SelectionDAG.cpp revision b1303d05a89972195de023fda432cc621375a27c
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getNode());
346    ID.AddInteger(Ops->getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getMemoryVT().getRawBits());
433    ID.AddInteger(LD->getRawSubclassData());
434    break;
435  }
436  case ISD::STORE: {
437    const StoreSDNode *ST = cast<StoreSDNode>(N);
438    ID.AddInteger(ST->getMemoryVT().getRawBits());
439    ID.AddInteger(ST->getRawSubclassData());
440    break;
441  }
442  case ISD::ATOMIC_CMP_SWAP:
443  case ISD::ATOMIC_SWAP:
444  case ISD::ATOMIC_LOAD_ADD:
445  case ISD::ATOMIC_LOAD_SUB:
446  case ISD::ATOMIC_LOAD_AND:
447  case ISD::ATOMIC_LOAD_OR:
448  case ISD::ATOMIC_LOAD_XOR:
449  case ISD::ATOMIC_LOAD_NAND:
450  case ISD::ATOMIC_LOAD_MIN:
451  case ISD::ATOMIC_LOAD_MAX:
452  case ISD::ATOMIC_LOAD_UMIN:
453  case ISD::ATOMIC_LOAD_UMAX: {
454    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
455    ID.AddInteger(AT->getMemoryVT().getRawBits());
456    ID.AddInteger(AT->getRawSubclassData());
457    break;
458  }
459  } // end switch (N->getOpcode())
460}
461
462/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
463/// data.
464static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
465  AddNodeIDOpcode(ID, N->getOpcode());
466  // Add the return value info.
467  AddNodeIDValueTypes(ID, N->getVTList());
468  // Add the operand info.
469  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
470
471  // Handle SDNode leafs with special info.
472  AddNodeIDCustom(ID, N);
473}
474
475/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
476/// the CSE map that carries alignment, volatility, indexing mode, and
477/// extension/truncation information.
478///
479static inline unsigned
480encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
481                     bool isVolatile, unsigned Alignment) {
482  assert((ConvType & 3) == ConvType &&
483         "ConvType may not require more than 2 bits!");
484  assert((AM & 7) == AM &&
485         "AM may not require more than 3 bits!");
486  return ConvType |
487         (AM << 2) |
488         (isVolatile << 5) |
489         ((Log2_32(Alignment) + 1) << 6);
490}
491
492//===----------------------------------------------------------------------===//
493//                              SelectionDAG Class
494//===----------------------------------------------------------------------===//
495
496/// doNotCSE - Return true if CSE should not be performed for this node.
497static bool doNotCSE(SDNode *N) {
498  if (N->getValueType(0) == MVT::Flag)
499    return true; // Never CSE anything that produces a flag.
500
501  switch (N->getOpcode()) {
502  default: break;
503  case ISD::HANDLENODE:
504  case ISD::DBG_LABEL:
505  case ISD::DBG_STOPPOINT:
506  case ISD::EH_LABEL:
507  case ISD::DECLARE:
508    return true;   // Never CSE these nodes.
509  }
510
511  // Check that remaining values produced are not flags.
512  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
513    if (N->getValueType(i) == MVT::Flag)
514      return true; // Never CSE anything that produces a flag.
515
516  return false;
517}
518
519/// RemoveDeadNodes - This method deletes all unreachable nodes in the
520/// SelectionDAG.
521void SelectionDAG::RemoveDeadNodes() {
522  // Create a dummy node (which is not added to allnodes), that adds a reference
523  // to the root node, preventing it from being deleted.
524  HandleSDNode Dummy(getRoot());
525
526  SmallVector<SDNode*, 128> DeadNodes;
527
528  // Add all obviously-dead nodes to the DeadNodes worklist.
529  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
530    if (I->use_empty())
531      DeadNodes.push_back(I);
532
533  RemoveDeadNodes(DeadNodes);
534
535  // If the root changed (e.g. it was a dead load, update the root).
536  setRoot(Dummy.getValue());
537}
538
539/// RemoveDeadNodes - This method deletes the unreachable nodes in the
540/// given list, and any nodes that become unreachable as a result.
541void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
542                                   DAGUpdateListener *UpdateListener) {
543
544  // Process the worklist, deleting the nodes and adding their uses to the
545  // worklist.
546  while (!DeadNodes.empty()) {
547    SDNode *N = DeadNodes.pop_back_val();
548
549    if (UpdateListener)
550      UpdateListener->NodeDeleted(N, 0);
551
552    // Take the node out of the appropriate CSE map.
553    RemoveNodeFromCSEMaps(N);
554
555    // Next, brutally remove the operand list.  This is safe to do, as there are
556    // no cycles in the graph.
557    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
558      SDUse &Use = *I++;
559      SDNode *Operand = Use.getNode();
560      Use.set(SDValue());
561
562      // Now that we removed this operand, see if there are no uses of it left.
563      if (Operand->use_empty())
564        DeadNodes.push_back(Operand);
565    }
566
567    DeallocateNode(N);
568  }
569}
570
571void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
572  SmallVector<SDNode*, 16> DeadNodes(1, N);
573  RemoveDeadNodes(DeadNodes, UpdateListener);
574}
575
576void SelectionDAG::DeleteNode(SDNode *N) {
577  // First take this out of the appropriate CSE map.
578  RemoveNodeFromCSEMaps(N);
579
580  // Finally, remove uses due to operands of this node, remove from the
581  // AllNodes list, and delete the node.
582  DeleteNodeNotInCSEMaps(N);
583}
584
585void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
586  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
587  assert(N->use_empty() && "Cannot delete a node that is not dead!");
588
589  // Drop all of the operands and decrement used node's use counts.
590  N->DropOperands();
591
592  DeallocateNode(N);
593}
594
595void SelectionDAG::DeallocateNode(SDNode *N) {
596  if (N->OperandsNeedDelete)
597    delete[] N->OperandList;
598
599  // Set the opcode to DELETED_NODE to help catch bugs when node
600  // memory is reallocated.
601  N->NodeType = ISD::DELETED_NODE;
602
603  NodeAllocator.Deallocate(AllNodes.remove(N));
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::EntryToken:
614    assert(0 && "EntryToken should not be in CSEMaps!");
615    return false;
616  case ISD::HANDLENODE: return false;  // noop.
617  case ISD::CONDCODE:
618    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
619           "Cond code doesn't exist!");
620    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
621    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
622    break;
623  case ISD::ExternalSymbol:
624    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
625    break;
626  case ISD::TargetExternalSymbol:
627    Erased =
628      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
629    break;
630  case ISD::VALUETYPE: {
631    MVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
636      ValueTypeNodes[VT.getSimpleVT()] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    Erased = CSEMap.RemoveNode(N);
643    break;
644  }
645#ifndef NDEBUG
646  // Verify that the node was actually in one of the CSE maps, unless it has a
647  // flag result (which cannot be CSE'd) or is one of the special cases that are
648  // not subject to CSE.
649  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
650      !N->isMachineOpcode() && !doNotCSE(N)) {
651    N->dump(this);
652    cerr << "\n";
653    assert(0 && "Node is not in map!");
654  }
655#endif
656  return Erased;
657}
658
659/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
660/// maps and modified in place. Add it back to the CSE maps, unless an identical
661/// node already exists, in which case transfer all its users to the existing
662/// node. This transfer can potentially trigger recursive merging.
663///
664void
665SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
666                                       DAGUpdateListener *UpdateListener) {
667  // For node types that aren't CSE'd, just act as if no identical node
668  // already exists.
669  if (!doNotCSE(N)) {
670    SDNode *Existing = CSEMap.GetOrInsertNode(N);
671    if (Existing != N) {
672      // If there was already an existing matching node, use ReplaceAllUsesWith
673      // to replace the dead one with the existing one.  This can cause
674      // recursive merging of other unrelated nodes down the line.
675      ReplaceAllUsesWith(N, Existing, UpdateListener);
676
677      // N is now dead.  Inform the listener if it exists and delete it.
678      if (UpdateListener)
679        UpdateListener->NodeDeleted(N, Existing);
680      DeleteNodeNotInCSEMaps(N);
681      return;
682    }
683  }
684
685  // If the node doesn't already exist, we updated it.  Inform a listener if
686  // it exists.
687  if (UpdateListener)
688    UpdateListener->NodeUpdated(N);
689}
690
691/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692/// were replaced with those specified.  If this node is never memoized,
693/// return null, otherwise return a pointer to the slot it would take.  If a
694/// node already exists with these operands, the slot will be non-null.
695SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
696                                           void *&InsertPos) {
697  if (doNotCSE(N))
698    return 0;
699
700  SDValue Ops[] = { Op };
701  FoldingSetNodeID ID;
702  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
703  AddNodeIDCustom(ID, N);
704  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
705}
706
707/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
708/// were replaced with those specified.  If this node is never memoized,
709/// return null, otherwise return a pointer to the slot it would take.  If a
710/// node already exists with these operands, the slot will be non-null.
711SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
712                                           SDValue Op1, SDValue Op2,
713                                           void *&InsertPos) {
714  if (doNotCSE(N))
715    return 0;
716
717  SDValue Ops[] = { Op1, Op2 };
718  FoldingSetNodeID ID;
719  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
720  AddNodeIDCustom(ID, N);
721  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
722}
723
724
725/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726/// were replaced with those specified.  If this node is never memoized,
727/// return null, otherwise return a pointer to the slot it would take.  If a
728/// node already exists with these operands, the slot will be non-null.
729SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730                                           const SDValue *Ops,unsigned NumOps,
731                                           void *&InsertPos) {
732  if (doNotCSE(N))
733    return 0;
734
735  FoldingSetNodeID ID;
736  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
737  AddNodeIDCustom(ID, N);
738  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
739}
740
741/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
742void SelectionDAG::VerifyNode(SDNode *N) {
743  switch (N->getOpcode()) {
744  default:
745    break;
746  case ISD::BUILD_PAIR: {
747    MVT VT = N->getValueType(0);
748    assert(N->getNumValues() == 1 && "Too many results!");
749    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
750           "Wrong return type!");
751    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
752    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
753           "Mismatched operand types!");
754    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
755           "Wrong operand type!");
756    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
757           "Wrong return type size");
758    break;
759  }
760  case ISD::BUILD_VECTOR: {
761    assert(N->getNumValues() == 1 && "Too many results!");
762    assert(N->getValueType(0).isVector() && "Wrong return type!");
763    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
764           "Wrong number of operands!");
765    // FIXME: Change vector_shuffle to a variadic node with mask elements being
766    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
767    // operand, and it is not always possible to legalize it.  Turning off the
768    // following checks at least makes it possible to legalize most of the time.
769//    MVT EltVT = N->getValueType(0).getVectorElementType();
770//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
771//      assert((I->getValueType() == EltVT ||
772//              I->getValueType() == TLI.getTypeToTransformTo(EltVT)) &&
773//             "Wrong operand type!");
774    break;
775  }
776  }
777}
778
779/// getMVTAlignment - Compute the default alignment value for the
780/// given type.
781///
782unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
783  const Type *Ty = VT == MVT::iPTR ?
784                   PointerType::get(Type::Int8Ty, 0) :
785                   VT.getTypeForMVT();
786
787  return TLI.getTargetData()->getABITypeAlignment(Ty);
788}
789
790// EntryNode could meaningfully have debug info if we can find it...
791SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
792  : TLI(tli), FLI(fli), DW(0),
793    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
794    getVTList(MVT::Other)), Root(getEntryNode()) {
795  AllNodes.push_back(&EntryNode);
796}
797
798void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
799                        DwarfWriter *dw) {
800  MF = &mf;
801  MMI = mmi;
802  DW = dw;
803}
804
805SelectionDAG::~SelectionDAG() {
806  allnodes_clear();
807}
808
809void SelectionDAG::allnodes_clear() {
810  assert(&*AllNodes.begin() == &EntryNode);
811  AllNodes.remove(AllNodes.begin());
812  while (!AllNodes.empty())
813    DeallocateNode(AllNodes.begin());
814}
815
816void SelectionDAG::clear() {
817  allnodes_clear();
818  OperandAllocator.Reset();
819  CSEMap.clear();
820
821  ExtendedValueTypeNodes.clear();
822  ExternalSymbols.clear();
823  TargetExternalSymbols.clear();
824  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
825            static_cast<CondCodeSDNode*>(0));
826  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
827            static_cast<SDNode*>(0));
828
829  EntryNode.UseList = 0;
830  AllNodes.push_back(&EntryNode);
831  Root = getEntryNode();
832}
833
834SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
835  if (Op.getValueType() == VT) return Op;
836  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
837                                   VT.getSizeInBits());
838  return getNode(ISD::AND, DL, Op.getValueType(), Op,
839                 getConstant(Imm, Op.getValueType()));
840}
841
842/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
843///
844SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
845  SDValue NegOne;
846  if (VT.isVector()) {
847    MVT EltVT = VT.getVectorElementType();
848    SDValue NegOneElt =
849      getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), EltVT);
850    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
851    NegOne = getNode(ISD::BUILD_VECTOR, DL, VT, &NegOnes[0], NegOnes.size());
852  } else {
853    NegOne = getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
854  }
855  return getNode(ISD::XOR, DL, VT, Val, NegOne);
856}
857
858SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
859  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
860  assert((EltVT.getSizeInBits() >= 64 ||
861         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
862         "getConstant with a uint64_t value that doesn't fit in the type!");
863  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
864}
865
866SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
867  return getConstant(*ConstantInt::get(Val), VT, isT);
868}
869
870SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
871  assert(VT.isInteger() && "Cannot create FP integer constant!");
872
873  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
874  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
875         "APInt size does not match type size!");
876
877  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
878  FoldingSetNodeID ID;
879  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
880  ID.AddPointer(&Val);
881  void *IP = 0;
882  SDNode *N = NULL;
883  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
884    if (!VT.isVector())
885      return SDValue(N, 0);
886  if (!N) {
887    N = NodeAllocator.Allocate<ConstantSDNode>();
888    new (N) ConstantSDNode(isT, &Val, EltVT);
889    CSEMap.InsertNode(N, IP);
890    AllNodes.push_back(N);
891  }
892
893  SDValue Result(N, 0);
894  if (VT.isVector()) {
895    SmallVector<SDValue, 8> Ops;
896    Ops.assign(VT.getVectorNumElements(), Result);
897    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
898                     VT, &Ops[0], Ops.size());
899  }
900  return Result;
901}
902
903SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
904  return getConstant(Val, TLI.getPointerTy(), isTarget);
905}
906
907
908SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
909  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
910}
911
912SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
913  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
914
915  MVT EltVT =
916    VT.isVector() ? VT.getVectorElementType() : VT;
917
918  // Do the map lookup using the actual bit pattern for the floating point
919  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
920  // we don't have issues with SNANs.
921  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
922  FoldingSetNodeID ID;
923  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
924  ID.AddPointer(&V);
925  void *IP = 0;
926  SDNode *N = NULL;
927  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
928    if (!VT.isVector())
929      return SDValue(N, 0);
930  if (!N) {
931    N = NodeAllocator.Allocate<ConstantFPSDNode>();
932    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
933    CSEMap.InsertNode(N, IP);
934    AllNodes.push_back(N);
935  }
936
937  SDValue Result(N, 0);
938  if (VT.isVector()) {
939    SmallVector<SDValue, 8> Ops;
940    Ops.assign(VT.getVectorNumElements(), Result);
941    // FIXME DebugLoc info might be appropriate here
942    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
943                     VT, &Ops[0], Ops.size());
944  }
945  return Result;
946}
947
948SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
949  MVT EltVT =
950    VT.isVector() ? VT.getVectorElementType() : VT;
951  if (EltVT==MVT::f32)
952    return getConstantFP(APFloat((float)Val), VT, isTarget);
953  else
954    return getConstantFP(APFloat(Val), VT, isTarget);
955}
956
957SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
958                                       MVT VT, int64_t Offset,
959                                       bool isTargetGA) {
960  unsigned Opc;
961
962  // Truncate (with sign-extension) the offset value to the pointer size.
963  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
964  if (BitWidth < 64)
965    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
966
967  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
968  if (!GVar) {
969    // If GV is an alias then use the aliasee for determining thread-localness.
970    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
971      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
972  }
973
974  if (GVar && GVar->isThreadLocal())
975    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
976  else
977    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
978
979  FoldingSetNodeID ID;
980  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
981  ID.AddPointer(GV);
982  ID.AddInteger(Offset);
983  void *IP = 0;
984  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
985    return SDValue(E, 0);
986  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
987  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
988  CSEMap.InsertNode(N, IP);
989  AllNodes.push_back(N);
990  return SDValue(N, 0);
991}
992
993SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
994  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
995  FoldingSetNodeID ID;
996  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
997  ID.AddInteger(FI);
998  void *IP = 0;
999  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1000    return SDValue(E, 0);
1001  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1002  new (N) FrameIndexSDNode(FI, VT, isTarget);
1003  CSEMap.InsertNode(N, IP);
1004  AllNodes.push_back(N);
1005  return SDValue(N, 0);
1006}
1007
1008SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1009  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1010  FoldingSetNodeID ID;
1011  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1012  ID.AddInteger(JTI);
1013  void *IP = 0;
1014  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1015    return SDValue(E, 0);
1016  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1017  new (N) JumpTableSDNode(JTI, VT, isTarget);
1018  CSEMap.InsertNode(N, IP);
1019  AllNodes.push_back(N);
1020  return SDValue(N, 0);
1021}
1022
1023SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1024                                      unsigned Alignment, int Offset,
1025                                      bool isTarget) {
1026  if (Alignment == 0)
1027    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1028  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1029  FoldingSetNodeID ID;
1030  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1031  ID.AddInteger(Alignment);
1032  ID.AddInteger(Offset);
1033  ID.AddPointer(C);
1034  void *IP = 0;
1035  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1036    return SDValue(E, 0);
1037  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1038  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1039  CSEMap.InsertNode(N, IP);
1040  AllNodes.push_back(N);
1041  return SDValue(N, 0);
1042}
1043
1044
1045SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1046                                      unsigned Alignment, int Offset,
1047                                      bool isTarget) {
1048  if (Alignment == 0)
1049    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1050  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1051  FoldingSetNodeID ID;
1052  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1053  ID.AddInteger(Alignment);
1054  ID.AddInteger(Offset);
1055  C->AddSelectionDAGCSEId(ID);
1056  void *IP = 0;
1057  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1058    return SDValue(E, 0);
1059  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1060  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1061  CSEMap.InsertNode(N, IP);
1062  AllNodes.push_back(N);
1063  return SDValue(N, 0);
1064}
1065
1066SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1067  FoldingSetNodeID ID;
1068  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1069  ID.AddPointer(MBB);
1070  void *IP = 0;
1071  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1072    return SDValue(E, 0);
1073  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1074  new (N) BasicBlockSDNode(MBB);
1075  CSEMap.InsertNode(N, IP);
1076  AllNodes.push_back(N);
1077  return SDValue(N, 0);
1078}
1079
1080SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1081  FoldingSetNodeID ID;
1082  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1083  ID.AddInteger(Flags.getRawBits());
1084  void *IP = 0;
1085  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1086    return SDValue(E, 0);
1087  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1088  new (N) ARG_FLAGSSDNode(Flags);
1089  CSEMap.InsertNode(N, IP);
1090  AllNodes.push_back(N);
1091  return SDValue(N, 0);
1092}
1093
1094SDValue SelectionDAG::getValueType(MVT VT) {
1095  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1096    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1097
1098  SDNode *&N = VT.isExtended() ?
1099    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1100
1101  if (N) return SDValue(N, 0);
1102  N = NodeAllocator.Allocate<VTSDNode>();
1103  new (N) VTSDNode(VT);
1104  AllNodes.push_back(N);
1105  return SDValue(N, 0);
1106}
1107
1108SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1109  SDNode *&N = ExternalSymbols[Sym];
1110  if (N) return SDValue(N, 0);
1111  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1112  new (N) ExternalSymbolSDNode(false, Sym, VT);
1113  AllNodes.push_back(N);
1114  return SDValue(N, 0);
1115}
1116
1117SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1118  SDNode *&N = TargetExternalSymbols[Sym];
1119  if (N) return SDValue(N, 0);
1120  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1121  new (N) ExternalSymbolSDNode(true, Sym, VT);
1122  AllNodes.push_back(N);
1123  return SDValue(N, 0);
1124}
1125
1126SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1127  if ((unsigned)Cond >= CondCodeNodes.size())
1128    CondCodeNodes.resize(Cond+1);
1129
1130  if (CondCodeNodes[Cond] == 0) {
1131    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1132    new (N) CondCodeSDNode(Cond);
1133    CondCodeNodes[Cond] = N;
1134    AllNodes.push_back(N);
1135  }
1136  return SDValue(CondCodeNodes[Cond], 0);
1137}
1138
1139SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1140                                       SDValue Val, SDValue DTy,
1141                                       SDValue STy, SDValue Rnd, SDValue Sat,
1142                                       ISD::CvtCode Code) {
1143  // If the src and dest types are the same and the conversion is between
1144  // integer types of the same sign or two floats, no conversion is necessary.
1145  if (DTy == STy &&
1146      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1147    return Val;
1148
1149  FoldingSetNodeID ID;
1150  void* IP = 0;
1151  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1152    return SDValue(E, 0);
1153  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1154  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1155  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1156  CSEMap.InsertNode(N, IP);
1157  AllNodes.push_back(N);
1158  return SDValue(N, 0);
1159}
1160
1161SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1162  FoldingSetNodeID ID;
1163  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1164  ID.AddInteger(RegNo);
1165  void *IP = 0;
1166  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1167    return SDValue(E, 0);
1168  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1169  new (N) RegisterSDNode(RegNo, VT);
1170  CSEMap.InsertNode(N, IP);
1171  AllNodes.push_back(N);
1172  return SDValue(N, 0);
1173}
1174
1175SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1176                                      unsigned Line, unsigned Col,
1177                                      Value *CU) {
1178  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1179  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1180  AllNodes.push_back(N);
1181  return SDValue(N, 0);
1182}
1183
1184SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1185                               SDValue Root,
1186                               unsigned LabelID) {
1187  FoldingSetNodeID ID;
1188  SDValue Ops[] = { Root };
1189  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1190  ID.AddInteger(LabelID);
1191  void *IP = 0;
1192  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1193    return SDValue(E, 0);
1194  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1195  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1196  CSEMap.InsertNode(N, IP);
1197  AllNodes.push_back(N);
1198  return SDValue(N, 0);
1199}
1200
1201SDValue SelectionDAG::getSrcValue(const Value *V) {
1202  assert((!V || isa<PointerType>(V->getType())) &&
1203         "SrcValue is not a pointer?");
1204
1205  FoldingSetNodeID ID;
1206  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1207  ID.AddPointer(V);
1208
1209  void *IP = 0;
1210  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1211    return SDValue(E, 0);
1212
1213  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1214  new (N) SrcValueSDNode(V);
1215  CSEMap.InsertNode(N, IP);
1216  AllNodes.push_back(N);
1217  return SDValue(N, 0);
1218}
1219
1220SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1221#ifndef NDEBUG
1222  const Value *v = MO.getValue();
1223  assert((!v || isa<PointerType>(v->getType())) &&
1224         "SrcValue is not a pointer?");
1225#endif
1226
1227  FoldingSetNodeID ID;
1228  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1229  MO.Profile(ID);
1230
1231  void *IP = 0;
1232  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1233    return SDValue(E, 0);
1234
1235  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1236  new (N) MemOperandSDNode(MO);
1237  CSEMap.InsertNode(N, IP);
1238  AllNodes.push_back(N);
1239  return SDValue(N, 0);
1240}
1241
1242/// getShiftAmountOperand - Return the specified value casted to
1243/// the target's desired shift amount type.
1244SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1245  MVT OpTy = Op.getValueType();
1246  MVT ShTy = TLI.getShiftAmountTy();
1247  if (OpTy == ShTy || OpTy.isVector()) return Op;
1248
1249  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1250  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1251}
1252
1253/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1254/// specified value type.
1255SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1256  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1257  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1258  const Type *Ty = VT.getTypeForMVT();
1259  unsigned StackAlign =
1260  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1261
1262  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1263  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1264}
1265
1266/// CreateStackTemporary - Create a stack temporary suitable for holding
1267/// either of the specified value types.
1268SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1269  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1270                            VT2.getStoreSizeInBits())/8;
1271  const Type *Ty1 = VT1.getTypeForMVT();
1272  const Type *Ty2 = VT2.getTypeForMVT();
1273  const TargetData *TD = TLI.getTargetData();
1274  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1275                            TD->getPrefTypeAlignment(Ty2));
1276
1277  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1278  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1279  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1280}
1281
1282SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1283                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1284  // These setcc operations always fold.
1285  switch (Cond) {
1286  default: break;
1287  case ISD::SETFALSE:
1288  case ISD::SETFALSE2: return getConstant(0, VT);
1289  case ISD::SETTRUE:
1290  case ISD::SETTRUE2:  return getConstant(1, VT);
1291
1292  case ISD::SETOEQ:
1293  case ISD::SETOGT:
1294  case ISD::SETOGE:
1295  case ISD::SETOLT:
1296  case ISD::SETOLE:
1297  case ISD::SETONE:
1298  case ISD::SETO:
1299  case ISD::SETUO:
1300  case ISD::SETUEQ:
1301  case ISD::SETUNE:
1302    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1303    break;
1304  }
1305
1306  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1307    const APInt &C2 = N2C->getAPIntValue();
1308    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1309      const APInt &C1 = N1C->getAPIntValue();
1310
1311      switch (Cond) {
1312      default: assert(0 && "Unknown integer setcc!");
1313      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1314      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1315      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1316      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1317      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1318      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1319      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1320      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1321      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1322      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1323      }
1324    }
1325  }
1326  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1327    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1328      // No compile time operations on this type yet.
1329      if (N1C->getValueType(0) == MVT::ppcf128)
1330        return SDValue();
1331
1332      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1333      switch (Cond) {
1334      default: break;
1335      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1336                          return getUNDEF(VT);
1337                        // fall through
1338      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1339      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1340                          return getUNDEF(VT);
1341                        // fall through
1342      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1343                                           R==APFloat::cmpLessThan, VT);
1344      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1345                          return getUNDEF(VT);
1346                        // fall through
1347      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1348      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1349                          return getUNDEF(VT);
1350                        // fall through
1351      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1352      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1353                          return getUNDEF(VT);
1354                        // fall through
1355      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1356                                           R==APFloat::cmpEqual, VT);
1357      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1358                          return getUNDEF(VT);
1359                        // fall through
1360      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1361                                           R==APFloat::cmpEqual, VT);
1362      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1363      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1364      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1365                                           R==APFloat::cmpEqual, VT);
1366      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1367      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1368                                           R==APFloat::cmpLessThan, VT);
1369      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1370                                           R==APFloat::cmpUnordered, VT);
1371      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1372      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1373      }
1374    } else {
1375      // Ensure that the constant occurs on the RHS.
1376      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1377    }
1378  }
1379
1380  // Could not fold it.
1381  return SDValue();
1382}
1383
1384/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1385/// use this predicate to simplify operations downstream.
1386bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1387  unsigned BitWidth = Op.getValueSizeInBits();
1388  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1389}
1390
1391/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1392/// this predicate to simplify operations downstream.  Mask is known to be zero
1393/// for bits that V cannot have.
1394bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1395                                     unsigned Depth) const {
1396  APInt KnownZero, KnownOne;
1397  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1398  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1399  return (KnownZero & Mask) == Mask;
1400}
1401
1402/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1403/// known to be either zero or one and return them in the KnownZero/KnownOne
1404/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1405/// processing.
1406void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1407                                     APInt &KnownZero, APInt &KnownOne,
1408                                     unsigned Depth) const {
1409  unsigned BitWidth = Mask.getBitWidth();
1410  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1411         "Mask size mismatches value type size!");
1412
1413  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1414  if (Depth == 6 || Mask == 0)
1415    return;  // Limit search depth.
1416
1417  APInt KnownZero2, KnownOne2;
1418
1419  switch (Op.getOpcode()) {
1420  case ISD::Constant:
1421    // We know all of the bits for a constant!
1422    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1423    KnownZero = ~KnownOne & Mask;
1424    return;
1425  case ISD::AND:
1426    // If either the LHS or the RHS are Zero, the result is zero.
1427    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1428    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1429                      KnownZero2, KnownOne2, Depth+1);
1430    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1431    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1432
1433    // Output known-1 bits are only known if set in both the LHS & RHS.
1434    KnownOne &= KnownOne2;
1435    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1436    KnownZero |= KnownZero2;
1437    return;
1438  case ISD::OR:
1439    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1440    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1441                      KnownZero2, KnownOne2, Depth+1);
1442    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1443    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1444
1445    // Output known-0 bits are only known if clear in both the LHS & RHS.
1446    KnownZero &= KnownZero2;
1447    // Output known-1 are known to be set if set in either the LHS | RHS.
1448    KnownOne |= KnownOne2;
1449    return;
1450  case ISD::XOR: {
1451    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1452    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1453    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1454    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1455
1456    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1457    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1458    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1459    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1460    KnownZero = KnownZeroOut;
1461    return;
1462  }
1463  case ISD::MUL: {
1464    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1465    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1466    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1467    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1468    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1469
1470    // If low bits are zero in either operand, output low known-0 bits.
1471    // Also compute a conserative estimate for high known-0 bits.
1472    // More trickiness is possible, but this is sufficient for the
1473    // interesting case of alignment computation.
1474    KnownOne.clear();
1475    unsigned TrailZ = KnownZero.countTrailingOnes() +
1476                      KnownZero2.countTrailingOnes();
1477    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1478                               KnownZero2.countLeadingOnes(),
1479                               BitWidth) - BitWidth;
1480
1481    TrailZ = std::min(TrailZ, BitWidth);
1482    LeadZ = std::min(LeadZ, BitWidth);
1483    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1484                APInt::getHighBitsSet(BitWidth, LeadZ);
1485    KnownZero &= Mask;
1486    return;
1487  }
1488  case ISD::UDIV: {
1489    // For the purposes of computing leading zeros we can conservatively
1490    // treat a udiv as a logical right shift by the power of 2 known to
1491    // be less than the denominator.
1492    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1493    ComputeMaskedBits(Op.getOperand(0),
1494                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1495    unsigned LeadZ = KnownZero2.countLeadingOnes();
1496
1497    KnownOne2.clear();
1498    KnownZero2.clear();
1499    ComputeMaskedBits(Op.getOperand(1),
1500                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1501    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1502    if (RHSUnknownLeadingOnes != BitWidth)
1503      LeadZ = std::min(BitWidth,
1504                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1505
1506    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1507    return;
1508  }
1509  case ISD::SELECT:
1510    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1511    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1512    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1513    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1514
1515    // Only known if known in both the LHS and RHS.
1516    KnownOne &= KnownOne2;
1517    KnownZero &= KnownZero2;
1518    return;
1519  case ISD::SELECT_CC:
1520    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1521    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1522    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1523    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1524
1525    // Only known if known in both the LHS and RHS.
1526    KnownOne &= KnownOne2;
1527    KnownZero &= KnownZero2;
1528    return;
1529  case ISD::SADDO:
1530  case ISD::UADDO:
1531  case ISD::SSUBO:
1532  case ISD::USUBO:
1533  case ISD::SMULO:
1534  case ISD::UMULO:
1535    if (Op.getResNo() != 1)
1536      return;
1537    // The boolean result conforms to getBooleanContents.  Fall through.
1538  case ISD::SETCC:
1539    // If we know the result of a setcc has the top bits zero, use this info.
1540    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1541        BitWidth > 1)
1542      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1543    return;
1544  case ISD::SHL:
1545    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1546    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1547      unsigned ShAmt = SA->getZExtValue();
1548
1549      // If the shift count is an invalid immediate, don't do anything.
1550      if (ShAmt >= BitWidth)
1551        return;
1552
1553      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1554                        KnownZero, KnownOne, Depth+1);
1555      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1556      KnownZero <<= ShAmt;
1557      KnownOne  <<= ShAmt;
1558      // low bits known zero.
1559      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1560    }
1561    return;
1562  case ISD::SRL:
1563    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1564    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1565      unsigned ShAmt = SA->getZExtValue();
1566
1567      // If the shift count is an invalid immediate, don't do anything.
1568      if (ShAmt >= BitWidth)
1569        return;
1570
1571      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1572                        KnownZero, KnownOne, Depth+1);
1573      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1574      KnownZero = KnownZero.lshr(ShAmt);
1575      KnownOne  = KnownOne.lshr(ShAmt);
1576
1577      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1578      KnownZero |= HighBits;  // High bits known zero.
1579    }
1580    return;
1581  case ISD::SRA:
1582    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1583      unsigned ShAmt = SA->getZExtValue();
1584
1585      // If the shift count is an invalid immediate, don't do anything.
1586      if (ShAmt >= BitWidth)
1587        return;
1588
1589      APInt InDemandedMask = (Mask << ShAmt);
1590      // If any of the demanded bits are produced by the sign extension, we also
1591      // demand the input sign bit.
1592      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1593      if (HighBits.getBoolValue())
1594        InDemandedMask |= APInt::getSignBit(BitWidth);
1595
1596      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1597                        Depth+1);
1598      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1599      KnownZero = KnownZero.lshr(ShAmt);
1600      KnownOne  = KnownOne.lshr(ShAmt);
1601
1602      // Handle the sign bits.
1603      APInt SignBit = APInt::getSignBit(BitWidth);
1604      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1605
1606      if (KnownZero.intersects(SignBit)) {
1607        KnownZero |= HighBits;  // New bits are known zero.
1608      } else if (KnownOne.intersects(SignBit)) {
1609        KnownOne  |= HighBits;  // New bits are known one.
1610      }
1611    }
1612    return;
1613  case ISD::SIGN_EXTEND_INREG: {
1614    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1615    unsigned EBits = EVT.getSizeInBits();
1616
1617    // Sign extension.  Compute the demanded bits in the result that are not
1618    // present in the input.
1619    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1620
1621    APInt InSignBit = APInt::getSignBit(EBits);
1622    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1623
1624    // If the sign extended bits are demanded, we know that the sign
1625    // bit is demanded.
1626    InSignBit.zext(BitWidth);
1627    if (NewBits.getBoolValue())
1628      InputDemandedBits |= InSignBit;
1629
1630    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1631                      KnownZero, KnownOne, Depth+1);
1632    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1633
1634    // If the sign bit of the input is known set or clear, then we know the
1635    // top bits of the result.
1636    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1637      KnownZero |= NewBits;
1638      KnownOne  &= ~NewBits;
1639    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1640      KnownOne  |= NewBits;
1641      KnownZero &= ~NewBits;
1642    } else {                              // Input sign bit unknown
1643      KnownZero &= ~NewBits;
1644      KnownOne  &= ~NewBits;
1645    }
1646    return;
1647  }
1648  case ISD::CTTZ:
1649  case ISD::CTLZ:
1650  case ISD::CTPOP: {
1651    unsigned LowBits = Log2_32(BitWidth)+1;
1652    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1653    KnownOne.clear();
1654    return;
1655  }
1656  case ISD::LOAD: {
1657    if (ISD::isZEXTLoad(Op.getNode())) {
1658      LoadSDNode *LD = cast<LoadSDNode>(Op);
1659      MVT VT = LD->getMemoryVT();
1660      unsigned MemBits = VT.getSizeInBits();
1661      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1662    }
1663    return;
1664  }
1665  case ISD::ZERO_EXTEND: {
1666    MVT InVT = Op.getOperand(0).getValueType();
1667    unsigned InBits = InVT.getSizeInBits();
1668    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1669    APInt InMask    = Mask;
1670    InMask.trunc(InBits);
1671    KnownZero.trunc(InBits);
1672    KnownOne.trunc(InBits);
1673    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1674    KnownZero.zext(BitWidth);
1675    KnownOne.zext(BitWidth);
1676    KnownZero |= NewBits;
1677    return;
1678  }
1679  case ISD::SIGN_EXTEND: {
1680    MVT InVT = Op.getOperand(0).getValueType();
1681    unsigned InBits = InVT.getSizeInBits();
1682    APInt InSignBit = APInt::getSignBit(InBits);
1683    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1684    APInt InMask = Mask;
1685    InMask.trunc(InBits);
1686
1687    // If any of the sign extended bits are demanded, we know that the sign
1688    // bit is demanded. Temporarily set this bit in the mask for our callee.
1689    if (NewBits.getBoolValue())
1690      InMask |= InSignBit;
1691
1692    KnownZero.trunc(InBits);
1693    KnownOne.trunc(InBits);
1694    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1695
1696    // Note if the sign bit is known to be zero or one.
1697    bool SignBitKnownZero = KnownZero.isNegative();
1698    bool SignBitKnownOne  = KnownOne.isNegative();
1699    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1700           "Sign bit can't be known to be both zero and one!");
1701
1702    // If the sign bit wasn't actually demanded by our caller, we don't
1703    // want it set in the KnownZero and KnownOne result values. Reset the
1704    // mask and reapply it to the result values.
1705    InMask = Mask;
1706    InMask.trunc(InBits);
1707    KnownZero &= InMask;
1708    KnownOne  &= InMask;
1709
1710    KnownZero.zext(BitWidth);
1711    KnownOne.zext(BitWidth);
1712
1713    // If the sign bit is known zero or one, the top bits match.
1714    if (SignBitKnownZero)
1715      KnownZero |= NewBits;
1716    else if (SignBitKnownOne)
1717      KnownOne  |= NewBits;
1718    return;
1719  }
1720  case ISD::ANY_EXTEND: {
1721    MVT InVT = Op.getOperand(0).getValueType();
1722    unsigned InBits = InVT.getSizeInBits();
1723    APInt InMask = Mask;
1724    InMask.trunc(InBits);
1725    KnownZero.trunc(InBits);
1726    KnownOne.trunc(InBits);
1727    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1728    KnownZero.zext(BitWidth);
1729    KnownOne.zext(BitWidth);
1730    return;
1731  }
1732  case ISD::TRUNCATE: {
1733    MVT InVT = Op.getOperand(0).getValueType();
1734    unsigned InBits = InVT.getSizeInBits();
1735    APInt InMask = Mask;
1736    InMask.zext(InBits);
1737    KnownZero.zext(InBits);
1738    KnownOne.zext(InBits);
1739    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1740    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1741    KnownZero.trunc(BitWidth);
1742    KnownOne.trunc(BitWidth);
1743    break;
1744  }
1745  case ISD::AssertZext: {
1746    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1747    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1748    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1749                      KnownOne, Depth+1);
1750    KnownZero |= (~InMask) & Mask;
1751    return;
1752  }
1753  case ISD::FGETSIGN:
1754    // All bits are zero except the low bit.
1755    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1756    return;
1757
1758  case ISD::SUB: {
1759    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1760      // We know that the top bits of C-X are clear if X contains less bits
1761      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1762      // positive if we can prove that X is >= 0 and < 16.
1763      if (CLHS->getAPIntValue().isNonNegative()) {
1764        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1765        // NLZ can't be BitWidth with no sign bit
1766        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1767        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1768                          Depth+1);
1769
1770        // If all of the MaskV bits are known to be zero, then we know the
1771        // output top bits are zero, because we now know that the output is
1772        // from [0-C].
1773        if ((KnownZero2 & MaskV) == MaskV) {
1774          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1775          // Top bits known zero.
1776          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1777        }
1778      }
1779    }
1780  }
1781  // fall through
1782  case ISD::ADD: {
1783    // Output known-0 bits are known if clear or set in both the low clear bits
1784    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1785    // low 3 bits clear.
1786    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1787    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1788    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1789    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1790
1791    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1792    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1793    KnownZeroOut = std::min(KnownZeroOut,
1794                            KnownZero2.countTrailingOnes());
1795
1796    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1797    return;
1798  }
1799  case ISD::SREM:
1800    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1801      const APInt &RA = Rem->getAPIntValue();
1802      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1803        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1804        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1805        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1806
1807        // If the sign bit of the first operand is zero, the sign bit of
1808        // the result is zero. If the first operand has no one bits below
1809        // the second operand's single 1 bit, its sign will be zero.
1810        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1811          KnownZero2 |= ~LowBits;
1812
1813        KnownZero |= KnownZero2 & Mask;
1814
1815        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1816      }
1817    }
1818    return;
1819  case ISD::UREM: {
1820    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1821      const APInt &RA = Rem->getAPIntValue();
1822      if (RA.isPowerOf2()) {
1823        APInt LowBits = (RA - 1);
1824        APInt Mask2 = LowBits & Mask;
1825        KnownZero |= ~LowBits & Mask;
1826        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1827        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1828        break;
1829      }
1830    }
1831
1832    // Since the result is less than or equal to either operand, any leading
1833    // zero bits in either operand must also exist in the result.
1834    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1835    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1836                      Depth+1);
1837    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1838                      Depth+1);
1839
1840    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1841                                KnownZero2.countLeadingOnes());
1842    KnownOne.clear();
1843    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1844    return;
1845  }
1846  default:
1847    // Allow the target to implement this method for its nodes.
1848    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1849  case ISD::INTRINSIC_WO_CHAIN:
1850  case ISD::INTRINSIC_W_CHAIN:
1851  case ISD::INTRINSIC_VOID:
1852      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1853    }
1854    return;
1855  }
1856}
1857
1858/// ComputeNumSignBits - Return the number of times the sign bit of the
1859/// register is replicated into the other bits.  We know that at least 1 bit
1860/// is always equal to the sign bit (itself), but other cases can give us
1861/// information.  For example, immediately after an "SRA X, 2", we know that
1862/// the top 3 bits are all equal to each other, so we return 3.
1863unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1864  MVT VT = Op.getValueType();
1865  assert(VT.isInteger() && "Invalid VT!");
1866  unsigned VTBits = VT.getSizeInBits();
1867  unsigned Tmp, Tmp2;
1868  unsigned FirstAnswer = 1;
1869
1870  if (Depth == 6)
1871    return 1;  // Limit search depth.
1872
1873  switch (Op.getOpcode()) {
1874  default: break;
1875  case ISD::AssertSext:
1876    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1877    return VTBits-Tmp+1;
1878  case ISD::AssertZext:
1879    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1880    return VTBits-Tmp;
1881
1882  case ISD::Constant: {
1883    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1884    // If negative, return # leading ones.
1885    if (Val.isNegative())
1886      return Val.countLeadingOnes();
1887
1888    // Return # leading zeros.
1889    return Val.countLeadingZeros();
1890  }
1891
1892  case ISD::SIGN_EXTEND:
1893    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1894    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1895
1896  case ISD::SIGN_EXTEND_INREG:
1897    // Max of the input and what this extends.
1898    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1899    Tmp = VTBits-Tmp+1;
1900
1901    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1902    return std::max(Tmp, Tmp2);
1903
1904  case ISD::SRA:
1905    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1906    // SRA X, C   -> adds C sign bits.
1907    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1908      Tmp += C->getZExtValue();
1909      if (Tmp > VTBits) Tmp = VTBits;
1910    }
1911    return Tmp;
1912  case ISD::SHL:
1913    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1914      // shl destroys sign bits.
1915      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1916      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1917          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1918      return Tmp - C->getZExtValue();
1919    }
1920    break;
1921  case ISD::AND:
1922  case ISD::OR:
1923  case ISD::XOR:    // NOT is handled here.
1924    // Logical binary ops preserve the number of sign bits at the worst.
1925    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1926    if (Tmp != 1) {
1927      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1928      FirstAnswer = std::min(Tmp, Tmp2);
1929      // We computed what we know about the sign bits as our first
1930      // answer. Now proceed to the generic code that uses
1931      // ComputeMaskedBits, and pick whichever answer is better.
1932    }
1933    break;
1934
1935  case ISD::SELECT:
1936    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1937    if (Tmp == 1) return 1;  // Early out.
1938    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1939    return std::min(Tmp, Tmp2);
1940
1941  case ISD::SADDO:
1942  case ISD::UADDO:
1943  case ISD::SSUBO:
1944  case ISD::USUBO:
1945  case ISD::SMULO:
1946  case ISD::UMULO:
1947    if (Op.getResNo() != 1)
1948      break;
1949    // The boolean result conforms to getBooleanContents.  Fall through.
1950  case ISD::SETCC:
1951    // If setcc returns 0/-1, all bits are sign bits.
1952    if (TLI.getBooleanContents() ==
1953        TargetLowering::ZeroOrNegativeOneBooleanContent)
1954      return VTBits;
1955    break;
1956  case ISD::ROTL:
1957  case ISD::ROTR:
1958    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1959      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1960
1961      // Handle rotate right by N like a rotate left by 32-N.
1962      if (Op.getOpcode() == ISD::ROTR)
1963        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1964
1965      // If we aren't rotating out all of the known-in sign bits, return the
1966      // number that are left.  This handles rotl(sext(x), 1) for example.
1967      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1968      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1969    }
1970    break;
1971  case ISD::ADD:
1972    // Add can have at most one carry bit.  Thus we know that the output
1973    // is, at worst, one more bit than the inputs.
1974    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1975    if (Tmp == 1) return 1;  // Early out.
1976
1977    // Special case decrementing a value (ADD X, -1):
1978    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1979      if (CRHS->isAllOnesValue()) {
1980        APInt KnownZero, KnownOne;
1981        APInt Mask = APInt::getAllOnesValue(VTBits);
1982        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1983
1984        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1985        // sign bits set.
1986        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1987          return VTBits;
1988
1989        // If we are subtracting one from a positive number, there is no carry
1990        // out of the result.
1991        if (KnownZero.isNegative())
1992          return Tmp;
1993      }
1994
1995    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1996    if (Tmp2 == 1) return 1;
1997      return std::min(Tmp, Tmp2)-1;
1998    break;
1999
2000  case ISD::SUB:
2001    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2002    if (Tmp2 == 1) return 1;
2003
2004    // Handle NEG.
2005    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2006      if (CLHS->isNullValue()) {
2007        APInt KnownZero, KnownOne;
2008        APInt Mask = APInt::getAllOnesValue(VTBits);
2009        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2010        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2011        // sign bits set.
2012        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2013          return VTBits;
2014
2015        // If the input is known to be positive (the sign bit is known clear),
2016        // the output of the NEG has the same number of sign bits as the input.
2017        if (KnownZero.isNegative())
2018          return Tmp2;
2019
2020        // Otherwise, we treat this like a SUB.
2021      }
2022
2023    // Sub can have at most one carry bit.  Thus we know that the output
2024    // is, at worst, one more bit than the inputs.
2025    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2026    if (Tmp == 1) return 1;  // Early out.
2027      return std::min(Tmp, Tmp2)-1;
2028    break;
2029  case ISD::TRUNCATE:
2030    // FIXME: it's tricky to do anything useful for this, but it is an important
2031    // case for targets like X86.
2032    break;
2033  }
2034
2035  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2036  if (Op.getOpcode() == ISD::LOAD) {
2037    LoadSDNode *LD = cast<LoadSDNode>(Op);
2038    unsigned ExtType = LD->getExtensionType();
2039    switch (ExtType) {
2040    default: break;
2041    case ISD::SEXTLOAD:    // '17' bits known
2042      Tmp = LD->getMemoryVT().getSizeInBits();
2043      return VTBits-Tmp+1;
2044    case ISD::ZEXTLOAD:    // '16' bits known
2045      Tmp = LD->getMemoryVT().getSizeInBits();
2046      return VTBits-Tmp;
2047    }
2048  }
2049
2050  // Allow the target to implement this method for its nodes.
2051  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2052      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2053      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2054      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2055    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2056    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2057  }
2058
2059  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2060  // use this information.
2061  APInt KnownZero, KnownOne;
2062  APInt Mask = APInt::getAllOnesValue(VTBits);
2063  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2064
2065  if (KnownZero.isNegative()) {        // sign bit is 0
2066    Mask = KnownZero;
2067  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2068    Mask = KnownOne;
2069  } else {
2070    // Nothing known.
2071    return FirstAnswer;
2072  }
2073
2074  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2075  // the number of identical bits in the top of the input value.
2076  Mask = ~Mask;
2077  Mask <<= Mask.getBitWidth()-VTBits;
2078  // Return # leading zeros.  We use 'min' here in case Val was zero before
2079  // shifting.  We don't want to return '64' as for an i32 "0".
2080  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2081}
2082
2083
2084bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2085  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2086  if (!GA) return false;
2087  if (GA->getOffset() != 0) return false;
2088  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2089  if (!GV) return false;
2090  MachineModuleInfo *MMI = getMachineModuleInfo();
2091  return MMI && MMI->hasDebugInfo();
2092}
2093
2094
2095/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2096/// element of the result of the vector shuffle.
2097SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2098  MVT VT = N->getValueType(0);
2099  DebugLoc dl = N->getDebugLoc();
2100  SDValue PermMask = N->getOperand(2);
2101  SDValue Idx = PermMask.getOperand(i);
2102  if (Idx.getOpcode() == ISD::UNDEF)
2103    return getUNDEF(VT.getVectorElementType());
2104  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2105  unsigned NumElems = PermMask.getNumOperands();
2106  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2107  Index %= NumElems;
2108
2109  if (V.getOpcode() == ISD::BIT_CONVERT) {
2110    V = V.getOperand(0);
2111    MVT VVT = V.getValueType();
2112    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2113      return SDValue();
2114  }
2115  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2116    return (Index == 0) ? V.getOperand(0)
2117                      : getUNDEF(VT.getVectorElementType());
2118  if (V.getOpcode() == ISD::BUILD_VECTOR)
2119    return V.getOperand(Index);
2120  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2121    return getShuffleScalarElt(V.getNode(), Index);
2122  return SDValue();
2123}
2124
2125
2126/// getNode - Gets or creates the specified node.
2127///
2128SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2129  FoldingSetNodeID ID;
2130  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2131  void *IP = 0;
2132  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2133    return SDValue(E, 0);
2134  SDNode *N = NodeAllocator.Allocate<SDNode>();
2135  new (N) SDNode(Opcode, DL, getVTList(VT));
2136  CSEMap.InsertNode(N, IP);
2137
2138  AllNodes.push_back(N);
2139#ifndef NDEBUG
2140  VerifyNode(N);
2141#endif
2142  return SDValue(N, 0);
2143}
2144
2145SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2146                              MVT VT, SDValue Operand) {
2147  // Constant fold unary operations with an integer constant operand.
2148  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2149    const APInt &Val = C->getAPIntValue();
2150    unsigned BitWidth = VT.getSizeInBits();
2151    switch (Opcode) {
2152    default: break;
2153    case ISD::SIGN_EXTEND:
2154      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2155    case ISD::ANY_EXTEND:
2156    case ISD::ZERO_EXTEND:
2157    case ISD::TRUNCATE:
2158      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2159    case ISD::UINT_TO_FP:
2160    case ISD::SINT_TO_FP: {
2161      const uint64_t zero[] = {0, 0};
2162      // No compile time operations on this type.
2163      if (VT==MVT::ppcf128)
2164        break;
2165      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2166      (void)apf.convertFromAPInt(Val,
2167                                 Opcode==ISD::SINT_TO_FP,
2168                                 APFloat::rmNearestTiesToEven);
2169      return getConstantFP(apf, VT);
2170    }
2171    case ISD::BIT_CONVERT:
2172      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2173        return getConstantFP(Val.bitsToFloat(), VT);
2174      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2175        return getConstantFP(Val.bitsToDouble(), VT);
2176      break;
2177    case ISD::BSWAP:
2178      return getConstant(Val.byteSwap(), VT);
2179    case ISD::CTPOP:
2180      return getConstant(Val.countPopulation(), VT);
2181    case ISD::CTLZ:
2182      return getConstant(Val.countLeadingZeros(), VT);
2183    case ISD::CTTZ:
2184      return getConstant(Val.countTrailingZeros(), VT);
2185    }
2186  }
2187
2188  // Constant fold unary operations with a floating point constant operand.
2189  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2190    APFloat V = C->getValueAPF();    // make copy
2191    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2192      switch (Opcode) {
2193      case ISD::FNEG:
2194        V.changeSign();
2195        return getConstantFP(V, VT);
2196      case ISD::FABS:
2197        V.clearSign();
2198        return getConstantFP(V, VT);
2199      case ISD::FP_ROUND:
2200      case ISD::FP_EXTEND: {
2201        bool ignored;
2202        // This can return overflow, underflow, or inexact; we don't care.
2203        // FIXME need to be more flexible about rounding mode.
2204        (void)V.convert(*MVTToAPFloatSemantics(VT),
2205                        APFloat::rmNearestTiesToEven, &ignored);
2206        return getConstantFP(V, VT);
2207      }
2208      case ISD::FP_TO_SINT:
2209      case ISD::FP_TO_UINT: {
2210        integerPart x;
2211        bool ignored;
2212        assert(integerPartWidth >= 64);
2213        // FIXME need to be more flexible about rounding mode.
2214        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2215                              Opcode==ISD::FP_TO_SINT,
2216                              APFloat::rmTowardZero, &ignored);
2217        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2218          break;
2219        return getConstant(x, VT);
2220      }
2221      case ISD::BIT_CONVERT:
2222        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2223          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2224        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2225          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2226        break;
2227      }
2228    }
2229  }
2230
2231  unsigned OpOpcode = Operand.getNode()->getOpcode();
2232  switch (Opcode) {
2233  case ISD::TokenFactor:
2234  case ISD::MERGE_VALUES:
2235  case ISD::CONCAT_VECTORS:
2236    return Operand;         // Factor, merge or concat of one node?  No need.
2237  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2238  case ISD::FP_EXTEND:
2239    assert(VT.isFloatingPoint() &&
2240           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2241    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2242    if (Operand.getOpcode() == ISD::UNDEF)
2243      return getUNDEF(VT);
2244    break;
2245  case ISD::SIGN_EXTEND:
2246    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2247           "Invalid SIGN_EXTEND!");
2248    if (Operand.getValueType() == VT) return Operand;   // noop extension
2249    assert(Operand.getValueType().bitsLT(VT)
2250           && "Invalid sext node, dst < src!");
2251    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2252      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2253    break;
2254  case ISD::ZERO_EXTEND:
2255    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2256           "Invalid ZERO_EXTEND!");
2257    if (Operand.getValueType() == VT) return Operand;   // noop extension
2258    assert(Operand.getValueType().bitsLT(VT)
2259           && "Invalid zext node, dst < src!");
2260    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2261      return getNode(ISD::ZERO_EXTEND, DL, VT,
2262                     Operand.getNode()->getOperand(0));
2263    break;
2264  case ISD::ANY_EXTEND:
2265    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2266           "Invalid ANY_EXTEND!");
2267    if (Operand.getValueType() == VT) return Operand;   // noop extension
2268    assert(Operand.getValueType().bitsLT(VT)
2269           && "Invalid anyext node, dst < src!");
2270    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2271      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2272      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2273    break;
2274  case ISD::TRUNCATE:
2275    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2276           "Invalid TRUNCATE!");
2277    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2278    assert(Operand.getValueType().bitsGT(VT)
2279           && "Invalid truncate node, src < dst!");
2280    if (OpOpcode == ISD::TRUNCATE)
2281      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2282    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2283             OpOpcode == ISD::ANY_EXTEND) {
2284      // If the source is smaller than the dest, we still need an extend.
2285      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2286        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2287      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2288        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2289      else
2290        return Operand.getNode()->getOperand(0);
2291    }
2292    break;
2293  case ISD::BIT_CONVERT:
2294    // Basic sanity checking.
2295    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2296           && "Cannot BIT_CONVERT between types of different sizes!");
2297    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2298    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2299      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2300    if (OpOpcode == ISD::UNDEF)
2301      return getUNDEF(VT);
2302    break;
2303  case ISD::SCALAR_TO_VECTOR:
2304    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2305           VT.getVectorElementType() == Operand.getValueType() &&
2306           "Illegal SCALAR_TO_VECTOR node!");
2307    if (OpOpcode == ISD::UNDEF)
2308      return getUNDEF(VT);
2309    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2310    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2311        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2312        Operand.getConstantOperandVal(1) == 0 &&
2313        Operand.getOperand(0).getValueType() == VT)
2314      return Operand.getOperand(0);
2315    break;
2316  case ISD::FNEG:
2317    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2318    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2319      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2320                     Operand.getNode()->getOperand(0));
2321    if (OpOpcode == ISD::FNEG)  // --X -> X
2322      return Operand.getNode()->getOperand(0);
2323    break;
2324  case ISD::FABS:
2325    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2326      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2327    break;
2328  }
2329
2330  SDNode *N;
2331  SDVTList VTs = getVTList(VT);
2332  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2333    FoldingSetNodeID ID;
2334    SDValue Ops[1] = { Operand };
2335    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2336    void *IP = 0;
2337    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2338      return SDValue(E, 0);
2339    N = NodeAllocator.Allocate<UnarySDNode>();
2340    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2341    CSEMap.InsertNode(N, IP);
2342  } else {
2343    N = NodeAllocator.Allocate<UnarySDNode>();
2344    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2345  }
2346
2347  AllNodes.push_back(N);
2348#ifndef NDEBUG
2349  VerifyNode(N);
2350#endif
2351  return SDValue(N, 0);
2352}
2353
2354SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2355                                             MVT VT,
2356                                             ConstantSDNode *Cst1,
2357                                             ConstantSDNode *Cst2) {
2358  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2359
2360  switch (Opcode) {
2361  case ISD::ADD:  return getConstant(C1 + C2, VT);
2362  case ISD::SUB:  return getConstant(C1 - C2, VT);
2363  case ISD::MUL:  return getConstant(C1 * C2, VT);
2364  case ISD::UDIV:
2365    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2366    break;
2367  case ISD::UREM:
2368    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2369    break;
2370  case ISD::SDIV:
2371    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2372    break;
2373  case ISD::SREM:
2374    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2375    break;
2376  case ISD::AND:  return getConstant(C1 & C2, VT);
2377  case ISD::OR:   return getConstant(C1 | C2, VT);
2378  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2379  case ISD::SHL:  return getConstant(C1 << C2, VT);
2380  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2381  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2382  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2383  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2384  default: break;
2385  }
2386
2387  return SDValue();
2388}
2389
2390SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2391                              SDValue N1, SDValue N2) {
2392  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2393  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2394  switch (Opcode) {
2395  default: break;
2396  case ISD::TokenFactor:
2397    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2398           N2.getValueType() == MVT::Other && "Invalid token factor!");
2399    // Fold trivial token factors.
2400    if (N1.getOpcode() == ISD::EntryToken) return N2;
2401    if (N2.getOpcode() == ISD::EntryToken) return N1;
2402    if (N1 == N2) return N1;
2403    break;
2404  case ISD::CONCAT_VECTORS:
2405    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2406    // one big BUILD_VECTOR.
2407    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2408        N2.getOpcode() == ISD::BUILD_VECTOR) {
2409      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2410      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2411      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2412    }
2413    break;
2414  case ISD::AND:
2415    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2416           N1.getValueType() == VT && "Binary operator types must match!");
2417    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2418    // worth handling here.
2419    if (N2C && N2C->isNullValue())
2420      return N2;
2421    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2422      return N1;
2423    break;
2424  case ISD::OR:
2425  case ISD::XOR:
2426  case ISD::ADD:
2427  case ISD::SUB:
2428    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2429           N1.getValueType() == VT && "Binary operator types must match!");
2430    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2431    // it's worth handling here.
2432    if (N2C && N2C->isNullValue())
2433      return N1;
2434    break;
2435  case ISD::UDIV:
2436  case ISD::UREM:
2437  case ISD::MULHU:
2438  case ISD::MULHS:
2439  case ISD::MUL:
2440  case ISD::SDIV:
2441  case ISD::SREM:
2442    assert(VT.isInteger() && "This operator does not apply to FP types!");
2443    // fall through
2444  case ISD::FADD:
2445  case ISD::FSUB:
2446  case ISD::FMUL:
2447  case ISD::FDIV:
2448  case ISD::FREM:
2449    if (UnsafeFPMath) {
2450      if (Opcode == ISD::FADD) {
2451        // 0+x --> x
2452        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2453          if (CFP->getValueAPF().isZero())
2454            return N2;
2455        // x+0 --> x
2456        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2457          if (CFP->getValueAPF().isZero())
2458            return N1;
2459      } else if (Opcode == ISD::FSUB) {
2460        // x-0 --> x
2461        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2462          if (CFP->getValueAPF().isZero())
2463            return N1;
2464      }
2465    }
2466    assert(N1.getValueType() == N2.getValueType() &&
2467           N1.getValueType() == VT && "Binary operator types must match!");
2468    break;
2469  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2470    assert(N1.getValueType() == VT &&
2471           N1.getValueType().isFloatingPoint() &&
2472           N2.getValueType().isFloatingPoint() &&
2473           "Invalid FCOPYSIGN!");
2474    break;
2475  case ISD::SHL:
2476  case ISD::SRA:
2477  case ISD::SRL:
2478  case ISD::ROTL:
2479  case ISD::ROTR:
2480    assert(VT == N1.getValueType() &&
2481           "Shift operators return type must be the same as their first arg");
2482    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2483           "Shifts only work on integers");
2484
2485    // Always fold shifts of i1 values so the code generator doesn't need to
2486    // handle them.  Since we know the size of the shift has to be less than the
2487    // size of the value, the shift/rotate count is guaranteed to be zero.
2488    if (VT == MVT::i1)
2489      return N1;
2490    break;
2491  case ISD::FP_ROUND_INREG: {
2492    MVT EVT = cast<VTSDNode>(N2)->getVT();
2493    assert(VT == N1.getValueType() && "Not an inreg round!");
2494    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2495           "Cannot FP_ROUND_INREG integer types");
2496    assert(EVT.bitsLE(VT) && "Not rounding down!");
2497    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2498    break;
2499  }
2500  case ISD::FP_ROUND:
2501    assert(VT.isFloatingPoint() &&
2502           N1.getValueType().isFloatingPoint() &&
2503           VT.bitsLE(N1.getValueType()) &&
2504           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2505    if (N1.getValueType() == VT) return N1;  // noop conversion.
2506    break;
2507  case ISD::AssertSext:
2508  case ISD::AssertZext: {
2509    MVT EVT = cast<VTSDNode>(N2)->getVT();
2510    assert(VT == N1.getValueType() && "Not an inreg extend!");
2511    assert(VT.isInteger() && EVT.isInteger() &&
2512           "Cannot *_EXTEND_INREG FP types");
2513    assert(EVT.bitsLE(VT) && "Not extending!");
2514    if (VT == EVT) return N1; // noop assertion.
2515    break;
2516  }
2517  case ISD::SIGN_EXTEND_INREG: {
2518    MVT EVT = cast<VTSDNode>(N2)->getVT();
2519    assert(VT == N1.getValueType() && "Not an inreg extend!");
2520    assert(VT.isInteger() && EVT.isInteger() &&
2521           "Cannot *_EXTEND_INREG FP types");
2522    assert(EVT.bitsLE(VT) && "Not extending!");
2523    if (EVT == VT) return N1;  // Not actually extending
2524
2525    if (N1C) {
2526      APInt Val = N1C->getAPIntValue();
2527      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2528      Val <<= Val.getBitWidth()-FromBits;
2529      Val = Val.ashr(Val.getBitWidth()-FromBits);
2530      return getConstant(Val, VT);
2531    }
2532    break;
2533  }
2534  case ISD::EXTRACT_VECTOR_ELT:
2535    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2536    if (N1.getOpcode() == ISD::UNDEF)
2537      return getUNDEF(VT);
2538
2539    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2540    // expanding copies of large vectors from registers.
2541    if (N2C &&
2542        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2543        N1.getNumOperands() > 0) {
2544      unsigned Factor =
2545        N1.getOperand(0).getValueType().getVectorNumElements();
2546      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2547                     N1.getOperand(N2C->getZExtValue() / Factor),
2548                     getConstant(N2C->getZExtValue() % Factor,
2549                                 N2.getValueType()));
2550    }
2551
2552    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2553    // expanding large vector constants.
2554    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2555      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2556      if (Elt.getValueType() != VT) {
2557        // If the vector element type is not legal, the BUILD_VECTOR operands
2558        // are promoted and implicitly truncated.  Make that explicit here.
2559        assert(Elt.getValueType() == TLI.getTypeToTransformTo(VT) &&
2560               "Bad type for BUILD_VECTOR operand");
2561        Elt = getNode(ISD::TRUNCATE, DL, VT, Elt);
2562      }
2563      return Elt;
2564    }
2565
2566    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2567    // operations are lowered to scalars.
2568    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2569      // If the indices are the same, return the inserted element.
2570      if (N1.getOperand(2) == N2)
2571        return N1.getOperand(1);
2572      // If the indices are known different, extract the element from
2573      // the original vector.
2574      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2575               isa<ConstantSDNode>(N2))
2576        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2577    }
2578    break;
2579  case ISD::EXTRACT_ELEMENT:
2580    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2581    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2582           (N1.getValueType().isInteger() == VT.isInteger()) &&
2583           "Wrong types for EXTRACT_ELEMENT!");
2584
2585    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2586    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2587    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2588    if (N1.getOpcode() == ISD::BUILD_PAIR)
2589      return N1.getOperand(N2C->getZExtValue());
2590
2591    // EXTRACT_ELEMENT of a constant int is also very common.
2592    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2593      unsigned ElementSize = VT.getSizeInBits();
2594      unsigned Shift = ElementSize * N2C->getZExtValue();
2595      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2596      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2597    }
2598    break;
2599  case ISD::EXTRACT_SUBVECTOR:
2600    if (N1.getValueType() == VT) // Trivial extraction.
2601      return N1;
2602    break;
2603  }
2604
2605  if (N1C) {
2606    if (N2C) {
2607      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2608      if (SV.getNode()) return SV;
2609    } else {      // Cannonicalize constant to RHS if commutative
2610      if (isCommutativeBinOp(Opcode)) {
2611        std::swap(N1C, N2C);
2612        std::swap(N1, N2);
2613      }
2614    }
2615  }
2616
2617  // Constant fold FP operations.
2618  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2619  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2620  if (N1CFP) {
2621    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2622      // Cannonicalize constant to RHS if commutative
2623      std::swap(N1CFP, N2CFP);
2624      std::swap(N1, N2);
2625    } else if (N2CFP && VT != MVT::ppcf128) {
2626      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2627      APFloat::opStatus s;
2628      switch (Opcode) {
2629      case ISD::FADD:
2630        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2631        if (s != APFloat::opInvalidOp)
2632          return getConstantFP(V1, VT);
2633        break;
2634      case ISD::FSUB:
2635        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2636        if (s!=APFloat::opInvalidOp)
2637          return getConstantFP(V1, VT);
2638        break;
2639      case ISD::FMUL:
2640        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2641        if (s!=APFloat::opInvalidOp)
2642          return getConstantFP(V1, VT);
2643        break;
2644      case ISD::FDIV:
2645        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2646        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2647          return getConstantFP(V1, VT);
2648        break;
2649      case ISD::FREM :
2650        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2651        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2652          return getConstantFP(V1, VT);
2653        break;
2654      case ISD::FCOPYSIGN:
2655        V1.copySign(V2);
2656        return getConstantFP(V1, VT);
2657      default: break;
2658      }
2659    }
2660  }
2661
2662  // Canonicalize an UNDEF to the RHS, even over a constant.
2663  if (N1.getOpcode() == ISD::UNDEF) {
2664    if (isCommutativeBinOp(Opcode)) {
2665      std::swap(N1, N2);
2666    } else {
2667      switch (Opcode) {
2668      case ISD::FP_ROUND_INREG:
2669      case ISD::SIGN_EXTEND_INREG:
2670      case ISD::SUB:
2671      case ISD::FSUB:
2672      case ISD::FDIV:
2673      case ISD::FREM:
2674      case ISD::SRA:
2675        return N1;     // fold op(undef, arg2) -> undef
2676      case ISD::UDIV:
2677      case ISD::SDIV:
2678      case ISD::UREM:
2679      case ISD::SREM:
2680      case ISD::SRL:
2681      case ISD::SHL:
2682        if (!VT.isVector())
2683          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2684        // For vectors, we can't easily build an all zero vector, just return
2685        // the LHS.
2686        return N2;
2687      }
2688    }
2689  }
2690
2691  // Fold a bunch of operators when the RHS is undef.
2692  if (N2.getOpcode() == ISD::UNDEF) {
2693    switch (Opcode) {
2694    case ISD::XOR:
2695      if (N1.getOpcode() == ISD::UNDEF)
2696        // Handle undef ^ undef -> 0 special case. This is a common
2697        // idiom (misuse).
2698        return getConstant(0, VT);
2699      // fallthrough
2700    case ISD::ADD:
2701    case ISD::ADDC:
2702    case ISD::ADDE:
2703    case ISD::SUB:
2704    case ISD::FADD:
2705    case ISD::FSUB:
2706    case ISD::FMUL:
2707    case ISD::FDIV:
2708    case ISD::FREM:
2709    case ISD::UDIV:
2710    case ISD::SDIV:
2711    case ISD::UREM:
2712    case ISD::SREM:
2713      return N2;       // fold op(arg1, undef) -> undef
2714    case ISD::MUL:
2715    case ISD::AND:
2716    case ISD::SRL:
2717    case ISD::SHL:
2718      if (!VT.isVector())
2719        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2720      // For vectors, we can't easily build an all zero vector, just return
2721      // the LHS.
2722      return N1;
2723    case ISD::OR:
2724      if (!VT.isVector())
2725        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2726      // For vectors, we can't easily build an all one vector, just return
2727      // the LHS.
2728      return N1;
2729    case ISD::SRA:
2730      return N1;
2731    }
2732  }
2733
2734  // Memoize this node if possible.
2735  SDNode *N;
2736  SDVTList VTs = getVTList(VT);
2737  if (VT != MVT::Flag) {
2738    SDValue Ops[] = { N1, N2 };
2739    FoldingSetNodeID ID;
2740    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2741    void *IP = 0;
2742    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2743      return SDValue(E, 0);
2744    N = NodeAllocator.Allocate<BinarySDNode>();
2745    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2746    CSEMap.InsertNode(N, IP);
2747  } else {
2748    N = NodeAllocator.Allocate<BinarySDNode>();
2749    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2750  }
2751
2752  AllNodes.push_back(N);
2753#ifndef NDEBUG
2754  VerifyNode(N);
2755#endif
2756  return SDValue(N, 0);
2757}
2758
2759SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2760                              SDValue N1, SDValue N2, SDValue N3) {
2761  // Perform various simplifications.
2762  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2763  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2764  switch (Opcode) {
2765  case ISD::CONCAT_VECTORS:
2766    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2767    // one big BUILD_VECTOR.
2768    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2769        N2.getOpcode() == ISD::BUILD_VECTOR &&
2770        N3.getOpcode() == ISD::BUILD_VECTOR) {
2771      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2772      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2773      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2774      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2775    }
2776    break;
2777  case ISD::SETCC: {
2778    // Use FoldSetCC to simplify SETCC's.
2779    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2780    if (Simp.getNode()) return Simp;
2781    break;
2782  }
2783  case ISD::SELECT:
2784    if (N1C) {
2785     if (N1C->getZExtValue())
2786        return N2;             // select true, X, Y -> X
2787      else
2788        return N3;             // select false, X, Y -> Y
2789    }
2790
2791    if (N2 == N3) return N2;   // select C, X, X -> X
2792    break;
2793  case ISD::BRCOND:
2794    if (N2C) {
2795      if (N2C->getZExtValue()) // Unconditional branch
2796        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2797      else
2798        return N1;         // Never-taken branch
2799    }
2800    break;
2801  case ISD::VECTOR_SHUFFLE:
2802    assert(N1.getValueType() == N2.getValueType() &&
2803           N1.getValueType().isVector() &&
2804           VT.isVector() && N3.getValueType().isVector() &&
2805           N3.getOpcode() == ISD::BUILD_VECTOR &&
2806           VT.getVectorNumElements() == N3.getNumOperands() &&
2807           "Illegal VECTOR_SHUFFLE node!");
2808    break;
2809  case ISD::BIT_CONVERT:
2810    // Fold bit_convert nodes from a type to themselves.
2811    if (N1.getValueType() == VT)
2812      return N1;
2813    break;
2814  }
2815
2816  // Memoize node if it doesn't produce a flag.
2817  SDNode *N;
2818  SDVTList VTs = getVTList(VT);
2819  if (VT != MVT::Flag) {
2820    SDValue Ops[] = { N1, N2, N3 };
2821    FoldingSetNodeID ID;
2822    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2823    void *IP = 0;
2824    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2825      return SDValue(E, 0);
2826    N = NodeAllocator.Allocate<TernarySDNode>();
2827    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2828    CSEMap.InsertNode(N, IP);
2829  } else {
2830    N = NodeAllocator.Allocate<TernarySDNode>();
2831    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2832  }
2833  AllNodes.push_back(N);
2834#ifndef NDEBUG
2835  VerifyNode(N);
2836#endif
2837  return SDValue(N, 0);
2838}
2839
2840SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2841                              SDValue N1, SDValue N2, SDValue N3,
2842                              SDValue N4) {
2843  SDValue Ops[] = { N1, N2, N3, N4 };
2844  return getNode(Opcode, DL, VT, Ops, 4);
2845}
2846
2847SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2848                              SDValue N1, SDValue N2, SDValue N3,
2849                              SDValue N4, SDValue N5) {
2850  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2851  return getNode(Opcode, DL, VT, Ops, 5);
2852}
2853
2854/// getMemsetValue - Vectorized representation of the memset value
2855/// operand.
2856static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2857                              DebugLoc dl) {
2858  unsigned NumBits = VT.isVector() ?
2859    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2860  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2861    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2862    unsigned Shift = 8;
2863    for (unsigned i = NumBits; i > 8; i >>= 1) {
2864      Val = (Val << Shift) | Val;
2865      Shift <<= 1;
2866    }
2867    if (VT.isInteger())
2868      return DAG.getConstant(Val, VT);
2869    return DAG.getConstantFP(APFloat(Val), VT);
2870  }
2871
2872  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2873  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
2874  unsigned Shift = 8;
2875  for (unsigned i = NumBits; i > 8; i >>= 1) {
2876    Value = DAG.getNode(ISD::OR, dl, VT,
2877                        DAG.getNode(ISD::SHL, dl, VT, Value,
2878                                    DAG.getConstant(Shift,
2879                                                    TLI.getShiftAmountTy())),
2880                        Value);
2881    Shift <<= 1;
2882  }
2883
2884  return Value;
2885}
2886
2887/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2888/// used when a memcpy is turned into a memset when the source is a constant
2889/// string ptr.
2890static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
2891                                    const TargetLowering &TLI,
2892                                    std::string &Str, unsigned Offset) {
2893  // Handle vector with all elements zero.
2894  if (Str.empty()) {
2895    if (VT.isInteger())
2896      return DAG.getConstant(0, VT);
2897    unsigned NumElts = VT.getVectorNumElements();
2898    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2899    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
2900                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2901  }
2902
2903  assert(!VT.isVector() && "Can't handle vector type here!");
2904  unsigned NumBits = VT.getSizeInBits();
2905  unsigned MSB = NumBits / 8;
2906  uint64_t Val = 0;
2907  if (TLI.isLittleEndian())
2908    Offset = Offset + MSB - 1;
2909  for (unsigned i = 0; i != MSB; ++i) {
2910    Val = (Val << 8) | (unsigned char)Str[Offset];
2911    Offset += TLI.isLittleEndian() ? -1 : 1;
2912  }
2913  return DAG.getConstant(Val, VT);
2914}
2915
2916/// getMemBasePlusOffset - Returns base and offset node for the
2917///
2918static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2919                                      SelectionDAG &DAG) {
2920  MVT VT = Base.getValueType();
2921  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
2922                     VT, Base, DAG.getConstant(Offset, VT));
2923}
2924
2925/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2926///
2927static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2928  unsigned SrcDelta = 0;
2929  GlobalAddressSDNode *G = NULL;
2930  if (Src.getOpcode() == ISD::GlobalAddress)
2931    G = cast<GlobalAddressSDNode>(Src);
2932  else if (Src.getOpcode() == ISD::ADD &&
2933           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2934           Src.getOperand(1).getOpcode() == ISD::Constant) {
2935    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2936    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2937  }
2938  if (!G)
2939    return false;
2940
2941  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2942  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2943    return true;
2944
2945  return false;
2946}
2947
2948/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2949/// to replace the memset / memcpy is below the threshold. It also returns the
2950/// types of the sequence of memory ops to perform memset / memcpy.
2951static
2952bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2953                              SDValue Dst, SDValue Src,
2954                              unsigned Limit, uint64_t Size, unsigned &Align,
2955                              std::string &Str, bool &isSrcStr,
2956                              SelectionDAG &DAG,
2957                              const TargetLowering &TLI) {
2958  isSrcStr = isMemSrcFromString(Src, Str);
2959  bool isSrcConst = isa<ConstantSDNode>(Src);
2960  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2961  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2962  if (VT != MVT::iAny) {
2963    unsigned NewAlign = (unsigned)
2964      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2965    // If source is a string constant, this will require an unaligned load.
2966    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2967      if (Dst.getOpcode() != ISD::FrameIndex) {
2968        // Can't change destination alignment. It requires a unaligned store.
2969        if (AllowUnalign)
2970          VT = MVT::iAny;
2971      } else {
2972        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2973        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2974        if (MFI->isFixedObjectIndex(FI)) {
2975          // Can't change destination alignment. It requires a unaligned store.
2976          if (AllowUnalign)
2977            VT = MVT::iAny;
2978        } else {
2979          // Give the stack frame object a larger alignment if needed.
2980          if (MFI->getObjectAlignment(FI) < NewAlign)
2981            MFI->setObjectAlignment(FI, NewAlign);
2982          Align = NewAlign;
2983        }
2984      }
2985    }
2986  }
2987
2988  if (VT == MVT::iAny) {
2989    if (AllowUnalign) {
2990      VT = MVT::i64;
2991    } else {
2992      switch (Align & 7) {
2993      case 0:  VT = MVT::i64; break;
2994      case 4:  VT = MVT::i32; break;
2995      case 2:  VT = MVT::i16; break;
2996      default: VT = MVT::i8;  break;
2997      }
2998    }
2999
3000    MVT LVT = MVT::i64;
3001    while (!TLI.isTypeLegal(LVT))
3002      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3003    assert(LVT.isInteger());
3004
3005    if (VT.bitsGT(LVT))
3006      VT = LVT;
3007  }
3008
3009  unsigned NumMemOps = 0;
3010  while (Size != 0) {
3011    unsigned VTSize = VT.getSizeInBits() / 8;
3012    while (VTSize > Size) {
3013      // For now, only use non-vector load / store's for the left-over pieces.
3014      if (VT.isVector()) {
3015        VT = MVT::i64;
3016        while (!TLI.isTypeLegal(VT))
3017          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3018        VTSize = VT.getSizeInBits() / 8;
3019      } else {
3020        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3021        VTSize >>= 1;
3022      }
3023    }
3024
3025    if (++NumMemOps > Limit)
3026      return false;
3027    MemOps.push_back(VT);
3028    Size -= VTSize;
3029  }
3030
3031  return true;
3032}
3033
3034static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3035                                         SDValue Chain, SDValue Dst,
3036                                         SDValue Src, uint64_t Size,
3037                                         unsigned Align, bool AlwaysInline,
3038                                         const Value *DstSV, uint64_t DstSVOff,
3039                                         const Value *SrcSV, uint64_t SrcSVOff){
3040  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3041
3042  // Expand memcpy to a series of load and store ops if the size operand falls
3043  // below a certain threshold.
3044  std::vector<MVT> MemOps;
3045  uint64_t Limit = -1ULL;
3046  if (!AlwaysInline)
3047    Limit = TLI.getMaxStoresPerMemcpy();
3048  unsigned DstAlign = Align;  // Destination alignment can change.
3049  std::string Str;
3050  bool CopyFromStr;
3051  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3052                                Str, CopyFromStr, DAG, TLI))
3053    return SDValue();
3054
3055
3056  bool isZeroStr = CopyFromStr && Str.empty();
3057  SmallVector<SDValue, 8> OutChains;
3058  unsigned NumMemOps = MemOps.size();
3059  uint64_t SrcOff = 0, DstOff = 0;
3060  for (unsigned i = 0; i < NumMemOps; i++) {
3061    MVT VT = MemOps[i];
3062    unsigned VTSize = VT.getSizeInBits() / 8;
3063    SDValue Value, Store;
3064
3065    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3066      // It's unlikely a store of a vector immediate can be done in a single
3067      // instruction. It would require a load from a constantpool first.
3068      // We also handle store a vector with all zero's.
3069      // FIXME: Handle other cases where store of vector immediate is done in
3070      // a single instruction.
3071      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3072      Store = DAG.getStore(Chain, dl, Value,
3073                           getMemBasePlusOffset(Dst, DstOff, DAG),
3074                           DstSV, DstSVOff + DstOff, false, DstAlign);
3075    } else {
3076      Value = DAG.getLoad(VT, dl, Chain,
3077                          getMemBasePlusOffset(Src, SrcOff, DAG),
3078                          SrcSV, SrcSVOff + SrcOff, false, Align);
3079      Store = DAG.getStore(Chain, dl, Value,
3080                           getMemBasePlusOffset(Dst, DstOff, DAG),
3081                           DstSV, DstSVOff + DstOff, false, DstAlign);
3082    }
3083    OutChains.push_back(Store);
3084    SrcOff += VTSize;
3085    DstOff += VTSize;
3086  }
3087
3088  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3089                     &OutChains[0], OutChains.size());
3090}
3091
3092static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3093                                          SDValue Chain, SDValue Dst,
3094                                          SDValue Src, uint64_t Size,
3095                                          unsigned Align, bool AlwaysInline,
3096                                          const Value *DstSV, uint64_t DstSVOff,
3097                                          const Value *SrcSV, uint64_t SrcSVOff){
3098  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3099
3100  // Expand memmove to a series of load and store ops if the size operand falls
3101  // below a certain threshold.
3102  std::vector<MVT> MemOps;
3103  uint64_t Limit = -1ULL;
3104  if (!AlwaysInline)
3105    Limit = TLI.getMaxStoresPerMemmove();
3106  unsigned DstAlign = Align;  // Destination alignment can change.
3107  std::string Str;
3108  bool CopyFromStr;
3109  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3110                                Str, CopyFromStr, DAG, TLI))
3111    return SDValue();
3112
3113  uint64_t SrcOff = 0, DstOff = 0;
3114
3115  SmallVector<SDValue, 8> LoadValues;
3116  SmallVector<SDValue, 8> LoadChains;
3117  SmallVector<SDValue, 8> OutChains;
3118  unsigned NumMemOps = MemOps.size();
3119  for (unsigned i = 0; i < NumMemOps; i++) {
3120    MVT VT = MemOps[i];
3121    unsigned VTSize = VT.getSizeInBits() / 8;
3122    SDValue Value, Store;
3123
3124    Value = DAG.getLoad(VT, dl, Chain,
3125                        getMemBasePlusOffset(Src, SrcOff, DAG),
3126                        SrcSV, SrcSVOff + SrcOff, false, Align);
3127    LoadValues.push_back(Value);
3128    LoadChains.push_back(Value.getValue(1));
3129    SrcOff += VTSize;
3130  }
3131  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3132                      &LoadChains[0], LoadChains.size());
3133  OutChains.clear();
3134  for (unsigned i = 0; i < NumMemOps; i++) {
3135    MVT VT = MemOps[i];
3136    unsigned VTSize = VT.getSizeInBits() / 8;
3137    SDValue Value, Store;
3138
3139    Store = DAG.getStore(Chain, dl, LoadValues[i],
3140                         getMemBasePlusOffset(Dst, DstOff, DAG),
3141                         DstSV, DstSVOff + DstOff, false, DstAlign);
3142    OutChains.push_back(Store);
3143    DstOff += VTSize;
3144  }
3145
3146  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3147                     &OutChains[0], OutChains.size());
3148}
3149
3150static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3151                                 SDValue Chain, SDValue Dst,
3152                                 SDValue Src, uint64_t Size,
3153                                 unsigned Align,
3154                                 const Value *DstSV, uint64_t DstSVOff) {
3155  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3156
3157  // Expand memset to a series of load/store ops if the size operand
3158  // falls below a certain threshold.
3159  std::vector<MVT> MemOps;
3160  std::string Str;
3161  bool CopyFromStr;
3162  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3163                                Size, Align, Str, CopyFromStr, DAG, TLI))
3164    return SDValue();
3165
3166  SmallVector<SDValue, 8> OutChains;
3167  uint64_t DstOff = 0;
3168
3169  unsigned NumMemOps = MemOps.size();
3170  for (unsigned i = 0; i < NumMemOps; i++) {
3171    MVT VT = MemOps[i];
3172    unsigned VTSize = VT.getSizeInBits() / 8;
3173    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3174    SDValue Store = DAG.getStore(Chain, dl, Value,
3175                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3176                                 DstSV, DstSVOff + DstOff);
3177    OutChains.push_back(Store);
3178    DstOff += VTSize;
3179  }
3180
3181  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3182                     &OutChains[0], OutChains.size());
3183}
3184
3185SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3186                                SDValue Src, SDValue Size,
3187                                unsigned Align, bool AlwaysInline,
3188                                const Value *DstSV, uint64_t DstSVOff,
3189                                const Value *SrcSV, uint64_t SrcSVOff) {
3190
3191  // Check to see if we should lower the memcpy to loads and stores first.
3192  // For cases within the target-specified limits, this is the best choice.
3193  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3194  if (ConstantSize) {
3195    // Memcpy with size zero? Just return the original chain.
3196    if (ConstantSize->isNullValue())
3197      return Chain;
3198
3199    SDValue Result =
3200      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3201                              ConstantSize->getZExtValue(),
3202                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3203    if (Result.getNode())
3204      return Result;
3205  }
3206
3207  // Then check to see if we should lower the memcpy with target-specific
3208  // code. If the target chooses to do this, this is the next best.
3209  SDValue Result =
3210    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3211                                AlwaysInline,
3212                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3213  if (Result.getNode())
3214    return Result;
3215
3216  // If we really need inline code and the target declined to provide it,
3217  // use a (potentially long) sequence of loads and stores.
3218  if (AlwaysInline) {
3219    assert(ConstantSize && "AlwaysInline requires a constant size!");
3220    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3221                                   ConstantSize->getZExtValue(), Align, true,
3222                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3223  }
3224
3225  // Emit a library call.
3226  TargetLowering::ArgListTy Args;
3227  TargetLowering::ArgListEntry Entry;
3228  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3229  Entry.Node = Dst; Args.push_back(Entry);
3230  Entry.Node = Src; Args.push_back(Entry);
3231  Entry.Node = Size; Args.push_back(Entry);
3232  // FIXME: pass in DebugLoc
3233  std::pair<SDValue,SDValue> CallResult =
3234    TLI.LowerCallTo(Chain, Type::VoidTy,
3235                    false, false, false, false, CallingConv::C, false,
3236                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3237                    Args, *this, dl);
3238  return CallResult.second;
3239}
3240
3241SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3242                                 SDValue Src, SDValue Size,
3243                                 unsigned Align,
3244                                 const Value *DstSV, uint64_t DstSVOff,
3245                                 const Value *SrcSV, uint64_t SrcSVOff) {
3246
3247  // Check to see if we should lower the memmove to loads and stores first.
3248  // For cases within the target-specified limits, this is the best choice.
3249  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3250  if (ConstantSize) {
3251    // Memmove with size zero? Just return the original chain.
3252    if (ConstantSize->isNullValue())
3253      return Chain;
3254
3255    SDValue Result =
3256      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3257                               ConstantSize->getZExtValue(),
3258                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3259    if (Result.getNode())
3260      return Result;
3261  }
3262
3263  // Then check to see if we should lower the memmove with target-specific
3264  // code. If the target chooses to do this, this is the next best.
3265  SDValue Result =
3266    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3267                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3268  if (Result.getNode())
3269    return Result;
3270
3271  // Emit a library call.
3272  TargetLowering::ArgListTy Args;
3273  TargetLowering::ArgListEntry Entry;
3274  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3275  Entry.Node = Dst; Args.push_back(Entry);
3276  Entry.Node = Src; Args.push_back(Entry);
3277  Entry.Node = Size; Args.push_back(Entry);
3278  // FIXME:  pass in DebugLoc
3279  std::pair<SDValue,SDValue> CallResult =
3280    TLI.LowerCallTo(Chain, Type::VoidTy,
3281                    false, false, false, false, CallingConv::C, false,
3282                    getExternalSymbol("memmove", TLI.getPointerTy()),
3283                    Args, *this, dl);
3284  return CallResult.second;
3285}
3286
3287SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3288                                SDValue Src, SDValue Size,
3289                                unsigned Align,
3290                                const Value *DstSV, uint64_t DstSVOff) {
3291
3292  // Check to see if we should lower the memset to stores first.
3293  // For cases within the target-specified limits, this is the best choice.
3294  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3295  if (ConstantSize) {
3296    // Memset with size zero? Just return the original chain.
3297    if (ConstantSize->isNullValue())
3298      return Chain;
3299
3300    SDValue Result =
3301      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3302                      Align, DstSV, DstSVOff);
3303    if (Result.getNode())
3304      return Result;
3305  }
3306
3307  // Then check to see if we should lower the memset with target-specific
3308  // code. If the target chooses to do this, this is the next best.
3309  SDValue Result =
3310    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3311                                DstSV, DstSVOff);
3312  if (Result.getNode())
3313    return Result;
3314
3315  // Emit a library call.
3316  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3317  TargetLowering::ArgListTy Args;
3318  TargetLowering::ArgListEntry Entry;
3319  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3320  Args.push_back(Entry);
3321  // Extend or truncate the argument to be an i32 value for the call.
3322  if (Src.getValueType().bitsGT(MVT::i32))
3323    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3324  else
3325    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3326  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3327  Args.push_back(Entry);
3328  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3329  Args.push_back(Entry);
3330  // FIXME: pass in DebugLoc
3331  std::pair<SDValue,SDValue> CallResult =
3332    TLI.LowerCallTo(Chain, Type::VoidTy,
3333                    false, false, false, false, CallingConv::C, false,
3334                    getExternalSymbol("memset", TLI.getPointerTy()),
3335                    Args, *this, dl);
3336  return CallResult.second;
3337}
3338
3339SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3340                                SDValue Chain,
3341                                SDValue Ptr, SDValue Cmp,
3342                                SDValue Swp, const Value* PtrVal,
3343                                unsigned Alignment) {
3344  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3345  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3346
3347  MVT VT = Cmp.getValueType();
3348
3349  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3350    Alignment = getMVTAlignment(MemVT);
3351
3352  SDVTList VTs = getVTList(VT, MVT::Other);
3353  FoldingSetNodeID ID;
3354  ID.AddInteger(MemVT.getRawBits());
3355  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3356  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3357  void* IP = 0;
3358  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3359    return SDValue(E, 0);
3360  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3361  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3362                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3363  CSEMap.InsertNode(N, IP);
3364  AllNodes.push_back(N);
3365  return SDValue(N, 0);
3366}
3367
3368SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3369                                SDValue Chain,
3370                                SDValue Ptr, SDValue Val,
3371                                const Value* PtrVal,
3372                                unsigned Alignment) {
3373  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3374          Opcode == ISD::ATOMIC_LOAD_SUB ||
3375          Opcode == ISD::ATOMIC_LOAD_AND ||
3376          Opcode == ISD::ATOMIC_LOAD_OR ||
3377          Opcode == ISD::ATOMIC_LOAD_XOR ||
3378          Opcode == ISD::ATOMIC_LOAD_NAND ||
3379          Opcode == ISD::ATOMIC_LOAD_MIN ||
3380          Opcode == ISD::ATOMIC_LOAD_MAX ||
3381          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3382          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3383          Opcode == ISD::ATOMIC_SWAP) &&
3384         "Invalid Atomic Op");
3385
3386  MVT VT = Val.getValueType();
3387
3388  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3389    Alignment = getMVTAlignment(MemVT);
3390
3391  SDVTList VTs = getVTList(VT, MVT::Other);
3392  FoldingSetNodeID ID;
3393  ID.AddInteger(MemVT.getRawBits());
3394  SDValue Ops[] = {Chain, Ptr, Val};
3395  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3396  void* IP = 0;
3397  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3398    return SDValue(E, 0);
3399  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3400  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3401                       Chain, Ptr, Val, PtrVal, Alignment);
3402  CSEMap.InsertNode(N, IP);
3403  AllNodes.push_back(N);
3404  return SDValue(N, 0);
3405}
3406
3407/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3408/// Allowed to return something different (and simpler) if Simplify is true.
3409SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3410                                     DebugLoc dl) {
3411  if (NumOps == 1)
3412    return Ops[0];
3413
3414  SmallVector<MVT, 4> VTs;
3415  VTs.reserve(NumOps);
3416  for (unsigned i = 0; i < NumOps; ++i)
3417    VTs.push_back(Ops[i].getValueType());
3418  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3419                 Ops, NumOps);
3420}
3421
3422SDValue
3423SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3424                                  const MVT *VTs, unsigned NumVTs,
3425                                  const SDValue *Ops, unsigned NumOps,
3426                                  MVT MemVT, const Value *srcValue, int SVOff,
3427                                  unsigned Align, bool Vol,
3428                                  bool ReadMem, bool WriteMem) {
3429  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3430                             MemVT, srcValue, SVOff, Align, Vol,
3431                             ReadMem, WriteMem);
3432}
3433
3434SDValue
3435SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3436                                  const SDValue *Ops, unsigned NumOps,
3437                                  MVT MemVT, const Value *srcValue, int SVOff,
3438                                  unsigned Align, bool Vol,
3439                                  bool ReadMem, bool WriteMem) {
3440  // Memoize the node unless it returns a flag.
3441  MemIntrinsicSDNode *N;
3442  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3443    FoldingSetNodeID ID;
3444    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3445    void *IP = 0;
3446    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3447      return SDValue(E, 0);
3448
3449    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3450    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3451                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3452    CSEMap.InsertNode(N, IP);
3453  } else {
3454    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3455    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3456                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3457  }
3458  AllNodes.push_back(N);
3459  return SDValue(N, 0);
3460}
3461
3462SDValue
3463SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3464                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3465                      const SDValue *Operands, unsigned NumOperands) {
3466  // Do not include isTailCall in the folding set profile.
3467  FoldingSetNodeID ID;
3468  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3469  ID.AddInteger(CallingConv);
3470  ID.AddInteger(IsVarArgs);
3471  void *IP = 0;
3472  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3473    // Instead of including isTailCall in the folding set, we just
3474    // set the flag of the existing node.
3475    if (!IsTailCall)
3476      cast<CallSDNode>(E)->setNotTailCall();
3477    return SDValue(E, 0);
3478  }
3479  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3480  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3481                     VTs, Operands, NumOperands);
3482  CSEMap.InsertNode(N, IP);
3483  AllNodes.push_back(N);
3484  return SDValue(N, 0);
3485}
3486
3487SDValue
3488SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3489                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3490                      SDValue Ptr, SDValue Offset,
3491                      const Value *SV, int SVOffset, MVT EVT,
3492                      bool isVolatile, unsigned Alignment) {
3493  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3494    Alignment = getMVTAlignment(VT);
3495
3496  if (VT == EVT) {
3497    ExtType = ISD::NON_EXTLOAD;
3498  } else if (ExtType == ISD::NON_EXTLOAD) {
3499    assert(VT == EVT && "Non-extending load from different memory type!");
3500  } else {
3501    // Extending load.
3502    if (VT.isVector())
3503      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3504             "Invalid vector extload!");
3505    else
3506      assert(EVT.bitsLT(VT) &&
3507             "Should only be an extending load, not truncating!");
3508    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3509           "Cannot sign/zero extend a FP/Vector load!");
3510    assert(VT.isInteger() == EVT.isInteger() &&
3511           "Cannot convert from FP to Int or Int -> FP!");
3512  }
3513
3514  bool Indexed = AM != ISD::UNINDEXED;
3515  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3516         "Unindexed load with an offset!");
3517
3518  SDVTList VTs = Indexed ?
3519    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3520  SDValue Ops[] = { Chain, Ptr, Offset };
3521  FoldingSetNodeID ID;
3522  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3523  ID.AddInteger(EVT.getRawBits());
3524  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3525  void *IP = 0;
3526  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3527    return SDValue(E, 0);
3528  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3529  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3530                     Alignment, isVolatile);
3531  CSEMap.InsertNode(N, IP);
3532  AllNodes.push_back(N);
3533  return SDValue(N, 0);
3534}
3535
3536SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3537                              SDValue Chain, SDValue Ptr,
3538                              const Value *SV, int SVOffset,
3539                              bool isVolatile, unsigned Alignment) {
3540  SDValue Undef = getUNDEF(Ptr.getValueType());
3541  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3542                 SV, SVOffset, VT, isVolatile, Alignment);
3543}
3544
3545SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3546                                 SDValue Chain, SDValue Ptr,
3547                                 const Value *SV,
3548                                 int SVOffset, MVT EVT,
3549                                 bool isVolatile, unsigned Alignment) {
3550  SDValue Undef = getUNDEF(Ptr.getValueType());
3551  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3552                 SV, SVOffset, EVT, isVolatile, Alignment);
3553}
3554
3555SDValue
3556SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3557                             SDValue Offset, ISD::MemIndexedMode AM) {
3558  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3559  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3560         "Load is already a indexed load!");
3561  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3562                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3563                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3564                 LD->isVolatile(), LD->getAlignment());
3565}
3566
3567SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3568                               SDValue Ptr, const Value *SV, int SVOffset,
3569                               bool isVolatile, unsigned Alignment) {
3570  MVT VT = Val.getValueType();
3571
3572  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3573    Alignment = getMVTAlignment(VT);
3574
3575  SDVTList VTs = getVTList(MVT::Other);
3576  SDValue Undef = getUNDEF(Ptr.getValueType());
3577  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3578  FoldingSetNodeID ID;
3579  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3580  ID.AddInteger(VT.getRawBits());
3581  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3582                                     isVolatile, Alignment));
3583  void *IP = 0;
3584  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3585    return SDValue(E, 0);
3586  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3587  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3588                      VT, SV, SVOffset, Alignment, isVolatile);
3589  CSEMap.InsertNode(N, IP);
3590  AllNodes.push_back(N);
3591  return SDValue(N, 0);
3592}
3593
3594SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3595                                    SDValue Ptr, const Value *SV,
3596                                    int SVOffset, MVT SVT,
3597                                    bool isVolatile, unsigned Alignment) {
3598  MVT VT = Val.getValueType();
3599
3600  if (VT == SVT)
3601    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3602
3603  assert(VT.bitsGT(SVT) && "Not a truncation?");
3604  assert(VT.isInteger() == SVT.isInteger() &&
3605         "Can't do FP-INT conversion!");
3606
3607  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3608    Alignment = getMVTAlignment(VT);
3609
3610  SDVTList VTs = getVTList(MVT::Other);
3611  SDValue Undef = getUNDEF(Ptr.getValueType());
3612  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3613  FoldingSetNodeID ID;
3614  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3615  ID.AddInteger(SVT.getRawBits());
3616  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3617                                     isVolatile, Alignment));
3618  void *IP = 0;
3619  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3620    return SDValue(E, 0);
3621  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3622  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3623                      SVT, SV, SVOffset, Alignment, isVolatile);
3624  CSEMap.InsertNode(N, IP);
3625  AllNodes.push_back(N);
3626  return SDValue(N, 0);
3627}
3628
3629SDValue
3630SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3631                              SDValue Offset, ISD::MemIndexedMode AM) {
3632  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3633  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3634         "Store is already a indexed store!");
3635  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3636  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3637  FoldingSetNodeID ID;
3638  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3639  ID.AddInteger(ST->getMemoryVT().getRawBits());
3640  ID.AddInteger(ST->getRawSubclassData());
3641  void *IP = 0;
3642  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3643    return SDValue(E, 0);
3644  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3645  new (N) StoreSDNode(Ops, dl, VTs, AM,
3646                      ST->isTruncatingStore(), ST->getMemoryVT(),
3647                      ST->getSrcValue(), ST->getSrcValueOffset(),
3648                      ST->getAlignment(), ST->isVolatile());
3649  CSEMap.InsertNode(N, IP);
3650  AllNodes.push_back(N);
3651  return SDValue(N, 0);
3652}
3653
3654SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3655                               SDValue Chain, SDValue Ptr,
3656                               SDValue SV) {
3657  SDValue Ops[] = { Chain, Ptr, SV };
3658  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3659}
3660
3661SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3662                              const SDUse *Ops, unsigned NumOps) {
3663  switch (NumOps) {
3664  case 0: return getNode(Opcode, DL, VT);
3665  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3666  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3667  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3668  default: break;
3669  }
3670
3671  // Copy from an SDUse array into an SDValue array for use with
3672  // the regular getNode logic.
3673  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3674  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3675}
3676
3677SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3678                              const SDValue *Ops, unsigned NumOps) {
3679  switch (NumOps) {
3680  case 0: return getNode(Opcode, DL, VT);
3681  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3682  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3683  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3684  default: break;
3685  }
3686
3687  switch (Opcode) {
3688  default: break;
3689  case ISD::SELECT_CC: {
3690    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3691    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3692           "LHS and RHS of condition must have same type!");
3693    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3694           "True and False arms of SelectCC must have same type!");
3695    assert(Ops[2].getValueType() == VT &&
3696           "select_cc node must be of same type as true and false value!");
3697    break;
3698  }
3699  case ISD::BR_CC: {
3700    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3701    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3702           "LHS/RHS of comparison should match types!");
3703    break;
3704  }
3705  }
3706
3707  // Memoize nodes.
3708  SDNode *N;
3709  SDVTList VTs = getVTList(VT);
3710
3711  if (VT != MVT::Flag) {
3712    FoldingSetNodeID ID;
3713    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3714    void *IP = 0;
3715
3716    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3717      return SDValue(E, 0);
3718
3719    N = NodeAllocator.Allocate<SDNode>();
3720    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3721    CSEMap.InsertNode(N, IP);
3722  } else {
3723    N = NodeAllocator.Allocate<SDNode>();
3724    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3725  }
3726
3727  AllNodes.push_back(N);
3728#ifndef NDEBUG
3729  VerifyNode(N);
3730#endif
3731  return SDValue(N, 0);
3732}
3733
3734SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3735                              const std::vector<MVT> &ResultTys,
3736                              const SDValue *Ops, unsigned NumOps) {
3737  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
3738                 Ops, NumOps);
3739}
3740
3741SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3742                              const MVT *VTs, unsigned NumVTs,
3743                              const SDValue *Ops, unsigned NumOps) {
3744  if (NumVTs == 1)
3745    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3746  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3747}
3748
3749SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3750                              const SDValue *Ops, unsigned NumOps) {
3751  if (VTList.NumVTs == 1)
3752    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3753
3754  switch (Opcode) {
3755  // FIXME: figure out how to safely handle things like
3756  // int foo(int x) { return 1 << (x & 255); }
3757  // int bar() { return foo(256); }
3758#if 0
3759  case ISD::SRA_PARTS:
3760  case ISD::SRL_PARTS:
3761  case ISD::SHL_PARTS:
3762    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3763        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3764      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3765    else if (N3.getOpcode() == ISD::AND)
3766      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3767        // If the and is only masking out bits that cannot effect the shift,
3768        // eliminate the and.
3769        unsigned NumBits = VT.getSizeInBits()*2;
3770        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3771          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3772      }
3773    break;
3774#endif
3775  }
3776
3777  // Memoize the node unless it returns a flag.
3778  SDNode *N;
3779  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3780    FoldingSetNodeID ID;
3781    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3782    void *IP = 0;
3783    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3784      return SDValue(E, 0);
3785    if (NumOps == 1) {
3786      N = NodeAllocator.Allocate<UnarySDNode>();
3787      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3788    } else if (NumOps == 2) {
3789      N = NodeAllocator.Allocate<BinarySDNode>();
3790      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3791    } else if (NumOps == 3) {
3792      N = NodeAllocator.Allocate<TernarySDNode>();
3793      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3794    } else {
3795      N = NodeAllocator.Allocate<SDNode>();
3796      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3797    }
3798    CSEMap.InsertNode(N, IP);
3799  } else {
3800    if (NumOps == 1) {
3801      N = NodeAllocator.Allocate<UnarySDNode>();
3802      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3803    } else if (NumOps == 2) {
3804      N = NodeAllocator.Allocate<BinarySDNode>();
3805      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3806    } else if (NumOps == 3) {
3807      N = NodeAllocator.Allocate<TernarySDNode>();
3808      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3809    } else {
3810      N = NodeAllocator.Allocate<SDNode>();
3811      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3812    }
3813  }
3814  AllNodes.push_back(N);
3815#ifndef NDEBUG
3816  VerifyNode(N);
3817#endif
3818  return SDValue(N, 0);
3819}
3820
3821SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3822  return getNode(Opcode, DL, VTList, 0, 0);
3823}
3824
3825SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3826                              SDValue N1) {
3827  SDValue Ops[] = { N1 };
3828  return getNode(Opcode, DL, VTList, Ops, 1);
3829}
3830
3831SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3832                              SDValue N1, SDValue N2) {
3833  SDValue Ops[] = { N1, N2 };
3834  return getNode(Opcode, DL, VTList, Ops, 2);
3835}
3836
3837SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3838                              SDValue N1, SDValue N2, SDValue N3) {
3839  SDValue Ops[] = { N1, N2, N3 };
3840  return getNode(Opcode, DL, VTList, Ops, 3);
3841}
3842
3843SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3844                              SDValue N1, SDValue N2, SDValue N3,
3845                              SDValue N4) {
3846  SDValue Ops[] = { N1, N2, N3, N4 };
3847  return getNode(Opcode, DL, VTList, Ops, 4);
3848}
3849
3850SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3851                              SDValue N1, SDValue N2, SDValue N3,
3852                              SDValue N4, SDValue N5) {
3853  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3854  return getNode(Opcode, DL, VTList, Ops, 5);
3855}
3856
3857SDVTList SelectionDAG::getVTList(MVT VT) {
3858  return makeVTList(SDNode::getValueTypeList(VT), 1);
3859}
3860
3861SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3862  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3863       E = VTList.rend(); I != E; ++I)
3864    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3865      return *I;
3866
3867  MVT *Array = Allocator.Allocate<MVT>(2);
3868  Array[0] = VT1;
3869  Array[1] = VT2;
3870  SDVTList Result = makeVTList(Array, 2);
3871  VTList.push_back(Result);
3872  return Result;
3873}
3874
3875SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3876  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3877       E = VTList.rend(); I != E; ++I)
3878    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3879                          I->VTs[2] == VT3)
3880      return *I;
3881
3882  MVT *Array = Allocator.Allocate<MVT>(3);
3883  Array[0] = VT1;
3884  Array[1] = VT2;
3885  Array[2] = VT3;
3886  SDVTList Result = makeVTList(Array, 3);
3887  VTList.push_back(Result);
3888  return Result;
3889}
3890
3891SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3892  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3893       E = VTList.rend(); I != E; ++I)
3894    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3895                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3896      return *I;
3897
3898  MVT *Array = Allocator.Allocate<MVT>(3);
3899  Array[0] = VT1;
3900  Array[1] = VT2;
3901  Array[2] = VT3;
3902  Array[3] = VT4;
3903  SDVTList Result = makeVTList(Array, 4);
3904  VTList.push_back(Result);
3905  return Result;
3906}
3907
3908SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3909  switch (NumVTs) {
3910    case 0: assert(0 && "Cannot have nodes without results!");
3911    case 1: return getVTList(VTs[0]);
3912    case 2: return getVTList(VTs[0], VTs[1]);
3913    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3914    default: break;
3915  }
3916
3917  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3918       E = VTList.rend(); I != E; ++I) {
3919    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3920      continue;
3921
3922    bool NoMatch = false;
3923    for (unsigned i = 2; i != NumVTs; ++i)
3924      if (VTs[i] != I->VTs[i]) {
3925        NoMatch = true;
3926        break;
3927      }
3928    if (!NoMatch)
3929      return *I;
3930  }
3931
3932  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3933  std::copy(VTs, VTs+NumVTs, Array);
3934  SDVTList Result = makeVTList(Array, NumVTs);
3935  VTList.push_back(Result);
3936  return Result;
3937}
3938
3939
3940/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3941/// specified operands.  If the resultant node already exists in the DAG,
3942/// this does not modify the specified node, instead it returns the node that
3943/// already exists.  If the resultant node does not exist in the DAG, the
3944/// input node is returned.  As a degenerate case, if you specify the same
3945/// input operands as the node already has, the input node is returned.
3946SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3947  SDNode *N = InN.getNode();
3948  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3949
3950  // Check to see if there is no change.
3951  if (Op == N->getOperand(0)) return InN;
3952
3953  // See if the modified node already exists.
3954  void *InsertPos = 0;
3955  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3956    return SDValue(Existing, InN.getResNo());
3957
3958  // Nope it doesn't.  Remove the node from its current place in the maps.
3959  if (InsertPos)
3960    if (!RemoveNodeFromCSEMaps(N))
3961      InsertPos = 0;
3962
3963  // Now we update the operands.
3964  N->OperandList[0].set(Op);
3965
3966  // If this gets put into a CSE map, add it.
3967  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3968  return InN;
3969}
3970
3971SDValue SelectionDAG::
3972UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3973  SDNode *N = InN.getNode();
3974  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3975
3976  // Check to see if there is no change.
3977  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3978    return InN;   // No operands changed, just return the input node.
3979
3980  // See if the modified node already exists.
3981  void *InsertPos = 0;
3982  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3983    return SDValue(Existing, InN.getResNo());
3984
3985  // Nope it doesn't.  Remove the node from its current place in the maps.
3986  if (InsertPos)
3987    if (!RemoveNodeFromCSEMaps(N))
3988      InsertPos = 0;
3989
3990  // Now we update the operands.
3991  if (N->OperandList[0] != Op1)
3992    N->OperandList[0].set(Op1);
3993  if (N->OperandList[1] != Op2)
3994    N->OperandList[1].set(Op2);
3995
3996  // If this gets put into a CSE map, add it.
3997  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3998  return InN;
3999}
4000
4001SDValue SelectionDAG::
4002UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4003  SDValue Ops[] = { Op1, Op2, Op3 };
4004  return UpdateNodeOperands(N, Ops, 3);
4005}
4006
4007SDValue SelectionDAG::
4008UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4009                   SDValue Op3, SDValue Op4) {
4010  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4011  return UpdateNodeOperands(N, Ops, 4);
4012}
4013
4014SDValue SelectionDAG::
4015UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4016                   SDValue Op3, SDValue Op4, SDValue Op5) {
4017  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4018  return UpdateNodeOperands(N, Ops, 5);
4019}
4020
4021SDValue SelectionDAG::
4022UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4023  SDNode *N = InN.getNode();
4024  assert(N->getNumOperands() == NumOps &&
4025         "Update with wrong number of operands");
4026
4027  // Check to see if there is no change.
4028  bool AnyChange = false;
4029  for (unsigned i = 0; i != NumOps; ++i) {
4030    if (Ops[i] != N->getOperand(i)) {
4031      AnyChange = true;
4032      break;
4033    }
4034  }
4035
4036  // No operands changed, just return the input node.
4037  if (!AnyChange) return InN;
4038
4039  // See if the modified node already exists.
4040  void *InsertPos = 0;
4041  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4042    return SDValue(Existing, InN.getResNo());
4043
4044  // Nope it doesn't.  Remove the node from its current place in the maps.
4045  if (InsertPos)
4046    if (!RemoveNodeFromCSEMaps(N))
4047      InsertPos = 0;
4048
4049  // Now we update the operands.
4050  for (unsigned i = 0; i != NumOps; ++i)
4051    if (N->OperandList[i] != Ops[i])
4052      N->OperandList[i].set(Ops[i]);
4053
4054  // If this gets put into a CSE map, add it.
4055  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4056  return InN;
4057}
4058
4059/// DropOperands - Release the operands and set this node to have
4060/// zero operands.
4061void SDNode::DropOperands() {
4062  // Unlike the code in MorphNodeTo that does this, we don't need to
4063  // watch for dead nodes here.
4064  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4065    SDUse &Use = *I++;
4066    Use.set(SDValue());
4067  }
4068}
4069
4070/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4071/// machine opcode.
4072///
4073SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4074                                   MVT VT) {
4075  SDVTList VTs = getVTList(VT);
4076  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4077}
4078
4079SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4080                                   MVT VT, SDValue Op1) {
4081  SDVTList VTs = getVTList(VT);
4082  SDValue Ops[] = { Op1 };
4083  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4084}
4085
4086SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4087                                   MVT VT, SDValue Op1,
4088                                   SDValue Op2) {
4089  SDVTList VTs = getVTList(VT);
4090  SDValue Ops[] = { Op1, Op2 };
4091  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4092}
4093
4094SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4095                                   MVT VT, SDValue Op1,
4096                                   SDValue Op2, SDValue Op3) {
4097  SDVTList VTs = getVTList(VT);
4098  SDValue Ops[] = { Op1, Op2, Op3 };
4099  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4100}
4101
4102SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4103                                   MVT VT, const SDValue *Ops,
4104                                   unsigned NumOps) {
4105  SDVTList VTs = getVTList(VT);
4106  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4107}
4108
4109SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4110                                   MVT VT1, MVT VT2, const SDValue *Ops,
4111                                   unsigned NumOps) {
4112  SDVTList VTs = getVTList(VT1, VT2);
4113  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4114}
4115
4116SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4117                                   MVT VT1, MVT VT2) {
4118  SDVTList VTs = getVTList(VT1, VT2);
4119  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4120}
4121
4122SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4123                                   MVT VT1, MVT VT2, MVT VT3,
4124                                   const SDValue *Ops, unsigned NumOps) {
4125  SDVTList VTs = getVTList(VT1, VT2, VT3);
4126  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4127}
4128
4129SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4130                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4131                                   const SDValue *Ops, unsigned NumOps) {
4132  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4133  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4134}
4135
4136SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4137                                   MVT VT1, MVT VT2,
4138                                   SDValue Op1) {
4139  SDVTList VTs = getVTList(VT1, VT2);
4140  SDValue Ops[] = { Op1 };
4141  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4142}
4143
4144SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4145                                   MVT VT1, MVT VT2,
4146                                   SDValue Op1, SDValue Op2) {
4147  SDVTList VTs = getVTList(VT1, VT2);
4148  SDValue Ops[] = { Op1, Op2 };
4149  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4150}
4151
4152SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4153                                   MVT VT1, MVT VT2,
4154                                   SDValue Op1, SDValue Op2,
4155                                   SDValue Op3) {
4156  SDVTList VTs = getVTList(VT1, VT2);
4157  SDValue Ops[] = { Op1, Op2, Op3 };
4158  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4159}
4160
4161SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4162                                   MVT VT1, MVT VT2, MVT VT3,
4163                                   SDValue Op1, SDValue Op2,
4164                                   SDValue Op3) {
4165  SDVTList VTs = getVTList(VT1, VT2, VT3);
4166  SDValue Ops[] = { Op1, Op2, Op3 };
4167  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4168}
4169
4170SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4171                                   SDVTList VTs, const SDValue *Ops,
4172                                   unsigned NumOps) {
4173  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4174}
4175
4176SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4177                                  MVT VT) {
4178  SDVTList VTs = getVTList(VT);
4179  return MorphNodeTo(N, Opc, VTs, 0, 0);
4180}
4181
4182SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4183                                  MVT VT, SDValue Op1) {
4184  SDVTList VTs = getVTList(VT);
4185  SDValue Ops[] = { Op1 };
4186  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4187}
4188
4189SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4190                                  MVT VT, SDValue Op1,
4191                                  SDValue Op2) {
4192  SDVTList VTs = getVTList(VT);
4193  SDValue Ops[] = { Op1, Op2 };
4194  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4195}
4196
4197SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4198                                  MVT VT, SDValue Op1,
4199                                  SDValue Op2, SDValue Op3) {
4200  SDVTList VTs = getVTList(VT);
4201  SDValue Ops[] = { Op1, Op2, Op3 };
4202  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4203}
4204
4205SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4206                                  MVT VT, const SDValue *Ops,
4207                                  unsigned NumOps) {
4208  SDVTList VTs = getVTList(VT);
4209  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4210}
4211
4212SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4213                                  MVT VT1, MVT VT2, const SDValue *Ops,
4214                                  unsigned NumOps) {
4215  SDVTList VTs = getVTList(VT1, VT2);
4216  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4217}
4218
4219SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4220                                  MVT VT1, MVT VT2) {
4221  SDVTList VTs = getVTList(VT1, VT2);
4222  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4223}
4224
4225SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4226                                  MVT VT1, MVT VT2, MVT VT3,
4227                                  const SDValue *Ops, unsigned NumOps) {
4228  SDVTList VTs = getVTList(VT1, VT2, VT3);
4229  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4230}
4231
4232SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4233                                  MVT VT1, MVT VT2,
4234                                  SDValue Op1) {
4235  SDVTList VTs = getVTList(VT1, VT2);
4236  SDValue Ops[] = { Op1 };
4237  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4238}
4239
4240SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4241                                  MVT VT1, MVT VT2,
4242                                  SDValue Op1, SDValue Op2) {
4243  SDVTList VTs = getVTList(VT1, VT2);
4244  SDValue Ops[] = { Op1, Op2 };
4245  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4246}
4247
4248SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4249                                  MVT VT1, MVT VT2,
4250                                  SDValue Op1, SDValue Op2,
4251                                  SDValue Op3) {
4252  SDVTList VTs = getVTList(VT1, VT2);
4253  SDValue Ops[] = { Op1, Op2, Op3 };
4254  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4255}
4256
4257/// MorphNodeTo - These *mutate* the specified node to have the specified
4258/// return type, opcode, and operands.
4259///
4260/// Note that MorphNodeTo returns the resultant node.  If there is already a
4261/// node of the specified opcode and operands, it returns that node instead of
4262/// the current one.  Note that the DebugLoc need not be the same.
4263///
4264/// Using MorphNodeTo is faster than creating a new node and swapping it in
4265/// with ReplaceAllUsesWith both because it often avoids allocating a new
4266/// node, and because it doesn't require CSE recalculation for any of
4267/// the node's users.
4268///
4269SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4270                                  SDVTList VTs, const SDValue *Ops,
4271                                  unsigned NumOps) {
4272  // If an identical node already exists, use it.
4273  void *IP = 0;
4274  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4275    FoldingSetNodeID ID;
4276    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4277    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4278      return ON;
4279  }
4280
4281  if (!RemoveNodeFromCSEMaps(N))
4282    IP = 0;
4283
4284  // Start the morphing.
4285  N->NodeType = Opc;
4286  N->ValueList = VTs.VTs;
4287  N->NumValues = VTs.NumVTs;
4288
4289  // Clear the operands list, updating used nodes to remove this from their
4290  // use list.  Keep track of any operands that become dead as a result.
4291  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4292  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4293    SDUse &Use = *I++;
4294    SDNode *Used = Use.getNode();
4295    Use.set(SDValue());
4296    if (Used->use_empty())
4297      DeadNodeSet.insert(Used);
4298  }
4299
4300  // If NumOps is larger than the # of operands we currently have, reallocate
4301  // the operand list.
4302  if (NumOps > N->NumOperands) {
4303    if (N->OperandsNeedDelete)
4304      delete[] N->OperandList;
4305
4306    if (N->isMachineOpcode()) {
4307      // We're creating a final node that will live unmorphed for the
4308      // remainder of the current SelectionDAG iteration, so we can allocate
4309      // the operands directly out of a pool with no recycling metadata.
4310      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4311      N->OperandsNeedDelete = false;
4312    } else {
4313      N->OperandList = new SDUse[NumOps];
4314      N->OperandsNeedDelete = true;
4315    }
4316  }
4317
4318  // Assign the new operands.
4319  N->NumOperands = NumOps;
4320  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4321    N->OperandList[i].setUser(N);
4322    N->OperandList[i].setInitial(Ops[i]);
4323  }
4324
4325  // Delete any nodes that are still dead after adding the uses for the
4326  // new operands.
4327  SmallVector<SDNode *, 16> DeadNodes;
4328  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4329       E = DeadNodeSet.end(); I != E; ++I)
4330    if ((*I)->use_empty())
4331      DeadNodes.push_back(*I);
4332  RemoveDeadNodes(DeadNodes);
4333
4334  if (IP)
4335    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4336  return N;
4337}
4338
4339
4340/// getTargetNode - These are used for target selectors to create a new node
4341/// with specified return type(s), target opcode, and operands.
4342///
4343/// Note that getTargetNode returns the resultant node.  If there is already a
4344/// node of the specified opcode and operands, it returns that node instead of
4345/// the current one.
4346SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4347  return getNode(~Opcode, dl, VT).getNode();
4348}
4349
4350SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4351                                    SDValue Op1) {
4352  return getNode(~Opcode, dl, VT, Op1).getNode();
4353}
4354
4355SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4356                                    SDValue Op1, SDValue Op2) {
4357  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4358}
4359
4360SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4361                                    SDValue Op1, SDValue Op2,
4362                                    SDValue Op3) {
4363  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4364}
4365
4366SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4367                                    const SDValue *Ops, unsigned NumOps) {
4368  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4369}
4370
4371SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4372                                    MVT VT1, MVT VT2) {
4373  SDVTList VTs = getVTList(VT1, VT2);
4374  SDValue Op;
4375  return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
4376}
4377
4378SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4379                                    MVT VT2, SDValue Op1) {
4380  SDVTList VTs = getVTList(VT1, VT2);
4381  return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
4382}
4383
4384SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4385                                    MVT VT2, SDValue Op1,
4386                                    SDValue Op2) {
4387  SDVTList VTs = getVTList(VT1, VT2);
4388  SDValue Ops[] = { Op1, Op2 };
4389  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4390}
4391
4392SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4393                                    MVT VT2, SDValue Op1,
4394                                    SDValue Op2, SDValue Op3) {
4395  SDVTList VTs = getVTList(VT1, VT2);
4396  SDValue Ops[] = { Op1, Op2, Op3 };
4397  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4398}
4399
4400SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4401                                    MVT VT1, MVT VT2,
4402                                    const SDValue *Ops, unsigned NumOps) {
4403  SDVTList VTs = getVTList(VT1, VT2);
4404  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4405}
4406
4407SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4408                                    MVT VT1, MVT VT2, MVT VT3,
4409                                    SDValue Op1, SDValue Op2) {
4410  SDVTList VTs = getVTList(VT1, VT2, VT3);
4411  SDValue Ops[] = { Op1, Op2 };
4412  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4413}
4414
4415SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4416                                    MVT VT1, MVT VT2, MVT VT3,
4417                                    SDValue Op1, SDValue Op2,
4418                                    SDValue Op3) {
4419  SDVTList VTs = getVTList(VT1, VT2, VT3);
4420  SDValue Ops[] = { Op1, Op2, Op3 };
4421  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4422}
4423
4424SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4425                                    MVT VT1, MVT VT2, MVT VT3,
4426                                    const SDValue *Ops, unsigned NumOps) {
4427  SDVTList VTs = getVTList(VT1, VT2, VT3);
4428  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4429}
4430
4431SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4432                                    MVT VT2, MVT VT3, MVT VT4,
4433                                    const SDValue *Ops, unsigned NumOps) {
4434  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4435  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4436}
4437
4438SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4439                                    const std::vector<MVT> &ResultTys,
4440                                    const SDValue *Ops, unsigned NumOps) {
4441  return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
4442}
4443
4444/// getNodeIfExists - Get the specified node if it's already available, or
4445/// else return NULL.
4446SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4447                                      const SDValue *Ops, unsigned NumOps) {
4448  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4449    FoldingSetNodeID ID;
4450    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4451    void *IP = 0;
4452    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4453      return E;
4454  }
4455  return NULL;
4456}
4457
4458/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4459/// This can cause recursive merging of nodes in the DAG.
4460///
4461/// This version assumes From has a single result value.
4462///
4463void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4464                                      DAGUpdateListener *UpdateListener) {
4465  SDNode *From = FromN.getNode();
4466  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4467         "Cannot replace with this method!");
4468  assert(From != To.getNode() && "Cannot replace uses of with self");
4469
4470  // Iterate over all the existing uses of From. New uses will be added
4471  // to the beginning of the use list, which we avoid visiting.
4472  // This specifically avoids visiting uses of From that arise while the
4473  // replacement is happening, because any such uses would be the result
4474  // of CSE: If an existing node looks like From after one of its operands
4475  // is replaced by To, we don't want to replace of all its users with To
4476  // too. See PR3018 for more info.
4477  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4478  while (UI != UE) {
4479    SDNode *User = *UI;
4480
4481    // This node is about to morph, remove its old self from the CSE maps.
4482    RemoveNodeFromCSEMaps(User);
4483
4484    // A user can appear in a use list multiple times, and when this
4485    // happens the uses are usually next to each other in the list.
4486    // To help reduce the number of CSE recomputations, process all
4487    // the uses of this user that we can find this way.
4488    do {
4489      SDUse &Use = UI.getUse();
4490      ++UI;
4491      Use.set(To);
4492    } while (UI != UE && *UI == User);
4493
4494    // Now that we have modified User, add it back to the CSE maps.  If it
4495    // already exists there, recursively merge the results together.
4496    AddModifiedNodeToCSEMaps(User, UpdateListener);
4497  }
4498}
4499
4500/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4501/// This can cause recursive merging of nodes in the DAG.
4502///
4503/// This version assumes From/To have matching types and numbers of result
4504/// values.
4505///
4506void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4507                                      DAGUpdateListener *UpdateListener) {
4508  assert(From->getVTList().VTs == To->getVTList().VTs &&
4509         From->getNumValues() == To->getNumValues() &&
4510         "Cannot use this version of ReplaceAllUsesWith!");
4511
4512  // Handle the trivial case.
4513  if (From == To)
4514    return;
4515
4516  // Iterate over just the existing users of From. See the comments in
4517  // the ReplaceAllUsesWith above.
4518  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4519  while (UI != UE) {
4520    SDNode *User = *UI;
4521
4522    // This node is about to morph, remove its old self from the CSE maps.
4523    RemoveNodeFromCSEMaps(User);
4524
4525    // A user can appear in a use list multiple times, and when this
4526    // happens the uses are usually next to each other in the list.
4527    // To help reduce the number of CSE recomputations, process all
4528    // the uses of this user that we can find this way.
4529    do {
4530      SDUse &Use = UI.getUse();
4531      ++UI;
4532      Use.setNode(To);
4533    } while (UI != UE && *UI == User);
4534
4535    // Now that we have modified User, add it back to the CSE maps.  If it
4536    // already exists there, recursively merge the results together.
4537    AddModifiedNodeToCSEMaps(User, UpdateListener);
4538  }
4539}
4540
4541/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4542/// This can cause recursive merging of nodes in the DAG.
4543///
4544/// This version can replace From with any result values.  To must match the
4545/// number and types of values returned by From.
4546void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4547                                      const SDValue *To,
4548                                      DAGUpdateListener *UpdateListener) {
4549  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4550    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4551
4552  // Iterate over just the existing users of From. See the comments in
4553  // the ReplaceAllUsesWith above.
4554  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4555  while (UI != UE) {
4556    SDNode *User = *UI;
4557
4558    // This node is about to morph, remove its old self from the CSE maps.
4559    RemoveNodeFromCSEMaps(User);
4560
4561    // A user can appear in a use list multiple times, and when this
4562    // happens the uses are usually next to each other in the list.
4563    // To help reduce the number of CSE recomputations, process all
4564    // the uses of this user that we can find this way.
4565    do {
4566      SDUse &Use = UI.getUse();
4567      const SDValue &ToOp = To[Use.getResNo()];
4568      ++UI;
4569      Use.set(ToOp);
4570    } while (UI != UE && *UI == User);
4571
4572    // Now that we have modified User, add it back to the CSE maps.  If it
4573    // already exists there, recursively merge the results together.
4574    AddModifiedNodeToCSEMaps(User, UpdateListener);
4575  }
4576}
4577
4578/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4579/// uses of other values produced by From.getNode() alone.  The Deleted
4580/// vector is handled the same way as for ReplaceAllUsesWith.
4581void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4582                                             DAGUpdateListener *UpdateListener){
4583  // Handle the really simple, really trivial case efficiently.
4584  if (From == To) return;
4585
4586  // Handle the simple, trivial, case efficiently.
4587  if (From.getNode()->getNumValues() == 1) {
4588    ReplaceAllUsesWith(From, To, UpdateListener);
4589    return;
4590  }
4591
4592  // Iterate over just the existing users of From. See the comments in
4593  // the ReplaceAllUsesWith above.
4594  SDNode::use_iterator UI = From.getNode()->use_begin(),
4595                       UE = From.getNode()->use_end();
4596  while (UI != UE) {
4597    SDNode *User = *UI;
4598    bool UserRemovedFromCSEMaps = false;
4599
4600    // A user can appear in a use list multiple times, and when this
4601    // happens the uses are usually next to each other in the list.
4602    // To help reduce the number of CSE recomputations, process all
4603    // the uses of this user that we can find this way.
4604    do {
4605      SDUse &Use = UI.getUse();
4606
4607      // Skip uses of different values from the same node.
4608      if (Use.getResNo() != From.getResNo()) {
4609        ++UI;
4610        continue;
4611      }
4612
4613      // If this node hasn't been modified yet, it's still in the CSE maps,
4614      // so remove its old self from the CSE maps.
4615      if (!UserRemovedFromCSEMaps) {
4616        RemoveNodeFromCSEMaps(User);
4617        UserRemovedFromCSEMaps = true;
4618      }
4619
4620      ++UI;
4621      Use.set(To);
4622    } while (UI != UE && *UI == User);
4623
4624    // We are iterating over all uses of the From node, so if a use
4625    // doesn't use the specific value, no changes are made.
4626    if (!UserRemovedFromCSEMaps)
4627      continue;
4628
4629    // Now that we have modified User, add it back to the CSE maps.  If it
4630    // already exists there, recursively merge the results together.
4631    AddModifiedNodeToCSEMaps(User, UpdateListener);
4632  }
4633}
4634
4635namespace {
4636  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4637  /// to record information about a use.
4638  struct UseMemo {
4639    SDNode *User;
4640    unsigned Index;
4641    SDUse *Use;
4642  };
4643
4644  /// operator< - Sort Memos by User.
4645  bool operator<(const UseMemo &L, const UseMemo &R) {
4646    return (intptr_t)L.User < (intptr_t)R.User;
4647  }
4648}
4649
4650/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4651/// uses of other values produced by From.getNode() alone.  The same value
4652/// may appear in both the From and To list.  The Deleted vector is
4653/// handled the same way as for ReplaceAllUsesWith.
4654void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4655                                              const SDValue *To,
4656                                              unsigned Num,
4657                                              DAGUpdateListener *UpdateListener){
4658  // Handle the simple, trivial case efficiently.
4659  if (Num == 1)
4660    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4661
4662  // Read up all the uses and make records of them. This helps
4663  // processing new uses that are introduced during the
4664  // replacement process.
4665  SmallVector<UseMemo, 4> Uses;
4666  for (unsigned i = 0; i != Num; ++i) {
4667    unsigned FromResNo = From[i].getResNo();
4668    SDNode *FromNode = From[i].getNode();
4669    for (SDNode::use_iterator UI = FromNode->use_begin(),
4670         E = FromNode->use_end(); UI != E; ++UI) {
4671      SDUse &Use = UI.getUse();
4672      if (Use.getResNo() == FromResNo) {
4673        UseMemo Memo = { *UI, i, &Use };
4674        Uses.push_back(Memo);
4675      }
4676    }
4677  }
4678
4679  // Sort the uses, so that all the uses from a given User are together.
4680  std::sort(Uses.begin(), Uses.end());
4681
4682  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4683       UseIndex != UseIndexEnd; ) {
4684    // We know that this user uses some value of From.  If it is the right
4685    // value, update it.
4686    SDNode *User = Uses[UseIndex].User;
4687
4688    // This node is about to morph, remove its old self from the CSE maps.
4689    RemoveNodeFromCSEMaps(User);
4690
4691    // The Uses array is sorted, so all the uses for a given User
4692    // are next to each other in the list.
4693    // To help reduce the number of CSE recomputations, process all
4694    // the uses of this user that we can find this way.
4695    do {
4696      unsigned i = Uses[UseIndex].Index;
4697      SDUse &Use = *Uses[UseIndex].Use;
4698      ++UseIndex;
4699
4700      Use.set(To[i]);
4701    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4702
4703    // Now that we have modified User, add it back to the CSE maps.  If it
4704    // already exists there, recursively merge the results together.
4705    AddModifiedNodeToCSEMaps(User, UpdateListener);
4706  }
4707}
4708
4709/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4710/// based on their topological order. It returns the maximum id and a vector
4711/// of the SDNodes* in assigned order by reference.
4712unsigned SelectionDAG::AssignTopologicalOrder() {
4713
4714  unsigned DAGSize = 0;
4715
4716  // SortedPos tracks the progress of the algorithm. Nodes before it are
4717  // sorted, nodes after it are unsorted. When the algorithm completes
4718  // it is at the end of the list.
4719  allnodes_iterator SortedPos = allnodes_begin();
4720
4721  // Visit all the nodes. Move nodes with no operands to the front of
4722  // the list immediately. Annotate nodes that do have operands with their
4723  // operand count. Before we do this, the Node Id fields of the nodes
4724  // may contain arbitrary values. After, the Node Id fields for nodes
4725  // before SortedPos will contain the topological sort index, and the
4726  // Node Id fields for nodes At SortedPos and after will contain the
4727  // count of outstanding operands.
4728  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4729    SDNode *N = I++;
4730    unsigned Degree = N->getNumOperands();
4731    if (Degree == 0) {
4732      // A node with no uses, add it to the result array immediately.
4733      N->setNodeId(DAGSize++);
4734      allnodes_iterator Q = N;
4735      if (Q != SortedPos)
4736        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4737      ++SortedPos;
4738    } else {
4739      // Temporarily use the Node Id as scratch space for the degree count.
4740      N->setNodeId(Degree);
4741    }
4742  }
4743
4744  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4745  // such that by the time the end is reached all nodes will be sorted.
4746  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4747    SDNode *N = I;
4748    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4749         UI != UE; ++UI) {
4750      SDNode *P = *UI;
4751      unsigned Degree = P->getNodeId();
4752      --Degree;
4753      if (Degree == 0) {
4754        // All of P's operands are sorted, so P may sorted now.
4755        P->setNodeId(DAGSize++);
4756        if (P != SortedPos)
4757          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4758        ++SortedPos;
4759      } else {
4760        // Update P's outstanding operand count.
4761        P->setNodeId(Degree);
4762      }
4763    }
4764  }
4765
4766  assert(SortedPos == AllNodes.end() &&
4767         "Topological sort incomplete!");
4768  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4769         "First node in topological sort is not the entry token!");
4770  assert(AllNodes.front().getNodeId() == 0 &&
4771         "First node in topological sort has non-zero id!");
4772  assert(AllNodes.front().getNumOperands() == 0 &&
4773         "First node in topological sort has operands!");
4774  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4775         "Last node in topologic sort has unexpected id!");
4776  assert(AllNodes.back().use_empty() &&
4777         "Last node in topologic sort has users!");
4778  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4779  return DAGSize;
4780}
4781
4782
4783
4784//===----------------------------------------------------------------------===//
4785//                              SDNode Class
4786//===----------------------------------------------------------------------===//
4787
4788HandleSDNode::~HandleSDNode() {
4789  DropOperands();
4790}
4791
4792GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4793                                         MVT VT, int64_t o)
4794  : SDNode(isa<GlobalVariable>(GA) &&
4795           cast<GlobalVariable>(GA)->isThreadLocal() ?
4796           // Thread Local
4797           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4798           // Non Thread Local
4799           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4800           DebugLoc::getUnknownLoc(), getSDVTList(VT)), Offset(o) {
4801  TheGlobal = const_cast<GlobalValue*>(GA);
4802}
4803
4804MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4805                     const Value *srcValue, int SVO,
4806                     unsigned alignment, bool vol)
4807 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4808  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4809  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4810  assert(getAlignment() == alignment && "Alignment representation error!");
4811  assert(isVolatile() == vol && "Volatile representation error!");
4812}
4813
4814MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4815                     const SDValue *Ops,
4816                     unsigned NumOps, MVT memvt, const Value *srcValue,
4817                     int SVO, unsigned alignment, bool vol)
4818   : SDNode(Opc, dl, VTs, Ops, NumOps),
4819     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4820  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4821  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4822  assert(getAlignment() == alignment && "Alignment representation error!");
4823  assert(isVolatile() == vol && "Volatile representation error!");
4824}
4825
4826/// getMemOperand - Return a MachineMemOperand object describing the memory
4827/// reference performed by this memory reference.
4828MachineMemOperand MemSDNode::getMemOperand() const {
4829  int Flags = 0;
4830  if (isa<LoadSDNode>(this))
4831    Flags = MachineMemOperand::MOLoad;
4832  else if (isa<StoreSDNode>(this))
4833    Flags = MachineMemOperand::MOStore;
4834  else if (isa<AtomicSDNode>(this)) {
4835    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4836  }
4837  else {
4838    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4839    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4840    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4841    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4842  }
4843
4844  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4845  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4846
4847  // Check if the memory reference references a frame index
4848  const FrameIndexSDNode *FI =
4849  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4850  if (!getSrcValue() && FI)
4851    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4852                             Flags, 0, Size, getAlignment());
4853  else
4854    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4855                             Size, getAlignment());
4856}
4857
4858/// Profile - Gather unique data for the node.
4859///
4860void SDNode::Profile(FoldingSetNodeID &ID) const {
4861  AddNodeIDNode(ID, this);
4862}
4863
4864/// getValueTypeList - Return a pointer to the specified value type.
4865///
4866const MVT *SDNode::getValueTypeList(MVT VT) {
4867  if (VT.isExtended()) {
4868    static std::set<MVT, MVT::compareRawBits> EVTs;
4869    return &(*EVTs.insert(VT).first);
4870  } else {
4871    static MVT VTs[MVT::LAST_VALUETYPE];
4872    VTs[VT.getSimpleVT()] = VT;
4873    return &VTs[VT.getSimpleVT()];
4874  }
4875}
4876
4877/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4878/// indicated value.  This method ignores uses of other values defined by this
4879/// operation.
4880bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4881  assert(Value < getNumValues() && "Bad value!");
4882
4883  // TODO: Only iterate over uses of a given value of the node
4884  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4885    if (UI.getUse().getResNo() == Value) {
4886      if (NUses == 0)
4887        return false;
4888      --NUses;
4889    }
4890  }
4891
4892  // Found exactly the right number of uses?
4893  return NUses == 0;
4894}
4895
4896
4897/// hasAnyUseOfValue - Return true if there are any use of the indicated
4898/// value. This method ignores uses of other values defined by this operation.
4899bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4900  assert(Value < getNumValues() && "Bad value!");
4901
4902  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4903    if (UI.getUse().getResNo() == Value)
4904      return true;
4905
4906  return false;
4907}
4908
4909
4910/// isOnlyUserOf - Return true if this node is the only use of N.
4911///
4912bool SDNode::isOnlyUserOf(SDNode *N) const {
4913  bool Seen = false;
4914  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4915    SDNode *User = *I;
4916    if (User == this)
4917      Seen = true;
4918    else
4919      return false;
4920  }
4921
4922  return Seen;
4923}
4924
4925/// isOperand - Return true if this node is an operand of N.
4926///
4927bool SDValue::isOperandOf(SDNode *N) const {
4928  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4929    if (*this == N->getOperand(i))
4930      return true;
4931  return false;
4932}
4933
4934bool SDNode::isOperandOf(SDNode *N) const {
4935  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4936    if (this == N->OperandList[i].getNode())
4937      return true;
4938  return false;
4939}
4940
4941/// reachesChainWithoutSideEffects - Return true if this operand (which must
4942/// be a chain) reaches the specified operand without crossing any
4943/// side-effecting instructions.  In practice, this looks through token
4944/// factors and non-volatile loads.  In order to remain efficient, this only
4945/// looks a couple of nodes in, it does not do an exhaustive search.
4946bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4947                                               unsigned Depth) const {
4948  if (*this == Dest) return true;
4949
4950  // Don't search too deeply, we just want to be able to see through
4951  // TokenFactor's etc.
4952  if (Depth == 0) return false;
4953
4954  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4955  // of the operands of the TF reach dest, then we can do the xform.
4956  if (getOpcode() == ISD::TokenFactor) {
4957    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4958      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4959        return true;
4960    return false;
4961  }
4962
4963  // Loads don't have side effects, look through them.
4964  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4965    if (!Ld->isVolatile())
4966      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4967  }
4968  return false;
4969}
4970
4971
4972static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4973                            SmallPtrSet<SDNode *, 32> &Visited) {
4974  if (found || !Visited.insert(N))
4975    return;
4976
4977  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4978    SDNode *Op = N->getOperand(i).getNode();
4979    if (Op == P) {
4980      found = true;
4981      return;
4982    }
4983    findPredecessor(Op, P, found, Visited);
4984  }
4985}
4986
4987/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4988/// is either an operand of N or it can be reached by recursively traversing
4989/// up the operands.
4990/// NOTE: this is an expensive method. Use it carefully.
4991bool SDNode::isPredecessorOf(SDNode *N) const {
4992  SmallPtrSet<SDNode *, 32> Visited;
4993  bool found = false;
4994  findPredecessor(N, this, found, Visited);
4995  return found;
4996}
4997
4998uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4999  assert(Num < NumOperands && "Invalid child # of SDNode!");
5000  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5001}
5002
5003std::string SDNode::getOperationName(const SelectionDAG *G) const {
5004  switch (getOpcode()) {
5005  default:
5006    if (getOpcode() < ISD::BUILTIN_OP_END)
5007      return "<<Unknown DAG Node>>";
5008    if (isMachineOpcode()) {
5009      if (G)
5010        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5011          if (getMachineOpcode() < TII->getNumOpcodes())
5012            return TII->get(getMachineOpcode()).getName();
5013      return "<<Unknown Machine Node>>";
5014    }
5015    if (G) {
5016      const TargetLowering &TLI = G->getTargetLoweringInfo();
5017      const char *Name = TLI.getTargetNodeName(getOpcode());
5018      if (Name) return Name;
5019      return "<<Unknown Target Node>>";
5020    }
5021    return "<<Unknown Node>>";
5022
5023#ifndef NDEBUG
5024  case ISD::DELETED_NODE:
5025    return "<<Deleted Node!>>";
5026#endif
5027  case ISD::PREFETCH:      return "Prefetch";
5028  case ISD::MEMBARRIER:    return "MemBarrier";
5029  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5030  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5031  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5032  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5033  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5034  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5035  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5036  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5037  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5038  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5039  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5040  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5041  case ISD::PCMARKER:      return "PCMarker";
5042  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5043  case ISD::SRCVALUE:      return "SrcValue";
5044  case ISD::MEMOPERAND:    return "MemOperand";
5045  case ISD::EntryToken:    return "EntryToken";
5046  case ISD::TokenFactor:   return "TokenFactor";
5047  case ISD::AssertSext:    return "AssertSext";
5048  case ISD::AssertZext:    return "AssertZext";
5049
5050  case ISD::BasicBlock:    return "BasicBlock";
5051  case ISD::ARG_FLAGS:     return "ArgFlags";
5052  case ISD::VALUETYPE:     return "ValueType";
5053  case ISD::Register:      return "Register";
5054
5055  case ISD::Constant:      return "Constant";
5056  case ISD::ConstantFP:    return "ConstantFP";
5057  case ISD::GlobalAddress: return "GlobalAddress";
5058  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5059  case ISD::FrameIndex:    return "FrameIndex";
5060  case ISD::JumpTable:     return "JumpTable";
5061  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5062  case ISD::RETURNADDR: return "RETURNADDR";
5063  case ISD::FRAMEADDR: return "FRAMEADDR";
5064  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5065  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5066  case ISD::EHSELECTION: return "EHSELECTION";
5067  case ISD::EH_RETURN: return "EH_RETURN";
5068  case ISD::ConstantPool:  return "ConstantPool";
5069  case ISD::ExternalSymbol: return "ExternalSymbol";
5070  case ISD::INTRINSIC_WO_CHAIN: {
5071    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5072    return Intrinsic::getName((Intrinsic::ID)IID);
5073  }
5074  case ISD::INTRINSIC_VOID:
5075  case ISD::INTRINSIC_W_CHAIN: {
5076    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5077    return Intrinsic::getName((Intrinsic::ID)IID);
5078  }
5079
5080  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5081  case ISD::TargetConstant: return "TargetConstant";
5082  case ISD::TargetConstantFP:return "TargetConstantFP";
5083  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5084  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5085  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5086  case ISD::TargetJumpTable:  return "TargetJumpTable";
5087  case ISD::TargetConstantPool:  return "TargetConstantPool";
5088  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5089
5090  case ISD::CopyToReg:     return "CopyToReg";
5091  case ISD::CopyFromReg:   return "CopyFromReg";
5092  case ISD::UNDEF:         return "undef";
5093  case ISD::MERGE_VALUES:  return "merge_values";
5094  case ISD::INLINEASM:     return "inlineasm";
5095  case ISD::DBG_LABEL:     return "dbg_label";
5096  case ISD::EH_LABEL:      return "eh_label";
5097  case ISD::DECLARE:       return "declare";
5098  case ISD::HANDLENODE:    return "handlenode";
5099  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5100  case ISD::CALL:          return "call";
5101
5102  // Unary operators
5103  case ISD::FABS:   return "fabs";
5104  case ISD::FNEG:   return "fneg";
5105  case ISD::FSQRT:  return "fsqrt";
5106  case ISD::FSIN:   return "fsin";
5107  case ISD::FCOS:   return "fcos";
5108  case ISD::FPOWI:  return "fpowi";
5109  case ISD::FPOW:   return "fpow";
5110  case ISD::FTRUNC: return "ftrunc";
5111  case ISD::FFLOOR: return "ffloor";
5112  case ISD::FCEIL:  return "fceil";
5113  case ISD::FRINT:  return "frint";
5114  case ISD::FNEARBYINT: return "fnearbyint";
5115
5116  // Binary operators
5117  case ISD::ADD:    return "add";
5118  case ISD::SUB:    return "sub";
5119  case ISD::MUL:    return "mul";
5120  case ISD::MULHU:  return "mulhu";
5121  case ISD::MULHS:  return "mulhs";
5122  case ISD::SDIV:   return "sdiv";
5123  case ISD::UDIV:   return "udiv";
5124  case ISD::SREM:   return "srem";
5125  case ISD::UREM:   return "urem";
5126  case ISD::SMUL_LOHI:  return "smul_lohi";
5127  case ISD::UMUL_LOHI:  return "umul_lohi";
5128  case ISD::SDIVREM:    return "sdivrem";
5129  case ISD::UDIVREM:    return "udivrem";
5130  case ISD::AND:    return "and";
5131  case ISD::OR:     return "or";
5132  case ISD::XOR:    return "xor";
5133  case ISD::SHL:    return "shl";
5134  case ISD::SRA:    return "sra";
5135  case ISD::SRL:    return "srl";
5136  case ISD::ROTL:   return "rotl";
5137  case ISD::ROTR:   return "rotr";
5138  case ISD::FADD:   return "fadd";
5139  case ISD::FSUB:   return "fsub";
5140  case ISD::FMUL:   return "fmul";
5141  case ISD::FDIV:   return "fdiv";
5142  case ISD::FREM:   return "frem";
5143  case ISD::FCOPYSIGN: return "fcopysign";
5144  case ISD::FGETSIGN:  return "fgetsign";
5145
5146  case ISD::SETCC:       return "setcc";
5147  case ISD::VSETCC:      return "vsetcc";
5148  case ISD::SELECT:      return "select";
5149  case ISD::SELECT_CC:   return "select_cc";
5150  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5151  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5152  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5153  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5154  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5155  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5156  case ISD::CARRY_FALSE:         return "carry_false";
5157  case ISD::ADDC:        return "addc";
5158  case ISD::ADDE:        return "adde";
5159  case ISD::SADDO:       return "saddo";
5160  case ISD::UADDO:       return "uaddo";
5161  case ISD::SSUBO:       return "ssubo";
5162  case ISD::USUBO:       return "usubo";
5163  case ISD::SMULO:       return "smulo";
5164  case ISD::UMULO:       return "umulo";
5165  case ISD::SUBC:        return "subc";
5166  case ISD::SUBE:        return "sube";
5167  case ISD::SHL_PARTS:   return "shl_parts";
5168  case ISD::SRA_PARTS:   return "sra_parts";
5169  case ISD::SRL_PARTS:   return "srl_parts";
5170
5171  // Conversion operators.
5172  case ISD::SIGN_EXTEND: return "sign_extend";
5173  case ISD::ZERO_EXTEND: return "zero_extend";
5174  case ISD::ANY_EXTEND:  return "any_extend";
5175  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5176  case ISD::TRUNCATE:    return "truncate";
5177  case ISD::FP_ROUND:    return "fp_round";
5178  case ISD::FLT_ROUNDS_: return "flt_rounds";
5179  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5180  case ISD::FP_EXTEND:   return "fp_extend";
5181
5182  case ISD::SINT_TO_FP:  return "sint_to_fp";
5183  case ISD::UINT_TO_FP:  return "uint_to_fp";
5184  case ISD::FP_TO_SINT:  return "fp_to_sint";
5185  case ISD::FP_TO_UINT:  return "fp_to_uint";
5186  case ISD::BIT_CONVERT: return "bit_convert";
5187
5188  case ISD::CONVERT_RNDSAT: {
5189    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5190    default: assert(0 && "Unknown cvt code!");
5191    case ISD::CVT_FF:  return "cvt_ff";
5192    case ISD::CVT_FS:  return "cvt_fs";
5193    case ISD::CVT_FU:  return "cvt_fu";
5194    case ISD::CVT_SF:  return "cvt_sf";
5195    case ISD::CVT_UF:  return "cvt_uf";
5196    case ISD::CVT_SS:  return "cvt_ss";
5197    case ISD::CVT_SU:  return "cvt_su";
5198    case ISD::CVT_US:  return "cvt_us";
5199    case ISD::CVT_UU:  return "cvt_uu";
5200    }
5201  }
5202
5203    // Control flow instructions
5204  case ISD::BR:      return "br";
5205  case ISD::BRIND:   return "brind";
5206  case ISD::BR_JT:   return "br_jt";
5207  case ISD::BRCOND:  return "brcond";
5208  case ISD::BR_CC:   return "br_cc";
5209  case ISD::RET:     return "ret";
5210  case ISD::CALLSEQ_START:  return "callseq_start";
5211  case ISD::CALLSEQ_END:    return "callseq_end";
5212
5213    // Other operators
5214  case ISD::LOAD:               return "load";
5215  case ISD::STORE:              return "store";
5216  case ISD::VAARG:              return "vaarg";
5217  case ISD::VACOPY:             return "vacopy";
5218  case ISD::VAEND:              return "vaend";
5219  case ISD::VASTART:            return "vastart";
5220  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5221  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5222  case ISD::BUILD_PAIR:         return "build_pair";
5223  case ISD::STACKSAVE:          return "stacksave";
5224  case ISD::STACKRESTORE:       return "stackrestore";
5225  case ISD::TRAP:               return "trap";
5226
5227  // Bit manipulation
5228  case ISD::BSWAP:   return "bswap";
5229  case ISD::CTPOP:   return "ctpop";
5230  case ISD::CTTZ:    return "cttz";
5231  case ISD::CTLZ:    return "ctlz";
5232
5233  // Debug info
5234  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5235  case ISD::DEBUG_LOC: return "debug_loc";
5236
5237  // Trampolines
5238  case ISD::TRAMPOLINE: return "trampoline";
5239
5240  case ISD::CONDCODE:
5241    switch (cast<CondCodeSDNode>(this)->get()) {
5242    default: assert(0 && "Unknown setcc condition!");
5243    case ISD::SETOEQ:  return "setoeq";
5244    case ISD::SETOGT:  return "setogt";
5245    case ISD::SETOGE:  return "setoge";
5246    case ISD::SETOLT:  return "setolt";
5247    case ISD::SETOLE:  return "setole";
5248    case ISD::SETONE:  return "setone";
5249
5250    case ISD::SETO:    return "seto";
5251    case ISD::SETUO:   return "setuo";
5252    case ISD::SETUEQ:  return "setue";
5253    case ISD::SETUGT:  return "setugt";
5254    case ISD::SETUGE:  return "setuge";
5255    case ISD::SETULT:  return "setult";
5256    case ISD::SETULE:  return "setule";
5257    case ISD::SETUNE:  return "setune";
5258
5259    case ISD::SETEQ:   return "seteq";
5260    case ISD::SETGT:   return "setgt";
5261    case ISD::SETGE:   return "setge";
5262    case ISD::SETLT:   return "setlt";
5263    case ISD::SETLE:   return "setle";
5264    case ISD::SETNE:   return "setne";
5265    }
5266  }
5267}
5268
5269const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5270  switch (AM) {
5271  default:
5272    return "";
5273  case ISD::PRE_INC:
5274    return "<pre-inc>";
5275  case ISD::PRE_DEC:
5276    return "<pre-dec>";
5277  case ISD::POST_INC:
5278    return "<post-inc>";
5279  case ISD::POST_DEC:
5280    return "<post-dec>";
5281  }
5282}
5283
5284std::string ISD::ArgFlagsTy::getArgFlagsString() {
5285  std::string S = "< ";
5286
5287  if (isZExt())
5288    S += "zext ";
5289  if (isSExt())
5290    S += "sext ";
5291  if (isInReg())
5292    S += "inreg ";
5293  if (isSRet())
5294    S += "sret ";
5295  if (isByVal())
5296    S += "byval ";
5297  if (isNest())
5298    S += "nest ";
5299  if (getByValAlign())
5300    S += "byval-align:" + utostr(getByValAlign()) + " ";
5301  if (getOrigAlign())
5302    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5303  if (getByValSize())
5304    S += "byval-size:" + utostr(getByValSize()) + " ";
5305  return S + ">";
5306}
5307
5308void SDNode::dump() const { dump(0); }
5309void SDNode::dump(const SelectionDAG *G) const {
5310  print(errs(), G);
5311}
5312
5313void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5314  OS << (void*)this << ": ";
5315
5316  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5317    if (i) OS << ",";
5318    if (getValueType(i) == MVT::Other)
5319      OS << "ch";
5320    else
5321      OS << getValueType(i).getMVTString();
5322  }
5323  OS << " = " << getOperationName(G);
5324}
5325
5326void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5327  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5328    SDNode *Mask = getOperand(2).getNode();
5329    OS << "<";
5330    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5331      if (i) OS << ",";
5332      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5333        OS << "u";
5334      else
5335        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5336    }
5337    OS << ">";
5338  }
5339
5340  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5341    OS << '<' << CSDN->getAPIntValue() << '>';
5342  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5343    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5344      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5345    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5346      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5347    else {
5348      OS << "<APFloat(";
5349      CSDN->getValueAPF().bitcastToAPInt().dump();
5350      OS << ")>";
5351    }
5352  } else if (const GlobalAddressSDNode *GADN =
5353             dyn_cast<GlobalAddressSDNode>(this)) {
5354    int64_t offset = GADN->getOffset();
5355    OS << '<';
5356    WriteAsOperand(OS, GADN->getGlobal());
5357    OS << '>';
5358    if (offset > 0)
5359      OS << " + " << offset;
5360    else
5361      OS << " " << offset;
5362  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5363    OS << "<" << FIDN->getIndex() << ">";
5364  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5365    OS << "<" << JTDN->getIndex() << ">";
5366  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5367    int offset = CP->getOffset();
5368    if (CP->isMachineConstantPoolEntry())
5369      OS << "<" << *CP->getMachineCPVal() << ">";
5370    else
5371      OS << "<" << *CP->getConstVal() << ">";
5372    if (offset > 0)
5373      OS << " + " << offset;
5374    else
5375      OS << " " << offset;
5376  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5377    OS << "<";
5378    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5379    if (LBB)
5380      OS << LBB->getName() << " ";
5381    OS << (const void*)BBDN->getBasicBlock() << ">";
5382  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5383    if (G && R->getReg() &&
5384        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5385      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5386    } else {
5387      OS << " #" << R->getReg();
5388    }
5389  } else if (const ExternalSymbolSDNode *ES =
5390             dyn_cast<ExternalSymbolSDNode>(this)) {
5391    OS << "'" << ES->getSymbol() << "'";
5392  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5393    if (M->getValue())
5394      OS << "<" << M->getValue() << ">";
5395    else
5396      OS << "<null>";
5397  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5398    if (M->MO.getValue())
5399      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5400    else
5401      OS << "<null:" << M->MO.getOffset() << ">";
5402  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5403    OS << N->getArgFlags().getArgFlagsString();
5404  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5405    OS << ":" << N->getVT().getMVTString();
5406  }
5407  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5408    const Value *SrcValue = LD->getSrcValue();
5409    int SrcOffset = LD->getSrcValueOffset();
5410    OS << " <";
5411    if (SrcValue)
5412      OS << SrcValue;
5413    else
5414      OS << "null";
5415    OS << ":" << SrcOffset << ">";
5416
5417    bool doExt = true;
5418    switch (LD->getExtensionType()) {
5419    default: doExt = false; break;
5420    case ISD::EXTLOAD: OS << " <anyext "; break;
5421    case ISD::SEXTLOAD: OS << " <sext "; break;
5422    case ISD::ZEXTLOAD: OS << " <zext "; break;
5423    }
5424    if (doExt)
5425      OS << LD->getMemoryVT().getMVTString() << ">";
5426
5427    const char *AM = getIndexedModeName(LD->getAddressingMode());
5428    if (*AM)
5429      OS << " " << AM;
5430    if (LD->isVolatile())
5431      OS << " <volatile>";
5432    OS << " alignment=" << LD->getAlignment();
5433  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5434    const Value *SrcValue = ST->getSrcValue();
5435    int SrcOffset = ST->getSrcValueOffset();
5436    OS << " <";
5437    if (SrcValue)
5438      OS << SrcValue;
5439    else
5440      OS << "null";
5441    OS << ":" << SrcOffset << ">";
5442
5443    if (ST->isTruncatingStore())
5444      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5445
5446    const char *AM = getIndexedModeName(ST->getAddressingMode());
5447    if (*AM)
5448      OS << " " << AM;
5449    if (ST->isVolatile())
5450      OS << " <volatile>";
5451    OS << " alignment=" << ST->getAlignment();
5452  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5453    const Value *SrcValue = AT->getSrcValue();
5454    int SrcOffset = AT->getSrcValueOffset();
5455    OS << " <";
5456    if (SrcValue)
5457      OS << SrcValue;
5458    else
5459      OS << "null";
5460    OS << ":" << SrcOffset << ">";
5461    if (AT->isVolatile())
5462      OS << " <volatile>";
5463    OS << " alignment=" << AT->getAlignment();
5464  }
5465}
5466
5467void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5468  print_types(OS, G);
5469  OS << " ";
5470  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5471    if (i) OS << ", ";
5472    OS << (void*)getOperand(i).getNode();
5473    if (unsigned RN = getOperand(i).getResNo())
5474      OS << ":" << RN;
5475  }
5476  print_details(OS, G);
5477}
5478
5479static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5480  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5481    if (N->getOperand(i).getNode()->hasOneUse())
5482      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5483    else
5484      cerr << "\n" << std::string(indent+2, ' ')
5485           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5486
5487
5488  cerr << "\n" << std::string(indent, ' ');
5489  N->dump(G);
5490}
5491
5492void SelectionDAG::dump() const {
5493  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5494
5495  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5496       I != E; ++I) {
5497    const SDNode *N = I;
5498    if (!N->hasOneUse() && N != getRoot().getNode())
5499      DumpNodes(N, 2, this);
5500  }
5501
5502  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5503
5504  cerr << "\n\n";
5505}
5506
5507void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5508  print_types(OS, G);
5509  print_details(OS, G);
5510}
5511
5512typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5513static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5514		       const SelectionDAG *G, VisitedSDNodeSet &once) {
5515  if (!once.insert(N))	// If we've been here before, return now.
5516    return;
5517  // Dump the current SDNode, but don't end the line yet.
5518  OS << std::string(indent, ' ');
5519  N->printr(OS, G);
5520  // Having printed this SDNode, walk the children:
5521  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5522    const SDNode *child = N->getOperand(i).getNode();
5523    if (i) OS << ",";
5524    OS << " ";
5525    if (child->getNumOperands() == 0) {
5526      // This child has no grandchildren; print it inline right here.
5527      child->printr(OS, G);
5528      once.insert(child);
5529    } else {	// Just the address.  FIXME: also print the child's opcode
5530      OS << (void*)child;
5531      if (unsigned RN = N->getOperand(i).getResNo())
5532	OS << ":" << RN;
5533    }
5534  }
5535  OS << "\n";
5536  // Dump children that have grandchildren on their own line(s).
5537  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5538    const SDNode *child = N->getOperand(i).getNode();
5539    DumpNodesr(OS, child, indent+2, G, once);
5540  }
5541}
5542
5543void SDNode::dumpr() const {
5544  VisitedSDNodeSet once;
5545  DumpNodesr(errs(), this, 0, 0, once);
5546}
5547
5548const Type *ConstantPoolSDNode::getType() const {
5549  if (isMachineConstantPoolEntry())
5550    return Val.MachineCPVal->getType();
5551  return Val.ConstVal->getType();
5552}
5553
5554bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5555                                        APInt &SplatUndef,
5556                                        unsigned &SplatBitSize,
5557                                        bool &HasAnyUndefs,
5558                                        unsigned MinSplatBits) {
5559  MVT VT = getValueType(0);
5560  assert(VT.isVector() && "Expected a vector type");
5561  unsigned sz = VT.getSizeInBits();
5562  if (MinSplatBits > sz)
5563    return false;
5564
5565  SplatValue = APInt(sz, 0);
5566  SplatUndef = APInt(sz, 0);
5567
5568  // Get the bits.  Bits with undefined values (when the corresponding element
5569  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5570  // in SplatValue.  If any of the values are not constant, give up and return
5571  // false.
5572  unsigned int nOps = getNumOperands();
5573  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5574  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5575  for (unsigned i = 0; i < nOps; ++i) {
5576    SDValue OpVal = getOperand(i);
5577    unsigned BitPos = i * EltBitSize;
5578
5579    if (OpVal.getOpcode() == ISD::UNDEF)
5580      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5581    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5582      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5583                     zextOrTrunc(sz) << BitPos);
5584    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5585      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5586     else
5587      return false;
5588  }
5589
5590  // The build_vector is all constants or undefs.  Find the smallest element
5591  // size that splats the vector.
5592
5593  HasAnyUndefs = (SplatUndef != 0);
5594  while (sz > 8) {
5595
5596    unsigned HalfSize = sz / 2;
5597    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5598    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5599    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5600    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5601
5602    // If the two halves do not match (ignoring undef bits), stop here.
5603    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5604        MinSplatBits > HalfSize)
5605      break;
5606
5607    SplatValue = HighValue | LowValue;
5608    SplatUndef = HighUndef & LowUndef;
5609
5610    sz = HalfSize;
5611  }
5612
5613  SplatBitSize = sz;
5614  return true;
5615}
5616