SelectionDAG.cpp revision af23f8e403d68e3f96eb5eb63e50e3aec4ea01c9
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeDbgValue.h"
16#include "SDNodeOrdering.h"
17#include "llvm/ADT/SetVector.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/Analysis/TargetTransformInfo.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CodeGen/MachineBasicBlock.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/DebugInfo.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/Constants.h"
32#include "llvm/IR/DataLayout.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/GlobalAlias.h"
36#include "llvm/IR/GlobalVariable.h"
37#include "llvm/IR/Intrinsics.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/ManagedStatic.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/Mutex.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetIntrinsicInfo.h"
47#include "llvm/Target/TargetLowering.h"
48#include "llvm/Target/TargetMachine.h"
49#include "llvm/Target/TargetOptions.h"
50#include "llvm/Target/TargetRegisterInfo.h"
51#include "llvm/Target/TargetSelectionDAGInfo.h"
52#include <algorithm>
53#include <cmath>
54using namespace llvm;
55
56/// makeVTList - Return an instance of the SDVTList struct initialized with the
57/// specified members.
58static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59  SDVTList Res = {VTs, NumVTs};
60  return Res;
61}
62
63// Default null implementations of the callbacks.
64void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
65void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
66
67//===----------------------------------------------------------------------===//
68//                              ConstantFPSDNode Class
69//===----------------------------------------------------------------------===//
70
71/// isExactlyValue - We don't rely on operator== working on double values, as
72/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
73/// As such, this method can be used to do an exact bit-for-bit comparison of
74/// two floating point values.
75bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
76  return getValueAPF().bitwiseIsEqual(V);
77}
78
79bool ConstantFPSDNode::isValueValidForType(EVT VT,
80                                           const APFloat& Val) {
81  assert(VT.isFloatingPoint() && "Can only convert between FP types");
82
83  // convert modifies in place, so make a copy.
84  APFloat Val2 = APFloat(Val);
85  bool losesInfo;
86  (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
87                      APFloat::rmNearestTiesToEven,
88                      &losesInfo);
89  return !losesInfo;
90}
91
92//===----------------------------------------------------------------------===//
93//                              ISD Namespace
94//===----------------------------------------------------------------------===//
95
96/// isBuildVectorAllOnes - Return true if the specified node is a
97/// BUILD_VECTOR where all of the elements are ~0 or undef.
98bool ISD::isBuildVectorAllOnes(const SDNode *N) {
99  // Look through a bit convert.
100  if (N->getOpcode() == ISD::BITCAST)
101    N = N->getOperand(0).getNode();
102
103  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
104
105  unsigned i = 0, e = N->getNumOperands();
106
107  // Skip over all of the undef values.
108  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
109    ++i;
110
111  // Do not accept an all-undef vector.
112  if (i == e) return false;
113
114  // Do not accept build_vectors that aren't all constants or which have non-~0
115  // elements. We have to be a bit careful here, as the type of the constant
116  // may not be the same as the type of the vector elements due to type
117  // legalization (the elements are promoted to a legal type for the target and
118  // a vector of a type may be legal when the base element type is not).
119  // We only want to check enough bits to cover the vector elements, because
120  // we care if the resultant vector is all ones, not whether the individual
121  // constants are.
122  SDValue NotZero = N->getOperand(i);
123  unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
124  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
125    if (CN->getAPIntValue().countTrailingOnes() < EltSize)
126      return false;
127  } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
128    if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
129      return false;
130  } else
131    return false;
132
133  // Okay, we have at least one ~0 value, check to see if the rest match or are
134  // undefs. Even with the above element type twiddling, this should be OK, as
135  // the same type legalization should have applied to all the elements.
136  for (++i; i != e; ++i)
137    if (N->getOperand(i) != NotZero &&
138        N->getOperand(i).getOpcode() != ISD::UNDEF)
139      return false;
140  return true;
141}
142
143
144/// isBuildVectorAllZeros - Return true if the specified node is a
145/// BUILD_VECTOR where all of the elements are 0 or undef.
146bool ISD::isBuildVectorAllZeros(const SDNode *N) {
147  // Look through a bit convert.
148  if (N->getOpcode() == ISD::BITCAST)
149    N = N->getOperand(0).getNode();
150
151  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
152
153  unsigned i = 0, e = N->getNumOperands();
154
155  // Skip over all of the undef values.
156  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
157    ++i;
158
159  // Do not accept an all-undef vector.
160  if (i == e) return false;
161
162  // Do not accept build_vectors that aren't all constants or which have non-0
163  // elements.
164  SDValue Zero = N->getOperand(i);
165  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Zero)) {
166    if (!CN->isNullValue())
167      return false;
168  } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Zero)) {
169    if (!CFPN->getValueAPF().isPosZero())
170      return false;
171  } else
172    return false;
173
174  // Okay, we have at least one 0 value, check to see if the rest match or are
175  // undefs.
176  for (++i; i != e; ++i)
177    if (N->getOperand(i) != Zero &&
178        N->getOperand(i).getOpcode() != ISD::UNDEF)
179      return false;
180  return true;
181}
182
183/// isScalarToVector - Return true if the specified node is a
184/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
185/// element is not an undef.
186bool ISD::isScalarToVector(const SDNode *N) {
187  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
188    return true;
189
190  if (N->getOpcode() != ISD::BUILD_VECTOR)
191    return false;
192  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
193    return false;
194  unsigned NumElems = N->getNumOperands();
195  if (NumElems == 1)
196    return false;
197  for (unsigned i = 1; i < NumElems; ++i) {
198    SDValue V = N->getOperand(i);
199    if (V.getOpcode() != ISD::UNDEF)
200      return false;
201  }
202  return true;
203}
204
205/// allOperandsUndef - Return true if the node has at least one operand
206/// and all operands of the specified node are ISD::UNDEF.
207bool ISD::allOperandsUndef(const SDNode *N) {
208  // Return false if the node has no operands.
209  // This is "logically inconsistent" with the definition of "all" but
210  // is probably the desired behavior.
211  if (N->getNumOperands() == 0)
212    return false;
213
214  for (unsigned i = 0, e = N->getNumOperands(); i != e ; ++i)
215    if (N->getOperand(i).getOpcode() != ISD::UNDEF)
216      return false;
217
218  return true;
219}
220
221/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
222/// when given the operation for (X op Y).
223ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
224  // To perform this operation, we just need to swap the L and G bits of the
225  // operation.
226  unsigned OldL = (Operation >> 2) & 1;
227  unsigned OldG = (Operation >> 1) & 1;
228  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
229                       (OldL << 1) |       // New G bit
230                       (OldG << 2));       // New L bit.
231}
232
233/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
234/// 'op' is a valid SetCC operation.
235ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
236  unsigned Operation = Op;
237  if (isInteger)
238    Operation ^= 7;   // Flip L, G, E bits, but not U.
239  else
240    Operation ^= 15;  // Flip all of the condition bits.
241
242  if (Operation > ISD::SETTRUE2)
243    Operation &= ~8;  // Don't let N and U bits get set.
244
245  return ISD::CondCode(Operation);
246}
247
248
249/// isSignedOp - For an integer comparison, return 1 if the comparison is a
250/// signed operation and 2 if the result is an unsigned comparison.  Return zero
251/// if the operation does not depend on the sign of the input (setne and seteq).
252static int isSignedOp(ISD::CondCode Opcode) {
253  switch (Opcode) {
254  default: llvm_unreachable("Illegal integer setcc operation!");
255  case ISD::SETEQ:
256  case ISD::SETNE: return 0;
257  case ISD::SETLT:
258  case ISD::SETLE:
259  case ISD::SETGT:
260  case ISD::SETGE: return 1;
261  case ISD::SETULT:
262  case ISD::SETULE:
263  case ISD::SETUGT:
264  case ISD::SETUGE: return 2;
265  }
266}
267
268/// getSetCCOrOperation - Return the result of a logical OR between different
269/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
270/// returns SETCC_INVALID if it is not possible to represent the resultant
271/// comparison.
272ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
273                                       bool isInteger) {
274  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
275    // Cannot fold a signed integer setcc with an unsigned integer setcc.
276    return ISD::SETCC_INVALID;
277
278  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
279
280  // If the N and U bits get set then the resultant comparison DOES suddenly
281  // care about orderedness, and is true when ordered.
282  if (Op > ISD::SETTRUE2)
283    Op &= ~16;     // Clear the U bit if the N bit is set.
284
285  // Canonicalize illegal integer setcc's.
286  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
287    Op = ISD::SETNE;
288
289  return ISD::CondCode(Op);
290}
291
292/// getSetCCAndOperation - Return the result of a logical AND between different
293/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
294/// function returns zero if it is not possible to represent the resultant
295/// comparison.
296ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
297                                        bool isInteger) {
298  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
299    // Cannot fold a signed setcc with an unsigned setcc.
300    return ISD::SETCC_INVALID;
301
302  // Combine all of the condition bits.
303  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
304
305  // Canonicalize illegal integer setcc's.
306  if (isInteger) {
307    switch (Result) {
308    default: break;
309    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
310    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
311    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
312    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
313    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
314    }
315  }
316
317  return Result;
318}
319
320//===----------------------------------------------------------------------===//
321//                           SDNode Profile Support
322//===----------------------------------------------------------------------===//
323
324/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
325///
326static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
327  ID.AddInteger(OpC);
328}
329
330/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
331/// solely with their pointer.
332static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
333  ID.AddPointer(VTList.VTs);
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDValue *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
347///
348static void AddNodeIDOperands(FoldingSetNodeID &ID,
349                              const SDUse *Ops, unsigned NumOps) {
350  for (; NumOps; --NumOps, ++Ops) {
351    ID.AddPointer(Ops->getNode());
352    ID.AddInteger(Ops->getResNo());
353  }
354}
355
356static void AddNodeIDNode(FoldingSetNodeID &ID,
357                          unsigned short OpC, SDVTList VTList,
358                          const SDValue *OpList, unsigned N) {
359  AddNodeIDOpcode(ID, OpC);
360  AddNodeIDValueTypes(ID, VTList);
361  AddNodeIDOperands(ID, OpList, N);
362}
363
364/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
365/// the NodeID data.
366static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
367  switch (N->getOpcode()) {
368  case ISD::TargetExternalSymbol:
369  case ISD::ExternalSymbol:
370    llvm_unreachable("Should only be used on nodes with operands");
371  default: break;  // Normal nodes don't need extra info.
372  case ISD::TargetConstant:
373  case ISD::Constant:
374    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
375    break;
376  case ISD::TargetConstantFP:
377  case ISD::ConstantFP: {
378    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
379    break;
380  }
381  case ISD::TargetGlobalAddress:
382  case ISD::GlobalAddress:
383  case ISD::TargetGlobalTLSAddress:
384  case ISD::GlobalTLSAddress: {
385    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
386    ID.AddPointer(GA->getGlobal());
387    ID.AddInteger(GA->getOffset());
388    ID.AddInteger(GA->getTargetFlags());
389    ID.AddInteger(GA->getAddressSpace());
390    break;
391  }
392  case ISD::BasicBlock:
393    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
394    break;
395  case ISD::Register:
396    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
397    break;
398  case ISD::RegisterMask:
399    ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
400    break;
401  case ISD::SRCVALUE:
402    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
403    break;
404  case ISD::FrameIndex:
405  case ISD::TargetFrameIndex:
406    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
407    break;
408  case ISD::JumpTable:
409  case ISD::TargetJumpTable:
410    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    ID.AddInteger(CP->getTargetFlags());
423    break;
424  }
425  case ISD::TargetIndex: {
426    const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
427    ID.AddInteger(TI->getIndex());
428    ID.AddInteger(TI->getOffset());
429    ID.AddInteger(TI->getTargetFlags());
430    break;
431  }
432  case ISD::LOAD: {
433    const LoadSDNode *LD = cast<LoadSDNode>(N);
434    ID.AddInteger(LD->getMemoryVT().getRawBits());
435    ID.AddInteger(LD->getRawSubclassData());
436    ID.AddInteger(LD->getPointerInfo().getAddrSpace());
437    break;
438  }
439  case ISD::STORE: {
440    const StoreSDNode *ST = cast<StoreSDNode>(N);
441    ID.AddInteger(ST->getMemoryVT().getRawBits());
442    ID.AddInteger(ST->getRawSubclassData());
443    ID.AddInteger(ST->getPointerInfo().getAddrSpace());
444    break;
445  }
446  case ISD::ATOMIC_CMP_SWAP:
447  case ISD::ATOMIC_SWAP:
448  case ISD::ATOMIC_LOAD_ADD:
449  case ISD::ATOMIC_LOAD_SUB:
450  case ISD::ATOMIC_LOAD_AND:
451  case ISD::ATOMIC_LOAD_OR:
452  case ISD::ATOMIC_LOAD_XOR:
453  case ISD::ATOMIC_LOAD_NAND:
454  case ISD::ATOMIC_LOAD_MIN:
455  case ISD::ATOMIC_LOAD_MAX:
456  case ISD::ATOMIC_LOAD_UMIN:
457  case ISD::ATOMIC_LOAD_UMAX:
458  case ISD::ATOMIC_LOAD:
459  case ISD::ATOMIC_STORE: {
460    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
461    ID.AddInteger(AT->getMemoryVT().getRawBits());
462    ID.AddInteger(AT->getRawSubclassData());
463    ID.AddInteger(AT->getPointerInfo().getAddrSpace());
464    break;
465  }
466  case ISD::PREFETCH: {
467    const MemSDNode *PF = cast<MemSDNode>(N);
468    ID.AddInteger(PF->getPointerInfo().getAddrSpace());
469    break;
470  }
471  case ISD::VECTOR_SHUFFLE: {
472    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
473    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
474         i != e; ++i)
475      ID.AddInteger(SVN->getMaskElt(i));
476    break;
477  }
478  case ISD::TargetBlockAddress:
479  case ISD::BlockAddress: {
480    const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
481    ID.AddPointer(BA->getBlockAddress());
482    ID.AddInteger(BA->getOffset());
483    ID.AddInteger(BA->getTargetFlags());
484    break;
485  }
486  } // end switch (N->getOpcode())
487
488  // Target specific memory nodes could also have address spaces to check.
489  if (N->isTargetMemoryOpcode())
490    ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
491}
492
493/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
494/// data.
495static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
496  AddNodeIDOpcode(ID, N->getOpcode());
497  // Add the return value info.
498  AddNodeIDValueTypes(ID, N->getVTList());
499  // Add the operand info.
500  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
501
502  // Handle SDNode leafs with special info.
503  AddNodeIDCustom(ID, N);
504}
505
506/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
507/// the CSE map that carries volatility, temporalness, indexing mode, and
508/// extension/truncation information.
509///
510static inline unsigned
511encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
512                     bool isNonTemporal, bool isInvariant) {
513  assert((ConvType & 3) == ConvType &&
514         "ConvType may not require more than 2 bits!");
515  assert((AM & 7) == AM &&
516         "AM may not require more than 3 bits!");
517  return ConvType |
518         (AM << 2) |
519         (isVolatile << 5) |
520         (isNonTemporal << 6) |
521         (isInvariant << 7);
522}
523
524//===----------------------------------------------------------------------===//
525//                              SelectionDAG Class
526//===----------------------------------------------------------------------===//
527
528/// doNotCSE - Return true if CSE should not be performed for this node.
529static bool doNotCSE(SDNode *N) {
530  if (N->getValueType(0) == MVT::Glue)
531    return true; // Never CSE anything that produces a flag.
532
533  switch (N->getOpcode()) {
534  default: break;
535  case ISD::HANDLENODE:
536  case ISD::EH_LABEL:
537    return true;   // Never CSE these nodes.
538  }
539
540  // Check that remaining values produced are not flags.
541  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
542    if (N->getValueType(i) == MVT::Glue)
543      return true; // Never CSE anything that produces a flag.
544
545  return false;
546}
547
548/// RemoveDeadNodes - This method deletes all unreachable nodes in the
549/// SelectionDAG.
550void SelectionDAG::RemoveDeadNodes() {
551  // Create a dummy node (which is not added to allnodes), that adds a reference
552  // to the root node, preventing it from being deleted.
553  HandleSDNode Dummy(getRoot());
554
555  SmallVector<SDNode*, 128> DeadNodes;
556
557  // Add all obviously-dead nodes to the DeadNodes worklist.
558  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
559    if (I->use_empty())
560      DeadNodes.push_back(I);
561
562  RemoveDeadNodes(DeadNodes);
563
564  // If the root changed (e.g. it was a dead load, update the root).
565  setRoot(Dummy.getValue());
566}
567
568/// RemoveDeadNodes - This method deletes the unreachable nodes in the
569/// given list, and any nodes that become unreachable as a result.
570void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
571
572  // Process the worklist, deleting the nodes and adding their uses to the
573  // worklist.
574  while (!DeadNodes.empty()) {
575    SDNode *N = DeadNodes.pop_back_val();
576
577    for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
578      DUL->NodeDeleted(N, 0);
579
580    // Take the node out of the appropriate CSE map.
581    RemoveNodeFromCSEMaps(N);
582
583    // Next, brutally remove the operand list.  This is safe to do, as there are
584    // no cycles in the graph.
585    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
586      SDUse &Use = *I++;
587      SDNode *Operand = Use.getNode();
588      Use.set(SDValue());
589
590      // Now that we removed this operand, see if there are no uses of it left.
591      if (Operand->use_empty())
592        DeadNodes.push_back(Operand);
593    }
594
595    DeallocateNode(N);
596  }
597}
598
599void SelectionDAG::RemoveDeadNode(SDNode *N){
600  SmallVector<SDNode*, 16> DeadNodes(1, N);
601
602  // Create a dummy node that adds a reference to the root node, preventing
603  // it from being deleted.  (This matters if the root is an operand of the
604  // dead node.)
605  HandleSDNode Dummy(getRoot());
606
607  RemoveDeadNodes(DeadNodes);
608}
609
610void SelectionDAG::DeleteNode(SDNode *N) {
611  // First take this out of the appropriate CSE map.
612  RemoveNodeFromCSEMaps(N);
613
614  // Finally, remove uses due to operands of this node, remove from the
615  // AllNodes list, and delete the node.
616  DeleteNodeNotInCSEMaps(N);
617}
618
619void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
620  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
621  assert(N->use_empty() && "Cannot delete a node that is not dead!");
622
623  // Drop all of the operands and decrement used node's use counts.
624  N->DropOperands();
625
626  DeallocateNode(N);
627}
628
629void SelectionDAG::DeallocateNode(SDNode *N) {
630  if (N->OperandsNeedDelete)
631    delete[] N->OperandList;
632
633  // Set the opcode to DELETED_NODE to help catch bugs when node
634  // memory is reallocated.
635  N->NodeType = ISD::DELETED_NODE;
636
637  NodeAllocator.Deallocate(AllNodes.remove(N));
638
639  // Remove the ordering of this node.
640  Ordering->remove(N);
641
642  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
643  ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N);
644  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
645    DbgVals[i]->setIsInvalidated();
646}
647
648/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
649/// correspond to it.  This is useful when we're about to delete or repurpose
650/// the node.  We don't want future request for structurally identical nodes
651/// to return N anymore.
652bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
653  bool Erased = false;
654  switch (N->getOpcode()) {
655  case ISD::HANDLENODE: return false;  // noop.
656  case ISD::CONDCODE:
657    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
658           "Cond code doesn't exist!");
659    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
660    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
661    break;
662  case ISD::ExternalSymbol:
663    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
664    break;
665  case ISD::TargetExternalSymbol: {
666    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
667    Erased = TargetExternalSymbols.erase(
668               std::pair<std::string,unsigned char>(ESN->getSymbol(),
669                                                    ESN->getTargetFlags()));
670    break;
671  }
672  case ISD::VALUETYPE: {
673    EVT VT = cast<VTSDNode>(N)->getVT();
674    if (VT.isExtended()) {
675      Erased = ExtendedValueTypeNodes.erase(VT);
676    } else {
677      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
678      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
679    }
680    break;
681  }
682  default:
683    // Remove it from the CSE Map.
684    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
685    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
686    Erased = CSEMap.RemoveNode(N);
687    break;
688  }
689#ifndef NDEBUG
690  // Verify that the node was actually in one of the CSE maps, unless it has a
691  // flag result (which cannot be CSE'd) or is one of the special cases that are
692  // not subject to CSE.
693  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
694      !N->isMachineOpcode() && !doNotCSE(N)) {
695    N->dump(this);
696    dbgs() << "\n";
697    llvm_unreachable("Node is not in map!");
698  }
699#endif
700  return Erased;
701}
702
703/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
704/// maps and modified in place. Add it back to the CSE maps, unless an identical
705/// node already exists, in which case transfer all its users to the existing
706/// node. This transfer can potentially trigger recursive merging.
707///
708void
709SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
710  // For node types that aren't CSE'd, just act as if no identical node
711  // already exists.
712  if (!doNotCSE(N)) {
713    SDNode *Existing = CSEMap.GetOrInsertNode(N);
714    if (Existing != N) {
715      // If there was already an existing matching node, use ReplaceAllUsesWith
716      // to replace the dead one with the existing one.  This can cause
717      // recursive merging of other unrelated nodes down the line.
718      ReplaceAllUsesWith(N, Existing);
719
720      // N is now dead. Inform the listeners and delete it.
721      for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
722        DUL->NodeDeleted(N, Existing);
723      DeleteNodeNotInCSEMaps(N);
724      return;
725    }
726  }
727
728  // If the node doesn't already exist, we updated it.  Inform listeners.
729  for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
730    DUL->NodeUpdated(N);
731}
732
733/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
734/// were replaced with those specified.  If this node is never memoized,
735/// return null, otherwise return a pointer to the slot it would take.  If a
736/// node already exists with these operands, the slot will be non-null.
737SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
738                                           void *&InsertPos) {
739  if (doNotCSE(N))
740    return 0;
741
742  SDValue Ops[] = { Op };
743  FoldingSetNodeID ID;
744  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
745  AddNodeIDCustom(ID, N);
746  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
747  return Node;
748}
749
750/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
751/// were replaced with those specified.  If this node is never memoized,
752/// return null, otherwise return a pointer to the slot it would take.  If a
753/// node already exists with these operands, the slot will be non-null.
754SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
755                                           SDValue Op1, SDValue Op2,
756                                           void *&InsertPos) {
757  if (doNotCSE(N))
758    return 0;
759
760  SDValue Ops[] = { Op1, Op2 };
761  FoldingSetNodeID ID;
762  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
763  AddNodeIDCustom(ID, N);
764  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
765  return Node;
766}
767
768
769/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
770/// were replaced with those specified.  If this node is never memoized,
771/// return null, otherwise return a pointer to the slot it would take.  If a
772/// node already exists with these operands, the slot will be non-null.
773SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
774                                           const SDValue *Ops,unsigned NumOps,
775                                           void *&InsertPos) {
776  if (doNotCSE(N))
777    return 0;
778
779  FoldingSetNodeID ID;
780  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
781  AddNodeIDCustom(ID, N);
782  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
783  return Node;
784}
785
786#ifndef NDEBUG
787/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
788static void VerifyNodeCommon(SDNode *N) {
789  switch (N->getOpcode()) {
790  default:
791    break;
792  case ISD::BUILD_PAIR: {
793    EVT VT = N->getValueType(0);
794    assert(N->getNumValues() == 1 && "Too many results!");
795    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
796           "Wrong return type!");
797    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
798    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
799           "Mismatched operand types!");
800    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
801           "Wrong operand type!");
802    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
803           "Wrong return type size");
804    break;
805  }
806  case ISD::BUILD_VECTOR: {
807    assert(N->getNumValues() == 1 && "Too many results!");
808    assert(N->getValueType(0).isVector() && "Wrong return type!");
809    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
810           "Wrong number of operands!");
811    EVT EltVT = N->getValueType(0).getVectorElementType();
812    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
813      assert((I->getValueType() == EltVT ||
814             (EltVT.isInteger() && I->getValueType().isInteger() &&
815              EltVT.bitsLE(I->getValueType()))) &&
816            "Wrong operand type!");
817      assert(I->getValueType() == N->getOperand(0).getValueType() &&
818             "Operands must all have the same type");
819    }
820    break;
821  }
822  }
823}
824
825/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
826static void VerifySDNode(SDNode *N) {
827  // The SDNode allocators cannot be used to allocate nodes with fields that are
828  // not present in an SDNode!
829  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
830  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
831  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
832  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
833  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
834  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
835  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
836  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
837  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
838  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
839  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
840  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
841  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
842  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
843  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
844  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
845  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
846  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
847  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
848
849  VerifyNodeCommon(N);
850}
851
852/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
853/// invalid.
854static void VerifyMachineNode(SDNode *N) {
855  // The MachineNode allocators cannot be used to allocate nodes with fields
856  // that are not present in a MachineNode!
857  // Currently there are no such nodes.
858
859  VerifyNodeCommon(N);
860}
861#endif // NDEBUG
862
863/// getEVTAlignment - Compute the default alignment value for the
864/// given type.
865///
866unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
867  Type *Ty = VT == MVT::iPTR ?
868                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
869                   VT.getTypeForEVT(*getContext());
870
871  return TLI.getDataLayout()->getABITypeAlignment(Ty);
872}
873
874// EntryNode could meaningfully have debug info if we can find it...
875SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
876  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
877    TTI(0), OptLevel(OL), EntryNode(ISD::EntryToken, DebugLoc(),
878                                    getVTList(MVT::Other)),
879    Root(getEntryNode()), Ordering(0), UpdateListeners(0) {
880  AllNodes.push_back(&EntryNode);
881  Ordering = new SDNodeOrdering();
882  DbgInfo = new SDDbgInfo();
883}
884
885void SelectionDAG::init(MachineFunction &mf, const TargetTransformInfo *tti) {
886  MF = &mf;
887  TTI = tti;
888  Context = &mf.getFunction()->getContext();
889}
890
891SelectionDAG::~SelectionDAG() {
892  assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
893  allnodes_clear();
894  delete Ordering;
895  delete DbgInfo;
896}
897
898void SelectionDAG::allnodes_clear() {
899  assert(&*AllNodes.begin() == &EntryNode);
900  AllNodes.remove(AllNodes.begin());
901  while (!AllNodes.empty())
902    DeallocateNode(AllNodes.begin());
903}
904
905void SelectionDAG::clear() {
906  allnodes_clear();
907  OperandAllocator.Reset();
908  CSEMap.clear();
909
910  ExtendedValueTypeNodes.clear();
911  ExternalSymbols.clear();
912  TargetExternalSymbols.clear();
913  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
914            static_cast<CondCodeSDNode*>(0));
915  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
916            static_cast<SDNode*>(0));
917
918  EntryNode.UseList = 0;
919  AllNodes.push_back(&EntryNode);
920  Root = getEntryNode();
921  Ordering->clear();
922  DbgInfo->clear();
923}
924
925SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
926  return VT.bitsGT(Op.getValueType()) ?
927    getNode(ISD::ANY_EXTEND, DL, VT, Op) :
928    getNode(ISD::TRUNCATE, DL, VT, Op);
929}
930
931SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
932  return VT.bitsGT(Op.getValueType()) ?
933    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
934    getNode(ISD::TRUNCATE, DL, VT, Op);
935}
936
937SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
938  return VT.bitsGT(Op.getValueType()) ?
939    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
940    getNode(ISD::TRUNCATE, DL, VT, Op);
941}
942
943SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
944  assert(!VT.isVector() &&
945         "getZeroExtendInReg should use the vector element type instead of "
946         "the vector type!");
947  if (Op.getValueType() == VT) return Op;
948  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
949  APInt Imm = APInt::getLowBitsSet(BitWidth,
950                                   VT.getSizeInBits());
951  return getNode(ISD::AND, DL, Op.getValueType(), Op,
952                 getConstant(Imm, Op.getValueType()));
953}
954
955/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
956///
957SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
958  EVT EltVT = VT.getScalarType();
959  SDValue NegOne =
960    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
961  return getNode(ISD::XOR, DL, VT, Val, NegOne);
962}
963
964SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
965  EVT EltVT = VT.getScalarType();
966  assert((EltVT.getSizeInBits() >= 64 ||
967         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
968         "getConstant with a uint64_t value that doesn't fit in the type!");
969  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
970}
971
972SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
973  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
974}
975
976SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
977  assert(VT.isInteger() && "Cannot create FP integer constant!");
978
979  EVT EltVT = VT.getScalarType();
980  const ConstantInt *Elt = &Val;
981
982  // In some cases the vector type is legal but the element type is illegal and
983  // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
984  // inserted value (the type does not need to match the vector element type).
985  // Any extra bits introduced will be truncated away.
986  if (VT.isVector() && TLI.getTypeAction(*getContext(), EltVT) ==
987      TargetLowering::TypePromoteInteger) {
988   EltVT = TLI.getTypeToTransformTo(*getContext(), EltVT);
989   APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
990   Elt = ConstantInt::get(*getContext(), NewVal);
991  }
992
993  assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
994         "APInt size does not match type size!");
995  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
996  FoldingSetNodeID ID;
997  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
998  ID.AddPointer(Elt);
999  void *IP = 0;
1000  SDNode *N = NULL;
1001  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
1002    if (!VT.isVector())
1003      return SDValue(N, 0);
1004
1005  if (!N) {
1006    N = new (NodeAllocator) ConstantSDNode(isT, Elt, EltVT);
1007    CSEMap.InsertNode(N, IP);
1008    AllNodes.push_back(N);
1009  }
1010
1011  SDValue Result(N, 0);
1012  if (VT.isVector()) {
1013    SmallVector<SDValue, 8> Ops;
1014    Ops.assign(VT.getVectorNumElements(), Result);
1015    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
1016  }
1017  return Result;
1018}
1019
1020SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
1021  return getConstant(Val, TLI.getPointerTy(), isTarget);
1022}
1023
1024
1025SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
1026  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
1027}
1028
1029SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
1030  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1031
1032  EVT EltVT = VT.getScalarType();
1033
1034  // Do the map lookup using the actual bit pattern for the floating point
1035  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1036  // we don't have issues with SNANs.
1037  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1038  FoldingSetNodeID ID;
1039  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
1040  ID.AddPointer(&V);
1041  void *IP = 0;
1042  SDNode *N = NULL;
1043  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
1044    if (!VT.isVector())
1045      return SDValue(N, 0);
1046
1047  if (!N) {
1048    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
1049    CSEMap.InsertNode(N, IP);
1050    AllNodes.push_back(N);
1051  }
1052
1053  SDValue Result(N, 0);
1054  if (VT.isVector()) {
1055    SmallVector<SDValue, 8> Ops;
1056    Ops.assign(VT.getVectorNumElements(), Result);
1057    // FIXME DebugLoc info might be appropriate here
1058    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
1059  }
1060  return Result;
1061}
1062
1063SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1064  EVT EltVT = VT.getScalarType();
1065  if (EltVT==MVT::f32)
1066    return getConstantFP(APFloat((float)Val), VT, isTarget);
1067  else if (EltVT==MVT::f64)
1068    return getConstantFP(APFloat(Val), VT, isTarget);
1069  else if (EltVT==MVT::f80 || EltVT==MVT::f128 || EltVT==MVT::ppcf128 ||
1070           EltVT==MVT::f16) {
1071    bool ignored;
1072    APFloat apf = APFloat(Val);
1073    apf.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1074                &ignored);
1075    return getConstantFP(apf, VT, isTarget);
1076  } else
1077    llvm_unreachable("Unsupported type in getConstantFP");
1078}
1079
1080SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1081                                       EVT VT, int64_t Offset,
1082                                       bool isTargetGA,
1083                                       unsigned char TargetFlags) {
1084  assert((TargetFlags == 0 || isTargetGA) &&
1085         "Cannot set target flags on target-independent globals");
1086
1087  // Truncate (with sign-extension) the offset value to the pointer size.
1088  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
1089  if (BitWidth < 64)
1090    Offset = SignExtend64(Offset, BitWidth);
1091
1092  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1093  if (!GVar) {
1094    // If GV is an alias then use the aliasee for determining thread-localness.
1095    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1096      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1097  }
1098
1099  unsigned Opc;
1100  if (GVar && GVar->isThreadLocal())
1101    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1102  else
1103    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1104
1105  FoldingSetNodeID ID;
1106  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1107  ID.AddPointer(GV);
1108  ID.AddInteger(Offset);
1109  ID.AddInteger(TargetFlags);
1110  ID.AddInteger(GV->getType()->getAddressSpace());
1111  void *IP = 0;
1112  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1113    return SDValue(E, 0);
1114
1115  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1116                                                      Offset, TargetFlags);
1117  CSEMap.InsertNode(N, IP);
1118  AllNodes.push_back(N);
1119  return SDValue(N, 0);
1120}
1121
1122SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1123  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1124  FoldingSetNodeID ID;
1125  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1126  ID.AddInteger(FI);
1127  void *IP = 0;
1128  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1129    return SDValue(E, 0);
1130
1131  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1132  CSEMap.InsertNode(N, IP);
1133  AllNodes.push_back(N);
1134  return SDValue(N, 0);
1135}
1136
1137SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1138                                   unsigned char TargetFlags) {
1139  assert((TargetFlags == 0 || isTarget) &&
1140         "Cannot set target flags on target-independent jump tables");
1141  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1142  FoldingSetNodeID ID;
1143  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1144  ID.AddInteger(JTI);
1145  ID.AddInteger(TargetFlags);
1146  void *IP = 0;
1147  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1148    return SDValue(E, 0);
1149
1150  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1151                                                  TargetFlags);
1152  CSEMap.InsertNode(N, IP);
1153  AllNodes.push_back(N);
1154  return SDValue(N, 0);
1155}
1156
1157SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1158                                      unsigned Alignment, int Offset,
1159                                      bool isTarget,
1160                                      unsigned char TargetFlags) {
1161  assert((TargetFlags == 0 || isTarget) &&
1162         "Cannot set target flags on target-independent globals");
1163  if (Alignment == 0)
1164    Alignment = TLI.getDataLayout()->getPrefTypeAlignment(C->getType());
1165  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1166  FoldingSetNodeID ID;
1167  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1168  ID.AddInteger(Alignment);
1169  ID.AddInteger(Offset);
1170  ID.AddPointer(C);
1171  ID.AddInteger(TargetFlags);
1172  void *IP = 0;
1173  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1174    return SDValue(E, 0);
1175
1176  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1177                                                     Alignment, TargetFlags);
1178  CSEMap.InsertNode(N, IP);
1179  AllNodes.push_back(N);
1180  return SDValue(N, 0);
1181}
1182
1183
1184SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1185                                      unsigned Alignment, int Offset,
1186                                      bool isTarget,
1187                                      unsigned char TargetFlags) {
1188  assert((TargetFlags == 0 || isTarget) &&
1189         "Cannot set target flags on target-independent globals");
1190  if (Alignment == 0)
1191    Alignment = TLI.getDataLayout()->getPrefTypeAlignment(C->getType());
1192  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1193  FoldingSetNodeID ID;
1194  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1195  ID.AddInteger(Alignment);
1196  ID.AddInteger(Offset);
1197  C->addSelectionDAGCSEId(ID);
1198  ID.AddInteger(TargetFlags);
1199  void *IP = 0;
1200  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1201    return SDValue(E, 0);
1202
1203  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1204                                                     Alignment, TargetFlags);
1205  CSEMap.InsertNode(N, IP);
1206  AllNodes.push_back(N);
1207  return SDValue(N, 0);
1208}
1209
1210SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1211                                     unsigned char TargetFlags) {
1212  FoldingSetNodeID ID;
1213  AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), 0, 0);
1214  ID.AddInteger(Index);
1215  ID.AddInteger(Offset);
1216  ID.AddInteger(TargetFlags);
1217  void *IP = 0;
1218  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1219    return SDValue(E, 0);
1220
1221  SDNode *N = new (NodeAllocator) TargetIndexSDNode(Index, VT, Offset,
1222                                                    TargetFlags);
1223  CSEMap.InsertNode(N, IP);
1224  AllNodes.push_back(N);
1225  return SDValue(N, 0);
1226}
1227
1228SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1229  FoldingSetNodeID ID;
1230  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1231  ID.AddPointer(MBB);
1232  void *IP = 0;
1233  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1234    return SDValue(E, 0);
1235
1236  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1237  CSEMap.InsertNode(N, IP);
1238  AllNodes.push_back(N);
1239  return SDValue(N, 0);
1240}
1241
1242SDValue SelectionDAG::getValueType(EVT VT) {
1243  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1244      ValueTypeNodes.size())
1245    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1246
1247  SDNode *&N = VT.isExtended() ?
1248    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1249
1250  if (N) return SDValue(N, 0);
1251  N = new (NodeAllocator) VTSDNode(VT);
1252  AllNodes.push_back(N);
1253  return SDValue(N, 0);
1254}
1255
1256SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1257  SDNode *&N = ExternalSymbols[Sym];
1258  if (N) return SDValue(N, 0);
1259  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1260  AllNodes.push_back(N);
1261  return SDValue(N, 0);
1262}
1263
1264SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1265                                              unsigned char TargetFlags) {
1266  SDNode *&N =
1267    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1268                                                               TargetFlags)];
1269  if (N) return SDValue(N, 0);
1270  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1271  AllNodes.push_back(N);
1272  return SDValue(N, 0);
1273}
1274
1275SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1276  if ((unsigned)Cond >= CondCodeNodes.size())
1277    CondCodeNodes.resize(Cond+1);
1278
1279  if (CondCodeNodes[Cond] == 0) {
1280    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1281    CondCodeNodes[Cond] = N;
1282    AllNodes.push_back(N);
1283  }
1284
1285  return SDValue(CondCodeNodes[Cond], 0);
1286}
1287
1288// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1289// the shuffle mask M that point at N1 to point at N2, and indices that point
1290// N2 to point at N1.
1291static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1292  std::swap(N1, N2);
1293  int NElts = M.size();
1294  for (int i = 0; i != NElts; ++i) {
1295    if (M[i] >= NElts)
1296      M[i] -= NElts;
1297    else if (M[i] >= 0)
1298      M[i] += NElts;
1299  }
1300}
1301
1302SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1303                                       SDValue N2, const int *Mask) {
1304  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1305  assert(VT.isVector() && N1.getValueType().isVector() &&
1306         "Vector Shuffle VTs must be a vectors");
1307  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1308         && "Vector Shuffle VTs must have same element type");
1309
1310  // Canonicalize shuffle undef, undef -> undef
1311  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1312    return getUNDEF(VT);
1313
1314  // Validate that all indices in Mask are within the range of the elements
1315  // input to the shuffle.
1316  unsigned NElts = VT.getVectorNumElements();
1317  SmallVector<int, 8> MaskVec;
1318  for (unsigned i = 0; i != NElts; ++i) {
1319    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1320    MaskVec.push_back(Mask[i]);
1321  }
1322
1323  // Canonicalize shuffle v, v -> v, undef
1324  if (N1 == N2) {
1325    N2 = getUNDEF(VT);
1326    for (unsigned i = 0; i != NElts; ++i)
1327      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1328  }
1329
1330  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1331  if (N1.getOpcode() == ISD::UNDEF)
1332    commuteShuffle(N1, N2, MaskVec);
1333
1334  // Canonicalize all index into lhs, -> shuffle lhs, undef
1335  // Canonicalize all index into rhs, -> shuffle rhs, undef
1336  bool AllLHS = true, AllRHS = true;
1337  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1338  for (unsigned i = 0; i != NElts; ++i) {
1339    if (MaskVec[i] >= (int)NElts) {
1340      if (N2Undef)
1341        MaskVec[i] = -1;
1342      else
1343        AllLHS = false;
1344    } else if (MaskVec[i] >= 0) {
1345      AllRHS = false;
1346    }
1347  }
1348  if (AllLHS && AllRHS)
1349    return getUNDEF(VT);
1350  if (AllLHS && !N2Undef)
1351    N2 = getUNDEF(VT);
1352  if (AllRHS) {
1353    N1 = getUNDEF(VT);
1354    commuteShuffle(N1, N2, MaskVec);
1355  }
1356
1357  // If Identity shuffle, or all shuffle in to undef, return that node.
1358  bool AllUndef = true;
1359  bool Identity = true;
1360  for (unsigned i = 0; i != NElts; ++i) {
1361    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1362    if (MaskVec[i] >= 0) AllUndef = false;
1363  }
1364  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1365    return N1;
1366  if (AllUndef)
1367    return getUNDEF(VT);
1368
1369  FoldingSetNodeID ID;
1370  SDValue Ops[2] = { N1, N2 };
1371  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1372  for (unsigned i = 0; i != NElts; ++i)
1373    ID.AddInteger(MaskVec[i]);
1374
1375  void* IP = 0;
1376  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1377    return SDValue(E, 0);
1378
1379  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1380  // SDNode doesn't have access to it.  This memory will be "leaked" when
1381  // the node is deallocated, but recovered when the NodeAllocator is released.
1382  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1383  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1384
1385  ShuffleVectorSDNode *N =
1386    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1387  CSEMap.InsertNode(N, IP);
1388  AllNodes.push_back(N);
1389  return SDValue(N, 0);
1390}
1391
1392SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1393                                       SDValue Val, SDValue DTy,
1394                                       SDValue STy, SDValue Rnd, SDValue Sat,
1395                                       ISD::CvtCode Code) {
1396  // If the src and dest types are the same and the conversion is between
1397  // integer types of the same sign or two floats, no conversion is necessary.
1398  if (DTy == STy &&
1399      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1400    return Val;
1401
1402  FoldingSetNodeID ID;
1403  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1404  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1405  void* IP = 0;
1406  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1407    return SDValue(E, 0);
1408
1409  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1410                                                           Code);
1411  CSEMap.InsertNode(N, IP);
1412  AllNodes.push_back(N);
1413  return SDValue(N, 0);
1414}
1415
1416SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1417  FoldingSetNodeID ID;
1418  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1419  ID.AddInteger(RegNo);
1420  void *IP = 0;
1421  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1422    return SDValue(E, 0);
1423
1424  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1425  CSEMap.InsertNode(N, IP);
1426  AllNodes.push_back(N);
1427  return SDValue(N, 0);
1428}
1429
1430SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1431  FoldingSetNodeID ID;
1432  AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), 0, 0);
1433  ID.AddPointer(RegMask);
1434  void *IP = 0;
1435  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1436    return SDValue(E, 0);
1437
1438  SDNode *N = new (NodeAllocator) RegisterMaskSDNode(RegMask);
1439  CSEMap.InsertNode(N, IP);
1440  AllNodes.push_back(N);
1441  return SDValue(N, 0);
1442}
1443
1444SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1445  FoldingSetNodeID ID;
1446  SDValue Ops[] = { Root };
1447  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1448  ID.AddPointer(Label);
1449  void *IP = 0;
1450  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1451    return SDValue(E, 0);
1452
1453  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1454  CSEMap.InsertNode(N, IP);
1455  AllNodes.push_back(N);
1456  return SDValue(N, 0);
1457}
1458
1459
1460SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1461                                      int64_t Offset,
1462                                      bool isTarget,
1463                                      unsigned char TargetFlags) {
1464  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1465
1466  FoldingSetNodeID ID;
1467  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1468  ID.AddPointer(BA);
1469  ID.AddInteger(Offset);
1470  ID.AddInteger(TargetFlags);
1471  void *IP = 0;
1472  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1473    return SDValue(E, 0);
1474
1475  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, Offset,
1476                                                     TargetFlags);
1477  CSEMap.InsertNode(N, IP);
1478  AllNodes.push_back(N);
1479  return SDValue(N, 0);
1480}
1481
1482SDValue SelectionDAG::getSrcValue(const Value *V) {
1483  assert((!V || V->getType()->isPointerTy()) &&
1484         "SrcValue is not a pointer?");
1485
1486  FoldingSetNodeID ID;
1487  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1488  ID.AddPointer(V);
1489
1490  void *IP = 0;
1491  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1492    return SDValue(E, 0);
1493
1494  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1495  CSEMap.InsertNode(N, IP);
1496  AllNodes.push_back(N);
1497  return SDValue(N, 0);
1498}
1499
1500/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1501SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1502  FoldingSetNodeID ID;
1503  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1504  ID.AddPointer(MD);
1505
1506  void *IP = 0;
1507  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1508    return SDValue(E, 0);
1509
1510  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1511  CSEMap.InsertNode(N, IP);
1512  AllNodes.push_back(N);
1513  return SDValue(N, 0);
1514}
1515
1516
1517/// getShiftAmountOperand - Return the specified value casted to
1518/// the target's desired shift amount type.
1519SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1520  EVT OpTy = Op.getValueType();
1521  MVT ShTy = TLI.getShiftAmountTy(LHSTy);
1522  if (OpTy == ShTy || OpTy.isVector()) return Op;
1523
1524  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1525  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1526}
1527
1528/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1529/// specified value type.
1530SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1531  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1532  unsigned ByteSize = VT.getStoreSize();
1533  Type *Ty = VT.getTypeForEVT(*getContext());
1534  unsigned StackAlign =
1535  std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), minAlign);
1536
1537  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1538  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1539}
1540
1541/// CreateStackTemporary - Create a stack temporary suitable for holding
1542/// either of the specified value types.
1543SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1544  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1545                            VT2.getStoreSizeInBits())/8;
1546  Type *Ty1 = VT1.getTypeForEVT(*getContext());
1547  Type *Ty2 = VT2.getTypeForEVT(*getContext());
1548  const DataLayout *TD = TLI.getDataLayout();
1549  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1550                            TD->getPrefTypeAlignment(Ty2));
1551
1552  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1553  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1554  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1555}
1556
1557SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1558                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1559  // These setcc operations always fold.
1560  switch (Cond) {
1561  default: break;
1562  case ISD::SETFALSE:
1563  case ISD::SETFALSE2: return getConstant(0, VT);
1564  case ISD::SETTRUE:
1565  case ISD::SETTRUE2:  return getConstant(1, VT);
1566
1567  case ISD::SETOEQ:
1568  case ISD::SETOGT:
1569  case ISD::SETOGE:
1570  case ISD::SETOLT:
1571  case ISD::SETOLE:
1572  case ISD::SETONE:
1573  case ISD::SETO:
1574  case ISD::SETUO:
1575  case ISD::SETUEQ:
1576  case ISD::SETUNE:
1577    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1578    break;
1579  }
1580
1581  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1582    const APInt &C2 = N2C->getAPIntValue();
1583    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1584      const APInt &C1 = N1C->getAPIntValue();
1585
1586      switch (Cond) {
1587      default: llvm_unreachable("Unknown integer setcc!");
1588      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1589      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1590      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1591      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1592      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1593      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1594      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1595      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1596      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1597      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1598      }
1599    }
1600  }
1601  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1602    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1603      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1604      switch (Cond) {
1605      default: break;
1606      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1607                          return getUNDEF(VT);
1608                        // fall through
1609      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1610      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1611                          return getUNDEF(VT);
1612                        // fall through
1613      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1614                                           R==APFloat::cmpLessThan, VT);
1615      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1616                          return getUNDEF(VT);
1617                        // fall through
1618      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1619      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1620                          return getUNDEF(VT);
1621                        // fall through
1622      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1623      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1624                          return getUNDEF(VT);
1625                        // fall through
1626      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1627                                           R==APFloat::cmpEqual, VT);
1628      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1629                          return getUNDEF(VT);
1630                        // fall through
1631      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1632                                           R==APFloat::cmpEqual, VT);
1633      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1634      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1635      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1636                                           R==APFloat::cmpEqual, VT);
1637      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1638      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1639                                           R==APFloat::cmpLessThan, VT);
1640      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1641                                           R==APFloat::cmpUnordered, VT);
1642      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1643      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1644      }
1645    } else {
1646      // Ensure that the constant occurs on the RHS.
1647      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1648    }
1649  }
1650
1651  // Could not fold it.
1652  return SDValue();
1653}
1654
1655/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1656/// use this predicate to simplify operations downstream.
1657bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1658  // This predicate is not safe for vector operations.
1659  if (Op.getValueType().isVector())
1660    return false;
1661
1662  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1663  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1664}
1665
1666/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1667/// this predicate to simplify operations downstream.  Mask is known to be zero
1668/// for bits that V cannot have.
1669bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1670                                     unsigned Depth) const {
1671  APInt KnownZero, KnownOne;
1672  ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
1673  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1674  return (KnownZero & Mask) == Mask;
1675}
1676
1677/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1678/// known to be either zero or one and return them in the KnownZero/KnownOne
1679/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1680/// processing.
1681void SelectionDAG::ComputeMaskedBits(SDValue Op, APInt &KnownZero,
1682                                     APInt &KnownOne, unsigned Depth) const {
1683  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1684
1685  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1686  if (Depth == 6)
1687    return;  // Limit search depth.
1688
1689  APInt KnownZero2, KnownOne2;
1690
1691  switch (Op.getOpcode()) {
1692  case ISD::Constant:
1693    // We know all of the bits for a constant!
1694    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
1695    KnownZero = ~KnownOne;
1696    return;
1697  case ISD::AND:
1698    // If either the LHS or the RHS are Zero, the result is zero.
1699    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1700    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1701    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1702    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1703
1704    // Output known-1 bits are only known if set in both the LHS & RHS.
1705    KnownOne &= KnownOne2;
1706    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1707    KnownZero |= KnownZero2;
1708    return;
1709  case ISD::OR:
1710    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1711    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1712    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1713    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1714
1715    // Output known-0 bits are only known if clear in both the LHS & RHS.
1716    KnownZero &= KnownZero2;
1717    // Output known-1 are known to be set if set in either the LHS | RHS.
1718    KnownOne |= KnownOne2;
1719    return;
1720  case ISD::XOR: {
1721    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1722    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1723    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1724    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1725
1726    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1727    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1728    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1729    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1730    KnownZero = KnownZeroOut;
1731    return;
1732  }
1733  case ISD::MUL: {
1734    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1735    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1736    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1737    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1738
1739    // If low bits are zero in either operand, output low known-0 bits.
1740    // Also compute a conserative estimate for high known-0 bits.
1741    // More trickiness is possible, but this is sufficient for the
1742    // interesting case of alignment computation.
1743    KnownOne.clearAllBits();
1744    unsigned TrailZ = KnownZero.countTrailingOnes() +
1745                      KnownZero2.countTrailingOnes();
1746    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1747                               KnownZero2.countLeadingOnes(),
1748                               BitWidth) - BitWidth;
1749
1750    TrailZ = std::min(TrailZ, BitWidth);
1751    LeadZ = std::min(LeadZ, BitWidth);
1752    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1753                APInt::getHighBitsSet(BitWidth, LeadZ);
1754    return;
1755  }
1756  case ISD::UDIV: {
1757    // For the purposes of computing leading zeros we can conservatively
1758    // treat a udiv as a logical right shift by the power of 2 known to
1759    // be less than the denominator.
1760    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1761    unsigned LeadZ = KnownZero2.countLeadingOnes();
1762
1763    KnownOne2.clearAllBits();
1764    KnownZero2.clearAllBits();
1765    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
1766    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1767    if (RHSUnknownLeadingOnes != BitWidth)
1768      LeadZ = std::min(BitWidth,
1769                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1770
1771    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
1772    return;
1773  }
1774  case ISD::SELECT:
1775    ComputeMaskedBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1);
1776    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
1777    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1778    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1779
1780    // Only known if known in both the LHS and RHS.
1781    KnownOne &= KnownOne2;
1782    KnownZero &= KnownZero2;
1783    return;
1784  case ISD::SELECT_CC:
1785    ComputeMaskedBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1);
1786    ComputeMaskedBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1);
1787    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1788    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1789
1790    // Only known if known in both the LHS and RHS.
1791    KnownOne &= KnownOne2;
1792    KnownZero &= KnownZero2;
1793    return;
1794  case ISD::SADDO:
1795  case ISD::UADDO:
1796  case ISD::SSUBO:
1797  case ISD::USUBO:
1798  case ISD::SMULO:
1799  case ISD::UMULO:
1800    if (Op.getResNo() != 1)
1801      return;
1802    // The boolean result conforms to getBooleanContents.  Fall through.
1803  case ISD::SETCC:
1804    // If we know the result of a setcc has the top bits zero, use this info.
1805    if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
1806        TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1)
1807      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1808    return;
1809  case ISD::SHL:
1810    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1811    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1812      unsigned ShAmt = SA->getZExtValue();
1813
1814      // If the shift count is an invalid immediate, don't do anything.
1815      if (ShAmt >= BitWidth)
1816        return;
1817
1818      ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1819      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1820      KnownZero <<= ShAmt;
1821      KnownOne  <<= ShAmt;
1822      // low bits known zero.
1823      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1824    }
1825    return;
1826  case ISD::SRL:
1827    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1828    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1829      unsigned ShAmt = SA->getZExtValue();
1830
1831      // If the shift count is an invalid immediate, don't do anything.
1832      if (ShAmt >= BitWidth)
1833        return;
1834
1835      ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1836      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1837      KnownZero = KnownZero.lshr(ShAmt);
1838      KnownOne  = KnownOne.lshr(ShAmt);
1839
1840      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1841      KnownZero |= HighBits;  // High bits known zero.
1842    }
1843    return;
1844  case ISD::SRA:
1845    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1846      unsigned ShAmt = SA->getZExtValue();
1847
1848      // If the shift count is an invalid immediate, don't do anything.
1849      if (ShAmt >= BitWidth)
1850        return;
1851
1852      // If any of the demanded bits are produced by the sign extension, we also
1853      // demand the input sign bit.
1854      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1855
1856      ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1857      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1858      KnownZero = KnownZero.lshr(ShAmt);
1859      KnownOne  = KnownOne.lshr(ShAmt);
1860
1861      // Handle the sign bits.
1862      APInt SignBit = APInt::getSignBit(BitWidth);
1863      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1864
1865      if (KnownZero.intersects(SignBit)) {
1866        KnownZero |= HighBits;  // New bits are known zero.
1867      } else if (KnownOne.intersects(SignBit)) {
1868        KnownOne  |= HighBits;  // New bits are known one.
1869      }
1870    }
1871    return;
1872  case ISD::SIGN_EXTEND_INREG: {
1873    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1874    unsigned EBits = EVT.getScalarType().getSizeInBits();
1875
1876    // Sign extension.  Compute the demanded bits in the result that are not
1877    // present in the input.
1878    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
1879
1880    APInt InSignBit = APInt::getSignBit(EBits);
1881    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
1882
1883    // If the sign extended bits are demanded, we know that the sign
1884    // bit is demanded.
1885    InSignBit = InSignBit.zext(BitWidth);
1886    if (NewBits.getBoolValue())
1887      InputDemandedBits |= InSignBit;
1888
1889    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1890    KnownOne &= InputDemandedBits;
1891    KnownZero &= InputDemandedBits;
1892    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1893
1894    // If the sign bit of the input is known set or clear, then we know the
1895    // top bits of the result.
1896    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1897      KnownZero |= NewBits;
1898      KnownOne  &= ~NewBits;
1899    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1900      KnownOne  |= NewBits;
1901      KnownZero &= ~NewBits;
1902    } else {                              // Input sign bit unknown
1903      KnownZero &= ~NewBits;
1904      KnownOne  &= ~NewBits;
1905    }
1906    return;
1907  }
1908  case ISD::CTTZ:
1909  case ISD::CTTZ_ZERO_UNDEF:
1910  case ISD::CTLZ:
1911  case ISD::CTLZ_ZERO_UNDEF:
1912  case ISD::CTPOP: {
1913    unsigned LowBits = Log2_32(BitWidth)+1;
1914    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1915    KnownOne.clearAllBits();
1916    return;
1917  }
1918  case ISD::LOAD: {
1919    LoadSDNode *LD = cast<LoadSDNode>(Op);
1920    if (ISD::isZEXTLoad(Op.getNode())) {
1921      EVT VT = LD->getMemoryVT();
1922      unsigned MemBits = VT.getScalarType().getSizeInBits();
1923      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
1924    } else if (const MDNode *Ranges = LD->getRanges()) {
1925      computeMaskedBitsLoad(*Ranges, KnownZero);
1926    }
1927    return;
1928  }
1929  case ISD::ZERO_EXTEND: {
1930    EVT InVT = Op.getOperand(0).getValueType();
1931    unsigned InBits = InVT.getScalarType().getSizeInBits();
1932    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
1933    KnownZero = KnownZero.trunc(InBits);
1934    KnownOne = KnownOne.trunc(InBits);
1935    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1936    KnownZero = KnownZero.zext(BitWidth);
1937    KnownOne = KnownOne.zext(BitWidth);
1938    KnownZero |= NewBits;
1939    return;
1940  }
1941  case ISD::SIGN_EXTEND: {
1942    EVT InVT = Op.getOperand(0).getValueType();
1943    unsigned InBits = InVT.getScalarType().getSizeInBits();
1944    APInt InSignBit = APInt::getSignBit(InBits);
1945    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
1946
1947    KnownZero = KnownZero.trunc(InBits);
1948    KnownOne = KnownOne.trunc(InBits);
1949    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1950
1951    // Note if the sign bit is known to be zero or one.
1952    bool SignBitKnownZero = KnownZero.isNegative();
1953    bool SignBitKnownOne  = KnownOne.isNegative();
1954    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1955           "Sign bit can't be known to be both zero and one!");
1956
1957    KnownZero = KnownZero.zext(BitWidth);
1958    KnownOne = KnownOne.zext(BitWidth);
1959
1960    // If the sign bit is known zero or one, the top bits match.
1961    if (SignBitKnownZero)
1962      KnownZero |= NewBits;
1963    else if (SignBitKnownOne)
1964      KnownOne  |= NewBits;
1965    return;
1966  }
1967  case ISD::ANY_EXTEND: {
1968    EVT InVT = Op.getOperand(0).getValueType();
1969    unsigned InBits = InVT.getScalarType().getSizeInBits();
1970    KnownZero = KnownZero.trunc(InBits);
1971    KnownOne = KnownOne.trunc(InBits);
1972    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1973    KnownZero = KnownZero.zext(BitWidth);
1974    KnownOne = KnownOne.zext(BitWidth);
1975    return;
1976  }
1977  case ISD::TRUNCATE: {
1978    EVT InVT = Op.getOperand(0).getValueType();
1979    unsigned InBits = InVT.getScalarType().getSizeInBits();
1980    KnownZero = KnownZero.zext(InBits);
1981    KnownOne = KnownOne.zext(InBits);
1982    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1983    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1984    KnownZero = KnownZero.trunc(BitWidth);
1985    KnownOne = KnownOne.trunc(BitWidth);
1986    break;
1987  }
1988  case ISD::AssertZext: {
1989    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1990    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1991    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1992    KnownZero |= (~InMask);
1993    KnownOne  &= (~KnownZero);
1994    return;
1995  }
1996  case ISD::FGETSIGN:
1997    // All bits are zero except the low bit.
1998    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1999    return;
2000
2001  case ISD::SUB: {
2002    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
2003      // We know that the top bits of C-X are clear if X contains less bits
2004      // than C (i.e. no wrap-around can happen).  For example, 20-X is
2005      // positive if we can prove that X is >= 0 and < 16.
2006      if (CLHS->getAPIntValue().isNonNegative()) {
2007        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2008        // NLZ can't be BitWidth with no sign bit
2009        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2010        ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2011
2012        // If all of the MaskV bits are known to be zero, then we know the
2013        // output top bits are zero, because we now know that the output is
2014        // from [0-C].
2015        if ((KnownZero2 & MaskV) == MaskV) {
2016          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2017          // Top bits known zero.
2018          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
2019        }
2020      }
2021    }
2022  }
2023  // fall through
2024  case ISD::ADD:
2025  case ISD::ADDE: {
2026    // Output known-0 bits are known if clear or set in both the low clear bits
2027    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2028    // low 3 bits clear.
2029    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
2030    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
2031    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
2032
2033    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2034    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
2035    KnownZeroOut = std::min(KnownZeroOut,
2036                            KnownZero2.countTrailingOnes());
2037
2038    if (Op.getOpcode() == ISD::ADD) {
2039      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
2040      return;
2041    }
2042
2043    // With ADDE, a carry bit may be added in, so we can only use this
2044    // information if we know (at least) that the low two bits are clear.  We
2045    // then return to the caller that the low bit is unknown but that other bits
2046    // are known zero.
2047    if (KnownZeroOut >= 2) // ADDE
2048      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
2049    return;
2050  }
2051  case ISD::SREM:
2052    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2053      const APInt &RA = Rem->getAPIntValue().abs();
2054      if (RA.isPowerOf2()) {
2055        APInt LowBits = RA - 1;
2056        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
2057        ComputeMaskedBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1);
2058
2059        // The low bits of the first operand are unchanged by the srem.
2060        KnownZero = KnownZero2 & LowBits;
2061        KnownOne = KnownOne2 & LowBits;
2062
2063        // If the first operand is non-negative or has all low bits zero, then
2064        // the upper bits are all zero.
2065        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2066          KnownZero |= ~LowBits;
2067
2068        // If the first operand is negative and not all low bits are zero, then
2069        // the upper bits are all one.
2070        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2071          KnownOne |= ~LowBits;
2072        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2073      }
2074    }
2075    return;
2076  case ISD::UREM: {
2077    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2078      const APInt &RA = Rem->getAPIntValue();
2079      if (RA.isPowerOf2()) {
2080        APInt LowBits = (RA - 1);
2081        KnownZero |= ~LowBits;
2082        ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne,Depth+1);
2083        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2084        break;
2085      }
2086    }
2087
2088    // Since the result is less than or equal to either operand, any leading
2089    // zero bits in either operand must also exist in the result.
2090    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2091    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2092
2093    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2094                                KnownZero2.countLeadingOnes());
2095    KnownOne.clearAllBits();
2096    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
2097    return;
2098  }
2099  case ISD::FrameIndex:
2100  case ISD::TargetFrameIndex:
2101    if (unsigned Align = InferPtrAlignment(Op)) {
2102      // The low bits are known zero if the pointer is aligned.
2103      KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2104      return;
2105    }
2106    break;
2107
2108  default:
2109    if (Op.getOpcode() < ISD::BUILTIN_OP_END)
2110      break;
2111    // Fallthrough
2112  case ISD::INTRINSIC_WO_CHAIN:
2113  case ISD::INTRINSIC_W_CHAIN:
2114  case ISD::INTRINSIC_VOID:
2115    // Allow the target to implement this method for its nodes.
2116    TLI.computeMaskedBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth);
2117    return;
2118  }
2119}
2120
2121/// ComputeNumSignBits - Return the number of times the sign bit of the
2122/// register is replicated into the other bits.  We know that at least 1 bit
2123/// is always equal to the sign bit (itself), but other cases can give us
2124/// information.  For example, immediately after an "SRA X, 2", we know that
2125/// the top 3 bits are all equal to each other, so we return 3.
2126unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2127  EVT VT = Op.getValueType();
2128  assert(VT.isInteger() && "Invalid VT!");
2129  unsigned VTBits = VT.getScalarType().getSizeInBits();
2130  unsigned Tmp, Tmp2;
2131  unsigned FirstAnswer = 1;
2132
2133  if (Depth == 6)
2134    return 1;  // Limit search depth.
2135
2136  switch (Op.getOpcode()) {
2137  default: break;
2138  case ISD::AssertSext:
2139    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2140    return VTBits-Tmp+1;
2141  case ISD::AssertZext:
2142    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2143    return VTBits-Tmp;
2144
2145  case ISD::Constant: {
2146    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2147    return Val.getNumSignBits();
2148  }
2149
2150  case ISD::SIGN_EXTEND:
2151    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2152    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2153
2154  case ISD::SIGN_EXTEND_INREG:
2155    // Max of the input and what this extends.
2156    Tmp =
2157      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2158    Tmp = VTBits-Tmp+1;
2159
2160    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2161    return std::max(Tmp, Tmp2);
2162
2163  case ISD::SRA:
2164    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2165    // SRA X, C   -> adds C sign bits.
2166    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2167      Tmp += C->getZExtValue();
2168      if (Tmp > VTBits) Tmp = VTBits;
2169    }
2170    return Tmp;
2171  case ISD::SHL:
2172    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2173      // shl destroys sign bits.
2174      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2175      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2176          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2177      return Tmp - C->getZExtValue();
2178    }
2179    break;
2180  case ISD::AND:
2181  case ISD::OR:
2182  case ISD::XOR:    // NOT is handled here.
2183    // Logical binary ops preserve the number of sign bits at the worst.
2184    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2185    if (Tmp != 1) {
2186      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2187      FirstAnswer = std::min(Tmp, Tmp2);
2188      // We computed what we know about the sign bits as our first
2189      // answer. Now proceed to the generic code that uses
2190      // ComputeMaskedBits, and pick whichever answer is better.
2191    }
2192    break;
2193
2194  case ISD::SELECT:
2195    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2196    if (Tmp == 1) return 1;  // Early out.
2197    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2198    return std::min(Tmp, Tmp2);
2199
2200  case ISD::SADDO:
2201  case ISD::UADDO:
2202  case ISD::SSUBO:
2203  case ISD::USUBO:
2204  case ISD::SMULO:
2205  case ISD::UMULO:
2206    if (Op.getResNo() != 1)
2207      break;
2208    // The boolean result conforms to getBooleanContents.  Fall through.
2209  case ISD::SETCC:
2210    // If setcc returns 0/-1, all bits are sign bits.
2211    if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
2212        TargetLowering::ZeroOrNegativeOneBooleanContent)
2213      return VTBits;
2214    break;
2215  case ISD::ROTL:
2216  case ISD::ROTR:
2217    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2218      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2219
2220      // Handle rotate right by N like a rotate left by 32-N.
2221      if (Op.getOpcode() == ISD::ROTR)
2222        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2223
2224      // If we aren't rotating out all of the known-in sign bits, return the
2225      // number that are left.  This handles rotl(sext(x), 1) for example.
2226      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2227      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2228    }
2229    break;
2230  case ISD::ADD:
2231    // Add can have at most one carry bit.  Thus we know that the output
2232    // is, at worst, one more bit than the inputs.
2233    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2234    if (Tmp == 1) return 1;  // Early out.
2235
2236    // Special case decrementing a value (ADD X, -1):
2237    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2238      if (CRHS->isAllOnesValue()) {
2239        APInt KnownZero, KnownOne;
2240        ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2241
2242        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2243        // sign bits set.
2244        if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2245          return VTBits;
2246
2247        // If we are subtracting one from a positive number, there is no carry
2248        // out of the result.
2249        if (KnownZero.isNegative())
2250          return Tmp;
2251      }
2252
2253    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2254    if (Tmp2 == 1) return 1;
2255    return std::min(Tmp, Tmp2)-1;
2256
2257  case ISD::SUB:
2258    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2259    if (Tmp2 == 1) return 1;
2260
2261    // Handle NEG.
2262    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2263      if (CLHS->isNullValue()) {
2264        APInt KnownZero, KnownOne;
2265        ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
2266        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2267        // sign bits set.
2268        if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2269          return VTBits;
2270
2271        // If the input is known to be positive (the sign bit is known clear),
2272        // the output of the NEG has the same number of sign bits as the input.
2273        if (KnownZero.isNegative())
2274          return Tmp2;
2275
2276        // Otherwise, we treat this like a SUB.
2277      }
2278
2279    // Sub can have at most one carry bit.  Thus we know that the output
2280    // is, at worst, one more bit than the inputs.
2281    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2282    if (Tmp == 1) return 1;  // Early out.
2283    return std::min(Tmp, Tmp2)-1;
2284  case ISD::TRUNCATE:
2285    // FIXME: it's tricky to do anything useful for this, but it is an important
2286    // case for targets like X86.
2287    break;
2288  }
2289
2290  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2291  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
2292    unsigned ExtType = LD->getExtensionType();
2293    switch (ExtType) {
2294    default: break;
2295    case ISD::SEXTLOAD:    // '17' bits known
2296      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2297      return VTBits-Tmp+1;
2298    case ISD::ZEXTLOAD:    // '16' bits known
2299      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2300      return VTBits-Tmp;
2301    }
2302  }
2303
2304  // Allow the target to implement this method for its nodes.
2305  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2306      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2307      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2308      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2309    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2310    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2311  }
2312
2313  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2314  // use this information.
2315  APInt KnownZero, KnownOne;
2316  ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
2317
2318  APInt Mask;
2319  if (KnownZero.isNegative()) {        // sign bit is 0
2320    Mask = KnownZero;
2321  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2322    Mask = KnownOne;
2323  } else {
2324    // Nothing known.
2325    return FirstAnswer;
2326  }
2327
2328  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2329  // the number of identical bits in the top of the input value.
2330  Mask = ~Mask;
2331  Mask <<= Mask.getBitWidth()-VTBits;
2332  // Return # leading zeros.  We use 'min' here in case Val was zero before
2333  // shifting.  We don't want to return '64' as for an i32 "0".
2334  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2335}
2336
2337/// isBaseWithConstantOffset - Return true if the specified operand is an
2338/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2339/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2340/// semantics as an ADD.  This handles the equivalence:
2341///     X|Cst == X+Cst iff X&Cst = 0.
2342bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2343  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2344      !isa<ConstantSDNode>(Op.getOperand(1)))
2345    return false;
2346
2347  if (Op.getOpcode() == ISD::OR &&
2348      !MaskedValueIsZero(Op.getOperand(0),
2349                     cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2350    return false;
2351
2352  return true;
2353}
2354
2355
2356bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2357  // If we're told that NaNs won't happen, assume they won't.
2358  if (getTarget().Options.NoNaNsFPMath)
2359    return true;
2360
2361  // If the value is a constant, we can obviously see if it is a NaN or not.
2362  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2363    return !C->getValueAPF().isNaN();
2364
2365  // TODO: Recognize more cases here.
2366
2367  return false;
2368}
2369
2370bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2371  // If the value is a constant, we can obviously see if it is a zero or not.
2372  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2373    return !C->isZero();
2374
2375  // TODO: Recognize more cases here.
2376  switch (Op.getOpcode()) {
2377  default: break;
2378  case ISD::OR:
2379    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2380      return !C->isNullValue();
2381    break;
2382  }
2383
2384  return false;
2385}
2386
2387bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2388  // Check the obvious case.
2389  if (A == B) return true;
2390
2391  // For for negative and positive zero.
2392  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2393    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2394      if (CA->isZero() && CB->isZero()) return true;
2395
2396  // Otherwise they may not be equal.
2397  return false;
2398}
2399
2400/// getNode - Gets or creates the specified node.
2401///
2402SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2403  FoldingSetNodeID ID;
2404  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2405  void *IP = 0;
2406  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2407    return SDValue(E, 0);
2408
2409  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2410  CSEMap.InsertNode(N, IP);
2411
2412  AllNodes.push_back(N);
2413#ifndef NDEBUG
2414  VerifySDNode(N);
2415#endif
2416  return SDValue(N, 0);
2417}
2418
2419SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2420                              EVT VT, SDValue Operand) {
2421  // Constant fold unary operations with an integer constant operand.
2422  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2423    const APInt &Val = C->getAPIntValue();
2424    switch (Opcode) {
2425    default: break;
2426    case ISD::SIGN_EXTEND:
2427      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2428    case ISD::ANY_EXTEND:
2429    case ISD::ZERO_EXTEND:
2430    case ISD::TRUNCATE:
2431      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2432    case ISD::UINT_TO_FP:
2433    case ISD::SINT_TO_FP: {
2434      APFloat apf(EVTToAPFloatSemantics(VT),
2435                  APInt::getNullValue(VT.getSizeInBits()));
2436      (void)apf.convertFromAPInt(Val,
2437                                 Opcode==ISD::SINT_TO_FP,
2438                                 APFloat::rmNearestTiesToEven);
2439      return getConstantFP(apf, VT);
2440    }
2441    case ISD::BITCAST:
2442      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2443        return getConstantFP(APFloat(APFloat::IEEEsingle, Val), VT);
2444      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2445        return getConstantFP(APFloat(APFloat::IEEEdouble, Val), VT);
2446      break;
2447    case ISD::BSWAP:
2448      return getConstant(Val.byteSwap(), VT);
2449    case ISD::CTPOP:
2450      return getConstant(Val.countPopulation(), VT);
2451    case ISD::CTLZ:
2452    case ISD::CTLZ_ZERO_UNDEF:
2453      return getConstant(Val.countLeadingZeros(), VT);
2454    case ISD::CTTZ:
2455    case ISD::CTTZ_ZERO_UNDEF:
2456      return getConstant(Val.countTrailingZeros(), VT);
2457    }
2458  }
2459
2460  // Constant fold unary operations with a floating point constant operand.
2461  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2462    APFloat V = C->getValueAPF();    // make copy
2463    switch (Opcode) {
2464    case ISD::FNEG:
2465      V.changeSign();
2466      return getConstantFP(V, VT);
2467    case ISD::FABS:
2468      V.clearSign();
2469      return getConstantFP(V, VT);
2470    case ISD::FCEIL: {
2471      APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
2472      if (fs == APFloat::opOK || fs == APFloat::opInexact)
2473        return getConstantFP(V, VT);
2474      break;
2475    }
2476    case ISD::FTRUNC: {
2477      APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
2478      if (fs == APFloat::opOK || fs == APFloat::opInexact)
2479        return getConstantFP(V, VT);
2480      break;
2481    }
2482    case ISD::FFLOOR: {
2483      APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
2484      if (fs == APFloat::opOK || fs == APFloat::opInexact)
2485        return getConstantFP(V, VT);
2486      break;
2487    }
2488    case ISD::FP_EXTEND: {
2489      bool ignored;
2490      // This can return overflow, underflow, or inexact; we don't care.
2491      // FIXME need to be more flexible about rounding mode.
2492      (void)V.convert(EVTToAPFloatSemantics(VT),
2493                      APFloat::rmNearestTiesToEven, &ignored);
2494      return getConstantFP(V, VT);
2495    }
2496    case ISD::FP_TO_SINT:
2497    case ISD::FP_TO_UINT: {
2498      integerPart x[2];
2499      bool ignored;
2500      assert(integerPartWidth >= 64);
2501      // FIXME need to be more flexible about rounding mode.
2502      APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2503                            Opcode==ISD::FP_TO_SINT,
2504                            APFloat::rmTowardZero, &ignored);
2505      if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2506        break;
2507      APInt api(VT.getSizeInBits(), x);
2508      return getConstant(api, VT);
2509    }
2510    case ISD::BITCAST:
2511      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2512        return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2513      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2514        return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2515      break;
2516    }
2517  }
2518
2519  unsigned OpOpcode = Operand.getNode()->getOpcode();
2520  switch (Opcode) {
2521  case ISD::TokenFactor:
2522  case ISD::MERGE_VALUES:
2523  case ISD::CONCAT_VECTORS:
2524    return Operand;         // Factor, merge or concat of one node?  No need.
2525  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2526  case ISD::FP_EXTEND:
2527    assert(VT.isFloatingPoint() &&
2528           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2529    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2530    assert((!VT.isVector() ||
2531            VT.getVectorNumElements() ==
2532            Operand.getValueType().getVectorNumElements()) &&
2533           "Vector element count mismatch!");
2534    if (Operand.getOpcode() == ISD::UNDEF)
2535      return getUNDEF(VT);
2536    break;
2537  case ISD::SIGN_EXTEND:
2538    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2539           "Invalid SIGN_EXTEND!");
2540    if (Operand.getValueType() == VT) return Operand;   // noop extension
2541    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2542           "Invalid sext node, dst < src!");
2543    assert((!VT.isVector() ||
2544            VT.getVectorNumElements() ==
2545            Operand.getValueType().getVectorNumElements()) &&
2546           "Vector element count mismatch!");
2547    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2548      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2549    else if (OpOpcode == ISD::UNDEF)
2550      // sext(undef) = 0, because the top bits will all be the same.
2551      return getConstant(0, VT);
2552    break;
2553  case ISD::ZERO_EXTEND:
2554    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2555           "Invalid ZERO_EXTEND!");
2556    if (Operand.getValueType() == VT) return Operand;   // noop extension
2557    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2558           "Invalid zext node, dst < src!");
2559    assert((!VT.isVector() ||
2560            VT.getVectorNumElements() ==
2561            Operand.getValueType().getVectorNumElements()) &&
2562           "Vector element count mismatch!");
2563    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2564      return getNode(ISD::ZERO_EXTEND, DL, VT,
2565                     Operand.getNode()->getOperand(0));
2566    else if (OpOpcode == ISD::UNDEF)
2567      // zext(undef) = 0, because the top bits will be zero.
2568      return getConstant(0, VT);
2569    break;
2570  case ISD::ANY_EXTEND:
2571    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2572           "Invalid ANY_EXTEND!");
2573    if (Operand.getValueType() == VT) return Operand;   // noop extension
2574    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2575           "Invalid anyext node, dst < src!");
2576    assert((!VT.isVector() ||
2577            VT.getVectorNumElements() ==
2578            Operand.getValueType().getVectorNumElements()) &&
2579           "Vector element count mismatch!");
2580
2581    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2582        OpOpcode == ISD::ANY_EXTEND)
2583      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2584      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2585    else if (OpOpcode == ISD::UNDEF)
2586      return getUNDEF(VT);
2587
2588    // (ext (trunx x)) -> x
2589    if (OpOpcode == ISD::TRUNCATE) {
2590      SDValue OpOp = Operand.getNode()->getOperand(0);
2591      if (OpOp.getValueType() == VT)
2592        return OpOp;
2593    }
2594    break;
2595  case ISD::TRUNCATE:
2596    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2597           "Invalid TRUNCATE!");
2598    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2599    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2600           "Invalid truncate node, src < dst!");
2601    assert((!VT.isVector() ||
2602            VT.getVectorNumElements() ==
2603            Operand.getValueType().getVectorNumElements()) &&
2604           "Vector element count mismatch!");
2605    if (OpOpcode == ISD::TRUNCATE)
2606      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2607    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2608        OpOpcode == ISD::ANY_EXTEND) {
2609      // If the source is smaller than the dest, we still need an extend.
2610      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2611            .bitsLT(VT.getScalarType()))
2612        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2613      if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2614        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2615      return Operand.getNode()->getOperand(0);
2616    }
2617    if (OpOpcode == ISD::UNDEF)
2618      return getUNDEF(VT);
2619    break;
2620  case ISD::BITCAST:
2621    // Basic sanity checking.
2622    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2623           && "Cannot BITCAST between types of different sizes!");
2624    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2625    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2626      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2627    if (OpOpcode == ISD::UNDEF)
2628      return getUNDEF(VT);
2629    break;
2630  case ISD::SCALAR_TO_VECTOR:
2631    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2632           (VT.getVectorElementType() == Operand.getValueType() ||
2633            (VT.getVectorElementType().isInteger() &&
2634             Operand.getValueType().isInteger() &&
2635             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2636           "Illegal SCALAR_TO_VECTOR node!");
2637    if (OpOpcode == ISD::UNDEF)
2638      return getUNDEF(VT);
2639    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2640    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2641        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2642        Operand.getConstantOperandVal(1) == 0 &&
2643        Operand.getOperand(0).getValueType() == VT)
2644      return Operand.getOperand(0);
2645    break;
2646  case ISD::FNEG:
2647    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2648    if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
2649      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2650                     Operand.getNode()->getOperand(0));
2651    if (OpOpcode == ISD::FNEG)  // --X -> X
2652      return Operand.getNode()->getOperand(0);
2653    break;
2654  case ISD::FABS:
2655    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2656      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2657    break;
2658  }
2659
2660  SDNode *N;
2661  SDVTList VTs = getVTList(VT);
2662  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2663    FoldingSetNodeID ID;
2664    SDValue Ops[1] = { Operand };
2665    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2666    void *IP = 0;
2667    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2668      return SDValue(E, 0);
2669
2670    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2671    CSEMap.InsertNode(N, IP);
2672  } else {
2673    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2674  }
2675
2676  AllNodes.push_back(N);
2677#ifndef NDEBUG
2678  VerifySDNode(N);
2679#endif
2680  return SDValue(N, 0);
2681}
2682
2683SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, EVT VT,
2684                                             SDNode *Cst1, SDNode *Cst2) {
2685  SmallVector<std::pair<ConstantSDNode *, ConstantSDNode *>, 4> Inputs;
2686  SmallVector<SDValue, 4> Outputs;
2687  EVT SVT = VT.getScalarType();
2688
2689  ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1);
2690  ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2);
2691  if (Scalar1 && Scalar2) {
2692    // Scalar instruction.
2693    Inputs.push_back(std::make_pair(Scalar1, Scalar2));
2694  } else {
2695    // For vectors extract each constant element into Inputs so we can constant
2696    // fold them individually.
2697    BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
2698    BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
2699    if (!BV1 || !BV2)
2700      return SDValue();
2701
2702    assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
2703
2704    for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
2705      ConstantSDNode *V1 = dyn_cast<ConstantSDNode>(BV1->getOperand(I));
2706      ConstantSDNode *V2 = dyn_cast<ConstantSDNode>(BV2->getOperand(I));
2707      if (!V1 || !V2) // Not a constant, bail.
2708        return SDValue();
2709
2710      // Avoid BUILD_VECTOR nodes that perform implicit truncation.
2711      // FIXME: This is valid and could be handled by truncating the APInts.
2712      if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
2713        return SDValue();
2714
2715      Inputs.push_back(std::make_pair(V1, V2));
2716    }
2717  }
2718
2719  // We have a number of constant values, constant fold them element by element.
2720  for (unsigned I = 0, E = Inputs.size(); I != E; ++I) {
2721    const APInt &C1 = Inputs[I].first->getAPIntValue();
2722    const APInt &C2 = Inputs[I].second->getAPIntValue();
2723
2724    switch (Opcode) {
2725    case ISD::ADD:
2726      Outputs.push_back(getConstant(C1 + C2, SVT));
2727      break;
2728    case ISD::SUB:
2729      Outputs.push_back(getConstant(C1 - C2, SVT));
2730      break;
2731    case ISD::MUL:
2732      Outputs.push_back(getConstant(C1 * C2, SVT));
2733      break;
2734    case ISD::UDIV:
2735      if (!C2.getBoolValue())
2736        return SDValue();
2737      Outputs.push_back(getConstant(C1.udiv(C2), SVT));
2738      break;
2739    case ISD::UREM:
2740      if (!C2.getBoolValue())
2741        return SDValue();
2742      Outputs.push_back(getConstant(C1.urem(C2), SVT));
2743      break;
2744    case ISD::SDIV:
2745      if (!C2.getBoolValue())
2746        return SDValue();
2747      Outputs.push_back(getConstant(C1.sdiv(C2), SVT));
2748      break;
2749    case ISD::SREM:
2750      if (!C2.getBoolValue())
2751        return SDValue();
2752      Outputs.push_back(getConstant(C1.srem(C2), SVT));
2753      break;
2754    case ISD::AND:
2755      Outputs.push_back(getConstant(C1 & C2, SVT));
2756      break;
2757    case ISD::OR:
2758      Outputs.push_back(getConstant(C1 | C2, SVT));
2759      break;
2760    case ISD::XOR:
2761      Outputs.push_back(getConstant(C1 ^ C2, SVT));
2762      break;
2763    case ISD::SHL:
2764      Outputs.push_back(getConstant(C1 << C2, SVT));
2765      break;
2766    case ISD::SRL:
2767      Outputs.push_back(getConstant(C1.lshr(C2), SVT));
2768      break;
2769    case ISD::SRA:
2770      Outputs.push_back(getConstant(C1.ashr(C2), SVT));
2771      break;
2772    case ISD::ROTL:
2773      Outputs.push_back(getConstant(C1.rotl(C2), SVT));
2774      break;
2775    case ISD::ROTR:
2776      Outputs.push_back(getConstant(C1.rotr(C2), SVT));
2777      break;
2778    default:
2779      return SDValue();
2780    }
2781  }
2782
2783  // Handle the scalar case first.
2784  if (Outputs.size() == 1)
2785    return Outputs.back();
2786
2787  // Otherwise build a big vector out of the scalar elements we generated.
2788  return getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, Outputs.data(),
2789                 Outputs.size());
2790}
2791
2792SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT, SDValue N1,
2793                              SDValue N2) {
2794  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2795  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2796  switch (Opcode) {
2797  default: break;
2798  case ISD::TokenFactor:
2799    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2800           N2.getValueType() == MVT::Other && "Invalid token factor!");
2801    // Fold trivial token factors.
2802    if (N1.getOpcode() == ISD::EntryToken) return N2;
2803    if (N2.getOpcode() == ISD::EntryToken) return N1;
2804    if (N1 == N2) return N1;
2805    break;
2806  case ISD::CONCAT_VECTORS:
2807    // Concat of UNDEFs is UNDEF.
2808    if (N1.getOpcode() == ISD::UNDEF &&
2809        N2.getOpcode() == ISD::UNDEF)
2810      return getUNDEF(VT);
2811
2812    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2813    // one big BUILD_VECTOR.
2814    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2815        N2.getOpcode() == ISD::BUILD_VECTOR) {
2816      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2817                                    N1.getNode()->op_end());
2818      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2819      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2820    }
2821    break;
2822  case ISD::AND:
2823    assert(VT.isInteger() && "This operator does not apply to FP types!");
2824    assert(N1.getValueType() == N2.getValueType() &&
2825           N1.getValueType() == VT && "Binary operator types must match!");
2826    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2827    // worth handling here.
2828    if (N2C && N2C->isNullValue())
2829      return N2;
2830    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2831      return N1;
2832    break;
2833  case ISD::OR:
2834  case ISD::XOR:
2835  case ISD::ADD:
2836  case ISD::SUB:
2837    assert(VT.isInteger() && "This operator does not apply to FP types!");
2838    assert(N1.getValueType() == N2.getValueType() &&
2839           N1.getValueType() == VT && "Binary operator types must match!");
2840    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2841    // it's worth handling here.
2842    if (N2C && N2C->isNullValue())
2843      return N1;
2844    break;
2845  case ISD::UDIV:
2846  case ISD::UREM:
2847  case ISD::MULHU:
2848  case ISD::MULHS:
2849  case ISD::MUL:
2850  case ISD::SDIV:
2851  case ISD::SREM:
2852    assert(VT.isInteger() && "This operator does not apply to FP types!");
2853    assert(N1.getValueType() == N2.getValueType() &&
2854           N1.getValueType() == VT && "Binary operator types must match!");
2855    break;
2856  case ISD::FADD:
2857  case ISD::FSUB:
2858  case ISD::FMUL:
2859  case ISD::FDIV:
2860  case ISD::FREM:
2861    if (getTarget().Options.UnsafeFPMath) {
2862      if (Opcode == ISD::FADD) {
2863        // 0+x --> x
2864        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2865          if (CFP->getValueAPF().isZero())
2866            return N2;
2867        // x+0 --> x
2868        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2869          if (CFP->getValueAPF().isZero())
2870            return N1;
2871      } else if (Opcode == ISD::FSUB) {
2872        // x-0 --> x
2873        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2874          if (CFP->getValueAPF().isZero())
2875            return N1;
2876      } else if (Opcode == ISD::FMUL) {
2877        ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1);
2878        SDValue V = N2;
2879
2880        // If the first operand isn't the constant, try the second
2881        if (!CFP) {
2882          CFP = dyn_cast<ConstantFPSDNode>(N2);
2883          V = N1;
2884        }
2885
2886        if (CFP) {
2887          // 0*x --> 0
2888          if (CFP->isZero())
2889            return SDValue(CFP,0);
2890          // 1*x --> x
2891          if (CFP->isExactlyValue(1.0))
2892            return V;
2893        }
2894      }
2895    }
2896    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2897    assert(N1.getValueType() == N2.getValueType() &&
2898           N1.getValueType() == VT && "Binary operator types must match!");
2899    break;
2900  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2901    assert(N1.getValueType() == VT &&
2902           N1.getValueType().isFloatingPoint() &&
2903           N2.getValueType().isFloatingPoint() &&
2904           "Invalid FCOPYSIGN!");
2905    break;
2906  case ISD::SHL:
2907  case ISD::SRA:
2908  case ISD::SRL:
2909  case ISD::ROTL:
2910  case ISD::ROTR:
2911    assert(VT == N1.getValueType() &&
2912           "Shift operators return type must be the same as their first arg");
2913    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2914           "Shifts only work on integers");
2915    // Verify that the shift amount VT is bit enough to hold valid shift
2916    // amounts.  This catches things like trying to shift an i1024 value by an
2917    // i8, which is easy to fall into in generic code that uses
2918    // TLI.getShiftAmount().
2919    assert(N2.getValueType().getSizeInBits() >=
2920                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2921           "Invalid use of small shift amount with oversized value!");
2922
2923    // Always fold shifts of i1 values so the code generator doesn't need to
2924    // handle them.  Since we know the size of the shift has to be less than the
2925    // size of the value, the shift/rotate count is guaranteed to be zero.
2926    if (VT == MVT::i1)
2927      return N1;
2928    if (N2C && N2C->isNullValue())
2929      return N1;
2930    break;
2931  case ISD::FP_ROUND_INREG: {
2932    EVT EVT = cast<VTSDNode>(N2)->getVT();
2933    assert(VT == N1.getValueType() && "Not an inreg round!");
2934    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2935           "Cannot FP_ROUND_INREG integer types");
2936    assert(EVT.isVector() == VT.isVector() &&
2937           "FP_ROUND_INREG type should be vector iff the operand "
2938           "type is vector!");
2939    assert((!EVT.isVector() ||
2940            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2941           "Vector element counts must match in FP_ROUND_INREG");
2942    assert(EVT.bitsLE(VT) && "Not rounding down!");
2943    (void)EVT;
2944    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2945    break;
2946  }
2947  case ISD::FP_ROUND:
2948    assert(VT.isFloatingPoint() &&
2949           N1.getValueType().isFloatingPoint() &&
2950           VT.bitsLE(N1.getValueType()) &&
2951           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2952    if (N1.getValueType() == VT) return N1;  // noop conversion.
2953    break;
2954  case ISD::AssertSext:
2955  case ISD::AssertZext: {
2956    EVT EVT = cast<VTSDNode>(N2)->getVT();
2957    assert(VT == N1.getValueType() && "Not an inreg extend!");
2958    assert(VT.isInteger() && EVT.isInteger() &&
2959           "Cannot *_EXTEND_INREG FP types");
2960    assert(!EVT.isVector() &&
2961           "AssertSExt/AssertZExt type should be the vector element type "
2962           "rather than the vector type!");
2963    assert(EVT.bitsLE(VT) && "Not extending!");
2964    if (VT == EVT) return N1; // noop assertion.
2965    break;
2966  }
2967  case ISD::SIGN_EXTEND_INREG: {
2968    EVT EVT = cast<VTSDNode>(N2)->getVT();
2969    assert(VT == N1.getValueType() && "Not an inreg extend!");
2970    assert(VT.isInteger() && EVT.isInteger() &&
2971           "Cannot *_EXTEND_INREG FP types");
2972    assert(EVT.isVector() == VT.isVector() &&
2973           "SIGN_EXTEND_INREG type should be vector iff the operand "
2974           "type is vector!");
2975    assert((!EVT.isVector() ||
2976            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2977           "Vector element counts must match in SIGN_EXTEND_INREG");
2978    assert(EVT.bitsLE(VT) && "Not extending!");
2979    if (EVT == VT) return N1;  // Not actually extending
2980
2981    if (N1C) {
2982      APInt Val = N1C->getAPIntValue();
2983      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2984      Val <<= Val.getBitWidth()-FromBits;
2985      Val = Val.ashr(Val.getBitWidth()-FromBits);
2986      return getConstant(Val, VT);
2987    }
2988    break;
2989  }
2990  case ISD::EXTRACT_VECTOR_ELT:
2991    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2992    if (N1.getOpcode() == ISD::UNDEF)
2993      return getUNDEF(VT);
2994
2995    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2996    // expanding copies of large vectors from registers.
2997    if (N2C &&
2998        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2999        N1.getNumOperands() > 0) {
3000      unsigned Factor =
3001        N1.getOperand(0).getValueType().getVectorNumElements();
3002      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
3003                     N1.getOperand(N2C->getZExtValue() / Factor),
3004                     getConstant(N2C->getZExtValue() % Factor,
3005                                 N2.getValueType()));
3006    }
3007
3008    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
3009    // expanding large vector constants.
3010    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
3011      SDValue Elt = N1.getOperand(N2C->getZExtValue());
3012
3013      if (VT != Elt.getValueType())
3014        // If the vector element type is not legal, the BUILD_VECTOR operands
3015        // are promoted and implicitly truncated, and the result implicitly
3016        // extended. Make that explicit here.
3017        Elt = getAnyExtOrTrunc(Elt, DL, VT);
3018
3019      return Elt;
3020    }
3021
3022    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
3023    // operations are lowered to scalars.
3024    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
3025      // If the indices are the same, return the inserted element else
3026      // if the indices are known different, extract the element from
3027      // the original vector.
3028      SDValue N1Op2 = N1.getOperand(2);
3029      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
3030
3031      if (N1Op2C && N2C) {
3032        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
3033          if (VT == N1.getOperand(1).getValueType())
3034            return N1.getOperand(1);
3035          else
3036            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
3037        }
3038
3039        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
3040      }
3041    }
3042    break;
3043  case ISD::EXTRACT_ELEMENT:
3044    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
3045    assert(!N1.getValueType().isVector() && !VT.isVector() &&
3046           (N1.getValueType().isInteger() == VT.isInteger()) &&
3047           N1.getValueType() != VT &&
3048           "Wrong types for EXTRACT_ELEMENT!");
3049
3050    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
3051    // 64-bit integers into 32-bit parts.  Instead of building the extract of
3052    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
3053    if (N1.getOpcode() == ISD::BUILD_PAIR)
3054      return N1.getOperand(N2C->getZExtValue());
3055
3056    // EXTRACT_ELEMENT of a constant int is also very common.
3057    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
3058      unsigned ElementSize = VT.getSizeInBits();
3059      unsigned Shift = ElementSize * N2C->getZExtValue();
3060      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
3061      return getConstant(ShiftedVal.trunc(ElementSize), VT);
3062    }
3063    break;
3064  case ISD::EXTRACT_SUBVECTOR: {
3065    SDValue Index = N2;
3066    if (VT.isSimple() && N1.getValueType().isSimple()) {
3067      assert(VT.isVector() && N1.getValueType().isVector() &&
3068             "Extract subvector VTs must be a vectors!");
3069      assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
3070             "Extract subvector VTs must have the same element type!");
3071      assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3072             "Extract subvector must be from larger vector to smaller vector!");
3073
3074      if (isa<ConstantSDNode>(Index.getNode())) {
3075        assert((VT.getVectorNumElements() +
3076                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3077                <= N1.getValueType().getVectorNumElements())
3078               && "Extract subvector overflow!");
3079      }
3080
3081      // Trivial extraction.
3082      if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
3083        return N1;
3084    }
3085    break;
3086  }
3087  }
3088
3089  // Perform trivial constant folding.
3090  SDValue SV = FoldConstantArithmetic(Opcode, VT, N1.getNode(), N2.getNode());
3091  if (SV.getNode()) return SV;
3092
3093  // Canonicalize constant to RHS if commutative.
3094  if (N1C && !N2C && isCommutativeBinOp(Opcode)) {
3095    std::swap(N1C, N2C);
3096    std::swap(N1, N2);
3097  }
3098
3099  // Constant fold FP operations.
3100  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
3101  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
3102  if (N1CFP) {
3103    if (!N2CFP && isCommutativeBinOp(Opcode)) {
3104      // Canonicalize constant to RHS if commutative.
3105      std::swap(N1CFP, N2CFP);
3106      std::swap(N1, N2);
3107    } else if (N2CFP) {
3108      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
3109      APFloat::opStatus s;
3110      switch (Opcode) {
3111      case ISD::FADD:
3112        s = V1.add(V2, APFloat::rmNearestTiesToEven);
3113        if (s != APFloat::opInvalidOp)
3114          return getConstantFP(V1, VT);
3115        break;
3116      case ISD::FSUB:
3117        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
3118        if (s!=APFloat::opInvalidOp)
3119          return getConstantFP(V1, VT);
3120        break;
3121      case ISD::FMUL:
3122        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
3123        if (s!=APFloat::opInvalidOp)
3124          return getConstantFP(V1, VT);
3125        break;
3126      case ISD::FDIV:
3127        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
3128        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
3129          return getConstantFP(V1, VT);
3130        break;
3131      case ISD::FREM :
3132        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
3133        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
3134          return getConstantFP(V1, VT);
3135        break;
3136      case ISD::FCOPYSIGN:
3137        V1.copySign(V2);
3138        return getConstantFP(V1, VT);
3139      default: break;
3140      }
3141    }
3142
3143    if (Opcode == ISD::FP_ROUND) {
3144      APFloat V = N1CFP->getValueAPF();    // make copy
3145      bool ignored;
3146      // This can return overflow, underflow, or inexact; we don't care.
3147      // FIXME need to be more flexible about rounding mode.
3148      (void)V.convert(EVTToAPFloatSemantics(VT),
3149                      APFloat::rmNearestTiesToEven, &ignored);
3150      return getConstantFP(V, VT);
3151    }
3152  }
3153
3154  // Canonicalize an UNDEF to the RHS, even over a constant.
3155  if (N1.getOpcode() == ISD::UNDEF) {
3156    if (isCommutativeBinOp(Opcode)) {
3157      std::swap(N1, N2);
3158    } else {
3159      switch (Opcode) {
3160      case ISD::FP_ROUND_INREG:
3161      case ISD::SIGN_EXTEND_INREG:
3162      case ISD::SUB:
3163      case ISD::FSUB:
3164      case ISD::FDIV:
3165      case ISD::FREM:
3166      case ISD::SRA:
3167        return N1;     // fold op(undef, arg2) -> undef
3168      case ISD::UDIV:
3169      case ISD::SDIV:
3170      case ISD::UREM:
3171      case ISD::SREM:
3172      case ISD::SRL:
3173      case ISD::SHL:
3174        if (!VT.isVector())
3175          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
3176        // For vectors, we can't easily build an all zero vector, just return
3177        // the LHS.
3178        return N2;
3179      }
3180    }
3181  }
3182
3183  // Fold a bunch of operators when the RHS is undef.
3184  if (N2.getOpcode() == ISD::UNDEF) {
3185    switch (Opcode) {
3186    case ISD::XOR:
3187      if (N1.getOpcode() == ISD::UNDEF)
3188        // Handle undef ^ undef -> 0 special case. This is a common
3189        // idiom (misuse).
3190        return getConstant(0, VT);
3191      // fallthrough
3192    case ISD::ADD:
3193    case ISD::ADDC:
3194    case ISD::ADDE:
3195    case ISD::SUB:
3196    case ISD::UDIV:
3197    case ISD::SDIV:
3198    case ISD::UREM:
3199    case ISD::SREM:
3200      return N2;       // fold op(arg1, undef) -> undef
3201    case ISD::FADD:
3202    case ISD::FSUB:
3203    case ISD::FMUL:
3204    case ISD::FDIV:
3205    case ISD::FREM:
3206      if (getTarget().Options.UnsafeFPMath)
3207        return N2;
3208      break;
3209    case ISD::MUL:
3210    case ISD::AND:
3211    case ISD::SRL:
3212    case ISD::SHL:
3213      if (!VT.isVector())
3214        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3215      // For vectors, we can't easily build an all zero vector, just return
3216      // the LHS.
3217      return N1;
3218    case ISD::OR:
3219      if (!VT.isVector())
3220        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3221      // For vectors, we can't easily build an all one vector, just return
3222      // the LHS.
3223      return N1;
3224    case ISD::SRA:
3225      return N1;
3226    }
3227  }
3228
3229  // Memoize this node if possible.
3230  SDNode *N;
3231  SDVTList VTs = getVTList(VT);
3232  if (VT != MVT::Glue) {
3233    SDValue Ops[] = { N1, N2 };
3234    FoldingSetNodeID ID;
3235    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3236    void *IP = 0;
3237    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3238      return SDValue(E, 0);
3239
3240    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3241    CSEMap.InsertNode(N, IP);
3242  } else {
3243    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3244  }
3245
3246  AllNodes.push_back(N);
3247#ifndef NDEBUG
3248  VerifySDNode(N);
3249#endif
3250  return SDValue(N, 0);
3251}
3252
3253SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3254                              SDValue N1, SDValue N2, SDValue N3) {
3255  // Perform various simplifications.
3256  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3257  switch (Opcode) {
3258  case ISD::CONCAT_VECTORS:
3259    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3260    // one big BUILD_VECTOR.
3261    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3262        N2.getOpcode() == ISD::BUILD_VECTOR &&
3263        N3.getOpcode() == ISD::BUILD_VECTOR) {
3264      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3265                                    N1.getNode()->op_end());
3266      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3267      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3268      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3269    }
3270    break;
3271  case ISD::SETCC: {
3272    // Use FoldSetCC to simplify SETCC's.
3273    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3274    if (Simp.getNode()) return Simp;
3275    break;
3276  }
3277  case ISD::SELECT:
3278    if (N1C) {
3279     if (N1C->getZExtValue())
3280       return N2;             // select true, X, Y -> X
3281     return N3;             // select false, X, Y -> Y
3282    }
3283
3284    if (N2 == N3) return N2;   // select C, X, X -> X
3285    break;
3286  case ISD::VECTOR_SHUFFLE:
3287    llvm_unreachable("should use getVectorShuffle constructor!");
3288  case ISD::INSERT_SUBVECTOR: {
3289    SDValue Index = N3;
3290    if (VT.isSimple() && N1.getValueType().isSimple()
3291        && N2.getValueType().isSimple()) {
3292      assert(VT.isVector() && N1.getValueType().isVector() &&
3293             N2.getValueType().isVector() &&
3294             "Insert subvector VTs must be a vectors");
3295      assert(VT == N1.getValueType() &&
3296             "Dest and insert subvector source types must match!");
3297      assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3298             "Insert subvector must be from smaller vector to larger vector!");
3299      if (isa<ConstantSDNode>(Index.getNode())) {
3300        assert((N2.getValueType().getVectorNumElements() +
3301                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3302                <= VT.getVectorNumElements())
3303               && "Insert subvector overflow!");
3304      }
3305
3306      // Trivial insertion.
3307      if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3308        return N2;
3309    }
3310    break;
3311  }
3312  case ISD::BITCAST:
3313    // Fold bit_convert nodes from a type to themselves.
3314    if (N1.getValueType() == VT)
3315      return N1;
3316    break;
3317  }
3318
3319  // Memoize node if it doesn't produce a flag.
3320  SDNode *N;
3321  SDVTList VTs = getVTList(VT);
3322  if (VT != MVT::Glue) {
3323    SDValue Ops[] = { N1, N2, N3 };
3324    FoldingSetNodeID ID;
3325    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3326    void *IP = 0;
3327    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3328      return SDValue(E, 0);
3329
3330    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3331    CSEMap.InsertNode(N, IP);
3332  } else {
3333    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3334  }
3335
3336  AllNodes.push_back(N);
3337#ifndef NDEBUG
3338  VerifySDNode(N);
3339#endif
3340  return SDValue(N, 0);
3341}
3342
3343SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3344                              SDValue N1, SDValue N2, SDValue N3,
3345                              SDValue N4) {
3346  SDValue Ops[] = { N1, N2, N3, N4 };
3347  return getNode(Opcode, DL, VT, Ops, 4);
3348}
3349
3350SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3351                              SDValue N1, SDValue N2, SDValue N3,
3352                              SDValue N4, SDValue N5) {
3353  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3354  return getNode(Opcode, DL, VT, Ops, 5);
3355}
3356
3357/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3358/// the incoming stack arguments to be loaded from the stack.
3359SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3360  SmallVector<SDValue, 8> ArgChains;
3361
3362  // Include the original chain at the beginning of the list. When this is
3363  // used by target LowerCall hooks, this helps legalize find the
3364  // CALLSEQ_BEGIN node.
3365  ArgChains.push_back(Chain);
3366
3367  // Add a chain value for each stack argument.
3368  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3369       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3370    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3371      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3372        if (FI->getIndex() < 0)
3373          ArgChains.push_back(SDValue(L, 1));
3374
3375  // Build a tokenfactor for all the chains.
3376  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3377                 &ArgChains[0], ArgChains.size());
3378}
3379
3380/// getMemsetValue - Vectorized representation of the memset value
3381/// operand.
3382static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3383                              DebugLoc dl) {
3384  assert(Value.getOpcode() != ISD::UNDEF);
3385
3386  unsigned NumBits = VT.getScalarType().getSizeInBits();
3387  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3388    assert(C->getAPIntValue().getBitWidth() == 8);
3389    APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
3390    if (VT.isInteger())
3391      return DAG.getConstant(Val, VT);
3392    return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), VT);
3393  }
3394
3395  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3396  if (NumBits > 8) {
3397    // Use a multiplication with 0x010101... to extend the input to the
3398    // required length.
3399    APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
3400    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3401  }
3402
3403  return Value;
3404}
3405
3406/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3407/// used when a memcpy is turned into a memset when the source is a constant
3408/// string ptr.
3409static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3410                                  const TargetLowering &TLI, StringRef Str) {
3411  // Handle vector with all elements zero.
3412  if (Str.empty()) {
3413    if (VT.isInteger())
3414      return DAG.getConstant(0, VT);
3415    else if (VT == MVT::f32 || VT == MVT::f64)
3416      return DAG.getConstantFP(0.0, VT);
3417    else if (VT.isVector()) {
3418      unsigned NumElts = VT.getVectorNumElements();
3419      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3420      return DAG.getNode(ISD::BITCAST, dl, VT,
3421                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3422                                                             EltVT, NumElts)));
3423    } else
3424      llvm_unreachable("Expected type!");
3425  }
3426
3427  assert(!VT.isVector() && "Can't handle vector type here!");
3428  unsigned NumVTBits = VT.getSizeInBits();
3429  unsigned NumVTBytes = NumVTBits / 8;
3430  unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size()));
3431
3432  APInt Val(NumVTBits, 0);
3433  if (TLI.isLittleEndian()) {
3434    for (unsigned i = 0; i != NumBytes; ++i)
3435      Val |= (uint64_t)(unsigned char)Str[i] << i*8;
3436  } else {
3437    for (unsigned i = 0; i != NumBytes; ++i)
3438      Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8;
3439  }
3440
3441  // If the "cost" of materializing the integer immediate is 1 or free, then
3442  // it is cost effective to turn the load into the immediate.
3443  const TargetTransformInfo *TTI = DAG.getTargetTransformInfo();
3444  if (TTI->getIntImmCost(Val, VT.getTypeForEVT(*DAG.getContext())) < 2)
3445    return DAG.getConstant(Val, VT);
3446  return SDValue(0, 0);
3447}
3448
3449/// getMemBasePlusOffset - Returns base and offset node for the
3450///
3451static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3452                                      SelectionDAG &DAG) {
3453  EVT VT = Base.getValueType();
3454  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3455                     VT, Base, DAG.getConstant(Offset, VT));
3456}
3457
3458/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3459///
3460static bool isMemSrcFromString(SDValue Src, StringRef &Str) {
3461  unsigned SrcDelta = 0;
3462  GlobalAddressSDNode *G = NULL;
3463  if (Src.getOpcode() == ISD::GlobalAddress)
3464    G = cast<GlobalAddressSDNode>(Src);
3465  else if (Src.getOpcode() == ISD::ADD &&
3466           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3467           Src.getOperand(1).getOpcode() == ISD::Constant) {
3468    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3469    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3470  }
3471  if (!G)
3472    return false;
3473
3474  return getConstantStringInfo(G->getGlobal(), Str, SrcDelta, false);
3475}
3476
3477/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3478/// to replace the memset / memcpy. Return true if the number of memory ops
3479/// is below the threshold. It returns the types of the sequence of
3480/// memory ops to perform memset / memcpy by reference.
3481static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3482                                     unsigned Limit, uint64_t Size,
3483                                     unsigned DstAlign, unsigned SrcAlign,
3484                                     bool IsMemset,
3485                                     bool ZeroMemset,
3486                                     bool MemcpyStrSrc,
3487                                     bool AllowOverlap,
3488                                     SelectionDAG &DAG,
3489                                     const TargetLowering &TLI) {
3490  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3491         "Expecting memcpy / memset source to meet alignment requirement!");
3492  // If 'SrcAlign' is zero, that means the memory operation does not need to
3493  // load the value, i.e. memset or memcpy from constant string. Otherwise,
3494  // it's the inferred alignment of the source. 'DstAlign', on the other hand,
3495  // is the specified alignment of the memory operation. If it is zero, that
3496  // means it's possible to change the alignment of the destination.
3497  // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
3498  // not need to be loaded.
3499  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3500                                   IsMemset, ZeroMemset, MemcpyStrSrc,
3501                                   DAG.getMachineFunction());
3502
3503  if (VT == MVT::Other) {
3504    if (DstAlign >= TLI.getDataLayout()->getPointerPrefAlignment() ||
3505        TLI.allowsUnalignedMemoryAccesses(VT)) {
3506      VT = TLI.getPointerTy();
3507    } else {
3508      switch (DstAlign & 7) {
3509      case 0:  VT = MVT::i64; break;
3510      case 4:  VT = MVT::i32; break;
3511      case 2:  VT = MVT::i16; break;
3512      default: VT = MVT::i8;  break;
3513      }
3514    }
3515
3516    MVT LVT = MVT::i64;
3517    while (!TLI.isTypeLegal(LVT))
3518      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3519    assert(LVT.isInteger());
3520
3521    if (VT.bitsGT(LVT))
3522      VT = LVT;
3523  }
3524
3525  unsigned NumMemOps = 0;
3526  while (Size != 0) {
3527    unsigned VTSize = VT.getSizeInBits() / 8;
3528    while (VTSize > Size) {
3529      // For now, only use non-vector load / store's for the left-over pieces.
3530      EVT NewVT = VT;
3531      unsigned NewVTSize;
3532
3533      bool Found = false;
3534      if (VT.isVector() || VT.isFloatingPoint()) {
3535        NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
3536        if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
3537            TLI.isSafeMemOpType(NewVT.getSimpleVT()))
3538          Found = true;
3539        else if (NewVT == MVT::i64 &&
3540                 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
3541                 TLI.isSafeMemOpType(MVT::f64)) {
3542          // i64 is usually not legal on 32-bit targets, but f64 may be.
3543          NewVT = MVT::f64;
3544          Found = true;
3545        }
3546      }
3547
3548      if (!Found) {
3549        do {
3550          NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
3551          if (NewVT == MVT::i8)
3552            break;
3553        } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
3554      }
3555      NewVTSize = NewVT.getSizeInBits() / 8;
3556
3557      // If the new VT cannot cover all of the remaining bits, then consider
3558      // issuing a (or a pair of) unaligned and overlapping load / store.
3559      // FIXME: Only does this for 64-bit or more since we don't have proper
3560      // cost model for unaligned load / store.
3561      bool Fast;
3562      if (NumMemOps && AllowOverlap &&
3563          VTSize >= 8 && NewVTSize < Size &&
3564          TLI.allowsUnalignedMemoryAccesses(VT, &Fast) && Fast)
3565        VTSize = Size;
3566      else {
3567        VT = NewVT;
3568        VTSize = NewVTSize;
3569      }
3570    }
3571
3572    if (++NumMemOps > Limit)
3573      return false;
3574
3575    MemOps.push_back(VT);
3576    Size -= VTSize;
3577  }
3578
3579  return true;
3580}
3581
3582static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3583                                       SDValue Chain, SDValue Dst,
3584                                       SDValue Src, uint64_t Size,
3585                                       unsigned Align, bool isVol,
3586                                       bool AlwaysInline,
3587                                       MachinePointerInfo DstPtrInfo,
3588                                       MachinePointerInfo SrcPtrInfo) {
3589  // Turn a memcpy of undef to nop.
3590  if (Src.getOpcode() == ISD::UNDEF)
3591    return Chain;
3592
3593  // Expand memcpy to a series of load and store ops if the size operand falls
3594  // below a certain threshold.
3595  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3596  // rather than maybe a humongous number of loads and stores.
3597  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3598  std::vector<EVT> MemOps;
3599  bool DstAlignCanChange = false;
3600  MachineFunction &MF = DAG.getMachineFunction();
3601  MachineFrameInfo *MFI = MF.getFrameInfo();
3602  bool OptSize =
3603    MF.getFunction()->getAttributes().
3604      hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
3605  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3606  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3607    DstAlignCanChange = true;
3608  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3609  if (Align > SrcAlign)
3610    SrcAlign = Align;
3611  StringRef Str;
3612  bool CopyFromStr = isMemSrcFromString(Src, Str);
3613  bool isZeroStr = CopyFromStr && Str.empty();
3614  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3615
3616  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3617                                (DstAlignCanChange ? 0 : Align),
3618                                (isZeroStr ? 0 : SrcAlign),
3619                                false, false, CopyFromStr, true, DAG, TLI))
3620    return SDValue();
3621
3622  if (DstAlignCanChange) {
3623    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3624    unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
3625
3626    // Don't promote to an alignment that would require dynamic stack
3627    // realignment.
3628    const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
3629    if (!TRI->needsStackRealignment(MF))
3630       while (NewAlign > Align &&
3631             TLI.getDataLayout()->exceedsNaturalStackAlignment(NewAlign))
3632          NewAlign /= 2;
3633
3634    if (NewAlign > Align) {
3635      // Give the stack frame object a larger alignment if needed.
3636      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3637        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3638      Align = NewAlign;
3639    }
3640  }
3641
3642  SmallVector<SDValue, 8> OutChains;
3643  unsigned NumMemOps = MemOps.size();
3644  uint64_t SrcOff = 0, DstOff = 0;
3645  for (unsigned i = 0; i != NumMemOps; ++i) {
3646    EVT VT = MemOps[i];
3647    unsigned VTSize = VT.getSizeInBits() / 8;
3648    SDValue Value, Store;
3649
3650    if (VTSize > Size) {
3651      // Issuing an unaligned load / store pair  that overlaps with the previous
3652      // pair. Adjust the offset accordingly.
3653      assert(i == NumMemOps-1 && i != 0);
3654      SrcOff -= VTSize - Size;
3655      DstOff -= VTSize - Size;
3656    }
3657
3658    if (CopyFromStr &&
3659        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3660      // It's unlikely a store of a vector immediate can be done in a single
3661      // instruction. It would require a load from a constantpool first.
3662      // We only handle zero vectors here.
3663      // FIXME: Handle other cases where store of vector immediate is done in
3664      // a single instruction.
3665      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff));
3666      if (Value.getNode())
3667        Store = DAG.getStore(Chain, dl, Value,
3668                             getMemBasePlusOffset(Dst, DstOff, DAG),
3669                             DstPtrInfo.getWithOffset(DstOff), isVol,
3670                             false, Align);
3671    }
3672
3673    if (!Store.getNode()) {
3674      // The type might not be legal for the target.  This should only happen
3675      // if the type is smaller than a legal type, as on PPC, so the right
3676      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3677      // to Load/Store if NVT==VT.
3678      // FIXME does the case above also need this?
3679      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3680      assert(NVT.bitsGE(VT));
3681      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3682                             getMemBasePlusOffset(Src, SrcOff, DAG),
3683                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3684                             MinAlign(SrcAlign, SrcOff));
3685      Store = DAG.getTruncStore(Chain, dl, Value,
3686                                getMemBasePlusOffset(Dst, DstOff, DAG),
3687                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3688                                false, Align);
3689    }
3690    OutChains.push_back(Store);
3691    SrcOff += VTSize;
3692    DstOff += VTSize;
3693    Size -= VTSize;
3694  }
3695
3696  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3697                     &OutChains[0], OutChains.size());
3698}
3699
3700static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3701                                        SDValue Chain, SDValue Dst,
3702                                        SDValue Src, uint64_t Size,
3703                                        unsigned Align,  bool isVol,
3704                                        bool AlwaysInline,
3705                                        MachinePointerInfo DstPtrInfo,
3706                                        MachinePointerInfo SrcPtrInfo) {
3707  // Turn a memmove of undef to nop.
3708  if (Src.getOpcode() == ISD::UNDEF)
3709    return Chain;
3710
3711  // Expand memmove to a series of load and store ops if the size operand falls
3712  // below a certain threshold.
3713  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3714  std::vector<EVT> MemOps;
3715  bool DstAlignCanChange = false;
3716  MachineFunction &MF = DAG.getMachineFunction();
3717  MachineFrameInfo *MFI = MF.getFrameInfo();
3718  bool OptSize = MF.getFunction()->getAttributes().
3719    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
3720  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3721  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3722    DstAlignCanChange = true;
3723  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3724  if (Align > SrcAlign)
3725    SrcAlign = Align;
3726  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3727
3728  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3729                                (DstAlignCanChange ? 0 : Align), SrcAlign,
3730                                false, false, false, false, DAG, TLI))
3731    return SDValue();
3732
3733  if (DstAlignCanChange) {
3734    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3735    unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
3736    if (NewAlign > Align) {
3737      // Give the stack frame object a larger alignment if needed.
3738      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3739        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3740      Align = NewAlign;
3741    }
3742  }
3743
3744  uint64_t SrcOff = 0, DstOff = 0;
3745  SmallVector<SDValue, 8> LoadValues;
3746  SmallVector<SDValue, 8> LoadChains;
3747  SmallVector<SDValue, 8> OutChains;
3748  unsigned NumMemOps = MemOps.size();
3749  for (unsigned i = 0; i < NumMemOps; i++) {
3750    EVT VT = MemOps[i];
3751    unsigned VTSize = VT.getSizeInBits() / 8;
3752    SDValue Value, Store;
3753
3754    Value = DAG.getLoad(VT, dl, Chain,
3755                        getMemBasePlusOffset(Src, SrcOff, DAG),
3756                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3757                        false, false, SrcAlign);
3758    LoadValues.push_back(Value);
3759    LoadChains.push_back(Value.getValue(1));
3760    SrcOff += VTSize;
3761  }
3762  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3763                      &LoadChains[0], LoadChains.size());
3764  OutChains.clear();
3765  for (unsigned i = 0; i < NumMemOps; i++) {
3766    EVT VT = MemOps[i];
3767    unsigned VTSize = VT.getSizeInBits() / 8;
3768    SDValue Value, Store;
3769
3770    Store = DAG.getStore(Chain, dl, LoadValues[i],
3771                         getMemBasePlusOffset(Dst, DstOff, DAG),
3772                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3773    OutChains.push_back(Store);
3774    DstOff += VTSize;
3775  }
3776
3777  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3778                     &OutChains[0], OutChains.size());
3779}
3780
3781static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3782                               SDValue Chain, SDValue Dst,
3783                               SDValue Src, uint64_t Size,
3784                               unsigned Align, bool isVol,
3785                               MachinePointerInfo DstPtrInfo) {
3786  // Turn a memset of undef to nop.
3787  if (Src.getOpcode() == ISD::UNDEF)
3788    return Chain;
3789
3790  // Expand memset to a series of load/store ops if the size operand
3791  // falls below a certain threshold.
3792  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3793  std::vector<EVT> MemOps;
3794  bool DstAlignCanChange = false;
3795  MachineFunction &MF = DAG.getMachineFunction();
3796  MachineFrameInfo *MFI = MF.getFrameInfo();
3797  bool OptSize = MF.getFunction()->getAttributes().
3798    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
3799  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3800  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3801    DstAlignCanChange = true;
3802  bool IsZeroVal =
3803    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3804  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3805                                Size, (DstAlignCanChange ? 0 : Align), 0,
3806                                true, IsZeroVal, false, true, DAG, TLI))
3807    return SDValue();
3808
3809  if (DstAlignCanChange) {
3810    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3811    unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
3812    if (NewAlign > Align) {
3813      // Give the stack frame object a larger alignment if needed.
3814      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3815        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3816      Align = NewAlign;
3817    }
3818  }
3819
3820  SmallVector<SDValue, 8> OutChains;
3821  uint64_t DstOff = 0;
3822  unsigned NumMemOps = MemOps.size();
3823
3824  // Find the largest store and generate the bit pattern for it.
3825  EVT LargestVT = MemOps[0];
3826  for (unsigned i = 1; i < NumMemOps; i++)
3827    if (MemOps[i].bitsGT(LargestVT))
3828      LargestVT = MemOps[i];
3829  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3830
3831  for (unsigned i = 0; i < NumMemOps; i++) {
3832    EVT VT = MemOps[i];
3833    unsigned VTSize = VT.getSizeInBits() / 8;
3834    if (VTSize > Size) {
3835      // Issuing an unaligned load / store pair  that overlaps with the previous
3836      // pair. Adjust the offset accordingly.
3837      assert(i == NumMemOps-1 && i != 0);
3838      DstOff -= VTSize - Size;
3839    }
3840
3841    // If this store is smaller than the largest store see whether we can get
3842    // the smaller value for free with a truncate.
3843    SDValue Value = MemSetValue;
3844    if (VT.bitsLT(LargestVT)) {
3845      if (!LargestVT.isVector() && !VT.isVector() &&
3846          TLI.isTruncateFree(LargestVT, VT))
3847        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3848      else
3849        Value = getMemsetValue(Src, VT, DAG, dl);
3850    }
3851    assert(Value.getValueType() == VT && "Value with wrong type.");
3852    SDValue Store = DAG.getStore(Chain, dl, Value,
3853                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3854                                 DstPtrInfo.getWithOffset(DstOff),
3855                                 isVol, false, Align);
3856    OutChains.push_back(Store);
3857    DstOff += VT.getSizeInBits() / 8;
3858    Size -= VTSize;
3859  }
3860
3861  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3862                     &OutChains[0], OutChains.size());
3863}
3864
3865SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3866                                SDValue Src, SDValue Size,
3867                                unsigned Align, bool isVol, bool AlwaysInline,
3868                                MachinePointerInfo DstPtrInfo,
3869                                MachinePointerInfo SrcPtrInfo) {
3870  assert(Align && "The SDAG layer expects explicit alignment and reservers 0");
3871
3872  // Check to see if we should lower the memcpy to loads and stores first.
3873  // For cases within the target-specified limits, this is the best choice.
3874  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3875  if (ConstantSize) {
3876    // Memcpy with size zero? Just return the original chain.
3877    if (ConstantSize->isNullValue())
3878      return Chain;
3879
3880    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3881                                             ConstantSize->getZExtValue(),Align,
3882                                isVol, false, DstPtrInfo, SrcPtrInfo);
3883    if (Result.getNode())
3884      return Result;
3885  }
3886
3887  // Then check to see if we should lower the memcpy with target-specific
3888  // code. If the target chooses to do this, this is the next best.
3889  SDValue Result =
3890    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3891                                isVol, AlwaysInline,
3892                                DstPtrInfo, SrcPtrInfo);
3893  if (Result.getNode())
3894    return Result;
3895
3896  // If we really need inline code and the target declined to provide it,
3897  // use a (potentially long) sequence of loads and stores.
3898  if (AlwaysInline) {
3899    assert(ConstantSize && "AlwaysInline requires a constant size!");
3900    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3901                                   ConstantSize->getZExtValue(), Align, isVol,
3902                                   true, DstPtrInfo, SrcPtrInfo);
3903  }
3904
3905  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3906  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3907  // respect volatile, so they may do things like read or write memory
3908  // beyond the given memory regions. But fixing this isn't easy, and most
3909  // people don't care.
3910
3911  // Emit a library call.
3912  TargetLowering::ArgListTy Args;
3913  TargetLowering::ArgListEntry Entry;
3914  Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext());
3915  Entry.Node = Dst; Args.push_back(Entry);
3916  Entry.Node = Src; Args.push_back(Entry);
3917  Entry.Node = Size; Args.push_back(Entry);
3918  // FIXME: pass in DebugLoc
3919  TargetLowering::
3920  CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
3921                    false, false, false, false, 0,
3922                    TLI.getLibcallCallingConv(RTLIB::MEMCPY),
3923                    /*isTailCall=*/false,
3924                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/false,
3925                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3926                                      TLI.getPointerTy()),
3927                    Args, *this, dl);
3928  std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
3929
3930  return CallResult.second;
3931}
3932
3933SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3934                                 SDValue Src, SDValue Size,
3935                                 unsigned Align, bool isVol,
3936                                 MachinePointerInfo DstPtrInfo,
3937                                 MachinePointerInfo SrcPtrInfo) {
3938  assert(Align && "The SDAG layer expects explicit alignment and reservers 0");
3939
3940  // Check to see if we should lower the memmove to loads and stores first.
3941  // For cases within the target-specified limits, this is the best choice.
3942  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3943  if (ConstantSize) {
3944    // Memmove with size zero? Just return the original chain.
3945    if (ConstantSize->isNullValue())
3946      return Chain;
3947
3948    SDValue Result =
3949      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3950                               ConstantSize->getZExtValue(), Align, isVol,
3951                               false, DstPtrInfo, SrcPtrInfo);
3952    if (Result.getNode())
3953      return Result;
3954  }
3955
3956  // Then check to see if we should lower the memmove with target-specific
3957  // code. If the target chooses to do this, this is the next best.
3958  SDValue Result =
3959    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3960                                 DstPtrInfo, SrcPtrInfo);
3961  if (Result.getNode())
3962    return Result;
3963
3964  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3965  // not be safe.  See memcpy above for more details.
3966
3967  // Emit a library call.
3968  TargetLowering::ArgListTy Args;
3969  TargetLowering::ArgListEntry Entry;
3970  Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext());
3971  Entry.Node = Dst; Args.push_back(Entry);
3972  Entry.Node = Src; Args.push_back(Entry);
3973  Entry.Node = Size; Args.push_back(Entry);
3974  // FIXME:  pass in DebugLoc
3975  TargetLowering::
3976  CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
3977                    false, false, false, false, 0,
3978                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE),
3979                    /*isTailCall=*/false,
3980                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/false,
3981                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3982                                      TLI.getPointerTy()),
3983                    Args, *this, dl);
3984  std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
3985
3986  return CallResult.second;
3987}
3988
3989SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3990                                SDValue Src, SDValue Size,
3991                                unsigned Align, bool isVol,
3992                                MachinePointerInfo DstPtrInfo) {
3993  assert(Align && "The SDAG layer expects explicit alignment and reservers 0");
3994
3995  // Check to see if we should lower the memset to stores first.
3996  // For cases within the target-specified limits, this is the best choice.
3997  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3998  if (ConstantSize) {
3999    // Memset with size zero? Just return the original chain.
4000    if (ConstantSize->isNullValue())
4001      return Chain;
4002
4003    SDValue Result =
4004      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
4005                      Align, isVol, DstPtrInfo);
4006
4007    if (Result.getNode())
4008      return Result;
4009  }
4010
4011  // Then check to see if we should lower the memset with target-specific
4012  // code. If the target chooses to do this, this is the next best.
4013  SDValue Result =
4014    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
4015                                DstPtrInfo);
4016  if (Result.getNode())
4017    return Result;
4018
4019  // Emit a library call.
4020  Type *IntPtrTy = TLI.getDataLayout()->getIntPtrType(*getContext());
4021  TargetLowering::ArgListTy Args;
4022  TargetLowering::ArgListEntry Entry;
4023  Entry.Node = Dst; Entry.Ty = IntPtrTy;
4024  Args.push_back(Entry);
4025  // Extend or truncate the argument to be an i32 value for the call.
4026  if (Src.getValueType().bitsGT(MVT::i32))
4027    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
4028  else
4029    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
4030  Entry.Node = Src;
4031  Entry.Ty = Type::getInt32Ty(*getContext());
4032  Entry.isSExt = true;
4033  Args.push_back(Entry);
4034  Entry.Node = Size;
4035  Entry.Ty = IntPtrTy;
4036  Entry.isSExt = false;
4037  Args.push_back(Entry);
4038  // FIXME: pass in DebugLoc
4039  TargetLowering::
4040  CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
4041                    false, false, false, false, 0,
4042                    TLI.getLibcallCallingConv(RTLIB::MEMSET),
4043                    /*isTailCall=*/false,
4044                    /*doesNotReturn*/false, /*isReturnValueUsed=*/false,
4045                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
4046                                      TLI.getPointerTy()),
4047                    Args, *this, dl);
4048  std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
4049
4050  return CallResult.second;
4051}
4052
4053SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4054                                SDValue Chain, SDValue Ptr, SDValue Cmp,
4055                                SDValue Swp, MachinePointerInfo PtrInfo,
4056                                unsigned Alignment,
4057                                AtomicOrdering Ordering,
4058                                SynchronizationScope SynchScope) {
4059  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4060    Alignment = getEVTAlignment(MemVT);
4061
4062  MachineFunction &MF = getMachineFunction();
4063
4064  // All atomics are load and store, except for ATMOIC_LOAD and ATOMIC_STORE.
4065  // For now, atomics are considered to be volatile always.
4066  // FIXME: Volatile isn't really correct; we should keep track of atomic
4067  // orderings in the memoperand.
4068  unsigned Flags = MachineMemOperand::MOVolatile;
4069  if (Opcode != ISD::ATOMIC_STORE)
4070    Flags |= MachineMemOperand::MOLoad;
4071  if (Opcode != ISD::ATOMIC_LOAD)
4072    Flags |= MachineMemOperand::MOStore;
4073
4074  MachineMemOperand *MMO =
4075    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
4076
4077  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO,
4078                   Ordering, SynchScope);
4079}
4080
4081SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4082                                SDValue Chain,
4083                                SDValue Ptr, SDValue Cmp,
4084                                SDValue Swp, MachineMemOperand *MMO,
4085                                AtomicOrdering Ordering,
4086                                SynchronizationScope SynchScope) {
4087  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
4088  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
4089
4090  EVT VT = Cmp.getValueType();
4091
4092  SDVTList VTs = getVTList(VT, MVT::Other);
4093  FoldingSetNodeID ID;
4094  ID.AddInteger(MemVT.getRawBits());
4095  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
4096  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
4097  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4098  void* IP = 0;
4099  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4100    cast<AtomicSDNode>(E)->refineAlignment(MMO);
4101    return SDValue(E, 0);
4102  }
4103  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
4104                                               Ptr, Cmp, Swp, MMO, Ordering,
4105                                               SynchScope);
4106  CSEMap.InsertNode(N, IP);
4107  AllNodes.push_back(N);
4108  return SDValue(N, 0);
4109}
4110
4111SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4112                                SDValue Chain,
4113                                SDValue Ptr, SDValue Val,
4114                                const Value* PtrVal,
4115                                unsigned Alignment,
4116                                AtomicOrdering Ordering,
4117                                SynchronizationScope SynchScope) {
4118  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4119    Alignment = getEVTAlignment(MemVT);
4120
4121  MachineFunction &MF = getMachineFunction();
4122  // An atomic store does not load. An atomic load does not store.
4123  // (An atomicrmw obviously both loads and stores.)
4124  // For now, atomics are considered to be volatile always, and they are
4125  // chained as such.
4126  // FIXME: Volatile isn't really correct; we should keep track of atomic
4127  // orderings in the memoperand.
4128  unsigned Flags = MachineMemOperand::MOVolatile;
4129  if (Opcode != ISD::ATOMIC_STORE)
4130    Flags |= MachineMemOperand::MOLoad;
4131  if (Opcode != ISD::ATOMIC_LOAD)
4132    Flags |= MachineMemOperand::MOStore;
4133
4134  MachineMemOperand *MMO =
4135    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
4136                            MemVT.getStoreSize(), Alignment);
4137
4138  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
4139                   Ordering, SynchScope);
4140}
4141
4142SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4143                                SDValue Chain,
4144                                SDValue Ptr, SDValue Val,
4145                                MachineMemOperand *MMO,
4146                                AtomicOrdering Ordering,
4147                                SynchronizationScope SynchScope) {
4148  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
4149          Opcode == ISD::ATOMIC_LOAD_SUB ||
4150          Opcode == ISD::ATOMIC_LOAD_AND ||
4151          Opcode == ISD::ATOMIC_LOAD_OR ||
4152          Opcode == ISD::ATOMIC_LOAD_XOR ||
4153          Opcode == ISD::ATOMIC_LOAD_NAND ||
4154          Opcode == ISD::ATOMIC_LOAD_MIN ||
4155          Opcode == ISD::ATOMIC_LOAD_MAX ||
4156          Opcode == ISD::ATOMIC_LOAD_UMIN ||
4157          Opcode == ISD::ATOMIC_LOAD_UMAX ||
4158          Opcode == ISD::ATOMIC_SWAP ||
4159          Opcode == ISD::ATOMIC_STORE) &&
4160         "Invalid Atomic Op");
4161
4162  EVT VT = Val.getValueType();
4163
4164  SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
4165                                               getVTList(VT, MVT::Other);
4166  FoldingSetNodeID ID;
4167  ID.AddInteger(MemVT.getRawBits());
4168  SDValue Ops[] = {Chain, Ptr, Val};
4169  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
4170  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4171  void* IP = 0;
4172  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4173    cast<AtomicSDNode>(E)->refineAlignment(MMO);
4174    return SDValue(E, 0);
4175  }
4176  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
4177                                               Ptr, Val, MMO,
4178                                               Ordering, SynchScope);
4179  CSEMap.InsertNode(N, IP);
4180  AllNodes.push_back(N);
4181  return SDValue(N, 0);
4182}
4183
4184SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4185                                EVT VT, SDValue Chain,
4186                                SDValue Ptr,
4187                                const Value* PtrVal,
4188                                unsigned Alignment,
4189                                AtomicOrdering Ordering,
4190                                SynchronizationScope SynchScope) {
4191  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4192    Alignment = getEVTAlignment(MemVT);
4193
4194  MachineFunction &MF = getMachineFunction();
4195  // An atomic store does not load. An atomic load does not store.
4196  // (An atomicrmw obviously both loads and stores.)
4197  // For now, atomics are considered to be volatile always, and they are
4198  // chained as such.
4199  // FIXME: Volatile isn't really correct; we should keep track of atomic
4200  // orderings in the memoperand.
4201  unsigned Flags = MachineMemOperand::MOVolatile;
4202  if (Opcode != ISD::ATOMIC_STORE)
4203    Flags |= MachineMemOperand::MOLoad;
4204  if (Opcode != ISD::ATOMIC_LOAD)
4205    Flags |= MachineMemOperand::MOStore;
4206
4207  MachineMemOperand *MMO =
4208    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
4209                            MemVT.getStoreSize(), Alignment);
4210
4211  return getAtomic(Opcode, dl, MemVT, VT, Chain, Ptr, MMO,
4212                   Ordering, SynchScope);
4213}
4214
4215SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4216                                EVT VT, SDValue Chain,
4217                                SDValue Ptr,
4218                                MachineMemOperand *MMO,
4219                                AtomicOrdering Ordering,
4220                                SynchronizationScope SynchScope) {
4221  assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
4222
4223  SDVTList VTs = getVTList(VT, MVT::Other);
4224  FoldingSetNodeID ID;
4225  ID.AddInteger(MemVT.getRawBits());
4226  SDValue Ops[] = {Chain, Ptr};
4227  AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
4228  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4229  void* IP = 0;
4230  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4231    cast<AtomicSDNode>(E)->refineAlignment(MMO);
4232    return SDValue(E, 0);
4233  }
4234  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
4235                                               Ptr, MMO, Ordering, SynchScope);
4236  CSEMap.InsertNode(N, IP);
4237  AllNodes.push_back(N);
4238  return SDValue(N, 0);
4239}
4240
4241/// getMergeValues - Create a MERGE_VALUES node from the given operands.
4242SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
4243                                     DebugLoc dl) {
4244  if (NumOps == 1)
4245    return Ops[0];
4246
4247  SmallVector<EVT, 4> VTs;
4248  VTs.reserve(NumOps);
4249  for (unsigned i = 0; i < NumOps; ++i)
4250    VTs.push_back(Ops[i].getValueType());
4251  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
4252                 Ops, NumOps);
4253}
4254
4255SDValue
4256SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
4257                                  const EVT *VTs, unsigned NumVTs,
4258                                  const SDValue *Ops, unsigned NumOps,
4259                                  EVT MemVT, MachinePointerInfo PtrInfo,
4260                                  unsigned Align, bool Vol,
4261                                  bool ReadMem, bool WriteMem) {
4262  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
4263                             MemVT, PtrInfo, Align, Vol,
4264                             ReadMem, WriteMem);
4265}
4266
4267SDValue
4268SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4269                                  const SDValue *Ops, unsigned NumOps,
4270                                  EVT MemVT, MachinePointerInfo PtrInfo,
4271                                  unsigned Align, bool Vol,
4272                                  bool ReadMem, bool WriteMem) {
4273  if (Align == 0)  // Ensure that codegen never sees alignment 0
4274    Align = getEVTAlignment(MemVT);
4275
4276  MachineFunction &MF = getMachineFunction();
4277  unsigned Flags = 0;
4278  if (WriteMem)
4279    Flags |= MachineMemOperand::MOStore;
4280  if (ReadMem)
4281    Flags |= MachineMemOperand::MOLoad;
4282  if (Vol)
4283    Flags |= MachineMemOperand::MOVolatile;
4284  MachineMemOperand *MMO =
4285    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
4286
4287  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
4288}
4289
4290SDValue
4291SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4292                                  const SDValue *Ops, unsigned NumOps,
4293                                  EVT MemVT, MachineMemOperand *MMO) {
4294  assert((Opcode == ISD::INTRINSIC_VOID ||
4295          Opcode == ISD::INTRINSIC_W_CHAIN ||
4296          Opcode == ISD::PREFETCH ||
4297          Opcode == ISD::LIFETIME_START ||
4298          Opcode == ISD::LIFETIME_END ||
4299          (Opcode <= INT_MAX &&
4300           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
4301         "Opcode is not a memory-accessing opcode!");
4302
4303  // Memoize the node unless it returns a flag.
4304  MemIntrinsicSDNode *N;
4305  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4306    FoldingSetNodeID ID;
4307    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4308    ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4309    void *IP = 0;
4310    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4311      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
4312      return SDValue(E, 0);
4313    }
4314
4315    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4316                                               MemVT, MMO);
4317    CSEMap.InsertNode(N, IP);
4318  } else {
4319    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4320                                               MemVT, MMO);
4321  }
4322  AllNodes.push_back(N);
4323  return SDValue(N, 0);
4324}
4325
4326/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4327/// MachinePointerInfo record from it.  This is particularly useful because the
4328/// code generator has many cases where it doesn't bother passing in a
4329/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4330static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
4331  // If this is FI+Offset, we can model it.
4332  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4333    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4334
4335  // If this is (FI+Offset1)+Offset2, we can model it.
4336  if (Ptr.getOpcode() != ISD::ADD ||
4337      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4338      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4339    return MachinePointerInfo();
4340
4341  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4342  return MachinePointerInfo::getFixedStack(FI, Offset+
4343                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4344}
4345
4346/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4347/// MachinePointerInfo record from it.  This is particularly useful because the
4348/// code generator has many cases where it doesn't bother passing in a
4349/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4350static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4351  // If the 'Offset' value isn't a constant, we can't handle this.
4352  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4353    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4354  if (OffsetOp.getOpcode() == ISD::UNDEF)
4355    return InferPointerInfo(Ptr);
4356  return MachinePointerInfo();
4357}
4358
4359
4360SDValue
4361SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4362                      EVT VT, DebugLoc dl, SDValue Chain,
4363                      SDValue Ptr, SDValue Offset,
4364                      MachinePointerInfo PtrInfo, EVT MemVT,
4365                      bool isVolatile, bool isNonTemporal, bool isInvariant,
4366                      unsigned Alignment, const MDNode *TBAAInfo,
4367                      const MDNode *Ranges) {
4368  assert(Chain.getValueType() == MVT::Other &&
4369        "Invalid chain type");
4370  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4371    Alignment = getEVTAlignment(VT);
4372
4373  unsigned Flags = MachineMemOperand::MOLoad;
4374  if (isVolatile)
4375    Flags |= MachineMemOperand::MOVolatile;
4376  if (isNonTemporal)
4377    Flags |= MachineMemOperand::MONonTemporal;
4378  if (isInvariant)
4379    Flags |= MachineMemOperand::MOInvariant;
4380
4381  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4382  // clients.
4383  if (PtrInfo.V == 0)
4384    PtrInfo = InferPointerInfo(Ptr, Offset);
4385
4386  MachineFunction &MF = getMachineFunction();
4387  MachineMemOperand *MMO =
4388    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4389                            TBAAInfo, Ranges);
4390  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4391}
4392
4393SDValue
4394SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4395                      EVT VT, DebugLoc dl, SDValue Chain,
4396                      SDValue Ptr, SDValue Offset, EVT MemVT,
4397                      MachineMemOperand *MMO) {
4398  if (VT == MemVT) {
4399    ExtType = ISD::NON_EXTLOAD;
4400  } else if (ExtType == ISD::NON_EXTLOAD) {
4401    assert(VT == MemVT && "Non-extending load from different memory type!");
4402  } else {
4403    // Extending load.
4404    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4405           "Should only be an extending load, not truncating!");
4406    assert(VT.isInteger() == MemVT.isInteger() &&
4407           "Cannot convert from FP to Int or Int -> FP!");
4408    assert(VT.isVector() == MemVT.isVector() &&
4409           "Cannot use trunc store to convert to or from a vector!");
4410    assert((!VT.isVector() ||
4411            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4412           "Cannot use trunc store to change the number of vector elements!");
4413  }
4414
4415  bool Indexed = AM != ISD::UNINDEXED;
4416  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4417         "Unindexed load with an offset!");
4418
4419  SDVTList VTs = Indexed ?
4420    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4421  SDValue Ops[] = { Chain, Ptr, Offset };
4422  FoldingSetNodeID ID;
4423  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4424  ID.AddInteger(MemVT.getRawBits());
4425  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4426                                     MMO->isNonTemporal(),
4427                                     MMO->isInvariant()));
4428  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4429  void *IP = 0;
4430  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4431    cast<LoadSDNode>(E)->refineAlignment(MMO);
4432    return SDValue(E, 0);
4433  }
4434  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4435                                             MemVT, MMO);
4436  CSEMap.InsertNode(N, IP);
4437  AllNodes.push_back(N);
4438  return SDValue(N, 0);
4439}
4440
4441SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4442                              SDValue Chain, SDValue Ptr,
4443                              MachinePointerInfo PtrInfo,
4444                              bool isVolatile, bool isNonTemporal,
4445                              bool isInvariant, unsigned Alignment,
4446                              const MDNode *TBAAInfo,
4447                              const MDNode *Ranges) {
4448  SDValue Undef = getUNDEF(Ptr.getValueType());
4449  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4450                 PtrInfo, VT, isVolatile, isNonTemporal, isInvariant, Alignment,
4451                 TBAAInfo, Ranges);
4452}
4453
4454SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
4455                                 SDValue Chain, SDValue Ptr,
4456                                 MachinePointerInfo PtrInfo, EVT MemVT,
4457                                 bool isVolatile, bool isNonTemporal,
4458                                 unsigned Alignment, const MDNode *TBAAInfo) {
4459  SDValue Undef = getUNDEF(Ptr.getValueType());
4460  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4461                 PtrInfo, MemVT, isVolatile, isNonTemporal, false, Alignment,
4462                 TBAAInfo);
4463}
4464
4465
4466SDValue
4467SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4468                             SDValue Offset, ISD::MemIndexedMode AM) {
4469  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4470  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4471         "Load is already a indexed load!");
4472  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4473                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4474                 LD->getMemoryVT(), LD->isVolatile(), LD->isNonTemporal(),
4475                 false, LD->getAlignment());
4476}
4477
4478SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4479                               SDValue Ptr, MachinePointerInfo PtrInfo,
4480                               bool isVolatile, bool isNonTemporal,
4481                               unsigned Alignment, const MDNode *TBAAInfo) {
4482  assert(Chain.getValueType() == MVT::Other &&
4483        "Invalid chain type");
4484  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4485    Alignment = getEVTAlignment(Val.getValueType());
4486
4487  unsigned Flags = MachineMemOperand::MOStore;
4488  if (isVolatile)
4489    Flags |= MachineMemOperand::MOVolatile;
4490  if (isNonTemporal)
4491    Flags |= MachineMemOperand::MONonTemporal;
4492
4493  if (PtrInfo.V == 0)
4494    PtrInfo = InferPointerInfo(Ptr);
4495
4496  MachineFunction &MF = getMachineFunction();
4497  MachineMemOperand *MMO =
4498    MF.getMachineMemOperand(PtrInfo, Flags,
4499                            Val.getValueType().getStoreSize(), Alignment,
4500                            TBAAInfo);
4501
4502  return getStore(Chain, dl, Val, Ptr, MMO);
4503}
4504
4505SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4506                               SDValue Ptr, MachineMemOperand *MMO) {
4507  assert(Chain.getValueType() == MVT::Other &&
4508        "Invalid chain type");
4509  EVT VT = Val.getValueType();
4510  SDVTList VTs = getVTList(MVT::Other);
4511  SDValue Undef = getUNDEF(Ptr.getValueType());
4512  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4513  FoldingSetNodeID ID;
4514  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4515  ID.AddInteger(VT.getRawBits());
4516  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4517                                     MMO->isNonTemporal(), MMO->isInvariant()));
4518  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4519  void *IP = 0;
4520  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4521    cast<StoreSDNode>(E)->refineAlignment(MMO);
4522    return SDValue(E, 0);
4523  }
4524  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4525                                              false, VT, MMO);
4526  CSEMap.InsertNode(N, IP);
4527  AllNodes.push_back(N);
4528  return SDValue(N, 0);
4529}
4530
4531SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4532                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4533                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4534                                    unsigned Alignment,
4535                                    const MDNode *TBAAInfo) {
4536  assert(Chain.getValueType() == MVT::Other &&
4537        "Invalid chain type");
4538  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4539    Alignment = getEVTAlignment(SVT);
4540
4541  unsigned Flags = MachineMemOperand::MOStore;
4542  if (isVolatile)
4543    Flags |= MachineMemOperand::MOVolatile;
4544  if (isNonTemporal)
4545    Flags |= MachineMemOperand::MONonTemporal;
4546
4547  if (PtrInfo.V == 0)
4548    PtrInfo = InferPointerInfo(Ptr);
4549
4550  MachineFunction &MF = getMachineFunction();
4551  MachineMemOperand *MMO =
4552    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4553                            TBAAInfo);
4554
4555  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4556}
4557
4558SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4559                                    SDValue Ptr, EVT SVT,
4560                                    MachineMemOperand *MMO) {
4561  EVT VT = Val.getValueType();
4562
4563  assert(Chain.getValueType() == MVT::Other &&
4564        "Invalid chain type");
4565  if (VT == SVT)
4566    return getStore(Chain, dl, Val, Ptr, MMO);
4567
4568  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4569         "Should only be a truncating store, not extending!");
4570  assert(VT.isInteger() == SVT.isInteger() &&
4571         "Can't do FP-INT conversion!");
4572  assert(VT.isVector() == SVT.isVector() &&
4573         "Cannot use trunc store to convert to or from a vector!");
4574  assert((!VT.isVector() ||
4575          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4576         "Cannot use trunc store to change the number of vector elements!");
4577
4578  SDVTList VTs = getVTList(MVT::Other);
4579  SDValue Undef = getUNDEF(Ptr.getValueType());
4580  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4581  FoldingSetNodeID ID;
4582  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4583  ID.AddInteger(SVT.getRawBits());
4584  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4585                                     MMO->isNonTemporal(), MMO->isInvariant()));
4586  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4587  void *IP = 0;
4588  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4589    cast<StoreSDNode>(E)->refineAlignment(MMO);
4590    return SDValue(E, 0);
4591  }
4592  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4593                                              true, SVT, MMO);
4594  CSEMap.InsertNode(N, IP);
4595  AllNodes.push_back(N);
4596  return SDValue(N, 0);
4597}
4598
4599SDValue
4600SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4601                              SDValue Offset, ISD::MemIndexedMode AM) {
4602  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4603  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4604         "Store is already a indexed store!");
4605  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4606  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4607  FoldingSetNodeID ID;
4608  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4609  ID.AddInteger(ST->getMemoryVT().getRawBits());
4610  ID.AddInteger(ST->getRawSubclassData());
4611  ID.AddInteger(ST->getPointerInfo().getAddrSpace());
4612  void *IP = 0;
4613  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4614    return SDValue(E, 0);
4615
4616  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4617                                              ST->isTruncatingStore(),
4618                                              ST->getMemoryVT(),
4619                                              ST->getMemOperand());
4620  CSEMap.InsertNode(N, IP);
4621  AllNodes.push_back(N);
4622  return SDValue(N, 0);
4623}
4624
4625SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4626                               SDValue Chain, SDValue Ptr,
4627                               SDValue SV,
4628                               unsigned Align) {
4629  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4630  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4631}
4632
4633SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4634                              const SDUse *Ops, unsigned NumOps) {
4635  switch (NumOps) {
4636  case 0: return getNode(Opcode, DL, VT);
4637  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4638  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4639  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4640  default: break;
4641  }
4642
4643  // Copy from an SDUse array into an SDValue array for use with
4644  // the regular getNode logic.
4645  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4646  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4647}
4648
4649SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4650                              const SDValue *Ops, unsigned NumOps) {
4651  switch (NumOps) {
4652  case 0: return getNode(Opcode, DL, VT);
4653  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4654  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4655  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4656  default: break;
4657  }
4658
4659  switch (Opcode) {
4660  default: break;
4661  case ISD::SELECT_CC: {
4662    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4663    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4664           "LHS and RHS of condition must have same type!");
4665    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4666           "True and False arms of SelectCC must have same type!");
4667    assert(Ops[2].getValueType() == VT &&
4668           "select_cc node must be of same type as true and false value!");
4669    break;
4670  }
4671  case ISD::BR_CC: {
4672    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4673    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4674           "LHS/RHS of comparison should match types!");
4675    break;
4676  }
4677  }
4678
4679  // Memoize nodes.
4680  SDNode *N;
4681  SDVTList VTs = getVTList(VT);
4682
4683  if (VT != MVT::Glue) {
4684    FoldingSetNodeID ID;
4685    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4686    void *IP = 0;
4687
4688    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4689      return SDValue(E, 0);
4690
4691    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4692    CSEMap.InsertNode(N, IP);
4693  } else {
4694    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4695  }
4696
4697  AllNodes.push_back(N);
4698#ifndef NDEBUG
4699  VerifySDNode(N);
4700#endif
4701  return SDValue(N, 0);
4702}
4703
4704SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4705                              const std::vector<EVT> &ResultTys,
4706                              const SDValue *Ops, unsigned NumOps) {
4707  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4708                 Ops, NumOps);
4709}
4710
4711SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4712                              const EVT *VTs, unsigned NumVTs,
4713                              const SDValue *Ops, unsigned NumOps) {
4714  if (NumVTs == 1)
4715    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4716  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4717}
4718
4719SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4720                              const SDValue *Ops, unsigned NumOps) {
4721  if (VTList.NumVTs == 1)
4722    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4723
4724#if 0
4725  switch (Opcode) {
4726  // FIXME: figure out how to safely handle things like
4727  // int foo(int x) { return 1 << (x & 255); }
4728  // int bar() { return foo(256); }
4729  case ISD::SRA_PARTS:
4730  case ISD::SRL_PARTS:
4731  case ISD::SHL_PARTS:
4732    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4733        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4734      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4735    else if (N3.getOpcode() == ISD::AND)
4736      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4737        // If the and is only masking out bits that cannot effect the shift,
4738        // eliminate the and.
4739        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4740        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4741          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4742      }
4743    break;
4744  }
4745#endif
4746
4747  // Memoize the node unless it returns a flag.
4748  SDNode *N;
4749  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4750    FoldingSetNodeID ID;
4751    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4752    void *IP = 0;
4753    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4754      return SDValue(E, 0);
4755
4756    if (NumOps == 1) {
4757      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4758    } else if (NumOps == 2) {
4759      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4760    } else if (NumOps == 3) {
4761      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4762                                            Ops[2]);
4763    } else {
4764      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4765    }
4766    CSEMap.InsertNode(N, IP);
4767  } else {
4768    if (NumOps == 1) {
4769      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4770    } else if (NumOps == 2) {
4771      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4772    } else if (NumOps == 3) {
4773      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4774                                            Ops[2]);
4775    } else {
4776      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4777    }
4778  }
4779  AllNodes.push_back(N);
4780#ifndef NDEBUG
4781  VerifySDNode(N);
4782#endif
4783  return SDValue(N, 0);
4784}
4785
4786SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4787  return getNode(Opcode, DL, VTList, 0, 0);
4788}
4789
4790SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4791                              SDValue N1) {
4792  SDValue Ops[] = { N1 };
4793  return getNode(Opcode, DL, VTList, Ops, 1);
4794}
4795
4796SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4797                              SDValue N1, SDValue N2) {
4798  SDValue Ops[] = { N1, N2 };
4799  return getNode(Opcode, DL, VTList, Ops, 2);
4800}
4801
4802SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4803                              SDValue N1, SDValue N2, SDValue N3) {
4804  SDValue Ops[] = { N1, N2, N3 };
4805  return getNode(Opcode, DL, VTList, Ops, 3);
4806}
4807
4808SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4809                              SDValue N1, SDValue N2, SDValue N3,
4810                              SDValue N4) {
4811  SDValue Ops[] = { N1, N2, N3, N4 };
4812  return getNode(Opcode, DL, VTList, Ops, 4);
4813}
4814
4815SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4816                              SDValue N1, SDValue N2, SDValue N3,
4817                              SDValue N4, SDValue N5) {
4818  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4819  return getNode(Opcode, DL, VTList, Ops, 5);
4820}
4821
4822SDVTList SelectionDAG::getVTList(EVT VT) {
4823  return makeVTList(SDNode::getValueTypeList(VT), 1);
4824}
4825
4826SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4827  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4828       E = VTList.rend(); I != E; ++I)
4829    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4830      return *I;
4831
4832  EVT *Array = Allocator.Allocate<EVT>(2);
4833  Array[0] = VT1;
4834  Array[1] = VT2;
4835  SDVTList Result = makeVTList(Array, 2);
4836  VTList.push_back(Result);
4837  return Result;
4838}
4839
4840SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4841  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4842       E = VTList.rend(); I != E; ++I)
4843    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4844                          I->VTs[2] == VT3)
4845      return *I;
4846
4847  EVT *Array = Allocator.Allocate<EVT>(3);
4848  Array[0] = VT1;
4849  Array[1] = VT2;
4850  Array[2] = VT3;
4851  SDVTList Result = makeVTList(Array, 3);
4852  VTList.push_back(Result);
4853  return Result;
4854}
4855
4856SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4857  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4858       E = VTList.rend(); I != E; ++I)
4859    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4860                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4861      return *I;
4862
4863  EVT *Array = Allocator.Allocate<EVT>(4);
4864  Array[0] = VT1;
4865  Array[1] = VT2;
4866  Array[2] = VT3;
4867  Array[3] = VT4;
4868  SDVTList Result = makeVTList(Array, 4);
4869  VTList.push_back(Result);
4870  return Result;
4871}
4872
4873SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4874  switch (NumVTs) {
4875    case 0: llvm_unreachable("Cannot have nodes without results!");
4876    case 1: return getVTList(VTs[0]);
4877    case 2: return getVTList(VTs[0], VTs[1]);
4878    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4879    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4880    default: break;
4881  }
4882
4883  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4884       E = VTList.rend(); I != E; ++I) {
4885    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4886      continue;
4887
4888    if (std::equal(&VTs[2], &VTs[NumVTs], &I->VTs[2]))
4889      return *I;
4890  }
4891
4892  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4893  std::copy(VTs, VTs+NumVTs, Array);
4894  SDVTList Result = makeVTList(Array, NumVTs);
4895  VTList.push_back(Result);
4896  return Result;
4897}
4898
4899
4900/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4901/// specified operands.  If the resultant node already exists in the DAG,
4902/// this does not modify the specified node, instead it returns the node that
4903/// already exists.  If the resultant node does not exist in the DAG, the
4904/// input node is returned.  As a degenerate case, if you specify the same
4905/// input operands as the node already has, the input node is returned.
4906SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4907  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4908
4909  // Check to see if there is no change.
4910  if (Op == N->getOperand(0)) return N;
4911
4912  // See if the modified node already exists.
4913  void *InsertPos = 0;
4914  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4915    return Existing;
4916
4917  // Nope it doesn't.  Remove the node from its current place in the maps.
4918  if (InsertPos)
4919    if (!RemoveNodeFromCSEMaps(N))
4920      InsertPos = 0;
4921
4922  // Now we update the operands.
4923  N->OperandList[0].set(Op);
4924
4925  // If this gets put into a CSE map, add it.
4926  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4927  return N;
4928}
4929
4930SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4931  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4932
4933  // Check to see if there is no change.
4934  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4935    return N;   // No operands changed, just return the input node.
4936
4937  // See if the modified node already exists.
4938  void *InsertPos = 0;
4939  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4940    return Existing;
4941
4942  // Nope it doesn't.  Remove the node from its current place in the maps.
4943  if (InsertPos)
4944    if (!RemoveNodeFromCSEMaps(N))
4945      InsertPos = 0;
4946
4947  // Now we update the operands.
4948  if (N->OperandList[0] != Op1)
4949    N->OperandList[0].set(Op1);
4950  if (N->OperandList[1] != Op2)
4951    N->OperandList[1].set(Op2);
4952
4953  // If this gets put into a CSE map, add it.
4954  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4955  return N;
4956}
4957
4958SDNode *SelectionDAG::
4959UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4960  SDValue Ops[] = { Op1, Op2, Op3 };
4961  return UpdateNodeOperands(N, Ops, 3);
4962}
4963
4964SDNode *SelectionDAG::
4965UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4966                   SDValue Op3, SDValue Op4) {
4967  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4968  return UpdateNodeOperands(N, Ops, 4);
4969}
4970
4971SDNode *SelectionDAG::
4972UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4973                   SDValue Op3, SDValue Op4, SDValue Op5) {
4974  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4975  return UpdateNodeOperands(N, Ops, 5);
4976}
4977
4978SDNode *SelectionDAG::
4979UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4980  assert(N->getNumOperands() == NumOps &&
4981         "Update with wrong number of operands");
4982
4983  // Check to see if there is no change.
4984  bool AnyChange = false;
4985  for (unsigned i = 0; i != NumOps; ++i) {
4986    if (Ops[i] != N->getOperand(i)) {
4987      AnyChange = true;
4988      break;
4989    }
4990  }
4991
4992  // No operands changed, just return the input node.
4993  if (!AnyChange) return N;
4994
4995  // See if the modified node already exists.
4996  void *InsertPos = 0;
4997  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4998    return Existing;
4999
5000  // Nope it doesn't.  Remove the node from its current place in the maps.
5001  if (InsertPos)
5002    if (!RemoveNodeFromCSEMaps(N))
5003      InsertPos = 0;
5004
5005  // Now we update the operands.
5006  for (unsigned i = 0; i != NumOps; ++i)
5007    if (N->OperandList[i] != Ops[i])
5008      N->OperandList[i].set(Ops[i]);
5009
5010  // If this gets put into a CSE map, add it.
5011  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
5012  return N;
5013}
5014
5015/// DropOperands - Release the operands and set this node to have
5016/// zero operands.
5017void SDNode::DropOperands() {
5018  // Unlike the code in MorphNodeTo that does this, we don't need to
5019  // watch for dead nodes here.
5020  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
5021    SDUse &Use = *I++;
5022    Use.set(SDValue());
5023  }
5024}
5025
5026/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
5027/// machine opcode.
5028///
5029SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5030                                   EVT VT) {
5031  SDVTList VTs = getVTList(VT);
5032  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
5033}
5034
5035SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5036                                   EVT VT, SDValue Op1) {
5037  SDVTList VTs = getVTList(VT);
5038  SDValue Ops[] = { Op1 };
5039  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
5040}
5041
5042SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5043                                   EVT VT, SDValue Op1,
5044                                   SDValue Op2) {
5045  SDVTList VTs = getVTList(VT);
5046  SDValue Ops[] = { Op1, Op2 };
5047  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
5048}
5049
5050SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5051                                   EVT VT, SDValue Op1,
5052                                   SDValue Op2, SDValue Op3) {
5053  SDVTList VTs = getVTList(VT);
5054  SDValue Ops[] = { Op1, Op2, Op3 };
5055  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
5056}
5057
5058SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5059                                   EVT VT, const SDValue *Ops,
5060                                   unsigned NumOps) {
5061  SDVTList VTs = getVTList(VT);
5062  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
5063}
5064
5065SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5066                                   EVT VT1, EVT VT2, const SDValue *Ops,
5067                                   unsigned NumOps) {
5068  SDVTList VTs = getVTList(VT1, VT2);
5069  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
5070}
5071
5072SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5073                                   EVT VT1, EVT VT2) {
5074  SDVTList VTs = getVTList(VT1, VT2);
5075  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
5076}
5077
5078SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5079                                   EVT VT1, EVT VT2, EVT VT3,
5080                                   const SDValue *Ops, unsigned NumOps) {
5081  SDVTList VTs = getVTList(VT1, VT2, VT3);
5082  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
5083}
5084
5085SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5086                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
5087                                   const SDValue *Ops, unsigned NumOps) {
5088  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
5089  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
5090}
5091
5092SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5093                                   EVT VT1, EVT VT2,
5094                                   SDValue Op1) {
5095  SDVTList VTs = getVTList(VT1, VT2);
5096  SDValue Ops[] = { Op1 };
5097  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
5098}
5099
5100SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5101                                   EVT VT1, EVT VT2,
5102                                   SDValue Op1, SDValue Op2) {
5103  SDVTList VTs = getVTList(VT1, VT2);
5104  SDValue Ops[] = { Op1, Op2 };
5105  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
5106}
5107
5108SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5109                                   EVT VT1, EVT VT2,
5110                                   SDValue Op1, SDValue Op2,
5111                                   SDValue Op3) {
5112  SDVTList VTs = getVTList(VT1, VT2);
5113  SDValue Ops[] = { Op1, Op2, Op3 };
5114  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
5115}
5116
5117SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5118                                   EVT VT1, EVT VT2, EVT VT3,
5119                                   SDValue Op1, SDValue Op2,
5120                                   SDValue Op3) {
5121  SDVTList VTs = getVTList(VT1, VT2, VT3);
5122  SDValue Ops[] = { Op1, Op2, Op3 };
5123  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
5124}
5125
5126SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5127                                   SDVTList VTs, const SDValue *Ops,
5128                                   unsigned NumOps) {
5129  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
5130  // Reset the NodeID to -1.
5131  N->setNodeId(-1);
5132  return N;
5133}
5134
5135/// UpdadeDebugLocOnMergedSDNode - If the opt level is -O0 then it throws away
5136/// the line number information on the merged node since it is not possible to
5137/// preserve the information that operation is associated with multiple lines.
5138/// This will make the debugger working better at -O0, were there is a higher
5139/// probability having other instructions associated with that line.
5140///
5141SDNode *SelectionDAG::UpdadeDebugLocOnMergedSDNode(SDNode *N, DebugLoc OLoc) {
5142  DebugLoc NLoc = N->getDebugLoc();
5143  if (!(NLoc.isUnknown()) && (OptLevel == CodeGenOpt::None) && (OLoc != NLoc)) {
5144    N->setDebugLoc(DebugLoc());
5145  }
5146  return N;
5147}
5148
5149/// MorphNodeTo - This *mutates* the specified node to have the specified
5150/// return type, opcode, and operands.
5151///
5152/// Note that MorphNodeTo returns the resultant node.  If there is already a
5153/// node of the specified opcode and operands, it returns that node instead of
5154/// the current one.  Note that the DebugLoc need not be the same.
5155///
5156/// Using MorphNodeTo is faster than creating a new node and swapping it in
5157/// with ReplaceAllUsesWith both because it often avoids allocating a new
5158/// node, and because it doesn't require CSE recalculation for any of
5159/// the node's users.
5160///
5161SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
5162                                  SDVTList VTs, const SDValue *Ops,
5163                                  unsigned NumOps) {
5164  // If an identical node already exists, use it.
5165  void *IP = 0;
5166  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
5167    FoldingSetNodeID ID;
5168    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
5169    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
5170      return UpdadeDebugLocOnMergedSDNode(ON, N->getDebugLoc());
5171  }
5172
5173  if (!RemoveNodeFromCSEMaps(N))
5174    IP = 0;
5175
5176  // Start the morphing.
5177  N->NodeType = Opc;
5178  N->ValueList = VTs.VTs;
5179  N->NumValues = VTs.NumVTs;
5180
5181  // Clear the operands list, updating used nodes to remove this from their
5182  // use list.  Keep track of any operands that become dead as a result.
5183  SmallPtrSet<SDNode*, 16> DeadNodeSet;
5184  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
5185    SDUse &Use = *I++;
5186    SDNode *Used = Use.getNode();
5187    Use.set(SDValue());
5188    if (Used->use_empty())
5189      DeadNodeSet.insert(Used);
5190  }
5191
5192  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
5193    // Initialize the memory references information.
5194    MN->setMemRefs(0, 0);
5195    // If NumOps is larger than the # of operands we can have in a
5196    // MachineSDNode, reallocate the operand list.
5197    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
5198      if (MN->OperandsNeedDelete)
5199        delete[] MN->OperandList;
5200      if (NumOps > array_lengthof(MN->LocalOperands))
5201        // We're creating a final node that will live unmorphed for the
5202        // remainder of the current SelectionDAG iteration, so we can allocate
5203        // the operands directly out of a pool with no recycling metadata.
5204        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5205                         Ops, NumOps);
5206      else
5207        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
5208      MN->OperandsNeedDelete = false;
5209    } else
5210      MN->InitOperands(MN->OperandList, Ops, NumOps);
5211  } else {
5212    // If NumOps is larger than the # of operands we currently have, reallocate
5213    // the operand list.
5214    if (NumOps > N->NumOperands) {
5215      if (N->OperandsNeedDelete)
5216        delete[] N->OperandList;
5217      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
5218      N->OperandsNeedDelete = true;
5219    } else
5220      N->InitOperands(N->OperandList, Ops, NumOps);
5221  }
5222
5223  // Delete any nodes that are still dead after adding the uses for the
5224  // new operands.
5225  if (!DeadNodeSet.empty()) {
5226    SmallVector<SDNode *, 16> DeadNodes;
5227    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
5228         E = DeadNodeSet.end(); I != E; ++I)
5229      if ((*I)->use_empty())
5230        DeadNodes.push_back(*I);
5231    RemoveDeadNodes(DeadNodes);
5232  }
5233
5234  if (IP)
5235    CSEMap.InsertNode(N, IP);   // Memoize the new node.
5236  return N;
5237}
5238
5239
5240/// getMachineNode - These are used for target selectors to create a new node
5241/// with specified return type(s), MachineInstr opcode, and operands.
5242///
5243/// Note that getMachineNode returns the resultant node.  If there is already a
5244/// node of the specified opcode and operands, it returns that node instead of
5245/// the current one.
5246MachineSDNode *
5247SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
5248  SDVTList VTs = getVTList(VT);
5249  return getMachineNode(Opcode, dl, VTs, 0, 0);
5250}
5251
5252MachineSDNode *
5253SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
5254  SDVTList VTs = getVTList(VT);
5255  SDValue Ops[] = { Op1 };
5256  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5257}
5258
5259MachineSDNode *
5260SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5261                             SDValue Op1, SDValue Op2) {
5262  SDVTList VTs = getVTList(VT);
5263  SDValue Ops[] = { Op1, Op2 };
5264  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5265}
5266
5267MachineSDNode *
5268SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5269                             SDValue Op1, SDValue Op2, SDValue Op3) {
5270  SDVTList VTs = getVTList(VT);
5271  SDValue Ops[] = { Op1, Op2, Op3 };
5272  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5273}
5274
5275MachineSDNode *
5276SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5277                             const SDValue *Ops, unsigned NumOps) {
5278  SDVTList VTs = getVTList(VT);
5279  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5280}
5281
5282MachineSDNode *
5283SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
5284  SDVTList VTs = getVTList(VT1, VT2);
5285  return getMachineNode(Opcode, dl, VTs, 0, 0);
5286}
5287
5288MachineSDNode *
5289SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5290                             EVT VT1, EVT VT2, SDValue Op1) {
5291  SDVTList VTs = getVTList(VT1, VT2);
5292  SDValue Ops[] = { Op1 };
5293  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5294}
5295
5296MachineSDNode *
5297SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5298                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
5299  SDVTList VTs = getVTList(VT1, VT2);
5300  SDValue Ops[] = { Op1, Op2 };
5301  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5302}
5303
5304MachineSDNode *
5305SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5306                             EVT VT1, EVT VT2, SDValue Op1,
5307                             SDValue Op2, SDValue Op3) {
5308  SDVTList VTs = getVTList(VT1, VT2);
5309  SDValue Ops[] = { Op1, Op2, Op3 };
5310  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5311}
5312
5313MachineSDNode *
5314SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5315                             EVT VT1, EVT VT2,
5316                             const SDValue *Ops, unsigned NumOps) {
5317  SDVTList VTs = getVTList(VT1, VT2);
5318  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5319}
5320
5321MachineSDNode *
5322SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5323                             EVT VT1, EVT VT2, EVT VT3,
5324                             SDValue Op1, SDValue Op2) {
5325  SDVTList VTs = getVTList(VT1, VT2, VT3);
5326  SDValue Ops[] = { Op1, Op2 };
5327  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5328}
5329
5330MachineSDNode *
5331SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5332                             EVT VT1, EVT VT2, EVT VT3,
5333                             SDValue Op1, SDValue Op2, SDValue Op3) {
5334  SDVTList VTs = getVTList(VT1, VT2, VT3);
5335  SDValue Ops[] = { Op1, Op2, Op3 };
5336  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5337}
5338
5339MachineSDNode *
5340SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5341                             EVT VT1, EVT VT2, EVT VT3,
5342                             const SDValue *Ops, unsigned NumOps) {
5343  SDVTList VTs = getVTList(VT1, VT2, VT3);
5344  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5345}
5346
5347MachineSDNode *
5348SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
5349                             EVT VT2, EVT VT3, EVT VT4,
5350                             const SDValue *Ops, unsigned NumOps) {
5351  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
5352  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5353}
5354
5355MachineSDNode *
5356SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5357                             const std::vector<EVT> &ResultTys,
5358                             const SDValue *Ops, unsigned NumOps) {
5359  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
5360  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5361}
5362
5363MachineSDNode *
5364SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
5365                             const SDValue *Ops, unsigned NumOps) {
5366  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5367  MachineSDNode *N;
5368  void *IP = 0;
5369
5370  if (DoCSE) {
5371    FoldingSetNodeID ID;
5372    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5373    IP = 0;
5374    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
5375      return cast<MachineSDNode>(UpdadeDebugLocOnMergedSDNode(E, DL));
5376    }
5377  }
5378
5379  // Allocate a new MachineSDNode.
5380  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
5381
5382  // Initialize the operands list.
5383  if (NumOps > array_lengthof(N->LocalOperands))
5384    // We're creating a final node that will live unmorphed for the
5385    // remainder of the current SelectionDAG iteration, so we can allocate
5386    // the operands directly out of a pool with no recycling metadata.
5387    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5388                    Ops, NumOps);
5389  else
5390    N->InitOperands(N->LocalOperands, Ops, NumOps);
5391  N->OperandsNeedDelete = false;
5392
5393  if (DoCSE)
5394    CSEMap.InsertNode(N, IP);
5395
5396  AllNodes.push_back(N);
5397#ifndef NDEBUG
5398  VerifyMachineNode(N);
5399#endif
5400  return N;
5401}
5402
5403/// getTargetExtractSubreg - A convenience function for creating
5404/// TargetOpcode::EXTRACT_SUBREG nodes.
5405SDValue
5406SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5407                                     SDValue Operand) {
5408  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5409  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5410                                  VT, Operand, SRIdxVal);
5411  return SDValue(Subreg, 0);
5412}
5413
5414/// getTargetInsertSubreg - A convenience function for creating
5415/// TargetOpcode::INSERT_SUBREG nodes.
5416SDValue
5417SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5418                                    SDValue Operand, SDValue Subreg) {
5419  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5420  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5421                                  VT, Operand, Subreg, SRIdxVal);
5422  return SDValue(Result, 0);
5423}
5424
5425/// getNodeIfExists - Get the specified node if it's already available, or
5426/// else return NULL.
5427SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5428                                      const SDValue *Ops, unsigned NumOps) {
5429  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5430    FoldingSetNodeID ID;
5431    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5432    void *IP = 0;
5433    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5434      return E;
5435  }
5436  return NULL;
5437}
5438
5439/// getDbgValue - Creates a SDDbgValue node.
5440///
5441SDDbgValue *
5442SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5443                          DebugLoc DL, unsigned O) {
5444  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5445}
5446
5447SDDbgValue *
5448SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5449                          DebugLoc DL, unsigned O) {
5450  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5451}
5452
5453SDDbgValue *
5454SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5455                          DebugLoc DL, unsigned O) {
5456  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5457}
5458
5459namespace {
5460
5461/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5462/// pointed to by a use iterator is deleted, increment the use iterator
5463/// so that it doesn't dangle.
5464///
5465class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5466  SDNode::use_iterator &UI;
5467  SDNode::use_iterator &UE;
5468
5469  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5470    // Increment the iterator as needed.
5471    while (UI != UE && N == *UI)
5472      ++UI;
5473  }
5474
5475public:
5476  RAUWUpdateListener(SelectionDAG &d,
5477                     SDNode::use_iterator &ui,
5478                     SDNode::use_iterator &ue)
5479    : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
5480};
5481
5482}
5483
5484/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5485/// This can cause recursive merging of nodes in the DAG.
5486///
5487/// This version assumes From has a single result value.
5488///
5489void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
5490  SDNode *From = FromN.getNode();
5491  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5492         "Cannot replace with this method!");
5493  assert(From != To.getNode() && "Cannot replace uses of with self");
5494
5495  // Iterate over all the existing uses of From. New uses will be added
5496  // to the beginning of the use list, which we avoid visiting.
5497  // This specifically avoids visiting uses of From that arise while the
5498  // replacement is happening, because any such uses would be the result
5499  // of CSE: If an existing node looks like From after one of its operands
5500  // is replaced by To, we don't want to replace of all its users with To
5501  // too. See PR3018 for more info.
5502  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5503  RAUWUpdateListener Listener(*this, UI, UE);
5504  while (UI != UE) {
5505    SDNode *User = *UI;
5506
5507    // This node is about to morph, remove its old self from the CSE maps.
5508    RemoveNodeFromCSEMaps(User);
5509
5510    // A user can appear in a use list multiple times, and when this
5511    // happens the uses are usually next to each other in the list.
5512    // To help reduce the number of CSE recomputations, process all
5513    // the uses of this user that we can find this way.
5514    do {
5515      SDUse &Use = UI.getUse();
5516      ++UI;
5517      Use.set(To);
5518    } while (UI != UE && *UI == User);
5519
5520    // Now that we have modified User, add it back to the CSE maps.  If it
5521    // already exists there, recursively merge the results together.
5522    AddModifiedNodeToCSEMaps(User);
5523  }
5524
5525  // If we just RAUW'd the root, take note.
5526  if (FromN == getRoot())
5527    setRoot(To);
5528}
5529
5530/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5531/// This can cause recursive merging of nodes in the DAG.
5532///
5533/// This version assumes that for each value of From, there is a
5534/// corresponding value in To in the same position with the same type.
5535///
5536void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
5537#ifndef NDEBUG
5538  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5539    assert((!From->hasAnyUseOfValue(i) ||
5540            From->getValueType(i) == To->getValueType(i)) &&
5541           "Cannot use this version of ReplaceAllUsesWith!");
5542#endif
5543
5544  // Handle the trivial case.
5545  if (From == To)
5546    return;
5547
5548  // Iterate over just the existing users of From. See the comments in
5549  // the ReplaceAllUsesWith above.
5550  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5551  RAUWUpdateListener Listener(*this, UI, UE);
5552  while (UI != UE) {
5553    SDNode *User = *UI;
5554
5555    // This node is about to morph, remove its old self from the CSE maps.
5556    RemoveNodeFromCSEMaps(User);
5557
5558    // A user can appear in a use list multiple times, and when this
5559    // happens the uses are usually next to each other in the list.
5560    // To help reduce the number of CSE recomputations, process all
5561    // the uses of this user that we can find this way.
5562    do {
5563      SDUse &Use = UI.getUse();
5564      ++UI;
5565      Use.setNode(To);
5566    } while (UI != UE && *UI == User);
5567
5568    // Now that we have modified User, add it back to the CSE maps.  If it
5569    // already exists there, recursively merge the results together.
5570    AddModifiedNodeToCSEMaps(User);
5571  }
5572
5573  // If we just RAUW'd the root, take note.
5574  if (From == getRoot().getNode())
5575    setRoot(SDValue(To, getRoot().getResNo()));
5576}
5577
5578/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5579/// This can cause recursive merging of nodes in the DAG.
5580///
5581/// This version can replace From with any result values.  To must match the
5582/// number and types of values returned by From.
5583void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
5584  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5585    return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
5586
5587  // Iterate over just the existing users of From. See the comments in
5588  // the ReplaceAllUsesWith above.
5589  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5590  RAUWUpdateListener Listener(*this, UI, UE);
5591  while (UI != UE) {
5592    SDNode *User = *UI;
5593
5594    // This node is about to morph, remove its old self from the CSE maps.
5595    RemoveNodeFromCSEMaps(User);
5596
5597    // A user can appear in a use list multiple times, and when this
5598    // happens the uses are usually next to each other in the list.
5599    // To help reduce the number of CSE recomputations, process all
5600    // the uses of this user that we can find this way.
5601    do {
5602      SDUse &Use = UI.getUse();
5603      const SDValue &ToOp = To[Use.getResNo()];
5604      ++UI;
5605      Use.set(ToOp);
5606    } while (UI != UE && *UI == User);
5607
5608    // Now that we have modified User, add it back to the CSE maps.  If it
5609    // already exists there, recursively merge the results together.
5610    AddModifiedNodeToCSEMaps(User);
5611  }
5612
5613  // If we just RAUW'd the root, take note.
5614  if (From == getRoot().getNode())
5615    setRoot(SDValue(To[getRoot().getResNo()]));
5616}
5617
5618/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5619/// uses of other values produced by From.getNode() alone.  The Deleted
5620/// vector is handled the same way as for ReplaceAllUsesWith.
5621void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
5622  // Handle the really simple, really trivial case efficiently.
5623  if (From == To) return;
5624
5625  // Handle the simple, trivial, case efficiently.
5626  if (From.getNode()->getNumValues() == 1) {
5627    ReplaceAllUsesWith(From, To);
5628    return;
5629  }
5630
5631  // Iterate over just the existing users of From. See the comments in
5632  // the ReplaceAllUsesWith above.
5633  SDNode::use_iterator UI = From.getNode()->use_begin(),
5634                       UE = From.getNode()->use_end();
5635  RAUWUpdateListener Listener(*this, UI, UE);
5636  while (UI != UE) {
5637    SDNode *User = *UI;
5638    bool UserRemovedFromCSEMaps = false;
5639
5640    // A user can appear in a use list multiple times, and when this
5641    // happens the uses are usually next to each other in the list.
5642    // To help reduce the number of CSE recomputations, process all
5643    // the uses of this user that we can find this way.
5644    do {
5645      SDUse &Use = UI.getUse();
5646
5647      // Skip uses of different values from the same node.
5648      if (Use.getResNo() != From.getResNo()) {
5649        ++UI;
5650        continue;
5651      }
5652
5653      // If this node hasn't been modified yet, it's still in the CSE maps,
5654      // so remove its old self from the CSE maps.
5655      if (!UserRemovedFromCSEMaps) {
5656        RemoveNodeFromCSEMaps(User);
5657        UserRemovedFromCSEMaps = true;
5658      }
5659
5660      ++UI;
5661      Use.set(To);
5662    } while (UI != UE && *UI == User);
5663
5664    // We are iterating over all uses of the From node, so if a use
5665    // doesn't use the specific value, no changes are made.
5666    if (!UserRemovedFromCSEMaps)
5667      continue;
5668
5669    // Now that we have modified User, add it back to the CSE maps.  If it
5670    // already exists there, recursively merge the results together.
5671    AddModifiedNodeToCSEMaps(User);
5672  }
5673
5674  // If we just RAUW'd the root, take note.
5675  if (From == getRoot())
5676    setRoot(To);
5677}
5678
5679namespace {
5680  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5681  /// to record information about a use.
5682  struct UseMemo {
5683    SDNode *User;
5684    unsigned Index;
5685    SDUse *Use;
5686  };
5687
5688  /// operator< - Sort Memos by User.
5689  bool operator<(const UseMemo &L, const UseMemo &R) {
5690    return (intptr_t)L.User < (intptr_t)R.User;
5691  }
5692}
5693
5694/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5695/// uses of other values produced by From.getNode() alone.  The same value
5696/// may appear in both the From and To list.  The Deleted vector is
5697/// handled the same way as for ReplaceAllUsesWith.
5698void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5699                                              const SDValue *To,
5700                                              unsigned Num){
5701  // Handle the simple, trivial case efficiently.
5702  if (Num == 1)
5703    return ReplaceAllUsesOfValueWith(*From, *To);
5704
5705  // Read up all the uses and make records of them. This helps
5706  // processing new uses that are introduced during the
5707  // replacement process.
5708  SmallVector<UseMemo, 4> Uses;
5709  for (unsigned i = 0; i != Num; ++i) {
5710    unsigned FromResNo = From[i].getResNo();
5711    SDNode *FromNode = From[i].getNode();
5712    for (SDNode::use_iterator UI = FromNode->use_begin(),
5713         E = FromNode->use_end(); UI != E; ++UI) {
5714      SDUse &Use = UI.getUse();
5715      if (Use.getResNo() == FromResNo) {
5716        UseMemo Memo = { *UI, i, &Use };
5717        Uses.push_back(Memo);
5718      }
5719    }
5720  }
5721
5722  // Sort the uses, so that all the uses from a given User are together.
5723  std::sort(Uses.begin(), Uses.end());
5724
5725  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5726       UseIndex != UseIndexEnd; ) {
5727    // We know that this user uses some value of From.  If it is the right
5728    // value, update it.
5729    SDNode *User = Uses[UseIndex].User;
5730
5731    // This node is about to morph, remove its old self from the CSE maps.
5732    RemoveNodeFromCSEMaps(User);
5733
5734    // The Uses array is sorted, so all the uses for a given User
5735    // are next to each other in the list.
5736    // To help reduce the number of CSE recomputations, process all
5737    // the uses of this user that we can find this way.
5738    do {
5739      unsigned i = Uses[UseIndex].Index;
5740      SDUse &Use = *Uses[UseIndex].Use;
5741      ++UseIndex;
5742
5743      Use.set(To[i]);
5744    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5745
5746    // Now that we have modified User, add it back to the CSE maps.  If it
5747    // already exists there, recursively merge the results together.
5748    AddModifiedNodeToCSEMaps(User);
5749  }
5750}
5751
5752/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5753/// based on their topological order. It returns the maximum id and a vector
5754/// of the SDNodes* in assigned order by reference.
5755unsigned SelectionDAG::AssignTopologicalOrder() {
5756
5757  unsigned DAGSize = 0;
5758
5759  // SortedPos tracks the progress of the algorithm. Nodes before it are
5760  // sorted, nodes after it are unsorted. When the algorithm completes
5761  // it is at the end of the list.
5762  allnodes_iterator SortedPos = allnodes_begin();
5763
5764  // Visit all the nodes. Move nodes with no operands to the front of
5765  // the list immediately. Annotate nodes that do have operands with their
5766  // operand count. Before we do this, the Node Id fields of the nodes
5767  // may contain arbitrary values. After, the Node Id fields for nodes
5768  // before SortedPos will contain the topological sort index, and the
5769  // Node Id fields for nodes At SortedPos and after will contain the
5770  // count of outstanding operands.
5771  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5772    SDNode *N = I++;
5773    checkForCycles(N);
5774    unsigned Degree = N->getNumOperands();
5775    if (Degree == 0) {
5776      // A node with no uses, add it to the result array immediately.
5777      N->setNodeId(DAGSize++);
5778      allnodes_iterator Q = N;
5779      if (Q != SortedPos)
5780        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5781      assert(SortedPos != AllNodes.end() && "Overran node list");
5782      ++SortedPos;
5783    } else {
5784      // Temporarily use the Node Id as scratch space for the degree count.
5785      N->setNodeId(Degree);
5786    }
5787  }
5788
5789  // Visit all the nodes. As we iterate, move nodes into sorted order,
5790  // such that by the time the end is reached all nodes will be sorted.
5791  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5792    SDNode *N = I;
5793    checkForCycles(N);
5794    // N is in sorted position, so all its uses have one less operand
5795    // that needs to be sorted.
5796    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5797         UI != UE; ++UI) {
5798      SDNode *P = *UI;
5799      unsigned Degree = P->getNodeId();
5800      assert(Degree != 0 && "Invalid node degree");
5801      --Degree;
5802      if (Degree == 0) {
5803        // All of P's operands are sorted, so P may sorted now.
5804        P->setNodeId(DAGSize++);
5805        if (P != SortedPos)
5806          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5807        assert(SortedPos != AllNodes.end() && "Overran node list");
5808        ++SortedPos;
5809      } else {
5810        // Update P's outstanding operand count.
5811        P->setNodeId(Degree);
5812      }
5813    }
5814    if (I == SortedPos) {
5815#ifndef NDEBUG
5816      SDNode *S = ++I;
5817      dbgs() << "Overran sorted position:\n";
5818      S->dumprFull();
5819#endif
5820      llvm_unreachable(0);
5821    }
5822  }
5823
5824  assert(SortedPos == AllNodes.end() &&
5825         "Topological sort incomplete!");
5826  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5827         "First node in topological sort is not the entry token!");
5828  assert(AllNodes.front().getNodeId() == 0 &&
5829         "First node in topological sort has non-zero id!");
5830  assert(AllNodes.front().getNumOperands() == 0 &&
5831         "First node in topological sort has operands!");
5832  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5833         "Last node in topologic sort has unexpected id!");
5834  assert(AllNodes.back().use_empty() &&
5835         "Last node in topologic sort has users!");
5836  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5837  return DAGSize;
5838}
5839
5840/// AssignOrdering - Assign an order to the SDNode.
5841void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5842  assert(SD && "Trying to assign an order to a null node!");
5843  Ordering->add(SD, Order);
5844}
5845
5846/// GetOrdering - Get the order for the SDNode.
5847unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5848  assert(SD && "Trying to get the order of a null node!");
5849  return Ordering->getOrder(SD);
5850}
5851
5852/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5853/// value is produced by SD.
5854void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5855  DbgInfo->add(DB, SD, isParameter);
5856  if (SD)
5857    SD->setHasDebugValue(true);
5858}
5859
5860/// TransferDbgValues - Transfer SDDbgValues.
5861void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5862  if (From == To || !From.getNode()->getHasDebugValue())
5863    return;
5864  SDNode *FromNode = From.getNode();
5865  SDNode *ToNode = To.getNode();
5866  ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
5867  SmallVector<SDDbgValue *, 2> ClonedDVs;
5868  for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
5869       I != E; ++I) {
5870    SDDbgValue *Dbg = *I;
5871    if (Dbg->getKind() == SDDbgValue::SDNODE) {
5872      SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
5873                                      Dbg->getOffset(), Dbg->getDebugLoc(),
5874                                      Dbg->getOrder());
5875      ClonedDVs.push_back(Clone);
5876    }
5877  }
5878  for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
5879         E = ClonedDVs.end(); I != E; ++I)
5880    AddDbgValue(*I, ToNode, false);
5881}
5882
5883//===----------------------------------------------------------------------===//
5884//                              SDNode Class
5885//===----------------------------------------------------------------------===//
5886
5887HandleSDNode::~HandleSDNode() {
5888  DropOperands();
5889}
5890
5891GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5892                                         const GlobalValue *GA,
5893                                         EVT VT, int64_t o, unsigned char TF)
5894  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5895  TheGlobal = GA;
5896}
5897
5898MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5899                     MachineMemOperand *mmo)
5900 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5901  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5902                                      MMO->isNonTemporal(), MMO->isInvariant());
5903  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5904  assert(isNonTemporal() == MMO->isNonTemporal() &&
5905         "Non-temporal encoding error!");
5906  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5907}
5908
5909MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5910                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5911                     MachineMemOperand *mmo)
5912   : SDNode(Opc, dl, VTs, Ops, NumOps),
5913     MemoryVT(memvt), MMO(mmo) {
5914  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5915                                      MMO->isNonTemporal(), MMO->isInvariant());
5916  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5917  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5918}
5919
5920/// Profile - Gather unique data for the node.
5921///
5922void SDNode::Profile(FoldingSetNodeID &ID) const {
5923  AddNodeIDNode(ID, this);
5924}
5925
5926namespace {
5927  struct EVTArray {
5928    std::vector<EVT> VTs;
5929
5930    EVTArray() {
5931      VTs.reserve(MVT::LAST_VALUETYPE);
5932      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5933        VTs.push_back(MVT((MVT::SimpleValueType)i));
5934    }
5935  };
5936}
5937
5938static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5939static ManagedStatic<EVTArray> SimpleVTArray;
5940static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5941
5942/// getValueTypeList - Return a pointer to the specified value type.
5943///
5944const EVT *SDNode::getValueTypeList(EVT VT) {
5945  if (VT.isExtended()) {
5946    sys::SmartScopedLock<true> Lock(*VTMutex);
5947    return &(*EVTs->insert(VT).first);
5948  } else {
5949    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5950           "Value type out of range!");
5951    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5952  }
5953}
5954
5955/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5956/// indicated value.  This method ignores uses of other values defined by this
5957/// operation.
5958bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5959  assert(Value < getNumValues() && "Bad value!");
5960
5961  // TODO: Only iterate over uses of a given value of the node
5962  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5963    if (UI.getUse().getResNo() == Value) {
5964      if (NUses == 0)
5965        return false;
5966      --NUses;
5967    }
5968  }
5969
5970  // Found exactly the right number of uses?
5971  return NUses == 0;
5972}
5973
5974
5975/// hasAnyUseOfValue - Return true if there are any use of the indicated
5976/// value. This method ignores uses of other values defined by this operation.
5977bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5978  assert(Value < getNumValues() && "Bad value!");
5979
5980  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5981    if (UI.getUse().getResNo() == Value)
5982      return true;
5983
5984  return false;
5985}
5986
5987
5988/// isOnlyUserOf - Return true if this node is the only use of N.
5989///
5990bool SDNode::isOnlyUserOf(SDNode *N) const {
5991  bool Seen = false;
5992  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5993    SDNode *User = *I;
5994    if (User == this)
5995      Seen = true;
5996    else
5997      return false;
5998  }
5999
6000  return Seen;
6001}
6002
6003/// isOperand - Return true if this node is an operand of N.
6004///
6005bool SDValue::isOperandOf(SDNode *N) const {
6006  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6007    if (*this == N->getOperand(i))
6008      return true;
6009  return false;
6010}
6011
6012bool SDNode::isOperandOf(SDNode *N) const {
6013  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
6014    if (this == N->OperandList[i].getNode())
6015      return true;
6016  return false;
6017}
6018
6019/// reachesChainWithoutSideEffects - Return true if this operand (which must
6020/// be a chain) reaches the specified operand without crossing any
6021/// side-effecting instructions on any chain path.  In practice, this looks
6022/// through token factors and non-volatile loads.  In order to remain efficient,
6023/// this only looks a couple of nodes in, it does not do an exhaustive search.
6024bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
6025                                               unsigned Depth) const {
6026  if (*this == Dest) return true;
6027
6028  // Don't search too deeply, we just want to be able to see through
6029  // TokenFactor's etc.
6030  if (Depth == 0) return false;
6031
6032  // If this is a token factor, all inputs to the TF happen in parallel.  If any
6033  // of the operands of the TF does not reach dest, then we cannot do the xform.
6034  if (getOpcode() == ISD::TokenFactor) {
6035    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6036      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
6037        return false;
6038    return true;
6039  }
6040
6041  // Loads don't have side effects, look through them.
6042  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
6043    if (!Ld->isVolatile())
6044      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
6045  }
6046  return false;
6047}
6048
6049/// hasPredecessor - Return true if N is a predecessor of this node.
6050/// N is either an operand of this node, or can be reached by recursively
6051/// traversing up the operands.
6052/// NOTE: This is an expensive method. Use it carefully.
6053bool SDNode::hasPredecessor(const SDNode *N) const {
6054  SmallPtrSet<const SDNode *, 32> Visited;
6055  SmallVector<const SDNode *, 16> Worklist;
6056  return hasPredecessorHelper(N, Visited, Worklist);
6057}
6058
6059bool SDNode::hasPredecessorHelper(const SDNode *N,
6060                                  SmallPtrSet<const SDNode *, 32> &Visited,
6061                                  SmallVector<const SDNode *, 16> &Worklist) const {
6062  if (Visited.empty()) {
6063    Worklist.push_back(this);
6064  } else {
6065    // Take a look in the visited set. If we've already encountered this node
6066    // we needn't search further.
6067    if (Visited.count(N))
6068      return true;
6069  }
6070
6071  // Haven't visited N yet. Continue the search.
6072  while (!Worklist.empty()) {
6073    const SDNode *M = Worklist.pop_back_val();
6074    for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
6075      SDNode *Op = M->getOperand(i).getNode();
6076      if (Visited.insert(Op))
6077        Worklist.push_back(Op);
6078      if (Op == N)
6079        return true;
6080    }
6081  }
6082
6083  return false;
6084}
6085
6086uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
6087  assert(Num < NumOperands && "Invalid child # of SDNode!");
6088  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
6089}
6090
6091SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6092  assert(N->getNumValues() == 1 &&
6093         "Can't unroll a vector with multiple results!");
6094
6095  EVT VT = N->getValueType(0);
6096  unsigned NE = VT.getVectorNumElements();
6097  EVT EltVT = VT.getVectorElementType();
6098  DebugLoc dl = N->getDebugLoc();
6099
6100  SmallVector<SDValue, 8> Scalars;
6101  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6102
6103  // If ResNE is 0, fully unroll the vector op.
6104  if (ResNE == 0)
6105    ResNE = NE;
6106  else if (NE > ResNE)
6107    NE = ResNE;
6108
6109  unsigned i;
6110  for (i= 0; i != NE; ++i) {
6111    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6112      SDValue Operand = N->getOperand(j);
6113      EVT OperandVT = Operand.getValueType();
6114      if (OperandVT.isVector()) {
6115        // A vector operand; extract a single element.
6116        EVT OperandEltVT = OperandVT.getVectorElementType();
6117        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6118                              OperandEltVT,
6119                              Operand,
6120                              getConstant(i, TLI.getPointerTy()));
6121      } else {
6122        // A scalar operand; just use it as is.
6123        Operands[j] = Operand;
6124      }
6125    }
6126
6127    switch (N->getOpcode()) {
6128    default:
6129      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6130                                &Operands[0], Operands.size()));
6131      break;
6132    case ISD::VSELECT:
6133      Scalars.push_back(getNode(ISD::SELECT, dl, EltVT,
6134                                &Operands[0], Operands.size()));
6135      break;
6136    case ISD::SHL:
6137    case ISD::SRA:
6138    case ISD::SRL:
6139    case ISD::ROTL:
6140    case ISD::ROTR:
6141      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6142                                getShiftAmountOperand(Operands[0].getValueType(),
6143                                                      Operands[1])));
6144      break;
6145    case ISD::SIGN_EXTEND_INREG:
6146    case ISD::FP_ROUND_INREG: {
6147      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6148      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6149                                Operands[0],
6150                                getValueType(ExtVT)));
6151    }
6152    }
6153  }
6154
6155  for (; i < ResNE; ++i)
6156    Scalars.push_back(getUNDEF(EltVT));
6157
6158  return getNode(ISD::BUILD_VECTOR, dl,
6159                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6160                 &Scalars[0], Scalars.size());
6161}
6162
6163
6164/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6165/// location that is 'Dist' units away from the location that the 'Base' load
6166/// is loading from.
6167bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6168                                     unsigned Bytes, int Dist) const {
6169  if (LD->getChain() != Base->getChain())
6170    return false;
6171  EVT VT = LD->getValueType(0);
6172  if (VT.getSizeInBits() / 8 != Bytes)
6173    return false;
6174
6175  SDValue Loc = LD->getOperand(1);
6176  SDValue BaseLoc = Base->getOperand(1);
6177  if (Loc.getOpcode() == ISD::FrameIndex) {
6178    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6179      return false;
6180    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6181    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6182    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6183    int FS  = MFI->getObjectSize(FI);
6184    int BFS = MFI->getObjectSize(BFI);
6185    if (FS != BFS || FS != (int)Bytes) return false;
6186    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6187  }
6188
6189  // Handle X+C
6190  if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6191      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6192    return true;
6193
6194  const GlobalValue *GV1 = NULL;
6195  const GlobalValue *GV2 = NULL;
6196  int64_t Offset1 = 0;
6197  int64_t Offset2 = 0;
6198  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6199  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6200  if (isGA1 && isGA2 && GV1 == GV2)
6201    return Offset1 == (Offset2 + Dist*Bytes);
6202  return false;
6203}
6204
6205
6206/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6207/// it cannot be inferred.
6208unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6209  // If this is a GlobalAddress + cst, return the alignment.
6210  const GlobalValue *GV;
6211  int64_t GVOffset = 0;
6212  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6213    unsigned PtrWidth = TLI.getPointerTy().getSizeInBits();
6214    APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0);
6215    llvm::ComputeMaskedBits(const_cast<GlobalValue*>(GV), KnownZero, KnownOne,
6216                            TLI.getDataLayout());
6217    unsigned AlignBits = KnownZero.countTrailingOnes();
6218    unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
6219    if (Align)
6220      return MinAlign(Align, GVOffset);
6221  }
6222
6223  // If this is a direct reference to a stack slot, use information about the
6224  // stack slot's alignment.
6225  int FrameIdx = 1 << 31;
6226  int64_t FrameOffset = 0;
6227  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6228    FrameIdx = FI->getIndex();
6229  } else if (isBaseWithConstantOffset(Ptr) &&
6230             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6231    // Handle FI+Cst
6232    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6233    FrameOffset = Ptr.getConstantOperandVal(1);
6234  }
6235
6236  if (FrameIdx != (1 << 31)) {
6237    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6238    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6239                                    FrameOffset);
6240    return FIInfoAlign;
6241  }
6242
6243  return 0;
6244}
6245
6246// getAddressSpace - Return the address space this GlobalAddress belongs to.
6247unsigned GlobalAddressSDNode::getAddressSpace() const {
6248  return getGlobal()->getType()->getAddressSpace();
6249}
6250
6251
6252Type *ConstantPoolSDNode::getType() const {
6253  if (isMachineConstantPoolEntry())
6254    return Val.MachineCPVal->getType();
6255  return Val.ConstVal->getType();
6256}
6257
6258bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6259                                        APInt &SplatUndef,
6260                                        unsigned &SplatBitSize,
6261                                        bool &HasAnyUndefs,
6262                                        unsigned MinSplatBits,
6263                                        bool isBigEndian) {
6264  EVT VT = getValueType(0);
6265  assert(VT.isVector() && "Expected a vector type");
6266  unsigned sz = VT.getSizeInBits();
6267  if (MinSplatBits > sz)
6268    return false;
6269
6270  SplatValue = APInt(sz, 0);
6271  SplatUndef = APInt(sz, 0);
6272
6273  // Get the bits.  Bits with undefined values (when the corresponding element
6274  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6275  // in SplatValue.  If any of the values are not constant, give up and return
6276  // false.
6277  unsigned int nOps = getNumOperands();
6278  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6279  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6280
6281  for (unsigned j = 0; j < nOps; ++j) {
6282    unsigned i = isBigEndian ? nOps-1-j : j;
6283    SDValue OpVal = getOperand(i);
6284    unsigned BitPos = j * EltBitSize;
6285
6286    if (OpVal.getOpcode() == ISD::UNDEF)
6287      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6288    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6289      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6290                    zextOrTrunc(sz) << BitPos;
6291    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6292      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6293     else
6294      return false;
6295  }
6296
6297  // The build_vector is all constants or undefs.  Find the smallest element
6298  // size that splats the vector.
6299
6300  HasAnyUndefs = (SplatUndef != 0);
6301  while (sz > 8) {
6302
6303    unsigned HalfSize = sz / 2;
6304    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6305    APInt LowValue = SplatValue.trunc(HalfSize);
6306    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6307    APInt LowUndef = SplatUndef.trunc(HalfSize);
6308
6309    // If the two halves do not match (ignoring undef bits), stop here.
6310    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6311        MinSplatBits > HalfSize)
6312      break;
6313
6314    SplatValue = HighValue | LowValue;
6315    SplatUndef = HighUndef & LowUndef;
6316
6317    sz = HalfSize;
6318  }
6319
6320  SplatBitSize = sz;
6321  return true;
6322}
6323
6324bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6325  // Find the first non-undef value in the shuffle mask.
6326  unsigned i, e;
6327  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6328    /* search */;
6329
6330  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6331
6332  // Make sure all remaining elements are either undef or the same as the first
6333  // non-undef value.
6334  for (int Idx = Mask[i]; i != e; ++i)
6335    if (Mask[i] >= 0 && Mask[i] != Idx)
6336      return false;
6337  return true;
6338}
6339
6340#ifdef XDEBUG
6341static void checkForCyclesHelper(const SDNode *N,
6342                                 SmallPtrSet<const SDNode*, 32> &Visited,
6343                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6344  // If this node has already been checked, don't check it again.
6345  if (Checked.count(N))
6346    return;
6347
6348  // If a node has already been visited on this depth-first walk, reject it as
6349  // a cycle.
6350  if (!Visited.insert(N)) {
6351    dbgs() << "Offending node:\n";
6352    N->dumprFull();
6353    errs() << "Detected cycle in SelectionDAG\n";
6354    abort();
6355  }
6356
6357  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6358    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6359
6360  Checked.insert(N);
6361  Visited.erase(N);
6362}
6363#endif
6364
6365void llvm::checkForCycles(const llvm::SDNode *N) {
6366#ifdef XDEBUG
6367  assert(N && "Checking nonexistant SDNode");
6368  SmallPtrSet<const SDNode*, 32> visited;
6369  SmallPtrSet<const SDNode*, 32> checked;
6370  checkForCyclesHelper(N, visited, checked);
6371#endif
6372}
6373
6374void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6375  checkForCycles(DAG->getRoot().getNode());
6376}
6377