SelectionDAG.cpp revision aeb06d246254e4829a49164a11eacced9a43d9d4
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallSet.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/StringExtras.h"
40#include <algorithm>
41#include <cmath>
42using namespace llvm;
43
44/// makeVTList - Return an instance of the SDVTList struct initialized with the
45/// specified members.
46static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
47  SDVTList Res = {VTs, NumVTs};
48  return Res;
49}
50
51static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
52  switch (VT.getSimpleVT()) {
53  default: assert(0 && "Unknown FP format");
54  case MVT::f32:     return &APFloat::IEEEsingle;
55  case MVT::f64:     return &APFloat::IEEEdouble;
56  case MVT::f80:     return &APFloat::x87DoubleExtended;
57  case MVT::f128:    return &APFloat::IEEEquad;
58  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
59  }
60}
61
62SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
63
64//===----------------------------------------------------------------------===//
65//                              ConstantFPSDNode Class
66//===----------------------------------------------------------------------===//
67
68/// isExactlyValue - We don't rely on operator== working on double values, as
69/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
70/// As such, this method can be used to do an exact bit-for-bit comparison of
71/// two floating point values.
72bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
73  return getValueAPF().bitwiseIsEqual(V);
74}
75
76bool ConstantFPSDNode::isValueValidForType(MVT VT,
77                                           const APFloat& Val) {
78  assert(VT.isFloatingPoint() && "Can only convert between FP types");
79
80  // PPC long double cannot be converted to any other type.
81  if (VT == MVT::ppcf128 ||
82      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
83    return false;
84
85  // convert modifies in place, so make a copy.
86  APFloat Val2 = APFloat(Val);
87  bool losesInfo;
88  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
89                      &losesInfo);
90  return !losesInfo;
91}
92
93//===----------------------------------------------------------------------===//
94//                              ISD Namespace
95//===----------------------------------------------------------------------===//
96
97/// isBuildVectorAllOnes - Return true if the specified node is a
98/// BUILD_VECTOR where all of the elements are ~0 or undef.
99bool ISD::isBuildVectorAllOnes(const SDNode *N) {
100  // Look through a bit convert.
101  if (N->getOpcode() == ISD::BIT_CONVERT)
102    N = N->getOperand(0).getNode();
103
104  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
105
106  unsigned i = 0, e = N->getNumOperands();
107
108  // Skip over all of the undef values.
109  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
110    ++i;
111
112  // Do not accept an all-undef vector.
113  if (i == e) return false;
114
115  // Do not accept build_vectors that aren't all constants or which have non-~0
116  // elements.
117  SDValue NotZero = N->getOperand(i);
118  if (isa<ConstantSDNode>(NotZero)) {
119    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
120      return false;
121  } else if (isa<ConstantFPSDNode>(NotZero)) {
122    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
123                bitcastToAPInt().isAllOnesValue())
124      return false;
125  } else
126    return false;
127
128  // Okay, we have at least one ~0 value, check to see if the rest match or are
129  // undefs.
130  for (++i; i != e; ++i)
131    if (N->getOperand(i) != NotZero &&
132        N->getOperand(i).getOpcode() != ISD::UNDEF)
133      return false;
134  return true;
135}
136
137
138/// isBuildVectorAllZeros - Return true if the specified node is a
139/// BUILD_VECTOR where all of the elements are 0 or undef.
140bool ISD::isBuildVectorAllZeros(const SDNode *N) {
141  // Look through a bit convert.
142  if (N->getOpcode() == ISD::BIT_CONVERT)
143    N = N->getOperand(0).getNode();
144
145  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
146
147  unsigned i = 0, e = N->getNumOperands();
148
149  // Skip over all of the undef values.
150  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
151    ++i;
152
153  // Do not accept an all-undef vector.
154  if (i == e) return false;
155
156  // Do not accept build_vectors that aren't all constants or which have non-~0
157  // elements.
158  SDValue Zero = N->getOperand(i);
159  if (isa<ConstantSDNode>(Zero)) {
160    if (!cast<ConstantSDNode>(Zero)->isNullValue())
161      return false;
162  } else if (isa<ConstantFPSDNode>(Zero)) {
163    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
164      return false;
165  } else
166    return false;
167
168  // Okay, we have at least one ~0 value, check to see if the rest match or are
169  // undefs.
170  for (++i; i != e; ++i)
171    if (N->getOperand(i) != Zero &&
172        N->getOperand(i).getOpcode() != ISD::UNDEF)
173      return false;
174  return true;
175}
176
177/// isScalarToVector - Return true if the specified node is a
178/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
179/// element is not an undef.
180bool ISD::isScalarToVector(const SDNode *N) {
181  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
182    return true;
183
184  if (N->getOpcode() != ISD::BUILD_VECTOR)
185    return false;
186  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
187    return false;
188  unsigned NumElems = N->getNumOperands();
189  for (unsigned i = 1; i < NumElems; ++i) {
190    SDValue V = N->getOperand(i);
191    if (V.getOpcode() != ISD::UNDEF)
192      return false;
193  }
194  return true;
195}
196
197
198/// isDebugLabel - Return true if the specified node represents a debug
199/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
200bool ISD::isDebugLabel(const SDNode *N) {
201  SDValue Zero;
202  if (N->getOpcode() == ISD::DBG_LABEL)
203    return true;
204  if (N->isMachineOpcode() &&
205      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
206    return true;
207  return false;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: assert(0 && "Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309const TargetMachine &SelectionDAG::getTarget() const {
310  return MF->getTarget();
311}
312
313//===----------------------------------------------------------------------===//
314//                           SDNode Profile Support
315//===----------------------------------------------------------------------===//
316
317/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
318///
319static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
320  ID.AddInteger(OpC);
321}
322
323/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
324/// solely with their pointer.
325static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
326  ID.AddPointer(VTList.VTs);
327}
328
329/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
330///
331static void AddNodeIDOperands(FoldingSetNodeID &ID,
332                              const SDValue *Ops, unsigned NumOps) {
333  for (; NumOps; --NumOps, ++Ops) {
334    ID.AddPointer(Ops->getNode());
335    ID.AddInteger(Ops->getResNo());
336  }
337}
338
339/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
340///
341static void AddNodeIDOperands(FoldingSetNodeID &ID,
342                              const SDUse *Ops, unsigned NumOps) {
343  for (; NumOps; --NumOps, ++Ops) {
344    ID.AddPointer(Ops->getVal());
345    ID.AddInteger(Ops->getSDValue().getResNo());
346  }
347}
348
349static void AddNodeIDNode(FoldingSetNodeID &ID,
350                          unsigned short OpC, SDVTList VTList,
351                          const SDValue *OpList, unsigned N) {
352  AddNodeIDOpcode(ID, OpC);
353  AddNodeIDValueTypes(ID, VTList);
354  AddNodeIDOperands(ID, OpList, N);
355}
356
357/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
358/// the NodeID data.
359static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
360  switch (N->getOpcode()) {
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::ARG_FLAGS:
363    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
364    break;
365  case ISD::TargetConstant:
366  case ISD::Constant:
367    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
368    break;
369  case ISD::TargetConstantFP:
370  case ISD::ConstantFP: {
371    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
372    break;
373  }
374  case ISD::TargetGlobalAddress:
375  case ISD::GlobalAddress:
376  case ISD::TargetGlobalTLSAddress:
377  case ISD::GlobalTLSAddress: {
378    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
379    ID.AddPointer(GA->getGlobal());
380    ID.AddInteger(GA->getOffset());
381    break;
382  }
383  case ISD::BasicBlock:
384    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
385    break;
386  case ISD::Register:
387    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
388    break;
389  case ISD::DBG_STOPPOINT: {
390    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
391    ID.AddInteger(DSP->getLine());
392    ID.AddInteger(DSP->getColumn());
393    ID.AddPointer(DSP->getCompileUnit());
394    break;
395  }
396  case ISD::SRCVALUE:
397    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
398    break;
399  case ISD::MEMOPERAND: {
400    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
401    MO.Profile(ID);
402    break;
403  }
404  case ISD::FrameIndex:
405  case ISD::TargetFrameIndex:
406    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
407    break;
408  case ISD::JumpTable:
409  case ISD::TargetJumpTable:
410    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
411    break;
412  case ISD::ConstantPool:
413  case ISD::TargetConstantPool: {
414    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
415    ID.AddInteger(CP->getAlignment());
416    ID.AddInteger(CP->getOffset());
417    if (CP->isMachineConstantPoolEntry())
418      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
419    else
420      ID.AddPointer(CP->getConstVal());
421    break;
422  }
423  case ISD::CALL: {
424    const CallSDNode *Call = cast<CallSDNode>(N);
425    ID.AddInteger(Call->getCallingConv());
426    ID.AddInteger(Call->isVarArg());
427    break;
428  }
429  case ISD::LOAD: {
430    const LoadSDNode *LD = cast<LoadSDNode>(N);
431    ID.AddInteger(LD->getAddressingMode());
432    ID.AddInteger(LD->getExtensionType());
433    ID.AddInteger(LD->getMemoryVT().getRawBits());
434    ID.AddInteger(LD->getRawFlags());
435    break;
436  }
437  case ISD::STORE: {
438    const StoreSDNode *ST = cast<StoreSDNode>(N);
439    ID.AddInteger(ST->getAddressingMode());
440    ID.AddInteger(ST->isTruncatingStore());
441    ID.AddInteger(ST->getMemoryVT().getRawBits());
442    ID.AddInteger(ST->getRawFlags());
443    break;
444  }
445  case ISD::ATOMIC_CMP_SWAP_8:
446  case ISD::ATOMIC_SWAP_8:
447  case ISD::ATOMIC_LOAD_ADD_8:
448  case ISD::ATOMIC_LOAD_SUB_8:
449  case ISD::ATOMIC_LOAD_AND_8:
450  case ISD::ATOMIC_LOAD_OR_8:
451  case ISD::ATOMIC_LOAD_XOR_8:
452  case ISD::ATOMIC_LOAD_NAND_8:
453  case ISD::ATOMIC_LOAD_MIN_8:
454  case ISD::ATOMIC_LOAD_MAX_8:
455  case ISD::ATOMIC_LOAD_UMIN_8:
456  case ISD::ATOMIC_LOAD_UMAX_8:
457  case ISD::ATOMIC_CMP_SWAP_16:
458  case ISD::ATOMIC_SWAP_16:
459  case ISD::ATOMIC_LOAD_ADD_16:
460  case ISD::ATOMIC_LOAD_SUB_16:
461  case ISD::ATOMIC_LOAD_AND_16:
462  case ISD::ATOMIC_LOAD_OR_16:
463  case ISD::ATOMIC_LOAD_XOR_16:
464  case ISD::ATOMIC_LOAD_NAND_16:
465  case ISD::ATOMIC_LOAD_MIN_16:
466  case ISD::ATOMIC_LOAD_MAX_16:
467  case ISD::ATOMIC_LOAD_UMIN_16:
468  case ISD::ATOMIC_LOAD_UMAX_16:
469  case ISD::ATOMIC_CMP_SWAP_32:
470  case ISD::ATOMIC_SWAP_32:
471  case ISD::ATOMIC_LOAD_ADD_32:
472  case ISD::ATOMIC_LOAD_SUB_32:
473  case ISD::ATOMIC_LOAD_AND_32:
474  case ISD::ATOMIC_LOAD_OR_32:
475  case ISD::ATOMIC_LOAD_XOR_32:
476  case ISD::ATOMIC_LOAD_NAND_32:
477  case ISD::ATOMIC_LOAD_MIN_32:
478  case ISD::ATOMIC_LOAD_MAX_32:
479  case ISD::ATOMIC_LOAD_UMIN_32:
480  case ISD::ATOMIC_LOAD_UMAX_32:
481  case ISD::ATOMIC_CMP_SWAP_64:
482  case ISD::ATOMIC_SWAP_64:
483  case ISD::ATOMIC_LOAD_ADD_64:
484  case ISD::ATOMIC_LOAD_SUB_64:
485  case ISD::ATOMIC_LOAD_AND_64:
486  case ISD::ATOMIC_LOAD_OR_64:
487  case ISD::ATOMIC_LOAD_XOR_64:
488  case ISD::ATOMIC_LOAD_NAND_64:
489  case ISD::ATOMIC_LOAD_MIN_64:
490  case ISD::ATOMIC_LOAD_MAX_64:
491  case ISD::ATOMIC_LOAD_UMIN_64:
492  case ISD::ATOMIC_LOAD_UMAX_64: {
493    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
494    ID.AddInteger(AT->getRawFlags());
495    break;
496  }
497  } // end switch (N->getOpcode())
498}
499
500/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
501/// data.
502static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
503  AddNodeIDOpcode(ID, N->getOpcode());
504  // Add the return value info.
505  AddNodeIDValueTypes(ID, N->getVTList());
506  // Add the operand info.
507  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
508
509  // Handle SDNode leafs with special info.
510  AddNodeIDCustom(ID, N);
511}
512
513/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
514/// the CSE map that carries both alignment and volatility information.
515///
516static inline unsigned
517encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
518  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
519}
520
521//===----------------------------------------------------------------------===//
522//                              SelectionDAG Class
523//===----------------------------------------------------------------------===//
524
525/// doNotCSE - Return true if CSE should not be performed for this node.
526static bool doNotCSE(SDNode *N) {
527  if (N->getValueType(0) == MVT::Flag)
528    return true; // Never CSE anything that produces a flag.
529
530  switch (N->getOpcode()) {
531  default: break;
532  case ISD::HANDLENODE:
533  case ISD::DBG_LABEL:
534  case ISD::DBG_STOPPOINT:
535  case ISD::EH_LABEL:
536  case ISD::DECLARE:
537    return true;   // Never CSE these nodes.
538  }
539
540  // Check that remaining values produced are not flags.
541  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
542    if (N->getValueType(i) == MVT::Flag)
543      return true; // Never CSE anything that produces a flag.
544
545  return false;
546}
547
548/// RemoveDeadNodes - This method deletes all unreachable nodes in the
549/// SelectionDAG.
550void SelectionDAG::RemoveDeadNodes() {
551  // Create a dummy node (which is not added to allnodes), that adds a reference
552  // to the root node, preventing it from being deleted.
553  HandleSDNode Dummy(getRoot());
554
555  SmallVector<SDNode*, 128> DeadNodes;
556
557  // Add all obviously-dead nodes to the DeadNodes worklist.
558  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
559    if (I->use_empty())
560      DeadNodes.push_back(I);
561
562  RemoveDeadNodes(DeadNodes);
563
564  // If the root changed (e.g. it was a dead load, update the root).
565  setRoot(Dummy.getValue());
566}
567
568/// RemoveDeadNodes - This method deletes the unreachable nodes in the
569/// given list, and any nodes that become unreachable as a result.
570void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
571                                   DAGUpdateListener *UpdateListener) {
572
573  // Process the worklist, deleting the nodes and adding their uses to the
574  // worklist.
575  while (!DeadNodes.empty()) {
576    SDNode *N = DeadNodes.back();
577    DeadNodes.pop_back();
578
579    if (UpdateListener)
580      UpdateListener->NodeDeleted(N, 0);
581
582    // Take the node out of the appropriate CSE map.
583    RemoveNodeFromCSEMaps(N);
584
585    // Next, brutally remove the operand list.  This is safe to do, as there are
586    // no cycles in the graph.
587    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
588      SDNode *Operand = I->getVal();
589      Operand->removeUser(std::distance(N->op_begin(), I), N);
590
591      // Now that we removed this operand, see if there are no uses of it left.
592      if (Operand->use_empty())
593        DeadNodes.push_back(Operand);
594    }
595
596    if (N->OperandsNeedDelete)
597      delete[] N->OperandList;
598
599    N->OperandList = 0;
600    N->NumOperands = 0;
601
602    // Finally, remove N itself.
603    NodeAllocator.Deallocate(AllNodes.remove(N));
604  }
605}
606
607void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
608  SmallVector<SDNode*, 16> DeadNodes(1, N);
609  RemoveDeadNodes(DeadNodes, UpdateListener);
610}
611
612void SelectionDAG::DeleteNode(SDNode *N) {
613  assert(N->use_empty() && "Cannot delete a node that is not dead!");
614
615  // First take this out of the appropriate CSE map.
616  RemoveNodeFromCSEMaps(N);
617
618  // Finally, remove uses due to operands of this node, remove from the
619  // AllNodes list, and delete the node.
620  DeleteNodeNotInCSEMaps(N);
621}
622
623void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
624  // Drop all of the operands and decrement used node's use counts.
625  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
626    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
627
628  if (N->OperandsNeedDelete) {
629    delete[] N->OperandList;
630    N->OperandList = 0;
631  }
632
633  assert(N != AllNodes.begin());
634  NodeAllocator.Deallocate(AllNodes.remove(N));
635}
636
637/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
638/// correspond to it.  This is useful when we're about to delete or repurpose
639/// the node.  We don't want future request for structurally identical nodes
640/// to return N anymore.
641bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
642  bool Erased = false;
643  switch (N->getOpcode()) {
644  case ISD::EntryToken:
645    assert(0 && "EntryToken should not be in CSEMaps!");
646    return false;
647  case ISD::HANDLENODE: return false;  // noop.
648  case ISD::CONDCODE:
649    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
650           "Cond code doesn't exist!");
651    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
652    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
653    break;
654  case ISD::ExternalSymbol:
655    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
656    break;
657  case ISD::TargetExternalSymbol:
658    Erased =
659      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
660    break;
661  case ISD::VALUETYPE: {
662    MVT VT = cast<VTSDNode>(N)->getVT();
663    if (VT.isExtended()) {
664      Erased = ExtendedValueTypeNodes.erase(VT);
665    } else {
666      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
667      ValueTypeNodes[VT.getSimpleVT()] = 0;
668    }
669    break;
670  }
671  default:
672    // Remove it from the CSE Map.
673    Erased = CSEMap.RemoveNode(N);
674    break;
675  }
676#ifndef NDEBUG
677  // Verify that the node was actually in one of the CSE maps, unless it has a
678  // flag result (which cannot be CSE'd) or is one of the special cases that are
679  // not subject to CSE.
680  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
681      !N->isMachineOpcode() && !doNotCSE(N)) {
682    N->dump(this);
683    cerr << "\n";
684    assert(0 && "Node is not in map!");
685  }
686#endif
687  return Erased;
688}
689
690/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
691/// has been taken out and modified in some way.  If the specified node already
692/// exists in the CSE maps, do not modify the maps, but return the existing node
693/// instead.  If it doesn't exist, add it and return null.
694///
695SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
696  assert(N->getNumOperands() && "This is a leaf node!");
697
698  if (doNotCSE(N))
699    return 0;
700
701  SDNode *New = CSEMap.GetOrInsertNode(N);
702  if (New != N) return New;  // Node already existed.
703  return 0;
704}
705
706/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
707/// were replaced with those specified.  If this node is never memoized,
708/// return null, otherwise return a pointer to the slot it would take.  If a
709/// node already exists with these operands, the slot will be non-null.
710SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
711                                           void *&InsertPos) {
712  if (doNotCSE(N))
713    return 0;
714
715  SDValue Ops[] = { Op };
716  FoldingSetNodeID ID;
717  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
718  AddNodeIDCustom(ID, N);
719  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
720}
721
722/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
723/// were replaced with those specified.  If this node is never memoized,
724/// return null, otherwise return a pointer to the slot it would take.  If a
725/// node already exists with these operands, the slot will be non-null.
726SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
727                                           SDValue Op1, SDValue Op2,
728                                           void *&InsertPos) {
729  if (doNotCSE(N))
730    return 0;
731
732  SDValue Ops[] = { Op1, Op2 };
733  FoldingSetNodeID ID;
734  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
735  AddNodeIDCustom(ID, N);
736  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
737}
738
739
740/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
741/// were replaced with those specified.  If this node is never memoized,
742/// return null, otherwise return a pointer to the slot it would take.  If a
743/// node already exists with these operands, the slot will be non-null.
744SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
745                                           const SDValue *Ops,unsigned NumOps,
746                                           void *&InsertPos) {
747  if (doNotCSE(N))
748    return 0;
749
750  FoldingSetNodeID ID;
751  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
752  AddNodeIDCustom(ID, N);
753  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
754}
755
756/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
757void SelectionDAG::VerifyNode(SDNode *N) {
758  switch (N->getOpcode()) {
759  default:
760    break;
761  case ISD::BUILD_PAIR: {
762    MVT VT = N->getValueType(0);
763    assert(N->getNumValues() == 1 && "Too many results!");
764    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
765           "Wrong return type!");
766    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
767    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
768           "Mismatched operand types!");
769    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
770           "Wrong operand type!");
771    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
772           "Wrong return type size");
773    break;
774  }
775  case ISD::BUILD_VECTOR: {
776    assert(N->getNumValues() == 1 && "Too many results!");
777    assert(N->getValueType(0).isVector() && "Wrong return type!");
778    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
779           "Wrong number of operands!");
780    // FIXME: Change vector_shuffle to a variadic node with mask elements being
781    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
782    // operand, and it is not always possible to legalize it.  Turning off the
783    // following checks at least makes it possible to legalize most of the time.
784//    MVT EltVT = N->getValueType(0).getVectorElementType();
785//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
786//      assert(I->getSDValue().getValueType() == EltVT &&
787//             "Wrong operand type!");
788    break;
789  }
790  }
791}
792
793/// getMVTAlignment - Compute the default alignment value for the
794/// given type.
795///
796unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
797  const Type *Ty = VT == MVT::iPTR ?
798                   PointerType::get(Type::Int8Ty, 0) :
799                   VT.getTypeForMVT();
800
801  return TLI.getTargetData()->getABITypeAlignment(Ty);
802}
803
804SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
805  : TLI(tli), FLI(fli),
806    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
807    Root(getEntryNode()) {
808  AllNodes.push_back(&EntryNode);
809}
810
811void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
812  MF = &mf;
813  MMI = mmi;
814}
815
816SelectionDAG::~SelectionDAG() {
817  allnodes_clear();
818}
819
820void SelectionDAG::allnodes_clear() {
821  assert(&*AllNodes.begin() == &EntryNode);
822  AllNodes.remove(AllNodes.begin());
823  while (!AllNodes.empty()) {
824    SDNode *N = AllNodes.remove(AllNodes.begin());
825    N->SetNextInBucket(0);
826
827    if (N->OperandsNeedDelete) {
828      delete [] N->OperandList;
829      N->OperandList = 0;
830    }
831
832    NodeAllocator.Deallocate(N);
833  }
834}
835
836void SelectionDAG::clear() {
837  allnodes_clear();
838  OperandAllocator.Reset();
839  CSEMap.clear();
840
841  ExtendedValueTypeNodes.clear();
842  ExternalSymbols.clear();
843  TargetExternalSymbols.clear();
844  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
845            static_cast<CondCodeSDNode*>(0));
846  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
847            static_cast<SDNode*>(0));
848
849  EntryNode.Uses = 0;
850  AllNodes.push_back(&EntryNode);
851  Root = getEntryNode();
852}
853
854SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
855  if (Op.getValueType() == VT) return Op;
856  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
857                                   VT.getSizeInBits());
858  return getNode(ISD::AND, Op.getValueType(), Op,
859                 getConstant(Imm, Op.getValueType()));
860}
861
862SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
863  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
864  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
865}
866
867SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
868  return getConstant(*ConstantInt::get(Val), VT, isT);
869}
870
871SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
872  assert(VT.isInteger() && "Cannot create FP integer constant!");
873
874  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
875  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
876         "APInt size does not match type size!");
877
878  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
879  FoldingSetNodeID ID;
880  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
881  ID.AddPointer(&Val);
882  void *IP = 0;
883  SDNode *N = NULL;
884  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
885    if (!VT.isVector())
886      return SDValue(N, 0);
887  if (!N) {
888    N = NodeAllocator.Allocate<ConstantSDNode>();
889    new (N) ConstantSDNode(isT, &Val, EltVT);
890    CSEMap.InsertNode(N, IP);
891    AllNodes.push_back(N);
892  }
893
894  SDValue Result(N, 0);
895  if (VT.isVector()) {
896    SmallVector<SDValue, 8> Ops;
897    Ops.assign(VT.getVectorNumElements(), Result);
898    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
899  }
900  return Result;
901}
902
903SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
904  return getConstant(Val, TLI.getPointerTy(), isTarget);
905}
906
907
908SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
909  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
910}
911
912SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
913  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
914
915  MVT EltVT =
916    VT.isVector() ? VT.getVectorElementType() : VT;
917
918  // Do the map lookup using the actual bit pattern for the floating point
919  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
920  // we don't have issues with SNANs.
921  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
922  FoldingSetNodeID ID;
923  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
924  ID.AddPointer(&V);
925  void *IP = 0;
926  SDNode *N = NULL;
927  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
928    if (!VT.isVector())
929      return SDValue(N, 0);
930  if (!N) {
931    N = NodeAllocator.Allocate<ConstantFPSDNode>();
932    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
933    CSEMap.InsertNode(N, IP);
934    AllNodes.push_back(N);
935  }
936
937  SDValue Result(N, 0);
938  if (VT.isVector()) {
939    SmallVector<SDValue, 8> Ops;
940    Ops.assign(VT.getVectorNumElements(), Result);
941    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
942  }
943  return Result;
944}
945
946SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
947  MVT EltVT =
948    VT.isVector() ? VT.getVectorElementType() : VT;
949  if (EltVT==MVT::f32)
950    return getConstantFP(APFloat((float)Val), VT, isTarget);
951  else
952    return getConstantFP(APFloat(Val), VT, isTarget);
953}
954
955SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
956                                       MVT VT, int64_t Offset,
957                                       bool isTargetGA) {
958  unsigned Opc;
959
960  // Truncate (with sign-extension) the offset value to the pointer size.
961  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
962  if (BitWidth < 64)
963    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
964
965  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
966  if (!GVar) {
967    // If GV is an alias then use the aliasee for determining thread-localness.
968    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
969      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
970  }
971
972  if (GVar && GVar->isThreadLocal())
973    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
974  else
975    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
976
977  FoldingSetNodeID ID;
978  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
979  ID.AddPointer(GV);
980  ID.AddInteger(Offset);
981  void *IP = 0;
982  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
983   return SDValue(E, 0);
984  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
985  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
986  CSEMap.InsertNode(N, IP);
987  AllNodes.push_back(N);
988  return SDValue(N, 0);
989}
990
991SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
992  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
993  FoldingSetNodeID ID;
994  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
995  ID.AddInteger(FI);
996  void *IP = 0;
997  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
998    return SDValue(E, 0);
999  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1000  new (N) FrameIndexSDNode(FI, VT, isTarget);
1001  CSEMap.InsertNode(N, IP);
1002  AllNodes.push_back(N);
1003  return SDValue(N, 0);
1004}
1005
1006SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1007  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1008  FoldingSetNodeID ID;
1009  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1010  ID.AddInteger(JTI);
1011  void *IP = 0;
1012  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1013    return SDValue(E, 0);
1014  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1015  new (N) JumpTableSDNode(JTI, VT, isTarget);
1016  CSEMap.InsertNode(N, IP);
1017  AllNodes.push_back(N);
1018  return SDValue(N, 0);
1019}
1020
1021SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1022                                      unsigned Alignment, int Offset,
1023                                      bool isTarget) {
1024  if (Alignment == 0)
1025    Alignment =
1026      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1027  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1028  FoldingSetNodeID ID;
1029  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1030  ID.AddInteger(Alignment);
1031  ID.AddInteger(Offset);
1032  ID.AddPointer(C);
1033  void *IP = 0;
1034  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1035    return SDValue(E, 0);
1036  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1037  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1038  CSEMap.InsertNode(N, IP);
1039  AllNodes.push_back(N);
1040  return SDValue(N, 0);
1041}
1042
1043
1044SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1045                                      unsigned Alignment, int Offset,
1046                                      bool isTarget) {
1047  if (Alignment == 0)
1048    Alignment =
1049      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1050  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1051  FoldingSetNodeID ID;
1052  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1053  ID.AddInteger(Alignment);
1054  ID.AddInteger(Offset);
1055  C->AddSelectionDAGCSEId(ID);
1056  void *IP = 0;
1057  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1058    return SDValue(E, 0);
1059  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1060  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1061  CSEMap.InsertNode(N, IP);
1062  AllNodes.push_back(N);
1063  return SDValue(N, 0);
1064}
1065
1066
1067SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1068  FoldingSetNodeID ID;
1069  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1070  ID.AddPointer(MBB);
1071  void *IP = 0;
1072  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1073    return SDValue(E, 0);
1074  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1075  new (N) BasicBlockSDNode(MBB);
1076  CSEMap.InsertNode(N, IP);
1077  AllNodes.push_back(N);
1078  return SDValue(N, 0);
1079}
1080
1081SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1082  FoldingSetNodeID ID;
1083  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1084  ID.AddInteger(Flags.getRawBits());
1085  void *IP = 0;
1086  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1087    return SDValue(E, 0);
1088  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1089  new (N) ARG_FLAGSSDNode(Flags);
1090  CSEMap.InsertNode(N, IP);
1091  AllNodes.push_back(N);
1092  return SDValue(N, 0);
1093}
1094
1095SDValue SelectionDAG::getValueType(MVT VT) {
1096  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1097    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1098
1099  SDNode *&N = VT.isExtended() ?
1100    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1101
1102  if (N) return SDValue(N, 0);
1103  N = NodeAllocator.Allocate<VTSDNode>();
1104  new (N) VTSDNode(VT);
1105  AllNodes.push_back(N);
1106  return SDValue(N, 0);
1107}
1108
1109SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1110  SDNode *&N = ExternalSymbols[Sym];
1111  if (N) return SDValue(N, 0);
1112  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1113  new (N) ExternalSymbolSDNode(false, Sym, VT);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1119  SDNode *&N = TargetExternalSymbols[Sym];
1120  if (N) return SDValue(N, 0);
1121  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1122  new (N) ExternalSymbolSDNode(true, Sym, VT);
1123  AllNodes.push_back(N);
1124  return SDValue(N, 0);
1125}
1126
1127SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1128  if ((unsigned)Cond >= CondCodeNodes.size())
1129    CondCodeNodes.resize(Cond+1);
1130
1131  if (CondCodeNodes[Cond] == 0) {
1132    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1133    new (N) CondCodeSDNode(Cond);
1134    CondCodeNodes[Cond] = N;
1135    AllNodes.push_back(N);
1136  }
1137  return SDValue(CondCodeNodes[Cond], 0);
1138}
1139
1140SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1141  FoldingSetNodeID ID;
1142  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1143  ID.AddInteger(RegNo);
1144  void *IP = 0;
1145  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1146    return SDValue(E, 0);
1147  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1148  new (N) RegisterSDNode(RegNo, VT);
1149  CSEMap.InsertNode(N, IP);
1150  AllNodes.push_back(N);
1151  return SDValue(N, 0);
1152}
1153
1154SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1155                                        unsigned Line, unsigned Col,
1156                                        const CompileUnitDesc *CU) {
1157  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1158  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1159  AllNodes.push_back(N);
1160  return SDValue(N, 0);
1161}
1162
1163SDValue SelectionDAG::getLabel(unsigned Opcode,
1164                               SDValue Root,
1165                               unsigned LabelID) {
1166  FoldingSetNodeID ID;
1167  SDValue Ops[] = { Root };
1168  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1169  ID.AddInteger(LabelID);
1170  void *IP = 0;
1171  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1172    return SDValue(E, 0);
1173  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1174  new (N) LabelSDNode(Opcode, Root, LabelID);
1175  CSEMap.InsertNode(N, IP);
1176  AllNodes.push_back(N);
1177  return SDValue(N, 0);
1178}
1179
1180SDValue SelectionDAG::getSrcValue(const Value *V) {
1181  assert((!V || isa<PointerType>(V->getType())) &&
1182         "SrcValue is not a pointer?");
1183
1184  FoldingSetNodeID ID;
1185  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1186  ID.AddPointer(V);
1187
1188  void *IP = 0;
1189  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1190    return SDValue(E, 0);
1191
1192  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1193  new (N) SrcValueSDNode(V);
1194  CSEMap.InsertNode(N, IP);
1195  AllNodes.push_back(N);
1196  return SDValue(N, 0);
1197}
1198
1199SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1200  const Value *v = MO.getValue();
1201  assert((!v || isa<PointerType>(v->getType())) &&
1202         "SrcValue is not a pointer?");
1203
1204  FoldingSetNodeID ID;
1205  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1206  MO.Profile(ID);
1207
1208  void *IP = 0;
1209  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1210    return SDValue(E, 0);
1211
1212  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1213  new (N) MemOperandSDNode(MO);
1214  CSEMap.InsertNode(N, IP);
1215  AllNodes.push_back(N);
1216  return SDValue(N, 0);
1217}
1218
1219/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1220/// specified value type.
1221SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1222  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1223  unsigned ByteSize = VT.getSizeInBits()/8;
1224  const Type *Ty = VT.getTypeForMVT();
1225  unsigned StackAlign =
1226  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1227
1228  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1229  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1230}
1231
1232SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1233                                SDValue N2, ISD::CondCode Cond) {
1234  // These setcc operations always fold.
1235  switch (Cond) {
1236  default: break;
1237  case ISD::SETFALSE:
1238  case ISD::SETFALSE2: return getConstant(0, VT);
1239  case ISD::SETTRUE:
1240  case ISD::SETTRUE2:  return getConstant(1, VT);
1241
1242  case ISD::SETOEQ:
1243  case ISD::SETOGT:
1244  case ISD::SETOGE:
1245  case ISD::SETOLT:
1246  case ISD::SETOLE:
1247  case ISD::SETONE:
1248  case ISD::SETO:
1249  case ISD::SETUO:
1250  case ISD::SETUEQ:
1251  case ISD::SETUNE:
1252    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1253    break;
1254  }
1255
1256  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1257    const APInt &C2 = N2C->getAPIntValue();
1258    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1259      const APInt &C1 = N1C->getAPIntValue();
1260
1261      switch (Cond) {
1262      default: assert(0 && "Unknown integer setcc!");
1263      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1264      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1265      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1266      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1267      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1268      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1269      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1270      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1271      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1272      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1273      }
1274    }
1275  }
1276  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1277    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1278      // No compile time operations on this type yet.
1279      if (N1C->getValueType(0) == MVT::ppcf128)
1280        return SDValue();
1281
1282      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1283      switch (Cond) {
1284      default: break;
1285      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1286                          return getNode(ISD::UNDEF, VT);
1287                        // fall through
1288      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1289      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1290                          return getNode(ISD::UNDEF, VT);
1291                        // fall through
1292      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1293                                           R==APFloat::cmpLessThan, VT);
1294      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1295                          return getNode(ISD::UNDEF, VT);
1296                        // fall through
1297      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1298      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1299                          return getNode(ISD::UNDEF, VT);
1300                        // fall through
1301      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1302      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1303                          return getNode(ISD::UNDEF, VT);
1304                        // fall through
1305      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1306                                           R==APFloat::cmpEqual, VT);
1307      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1308                          return getNode(ISD::UNDEF, VT);
1309                        // fall through
1310      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1311                                           R==APFloat::cmpEqual, VT);
1312      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1313      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1314      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1315                                           R==APFloat::cmpEqual, VT);
1316      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1317      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1318                                           R==APFloat::cmpLessThan, VT);
1319      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1320                                           R==APFloat::cmpUnordered, VT);
1321      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1322      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1323      }
1324    } else {
1325      // Ensure that the constant occurs on the RHS.
1326      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1327    }
1328  }
1329
1330  // Could not fold it.
1331  return SDValue();
1332}
1333
1334/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1335/// use this predicate to simplify operations downstream.
1336bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1337  unsigned BitWidth = Op.getValueSizeInBits();
1338  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1339}
1340
1341/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1342/// this predicate to simplify operations downstream.  Mask is known to be zero
1343/// for bits that V cannot have.
1344bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1345                                     unsigned Depth) const {
1346  APInt KnownZero, KnownOne;
1347  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1348  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1349  return (KnownZero & Mask) == Mask;
1350}
1351
1352/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1353/// known to be either zero or one and return them in the KnownZero/KnownOne
1354/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1355/// processing.
1356void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1357                                     APInt &KnownZero, APInt &KnownOne,
1358                                     unsigned Depth) const {
1359  unsigned BitWidth = Mask.getBitWidth();
1360  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1361         "Mask size mismatches value type size!");
1362
1363  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1364  if (Depth == 6 || Mask == 0)
1365    return;  // Limit search depth.
1366
1367  APInt KnownZero2, KnownOne2;
1368
1369  switch (Op.getOpcode()) {
1370  case ISD::Constant:
1371    // We know all of the bits for a constant!
1372    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1373    KnownZero = ~KnownOne & Mask;
1374    return;
1375  case ISD::AND:
1376    // If either the LHS or the RHS are Zero, the result is zero.
1377    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1378    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1379                      KnownZero2, KnownOne2, Depth+1);
1380    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1381    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1382
1383    // Output known-1 bits are only known if set in both the LHS & RHS.
1384    KnownOne &= KnownOne2;
1385    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1386    KnownZero |= KnownZero2;
1387    return;
1388  case ISD::OR:
1389    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1390    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1391                      KnownZero2, KnownOne2, Depth+1);
1392    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1393    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1394
1395    // Output known-0 bits are only known if clear in both the LHS & RHS.
1396    KnownZero &= KnownZero2;
1397    // Output known-1 are known to be set if set in either the LHS | RHS.
1398    KnownOne |= KnownOne2;
1399    return;
1400  case ISD::XOR: {
1401    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1402    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1403    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1404    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1405
1406    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1407    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1408    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1409    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1410    KnownZero = KnownZeroOut;
1411    return;
1412  }
1413  case ISD::MUL: {
1414    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1415    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1416    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1417    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1418    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1419
1420    // If low bits are zero in either operand, output low known-0 bits.
1421    // Also compute a conserative estimate for high known-0 bits.
1422    // More trickiness is possible, but this is sufficient for the
1423    // interesting case of alignment computation.
1424    KnownOne.clear();
1425    unsigned TrailZ = KnownZero.countTrailingOnes() +
1426                      KnownZero2.countTrailingOnes();
1427    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1428                               KnownZero2.countLeadingOnes(),
1429                               BitWidth) - BitWidth;
1430
1431    TrailZ = std::min(TrailZ, BitWidth);
1432    LeadZ = std::min(LeadZ, BitWidth);
1433    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1434                APInt::getHighBitsSet(BitWidth, LeadZ);
1435    KnownZero &= Mask;
1436    return;
1437  }
1438  case ISD::UDIV: {
1439    // For the purposes of computing leading zeros we can conservatively
1440    // treat a udiv as a logical right shift by the power of 2 known to
1441    // be less than the denominator.
1442    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1443    ComputeMaskedBits(Op.getOperand(0),
1444                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1445    unsigned LeadZ = KnownZero2.countLeadingOnes();
1446
1447    KnownOne2.clear();
1448    KnownZero2.clear();
1449    ComputeMaskedBits(Op.getOperand(1),
1450                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1451    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1452    if (RHSUnknownLeadingOnes != BitWidth)
1453      LeadZ = std::min(BitWidth,
1454                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1455
1456    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1457    return;
1458  }
1459  case ISD::SELECT:
1460    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1461    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1462    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1463    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1464
1465    // Only known if known in both the LHS and RHS.
1466    KnownOne &= KnownOne2;
1467    KnownZero &= KnownZero2;
1468    return;
1469  case ISD::SELECT_CC:
1470    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1471    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1472    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1473    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1474
1475    // Only known if known in both the LHS and RHS.
1476    KnownOne &= KnownOne2;
1477    KnownZero &= KnownZero2;
1478    return;
1479  case ISD::SETCC:
1480    // If we know the result of a setcc has the top bits zero, use this info.
1481    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1482        BitWidth > 1)
1483      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1484    return;
1485  case ISD::SHL:
1486    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1487    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1488      unsigned ShAmt = SA->getZExtValue();
1489
1490      // If the shift count is an invalid immediate, don't do anything.
1491      if (ShAmt >= BitWidth)
1492        return;
1493
1494      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1495                        KnownZero, KnownOne, Depth+1);
1496      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1497      KnownZero <<= ShAmt;
1498      KnownOne  <<= ShAmt;
1499      // low bits known zero.
1500      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1501    }
1502    return;
1503  case ISD::SRL:
1504    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1505    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1506      unsigned ShAmt = SA->getZExtValue();
1507
1508      // If the shift count is an invalid immediate, don't do anything.
1509      if (ShAmt >= BitWidth)
1510        return;
1511
1512      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1513                        KnownZero, KnownOne, Depth+1);
1514      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1515      KnownZero = KnownZero.lshr(ShAmt);
1516      KnownOne  = KnownOne.lshr(ShAmt);
1517
1518      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1519      KnownZero |= HighBits;  // High bits known zero.
1520    }
1521    return;
1522  case ISD::SRA:
1523    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1524      unsigned ShAmt = SA->getZExtValue();
1525
1526      // If the shift count is an invalid immediate, don't do anything.
1527      if (ShAmt >= BitWidth)
1528        return;
1529
1530      APInt InDemandedMask = (Mask << ShAmt);
1531      // If any of the demanded bits are produced by the sign extension, we also
1532      // demand the input sign bit.
1533      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1534      if (HighBits.getBoolValue())
1535        InDemandedMask |= APInt::getSignBit(BitWidth);
1536
1537      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1538                        Depth+1);
1539      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1540      KnownZero = KnownZero.lshr(ShAmt);
1541      KnownOne  = KnownOne.lshr(ShAmt);
1542
1543      // Handle the sign bits.
1544      APInt SignBit = APInt::getSignBit(BitWidth);
1545      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1546
1547      if (KnownZero.intersects(SignBit)) {
1548        KnownZero |= HighBits;  // New bits are known zero.
1549      } else if (KnownOne.intersects(SignBit)) {
1550        KnownOne  |= HighBits;  // New bits are known one.
1551      }
1552    }
1553    return;
1554  case ISD::SIGN_EXTEND_INREG: {
1555    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1556    unsigned EBits = EVT.getSizeInBits();
1557
1558    // Sign extension.  Compute the demanded bits in the result that are not
1559    // present in the input.
1560    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1561
1562    APInt InSignBit = APInt::getSignBit(EBits);
1563    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1564
1565    // If the sign extended bits are demanded, we know that the sign
1566    // bit is demanded.
1567    InSignBit.zext(BitWidth);
1568    if (NewBits.getBoolValue())
1569      InputDemandedBits |= InSignBit;
1570
1571    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1572                      KnownZero, KnownOne, Depth+1);
1573    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1574
1575    // If the sign bit of the input is known set or clear, then we know the
1576    // top bits of the result.
1577    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1578      KnownZero |= NewBits;
1579      KnownOne  &= ~NewBits;
1580    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1581      KnownOne  |= NewBits;
1582      KnownZero &= ~NewBits;
1583    } else {                              // Input sign bit unknown
1584      KnownZero &= ~NewBits;
1585      KnownOne  &= ~NewBits;
1586    }
1587    return;
1588  }
1589  case ISD::CTTZ:
1590  case ISD::CTLZ:
1591  case ISD::CTPOP: {
1592    unsigned LowBits = Log2_32(BitWidth)+1;
1593    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1594    KnownOne.clear();
1595    return;
1596  }
1597  case ISD::LOAD: {
1598    if (ISD::isZEXTLoad(Op.getNode())) {
1599      LoadSDNode *LD = cast<LoadSDNode>(Op);
1600      MVT VT = LD->getMemoryVT();
1601      unsigned MemBits = VT.getSizeInBits();
1602      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1603    }
1604    return;
1605  }
1606  case ISD::ZERO_EXTEND: {
1607    MVT InVT = Op.getOperand(0).getValueType();
1608    unsigned InBits = InVT.getSizeInBits();
1609    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1610    APInt InMask    = Mask;
1611    InMask.trunc(InBits);
1612    KnownZero.trunc(InBits);
1613    KnownOne.trunc(InBits);
1614    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1615    KnownZero.zext(BitWidth);
1616    KnownOne.zext(BitWidth);
1617    KnownZero |= NewBits;
1618    return;
1619  }
1620  case ISD::SIGN_EXTEND: {
1621    MVT InVT = Op.getOperand(0).getValueType();
1622    unsigned InBits = InVT.getSizeInBits();
1623    APInt InSignBit = APInt::getSignBit(InBits);
1624    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1625    APInt InMask = Mask;
1626    InMask.trunc(InBits);
1627
1628    // If any of the sign extended bits are demanded, we know that the sign
1629    // bit is demanded. Temporarily set this bit in the mask for our callee.
1630    if (NewBits.getBoolValue())
1631      InMask |= InSignBit;
1632
1633    KnownZero.trunc(InBits);
1634    KnownOne.trunc(InBits);
1635    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1636
1637    // Note if the sign bit is known to be zero or one.
1638    bool SignBitKnownZero = KnownZero.isNegative();
1639    bool SignBitKnownOne  = KnownOne.isNegative();
1640    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1641           "Sign bit can't be known to be both zero and one!");
1642
1643    // If the sign bit wasn't actually demanded by our caller, we don't
1644    // want it set in the KnownZero and KnownOne result values. Reset the
1645    // mask and reapply it to the result values.
1646    InMask = Mask;
1647    InMask.trunc(InBits);
1648    KnownZero &= InMask;
1649    KnownOne  &= InMask;
1650
1651    KnownZero.zext(BitWidth);
1652    KnownOne.zext(BitWidth);
1653
1654    // If the sign bit is known zero or one, the top bits match.
1655    if (SignBitKnownZero)
1656      KnownZero |= NewBits;
1657    else if (SignBitKnownOne)
1658      KnownOne  |= NewBits;
1659    return;
1660  }
1661  case ISD::ANY_EXTEND: {
1662    MVT InVT = Op.getOperand(0).getValueType();
1663    unsigned InBits = InVT.getSizeInBits();
1664    APInt InMask = Mask;
1665    InMask.trunc(InBits);
1666    KnownZero.trunc(InBits);
1667    KnownOne.trunc(InBits);
1668    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1669    KnownZero.zext(BitWidth);
1670    KnownOne.zext(BitWidth);
1671    return;
1672  }
1673  case ISD::TRUNCATE: {
1674    MVT InVT = Op.getOperand(0).getValueType();
1675    unsigned InBits = InVT.getSizeInBits();
1676    APInt InMask = Mask;
1677    InMask.zext(InBits);
1678    KnownZero.zext(InBits);
1679    KnownOne.zext(InBits);
1680    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1681    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1682    KnownZero.trunc(BitWidth);
1683    KnownOne.trunc(BitWidth);
1684    break;
1685  }
1686  case ISD::AssertZext: {
1687    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1688    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1689    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1690                      KnownOne, Depth+1);
1691    KnownZero |= (~InMask) & Mask;
1692    return;
1693  }
1694  case ISD::FGETSIGN:
1695    // All bits are zero except the low bit.
1696    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1697    return;
1698
1699  case ISD::SUB: {
1700    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1701      // We know that the top bits of C-X are clear if X contains less bits
1702      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1703      // positive if we can prove that X is >= 0 and < 16.
1704      if (CLHS->getAPIntValue().isNonNegative()) {
1705        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1706        // NLZ can't be BitWidth with no sign bit
1707        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1708        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1709                          Depth+1);
1710
1711        // If all of the MaskV bits are known to be zero, then we know the
1712        // output top bits are zero, because we now know that the output is
1713        // from [0-C].
1714        if ((KnownZero2 & MaskV) == MaskV) {
1715          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1716          // Top bits known zero.
1717          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1718        }
1719      }
1720    }
1721  }
1722  // fall through
1723  case ISD::ADD: {
1724    // Output known-0 bits are known if clear or set in both the low clear bits
1725    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1726    // low 3 bits clear.
1727    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1728    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1729    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1730    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1731
1732    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1733    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1734    KnownZeroOut = std::min(KnownZeroOut,
1735                            KnownZero2.countTrailingOnes());
1736
1737    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1738    return;
1739  }
1740  case ISD::SREM:
1741    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1742      const APInt &RA = Rem->getAPIntValue();
1743      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1744        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1745        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1746        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1747
1748        // If the sign bit of the first operand is zero, the sign bit of
1749        // the result is zero. If the first operand has no one bits below
1750        // the second operand's single 1 bit, its sign will be zero.
1751        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1752          KnownZero2 |= ~LowBits;
1753
1754        KnownZero |= KnownZero2 & Mask;
1755
1756        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1757      }
1758    }
1759    return;
1760  case ISD::UREM: {
1761    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1762      const APInt &RA = Rem->getAPIntValue();
1763      if (RA.isPowerOf2()) {
1764        APInt LowBits = (RA - 1);
1765        APInt Mask2 = LowBits & Mask;
1766        KnownZero |= ~LowBits & Mask;
1767        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1768        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1769        break;
1770      }
1771    }
1772
1773    // Since the result is less than or equal to either operand, any leading
1774    // zero bits in either operand must also exist in the result.
1775    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1776    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1777                      Depth+1);
1778    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1779                      Depth+1);
1780
1781    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1782                                KnownZero2.countLeadingOnes());
1783    KnownOne.clear();
1784    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1785    return;
1786  }
1787  default:
1788    // Allow the target to implement this method for its nodes.
1789    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1790  case ISD::INTRINSIC_WO_CHAIN:
1791  case ISD::INTRINSIC_W_CHAIN:
1792  case ISD::INTRINSIC_VOID:
1793      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1794    }
1795    return;
1796  }
1797}
1798
1799/// ComputeNumSignBits - Return the number of times the sign bit of the
1800/// register is replicated into the other bits.  We know that at least 1 bit
1801/// is always equal to the sign bit (itself), but other cases can give us
1802/// information.  For example, immediately after an "SRA X, 2", we know that
1803/// the top 3 bits are all equal to each other, so we return 3.
1804unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1805  MVT VT = Op.getValueType();
1806  assert(VT.isInteger() && "Invalid VT!");
1807  unsigned VTBits = VT.getSizeInBits();
1808  unsigned Tmp, Tmp2;
1809  unsigned FirstAnswer = 1;
1810
1811  if (Depth == 6)
1812    return 1;  // Limit search depth.
1813
1814  switch (Op.getOpcode()) {
1815  default: break;
1816  case ISD::AssertSext:
1817    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1818    return VTBits-Tmp+1;
1819  case ISD::AssertZext:
1820    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1821    return VTBits-Tmp;
1822
1823  case ISD::Constant: {
1824    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1825    // If negative, return # leading ones.
1826    if (Val.isNegative())
1827      return Val.countLeadingOnes();
1828
1829    // Return # leading zeros.
1830    return Val.countLeadingZeros();
1831  }
1832
1833  case ISD::SIGN_EXTEND:
1834    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1835    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1836
1837  case ISD::SIGN_EXTEND_INREG:
1838    // Max of the input and what this extends.
1839    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1840    Tmp = VTBits-Tmp+1;
1841
1842    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1843    return std::max(Tmp, Tmp2);
1844
1845  case ISD::SRA:
1846    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1847    // SRA X, C   -> adds C sign bits.
1848    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1849      Tmp += C->getZExtValue();
1850      if (Tmp > VTBits) Tmp = VTBits;
1851    }
1852    return Tmp;
1853  case ISD::SHL:
1854    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1855      // shl destroys sign bits.
1856      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1857      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1858          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1859      return Tmp - C->getZExtValue();
1860    }
1861    break;
1862  case ISD::AND:
1863  case ISD::OR:
1864  case ISD::XOR:    // NOT is handled here.
1865    // Logical binary ops preserve the number of sign bits at the worst.
1866    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1867    if (Tmp != 1) {
1868      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1869      FirstAnswer = std::min(Tmp, Tmp2);
1870      // We computed what we know about the sign bits as our first
1871      // answer. Now proceed to the generic code that uses
1872      // ComputeMaskedBits, and pick whichever answer is better.
1873    }
1874    break;
1875
1876  case ISD::SELECT:
1877    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1878    if (Tmp == 1) return 1;  // Early out.
1879    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1880    return std::min(Tmp, Tmp2);
1881
1882  case ISD::SETCC:
1883    // If setcc returns 0/-1, all bits are sign bits.
1884    if (TLI.getSetCCResultContents() ==
1885        TargetLowering::ZeroOrNegativeOneSetCCResult)
1886      return VTBits;
1887    break;
1888  case ISD::ROTL:
1889  case ISD::ROTR:
1890    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1891      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1892
1893      // Handle rotate right by N like a rotate left by 32-N.
1894      if (Op.getOpcode() == ISD::ROTR)
1895        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1896
1897      // If we aren't rotating out all of the known-in sign bits, return the
1898      // number that are left.  This handles rotl(sext(x), 1) for example.
1899      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1900      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1901    }
1902    break;
1903  case ISD::ADD:
1904    // Add can have at most one carry bit.  Thus we know that the output
1905    // is, at worst, one more bit than the inputs.
1906    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1907    if (Tmp == 1) return 1;  // Early out.
1908
1909    // Special case decrementing a value (ADD X, -1):
1910    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1911      if (CRHS->isAllOnesValue()) {
1912        APInt KnownZero, KnownOne;
1913        APInt Mask = APInt::getAllOnesValue(VTBits);
1914        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1915
1916        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1917        // sign bits set.
1918        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1919          return VTBits;
1920
1921        // If we are subtracting one from a positive number, there is no carry
1922        // out of the result.
1923        if (KnownZero.isNegative())
1924          return Tmp;
1925      }
1926
1927    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1928    if (Tmp2 == 1) return 1;
1929      return std::min(Tmp, Tmp2)-1;
1930    break;
1931
1932  case ISD::SUB:
1933    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1934    if (Tmp2 == 1) return 1;
1935
1936    // Handle NEG.
1937    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1938      if (CLHS->isNullValue()) {
1939        APInt KnownZero, KnownOne;
1940        APInt Mask = APInt::getAllOnesValue(VTBits);
1941        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1942        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1943        // sign bits set.
1944        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1945          return VTBits;
1946
1947        // If the input is known to be positive (the sign bit is known clear),
1948        // the output of the NEG has the same number of sign bits as the input.
1949        if (KnownZero.isNegative())
1950          return Tmp2;
1951
1952        // Otherwise, we treat this like a SUB.
1953      }
1954
1955    // Sub can have at most one carry bit.  Thus we know that the output
1956    // is, at worst, one more bit than the inputs.
1957    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1958    if (Tmp == 1) return 1;  // Early out.
1959      return std::min(Tmp, Tmp2)-1;
1960    break;
1961  case ISD::TRUNCATE:
1962    // FIXME: it's tricky to do anything useful for this, but it is an important
1963    // case for targets like X86.
1964    break;
1965  }
1966
1967  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1968  if (Op.getOpcode() == ISD::LOAD) {
1969    LoadSDNode *LD = cast<LoadSDNode>(Op);
1970    unsigned ExtType = LD->getExtensionType();
1971    switch (ExtType) {
1972    default: break;
1973    case ISD::SEXTLOAD:    // '17' bits known
1974      Tmp = LD->getMemoryVT().getSizeInBits();
1975      return VTBits-Tmp+1;
1976    case ISD::ZEXTLOAD:    // '16' bits known
1977      Tmp = LD->getMemoryVT().getSizeInBits();
1978      return VTBits-Tmp;
1979    }
1980  }
1981
1982  // Allow the target to implement this method for its nodes.
1983  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1984      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1985      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1986      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1987    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1988    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1989  }
1990
1991  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1992  // use this information.
1993  APInt KnownZero, KnownOne;
1994  APInt Mask = APInt::getAllOnesValue(VTBits);
1995  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1996
1997  if (KnownZero.isNegative()) {        // sign bit is 0
1998    Mask = KnownZero;
1999  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2000    Mask = KnownOne;
2001  } else {
2002    // Nothing known.
2003    return FirstAnswer;
2004  }
2005
2006  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2007  // the number of identical bits in the top of the input value.
2008  Mask = ~Mask;
2009  Mask <<= Mask.getBitWidth()-VTBits;
2010  // Return # leading zeros.  We use 'min' here in case Val was zero before
2011  // shifting.  We don't want to return '64' as for an i32 "0".
2012  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2013}
2014
2015
2016bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2017  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2018  if (!GA) return false;
2019  if (GA->getOffset() != 0) return false;
2020  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2021  if (!GV) return false;
2022  MachineModuleInfo *MMI = getMachineModuleInfo();
2023  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2024}
2025
2026
2027/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2028/// element of the result of the vector shuffle.
2029SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2030  MVT VT = N->getValueType(0);
2031  SDValue PermMask = N->getOperand(2);
2032  SDValue Idx = PermMask.getOperand(i);
2033  if (Idx.getOpcode() == ISD::UNDEF)
2034    return getNode(ISD::UNDEF, VT.getVectorElementType());
2035  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2036  unsigned NumElems = PermMask.getNumOperands();
2037  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2038  Index %= NumElems;
2039
2040  if (V.getOpcode() == ISD::BIT_CONVERT) {
2041    V = V.getOperand(0);
2042    if (V.getValueType().getVectorNumElements() != NumElems)
2043      return SDValue();
2044  }
2045  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2046    return (Index == 0) ? V.getOperand(0)
2047                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2048  if (V.getOpcode() == ISD::BUILD_VECTOR)
2049    return V.getOperand(Index);
2050  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2051    return getShuffleScalarElt(V.getNode(), Index);
2052  return SDValue();
2053}
2054
2055
2056/// getNode - Gets or creates the specified node.
2057///
2058SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2059  FoldingSetNodeID ID;
2060  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2061  void *IP = 0;
2062  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2063    return SDValue(E, 0);
2064  SDNode *N = NodeAllocator.Allocate<SDNode>();
2065  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2066  CSEMap.InsertNode(N, IP);
2067
2068  AllNodes.push_back(N);
2069#ifndef NDEBUG
2070  VerifyNode(N);
2071#endif
2072  return SDValue(N, 0);
2073}
2074
2075SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2076  // Constant fold unary operations with an integer constant operand.
2077  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2078    const APInt &Val = C->getAPIntValue();
2079    unsigned BitWidth = VT.getSizeInBits();
2080    switch (Opcode) {
2081    default: break;
2082    case ISD::SIGN_EXTEND:
2083      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2084    case ISD::ANY_EXTEND:
2085    case ISD::ZERO_EXTEND:
2086    case ISD::TRUNCATE:
2087      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2088    case ISD::UINT_TO_FP:
2089    case ISD::SINT_TO_FP: {
2090      const uint64_t zero[] = {0, 0};
2091      // No compile time operations on this type.
2092      if (VT==MVT::ppcf128)
2093        break;
2094      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2095      (void)apf.convertFromAPInt(Val,
2096                                 Opcode==ISD::SINT_TO_FP,
2097                                 APFloat::rmNearestTiesToEven);
2098      return getConstantFP(apf, VT);
2099    }
2100    case ISD::BIT_CONVERT:
2101      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2102        return getConstantFP(Val.bitsToFloat(), VT);
2103      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2104        return getConstantFP(Val.bitsToDouble(), VT);
2105      break;
2106    case ISD::BSWAP:
2107      return getConstant(Val.byteSwap(), VT);
2108    case ISD::CTPOP:
2109      return getConstant(Val.countPopulation(), VT);
2110    case ISD::CTLZ:
2111      return getConstant(Val.countLeadingZeros(), VT);
2112    case ISD::CTTZ:
2113      return getConstant(Val.countTrailingZeros(), VT);
2114    }
2115  }
2116
2117  // Constant fold unary operations with a floating point constant operand.
2118  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2119    APFloat V = C->getValueAPF();    // make copy
2120    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2121      switch (Opcode) {
2122      case ISD::FNEG:
2123        V.changeSign();
2124        return getConstantFP(V, VT);
2125      case ISD::FABS:
2126        V.clearSign();
2127        return getConstantFP(V, VT);
2128      case ISD::FP_ROUND:
2129      case ISD::FP_EXTEND: {
2130        bool ignored;
2131        // This can return overflow, underflow, or inexact; we don't care.
2132        // FIXME need to be more flexible about rounding mode.
2133        (void)V.convert(*MVTToAPFloatSemantics(VT),
2134                        APFloat::rmNearestTiesToEven, &ignored);
2135        return getConstantFP(V, VT);
2136      }
2137      case ISD::FP_TO_SINT:
2138      case ISD::FP_TO_UINT: {
2139        integerPart x;
2140        bool ignored;
2141        assert(integerPartWidth >= 64);
2142        // FIXME need to be more flexible about rounding mode.
2143        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2144                              Opcode==ISD::FP_TO_SINT,
2145                              APFloat::rmTowardZero, &ignored);
2146        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2147          break;
2148        return getConstant(x, VT);
2149      }
2150      case ISD::BIT_CONVERT:
2151        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2152          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2153        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2154          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2155        break;
2156      }
2157    }
2158  }
2159
2160  unsigned OpOpcode = Operand.getNode()->getOpcode();
2161  switch (Opcode) {
2162  case ISD::TokenFactor:
2163  case ISD::CONCAT_VECTORS:
2164    return Operand;         // Factor or concat of one node?  No need.
2165  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2166  case ISD::FP_EXTEND:
2167    assert(VT.isFloatingPoint() &&
2168           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2169    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2170    if (Operand.getOpcode() == ISD::UNDEF)
2171      return getNode(ISD::UNDEF, VT);
2172    break;
2173  case ISD::SIGN_EXTEND:
2174    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2175           "Invalid SIGN_EXTEND!");
2176    if (Operand.getValueType() == VT) return Operand;   // noop extension
2177    assert(Operand.getValueType().bitsLT(VT)
2178           && "Invalid sext node, dst < src!");
2179    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2180      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2181    break;
2182  case ISD::ZERO_EXTEND:
2183    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2184           "Invalid ZERO_EXTEND!");
2185    if (Operand.getValueType() == VT) return Operand;   // noop extension
2186    assert(Operand.getValueType().bitsLT(VT)
2187           && "Invalid zext node, dst < src!");
2188    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2189      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2190    break;
2191  case ISD::ANY_EXTEND:
2192    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2193           "Invalid ANY_EXTEND!");
2194    if (Operand.getValueType() == VT) return Operand;   // noop extension
2195    assert(Operand.getValueType().bitsLT(VT)
2196           && "Invalid anyext node, dst < src!");
2197    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2198      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2199      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2200    break;
2201  case ISD::TRUNCATE:
2202    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2203           "Invalid TRUNCATE!");
2204    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2205    assert(Operand.getValueType().bitsGT(VT)
2206           && "Invalid truncate node, src < dst!");
2207    if (OpOpcode == ISD::TRUNCATE)
2208      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2209    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2210             OpOpcode == ISD::ANY_EXTEND) {
2211      // If the source is smaller than the dest, we still need an extend.
2212      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2213        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2214      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2215        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2216      else
2217        return Operand.getNode()->getOperand(0);
2218    }
2219    break;
2220  case ISD::BIT_CONVERT:
2221    // Basic sanity checking.
2222    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2223           && "Cannot BIT_CONVERT between types of different sizes!");
2224    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2225    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2226      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2227    if (OpOpcode == ISD::UNDEF)
2228      return getNode(ISD::UNDEF, VT);
2229    break;
2230  case ISD::SCALAR_TO_VECTOR:
2231    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2232           VT.getVectorElementType() == Operand.getValueType() &&
2233           "Illegal SCALAR_TO_VECTOR node!");
2234    if (OpOpcode == ISD::UNDEF)
2235      return getNode(ISD::UNDEF, VT);
2236    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2237    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2238        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2239        Operand.getConstantOperandVal(1) == 0 &&
2240        Operand.getOperand(0).getValueType() == VT)
2241      return Operand.getOperand(0);
2242    break;
2243  case ISD::FNEG:
2244    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2245      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2246                     Operand.getNode()->getOperand(0));
2247    if (OpOpcode == ISD::FNEG)  // --X -> X
2248      return Operand.getNode()->getOperand(0);
2249    break;
2250  case ISD::FABS:
2251    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2252      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2253    break;
2254  }
2255
2256  SDNode *N;
2257  SDVTList VTs = getVTList(VT);
2258  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2259    FoldingSetNodeID ID;
2260    SDValue Ops[1] = { Operand };
2261    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2262    void *IP = 0;
2263    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2264      return SDValue(E, 0);
2265    N = NodeAllocator.Allocate<UnarySDNode>();
2266    new (N) UnarySDNode(Opcode, VTs, Operand);
2267    CSEMap.InsertNode(N, IP);
2268  } else {
2269    N = NodeAllocator.Allocate<UnarySDNode>();
2270    new (N) UnarySDNode(Opcode, VTs, Operand);
2271  }
2272
2273  AllNodes.push_back(N);
2274#ifndef NDEBUG
2275  VerifyNode(N);
2276#endif
2277  return SDValue(N, 0);
2278}
2279
2280SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2281                                             MVT VT,
2282                                             ConstantSDNode *Cst1,
2283                                             ConstantSDNode *Cst2) {
2284  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2285
2286  switch (Opcode) {
2287  case ISD::ADD:  return getConstant(C1 + C2, VT);
2288  case ISD::SUB:  return getConstant(C1 - C2, VT);
2289  case ISD::MUL:  return getConstant(C1 * C2, VT);
2290  case ISD::UDIV:
2291    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2292    break;
2293  case ISD::UREM:
2294    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2295    break;
2296  case ISD::SDIV:
2297    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2298    break;
2299  case ISD::SREM:
2300    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2301    break;
2302  case ISD::AND:  return getConstant(C1 & C2, VT);
2303  case ISD::OR:   return getConstant(C1 | C2, VT);
2304  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2305  case ISD::SHL:  return getConstant(C1 << C2, VT);
2306  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2307  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2308  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2309  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2310  default: break;
2311  }
2312
2313  return SDValue();
2314}
2315
2316SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2317                              SDValue N1, SDValue N2) {
2318  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2319  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2320  switch (Opcode) {
2321  default: break;
2322  case ISD::TokenFactor:
2323    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2324           N2.getValueType() == MVT::Other && "Invalid token factor!");
2325    // Fold trivial token factors.
2326    if (N1.getOpcode() == ISD::EntryToken) return N2;
2327    if (N2.getOpcode() == ISD::EntryToken) return N1;
2328    if (N1 == N2) return N1;
2329    break;
2330  case ISD::CONCAT_VECTORS:
2331    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2332    // one big BUILD_VECTOR.
2333    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2334        N2.getOpcode() == ISD::BUILD_VECTOR) {
2335      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2336      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2337      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2338    }
2339    break;
2340  case ISD::AND:
2341    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2342           N1.getValueType() == VT && "Binary operator types must match!");
2343    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2344    // worth handling here.
2345    if (N2C && N2C->isNullValue())
2346      return N2;
2347    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2348      return N1;
2349    break;
2350  case ISD::OR:
2351  case ISD::XOR:
2352  case ISD::ADD:
2353  case ISD::SUB:
2354    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2355           N1.getValueType() == VT && "Binary operator types must match!");
2356    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2357    // it's worth handling here.
2358    if (N2C && N2C->isNullValue())
2359      return N1;
2360    break;
2361  case ISD::UDIV:
2362  case ISD::UREM:
2363  case ISD::MULHU:
2364  case ISD::MULHS:
2365    assert(VT.isInteger() && "This operator does not apply to FP types!");
2366    // fall through
2367  case ISD::MUL:
2368  case ISD::SDIV:
2369  case ISD::SREM:
2370  case ISD::FADD:
2371  case ISD::FSUB:
2372  case ISD::FMUL:
2373  case ISD::FDIV:
2374  case ISD::FREM:
2375    assert(N1.getValueType() == N2.getValueType() &&
2376           N1.getValueType() == VT && "Binary operator types must match!");
2377    break;
2378  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2379    assert(N1.getValueType() == VT &&
2380           N1.getValueType().isFloatingPoint() &&
2381           N2.getValueType().isFloatingPoint() &&
2382           "Invalid FCOPYSIGN!");
2383    break;
2384  case ISD::SHL:
2385  case ISD::SRA:
2386  case ISD::SRL:
2387  case ISD::ROTL:
2388  case ISD::ROTR:
2389    assert(VT == N1.getValueType() &&
2390           "Shift operators return type must be the same as their first arg");
2391    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2392           "Shifts only work on integers");
2393    assert(N2.getValueType() == TLI.getShiftAmountTy() &&
2394           "Wrong type for shift amount");
2395
2396    // Always fold shifts of i1 values so the code generator doesn't need to
2397    // handle them.  Since we know the size of the shift has to be less than the
2398    // size of the value, the shift/rotate count is guaranteed to be zero.
2399    if (VT == MVT::i1)
2400      return N1;
2401    break;
2402  case ISD::FP_ROUND_INREG: {
2403    MVT EVT = cast<VTSDNode>(N2)->getVT();
2404    assert(VT == N1.getValueType() && "Not an inreg round!");
2405    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2406           "Cannot FP_ROUND_INREG integer types");
2407    assert(EVT.bitsLE(VT) && "Not rounding down!");
2408    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2409    break;
2410  }
2411  case ISD::FP_ROUND:
2412    assert(VT.isFloatingPoint() &&
2413           N1.getValueType().isFloatingPoint() &&
2414           VT.bitsLE(N1.getValueType()) &&
2415           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2416    if (N1.getValueType() == VT) return N1;  // noop conversion.
2417    break;
2418  case ISD::AssertSext:
2419  case ISD::AssertZext: {
2420    MVT EVT = cast<VTSDNode>(N2)->getVT();
2421    assert(VT == N1.getValueType() && "Not an inreg extend!");
2422    assert(VT.isInteger() && EVT.isInteger() &&
2423           "Cannot *_EXTEND_INREG FP types");
2424    assert(EVT.bitsLE(VT) && "Not extending!");
2425    if (VT == EVT) return N1; // noop assertion.
2426    break;
2427  }
2428  case ISD::SIGN_EXTEND_INREG: {
2429    MVT EVT = cast<VTSDNode>(N2)->getVT();
2430    assert(VT == N1.getValueType() && "Not an inreg extend!");
2431    assert(VT.isInteger() && EVT.isInteger() &&
2432           "Cannot *_EXTEND_INREG FP types");
2433    assert(EVT.bitsLE(VT) && "Not extending!");
2434    if (EVT == VT) return N1;  // Not actually extending
2435
2436    if (N1C) {
2437      APInt Val = N1C->getAPIntValue();
2438      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2439      Val <<= Val.getBitWidth()-FromBits;
2440      Val = Val.ashr(Val.getBitWidth()-FromBits);
2441      return getConstant(Val, VT);
2442    }
2443    break;
2444  }
2445  case ISD::EXTRACT_VECTOR_ELT:
2446    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2447    if (N1.getOpcode() == ISD::UNDEF)
2448      return getNode(ISD::UNDEF, VT);
2449
2450    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2451    // expanding copies of large vectors from registers.
2452    if (N2C &&
2453        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2454        N1.getNumOperands() > 0) {
2455      unsigned Factor =
2456        N1.getOperand(0).getValueType().getVectorNumElements();
2457      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2458                     N1.getOperand(N2C->getZExtValue() / Factor),
2459                     getConstant(N2C->getZExtValue() % Factor,
2460                                 N2.getValueType()));
2461    }
2462
2463    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2464    // expanding large vector constants.
2465    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2466      return N1.getOperand(N2C->getZExtValue());
2467
2468    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2469    // operations are lowered to scalars.
2470    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2471      if (N1.getOperand(2) == N2)
2472        return N1.getOperand(1);
2473      else
2474        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2475    }
2476    break;
2477  case ISD::EXTRACT_ELEMENT:
2478    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2479    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2480           (N1.getValueType().isInteger() == VT.isInteger()) &&
2481           "Wrong types for EXTRACT_ELEMENT!");
2482
2483    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2484    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2485    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2486    if (N1.getOpcode() == ISD::BUILD_PAIR)
2487      return N1.getOperand(N2C->getZExtValue());
2488
2489    // EXTRACT_ELEMENT of a constant int is also very common.
2490    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2491      unsigned ElementSize = VT.getSizeInBits();
2492      unsigned Shift = ElementSize * N2C->getZExtValue();
2493      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2494      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2495    }
2496    break;
2497  case ISD::EXTRACT_SUBVECTOR:
2498    if (N1.getValueType() == VT) // Trivial extraction.
2499      return N1;
2500    break;
2501  }
2502
2503  if (N1C) {
2504    if (N2C) {
2505      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2506      if (SV.getNode()) return SV;
2507    } else {      // Cannonicalize constant to RHS if commutative
2508      if (isCommutativeBinOp(Opcode)) {
2509        std::swap(N1C, N2C);
2510        std::swap(N1, N2);
2511      }
2512    }
2513  }
2514
2515  // Constant fold FP operations.
2516  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2517  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2518  if (N1CFP) {
2519    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2520      // Cannonicalize constant to RHS if commutative
2521      std::swap(N1CFP, N2CFP);
2522      std::swap(N1, N2);
2523    } else if (N2CFP && VT != MVT::ppcf128) {
2524      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2525      APFloat::opStatus s;
2526      switch (Opcode) {
2527      case ISD::FADD:
2528        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2529        if (s != APFloat::opInvalidOp)
2530          return getConstantFP(V1, VT);
2531        break;
2532      case ISD::FSUB:
2533        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2534        if (s!=APFloat::opInvalidOp)
2535          return getConstantFP(V1, VT);
2536        break;
2537      case ISD::FMUL:
2538        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2539        if (s!=APFloat::opInvalidOp)
2540          return getConstantFP(V1, VT);
2541        break;
2542      case ISD::FDIV:
2543        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2544        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2545          return getConstantFP(V1, VT);
2546        break;
2547      case ISD::FREM :
2548        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2549        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2550          return getConstantFP(V1, VT);
2551        break;
2552      case ISD::FCOPYSIGN:
2553        V1.copySign(V2);
2554        return getConstantFP(V1, VT);
2555      default: break;
2556      }
2557    }
2558  }
2559
2560  // Canonicalize an UNDEF to the RHS, even over a constant.
2561  if (N1.getOpcode() == ISD::UNDEF) {
2562    if (isCommutativeBinOp(Opcode)) {
2563      std::swap(N1, N2);
2564    } else {
2565      switch (Opcode) {
2566      case ISD::FP_ROUND_INREG:
2567      case ISD::SIGN_EXTEND_INREG:
2568      case ISD::SUB:
2569      case ISD::FSUB:
2570      case ISD::FDIV:
2571      case ISD::FREM:
2572      case ISD::SRA:
2573        return N1;     // fold op(undef, arg2) -> undef
2574      case ISD::UDIV:
2575      case ISD::SDIV:
2576      case ISD::UREM:
2577      case ISD::SREM:
2578      case ISD::SRL:
2579      case ISD::SHL:
2580        if (!VT.isVector())
2581          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2582        // For vectors, we can't easily build an all zero vector, just return
2583        // the LHS.
2584        return N2;
2585      }
2586    }
2587  }
2588
2589  // Fold a bunch of operators when the RHS is undef.
2590  if (N2.getOpcode() == ISD::UNDEF) {
2591    switch (Opcode) {
2592    case ISD::XOR:
2593      if (N1.getOpcode() == ISD::UNDEF)
2594        // Handle undef ^ undef -> 0 special case. This is a common
2595        // idiom (misuse).
2596        return getConstant(0, VT);
2597      // fallthrough
2598    case ISD::ADD:
2599    case ISD::ADDC:
2600    case ISD::ADDE:
2601    case ISD::SUB:
2602    case ISD::FADD:
2603    case ISD::FSUB:
2604    case ISD::FMUL:
2605    case ISD::FDIV:
2606    case ISD::FREM:
2607    case ISD::UDIV:
2608    case ISD::SDIV:
2609    case ISD::UREM:
2610    case ISD::SREM:
2611      return N2;       // fold op(arg1, undef) -> undef
2612    case ISD::MUL:
2613    case ISD::AND:
2614    case ISD::SRL:
2615    case ISD::SHL:
2616      if (!VT.isVector())
2617        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2618      // For vectors, we can't easily build an all zero vector, just return
2619      // the LHS.
2620      return N1;
2621    case ISD::OR:
2622      if (!VT.isVector())
2623        return getConstant(VT.getIntegerVTBitMask(), VT);
2624      // For vectors, we can't easily build an all one vector, just return
2625      // the LHS.
2626      return N1;
2627    case ISD::SRA:
2628      return N1;
2629    }
2630  }
2631
2632  // Memoize this node if possible.
2633  SDNode *N;
2634  SDVTList VTs = getVTList(VT);
2635  if (VT != MVT::Flag) {
2636    SDValue Ops[] = { N1, N2 };
2637    FoldingSetNodeID ID;
2638    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2639    void *IP = 0;
2640    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2641      return SDValue(E, 0);
2642    N = NodeAllocator.Allocate<BinarySDNode>();
2643    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2644    CSEMap.InsertNode(N, IP);
2645  } else {
2646    N = NodeAllocator.Allocate<BinarySDNode>();
2647    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2648  }
2649
2650  AllNodes.push_back(N);
2651#ifndef NDEBUG
2652  VerifyNode(N);
2653#endif
2654  return SDValue(N, 0);
2655}
2656
2657SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2658                              SDValue N1, SDValue N2, SDValue N3) {
2659  // Perform various simplifications.
2660  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2661  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2662  switch (Opcode) {
2663  case ISD::CONCAT_VECTORS:
2664    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2665    // one big BUILD_VECTOR.
2666    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2667        N2.getOpcode() == ISD::BUILD_VECTOR &&
2668        N3.getOpcode() == ISD::BUILD_VECTOR) {
2669      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2670      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2671      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2672      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2673    }
2674    break;
2675  case ISD::SETCC: {
2676    // Use FoldSetCC to simplify SETCC's.
2677    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2678    if (Simp.getNode()) return Simp;
2679    break;
2680  }
2681  case ISD::SELECT:
2682    if (N1C) {
2683     if (N1C->getZExtValue())
2684        return N2;             // select true, X, Y -> X
2685      else
2686        return N3;             // select false, X, Y -> Y
2687    }
2688
2689    if (N2 == N3) return N2;   // select C, X, X -> X
2690    break;
2691  case ISD::BRCOND:
2692    if (N2C) {
2693      if (N2C->getZExtValue()) // Unconditional branch
2694        return getNode(ISD::BR, MVT::Other, N1, N3);
2695      else
2696        return N1;         // Never-taken branch
2697    }
2698    break;
2699  case ISD::VECTOR_SHUFFLE:
2700    assert(N1.getValueType() == N2.getValueType() &&
2701           N1.getValueType().isVector() &&
2702           VT.isVector() && N3.getValueType().isVector() &&
2703           N3.getOpcode() == ISD::BUILD_VECTOR &&
2704           VT.getVectorNumElements() == N3.getNumOperands() &&
2705           "Illegal VECTOR_SHUFFLE node!");
2706    break;
2707  case ISD::BIT_CONVERT:
2708    // Fold bit_convert nodes from a type to themselves.
2709    if (N1.getValueType() == VT)
2710      return N1;
2711    break;
2712  }
2713
2714  // Memoize node if it doesn't produce a flag.
2715  SDNode *N;
2716  SDVTList VTs = getVTList(VT);
2717  if (VT != MVT::Flag) {
2718    SDValue Ops[] = { N1, N2, N3 };
2719    FoldingSetNodeID ID;
2720    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2721    void *IP = 0;
2722    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2723      return SDValue(E, 0);
2724    N = NodeAllocator.Allocate<TernarySDNode>();
2725    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2726    CSEMap.InsertNode(N, IP);
2727  } else {
2728    N = NodeAllocator.Allocate<TernarySDNode>();
2729    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2730  }
2731  AllNodes.push_back(N);
2732#ifndef NDEBUG
2733  VerifyNode(N);
2734#endif
2735  return SDValue(N, 0);
2736}
2737
2738SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2739                              SDValue N1, SDValue N2, SDValue N3,
2740                              SDValue N4) {
2741  SDValue Ops[] = { N1, N2, N3, N4 };
2742  return getNode(Opcode, VT, Ops, 4);
2743}
2744
2745SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2746                              SDValue N1, SDValue N2, SDValue N3,
2747                              SDValue N4, SDValue N5) {
2748  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2749  return getNode(Opcode, VT, Ops, 5);
2750}
2751
2752/// getMemsetValue - Vectorized representation of the memset value
2753/// operand.
2754static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2755  unsigned NumBits = VT.isVector() ?
2756    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2757  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2758    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2759    unsigned Shift = 8;
2760    for (unsigned i = NumBits; i > 8; i >>= 1) {
2761      Val = (Val << Shift) | Val;
2762      Shift <<= 1;
2763    }
2764    if (VT.isInteger())
2765      return DAG.getConstant(Val, VT);
2766    return DAG.getConstantFP(APFloat(Val), VT);
2767  }
2768
2769  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2770  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2771  unsigned Shift = 8;
2772  for (unsigned i = NumBits; i > 8; i >>= 1) {
2773    Value = DAG.getNode(ISD::OR, VT,
2774                        DAG.getNode(ISD::SHL, VT, Value,
2775                                    DAG.getConstant(Shift,
2776                                                    TLI.getShiftAmountTy())),
2777                        Value);
2778    Shift <<= 1;
2779  }
2780
2781  return Value;
2782}
2783
2784/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2785/// used when a memcpy is turned into a memset when the source is a constant
2786/// string ptr.
2787static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2788                                    const TargetLowering &TLI,
2789                                    std::string &Str, unsigned Offset) {
2790  // Handle vector with all elements zero.
2791  if (Str.empty()) {
2792    if (VT.isInteger())
2793      return DAG.getConstant(0, VT);
2794    unsigned NumElts = VT.getVectorNumElements();
2795    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2796    return DAG.getNode(ISD::BIT_CONVERT, VT,
2797                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2798  }
2799
2800  assert(!VT.isVector() && "Can't handle vector type here!");
2801  unsigned NumBits = VT.getSizeInBits();
2802  unsigned MSB = NumBits / 8;
2803  uint64_t Val = 0;
2804  if (TLI.isLittleEndian())
2805    Offset = Offset + MSB - 1;
2806  for (unsigned i = 0; i != MSB; ++i) {
2807    Val = (Val << 8) | (unsigned char)Str[Offset];
2808    Offset += TLI.isLittleEndian() ? -1 : 1;
2809  }
2810  return DAG.getConstant(Val, VT);
2811}
2812
2813/// getMemBasePlusOffset - Returns base and offset node for the
2814///
2815static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2816                                      SelectionDAG &DAG) {
2817  MVT VT = Base.getValueType();
2818  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2819}
2820
2821/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2822///
2823static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2824  unsigned SrcDelta = 0;
2825  GlobalAddressSDNode *G = NULL;
2826  if (Src.getOpcode() == ISD::GlobalAddress)
2827    G = cast<GlobalAddressSDNode>(Src);
2828  else if (Src.getOpcode() == ISD::ADD &&
2829           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2830           Src.getOperand(1).getOpcode() == ISD::Constant) {
2831    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2832    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2833  }
2834  if (!G)
2835    return false;
2836
2837  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2838  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2839    return true;
2840
2841  return false;
2842}
2843
2844/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2845/// to replace the memset / memcpy is below the threshold. It also returns the
2846/// types of the sequence of memory ops to perform memset / memcpy.
2847static
2848bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2849                              SDValue Dst, SDValue Src,
2850                              unsigned Limit, uint64_t Size, unsigned &Align,
2851                              std::string &Str, bool &isSrcStr,
2852                              SelectionDAG &DAG,
2853                              const TargetLowering &TLI) {
2854  isSrcStr = isMemSrcFromString(Src, Str);
2855  bool isSrcConst = isa<ConstantSDNode>(Src);
2856  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2857  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2858  if (VT != MVT::iAny) {
2859    unsigned NewAlign = (unsigned)
2860      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2861    // If source is a string constant, this will require an unaligned load.
2862    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2863      if (Dst.getOpcode() != ISD::FrameIndex) {
2864        // Can't change destination alignment. It requires a unaligned store.
2865        if (AllowUnalign)
2866          VT = MVT::iAny;
2867      } else {
2868        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2869        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2870        if (MFI->isFixedObjectIndex(FI)) {
2871          // Can't change destination alignment. It requires a unaligned store.
2872          if (AllowUnalign)
2873            VT = MVT::iAny;
2874        } else {
2875          // Give the stack frame object a larger alignment if needed.
2876          if (MFI->getObjectAlignment(FI) < NewAlign)
2877            MFI->setObjectAlignment(FI, NewAlign);
2878          Align = NewAlign;
2879        }
2880      }
2881    }
2882  }
2883
2884  if (VT == MVT::iAny) {
2885    if (AllowUnalign) {
2886      VT = MVT::i64;
2887    } else {
2888      switch (Align & 7) {
2889      case 0:  VT = MVT::i64; break;
2890      case 4:  VT = MVT::i32; break;
2891      case 2:  VT = MVT::i16; break;
2892      default: VT = MVT::i8;  break;
2893      }
2894    }
2895
2896    MVT LVT = MVT::i64;
2897    while (!TLI.isTypeLegal(LVT))
2898      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2899    assert(LVT.isInteger());
2900
2901    if (VT.bitsGT(LVT))
2902      VT = LVT;
2903  }
2904
2905  unsigned NumMemOps = 0;
2906  while (Size != 0) {
2907    unsigned VTSize = VT.getSizeInBits() / 8;
2908    while (VTSize > Size) {
2909      // For now, only use non-vector load / store's for the left-over pieces.
2910      if (VT.isVector()) {
2911        VT = MVT::i64;
2912        while (!TLI.isTypeLegal(VT))
2913          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2914        VTSize = VT.getSizeInBits() / 8;
2915      } else {
2916        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2917        VTSize >>= 1;
2918      }
2919    }
2920
2921    if (++NumMemOps > Limit)
2922      return false;
2923    MemOps.push_back(VT);
2924    Size -= VTSize;
2925  }
2926
2927  return true;
2928}
2929
2930static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2931                                         SDValue Chain, SDValue Dst,
2932                                         SDValue Src, uint64_t Size,
2933                                         unsigned Align, bool AlwaysInline,
2934                                         const Value *DstSV, uint64_t DstSVOff,
2935                                         const Value *SrcSV, uint64_t SrcSVOff){
2936  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2937
2938  // Expand memcpy to a series of load and store ops if the size operand falls
2939  // below a certain threshold.
2940  std::vector<MVT> MemOps;
2941  uint64_t Limit = -1ULL;
2942  if (!AlwaysInline)
2943    Limit = TLI.getMaxStoresPerMemcpy();
2944  unsigned DstAlign = Align;  // Destination alignment can change.
2945  std::string Str;
2946  bool CopyFromStr;
2947  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2948                                Str, CopyFromStr, DAG, TLI))
2949    return SDValue();
2950
2951
2952  bool isZeroStr = CopyFromStr && Str.empty();
2953  SmallVector<SDValue, 8> OutChains;
2954  unsigned NumMemOps = MemOps.size();
2955  uint64_t SrcOff = 0, DstOff = 0;
2956  for (unsigned i = 0; i < NumMemOps; i++) {
2957    MVT VT = MemOps[i];
2958    unsigned VTSize = VT.getSizeInBits() / 8;
2959    SDValue Value, Store;
2960
2961    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2962      // It's unlikely a store of a vector immediate can be done in a single
2963      // instruction. It would require a load from a constantpool first.
2964      // We also handle store a vector with all zero's.
2965      // FIXME: Handle other cases where store of vector immediate is done in
2966      // a single instruction.
2967      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2968      Store = DAG.getStore(Chain, Value,
2969                           getMemBasePlusOffset(Dst, DstOff, DAG),
2970                           DstSV, DstSVOff + DstOff, false, DstAlign);
2971    } else {
2972      Value = DAG.getLoad(VT, Chain,
2973                          getMemBasePlusOffset(Src, SrcOff, DAG),
2974                          SrcSV, SrcSVOff + SrcOff, false, Align);
2975      Store = DAG.getStore(Chain, Value,
2976                           getMemBasePlusOffset(Dst, DstOff, DAG),
2977                           DstSV, DstSVOff + DstOff, false, DstAlign);
2978    }
2979    OutChains.push_back(Store);
2980    SrcOff += VTSize;
2981    DstOff += VTSize;
2982  }
2983
2984  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2985                     &OutChains[0], OutChains.size());
2986}
2987
2988static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
2989                                          SDValue Chain, SDValue Dst,
2990                                          SDValue Src, uint64_t Size,
2991                                          unsigned Align, bool AlwaysInline,
2992                                          const Value *DstSV, uint64_t DstSVOff,
2993                                          const Value *SrcSV, uint64_t SrcSVOff){
2994  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2995
2996  // Expand memmove to a series of load and store ops if the size operand falls
2997  // below a certain threshold.
2998  std::vector<MVT> MemOps;
2999  uint64_t Limit = -1ULL;
3000  if (!AlwaysInline)
3001    Limit = TLI.getMaxStoresPerMemmove();
3002  unsigned DstAlign = Align;  // Destination alignment can change.
3003  std::string Str;
3004  bool CopyFromStr;
3005  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3006                                Str, CopyFromStr, DAG, TLI))
3007    return SDValue();
3008
3009  uint64_t SrcOff = 0, DstOff = 0;
3010
3011  SmallVector<SDValue, 8> LoadValues;
3012  SmallVector<SDValue, 8> LoadChains;
3013  SmallVector<SDValue, 8> OutChains;
3014  unsigned NumMemOps = MemOps.size();
3015  for (unsigned i = 0; i < NumMemOps; i++) {
3016    MVT VT = MemOps[i];
3017    unsigned VTSize = VT.getSizeInBits() / 8;
3018    SDValue Value, Store;
3019
3020    Value = DAG.getLoad(VT, Chain,
3021                        getMemBasePlusOffset(Src, SrcOff, DAG),
3022                        SrcSV, SrcSVOff + SrcOff, false, Align);
3023    LoadValues.push_back(Value);
3024    LoadChains.push_back(Value.getValue(1));
3025    SrcOff += VTSize;
3026  }
3027  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3028                      &LoadChains[0], LoadChains.size());
3029  OutChains.clear();
3030  for (unsigned i = 0; i < NumMemOps; i++) {
3031    MVT VT = MemOps[i];
3032    unsigned VTSize = VT.getSizeInBits() / 8;
3033    SDValue Value, Store;
3034
3035    Store = DAG.getStore(Chain, LoadValues[i],
3036                         getMemBasePlusOffset(Dst, DstOff, DAG),
3037                         DstSV, DstSVOff + DstOff, false, DstAlign);
3038    OutChains.push_back(Store);
3039    DstOff += VTSize;
3040  }
3041
3042  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3043                     &OutChains[0], OutChains.size());
3044}
3045
3046static SDValue getMemsetStores(SelectionDAG &DAG,
3047                                 SDValue Chain, SDValue Dst,
3048                                 SDValue Src, uint64_t Size,
3049                                 unsigned Align,
3050                                 const Value *DstSV, uint64_t DstSVOff) {
3051  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3052
3053  // Expand memset to a series of load/store ops if the size operand
3054  // falls below a certain threshold.
3055  std::vector<MVT> MemOps;
3056  std::string Str;
3057  bool CopyFromStr;
3058  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3059                                Size, Align, Str, CopyFromStr, DAG, TLI))
3060    return SDValue();
3061
3062  SmallVector<SDValue, 8> OutChains;
3063  uint64_t DstOff = 0;
3064
3065  unsigned NumMemOps = MemOps.size();
3066  for (unsigned i = 0; i < NumMemOps; i++) {
3067    MVT VT = MemOps[i];
3068    unsigned VTSize = VT.getSizeInBits() / 8;
3069    SDValue Value = getMemsetValue(Src, VT, DAG);
3070    SDValue Store = DAG.getStore(Chain, Value,
3071                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3072                                 DstSV, DstSVOff + DstOff);
3073    OutChains.push_back(Store);
3074    DstOff += VTSize;
3075  }
3076
3077  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3078                     &OutChains[0], OutChains.size());
3079}
3080
3081SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3082                                SDValue Src, SDValue Size,
3083                                unsigned Align, bool AlwaysInline,
3084                                const Value *DstSV, uint64_t DstSVOff,
3085                                const Value *SrcSV, uint64_t SrcSVOff) {
3086
3087  // Check to see if we should lower the memcpy to loads and stores first.
3088  // For cases within the target-specified limits, this is the best choice.
3089  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3090  if (ConstantSize) {
3091    // Memcpy with size zero? Just return the original chain.
3092    if (ConstantSize->isNullValue())
3093      return Chain;
3094
3095    SDValue Result =
3096      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3097                              ConstantSize->getZExtValue(),
3098                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3099    if (Result.getNode())
3100      return Result;
3101  }
3102
3103  // Then check to see if we should lower the memcpy with target-specific
3104  // code. If the target chooses to do this, this is the next best.
3105  SDValue Result =
3106    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3107                                AlwaysInline,
3108                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3109  if (Result.getNode())
3110    return Result;
3111
3112  // If we really need inline code and the target declined to provide it,
3113  // use a (potentially long) sequence of loads and stores.
3114  if (AlwaysInline) {
3115    assert(ConstantSize && "AlwaysInline requires a constant size!");
3116    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3117                                   ConstantSize->getZExtValue(), Align, true,
3118                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3119  }
3120
3121  // Emit a library call.
3122  TargetLowering::ArgListTy Args;
3123  TargetLowering::ArgListEntry Entry;
3124  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3125  Entry.Node = Dst; Args.push_back(Entry);
3126  Entry.Node = Src; Args.push_back(Entry);
3127  Entry.Node = Size; Args.push_back(Entry);
3128  std::pair<SDValue,SDValue> CallResult =
3129    TLI.LowerCallTo(Chain, Type::VoidTy,
3130                    false, false, false, false, CallingConv::C, false,
3131                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3132                    Args, *this);
3133  return CallResult.second;
3134}
3135
3136SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3137                                 SDValue Src, SDValue Size,
3138                                 unsigned Align,
3139                                 const Value *DstSV, uint64_t DstSVOff,
3140                                 const Value *SrcSV, uint64_t SrcSVOff) {
3141
3142  // Check to see if we should lower the memmove to loads and stores first.
3143  // For cases within the target-specified limits, this is the best choice.
3144  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3145  if (ConstantSize) {
3146    // Memmove with size zero? Just return the original chain.
3147    if (ConstantSize->isNullValue())
3148      return Chain;
3149
3150    SDValue Result =
3151      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3152                               ConstantSize->getZExtValue(),
3153                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3154    if (Result.getNode())
3155      return Result;
3156  }
3157
3158  // Then check to see if we should lower the memmove with target-specific
3159  // code. If the target chooses to do this, this is the next best.
3160  SDValue Result =
3161    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3162                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3163  if (Result.getNode())
3164    return Result;
3165
3166  // Emit a library call.
3167  TargetLowering::ArgListTy Args;
3168  TargetLowering::ArgListEntry Entry;
3169  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3170  Entry.Node = Dst; Args.push_back(Entry);
3171  Entry.Node = Src; Args.push_back(Entry);
3172  Entry.Node = Size; Args.push_back(Entry);
3173  std::pair<SDValue,SDValue> CallResult =
3174    TLI.LowerCallTo(Chain, Type::VoidTy,
3175                    false, false, false, false, CallingConv::C, false,
3176                    getExternalSymbol("memmove", TLI.getPointerTy()),
3177                    Args, *this);
3178  return CallResult.second;
3179}
3180
3181SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3182                                SDValue Src, SDValue Size,
3183                                unsigned Align,
3184                                const Value *DstSV, uint64_t DstSVOff) {
3185
3186  // Check to see if we should lower the memset to stores first.
3187  // For cases within the target-specified limits, this is the best choice.
3188  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3189  if (ConstantSize) {
3190    // Memset with size zero? Just return the original chain.
3191    if (ConstantSize->isNullValue())
3192      return Chain;
3193
3194    SDValue Result =
3195      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3196                      Align, DstSV, DstSVOff);
3197    if (Result.getNode())
3198      return Result;
3199  }
3200
3201  // Then check to see if we should lower the memset with target-specific
3202  // code. If the target chooses to do this, this is the next best.
3203  SDValue Result =
3204    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3205                                DstSV, DstSVOff);
3206  if (Result.getNode())
3207    return Result;
3208
3209  // Emit a library call.
3210  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3211  TargetLowering::ArgListTy Args;
3212  TargetLowering::ArgListEntry Entry;
3213  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3214  Args.push_back(Entry);
3215  // Extend or truncate the argument to be an i32 value for the call.
3216  if (Src.getValueType().bitsGT(MVT::i32))
3217    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3218  else
3219    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3220  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3221  Args.push_back(Entry);
3222  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3223  Args.push_back(Entry);
3224  std::pair<SDValue,SDValue> CallResult =
3225    TLI.LowerCallTo(Chain, Type::VoidTy,
3226                    false, false, false, false, CallingConv::C, false,
3227                    getExternalSymbol("memset", TLI.getPointerTy()),
3228                    Args, *this);
3229  return CallResult.second;
3230}
3231
3232SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3233                                SDValue Ptr, SDValue Cmp,
3234                                SDValue Swp, const Value* PtrVal,
3235                                unsigned Alignment) {
3236  assert((Opcode == ISD::ATOMIC_CMP_SWAP_8  ||
3237          Opcode == ISD::ATOMIC_CMP_SWAP_16 ||
3238          Opcode == ISD::ATOMIC_CMP_SWAP_32 ||
3239          Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op");
3240  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3241
3242  MVT VT = Cmp.getValueType();
3243
3244  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3245    Alignment = getMVTAlignment(VT);
3246
3247  SDVTList VTs = getVTList(VT, MVT::Other);
3248  FoldingSetNodeID ID;
3249  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3250  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3251  void* IP = 0;
3252  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3253    return SDValue(E, 0);
3254  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3255  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3256  CSEMap.InsertNode(N, IP);
3257  AllNodes.push_back(N);
3258  return SDValue(N, 0);
3259}
3260
3261SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3262                                SDValue Ptr, SDValue Val,
3263                                const Value* PtrVal,
3264                                unsigned Alignment) {
3265  assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 ||
3266          Opcode == ISD::ATOMIC_LOAD_SUB_8 ||
3267          Opcode == ISD::ATOMIC_LOAD_AND_8 ||
3268          Opcode == ISD::ATOMIC_LOAD_OR_8 ||
3269          Opcode == ISD::ATOMIC_LOAD_XOR_8 ||
3270          Opcode == ISD::ATOMIC_LOAD_NAND_8 ||
3271          Opcode == ISD::ATOMIC_LOAD_MIN_8 ||
3272          Opcode == ISD::ATOMIC_LOAD_MAX_8 ||
3273          Opcode == ISD::ATOMIC_LOAD_UMIN_8 ||
3274          Opcode == ISD::ATOMIC_LOAD_UMAX_8 ||
3275          Opcode == ISD::ATOMIC_SWAP_8 ||
3276          Opcode == ISD::ATOMIC_LOAD_ADD_16 ||
3277          Opcode == ISD::ATOMIC_LOAD_SUB_16 ||
3278          Opcode == ISD::ATOMIC_LOAD_AND_16 ||
3279          Opcode == ISD::ATOMIC_LOAD_OR_16 ||
3280          Opcode == ISD::ATOMIC_LOAD_XOR_16 ||
3281          Opcode == ISD::ATOMIC_LOAD_NAND_16 ||
3282          Opcode == ISD::ATOMIC_LOAD_MIN_16 ||
3283          Opcode == ISD::ATOMIC_LOAD_MAX_16 ||
3284          Opcode == ISD::ATOMIC_LOAD_UMIN_16 ||
3285          Opcode == ISD::ATOMIC_LOAD_UMAX_16 ||
3286          Opcode == ISD::ATOMIC_SWAP_16 ||
3287          Opcode == ISD::ATOMIC_LOAD_ADD_32 ||
3288          Opcode == ISD::ATOMIC_LOAD_SUB_32 ||
3289          Opcode == ISD::ATOMIC_LOAD_AND_32 ||
3290          Opcode == ISD::ATOMIC_LOAD_OR_32 ||
3291          Opcode == ISD::ATOMIC_LOAD_XOR_32 ||
3292          Opcode == ISD::ATOMIC_LOAD_NAND_32 ||
3293          Opcode == ISD::ATOMIC_LOAD_MIN_32 ||
3294          Opcode == ISD::ATOMIC_LOAD_MAX_32 ||
3295          Opcode == ISD::ATOMIC_LOAD_UMIN_32 ||
3296          Opcode == ISD::ATOMIC_LOAD_UMAX_32 ||
3297          Opcode == ISD::ATOMIC_SWAP_32 ||
3298          Opcode == ISD::ATOMIC_LOAD_ADD_64 ||
3299          Opcode == ISD::ATOMIC_LOAD_SUB_64 ||
3300          Opcode == ISD::ATOMIC_LOAD_AND_64 ||
3301          Opcode == ISD::ATOMIC_LOAD_OR_64 ||
3302          Opcode == ISD::ATOMIC_LOAD_XOR_64 ||
3303          Opcode == ISD::ATOMIC_LOAD_NAND_64 ||
3304          Opcode == ISD::ATOMIC_LOAD_MIN_64 ||
3305          Opcode == ISD::ATOMIC_LOAD_MAX_64 ||
3306          Opcode == ISD::ATOMIC_LOAD_UMIN_64 ||
3307          Opcode == ISD::ATOMIC_LOAD_UMAX_64 ||
3308          Opcode == ISD::ATOMIC_SWAP_64)        && "Invalid Atomic Op");
3309
3310  MVT VT = Val.getValueType();
3311
3312  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3313    Alignment = getMVTAlignment(VT);
3314
3315  SDVTList VTs = getVTList(VT, MVT::Other);
3316  FoldingSetNodeID ID;
3317  SDValue Ops[] = {Chain, Ptr, Val};
3318  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3319  void* IP = 0;
3320  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3321    return SDValue(E, 0);
3322  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3323  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3324  CSEMap.InsertNode(N, IP);
3325  AllNodes.push_back(N);
3326  return SDValue(N, 0);
3327}
3328
3329/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3330/// Allowed to return something different (and simpler) if Simplify is true.
3331SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3332                                     bool Simplify) {
3333  if (Simplify && NumOps == 1)
3334    return Ops[0];
3335
3336  SmallVector<MVT, 4> VTs;
3337  VTs.reserve(NumOps);
3338  for (unsigned i = 0; i < NumOps; ++i)
3339    VTs.push_back(Ops[i].getValueType());
3340  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3341}
3342
3343SDValue
3344SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3345                                  const MVT *VTs, unsigned NumVTs,
3346                                  const SDValue *Ops, unsigned NumOps,
3347                                  MVT MemVT, const Value *srcValue, int SVOff,
3348                                  unsigned Align, bool Vol,
3349                                  bool ReadMem, bool WriteMem) {
3350  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3351                             MemVT, srcValue, SVOff, Align, Vol,
3352                             ReadMem, WriteMem);
3353}
3354
3355SDValue
3356SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3357                                  const SDValue *Ops, unsigned NumOps,
3358                                  MVT MemVT, const Value *srcValue, int SVOff,
3359                                  unsigned Align, bool Vol,
3360                                  bool ReadMem, bool WriteMem) {
3361  // Memoize the node unless it returns a flag.
3362  MemIntrinsicSDNode *N;
3363  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3364    FoldingSetNodeID ID;
3365    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3366    void *IP = 0;
3367    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3368      return SDValue(E, 0);
3369
3370    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3371    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3372                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3373    CSEMap.InsertNode(N, IP);
3374  } else {
3375    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3376    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3377                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3378  }
3379  AllNodes.push_back(N);
3380  return SDValue(N, 0);
3381}
3382
3383SDValue
3384SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3385                      bool IsInreg, SDVTList VTs,
3386                      const SDValue *Operands, unsigned NumOperands) {
3387  // Do not include isTailCall in the folding set profile.
3388  FoldingSetNodeID ID;
3389  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3390  ID.AddInteger(CallingConv);
3391  ID.AddInteger(IsVarArgs);
3392  void *IP = 0;
3393  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3394    // Instead of including isTailCall in the folding set, we just
3395    // set the flag of the existing node.
3396    if (!IsTailCall)
3397      cast<CallSDNode>(E)->setNotTailCall();
3398    return SDValue(E, 0);
3399  }
3400  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3401  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3402                     VTs, Operands, NumOperands);
3403  CSEMap.InsertNode(N, IP);
3404  AllNodes.push_back(N);
3405  return SDValue(N, 0);
3406}
3407
3408SDValue
3409SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3410                      MVT VT, SDValue Chain,
3411                      SDValue Ptr, SDValue Offset,
3412                      const Value *SV, int SVOffset, MVT EVT,
3413                      bool isVolatile, unsigned Alignment) {
3414  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3415    Alignment = getMVTAlignment(VT);
3416
3417  if (VT == EVT) {
3418    ExtType = ISD::NON_EXTLOAD;
3419  } else if (ExtType == ISD::NON_EXTLOAD) {
3420    assert(VT == EVT && "Non-extending load from different memory type!");
3421  } else {
3422    // Extending load.
3423    if (VT.isVector())
3424      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3425             "Invalid vector extload!");
3426    else
3427      assert(EVT.bitsLT(VT) &&
3428             "Should only be an extending load, not truncating!");
3429    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3430           "Cannot sign/zero extend a FP/Vector load!");
3431    assert(VT.isInteger() == EVT.isInteger() &&
3432           "Cannot convert from FP to Int or Int -> FP!");
3433  }
3434
3435  bool Indexed = AM != ISD::UNINDEXED;
3436  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3437         "Unindexed load with an offset!");
3438
3439  SDVTList VTs = Indexed ?
3440    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3441  SDValue Ops[] = { Chain, Ptr, Offset };
3442  FoldingSetNodeID ID;
3443  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3444  ID.AddInteger(AM);
3445  ID.AddInteger(ExtType);
3446  ID.AddInteger(EVT.getRawBits());
3447  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3448  void *IP = 0;
3449  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3450    return SDValue(E, 0);
3451  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3452  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3453                     Alignment, isVolatile);
3454  CSEMap.InsertNode(N, IP);
3455  AllNodes.push_back(N);
3456  return SDValue(N, 0);
3457}
3458
3459SDValue SelectionDAG::getLoad(MVT VT,
3460                              SDValue Chain, SDValue Ptr,
3461                              const Value *SV, int SVOffset,
3462                              bool isVolatile, unsigned Alignment) {
3463  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3464  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3465                 SV, SVOffset, VT, isVolatile, Alignment);
3466}
3467
3468SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3469                                 SDValue Chain, SDValue Ptr,
3470                                 const Value *SV,
3471                                 int SVOffset, MVT EVT,
3472                                 bool isVolatile, unsigned Alignment) {
3473  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3474  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3475                 SV, SVOffset, EVT, isVolatile, Alignment);
3476}
3477
3478SDValue
3479SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3480                             SDValue Offset, ISD::MemIndexedMode AM) {
3481  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3482  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3483         "Load is already a indexed load!");
3484  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3485                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3486                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3487                 LD->isVolatile(), LD->getAlignment());
3488}
3489
3490SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3491                               SDValue Ptr, const Value *SV, int SVOffset,
3492                               bool isVolatile, unsigned Alignment) {
3493  MVT VT = Val.getValueType();
3494
3495  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3496    Alignment = getMVTAlignment(VT);
3497
3498  SDVTList VTs = getVTList(MVT::Other);
3499  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3500  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3501  FoldingSetNodeID ID;
3502  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3503  ID.AddInteger(ISD::UNINDEXED);
3504  ID.AddInteger(false);
3505  ID.AddInteger(VT.getRawBits());
3506  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3507  void *IP = 0;
3508  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3509    return SDValue(E, 0);
3510  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3511  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3512                      VT, SV, SVOffset, Alignment, isVolatile);
3513  CSEMap.InsertNode(N, IP);
3514  AllNodes.push_back(N);
3515  return SDValue(N, 0);
3516}
3517
3518SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3519                                    SDValue Ptr, const Value *SV,
3520                                    int SVOffset, MVT SVT,
3521                                    bool isVolatile, unsigned Alignment) {
3522  MVT VT = Val.getValueType();
3523
3524  if (VT == SVT)
3525    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3526
3527  assert(VT.bitsGT(SVT) && "Not a truncation?");
3528  assert(VT.isInteger() == SVT.isInteger() &&
3529         "Can't do FP-INT conversion!");
3530
3531  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3532    Alignment = getMVTAlignment(VT);
3533
3534  SDVTList VTs = getVTList(MVT::Other);
3535  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3536  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3537  FoldingSetNodeID ID;
3538  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3539  ID.AddInteger(ISD::UNINDEXED);
3540  ID.AddInteger(1);
3541  ID.AddInteger(SVT.getRawBits());
3542  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3543  void *IP = 0;
3544  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3545    return SDValue(E, 0);
3546  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3547  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3548                      SVT, SV, SVOffset, Alignment, isVolatile);
3549  CSEMap.InsertNode(N, IP);
3550  AllNodes.push_back(N);
3551  return SDValue(N, 0);
3552}
3553
3554SDValue
3555SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3556                              SDValue Offset, ISD::MemIndexedMode AM) {
3557  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3558  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3559         "Store is already a indexed store!");
3560  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3561  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3562  FoldingSetNodeID ID;
3563  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3564  ID.AddInteger(AM);
3565  ID.AddInteger(ST->isTruncatingStore());
3566  ID.AddInteger(ST->getMemoryVT().getRawBits());
3567  ID.AddInteger(ST->getRawFlags());
3568  void *IP = 0;
3569  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3570    return SDValue(E, 0);
3571  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3572  new (N) StoreSDNode(Ops, VTs, AM,
3573                      ST->isTruncatingStore(), ST->getMemoryVT(),
3574                      ST->getSrcValue(), ST->getSrcValueOffset(),
3575                      ST->getAlignment(), ST->isVolatile());
3576  CSEMap.InsertNode(N, IP);
3577  AllNodes.push_back(N);
3578  return SDValue(N, 0);
3579}
3580
3581SDValue SelectionDAG::getVAArg(MVT VT,
3582                               SDValue Chain, SDValue Ptr,
3583                               SDValue SV) {
3584  SDValue Ops[] = { Chain, Ptr, SV };
3585  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3586}
3587
3588SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3589                              const SDUse *Ops, unsigned NumOps) {
3590  switch (NumOps) {
3591  case 0: return getNode(Opcode, VT);
3592  case 1: return getNode(Opcode, VT, Ops[0]);
3593  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3594  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3595  default: break;
3596  }
3597
3598  // Copy from an SDUse array into an SDValue array for use with
3599  // the regular getNode logic.
3600  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3601  return getNode(Opcode, VT, &NewOps[0], NumOps);
3602}
3603
3604SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3605                              const SDValue *Ops, unsigned NumOps) {
3606  switch (NumOps) {
3607  case 0: return getNode(Opcode, VT);
3608  case 1: return getNode(Opcode, VT, Ops[0]);
3609  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3610  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3611  default: break;
3612  }
3613
3614  switch (Opcode) {
3615  default: break;
3616  case ISD::SELECT_CC: {
3617    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3618    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3619           "LHS and RHS of condition must have same type!");
3620    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3621           "True and False arms of SelectCC must have same type!");
3622    assert(Ops[2].getValueType() == VT &&
3623           "select_cc node must be of same type as true and false value!");
3624    break;
3625  }
3626  case ISD::BR_CC: {
3627    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3628    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3629           "LHS/RHS of comparison should match types!");
3630    break;
3631  }
3632  }
3633
3634  // Memoize nodes.
3635  SDNode *N;
3636  SDVTList VTs = getVTList(VT);
3637  if (VT != MVT::Flag) {
3638    FoldingSetNodeID ID;
3639    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3640    void *IP = 0;
3641    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3642      return SDValue(E, 0);
3643    N = NodeAllocator.Allocate<SDNode>();
3644    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3645    CSEMap.InsertNode(N, IP);
3646  } else {
3647    N = NodeAllocator.Allocate<SDNode>();
3648    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3649  }
3650  AllNodes.push_back(N);
3651#ifndef NDEBUG
3652  VerifyNode(N);
3653#endif
3654  return SDValue(N, 0);
3655}
3656
3657SDValue SelectionDAG::getNode(unsigned Opcode,
3658                              const std::vector<MVT> &ResultTys,
3659                              const SDValue *Ops, unsigned NumOps) {
3660  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3661                 Ops, NumOps);
3662}
3663
3664SDValue SelectionDAG::getNode(unsigned Opcode,
3665                              const MVT *VTs, unsigned NumVTs,
3666                              const SDValue *Ops, unsigned NumOps) {
3667  if (NumVTs == 1)
3668    return getNode(Opcode, VTs[0], Ops, NumOps);
3669  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3670}
3671
3672SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3673                              const SDValue *Ops, unsigned NumOps) {
3674  if (VTList.NumVTs == 1)
3675    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3676
3677  switch (Opcode) {
3678  // FIXME: figure out how to safely handle things like
3679  // int foo(int x) { return 1 << (x & 255); }
3680  // int bar() { return foo(256); }
3681#if 0
3682  case ISD::SRA_PARTS:
3683  case ISD::SRL_PARTS:
3684  case ISD::SHL_PARTS:
3685    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3686        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3687      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3688    else if (N3.getOpcode() == ISD::AND)
3689      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3690        // If the and is only masking out bits that cannot effect the shift,
3691        // eliminate the and.
3692        unsigned NumBits = VT.getSizeInBits()*2;
3693        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3694          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3695      }
3696    break;
3697#endif
3698  }
3699
3700  // Memoize the node unless it returns a flag.
3701  SDNode *N;
3702  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3703    FoldingSetNodeID ID;
3704    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3705    void *IP = 0;
3706    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3707      return SDValue(E, 0);
3708    if (NumOps == 1) {
3709      N = NodeAllocator.Allocate<UnarySDNode>();
3710      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3711    } else if (NumOps == 2) {
3712      N = NodeAllocator.Allocate<BinarySDNode>();
3713      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3714    } else if (NumOps == 3) {
3715      N = NodeAllocator.Allocate<TernarySDNode>();
3716      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3717    } else {
3718      N = NodeAllocator.Allocate<SDNode>();
3719      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3720    }
3721    CSEMap.InsertNode(N, IP);
3722  } else {
3723    if (NumOps == 1) {
3724      N = NodeAllocator.Allocate<UnarySDNode>();
3725      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3726    } else if (NumOps == 2) {
3727      N = NodeAllocator.Allocate<BinarySDNode>();
3728      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3729    } else if (NumOps == 3) {
3730      N = NodeAllocator.Allocate<TernarySDNode>();
3731      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3732    } else {
3733      N = NodeAllocator.Allocate<SDNode>();
3734      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3735    }
3736  }
3737  AllNodes.push_back(N);
3738#ifndef NDEBUG
3739  VerifyNode(N);
3740#endif
3741  return SDValue(N, 0);
3742}
3743
3744SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3745  return getNode(Opcode, VTList, 0, 0);
3746}
3747
3748SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3749                                SDValue N1) {
3750  SDValue Ops[] = { N1 };
3751  return getNode(Opcode, VTList, Ops, 1);
3752}
3753
3754SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3755                              SDValue N1, SDValue N2) {
3756  SDValue Ops[] = { N1, N2 };
3757  return getNode(Opcode, VTList, Ops, 2);
3758}
3759
3760SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3761                              SDValue N1, SDValue N2, SDValue N3) {
3762  SDValue Ops[] = { N1, N2, N3 };
3763  return getNode(Opcode, VTList, Ops, 3);
3764}
3765
3766SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3767                              SDValue N1, SDValue N2, SDValue N3,
3768                              SDValue N4) {
3769  SDValue Ops[] = { N1, N2, N3, N4 };
3770  return getNode(Opcode, VTList, Ops, 4);
3771}
3772
3773SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3774                              SDValue N1, SDValue N2, SDValue N3,
3775                              SDValue N4, SDValue N5) {
3776  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3777  return getNode(Opcode, VTList, Ops, 5);
3778}
3779
3780SDVTList SelectionDAG::getVTList(MVT VT) {
3781  return makeVTList(SDNode::getValueTypeList(VT), 1);
3782}
3783
3784SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3785  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3786       E = VTList.rend(); I != E; ++I)
3787    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3788      return *I;
3789
3790  MVT *Array = Allocator.Allocate<MVT>(2);
3791  Array[0] = VT1;
3792  Array[1] = VT2;
3793  SDVTList Result = makeVTList(Array, 2);
3794  VTList.push_back(Result);
3795  return Result;
3796}
3797
3798SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3799  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3800       E = VTList.rend(); I != E; ++I)
3801    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3802                          I->VTs[2] == VT3)
3803      return *I;
3804
3805  MVT *Array = Allocator.Allocate<MVT>(3);
3806  Array[0] = VT1;
3807  Array[1] = VT2;
3808  Array[2] = VT3;
3809  SDVTList Result = makeVTList(Array, 3);
3810  VTList.push_back(Result);
3811  return Result;
3812}
3813
3814SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3815  switch (NumVTs) {
3816    case 0: assert(0 && "Cannot have nodes without results!");
3817    case 1: return getVTList(VTs[0]);
3818    case 2: return getVTList(VTs[0], VTs[1]);
3819    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3820    default: break;
3821  }
3822
3823  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3824       E = VTList.rend(); I != E; ++I) {
3825    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3826      continue;
3827
3828    bool NoMatch = false;
3829    for (unsigned i = 2; i != NumVTs; ++i)
3830      if (VTs[i] != I->VTs[i]) {
3831        NoMatch = true;
3832        break;
3833      }
3834    if (!NoMatch)
3835      return *I;
3836  }
3837
3838  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3839  std::copy(VTs, VTs+NumVTs, Array);
3840  SDVTList Result = makeVTList(Array, NumVTs);
3841  VTList.push_back(Result);
3842  return Result;
3843}
3844
3845
3846/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3847/// specified operands.  If the resultant node already exists in the DAG,
3848/// this does not modify the specified node, instead it returns the node that
3849/// already exists.  If the resultant node does not exist in the DAG, the
3850/// input node is returned.  As a degenerate case, if you specify the same
3851/// input operands as the node already has, the input node is returned.
3852SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3853  SDNode *N = InN.getNode();
3854  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3855
3856  // Check to see if there is no change.
3857  if (Op == N->getOperand(0)) return InN;
3858
3859  // See if the modified node already exists.
3860  void *InsertPos = 0;
3861  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3862    return SDValue(Existing, InN.getResNo());
3863
3864  // Nope it doesn't.  Remove the node from its current place in the maps.
3865  if (InsertPos)
3866    if (!RemoveNodeFromCSEMaps(N))
3867      InsertPos = 0;
3868
3869  // Now we update the operands.
3870  N->OperandList[0].getVal()->removeUser(0, N);
3871  N->OperandList[0] = Op;
3872  N->OperandList[0].setUser(N);
3873  Op.getNode()->addUser(0, N);
3874
3875  // If this gets put into a CSE map, add it.
3876  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3877  return InN;
3878}
3879
3880SDValue SelectionDAG::
3881UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3882  SDNode *N = InN.getNode();
3883  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3884
3885  // Check to see if there is no change.
3886  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3887    return InN;   // No operands changed, just return the input node.
3888
3889  // See if the modified node already exists.
3890  void *InsertPos = 0;
3891  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3892    return SDValue(Existing, InN.getResNo());
3893
3894  // Nope it doesn't.  Remove the node from its current place in the maps.
3895  if (InsertPos)
3896    if (!RemoveNodeFromCSEMaps(N))
3897      InsertPos = 0;
3898
3899  // Now we update the operands.
3900  if (N->OperandList[0] != Op1) {
3901    N->OperandList[0].getVal()->removeUser(0, N);
3902    N->OperandList[0] = Op1;
3903    N->OperandList[0].setUser(N);
3904    Op1.getNode()->addUser(0, N);
3905  }
3906  if (N->OperandList[1] != Op2) {
3907    N->OperandList[1].getVal()->removeUser(1, N);
3908    N->OperandList[1] = Op2;
3909    N->OperandList[1].setUser(N);
3910    Op2.getNode()->addUser(1, N);
3911  }
3912
3913  // If this gets put into a CSE map, add it.
3914  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3915  return InN;
3916}
3917
3918SDValue SelectionDAG::
3919UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3920  SDValue Ops[] = { Op1, Op2, Op3 };
3921  return UpdateNodeOperands(N, Ops, 3);
3922}
3923
3924SDValue SelectionDAG::
3925UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3926                   SDValue Op3, SDValue Op4) {
3927  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3928  return UpdateNodeOperands(N, Ops, 4);
3929}
3930
3931SDValue SelectionDAG::
3932UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3933                   SDValue Op3, SDValue Op4, SDValue Op5) {
3934  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3935  return UpdateNodeOperands(N, Ops, 5);
3936}
3937
3938SDValue SelectionDAG::
3939UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3940  SDNode *N = InN.getNode();
3941  assert(N->getNumOperands() == NumOps &&
3942         "Update with wrong number of operands");
3943
3944  // Check to see if there is no change.
3945  bool AnyChange = false;
3946  for (unsigned i = 0; i != NumOps; ++i) {
3947    if (Ops[i] != N->getOperand(i)) {
3948      AnyChange = true;
3949      break;
3950    }
3951  }
3952
3953  // No operands changed, just return the input node.
3954  if (!AnyChange) return InN;
3955
3956  // See if the modified node already exists.
3957  void *InsertPos = 0;
3958  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3959    return SDValue(Existing, InN.getResNo());
3960
3961  // Nope it doesn't.  Remove the node from its current place in the maps.
3962  if (InsertPos)
3963    if (!RemoveNodeFromCSEMaps(N))
3964      InsertPos = 0;
3965
3966  // Now we update the operands.
3967  for (unsigned i = 0; i != NumOps; ++i) {
3968    if (N->OperandList[i] != Ops[i]) {
3969      N->OperandList[i].getVal()->removeUser(i, N);
3970      N->OperandList[i] = Ops[i];
3971      N->OperandList[i].setUser(N);
3972      Ops[i].getNode()->addUser(i, N);
3973    }
3974  }
3975
3976  // If this gets put into a CSE map, add it.
3977  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3978  return InN;
3979}
3980
3981/// DropOperands - Release the operands and set this node to have
3982/// zero operands.
3983void SDNode::DropOperands() {
3984  // Unlike the code in MorphNodeTo that does this, we don't need to
3985  // watch for dead nodes here.
3986  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3987    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3988
3989  NumOperands = 0;
3990}
3991
3992/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
3993/// machine opcode.
3994///
3995SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3996                                   MVT VT) {
3997  SDVTList VTs = getVTList(VT);
3998  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
3999}
4000
4001SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4002                                   MVT VT, SDValue Op1) {
4003  SDVTList VTs = getVTList(VT);
4004  SDValue Ops[] = { Op1 };
4005  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4006}
4007
4008SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4009                                   MVT VT, SDValue Op1,
4010                                   SDValue Op2) {
4011  SDVTList VTs = getVTList(VT);
4012  SDValue Ops[] = { Op1, Op2 };
4013  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4014}
4015
4016SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4017                                   MVT VT, SDValue Op1,
4018                                   SDValue Op2, SDValue Op3) {
4019  SDVTList VTs = getVTList(VT);
4020  SDValue Ops[] = { Op1, Op2, Op3 };
4021  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4022}
4023
4024SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4025                                   MVT VT, const SDValue *Ops,
4026                                   unsigned NumOps) {
4027  SDVTList VTs = getVTList(VT);
4028  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4029}
4030
4031SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4032                                   MVT VT1, MVT VT2, const SDValue *Ops,
4033                                   unsigned NumOps) {
4034  SDVTList VTs = getVTList(VT1, VT2);
4035  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4036}
4037
4038SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4039                                   MVT VT1, MVT VT2) {
4040  SDVTList VTs = getVTList(VT1, VT2);
4041  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4042}
4043
4044SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4045                                   MVT VT1, MVT VT2, MVT VT3,
4046                                   const SDValue *Ops, unsigned NumOps) {
4047  SDVTList VTs = getVTList(VT1, VT2, VT3);
4048  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4049}
4050
4051SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4052                                   MVT VT1, MVT VT2,
4053                                   SDValue Op1) {
4054  SDVTList VTs = getVTList(VT1, VT2);
4055  SDValue Ops[] = { Op1 };
4056  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4057}
4058
4059SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4060                                   MVT VT1, MVT VT2,
4061                                   SDValue Op1, SDValue Op2) {
4062  SDVTList VTs = getVTList(VT1, VT2);
4063  SDValue Ops[] = { Op1, Op2 };
4064  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4065}
4066
4067SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4068                                   MVT VT1, MVT VT2,
4069                                   SDValue Op1, SDValue Op2,
4070                                   SDValue Op3) {
4071  SDVTList VTs = getVTList(VT1, VT2);
4072  SDValue Ops[] = { Op1, Op2, Op3 };
4073  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4074}
4075
4076SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4077                                   SDVTList VTs, const SDValue *Ops,
4078                                   unsigned NumOps) {
4079  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4080}
4081
4082SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4083                                  MVT VT) {
4084  SDVTList VTs = getVTList(VT);
4085  return MorphNodeTo(N, Opc, VTs, 0, 0);
4086}
4087
4088SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4089                                  MVT VT, SDValue Op1) {
4090  SDVTList VTs = getVTList(VT);
4091  SDValue Ops[] = { Op1 };
4092  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4093}
4094
4095SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4096                                  MVT VT, SDValue Op1,
4097                                  SDValue Op2) {
4098  SDVTList VTs = getVTList(VT);
4099  SDValue Ops[] = { Op1, Op2 };
4100  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4101}
4102
4103SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4104                                  MVT VT, SDValue Op1,
4105                                  SDValue Op2, SDValue Op3) {
4106  SDVTList VTs = getVTList(VT);
4107  SDValue Ops[] = { Op1, Op2, Op3 };
4108  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4109}
4110
4111SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4112                                  MVT VT, const SDValue *Ops,
4113                                  unsigned NumOps) {
4114  SDVTList VTs = getVTList(VT);
4115  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4116}
4117
4118SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4119                                  MVT VT1, MVT VT2, const SDValue *Ops,
4120                                  unsigned NumOps) {
4121  SDVTList VTs = getVTList(VT1, VT2);
4122  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4123}
4124
4125SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4126                                  MVT VT1, MVT VT2) {
4127  SDVTList VTs = getVTList(VT1, VT2);
4128  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4129}
4130
4131SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4132                                  MVT VT1, MVT VT2, MVT VT3,
4133                                  const SDValue *Ops, unsigned NumOps) {
4134  SDVTList VTs = getVTList(VT1, VT2, VT3);
4135  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4136}
4137
4138SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4139                                  MVT VT1, MVT VT2,
4140                                  SDValue Op1) {
4141  SDVTList VTs = getVTList(VT1, VT2);
4142  SDValue Ops[] = { Op1 };
4143  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4144}
4145
4146SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4147                                  MVT VT1, MVT VT2,
4148                                  SDValue Op1, SDValue Op2) {
4149  SDVTList VTs = getVTList(VT1, VT2);
4150  SDValue Ops[] = { Op1, Op2 };
4151  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4152}
4153
4154SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4155                                  MVT VT1, MVT VT2,
4156                                  SDValue Op1, SDValue Op2,
4157                                  SDValue Op3) {
4158  SDVTList VTs = getVTList(VT1, VT2);
4159  SDValue Ops[] = { Op1, Op2, Op3 };
4160  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4161}
4162
4163/// MorphNodeTo - These *mutate* the specified node to have the specified
4164/// return type, opcode, and operands.
4165///
4166/// Note that MorphNodeTo returns the resultant node.  If there is already a
4167/// node of the specified opcode and operands, it returns that node instead of
4168/// the current one.
4169///
4170/// Using MorphNodeTo is faster than creating a new node and swapping it in
4171/// with ReplaceAllUsesWith both because it often avoids allocating a new
4172/// node, and because it doesn't require CSE recalculation for any of
4173/// the node's users.
4174///
4175SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4176                                  SDVTList VTs, const SDValue *Ops,
4177                                  unsigned NumOps) {
4178  // If an identical node already exists, use it.
4179  void *IP = 0;
4180  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4181    FoldingSetNodeID ID;
4182    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4183    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4184      return ON;
4185  }
4186
4187  if (!RemoveNodeFromCSEMaps(N))
4188    IP = 0;
4189
4190  // Start the morphing.
4191  N->NodeType = Opc;
4192  N->ValueList = VTs.VTs;
4193  N->NumValues = VTs.NumVTs;
4194
4195  // Clear the operands list, updating used nodes to remove this from their
4196  // use list.  Keep track of any operands that become dead as a result.
4197  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4198  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4199       I != E; ++I) {
4200    SDNode *Used = I->getVal();
4201    Used->removeUser(std::distance(B, I), N);
4202    if (Used->use_empty())
4203      DeadNodeSet.insert(Used);
4204  }
4205
4206  // If NumOps is larger than the # of operands we currently have, reallocate
4207  // the operand list.
4208  if (NumOps > N->NumOperands) {
4209    if (N->OperandsNeedDelete)
4210      delete[] N->OperandList;
4211
4212    if (N->isMachineOpcode()) {
4213      // We're creating a final node that will live unmorphed for the
4214      // remainder of the current SelectionDAG iteration, so we can allocate
4215      // the operands directly out of a pool with no recycling metadata.
4216      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4217      N->OperandsNeedDelete = false;
4218    } else {
4219      N->OperandList = new SDUse[NumOps];
4220      N->OperandsNeedDelete = true;
4221    }
4222  }
4223
4224  // Assign the new operands.
4225  N->NumOperands = NumOps;
4226  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4227    N->OperandList[i] = Ops[i];
4228    N->OperandList[i].setUser(N);
4229    SDNode *ToUse = N->OperandList[i].getVal();
4230    ToUse->addUser(i, N);
4231  }
4232
4233  // Delete any nodes that are still dead after adding the uses for the
4234  // new operands.
4235  SmallVector<SDNode *, 16> DeadNodes;
4236  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4237       E = DeadNodeSet.end(); I != E; ++I)
4238    if ((*I)->use_empty())
4239      DeadNodes.push_back(*I);
4240  RemoveDeadNodes(DeadNodes);
4241
4242  if (IP)
4243    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4244  return N;
4245}
4246
4247
4248/// getTargetNode - These are used for target selectors to create a new node
4249/// with specified return type(s), target opcode, and operands.
4250///
4251/// Note that getTargetNode returns the resultant node.  If there is already a
4252/// node of the specified opcode and operands, it returns that node instead of
4253/// the current one.
4254SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4255  return getNode(~Opcode, VT).getNode();
4256}
4257SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4258  return getNode(~Opcode, VT, Op1).getNode();
4259}
4260SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4261                                    SDValue Op1, SDValue Op2) {
4262  return getNode(~Opcode, VT, Op1, Op2).getNode();
4263}
4264SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4265                                    SDValue Op1, SDValue Op2,
4266                                    SDValue Op3) {
4267  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4268}
4269SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4270                                    const SDValue *Ops, unsigned NumOps) {
4271  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4272}
4273SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4274  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4275  SDValue Op;
4276  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4277}
4278SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4279                                    MVT VT2, SDValue Op1) {
4280  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4281  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4282}
4283SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4284                                    MVT VT2, SDValue Op1,
4285                                    SDValue Op2) {
4286  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4287  SDValue Ops[] = { Op1, Op2 };
4288  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4289}
4290SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4291                                    MVT VT2, SDValue Op1,
4292                                    SDValue Op2, SDValue Op3) {
4293  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4294  SDValue Ops[] = { Op1, Op2, Op3 };
4295  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4296}
4297SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4298                                    const SDValue *Ops, unsigned NumOps) {
4299  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4300  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4301}
4302SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4303                                    SDValue Op1, SDValue Op2) {
4304  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4305  SDValue Ops[] = { Op1, Op2 };
4306  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4307}
4308SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4309                                    SDValue Op1, SDValue Op2,
4310                                    SDValue Op3) {
4311  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4312  SDValue Ops[] = { Op1, Op2, Op3 };
4313  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4314}
4315SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4316                                    const SDValue *Ops, unsigned NumOps) {
4317  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4318  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4319}
4320SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4321                                    MVT VT2, MVT VT3, MVT VT4,
4322                                    const SDValue *Ops, unsigned NumOps) {
4323  std::vector<MVT> VTList;
4324  VTList.push_back(VT1);
4325  VTList.push_back(VT2);
4326  VTList.push_back(VT3);
4327  VTList.push_back(VT4);
4328  const MVT *VTs = getNodeValueTypes(VTList);
4329  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4330}
4331SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4332                                    const std::vector<MVT> &ResultTys,
4333                                    const SDValue *Ops, unsigned NumOps) {
4334  const MVT *VTs = getNodeValueTypes(ResultTys);
4335  return getNode(~Opcode, VTs, ResultTys.size(),
4336                 Ops, NumOps).getNode();
4337}
4338
4339/// getNodeIfExists - Get the specified node if it's already available, or
4340/// else return NULL.
4341SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4342                                      const SDValue *Ops, unsigned NumOps) {
4343  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4344    FoldingSetNodeID ID;
4345    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4346    void *IP = 0;
4347    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4348      return E;
4349  }
4350  return NULL;
4351}
4352
4353
4354/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4355/// This can cause recursive merging of nodes in the DAG.
4356///
4357/// This version assumes From has a single result value.
4358///
4359void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4360                                      DAGUpdateListener *UpdateListener) {
4361  SDNode *From = FromN.getNode();
4362  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4363         "Cannot replace with this method!");
4364  assert(From != To.getNode() && "Cannot replace uses of with self");
4365
4366  while (!From->use_empty()) {
4367    SDNode::use_iterator UI = From->use_begin();
4368    SDNode *U = *UI;
4369
4370    // This node is about to morph, remove its old self from the CSE maps.
4371    RemoveNodeFromCSEMaps(U);
4372    int operandNum = 0;
4373    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4374         I != E; ++I, ++operandNum)
4375      if (I->getVal() == From) {
4376        From->removeUser(operandNum, U);
4377        *I = To;
4378        I->setUser(U);
4379        To.getNode()->addUser(operandNum, U);
4380      }
4381
4382    // Now that we have modified U, add it back to the CSE maps.  If it already
4383    // exists there, recursively merge the results together.
4384    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4385      ReplaceAllUsesWith(U, Existing, UpdateListener);
4386      // U is now dead.  Inform the listener if it exists and delete it.
4387      if (UpdateListener)
4388        UpdateListener->NodeDeleted(U, Existing);
4389      DeleteNodeNotInCSEMaps(U);
4390    } else {
4391      // If the node doesn't already exist, we updated it.  Inform a listener if
4392      // it exists.
4393      if (UpdateListener)
4394        UpdateListener->NodeUpdated(U);
4395    }
4396  }
4397}
4398
4399/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4400/// This can cause recursive merging of nodes in the DAG.
4401///
4402/// This version assumes From/To have matching types and numbers of result
4403/// values.
4404///
4405void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4406                                      DAGUpdateListener *UpdateListener) {
4407  assert(From->getVTList().VTs == To->getVTList().VTs &&
4408         From->getNumValues() == To->getNumValues() &&
4409         "Cannot use this version of ReplaceAllUsesWith!");
4410
4411  // Handle the trivial case.
4412  if (From == To)
4413    return;
4414
4415  while (!From->use_empty()) {
4416    SDNode::use_iterator UI = From->use_begin();
4417    SDNode *U = *UI;
4418
4419    // This node is about to morph, remove its old self from the CSE maps.
4420    RemoveNodeFromCSEMaps(U);
4421    int operandNum = 0;
4422    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4423         I != E; ++I, ++operandNum)
4424      if (I->getVal() == From) {
4425        From->removeUser(operandNum, U);
4426        I->getSDValue().setNode(To);
4427        To->addUser(operandNum, U);
4428      }
4429
4430    // Now that we have modified U, add it back to the CSE maps.  If it already
4431    // exists there, recursively merge the results together.
4432    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4433      ReplaceAllUsesWith(U, Existing, UpdateListener);
4434      // U is now dead.  Inform the listener if it exists and delete it.
4435      if (UpdateListener)
4436        UpdateListener->NodeDeleted(U, Existing);
4437      DeleteNodeNotInCSEMaps(U);
4438    } else {
4439      // If the node doesn't already exist, we updated it.  Inform a listener if
4440      // it exists.
4441      if (UpdateListener)
4442        UpdateListener->NodeUpdated(U);
4443    }
4444  }
4445}
4446
4447/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4448/// This can cause recursive merging of nodes in the DAG.
4449///
4450/// This version can replace From with any result values.  To must match the
4451/// number and types of values returned by From.
4452void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4453                                      const SDValue *To,
4454                                      DAGUpdateListener *UpdateListener) {
4455  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4456    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4457
4458  while (!From->use_empty()) {
4459    SDNode::use_iterator UI = From->use_begin();
4460    SDNode *U = *UI;
4461
4462    // This node is about to morph, remove its old self from the CSE maps.
4463    RemoveNodeFromCSEMaps(U);
4464    int operandNum = 0;
4465    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4466         I != E; ++I, ++operandNum)
4467      if (I->getVal() == From) {
4468        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4469        From->removeUser(operandNum, U);
4470        *I = ToOp;
4471        I->setUser(U);
4472        ToOp.getNode()->addUser(operandNum, U);
4473      }
4474
4475    // Now that we have modified U, add it back to the CSE maps.  If it already
4476    // exists there, recursively merge the results together.
4477    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4478      ReplaceAllUsesWith(U, Existing, UpdateListener);
4479      // U is now dead.  Inform the listener if it exists and delete it.
4480      if (UpdateListener)
4481        UpdateListener->NodeDeleted(U, Existing);
4482      DeleteNodeNotInCSEMaps(U);
4483    } else {
4484      // If the node doesn't already exist, we updated it.  Inform a listener if
4485      // it exists.
4486      if (UpdateListener)
4487        UpdateListener->NodeUpdated(U);
4488    }
4489  }
4490}
4491
4492/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4493/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4494/// handled the same way as for ReplaceAllUsesWith.
4495void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4496                                             DAGUpdateListener *UpdateListener){
4497  // Handle the really simple, really trivial case efficiently.
4498  if (From == To) return;
4499
4500  // Handle the simple, trivial, case efficiently.
4501  if (From.getNode()->getNumValues() == 1) {
4502    ReplaceAllUsesWith(From, To, UpdateListener);
4503    return;
4504  }
4505
4506  // Get all of the users of From.getNode().  We want these in a nice,
4507  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4508  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4509
4510  while (!Users.empty()) {
4511    // We know that this user uses some value of From.  If it is the right
4512    // value, update it.
4513    SDNode *User = Users.back();
4514    Users.pop_back();
4515
4516    // Scan for an operand that matches From.
4517    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4518    for (; Op != E; ++Op)
4519      if (*Op == From) break;
4520
4521    // If there are no matches, the user must use some other result of From.
4522    if (Op == E) continue;
4523
4524    // Okay, we know this user needs to be updated.  Remove its old self
4525    // from the CSE maps.
4526    RemoveNodeFromCSEMaps(User);
4527
4528    // Update all operands that match "From" in case there are multiple uses.
4529    for (; Op != E; ++Op) {
4530      if (*Op == From) {
4531        From.getNode()->removeUser(Op-User->op_begin(), User);
4532        *Op = To;
4533        Op->setUser(User);
4534        To.getNode()->addUser(Op-User->op_begin(), User);
4535      }
4536    }
4537
4538    // Now that we have modified User, add it back to the CSE maps.  If it
4539    // already exists there, recursively merge the results together.
4540    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4541    if (!Existing) {
4542      if (UpdateListener) UpdateListener->NodeUpdated(User);
4543      continue;  // Continue on to next user.
4544    }
4545
4546    // If there was already an existing matching node, use ReplaceAllUsesWith
4547    // to replace the dead one with the existing one.  This can cause
4548    // recursive merging of other unrelated nodes down the line.
4549    ReplaceAllUsesWith(User, Existing, UpdateListener);
4550
4551    // User is now dead.  Notify a listener if present.
4552    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4553    DeleteNodeNotInCSEMaps(User);
4554  }
4555}
4556
4557/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4558/// uses of other values produced by From.getVal() alone.  The same value may
4559/// appear in both the From and To list.  The Deleted vector is
4560/// handled the same way as for ReplaceAllUsesWith.
4561void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4562                                              const SDValue *To,
4563                                              unsigned Num,
4564                                              DAGUpdateListener *UpdateListener){
4565  // Handle the simple, trivial case efficiently.
4566  if (Num == 1)
4567    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4568
4569  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4570  for (unsigned i = 0; i != Num; ++i)
4571    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4572         E = From[i].getNode()->use_end(); UI != E; ++UI)
4573      Users.push_back(std::make_pair(*UI, i));
4574
4575  while (!Users.empty()) {
4576    // We know that this user uses some value of From.  If it is the right
4577    // value, update it.
4578    SDNode *User = Users.back().first;
4579    unsigned i = Users.back().second;
4580    Users.pop_back();
4581
4582    // Scan for an operand that matches From.
4583    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4584    for (; Op != E; ++Op)
4585      if (*Op == From[i]) break;
4586
4587    // If there are no matches, the user must use some other result of From.
4588    if (Op == E) continue;
4589
4590    // Okay, we know this user needs to be updated.  Remove its old self
4591    // from the CSE maps.
4592    RemoveNodeFromCSEMaps(User);
4593
4594    // Update all operands that match "From" in case there are multiple uses.
4595    for (; Op != E; ++Op) {
4596      if (*Op == From[i]) {
4597        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4598        *Op = To[i];
4599        Op->setUser(User);
4600        To[i].getNode()->addUser(Op-User->op_begin(), User);
4601      }
4602    }
4603
4604    // Now that we have modified User, add it back to the CSE maps.  If it
4605    // already exists there, recursively merge the results together.
4606    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4607    if (!Existing) {
4608      if (UpdateListener) UpdateListener->NodeUpdated(User);
4609      continue;  // Continue on to next user.
4610    }
4611
4612    // If there was already an existing matching node, use ReplaceAllUsesWith
4613    // to replace the dead one with the existing one.  This can cause
4614    // recursive merging of other unrelated nodes down the line.
4615    ReplaceAllUsesWith(User, Existing, UpdateListener);
4616
4617    // User is now dead.  Notify a listener if present.
4618    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4619    DeleteNodeNotInCSEMaps(User);
4620  }
4621}
4622
4623/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4624/// based on their topological order. It returns the maximum id and a vector
4625/// of the SDNodes* in assigned order by reference.
4626unsigned SelectionDAG::AssignTopologicalOrder() {
4627
4628  unsigned DAGSize = 0;
4629
4630  // SortedPos tracks the progress of the algorithm. Nodes before it are
4631  // sorted, nodes after it are unsorted. When the algorithm completes
4632  // it is at the end of the list.
4633  allnodes_iterator SortedPos = allnodes_begin();
4634
4635  // Visit all the nodes. Add nodes with no operands to the TopOrder result
4636  // array immediately. Annotate nodes that do have operands with their
4637  // operand count. Before we do this, the Node Id fields of the nodes
4638  // may contain arbitrary values. After, the Node Id fields for nodes
4639  // before SortedPos will contain the topological sort index, and the
4640  // Node Id fields for nodes At SortedPos and after will contain the
4641  // count of outstanding operands.
4642  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4643    SDNode *N = I++;
4644    unsigned Degree = N->getNumOperands();
4645    if (Degree == 0) {
4646      // A node with no uses, add it to the result array immediately.
4647      N->setNodeId(DAGSize++);
4648      allnodes_iterator Q = N;
4649      if (Q != SortedPos)
4650        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4651      ++SortedPos;
4652    } else {
4653      // Temporarily use the Node Id as scratch space for the degree count.
4654      N->setNodeId(Degree);
4655    }
4656  }
4657
4658  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4659  // such that by the time the end is reached all nodes will be sorted.
4660  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4661    SDNode *N = I;
4662    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4663         UI != UE; ++UI) {
4664      SDNode *P = *UI;
4665      unsigned Degree = P->getNodeId();
4666      --Degree;
4667      if (Degree == 0) {
4668        // All of P's operands are sorted, so P may sorted now.
4669        P->setNodeId(DAGSize++);
4670        if (P != SortedPos)
4671          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4672        ++SortedPos;
4673      } else {
4674        // Update P's outstanding operand count.
4675        P->setNodeId(Degree);
4676      }
4677    }
4678  }
4679
4680  assert(SortedPos == AllNodes.end() &&
4681         "Topological sort incomplete!");
4682  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4683         "First node in topological sort is not the entry token!");
4684  assert(AllNodes.front().getNodeId() == 0 &&
4685         "First node in topological sort has non-zero id!");
4686  assert(AllNodes.front().getNumOperands() == 0 &&
4687         "First node in topological sort has operands!");
4688  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4689         "Last node in topologic sort has unexpected id!");
4690  assert(AllNodes.back().use_empty() &&
4691         "Last node in topologic sort has users!");
4692  assert(DAGSize == allnodes_size() && "TopOrder result count mismatch!");
4693  return DAGSize;
4694}
4695
4696
4697
4698//===----------------------------------------------------------------------===//
4699//                              SDNode Class
4700//===----------------------------------------------------------------------===//
4701
4702// Out-of-line virtual method to give class a home.
4703void SDNode::ANCHOR() {}
4704void UnarySDNode::ANCHOR() {}
4705void BinarySDNode::ANCHOR() {}
4706void TernarySDNode::ANCHOR() {}
4707void HandleSDNode::ANCHOR() {}
4708void ConstantSDNode::ANCHOR() {}
4709void ConstantFPSDNode::ANCHOR() {}
4710void GlobalAddressSDNode::ANCHOR() {}
4711void FrameIndexSDNode::ANCHOR() {}
4712void JumpTableSDNode::ANCHOR() {}
4713void ConstantPoolSDNode::ANCHOR() {}
4714void BasicBlockSDNode::ANCHOR() {}
4715void SrcValueSDNode::ANCHOR() {}
4716void MemOperandSDNode::ANCHOR() {}
4717void RegisterSDNode::ANCHOR() {}
4718void DbgStopPointSDNode::ANCHOR() {}
4719void LabelSDNode::ANCHOR() {}
4720void ExternalSymbolSDNode::ANCHOR() {}
4721void CondCodeSDNode::ANCHOR() {}
4722void ARG_FLAGSSDNode::ANCHOR() {}
4723void VTSDNode::ANCHOR() {}
4724void MemSDNode::ANCHOR() {}
4725void LoadSDNode::ANCHOR() {}
4726void StoreSDNode::ANCHOR() {}
4727void AtomicSDNode::ANCHOR() {}
4728void MemIntrinsicSDNode::ANCHOR() {}
4729void CallSDNode::ANCHOR() {}
4730
4731HandleSDNode::~HandleSDNode() {
4732  DropOperands();
4733}
4734
4735GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4736                                         MVT VT, int64_t o)
4737  : SDNode(isa<GlobalVariable>(GA) &&
4738           cast<GlobalVariable>(GA)->isThreadLocal() ?
4739           // Thread Local
4740           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4741           // Non Thread Local
4742           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4743           getSDVTList(VT)), Offset(o) {
4744  TheGlobal = const_cast<GlobalValue*>(GA);
4745}
4746
4747MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4748                     const Value *srcValue, int SVO,
4749                     unsigned alignment, bool vol)
4750 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4751   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4752
4753  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4754  assert(getAlignment() == alignment && "Alignment representation error!");
4755  assert(isVolatile() == vol && "Volatile representation error!");
4756}
4757
4758MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4759                     unsigned NumOps, MVT memvt, const Value *srcValue,
4760                     int SVO, unsigned alignment, bool vol)
4761   : SDNode(Opc, VTs, Ops, NumOps),
4762     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4763     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
4764  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4765  assert(getAlignment() == alignment && "Alignment representation error!");
4766  assert(isVolatile() == vol && "Volatile representation error!");
4767}
4768
4769/// getMemOperand - Return a MachineMemOperand object describing the memory
4770/// reference performed by this memory reference.
4771MachineMemOperand MemSDNode::getMemOperand() const {
4772  int Flags = 0;
4773  if (isa<LoadSDNode>(this))
4774    Flags = MachineMemOperand::MOLoad;
4775  else if (isa<StoreSDNode>(this))
4776    Flags = MachineMemOperand::MOStore;
4777  else if (isa<AtomicSDNode>(this)) {
4778    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4779  }
4780  else {
4781    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4782    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4783    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4784    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4785  }
4786
4787  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4788  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4789
4790  // Check if the memory reference references a frame index
4791  const FrameIndexSDNode *FI =
4792  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4793  if (!getSrcValue() && FI)
4794    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4795                             Flags, 0, Size, getAlignment());
4796  else
4797    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4798                             Size, getAlignment());
4799}
4800
4801/// Profile - Gather unique data for the node.
4802///
4803void SDNode::Profile(FoldingSetNodeID &ID) const {
4804  AddNodeIDNode(ID, this);
4805}
4806
4807/// getValueTypeList - Return a pointer to the specified value type.
4808///
4809const MVT *SDNode::getValueTypeList(MVT VT) {
4810  if (VT.isExtended()) {
4811    static std::set<MVT, MVT::compareRawBits> EVTs;
4812    return &(*EVTs.insert(VT).first);
4813  } else {
4814    static MVT VTs[MVT::LAST_VALUETYPE];
4815    VTs[VT.getSimpleVT()] = VT;
4816    return &VTs[VT.getSimpleVT()];
4817  }
4818}
4819
4820/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4821/// indicated value.  This method ignores uses of other values defined by this
4822/// operation.
4823bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4824  assert(Value < getNumValues() && "Bad value!");
4825
4826  // TODO: Only iterate over uses of a given value of the node
4827  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4828    if (UI.getUse().getSDValue().getResNo() == Value) {
4829      if (NUses == 0)
4830        return false;
4831      --NUses;
4832    }
4833  }
4834
4835  // Found exactly the right number of uses?
4836  return NUses == 0;
4837}
4838
4839
4840/// hasAnyUseOfValue - Return true if there are any use of the indicated
4841/// value. This method ignores uses of other values defined by this operation.
4842bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4843  assert(Value < getNumValues() && "Bad value!");
4844
4845  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4846    if (UI.getUse().getSDValue().getResNo() == Value)
4847      return true;
4848
4849  return false;
4850}
4851
4852
4853/// isOnlyUserOf - Return true if this node is the only use of N.
4854///
4855bool SDNode::isOnlyUserOf(SDNode *N) const {
4856  bool Seen = false;
4857  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4858    SDNode *User = *I;
4859    if (User == this)
4860      Seen = true;
4861    else
4862      return false;
4863  }
4864
4865  return Seen;
4866}
4867
4868/// isOperand - Return true if this node is an operand of N.
4869///
4870bool SDValue::isOperandOf(SDNode *N) const {
4871  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4872    if (*this == N->getOperand(i))
4873      return true;
4874  return false;
4875}
4876
4877bool SDNode::isOperandOf(SDNode *N) const {
4878  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4879    if (this == N->OperandList[i].getVal())
4880      return true;
4881  return false;
4882}
4883
4884/// reachesChainWithoutSideEffects - Return true if this operand (which must
4885/// be a chain) reaches the specified operand without crossing any
4886/// side-effecting instructions.  In practice, this looks through token
4887/// factors and non-volatile loads.  In order to remain efficient, this only
4888/// looks a couple of nodes in, it does not do an exhaustive search.
4889bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4890                                               unsigned Depth) const {
4891  if (*this == Dest) return true;
4892
4893  // Don't search too deeply, we just want to be able to see through
4894  // TokenFactor's etc.
4895  if (Depth == 0) return false;
4896
4897  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4898  // of the operands of the TF reach dest, then we can do the xform.
4899  if (getOpcode() == ISD::TokenFactor) {
4900    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4901      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4902        return true;
4903    return false;
4904  }
4905
4906  // Loads don't have side effects, look through them.
4907  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4908    if (!Ld->isVolatile())
4909      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4910  }
4911  return false;
4912}
4913
4914
4915static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4916                            SmallPtrSet<SDNode *, 32> &Visited) {
4917  if (found || !Visited.insert(N))
4918    return;
4919
4920  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4921    SDNode *Op = N->getOperand(i).getNode();
4922    if (Op == P) {
4923      found = true;
4924      return;
4925    }
4926    findPredecessor(Op, P, found, Visited);
4927  }
4928}
4929
4930/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4931/// is either an operand of N or it can be reached by recursively traversing
4932/// up the operands.
4933/// NOTE: this is an expensive method. Use it carefully.
4934bool SDNode::isPredecessorOf(SDNode *N) const {
4935  SmallPtrSet<SDNode *, 32> Visited;
4936  bool found = false;
4937  findPredecessor(N, this, found, Visited);
4938  return found;
4939}
4940
4941uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4942  assert(Num < NumOperands && "Invalid child # of SDNode!");
4943  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4944}
4945
4946std::string SDNode::getOperationName(const SelectionDAG *G) const {
4947  switch (getOpcode()) {
4948  default:
4949    if (getOpcode() < ISD::BUILTIN_OP_END)
4950      return "<<Unknown DAG Node>>";
4951    if (isMachineOpcode()) {
4952      if (G)
4953        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4954          if (getMachineOpcode() < TII->getNumOpcodes())
4955            return TII->get(getMachineOpcode()).getName();
4956      return "<<Unknown Machine Node>>";
4957    }
4958    if (G) {
4959      TargetLowering &TLI = G->getTargetLoweringInfo();
4960      const char *Name = TLI.getTargetNodeName(getOpcode());
4961      if (Name) return Name;
4962      return "<<Unknown Target Node>>";
4963    }
4964    return "<<Unknown Node>>";
4965
4966#ifndef NDEBUG
4967  case ISD::DELETED_NODE:
4968    return "<<Deleted Node!>>";
4969#endif
4970  case ISD::PREFETCH:      return "Prefetch";
4971  case ISD::MEMBARRIER:    return "MemBarrier";
4972  case ISD::ATOMIC_CMP_SWAP_8:  return "AtomicCmpSwap8";
4973  case ISD::ATOMIC_SWAP_8:      return "AtomicSwap8";
4974  case ISD::ATOMIC_LOAD_ADD_8:  return "AtomicLoadAdd8";
4975  case ISD::ATOMIC_LOAD_SUB_8:  return "AtomicLoadSub8";
4976  case ISD::ATOMIC_LOAD_AND_8:  return "AtomicLoadAnd8";
4977  case ISD::ATOMIC_LOAD_OR_8:   return "AtomicLoadOr8";
4978  case ISD::ATOMIC_LOAD_XOR_8:  return "AtomicLoadXor8";
4979  case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8";
4980  case ISD::ATOMIC_LOAD_MIN_8:  return "AtomicLoadMin8";
4981  case ISD::ATOMIC_LOAD_MAX_8:  return "AtomicLoadMax8";
4982  case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8";
4983  case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8";
4984  case ISD::ATOMIC_CMP_SWAP_16:  return "AtomicCmpSwap16";
4985  case ISD::ATOMIC_SWAP_16:      return "AtomicSwap16";
4986  case ISD::ATOMIC_LOAD_ADD_16:  return "AtomicLoadAdd16";
4987  case ISD::ATOMIC_LOAD_SUB_16:  return "AtomicLoadSub16";
4988  case ISD::ATOMIC_LOAD_AND_16:  return "AtomicLoadAnd16";
4989  case ISD::ATOMIC_LOAD_OR_16:   return "AtomicLoadOr16";
4990  case ISD::ATOMIC_LOAD_XOR_16:  return "AtomicLoadXor16";
4991  case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16";
4992  case ISD::ATOMIC_LOAD_MIN_16:  return "AtomicLoadMin16";
4993  case ISD::ATOMIC_LOAD_MAX_16:  return "AtomicLoadMax16";
4994  case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16";
4995  case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16";
4996  case ISD::ATOMIC_CMP_SWAP_32:  return "AtomicCmpSwap32";
4997  case ISD::ATOMIC_SWAP_32:      return "AtomicSwap32";
4998  case ISD::ATOMIC_LOAD_ADD_32:  return "AtomicLoadAdd32";
4999  case ISD::ATOMIC_LOAD_SUB_32:  return "AtomicLoadSub32";
5000  case ISD::ATOMIC_LOAD_AND_32:  return "AtomicLoadAnd32";
5001  case ISD::ATOMIC_LOAD_OR_32:   return "AtomicLoadOr32";
5002  case ISD::ATOMIC_LOAD_XOR_32:  return "AtomicLoadXor32";
5003  case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32";
5004  case ISD::ATOMIC_LOAD_MIN_32:  return "AtomicLoadMin32";
5005  case ISD::ATOMIC_LOAD_MAX_32:  return "AtomicLoadMax32";
5006  case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32";
5007  case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32";
5008  case ISD::ATOMIC_CMP_SWAP_64:  return "AtomicCmpSwap64";
5009  case ISD::ATOMIC_SWAP_64:      return "AtomicSwap64";
5010  case ISD::ATOMIC_LOAD_ADD_64:  return "AtomicLoadAdd64";
5011  case ISD::ATOMIC_LOAD_SUB_64:  return "AtomicLoadSub64";
5012  case ISD::ATOMIC_LOAD_AND_64:  return "AtomicLoadAnd64";
5013  case ISD::ATOMIC_LOAD_OR_64:   return "AtomicLoadOr64";
5014  case ISD::ATOMIC_LOAD_XOR_64:  return "AtomicLoadXor64";
5015  case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64";
5016  case ISD::ATOMIC_LOAD_MIN_64:  return "AtomicLoadMin64";
5017  case ISD::ATOMIC_LOAD_MAX_64:  return "AtomicLoadMax64";
5018  case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64";
5019  case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64";
5020  case ISD::PCMARKER:      return "PCMarker";
5021  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5022  case ISD::SRCVALUE:      return "SrcValue";
5023  case ISD::MEMOPERAND:    return "MemOperand";
5024  case ISD::EntryToken:    return "EntryToken";
5025  case ISD::TokenFactor:   return "TokenFactor";
5026  case ISD::AssertSext:    return "AssertSext";
5027  case ISD::AssertZext:    return "AssertZext";
5028
5029  case ISD::BasicBlock:    return "BasicBlock";
5030  case ISD::ARG_FLAGS:     return "ArgFlags";
5031  case ISD::VALUETYPE:     return "ValueType";
5032  case ISD::Register:      return "Register";
5033
5034  case ISD::Constant:      return "Constant";
5035  case ISD::ConstantFP:    return "ConstantFP";
5036  case ISD::GlobalAddress: return "GlobalAddress";
5037  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5038  case ISD::FrameIndex:    return "FrameIndex";
5039  case ISD::JumpTable:     return "JumpTable";
5040  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5041  case ISD::RETURNADDR: return "RETURNADDR";
5042  case ISD::FRAMEADDR: return "FRAMEADDR";
5043  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5044  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5045  case ISD::EHSELECTION: return "EHSELECTION";
5046  case ISD::EH_RETURN: return "EH_RETURN";
5047  case ISD::ConstantPool:  return "ConstantPool";
5048  case ISD::ExternalSymbol: return "ExternalSymbol";
5049  case ISD::INTRINSIC_WO_CHAIN: {
5050    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5051    return Intrinsic::getName((Intrinsic::ID)IID);
5052  }
5053  case ISD::INTRINSIC_VOID:
5054  case ISD::INTRINSIC_W_CHAIN: {
5055    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5056    return Intrinsic::getName((Intrinsic::ID)IID);
5057  }
5058
5059  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5060  case ISD::TargetConstant: return "TargetConstant";
5061  case ISD::TargetConstantFP:return "TargetConstantFP";
5062  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5063  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5064  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5065  case ISD::TargetJumpTable:  return "TargetJumpTable";
5066  case ISD::TargetConstantPool:  return "TargetConstantPool";
5067  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5068
5069  case ISD::CopyToReg:     return "CopyToReg";
5070  case ISD::CopyFromReg:   return "CopyFromReg";
5071  case ISD::UNDEF:         return "undef";
5072  case ISD::MERGE_VALUES:  return "merge_values";
5073  case ISD::INLINEASM:     return "inlineasm";
5074  case ISD::DBG_LABEL:     return "dbg_label";
5075  case ISD::EH_LABEL:      return "eh_label";
5076  case ISD::DECLARE:       return "declare";
5077  case ISD::HANDLENODE:    return "handlenode";
5078  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5079  case ISD::CALL:          return "call";
5080
5081  // Unary operators
5082  case ISD::FABS:   return "fabs";
5083  case ISD::FNEG:   return "fneg";
5084  case ISD::FSQRT:  return "fsqrt";
5085  case ISD::FSIN:   return "fsin";
5086  case ISD::FCOS:   return "fcos";
5087  case ISD::FPOWI:  return "fpowi";
5088  case ISD::FPOW:   return "fpow";
5089  case ISD::FTRUNC: return "ftrunc";
5090  case ISD::FFLOOR: return "ffloor";
5091  case ISD::FCEIL:  return "fceil";
5092  case ISD::FRINT:  return "frint";
5093  case ISD::FNEARBYINT: return "fnearbyint";
5094
5095  // Binary operators
5096  case ISD::ADD:    return "add";
5097  case ISD::SUB:    return "sub";
5098  case ISD::MUL:    return "mul";
5099  case ISD::MULHU:  return "mulhu";
5100  case ISD::MULHS:  return "mulhs";
5101  case ISD::SDIV:   return "sdiv";
5102  case ISD::UDIV:   return "udiv";
5103  case ISD::SREM:   return "srem";
5104  case ISD::UREM:   return "urem";
5105  case ISD::SMUL_LOHI:  return "smul_lohi";
5106  case ISD::UMUL_LOHI:  return "umul_lohi";
5107  case ISD::SDIVREM:    return "sdivrem";
5108  case ISD::UDIVREM:    return "udivrem";
5109  case ISD::AND:    return "and";
5110  case ISD::OR:     return "or";
5111  case ISD::XOR:    return "xor";
5112  case ISD::SHL:    return "shl";
5113  case ISD::SRA:    return "sra";
5114  case ISD::SRL:    return "srl";
5115  case ISD::ROTL:   return "rotl";
5116  case ISD::ROTR:   return "rotr";
5117  case ISD::FADD:   return "fadd";
5118  case ISD::FSUB:   return "fsub";
5119  case ISD::FMUL:   return "fmul";
5120  case ISD::FDIV:   return "fdiv";
5121  case ISD::FREM:   return "frem";
5122  case ISD::FCOPYSIGN: return "fcopysign";
5123  case ISD::FGETSIGN:  return "fgetsign";
5124
5125  case ISD::SETCC:       return "setcc";
5126  case ISD::VSETCC:      return "vsetcc";
5127  case ISD::SELECT:      return "select";
5128  case ISD::SELECT_CC:   return "select_cc";
5129  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5130  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5131  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5132  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5133  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5134  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5135  case ISD::CARRY_FALSE:         return "carry_false";
5136  case ISD::ADDC:        return "addc";
5137  case ISD::ADDE:        return "adde";
5138  case ISD::SUBC:        return "subc";
5139  case ISD::SUBE:        return "sube";
5140  case ISD::SHL_PARTS:   return "shl_parts";
5141  case ISD::SRA_PARTS:   return "sra_parts";
5142  case ISD::SRL_PARTS:   return "srl_parts";
5143
5144  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5145  case ISD::INSERT_SUBREG:      return "insert_subreg";
5146
5147  // Conversion operators.
5148  case ISD::SIGN_EXTEND: return "sign_extend";
5149  case ISD::ZERO_EXTEND: return "zero_extend";
5150  case ISD::ANY_EXTEND:  return "any_extend";
5151  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5152  case ISD::TRUNCATE:    return "truncate";
5153  case ISD::FP_ROUND:    return "fp_round";
5154  case ISD::FLT_ROUNDS_: return "flt_rounds";
5155  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5156  case ISD::FP_EXTEND:   return "fp_extend";
5157
5158  case ISD::SINT_TO_FP:  return "sint_to_fp";
5159  case ISD::UINT_TO_FP:  return "uint_to_fp";
5160  case ISD::FP_TO_SINT:  return "fp_to_sint";
5161  case ISD::FP_TO_UINT:  return "fp_to_uint";
5162  case ISD::BIT_CONVERT: return "bit_convert";
5163
5164    // Control flow instructions
5165  case ISD::BR:      return "br";
5166  case ISD::BRIND:   return "brind";
5167  case ISD::BR_JT:   return "br_jt";
5168  case ISD::BRCOND:  return "brcond";
5169  case ISD::BR_CC:   return "br_cc";
5170  case ISD::RET:     return "ret";
5171  case ISD::CALLSEQ_START:  return "callseq_start";
5172  case ISD::CALLSEQ_END:    return "callseq_end";
5173
5174    // Other operators
5175  case ISD::LOAD:               return "load";
5176  case ISD::STORE:              return "store";
5177  case ISD::VAARG:              return "vaarg";
5178  case ISD::VACOPY:             return "vacopy";
5179  case ISD::VAEND:              return "vaend";
5180  case ISD::VASTART:            return "vastart";
5181  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5182  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5183  case ISD::BUILD_PAIR:         return "build_pair";
5184  case ISD::STACKSAVE:          return "stacksave";
5185  case ISD::STACKRESTORE:       return "stackrestore";
5186  case ISD::TRAP:               return "trap";
5187
5188  // Bit manipulation
5189  case ISD::BSWAP:   return "bswap";
5190  case ISD::CTPOP:   return "ctpop";
5191  case ISD::CTTZ:    return "cttz";
5192  case ISD::CTLZ:    return "ctlz";
5193
5194  // Debug info
5195  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5196  case ISD::DEBUG_LOC: return "debug_loc";
5197
5198  // Trampolines
5199  case ISD::TRAMPOLINE: return "trampoline";
5200
5201  case ISD::CONDCODE:
5202    switch (cast<CondCodeSDNode>(this)->get()) {
5203    default: assert(0 && "Unknown setcc condition!");
5204    case ISD::SETOEQ:  return "setoeq";
5205    case ISD::SETOGT:  return "setogt";
5206    case ISD::SETOGE:  return "setoge";
5207    case ISD::SETOLT:  return "setolt";
5208    case ISD::SETOLE:  return "setole";
5209    case ISD::SETONE:  return "setone";
5210
5211    case ISD::SETO:    return "seto";
5212    case ISD::SETUO:   return "setuo";
5213    case ISD::SETUEQ:  return "setue";
5214    case ISD::SETUGT:  return "setugt";
5215    case ISD::SETUGE:  return "setuge";
5216    case ISD::SETULT:  return "setult";
5217    case ISD::SETULE:  return "setule";
5218    case ISD::SETUNE:  return "setune";
5219
5220    case ISD::SETEQ:   return "seteq";
5221    case ISD::SETGT:   return "setgt";
5222    case ISD::SETGE:   return "setge";
5223    case ISD::SETLT:   return "setlt";
5224    case ISD::SETLE:   return "setle";
5225    case ISD::SETNE:   return "setne";
5226    }
5227  }
5228}
5229
5230const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5231  switch (AM) {
5232  default:
5233    return "";
5234  case ISD::PRE_INC:
5235    return "<pre-inc>";
5236  case ISD::PRE_DEC:
5237    return "<pre-dec>";
5238  case ISD::POST_INC:
5239    return "<post-inc>";
5240  case ISD::POST_DEC:
5241    return "<post-dec>";
5242  }
5243}
5244
5245std::string ISD::ArgFlagsTy::getArgFlagsString() {
5246  std::string S = "< ";
5247
5248  if (isZExt())
5249    S += "zext ";
5250  if (isSExt())
5251    S += "sext ";
5252  if (isInReg())
5253    S += "inreg ";
5254  if (isSRet())
5255    S += "sret ";
5256  if (isByVal())
5257    S += "byval ";
5258  if (isNest())
5259    S += "nest ";
5260  if (getByValAlign())
5261    S += "byval-align:" + utostr(getByValAlign()) + " ";
5262  if (getOrigAlign())
5263    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5264  if (getByValSize())
5265    S += "byval-size:" + utostr(getByValSize()) + " ";
5266  return S + ">";
5267}
5268
5269void SDNode::dump() const { dump(0); }
5270void SDNode::dump(const SelectionDAG *G) const {
5271  print(errs(), G);
5272  errs().flush();
5273}
5274
5275void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5276  OS << (void*)this << ": ";
5277
5278  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5279    if (i) OS << ",";
5280    if (getValueType(i) == MVT::Other)
5281      OS << "ch";
5282    else
5283      OS << getValueType(i).getMVTString();
5284  }
5285  OS << " = " << getOperationName(G);
5286
5287  OS << " ";
5288  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5289    if (i) OS << ", ";
5290    OS << (void*)getOperand(i).getNode();
5291    if (unsigned RN = getOperand(i).getResNo())
5292      OS << ":" << RN;
5293  }
5294
5295  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5296    SDNode *Mask = getOperand(2).getNode();
5297    OS << "<";
5298    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5299      if (i) OS << ",";
5300      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5301        OS << "u";
5302      else
5303        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5304    }
5305    OS << ">";
5306  }
5307
5308  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5309    OS << '<' << CSDN->getAPIntValue() << '>';
5310  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5311    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5312      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5313    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5314      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5315    else {
5316      OS << "<APFloat(";
5317      CSDN->getValueAPF().bitcastToAPInt().dump();
5318      OS << ")>";
5319    }
5320  } else if (const GlobalAddressSDNode *GADN =
5321             dyn_cast<GlobalAddressSDNode>(this)) {
5322    int64_t offset = GADN->getOffset();
5323    OS << '<';
5324    WriteAsOperand(OS, GADN->getGlobal());
5325    OS << '>';
5326    if (offset > 0)
5327      OS << " + " << offset;
5328    else
5329      OS << " " << offset;
5330  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5331    OS << "<" << FIDN->getIndex() << ">";
5332  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5333    OS << "<" << JTDN->getIndex() << ">";
5334  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5335    int offset = CP->getOffset();
5336    if (CP->isMachineConstantPoolEntry())
5337      OS << "<" << *CP->getMachineCPVal() << ">";
5338    else
5339      OS << "<" << *CP->getConstVal() << ">";
5340    if (offset > 0)
5341      OS << " + " << offset;
5342    else
5343      OS << " " << offset;
5344  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5345    OS << "<";
5346    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5347    if (LBB)
5348      OS << LBB->getName() << " ";
5349    OS << (const void*)BBDN->getBasicBlock() << ">";
5350  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5351    if (G && R->getReg() &&
5352        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5353      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5354    } else {
5355      OS << " #" << R->getReg();
5356    }
5357  } else if (const ExternalSymbolSDNode *ES =
5358             dyn_cast<ExternalSymbolSDNode>(this)) {
5359    OS << "'" << ES->getSymbol() << "'";
5360  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5361    if (M->getValue())
5362      OS << "<" << M->getValue() << ">";
5363    else
5364      OS << "<null>";
5365  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5366    if (M->MO.getValue())
5367      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5368    else
5369      OS << "<null:" << M->MO.getOffset() << ">";
5370  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5371    OS << N->getArgFlags().getArgFlagsString();
5372  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5373    OS << ":" << N->getVT().getMVTString();
5374  }
5375  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5376    const Value *SrcValue = LD->getSrcValue();
5377    int SrcOffset = LD->getSrcValueOffset();
5378    OS << " <";
5379    if (SrcValue)
5380      OS << SrcValue;
5381    else
5382      OS << "null";
5383    OS << ":" << SrcOffset << ">";
5384
5385    bool doExt = true;
5386    switch (LD->getExtensionType()) {
5387    default: doExt = false; break;
5388    case ISD::EXTLOAD: OS << " <anyext "; break;
5389    case ISD::SEXTLOAD: OS << " <sext "; break;
5390    case ISD::ZEXTLOAD: OS << " <zext "; break;
5391    }
5392    if (doExt)
5393      OS << LD->getMemoryVT().getMVTString() << ">";
5394
5395    const char *AM = getIndexedModeName(LD->getAddressingMode());
5396    if (*AM)
5397      OS << " " << AM;
5398    if (LD->isVolatile())
5399      OS << " <volatile>";
5400    OS << " alignment=" << LD->getAlignment();
5401  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5402    const Value *SrcValue = ST->getSrcValue();
5403    int SrcOffset = ST->getSrcValueOffset();
5404    OS << " <";
5405    if (SrcValue)
5406      OS << SrcValue;
5407    else
5408      OS << "null";
5409    OS << ":" << SrcOffset << ">";
5410
5411    if (ST->isTruncatingStore())
5412      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5413
5414    const char *AM = getIndexedModeName(ST->getAddressingMode());
5415    if (*AM)
5416      OS << " " << AM;
5417    if (ST->isVolatile())
5418      OS << " <volatile>";
5419    OS << " alignment=" << ST->getAlignment();
5420  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5421    const Value *SrcValue = AT->getSrcValue();
5422    int SrcOffset = AT->getSrcValueOffset();
5423    OS << " <";
5424    if (SrcValue)
5425      OS << SrcValue;
5426    else
5427      OS << "null";
5428    OS << ":" << SrcOffset << ">";
5429    if (AT->isVolatile())
5430      OS << " <volatile>";
5431    OS << " alignment=" << AT->getAlignment();
5432  }
5433}
5434
5435static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5436  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5437    if (N->getOperand(i).getNode()->hasOneUse())
5438      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5439    else
5440      cerr << "\n" << std::string(indent+2, ' ')
5441           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5442
5443
5444  cerr << "\n" << std::string(indent, ' ');
5445  N->dump(G);
5446}
5447
5448void SelectionDAG::dump() const {
5449  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5450
5451  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5452       I != E; ++I) {
5453    const SDNode *N = I;
5454    if (!N->hasOneUse() && N != getRoot().getNode())
5455      DumpNodes(N, 2, this);
5456  }
5457
5458  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5459
5460  cerr << "\n\n";
5461}
5462
5463const Type *ConstantPoolSDNode::getType() const {
5464  if (isMachineConstantPoolEntry())
5465    return Val.MachineCPVal->getType();
5466  return Val.ConstVal->getType();
5467}
5468