SelectionDAG.cpp revision a6f7974e97825e9575b5c5cf9f6665aef86cbe03
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Target/MRegisterInfo.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringExtras.h"
32#include <algorithm>
33#include <cmath>
34using namespace llvm;
35
36/// makeVTList - Return an instance of the SDVTList struct initialized with the
37/// specified members.
38static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
39  SDVTList Res = {VTs, NumVTs};
40  return Res;
41}
42
43//===----------------------------------------------------------------------===//
44//                              ConstantFPSDNode Class
45//===----------------------------------------------------------------------===//
46
47/// isExactlyValue - We don't rely on operator== working on double values, as
48/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
49/// As such, this method can be used to do an exact bit-for-bit comparison of
50/// two floating point values.
51bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
52  return Value.bitwiseIsEqual(V);
53}
54
55bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
56                                           const APFloat& Val) {
57  // convert modifies in place, so make a copy.
58  APFloat Val2 = APFloat(Val);
59  switch (VT) {
60  default:
61    return false;         // These can't be represented as floating point!
62
63  // FIXME rounding mode needs to be more flexible
64  case MVT::f32:
65    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
66           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
67              APFloat::opOK;
68  case MVT::f64:
69    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
70           &Val2.getSemantics() == &APFloat::IEEEdouble ||
71           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
72             APFloat::opOK;
73  // TODO: Figure out how to test if we can use a shorter type instead!
74  case MVT::f80:
75  case MVT::f128:
76  case MVT::ppcf128:
77    return true;
78  }
79}
80
81//===----------------------------------------------------------------------===//
82//                              ISD Namespace
83//===----------------------------------------------------------------------===//
84
85/// isBuildVectorAllOnes - Return true if the specified node is a
86/// BUILD_VECTOR where all of the elements are ~0 or undef.
87bool ISD::isBuildVectorAllOnes(const SDNode *N) {
88  // Look through a bit convert.
89  if (N->getOpcode() == ISD::BIT_CONVERT)
90    N = N->getOperand(0).Val;
91
92  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
93
94  unsigned i = 0, e = N->getNumOperands();
95
96  // Skip over all of the undef values.
97  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
98    ++i;
99
100  // Do not accept an all-undef vector.
101  if (i == e) return false;
102
103  // Do not accept build_vectors that aren't all constants or which have non-~0
104  // elements.
105  SDOperand NotZero = N->getOperand(i);
106  if (isa<ConstantSDNode>(NotZero)) {
107    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
108      return false;
109  } else if (isa<ConstantFPSDNode>(NotZero)) {
110    MVT::ValueType VT = NotZero.getValueType();
111    if (VT== MVT::f64) {
112      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
113                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
114        return false;
115    } else {
116      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
117                      getValueAPF().convertToAPInt().getZExtValue() !=
118          (uint32_t)-1)
119        return false;
120    }
121  } else
122    return false;
123
124  // Okay, we have at least one ~0 value, check to see if the rest match or are
125  // undefs.
126  for (++i; i != e; ++i)
127    if (N->getOperand(i) != NotZero &&
128        N->getOperand(i).getOpcode() != ISD::UNDEF)
129      return false;
130  return true;
131}
132
133
134/// isBuildVectorAllZeros - Return true if the specified node is a
135/// BUILD_VECTOR where all of the elements are 0 or undef.
136bool ISD::isBuildVectorAllZeros(const SDNode *N) {
137  // Look through a bit convert.
138  if (N->getOpcode() == ISD::BIT_CONVERT)
139    N = N->getOperand(0).Val;
140
141  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
142
143  unsigned i = 0, e = N->getNumOperands();
144
145  // Skip over all of the undef values.
146  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
147    ++i;
148
149  // Do not accept an all-undef vector.
150  if (i == e) return false;
151
152  // Do not accept build_vectors that aren't all constants or which have non-~0
153  // elements.
154  SDOperand Zero = N->getOperand(i);
155  if (isa<ConstantSDNode>(Zero)) {
156    if (!cast<ConstantSDNode>(Zero)->isNullValue())
157      return false;
158  } else if (isa<ConstantFPSDNode>(Zero)) {
159    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
160      return false;
161  } else
162    return false;
163
164  // Okay, we have at least one ~0 value, check to see if the rest match or are
165  // undefs.
166  for (++i; i != e; ++i)
167    if (N->getOperand(i) != Zero &&
168        N->getOperand(i).getOpcode() != ISD::UNDEF)
169      return false;
170  return true;
171}
172
173/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
174/// when given the operation for (X op Y).
175ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
176  // To perform this operation, we just need to swap the L and G bits of the
177  // operation.
178  unsigned OldL = (Operation >> 2) & 1;
179  unsigned OldG = (Operation >> 1) & 1;
180  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
181                       (OldL << 1) |       // New G bit
182                       (OldG << 2));        // New L bit.
183}
184
185/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
186/// 'op' is a valid SetCC operation.
187ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
188  unsigned Operation = Op;
189  if (isInteger)
190    Operation ^= 7;   // Flip L, G, E bits, but not U.
191  else
192    Operation ^= 15;  // Flip all of the condition bits.
193  if (Operation > ISD::SETTRUE2)
194    Operation &= ~8;     // Don't let N and U bits get set.
195  return ISD::CondCode(Operation);
196}
197
198
199/// isSignedOp - For an integer comparison, return 1 if the comparison is a
200/// signed operation and 2 if the result is an unsigned comparison.  Return zero
201/// if the operation does not depend on the sign of the input (setne and seteq).
202static int isSignedOp(ISD::CondCode Opcode) {
203  switch (Opcode) {
204  default: assert(0 && "Illegal integer setcc operation!");
205  case ISD::SETEQ:
206  case ISD::SETNE: return 0;
207  case ISD::SETLT:
208  case ISD::SETLE:
209  case ISD::SETGT:
210  case ISD::SETGE: return 1;
211  case ISD::SETULT:
212  case ISD::SETULE:
213  case ISD::SETUGT:
214  case ISD::SETUGE: return 2;
215  }
216}
217
218/// getSetCCOrOperation - Return the result of a logical OR between different
219/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
220/// returns SETCC_INVALID if it is not possible to represent the resultant
221/// comparison.
222ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
223                                       bool isInteger) {
224  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
225    // Cannot fold a signed integer setcc with an unsigned integer setcc.
226    return ISD::SETCC_INVALID;
227
228  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
229
230  // If the N and U bits get set then the resultant comparison DOES suddenly
231  // care about orderedness, and is true when ordered.
232  if (Op > ISD::SETTRUE2)
233    Op &= ~16;     // Clear the U bit if the N bit is set.
234
235  // Canonicalize illegal integer setcc's.
236  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
237    Op = ISD::SETNE;
238
239  return ISD::CondCode(Op);
240}
241
242/// getSetCCAndOperation - Return the result of a logical AND between different
243/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
244/// function returns zero if it is not possible to represent the resultant
245/// comparison.
246ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
247                                        bool isInteger) {
248  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
249    // Cannot fold a signed setcc with an unsigned setcc.
250    return ISD::SETCC_INVALID;
251
252  // Combine all of the condition bits.
253  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
254
255  // Canonicalize illegal integer setcc's.
256  if (isInteger) {
257    switch (Result) {
258    default: break;
259    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
260    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
261    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
262    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
263    }
264  }
265
266  return Result;
267}
268
269const TargetMachine &SelectionDAG::getTarget() const {
270  return TLI.getTargetMachine();
271}
272
273//===----------------------------------------------------------------------===//
274//                           SDNode Profile Support
275//===----------------------------------------------------------------------===//
276
277/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
278///
279static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
280  ID.AddInteger(OpC);
281}
282
283/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
284/// solely with their pointer.
285void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
286  ID.AddPointer(VTList.VTs);
287}
288
289/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
290///
291static void AddNodeIDOperands(FoldingSetNodeID &ID,
292                              const SDOperand *Ops, unsigned NumOps) {
293  for (; NumOps; --NumOps, ++Ops) {
294    ID.AddPointer(Ops->Val);
295    ID.AddInteger(Ops->ResNo);
296  }
297}
298
299static void AddNodeIDNode(FoldingSetNodeID &ID,
300                          unsigned short OpC, SDVTList VTList,
301                          const SDOperand *OpList, unsigned N) {
302  AddNodeIDOpcode(ID, OpC);
303  AddNodeIDValueTypes(ID, VTList);
304  AddNodeIDOperands(ID, OpList, N);
305}
306
307/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
308/// data.
309static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
310  AddNodeIDOpcode(ID, N->getOpcode());
311  // Add the return value info.
312  AddNodeIDValueTypes(ID, N->getVTList());
313  // Add the operand info.
314  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
315
316  // Handle SDNode leafs with special info.
317  switch (N->getOpcode()) {
318  default: break;  // Normal nodes don't need extra info.
319  case ISD::TargetConstant:
320  case ISD::Constant:
321    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
322    break;
323  case ISD::TargetConstantFP:
324  case ISD::ConstantFP: {
325    ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF());
326    break;
327  }
328  case ISD::TargetGlobalAddress:
329  case ISD::GlobalAddress:
330  case ISD::TargetGlobalTLSAddress:
331  case ISD::GlobalTLSAddress: {
332    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
333    ID.AddPointer(GA->getGlobal());
334    ID.AddInteger(GA->getOffset());
335    break;
336  }
337  case ISD::BasicBlock:
338    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
339    break;
340  case ISD::Register:
341    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
342    break;
343  case ISD::SRCVALUE: {
344    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
345    ID.AddPointer(SV->getValue());
346    ID.AddInteger(SV->getOffset());
347    break;
348  }
349  case ISD::FrameIndex:
350  case ISD::TargetFrameIndex:
351    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
352    break;
353  case ISD::JumpTable:
354  case ISD::TargetJumpTable:
355    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
356    break;
357  case ISD::ConstantPool:
358  case ISD::TargetConstantPool: {
359    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
360    ID.AddInteger(CP->getAlignment());
361    ID.AddInteger(CP->getOffset());
362    if (CP->isMachineConstantPoolEntry())
363      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
364    else
365      ID.AddPointer(CP->getConstVal());
366    break;
367  }
368  case ISD::LOAD: {
369    LoadSDNode *LD = cast<LoadSDNode>(N);
370    ID.AddInteger(LD->getAddressingMode());
371    ID.AddInteger(LD->getExtensionType());
372    ID.AddInteger((unsigned int)(LD->getLoadedVT()));
373    ID.AddPointer(LD->getSrcValue());
374    ID.AddInteger(LD->getSrcValueOffset());
375    ID.AddInteger(LD->getAlignment());
376    ID.AddInteger(LD->isVolatile());
377    break;
378  }
379  case ISD::STORE: {
380    StoreSDNode *ST = cast<StoreSDNode>(N);
381    ID.AddInteger(ST->getAddressingMode());
382    ID.AddInteger(ST->isTruncatingStore());
383    ID.AddInteger((unsigned int)(ST->getStoredVT()));
384    ID.AddPointer(ST->getSrcValue());
385    ID.AddInteger(ST->getSrcValueOffset());
386    ID.AddInteger(ST->getAlignment());
387    ID.AddInteger(ST->isVolatile());
388    break;
389  }
390  }
391}
392
393//===----------------------------------------------------------------------===//
394//                              SelectionDAG Class
395//===----------------------------------------------------------------------===//
396
397/// RemoveDeadNodes - This method deletes all unreachable nodes in the
398/// SelectionDAG.
399void SelectionDAG::RemoveDeadNodes() {
400  // Create a dummy node (which is not added to allnodes), that adds a reference
401  // to the root node, preventing it from being deleted.
402  HandleSDNode Dummy(getRoot());
403
404  SmallVector<SDNode*, 128> DeadNodes;
405
406  // Add all obviously-dead nodes to the DeadNodes worklist.
407  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
408    if (I->use_empty())
409      DeadNodes.push_back(I);
410
411  // Process the worklist, deleting the nodes and adding their uses to the
412  // worklist.
413  while (!DeadNodes.empty()) {
414    SDNode *N = DeadNodes.back();
415    DeadNodes.pop_back();
416
417    // Take the node out of the appropriate CSE map.
418    RemoveNodeFromCSEMaps(N);
419
420    // Next, brutally remove the operand list.  This is safe to do, as there are
421    // no cycles in the graph.
422    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
423      SDNode *Operand = I->Val;
424      Operand->removeUser(N);
425
426      // Now that we removed this operand, see if there are no uses of it left.
427      if (Operand->use_empty())
428        DeadNodes.push_back(Operand);
429    }
430    if (N->OperandsNeedDelete)
431      delete[] N->OperandList;
432    N->OperandList = 0;
433    N->NumOperands = 0;
434
435    // Finally, remove N itself.
436    AllNodes.erase(N);
437  }
438
439  // If the root changed (e.g. it was a dead load, update the root).
440  setRoot(Dummy.getValue());
441}
442
443void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
444  SmallVector<SDNode*, 16> DeadNodes;
445  DeadNodes.push_back(N);
446
447  // Process the worklist, deleting the nodes and adding their uses to the
448  // worklist.
449  while (!DeadNodes.empty()) {
450    SDNode *N = DeadNodes.back();
451    DeadNodes.pop_back();
452
453    // Take the node out of the appropriate CSE map.
454    RemoveNodeFromCSEMaps(N);
455
456    // Next, brutally remove the operand list.  This is safe to do, as there are
457    // no cycles in the graph.
458    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
459      SDNode *Operand = I->Val;
460      Operand->removeUser(N);
461
462      // Now that we removed this operand, see if there are no uses of it left.
463      if (Operand->use_empty())
464        DeadNodes.push_back(Operand);
465    }
466    if (N->OperandsNeedDelete)
467      delete[] N->OperandList;
468    N->OperandList = 0;
469    N->NumOperands = 0;
470
471    // Finally, remove N itself.
472    Deleted.push_back(N);
473    AllNodes.erase(N);
474  }
475}
476
477void SelectionDAG::DeleteNode(SDNode *N) {
478  assert(N->use_empty() && "Cannot delete a node that is not dead!");
479
480  // First take this out of the appropriate CSE map.
481  RemoveNodeFromCSEMaps(N);
482
483  // Finally, remove uses due to operands of this node, remove from the
484  // AllNodes list, and delete the node.
485  DeleteNodeNotInCSEMaps(N);
486}
487
488void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
489
490  // Remove it from the AllNodes list.
491  AllNodes.remove(N);
492
493  // Drop all of the operands and decrement used nodes use counts.
494  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
495    I->Val->removeUser(N);
496  if (N->OperandsNeedDelete)
497    delete[] N->OperandList;
498  N->OperandList = 0;
499  N->NumOperands = 0;
500
501  delete N;
502}
503
504/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
505/// correspond to it.  This is useful when we're about to delete or repurpose
506/// the node.  We don't want future request for structurally identical nodes
507/// to return N anymore.
508void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
509  bool Erased = false;
510  switch (N->getOpcode()) {
511  case ISD::HANDLENODE: return;  // noop.
512  case ISD::STRING:
513    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
514    break;
515  case ISD::CONDCODE:
516    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
517           "Cond code doesn't exist!");
518    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
519    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
520    break;
521  case ISD::ExternalSymbol:
522    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
523    break;
524  case ISD::TargetExternalSymbol:
525    Erased =
526      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
527    break;
528  case ISD::VALUETYPE:
529    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
530    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
531    break;
532  default:
533    // Remove it from the CSE Map.
534    Erased = CSEMap.RemoveNode(N);
535    break;
536  }
537#ifndef NDEBUG
538  // Verify that the node was actually in one of the CSE maps, unless it has a
539  // flag result (which cannot be CSE'd) or is one of the special cases that are
540  // not subject to CSE.
541  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
542      !N->isTargetOpcode()) {
543    N->dump(this);
544    cerr << "\n";
545    assert(0 && "Node is not in map!");
546  }
547#endif
548}
549
550/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
551/// has been taken out and modified in some way.  If the specified node already
552/// exists in the CSE maps, do not modify the maps, but return the existing node
553/// instead.  If it doesn't exist, add it and return null.
554///
555SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
556  assert(N->getNumOperands() && "This is a leaf node!");
557  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
558    return 0;    // Never add these nodes.
559
560  // Check that remaining values produced are not flags.
561  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
562    if (N->getValueType(i) == MVT::Flag)
563      return 0;   // Never CSE anything that produces a flag.
564
565  SDNode *New = CSEMap.GetOrInsertNode(N);
566  if (New != N) return New;  // Node already existed.
567  return 0;
568}
569
570/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
571/// were replaced with those specified.  If this node is never memoized,
572/// return null, otherwise return a pointer to the slot it would take.  If a
573/// node already exists with these operands, the slot will be non-null.
574SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
575                                           void *&InsertPos) {
576  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
577    return 0;    // Never add these nodes.
578
579  // Check that remaining values produced are not flags.
580  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
581    if (N->getValueType(i) == MVT::Flag)
582      return 0;   // Never CSE anything that produces a flag.
583
584  SDOperand Ops[] = { Op };
585  FoldingSetNodeID ID;
586  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
587  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
588}
589
590/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
591/// were replaced with those specified.  If this node is never memoized,
592/// return null, otherwise return a pointer to the slot it would take.  If a
593/// node already exists with these operands, the slot will be non-null.
594SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
595                                           SDOperand Op1, SDOperand Op2,
596                                           void *&InsertPos) {
597  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
598    return 0;    // Never add these nodes.
599
600  // Check that remaining values produced are not flags.
601  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
602    if (N->getValueType(i) == MVT::Flag)
603      return 0;   // Never CSE anything that produces a flag.
604
605  SDOperand Ops[] = { Op1, Op2 };
606  FoldingSetNodeID ID;
607  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
608  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
609}
610
611
612/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
613/// were replaced with those specified.  If this node is never memoized,
614/// return null, otherwise return a pointer to the slot it would take.  If a
615/// node already exists with these operands, the slot will be non-null.
616SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
617                                           const SDOperand *Ops,unsigned NumOps,
618                                           void *&InsertPos) {
619  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
620    return 0;    // Never add these nodes.
621
622  // Check that remaining values produced are not flags.
623  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
624    if (N->getValueType(i) == MVT::Flag)
625      return 0;   // Never CSE anything that produces a flag.
626
627  FoldingSetNodeID ID;
628  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
629
630  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
631    ID.AddInteger(LD->getAddressingMode());
632    ID.AddInteger(LD->getExtensionType());
633    ID.AddInteger((unsigned int)(LD->getLoadedVT()));
634    ID.AddPointer(LD->getSrcValue());
635    ID.AddInteger(LD->getSrcValueOffset());
636    ID.AddInteger(LD->getAlignment());
637    ID.AddInteger(LD->isVolatile());
638  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
639    ID.AddInteger(ST->getAddressingMode());
640    ID.AddInteger(ST->isTruncatingStore());
641    ID.AddInteger((unsigned int)(ST->getStoredVT()));
642    ID.AddPointer(ST->getSrcValue());
643    ID.AddInteger(ST->getSrcValueOffset());
644    ID.AddInteger(ST->getAlignment());
645    ID.AddInteger(ST->isVolatile());
646  }
647
648  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
649}
650
651
652SelectionDAG::~SelectionDAG() {
653  while (!AllNodes.empty()) {
654    SDNode *N = AllNodes.begin();
655    N->SetNextInBucket(0);
656    if (N->OperandsNeedDelete)
657      delete [] N->OperandList;
658    N->OperandList = 0;
659    N->NumOperands = 0;
660    AllNodes.pop_front();
661  }
662}
663
664SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
665  if (Op.getValueType() == VT) return Op;
666  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
667  return getNode(ISD::AND, Op.getValueType(), Op,
668                 getConstant(Imm, Op.getValueType()));
669}
670
671SDOperand SelectionDAG::getString(const std::string &Val) {
672  StringSDNode *&N = StringNodes[Val];
673  if (!N) {
674    N = new StringSDNode(Val);
675    AllNodes.push_back(N);
676  }
677  return SDOperand(N, 0);
678}
679
680SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
681  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
682  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
683
684  // Mask out any bits that are not valid for this constant.
685  Val &= MVT::getIntVTBitMask(VT);
686
687  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
688  FoldingSetNodeID ID;
689  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
690  ID.AddInteger(Val);
691  void *IP = 0;
692  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
693    return SDOperand(E, 0);
694  SDNode *N = new ConstantSDNode(isT, Val, VT);
695  CSEMap.InsertNode(N, IP);
696  AllNodes.push_back(N);
697  return SDOperand(N, 0);
698}
699
700SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
701                                      bool isTarget) {
702  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
703
704  MVT::ValueType EltVT =
705    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
706
707  // Do the map lookup using the actual bit pattern for the floating point
708  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
709  // we don't have issues with SNANs.
710  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
711  FoldingSetNodeID ID;
712  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
713  ID.AddAPFloat(V);
714  void *IP = 0;
715  SDNode *N = NULL;
716  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
717    if (!MVT::isVector(VT))
718      return SDOperand(N, 0);
719  if (!N) {
720    N = new ConstantFPSDNode(isTarget, V, EltVT);
721    CSEMap.InsertNode(N, IP);
722    AllNodes.push_back(N);
723  }
724
725  SDOperand Result(N, 0);
726  if (MVT::isVector(VT)) {
727    SmallVector<SDOperand, 8> Ops;
728    Ops.assign(MVT::getVectorNumElements(VT), Result);
729    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
730  }
731  return Result;
732}
733
734SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
735                                      bool isTarget) {
736  MVT::ValueType EltVT =
737    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
738  if (EltVT==MVT::f32)
739    return getConstantFP(APFloat((float)Val), VT, isTarget);
740  else
741    return getConstantFP(APFloat(Val), VT, isTarget);
742}
743
744SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
745                                         MVT::ValueType VT, int Offset,
746                                         bool isTargetGA) {
747  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
748  unsigned Opc;
749  if (GVar && GVar->isThreadLocal())
750    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
751  else
752    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
753  FoldingSetNodeID ID;
754  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
755  ID.AddPointer(GV);
756  ID.AddInteger(Offset);
757  void *IP = 0;
758  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
759   return SDOperand(E, 0);
760  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
761  CSEMap.InsertNode(N, IP);
762  AllNodes.push_back(N);
763  return SDOperand(N, 0);
764}
765
766SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
767                                      bool isTarget) {
768  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
769  FoldingSetNodeID ID;
770  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
771  ID.AddInteger(FI);
772  void *IP = 0;
773  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
774    return SDOperand(E, 0);
775  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
776  CSEMap.InsertNode(N, IP);
777  AllNodes.push_back(N);
778  return SDOperand(N, 0);
779}
780
781SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
782  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
783  FoldingSetNodeID ID;
784  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
785  ID.AddInteger(JTI);
786  void *IP = 0;
787  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
788    return SDOperand(E, 0);
789  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
790  CSEMap.InsertNode(N, IP);
791  AllNodes.push_back(N);
792  return SDOperand(N, 0);
793}
794
795SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
796                                        unsigned Alignment, int Offset,
797                                        bool isTarget) {
798  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
799  FoldingSetNodeID ID;
800  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
801  ID.AddInteger(Alignment);
802  ID.AddInteger(Offset);
803  ID.AddPointer(C);
804  void *IP = 0;
805  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
806    return SDOperand(E, 0);
807  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
808  CSEMap.InsertNode(N, IP);
809  AllNodes.push_back(N);
810  return SDOperand(N, 0);
811}
812
813
814SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
815                                        MVT::ValueType VT,
816                                        unsigned Alignment, int Offset,
817                                        bool isTarget) {
818  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
819  FoldingSetNodeID ID;
820  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
821  ID.AddInteger(Alignment);
822  ID.AddInteger(Offset);
823  C->AddSelectionDAGCSEId(ID);
824  void *IP = 0;
825  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
826    return SDOperand(E, 0);
827  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
828  CSEMap.InsertNode(N, IP);
829  AllNodes.push_back(N);
830  return SDOperand(N, 0);
831}
832
833
834SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
835  FoldingSetNodeID ID;
836  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
837  ID.AddPointer(MBB);
838  void *IP = 0;
839  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
840    return SDOperand(E, 0);
841  SDNode *N = new BasicBlockSDNode(MBB);
842  CSEMap.InsertNode(N, IP);
843  AllNodes.push_back(N);
844  return SDOperand(N, 0);
845}
846
847SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
848  if ((unsigned)VT >= ValueTypeNodes.size())
849    ValueTypeNodes.resize(VT+1);
850  if (ValueTypeNodes[VT] == 0) {
851    ValueTypeNodes[VT] = new VTSDNode(VT);
852    AllNodes.push_back(ValueTypeNodes[VT]);
853  }
854
855  return SDOperand(ValueTypeNodes[VT], 0);
856}
857
858SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
859  SDNode *&N = ExternalSymbols[Sym];
860  if (N) return SDOperand(N, 0);
861  N = new ExternalSymbolSDNode(false, Sym, VT);
862  AllNodes.push_back(N);
863  return SDOperand(N, 0);
864}
865
866SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
867                                                MVT::ValueType VT) {
868  SDNode *&N = TargetExternalSymbols[Sym];
869  if (N) return SDOperand(N, 0);
870  N = new ExternalSymbolSDNode(true, Sym, VT);
871  AllNodes.push_back(N);
872  return SDOperand(N, 0);
873}
874
875SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
876  if ((unsigned)Cond >= CondCodeNodes.size())
877    CondCodeNodes.resize(Cond+1);
878
879  if (CondCodeNodes[Cond] == 0) {
880    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
881    AllNodes.push_back(CondCodeNodes[Cond]);
882  }
883  return SDOperand(CondCodeNodes[Cond], 0);
884}
885
886SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
887  FoldingSetNodeID ID;
888  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
889  ID.AddInteger(RegNo);
890  void *IP = 0;
891  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
892    return SDOperand(E, 0);
893  SDNode *N = new RegisterSDNode(RegNo, VT);
894  CSEMap.InsertNode(N, IP);
895  AllNodes.push_back(N);
896  return SDOperand(N, 0);
897}
898
899SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
900  assert((!V || isa<PointerType>(V->getType())) &&
901         "SrcValue is not a pointer?");
902
903  FoldingSetNodeID ID;
904  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
905  ID.AddPointer(V);
906  ID.AddInteger(Offset);
907  void *IP = 0;
908  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
909    return SDOperand(E, 0);
910  SDNode *N = new SrcValueSDNode(V, Offset);
911  CSEMap.InsertNode(N, IP);
912  AllNodes.push_back(N);
913  return SDOperand(N, 0);
914}
915
916SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
917                                  SDOperand N2, ISD::CondCode Cond) {
918  // These setcc operations always fold.
919  switch (Cond) {
920  default: break;
921  case ISD::SETFALSE:
922  case ISD::SETFALSE2: return getConstant(0, VT);
923  case ISD::SETTRUE:
924  case ISD::SETTRUE2:  return getConstant(1, VT);
925
926  case ISD::SETOEQ:
927  case ISD::SETOGT:
928  case ISD::SETOGE:
929  case ISD::SETOLT:
930  case ISD::SETOLE:
931  case ISD::SETONE:
932  case ISD::SETO:
933  case ISD::SETUO:
934  case ISD::SETUEQ:
935  case ISD::SETUNE:
936    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
937    break;
938  }
939
940  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
941    uint64_t C2 = N2C->getValue();
942    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
943      uint64_t C1 = N1C->getValue();
944
945      // Sign extend the operands if required
946      if (ISD::isSignedIntSetCC(Cond)) {
947        C1 = N1C->getSignExtended();
948        C2 = N2C->getSignExtended();
949      }
950
951      switch (Cond) {
952      default: assert(0 && "Unknown integer setcc!");
953      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
954      case ISD::SETNE:  return getConstant(C1 != C2, VT);
955      case ISD::SETULT: return getConstant(C1 <  C2, VT);
956      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
957      case ISD::SETULE: return getConstant(C1 <= C2, VT);
958      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
959      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
960      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
961      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
962      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
963      }
964    }
965  }
966  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
967    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
968
969      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
970      switch (Cond) {
971      default: break;
972      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
973                          return getNode(ISD::UNDEF, VT);
974                        // fall through
975      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
976      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
977                          return getNode(ISD::UNDEF, VT);
978                        // fall through
979      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
980                                           R==APFloat::cmpLessThan, VT);
981      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
982                          return getNode(ISD::UNDEF, VT);
983                        // fall through
984      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
985      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
986                          return getNode(ISD::UNDEF, VT);
987                        // fall through
988      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
989      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
990                          return getNode(ISD::UNDEF, VT);
991                        // fall through
992      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
993                                           R==APFloat::cmpEqual, VT);
994      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
995                          return getNode(ISD::UNDEF, VT);
996                        // fall through
997      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
998                                           R==APFloat::cmpEqual, VT);
999      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1000      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1001      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1002                                           R==APFloat::cmpEqual, VT);
1003      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1004      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1005                                           R==APFloat::cmpLessThan, VT);
1006      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1007                                           R==APFloat::cmpUnordered, VT);
1008      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1009      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1010      }
1011    } else {
1012      // Ensure that the constant occurs on the RHS.
1013      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1014    }
1015
1016  // Could not fold it.
1017  return SDOperand();
1018}
1019
1020/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1021/// this predicate to simplify operations downstream.  Mask is known to be zero
1022/// for bits that V cannot have.
1023bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1024                                     unsigned Depth) const {
1025  // The masks are not wide enough to represent this type!  Should use APInt.
1026  if (Op.getValueType() == MVT::i128)
1027    return false;
1028
1029  uint64_t KnownZero, KnownOne;
1030  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1031  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1032  return (KnownZero & Mask) == Mask;
1033}
1034
1035/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1036/// known to be either zero or one and return them in the KnownZero/KnownOne
1037/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1038/// processing.
1039void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1040                                     uint64_t &KnownZero, uint64_t &KnownOne,
1041                                     unsigned Depth) const {
1042  KnownZero = KnownOne = 0;   // Don't know anything.
1043  if (Depth == 6 || Mask == 0)
1044    return;  // Limit search depth.
1045
1046  // The masks are not wide enough to represent this type!  Should use APInt.
1047  if (Op.getValueType() == MVT::i128)
1048    return;
1049
1050  uint64_t KnownZero2, KnownOne2;
1051
1052  switch (Op.getOpcode()) {
1053  case ISD::Constant:
1054    // We know all of the bits for a constant!
1055    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1056    KnownZero = ~KnownOne & Mask;
1057    return;
1058  case ISD::AND:
1059    // If either the LHS or the RHS are Zero, the result is zero.
1060    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1061    Mask &= ~KnownZero;
1062    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1063    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1064    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1065
1066    // Output known-1 bits are only known if set in both the LHS & RHS.
1067    KnownOne &= KnownOne2;
1068    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1069    KnownZero |= KnownZero2;
1070    return;
1071  case ISD::OR:
1072    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1073    Mask &= ~KnownOne;
1074    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1075    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1076    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1077
1078    // Output known-0 bits are only known if clear in both the LHS & RHS.
1079    KnownZero &= KnownZero2;
1080    // Output known-1 are known to be set if set in either the LHS | RHS.
1081    KnownOne |= KnownOne2;
1082    return;
1083  case ISD::XOR: {
1084    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1085    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1086    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1087    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1088
1089    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1090    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1091    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1092    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1093    KnownZero = KnownZeroOut;
1094    return;
1095  }
1096  case ISD::SELECT:
1097    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1098    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1099    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1100    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1101
1102    // Only known if known in both the LHS and RHS.
1103    KnownOne &= KnownOne2;
1104    KnownZero &= KnownZero2;
1105    return;
1106  case ISD::SELECT_CC:
1107    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1108    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1109    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1110    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1111
1112    // Only known if known in both the LHS and RHS.
1113    KnownOne &= KnownOne2;
1114    KnownZero &= KnownZero2;
1115    return;
1116  case ISD::SETCC:
1117    // If we know the result of a setcc has the top bits zero, use this info.
1118    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1119      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1120    return;
1121  case ISD::SHL:
1122    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1123    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1124      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1125                        KnownZero, KnownOne, Depth+1);
1126      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1127      KnownZero <<= SA->getValue();
1128      KnownOne  <<= SA->getValue();
1129      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1130    }
1131    return;
1132  case ISD::SRL:
1133    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1134    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1135      MVT::ValueType VT = Op.getValueType();
1136      unsigned ShAmt = SA->getValue();
1137
1138      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1139      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1140                        KnownZero, KnownOne, Depth+1);
1141      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1142      KnownZero &= TypeMask;
1143      KnownOne  &= TypeMask;
1144      KnownZero >>= ShAmt;
1145      KnownOne  >>= ShAmt;
1146
1147      uint64_t HighBits = (1ULL << ShAmt)-1;
1148      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1149      KnownZero |= HighBits;  // High bits known zero.
1150    }
1151    return;
1152  case ISD::SRA:
1153    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1154      MVT::ValueType VT = Op.getValueType();
1155      unsigned ShAmt = SA->getValue();
1156
1157      // Compute the new bits that are at the top now.
1158      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1159
1160      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1161      // If any of the demanded bits are produced by the sign extension, we also
1162      // demand the input sign bit.
1163      uint64_t HighBits = (1ULL << ShAmt)-1;
1164      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1165      if (HighBits & Mask)
1166        InDemandedMask |= MVT::getIntVTSignBit(VT);
1167
1168      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1169                        Depth+1);
1170      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1171      KnownZero &= TypeMask;
1172      KnownOne  &= TypeMask;
1173      KnownZero >>= ShAmt;
1174      KnownOne  >>= ShAmt;
1175
1176      // Handle the sign bits.
1177      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1178      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1179
1180      if (KnownZero & SignBit) {
1181        KnownZero |= HighBits;  // New bits are known zero.
1182      } else if (KnownOne & SignBit) {
1183        KnownOne  |= HighBits;  // New bits are known one.
1184      }
1185    }
1186    return;
1187  case ISD::SIGN_EXTEND_INREG: {
1188    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1189
1190    // Sign extension.  Compute the demanded bits in the result that are not
1191    // present in the input.
1192    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1193
1194    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1195    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1196
1197    // If the sign extended bits are demanded, we know that the sign
1198    // bit is demanded.
1199    if (NewBits)
1200      InputDemandedBits |= InSignBit;
1201
1202    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1203                      KnownZero, KnownOne, Depth+1);
1204    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1205
1206    // If the sign bit of the input is known set or clear, then we know the
1207    // top bits of the result.
1208    if (KnownZero & InSignBit) {          // Input sign bit known clear
1209      KnownZero |= NewBits;
1210      KnownOne  &= ~NewBits;
1211    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1212      KnownOne  |= NewBits;
1213      KnownZero &= ~NewBits;
1214    } else {                              // Input sign bit unknown
1215      KnownZero &= ~NewBits;
1216      KnownOne  &= ~NewBits;
1217    }
1218    return;
1219  }
1220  case ISD::CTTZ:
1221  case ISD::CTLZ:
1222  case ISD::CTPOP: {
1223    MVT::ValueType VT = Op.getValueType();
1224    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1225    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1226    KnownOne  = 0;
1227    return;
1228  }
1229  case ISD::LOAD: {
1230    if (ISD::isZEXTLoad(Op.Val)) {
1231      LoadSDNode *LD = cast<LoadSDNode>(Op);
1232      MVT::ValueType VT = LD->getLoadedVT();
1233      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1234    }
1235    return;
1236  }
1237  case ISD::ZERO_EXTEND: {
1238    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1239    uint64_t NewBits = (~InMask) & Mask;
1240    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1241                      KnownOne, Depth+1);
1242    KnownZero |= NewBits & Mask;
1243    KnownOne  &= ~NewBits;
1244    return;
1245  }
1246  case ISD::SIGN_EXTEND: {
1247    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1248    unsigned InBits    = MVT::getSizeInBits(InVT);
1249    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1250    uint64_t InSignBit = 1ULL << (InBits-1);
1251    uint64_t NewBits   = (~InMask) & Mask;
1252    uint64_t InDemandedBits = Mask & InMask;
1253
1254    // If any of the sign extended bits are demanded, we know that the sign
1255    // bit is demanded.
1256    if (NewBits & Mask)
1257      InDemandedBits |= InSignBit;
1258
1259    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1260                      KnownOne, Depth+1);
1261    // If the sign bit is known zero or one, the  top bits match.
1262    if (KnownZero & InSignBit) {
1263      KnownZero |= NewBits;
1264      KnownOne  &= ~NewBits;
1265    } else if (KnownOne & InSignBit) {
1266      KnownOne  |= NewBits;
1267      KnownZero &= ~NewBits;
1268    } else {   // Otherwise, top bits aren't known.
1269      KnownOne  &= ~NewBits;
1270      KnownZero &= ~NewBits;
1271    }
1272    return;
1273  }
1274  case ISD::ANY_EXTEND: {
1275    MVT::ValueType VT = Op.getOperand(0).getValueType();
1276    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1277                      KnownZero, KnownOne, Depth+1);
1278    return;
1279  }
1280  case ISD::TRUNCATE: {
1281    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1282    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1283    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1284    KnownZero &= OutMask;
1285    KnownOne &= OutMask;
1286    break;
1287  }
1288  case ISD::AssertZext: {
1289    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1290    uint64_t InMask = MVT::getIntVTBitMask(VT);
1291    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1292                      KnownOne, Depth+1);
1293    KnownZero |= (~InMask) & Mask;
1294    return;
1295  }
1296  case ISD::ADD: {
1297    // If either the LHS or the RHS are Zero, the result is zero.
1298    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1299    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1300    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1301    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1302
1303    // Output known-0 bits are known if clear or set in both the low clear bits
1304    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1305    // low 3 bits clear.
1306    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1307                                     CountTrailingZeros_64(~KnownZero2));
1308
1309    KnownZero = (1ULL << KnownZeroOut) - 1;
1310    KnownOne = 0;
1311    return;
1312  }
1313  case ISD::SUB: {
1314    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1315    if (!CLHS) return;
1316
1317    // We know that the top bits of C-X are clear if X contains less bits
1318    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1319    // positive if we can prove that X is >= 0 and < 16.
1320    MVT::ValueType VT = CLHS->getValueType(0);
1321    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1322      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1323      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1324      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1325      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1326
1327      // If all of the MaskV bits are known to be zero, then we know the output
1328      // top bits are zero, because we now know that the output is from [0-C].
1329      if ((KnownZero & MaskV) == MaskV) {
1330        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1331        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1332        KnownOne = 0;   // No one bits known.
1333      } else {
1334        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1335      }
1336    }
1337    return;
1338  }
1339  default:
1340    // Allow the target to implement this method for its nodes.
1341    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1342  case ISD::INTRINSIC_WO_CHAIN:
1343  case ISD::INTRINSIC_W_CHAIN:
1344  case ISD::INTRINSIC_VOID:
1345      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1346    }
1347    return;
1348  }
1349}
1350
1351/// ComputeNumSignBits - Return the number of times the sign bit of the
1352/// register is replicated into the other bits.  We know that at least 1 bit
1353/// is always equal to the sign bit (itself), but other cases can give us
1354/// information.  For example, immediately after an "SRA X, 2", we know that
1355/// the top 3 bits are all equal to each other, so we return 3.
1356unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1357  MVT::ValueType VT = Op.getValueType();
1358  assert(MVT::isInteger(VT) && "Invalid VT!");
1359  unsigned VTBits = MVT::getSizeInBits(VT);
1360  unsigned Tmp, Tmp2;
1361
1362  if (Depth == 6)
1363    return 1;  // Limit search depth.
1364
1365  switch (Op.getOpcode()) {
1366  default: break;
1367  case ISD::AssertSext:
1368    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1369    return VTBits-Tmp+1;
1370  case ISD::AssertZext:
1371    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1372    return VTBits-Tmp;
1373
1374  case ISD::Constant: {
1375    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1376    // If negative, invert the bits, then look at it.
1377    if (Val & MVT::getIntVTSignBit(VT))
1378      Val = ~Val;
1379
1380    // Shift the bits so they are the leading bits in the int64_t.
1381    Val <<= 64-VTBits;
1382
1383    // Return # leading zeros.  We use 'min' here in case Val was zero before
1384    // shifting.  We don't want to return '64' as for an i32 "0".
1385    return std::min(VTBits, CountLeadingZeros_64(Val));
1386  }
1387
1388  case ISD::SIGN_EXTEND:
1389    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1390    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1391
1392  case ISD::SIGN_EXTEND_INREG:
1393    // Max of the input and what this extends.
1394    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1395    Tmp = VTBits-Tmp+1;
1396
1397    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1398    return std::max(Tmp, Tmp2);
1399
1400  case ISD::SRA:
1401    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1402    // SRA X, C   -> adds C sign bits.
1403    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1404      Tmp += C->getValue();
1405      if (Tmp > VTBits) Tmp = VTBits;
1406    }
1407    return Tmp;
1408  case ISD::SHL:
1409    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1410      // shl destroys sign bits.
1411      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1412      if (C->getValue() >= VTBits ||      // Bad shift.
1413          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1414      return Tmp - C->getValue();
1415    }
1416    break;
1417  case ISD::AND:
1418  case ISD::OR:
1419  case ISD::XOR:    // NOT is handled here.
1420    // Logical binary ops preserve the number of sign bits.
1421    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1422    if (Tmp == 1) return 1;  // Early out.
1423    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1424    return std::min(Tmp, Tmp2);
1425
1426  case ISD::SELECT:
1427    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1428    if (Tmp == 1) return 1;  // Early out.
1429    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1430    return std::min(Tmp, Tmp2);
1431
1432  case ISD::SETCC:
1433    // If setcc returns 0/-1, all bits are sign bits.
1434    if (TLI.getSetCCResultContents() ==
1435        TargetLowering::ZeroOrNegativeOneSetCCResult)
1436      return VTBits;
1437    break;
1438  case ISD::ROTL:
1439  case ISD::ROTR:
1440    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1441      unsigned RotAmt = C->getValue() & (VTBits-1);
1442
1443      // Handle rotate right by N like a rotate left by 32-N.
1444      if (Op.getOpcode() == ISD::ROTR)
1445        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1446
1447      // If we aren't rotating out all of the known-in sign bits, return the
1448      // number that are left.  This handles rotl(sext(x), 1) for example.
1449      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1450      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1451    }
1452    break;
1453  case ISD::ADD:
1454    // Add can have at most one carry bit.  Thus we know that the output
1455    // is, at worst, one more bit than the inputs.
1456    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1457    if (Tmp == 1) return 1;  // Early out.
1458
1459    // Special case decrementing a value (ADD X, -1):
1460    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1461      if (CRHS->isAllOnesValue()) {
1462        uint64_t KnownZero, KnownOne;
1463        uint64_t Mask = MVT::getIntVTBitMask(VT);
1464        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1465
1466        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1467        // sign bits set.
1468        if ((KnownZero|1) == Mask)
1469          return VTBits;
1470
1471        // If we are subtracting one from a positive number, there is no carry
1472        // out of the result.
1473        if (KnownZero & MVT::getIntVTSignBit(VT))
1474          return Tmp;
1475      }
1476
1477    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1478    if (Tmp2 == 1) return 1;
1479      return std::min(Tmp, Tmp2)-1;
1480    break;
1481
1482  case ISD::SUB:
1483    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1484    if (Tmp2 == 1) return 1;
1485
1486    // Handle NEG.
1487    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1488      if (CLHS->getValue() == 0) {
1489        uint64_t KnownZero, KnownOne;
1490        uint64_t Mask = MVT::getIntVTBitMask(VT);
1491        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1492        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1493        // sign bits set.
1494        if ((KnownZero|1) == Mask)
1495          return VTBits;
1496
1497        // If the input is known to be positive (the sign bit is known clear),
1498        // the output of the NEG has the same number of sign bits as the input.
1499        if (KnownZero & MVT::getIntVTSignBit(VT))
1500          return Tmp2;
1501
1502        // Otherwise, we treat this like a SUB.
1503      }
1504
1505    // Sub can have at most one carry bit.  Thus we know that the output
1506    // is, at worst, one more bit than the inputs.
1507    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1508    if (Tmp == 1) return 1;  // Early out.
1509      return std::min(Tmp, Tmp2)-1;
1510    break;
1511  case ISD::TRUNCATE:
1512    // FIXME: it's tricky to do anything useful for this, but it is an important
1513    // case for targets like X86.
1514    break;
1515  }
1516
1517  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1518  if (Op.getOpcode() == ISD::LOAD) {
1519    LoadSDNode *LD = cast<LoadSDNode>(Op);
1520    unsigned ExtType = LD->getExtensionType();
1521    switch (ExtType) {
1522    default: break;
1523    case ISD::SEXTLOAD:    // '17' bits known
1524      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1525      return VTBits-Tmp+1;
1526    case ISD::ZEXTLOAD:    // '16' bits known
1527      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1528      return VTBits-Tmp;
1529    }
1530  }
1531
1532  // Allow the target to implement this method for its nodes.
1533  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1534      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1535      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1536      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1537    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1538    if (NumBits > 1) return NumBits;
1539  }
1540
1541  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1542  // use this information.
1543  uint64_t KnownZero, KnownOne;
1544  uint64_t Mask = MVT::getIntVTBitMask(VT);
1545  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1546
1547  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1548  if (KnownZero & SignBit) {        // SignBit is 0
1549    Mask = KnownZero;
1550  } else if (KnownOne & SignBit) {  // SignBit is 1;
1551    Mask = KnownOne;
1552  } else {
1553    // Nothing known.
1554    return 1;
1555  }
1556
1557  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1558  // the number of identical bits in the top of the input value.
1559  Mask ^= ~0ULL;
1560  Mask <<= 64-VTBits;
1561  // Return # leading zeros.  We use 'min' here in case Val was zero before
1562  // shifting.  We don't want to return '64' as for an i32 "0".
1563  return std::min(VTBits, CountLeadingZeros_64(Mask));
1564}
1565
1566
1567/// getNode - Gets or creates the specified node.
1568///
1569SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1570  FoldingSetNodeID ID;
1571  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1572  void *IP = 0;
1573  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1574    return SDOperand(E, 0);
1575  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1576  CSEMap.InsertNode(N, IP);
1577
1578  AllNodes.push_back(N);
1579  return SDOperand(N, 0);
1580}
1581
1582SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1583                                SDOperand Operand) {
1584  unsigned Tmp1;
1585  // Constant fold unary operations with an integer constant operand.
1586  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1587    uint64_t Val = C->getValue();
1588    switch (Opcode) {
1589    default: break;
1590    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1591    case ISD::ANY_EXTEND:
1592    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1593    case ISD::TRUNCATE:    return getConstant(Val, VT);
1594    case ISD::UINT_TO_FP:
1595    case ISD::SINT_TO_FP: {
1596      const uint64_t zero[] = {0, 0};
1597      APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
1598      (void)apf.convertFromInteger(&Val,
1599                               MVT::getSizeInBits(Operand.getValueType()),
1600                               Opcode==ISD::SINT_TO_FP,
1601                               APFloat::rmTowardZero);
1602      return getConstantFP(apf, VT);
1603    }
1604    case ISD::BIT_CONVERT:
1605      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1606        return getConstantFP(BitsToFloat(Val), VT);
1607      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1608        return getConstantFP(BitsToDouble(Val), VT);
1609      break;
1610    case ISD::BSWAP:
1611      switch(VT) {
1612      default: assert(0 && "Invalid bswap!"); break;
1613      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1614      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1615      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1616      }
1617      break;
1618    case ISD::CTPOP:
1619      switch(VT) {
1620      default: assert(0 && "Invalid ctpop!"); break;
1621      case MVT::i1: return getConstant(Val != 0, VT);
1622      case MVT::i8:
1623        Tmp1 = (unsigned)Val & 0xFF;
1624        return getConstant(CountPopulation_32(Tmp1), VT);
1625      case MVT::i16:
1626        Tmp1 = (unsigned)Val & 0xFFFF;
1627        return getConstant(CountPopulation_32(Tmp1), VT);
1628      case MVT::i32:
1629        return getConstant(CountPopulation_32((unsigned)Val), VT);
1630      case MVT::i64:
1631        return getConstant(CountPopulation_64(Val), VT);
1632      }
1633    case ISD::CTLZ:
1634      switch(VT) {
1635      default: assert(0 && "Invalid ctlz!"); break;
1636      case MVT::i1: return getConstant(Val == 0, VT);
1637      case MVT::i8:
1638        Tmp1 = (unsigned)Val & 0xFF;
1639        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1640      case MVT::i16:
1641        Tmp1 = (unsigned)Val & 0xFFFF;
1642        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1643      case MVT::i32:
1644        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1645      case MVT::i64:
1646        return getConstant(CountLeadingZeros_64(Val), VT);
1647      }
1648    case ISD::CTTZ:
1649      switch(VT) {
1650      default: assert(0 && "Invalid cttz!"); break;
1651      case MVT::i1: return getConstant(Val == 0, VT);
1652      case MVT::i8:
1653        Tmp1 = (unsigned)Val | 0x100;
1654        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1655      case MVT::i16:
1656        Tmp1 = (unsigned)Val | 0x10000;
1657        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1658      case MVT::i32:
1659        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1660      case MVT::i64:
1661        return getConstant(CountTrailingZeros_64(Val), VT);
1662      }
1663    }
1664  }
1665
1666  // Constant fold unary operations with a floating point constant operand.
1667  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1668    APFloat V = C->getValueAPF();    // make copy
1669    switch (Opcode) {
1670    case ISD::FNEG:
1671      V.changeSign();
1672      return getConstantFP(V, VT);
1673    case ISD::FABS:
1674      V.clearSign();
1675      return getConstantFP(V, VT);
1676    case ISD::FP_ROUND:
1677    case ISD::FP_EXTEND:
1678      // This can return overflow, underflow, or inexact; we don't care.
1679      // FIXME need to be more flexible about rounding mode.
1680      // FIXME need to be more flexible about rounding mode.
1681      (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1682                       VT==MVT::f64 ? APFloat::IEEEdouble :
1683                       VT==MVT::f80 ? APFloat::x87DoubleExtended :
1684                       VT==MVT::f128 ? APFloat::IEEEquad :
1685                       APFloat::Bogus,
1686                       APFloat::rmNearestTiesToEven);
1687      return getConstantFP(V, VT);
1688    case ISD::FP_TO_SINT:
1689    case ISD::FP_TO_UINT: {
1690      integerPart x;
1691      assert(integerPartWidth >= 64);
1692      // FIXME need to be more flexible about rounding mode.
1693      APFloat::opStatus s = V.convertToInteger(&x, 64U,
1694                            Opcode==ISD::FP_TO_SINT,
1695                            APFloat::rmTowardZero);
1696      if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1697        break;
1698      return getConstant(x, VT);
1699    }
1700    case ISD::BIT_CONVERT:
1701      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1702        return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1703      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1704        return getConstant(V.convertToAPInt().getZExtValue(), VT);
1705      break;
1706    }
1707  }
1708
1709  unsigned OpOpcode = Operand.Val->getOpcode();
1710  switch (Opcode) {
1711  case ISD::TokenFactor:
1712    return Operand;         // Factor of one node?  No factor.
1713  case ISD::FP_ROUND:
1714  case ISD::FP_EXTEND:
1715    assert(MVT::isFloatingPoint(VT) &&
1716           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1717    break;
1718  case ISD::SIGN_EXTEND:
1719    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1720           "Invalid SIGN_EXTEND!");
1721    if (Operand.getValueType() == VT) return Operand;   // noop extension
1722    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1723    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1724      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1725    break;
1726  case ISD::ZERO_EXTEND:
1727    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1728           "Invalid ZERO_EXTEND!");
1729    if (Operand.getValueType() == VT) return Operand;   // noop extension
1730    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1731    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1732      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1733    break;
1734  case ISD::ANY_EXTEND:
1735    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1736           "Invalid ANY_EXTEND!");
1737    if (Operand.getValueType() == VT) return Operand;   // noop extension
1738    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1739    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1740      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1741      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1742    break;
1743  case ISD::TRUNCATE:
1744    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1745           "Invalid TRUNCATE!");
1746    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1747    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1748    if (OpOpcode == ISD::TRUNCATE)
1749      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1750    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1751             OpOpcode == ISD::ANY_EXTEND) {
1752      // If the source is smaller than the dest, we still need an extend.
1753      if (Operand.Val->getOperand(0).getValueType() < VT)
1754        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1755      else if (Operand.Val->getOperand(0).getValueType() > VT)
1756        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1757      else
1758        return Operand.Val->getOperand(0);
1759    }
1760    break;
1761  case ISD::BIT_CONVERT:
1762    // Basic sanity checking.
1763    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1764           && "Cannot BIT_CONVERT between types of different sizes!");
1765    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1766    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1767      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1768    if (OpOpcode == ISD::UNDEF)
1769      return getNode(ISD::UNDEF, VT);
1770    break;
1771  case ISD::SCALAR_TO_VECTOR:
1772    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1773           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1774           "Illegal SCALAR_TO_VECTOR node!");
1775    break;
1776  case ISD::FNEG:
1777    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1778      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1779                     Operand.Val->getOperand(0));
1780    if (OpOpcode == ISD::FNEG)  // --X -> X
1781      return Operand.Val->getOperand(0);
1782    break;
1783  case ISD::FABS:
1784    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1785      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1786    break;
1787  }
1788
1789  SDNode *N;
1790  SDVTList VTs = getVTList(VT);
1791  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1792    FoldingSetNodeID ID;
1793    SDOperand Ops[1] = { Operand };
1794    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1795    void *IP = 0;
1796    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1797      return SDOperand(E, 0);
1798    N = new UnarySDNode(Opcode, VTs, Operand);
1799    CSEMap.InsertNode(N, IP);
1800  } else {
1801    N = new UnarySDNode(Opcode, VTs, Operand);
1802  }
1803  AllNodes.push_back(N);
1804  return SDOperand(N, 0);
1805}
1806
1807
1808
1809SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1810                                SDOperand N1, SDOperand N2) {
1811#ifndef NDEBUG
1812  switch (Opcode) {
1813  case ISD::TokenFactor:
1814    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1815           N2.getValueType() == MVT::Other && "Invalid token factor!");
1816    break;
1817  case ISD::AND:
1818  case ISD::OR:
1819  case ISD::XOR:
1820  case ISD::UDIV:
1821  case ISD::UREM:
1822  case ISD::MULHU:
1823  case ISD::MULHS:
1824    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1825    // fall through
1826  case ISD::ADD:
1827  case ISD::SUB:
1828  case ISD::MUL:
1829  case ISD::SDIV:
1830  case ISD::SREM:
1831    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1832    // fall through.
1833  case ISD::FADD:
1834  case ISD::FSUB:
1835  case ISD::FMUL:
1836  case ISD::FDIV:
1837  case ISD::FREM:
1838    assert(N1.getValueType() == N2.getValueType() &&
1839           N1.getValueType() == VT && "Binary operator types must match!");
1840    break;
1841  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1842    assert(N1.getValueType() == VT &&
1843           MVT::isFloatingPoint(N1.getValueType()) &&
1844           MVT::isFloatingPoint(N2.getValueType()) &&
1845           "Invalid FCOPYSIGN!");
1846    break;
1847  case ISD::SHL:
1848  case ISD::SRA:
1849  case ISD::SRL:
1850  case ISD::ROTL:
1851  case ISD::ROTR:
1852    assert(VT == N1.getValueType() &&
1853           "Shift operators return type must be the same as their first arg");
1854    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1855           VT != MVT::i1 && "Shifts only work on integers");
1856    break;
1857  case ISD::FP_ROUND_INREG: {
1858    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1859    assert(VT == N1.getValueType() && "Not an inreg round!");
1860    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1861           "Cannot FP_ROUND_INREG integer types");
1862    assert(EVT <= VT && "Not rounding down!");
1863    break;
1864  }
1865  case ISD::AssertSext:
1866  case ISD::AssertZext:
1867  case ISD::SIGN_EXTEND_INREG: {
1868    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1869    assert(VT == N1.getValueType() && "Not an inreg extend!");
1870    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1871           "Cannot *_EXTEND_INREG FP types");
1872    assert(EVT <= VT && "Not extending!");
1873  }
1874
1875  default: break;
1876  }
1877#endif
1878
1879  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1880  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1881  if (N1C) {
1882    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1883      int64_t Val = N1C->getValue();
1884      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1885      Val <<= 64-FromBits;
1886      Val >>= 64-FromBits;
1887      return getConstant(Val, VT);
1888    }
1889
1890    if (N2C) {
1891      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1892      switch (Opcode) {
1893      case ISD::ADD: return getConstant(C1 + C2, VT);
1894      case ISD::SUB: return getConstant(C1 - C2, VT);
1895      case ISD::MUL: return getConstant(C1 * C2, VT);
1896      case ISD::UDIV:
1897        if (C2) return getConstant(C1 / C2, VT);
1898        break;
1899      case ISD::UREM :
1900        if (C2) return getConstant(C1 % C2, VT);
1901        break;
1902      case ISD::SDIV :
1903        if (C2) return getConstant(N1C->getSignExtended() /
1904                                   N2C->getSignExtended(), VT);
1905        break;
1906      case ISD::SREM :
1907        if (C2) return getConstant(N1C->getSignExtended() %
1908                                   N2C->getSignExtended(), VT);
1909        break;
1910      case ISD::AND  : return getConstant(C1 & C2, VT);
1911      case ISD::OR   : return getConstant(C1 | C2, VT);
1912      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1913      case ISD::SHL  : return getConstant(C1 << C2, VT);
1914      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1915      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1916      case ISD::ROTL :
1917        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1918                           VT);
1919      case ISD::ROTR :
1920        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1921                           VT);
1922      default: break;
1923      }
1924    } else {      // Cannonicalize constant to RHS if commutative
1925      if (isCommutativeBinOp(Opcode)) {
1926        std::swap(N1C, N2C);
1927        std::swap(N1, N2);
1928      }
1929    }
1930  }
1931
1932  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1933  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1934  if (N1CFP) {
1935    if (N2CFP) {
1936      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
1937      APFloat::opStatus s;
1938      switch (Opcode) {
1939      case ISD::FADD:
1940        s = V1.add(V2, APFloat::rmNearestTiesToEven);
1941        if (s!=APFloat::opInvalidOp)
1942          return getConstantFP(V1, VT);
1943        break;
1944      case ISD::FSUB:
1945        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
1946        if (s!=APFloat::opInvalidOp)
1947          return getConstantFP(V1, VT);
1948        break;
1949      case ISD::FMUL:
1950        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
1951        if (s!=APFloat::opInvalidOp)
1952          return getConstantFP(V1, VT);
1953        break;
1954      case ISD::FDIV:
1955        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
1956        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1957          return getConstantFP(V1, VT);
1958        break;
1959      case ISD::FREM :
1960        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
1961        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1962          return getConstantFP(V1, VT);
1963        break;
1964      case ISD::FCOPYSIGN:
1965        V1.copySign(V2);
1966        return getConstantFP(V1, VT);
1967      default: break;
1968      }
1969    } else {      // Cannonicalize constant to RHS if commutative
1970      if (isCommutativeBinOp(Opcode)) {
1971        std::swap(N1CFP, N2CFP);
1972        std::swap(N1, N2);
1973      }
1974    }
1975  }
1976
1977  // Canonicalize an UNDEF to the RHS, even over a constant.
1978  if (N1.getOpcode() == ISD::UNDEF) {
1979    if (isCommutativeBinOp(Opcode)) {
1980      std::swap(N1, N2);
1981    } else {
1982      switch (Opcode) {
1983      case ISD::FP_ROUND_INREG:
1984      case ISD::SIGN_EXTEND_INREG:
1985      case ISD::SUB:
1986      case ISD::FSUB:
1987      case ISD::FDIV:
1988      case ISD::FREM:
1989      case ISD::SRA:
1990        return N1;     // fold op(undef, arg2) -> undef
1991      case ISD::UDIV:
1992      case ISD::SDIV:
1993      case ISD::UREM:
1994      case ISD::SREM:
1995      case ISD::SRL:
1996      case ISD::SHL:
1997        if (!MVT::isVector(VT))
1998          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1999        // For vectors, we can't easily build an all zero vector, just return
2000        // the LHS.
2001        return N2;
2002      }
2003    }
2004  }
2005
2006  // Fold a bunch of operators when the RHS is undef.
2007  if (N2.getOpcode() == ISD::UNDEF) {
2008    switch (Opcode) {
2009    case ISD::ADD:
2010    case ISD::ADDC:
2011    case ISD::ADDE:
2012    case ISD::SUB:
2013    case ISD::FADD:
2014    case ISD::FSUB:
2015    case ISD::FMUL:
2016    case ISD::FDIV:
2017    case ISD::FREM:
2018    case ISD::UDIV:
2019    case ISD::SDIV:
2020    case ISD::UREM:
2021    case ISD::SREM:
2022    case ISD::XOR:
2023      return N2;       // fold op(arg1, undef) -> undef
2024    case ISD::MUL:
2025    case ISD::AND:
2026    case ISD::SRL:
2027    case ISD::SHL:
2028      if (!MVT::isVector(VT))
2029        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2030      // For vectors, we can't easily build an all zero vector, just return
2031      // the LHS.
2032      return N1;
2033    case ISD::OR:
2034      if (!MVT::isVector(VT))
2035        return getConstant(MVT::getIntVTBitMask(VT), VT);
2036      // For vectors, we can't easily build an all one vector, just return
2037      // the LHS.
2038      return N1;
2039    case ISD::SRA:
2040      return N1;
2041    }
2042  }
2043
2044  // Fold operations.
2045  switch (Opcode) {
2046  case ISD::TokenFactor:
2047    // Fold trivial token factors.
2048    if (N1.getOpcode() == ISD::EntryToken) return N2;
2049    if (N2.getOpcode() == ISD::EntryToken) return N1;
2050    break;
2051
2052  case ISD::AND:
2053    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2054    // worth handling here.
2055    if (N2C && N2C->getValue() == 0)
2056      return N2;
2057    break;
2058  case ISD::OR:
2059  case ISD::XOR:
2060    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
2061    // worth handling here.
2062    if (N2C && N2C->getValue() == 0)
2063      return N1;
2064    break;
2065  case ISD::FP_ROUND_INREG:
2066    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2067    break;
2068  case ISD::SIGN_EXTEND_INREG: {
2069    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2070    if (EVT == VT) return N1;  // Not actually extending
2071    break;
2072  }
2073  case ISD::EXTRACT_VECTOR_ELT:
2074    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2075
2076    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2077    // expanding copies of large vectors from registers.
2078    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2079        N1.getNumOperands() > 0) {
2080      unsigned Factor =
2081        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2082      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2083                     N1.getOperand(N2C->getValue() / Factor),
2084                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2085    }
2086
2087    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2088    // expanding large vector constants.
2089    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2090      return N1.getOperand(N2C->getValue());
2091
2092    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2093    // operations are lowered to scalars.
2094    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2095      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2096        if (IEC == N2C)
2097          return N1.getOperand(1);
2098        else
2099          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2100      }
2101    break;
2102  case ISD::EXTRACT_ELEMENT:
2103    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2104
2105    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2106    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2107    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2108    if (N1.getOpcode() == ISD::BUILD_PAIR)
2109      return N1.getOperand(N2C->getValue());
2110
2111    // EXTRACT_ELEMENT of a constant int is also very common.
2112    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2113      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2114      return getConstant(C->getValue() >> Shift, VT);
2115    }
2116    break;
2117
2118  // FIXME: figure out how to safely handle things like
2119  // int foo(int x) { return 1 << (x & 255); }
2120  // int bar() { return foo(256); }
2121#if 0
2122  case ISD::SHL:
2123  case ISD::SRL:
2124  case ISD::SRA:
2125    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2126        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2127      return getNode(Opcode, VT, N1, N2.getOperand(0));
2128    else if (N2.getOpcode() == ISD::AND)
2129      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2130        // If the and is only masking out bits that cannot effect the shift,
2131        // eliminate the and.
2132        unsigned NumBits = MVT::getSizeInBits(VT);
2133        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2134          return getNode(Opcode, VT, N1, N2.getOperand(0));
2135      }
2136    break;
2137#endif
2138  }
2139
2140  // Memoize this node if possible.
2141  SDNode *N;
2142  SDVTList VTs = getVTList(VT);
2143  if (VT != MVT::Flag) {
2144    SDOperand Ops[] = { N1, N2 };
2145    FoldingSetNodeID ID;
2146    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2147    void *IP = 0;
2148    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2149      return SDOperand(E, 0);
2150    N = new BinarySDNode(Opcode, VTs, N1, N2);
2151    CSEMap.InsertNode(N, IP);
2152  } else {
2153    N = new BinarySDNode(Opcode, VTs, N1, N2);
2154  }
2155
2156  AllNodes.push_back(N);
2157  return SDOperand(N, 0);
2158}
2159
2160SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2161                                SDOperand N1, SDOperand N2, SDOperand N3) {
2162  // Perform various simplifications.
2163  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2164  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2165  switch (Opcode) {
2166  case ISD::SETCC: {
2167    // Use FoldSetCC to simplify SETCC's.
2168    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2169    if (Simp.Val) return Simp;
2170    break;
2171  }
2172  case ISD::SELECT:
2173    if (N1C)
2174      if (N1C->getValue())
2175        return N2;             // select true, X, Y -> X
2176      else
2177        return N3;             // select false, X, Y -> Y
2178
2179    if (N2 == N3) return N2;   // select C, X, X -> X
2180    break;
2181  case ISD::BRCOND:
2182    if (N2C)
2183      if (N2C->getValue()) // Unconditional branch
2184        return getNode(ISD::BR, MVT::Other, N1, N3);
2185      else
2186        return N1;         // Never-taken branch
2187    break;
2188  case ISD::VECTOR_SHUFFLE:
2189    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2190           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2191           N3.getOpcode() == ISD::BUILD_VECTOR &&
2192           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2193           "Illegal VECTOR_SHUFFLE node!");
2194    break;
2195  case ISD::BIT_CONVERT:
2196    // Fold bit_convert nodes from a type to themselves.
2197    if (N1.getValueType() == VT)
2198      return N1;
2199    break;
2200  }
2201
2202  // Memoize node if it doesn't produce a flag.
2203  SDNode *N;
2204  SDVTList VTs = getVTList(VT);
2205  if (VT != MVT::Flag) {
2206    SDOperand Ops[] = { N1, N2, N3 };
2207    FoldingSetNodeID ID;
2208    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2209    void *IP = 0;
2210    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2211      return SDOperand(E, 0);
2212    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2213    CSEMap.InsertNode(N, IP);
2214  } else {
2215    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2216  }
2217  AllNodes.push_back(N);
2218  return SDOperand(N, 0);
2219}
2220
2221SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2222                                SDOperand N1, SDOperand N2, SDOperand N3,
2223                                SDOperand N4) {
2224  SDOperand Ops[] = { N1, N2, N3, N4 };
2225  return getNode(Opcode, VT, Ops, 4);
2226}
2227
2228SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2229                                SDOperand N1, SDOperand N2, SDOperand N3,
2230                                SDOperand N4, SDOperand N5) {
2231  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2232  return getNode(Opcode, VT, Ops, 5);
2233}
2234
2235SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2236                                SDOperand Chain, SDOperand Ptr,
2237                                const Value *SV, int SVOffset,
2238                                bool isVolatile, unsigned Alignment) {
2239  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2240    const Type *Ty = 0;
2241    if (VT != MVT::iPTR) {
2242      Ty = MVT::getTypeForValueType(VT);
2243    } else if (SV) {
2244      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2245      assert(PT && "Value for load must be a pointer");
2246      Ty = PT->getElementType();
2247    }
2248    assert(Ty && "Could not get type information for load");
2249    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2250  }
2251  SDVTList VTs = getVTList(VT, MVT::Other);
2252  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2253  SDOperand Ops[] = { Chain, Ptr, Undef };
2254  FoldingSetNodeID ID;
2255  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2256  ID.AddInteger(ISD::UNINDEXED);
2257  ID.AddInteger(ISD::NON_EXTLOAD);
2258  ID.AddInteger((unsigned int)VT);
2259  ID.AddPointer(SV);
2260  ID.AddInteger(SVOffset);
2261  ID.AddInteger(Alignment);
2262  ID.AddInteger(isVolatile);
2263  void *IP = 0;
2264  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2265    return SDOperand(E, 0);
2266  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2267                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2268                             isVolatile);
2269  CSEMap.InsertNode(N, IP);
2270  AllNodes.push_back(N);
2271  return SDOperand(N, 0);
2272}
2273
2274SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2275                                   SDOperand Chain, SDOperand Ptr,
2276                                   const Value *SV,
2277                                   int SVOffset, MVT::ValueType EVT,
2278                                   bool isVolatile, unsigned Alignment) {
2279  // If they are asking for an extending load from/to the same thing, return a
2280  // normal load.
2281  if (VT == EVT)
2282    ExtType = ISD::NON_EXTLOAD;
2283
2284  if (MVT::isVector(VT))
2285    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2286  else
2287    assert(EVT < VT && "Should only be an extending load, not truncating!");
2288  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2289         "Cannot sign/zero extend a FP/Vector load!");
2290  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2291         "Cannot convert from FP to Int or Int -> FP!");
2292
2293  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2294    const Type *Ty = 0;
2295    if (VT != MVT::iPTR) {
2296      Ty = MVT::getTypeForValueType(VT);
2297    } else if (SV) {
2298      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2299      assert(PT && "Value for load must be a pointer");
2300      Ty = PT->getElementType();
2301    }
2302    assert(Ty && "Could not get type information for load");
2303    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2304  }
2305  SDVTList VTs = getVTList(VT, MVT::Other);
2306  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2307  SDOperand Ops[] = { Chain, Ptr, Undef };
2308  FoldingSetNodeID ID;
2309  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2310  ID.AddInteger(ISD::UNINDEXED);
2311  ID.AddInteger(ExtType);
2312  ID.AddInteger((unsigned int)EVT);
2313  ID.AddPointer(SV);
2314  ID.AddInteger(SVOffset);
2315  ID.AddInteger(Alignment);
2316  ID.AddInteger(isVolatile);
2317  void *IP = 0;
2318  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2319    return SDOperand(E, 0);
2320  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2321                             SV, SVOffset, Alignment, isVolatile);
2322  CSEMap.InsertNode(N, IP);
2323  AllNodes.push_back(N);
2324  return SDOperand(N, 0);
2325}
2326
2327SDOperand
2328SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2329                             SDOperand Offset, ISD::MemIndexedMode AM) {
2330  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2331  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2332         "Load is already a indexed load!");
2333  MVT::ValueType VT = OrigLoad.getValueType();
2334  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2335  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2336  FoldingSetNodeID ID;
2337  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2338  ID.AddInteger(AM);
2339  ID.AddInteger(LD->getExtensionType());
2340  ID.AddInteger((unsigned int)(LD->getLoadedVT()));
2341  ID.AddPointer(LD->getSrcValue());
2342  ID.AddInteger(LD->getSrcValueOffset());
2343  ID.AddInteger(LD->getAlignment());
2344  ID.AddInteger(LD->isVolatile());
2345  void *IP = 0;
2346  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2347    return SDOperand(E, 0);
2348  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2349                             LD->getExtensionType(), LD->getLoadedVT(),
2350                             LD->getSrcValue(), LD->getSrcValueOffset(),
2351                             LD->getAlignment(), LD->isVolatile());
2352  CSEMap.InsertNode(N, IP);
2353  AllNodes.push_back(N);
2354  return SDOperand(N, 0);
2355}
2356
2357SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2358                                 SDOperand Ptr, const Value *SV, int SVOffset,
2359                                 bool isVolatile, unsigned Alignment) {
2360  MVT::ValueType VT = Val.getValueType();
2361
2362  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2363    const Type *Ty = 0;
2364    if (VT != MVT::iPTR) {
2365      Ty = MVT::getTypeForValueType(VT);
2366    } else if (SV) {
2367      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2368      assert(PT && "Value for store must be a pointer");
2369      Ty = PT->getElementType();
2370    }
2371    assert(Ty && "Could not get type information for store");
2372    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2373  }
2374  SDVTList VTs = getVTList(MVT::Other);
2375  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2376  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2377  FoldingSetNodeID ID;
2378  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2379  ID.AddInteger(ISD::UNINDEXED);
2380  ID.AddInteger(false);
2381  ID.AddInteger((unsigned int)VT);
2382  ID.AddPointer(SV);
2383  ID.AddInteger(SVOffset);
2384  ID.AddInteger(Alignment);
2385  ID.AddInteger(isVolatile);
2386  void *IP = 0;
2387  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2388    return SDOperand(E, 0);
2389  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2390                              VT, SV, SVOffset, Alignment, isVolatile);
2391  CSEMap.InsertNode(N, IP);
2392  AllNodes.push_back(N);
2393  return SDOperand(N, 0);
2394}
2395
2396SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2397                                      SDOperand Ptr, const Value *SV,
2398                                      int SVOffset, MVT::ValueType SVT,
2399                                      bool isVolatile, unsigned Alignment) {
2400  MVT::ValueType VT = Val.getValueType();
2401  bool isTrunc = VT != SVT;
2402
2403  assert(VT > SVT && "Not a truncation?");
2404  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2405         "Can't do FP-INT conversion!");
2406
2407  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2408    const Type *Ty = 0;
2409    if (VT != MVT::iPTR) {
2410      Ty = MVT::getTypeForValueType(VT);
2411    } else if (SV) {
2412      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2413      assert(PT && "Value for store must be a pointer");
2414      Ty = PT->getElementType();
2415    }
2416    assert(Ty && "Could not get type information for store");
2417    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2418  }
2419  SDVTList VTs = getVTList(MVT::Other);
2420  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2421  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2422  FoldingSetNodeID ID;
2423  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2424  ID.AddInteger(ISD::UNINDEXED);
2425  ID.AddInteger(isTrunc);
2426  ID.AddInteger((unsigned int)SVT);
2427  ID.AddPointer(SV);
2428  ID.AddInteger(SVOffset);
2429  ID.AddInteger(Alignment);
2430  ID.AddInteger(isVolatile);
2431  void *IP = 0;
2432  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2433    return SDOperand(E, 0);
2434  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
2435                              SVT, SV, SVOffset, Alignment, isVolatile);
2436  CSEMap.InsertNode(N, IP);
2437  AllNodes.push_back(N);
2438  return SDOperand(N, 0);
2439}
2440
2441SDOperand
2442SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2443                              SDOperand Offset, ISD::MemIndexedMode AM) {
2444  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2445  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2446         "Store is already a indexed store!");
2447  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2448  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2449  FoldingSetNodeID ID;
2450  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2451  ID.AddInteger(AM);
2452  ID.AddInteger(ST->isTruncatingStore());
2453  ID.AddInteger((unsigned int)(ST->getStoredVT()));
2454  ID.AddPointer(ST->getSrcValue());
2455  ID.AddInteger(ST->getSrcValueOffset());
2456  ID.AddInteger(ST->getAlignment());
2457  ID.AddInteger(ST->isVolatile());
2458  void *IP = 0;
2459  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2460    return SDOperand(E, 0);
2461  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2462                              ST->isTruncatingStore(), ST->getStoredVT(),
2463                              ST->getSrcValue(), ST->getSrcValueOffset(),
2464                              ST->getAlignment(), ST->isVolatile());
2465  CSEMap.InsertNode(N, IP);
2466  AllNodes.push_back(N);
2467  return SDOperand(N, 0);
2468}
2469
2470SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2471                                 SDOperand Chain, SDOperand Ptr,
2472                                 SDOperand SV) {
2473  SDOperand Ops[] = { Chain, Ptr, SV };
2474  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2475}
2476
2477SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2478                                const SDOperand *Ops, unsigned NumOps) {
2479  switch (NumOps) {
2480  case 0: return getNode(Opcode, VT);
2481  case 1: return getNode(Opcode, VT, Ops[0]);
2482  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2483  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2484  default: break;
2485  }
2486
2487  switch (Opcode) {
2488  default: break;
2489  case ISD::SELECT_CC: {
2490    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2491    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2492           "LHS and RHS of condition must have same type!");
2493    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2494           "True and False arms of SelectCC must have same type!");
2495    assert(Ops[2].getValueType() == VT &&
2496           "select_cc node must be of same type as true and false value!");
2497    break;
2498  }
2499  case ISD::BR_CC: {
2500    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2501    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2502           "LHS/RHS of comparison should match types!");
2503    break;
2504  }
2505  }
2506
2507  // Memoize nodes.
2508  SDNode *N;
2509  SDVTList VTs = getVTList(VT);
2510  if (VT != MVT::Flag) {
2511    FoldingSetNodeID ID;
2512    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2513    void *IP = 0;
2514    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2515      return SDOperand(E, 0);
2516    N = new SDNode(Opcode, VTs, Ops, NumOps);
2517    CSEMap.InsertNode(N, IP);
2518  } else {
2519    N = new SDNode(Opcode, VTs, Ops, NumOps);
2520  }
2521  AllNodes.push_back(N);
2522  return SDOperand(N, 0);
2523}
2524
2525SDOperand SelectionDAG::getNode(unsigned Opcode,
2526                                std::vector<MVT::ValueType> &ResultTys,
2527                                const SDOperand *Ops, unsigned NumOps) {
2528  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2529                 Ops, NumOps);
2530}
2531
2532SDOperand SelectionDAG::getNode(unsigned Opcode,
2533                                const MVT::ValueType *VTs, unsigned NumVTs,
2534                                const SDOperand *Ops, unsigned NumOps) {
2535  if (NumVTs == 1)
2536    return getNode(Opcode, VTs[0], Ops, NumOps);
2537  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2538}
2539
2540SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2541                                const SDOperand *Ops, unsigned NumOps) {
2542  if (VTList.NumVTs == 1)
2543    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2544
2545  switch (Opcode) {
2546  // FIXME: figure out how to safely handle things like
2547  // int foo(int x) { return 1 << (x & 255); }
2548  // int bar() { return foo(256); }
2549#if 0
2550  case ISD::SRA_PARTS:
2551  case ISD::SRL_PARTS:
2552  case ISD::SHL_PARTS:
2553    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2554        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2555      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2556    else if (N3.getOpcode() == ISD::AND)
2557      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2558        // If the and is only masking out bits that cannot effect the shift,
2559        // eliminate the and.
2560        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2561        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2562          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2563      }
2564    break;
2565#endif
2566  }
2567
2568  // Memoize the node unless it returns a flag.
2569  SDNode *N;
2570  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2571    FoldingSetNodeID ID;
2572    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2573    void *IP = 0;
2574    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2575      return SDOperand(E, 0);
2576    if (NumOps == 1)
2577      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2578    else if (NumOps == 2)
2579      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2580    else if (NumOps == 3)
2581      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2582    else
2583      N = new SDNode(Opcode, VTList, Ops, NumOps);
2584    CSEMap.InsertNode(N, IP);
2585  } else {
2586    if (NumOps == 1)
2587      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2588    else if (NumOps == 2)
2589      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2590    else if (NumOps == 3)
2591      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2592    else
2593      N = new SDNode(Opcode, VTList, Ops, NumOps);
2594  }
2595  AllNodes.push_back(N);
2596  return SDOperand(N, 0);
2597}
2598
2599SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2600  if (!MVT::isExtendedVT(VT))
2601    return makeVTList(SDNode::getValueTypeList(VT), 1);
2602
2603  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2604       E = VTList.end(); I != E; ++I) {
2605    if (I->size() == 1 && (*I)[0] == VT)
2606      return makeVTList(&(*I)[0], 1);
2607  }
2608  std::vector<MVT::ValueType> V;
2609  V.push_back(VT);
2610  VTList.push_front(V);
2611  return makeVTList(&(*VTList.begin())[0], 1);
2612}
2613
2614SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2615  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2616       E = VTList.end(); I != E; ++I) {
2617    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2618      return makeVTList(&(*I)[0], 2);
2619  }
2620  std::vector<MVT::ValueType> V;
2621  V.push_back(VT1);
2622  V.push_back(VT2);
2623  VTList.push_front(V);
2624  return makeVTList(&(*VTList.begin())[0], 2);
2625}
2626SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2627                                 MVT::ValueType VT3) {
2628  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2629       E = VTList.end(); I != E; ++I) {
2630    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2631        (*I)[2] == VT3)
2632      return makeVTList(&(*I)[0], 3);
2633  }
2634  std::vector<MVT::ValueType> V;
2635  V.push_back(VT1);
2636  V.push_back(VT2);
2637  V.push_back(VT3);
2638  VTList.push_front(V);
2639  return makeVTList(&(*VTList.begin())[0], 3);
2640}
2641
2642SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2643  switch (NumVTs) {
2644    case 0: assert(0 && "Cannot have nodes without results!");
2645    case 1: return getVTList(VTs[0]);
2646    case 2: return getVTList(VTs[0], VTs[1]);
2647    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2648    default: break;
2649  }
2650
2651  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2652       E = VTList.end(); I != E; ++I) {
2653    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2654
2655    bool NoMatch = false;
2656    for (unsigned i = 2; i != NumVTs; ++i)
2657      if (VTs[i] != (*I)[i]) {
2658        NoMatch = true;
2659        break;
2660      }
2661    if (!NoMatch)
2662      return makeVTList(&*I->begin(), NumVTs);
2663  }
2664
2665  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2666  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2667}
2668
2669
2670/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2671/// specified operands.  If the resultant node already exists in the DAG,
2672/// this does not modify the specified node, instead it returns the node that
2673/// already exists.  If the resultant node does not exist in the DAG, the
2674/// input node is returned.  As a degenerate case, if you specify the same
2675/// input operands as the node already has, the input node is returned.
2676SDOperand SelectionDAG::
2677UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2678  SDNode *N = InN.Val;
2679  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2680
2681  // Check to see if there is no change.
2682  if (Op == N->getOperand(0)) return InN;
2683
2684  // See if the modified node already exists.
2685  void *InsertPos = 0;
2686  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2687    return SDOperand(Existing, InN.ResNo);
2688
2689  // Nope it doesn't.  Remove the node from it's current place in the maps.
2690  if (InsertPos)
2691    RemoveNodeFromCSEMaps(N);
2692
2693  // Now we update the operands.
2694  N->OperandList[0].Val->removeUser(N);
2695  Op.Val->addUser(N);
2696  N->OperandList[0] = Op;
2697
2698  // If this gets put into a CSE map, add it.
2699  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2700  return InN;
2701}
2702
2703SDOperand SelectionDAG::
2704UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2705  SDNode *N = InN.Val;
2706  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2707
2708  // Check to see if there is no change.
2709  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2710    return InN;   // No operands changed, just return the input node.
2711
2712  // See if the modified node already exists.
2713  void *InsertPos = 0;
2714  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2715    return SDOperand(Existing, InN.ResNo);
2716
2717  // Nope it doesn't.  Remove the node from it's current place in the maps.
2718  if (InsertPos)
2719    RemoveNodeFromCSEMaps(N);
2720
2721  // Now we update the operands.
2722  if (N->OperandList[0] != Op1) {
2723    N->OperandList[0].Val->removeUser(N);
2724    Op1.Val->addUser(N);
2725    N->OperandList[0] = Op1;
2726  }
2727  if (N->OperandList[1] != Op2) {
2728    N->OperandList[1].Val->removeUser(N);
2729    Op2.Val->addUser(N);
2730    N->OperandList[1] = Op2;
2731  }
2732
2733  // If this gets put into a CSE map, add it.
2734  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2735  return InN;
2736}
2737
2738SDOperand SelectionDAG::
2739UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2740  SDOperand Ops[] = { Op1, Op2, Op3 };
2741  return UpdateNodeOperands(N, Ops, 3);
2742}
2743
2744SDOperand SelectionDAG::
2745UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2746                   SDOperand Op3, SDOperand Op4) {
2747  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2748  return UpdateNodeOperands(N, Ops, 4);
2749}
2750
2751SDOperand SelectionDAG::
2752UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2753                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2754  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2755  return UpdateNodeOperands(N, Ops, 5);
2756}
2757
2758
2759SDOperand SelectionDAG::
2760UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2761  SDNode *N = InN.Val;
2762  assert(N->getNumOperands() == NumOps &&
2763         "Update with wrong number of operands");
2764
2765  // Check to see if there is no change.
2766  bool AnyChange = false;
2767  for (unsigned i = 0; i != NumOps; ++i) {
2768    if (Ops[i] != N->getOperand(i)) {
2769      AnyChange = true;
2770      break;
2771    }
2772  }
2773
2774  // No operands changed, just return the input node.
2775  if (!AnyChange) return InN;
2776
2777  // See if the modified node already exists.
2778  void *InsertPos = 0;
2779  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2780    return SDOperand(Existing, InN.ResNo);
2781
2782  // Nope it doesn't.  Remove the node from it's current place in the maps.
2783  if (InsertPos)
2784    RemoveNodeFromCSEMaps(N);
2785
2786  // Now we update the operands.
2787  for (unsigned i = 0; i != NumOps; ++i) {
2788    if (N->OperandList[i] != Ops[i]) {
2789      N->OperandList[i].Val->removeUser(N);
2790      Ops[i].Val->addUser(N);
2791      N->OperandList[i] = Ops[i];
2792    }
2793  }
2794
2795  // If this gets put into a CSE map, add it.
2796  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2797  return InN;
2798}
2799
2800
2801/// MorphNodeTo - This frees the operands of the current node, resets the
2802/// opcode, types, and operands to the specified value.  This should only be
2803/// used by the SelectionDAG class.
2804void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2805                         const SDOperand *Ops, unsigned NumOps) {
2806  NodeType = Opc;
2807  ValueList = L.VTs;
2808  NumValues = L.NumVTs;
2809
2810  // Clear the operands list, updating used nodes to remove this from their
2811  // use list.
2812  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2813    I->Val->removeUser(this);
2814
2815  // If NumOps is larger than the # of operands we currently have, reallocate
2816  // the operand list.
2817  if (NumOps > NumOperands) {
2818    if (OperandsNeedDelete)
2819      delete [] OperandList;
2820    OperandList = new SDOperand[NumOps];
2821    OperandsNeedDelete = true;
2822  }
2823
2824  // Assign the new operands.
2825  NumOperands = NumOps;
2826
2827  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2828    OperandList[i] = Ops[i];
2829    SDNode *N = OperandList[i].Val;
2830    N->Uses.push_back(this);
2831  }
2832}
2833
2834/// SelectNodeTo - These are used for target selectors to *mutate* the
2835/// specified node to have the specified return type, Target opcode, and
2836/// operands.  Note that target opcodes are stored as
2837/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2838///
2839/// Note that SelectNodeTo returns the resultant node.  If there is already a
2840/// node of the specified opcode and operands, it returns that node instead of
2841/// the current one.
2842SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2843                                   MVT::ValueType VT) {
2844  SDVTList VTs = getVTList(VT);
2845  FoldingSetNodeID ID;
2846  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2847  void *IP = 0;
2848  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2849    return ON;
2850
2851  RemoveNodeFromCSEMaps(N);
2852
2853  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2854
2855  CSEMap.InsertNode(N, IP);
2856  return N;
2857}
2858
2859SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2860                                   MVT::ValueType VT, SDOperand Op1) {
2861  // If an identical node already exists, use it.
2862  SDVTList VTs = getVTList(VT);
2863  SDOperand Ops[] = { Op1 };
2864
2865  FoldingSetNodeID ID;
2866  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2867  void *IP = 0;
2868  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2869    return ON;
2870
2871  RemoveNodeFromCSEMaps(N);
2872  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2873  CSEMap.InsertNode(N, IP);
2874  return N;
2875}
2876
2877SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2878                                   MVT::ValueType VT, SDOperand Op1,
2879                                   SDOperand Op2) {
2880  // If an identical node already exists, use it.
2881  SDVTList VTs = getVTList(VT);
2882  SDOperand Ops[] = { Op1, Op2 };
2883
2884  FoldingSetNodeID ID;
2885  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2886  void *IP = 0;
2887  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2888    return ON;
2889
2890  RemoveNodeFromCSEMaps(N);
2891
2892  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2893
2894  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2895  return N;
2896}
2897
2898SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2899                                   MVT::ValueType VT, SDOperand Op1,
2900                                   SDOperand Op2, SDOperand Op3) {
2901  // If an identical node already exists, use it.
2902  SDVTList VTs = getVTList(VT);
2903  SDOperand Ops[] = { Op1, Op2, Op3 };
2904  FoldingSetNodeID ID;
2905  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2906  void *IP = 0;
2907  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2908    return ON;
2909
2910  RemoveNodeFromCSEMaps(N);
2911
2912  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2913
2914  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2915  return N;
2916}
2917
2918SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2919                                   MVT::ValueType VT, const SDOperand *Ops,
2920                                   unsigned NumOps) {
2921  // If an identical node already exists, use it.
2922  SDVTList VTs = getVTList(VT);
2923  FoldingSetNodeID ID;
2924  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2925  void *IP = 0;
2926  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2927    return ON;
2928
2929  RemoveNodeFromCSEMaps(N);
2930  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2931
2932  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2933  return N;
2934}
2935
2936SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2937                                   MVT::ValueType VT1, MVT::ValueType VT2,
2938                                   SDOperand Op1, SDOperand Op2) {
2939  SDVTList VTs = getVTList(VT1, VT2);
2940  FoldingSetNodeID ID;
2941  SDOperand Ops[] = { Op1, Op2 };
2942  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2943  void *IP = 0;
2944  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2945    return ON;
2946
2947  RemoveNodeFromCSEMaps(N);
2948  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2949  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2950  return N;
2951}
2952
2953SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2954                                   MVT::ValueType VT1, MVT::ValueType VT2,
2955                                   SDOperand Op1, SDOperand Op2,
2956                                   SDOperand Op3) {
2957  // If an identical node already exists, use it.
2958  SDVTList VTs = getVTList(VT1, VT2);
2959  SDOperand Ops[] = { Op1, Op2, Op3 };
2960  FoldingSetNodeID ID;
2961  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2962  void *IP = 0;
2963  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2964    return ON;
2965
2966  RemoveNodeFromCSEMaps(N);
2967
2968  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2969  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2970  return N;
2971}
2972
2973
2974/// getTargetNode - These are used for target selectors to create a new node
2975/// with specified return type(s), target opcode, and operands.
2976///
2977/// Note that getTargetNode returns the resultant node.  If there is already a
2978/// node of the specified opcode and operands, it returns that node instead of
2979/// the current one.
2980SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2981  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2982}
2983SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2984                                    SDOperand Op1) {
2985  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2986}
2987SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2988                                    SDOperand Op1, SDOperand Op2) {
2989  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2990}
2991SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2992                                    SDOperand Op1, SDOperand Op2,
2993                                    SDOperand Op3) {
2994  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2995}
2996SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2997                                    const SDOperand *Ops, unsigned NumOps) {
2998  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2999}
3000SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3001                                    MVT::ValueType VT2, SDOperand Op1) {
3002  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3003  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3004}
3005SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3006                                    MVT::ValueType VT2, SDOperand Op1,
3007                                    SDOperand Op2) {
3008  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3009  SDOperand Ops[] = { Op1, Op2 };
3010  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3011}
3012SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3013                                    MVT::ValueType VT2, SDOperand Op1,
3014                                    SDOperand Op2, SDOperand Op3) {
3015  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3016  SDOperand Ops[] = { Op1, Op2, Op3 };
3017  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3018}
3019SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3020                                    MVT::ValueType VT2,
3021                                    const SDOperand *Ops, unsigned NumOps) {
3022  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3023  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3024}
3025SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3026                                    MVT::ValueType VT2, MVT::ValueType VT3,
3027                                    SDOperand Op1, SDOperand Op2) {
3028  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3029  SDOperand Ops[] = { Op1, Op2 };
3030  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3031}
3032SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3033                                    MVT::ValueType VT2, MVT::ValueType VT3,
3034                                    SDOperand Op1, SDOperand Op2,
3035                                    SDOperand Op3) {
3036  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3037  SDOperand Ops[] = { Op1, Op2, Op3 };
3038  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3039}
3040SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3041                                    MVT::ValueType VT2, MVT::ValueType VT3,
3042                                    const SDOperand *Ops, unsigned NumOps) {
3043  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3044  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3045}
3046SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3047                                    MVT::ValueType VT2, MVT::ValueType VT3,
3048                                    MVT::ValueType VT4,
3049                                    const SDOperand *Ops, unsigned NumOps) {
3050  std::vector<MVT::ValueType> VTList;
3051  VTList.push_back(VT1);
3052  VTList.push_back(VT2);
3053  VTList.push_back(VT3);
3054  VTList.push_back(VT4);
3055  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3056  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3057}
3058
3059/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3060/// This can cause recursive merging of nodes in the DAG.
3061///
3062/// This version assumes From/To have a single result value.
3063///
3064void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3065                                      std::vector<SDNode*> *Deleted) {
3066  SDNode *From = FromN.Val, *To = ToN.Val;
3067  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3068         "Cannot replace with this method!");
3069  assert(From != To && "Cannot replace uses of with self");
3070
3071  while (!From->use_empty()) {
3072    // Process users until they are all gone.
3073    SDNode *U = *From->use_begin();
3074
3075    // This node is about to morph, remove its old self from the CSE maps.
3076    RemoveNodeFromCSEMaps(U);
3077
3078    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3079         I != E; ++I)
3080      if (I->Val == From) {
3081        From->removeUser(U);
3082        I->Val = To;
3083        To->addUser(U);
3084      }
3085
3086    // Now that we have modified U, add it back to the CSE maps.  If it already
3087    // exists there, recursively merge the results together.
3088    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3089      ReplaceAllUsesWith(U, Existing, Deleted);
3090      // U is now dead.
3091      if (Deleted) Deleted->push_back(U);
3092      DeleteNodeNotInCSEMaps(U);
3093    }
3094  }
3095}
3096
3097/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3098/// This can cause recursive merging of nodes in the DAG.
3099///
3100/// This version assumes From/To have matching types and numbers of result
3101/// values.
3102///
3103void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3104                                      std::vector<SDNode*> *Deleted) {
3105  assert(From != To && "Cannot replace uses of with self");
3106  assert(From->getNumValues() == To->getNumValues() &&
3107         "Cannot use this version of ReplaceAllUsesWith!");
3108  if (From->getNumValues() == 1) {  // If possible, use the faster version.
3109    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3110    return;
3111  }
3112
3113  while (!From->use_empty()) {
3114    // Process users until they are all gone.
3115    SDNode *U = *From->use_begin();
3116
3117    // This node is about to morph, remove its old self from the CSE maps.
3118    RemoveNodeFromCSEMaps(U);
3119
3120    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3121         I != E; ++I)
3122      if (I->Val == From) {
3123        From->removeUser(U);
3124        I->Val = To;
3125        To->addUser(U);
3126      }
3127
3128    // Now that we have modified U, add it back to the CSE maps.  If it already
3129    // exists there, recursively merge the results together.
3130    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3131      ReplaceAllUsesWith(U, Existing, Deleted);
3132      // U is now dead.
3133      if (Deleted) Deleted->push_back(U);
3134      DeleteNodeNotInCSEMaps(U);
3135    }
3136  }
3137}
3138
3139/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3140/// This can cause recursive merging of nodes in the DAG.
3141///
3142/// This version can replace From with any result values.  To must match the
3143/// number and types of values returned by From.
3144void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3145                                      const SDOperand *To,
3146                                      std::vector<SDNode*> *Deleted) {
3147  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3148    // Degenerate case handled above.
3149    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3150    return;
3151  }
3152
3153  while (!From->use_empty()) {
3154    // Process users until they are all gone.
3155    SDNode *U = *From->use_begin();
3156
3157    // This node is about to morph, remove its old self from the CSE maps.
3158    RemoveNodeFromCSEMaps(U);
3159
3160    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3161         I != E; ++I)
3162      if (I->Val == From) {
3163        const SDOperand &ToOp = To[I->ResNo];
3164        From->removeUser(U);
3165        *I = ToOp;
3166        ToOp.Val->addUser(U);
3167      }
3168
3169    // Now that we have modified U, add it back to the CSE maps.  If it already
3170    // exists there, recursively merge the results together.
3171    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3172      ReplaceAllUsesWith(U, Existing, Deleted);
3173      // U is now dead.
3174      if (Deleted) Deleted->push_back(U);
3175      DeleteNodeNotInCSEMaps(U);
3176    }
3177  }
3178}
3179
3180/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3181/// uses of other values produced by From.Val alone.  The Deleted vector is
3182/// handled the same was as for ReplaceAllUsesWith.
3183void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3184                                             std::vector<SDNode*> &Deleted) {
3185  assert(From != To && "Cannot replace a value with itself");
3186  // Handle the simple, trivial, case efficiently.
3187  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3188    ReplaceAllUsesWith(From, To, &Deleted);
3189    return;
3190  }
3191
3192  // Get all of the users of From.Val.  We want these in a nice,
3193  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3194  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3195
3196  while (!Users.empty()) {
3197    // We know that this user uses some value of From.  If it is the right
3198    // value, update it.
3199    SDNode *User = Users.back();
3200    Users.pop_back();
3201
3202    for (SDOperand *Op = User->OperandList,
3203         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
3204      if (*Op == From) {
3205        // Okay, we know this user needs to be updated.  Remove its old self
3206        // from the CSE maps.
3207        RemoveNodeFromCSEMaps(User);
3208
3209        // Update all operands that match "From".
3210        for (; Op != E; ++Op) {
3211          if (*Op == From) {
3212            From.Val->removeUser(User);
3213            *Op = To;
3214            To.Val->addUser(User);
3215          }
3216        }
3217
3218        // Now that we have modified User, add it back to the CSE maps.  If it
3219        // already exists there, recursively merge the results together.
3220        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
3221          unsigned NumDeleted = Deleted.size();
3222          ReplaceAllUsesWith(User, Existing, &Deleted);
3223
3224          // User is now dead.
3225          Deleted.push_back(User);
3226          DeleteNodeNotInCSEMaps(User);
3227
3228          // We have to be careful here, because ReplaceAllUsesWith could have
3229          // deleted a user of From, which means there may be dangling pointers
3230          // in the "Users" setvector.  Scan over the deleted node pointers and
3231          // remove them from the setvector.
3232          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
3233            Users.remove(Deleted[i]);
3234        }
3235        break;   // Exit the operand scanning loop.
3236      }
3237    }
3238  }
3239}
3240
3241
3242/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3243/// their allnodes order. It returns the maximum id.
3244unsigned SelectionDAG::AssignNodeIds() {
3245  unsigned Id = 0;
3246  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3247    SDNode *N = I;
3248    N->setNodeId(Id++);
3249  }
3250  return Id;
3251}
3252
3253/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3254/// based on their topological order. It returns the maximum id and a vector
3255/// of the SDNodes* in assigned order by reference.
3256unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3257  unsigned DAGSize = AllNodes.size();
3258  std::vector<unsigned> InDegree(DAGSize);
3259  std::vector<SDNode*> Sources;
3260
3261  // Use a two pass approach to avoid using a std::map which is slow.
3262  unsigned Id = 0;
3263  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3264    SDNode *N = I;
3265    N->setNodeId(Id++);
3266    unsigned Degree = N->use_size();
3267    InDegree[N->getNodeId()] = Degree;
3268    if (Degree == 0)
3269      Sources.push_back(N);
3270  }
3271
3272  TopOrder.clear();
3273  while (!Sources.empty()) {
3274    SDNode *N = Sources.back();
3275    Sources.pop_back();
3276    TopOrder.push_back(N);
3277    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3278      SDNode *P = I->Val;
3279      unsigned Degree = --InDegree[P->getNodeId()];
3280      if (Degree == 0)
3281        Sources.push_back(P);
3282    }
3283  }
3284
3285  // Second pass, assign the actual topological order as node ids.
3286  Id = 0;
3287  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3288       TI != TE; ++TI)
3289    (*TI)->setNodeId(Id++);
3290
3291  return Id;
3292}
3293
3294
3295
3296//===----------------------------------------------------------------------===//
3297//                              SDNode Class
3298//===----------------------------------------------------------------------===//
3299
3300// Out-of-line virtual method to give class a home.
3301void SDNode::ANCHOR() {}
3302void UnarySDNode::ANCHOR() {}
3303void BinarySDNode::ANCHOR() {}
3304void TernarySDNode::ANCHOR() {}
3305void HandleSDNode::ANCHOR() {}
3306void StringSDNode::ANCHOR() {}
3307void ConstantSDNode::ANCHOR() {}
3308void ConstantFPSDNode::ANCHOR() {}
3309void GlobalAddressSDNode::ANCHOR() {}
3310void FrameIndexSDNode::ANCHOR() {}
3311void JumpTableSDNode::ANCHOR() {}
3312void ConstantPoolSDNode::ANCHOR() {}
3313void BasicBlockSDNode::ANCHOR() {}
3314void SrcValueSDNode::ANCHOR() {}
3315void RegisterSDNode::ANCHOR() {}
3316void ExternalSymbolSDNode::ANCHOR() {}
3317void CondCodeSDNode::ANCHOR() {}
3318void VTSDNode::ANCHOR() {}
3319void LoadSDNode::ANCHOR() {}
3320void StoreSDNode::ANCHOR() {}
3321
3322HandleSDNode::~HandleSDNode() {
3323  SDVTList VTs = { 0, 0 };
3324  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3325}
3326
3327GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3328                                         MVT::ValueType VT, int o)
3329  : SDNode(isa<GlobalVariable>(GA) &&
3330           cast<GlobalVariable>(GA)->isThreadLocal() ?
3331           // Thread Local
3332           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3333           // Non Thread Local
3334           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3335           getSDVTList(VT)), Offset(o) {
3336  TheGlobal = const_cast<GlobalValue*>(GA);
3337}
3338
3339/// Profile - Gather unique data for the node.
3340///
3341void SDNode::Profile(FoldingSetNodeID &ID) {
3342  AddNodeIDNode(ID, this);
3343}
3344
3345/// getValueTypeList - Return a pointer to the specified value type.
3346///
3347MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3348  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3349  VTs[VT] = VT;
3350  return &VTs[VT];
3351}
3352
3353/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3354/// indicated value.  This method ignores uses of other values defined by this
3355/// operation.
3356bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3357  assert(Value < getNumValues() && "Bad value!");
3358
3359  // If there is only one value, this is easy.
3360  if (getNumValues() == 1)
3361    return use_size() == NUses;
3362  if (use_size() < NUses) return false;
3363
3364  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3365
3366  SmallPtrSet<SDNode*, 32> UsersHandled;
3367
3368  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3369    SDNode *User = *UI;
3370    if (User->getNumOperands() == 1 ||
3371        UsersHandled.insert(User))     // First time we've seen this?
3372      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3373        if (User->getOperand(i) == TheValue) {
3374          if (NUses == 0)
3375            return false;   // too many uses
3376          --NUses;
3377        }
3378  }
3379
3380  // Found exactly the right number of uses?
3381  return NUses == 0;
3382}
3383
3384
3385/// hasAnyUseOfValue - Return true if there are any use of the indicated
3386/// value. This method ignores uses of other values defined by this operation.
3387bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3388  assert(Value < getNumValues() && "Bad value!");
3389
3390  if (use_size() == 0) return false;
3391
3392  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3393
3394  SmallPtrSet<SDNode*, 32> UsersHandled;
3395
3396  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3397    SDNode *User = *UI;
3398    if (User->getNumOperands() == 1 ||
3399        UsersHandled.insert(User))     // First time we've seen this?
3400      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3401        if (User->getOperand(i) == TheValue) {
3402          return true;
3403        }
3404  }
3405
3406  return false;
3407}
3408
3409
3410/// isOnlyUse - Return true if this node is the only use of N.
3411///
3412bool SDNode::isOnlyUse(SDNode *N) const {
3413  bool Seen = false;
3414  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3415    SDNode *User = *I;
3416    if (User == this)
3417      Seen = true;
3418    else
3419      return false;
3420  }
3421
3422  return Seen;
3423}
3424
3425/// isOperand - Return true if this node is an operand of N.
3426///
3427bool SDOperand::isOperand(SDNode *N) const {
3428  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3429    if (*this == N->getOperand(i))
3430      return true;
3431  return false;
3432}
3433
3434bool SDNode::isOperand(SDNode *N) const {
3435  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3436    if (this == N->OperandList[i].Val)
3437      return true;
3438  return false;
3439}
3440
3441static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3442                            SmallPtrSet<SDNode *, 32> &Visited) {
3443  if (found || !Visited.insert(N))
3444    return;
3445
3446  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3447    SDNode *Op = N->getOperand(i).Val;
3448    if (Op == P) {
3449      found = true;
3450      return;
3451    }
3452    findPredecessor(Op, P, found, Visited);
3453  }
3454}
3455
3456/// isPredecessor - Return true if this node is a predecessor of N. This node
3457/// is either an operand of N or it can be reached by recursively traversing
3458/// up the operands.
3459/// NOTE: this is an expensive method. Use it carefully.
3460bool SDNode::isPredecessor(SDNode *N) const {
3461  SmallPtrSet<SDNode *, 32> Visited;
3462  bool found = false;
3463  findPredecessor(N, this, found, Visited);
3464  return found;
3465}
3466
3467uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3468  assert(Num < NumOperands && "Invalid child # of SDNode!");
3469  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3470}
3471
3472std::string SDNode::getOperationName(const SelectionDAG *G) const {
3473  switch (getOpcode()) {
3474  default:
3475    if (getOpcode() < ISD::BUILTIN_OP_END)
3476      return "<<Unknown DAG Node>>";
3477    else {
3478      if (G) {
3479        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3480          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3481            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
3482
3483        TargetLowering &TLI = G->getTargetLoweringInfo();
3484        const char *Name =
3485          TLI.getTargetNodeName(getOpcode());
3486        if (Name) return Name;
3487      }
3488
3489      return "<<Unknown Target Node>>";
3490    }
3491
3492  case ISD::PCMARKER:      return "PCMarker";
3493  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3494  case ISD::SRCVALUE:      return "SrcValue";
3495  case ISD::EntryToken:    return "EntryToken";
3496  case ISD::TokenFactor:   return "TokenFactor";
3497  case ISD::AssertSext:    return "AssertSext";
3498  case ISD::AssertZext:    return "AssertZext";
3499
3500  case ISD::STRING:        return "String";
3501  case ISD::BasicBlock:    return "BasicBlock";
3502  case ISD::VALUETYPE:     return "ValueType";
3503  case ISD::Register:      return "Register";
3504
3505  case ISD::Constant:      return "Constant";
3506  case ISD::ConstantFP:    return "ConstantFP";
3507  case ISD::GlobalAddress: return "GlobalAddress";
3508  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3509  case ISD::FrameIndex:    return "FrameIndex";
3510  case ISD::JumpTable:     return "JumpTable";
3511  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3512  case ISD::RETURNADDR: return "RETURNADDR";
3513  case ISD::FRAMEADDR: return "FRAMEADDR";
3514  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3515  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3516  case ISD::EHSELECTION: return "EHSELECTION";
3517  case ISD::EH_RETURN: return "EH_RETURN";
3518  case ISD::ConstantPool:  return "ConstantPool";
3519  case ISD::ExternalSymbol: return "ExternalSymbol";
3520  case ISD::INTRINSIC_WO_CHAIN: {
3521    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3522    return Intrinsic::getName((Intrinsic::ID)IID);
3523  }
3524  case ISD::INTRINSIC_VOID:
3525  case ISD::INTRINSIC_W_CHAIN: {
3526    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3527    return Intrinsic::getName((Intrinsic::ID)IID);
3528  }
3529
3530  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3531  case ISD::TargetConstant: return "TargetConstant";
3532  case ISD::TargetConstantFP:return "TargetConstantFP";
3533  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3534  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3535  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3536  case ISD::TargetJumpTable:  return "TargetJumpTable";
3537  case ISD::TargetConstantPool:  return "TargetConstantPool";
3538  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3539
3540  case ISD::CopyToReg:     return "CopyToReg";
3541  case ISD::CopyFromReg:   return "CopyFromReg";
3542  case ISD::UNDEF:         return "undef";
3543  case ISD::MERGE_VALUES:  return "merge_values";
3544  case ISD::INLINEASM:     return "inlineasm";
3545  case ISD::LABEL:         return "label";
3546  case ISD::HANDLENODE:    return "handlenode";
3547  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3548  case ISD::CALL:          return "call";
3549
3550  // Unary operators
3551  case ISD::FABS:   return "fabs";
3552  case ISD::FNEG:   return "fneg";
3553  case ISD::FSQRT:  return "fsqrt";
3554  case ISD::FSIN:   return "fsin";
3555  case ISD::FCOS:   return "fcos";
3556  case ISD::FPOWI:  return "fpowi";
3557
3558  // Binary operators
3559  case ISD::ADD:    return "add";
3560  case ISD::SUB:    return "sub";
3561  case ISD::MUL:    return "mul";
3562  case ISD::MULHU:  return "mulhu";
3563  case ISD::MULHS:  return "mulhs";
3564  case ISD::SDIV:   return "sdiv";
3565  case ISD::UDIV:   return "udiv";
3566  case ISD::SREM:   return "srem";
3567  case ISD::UREM:   return "urem";
3568  case ISD::AND:    return "and";
3569  case ISD::OR:     return "or";
3570  case ISD::XOR:    return "xor";
3571  case ISD::SHL:    return "shl";
3572  case ISD::SRA:    return "sra";
3573  case ISD::SRL:    return "srl";
3574  case ISD::ROTL:   return "rotl";
3575  case ISD::ROTR:   return "rotr";
3576  case ISD::FADD:   return "fadd";
3577  case ISD::FSUB:   return "fsub";
3578  case ISD::FMUL:   return "fmul";
3579  case ISD::FDIV:   return "fdiv";
3580  case ISD::FREM:   return "frem";
3581  case ISD::FCOPYSIGN: return "fcopysign";
3582
3583  case ISD::SETCC:       return "setcc";
3584  case ISD::SELECT:      return "select";
3585  case ISD::SELECT_CC:   return "select_cc";
3586  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3587  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3588  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3589  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3590  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3591  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3592  case ISD::CARRY_FALSE:         return "carry_false";
3593  case ISD::ADDC:        return "addc";
3594  case ISD::ADDE:        return "adde";
3595  case ISD::SUBC:        return "subc";
3596  case ISD::SUBE:        return "sube";
3597  case ISD::SHL_PARTS:   return "shl_parts";
3598  case ISD::SRA_PARTS:   return "sra_parts";
3599  case ISD::SRL_PARTS:   return "srl_parts";
3600
3601  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3602  case ISD::INSERT_SUBREG:      return "insert_subreg";
3603
3604  // Conversion operators.
3605  case ISD::SIGN_EXTEND: return "sign_extend";
3606  case ISD::ZERO_EXTEND: return "zero_extend";
3607  case ISD::ANY_EXTEND:  return "any_extend";
3608  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3609  case ISD::TRUNCATE:    return "truncate";
3610  case ISD::FP_ROUND:    return "fp_round";
3611  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3612  case ISD::FP_EXTEND:   return "fp_extend";
3613
3614  case ISD::SINT_TO_FP:  return "sint_to_fp";
3615  case ISD::UINT_TO_FP:  return "uint_to_fp";
3616  case ISD::FP_TO_SINT:  return "fp_to_sint";
3617  case ISD::FP_TO_UINT:  return "fp_to_uint";
3618  case ISD::BIT_CONVERT: return "bit_convert";
3619
3620    // Control flow instructions
3621  case ISD::BR:      return "br";
3622  case ISD::BRIND:   return "brind";
3623  case ISD::BR_JT:   return "br_jt";
3624  case ISD::BRCOND:  return "brcond";
3625  case ISD::BR_CC:   return "br_cc";
3626  case ISD::RET:     return "ret";
3627  case ISD::CALLSEQ_START:  return "callseq_start";
3628  case ISD::CALLSEQ_END:    return "callseq_end";
3629
3630    // Other operators
3631  case ISD::LOAD:               return "load";
3632  case ISD::STORE:              return "store";
3633  case ISD::VAARG:              return "vaarg";
3634  case ISD::VACOPY:             return "vacopy";
3635  case ISD::VAEND:              return "vaend";
3636  case ISD::VASTART:            return "vastart";
3637  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3638  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3639  case ISD::BUILD_PAIR:         return "build_pair";
3640  case ISD::STACKSAVE:          return "stacksave";
3641  case ISD::STACKRESTORE:       return "stackrestore";
3642
3643  // Block memory operations.
3644  case ISD::MEMSET:  return "memset";
3645  case ISD::MEMCPY:  return "memcpy";
3646  case ISD::MEMMOVE: return "memmove";
3647
3648  // Bit manipulation
3649  case ISD::BSWAP:   return "bswap";
3650  case ISD::CTPOP:   return "ctpop";
3651  case ISD::CTTZ:    return "cttz";
3652  case ISD::CTLZ:    return "ctlz";
3653
3654  // Debug info
3655  case ISD::LOCATION: return "location";
3656  case ISD::DEBUG_LOC: return "debug_loc";
3657
3658  // Trampolines
3659  case ISD::TRAMPOLINE: return "trampoline";
3660
3661  case ISD::CONDCODE:
3662    switch (cast<CondCodeSDNode>(this)->get()) {
3663    default: assert(0 && "Unknown setcc condition!");
3664    case ISD::SETOEQ:  return "setoeq";
3665    case ISD::SETOGT:  return "setogt";
3666    case ISD::SETOGE:  return "setoge";
3667    case ISD::SETOLT:  return "setolt";
3668    case ISD::SETOLE:  return "setole";
3669    case ISD::SETONE:  return "setone";
3670
3671    case ISD::SETO:    return "seto";
3672    case ISD::SETUO:   return "setuo";
3673    case ISD::SETUEQ:  return "setue";
3674    case ISD::SETUGT:  return "setugt";
3675    case ISD::SETUGE:  return "setuge";
3676    case ISD::SETULT:  return "setult";
3677    case ISD::SETULE:  return "setule";
3678    case ISD::SETUNE:  return "setune";
3679
3680    case ISD::SETEQ:   return "seteq";
3681    case ISD::SETGT:   return "setgt";
3682    case ISD::SETGE:   return "setge";
3683    case ISD::SETLT:   return "setlt";
3684    case ISD::SETLE:   return "setle";
3685    case ISD::SETNE:   return "setne";
3686    }
3687  }
3688}
3689
3690const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3691  switch (AM) {
3692  default:
3693    return "";
3694  case ISD::PRE_INC:
3695    return "<pre-inc>";
3696  case ISD::PRE_DEC:
3697    return "<pre-dec>";
3698  case ISD::POST_INC:
3699    return "<post-inc>";
3700  case ISD::POST_DEC:
3701    return "<post-dec>";
3702  }
3703}
3704
3705void SDNode::dump() const { dump(0); }
3706void SDNode::dump(const SelectionDAG *G) const {
3707  cerr << (void*)this << ": ";
3708
3709  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3710    if (i) cerr << ",";
3711    if (getValueType(i) == MVT::Other)
3712      cerr << "ch";
3713    else
3714      cerr << MVT::getValueTypeString(getValueType(i));
3715  }
3716  cerr << " = " << getOperationName(G);
3717
3718  cerr << " ";
3719  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3720    if (i) cerr << ", ";
3721    cerr << (void*)getOperand(i).Val;
3722    if (unsigned RN = getOperand(i).ResNo)
3723      cerr << ":" << RN;
3724  }
3725
3726  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3727    cerr << "<" << CSDN->getValue() << ">";
3728  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3729    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
3730      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
3731    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
3732      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
3733    else {
3734      cerr << "<APFloat(";
3735      CSDN->getValueAPF().convertToAPInt().dump();
3736      cerr << ")>";
3737    }
3738  } else if (const GlobalAddressSDNode *GADN =
3739             dyn_cast<GlobalAddressSDNode>(this)) {
3740    int offset = GADN->getOffset();
3741    cerr << "<";
3742    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3743    if (offset > 0)
3744      cerr << " + " << offset;
3745    else
3746      cerr << " " << offset;
3747  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3748    cerr << "<" << FIDN->getIndex() << ">";
3749  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3750    cerr << "<" << JTDN->getIndex() << ">";
3751  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3752    int offset = CP->getOffset();
3753    if (CP->isMachineConstantPoolEntry())
3754      cerr << "<" << *CP->getMachineCPVal() << ">";
3755    else
3756      cerr << "<" << *CP->getConstVal() << ">";
3757    if (offset > 0)
3758      cerr << " + " << offset;
3759    else
3760      cerr << " " << offset;
3761  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3762    cerr << "<";
3763    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3764    if (LBB)
3765      cerr << LBB->getName() << " ";
3766    cerr << (const void*)BBDN->getBasicBlock() << ">";
3767  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3768    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3769      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3770    } else {
3771      cerr << " #" << R->getReg();
3772    }
3773  } else if (const ExternalSymbolSDNode *ES =
3774             dyn_cast<ExternalSymbolSDNode>(this)) {
3775    cerr << "'" << ES->getSymbol() << "'";
3776  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3777    if (M->getValue())
3778      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3779    else
3780      cerr << "<null:" << M->getOffset() << ">";
3781  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3782    cerr << ":" << MVT::getValueTypeString(N->getVT());
3783  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3784    bool doExt = true;
3785    switch (LD->getExtensionType()) {
3786    default: doExt = false; break;
3787    case ISD::EXTLOAD:
3788      cerr << " <anyext ";
3789      break;
3790    case ISD::SEXTLOAD:
3791      cerr << " <sext ";
3792      break;
3793    case ISD::ZEXTLOAD:
3794      cerr << " <zext ";
3795      break;
3796    }
3797    if (doExt)
3798      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3799
3800    const char *AM = getIndexedModeName(LD->getAddressingMode());
3801    if (*AM)
3802      cerr << " " << AM;
3803  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3804    if (ST->isTruncatingStore())
3805      cerr << " <trunc "
3806           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3807
3808    const char *AM = getIndexedModeName(ST->getAddressingMode());
3809    if (*AM)
3810      cerr << " " << AM;
3811  }
3812}
3813
3814static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3815  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3816    if (N->getOperand(i).Val->hasOneUse())
3817      DumpNodes(N->getOperand(i).Val, indent+2, G);
3818    else
3819      cerr << "\n" << std::string(indent+2, ' ')
3820           << (void*)N->getOperand(i).Val << ": <multiple use>";
3821
3822
3823  cerr << "\n" << std::string(indent, ' ');
3824  N->dump(G);
3825}
3826
3827void SelectionDAG::dump() const {
3828  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3829  std::vector<const SDNode*> Nodes;
3830  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3831       I != E; ++I)
3832    Nodes.push_back(I);
3833
3834  std::sort(Nodes.begin(), Nodes.end());
3835
3836  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3837    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3838      DumpNodes(Nodes[i], 2, this);
3839  }
3840
3841  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3842
3843  cerr << "\n\n";
3844}
3845
3846const Type *ConstantPoolSDNode::getType() const {
3847  if (isMachineConstantPoolEntry())
3848    return Val.MachineCPVal->getType();
3849  return Val.ConstVal->getType();
3850}
3851