SelectionDAG.cpp revision a844bdeab31ef04221e7ef59a8467893584cc14d
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineModuleInfo.h"
24#include "llvm/Support/MathExtras.h"
25#include "llvm/Target/MRegisterInfo.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetLowering.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetMachine.h"
30#include "llvm/ADT/SetVector.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/StringExtras.h"
35#include <algorithm>
36#include <cmath>
37using namespace llvm;
38
39/// makeVTList - Return an instance of the SDVTList struct initialized with the
40/// specified members.
41static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
42  SDVTList Res = {VTs, NumVTs};
43  return Res;
44}
45
46//===----------------------------------------------------------------------===//
47//                              ConstantFPSDNode Class
48//===----------------------------------------------------------------------===//
49
50/// isExactlyValue - We don't rely on operator== working on double values, as
51/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
52/// As such, this method can be used to do an exact bit-for-bit comparison of
53/// two floating point values.
54bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
55  return Value.bitwiseIsEqual(V);
56}
57
58bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
59                                           const APFloat& Val) {
60  // convert modifies in place, so make a copy.
61  APFloat Val2 = APFloat(Val);
62  switch (VT) {
63  default:
64    return false;         // These can't be represented as floating point!
65
66  // FIXME rounding mode needs to be more flexible
67  case MVT::f32:
68    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
69           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
70              APFloat::opOK;
71  case MVT::f64:
72    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
73           &Val2.getSemantics() == &APFloat::IEEEdouble ||
74           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
75             APFloat::opOK;
76  // TODO: Figure out how to test if we can use a shorter type instead!
77  case MVT::f80:
78  case MVT::f128:
79  case MVT::ppcf128:
80    return true;
81  }
82}
83
84//===----------------------------------------------------------------------===//
85//                              ISD Namespace
86//===----------------------------------------------------------------------===//
87
88/// isBuildVectorAllOnes - Return true if the specified node is a
89/// BUILD_VECTOR where all of the elements are ~0 or undef.
90bool ISD::isBuildVectorAllOnes(const SDNode *N) {
91  // Look through a bit convert.
92  if (N->getOpcode() == ISD::BIT_CONVERT)
93    N = N->getOperand(0).Val;
94
95  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
96
97  unsigned i = 0, e = N->getNumOperands();
98
99  // Skip over all of the undef values.
100  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
101    ++i;
102
103  // Do not accept an all-undef vector.
104  if (i == e) return false;
105
106  // Do not accept build_vectors that aren't all constants or which have non-~0
107  // elements.
108  SDOperand NotZero = N->getOperand(i);
109  if (isa<ConstantSDNode>(NotZero)) {
110    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
111      return false;
112  } else if (isa<ConstantFPSDNode>(NotZero)) {
113    MVT::ValueType VT = NotZero.getValueType();
114    if (VT== MVT::f64) {
115      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
116                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
117        return false;
118    } else {
119      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
120                      getValueAPF().convertToAPInt().getZExtValue() !=
121          (uint32_t)-1)
122        return false;
123    }
124  } else
125    return false;
126
127  // Okay, we have at least one ~0 value, check to see if the rest match or are
128  // undefs.
129  for (++i; i != e; ++i)
130    if (N->getOperand(i) != NotZero &&
131        N->getOperand(i).getOpcode() != ISD::UNDEF)
132      return false;
133  return true;
134}
135
136
137/// isBuildVectorAllZeros - Return true if the specified node is a
138/// BUILD_VECTOR where all of the elements are 0 or undef.
139bool ISD::isBuildVectorAllZeros(const SDNode *N) {
140  // Look through a bit convert.
141  if (N->getOpcode() == ISD::BIT_CONVERT)
142    N = N->getOperand(0).Val;
143
144  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
145
146  unsigned i = 0, e = N->getNumOperands();
147
148  // Skip over all of the undef values.
149  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
150    ++i;
151
152  // Do not accept an all-undef vector.
153  if (i == e) return false;
154
155  // Do not accept build_vectors that aren't all constants or which have non-~0
156  // elements.
157  SDOperand Zero = N->getOperand(i);
158  if (isa<ConstantSDNode>(Zero)) {
159    if (!cast<ConstantSDNode>(Zero)->isNullValue())
160      return false;
161  } else if (isa<ConstantFPSDNode>(Zero)) {
162    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
163      return false;
164  } else
165    return false;
166
167  // Okay, we have at least one ~0 value, check to see if the rest match or are
168  // undefs.
169  for (++i; i != e; ++i)
170    if (N->getOperand(i) != Zero &&
171        N->getOperand(i).getOpcode() != ISD::UNDEF)
172      return false;
173  return true;
174}
175
176/// isDebugLabel - Return true if the specified node represents a debug
177/// label (i.e. ISD::LABEL or TargetInstrInfo::LANEL node and third operand
178/// is 0).
179bool ISD::isDebugLabel(const SDNode *N) {
180  SDOperand Zero;
181  if (N->getOpcode() == ISD::LABEL)
182    Zero = N->getOperand(2);
183  else if (N->isTargetOpcode() &&
184           N->getTargetOpcode() == TargetInstrInfo::LABEL)
185    // Chain moved to last operand.
186    Zero = N->getOperand(1);
187  else
188    return false;
189  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
190}
191
192/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
193/// when given the operation for (X op Y).
194ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
195  // To perform this operation, we just need to swap the L and G bits of the
196  // operation.
197  unsigned OldL = (Operation >> 2) & 1;
198  unsigned OldG = (Operation >> 1) & 1;
199  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
200                       (OldL << 1) |       // New G bit
201                       (OldG << 2));        // New L bit.
202}
203
204/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
205/// 'op' is a valid SetCC operation.
206ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
207  unsigned Operation = Op;
208  if (isInteger)
209    Operation ^= 7;   // Flip L, G, E bits, but not U.
210  else
211    Operation ^= 15;  // Flip all of the condition bits.
212  if (Operation > ISD::SETTRUE2)
213    Operation &= ~8;     // Don't let N and U bits get set.
214  return ISD::CondCode(Operation);
215}
216
217
218/// isSignedOp - For an integer comparison, return 1 if the comparison is a
219/// signed operation and 2 if the result is an unsigned comparison.  Return zero
220/// if the operation does not depend on the sign of the input (setne and seteq).
221static int isSignedOp(ISD::CondCode Opcode) {
222  switch (Opcode) {
223  default: assert(0 && "Illegal integer setcc operation!");
224  case ISD::SETEQ:
225  case ISD::SETNE: return 0;
226  case ISD::SETLT:
227  case ISD::SETLE:
228  case ISD::SETGT:
229  case ISD::SETGE: return 1;
230  case ISD::SETULT:
231  case ISD::SETULE:
232  case ISD::SETUGT:
233  case ISD::SETUGE: return 2;
234  }
235}
236
237/// getSetCCOrOperation - Return the result of a logical OR between different
238/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
239/// returns SETCC_INVALID if it is not possible to represent the resultant
240/// comparison.
241ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
242                                       bool isInteger) {
243  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
244    // Cannot fold a signed integer setcc with an unsigned integer setcc.
245    return ISD::SETCC_INVALID;
246
247  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
248
249  // If the N and U bits get set then the resultant comparison DOES suddenly
250  // care about orderedness, and is true when ordered.
251  if (Op > ISD::SETTRUE2)
252    Op &= ~16;     // Clear the U bit if the N bit is set.
253
254  // Canonicalize illegal integer setcc's.
255  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
256    Op = ISD::SETNE;
257
258  return ISD::CondCode(Op);
259}
260
261/// getSetCCAndOperation - Return the result of a logical AND between different
262/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
263/// function returns zero if it is not possible to represent the resultant
264/// comparison.
265ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
266                                        bool isInteger) {
267  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
268    // Cannot fold a signed setcc with an unsigned setcc.
269    return ISD::SETCC_INVALID;
270
271  // Combine all of the condition bits.
272  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger) {
276    switch (Result) {
277    default: break;
278    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
279    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
280    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
281    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
282    }
283  }
284
285  return Result;
286}
287
288const TargetMachine &SelectionDAG::getTarget() const {
289  return TLI.getTargetMachine();
290}
291
292//===----------------------------------------------------------------------===//
293//                           SDNode Profile Support
294//===----------------------------------------------------------------------===//
295
296/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
297///
298static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
299  ID.AddInteger(OpC);
300}
301
302/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
303/// solely with their pointer.
304void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
305  ID.AddPointer(VTList.VTs);
306}
307
308/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
309///
310static void AddNodeIDOperands(FoldingSetNodeID &ID,
311                              const SDOperand *Ops, unsigned NumOps) {
312  for (; NumOps; --NumOps, ++Ops) {
313    ID.AddPointer(Ops->Val);
314    ID.AddInteger(Ops->ResNo);
315  }
316}
317
318static void AddNodeIDNode(FoldingSetNodeID &ID,
319                          unsigned short OpC, SDVTList VTList,
320                          const SDOperand *OpList, unsigned N) {
321  AddNodeIDOpcode(ID, OpC);
322  AddNodeIDValueTypes(ID, VTList);
323  AddNodeIDOperands(ID, OpList, N);
324}
325
326/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
327/// data.
328static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
329  AddNodeIDOpcode(ID, N->getOpcode());
330  // Add the return value info.
331  AddNodeIDValueTypes(ID, N->getVTList());
332  // Add the operand info.
333  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
334
335  // Handle SDNode leafs with special info.
336  switch (N->getOpcode()) {
337  default: break;  // Normal nodes don't need extra info.
338  case ISD::TargetConstant:
339  case ISD::Constant:
340    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
341    break;
342  case ISD::TargetConstantFP:
343  case ISD::ConstantFP: {
344    ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF());
345    break;
346  }
347  case ISD::TargetGlobalAddress:
348  case ISD::GlobalAddress:
349  case ISD::TargetGlobalTLSAddress:
350  case ISD::GlobalTLSAddress: {
351    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
352    ID.AddPointer(GA->getGlobal());
353    ID.AddInteger(GA->getOffset());
354    break;
355  }
356  case ISD::BasicBlock:
357    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
358    break;
359  case ISD::Register:
360    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
361    break;
362  case ISD::SRCVALUE: {
363    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
364    ID.AddPointer(SV->getValue());
365    ID.AddInteger(SV->getOffset());
366    break;
367  }
368  case ISD::FrameIndex:
369  case ISD::TargetFrameIndex:
370    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
371    break;
372  case ISD::JumpTable:
373  case ISD::TargetJumpTable:
374    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
375    break;
376  case ISD::ConstantPool:
377  case ISD::TargetConstantPool: {
378    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
379    ID.AddInteger(CP->getAlignment());
380    ID.AddInteger(CP->getOffset());
381    if (CP->isMachineConstantPoolEntry())
382      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
383    else
384      ID.AddPointer(CP->getConstVal());
385    break;
386  }
387  case ISD::LOAD: {
388    LoadSDNode *LD = cast<LoadSDNode>(N);
389    ID.AddInteger(LD->getAddressingMode());
390    ID.AddInteger(LD->getExtensionType());
391    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
392    ID.AddInteger(LD->getAlignment());
393    ID.AddInteger(LD->isVolatile());
394    break;
395  }
396  case ISD::STORE: {
397    StoreSDNode *ST = cast<StoreSDNode>(N);
398    ID.AddInteger(ST->getAddressingMode());
399    ID.AddInteger(ST->isTruncatingStore());
400    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
401    ID.AddInteger(ST->getAlignment());
402    ID.AddInteger(ST->isVolatile());
403    break;
404  }
405  }
406}
407
408//===----------------------------------------------------------------------===//
409//                              SelectionDAG Class
410//===----------------------------------------------------------------------===//
411
412/// RemoveDeadNodes - This method deletes all unreachable nodes in the
413/// SelectionDAG.
414void SelectionDAG::RemoveDeadNodes() {
415  // Create a dummy node (which is not added to allnodes), that adds a reference
416  // to the root node, preventing it from being deleted.
417  HandleSDNode Dummy(getRoot());
418
419  SmallVector<SDNode*, 128> DeadNodes;
420
421  // Add all obviously-dead nodes to the DeadNodes worklist.
422  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
423    if (I->use_empty())
424      DeadNodes.push_back(I);
425
426  // Process the worklist, deleting the nodes and adding their uses to the
427  // worklist.
428  while (!DeadNodes.empty()) {
429    SDNode *N = DeadNodes.back();
430    DeadNodes.pop_back();
431
432    // Take the node out of the appropriate CSE map.
433    RemoveNodeFromCSEMaps(N);
434
435    // Next, brutally remove the operand list.  This is safe to do, as there are
436    // no cycles in the graph.
437    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
438      SDNode *Operand = I->Val;
439      Operand->removeUser(N);
440
441      // Now that we removed this operand, see if there are no uses of it left.
442      if (Operand->use_empty())
443        DeadNodes.push_back(Operand);
444    }
445    if (N->OperandsNeedDelete)
446      delete[] N->OperandList;
447    N->OperandList = 0;
448    N->NumOperands = 0;
449
450    // Finally, remove N itself.
451    AllNodes.erase(N);
452  }
453
454  // If the root changed (e.g. it was a dead load, update the root).
455  setRoot(Dummy.getValue());
456}
457
458void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
459  SmallVector<SDNode*, 16> DeadNodes;
460  DeadNodes.push_back(N);
461
462  // Process the worklist, deleting the nodes and adding their uses to the
463  // worklist.
464  while (!DeadNodes.empty()) {
465    SDNode *N = DeadNodes.back();
466    DeadNodes.pop_back();
467
468    // Take the node out of the appropriate CSE map.
469    RemoveNodeFromCSEMaps(N);
470
471    // Next, brutally remove the operand list.  This is safe to do, as there are
472    // no cycles in the graph.
473    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
474      SDNode *Operand = I->Val;
475      Operand->removeUser(N);
476
477      // Now that we removed this operand, see if there are no uses of it left.
478      if (Operand->use_empty())
479        DeadNodes.push_back(Operand);
480    }
481    if (N->OperandsNeedDelete)
482      delete[] N->OperandList;
483    N->OperandList = 0;
484    N->NumOperands = 0;
485
486    // Finally, remove N itself.
487    Deleted.push_back(N);
488    AllNodes.erase(N);
489  }
490}
491
492void SelectionDAG::DeleteNode(SDNode *N) {
493  assert(N->use_empty() && "Cannot delete a node that is not dead!");
494
495  // First take this out of the appropriate CSE map.
496  RemoveNodeFromCSEMaps(N);
497
498  // Finally, remove uses due to operands of this node, remove from the
499  // AllNodes list, and delete the node.
500  DeleteNodeNotInCSEMaps(N);
501}
502
503void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
504
505  // Remove it from the AllNodes list.
506  AllNodes.remove(N);
507
508  // Drop all of the operands and decrement used nodes use counts.
509  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
510    I->Val->removeUser(N);
511  if (N->OperandsNeedDelete)
512    delete[] N->OperandList;
513  N->OperandList = 0;
514  N->NumOperands = 0;
515
516  delete N;
517}
518
519/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
520/// correspond to it.  This is useful when we're about to delete or repurpose
521/// the node.  We don't want future request for structurally identical nodes
522/// to return N anymore.
523void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
524  bool Erased = false;
525  switch (N->getOpcode()) {
526  case ISD::HANDLENODE: return;  // noop.
527  case ISD::STRING:
528    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
529    break;
530  case ISD::CONDCODE:
531    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
532           "Cond code doesn't exist!");
533    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
534    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
535    break;
536  case ISD::ExternalSymbol:
537    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
538    break;
539  case ISD::TargetExternalSymbol:
540    Erased =
541      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
542    break;
543  case ISD::VALUETYPE: {
544    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
545    if (MVT::isExtendedVT(VT)) {
546      Erased = ExtendedValueTypeNodes.erase(VT);
547    } else {
548      Erased = ValueTypeNodes[VT] != 0;
549      ValueTypeNodes[VT] = 0;
550    }
551    break;
552  }
553  default:
554    // Remove it from the CSE Map.
555    Erased = CSEMap.RemoveNode(N);
556    break;
557  }
558#ifndef NDEBUG
559  // Verify that the node was actually in one of the CSE maps, unless it has a
560  // flag result (which cannot be CSE'd) or is one of the special cases that are
561  // not subject to CSE.
562  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
563      !N->isTargetOpcode()) {
564    N->dump(this);
565    cerr << "\n";
566    assert(0 && "Node is not in map!");
567  }
568#endif
569}
570
571/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
572/// has been taken out and modified in some way.  If the specified node already
573/// exists in the CSE maps, do not modify the maps, but return the existing node
574/// instead.  If it doesn't exist, add it and return null.
575///
576SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
577  assert(N->getNumOperands() && "This is a leaf node!");
578  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
579    return 0;    // Never add these nodes.
580
581  // Check that remaining values produced are not flags.
582  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
583    if (N->getValueType(i) == MVT::Flag)
584      return 0;   // Never CSE anything that produces a flag.
585
586  SDNode *New = CSEMap.GetOrInsertNode(N);
587  if (New != N) return New;  // Node already existed.
588  return 0;
589}
590
591/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
592/// were replaced with those specified.  If this node is never memoized,
593/// return null, otherwise return a pointer to the slot it would take.  If a
594/// node already exists with these operands, the slot will be non-null.
595SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
596                                           void *&InsertPos) {
597  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
598    return 0;    // Never add these nodes.
599
600  // Check that remaining values produced are not flags.
601  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
602    if (N->getValueType(i) == MVT::Flag)
603      return 0;   // Never CSE anything that produces a flag.
604
605  SDOperand Ops[] = { Op };
606  FoldingSetNodeID ID;
607  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
608  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
609}
610
611/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
612/// were replaced with those specified.  If this node is never memoized,
613/// return null, otherwise return a pointer to the slot it would take.  If a
614/// node already exists with these operands, the slot will be non-null.
615SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
616                                           SDOperand Op1, SDOperand Op2,
617                                           void *&InsertPos) {
618  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
619    return 0;    // Never add these nodes.
620
621  // Check that remaining values produced are not flags.
622  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
623    if (N->getValueType(i) == MVT::Flag)
624      return 0;   // Never CSE anything that produces a flag.
625
626  SDOperand Ops[] = { Op1, Op2 };
627  FoldingSetNodeID ID;
628  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
629  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
630}
631
632
633/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
634/// were replaced with those specified.  If this node is never memoized,
635/// return null, otherwise return a pointer to the slot it would take.  If a
636/// node already exists with these operands, the slot will be non-null.
637SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
638                                           const SDOperand *Ops,unsigned NumOps,
639                                           void *&InsertPos) {
640  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
641    return 0;    // Never add these nodes.
642
643  // Check that remaining values produced are not flags.
644  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
645    if (N->getValueType(i) == MVT::Flag)
646      return 0;   // Never CSE anything that produces a flag.
647
648  FoldingSetNodeID ID;
649  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
650
651  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
652    ID.AddInteger(LD->getAddressingMode());
653    ID.AddInteger(LD->getExtensionType());
654    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
655    ID.AddInteger(LD->getAlignment());
656    ID.AddInteger(LD->isVolatile());
657  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
658    ID.AddInteger(ST->getAddressingMode());
659    ID.AddInteger(ST->isTruncatingStore());
660    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
661    ID.AddInteger(ST->getAlignment());
662    ID.AddInteger(ST->isVolatile());
663  }
664
665  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
666}
667
668
669SelectionDAG::~SelectionDAG() {
670  while (!AllNodes.empty()) {
671    SDNode *N = AllNodes.begin();
672    N->SetNextInBucket(0);
673    if (N->OperandsNeedDelete)
674      delete [] N->OperandList;
675    N->OperandList = 0;
676    N->NumOperands = 0;
677    AllNodes.pop_front();
678  }
679}
680
681SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
682  if (Op.getValueType() == VT) return Op;
683  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
684  return getNode(ISD::AND, Op.getValueType(), Op,
685                 getConstant(Imm, Op.getValueType()));
686}
687
688SDOperand SelectionDAG::getString(const std::string &Val) {
689  StringSDNode *&N = StringNodes[Val];
690  if (!N) {
691    N = new StringSDNode(Val);
692    AllNodes.push_back(N);
693  }
694  return SDOperand(N, 0);
695}
696
697SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
698  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
699
700  MVT::ValueType EltVT =
701    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
702
703  // Mask out any bits that are not valid for this constant.
704  Val &= MVT::getIntVTBitMask(EltVT);
705
706  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
707  FoldingSetNodeID ID;
708  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
709  ID.AddInteger(Val);
710  void *IP = 0;
711  SDNode *N = NULL;
712  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
713    if (!MVT::isVector(VT))
714      return SDOperand(N, 0);
715  if (!N) {
716    N = new ConstantSDNode(isT, Val, EltVT);
717    CSEMap.InsertNode(N, IP);
718    AllNodes.push_back(N);
719  }
720
721  SDOperand Result(N, 0);
722  if (MVT::isVector(VT)) {
723    SmallVector<SDOperand, 8> Ops;
724    Ops.assign(MVT::getVectorNumElements(VT), Result);
725    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
726  }
727  return Result;
728}
729
730SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
731  return getConstant(Val, TLI.getPointerTy(), isTarget);
732}
733
734
735SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
736                                      bool isTarget) {
737  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
738
739  MVT::ValueType EltVT =
740    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
741
742  // Do the map lookup using the actual bit pattern for the floating point
743  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
744  // we don't have issues with SNANs.
745  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
746  FoldingSetNodeID ID;
747  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
748  ID.AddAPFloat(V);
749  void *IP = 0;
750  SDNode *N = NULL;
751  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
752    if (!MVT::isVector(VT))
753      return SDOperand(N, 0);
754  if (!N) {
755    N = new ConstantFPSDNode(isTarget, V, EltVT);
756    CSEMap.InsertNode(N, IP);
757    AllNodes.push_back(N);
758  }
759
760  SDOperand Result(N, 0);
761  if (MVT::isVector(VT)) {
762    SmallVector<SDOperand, 8> Ops;
763    Ops.assign(MVT::getVectorNumElements(VT), Result);
764    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
765  }
766  return Result;
767}
768
769SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
770                                      bool isTarget) {
771  MVT::ValueType EltVT =
772    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
773  if (EltVT==MVT::f32)
774    return getConstantFP(APFloat((float)Val), VT, isTarget);
775  else
776    return getConstantFP(APFloat(Val), VT, isTarget);
777}
778
779SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
780                                         MVT::ValueType VT, int Offset,
781                                         bool isTargetGA) {
782  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
783  unsigned Opc;
784  if (GVar && GVar->isThreadLocal())
785    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
786  else
787    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
788  FoldingSetNodeID ID;
789  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
790  ID.AddPointer(GV);
791  ID.AddInteger(Offset);
792  void *IP = 0;
793  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
794   return SDOperand(E, 0);
795  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
796  CSEMap.InsertNode(N, IP);
797  AllNodes.push_back(N);
798  return SDOperand(N, 0);
799}
800
801SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
802                                      bool isTarget) {
803  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
804  FoldingSetNodeID ID;
805  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
806  ID.AddInteger(FI);
807  void *IP = 0;
808  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
809    return SDOperand(E, 0);
810  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
811  CSEMap.InsertNode(N, IP);
812  AllNodes.push_back(N);
813  return SDOperand(N, 0);
814}
815
816SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
817  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
818  FoldingSetNodeID ID;
819  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
820  ID.AddInteger(JTI);
821  void *IP = 0;
822  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
823    return SDOperand(E, 0);
824  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
825  CSEMap.InsertNode(N, IP);
826  AllNodes.push_back(N);
827  return SDOperand(N, 0);
828}
829
830SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
831                                        unsigned Alignment, int Offset,
832                                        bool isTarget) {
833  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
834  FoldingSetNodeID ID;
835  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
836  ID.AddInteger(Alignment);
837  ID.AddInteger(Offset);
838  ID.AddPointer(C);
839  void *IP = 0;
840  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
841    return SDOperand(E, 0);
842  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
843  CSEMap.InsertNode(N, IP);
844  AllNodes.push_back(N);
845  return SDOperand(N, 0);
846}
847
848
849SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
850                                        MVT::ValueType VT,
851                                        unsigned Alignment, int Offset,
852                                        bool isTarget) {
853  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
854  FoldingSetNodeID ID;
855  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
856  ID.AddInteger(Alignment);
857  ID.AddInteger(Offset);
858  C->AddSelectionDAGCSEId(ID);
859  void *IP = 0;
860  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
861    return SDOperand(E, 0);
862  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
863  CSEMap.InsertNode(N, IP);
864  AllNodes.push_back(N);
865  return SDOperand(N, 0);
866}
867
868
869SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
870  FoldingSetNodeID ID;
871  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
872  ID.AddPointer(MBB);
873  void *IP = 0;
874  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
875    return SDOperand(E, 0);
876  SDNode *N = new BasicBlockSDNode(MBB);
877  CSEMap.InsertNode(N, IP);
878  AllNodes.push_back(N);
879  return SDOperand(N, 0);
880}
881
882SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
883  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
884    ValueTypeNodes.resize(VT+1);
885
886  SDNode *&N = MVT::isExtendedVT(VT) ?
887    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
888
889  if (N) return SDOperand(N, 0);
890  N = new VTSDNode(VT);
891  AllNodes.push_back(N);
892  return SDOperand(N, 0);
893}
894
895SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
896  SDNode *&N = ExternalSymbols[Sym];
897  if (N) return SDOperand(N, 0);
898  N = new ExternalSymbolSDNode(false, Sym, VT);
899  AllNodes.push_back(N);
900  return SDOperand(N, 0);
901}
902
903SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
904                                                MVT::ValueType VT) {
905  SDNode *&N = TargetExternalSymbols[Sym];
906  if (N) return SDOperand(N, 0);
907  N = new ExternalSymbolSDNode(true, Sym, VT);
908  AllNodes.push_back(N);
909  return SDOperand(N, 0);
910}
911
912SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
913  if ((unsigned)Cond >= CondCodeNodes.size())
914    CondCodeNodes.resize(Cond+1);
915
916  if (CondCodeNodes[Cond] == 0) {
917    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
918    AllNodes.push_back(CondCodeNodes[Cond]);
919  }
920  return SDOperand(CondCodeNodes[Cond], 0);
921}
922
923SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
924  FoldingSetNodeID ID;
925  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
926  ID.AddInteger(RegNo);
927  void *IP = 0;
928  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
929    return SDOperand(E, 0);
930  SDNode *N = new RegisterSDNode(RegNo, VT);
931  CSEMap.InsertNode(N, IP);
932  AllNodes.push_back(N);
933  return SDOperand(N, 0);
934}
935
936SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
937  assert((!V || isa<PointerType>(V->getType())) &&
938         "SrcValue is not a pointer?");
939
940  FoldingSetNodeID ID;
941  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
942  ID.AddPointer(V);
943  ID.AddInteger(Offset);
944  void *IP = 0;
945  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
946    return SDOperand(E, 0);
947  SDNode *N = new SrcValueSDNode(V, Offset);
948  CSEMap.InsertNode(N, IP);
949  AllNodes.push_back(N);
950  return SDOperand(N, 0);
951}
952
953/// CreateStackTemporary - Create a stack temporary, suitable for holding the
954/// specified value type.
955SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
956  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
957  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
958  const Type *Ty = MVT::getTypeForValueType(VT);
959  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
960  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
961  return getFrameIndex(FrameIdx, TLI.getPointerTy());
962}
963
964
965SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
966                                  SDOperand N2, ISD::CondCode Cond) {
967  // These setcc operations always fold.
968  switch (Cond) {
969  default: break;
970  case ISD::SETFALSE:
971  case ISD::SETFALSE2: return getConstant(0, VT);
972  case ISD::SETTRUE:
973  case ISD::SETTRUE2:  return getConstant(1, VT);
974
975  case ISD::SETOEQ:
976  case ISD::SETOGT:
977  case ISD::SETOGE:
978  case ISD::SETOLT:
979  case ISD::SETOLE:
980  case ISD::SETONE:
981  case ISD::SETO:
982  case ISD::SETUO:
983  case ISD::SETUEQ:
984  case ISD::SETUNE:
985    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
986    break;
987  }
988
989  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
990    uint64_t C2 = N2C->getValue();
991    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
992      uint64_t C1 = N1C->getValue();
993
994      // Sign extend the operands if required
995      if (ISD::isSignedIntSetCC(Cond)) {
996        C1 = N1C->getSignExtended();
997        C2 = N2C->getSignExtended();
998      }
999
1000      switch (Cond) {
1001      default: assert(0 && "Unknown integer setcc!");
1002      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1003      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1004      case ISD::SETULT: return getConstant(C1 <  C2, VT);
1005      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
1006      case ISD::SETULE: return getConstant(C1 <= C2, VT);
1007      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
1008      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
1009      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
1010      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
1011      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
1012      }
1013    }
1014  }
1015  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
1016    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1017      // No compile time operations on this type yet.
1018      if (N1C->getValueType(0) == MVT::ppcf128)
1019        return SDOperand();
1020
1021      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1022      switch (Cond) {
1023      default: break;
1024      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1025                          return getNode(ISD::UNDEF, VT);
1026                        // fall through
1027      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1028      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1029                          return getNode(ISD::UNDEF, VT);
1030                        // fall through
1031      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1032                                           R==APFloat::cmpLessThan, VT);
1033      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1034                          return getNode(ISD::UNDEF, VT);
1035                        // fall through
1036      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1037      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1038                          return getNode(ISD::UNDEF, VT);
1039                        // fall through
1040      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1041      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1042                          return getNode(ISD::UNDEF, VT);
1043                        // fall through
1044      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1045                                           R==APFloat::cmpEqual, VT);
1046      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1047                          return getNode(ISD::UNDEF, VT);
1048                        // fall through
1049      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1050                                           R==APFloat::cmpEqual, VT);
1051      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1052      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1053      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1054                                           R==APFloat::cmpEqual, VT);
1055      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1056      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1057                                           R==APFloat::cmpLessThan, VT);
1058      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1059                                           R==APFloat::cmpUnordered, VT);
1060      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1061      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1062      }
1063    } else {
1064      // Ensure that the constant occurs on the RHS.
1065      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1066    }
1067
1068  // Could not fold it.
1069  return SDOperand();
1070}
1071
1072/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1073/// this predicate to simplify operations downstream.  Mask is known to be zero
1074/// for bits that V cannot have.
1075bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1076                                     unsigned Depth) const {
1077  // The masks are not wide enough to represent this type!  Should use APInt.
1078  if (Op.getValueType() == MVT::i128)
1079    return false;
1080
1081  uint64_t KnownZero, KnownOne;
1082  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1083  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1084  return (KnownZero & Mask) == Mask;
1085}
1086
1087/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1088/// known to be either zero or one and return them in the KnownZero/KnownOne
1089/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1090/// processing.
1091void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1092                                     uint64_t &KnownZero, uint64_t &KnownOne,
1093                                     unsigned Depth) const {
1094  KnownZero = KnownOne = 0;   // Don't know anything.
1095  if (Depth == 6 || Mask == 0)
1096    return;  // Limit search depth.
1097
1098  // The masks are not wide enough to represent this type!  Should use APInt.
1099  if (Op.getValueType() == MVT::i128)
1100    return;
1101
1102  uint64_t KnownZero2, KnownOne2;
1103
1104  switch (Op.getOpcode()) {
1105  case ISD::Constant:
1106    // We know all of the bits for a constant!
1107    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1108    KnownZero = ~KnownOne & Mask;
1109    return;
1110  case ISD::AND:
1111    // If either the LHS or the RHS are Zero, the result is zero.
1112    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1113    Mask &= ~KnownZero;
1114    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1115    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1116    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1117
1118    // Output known-1 bits are only known if set in both the LHS & RHS.
1119    KnownOne &= KnownOne2;
1120    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1121    KnownZero |= KnownZero2;
1122    return;
1123  case ISD::OR:
1124    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1125    Mask &= ~KnownOne;
1126    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1127    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1128    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1129
1130    // Output known-0 bits are only known if clear in both the LHS & RHS.
1131    KnownZero &= KnownZero2;
1132    // Output known-1 are known to be set if set in either the LHS | RHS.
1133    KnownOne |= KnownOne2;
1134    return;
1135  case ISD::XOR: {
1136    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1137    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1138    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1139    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1140
1141    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1142    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1143    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1144    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1145    KnownZero = KnownZeroOut;
1146    return;
1147  }
1148  case ISD::SELECT:
1149    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1150    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1151    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1152    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1153
1154    // Only known if known in both the LHS and RHS.
1155    KnownOne &= KnownOne2;
1156    KnownZero &= KnownZero2;
1157    return;
1158  case ISD::SELECT_CC:
1159    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1160    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1161    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1162    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1163
1164    // Only known if known in both the LHS and RHS.
1165    KnownOne &= KnownOne2;
1166    KnownZero &= KnownZero2;
1167    return;
1168  case ISD::SETCC:
1169    // If we know the result of a setcc has the top bits zero, use this info.
1170    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1171      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1172    return;
1173  case ISD::SHL:
1174    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1175    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1176      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1177                        KnownZero, KnownOne, Depth+1);
1178      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1179      KnownZero <<= SA->getValue();
1180      KnownOne  <<= SA->getValue();
1181      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1182    }
1183    return;
1184  case ISD::SRL:
1185    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1186    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1187      MVT::ValueType VT = Op.getValueType();
1188      unsigned ShAmt = SA->getValue();
1189
1190      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1191      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1192                        KnownZero, KnownOne, Depth+1);
1193      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1194      KnownZero &= TypeMask;
1195      KnownOne  &= TypeMask;
1196      KnownZero >>= ShAmt;
1197      KnownOne  >>= ShAmt;
1198
1199      uint64_t HighBits = (1ULL << ShAmt)-1;
1200      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1201      KnownZero |= HighBits;  // High bits known zero.
1202    }
1203    return;
1204  case ISD::SRA:
1205    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1206      MVT::ValueType VT = Op.getValueType();
1207      unsigned ShAmt = SA->getValue();
1208
1209      // Compute the new bits that are at the top now.
1210      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1211
1212      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1213      // If any of the demanded bits are produced by the sign extension, we also
1214      // demand the input sign bit.
1215      uint64_t HighBits = (1ULL << ShAmt)-1;
1216      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1217      if (HighBits & Mask)
1218        InDemandedMask |= MVT::getIntVTSignBit(VT);
1219
1220      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1221                        Depth+1);
1222      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1223      KnownZero &= TypeMask;
1224      KnownOne  &= TypeMask;
1225      KnownZero >>= ShAmt;
1226      KnownOne  >>= ShAmt;
1227
1228      // Handle the sign bits.
1229      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1230      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1231
1232      if (KnownZero & SignBit) {
1233        KnownZero |= HighBits;  // New bits are known zero.
1234      } else if (KnownOne & SignBit) {
1235        KnownOne  |= HighBits;  // New bits are known one.
1236      }
1237    }
1238    return;
1239  case ISD::SIGN_EXTEND_INREG: {
1240    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1241
1242    // Sign extension.  Compute the demanded bits in the result that are not
1243    // present in the input.
1244    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1245
1246    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1247    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1248
1249    // If the sign extended bits are demanded, we know that the sign
1250    // bit is demanded.
1251    if (NewBits)
1252      InputDemandedBits |= InSignBit;
1253
1254    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1255                      KnownZero, KnownOne, Depth+1);
1256    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1257
1258    // If the sign bit of the input is known set or clear, then we know the
1259    // top bits of the result.
1260    if (KnownZero & InSignBit) {          // Input sign bit known clear
1261      KnownZero |= NewBits;
1262      KnownOne  &= ~NewBits;
1263    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1264      KnownOne  |= NewBits;
1265      KnownZero &= ~NewBits;
1266    } else {                              // Input sign bit unknown
1267      KnownZero &= ~NewBits;
1268      KnownOne  &= ~NewBits;
1269    }
1270    return;
1271  }
1272  case ISD::CTTZ:
1273  case ISD::CTLZ:
1274  case ISD::CTPOP: {
1275    MVT::ValueType VT = Op.getValueType();
1276    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1277    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1278    KnownOne  = 0;
1279    return;
1280  }
1281  case ISD::LOAD: {
1282    if (ISD::isZEXTLoad(Op.Val)) {
1283      LoadSDNode *LD = cast<LoadSDNode>(Op);
1284      MVT::ValueType VT = LD->getMemoryVT();
1285      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1286    }
1287    return;
1288  }
1289  case ISD::ZERO_EXTEND: {
1290    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1291    uint64_t NewBits = (~InMask) & Mask;
1292    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1293                      KnownOne, Depth+1);
1294    KnownZero |= NewBits & Mask;
1295    KnownOne  &= ~NewBits;
1296    return;
1297  }
1298  case ISD::SIGN_EXTEND: {
1299    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1300    unsigned InBits    = MVT::getSizeInBits(InVT);
1301    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1302    uint64_t InSignBit = 1ULL << (InBits-1);
1303    uint64_t NewBits   = (~InMask) & Mask;
1304    uint64_t InDemandedBits = Mask & InMask;
1305
1306    // If any of the sign extended bits are demanded, we know that the sign
1307    // bit is demanded.
1308    if (NewBits & Mask)
1309      InDemandedBits |= InSignBit;
1310
1311    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1312                      KnownOne, Depth+1);
1313    // If the sign bit is known zero or one, the  top bits match.
1314    if (KnownZero & InSignBit) {
1315      KnownZero |= NewBits;
1316      KnownOne  &= ~NewBits;
1317    } else if (KnownOne & InSignBit) {
1318      KnownOne  |= NewBits;
1319      KnownZero &= ~NewBits;
1320    } else {   // Otherwise, top bits aren't known.
1321      KnownOne  &= ~NewBits;
1322      KnownZero &= ~NewBits;
1323    }
1324    return;
1325  }
1326  case ISD::ANY_EXTEND: {
1327    MVT::ValueType VT = Op.getOperand(0).getValueType();
1328    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1329                      KnownZero, KnownOne, Depth+1);
1330    return;
1331  }
1332  case ISD::TRUNCATE: {
1333    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1334    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1335    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1336    KnownZero &= OutMask;
1337    KnownOne &= OutMask;
1338    break;
1339  }
1340  case ISD::AssertZext: {
1341    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1342    uint64_t InMask = MVT::getIntVTBitMask(VT);
1343    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1344                      KnownOne, Depth+1);
1345    KnownZero |= (~InMask) & Mask;
1346    return;
1347  }
1348  case ISD::FGETSIGN:
1349    // All bits are zero except the low bit.
1350    KnownZero = MVT::getIntVTBitMask(Op.getValueType()) ^ 1;
1351    return;
1352
1353  case ISD::ADD: {
1354    // If either the LHS or the RHS are Zero, the result is zero.
1355    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1356    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1357    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1358    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1359
1360    // Output known-0 bits are known if clear or set in both the low clear bits
1361    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1362    // low 3 bits clear.
1363    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1364                                     CountTrailingZeros_64(~KnownZero2));
1365
1366    KnownZero = (1ULL << KnownZeroOut) - 1;
1367    KnownOne = 0;
1368    return;
1369  }
1370  case ISD::SUB: {
1371    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1372    if (!CLHS) return;
1373
1374    // We know that the top bits of C-X are clear if X contains less bits
1375    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1376    // positive if we can prove that X is >= 0 and < 16.
1377    MVT::ValueType VT = CLHS->getValueType(0);
1378    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1379      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1380      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1381      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1382      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1383
1384      // If all of the MaskV bits are known to be zero, then we know the output
1385      // top bits are zero, because we now know that the output is from [0-C].
1386      if ((KnownZero & MaskV) == MaskV) {
1387        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1388        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1389        KnownOne = 0;   // No one bits known.
1390      } else {
1391        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1392      }
1393    }
1394    return;
1395  }
1396  default:
1397    // Allow the target to implement this method for its nodes.
1398    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1399  case ISD::INTRINSIC_WO_CHAIN:
1400  case ISD::INTRINSIC_W_CHAIN:
1401  case ISD::INTRINSIC_VOID:
1402      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1403    }
1404    return;
1405  }
1406}
1407
1408/// ComputeNumSignBits - Return the number of times the sign bit of the
1409/// register is replicated into the other bits.  We know that at least 1 bit
1410/// is always equal to the sign bit (itself), but other cases can give us
1411/// information.  For example, immediately after an "SRA X, 2", we know that
1412/// the top 3 bits are all equal to each other, so we return 3.
1413unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1414  MVT::ValueType VT = Op.getValueType();
1415  assert(MVT::isInteger(VT) && "Invalid VT!");
1416  unsigned VTBits = MVT::getSizeInBits(VT);
1417  unsigned Tmp, Tmp2;
1418
1419  if (Depth == 6)
1420    return 1;  // Limit search depth.
1421
1422  switch (Op.getOpcode()) {
1423  default: break;
1424  case ISD::AssertSext:
1425    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1426    return VTBits-Tmp+1;
1427  case ISD::AssertZext:
1428    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1429    return VTBits-Tmp;
1430
1431  case ISD::Constant: {
1432    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1433    // If negative, invert the bits, then look at it.
1434    if (Val & MVT::getIntVTSignBit(VT))
1435      Val = ~Val;
1436
1437    // Shift the bits so they are the leading bits in the int64_t.
1438    Val <<= 64-VTBits;
1439
1440    // Return # leading zeros.  We use 'min' here in case Val was zero before
1441    // shifting.  We don't want to return '64' as for an i32 "0".
1442    return std::min(VTBits, CountLeadingZeros_64(Val));
1443  }
1444
1445  case ISD::SIGN_EXTEND:
1446    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1447    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1448
1449  case ISD::SIGN_EXTEND_INREG:
1450    // Max of the input and what this extends.
1451    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1452    Tmp = VTBits-Tmp+1;
1453
1454    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1455    return std::max(Tmp, Tmp2);
1456
1457  case ISD::SRA:
1458    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1459    // SRA X, C   -> adds C sign bits.
1460    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1461      Tmp += C->getValue();
1462      if (Tmp > VTBits) Tmp = VTBits;
1463    }
1464    return Tmp;
1465  case ISD::SHL:
1466    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1467      // shl destroys sign bits.
1468      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1469      if (C->getValue() >= VTBits ||      // Bad shift.
1470          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1471      return Tmp - C->getValue();
1472    }
1473    break;
1474  case ISD::AND:
1475  case ISD::OR:
1476  case ISD::XOR:    // NOT is handled here.
1477    // Logical binary ops preserve the number of sign bits.
1478    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1479    if (Tmp == 1) return 1;  // Early out.
1480    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1481    return std::min(Tmp, Tmp2);
1482
1483  case ISD::SELECT:
1484    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1485    if (Tmp == 1) return 1;  // Early out.
1486    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1487    return std::min(Tmp, Tmp2);
1488
1489  case ISD::SETCC:
1490    // If setcc returns 0/-1, all bits are sign bits.
1491    if (TLI.getSetCCResultContents() ==
1492        TargetLowering::ZeroOrNegativeOneSetCCResult)
1493      return VTBits;
1494    break;
1495  case ISD::ROTL:
1496  case ISD::ROTR:
1497    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1498      unsigned RotAmt = C->getValue() & (VTBits-1);
1499
1500      // Handle rotate right by N like a rotate left by 32-N.
1501      if (Op.getOpcode() == ISD::ROTR)
1502        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1503
1504      // If we aren't rotating out all of the known-in sign bits, return the
1505      // number that are left.  This handles rotl(sext(x), 1) for example.
1506      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1507      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1508    }
1509    break;
1510  case ISD::ADD:
1511    // Add can have at most one carry bit.  Thus we know that the output
1512    // is, at worst, one more bit than the inputs.
1513    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1514    if (Tmp == 1) return 1;  // Early out.
1515
1516    // Special case decrementing a value (ADD X, -1):
1517    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1518      if (CRHS->isAllOnesValue()) {
1519        uint64_t KnownZero, KnownOne;
1520        uint64_t Mask = MVT::getIntVTBitMask(VT);
1521        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1522
1523        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1524        // sign bits set.
1525        if ((KnownZero|1) == Mask)
1526          return VTBits;
1527
1528        // If we are subtracting one from a positive number, there is no carry
1529        // out of the result.
1530        if (KnownZero & MVT::getIntVTSignBit(VT))
1531          return Tmp;
1532      }
1533
1534    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1535    if (Tmp2 == 1) return 1;
1536      return std::min(Tmp, Tmp2)-1;
1537    break;
1538
1539  case ISD::SUB:
1540    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1541    if (Tmp2 == 1) return 1;
1542
1543    // Handle NEG.
1544    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1545      if (CLHS->getValue() == 0) {
1546        uint64_t KnownZero, KnownOne;
1547        uint64_t Mask = MVT::getIntVTBitMask(VT);
1548        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1549        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1550        // sign bits set.
1551        if ((KnownZero|1) == Mask)
1552          return VTBits;
1553
1554        // If the input is known to be positive (the sign bit is known clear),
1555        // the output of the NEG has the same number of sign bits as the input.
1556        if (KnownZero & MVT::getIntVTSignBit(VT))
1557          return Tmp2;
1558
1559        // Otherwise, we treat this like a SUB.
1560      }
1561
1562    // Sub can have at most one carry bit.  Thus we know that the output
1563    // is, at worst, one more bit than the inputs.
1564    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1565    if (Tmp == 1) return 1;  // Early out.
1566      return std::min(Tmp, Tmp2)-1;
1567    break;
1568  case ISD::TRUNCATE:
1569    // FIXME: it's tricky to do anything useful for this, but it is an important
1570    // case for targets like X86.
1571    break;
1572  }
1573
1574  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1575  if (Op.getOpcode() == ISD::LOAD) {
1576    LoadSDNode *LD = cast<LoadSDNode>(Op);
1577    unsigned ExtType = LD->getExtensionType();
1578    switch (ExtType) {
1579    default: break;
1580    case ISD::SEXTLOAD:    // '17' bits known
1581      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1582      return VTBits-Tmp+1;
1583    case ISD::ZEXTLOAD:    // '16' bits known
1584      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1585      return VTBits-Tmp;
1586    }
1587  }
1588
1589  // Allow the target to implement this method for its nodes.
1590  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1591      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1592      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1593      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1594    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1595    if (NumBits > 1) return NumBits;
1596  }
1597
1598  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1599  // use this information.
1600  uint64_t KnownZero, KnownOne;
1601  uint64_t Mask = MVT::getIntVTBitMask(VT);
1602  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1603
1604  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1605  if (KnownZero & SignBit) {        // SignBit is 0
1606    Mask = KnownZero;
1607  } else if (KnownOne & SignBit) {  // SignBit is 1;
1608    Mask = KnownOne;
1609  } else {
1610    // Nothing known.
1611    return 1;
1612  }
1613
1614  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1615  // the number of identical bits in the top of the input value.
1616  Mask ^= ~0ULL;
1617  Mask <<= 64-VTBits;
1618  // Return # leading zeros.  We use 'min' here in case Val was zero before
1619  // shifting.  We don't want to return '64' as for an i32 "0".
1620  return std::min(VTBits, CountLeadingZeros_64(Mask));
1621}
1622
1623
1624bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1625  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1626  if (!GA) return false;
1627  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1628  if (!GV) return false;
1629  MachineModuleInfo *MMI = getMachineModuleInfo();
1630  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1631}
1632
1633
1634/// getNode - Gets or creates the specified node.
1635///
1636SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1637  FoldingSetNodeID ID;
1638  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1639  void *IP = 0;
1640  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1641    return SDOperand(E, 0);
1642  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1643  CSEMap.InsertNode(N, IP);
1644
1645  AllNodes.push_back(N);
1646  return SDOperand(N, 0);
1647}
1648
1649SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1650                                SDOperand Operand) {
1651  unsigned Tmp1;
1652  // Constant fold unary operations with an integer constant operand.
1653  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1654    uint64_t Val = C->getValue();
1655    switch (Opcode) {
1656    default: break;
1657    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1658    case ISD::ANY_EXTEND:
1659    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1660    case ISD::TRUNCATE:    return getConstant(Val, VT);
1661    case ISD::UINT_TO_FP:
1662    case ISD::SINT_TO_FP: {
1663      const uint64_t zero[] = {0, 0};
1664      // No compile time operations on this type.
1665      if (VT==MVT::ppcf128)
1666        break;
1667      APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
1668      (void)apf.convertFromZeroExtendedInteger(&Val,
1669                               MVT::getSizeInBits(Operand.getValueType()),
1670                               Opcode==ISD::SINT_TO_FP,
1671                               APFloat::rmNearestTiesToEven);
1672      return getConstantFP(apf, VT);
1673    }
1674    case ISD::BIT_CONVERT:
1675      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1676        return getConstantFP(BitsToFloat(Val), VT);
1677      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1678        return getConstantFP(BitsToDouble(Val), VT);
1679      break;
1680    case ISD::BSWAP:
1681      switch(VT) {
1682      default: assert(0 && "Invalid bswap!"); break;
1683      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1684      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1685      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1686      }
1687      break;
1688    case ISD::CTPOP:
1689      switch(VT) {
1690      default: assert(0 && "Invalid ctpop!"); break;
1691      case MVT::i1: return getConstant(Val != 0, VT);
1692      case MVT::i8:
1693        Tmp1 = (unsigned)Val & 0xFF;
1694        return getConstant(CountPopulation_32(Tmp1), VT);
1695      case MVT::i16:
1696        Tmp1 = (unsigned)Val & 0xFFFF;
1697        return getConstant(CountPopulation_32(Tmp1), VT);
1698      case MVT::i32:
1699        return getConstant(CountPopulation_32((unsigned)Val), VT);
1700      case MVT::i64:
1701        return getConstant(CountPopulation_64(Val), VT);
1702      }
1703    case ISD::CTLZ:
1704      switch(VT) {
1705      default: assert(0 && "Invalid ctlz!"); break;
1706      case MVT::i1: return getConstant(Val == 0, VT);
1707      case MVT::i8:
1708        Tmp1 = (unsigned)Val & 0xFF;
1709        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1710      case MVT::i16:
1711        Tmp1 = (unsigned)Val & 0xFFFF;
1712        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1713      case MVT::i32:
1714        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1715      case MVT::i64:
1716        return getConstant(CountLeadingZeros_64(Val), VT);
1717      }
1718    case ISD::CTTZ:
1719      switch(VT) {
1720      default: assert(0 && "Invalid cttz!"); break;
1721      case MVT::i1: return getConstant(Val == 0, VT);
1722      case MVT::i8:
1723        Tmp1 = (unsigned)Val | 0x100;
1724        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1725      case MVT::i16:
1726        Tmp1 = (unsigned)Val | 0x10000;
1727        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1728      case MVT::i32:
1729        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1730      case MVT::i64:
1731        return getConstant(CountTrailingZeros_64(Val), VT);
1732      }
1733    }
1734  }
1735
1736  // Constant fold unary operations with a floating point constant operand.
1737  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1738    APFloat V = C->getValueAPF();    // make copy
1739    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1740      switch (Opcode) {
1741      case ISD::FNEG:
1742        V.changeSign();
1743        return getConstantFP(V, VT);
1744      case ISD::FABS:
1745        V.clearSign();
1746        return getConstantFP(V, VT);
1747      case ISD::FP_ROUND:
1748      case ISD::FP_EXTEND:
1749        // This can return overflow, underflow, or inexact; we don't care.
1750        // FIXME need to be more flexible about rounding mode.
1751        (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1752                         VT==MVT::f64 ? APFloat::IEEEdouble :
1753                         VT==MVT::f80 ? APFloat::x87DoubleExtended :
1754                         VT==MVT::f128 ? APFloat::IEEEquad :
1755                         APFloat::Bogus,
1756                         APFloat::rmNearestTiesToEven);
1757        return getConstantFP(V, VT);
1758      case ISD::FP_TO_SINT:
1759      case ISD::FP_TO_UINT: {
1760        integerPart x;
1761        assert(integerPartWidth >= 64);
1762        // FIXME need to be more flexible about rounding mode.
1763        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1764                              Opcode==ISD::FP_TO_SINT,
1765                              APFloat::rmTowardZero);
1766        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1767          break;
1768        return getConstant(x, VT);
1769      }
1770      case ISD::BIT_CONVERT:
1771        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1772          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1773        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1774          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1775        break;
1776      }
1777    }
1778  }
1779
1780  unsigned OpOpcode = Operand.Val->getOpcode();
1781  switch (Opcode) {
1782  case ISD::TokenFactor:
1783    return Operand;         // Factor of one node?  No factor.
1784  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1785  case ISD::FP_EXTEND:
1786    assert(MVT::isFloatingPoint(VT) &&
1787           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1788    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1789    break;
1790    case ISD::SIGN_EXTEND:
1791    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1792           "Invalid SIGN_EXTEND!");
1793    if (Operand.getValueType() == VT) return Operand;   // noop extension
1794    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1795           && "Invalid sext node, dst < src!");
1796    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1797      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1798    break;
1799  case ISD::ZERO_EXTEND:
1800    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1801           "Invalid ZERO_EXTEND!");
1802    if (Operand.getValueType() == VT) return Operand;   // noop extension
1803    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1804           && "Invalid zext node, dst < src!");
1805    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1806      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1807    break;
1808  case ISD::ANY_EXTEND:
1809    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1810           "Invalid ANY_EXTEND!");
1811    if (Operand.getValueType() == VT) return Operand;   // noop extension
1812    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1813           && "Invalid anyext node, dst < src!");
1814    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1815      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1816      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1817    break;
1818  case ISD::TRUNCATE:
1819    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1820           "Invalid TRUNCATE!");
1821    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1822    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1823           && "Invalid truncate node, src < dst!");
1824    if (OpOpcode == ISD::TRUNCATE)
1825      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1826    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1827             OpOpcode == ISD::ANY_EXTEND) {
1828      // If the source is smaller than the dest, we still need an extend.
1829      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1830          < MVT::getSizeInBits(VT))
1831        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1832      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1833               > MVT::getSizeInBits(VT))
1834        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1835      else
1836        return Operand.Val->getOperand(0);
1837    }
1838    break;
1839  case ISD::BIT_CONVERT:
1840    // Basic sanity checking.
1841    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1842           && "Cannot BIT_CONVERT between types of different sizes!");
1843    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1844    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1845      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1846    if (OpOpcode == ISD::UNDEF)
1847      return getNode(ISD::UNDEF, VT);
1848    break;
1849  case ISD::SCALAR_TO_VECTOR:
1850    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1851           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1852           "Illegal SCALAR_TO_VECTOR node!");
1853    break;
1854  case ISD::FNEG:
1855    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1856      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1857                     Operand.Val->getOperand(0));
1858    if (OpOpcode == ISD::FNEG)  // --X -> X
1859      return Operand.Val->getOperand(0);
1860    break;
1861  case ISD::FABS:
1862    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1863      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1864    break;
1865  }
1866
1867  SDNode *N;
1868  SDVTList VTs = getVTList(VT);
1869  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1870    FoldingSetNodeID ID;
1871    SDOperand Ops[1] = { Operand };
1872    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1873    void *IP = 0;
1874    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1875      return SDOperand(E, 0);
1876    N = new UnarySDNode(Opcode, VTs, Operand);
1877    CSEMap.InsertNode(N, IP);
1878  } else {
1879    N = new UnarySDNode(Opcode, VTs, Operand);
1880  }
1881  AllNodes.push_back(N);
1882  return SDOperand(N, 0);
1883}
1884
1885
1886
1887SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1888                                SDOperand N1, SDOperand N2) {
1889  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1890  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1891  switch (Opcode) {
1892  default: break;
1893  case ISD::TokenFactor:
1894    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1895           N2.getValueType() == MVT::Other && "Invalid token factor!");
1896    // Fold trivial token factors.
1897    if (N1.getOpcode() == ISD::EntryToken) return N2;
1898    if (N2.getOpcode() == ISD::EntryToken) return N1;
1899    break;
1900  case ISD::AND:
1901    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1902           N1.getValueType() == VT && "Binary operator types must match!");
1903    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1904    // worth handling here.
1905    if (N2C && N2C->getValue() == 0)
1906      return N2;
1907    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
1908      return N1;
1909    break;
1910  case ISD::OR:
1911  case ISD::XOR:
1912    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1913           N1.getValueType() == VT && "Binary operator types must match!");
1914    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1915    // worth handling here.
1916    if (N2C && N2C->getValue() == 0)
1917      return N1;
1918    break;
1919  case ISD::UDIV:
1920  case ISD::UREM:
1921  case ISD::MULHU:
1922  case ISD::MULHS:
1923    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1924    // fall through
1925  case ISD::ADD:
1926  case ISD::SUB:
1927  case ISD::MUL:
1928  case ISD::SDIV:
1929  case ISD::SREM:
1930  case ISD::FADD:
1931  case ISD::FSUB:
1932  case ISD::FMUL:
1933  case ISD::FDIV:
1934  case ISD::FREM:
1935    assert(N1.getValueType() == N2.getValueType() &&
1936           N1.getValueType() == VT && "Binary operator types must match!");
1937    break;
1938  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1939    assert(N1.getValueType() == VT &&
1940           MVT::isFloatingPoint(N1.getValueType()) &&
1941           MVT::isFloatingPoint(N2.getValueType()) &&
1942           "Invalid FCOPYSIGN!");
1943    break;
1944  case ISD::SHL:
1945  case ISD::SRA:
1946  case ISD::SRL:
1947  case ISD::ROTL:
1948  case ISD::ROTR:
1949    assert(VT == N1.getValueType() &&
1950           "Shift operators return type must be the same as their first arg");
1951    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1952           VT != MVT::i1 && "Shifts only work on integers");
1953    break;
1954  case ISD::FP_ROUND_INREG: {
1955    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1956    assert(VT == N1.getValueType() && "Not an inreg round!");
1957    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1958           "Cannot FP_ROUND_INREG integer types");
1959    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1960           "Not rounding down!");
1961    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1962    break;
1963  }
1964  case ISD::FP_ROUND:
1965    assert(MVT::isFloatingPoint(VT) &&
1966           MVT::isFloatingPoint(N1.getValueType()) &&
1967           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
1968           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
1969    if (N1.getValueType() == VT) return N1;  // noop conversion.
1970    break;
1971  case ISD::AssertSext:
1972  case ISD::AssertZext: {
1973    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1974    assert(VT == N1.getValueType() && "Not an inreg extend!");
1975    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1976           "Cannot *_EXTEND_INREG FP types");
1977    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1978           "Not extending!");
1979    break;
1980  }
1981  case ISD::SIGN_EXTEND_INREG: {
1982    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1983    assert(VT == N1.getValueType() && "Not an inreg extend!");
1984    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1985           "Cannot *_EXTEND_INREG FP types");
1986    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1987           "Not extending!");
1988    if (EVT == VT) return N1;  // Not actually extending
1989
1990    if (N1C) {
1991      int64_t Val = N1C->getValue();
1992      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1993      Val <<= 64-FromBits;
1994      Val >>= 64-FromBits;
1995      return getConstant(Val, VT);
1996    }
1997    break;
1998  }
1999  case ISD::EXTRACT_VECTOR_ELT:
2000    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2001
2002    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2003    // expanding copies of large vectors from registers.
2004    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2005        N1.getNumOperands() > 0) {
2006      unsigned Factor =
2007        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2008      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2009                     N1.getOperand(N2C->getValue() / Factor),
2010                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2011    }
2012
2013    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2014    // expanding large vector constants.
2015    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2016      return N1.getOperand(N2C->getValue());
2017
2018    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2019    // operations are lowered to scalars.
2020    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2021      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2022        if (IEC == N2C)
2023          return N1.getOperand(1);
2024        else
2025          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2026      }
2027    break;
2028  case ISD::EXTRACT_ELEMENT:
2029    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2030
2031    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2032    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2033    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2034    if (N1.getOpcode() == ISD::BUILD_PAIR)
2035      return N1.getOperand(N2C->getValue());
2036
2037    // EXTRACT_ELEMENT of a constant int is also very common.
2038    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2039      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2040      return getConstant(C->getValue() >> Shift, VT);
2041    }
2042    break;
2043  }
2044
2045  if (N1C) {
2046    if (N2C) {
2047      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
2048      switch (Opcode) {
2049      case ISD::ADD: return getConstant(C1 + C2, VT);
2050      case ISD::SUB: return getConstant(C1 - C2, VT);
2051      case ISD::MUL: return getConstant(C1 * C2, VT);
2052      case ISD::UDIV:
2053        if (C2) return getConstant(C1 / C2, VT);
2054        break;
2055      case ISD::UREM :
2056        if (C2) return getConstant(C1 % C2, VT);
2057        break;
2058      case ISD::SDIV :
2059        if (C2) return getConstant(N1C->getSignExtended() /
2060                                   N2C->getSignExtended(), VT);
2061        break;
2062      case ISD::SREM :
2063        if (C2) return getConstant(N1C->getSignExtended() %
2064                                   N2C->getSignExtended(), VT);
2065        break;
2066      case ISD::AND  : return getConstant(C1 & C2, VT);
2067      case ISD::OR   : return getConstant(C1 | C2, VT);
2068      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2069      case ISD::SHL  : return getConstant(C1 << C2, VT);
2070      case ISD::SRL  : return getConstant(C1 >> C2, VT);
2071      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
2072      case ISD::ROTL :
2073        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
2074                           VT);
2075      case ISD::ROTR :
2076        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
2077                           VT);
2078      default: break;
2079      }
2080    } else {      // Cannonicalize constant to RHS if commutative
2081      if (isCommutativeBinOp(Opcode)) {
2082        std::swap(N1C, N2C);
2083        std::swap(N1, N2);
2084      }
2085    }
2086  }
2087
2088  // Constant fold FP operations.
2089  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2090  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2091  if (N1CFP) {
2092    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2093      // Cannonicalize constant to RHS if commutative
2094      std::swap(N1CFP, N2CFP);
2095      std::swap(N1, N2);
2096    } else if (N2CFP && VT != MVT::ppcf128) {
2097      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2098      APFloat::opStatus s;
2099      switch (Opcode) {
2100      case ISD::FADD:
2101        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2102        if (s != APFloat::opInvalidOp)
2103          return getConstantFP(V1, VT);
2104        break;
2105      case ISD::FSUB:
2106        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2107        if (s!=APFloat::opInvalidOp)
2108          return getConstantFP(V1, VT);
2109        break;
2110      case ISD::FMUL:
2111        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2112        if (s!=APFloat::opInvalidOp)
2113          return getConstantFP(V1, VT);
2114        break;
2115      case ISD::FDIV:
2116        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2117        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2118          return getConstantFP(V1, VT);
2119        break;
2120      case ISD::FREM :
2121        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2122        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2123          return getConstantFP(V1, VT);
2124        break;
2125      case ISD::FCOPYSIGN:
2126        V1.copySign(V2);
2127        return getConstantFP(V1, VT);
2128      default: break;
2129      }
2130    }
2131  }
2132
2133  // Canonicalize an UNDEF to the RHS, even over a constant.
2134  if (N1.getOpcode() == ISD::UNDEF) {
2135    if (isCommutativeBinOp(Opcode)) {
2136      std::swap(N1, N2);
2137    } else {
2138      switch (Opcode) {
2139      case ISD::FP_ROUND_INREG:
2140      case ISD::SIGN_EXTEND_INREG:
2141      case ISD::SUB:
2142      case ISD::FSUB:
2143      case ISD::FDIV:
2144      case ISD::FREM:
2145      case ISD::SRA:
2146        return N1;     // fold op(undef, arg2) -> undef
2147      case ISD::UDIV:
2148      case ISD::SDIV:
2149      case ISD::UREM:
2150      case ISD::SREM:
2151      case ISD::SRL:
2152      case ISD::SHL:
2153        if (!MVT::isVector(VT))
2154          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2155        // For vectors, we can't easily build an all zero vector, just return
2156        // the LHS.
2157        return N2;
2158      }
2159    }
2160  }
2161
2162  // Fold a bunch of operators when the RHS is undef.
2163  if (N2.getOpcode() == ISD::UNDEF) {
2164    switch (Opcode) {
2165    case ISD::ADD:
2166    case ISD::ADDC:
2167    case ISD::ADDE:
2168    case ISD::SUB:
2169    case ISD::FADD:
2170    case ISD::FSUB:
2171    case ISD::FMUL:
2172    case ISD::FDIV:
2173    case ISD::FREM:
2174    case ISD::UDIV:
2175    case ISD::SDIV:
2176    case ISD::UREM:
2177    case ISD::SREM:
2178    case ISD::XOR:
2179      return N2;       // fold op(arg1, undef) -> undef
2180    case ISD::MUL:
2181    case ISD::AND:
2182    case ISD::SRL:
2183    case ISD::SHL:
2184      if (!MVT::isVector(VT))
2185        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2186      // For vectors, we can't easily build an all zero vector, just return
2187      // the LHS.
2188      return N1;
2189    case ISD::OR:
2190      if (!MVT::isVector(VT))
2191        return getConstant(MVT::getIntVTBitMask(VT), VT);
2192      // For vectors, we can't easily build an all one vector, just return
2193      // the LHS.
2194      return N1;
2195    case ISD::SRA:
2196      return N1;
2197    }
2198  }
2199
2200  // Memoize this node if possible.
2201  SDNode *N;
2202  SDVTList VTs = getVTList(VT);
2203  if (VT != MVT::Flag) {
2204    SDOperand Ops[] = { N1, N2 };
2205    FoldingSetNodeID ID;
2206    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2207    void *IP = 0;
2208    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2209      return SDOperand(E, 0);
2210    N = new BinarySDNode(Opcode, VTs, N1, N2);
2211    CSEMap.InsertNode(N, IP);
2212  } else {
2213    N = new BinarySDNode(Opcode, VTs, N1, N2);
2214  }
2215
2216  AllNodes.push_back(N);
2217  return SDOperand(N, 0);
2218}
2219
2220SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2221                                SDOperand N1, SDOperand N2, SDOperand N3) {
2222  // Perform various simplifications.
2223  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2224  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2225  switch (Opcode) {
2226  case ISD::SETCC: {
2227    // Use FoldSetCC to simplify SETCC's.
2228    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2229    if (Simp.Val) return Simp;
2230    break;
2231  }
2232  case ISD::SELECT:
2233    if (N1C)
2234      if (N1C->getValue())
2235        return N2;             // select true, X, Y -> X
2236      else
2237        return N3;             // select false, X, Y -> Y
2238
2239    if (N2 == N3) return N2;   // select C, X, X -> X
2240    break;
2241  case ISD::BRCOND:
2242    if (N2C)
2243      if (N2C->getValue()) // Unconditional branch
2244        return getNode(ISD::BR, MVT::Other, N1, N3);
2245      else
2246        return N1;         // Never-taken branch
2247    break;
2248  case ISD::VECTOR_SHUFFLE:
2249    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2250           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2251           N3.getOpcode() == ISD::BUILD_VECTOR &&
2252           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2253           "Illegal VECTOR_SHUFFLE node!");
2254    break;
2255  case ISD::BIT_CONVERT:
2256    // Fold bit_convert nodes from a type to themselves.
2257    if (N1.getValueType() == VT)
2258      return N1;
2259    break;
2260  }
2261
2262  // Memoize node if it doesn't produce a flag.
2263  SDNode *N;
2264  SDVTList VTs = getVTList(VT);
2265  if (VT != MVT::Flag) {
2266    SDOperand Ops[] = { N1, N2, N3 };
2267    FoldingSetNodeID ID;
2268    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2269    void *IP = 0;
2270    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2271      return SDOperand(E, 0);
2272    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2273    CSEMap.InsertNode(N, IP);
2274  } else {
2275    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2276  }
2277  AllNodes.push_back(N);
2278  return SDOperand(N, 0);
2279}
2280
2281SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2282                                SDOperand N1, SDOperand N2, SDOperand N3,
2283                                SDOperand N4) {
2284  SDOperand Ops[] = { N1, N2, N3, N4 };
2285  return getNode(Opcode, VT, Ops, 4);
2286}
2287
2288SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2289                                SDOperand N1, SDOperand N2, SDOperand N3,
2290                                SDOperand N4, SDOperand N5) {
2291  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2292  return getNode(Opcode, VT, Ops, 5);
2293}
2294
2295SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2296                                  SDOperand Src, SDOperand Size,
2297                                  SDOperand Align,
2298                                  SDOperand AlwaysInline) {
2299  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2300  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2301}
2302
2303SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2304                                  SDOperand Src, SDOperand Size,
2305                                  SDOperand Align,
2306                                  SDOperand AlwaysInline) {
2307  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2308  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2309}
2310
2311SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2312                                  SDOperand Src, SDOperand Size,
2313                                  SDOperand Align,
2314                                  SDOperand AlwaysInline) {
2315  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2316  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2317}
2318
2319SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2320                                SDOperand Chain, SDOperand Ptr,
2321                                const Value *SV, int SVOffset,
2322                                bool isVolatile, unsigned Alignment) {
2323  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2324    const Type *Ty = 0;
2325    if (VT != MVT::iPTR) {
2326      Ty = MVT::getTypeForValueType(VT);
2327    } else if (SV) {
2328      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2329      assert(PT && "Value for load must be a pointer");
2330      Ty = PT->getElementType();
2331    }
2332    assert(Ty && "Could not get type information for load");
2333    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2334  }
2335  SDVTList VTs = getVTList(VT, MVT::Other);
2336  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2337  SDOperand Ops[] = { Chain, Ptr, Undef };
2338  FoldingSetNodeID ID;
2339  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2340  ID.AddInteger(ISD::UNINDEXED);
2341  ID.AddInteger(ISD::NON_EXTLOAD);
2342  ID.AddInteger((unsigned int)VT);
2343  ID.AddInteger(Alignment);
2344  ID.AddInteger(isVolatile);
2345  void *IP = 0;
2346  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2347    return SDOperand(E, 0);
2348  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2349                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2350                             isVolatile);
2351  CSEMap.InsertNode(N, IP);
2352  AllNodes.push_back(N);
2353  return SDOperand(N, 0);
2354}
2355
2356SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2357                                   SDOperand Chain, SDOperand Ptr,
2358                                   const Value *SV,
2359                                   int SVOffset, MVT::ValueType EVT,
2360                                   bool isVolatile, unsigned Alignment) {
2361  // If they are asking for an extending load from/to the same thing, return a
2362  // normal load.
2363  if (VT == EVT)
2364    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2365
2366  if (MVT::isVector(VT))
2367    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2368  else
2369    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2370           "Should only be an extending load, not truncating!");
2371  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2372         "Cannot sign/zero extend a FP/Vector load!");
2373  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2374         "Cannot convert from FP to Int or Int -> FP!");
2375
2376  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2377    const Type *Ty = 0;
2378    if (VT != MVT::iPTR) {
2379      Ty = MVT::getTypeForValueType(VT);
2380    } else if (SV) {
2381      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2382      assert(PT && "Value for load must be a pointer");
2383      Ty = PT->getElementType();
2384    }
2385    assert(Ty && "Could not get type information for load");
2386    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2387  }
2388  SDVTList VTs = getVTList(VT, MVT::Other);
2389  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2390  SDOperand Ops[] = { Chain, Ptr, Undef };
2391  FoldingSetNodeID ID;
2392  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2393  ID.AddInteger(ISD::UNINDEXED);
2394  ID.AddInteger(ExtType);
2395  ID.AddInteger((unsigned int)EVT);
2396  ID.AddInteger(Alignment);
2397  ID.AddInteger(isVolatile);
2398  void *IP = 0;
2399  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2400    return SDOperand(E, 0);
2401  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2402                             SV, SVOffset, Alignment, isVolatile);
2403  CSEMap.InsertNode(N, IP);
2404  AllNodes.push_back(N);
2405  return SDOperand(N, 0);
2406}
2407
2408SDOperand
2409SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2410                             SDOperand Offset, ISD::MemIndexedMode AM) {
2411  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2412  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2413         "Load is already a indexed load!");
2414  MVT::ValueType VT = OrigLoad.getValueType();
2415  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2416  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2417  FoldingSetNodeID ID;
2418  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2419  ID.AddInteger(AM);
2420  ID.AddInteger(LD->getExtensionType());
2421  ID.AddInteger((unsigned int)(LD->getMemoryVT()));
2422  ID.AddInteger(LD->getAlignment());
2423  ID.AddInteger(LD->isVolatile());
2424  void *IP = 0;
2425  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2426    return SDOperand(E, 0);
2427  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2428                             LD->getExtensionType(), LD->getMemoryVT(),
2429                             LD->getSrcValue(), LD->getSrcValueOffset(),
2430                             LD->getAlignment(), LD->isVolatile());
2431  CSEMap.InsertNode(N, IP);
2432  AllNodes.push_back(N);
2433  return SDOperand(N, 0);
2434}
2435
2436SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2437                                 SDOperand Ptr, const Value *SV, int SVOffset,
2438                                 bool isVolatile, unsigned Alignment) {
2439  MVT::ValueType VT = Val.getValueType();
2440
2441  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2442    const Type *Ty = 0;
2443    if (VT != MVT::iPTR) {
2444      Ty = MVT::getTypeForValueType(VT);
2445    } else if (SV) {
2446      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2447      assert(PT && "Value for store must be a pointer");
2448      Ty = PT->getElementType();
2449    }
2450    assert(Ty && "Could not get type information for store");
2451    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2452  }
2453  SDVTList VTs = getVTList(MVT::Other);
2454  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2455  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2456  FoldingSetNodeID ID;
2457  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2458  ID.AddInteger(ISD::UNINDEXED);
2459  ID.AddInteger(false);
2460  ID.AddInteger((unsigned int)VT);
2461  ID.AddInteger(Alignment);
2462  ID.AddInteger(isVolatile);
2463  void *IP = 0;
2464  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2465    return SDOperand(E, 0);
2466  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2467                              VT, SV, SVOffset, Alignment, isVolatile);
2468  CSEMap.InsertNode(N, IP);
2469  AllNodes.push_back(N);
2470  return SDOperand(N, 0);
2471}
2472
2473SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2474                                      SDOperand Ptr, const Value *SV,
2475                                      int SVOffset, MVT::ValueType SVT,
2476                                      bool isVolatile, unsigned Alignment) {
2477  MVT::ValueType VT = Val.getValueType();
2478
2479  if (VT == SVT)
2480    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2481
2482  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2483         "Not a truncation?");
2484  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2485         "Can't do FP-INT conversion!");
2486
2487  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2488    const Type *Ty = 0;
2489    if (VT != MVT::iPTR) {
2490      Ty = MVT::getTypeForValueType(VT);
2491    } else if (SV) {
2492      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2493      assert(PT && "Value for store must be a pointer");
2494      Ty = PT->getElementType();
2495    }
2496    assert(Ty && "Could not get type information for store");
2497    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2498  }
2499  SDVTList VTs = getVTList(MVT::Other);
2500  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2501  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2502  FoldingSetNodeID ID;
2503  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2504  ID.AddInteger(ISD::UNINDEXED);
2505  ID.AddInteger(1);
2506  ID.AddInteger((unsigned int)SVT);
2507  ID.AddInteger(Alignment);
2508  ID.AddInteger(isVolatile);
2509  void *IP = 0;
2510  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2511    return SDOperand(E, 0);
2512  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2513                              SVT, SV, SVOffset, Alignment, isVolatile);
2514  CSEMap.InsertNode(N, IP);
2515  AllNodes.push_back(N);
2516  return SDOperand(N, 0);
2517}
2518
2519SDOperand
2520SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2521                              SDOperand Offset, ISD::MemIndexedMode AM) {
2522  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2523  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2524         "Store is already a indexed store!");
2525  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2526  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2527  FoldingSetNodeID ID;
2528  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2529  ID.AddInteger(AM);
2530  ID.AddInteger(ST->isTruncatingStore());
2531  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
2532  ID.AddInteger(ST->getAlignment());
2533  ID.AddInteger(ST->isVolatile());
2534  void *IP = 0;
2535  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2536    return SDOperand(E, 0);
2537  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2538                              ST->isTruncatingStore(), ST->getMemoryVT(),
2539                              ST->getSrcValue(), ST->getSrcValueOffset(),
2540                              ST->getAlignment(), ST->isVolatile());
2541  CSEMap.InsertNode(N, IP);
2542  AllNodes.push_back(N);
2543  return SDOperand(N, 0);
2544}
2545
2546SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2547                                 SDOperand Chain, SDOperand Ptr,
2548                                 SDOperand SV) {
2549  SDOperand Ops[] = { Chain, Ptr, SV };
2550  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2551}
2552
2553SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2554                                const SDOperand *Ops, unsigned NumOps) {
2555  switch (NumOps) {
2556  case 0: return getNode(Opcode, VT);
2557  case 1: return getNode(Opcode, VT, Ops[0]);
2558  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2559  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2560  default: break;
2561  }
2562
2563  switch (Opcode) {
2564  default: break;
2565  case ISD::SELECT_CC: {
2566    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2567    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2568           "LHS and RHS of condition must have same type!");
2569    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2570           "True and False arms of SelectCC must have same type!");
2571    assert(Ops[2].getValueType() == VT &&
2572           "select_cc node must be of same type as true and false value!");
2573    break;
2574  }
2575  case ISD::BR_CC: {
2576    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2577    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2578           "LHS/RHS of comparison should match types!");
2579    break;
2580  }
2581  }
2582
2583  // Memoize nodes.
2584  SDNode *N;
2585  SDVTList VTs = getVTList(VT);
2586  if (VT != MVT::Flag) {
2587    FoldingSetNodeID ID;
2588    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2589    void *IP = 0;
2590    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2591      return SDOperand(E, 0);
2592    N = new SDNode(Opcode, VTs, Ops, NumOps);
2593    CSEMap.InsertNode(N, IP);
2594  } else {
2595    N = new SDNode(Opcode, VTs, Ops, NumOps);
2596  }
2597  AllNodes.push_back(N);
2598  return SDOperand(N, 0);
2599}
2600
2601SDOperand SelectionDAG::getNode(unsigned Opcode,
2602                                std::vector<MVT::ValueType> &ResultTys,
2603                                const SDOperand *Ops, unsigned NumOps) {
2604  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2605                 Ops, NumOps);
2606}
2607
2608SDOperand SelectionDAG::getNode(unsigned Opcode,
2609                                const MVT::ValueType *VTs, unsigned NumVTs,
2610                                const SDOperand *Ops, unsigned NumOps) {
2611  if (NumVTs == 1)
2612    return getNode(Opcode, VTs[0], Ops, NumOps);
2613  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2614}
2615
2616SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2617                                const SDOperand *Ops, unsigned NumOps) {
2618  if (VTList.NumVTs == 1)
2619    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2620
2621  switch (Opcode) {
2622  // FIXME: figure out how to safely handle things like
2623  // int foo(int x) { return 1 << (x & 255); }
2624  // int bar() { return foo(256); }
2625#if 0
2626  case ISD::SRA_PARTS:
2627  case ISD::SRL_PARTS:
2628  case ISD::SHL_PARTS:
2629    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2630        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2631      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2632    else if (N3.getOpcode() == ISD::AND)
2633      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2634        // If the and is only masking out bits that cannot effect the shift,
2635        // eliminate the and.
2636        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2637        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2638          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2639      }
2640    break;
2641#endif
2642  }
2643
2644  // Memoize the node unless it returns a flag.
2645  SDNode *N;
2646  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2647    FoldingSetNodeID ID;
2648    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2649    void *IP = 0;
2650    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2651      return SDOperand(E, 0);
2652    if (NumOps == 1)
2653      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2654    else if (NumOps == 2)
2655      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2656    else if (NumOps == 3)
2657      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2658    else
2659      N = new SDNode(Opcode, VTList, Ops, NumOps);
2660    CSEMap.InsertNode(N, IP);
2661  } else {
2662    if (NumOps == 1)
2663      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2664    else if (NumOps == 2)
2665      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2666    else if (NumOps == 3)
2667      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2668    else
2669      N = new SDNode(Opcode, VTList, Ops, NumOps);
2670  }
2671  AllNodes.push_back(N);
2672  return SDOperand(N, 0);
2673}
2674
2675SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2676  return getNode(Opcode, VTList, 0, 0);
2677}
2678
2679SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2680                                SDOperand N1) {
2681  SDOperand Ops[] = { N1 };
2682  return getNode(Opcode, VTList, Ops, 1);
2683}
2684
2685SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2686                                SDOperand N1, SDOperand N2) {
2687  SDOperand Ops[] = { N1, N2 };
2688  return getNode(Opcode, VTList, Ops, 2);
2689}
2690
2691SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2692                                SDOperand N1, SDOperand N2, SDOperand N3) {
2693  SDOperand Ops[] = { N1, N2, N3 };
2694  return getNode(Opcode, VTList, Ops, 3);
2695}
2696
2697SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2698                                SDOperand N1, SDOperand N2, SDOperand N3,
2699                                SDOperand N4) {
2700  SDOperand Ops[] = { N1, N2, N3, N4 };
2701  return getNode(Opcode, VTList, Ops, 4);
2702}
2703
2704SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2705                                SDOperand N1, SDOperand N2, SDOperand N3,
2706                                SDOperand N4, SDOperand N5) {
2707  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2708  return getNode(Opcode, VTList, Ops, 5);
2709}
2710
2711SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2712  return makeVTList(SDNode::getValueTypeList(VT), 1);
2713}
2714
2715SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2716  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2717       E = VTList.end(); I != E; ++I) {
2718    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2719      return makeVTList(&(*I)[0], 2);
2720  }
2721  std::vector<MVT::ValueType> V;
2722  V.push_back(VT1);
2723  V.push_back(VT2);
2724  VTList.push_front(V);
2725  return makeVTList(&(*VTList.begin())[0], 2);
2726}
2727SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2728                                 MVT::ValueType VT3) {
2729  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2730       E = VTList.end(); I != E; ++I) {
2731    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2732        (*I)[2] == VT3)
2733      return makeVTList(&(*I)[0], 3);
2734  }
2735  std::vector<MVT::ValueType> V;
2736  V.push_back(VT1);
2737  V.push_back(VT2);
2738  V.push_back(VT3);
2739  VTList.push_front(V);
2740  return makeVTList(&(*VTList.begin())[0], 3);
2741}
2742
2743SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2744  switch (NumVTs) {
2745    case 0: assert(0 && "Cannot have nodes without results!");
2746    case 1: return getVTList(VTs[0]);
2747    case 2: return getVTList(VTs[0], VTs[1]);
2748    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2749    default: break;
2750  }
2751
2752  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2753       E = VTList.end(); I != E; ++I) {
2754    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2755
2756    bool NoMatch = false;
2757    for (unsigned i = 2; i != NumVTs; ++i)
2758      if (VTs[i] != (*I)[i]) {
2759        NoMatch = true;
2760        break;
2761      }
2762    if (!NoMatch)
2763      return makeVTList(&*I->begin(), NumVTs);
2764  }
2765
2766  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2767  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2768}
2769
2770
2771/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2772/// specified operands.  If the resultant node already exists in the DAG,
2773/// this does not modify the specified node, instead it returns the node that
2774/// already exists.  If the resultant node does not exist in the DAG, the
2775/// input node is returned.  As a degenerate case, if you specify the same
2776/// input operands as the node already has, the input node is returned.
2777SDOperand SelectionDAG::
2778UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2779  SDNode *N = InN.Val;
2780  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2781
2782  // Check to see if there is no change.
2783  if (Op == N->getOperand(0)) return InN;
2784
2785  // See if the modified node already exists.
2786  void *InsertPos = 0;
2787  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2788    return SDOperand(Existing, InN.ResNo);
2789
2790  // Nope it doesn't.  Remove the node from it's current place in the maps.
2791  if (InsertPos)
2792    RemoveNodeFromCSEMaps(N);
2793
2794  // Now we update the operands.
2795  N->OperandList[0].Val->removeUser(N);
2796  Op.Val->addUser(N);
2797  N->OperandList[0] = Op;
2798
2799  // If this gets put into a CSE map, add it.
2800  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2801  return InN;
2802}
2803
2804SDOperand SelectionDAG::
2805UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2806  SDNode *N = InN.Val;
2807  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2808
2809  // Check to see if there is no change.
2810  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2811    return InN;   // No operands changed, just return the input node.
2812
2813  // See if the modified node already exists.
2814  void *InsertPos = 0;
2815  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2816    return SDOperand(Existing, InN.ResNo);
2817
2818  // Nope it doesn't.  Remove the node from it's current place in the maps.
2819  if (InsertPos)
2820    RemoveNodeFromCSEMaps(N);
2821
2822  // Now we update the operands.
2823  if (N->OperandList[0] != Op1) {
2824    N->OperandList[0].Val->removeUser(N);
2825    Op1.Val->addUser(N);
2826    N->OperandList[0] = Op1;
2827  }
2828  if (N->OperandList[1] != Op2) {
2829    N->OperandList[1].Val->removeUser(N);
2830    Op2.Val->addUser(N);
2831    N->OperandList[1] = Op2;
2832  }
2833
2834  // If this gets put into a CSE map, add it.
2835  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2836  return InN;
2837}
2838
2839SDOperand SelectionDAG::
2840UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2841  SDOperand Ops[] = { Op1, Op2, Op3 };
2842  return UpdateNodeOperands(N, Ops, 3);
2843}
2844
2845SDOperand SelectionDAG::
2846UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2847                   SDOperand Op3, SDOperand Op4) {
2848  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2849  return UpdateNodeOperands(N, Ops, 4);
2850}
2851
2852SDOperand SelectionDAG::
2853UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2854                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2855  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2856  return UpdateNodeOperands(N, Ops, 5);
2857}
2858
2859
2860SDOperand SelectionDAG::
2861UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2862  SDNode *N = InN.Val;
2863  assert(N->getNumOperands() == NumOps &&
2864         "Update with wrong number of operands");
2865
2866  // Check to see if there is no change.
2867  bool AnyChange = false;
2868  for (unsigned i = 0; i != NumOps; ++i) {
2869    if (Ops[i] != N->getOperand(i)) {
2870      AnyChange = true;
2871      break;
2872    }
2873  }
2874
2875  // No operands changed, just return the input node.
2876  if (!AnyChange) return InN;
2877
2878  // See if the modified node already exists.
2879  void *InsertPos = 0;
2880  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2881    return SDOperand(Existing, InN.ResNo);
2882
2883  // Nope it doesn't.  Remove the node from it's current place in the maps.
2884  if (InsertPos)
2885    RemoveNodeFromCSEMaps(N);
2886
2887  // Now we update the operands.
2888  for (unsigned i = 0; i != NumOps; ++i) {
2889    if (N->OperandList[i] != Ops[i]) {
2890      N->OperandList[i].Val->removeUser(N);
2891      Ops[i].Val->addUser(N);
2892      N->OperandList[i] = Ops[i];
2893    }
2894  }
2895
2896  // If this gets put into a CSE map, add it.
2897  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2898  return InN;
2899}
2900
2901
2902/// MorphNodeTo - This frees the operands of the current node, resets the
2903/// opcode, types, and operands to the specified value.  This should only be
2904/// used by the SelectionDAG class.
2905void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2906                         const SDOperand *Ops, unsigned NumOps) {
2907  NodeType = Opc;
2908  ValueList = L.VTs;
2909  NumValues = L.NumVTs;
2910
2911  // Clear the operands list, updating used nodes to remove this from their
2912  // use list.
2913  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2914    I->Val->removeUser(this);
2915
2916  // If NumOps is larger than the # of operands we currently have, reallocate
2917  // the operand list.
2918  if (NumOps > NumOperands) {
2919    if (OperandsNeedDelete)
2920      delete [] OperandList;
2921    OperandList = new SDOperand[NumOps];
2922    OperandsNeedDelete = true;
2923  }
2924
2925  // Assign the new operands.
2926  NumOperands = NumOps;
2927
2928  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2929    OperandList[i] = Ops[i];
2930    SDNode *N = OperandList[i].Val;
2931    N->Uses.push_back(this);
2932  }
2933}
2934
2935/// SelectNodeTo - These are used for target selectors to *mutate* the
2936/// specified node to have the specified return type, Target opcode, and
2937/// operands.  Note that target opcodes are stored as
2938/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2939///
2940/// Note that SelectNodeTo returns the resultant node.  If there is already a
2941/// node of the specified opcode and operands, it returns that node instead of
2942/// the current one.
2943SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2944                                   MVT::ValueType VT) {
2945  SDVTList VTs = getVTList(VT);
2946  FoldingSetNodeID ID;
2947  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2948  void *IP = 0;
2949  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2950    return ON;
2951
2952  RemoveNodeFromCSEMaps(N);
2953
2954  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2955
2956  CSEMap.InsertNode(N, IP);
2957  return N;
2958}
2959
2960SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2961                                   MVT::ValueType VT, SDOperand Op1) {
2962  // If an identical node already exists, use it.
2963  SDVTList VTs = getVTList(VT);
2964  SDOperand Ops[] = { Op1 };
2965
2966  FoldingSetNodeID ID;
2967  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2968  void *IP = 0;
2969  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2970    return ON;
2971
2972  RemoveNodeFromCSEMaps(N);
2973  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2974  CSEMap.InsertNode(N, IP);
2975  return N;
2976}
2977
2978SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2979                                   MVT::ValueType VT, SDOperand Op1,
2980                                   SDOperand Op2) {
2981  // If an identical node already exists, use it.
2982  SDVTList VTs = getVTList(VT);
2983  SDOperand Ops[] = { Op1, Op2 };
2984
2985  FoldingSetNodeID ID;
2986  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2987  void *IP = 0;
2988  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2989    return ON;
2990
2991  RemoveNodeFromCSEMaps(N);
2992
2993  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2994
2995  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2996  return N;
2997}
2998
2999SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3000                                   MVT::ValueType VT, SDOperand Op1,
3001                                   SDOperand Op2, SDOperand Op3) {
3002  // If an identical node already exists, use it.
3003  SDVTList VTs = getVTList(VT);
3004  SDOperand Ops[] = { Op1, Op2, Op3 };
3005  FoldingSetNodeID ID;
3006  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3007  void *IP = 0;
3008  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3009    return ON;
3010
3011  RemoveNodeFromCSEMaps(N);
3012
3013  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3014
3015  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3016  return N;
3017}
3018
3019SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3020                                   MVT::ValueType VT, const SDOperand *Ops,
3021                                   unsigned NumOps) {
3022  // If an identical node already exists, use it.
3023  SDVTList VTs = getVTList(VT);
3024  FoldingSetNodeID ID;
3025  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3026  void *IP = 0;
3027  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3028    return ON;
3029
3030  RemoveNodeFromCSEMaps(N);
3031  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3032
3033  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3034  return N;
3035}
3036
3037SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3038                                   MVT::ValueType VT1, MVT::ValueType VT2,
3039                                   SDOperand Op1, SDOperand Op2) {
3040  SDVTList VTs = getVTList(VT1, VT2);
3041  FoldingSetNodeID ID;
3042  SDOperand Ops[] = { Op1, Op2 };
3043  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3044  void *IP = 0;
3045  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3046    return ON;
3047
3048  RemoveNodeFromCSEMaps(N);
3049  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3050  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3051  return N;
3052}
3053
3054SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3055                                   MVT::ValueType VT1, MVT::ValueType VT2,
3056                                   SDOperand Op1, SDOperand Op2,
3057                                   SDOperand Op3) {
3058  // If an identical node already exists, use it.
3059  SDVTList VTs = getVTList(VT1, VT2);
3060  SDOperand Ops[] = { Op1, Op2, Op3 };
3061  FoldingSetNodeID ID;
3062  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3063  void *IP = 0;
3064  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3065    return ON;
3066
3067  RemoveNodeFromCSEMaps(N);
3068
3069  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3070  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3071  return N;
3072}
3073
3074
3075/// getTargetNode - These are used for target selectors to create a new node
3076/// with specified return type(s), target opcode, and operands.
3077///
3078/// Note that getTargetNode returns the resultant node.  If there is already a
3079/// node of the specified opcode and operands, it returns that node instead of
3080/// the current one.
3081SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3082  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3083}
3084SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3085                                    SDOperand Op1) {
3086  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3087}
3088SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3089                                    SDOperand Op1, SDOperand Op2) {
3090  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3091}
3092SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3093                                    SDOperand Op1, SDOperand Op2,
3094                                    SDOperand Op3) {
3095  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3096}
3097SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3098                                    const SDOperand *Ops, unsigned NumOps) {
3099  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3100}
3101SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3102                                    MVT::ValueType VT2) {
3103  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3104  SDOperand Op;
3105  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3106}
3107SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3108                                    MVT::ValueType VT2, SDOperand Op1) {
3109  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3110  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3111}
3112SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3113                                    MVT::ValueType VT2, SDOperand Op1,
3114                                    SDOperand Op2) {
3115  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3116  SDOperand Ops[] = { Op1, Op2 };
3117  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3118}
3119SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3120                                    MVT::ValueType VT2, SDOperand Op1,
3121                                    SDOperand Op2, SDOperand Op3) {
3122  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3123  SDOperand Ops[] = { Op1, Op2, Op3 };
3124  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3125}
3126SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3127                                    MVT::ValueType VT2,
3128                                    const SDOperand *Ops, unsigned NumOps) {
3129  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3130  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3131}
3132SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3133                                    MVT::ValueType VT2, MVT::ValueType VT3,
3134                                    SDOperand Op1, SDOperand Op2) {
3135  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3136  SDOperand Ops[] = { Op1, Op2 };
3137  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3138}
3139SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3140                                    MVT::ValueType VT2, MVT::ValueType VT3,
3141                                    SDOperand Op1, SDOperand Op2,
3142                                    SDOperand Op3) {
3143  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3144  SDOperand Ops[] = { Op1, Op2, Op3 };
3145  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3146}
3147SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3148                                    MVT::ValueType VT2, MVT::ValueType VT3,
3149                                    const SDOperand *Ops, unsigned NumOps) {
3150  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3151  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3152}
3153SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3154                                    MVT::ValueType VT2, MVT::ValueType VT3,
3155                                    MVT::ValueType VT4,
3156                                    const SDOperand *Ops, unsigned NumOps) {
3157  std::vector<MVT::ValueType> VTList;
3158  VTList.push_back(VT1);
3159  VTList.push_back(VT2);
3160  VTList.push_back(VT3);
3161  VTList.push_back(VT4);
3162  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3163  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3164}
3165SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3166                                    std::vector<MVT::ValueType> &ResultTys,
3167                                    const SDOperand *Ops, unsigned NumOps) {
3168  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3169  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3170                 Ops, NumOps).Val;
3171}
3172
3173/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3174/// This can cause recursive merging of nodes in the DAG.
3175///
3176/// This version assumes From/To have a single result value.
3177///
3178void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3179                                      std::vector<SDNode*> *Deleted) {
3180  SDNode *From = FromN.Val, *To = ToN.Val;
3181  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3182         "Cannot replace with this method!");
3183  assert(From != To && "Cannot replace uses of with self");
3184
3185  while (!From->use_empty()) {
3186    // Process users until they are all gone.
3187    SDNode *U = *From->use_begin();
3188
3189    // This node is about to morph, remove its old self from the CSE maps.
3190    RemoveNodeFromCSEMaps(U);
3191
3192    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3193         I != E; ++I)
3194      if (I->Val == From) {
3195        From->removeUser(U);
3196        I->Val = To;
3197        To->addUser(U);
3198      }
3199
3200    // Now that we have modified U, add it back to the CSE maps.  If it already
3201    // exists there, recursively merge the results together.
3202    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3203      ReplaceAllUsesWith(U, Existing, Deleted);
3204      // U is now dead.
3205      if (Deleted) Deleted->push_back(U);
3206      DeleteNodeNotInCSEMaps(U);
3207    }
3208  }
3209}
3210
3211/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3212/// This can cause recursive merging of nodes in the DAG.
3213///
3214/// This version assumes From/To have matching types and numbers of result
3215/// values.
3216///
3217void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3218                                      std::vector<SDNode*> *Deleted) {
3219  assert(From != To && "Cannot replace uses of with self");
3220  assert(From->getNumValues() == To->getNumValues() &&
3221         "Cannot use this version of ReplaceAllUsesWith!");
3222  if (From->getNumValues() == 1) {  // If possible, use the faster version.
3223    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3224    return;
3225  }
3226
3227  while (!From->use_empty()) {
3228    // Process users until they are all gone.
3229    SDNode *U = *From->use_begin();
3230
3231    // This node is about to morph, remove its old self from the CSE maps.
3232    RemoveNodeFromCSEMaps(U);
3233
3234    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3235         I != E; ++I)
3236      if (I->Val == From) {
3237        From->removeUser(U);
3238        I->Val = To;
3239        To->addUser(U);
3240      }
3241
3242    // Now that we have modified U, add it back to the CSE maps.  If it already
3243    // exists there, recursively merge the results together.
3244    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3245      ReplaceAllUsesWith(U, Existing, Deleted);
3246      // U is now dead.
3247      if (Deleted) Deleted->push_back(U);
3248      DeleteNodeNotInCSEMaps(U);
3249    }
3250  }
3251}
3252
3253/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3254/// This can cause recursive merging of nodes in the DAG.
3255///
3256/// This version can replace From with any result values.  To must match the
3257/// number and types of values returned by From.
3258void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3259                                      const SDOperand *To,
3260                                      std::vector<SDNode*> *Deleted) {
3261  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3262    // Degenerate case handled above.
3263    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3264    return;
3265  }
3266
3267  while (!From->use_empty()) {
3268    // Process users until they are all gone.
3269    SDNode *U = *From->use_begin();
3270
3271    // This node is about to morph, remove its old self from the CSE maps.
3272    RemoveNodeFromCSEMaps(U);
3273
3274    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3275         I != E; ++I)
3276      if (I->Val == From) {
3277        const SDOperand &ToOp = To[I->ResNo];
3278        From->removeUser(U);
3279        *I = ToOp;
3280        ToOp.Val->addUser(U);
3281      }
3282
3283    // Now that we have modified U, add it back to the CSE maps.  If it already
3284    // exists there, recursively merge the results together.
3285    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3286      ReplaceAllUsesWith(U, Existing, Deleted);
3287      // U is now dead.
3288      if (Deleted) Deleted->push_back(U);
3289      DeleteNodeNotInCSEMaps(U);
3290    }
3291  }
3292}
3293
3294/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3295/// uses of other values produced by From.Val alone.  The Deleted vector is
3296/// handled the same was as for ReplaceAllUsesWith.
3297void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3298                                             std::vector<SDNode*> *Deleted) {
3299  assert(From != To && "Cannot replace a value with itself");
3300  // Handle the simple, trivial, case efficiently.
3301  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3302    ReplaceAllUsesWith(From, To, Deleted);
3303    return;
3304  }
3305
3306  // Get all of the users of From.Val.  We want these in a nice,
3307  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3308  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3309
3310  std::vector<SDNode*> LocalDeletionVector;
3311
3312  // Pick a deletion vector to use.  If the user specified one, use theirs,
3313  // otherwise use a local one.
3314  std::vector<SDNode*> *DeleteVector = Deleted ? Deleted : &LocalDeletionVector;
3315  while (!Users.empty()) {
3316    // We know that this user uses some value of From.  If it is the right
3317    // value, update it.
3318    SDNode *User = Users.back();
3319    Users.pop_back();
3320
3321    // Scan for an operand that matches From.
3322    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3323    for (; Op != E; ++Op)
3324      if (*Op == From) break;
3325
3326    // If there are no matches, the user must use some other result of From.
3327    if (Op == E) continue;
3328
3329    // Okay, we know this user needs to be updated.  Remove its old self
3330    // from the CSE maps.
3331    RemoveNodeFromCSEMaps(User);
3332
3333    // Update all operands that match "From".
3334    for (; Op != E; ++Op) {
3335      if (*Op == From) {
3336        From.Val->removeUser(User);
3337        *Op = To;
3338        To.Val->addUser(User);
3339      }
3340    }
3341
3342    // Now that we have modified User, add it back to the CSE maps.  If it
3343    // already exists there, recursively merge the results together.
3344    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3345    if (!Existing) continue;  // Continue on to next user.
3346
3347    // If there was already an existing matching node, use ReplaceAllUsesWith
3348    // to replace the dead one with the existing one.  However, this can cause
3349    // recursive merging of other unrelated nodes down the line.  The merging
3350    // can cause deletion of nodes that used the old value.  In this case,
3351    // we have to be certain to remove them from the Users set.
3352    unsigned NumDeleted = DeleteVector->size();
3353    ReplaceAllUsesWith(User, Existing, DeleteVector);
3354
3355    // User is now dead.
3356    DeleteVector->push_back(User);
3357    DeleteNodeNotInCSEMaps(User);
3358
3359    // We have to be careful here, because ReplaceAllUsesWith could have
3360    // deleted a user of From, which means there may be dangling pointers
3361    // in the "Users" setvector.  Scan over the deleted node pointers and
3362    // remove them from the setvector.
3363    for (unsigned i = NumDeleted, e = DeleteVector->size(); i != e; ++i)
3364      Users.remove((*DeleteVector)[i]);
3365
3366    // If the user doesn't need the set of deleted elements, don't retain them
3367    // to the next loop iteration.
3368    if (Deleted == 0)
3369      LocalDeletionVector.clear();
3370  }
3371}
3372
3373
3374/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3375/// their allnodes order. It returns the maximum id.
3376unsigned SelectionDAG::AssignNodeIds() {
3377  unsigned Id = 0;
3378  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3379    SDNode *N = I;
3380    N->setNodeId(Id++);
3381  }
3382  return Id;
3383}
3384
3385/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3386/// based on their topological order. It returns the maximum id and a vector
3387/// of the SDNodes* in assigned order by reference.
3388unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3389  unsigned DAGSize = AllNodes.size();
3390  std::vector<unsigned> InDegree(DAGSize);
3391  std::vector<SDNode*> Sources;
3392
3393  // Use a two pass approach to avoid using a std::map which is slow.
3394  unsigned Id = 0;
3395  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3396    SDNode *N = I;
3397    N->setNodeId(Id++);
3398    unsigned Degree = N->use_size();
3399    InDegree[N->getNodeId()] = Degree;
3400    if (Degree == 0)
3401      Sources.push_back(N);
3402  }
3403
3404  TopOrder.clear();
3405  while (!Sources.empty()) {
3406    SDNode *N = Sources.back();
3407    Sources.pop_back();
3408    TopOrder.push_back(N);
3409    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3410      SDNode *P = I->Val;
3411      unsigned Degree = --InDegree[P->getNodeId()];
3412      if (Degree == 0)
3413        Sources.push_back(P);
3414    }
3415  }
3416
3417  // Second pass, assign the actual topological order as node ids.
3418  Id = 0;
3419  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3420       TI != TE; ++TI)
3421    (*TI)->setNodeId(Id++);
3422
3423  return Id;
3424}
3425
3426
3427
3428//===----------------------------------------------------------------------===//
3429//                              SDNode Class
3430//===----------------------------------------------------------------------===//
3431
3432// Out-of-line virtual method to give class a home.
3433void SDNode::ANCHOR() {}
3434void UnarySDNode::ANCHOR() {}
3435void BinarySDNode::ANCHOR() {}
3436void TernarySDNode::ANCHOR() {}
3437void HandleSDNode::ANCHOR() {}
3438void StringSDNode::ANCHOR() {}
3439void ConstantSDNode::ANCHOR() {}
3440void ConstantFPSDNode::ANCHOR() {}
3441void GlobalAddressSDNode::ANCHOR() {}
3442void FrameIndexSDNode::ANCHOR() {}
3443void JumpTableSDNode::ANCHOR() {}
3444void ConstantPoolSDNode::ANCHOR() {}
3445void BasicBlockSDNode::ANCHOR() {}
3446void SrcValueSDNode::ANCHOR() {}
3447void RegisterSDNode::ANCHOR() {}
3448void ExternalSymbolSDNode::ANCHOR() {}
3449void CondCodeSDNode::ANCHOR() {}
3450void VTSDNode::ANCHOR() {}
3451void LoadSDNode::ANCHOR() {}
3452void StoreSDNode::ANCHOR() {}
3453
3454HandleSDNode::~HandleSDNode() {
3455  SDVTList VTs = { 0, 0 };
3456  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3457}
3458
3459GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3460                                         MVT::ValueType VT, int o)
3461  : SDNode(isa<GlobalVariable>(GA) &&
3462           cast<GlobalVariable>(GA)->isThreadLocal() ?
3463           // Thread Local
3464           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3465           // Non Thread Local
3466           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3467           getSDVTList(VT)), Offset(o) {
3468  TheGlobal = const_cast<GlobalValue*>(GA);
3469}
3470
3471/// Profile - Gather unique data for the node.
3472///
3473void SDNode::Profile(FoldingSetNodeID &ID) {
3474  AddNodeIDNode(ID, this);
3475}
3476
3477/// getValueTypeList - Return a pointer to the specified value type.
3478///
3479MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3480  if (MVT::isExtendedVT(VT)) {
3481    static std::set<MVT::ValueType> EVTs;
3482    return (MVT::ValueType *)&(*EVTs.insert(VT).first);
3483  } else {
3484    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3485    VTs[VT] = VT;
3486    return &VTs[VT];
3487  }
3488}
3489
3490/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3491/// indicated value.  This method ignores uses of other values defined by this
3492/// operation.
3493bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3494  assert(Value < getNumValues() && "Bad value!");
3495
3496  // If there is only one value, this is easy.
3497  if (getNumValues() == 1)
3498    return use_size() == NUses;
3499  if (use_size() < NUses) return false;
3500
3501  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3502
3503  SmallPtrSet<SDNode*, 32> UsersHandled;
3504
3505  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3506    SDNode *User = *UI;
3507    if (User->getNumOperands() == 1 ||
3508        UsersHandled.insert(User))     // First time we've seen this?
3509      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3510        if (User->getOperand(i) == TheValue) {
3511          if (NUses == 0)
3512            return false;   // too many uses
3513          --NUses;
3514        }
3515  }
3516
3517  // Found exactly the right number of uses?
3518  return NUses == 0;
3519}
3520
3521
3522/// hasAnyUseOfValue - Return true if there are any use of the indicated
3523/// value. This method ignores uses of other values defined by this operation.
3524bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3525  assert(Value < getNumValues() && "Bad value!");
3526
3527  if (use_empty()) return false;
3528
3529  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3530
3531  SmallPtrSet<SDNode*, 32> UsersHandled;
3532
3533  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3534    SDNode *User = *UI;
3535    if (User->getNumOperands() == 1 ||
3536        UsersHandled.insert(User))     // First time we've seen this?
3537      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3538        if (User->getOperand(i) == TheValue) {
3539          return true;
3540        }
3541  }
3542
3543  return false;
3544}
3545
3546
3547/// isOnlyUse - Return true if this node is the only use of N.
3548///
3549bool SDNode::isOnlyUse(SDNode *N) const {
3550  bool Seen = false;
3551  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3552    SDNode *User = *I;
3553    if (User == this)
3554      Seen = true;
3555    else
3556      return false;
3557  }
3558
3559  return Seen;
3560}
3561
3562/// isOperand - Return true if this node is an operand of N.
3563///
3564bool SDOperand::isOperand(SDNode *N) const {
3565  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3566    if (*this == N->getOperand(i))
3567      return true;
3568  return false;
3569}
3570
3571bool SDNode::isOperand(SDNode *N) const {
3572  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3573    if (this == N->OperandList[i].Val)
3574      return true;
3575  return false;
3576}
3577
3578/// reachesChainWithoutSideEffects - Return true if this operand (which must
3579/// be a chain) reaches the specified operand without crossing any
3580/// side-effecting instructions.  In practice, this looks through token
3581/// factors and non-volatile loads.  In order to remain efficient, this only
3582/// looks a couple of nodes in, it does not do an exhaustive search.
3583bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3584                                               unsigned Depth) const {
3585  if (*this == Dest) return true;
3586
3587  // Don't search too deeply, we just want to be able to see through
3588  // TokenFactor's etc.
3589  if (Depth == 0) return false;
3590
3591  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3592  // of the operands of the TF reach dest, then we can do the xform.
3593  if (getOpcode() == ISD::TokenFactor) {
3594    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3595      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3596        return true;
3597    return false;
3598  }
3599
3600  // Loads don't have side effects, look through them.
3601  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3602    if (!Ld->isVolatile())
3603      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3604  }
3605  return false;
3606}
3607
3608
3609static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3610                            SmallPtrSet<SDNode *, 32> &Visited) {
3611  if (found || !Visited.insert(N))
3612    return;
3613
3614  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3615    SDNode *Op = N->getOperand(i).Val;
3616    if (Op == P) {
3617      found = true;
3618      return;
3619    }
3620    findPredecessor(Op, P, found, Visited);
3621  }
3622}
3623
3624/// isPredecessor - Return true if this node is a predecessor of N. This node
3625/// is either an operand of N or it can be reached by recursively traversing
3626/// up the operands.
3627/// NOTE: this is an expensive method. Use it carefully.
3628bool SDNode::isPredecessor(SDNode *N) const {
3629  SmallPtrSet<SDNode *, 32> Visited;
3630  bool found = false;
3631  findPredecessor(N, this, found, Visited);
3632  return found;
3633}
3634
3635uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3636  assert(Num < NumOperands && "Invalid child # of SDNode!");
3637  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3638}
3639
3640std::string SDNode::getOperationName(const SelectionDAG *G) const {
3641  switch (getOpcode()) {
3642  default:
3643    if (getOpcode() < ISD::BUILTIN_OP_END)
3644      return "<<Unknown DAG Node>>";
3645    else {
3646      if (G) {
3647        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3648          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3649            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3650
3651        TargetLowering &TLI = G->getTargetLoweringInfo();
3652        const char *Name =
3653          TLI.getTargetNodeName(getOpcode());
3654        if (Name) return Name;
3655      }
3656
3657      return "<<Unknown Target Node>>";
3658    }
3659
3660  case ISD::PCMARKER:      return "PCMarker";
3661  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3662  case ISD::SRCVALUE:      return "SrcValue";
3663  case ISD::EntryToken:    return "EntryToken";
3664  case ISD::TokenFactor:   return "TokenFactor";
3665  case ISD::AssertSext:    return "AssertSext";
3666  case ISD::AssertZext:    return "AssertZext";
3667
3668  case ISD::STRING:        return "String";
3669  case ISD::BasicBlock:    return "BasicBlock";
3670  case ISD::VALUETYPE:     return "ValueType";
3671  case ISD::Register:      return "Register";
3672
3673  case ISD::Constant:      return "Constant";
3674  case ISD::ConstantFP:    return "ConstantFP";
3675  case ISD::GlobalAddress: return "GlobalAddress";
3676  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3677  case ISD::FrameIndex:    return "FrameIndex";
3678  case ISD::JumpTable:     return "JumpTable";
3679  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3680  case ISD::RETURNADDR: return "RETURNADDR";
3681  case ISD::FRAMEADDR: return "FRAMEADDR";
3682  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3683  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3684  case ISD::EHSELECTION: return "EHSELECTION";
3685  case ISD::EH_RETURN: return "EH_RETURN";
3686  case ISD::ConstantPool:  return "ConstantPool";
3687  case ISD::ExternalSymbol: return "ExternalSymbol";
3688  case ISD::INTRINSIC_WO_CHAIN: {
3689    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3690    return Intrinsic::getName((Intrinsic::ID)IID);
3691  }
3692  case ISD::INTRINSIC_VOID:
3693  case ISD::INTRINSIC_W_CHAIN: {
3694    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3695    return Intrinsic::getName((Intrinsic::ID)IID);
3696  }
3697
3698  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3699  case ISD::TargetConstant: return "TargetConstant";
3700  case ISD::TargetConstantFP:return "TargetConstantFP";
3701  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3702  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3703  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3704  case ISD::TargetJumpTable:  return "TargetJumpTable";
3705  case ISD::TargetConstantPool:  return "TargetConstantPool";
3706  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3707
3708  case ISD::CopyToReg:     return "CopyToReg";
3709  case ISD::CopyFromReg:   return "CopyFromReg";
3710  case ISD::UNDEF:         return "undef";
3711  case ISD::MERGE_VALUES:  return "merge_values";
3712  case ISD::INLINEASM:     return "inlineasm";
3713  case ISD::LABEL:         return "label";
3714  case ISD::DECLARE:       return "declare";
3715  case ISD::HANDLENODE:    return "handlenode";
3716  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3717  case ISD::CALL:          return "call";
3718
3719  // Unary operators
3720  case ISD::FABS:   return "fabs";
3721  case ISD::FNEG:   return "fneg";
3722  case ISD::FSQRT:  return "fsqrt";
3723  case ISD::FSIN:   return "fsin";
3724  case ISD::FCOS:   return "fcos";
3725  case ISD::FPOWI:  return "fpowi";
3726  case ISD::FPOW:   return "fpow";
3727
3728  // Binary operators
3729  case ISD::ADD:    return "add";
3730  case ISD::SUB:    return "sub";
3731  case ISD::MUL:    return "mul";
3732  case ISD::MULHU:  return "mulhu";
3733  case ISD::MULHS:  return "mulhs";
3734  case ISD::SDIV:   return "sdiv";
3735  case ISD::UDIV:   return "udiv";
3736  case ISD::SREM:   return "srem";
3737  case ISD::UREM:   return "urem";
3738  case ISD::SMUL_LOHI:  return "smul_lohi";
3739  case ISD::UMUL_LOHI:  return "umul_lohi";
3740  case ISD::SDIVREM:    return "sdivrem";
3741  case ISD::UDIVREM:    return "divrem";
3742  case ISD::AND:    return "and";
3743  case ISD::OR:     return "or";
3744  case ISD::XOR:    return "xor";
3745  case ISD::SHL:    return "shl";
3746  case ISD::SRA:    return "sra";
3747  case ISD::SRL:    return "srl";
3748  case ISD::ROTL:   return "rotl";
3749  case ISD::ROTR:   return "rotr";
3750  case ISD::FADD:   return "fadd";
3751  case ISD::FSUB:   return "fsub";
3752  case ISD::FMUL:   return "fmul";
3753  case ISD::FDIV:   return "fdiv";
3754  case ISD::FREM:   return "frem";
3755  case ISD::FCOPYSIGN: return "fcopysign";
3756  case ISD::FGETSIGN:  return "fgetsign";
3757
3758  case ISD::SETCC:       return "setcc";
3759  case ISD::SELECT:      return "select";
3760  case ISD::SELECT_CC:   return "select_cc";
3761  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3762  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3763  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3764  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3765  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3766  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3767  case ISD::CARRY_FALSE:         return "carry_false";
3768  case ISD::ADDC:        return "addc";
3769  case ISD::ADDE:        return "adde";
3770  case ISD::SUBC:        return "subc";
3771  case ISD::SUBE:        return "sube";
3772  case ISD::SHL_PARTS:   return "shl_parts";
3773  case ISD::SRA_PARTS:   return "sra_parts";
3774  case ISD::SRL_PARTS:   return "srl_parts";
3775
3776  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3777  case ISD::INSERT_SUBREG:      return "insert_subreg";
3778
3779  // Conversion operators.
3780  case ISD::SIGN_EXTEND: return "sign_extend";
3781  case ISD::ZERO_EXTEND: return "zero_extend";
3782  case ISD::ANY_EXTEND:  return "any_extend";
3783  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3784  case ISD::TRUNCATE:    return "truncate";
3785  case ISD::FP_ROUND:    return "fp_round";
3786  case ISD::FLT_ROUNDS_: return "flt_rounds";
3787  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3788  case ISD::FP_EXTEND:   return "fp_extend";
3789
3790  case ISD::SINT_TO_FP:  return "sint_to_fp";
3791  case ISD::UINT_TO_FP:  return "uint_to_fp";
3792  case ISD::FP_TO_SINT:  return "fp_to_sint";
3793  case ISD::FP_TO_UINT:  return "fp_to_uint";
3794  case ISD::BIT_CONVERT: return "bit_convert";
3795
3796    // Control flow instructions
3797  case ISD::BR:      return "br";
3798  case ISD::BRIND:   return "brind";
3799  case ISD::BR_JT:   return "br_jt";
3800  case ISD::BRCOND:  return "brcond";
3801  case ISD::BR_CC:   return "br_cc";
3802  case ISD::RET:     return "ret";
3803  case ISD::CALLSEQ_START:  return "callseq_start";
3804  case ISD::CALLSEQ_END:    return "callseq_end";
3805
3806    // Other operators
3807  case ISD::LOAD:               return "load";
3808  case ISD::STORE:              return "store";
3809  case ISD::VAARG:              return "vaarg";
3810  case ISD::VACOPY:             return "vacopy";
3811  case ISD::VAEND:              return "vaend";
3812  case ISD::VASTART:            return "vastart";
3813  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3814  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3815  case ISD::BUILD_PAIR:         return "build_pair";
3816  case ISD::STACKSAVE:          return "stacksave";
3817  case ISD::STACKRESTORE:       return "stackrestore";
3818  case ISD::TRAP:               return "trap";
3819
3820  // Block memory operations.
3821  case ISD::MEMSET:  return "memset";
3822  case ISD::MEMCPY:  return "memcpy";
3823  case ISD::MEMMOVE: return "memmove";
3824
3825  // Bit manipulation
3826  case ISD::BSWAP:   return "bswap";
3827  case ISD::CTPOP:   return "ctpop";
3828  case ISD::CTTZ:    return "cttz";
3829  case ISD::CTLZ:    return "ctlz";
3830
3831  // Debug info
3832  case ISD::LOCATION: return "location";
3833  case ISD::DEBUG_LOC: return "debug_loc";
3834
3835  // Trampolines
3836  case ISD::TRAMPOLINE: return "trampoline";
3837
3838  case ISD::CONDCODE:
3839    switch (cast<CondCodeSDNode>(this)->get()) {
3840    default: assert(0 && "Unknown setcc condition!");
3841    case ISD::SETOEQ:  return "setoeq";
3842    case ISD::SETOGT:  return "setogt";
3843    case ISD::SETOGE:  return "setoge";
3844    case ISD::SETOLT:  return "setolt";
3845    case ISD::SETOLE:  return "setole";
3846    case ISD::SETONE:  return "setone";
3847
3848    case ISD::SETO:    return "seto";
3849    case ISD::SETUO:   return "setuo";
3850    case ISD::SETUEQ:  return "setue";
3851    case ISD::SETUGT:  return "setugt";
3852    case ISD::SETUGE:  return "setuge";
3853    case ISD::SETULT:  return "setult";
3854    case ISD::SETULE:  return "setule";
3855    case ISD::SETUNE:  return "setune";
3856
3857    case ISD::SETEQ:   return "seteq";
3858    case ISD::SETGT:   return "setgt";
3859    case ISD::SETGE:   return "setge";
3860    case ISD::SETLT:   return "setlt";
3861    case ISD::SETLE:   return "setle";
3862    case ISD::SETNE:   return "setne";
3863    }
3864  }
3865}
3866
3867const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3868  switch (AM) {
3869  default:
3870    return "";
3871  case ISD::PRE_INC:
3872    return "<pre-inc>";
3873  case ISD::PRE_DEC:
3874    return "<pre-dec>";
3875  case ISD::POST_INC:
3876    return "<post-inc>";
3877  case ISD::POST_DEC:
3878    return "<post-dec>";
3879  }
3880}
3881
3882void SDNode::dump() const { dump(0); }
3883void SDNode::dump(const SelectionDAG *G) const {
3884  cerr << (void*)this << ": ";
3885
3886  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3887    if (i) cerr << ",";
3888    if (getValueType(i) == MVT::Other)
3889      cerr << "ch";
3890    else
3891      cerr << MVT::getValueTypeString(getValueType(i));
3892  }
3893  cerr << " = " << getOperationName(G);
3894
3895  cerr << " ";
3896  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3897    if (i) cerr << ", ";
3898    cerr << (void*)getOperand(i).Val;
3899    if (unsigned RN = getOperand(i).ResNo)
3900      cerr << ":" << RN;
3901  }
3902
3903  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
3904    SDNode *Mask = getOperand(2).Val;
3905    cerr << "<";
3906    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
3907      if (i) cerr << ",";
3908      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
3909        cerr << "u";
3910      else
3911        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
3912    }
3913    cerr << ">";
3914  }
3915
3916  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3917    cerr << "<" << CSDN->getValue() << ">";
3918  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3919    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
3920      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
3921    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
3922      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
3923    else {
3924      cerr << "<APFloat(";
3925      CSDN->getValueAPF().convertToAPInt().dump();
3926      cerr << ")>";
3927    }
3928  } else if (const GlobalAddressSDNode *GADN =
3929             dyn_cast<GlobalAddressSDNode>(this)) {
3930    int offset = GADN->getOffset();
3931    cerr << "<";
3932    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3933    if (offset > 0)
3934      cerr << " + " << offset;
3935    else
3936      cerr << " " << offset;
3937  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3938    cerr << "<" << FIDN->getIndex() << ">";
3939  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3940    cerr << "<" << JTDN->getIndex() << ">";
3941  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3942    int offset = CP->getOffset();
3943    if (CP->isMachineConstantPoolEntry())
3944      cerr << "<" << *CP->getMachineCPVal() << ">";
3945    else
3946      cerr << "<" << *CP->getConstVal() << ">";
3947    if (offset > 0)
3948      cerr << " + " << offset;
3949    else
3950      cerr << " " << offset;
3951  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3952    cerr << "<";
3953    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3954    if (LBB)
3955      cerr << LBB->getName() << " ";
3956    cerr << (const void*)BBDN->getBasicBlock() << ">";
3957  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3958    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3959      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3960    } else {
3961      cerr << " #" << R->getReg();
3962    }
3963  } else if (const ExternalSymbolSDNode *ES =
3964             dyn_cast<ExternalSymbolSDNode>(this)) {
3965    cerr << "'" << ES->getSymbol() << "'";
3966  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3967    if (M->getValue())
3968      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3969    else
3970      cerr << "<null:" << M->getOffset() << ">";
3971  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3972    cerr << ":" << MVT::getValueTypeString(N->getVT());
3973  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3974    const Value *SrcValue = LD->getSrcValue();
3975    int SrcOffset = LD->getSrcValueOffset();
3976    cerr << " <";
3977    if (SrcValue)
3978      cerr << SrcValue;
3979    else
3980      cerr << "null";
3981    cerr << ":" << SrcOffset << ">";
3982
3983    bool doExt = true;
3984    switch (LD->getExtensionType()) {
3985    default: doExt = false; break;
3986    case ISD::EXTLOAD:
3987      cerr << " <anyext ";
3988      break;
3989    case ISD::SEXTLOAD:
3990      cerr << " <sext ";
3991      break;
3992    case ISD::ZEXTLOAD:
3993      cerr << " <zext ";
3994      break;
3995    }
3996    if (doExt)
3997      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
3998
3999    const char *AM = getIndexedModeName(LD->getAddressingMode());
4000    if (*AM)
4001      cerr << " " << AM;
4002    if (LD->isVolatile())
4003      cerr << " <volatile>";
4004    cerr << " alignment=" << LD->getAlignment();
4005  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4006    const Value *SrcValue = ST->getSrcValue();
4007    int SrcOffset = ST->getSrcValueOffset();
4008    cerr << " <";
4009    if (SrcValue)
4010      cerr << SrcValue;
4011    else
4012      cerr << "null";
4013    cerr << ":" << SrcOffset << ">";
4014
4015    if (ST->isTruncatingStore())
4016      cerr << " <trunc "
4017           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4018
4019    const char *AM = getIndexedModeName(ST->getAddressingMode());
4020    if (*AM)
4021      cerr << " " << AM;
4022    if (ST->isVolatile())
4023      cerr << " <volatile>";
4024    cerr << " alignment=" << ST->getAlignment();
4025  }
4026}
4027
4028static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4029  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4030    if (N->getOperand(i).Val->hasOneUse())
4031      DumpNodes(N->getOperand(i).Val, indent+2, G);
4032    else
4033      cerr << "\n" << std::string(indent+2, ' ')
4034           << (void*)N->getOperand(i).Val << ": <multiple use>";
4035
4036
4037  cerr << "\n" << std::string(indent, ' ');
4038  N->dump(G);
4039}
4040
4041void SelectionDAG::dump() const {
4042  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4043  std::vector<const SDNode*> Nodes;
4044  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4045       I != E; ++I)
4046    Nodes.push_back(I);
4047
4048  std::sort(Nodes.begin(), Nodes.end());
4049
4050  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4051    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4052      DumpNodes(Nodes[i], 2, this);
4053  }
4054
4055  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4056
4057  cerr << "\n\n";
4058}
4059
4060const Type *ConstantPoolSDNode::getType() const {
4061  if (isMachineConstantPoolEntry())
4062    return Val.MachineCPVal->getType();
4063  return Val.ConstVal->getType();
4064}
4065