInvariant,
4368                      unsigned Alignment, const MDNode *TBAAInfo,
4369                      const MDNode *Ranges) {
4370  assert(Chain.getValueType() == MVT::Other &&
4371        "Invalid chain type");
4372  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4373    Alignment = getEVTAlignment(VT);
4374
4375  unsigned Flags = MachineMemOperand::MOLoad;
4376  if (isVolatile)
4377    Flags |= MachineMemOperand::MOVolatile;
4378  if (isNonTemporal)
4379    Flags |= MachineMemOperand::MONonTemporal;
4380  if (isInvariant)
4381    Flags |= MachineMemOperand::MOInvariant;
4382
4383  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4384  // clients.
4385  if (PtrInfo.V == 0)
4386    PtrInfo = InferPointerInfo(Ptr, Offset);
4387
4388  MachineFunction &MF = getMachineFunction();
4389  MachineMemOperand *MMO =
4390    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4391                            TBAAInfo, Ranges);
4392  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4393}
4394
4395SDValue
4396SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4397                      EVT VT, DebugLoc dl, SDValue Chain,
4398                      SDValue Ptr, SDValue Offset, EVT MemVT,
4399                      MachineMemOperand *MMO) {
4400  if (VT == MemVT) {
4401    ExtType = ISD::NON_EXTLOAD;
4402  } else if (ExtType == ISD::NON_EXTLOAD) {
4403    assert(VT == MemVT && "Non-extending load from different memory type!");
4404  } else {
4405    // Extending load.
4406    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4407           "Should only be an extending load, not truncating!");
4408    assert(VT.isInteger() == MemVT.isInteger() &&
4409           "Cannot convert from FP to Int or Int -> FP!");
4410    assert(VT.isVector() == MemVT.isVector() &&
4411           "Cannot use trunc store to convert to or from a vector!");
4412    assert((!VT.isVector() ||
4413            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4414           "Cannot use trunc store to change the number of vector elements!");
4415  }
4416
4417  bool Indexed = AM != ISD::UNINDEXED;
4418  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4419         "Unindexed load with an offset!");
4420
4421  SDVTList VTs = Indexed ?
4422    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4423  SDValue Ops[] = { Chain, Ptr, Offset };
4424  FoldingSetNodeID ID;
4425  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4426  ID.AddInteger(MemVT.getRawBits());
4427  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4428                                     MMO->isNonTemporal(),
4429                                     MMO->isInvariant()));
4430  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4431  void *IP = 0;
4432  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4433    cast<LoadSDNode>(E)->refineAlignment(MMO);
4434    return SDValue(E, 0);
4435  }
4436  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4437                                             MemVT, MMO);
4438  CSEMap.InsertNode(N, IP);
4439  AllNodes.push_back(N);
4440  return SDValue(N, 0);
4441}
4442
4443SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4444                              SDValue Chain, SDValue Ptr,
4445                              MachinePointerInfo PtrInfo,
4446                              bool isVolatile, bool isNonTemporal,
4447                              bool isInvariant, unsigned Alignment,
4448                              const MDNode *TBAAInfo,
4449                              const MDNode *Ranges) {
4450  SDValue Undef = getUNDEF(Ptr.getValueType());
4451  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4452                 PtrInfo, VT, isVolatile, isNonTemporal, isInvariant, Alignment,
4453                 TBAAInfo, Ranges);
4454}
4455
4456SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
4457                                 SDValue Chain, SDValue Ptr,
4458                                 MachinePointerInfo PtrInfo, EVT MemVT,
4459                                 bool isVolatile, bool isNonTemporal,
4460                                 unsigned Alignment, const MDNode *TBAAInfo) {
4461  SDValue Undef = getUNDEF(Ptr.getValueType());
4462  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4463                 PtrInfo, MemVT, isVolatile, isNonTemporal, false, Alignment,
4464                 TBAAInfo);
4465}
4466
4467
4468SDValue
4469SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4470                             SDValue Offset, ISD::MemIndexedMode AM) {
4471  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4472  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4473         "Load is already a indexed load!");
4474  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4475                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4476                 LD->getMemoryVT(), LD->isVolatile(), LD->isNonTemporal(),
4477                 false, LD->getAlignment());
4478}
4479
4480SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4481                               SDValue Ptr, MachinePointerInfo PtrInfo,
4482                               bool isVolatile, bool isNonTemporal,
4483                               unsigned Alignment, const MDNode *TBAAInfo) {
4484  assert(Chain.getValueType() == MVT::Other &&
4485        "Invalid chain type");
4486  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4487    Alignment = getEVTAlignment(Val.getValueType());
4488
4489  unsigned Flags = MachineMemOperand::MOStore;
4490  if (isVolatile)
4491    Flags |= MachineMemOperand::MOVolatile;
4492  if (isNonTemporal)
4493    Flags |= MachineMemOperand::MONonTemporal;
4494
4495  if (PtrInfo.V == 0)
4496    PtrInfo = InferPointerInfo(Ptr);
4497
4498  MachineFunction &MF = getMachineFunction();
4499  MachineMemOperand *MMO =
4500    MF.getMachineMemOperand(PtrInfo, Flags,
4501                            Val.getValueType().getStoreSize(), Alignment,
4502                            TBAAInfo);
4503
4504  return getStore(Chain, dl, Val, Ptr, MMO);
4505}
4506
4507SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4508                               SDValue Ptr, MachineMemOperand *MMO) {
4509  assert(Chain.getValueType() == MVT::Other &&
4510        "Invalid chain type");
4511  EVT VT = Val.getValueType();
4512  SDVTList VTs = getVTList(MVT::Other);
4513  SDValue Undef = getUNDEF(Ptr.getValueType());
4514  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4515  FoldingSetNodeID ID;
4516  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4517  ID.AddInteger(VT.getRawBits());
4518  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4519                                     MMO->isNonTemporal(), MMO->isInvariant()));
4520  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4521  void *IP = 0;
4522  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4523    cast<StoreSDNode>(E)->refineAlignment(MMO);
4524    return SDValue(E, 0);
4525  }
4526  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4527                                              false, VT, MMO);
4528  CSEMap.InsertNode(N, IP);
4529  AllNodes.push_back(N);
4530  return SDValue(N, 0);
4531}
4532
4533SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4534                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4535                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4536                                    unsigned Alignment,
4537                                    const MDNode *TBAAInfo) {
4538  assert(Chain.getValueType() == MVT::Other &&
4539        "Invalid chain type");
4540  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4541    Alignment = getEVTAlignment(SVT);
4542
4543  unsigned Flags = MachineMemOperand::MOStore;
4544  if (isVolatile)
4545    Flags |= MachineMemOperand::MOVolatile;
4546  if (isNonTemporal)
4547    Flags |= MachineMemOperand::MONonTemporal;
4548
4549  if (PtrInfo.V == 0)
4550    PtrInfo = InferPointerInfo(Ptr);
4551
4552  MachineFunction &MF = getMachineFunction();
4553  MachineMemOperand *MMO =
4554    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4555                            TBAAInfo);
4556
4557  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4558}
4559
4560SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4561                                    SDValue Ptr, EVT SVT,
4562                                    MachineMemOperand *MMO) {
4563  EVT VT = Val.getValueType();
4564
4565  assert(Chain.getValueType() == MVT::Other &&
4566        "Invalid chain type");
4567  if (VT == SVT)
4568    return getStore(Chain, dl, Val, Ptr, MMO);
4569
4570  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4571         "Should only be a truncating store, not extending!");
4572  assert(VT.isInteger() == SVT.isInteger() &&
4573         "Can't do FP-INT conversion!");
4574  assert(VT.isVector() == SVT.isVector() &&
4575         "Cannot use trunc store to convert to or from a vector!");
4576  assert((!VT.isVector() ||
4577          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4578         "Cannot use trunc store to change the number of vector elements!");
4579
4580  SDVTList VTs = getVTList(MVT::Other);
4581  SDValue Undef = getUNDEF(Ptr.getValueType());
4582  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4583  FoldingSetNodeID ID;
4584  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4585  ID.AddInteger(SVT.getRawBits());
4586  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4587                                     MMO->isNonTemporal(), MMO->isInvariant()));
4588  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4589  void *IP = 0;
4590  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4591    cast<StoreSDNode>(E)->refineAlignment(MMO);
4592    return SDValue(E, 0);
4593  }
4594  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4595                                              true, SVT, MMO);
4596  CSEMap.InsertNode(N, IP);
4597  AllNodes.push_back(N);
4598  return SDValue(N, 0);
4599}
4600
4601SDValue
4602SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4603                              SDValue Offset, ISD::MemIndexedMode AM) {
4604  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4605  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4606         "Store is already a indexed store!");
4607  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4608  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4609  FoldingSetNodeID ID;
4610  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4611  ID.AddInteger(ST->getMemoryVT().getRawBits());
4612  ID.AddInteger(ST->getRawSubclassData());
4613  ID.AddInteger(ST->getPointerInfo().getAddrSpace());
4614  void *IP = 0;
4615  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4616    return SDValue(E, 0);
4617
4618  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4619                                              ST->isTruncatingStore(),
4620                                              ST->getMemoryVT(),
4621                                              ST->getMemOperand());
4622  CSEMap.InsertNode(N, IP);
4623  AllNodes.push_back(N);
4624  return SDValue(N, 0);
4625}
4626
4627SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4628                               SDValue Chain, SDValue Ptr,
4629                               SDValue SV,
4630                               unsigned Align) {
4631  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4632  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4633}
4634
4635SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4636                              const SDUse *Ops, unsigned NumOps) {
4637  switch (NumOps) {
4638  case 0: return getNode(Opcode, DL, VT);
4639  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4640  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4641  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4642  default: break;
4643  }
4644
4645  // Copy from an SDUse array into an SDValue array for use with
4646  // the regular getNode logic.
4647  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4648  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4649}
4650
4651SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4652                              const SDValue *Ops, unsigned NumOps) {
4653  switch (NumOps) {
4654  case 0: return getNode(Opcode, DL, VT);
4655  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4656  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4657  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4658  default: break;
4659  }
4660
4661  switch (Opcode) {
4662  default: break;
4663  case ISD::SELECT_CC: {
4664    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4665    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4666           "LHS and RHS of condition must have same type!");
4667    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4668           "True and False arms of SelectCC must have same type!");
4669    assert(Ops[2].getValueType() == VT &&
4670           "select_cc node must be of same type as true and false value!");
4671    break;
4672  }
4673  case ISD::BR_CC: {
4674    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4675    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4676           "LHS/RHS of comparison should match types!");
4677    break;
4678  }
4679  }
4680
4681  // Memoize nodes.
4682  SDNode *N;
4683  SDVTList VTs = getVTList(VT);
4684
4685  if (VT != MVT::Glue) {
4686    FoldingSetNodeID ID;
4687    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4688    void *IP = 0;
4689
4690    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4691      return SDValue(E, 0);
4692
4693    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4694    CSEMap.InsertNode(N, IP);
4695  } else {
4696    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4697  }
4698
4699  AllNodes.push_back(N);
4700#ifndef NDEBUG
4701  VerifySDNode(N);
4702#endif
4703  return SDValue(N, 0);
4704}
4705
4706SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4707                              const std::vector<EVT> &ResultTys,
4708                              const SDValue *Ops, unsigned NumOps) {
4709  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4710                 Ops, NumOps);
4711}
4712
4713SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4714                              const EVT *VTs, unsigned NumVTs,
4715                              const SDValue *Ops, unsigned NumOps) {
4716  if (NumVTs == 1)
4717    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4718  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4719}
4720
4721SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4722                              const SDValue *Ops, unsigned NumOps) {
4723  if (VTList.NumVTs == 1)
4724    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4725
4726#if 0
4727  switch (Opcode) {
4728  // FIXME: figure out how to safely handle things like
4729  // int foo(int x) { return 1 << (x & 255); }
4730  // int bar() { return foo(256); }
4731  case ISD::SRA_PARTS:
4732  case ISD::SRL_PARTS:
4733  case ISD::SHL_PARTS:
4734    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4735        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4736      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4737    else if (N3.getOpcode() == ISD::AND)
4738      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4739        // If the and is only masking out bits that cannot effect the shift,
4740        // eliminate the and.
4741        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4742        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4743          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4744      }
4745    break;
4746  }
4747#endif
4748
4749  // Memoize the node unless it returns a flag.
4750  SDNode *N;
4751  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4752    FoldingSetNodeID ID;
4753    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4754    void *IP = 0;
4755    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4756      return SDValue(E, 0);
4757
4758    if (NumOps == 1) {
4759      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4760    } else if (NumOps == 2) {
4761      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4762    } else if (NumOps == 3) {
4763      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4764                                            Ops[2]);
4765    } else {
4766      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4767    }
4768    CSEMap.InsertNode(N, IP);
4769  } else {
4770    if (NumOps == 1) {
4771      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4772    } else if (NumOps == 2) {
4773      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4774    } else if (NumOps == 3) {
4775      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4776                                            Ops[2]);
4777    } else {
4778      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4779    }
4780  }
4781  AllNodes.push_back(N);
4782#ifndef NDEBUG
4783  VerifySDNode(N);
4784#endif
4785  return SDValue(N, 0);
4786}
4787
4788SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4789  return getNode(Opcode, DL, VTList, 0, 0);
4790}
4791
4792SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4793                              SDValue N1) {
4794  SDValue Ops[] = { N1 };
4795  return getNode(Opcode, DL, VTList, Ops, 1);
4796}
4797
4798SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4799                              SDValue N1, SDValue N2) {
4800  SDValue Ops[] = { N1, N2 };
4801  return getNode(Opcode, DL, VTList, Ops, 2);
4802}
4803
4804SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4805                              SDValue N1, SDValue N2, SDValue N3) {
4806  SDValue Ops[] = { N1, N2, N3 };
4807  return getNode(Opcode, DL, VTList, Ops, 3);
4808}
4809
4810SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4811                              SDValue N1, SDValue N2, SDValue N3,
4812                              SDValue N4) {
4813  SDValue Ops[] = { N1, N2, N3, N4 };
4814  return getNode(Opcode, DL, VTList, Ops, 4);
4815}
4816
4817SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4818                              SDValue N1, SDValue N2, SDValue N3,
4819                              SDValue N4, SDValue N5) {
4820  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4821  return getNode(Opcode, DL, VTList, Ops, 5);
4822}
4823
4824SDVTList SelectionDAG::getVTList(EVT VT) {
4825  return makeVTList(SDNode::getValueTypeList(VT), 1);
4826}
4827
4828SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4829  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4830       E = VTList.rend(); I != E; ++I)
4831    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4832      return *I;
4833
4834  EVT *Array = Allocator.Allocate<EVT>(2);
4835  Array[0] = VT1;
4836  Array[1] = VT2;
4837  SDVTList Result = makeVTList(Array, 2);
4838  VTList.push_back(Result);
4839  return Result;
4840}
4841
4842SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4843  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4844       E = VTList.rend(); I != E; ++I)
4845    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4846                          I->VTs[2] == VT3)
4847      return *I;
4848
4849  EVT *Array = Allocator.Allocate<EVT>(3);
4850  Array[0] = VT1;
4851  Array[1] = VT2;
4852  Array[2] = VT3;
4853  SDVTList Result = makeVTList(Array, 3);
4854  VTList.push_back(Result);
4855  return Result;
4856}
4857
4858SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4859  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4860       E = VTList.rend(); I != E; ++I)
4861    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4862                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4863      return *I;
4864
4865  EVT *Array = Allocator.Allocate<EVT>(4);
4866  Array[0] = VT1;
4867  Array[1] = VT2;
4868  Array[2] = VT3;
4869  Array[3] = VT4;
4870  SDVTList Result = makeVTList(Array, 4);
4871  VTList.push_back(Result);
4872  return Result;
4873}
4874
4875SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4876  switch (NumVTs) {
4877    case 0: llvm_unreachable("Cannot have nodes without results!");
4878    case 1: return getVTList(VTs[0]);
4879    case 2: return getVTList(VTs[0], VTs[1]);
4880    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4881    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4882    default: break;
4883  }
4884
4885  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4886       E = VTList.rend(); I != E; ++I) {
4887    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4888      continue;
4889
4890    if (std::equal(&VTs[2], &VTs[NumVTs], &I->VTs[2]))
4891      return *I;
4892  }
4893
4894  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4895  std::copy(VTs, VTs+NumVTs, Array);
4896  SDVTList Result = makeVTList(Array, NumVTs);
4897  VTList.push_back(Result);
4898  return Result;
4899}
4900
4901
4902/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4903/// specified operands.  If the resultant node already exists in the DAG,
4904/// this does not modify the specified node, instead it returns the node that
4905/// already exists.  If the resultant node does not exist in the DAG, the
4906/// input node is returned.  As a degenerate case, if you specify the same
4907/// input operands as the node already has, the input node is returned.
4908SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4909  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4910
4911  // Check to see if there is no change.
4912  if (Op == N->getOperand(0)) return N;
4913
4914  // See if the modified node already exists.
4915  void *InsertPos = 0;
4916  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4917    return Existing;
4918
4919  // Nope it doesn't.  Remove the node from its current place in the maps.
4920  if (InsertPos)
4921    if (!RemoveNodeFromCSEMaps(N))
4922      InsertPos = 0;
4923
4924  // Now we update the operands.
4925  N->OperandList[0].set(Op);
4926
4927  // If this gets put into a CSE map, add it.
4928  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4929  return N;
4930}
4931
4932SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4933  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4934
4935  // Check to see if there is no change.
4936  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4937    return N;   // No operands changed, just return the input node.
4938
4939  // See if the modified node already exists.
4940  void *InsertPos = 0;
4941  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4942    return Existing;
4943
4944  // Nope it doesn't.  Remove the node from its current place in the maps.
4945  if (InsertPos)
4946    if (!RemoveNodeFromCSEMaps(N))
4947      InsertPos = 0;
4948
4949  // Now we update the operands.
4950  if (N->OperandList[0] != Op1)
4951    N->OperandList[0].set(Op1);
4952  if (N->OperandList[1] != Op2)
4953    N->OperandList[1].set(Op2);
4954
4955  // If this gets put into a CSE map, add it.
4956  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4957  return N;
4958}
4959
4960SDNode *SelectionDAG::
4961UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4962  SDValue Ops[] = { Op1, Op2, Op3 };
4963  return UpdateNodeOperands(N, Ops, 3);
4964}
4965
4966SDNode *SelectionDAG::
4967UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4968                   SDValue Op3, SDValue Op4) {
4969  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4970  return UpdateNodeOperands(N, Ops, 4);
4971}
4972
4973SDNode *SelectionDAG::
4974UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4975                   SDValue Op3, SDValue Op4, SDValue Op5) {
4976  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4977  return UpdateNodeOperands(N, Ops, 5);
4978}
4979
4980SDNode *SelectionDAG::
4981UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4982  assert(N->getNumOperands() == NumOps &&
4983         "Update with wrong number of operands");
4984
4985  // Check to see if there is no change.
4986  bool AnyChange = false;
4987  for (unsigned i = 0; i != NumOps; ++i) {
4988    if (Ops[i] != N->getOperand(i)) {
4989      AnyChange = true;
4990      break;
4991    }
4992  }
4993
4994  // No operands changed, just return the input node.
4995  if (!AnyChange) return N;
4996
4997  // See if the modified node already exists.
4998  void *InsertPos = 0;
4999  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
5000    return Existing;
5001
5002  // Nope it doesn't.  Remove the node from its current place in the maps.
5003  if (InsertPos)
5004    if (!RemoveNodeFromCSEMaps(N))
5005      InsertPos = 0;
5006
5007  // Now we update the operands.
5008  for (unsigned i = 0; i != NumOps; ++i)
5009    if (N->OperandList[i] != Ops[i])
5010      N->OperandList[i].set(Ops[i]);
5011
5012  // If this gets put into a CSE map, add it.
5013  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
5014  return N;
5015}
5016
5017/// DropOperands - Release the operands and set this node to have
5018/// zero operands.
5019void SDNode::DropOperands() {
5020  // Unlike the code in MorphNodeTo that does this, we don't need to
5021  // watch for dead nodes here.
5022  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
5023    SDUse &Use = *I++;
5024    Use.set(SDValue());
5025  }
5026}
5027
5028/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
5029/// machine opcode.
5030///
5031SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5032                                   EVT VT) {
5033  SDVTList VTs = getVTList(VT);
5034  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
5035}
5036
5037SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5038                                   EVT VT, SDValue Op1) {
5039  SDVTList VTs = getVTList(VT);
5040  SDValue Ops[] = { Op1 };
5041  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
5042}
5043
5044SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5045                                   EVT VT, SDValue Op1,
5046                                   SDValue Op2) {
5047  SDVTList VTs = getVTList(VT);
5048  SDValue Ops[] = { Op1, Op2 };
5049  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
5050}
5051
5052SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5053                                   EVT VT, SDValue Op1,
5054                                   SDValue Op2, SDValue Op3) {
5055  SDVTList VTs = getVTList(VT);
5056  SDValue Ops[] = { Op1, Op2, Op3 };
5057  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
5058}
5059
5060SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5061                                   EVT VT, const SDValue *Ops,
5062                                   unsigned NumOps) {
5063  SDVTList VTs = getVTList(VT);
5064  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
5065}
5066
5067SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5068                                   EVT VT1, EVT VT2, const SDValue *Ops,
5069                                   unsigned NumOps) {
5070  SDVTList VTs = getVTList(VT1, VT2);
5071  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
5072}
5073
5074SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5075                                   EVT VT1, EVT VT2) {
5076  SDVTList VTs = getVTList(VT1, VT2);
5077  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
5078}
5079
5080SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5081                                   EVT VT1, EVT VT2, EVT VT3,
5082                                   const SDValue *Ops, unsigned NumOps) {
5083  SDVTList VTs = getVTList(VT1, VT2, VT3);
5084  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
5085}
5086
5087SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5088                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
5089                                   const SDValue *Ops, unsigned NumOps) {
5090  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
5091  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
5092}
5093
5094SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5095                                   EVT VT1, EVT VT2,
5096                                   SDValue Op1) {
5097  SDVTList VTs = getVTList(VT1, VT2);
5098  SDValue Ops[] = { Op1 };
5099  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
5100}
5101
5102SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5103                                   EVT VT1, EVT VT2,
5104                                   SDValue Op1, SDValue Op2) {
5105  SDVTList VTs = getVTList(VT1, VT2);
5106  SDValue Ops[] = { Op1, Op2 };
5107  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
5108}
5109
5110SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5111                                   EVT VT1, EVT VT2,
5112                                   SDValue Op1, SDValue Op2,
5113                                   SDValue Op3) {
5114  SDVTList VTs = getVTList(VT1, VT2);
5115  SDValue Ops[] = { Op1, Op2, Op3 };
5116  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
5117}
5118
5119SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5120                                   EVT VT1, EVT VT2, EVT VT3,
5121                                   SDValue Op1, SDValue Op2,
5122                                   SDValue Op3) {
5123  SDVTList VTs = getVTList(VT1, VT2, VT3);
5124  SDValue Ops[] = { Op1, Op2, Op3 };
5125  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
5126}
5127
5128SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5129                                   SDVTList VTs, const SDValue *Ops,
5130                                   unsigned NumOps) {
5131  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
5132  // Reset the NodeID to -1.
5133  N->setNodeId(-1);
5134  return N;
5135}
5136
5137/// UpdadeDebugLocOnMergedSDNode - If the opt level is -O0 then it throws away
5138/// the line number information on the merged node since it is not possible to
5139/// preserve the information that operation is associated with multiple lines.
5140/// This will make the debugger working better at -O0, were there is a higher
5141/// probability having other instructions associated with that line.
5142///
5143SDNode *SelectionDAG::UpdadeDebugLocOnMergedSDNode(SDNode *N, DebugLoc OLoc) {
5144  DebugLoc NLoc = N->getDebugLoc();
5145  if (!(NLoc.isUnknown()) && (OptLevel == CodeGenOpt::None) && (OLoc != NLoc)) {
5146    N->setDebugLoc(DebugLoc());
5147  }
5148  return N;
5149}
5150
5151/// MorphNodeTo - This *mutates* the specified node to have the specified
5152/// return type, opcode, and operands.
5153///
5154/// Note that MorphNodeTo returns the resultant node.  If there is already a
5155/// node of the specified opcode and operands, it returns that node instead of
5156/// the current one.  Note that the DebugLoc need not be the same.
5157///
5158/// Using MorphNodeTo is faster than creating a new node and swapping it in
5159/// with ReplaceAllUsesWith both because it often avoids allocating a new
5160/// node, and because it doesn't require CSE recalculation for any of
5161/// the node's users.
5162///
5163SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
5164                                  SDVTList VTs, const SDValue *Ops,
5165                                  unsigned NumOps) {
5166  // If an identical node already exists, use it.
5167  void *IP = 0;
5168  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
5169    FoldingSetNodeID ID;
5170    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
5171    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
5172      return UpdadeDebugLocOnMergedSDNode(ON, N->getDebugLoc());
5173  }
5174
5175  if (!RemoveNodeFromCSEMaps(N))
5176    IP = 0;
5177
5178  // Start the morphing.
5179  N->NodeType = Opc;
5180  N->ValueList = VTs.VTs;
5181  N->NumValues = VTs.NumVTs;
5182
5183  // Clear the operands list, updating used nodes to remove this from their
5184  // use list.  Keep track of any operands that become dead as a result.
5185  SmallPtrSet<SDNode*, 16> DeadNodeSet;
5186  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
5187    SDUse &Use = *I++;
5188    SDNode *Used = Use.getNode();
5189    Use.set(SDValue());
5190    if (Used->use_empty())
5191      DeadNodeSet.insert(Used);
5192  }
5193
5194  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
5195    // Initialize the memory references information.
5196    MN->setMemRefs(0, 0);
5197    // If NumOps is larger than the # of operands we can have in a
5198    // MachineSDNode, reallocate the operand list.
5199    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
5200      if (MN->OperandsNeedDelete)
5201        delete[] MN->OperandList;
5202      if (NumOps > array_lengthof(MN->LocalOperands))
5203        // We're creating a final node that will live unmorphed for the
5204        // remainder of the current SelectionDAG iteration, so we can allocate
5205        // the operands directly out of a pool with no recycling metadata.
5206        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5207                         Ops, NumOps);
5208      else
5209        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
5210      MN->OperandsNeedDelete = false;
5211    } else
5212      MN->InitOperands(MN->OperandList, Ops, NumOps);
5213  } else {
5214    // If NumOps is larger than the # of operands we currently have, reallocate
5215    // the operand list.
5216    if (NumOps > N->NumOperands) {
5217      if (N->OperandsNeedDelete)
5218        delete[] N->OperandList;
5219      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
5220      N->OperandsNeedDelete = true;
5221    } else
5222      N->InitOperands(N->OperandList, Ops, NumOps);
5223  }
5224
5225  // Delete any nodes that are still dead after adding the uses for the
5226  // new operands.
5227  if (!DeadNodeSet.empty()) {
5228    SmallVector<SDNode *, 16> DeadNodes;
5229    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
5230         E = DeadNodeSet.end(); I != E; ++I)
5231      if ((*I)->use_empty())
5232        DeadNodes.push_back(*I);
5233    RemoveDeadNodes(DeadNodes);
5234  }
5235
5236  if (IP)
5237    CSEMap.InsertNode(N, IP);   // Memoize the new node.
5238  return N;
5239}
5240
5241
5242/// getMachineNode - These are used for target selectors to create a new node
5243/// with specified return type(s), MachineInstr opcode, and operands.
5244///
5245/// Note that getMachineNode returns the resultant node.  If there is already a
5246/// node of the specified opcode and operands, it returns that node instead of
5247/// the current one.
5248MachineSDNode *
5249SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
5250  SDVTList VTs = getVTList(VT);
5251  return getMachineNode(Opcode, dl, VTs, 0, 0);
5252}
5253
5254MachineSDNode *
5255SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
5256  SDVTList VTs = getVTList(VT);
5257  SDValue Ops[] = { Op1 };
5258  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5259}
5260
5261MachineSDNode *
5262SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5263                             SDValue Op1, SDValue Op2) {
5264  SDVTList VTs = getVTList(VT);
5265  SDValue Ops[] = { Op1, Op2 };
5266  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5267}
5268
5269MachineSDNode *
5270SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5271                             SDValue Op1, SDValue Op2, SDValue Op3) {
5272  SDVTList VTs = getVTList(VT);
5273  SDValue Ops[] = { Op1, Op2, Op3 };
5274  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5275}
5276
5277MachineSDNode *
5278SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5279                             const SDValue *Ops, unsigned NumOps) {
5280  SDVTList VTs = getVTList(VT);
5281  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5282}
5283
5284MachineSDNode *
5285SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
5286  SDVTList VTs = getVTList(VT1, VT2);
5287  return getMachineNode(Opcode, dl, VTs, 0, 0);
5288}
5289
5290MachineSDNode *
5291SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5292                             EVT VT1, EVT VT2, SDValue Op1) {
5293  SDVTList VTs = getVTList(VT1, VT2);
5294  SDValue Ops[] = { Op1 };
5295  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5296}
5297
5298MachineSDNode *
5299SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5300                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
5301  SDVTList VTs = getVTList(VT1, VT2);
5302  SDValue Ops[] = { Op1, Op2 };
5303  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5304}
5305
5306MachineSDNode *
5307SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5308                             EVT VT1, EVT VT2, SDValue Op1,
5309                             SDValue Op2, SDValue Op3) {
5310  SDVTList VTs = getVTList(VT1, VT2);
5311  SDValue Ops[] = { Op1, Op2, Op3 };
5312  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5313}
5314
5315MachineSDNode *
5316SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5317                             EVT VT1, EVT VT2,
5318                             const SDValue *Ops, unsigned NumOps) {
5319  SDVTList VTs = getVTList(VT1, VT2);
5320  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5321}
5322
5323MachineSDNode *
5324SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5325                             EVT VT1, EVT VT2, EVT VT3,
5326                             SDValue Op1, SDValue Op2) {
5327  SDVTList VTs = getVTList(VT1, VT2, VT3);
5328  SDValue Ops[] = { Op1, Op2 };
5329  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5330}
5331
5332MachineSDNode *
5333SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5334                             EVT VT1, EVT VT2, EVT VT3,
5335                             SDValue Op1, SDValue Op2, SDValue Op3) {
5336  SDVTList VTs = getVTList(VT1, VT2, VT3);
5337  SDValue Ops[] = { Op1, Op2, Op3 };
5338  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5339}
5340
5341MachineSDNode *
5342SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5343                             EVT VT1, EVT VT2, EVT VT3,
5344                             const SDValue *Ops, unsigned NumOps) {
5345  SDVTList VTs = getVTList(VT1, VT2, VT3);
5346  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5347}
5348
5349MachineSDNode *
5350SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
5351                             EVT VT2, EVT VT3, EVT VT4,
5352                             const SDValue *Ops, unsigned NumOps) {
5353  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
5354  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5355}
5356
5357MachineSDNode *
5358SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5359                             const std::vector<EVT> &ResultTys,
5360                             const SDValue *Ops, unsigned NumOps) {
5361  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
5362  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5363}
5364
5365MachineSDNode *
5366SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
5367                             const SDValue *Ops, unsigned NumOps) {
5368  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5369  MachineSDNode *N;
5370  void *IP = 0;
5371
5372  if (DoCSE) {
5373    FoldingSetNodeID ID;
5374    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5375    IP = 0;
5376    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
5377      return cast<MachineSDNode>(UpdadeDebugLocOnMergedSDNode(E, DL));
5378    }
5379  }
5380
5381  // Allocate a new MachineSDNode.
5382  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
5383
5384  // Initialize the operands list.
5385  if (NumOps > array_lengthof(N->LocalOperands))
5386    // We're creating a final node that will live unmorphed for the
5387    // remainder of the current SelectionDAG iteration, so we can allocate
5388    // the operands directly out of a pool with no recycling metadata.
5389    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5390                    Ops, NumOps);
5391  else
5392    N->InitOperands(N->LocalOperands, Ops, NumOps);
5393  N->OperandsNeedDelete = false;
5394
5395  if (DoCSE)
5396    CSEMap.InsertNode(N, IP);
5397
5398  AllNodes.push_back(N);
5399#ifndef NDEBUG
5400  VerifyMachineNode(N);
5401#endif
5402  return N;
5403}
5404
5405/// getTargetExtractSubreg - A convenience function for creating
5406/// TargetOpcode::EXTRACT_SUBREG nodes.
5407SDValue
5408SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5409                                     SDValue Operand) {
5410  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5411  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5412                                  VT, Operand, SRIdxVal);
5413  return SDValue(Subreg, 0);
5414}
5415
5416/// getTargetInsertSubreg - A convenience function for creating
5417/// TargetOpcode::INSERT_SUBREG nodes.
5418SDValue
5419SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5420                                    SDValue Operand, SDValue Subreg) {
5421  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5422  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5423                                  VT, Operand, Subreg, SRIdxVal);
5424  return SDValue(Result, 0);
5425}
5426
5427/// getNodeIfExists - Get the specified node if it's already available, or
5428/// else return NULL.
5429SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5430                                      const SDValue *Ops, unsigned NumOps) {
5431  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5432    FoldingSetNodeID ID;
5433    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5434    void *IP = 0;
5435    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5436      return E;
5437  }
5438  return NULL;
5439}
5440
5441/// getDbgValue - Creates a SDDbgValue node.
5442///
5443SDDbgValue *
5444SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5445                          DebugLoc DL, unsigned O) {
5446  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5447}
5448
5449SDDbgValue *
5450SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5451                          DebugLoc DL, unsigned O) {
5452  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5453}
5454
5455SDDbgValue *
5456SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5457                          DebugLoc DL, unsigned O) {
5458  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5459}
5460
5461namespace {
5462
5463/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5464/// pointed to by a use iterator is deleted, increment the use iterator
5465/// so that it doesn't dangle.
5466///
5467class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5468  SDNode::use_iterator &UI;
5469  SDNode::use_iterator &UE;
5470
5471  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5472    // Increment the iterator as needed.
5473    while (UI != UE && N == *UI)
5474      ++UI;
5475  }
5476
5477public:
5478  RAUWUpdateListener(SelectionDAG &d,
5479                     SDNode::use_iterator &ui,
5480                     SDNode::use_iterator &ue)
5481    : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
5482};
5483
5484}
5485
5486/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5487/// This can cause recursive merging of nodes in the DAG.
5488///
5489/// This version assumes From has a single result value.
5490///
5491void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
5492  SDNode *From = FromN.getNode();
5493  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5494         "Cannot replace with this method!");
5495  assert(From != To.getNode() && "Cannot replace uses of with self");
5496
5497  // Iterate over all the existing uses of From. New uses will be added
5498  // to the beginning of the use list, which we avoid visiting.
5499  // This specifically avoids visiting uses of From that arise while the
5500  // replacement is happening, because any such uses would be the result
5501  // of CSE: If an existing node looks like From after one of its operands
5502  // is replaced by To, we don't want to replace of all its users with To
5503  // too. See PR3018 for more info.
5504  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5505  RAUWUpdateListener Listener(*this, UI, UE);
5506  while (UI != UE) {
5507    SDNode *User = *UI;
5508
5509    // This node is about to morph, remove its old self from the CSE maps.
5510    RemoveNodeFromCSEMaps(User);
5511
5512    // A user can appear in a use list multiple times, and when this
5513    // happens the uses are usually next to each other in the list.
5514    // To help reduce the number of CSE recomputations, process all
5515    // the uses of this user that we can find this way.
5516    do {
5517      SDUse &Use = UI.getUse();
5518      ++UI;
5519      Use.set(To);
5520    } while (UI != UE && *UI == User);
5521
5522    // Now that we have modified User, add it back to the CSE maps.  If it
5523    // already exists there, recursively merge the results together.
5524    AddModifiedNodeToCSEMaps(User);
5525  }
5526
5527  // If we just RAUW'd the root, take note.
5528  if (FromN == getRoot())
5529    setRoot(To);
5530}
5531
5532/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5533/// This can cause recursive merging of nodes in the DAG.
5534///
5535/// This version assumes that for each value of From, there is a
5536/// corresponding value in To in the same position with the same type.
5537///
5538void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
5539#ifndef NDEBUG
5540  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5541    assert((!From->hasAnyUseOfValue(i) ||
5542            From->getValueType(i) == To->getValueType(i)) &&
5543           "Cannot use this version of ReplaceAllUsesWith!");
5544#endif
5545
5546  // Handle the trivial case.
5547  if (From == To)
5548    return;
5549
5550  // Iterate over just the existing users of From. See the comments in
5551  // the ReplaceAllUsesWith above.
5552  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5553  RAUWUpdateListener Listener(*this, UI, UE);
5554  while (UI != UE) {
5555    SDNode *User = *UI;
5556
5557    // This node is about to morph, remove its old self from the CSE maps.
5558    RemoveNodeFromCSEMaps(User);
5559
5560    // A user can appear in a use list multiple times, and when this
5561    // happens the uses are usually next to each other in the list.
5562    // To help reduce the number of CSE recomputations, process all
5563    // the uses of this user that we can find this way.
5564    do {
5565      SDUse &Use = UI.getUse();
5566      ++UI;
5567      Use.setNode(To);
5568    } while (UI != UE && *UI == User);
5569
5570    // Now that we have modified User, add it back to the CSE maps.  If it
5571    // already exists there, recursively merge the results together.
5572    AddModifiedNodeToCSEMaps(User);
5573  }
5574
5575  // If we just RAUW'd the root, take note.
5576  if (From == getRoot().getNode())
5577    setRoot(SDValue(To, getRoot().getResNo()));
5578}
5579
5580/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5581/// This can cause recursive merging of nodes in the DAG.
5582///
5583/// This version can replace From with any result values.  To must match the
5584/// number and types of values returned by From.
5585void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
5586  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5587    return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
5588
5589  // Iterate over just the existing users of From. See the comments in
5590  // the ReplaceAllUsesWith above.
5591  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5592  RAUWUpdateListener Listener(*this, UI, UE);
5593  while (UI != UE) {
5594    SDNode *User = *UI;
5595
5596    // This node is about to morph, remove its old self from the CSE maps.
5597    RemoveNodeFromCSEMaps(User);
5598
5599    // A user can appear in a use list multiple times, and when this
5600    // happens the uses are usually next to each other in the list.
5601    // To help reduce the number of CSE recomputations, process all
5602    // the uses of this user that we can find this way.
5603    do {
5604      SDUse &Use = UI.getUse();
5605      const SDValue &ToOp = To[Use.getResNo()];
5606      ++UI;
5607      Use.set(ToOp);
5608    } while (UI != UE && *UI == User);
5609
5610    // Now that we have modified User, add it back to the CSE maps.  If it
5611    // already exists there, recursively merge the results together.
5612    AddModifiedNodeToCSEMaps(User);
5613  }
5614
5615  // If we just RAUW'd the root, take note.
5616  if (From == getRoot().getNode())
5617    setRoot(SDValue(To[getRoot().getResNo()]));
5618}
5619
5620/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5621/// uses of other values produced by From.getNode() alone.  The Deleted
5622/// vector is handled the same way as for ReplaceAllUsesWith.
5623void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
5624  // Handle the really simple, really trivial case efficiently.
5625  if (From == To) return;
5626
5627  // Handle the simple, trivial, case efficiently.
5628  if (From.getNode()->getNumValues() == 1) {
5629    ReplaceAllUsesWith(From, To);
5630    return;
5631  }
5632
5633  // Iterate over just the existing users of From. See the comments in
5634  // the ReplaceAllUsesWith above.
5635  SDNode::use_iterator UI = From.getNode()->use_begin(),
5636                       UE = From.getNode()->use_end();
5637  RAUWUpdateListener Listener(*this, UI, UE);
5638  while (UI != UE) {
5639    SDNode *User = *UI;
5640    bool UserRemovedFromCSEMaps = false;
5641
5642    // A user can appear in a use list multiple times, and when this
5643    // happens the uses are usually next to each other in the list.
5644    // To help reduce the number of CSE recomputations, process all
5645    // the uses of this user that we can find this way.
5646    do {
5647      SDUse &Use = UI.getUse();
5648
5649      // Skip uses of different values from the same node.
5650      if (Use.getResNo() != From.getResNo()) {
5651        ++UI;
5652        continue;
5653      }
5654
5655      // If this node hasn't been modified yet, it's still in the CSE maps,
5656      // so remove its old self from the CSE maps.
5657      if (!UserRemovedFromCSEMaps) {
5658        RemoveNodeFromCSEMaps(User);
5659        UserRemovedFromCSEMaps = true;
5660      }
5661
5662      ++UI;
5663      Use.set(To);
5664    } while (UI != UE && *UI == User);
5665
5666    // We are iterating over all uses of the From node, so if a use
5667    // doesn't use the specific value, no changes are made.
5668    if (!UserRemovedFromCSEMaps)
5669      continue;
5670
5671    // Now that we have modified User, add it back to the CSE maps.  If it
5672    // already exists there, recursively merge the results together.
5673    AddModifiedNodeToCSEMaps(User);
5674  }
5675
5676  // If we just RAUW'd the root, take note.
5677  if (From == getRoot())
5678    setRoot(To);
5679}
5680
5681namespace {
5682  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5683  /// to record information about a use.
5684  struct UseMemo {
5685    SDNode *User;
5686    unsigned Index;
5687    SDUse *Use;
5688  };
5689
5690  /// operator< - Sort Memos by User.
5691  bool operator<(const UseMemo &L, const UseMemo &R) {
5692    return (intptr_t)L.User < (intptr_t)R.User;
5693  }
5694}
5695
5696/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5697/// uses of other values produced by From.getNode() alone.  The same value
5698/// may appear in both the From and To list.  The Deleted vector is
5699/// handled the same way as for ReplaceAllUsesWith.
5700void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5701                                              const SDValue *To,
5702                                              unsigned Num){
5703  // Handle the simple, trivial case efficiently.
5704  if (Num == 1)
5705    return ReplaceAllUsesOfValueWith(*From, *To);
5706
5707  // Read up all the uses and make records of them. This helps
5708  // processing new uses that are introduced during the
5709  // replacement process.
5710  SmallVector<UseMemo, 4> Uses;
5711  for (unsigned i = 0; i != Num; ++i) {
5712    unsigned FromResNo = From[i].getResNo();
5713    SDNode *FromNode = From[i].getNode();
5714    for (SDNode::use_iterator UI = FromNode->use_begin(),
5715         E = FromNode->use_end(); UI != E; ++UI) {
5716      SDUse &Use = UI.getUse();
5717      if (Use.getResNo() == FromResNo) {
5718        UseMemo Memo = { *UI, i, &Use };
5719        Uses.push_back(Memo);
5720      }
5721    }
5722  }
5723
5724  // Sort the uses, so that all the uses from a given User are together.
5725  std::sort(Uses.begin(), Uses.end());
5726
5727  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5728       UseIndex != UseIndexEnd; ) {
5729    // We know that this user uses some value of From.  If it is the right
5730    // value, update it.
5731    SDNode *User = Uses[UseIndex].User;
5732
5733    // This node is about to morph, remove its old self from the CSE maps.
5734    RemoveNodeFromCSEMaps(User);
5735
5736    // The Uses array is sorted, so all the uses for a given User
5737    // are next to each other in the list.
5738    // To help reduce the number of CSE recomputations, process all
5739    // the uses of this user that we can find this way.
5740    do {
5741      unsigned i = Uses[UseIndex].Index;
5742      SDUse &Use = *Uses[UseIndex].Use;
5743      ++UseIndex;
5744
5745      Use.set(To[i]);
5746    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5747
5748    // Now that we have modified User, add it back to the CSE maps.  If it
5749    // already exists there, recursively merge the results together.
5750    AddModifiedNodeToCSEMaps(User);
5751  }
5752}
5753
5754/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5755/// based on their topological order. It returns the maximum id and a vector
5756/// of the SDNodes* in assigned order by reference.
5757unsigned SelectionDAG::AssignTopologicalOrder() {
5758
5759  unsigned DAGSize = 0;
5760
5761  // SortedPos tracks the progress of the algorithm. Nodes before it are
5762  // sorted, nodes after it are unsorted. When the algorithm completes
5763  // it is at the end of the list.
5764  allnodes_iterator SortedPos = allnodes_begin();
5765
5766  // Visit all the nodes. Move nodes with no operands to the front of
5767  // the list immediately. Annotate nodes that do have operands with their
5768  // operand count. Before we do this, the Node Id fields of the nodes
5769  // may contain arbitrary values. After, the Node Id fields for nodes
5770  // before SortedPos will contain the topological sort index, and the
5771  // Node Id fields for nodes At SortedPos and after will contain the
5772  // count of outstanding operands.
5773  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5774    SDNode *N = I++;
5775    checkForCycles(N);
5776    unsigned Degree = N->getNumOperands();
5777    if (Degree == 0) {
5778      // A node with no uses, add it to the result array immediately.
5779      N->setNodeId(DAGSize++);
5780      allnodes_iterator Q = N;
5781      if (Q != SortedPos)
5782        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5783      assert(SortedPos != AllNodes.end() && "Overran node list");
5784      ++SortedPos;
5785    } else {
5786      // Temporarily use the Node Id as scratch space for the degree count.
5787      N->setNodeId(Degree);
5788    }
5789  }
5790
5791  // Visit all the nodes. As we iterate, move nodes into sorted order,
5792  // such that by the time the end is reached all nodes will be sorted.
5793  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5794    SDNode *N = I;
5795    checkForCycles(N);
5796    // N is in sorted position, so all its uses have one less operand
5797    // that needs to be sorted.
5798    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5799         UI != UE; ++UI) {
5800      SDNode *P = *UI;
5801      unsigned Degree = P->getNodeId();
5802      assert(Degree != 0 && "Invalid node degree");
5803      --Degree;
5804      if (Degree == 0) {
5805        // All of P's operands are sorted, so P may sorted now.
5806        P->setNodeId(DAGSize++);
5807        if (P != SortedPos)
5808          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5809        assert(SortedPos != AllNodes.end() && "Overran node list");
5810        ++SortedPos;
5811      } else {
5812        // Update P's outstanding operand count.
5813        P->setNodeId(Degree);
5814      }
5815    }
5816    if (I == SortedPos) {
5817#ifndef NDEBUG
5818      SDNode *S = ++I;
5819      dbgs() << "Overran sorted position:\n";
5820      S->dumprFull();
5821#endif
5822      llvm_unreachable(0);
5823    }
5824  }
5825
5826  assert(SortedPos == AllNodes.end() &&
5827         "Topological sort incomplete!");
5828  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5829         "First node in topological sort is not the entry token!");
5830  assert(AllNodes.front().getNodeId() == 0 &&
5831         "First node in topological sort has non-zero id!");
5832  assert(AllNodes.front().getNumOperands() == 0 &&
5833         "First node in topological sort has operands!");
5834  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5835         "Last node in topologic sort has unexpected id!");
5836  assert(AllNodes.back().use_empty() &&
5837         "Last node in topologic sort has users!");
5838  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5839  return DAGSize;
5840}
5841
5842/// AssignOrdering - Assign an order to the SDNode.
5843void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5844  assert(SD && "Trying to assign an order to a null node!");
5845  Ordering->add(SD, Order);
5846}
5847
5848/// GetOrdering - Get the order for the SDNode.
5849unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5850  assert(SD && "Trying to get the order of a null node!");
5851  return Ordering->getOrder(SD);
5852}
5853
5854/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5855/// value is produced by SD.
5856void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5857  DbgInfo->add(DB, SD, isParameter);
5858  if (SD)
5859    SD->setHasDebugValue(true);
5860}
5861
5862/// TransferDbgValues - Transfer SDDbgValues.
5863void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5864  if (From == To || !From.getNode()->getHasDebugValue())
5865    return;
5866  SDNode *FromNode = From.getNode();
5867  SDNode *ToNode = To.getNode();
5868  ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
5869  SmallVector<SDDbgValue *, 2> ClonedDVs;
5870  for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
5871       I != E; ++I) {
5872    SDDbgValue *Dbg = *I;
5873    if (Dbg->getKind() == SDDbgValue::SDNODE) {
5874      SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
5875                                      Dbg->getOffset(), Dbg->getDebugLoc(),
5876                                      Dbg->getOrder());
5877      ClonedDVs.push_back(Clone);
5878    }
5879  }
5880  for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
5881         E = ClonedDVs.end(); I != E; ++I)
5882    AddDbgValue(*I, ToNode, false);
5883}
5884
5885//===----------------------------------------------------------------------===//
5886//                              SDNode Class
5887//===----------------------------------------------------------------------===//
5888
5889HandleSDNode::~HandleSDNode() {
5890  DropOperands();
5891}
5892
5893GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5894                                         const GlobalValue *GA,
5895                                         EVT VT, int64_t o, unsigned char TF)
5896  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5897  TheGlobal = GA;
5898}
5899
5900MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5901                     MachineMemOperand *mmo)
5902 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5903  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5904                                      MMO->isNonTemporal(), MMO->isInvariant());
5905  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5906  assert(isNonTemporal() == MMO->isNonTemporal() &&
5907         "Non-temporal encoding error!");
5908  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5909}
5910
5911MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5912                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5913                     MachineMemOperand *mmo)
5914   : SDNode(Opc, dl, VTs, Ops, NumOps),
5915     MemoryVT(memvt), MMO(mmo) {
5916  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5917                                      MMO->isNonTemporal(), MMO->isInvariant());
5918  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5919  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5920}
5921
5922/// Profile - Gather unique data for the node.
5923///
5924void SDNode::Profile(FoldingSetNodeID &ID) const {
5925  AddNodeIDNode(ID, this);
5926}
5927
5928namespace {
5929  struct EVTArray {
5930    std::vector<EVT> VTs;
5931
5932    EVTArray() {
5933      VTs.reserve(MVT::LAST_VALUETYPE);
5934      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5935        VTs.push_back(MVT((MVT::SimpleValueType)i));
5936    }
5937  };
5938}
5939
5940static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5941static ManagedStatic<EVTArray> SimpleVTArray;
5942static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5943
5944/// getValueTypeList - Return a pointer to the specified value type.
5945///
5946const EVT *SDNode::getValueTypeList(EVT VT) {
5947  if (VT.isExtended()) {
5948    sys::SmartScopedLock<true> Lock(*VTMutex);
5949    return &(*EVTs->insert(VT).first);
5950  } else {
5951    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5952           "Value type out of range!");
5953    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5954  }
5955}
5956
5957/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5958/// indicated value.  This method ignores uses of other values defined by this
5959/// operation.
5960bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5961  assert(Value < getNumValues() && "Bad value!");
5962
5963  // TODO: Only iterate over uses of a given value of the node
5964  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5965    if (UI.getUse().getResNo() == Value) {
5966      if (NUses == 0)
5967        return false;
5968      --NUses;
5969    }
5970  }
5971
5972  // Found exactly the right number of uses?
5973  return NUses == 0;
5974}
5975
5976
5977/// hasAnyUseOfValue - Return true if there are any use of the indicated
5978/// value. This method ignores uses of other values defined by this operation.
5979bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5980  assert(Value < getNumValues() && "Bad value!");
5981
5982  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5983    if (UI.getUse().getResNo() == Value)
5984      return true;
5985
5986  return false;
5987}
5988
5989
5990/// isOnlyUserOf - Return true if this node is the only use of N.
5991///
5992bool SDNode::isOnlyUserOf(SDNode *N) const {
5993  bool Seen = false;
5994  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5995    SDNode *User = *I;
5996    if (User == this)
5997      Seen = true;
5998    else
5999      return false;
6000  }
6001
6002  return Seen;
6003}
6004
6005/// isOperand - Return true if this node is an operand of N.
6006///
6007bool SDValue::isOperandOf(SDNode *N) const {
6008  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6009    if (*this == N->getOperand(i))
6010      return true;
6011  return false;
6012}
6013
6014bool SDNode::isOperandOf(SDNode *N) const {
6015  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
6016    if (this == N->OperandList[i].getNode())
6017      return true;
6018  return false;
6019}
6020
6021/// reachesChainWithoutSideEffects - Return true if this operand (which must
6022/// be a chain) reaches the specified operand without crossing any
6023/// side-effecting instructions on any chain path.  In practice, this looks
6024/// through token factors and non-volatile loads.  In order to remain efficient,
6025/// this only looks a couple of nodes in, it does not do an exhaustive search.
6026bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
6027                                               unsigned Depth) const {
6028  if (*this == Dest) return true;
6029
6030  // Don't search too deeply, we just want to be able to see through
6031  // TokenFactor's etc.
6032  if (Depth == 0) return false;
6033
6034  // If this is a token factor, all inputs to the TF happen in parallel.  If any
6035  // of the operands of the TF does not reach dest, then we cannot do the xform.
6036  if (getOpcode() == ISD::TokenFactor) {
6037    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6038      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
6039        return false;
6040    return true;
6041  }
6042
6043  // Loads don't have side effects, look through them.
6044  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
6045    if (!Ld->isVolatile())
6046      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
6047  }
6048  return false;
6049}
6050
6051/// hasPredecessor - Return true if N is a predecessor of this node.
6052/// N is either an operand of this node, or can be reached by recursively
6053/// traversing up the operands.
6054/// NOTE: This is an expensive method. Use it carefully.
6055bool SDNode::hasPredecessor(const SDNode *N) const {
6056  SmallPtrSet<const SDNode *, 32> Visited;
6057  SmallVector<const SDNode *, 16> Worklist;
6058  return hasPredecessorHelper(N, Visited, Worklist);
6059}
6060
6061bool SDNode::hasPredecessorHelper(const SDNode *N,
6062                                  SmallPtrSet<const SDNode *, 32> &Visited,
6063                                  SmallVector<const SDNode *, 16> &Worklist) const {
6064  if (Visited.empty()) {
6065    Worklist.push_back(this);
6066  } else {
6067    // Take a look in the visited set. If we've already encountered this node
6068    // we needn't search further.
6069    if (Visited.count(N))
6070      return true;
6071  }
6072
6073  // Haven't visited N yet. Continue the search.
6074  while (!Worklist.empty()) {
6075    const SDNode *M = Worklist.pop_back_val();
6076    for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
6077      SDNode *Op = M->getOperand(i).getNode();
6078      if (Visited.insert(Op))
6079        Worklist.push_back(Op);
6080      if (Op == N)
6081        return true;
6082    }
6083  }
6084
6085  return false;
6086}
6087
6088uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
6089  assert(Num < NumOperands && "Invalid child # of SDNode!");
6090  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
6091}
6092
6093SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6094  assert(N->getNumValues() == 1 &&
6095         "Can't unroll a vector with multiple results!");
6096
6097  EVT VT = N->getValueType(0);
6098  unsigned NE = VT.getVectorNumElements();
6099  EVT EltVT = VT.getVectorElementType();
6100  DebugLoc dl = N->getDebugLoc();
6101
6102  SmallVector<SDValue, 8> Scalars;
6103  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6104
6105  // If ResNE is 0, fully unroll the vector op.
6106  if (ResNE == 0)
6107    ResNE = NE;
6108  else if (NE > ResNE)
6109    NE = ResNE;
6110
6111  unsigned i;
6112  for (i= 0; i != NE; ++i) {
6113    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6114      SDValue Operand = N->getOperand(j);
6115      EVT OperandVT = Operand.getValueType();
6116      if (OperandVT.isVector()) {
6117        // A vector operand; extract a single element.
6118        EVT OperandEltVT = OperandVT.getVectorElementType();
6119        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6120                              OperandEltVT,
6121                              Operand,
6122                              getConstant(i, TLI.getPointerTy()));
6123      } else {
6124        // A scalar operand; just use it as is.
6125        Operands[j] = Operand;
6126      }
6127    }
6128
6129    switch (N->getOpcode()) {
6130    default:
6131      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6132                                &Operands[0], Operands.size()));
6133      break;
6134    case ISD::VSELECT:
6135      Scalars.push_back(getNode(ISD::SELECT, dl, EltVT,
6136                                &Operands[0], Operands.size()));
6137      break;
6138    case ISD::SHL:
6139    case ISD::SRA:
6140    case ISD::SRL:
6141    case ISD::ROTL:
6142    case ISD::ROTR:
6143      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6144                                getShiftAmountOperand(Operands[0].getValueType(),
6145                                                      Operands[1])));
6146      break;
6147    case ISD::SIGN_EXTEND_INREG:
6148    case ISD::FP_ROUND_INREG: {
6149      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6150      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6151                                Operands[0],
6152                                getValueType(ExtVT)));
6153    }
6154    }
6155  }
6156
6157  for (; i < ResNE; ++i)
6158    Scalars.push_back(getUNDEF(EltVT));
6159
6160  return getNode(ISD::BUILD_VECTOR, dl,
6161                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6162                 &Scalars[0], Scalars.size());
6163}
6164
6165
6166/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6167/// location that is 'Dist' units away from the location that the 'Base' load
6168/// is loading from.
6169bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6170                                     unsigned Bytes, int Dist) const {
6171  if (LD->getChain() != Base->getChain())
6172    return false;
6173  EVT VT = LD->getValueType(0);
6174  if (VT.getSizeInBits() / 8 != Bytes)
6175    return false;
6176
6177  SDValue Loc = LD->getOperand(1);
6178  SDValue BaseLoc = Base->getOperand(1);
6179  if (Loc.getOpcode() == ISD::FrameIndex) {
6180    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6181      return false;
6182    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6183    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6184    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6185    int FS  = MFI->getObjectSize(FI);
6186    int BFS = MFI->getObjectSize(BFI);
6187    if (FS != BFS || FS != (int)Bytes) return false;
6188    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6189  }
6190
6191  // Handle X+C
6192  if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6193      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6194    return true;
6195
6196  const GlobalValue *GV1 = NULL;
6197  const GlobalValue *GV2 = NULL;
6198  int64_t Offset1 = 0;
6199  int64_t Offset2 = 0;
6200  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6201  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6202  if (isGA1 && isGA2 && GV1 == GV2)
6203    return Offset1 == (Offset2 + Dist*Bytes);
6204  return false;
6205}
6206
6207
6208/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6209/// it cannot be inferred.
6210unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6211  // If this is a GlobalAddress + cst, return the alignment.
6212  const GlobalValue *GV;
6213  int64_t GVOffset = 0;
6214  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6215    unsigned PtrWidth = TLI.getPointerTy().getSizeInBits();
6216    APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0);
6217    llvm::ComputeMaskedBits(const_cast<GlobalValue*>(GV), KnownZero, KnownOne,
6218                            TLI.getDataLayout());
6219    unsigned AlignBits = KnownZero.countTrailingOnes();
6220    unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
6221    if (Align)
6222      return MinAlign(Align, GVOffset);
6223  }
6224
6225  // If this is a direct reference to a stack slot, use information about the
6226  // stack slot's alignment.
6227  int FrameIdx = 1 << 31;
6228  int64_t FrameOffset = 0;
6229  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6230    FrameIdx = FI->getIndex();
6231  } else if (isBaseWithConstantOffset(Ptr) &&
6232             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6233    // Handle FI+Cst
6234    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6235    FrameOffset = Ptr.getConstantOperandVal(1);
6236  }
6237
6238  if (FrameIdx != (1 << 31)) {
6239    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6240    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6241                                    FrameOffset);
6242    return FIInfoAlign;
6243  }
6244
6245  return 0;
6246}
6247
6248// getAddressSpace - Return the address space this GlobalAddress belongs to.
6249unsigned GlobalAddressSDNode::getAddressSpace() const {
6250  return getGlobal()->getType()->getAddressSpace();
6251}
6252
6253
6254Type *ConstantPoolSDNode::getType() const {
6255  if (isMachineConstantPoolEntry())
6256    return Val.MachineCPVal->getType();
6257  return Val.ConstVal->getType();
6258}
6259
6260bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6261                                        APInt &SplatUndef,
6262                                        unsigned &SplatBitSize,
6263                                        bool &HasAnyUndefs,
6264                                        unsigned MinSplatBits,
6265                                        bool isBigEndian) {
6266  EVT VT = getValueType(0);
6267  assert(VT.isVector() && "Expected a vector type");
6268  unsigned sz = VT.getSizeInBits();
6269  if (MinSplatBits > sz)
6270    return false;
6271
6272  SplatValue = APInt(sz, 0);
6273  SplatUndef = APInt(sz, 0);
6274
6275  // Get the bits.  Bits with undefined values (when the corresponding element
6276  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6277  // in SplatValue.  If any of the values are not constant, give up and return
6278  // false.
6279  unsigned int nOps = getNumOperands();
6280  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6281  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6282
6283  for (unsigned j = 0; j < nOps; ++j) {
6284    unsigned i = isBigEndian ? nOps-1-j : j;
6285    SDValue OpVal = getOperand(i);
6286    unsigned BitPos = j * EltBitSize;
6287
6288    if (OpVal.getOpcode() == ISD::UNDEF)
6289      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6290    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6291      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6292                    zextOrTrunc(sz) << BitPos;
6293    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6294      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6295     else
6296      return false;
6297  }
6298
6299  // The build_vector is all constants or undefs.  Find the smallest element
6300  // size that splats the vector.
6301
6302  HasAnyUndefs = (SplatUndef != 0);
6303  while (sz > 8) {
6304
6305    unsigned HalfSize = sz / 2;
6306    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6307    APInt LowValue = SplatValue.trunc(HalfSize);
6308    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6309    APInt LowUndef = SplatUndef.trunc(HalfSize);
6310
6311    // If the two halves do not match (ignoring undef bits), stop here.
6312    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6313        MinSplatBits > HalfSize)
6314      break;
6315
6316    SplatValue = HighValue | LowValue;
6317    SplatUndef = HighUndef & LowUndef;
6318
6319    sz = HalfSize;
6320  }
6321
6322  SplatBitSize = sz;
6323  return true;
6324}
6325
6326bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6327  // Find the first non-undef value in the shuffle mask.
6328  unsigned i, e;
6329  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6330    /* search */;
6331
6332  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6333
6334  // Make sure all remaining elements are either undef or the same as the first
6335  // non-undef value.
6336  for (int Idx = Mask[i]; i != e; ++i)
6337    if (Mask[i] >= 0 && Mask[i] != Idx)
6338      return false;
6339  return true;
6340}
6341
6342#ifdef XDEBUG
6343static void checkForCyclesHelper(const SDNode *N,
6344                                 SmallPtrSet<const SDNode*, 32> &Visited,
6345                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6346  // If this node has already been checked, don't check it again.
6347  if (Checked.count(N))
6348    return;
6349
6350  // If a node has already been visited on this depth-first walk, reject it as
6351  // a cycle.
6352  if (!Visited.insert(N)) {
6353    dbgs() << "Offending node:\n";
6354    N->dumprFull();
6355    errs() << "Detected cycle in SelectionDAG\n";
6356    abort();
6357  }
6358
6359  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6360    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6361
6362  Checked.insert(N);
6363  Visited.erase(N);
6364}
6365#endif
6366
6367void llvm::checkForCycles(const llvm::SDNode *N) {
6368#ifdef XDEBUG
6369  assert(N && "Checking nonexistant SDNode");
6370  SmallPtrSet<const SDNode*, 32> visited;
6371  SmallPtrSet<const SDNode*, 32> checked;
6372  checkForCyclesHelper(N, visited, checked);
6373#endif
6374}
6375
6376void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6377  checkForCycles(DAG->getRoot().getNode());
6378}
6379